Science.gov

Sample records for exchange high performance

  1. High Performance Woven Mesh Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Wirtz, Richard A.; Li, Chen; Park, Ji-Wook; Xu, Jun

    2002-07-01

    Simple-to-fabricate woven mesh structures, consisting of bonded laminates of two-dimensional plain-weave conductive screens, or three-dimensional orthogonal weaves are described. Geometric equations show that these porous matrices can be fabricated to have a wide range of porosity and a highly anisotropic thermal conductivity vector. A mathematical model of the thermal performance of such a mesh, deployed as a heat exchange surface, is developed. Measurements of pressure drop and overall heat transfer rate are reported and used with the performance model to develop correlation equations of mesh friction factor and Colburn j-factor as a function of coolant properties, mesh characteristics and flow rate through the mesh. A heat exchanger performance analysis delineates conditions where the two mesh technologies offer superior performance.

  2. High-performance cation-exchange chromatofocusing of proteins.

    PubMed

    Kang, Xuezhen; Frey, Douglas D

    2003-03-28

    Chromatofocusing using high-performance cation-exchange column packings, as opposed to the more commonly used anion-exchange column packings, is investigated with regard to the performance achieved and the range of applications possible. Linear or convex gradients in the range from pH 2.6 to 9 were formed using a variety of commercially available column packings that provide a buffering capacity in different pH ranges, and either polyampholytes or simple mixtures having a small number (three or fewer) of buffering species as the elution buffer. The resolutions achieved using cation-exchange or anion-exchange chromatofocusing were in general comparable, although for certain pairs of proteins better resolution could be achieved using one type of packing as compared to the other, evidently due to the way electrostatic charges are distributed on the protein surface. Several chromatofocusing methods were investigated that take advantage of the acid-base properties of commercially available cation-exchange column packings. These include the use of gradients with a composite shape, the use of very low pH ranges, and the use of elution buffers containing a single buffering species. The advantages of chromatofocusing over ion-exchange chromatography using a salt gradient at constant pH were illustrated by employing the former method and a cation-exchange column packing to separate beta-lactoglobulins A and B, which is a separation reported to be impossible using the latter method and a cation-exchange column packing. Trends in the apparent isoelectric points determined using cation- and anion-exchange chromatofocusing were interpreted using applicable theories. Results of this study indicate that cation-exchange chromatofocusing is a useful technique which is complementary to anion-exchange chromatofocusing and isoelectric focusing for separating proteins at both the analytical and preparative scales.

  3. Technology Performance Exchange

    SciTech Connect

    2015-09-01

    To address the need for accessible, high-quality data, the Department of Energy has developed the Technology Performance Exchange (TPEx). TPEx enables technology suppliers, third-party testing laboratories, and other entities to share product performance data. These data are automatically transformed into a format that technology evaluators can easily use in their energy modeling assessments to inform procurement decisions.

  4. Highly conductive anion exchange membrane for high power density fuel-cell performance.

    PubMed

    Ren, Xiaoming; Price, Samuel C; Jackson, Aaron C; Pomerantz, Natalie; Beyer, Frederick L

    2014-08-27

    Anion exchange membrane fuel cells (AEMFCs) are regarded as a new generation of fuel cell technology that has the potential to overcome many obstacles of the mainstream proton exchange membrane fuel cells (PEMFCs) in cost, catalyst stability, efficiency, and system size. However, the low ionic conductivity and poor thermal stability of current anion exchange membranes (AEMs) have been the key factors limiting the performance of AEMFCs. In this study, an AEM made of styrenic diblock copolymer with a quaternary ammonium-functionalized hydrophilic block and a cross-linkable hydrophobic block and possessing bicontinuous phases of a hydrophobic network and hydrophilic conduction paths was found to have high ionic conductivity at 98 mS cm(-1) and controlled membrane swelling with water uptake at 117 wt % at 22 °C. Membrane characterizations and fuel cell tests of the new AEM were carried out together with a commercial AEM, Tokuyama A201, for comparison. The high ionic conductivity and water permeability of the new membrane reported in this study is attributed to the reduced torturosity of the ionic conduction paths, while the hydrophobic network maintains the membrane mechanical integrity, preventing excessive water uptake.

  5. High performance microchannel heat exchanger for cooling high heat load x-ray optical elements

    SciTech Connect

    Choi, U.S.; Rogers, C.S.; Mills, D.M.

    1992-01-01

    Analysis has been carried out to demonstrate that a liquid nitrogen cooled microchannel heat exchanger can be designed to maximize the heat transfer from silicon to the working fluid. The results show that the performance of the liquid nitrogen cooled microchannel heat exchanger is significantly enhanced by approximately three times over flowing water through microchannels.

  6. High performance microchannel heat exchanger for cooling high heat load x-ray optical elements

    SciTech Connect

    Choi, U.S.; Rogers, C.S.; Mills, D.M.

    1992-12-01

    Analysis has been carried out to demonstrate that a liquid nitrogen cooled microchannel heat exchanger can be designed to maximize the heat transfer from silicon to the working fluid. The results show that the performance of the liquid nitrogen cooled microchannel heat exchanger is significantly enhanced by approximately three times over flowing water through microchannels.

  7. [Separation and purification of lysozyme from egg white by high performance cation-exchange chromatography].

    PubMed

    Li, Rong; Chen, Guo-liang

    2002-05-01

    A new method used to separate and purify lysozyme from egg white by high performance cation-exchange chromatography has been established. The process conditions for purifying lysozyme were also discussed in detail. The procedure involved that homogenization of the egg white sample, preliminary purification with sodium chloride, and chromatographic separation by the weak cation exchange column (XIDACE-WCX). The experimental results showed that the purified lysozyme and other impurity proteins were completely separated. By using bioactivity assay, the recovery of lysozyme was 107%, and the specific activity was 15,467 U/mg through the column. Its purity was raised 5.6-fold. The collected fraction with activity was detected by size-exclusion chromatography (SEC). The purified lysozyme was homogeneous. Compared with the traditional soft-based low pressure ion-exchange chromatography, the developed method is rapid and effective.

  8. Quantitative Kinetic Characterization of Glycoside Hydrolases Using High-Performance Anion-Exchange Chromatography (HPAEC).

    PubMed

    McGregor, Nicholas; Arnal, Gregory; Brumer, Harry

    2017-01-01

    High-performance anion-exchange chromatography coupled to pulsed amperometric detection (HPAEC-PAD) is a powerful analytical technique enabling the high-resolution separation and sensitive quantification of oligosaccharides. Here, we describe a general method for the determination of glycoside hydrolase kinetics that harnesses the intrinsic power of HPAEC-PAD to simultaneously monitor the release of multiple products under conditions of low substrate conversion. Thus, the ability to track product release under initial-rate conditions with substrate concentrations as low as 5 μM enables the determination of Michaelis-Menten kinetics for glycosidase activities, including hydrolysis and transglycosylation. This technique may also be readily extended to other carbohydrate-active enzymes (CAZymes), including polysaccharide lyases, and glycosyl transferases.

  9. High performance ion chromatography of haloacetic acids on macrocyclic cryptand anion exchanger.

    PubMed

    Bruzzoniti, Maria Concetta; De Carlo, Rosa Maria; Horvath, Krisztian; Perrachon, Daniela; Prelle, Ambra; Tófalvi, Renáta; Sarzanini, Corrado; Hajós, Péter

    2008-04-11

    A new high performance ion chromatographic method has been developed for the separation of the nine chlorinated-brominated haloacetic acids (HAAs) that are the disinfection by-products of chlorination of drinking water, using a macrocycle-based adjustable-capacity anion-exchange separator column (IonPac Cryptand A1). A gradient method based on theoretical and experimental considerations has been optimized in which 10 mM NaOH-LiOH step gradient was performed at the third minute of the analysis. The optimized method allowed us to separate the nine HAAs and seven possibly interfering inorganic anions in less than 25 min with acceptable resolution. The minimum concentrations detectable for HAAs were between 8.0 (MBA) and 210 (TBA) microg L(-1), with linearity included between 0.9947 (TBA) and 0.9998 (MBA). To increase sensitivity, a 25-fold preconcentration step on a reversed phase substrate (LiChrolut EN) has been coupled. Application of this method to the analysis of haloacetic acids in real tap water samples is illustrated.

  10. Tunable High Performance Cross-Linked Alkaline Anion Exchange Membranes for Fuel Cell Applications

    SciTech Connect

    Robertson, Nicholas J.; Kostalik, IV, Henry A.; Clark, Timothy J.; Mutolo, Paul F.; Abruña, Héctor D.; Coates, Geoffrey W.

    2010-02-23

    Fuel cells are energy conversion devices that show great potential in numerous applications ranging from automobiles to portable electronics. However, further development of fuel cell components is necessary for them to become commercially viable. One component critical to their performance is the polymer electrolyte membrane, which is an ion conductive medium separating the two electrodes. While proton conducting membranes are well established (e.g., Nafion), hydroxide conducting membranes (alkaline anion exchange membranes, AAEMs) have been relatively unexplored by comparison. Operating under alkaline conditions offers significant efficiency benefits, especially for the oxygen reduction reaction; therefore, effective AAEMs could significantly advance fuel cell technologies. Here we demonstrate the use of ring-opening metathesis polymerization to generate new cross-linked membrane materials exhibiting high hydroxide ion conductivity and good mechanical properties. Cross-linking allows for increased ion incorporation, which, in turn supports high conductivities. This facile synthetic approach enables the preparation of cross-linked materials with the potential to meet the demands of hydrogen-powered fuel cells as well as direct methanol fuel cells.

  11. Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications.

    PubMed

    Robertson, Nicholas J; Kostalik, Henry A; Clark, Timothy J; Mutolo, Paul F; Abruña, Héctor D; Coates, Geoffrey W

    2010-03-17

    Fuel cells are energy conversion devices that show great potential in numerous applications ranging from automobiles to portable electronics. However, further development of fuel cell components is necessary for them to become commercially viable. One component critical to their performance is the polymer electrolyte membrane, which is an ion conductive medium separating the two electrodes. While proton conducting membranes are well established (e.g., Nafion), hydroxide conducting membranes (alkaline anion exchange membranes, AAEMs) have been relatively unexplored by comparison. Operating under alkaline conditions offers significant efficiency benefits, especially for the oxygen reduction reaction; therefore, effective AAEMs could significantly advance fuel cell technologies. Here we demonstrate the use of ring-opening metathesis polymerization to generate new cross-linked membrane materials exhibiting high hydroxide ion conductivity and good mechanical properties. Cross-linking allows for increased ion incorporation, which, in turn supports high conductivities. This facile synthetic approach enables the preparation of cross-linked materials with the potential to meet the demands of hydrogen-powered fuel cells as well as direct methanol fuel cells.

  12. Characterisation of brewpub beer carbohydrates using high performance anion exchange chromatography coupled with pulsed amperometric detection.

    PubMed

    Arfelli, Giuseppe; Sartini, Elisa

    2014-01-01

    High performance anion exchange chromatography (HPAEC) coupled with pulsed amperometric detection (PAD) was optimised in order to quantify mannose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose and maltoheptaose content of beer. The method allows the determination of above mentioned oligosaccharides, in a single chromatographic run, without any pre-treatment. Limit of detection and limit of quantification were suitable for beer. Accuracy and repeatability were good for the entire amount considered. Once optimised HPAEC PAD for the specific matrix, the second goal of this research was to verify the possibility to discriminate beers, depending on their style. The carbohydrates content of brewpub commercial beers was very variable, ranging from 19.3 to 1469mg/L (mannose), 34.5 to 2882mg/L (maltose), 141.9 to 20731mg/L (maltotriose), 168.5 to 7650mg/L (maltotetraose), 20.1 to 2537mg/L (maltopentaose), 22.9 to 3295mg/L (maltohexaose), 8.5 to 2492mg/L (maltoeptaose), even in the same style of beer. However, the carbohydrates content was useful, jointed with other compounds amount, to discriminate different styles of beer. As a matter of fact, principal component analysis put in evidence beer differences considering some fermentation conditions and colour.

  13. High Temperature Heat Exchanger Project

    SciTech Connect

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  14. High flux heat exchanger

    NASA Astrophysics Data System (ADS)

    Flynn, Edward M.; Mackowski, Michael J.

    1993-01-01

    This interim report documents the results of the first two phases of a four-phase program to develop a high flux heat exchanger for cooling future high performance aircraft electronics. Phase 1 defines future needs for high flux heat removal in advanced military electronics systems. The results are sorted by broad application categories: (1) commercial digital systems, (2) military data processors, (3) power processors, and (4) radar and optical systems. For applications expected to be fielded in five to ten years, the outlook is for steady state flux levels of 30-50 W/sq cm for digital processors and several hundred W/sq cm for power control applications. In Phase 1, a trade study was conducted on emerging cooling technologies which could remove a steady state chip heat flux of 100 W/sq cm while holding chip junction temperature to 90 C. Constraints imposed on heat exchanger design, in order to reflect operation in a fighter aircraft environment, included a practical lower limit on coolant supply temperature, the preference for a nontoxic, nonflammable, and nonfreezing coolant, the need to minimize weight and volume, and operation in an accelerating environment. The trade study recommended the Compact High Intensity Cooler (CHIC) for design, fabrication, and test in the final two phases of this program.

  15. Preparation and properties of high performance nanocomposite proton exchange membrane for fuel cell

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Feng; Yen, Chuan-Yu; Ma, Chen-Chi M.; Liao, Shu-Hang; Hung, Chih-Hung; Hsiao, Yi-Hsiu

    Various spatially enlarged organoclays were prepared by using poly(oxyproplene)-backboned quaternary ammonium salts of various molecular weights M w 230, 400 and 2000 as the intercalating agents for Na +-montmorillonite. The modified MMT was utilized to improve the compatibility with Nafion ®. Sufficient interaction of the modified MMT with Nafion ® was studied by using X-ray diffraction (XRD) and X-ray photoelectron spectra (XPS). The performance of the Nafion ®/ m-MMT composite membranes for direct methanol fuel cell (DMFCs) was evaluated in terms of water uptake, ion exchange capacity (IEC), methanol permeability, proton conductivity, and cell performance. The methanol permeability of the composite membrane decreased with the increasing of m-MMT content. The proton conductivity of the membrane was lowered slightly from that of pristine Nafion ® membrane. These results led to an essential improvement in the single-cell performance of DMFCs.

  16. Technology Performance Exchange (Fact Sheet)

    SciTech Connect

    Not Available

    2012-10-01

    This fact sheet, 'The Technology Performance Exchange' will be presented at the ET Summit, held at the Pasadena Convention Center on October 15-17, 2012. The Technology Performance Exchange will be a centralized, Web-based portal for finding and sharing energy performance data for commercial building technologies.

  17. Manipulating Water in High-Performance Hydroxide Exchange Membrane Fuel Cells through Asymmetric Humidification and Wetproofing

    SciTech Connect

    Kaspar, RB; Letterio, MP; Wittkopf, JA; Gong, K; Gu, S; Yan, YS

    2015-02-18

    Hydroxide exchange membrane fuel cells (HEMFCs) are an emerging low-cost alternative to conventional proton exchange membrane fuel cells. In addition to producing water at the anode, HEMFCs consume water at the cathode, leading to distinctive water transport behavior. We report that gas diffusion layer (GDL) wetproofing strictly lowers cell performance, but that the penalty is much higher when the anode side is wetproofed compared to the cathode side. We attribute this penalty primarily to mass transport losses from anode flooding, suggesting that cathode humidification may be more beneficial than anode humidification for this device. GDLs with little or no wetproofing perform best, yielding a competitive peak power density of 737 mW cm(-2). (C) The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, hup://creativecommons.orgilicenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.

  18. Demonstration and Performance Monitoring of Foundation Heat Exchangers (FHX) in Ultra-High Energy Efficient Research Homes

    SciTech Connect

    Im, Piljae; Hughes, Patrick; Liu, Xiaobing

    2012-01-01

    The more widespread use of Ground Source Heat Pump (GSHP) systems has been hindered by their high first cost, which is mainly driven by the cost of the drilling and excavation for installation of ground heat exchangers (GHXs). A new foundation heat exchanger (FHX) technology was proposed to reduce first cost by placing the heat exchanger into the excavations made during the course of construction (e.g., the overcut for the basement and/or foundation and run-outs for water supply and the septic field). Since they reduce or eliminate the need for additional drilling or excavation, foundation heat exchangers have the potential to significantly reduce or eliminate the first cost premium associated with GSHPs. Since December 2009, this FHX technology has been demonstrated in two ultra-high energy efficient new research houses in the Tennessee Valley, and the performance data has been closely monitored as well. This paper introduces the FHX technology with the design, construction and demonstration of the FHX and presents performance monitoring results of the FHX after one year of monitoring. The performance monitoring includes hourly maximum and minimum entering water temperature (EWT) in the FHX compared with the typical design range, temperature difference (i.e., T) across the FHX, and hourly heat transfer rate to/from the surrounding soil.

  19. Transverse-to-Longitudinal Emittance Exchange to Improve Performance of High-Gain Free-Electron Lasers

    SciTech Connect

    Emma, P.; Huang, Z.; Kim, K.-J.; Piot, P.; /Northern Illinois U. /Fermilab

    2006-09-21

    The ability to generate small transverse emittance is perhaps the main limiting factor for the performance of high-gain x-rays free-electron lasers (FELs). Noting that beams from an rf photocathode gun can have energy spread much smaller than required for efficient FEL interaction, we present a method to produce normalized transverse emittance at or below about 0.1 {micro}m, which will lead to a significantly shorter length undulator as well as a lower electron beam energy for an x-ray FEL project. The beam manipulation consists of producing an unequal partition of the initially equal emittances into two dissimilar emittances by a flat beam technique and exchanging the larger transverse emittance with a small longitudinal emittance. We study various issues involved in the manipulation. In particular, a new emittance exchange optics we found enables an exact emittance exchange necessary for this scheme.

  20. Superacid-doped polybenzimidazole-decorated carbon nanotubes: a novel high-performance proton exchange nanocomposite membrane

    NASA Astrophysics Data System (ADS)

    Hasani-Sadrabadi, Mohammad Mahdi; Dashtimoghadam, Erfan; Majedi, Fatemeh Sadat; Moaddel, Homayoun; Bertsch, Arnaud; Renaud, Philippe

    2013-11-01

    Here we demonstrate design and electrochemical characterization of novel proton exchange membranes based on Nafion and superacid-doped polymer coated carbon nanotubes (CNTs). Polybenzimidazole-decorated CNT (PBI-CNT), a high-performance proton exchange nanostructure, was doped using phosphotungstic acid (PWA) as a super proton conductor. The engineered nanohybrid structure was shown to retain water molecules and provide high proton conduction at low humidity and elevated temperatures. The developed complex nanomaterial was then incorporated into the Nafion matrix to fabricate nanocomposite membranes. The acid-base interactions between imidazole groups of PBI and sulfonate groups of Nafion facilitate proton conductivity, especially at elevated temperatures. The improved characteristics of the membranes at the nanoscale result in enhanced fuel cell power generation capacity (386 mW cm-2) at elevated temperatures and low humidity (40% R.H.), which was found to be considerably higher than the commercial Nafion®117 membrane (73 mW cm-2).

  1. Development of a high-performance boiling heat exchanger by improved liquid supply to narrow channels.

    PubMed

    Ohta, Haruhiko; Ohno, Toshiyuki; Hioki, Fumiaki; Shinmoto, Yasuhisa

    2004-11-01

    A two-phase flow loop is a promising method for application to thermal management systems for large-scale space platforms handling large amounts of energy. Boiling heat transfer reduces the size and weight of cold plates. The transportation of latent heat reduces the mass flow rate of working fluid and pump power. To develop compact heat exchangers for the removal of waste heat from electronic devices with high heat generation density, experiments on a method to increase the critical heat flux for a narrow heated channel between parallel heated and unheated plates were conducted. Fine grooves are machined on the heating surface in a transverse direction to the flow and liquid is supplied underneath flattened bubbles by the capillary pressure difference from auxiliary liquid channels separated by porous metal plates from the main heated channel. The critical heat flux values for the present heated channel structure are more than twice those for a flat surface at gap sizes 2 mm and 0.7 mm. The validity of the present structure with auxiliary liquid channels is confirmed by experiments in which the liquid supply to the grooves is interrupted. The increment in the critical heat flux compared to those for a flat surface takes a maximum value at a certain flow rate of liquid supply to the heated channel. The increment is expected to become larger when the length of the heated channel is increased and/or the gravity level is reduced.

  2. Ion exchange, chromatofocusing and size exclusion high-performance liquid chromatography of the human uterine progesterone receptor.

    PubMed

    Holmes, S D; Smith, R G

    1985-12-01

    The human uterine progesterone receptor was subjected to high-performance liquid chromatography on size exclusion, anion exchange and chromatofocusing columns. For the rapid isolation of the receptor, recovery of [3H]progesterone as well as protein from the columns was essential. The size exclusion columns (G2000 SW and G3000 SW) as well as Mono P HR 5/20 chromatofocusing column adsorbed [3H]progesterone and thus were not useful for separation purposes. The anion exchange (polyanion SI-17) and chromatofocusing columns, AX500, and IEX 540 DEAE gave very good recoveries of protein (greater than 90%) and [3H]progesterone; 80, 66 and 88% respectively. These columns gave rapid and reproducible separation of the progesterone receptor from other cytosol proteins.

  3. Anion-exchange high-performance liquid chromatography with conductivity detection for the analysis of phytic acid in food.

    PubMed

    Talamond, P; Doulbeau, S; Rochette, I; Guyot, J P

    2000-02-25

    A sensitive method for the accurate determination of phytic acid in food samples is described. The proposed procedure involves the anion-exchange liquid chromatography with conductivity detection. Initially, two methods of determination of phytic acid were compared: absorptiometry and high-performance ion chromatography (HPIC) with chemically suppressed conductivity detector. Unlike most conventional methods involving precipitation by FeCl3, the simpler and more reliable HPIC assay avoids the numerous assumptions inherent in the iron precipitation and the accuracy is independent of the phytate content. The protocol was also applied to a survey of phytic acid concentration in some cereal, oil and legume seeds.

  4. Protein losses in ion-exchange and hydrophobic interaction high-performance liquid chromatography

    SciTech Connect

    Goheen, Steven C.; Gibbins, Betty M.

    2000-01-01

    Protein losses in ion-exchange and hydrophobic interaction HPLC were examined. The supports were allnon-porous, packed in columns of identical dimensions. Two ion-exchange chromatography (IEC), anion and cation, as well as a hydrophobic interaction chromatography (HIC) columns were tested. Proteins included cytochrome c, bovine serum albumin (BSA), immunoglobulin G and fibrinogen. Temperature effects on HIC supports were studied for cytochrome c and BSA. Both retention times and recoveries of the proteins were measured. The influence of column residence time on the recovery of proteins were also investigated. We found a linear relationship between the amount of protein recovered and the log of the molecular mass. Retention times also generally increased with temperature for both HIC and IEC. Other trends in retention behavior and recoveries are discussed.

  5. Fractals for multicyclic synthesis conditions of biopolymers. Examples of oligonucleotide synthesis measured by high-performance capillary electrophoresis and ion-exchange high-performance liquid chromatography.

    PubMed

    Földes-Papp, Z; Birch-Hirschfeld, E; Eickhoff, H; Baumann, G; Peng, W G; Biber, T; Seydel, R; Kleinschmidt, A K; Seliger, H

    1996-07-19

    We have developed models of patterns for nucleotide chain growth. These patterns are measurable by high-performance capillary electrophoresis and ion-exchange high-performance liquid chromatography in crude products of solid-phase synthesized 30mer and 65mer oligodeoxyribonucleotide target sequences N. We introduce mathematical methods for finding characteristic values d(o) and p(o) for constant chemical modes of growth as well as d and p for non-constant chemical modes of growth (d = probability of propagation, p = probability of termination). These methods are employed by presenting the accompanying computer software developed by us in C code, Mathematica R languages, and Fortran. Characteristic values of the parameters d, p, and the target nucleotide length N describe the complete composition of the crude product. From this we have developed the relation 2 - [N/(N - 1)]/Da, measurable(N,d) as a universal quantitative measure for multicyclic synthesis conditions (D, fractal dimension and similarity exponent, respectively). We use this mathematical treatment to compare the efficiency of oligodeoxyribonucleotide syntheses of different target length N on polymer support materials. Further, we analyze selected syntheses of short and long oligodeoxyribonucleotides as well as single-stranded DNA sequences by well-known empirical autocorrelation, fast Fourier transformation, and embedding dimension techniques.

  6. Factors influencing the separation of oligonucleotides using reversed-phase/ion-exchange mixed-mode high performance liquid chromatography columns.

    PubMed

    Biba, Mirlinda; Jiang, Eileen; Mao, Bing; Zewge, Daniel; Foley, Joe P; Welch, Christopher J

    2013-08-23

    New mixed-mode columns consisting of reversed-phase and ion-exchange separation modes were evaluated for the analysis of short RNA oligonucleotides (∼20mers). Conventional analysis for these samples typically involves using two complementary methods: strong anion-exchange liquid chromatography (SAX-LC) for separation based on charge, and ion-pair reversed-phase liquid chromatography (IP-RPLC) for separation based on hydrophobicity. Recently introduced mixed-mode high performance liquid chromatography (HPLC) columns combine both reversed-phase and ion-exchange modes, potentially offering a simpler analysis by combining the benefits of both separation modes into a single method. Analysis of a variety of RNA oligonucleotide samples using three different mixed-mode stationary phases showed some distinct benefits for oligonucleotide separation and analysis. When using these mixed-mode columns with typical IP-RPLC mobile phase conditions, such as ammonium acetate or triethylammonium acetate as the primary ion-pair reagent, the separation was mainly based on the IP-RPLC mode. However, when changing the mobile phase conditions to those more typical for SAX-LC, such as salt gradients with NaCl or NaBr, very different separation patterns were observed due to mixed-mode interactions. In addition, the Scherzo SW-C18 and SM-C18 columns with sodium chloride or sodium bromide salt gradients also showed significant improvements in peak shape.

  7. Slow reactant-water exchange and high catalytic performance of water-tolerant Lewis acids.

    PubMed

    Koito, Yusuke; Nakajima, Kiyotaka; Kobayashi, Hisayoshi; Hasegawa, Ryota; Kitano, Masaaki; Hara, Michikazu

    2014-06-23

    (31)P nuclear magnetic resonance (NMR) spectroscopic measurement with trimethylphosphine oxide (TMPO) was applied to evaluate the Lewis acid catalysis of various metal triflates in water. The original (31)P NMR chemical shift and line width of TMPO is changed by the direct interaction of TMPO molecules with the Lewis acid sites of metal triflates. [Sc(OTf)3] and [In(OTf)3] had larger changes in (31)P chemical shift and line width by formation of the Lewis acid-TMPO complex than other metal triflates. It originates from the strong interaction between the Lewis acid and TMPO, which results in higher stability of [Sc(OTf)3TMPO] and [In(OTf)3TMPO] complexes than other metal triflate-TMPO complexes. The catalytic activities of [Sc(OTf)3] and [In(OTf)3] for Lewis acid-catalyzed reactions with carbonyl compounds in water were far superior to the other metal triflates, which indicates that the high stability of metal triflate-carbonyl compound complexes cause high catalytic performance for these reactions. Density functional theory (DFT) calculation suggests that low LUMO levels of [Sc(OTf)3] and [In(OTf)3] would be responsible for the formation of stable coordination intermediate with nucleophilic reactant in water.

  8. [Determination of polydextrose in food by high performance anion exchange chromatographic method with pulsed amperometric detector].

    PubMed

    Li, Jianwen; Wang, Guodong; Yang, Yuexin

    2008-03-01

    The HPAEC-PAD method for polydextrose determination was developed based on AOAC 2000.11. This method included water extraction, centrifugal ultrafiltration, mulienzyme hydrolysis, and anion exchange chromatography detection. The polydextrose was elated by a gradient program of 0.15 mol/L NaOH and 0.5mol/L sodium acetate in 0.15 mol/L NaOH on a CarboPAC TM PA 1 column, then detected by a gold electrode with pulse amperometric detection mold. The inject volume was 20 microl. The LOD and LOQ of this method were 1.69 microg/g, 5.47 microg/g, respectively. The repeatability and reproducibility were excellent, ranging from 2.10% to 6.62%. The average recovery of polydextrose in various food matrix were 92.4%-104.4%. This method could be used for polydextrose determination in foods.

  9. High performance liquid chromatography of selected alkaloids in ion-exchange systems.

    PubMed

    Petruczynik, Anna; Waksmundzka-Hajnos, Monika

    2013-10-11

    A HPLC procedure on strong cation exchange column (SCX) has been developed for the analysis of selected alkaloids from different chemical groups. The retention, separation selectivity, symmetry of peaks and system efficiency were examined in different eluent systems containing different types or concentrations of buffers at various pH and the addition of organic modifiers: methanol (MeOH), acetonitrile (CH3CN), tetrahydrofuran (THF) or dioxane (Dx). The retention factors as the function of the concentration of buffers, the mobile phase pH and the percentage of modifier in the eluents were investigated. More symmetrical peaks and the highest theoretical plate number were obtained in eluents containing acetonitrile or tetrahydrofuran. In most cases, the increase of buffer concentration caused the decrease of alkaloids' retention, the improvement of peaks' symmetry and the increase of theoretical plate number. The improved peak symmetry and the efficiency of system for most investigated alkaloids were observed in the systems containing buffers at strongly acidic pH. The obtained results also reveal a large influence of salt cation used for buffer preparation. The results obtained on SCX column were compared with those obtained on a C18 column. The most efficient and selective systems were used for the separation of alkaloid standard mixture. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility

    SciTech Connect

    Sai K. Mylavarapu; Xiaodong Sun; Richard E. Glosup; Richard N. Christensen; Michael W. Patterson

    2014-04-01

    In high-temperature gas-cooled reactors, such as a very high temperature reactor (VHTR), an intermediate heat exchanger (IHX) is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation with an indirect power cycle and/or process heat applications. Currently, there is no proven high-temperature (750–800 °C or higher) compact heat exchanger technology for high-temperature reactor design concepts. In this study, printed circuit heat exchanger (PCHE), a potential IHX concept for high-temperature applications, has been investigated for their heat transfer and pressure drop characteristics under high operating temperatures and pressures. Two PCHEs, each having 10 hot and 10 cold plates with 12 channels (semicircular cross-section) in each plate are fabricated using Alloy 617 plates and tested for their performance in a high-temperature helium test facility (HTHF). The PCHE inlet temperature and pressure were varied from 85 to 390 °C/1.0–2.7 MPa for the cold side and 208–790 °C/1.0–2.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. This range of mass flow rates corresponds to PCHE channel Reynolds numbers of 950 to 4100 for the cold side and 900 to 3900 for the hot side (corresponding to the laminar and laminar-to-turbulent transition flow regimes). The obtained experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, a numerical treatment of hydrodynamically developing and hydrodynamically fully-developed laminar flow through a semicircular duct is presented. Relations developed for determining the hydrodynamic entrance length in a semicircular duct and the friction factor (or pressure drop) in the hydrodynamic entry length region for laminar flow through a semicircular duct are given. Various

  11. Determination of saccharides in biological materials by high-performance anion-exchange chromatography with pulsed amperometric detection.

    PubMed

    Martens, D A; Frankenberger, W T

    1991-06-21

    High-performance anion-exchange chromatography (HPAEC) coupled with pulsed amperometric detection (PAD) under alkaline conditions (pH 9-13) separates aminosaccharides, neutral saccharides and glycuronic acids based upon their molecular size, saccharide composition and glycosidic linkages. Carbohydrates were extracted by utilizing 0.5 M H2SO4 (neutral monosaccharides), 0.25 M H2SO4 coupled with enzyme catalysis (glycuronic acids) and 3 M H2SO4 (aminosaccharides). Solid-phase extraction with strong cation and strong anion resins was used to partition the cationic aminosaccharides and anionic glycuronic acids and to deionize acid extracts for neutral saccharides. Separation was conducted on a medium-capacity anion-exchange column (36 mequiv.) utilizing sodium hydroxide (5-200 mM and sodium acetate (0-250 mM) as the mobile phase. The saccharides were detected by oxidation at a gold working electrode with triple-pulsed amperometry. HPAEC-PAD was found superior to high-performance liquid chromatography with refractive index (RI) detection for neutral monosaccharides and aminosaccharides and to low-wavelength UV detection for glycuronic acids in terms of resolution and sensitivity. HPAEC-PAD was not subject to interferences as was the case for low UV detection (210 nm) or RI analyses and was highly selective for mono- and aminosaccharides and glycuronic acids. The use of HPAEC-PAD was applied for the determination of the saccharide composition of organic materials (plant residues, animal wastes and sewage sludge), microbial polymers and soil.

  12. [Determination of succinic acid in desvenlafaxine succinate by high performance ion-exclusion chromatography and high performance ion-exchange chromatography].

    PubMed

    Zong, Yanping; Li, Jinghua; Sun, Wei; Liu, Guixia; Lu, Jinghua; Shan, Guangzhi

    2016-02-01

    New methods were developed for the determination of succinic acid in desvenlafaxine succinate (DVS) by high performance ion-exclusion chromatography (HPIEC) and high performance ion-exchange chromatography (HPIC). HPIEC and HPIC methods were used separately to determinate the succinic acid in DVS. With HPIEC, the sample was diluted with 2. 50 x 10(-3) mol/L sulfuric acid solution and filtrated by 0. 22 µm polyether sulfone filter membrane, and then analyzed by HPIEC directly without any further pretreatment. The analytical column was Phenomenex Rezex ROA-organic Acid H+(8%) (300 mmx7. 8 mm). The mobile phase was 2. 50x10(-3) mol/L sulfuric acid solution at the flow rate of 0. 5 mL/min. The column temperature was set at 40 °C, and the detection wavelength was 210 nm. The injection volume was 10 KL. The assay was quantified by external standard method. With HPIC, the sample was diluted with ultrapure water and filtrated by 0. 22 µm polyether sulfone filter membrane, and then analyzed by HPIC directly without any further pretreatment. The analytical column was Dionex IonPac AS11-HC (250 mm x 4 mm) with a guard column IonPacAG11-HC (50 mm x 4 mm). Isocratic KOH elute generator was used at the flow rate of 1. 0 mL/min. The detection was performed by a Dionex suppressed (DIONEX AERS 500 4-mm) conductivity detector. The injection volume was 10 µL. The content computation was performed with peak area external reference method. The results of HPIEC method for succinic acid were 28. 8%, 28. 9% and 28. 9%, while the results of HPIEC method were 28. 2%, 28. 6% and 28. 6%. The results of HPIEC and HPIC methods were not significantly different. The two methods can both be used to determine the contents of succinic acid in DVS. The surveillance analytical method should be chosen according to the situation.

  13. Determination of carnosine in feed and meat by high-performance anion-exchange chromatography with integrated pulsed amperometric detection.

    PubMed

    Nardiello, Donatella; Cataldi, Tommaso R I

    2004-05-07

    Carnosine (beta-alanyl-L-histidine) is a dipeptide regarded as an important molecular marker of the presence of processed animal proteins including meat and bone meal in animal feed. For its identification and quantification a sensitive and selective method by high-performance anion-exchange chromatography coupled with integrated pulsed amperometric detection (HPAEC-IPAD) was developed. The assay is based on isocratic elution with 100 mM NaOH as the mobile phase. Interferences of real matrices were efficiently removed; carnosine could be determined at the concentration ranges 0.1-100 microM with a rather low detection limit of 0.23 ng. Unlike feeds for dogs and cats, no carnosine peak was observed in all examined feeds for ruminants. The good analytical characteristics allowed camosine determination down to 5 microg/g of feed.

  14. Selenium speciation by high-performance anion-exchange chromatography-post-column UV irradiation coupled with atomic fluorescence spectrometry.

    PubMed

    Liang, Lina; Mo, Shumin; Zhang, Ping; Cai, Yaqi; Mou, Shifen; Jiang, Guibin; Wen, Meijuan

    2006-06-16

    A technique for the speciation of selenomethylcysteine (SeMeCys), selenocystine (SeCys), selenite [Se(IV)] and selenomethionine (SeMet) was established in this paper using high-performance anion-exchange chromatography coupled with atomic fluorescence spectrometry (HPAEC-AFS). Analytes were separated on an AminoPac PA10 column and then digested by on-line ultraviolet (UV) irradiation, which destroyed organic compound structure. Hydride generation was used as an available sample introduction technique for atomic fluorescence detection. The detection limits of four compounds were 1-5 microg/L (250 microL injection, 10 times of the baseline noise). The relative standard deviations (RSDs), calculated from seven consecutive injections of 100 microg/L standard mixtures, were from 2 to 4%. Selenious yeast tablet, which had been proposed as selenium supplement, and human urine collected from a volunteer were analyzed. Good spiked recoveries from 86 to 103% were obtained.

  15. IrBurst Modeling and Performance Evaluation for Large Data Block Exchange over High-Speed IrDA Links

    NASA Astrophysics Data System (ADS)

    Alam, Mohammad Shah; Shawkat, Shamim Ara; Kitazumi, Gontaro; Matsumoto, Mitsuji

    IrBurst, recently proposed by IrDA, is a high speed information transmission protocol. In this paper, a mathematical model is developed which leads to derivation of the IrBurst throughput over the IrDA protocol stack. Based on this model, we compare the performance of IrBurst and existing OBEX protocol in order to investigate the suitability of IrBurst protocol for exchange of large data blocks over high-speed IrDA links. Furthermore, the model allows the evaluation of the impact of the link layer parameters, such as window size and frame length, and physical layer parameters, such as minimum turnaround time, on system through-put for high-speed IrDA links and in the presence of transmission errors. Consequently, an effective Automatic Repeat Request (ARQ) scheme is proposed at link layer to maximize the throughput efficiency for IrBurst protocol as well as for next generation high speed IrDA links. Simulation result indicates that employment of our proposed ARQ scheme results in significant improvement of IrBurst throughput efficiency at high bit error rates.

  16. Technical Exchange on Improved Design and Performance of High Level Waste Melters - Final Report

    SciTech Connect

    SK Sundaram; ML Elliott; D Bickford

    1999-11-19

    SIA Radon is responsible for management of low- and intermediate-level radioactive waste (LILW) produced in Central Russia. In cooperation with Minatom organizations Radon carries out R and D programs on treatment of simulated high level waste (HLW) as well. Radon scientists deal with a study of materials for LILW, HLW, and Nuclear Power Plants (NPP) wastes immobilization, and development and testing of processes and technologies for waste treatment and disposal. Radon is mostly experienced in LILW vitrification. This experience can be carried over to HLW vitrification especially in field of melting systems. The melter chosen as a basic unit for the vitrification plant is a cold crucible. Later on Radon experience in LILW vitrification as well as our results on simulated HLW vitrification are briefly described.

  17. [Application of high performance anion exchange chromatography for trace analysis of polarizable anions].

    PubMed

    Mo, Shumin; Liang, Lina; Cai, Yaqi; Mou, Shifen; Wen, Meijuan

    2005-11-01

    Polarizable anions such as Br-, S2O3(2-), I- and SCN- were separated using 45 mmol/L sodium hydroxide solution as the mobile phase on a high hydrophilic IonPac AS16 column. With a pulsed amperometric detector, the detection limits were 0.5, 0.2, 0.05 and 2 microg/L (25.0 microL injected, signal-to-noise ratio of 3) for Br-, S2O3(2-), I- and SCN. The relative standard deviation (RSD) range of trace anions was from 0.8% to 3.7% (n = 9). Under the same chromatographic conditions, these anions were also determined using a suppressed conductivity detector and the detection limits were 1, 1, 2 and 10 microg/L (25 microL injected, signal-to-noise ratio of 3), respectively. The RSD range was from 0.9% to 4.7% (n = 9). Comparing a pulsed amperometric detector with a conductivity detector, the former is 2 to 40 times more sensitive than the latter. For the determination of polarizable anions, a pulsed amperometric detector has higher selectivity, precision and sensitivity.

  18. High Flux Heat Exchanger

    DTIC Science & Technology

    1993-01-01

    called an enhancement surfkce) is bonded to the chip. In both cases, the electronics board is immersed in a dielectric coolant . Bare chip cooling...the stocking of a dielectric coolant , which add to complexity and maintenance costs. 4. High performance heat pipe heat spreaders have demonstrated

  19. High performance polymer electrolytes based on main and side chain pyridine aromatic polyethers for high and medium temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Geormezi, M.; Chochos, C. L.; Gourdoupi, N.; Neophytides, S. G.; Kallitsis, J. K.

    Novel aromatic polyether type copolymers bearing side chain polar pyridine rings as well as combination of main and side chain pyridine units have been evaluated as potential polymer electrolytes for proton exchange membrane fuel cells (PEMFCs). The advanced chemical and physicochemical properties of these new polymers with their high oxidative stability, mechanical integrity and high glass transition temperatures (T g's up to 270 °C) and decomposition temperatures (T d's up to 480 °C) make them promising candidates for high and medium temperature proton exchange membranes in fuel cells. These copolymers exhibit adequate proton conductivities up to 0.08 S cm -1 even at moderate phosphoric acid doping levels. An optimized terpolymer chemical structure has been developed, which has been effectively tested as high temperature phosphoric acid imbibed polymer electrolyte. MEA prepared out of the novel terpolymer chemical structure is approaching state of the art fuel cell operating performance (135 mW cm -2 with electrical efficiency 45%) at high temperatures (150-180 °C) despite the low phosphoric acid content (<200 wt%) and the low platinum loading (ca. 0.7 mg cm -2). Durability tests were performed affording stable performance for more than 1000 h.

  20. Performance comparison between high temperature and traditional proton exchange membrane fuel cell stacks using electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; Zhu, Wenhua H.; Tatarchuk, Bruce J.

    2014-06-01

    A temperature above 100 °C is always desired for proton exchange membrane (PEM) fuel cell operation. It not only improves kinetic and mass transport processes, but also facilitates thermal and water management in fuel cell systems. Increased carbon monoxide (CO) tolerance at higher operating temperature also simplifies the pretreatment of fuel supplement. The novel phosphoric acid (PA) doped polybenzimidazole (PBI) membranes achieve PEM fuel cell operations above 100 °C. The performance of a commercial high temperature (HT) PEM fuel cell stack module is studied by measuring its impedance under various current loads when the operating temperature is set at 160 °C. The contributions of kinetic and mass transport processes to stack impedance are analyzed qualitatively and quantitatively by equivalent circuit (EC) simulation. The performance of a traditional PEM fuel cell stack module operated is also studied by impedance measurement and EC simulation. The operating temperature is self-stabilized between 40 °C and 65 °C. An enhancement of the HT-PEM fuel cell stack in polarization impedance is evaluated by comparing to the traditional PEM fuel cell stack. The impedance study on two commercial fuel cell stacks reveals the real situation of current fuel cell development.

  1. [Simultaneous analysis of trehalose, glucose and maltose in biotransformation samples by high performance anion exchange chromatography with pulsed ampere detection].

    PubMed

    Xu, Ying; Zang, Ying; Jiang, Ting; Zheng, Zhaojuan; Quyang, Jia

    2014-12-01

    An analytical method for the determination of trehalose, maltose, and glucose in biotransformation samples was developed by using high performance anion exchange chromatography coupled with pulsed ampere detection (HPAEC-PAD). The analysis was performed on a CarboPac™ 10 column (250 mm x 2 mm) with the gradient elution of NaOH-NaAc as the mobile phase. The column temperature was set at 30 °C, the flow rate was 0. 30 mL/min. The results showed that trehalose, maltose, and glucose in biotransformation system were completely separated and determined in 15 min. The linear ranges and the working curves were determined by using standard samples. The correlation coefficients of three kinds of carbohydrates were over 0. 9998 . The detection limits (LODs) were 0. 010 - 0. 100 mg/L. Under the optimized separation conditions, the recoveries of saccharides in the transformation system at three different spiked levels ranged from 89. 4% to 103. 2%. In biotransformation system, 50 IU trehalose synthase were added into 200 g/L maltose for reaction of 8 h at 37 °C, pH 8. 0. Under the above conditions, the concentration of trehalose in biotransformation sample was 101. 084 g/L, and the conversion rate of trehalose reached 50. 5%. The method can be applied to determine the composition in the transformation system with the advantages of simplicity and convenience.

  2. Determination of saccharides in atmospheric aerosol using anion-exchange high-performance liquid chromatography and pulsed-amperometric detection.

    PubMed

    Caseiro, Alexandre; Marr, Iain L; Claeys, Magda; Kasper-Giebl, Anne; Puxbaum, Hans; Pio, Casimiro A

    2007-11-09

    An improved method is described for the quantification of primary sugars, sugar alcohols and anhydrosugars in atmospheric aerosols, making use of separation by high-performance anion-exchange chromatography (HPAEC) with pulsed amperometric detection (PAD). Quartz fibre filters from high-volume samplers were extracted with water and the extract injected directly. Repeatability is typically 4% RSD, for e.g. levoglucosan at 50 ng m(-3) in air, better for winter levels around 700 ng m(-3). Limits of detection for individual sugars are in the range 0.02-0.05 microg mL(-1) in solution, corresponding to 2-5 ng m(-3) from a 20 m(3) air sample. The overlap of arabitol and levogluocosan is overcome by using a Dionex PA-1 column, with appropriate control of eluent composition, and peak deconvolution software, allowing quantification of both sugars in difficult summer samples containing low-levels of levoglucosan. Analysis of a set of ambient aerosol samples by both GC-flame ionization detection and HPAEC-PAD shows good agreement. The new method has the advantage of requiring no sample pretreatment or derivatization and is thus well suited to handling large numbers of samples.

  3. The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells.

    PubMed

    Kongkanand, Anusorn; Mathias, Mark F

    2016-04-07

    Substantial progress has been made in reducing proton-exchange membrane fuel cell (PEMFC) cathode platinum loadings from 0.4-0.8 mgPt/cm(2) to about 0.1 mgPt/cm(2). However, at this level of cathode Pt loading, large performance loss is observed at high-current density (>1 A/cm(2)), preventing a reduction in the overall stack cost. This next developmental step is being limited by the presence of a resistance term exhibited at these lower Pt loadings and apparently due to a phenomenon at or near the catalyst surface. This issue can be addressed through the design of catalysts with high and stable Pt dispersion as well as through development and implementation of ionomers designed to interact with Pt in a way that does not constrain oxygen reduction reaction rates. Extrapolating from progress made in past decades, we are optimistic that the concerted efforts of materials and electrode designers can resolve this issue, thus enabling a large step toward fuel cell vehicles that are affordable for the mass market.

  4. Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection

    NASA Astrophysics Data System (ADS)

    Engling, Guenter; Carrico, Christian M.; Kreidenweis, Sonia M.; Collett, Jeffrey L.; Day, Derek E.; Malm, William C.; Lincoln, Emily; Min Hao, Wei; Iinuma, Yoshiteru; Herrmann, Hartmut

    Atmospheric particulate matter can be strongly affected by smoke from biomass combustion, including wildfires, prescribed burns, and residential wood burning. Molecular source tracer techniques help determine contributions of biomass smoke to particle concentrations if representative source profiles are available. Various wood smoke source profiles have been generated for residential wood burning; however, few emission data are available for the combustion of biomass under open-burning conditions. Anhydrosugars, produced as thermal degradation products of cellulose and hemicellulose, are typically analyzed by gas chromatography-mass spectrometry (GC-MS) after chemical derivatization. A simpler alternative analytical method, based on high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), was developed here and utilized to measure several isomeric anhydrosugars (levoglucosan, mannosan, and galactosan) in primary smoke aerosol from various types of biomass and from different combustion conditions representative of prescribed and wildfires. Highly varying patterns were observed in the emission profiles of various molecular markers as a function of fuel type and combustion conditions. Emission factors of levoglucosan were a strong function of fuel type, combustion phase, and uphill versus downhill burn direction, varying from 36 to 1368 μg mg -1 organic carbon. Fuel type was the most important determinant, causing variations in emission factors of levoglucosan over an order of magnitude, while combustion phase and burn direction generally affected emission factors by a factor of 2-3. Mannosan and galactosan showed emission trends similar to levoglucosan. Levoglucosan emission factors from selected samples were compared to data obtained by two independent analytical methods, high-performance liquid chromatography (HPLC-MS) and GC-MS, showing rather good agreement. The HPAEC-PAD analytical method offers a simple alternative to GC

  5. Assay for inorganic pyrophosphate in chondrocyte culture using anion-exchange high-performance liquid chromatography and radioactive orthophosphate labeling

    SciTech Connect

    Prins, A.P.; Kiljan, E.; v.d. Stadt, R.J.; v.d. Korst, J.K.

    1986-02-01

    A method is described for determination of inorganic pyrophosphate (PPi) in cell culture medium and in rabbit articular chondrocytes grown in the presence of radioactive orthophosphate (/sup 32/Pi). Intra- and extracellular /sup 32/PPi formed was measured using high-performance liquid chromatographic (HPLC) separation of the PPi from orthophosphate (Pi) and other phosphate-containing compounds. The chromatographic separation on a weak anion-exchange column is based on the extent to which various phosphate compounds form complexes with Mg2+ at low pH and the rate at which such formation occurs. These complexes are eluted more readily than the uncomplexed compounds. Best results were obtained using a simultaneous gradient of Mg2+ ions and ionic strength. In this case separation of small amounts of PPi from a large excess of Pi was possible without prior removal of Pi or extraction of the PPi fraction. The assay is also useful for measurement of inorganic pyrophosphatase activity. The sensitivity of the assay depends on the specific activity of the added /sup 32/Pi and on the culture conditions, but is comparable with the most sensitive of the enzymatic assays. Sample preparation, particularly deproteinization, proved to be of importance. The losses of PPi which occur during procedures of this sort due to hydrolysis and coprecipitation were quantitated.

  6. Improved proteomic discovery by sample pre-fractionation using dual-column ion-exchange high performance liquid chromatography.

    PubMed

    Havugimana, Pierre C; Wong, Peter; Emili, Andrew

    2007-02-15

    Clinically relevant biomarkers are urgently needed for improving patient diagnosis, risk stratification, prognosis and therapeutic treatments. There is a particularly compelling motivation for identifying protein-based indicators of early-stage disease for more effective interventions. Despite recent progress, the proteomic discovery process remains a daunting challenge due to the sheer heterogeneity and skewed protein abundances in biofluids. Even the most advanced mass spectrometry systems exhibit limiting overall dynamic ranges and sensitivities relative to the needs of modern biomedical applications. To this end, we report the development of a robust, rapid, and reproducible high performance ion-exchange liquid chromatography pre-fractionation method that allows for improved proteomic detection coverage of complex biological specimens using basic tandem mass spectrometry screening procedures. This form of sample simplification prior to global proteomic profiling, which we refer to collectively as 'fractionomics', increases the number and diversity of proteins that can be confidently identified in tissue and cell lysates as compared to the straight analysis of unfractionated crude extracts.

  7. Monitoring and preparation of neoagaro- and agaro-oligosaccharide products by high performance anion exchange chromatography systems.

    PubMed

    Kazłowski, Bartosz; Pan, Chorng Liang; Ko, Yuan Tih

    2015-05-20

    A series of neoagaro-oligosaccharides (NAOS) were prepared by β-agarase digestion and agaro-oligosaccharides (AOS) by HCl hydrolysis from agarose with defined quantity and degree of polymerization (DP). Chain-length distribution in the crude product mixtures were monitored by two high performance anion exchange chromatography systems coupled with a pulsed amperometric detector. Method 1 utilized two separation columns: a CarboPac(™) PA1 and a CarboPac(™) PA100 connected in series and method 2 used the PA100 alone. Method 1 resolved the product in size ranges consisting of DP 1-46 for NAOS and DP 1-32 for AOS. Method 2 clearly resolved saccharide product sizes within DP 26. The optimized system utilizing a semi-preparative CarboPac(™) PA100 column was connected with a fraction collector to isolate and quantify individually separated products. This study established systems for the preparation and qualitative and quantitative measurements as well as for the isolation of various sizes of oligomers generated from agarose.

  8. Characterization of At- species in simple and biological media by high performance anion exchange chromatography coupled to gamma detector.

    PubMed

    Sabatié-Gogova, A; Champion, J; Huclier, S; Michel, N; Pottier, F; Galland, N; Asfari, Z; Chérel, M; Montavon, G

    2012-04-06

    Astatine is a rare radioelement belonging to the halogen group. Considering the trace amounts of astatine produced in cyclotrons, its chemistry cannot be evaluated by spectroscopic tools. Analytical tools, provided that they are coupled with a radioactive detection system, may be an alternative way to study its chemistry. In this research work, high performance anion exchange chromatography (HPAEC) coupled to a gamma detector (γ) was used to evaluate astatine species under reducing conditions. Also, to strengthen the reliability of the experiments, a quantitative analysis using a reactive transport model has been done. The results confirm the existence of one species bearing one negative charge in the pH range 2-7.5. With respect to the other halogens, its behavior indicates the existence of negative ion, astatide At(-). The methodology was successfully applied to the speciation of the astatine in human serum. Under fixed experimental conditions (pH 7.4-7.5 and redox potential of 250 mV) astatine exists mainly as astatide At(-) and does not interact with the major serum components. Also, the method might be useful for the in vitro stability assessment of (211)At-labeled molecules potentially applicable in nuclear medicine.

  9. High-performance purification of gelsolin from plasma using anion-exchange porous hollow-fiber membrane.

    PubMed

    Hagiwara, Kyohei; Yonedu, Shinji; Saito, Kyoichi; Shiraishi, Tomoyuki; Sugo, Takanobu; Tojyo, Tadashi; Katayama, Eisaku

    2005-07-25

    Gelsolin was purified from bovine plasma using an anion-exchange porous hollow-fiber membrane. The anion-change porous hollow-fiber membrane was prepared by radiation-induced graft polymerization of an epoxy-group-containing monomer, glycidyl methacrylate, and subsequent chemical modifications. Some of the epoxy groups of the polymer chain grafted onto the pore surface were converted into diethylamino groups, and the remaining epoxy groups were converted into 2-hydroxyethylamino groups. First, a gelsolin-containing dialyzed protein solution, prepared by pretreatments of ammonium sulfate precipitation and dialysis of plasma, was forced to permeate through the pores of an anion-exchange porous hollow-fiber membrane. Various proteins including gelsolin were adsorbed onto the anion-exchange polymer brush at a high rate with negligible diffusional mass-transfer resistance. Second, adsorbed gelsolin was specifically eluted by permeating 2mM calcium chloride. The amount of recovered gelsolin was 0.1 mg per 1 mL of plasma. Third, the remaining adsorbed proteins were quantitatively eluted with 1M sodium chloride, leading to a constant amount of recovered gelsolin during four cycles of purification. The total time required for gelsolin purification from 30 mL of bovine plasma was 11h, during which the time for selective adsorption of various proteins and affinity elution of gelsolin using the anion-exchange porous hollow-fiber membrane was 20 min.

  10. Cross-linked high conductive membranes based on water soluble ionomer for high performance proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Guo, Xin; Zhang, Gang; Ni, Jing; Zhao, Chengji; Liu, Zhongguo; Zhang, Liyuan; Li, Mingyu; Xu, Shuai; Na, Hui

    2013-11-01

    In this paper, a series of proton exchange membranes prepared by “Click Reaction” are reported. The cross-linked membranes are based on water soluble sulfonated poly (ether ether ketone) containing dipropenyl groups (SDPEEK-nE/nH). Compared with self-crosslinked membranes (SDPEEK-nS), this “Click” cross-linked membranes using 1,2-Ethanedithiol and 1,6-Hexanedithiol as the cross-linker exhibit extremely reduced water uptake and swelling ratio. The lowest proton conductivity at 80 °C of the “Click” cross-linked membranes reaches to 0.168 S cm-1, and the highest methanol permeability of the “Click” cross-linked SDPEEK-8E is only 4.13 × 10-7 cm2 s-1, which is 5 times lower than that of Nafion 117 membrane. All the results imply that the cross-linked membranes with novel thiol cross-linker are promising alternative material for fuel cell application.

  11. Simultaneous determination of 13 carbohydrates using high-performance anion-exchange chromatography coupled with pulsed amperometric detection and mass spectrometry.

    PubMed

    Zhao, Dan; Feng, Feng; Yuan, Fei; Su, Jin; Cheng, Yan; Wu, Hanqiu; Song, Kun; Nie, Bo; Yu, Lian; Zhang, Feng

    2017-02-28

    A simple, accurate, and highly sensitive method was developed for the determination of 13 carbohydrates in polysaccharide of spirulina platensis based on high-performance anion-exchange chromatography coupled with pulsed amperometric detection and mass spectrometry. Samples were extracted with deionized water using ultrasonic-assisted extraction, and the ultrasound-assisted extraction conditions were optimized by Box-Behnken design. Then the extracted polysaccharide was hydrolyzed by adding 1 mol/L trifluoroacetic acid before determination by high-performance anion-exchange chromatography coupled with pulsed amperometric detection and confirmed by high-performance anion-exchange chromatography coupled with mass spectrometry. The high-performance anion-exchange chromatography coupled with pulsed amperometric detection method was performed on a CarboPac PA20 column by gradient elution using deionized water, 0.1 mol/L sodium hydroxide solution and 0.4 mol/L sodium acetate solution. Excellent linearity was observed in the range of 0.05-10 mg/L. The average recoveries ranged from 80.7 to 121.7%. The limits of detection and limits of quantification for 13 carbohydrates were 0.02-0.10 and 0.2-1.2  μg/kg, respectively. The developed method has been successfully applied to ambient samples, and the results indicated that high-performance anion-exchange chromatography coupled with pulsed amperometric detection and mass spectrometry could provide a rapid and accurate method for the simultaneous determination of carbohydrates.

  12. High heat flux single phase heat exchanger

    NASA Technical Reports Server (NTRS)

    Valenzuela, Javier A.; Izenson, Michael G.

    1990-01-01

    This paper presents the results obtained to date in a program to develop a high heat flux, single-phase heat exchanger for spacecraft thermal management. The intended application is a net generation interface heat exchanger to couple the crew module water thermal bus to the two-phase ammonia main thermal bus in the Space Station Freedom. The large size of the interface heat exchanger is dictated by the relatively poor water-side heat transfer characteristics. The objective of this program is to develop a single-phase heat transfer approach which can achieve heat fluxes and heat transfer coefficients comparable to those of the evaporation ammonia side. A new heat exchanger concept has been developed to meet these objecties. The main feature of this heat exchanger is that it can achieve very high heat fluxes with a pressure drop one to two orders of magnitude lower than those of previous microchannel or jet impingement high heat flux heat exchangers. This paper describes proof-of-concept experiments performed in air and water and presents analytical model of the heat exchanger.

  13. High heat flux single phase heat exchanger

    NASA Technical Reports Server (NTRS)

    Valenzuela, Javier A.; Izenson, Michael G.

    1990-01-01

    This paper presents the results obtained to date in a program to develop a high heat flux, single-phase heat exchanger for spacecraft thermal management. The intended application is a net generation interface heat exchanger to couple the crew module water thermal bus to the two-phase ammonia main thermal bus in the Space Station Freedom. The large size of the interface heat exchanger is dictated by the relatively poor water-side heat transfer characteristics. The objective of this program is to develop a single-phase heat transfer approach which can achieve heat fluxes and heat transfer coefficients comparable to those of the evaporation ammonia side. A new heat exchanger concept has been developed to meet these objecties. The main feature of this heat exchanger is that it can achieve very high heat fluxes with a pressure drop one to two orders of magnitude lower than those of previous microchannel or jet impingement high heat flux heat exchangers. This paper describes proof-of-concept experiments performed in air and water and presents analytical model of the heat exchanger.

  14. Chiral separation of 2-hydroxyglutaric acid on cinchonan carbamate based weak chiral anion exchangers by high-performance liquid chromatography.

    PubMed

    Calderón, Carlos; Horak, Jeannie; Lämmerhofer, Michael

    2016-10-07

    d- and l-2-Hydroxyglutaric acid (d- and l-2-HG, respectively) are metabolites related to some diseases (2-hydroxyglutaric aciduria, cancer), which make their identification and analysis crucially important for diagnostic purposes. Chiral stationary phases (CSP) based on tert-butylcarbamoyl-quinine and -quinidine (Chiralpak QN-AX and QD-AX), and the corresponding zwitterionic derivatives (Chiralpak ZWIX(+) and Chiralpak ZWIX(-)) were employed in a weak anion-exchange mechanism to perform the enantiomer separation of d- and l-2-HG without derivatization. QD-AX CSP showed the most promising separation and therefore optimization of eluent, additives, and temperature, required for the baseline separation of solutes was carried out. Depending on experimental conditions resolution values ranged up to 2.0 with run times <20min and MS-compatible conditions. Inversion on the elution order of d- and l-2-HG was possible by using the pseudo-enantiomeric QN-AX CSP.

  15. Analysis of selected ionic liquid cations by ion exchange chromatography and reversed-phase high performance liquid chromatography.

    PubMed

    Stepnowski, Piotr; Mrozik, Wojciech

    2005-02-01

    The chromatographic behavior of 8 ionic liquids - 7 homologues of 1-alkyl-3-methylimidazolium and 4-methyl-N-butylpyridinium - has been investigated with a strong cation exchange adsorbent. In particular, the dependence of the retention properties of these solutes on mobile phase composition, pH, and buffer concentration was evaluated with the aim of optimizing and improving the selectivity and retention of solute separation. While using the SCX stationary phase, several interactions occurred with varying strengths, depending on the mobile phase composition. Cation exchange, nonspecific hydrophobic interactions, and adsorption chromatography behavior were observed. Reversed phase chromatography occurred at low concentrations of acetonitrile, electrostatic and adsorption interactions at higher organic modifier concentrations. Elevated buffer concentrations lowered the retention factors without affecting the selectivity of ionic liquids. Obtained results were further compared to the chromatographic behaviour of ionic liquids in the reversed phase system. All analyzed ionic liquids follow reversed-phase behavior while being separated. Much lower selectivity in the range of highly hydrophilic compounds is obtained. This suggests preferred use of ion chromatography for separation and analysis of compounds below 4 carbon atoms in the alkyl side chain.

  16. Pion exchange at high energies

    SciTech Connect

    Jones, L.M.

    1980-07-01

    The state of Regge pion exchange calculations for high-energy reactions is reviewed. Experimental evidence is summarized to show that (i) the pion trajectory has a slope similar to that of other trajectories; (ii) the pion exchange contribution can dominate contributions of higher trajectories up to quite a large energy; (iii) many two-body cross sections with large pion contributions can be fit only by models which allow for kinematical conspiracy at t=0. The theory of kinematic conspiracy is reviewed for two-body amplitudes, and calculations of the conspiring pion--Pomeron cut discussed. The author then summarizes recent work on pion exchange in Reggeized Deck models for multiparticle final states, with emphasis on the predictions of various models (with and without resonances) for phases of the partial wave amplitudes.

  17. Ceramic heat exchangers: Manufacturing techniques and performance

    NASA Astrophysics Data System (ADS)

    Merrigan, M. A.; Sandstrom, D. J.

    1981-05-01

    The objective of the ceramic heat pipe program being conducted at Los Alamos is demonstration of the practical feasibility of this technology for the solution of severe high temperature recuperation functions. Ceramic heat pipe recuperators were theoretically shown to offer distinct advantages over conventional ceramic heat exchangers from the standpoint of efficiency of heat recuperation and economics. The main stumbling block to their widespread utilization is related to the problems of materials for construction and the details of fabrication and assembly. The performance objectives of ceramic heat pipes and some aspects of the materials technology program aimed at solving the problem of economic ceramic heat pipe fabrication are described.

  18. Qualitative and quantitative analysis of branches in dextran using high-performance anion exchange chromatography coupled to quadrupole time-of-flight mass spectrometry.

    PubMed

    Yi, Lin; Ouyang, Yilan; Sun, Xue; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing

    2015-12-04

    Dextran, a family of natural polysaccharides, consists of an α (1→6) linked-glucose main (backbone) chain having a number of branches. The determination of the types and the quantities of branches in dextran is important in understanding its various biological roles. In this study, a hyphenated method using high-performance anion exchange chromatography (HPAEC) in parallel with pulsed amperometric detection (PAD) and mass spectrometry (MS) was applied to qualitative and quantitative analysis of dextran branches. A rotary cation-exchange cartridge array desalter was used for removal of salt from the HPAEC eluent making it MS compatible. MS and MS/MS were used to provide structural information on the enzymatically prepared dextran oligosaccharides. PAD provides quantitative data on the ratio of enzyme-resistant, branched dextran oligosaccharides. Both the types and degree of branching found in a variety of dextrans could be simultaneously determined online using this method.

  19. Enhanced performance and stability of high temperature proton exchange membrane fuel cell by incorporating zirconium hydrogen phosphate in catalyst layer

    NASA Astrophysics Data System (ADS)

    Barron, Olivia; Su, Huaneng; Linkov, Vladimir; Pollet, Bruno G.; Pasupathi, Sivakumar

    2015-03-01

    Zirconium hydrogen phosphate (ZHP) together with polytetrafluoroethylene (PTFE) polymer binder is incorporated into the catalyst layers (CLs) of ABPBI (poly(2,5-benzimidazole))-based high temperature polymer electrolyte membrane fuel cell (HT-PEMFCs) to improve its performance and durability. The influence of ZHP content (normalised with respect to dry PTFE) on the CL properties are structurally characterised by scanning electron microscopy (SEM) and mercury intrusion porosimetry. Electrochemical analyses of the resultant membrane electrode assemblies (MEAs) are performed by recording polarisation curves and impedance spectra at 160 °C, ambient pressure and humidity. The result show that a 30 wt.% ZHP/PTFE content in the CL is optimum for improving fuel cell performance, the resultant MEA delivers a peak power of 592 mW cm-2 at a cell voltage of 380 mV. Electrochemical impedance spectra (EIS) indicate that 30% ZHP in the CL can increase the proton conductivity compared to the pristine PTFE-gas diffusion electrode (GDE). A short term stability test (∼500 h) on the 30 wt.% ZHP/PTFE-GDE shows a remarkable high durability with a degradation rate as low as ∼19 μV h-1 at 0.2 A cm-2, while 195 μV h-1 was obtained for the pristine GDE.

  20. Highly tritiated water processing by isotopic exchange

    SciTech Connect

    Shu, W.M.; Willms, R.S.; Glugla, M.; Cristescu, I.; Michling, R.; Demange, D.

    2015-03-15

    Highly tritiated water (HTW) is produced in fusion machines and one of the promising technologies to process it is isotopic exchange. 3 kinds of Pt-catalyzed zeolite (13X-APG, CBV-100-CY and HiSiv-1000) were tested as candidates for isotopic exchange of highly tritiated water (HTW), and CBV-100-CY (Na-Y type with a SiO{sub 2}/Al{sub 2}O{sub 3} ratio of ∼ 5.0) shows the best performance. Small-scale tritium testing indicates that this method is efficient for reaching an exchange factor (EF) of 100. Full-scale non-tritium testing implies that an EF of 300 can be achieved in 24 hours of operation if a temperature gradient is applied along the column. For the isotopic exchange, deuterium recycled from the Isotope Separation System (deuterium with 1% T and/or 200 ppm T) should be employed, and the tritiated water regenerated from the Pt-catalyzed zeolite bed after isotopic exchange should be transferred to Water Detritiation System (WDS) for further processing.

  1. Development of high performance carbon composite catalyst for oxygen reduction reaction in PEM Proton Exchange Membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Nallathambi, Vijayadurga; Lee, Jong-Won; Kumaraguru, Swaminatha P.; Wu, Gang; Popov, Branko N.

    Highly active and stable carbon composite catalysts for oxygen reduction in PEM fuel cells were developed through the high-temperature pyrolysis of Co-Fe-N chelate complex, followed by the chemical post-treatment. A metal-free carbon catalyst was used as the support. The carbon composite catalyst showed an onset potential for oxygen reduction as high as 0.87 V (NHE) in H 2SO 4 solution, and generated less than 1% H 2O 2. The PEM fuel cell exhibited a current density as high as 0.27 A cm -2 at 0.6 V and 2.3 A cm -2 at 0.2 V for a catalyst loading of 6.0 mg cm -2. No significant performance degradation was observed over 480 h of continuous fuel cell operation with 2 mg cm -2 catalyst under a load of 200 mA cm -2 as evidenced by a resulting cell voltage of 0.32 V with a voltage decay rate of 80 μV h -1. Materials characterization studies indicated that the metal-nitrogen chelate complexes decompose at high pyrolysis temperatures above 800 °C, resulting in the formation of the metallic species. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface doped with nitrogen groups is catalytically active for oxygen reduction.

  2. Complex Heat Exchangers for Improved Performance

    NASA Astrophysics Data System (ADS)

    Bran, Gabriela Alejandra

    propagates along the channel. However, the sinusoidal behavior on one of the fluids does not fully translate to the other gets damped by the wall and the heat transfer coefficients that can be barely seen on the other flow. A scaling analysis and a parametric study were performed to determine the influence the different parameters on the system have on the time a heat exchanger takes to reach steady state. The results show the dependency of tst* (time a system takes to reach steady state) on the dimensionless parameters M, C, NTUh, NTUc, and Cw. t st* depends linearly on C and Cw, and it is a power function of M. It was also shown that tst* has a logarithmic dependency on NTUh and NTUc. A correlation was generated to approximate the time a system takes to reach steady state for systems where C w << 1. A more complex heat exchanger with the specific application of solar energy storage was also investigated. This application involves a counter-flow heat exchanger with a reacting flow in one of the channels, and it includes varying properties, heat generation, varying heat transfer coefficient, and axial conduction. The application for this reactor heat exchanger is on solar energy storage, and the goals is to heat up steam to 650 °C by using the ammonia synthesis heat of reaction. One of the concerns for this system is the start-up time and also how disturbances in reacting flow can affect the steam outlet temperature. The transient behavior during the system start-up was presented. In order to achieve the desired outlet steam temperature at a reasonable time, the system must operate at high gas mass flow rates. If the inlet temperature of the gas suffers a step change, it affects the reaction rate as well as the outlet steam temperature. A small perturbation on the gas mass flow rate has an effect on the profile shape. However, the maximum temperature reached by the gas due to reaction is not affected, and consequently, it has little effect on the steam temperature. Axial

  3. Determination of sucralose in Splenda and a sugar-free beverage using high-performance anion-exchange chromatography with pulsed amperometric detection.

    PubMed

    Hanko, Valoran P; Rohrer, Jeffrey S

    2004-07-14

    Sucralose is a chlorinated carbohydrate nonnutritive sweetener of food and beverage products. The determination of sucralose in food and beverages is important to ensure consistency in product quality. Sucralose was determined in two commercial products without sample preparation using high-performance anion-exchange (HPAE) chromatography coupled with pulsed amperometric detection (PAD). Sucralose was determined with a 10 min isocratic separation. To determine sucralose and other carbohydrates (e.g., dextrose) simultaneously, a gradient separation was developed. The linear range of electrochemical response extended over 3 orders of magnitude, from 0.01 (LOD) to 40 microM (16 microg/mL; 25 microL injection). High precision, high spike recovery, and method ruggedness were observed for both samples.

  4. Performance degradation studies on an poly 2,5-benzimidazole high-temperature proton exchange membrane fuel cell using an accelerated degradation technique

    NASA Astrophysics Data System (ADS)

    Jung, Guo-Bin; Chen, Hsin-Hung; Yan, Wei-Mon

    2014-02-01

    In this work, the performance degradation of a poly 2,5-benzimidazole (ABPBI) based high-temperature proton exchange membrane fuel cell (HT-PEMFC) was examined using an accelerated degradation technique (ADT). Experiments using an ADT with 30 min intervals were performed by applying 1.5 V to a membrane electrode assembly (MEA) with hydrogen and nitrogen feeding to the anode and cathode, respectively, to simulate the high voltage generated during fuel cell shutdown and restart. The characterization of the MEAs was performed using in-situ and ex-situ electrochemical methods, such as polarization curves, AC impedance, and cyclic voltammetry (CV), and TEM imaging before and after the ADT experiments. The measured results demonstrated that the ADT testing could be used to dramatically reduce the duration of the degradation. The current output at 0.4 V decreased by 48% after performing ADT testing for 30 min. From the AC impedance, CV and RTGA measurements, the decline in cell performance was found to be primarily due to corrosion and thinning of the catalyst layer (or carbon support) during the first 30 min, leading to the dissolution and agglomeration of the platinum catalyst.

  5. Synthesis of Capsule-like Porous Hollow Nanonickel Cobalt Sulfides via Cation Exchange Based on the Kirkendall Effect for High-Performance Supercapacitors.

    PubMed

    Tang, Yongfu; Chen, Shunji; Mu, Shichun; Chen, Teng; Qiao, Yuqing; Yu, Shengxue; Gao, Faming

    2016-04-20

    To construct a suitable three-dimensional structure for ionic transport on the surface of the active materials for a supercapacitor, porous hollow nickel cobalt sulfides are successfully synthesized via a facile and efficient cation-exchange reaction in a hydrothermal process involving the Kirkendall effect with γ-MnS nanorods as a sacrificial template. The formation mechanism of the hollow nickel cobalt sulfides is carefully illustrated via the tuning reaction time and reaction temperature during the cation-exchange process. Due to the ingenious porous hollow structure that offers a high surface area for electrochemical reaction and suitable paths for ionic transport, porous hollow nickel cobalt sulfide electrodes exhibit high electrochemical performance. The Ni(1.77)Co(1.23)S4 electrode delivers a high specific capacity of 224.5 mAh g(-1) at a current density of 0.25 A g(-1) and a high capacity retention of 87.0% at 10 A g(-1). An all-solid-state asymmetric supercapacitor, assembled with a Ni(1.77)Co(1.23)S4 electrode as the positive electrode and a homemade activated carbon electrode as the negative electrode (denoted as NCS//HMC), exhibits a high energy density of 42.7 Wh kg(-1) at a power density of 190.8 W kg(-1) and even 29.4 Wh kg(-1) at 3.6 kW kg(-1). The fully charged as-prepared asymmetric supercapacitor can light up a light emitting diode (LED) indicator for more than 1 h, indicating promising practical applications of the hollow nickel cobalt sulfides and the NCS//HMC asymmetric supercapacitor.

  6. Preparation of a strong-cation exchange monolith by a novel method and its application in the separation of IgG on high performance liquid chromatography.

    PubMed

    Yang, Gengliang; Bai, Ligai; Yan, Cuihong; Gu, Yanzhao; Ma, Junjie

    2011-10-15

    A strong cation-exchange poly(vinyl carboxylate-co-ethyleneglycol dimethacrylate) (poly(VC-co-EDMA)) monolithic column for high performance liquid chromatography (HPLC) has been prepared firstly by atom transfer radical polymerization (ATRP) without the expensive complexing ligand, in which vinyl carboxylate was used as the monomer, ethyleneglycol dimethacrylate as the cross linking agent, carbon tetrachloride as the initiator and ferrous chloride as the catalyst. Conditions of the polymerization have been studied and optimized. Morphology of monolithic materials was studied by scanning electronic microscopy. Chemical groups of the monolith were assayed by infrared spectra method and the pore size distribution was determined by a mercury porosimeter. Moreover, the monolith was modified to bear strong-cation exchange groups and tested on the separation of human immune globulin G (IgG) from human plasma in conjunction with HPLC. Good resolution was obtained in a short time (10 min) in the separation. The effects of pH and buffer concentration on the elution of IgG have been investigated. Moreover, frontal analytical method was used to get the IgG dynamic banding capacity of the monolith that was 3.0 mg g(-1). Besides, the monolith was also used to separate lysozyme from egg white and separate the mixture of papain, snailase and IgG.

  7. Spectroscopic characterization by photodiode array detection of human urinary and amniotic protein HC subpopulations fractionated by anion-exchange and size-exclusion high-performance liquid chromatography.

    PubMed

    Calero, M; Escribano, J; Soriano, F; Grubb, A; Brew, K; Méndez, E

    1996-01-05

    A procedure for spectroscopic characterization and partial fractionation of human protein HC populations by high-performance liquid chromatography-photodiode array ultraviolet-visible detection is reported. Human protein HC from urine or amniotic fluid fractionated by anion-exchange HPLC in a protein Pak DEAE 5PW appeared to be heterogeneous as judged by the asymmetric elution pattern, consisting of a continuous irregular broad peak with several shoulders distributed along the whole chromatogram. Selected fractions containing shoulders were rechromatographed and finally six symmetrical homogeneous peaks with different retention times were obtained from each protein HC preparation. The direct automatic absorption spectra analyses at each peak maximum, indicated that all of the homogeneous peaks seemed to be protein HC, all of them associated to the same chromophore although with different stoichiometry ratios. Isoelectric focusing showed that each peak was composed of a limited number of subpopulations of protein HC with different isoelectric points. Size microheterogeneity has been also demonstrated in both urinary and amniotic protein HC preparations by a combination of size-exclusion HPLC on a TSK 3000 SW6 column and photodiode array detection. Partial fractionation of human albumin on an analytical anion-exchange Mono-Q PC 1.6/5 column, has allowed the identification of heterogeneous chromophore-containing populations displaying significant absorption in the visible region in resemblance to that of protein HC.

  8. [Determination of isoxanthopterin in human urine by solid phase extraction-high performance anion-exchange chromatography coupled with integrated pulsed amperometric detection].

    PubMed

    Feng, Lei; Yan, Aiping; Chen, Lin; Wan, Yiqun

    2010-04-01

    A sensitive, selective and environmental friendly method for the determination of isoxanthopterin in human urine by solid phase extraction (SPE)-high performance anion exchange chromatography (HPAEC) with integrated pulsed amperometric detector has been developed. The tandem solid phase extraction was employed to purify isoxanthopterin from human urine. The separation of isoxanthopterin was carried out on an IonPac AS21 anion-exchange column with eluent of 0.025 mol/L NaOH at the flow rate of 0.40 mL/min. Under the optimized conditions, the detection limit for isoxanthopterin was 0.003 mg/L, and the linear range was 0.005-0.200 mg/L. The spiked recoveries ranging from 95.4% to 96.8% were obtained in the urine samples from healthy persons and cancer patients, and the relative standard deviation (RSD) was less than 5%. The present method was successfully applied to the determination of isoxanthopterin in urine from healthy individuals and cancer patients.

  9. UV-MALDI-TOF mass spectrometry analysis of heparin oligosaccharides obtained by nitrous acid controlled degradation and high performance anion exchange chromatography.

    PubMed

    Bultel, Laurent; Landoni, Malena; Grand, Eric; Couto, Alicia S; Kovensky, José

    2010-01-01

    Nitrous acid degradation of heparin followed by high-performance anion-exchange chromatography (HPAEC) separation and ultraviolet matrix assisted laser desorption/ionization time-of-flight (UV-MALDI-TOF) analysis led to the structural determination of six sulfated oligosaccharides. Three different matrices (alpha-cyano-4-hydroxycinnamic acid (CHCA), nor-harmane, and dihydroxybenzoic acid (DHB)) have been used, and the complementary results obtained allowed in most cases to assign the position of sulfate groups. Based on the different cleavages produced on the purified oligosaccharides in source during the MS analysis by the use of the different matrices, this approach provides a new tool for structural analysis. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  10. Analytical Method for Sugar Profile in Pet Food and Animal Feeds by High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection.

    PubMed

    Ellingson, David J; Anderson, Phillip; Berg, Daniel P

    2016-01-01

    There is a need for a standardized, accurate, rugged, and consistent method to measure for sugars in pet foods and animal feeds. Many traditional standard sugar methods exist for other matrixes, but when applied in collaborative studies there was poor agreement and sources of error identified with those standard methods. The advancement in technology over the years has given us the ability to improve on these standard methods of analysis. A method is described here that addresses these common issues and was subjected to a single-laboratory validation to assess performance on a wide variety of pet foods and animal feeds. Of key importance to the method performance is the sample preparation before extraction, type of extraction solvent, postextraction cleanup, and, finally, optimized chromatography using high-performance anion exchange chromatography with pulsed amperometric detection. The results obtained from the validation demonstrate how typical issues seen with these matrixes can influence performance of sugar analysis. The results also demonstrate that this method is fit-for-purpose and can meet the challenges of sugar analysis in pet food and animal feeds to lay the foundation for a standardized method of analysis.

  11. Comparative performance of ion exchange and ion-paired reversed phase high performance liquid chromatography for the determination of nucleotides in biological samples.

    PubMed

    Perrett, D; Bhusate, L; Patel, J; Herbert, K

    1991-09-01

    We have compared anion exchange chromatography on APS-Hypersil (4.6 x 100 mm) eluted with a phosphate gradient with reversed phase chromatography on ODS-Hypersil (4.6 x 100 mm) in the presence of either tetrabutylammonium (TBA) or triethylammonium (TEA) ions with a methanol gradient. The systems have been compared both for ease of operation and for their resolving power with standard mixtures and acid extracts of both normal red cells (RBC) and ischaemic tissues. The two chromatographic modes exhibited similar separating efficiencies for standard mixtures of nucleotides but retention times were most stable using reversed phase liquid chromatography (RPLC) with TEA. Anion exchange columns slowly lost ion exchange capacity but selectivity was unchanged. RPLC in the presence of TBA gave reproducibile capacity factors only when operated isocratically due to irreversible changes to the silica surface. For RBCs the RPLC with TEA and anion exchange systems resolved 17 and 15 peaks, respectively, and for the ischaemic samples 22 and 14 peaks, respectively. However, nucleosides and bases were also resolved by the ODS column causing chromatographic crowding and uncertain peak identification.

  12. Quantitative analysis of neutral and acidic sugars in whole bacterial cell hydrolysates using high-performance anion-exchange liquid chromatography-electrospray ionization tandem mass spectrometry.

    PubMed

    Wunschel, D; Fox, K F; Fox, A; Nagpal, M L; Kim, K; Stewart, G C; Shahgholi, M

    1997-08-01

    A procedure for analysis of a mixture of neutral and acidic sugars in bacterial whole cell hydrolysates using high-performance anion-exchange liquid chromatography-electrospray ionization tandem mass spectrometry (HPAEC-ESI-MS-MS) is described. Certain bacteria (including bacilli), grown under phosphate-limited conditions, switch from producing a teichoic acid (containing ribitol) to a teichuronic acid (characterized by glucuronic acid content). Bacterial cells were hydrolyzed with sulfuric acid to release sugar monomers. The solution was neutralized by extraction with an organic base. Hydrophobic and cationic contaminants (including amino acids) were removed using C18 and SCX columns, respectively. HPAEC is well established as a high-resolution chromatographic technique, in conjunction with a pulsed amperometric detector. Alternatively, for more selective detection, sugars (as M-H- ions) were monitored using ESI-MS. In HPAEC, the mobile phase contains sodium hydroxide and sodium acetate, which are necessary for chromatographic separation of mixtures of neutral and acidic sugars. Elimination of this high ionic content prior to entry into the ESI ion source is vital to avoid compromising sensitivity. This was accomplished using an on-line suppressor and decreasing post-column flow-rates from 1 ml to 50 microliters/min. In the selected ion monitoring mode, background (from the complex sample matrix as well as the mobile phase) was eliminated, simplifying chromatograms. Sugar identification was achieved by MS-MS using collision-induced dissociation.

  13. Enhanced performance of polybenzimidazole-based high temperature proton exchange membrane fuel cell with gas diffusion electrodes prepared by automatic catalyst spraying under irradiation technique

    NASA Astrophysics Data System (ADS)

    Su, Huaneng; Pasupathi, Sivakumar; Bladergroen, Bernard Jan; Linkov, Vladimir; Pollet, Bruno G.

    2013-11-01

    Gas diffusion electrodes (GDEs) prepared by a novel automatic catalyst spraying under irradiation (ACSUI) technique are investigated for improving the performance of phosphoric acid (PA)-doped polybenzimidazole (PBI) high temperature proton exchange membrane fuel cell (PEMFC). The physical properties of the GDEs are characterized by pore size distribution and scanning electron microscopy (SEM). The electrochemical properties of the membrane electrode assembly (MEA) with the GDEs are evaluated and analyzed by polarization curve, cyclic voltammetry (CV) and electrochemistry impedance spectroscopy (EIS). Effects of PTFE binder content, PA impregnation and heat treatment on the GDEs are investigated to determine the optimum performance of the single cell. At ambient pressure and 160 °C, the maximum power density can reach 0.61 W cm-2, and the current density at 0.6 V is up to 0.38 A cm-2, with H2/air and a platinum loading of 0.5 mg cm-2 on both electrodes. The MEA with the GDEs shows good stability for fuel cell operating in a short term durability test.

  14. Partially hydrolyzed guar gum characterization and sensitive quantification in food matrices by high performance anion exchange chromatography with pulsed amperometric detection--validation using accuracy profile.

    PubMed

    Mercier, G; Campargue, C

    2012-11-02

    Interest concerning functional ingredients and especially dietary fibres has been growing in recent years. At the same time, the variety of ingredient accepted as dietary fibres and their mixing at low level in complex matrices have considerably complicated their quantitative analysis by approved AOAC methods. These reasons have led to the specific development of an innovative analytical method performed by high-performance anion-exchange chromatography (HPAEC) with pulsed amperometric detection (PAD) to detect and quantify partially hydrolyzed guar gum (PHGG) in fruit preparation and dairy matrices. The analytical methodology was divided in two steps which could be deployed separately or in conjunction. The first, consists in a complete characterization of PHGG by size exclusion chromatography (SEC) with multi-angle light scattering and refractive index detection and HPAEC-PAD to determine its physico-chemical properties and galactomannans content, and the second step is the development of a new HPAEC-PAD method for PHGG direct quantification in complex matrices (dairy product). Validation in terms of detection and quantification limits, linearity of the analytical range, average accuracy (recovery, trueness) and average uncertainty were statistically carried out with accuracy profile. Overall, this new chromatographic method has considerably improved the possibility to quantify without fractionation treatment, low level of dietary fibres emerging from specific galactomannans, in complex matrices and many foodstuffs.

  15. High-performance anion-exchange chromatography coupled with diode array detection for the determination of dencichine in Panax notoginseng and related species.

    PubMed

    Qiao, Chun-Feng; Liu, Xiao-Mei; Cui, Xiu-Ming; Hu, De-Jun; Chen, Yi-Wen; Zhao, Jing; Li, Shao-Ping

    2013-08-01

    A high-performance anion-exchange chromatography coupled with diode array detection method was developed for the determination of dencichine in Panax notoginseng and related species. The analysis was performed on an Eprogen Synchropak WAX column (4.6 × 250 mm, 6 μm) with 50 mM NaH2 PO4 aqueous solution isocratic elution. The method was validated in terms of linearity, sensitivity, precision, stability, and accuracy. It was found that the calibration curve for dencichine showed good linearity (R(2) = 0.9999) within the test range. The LOD and LOQ were 0.77 and 3.06 ng, respectively. The RSD for intra- and interday repeatability was 0.2 and 0.5%, respectively. The test solution of dencichine is stable at least for three days at room temperature and for seven days at 4 °C. The mean recovery of dencichine was 102.0%. The established method was successfully applied to determine dencichine in the raw root of P. nogoginseng, P. ginseng, and P. quinquefolium as well as the steamed root of P. notoginseng. Compared with previous reports, this method is sensitive, selective, and accurate, which is helpful to evaluate the quality of P. notoginseng and related species.

  16. Improved protocols for quantitative determination of metabolites from biological samples using high performance ionic-exchange chromatography with conductimetric and pulsed amperometric detection.

    PubMed

    Groussac; Ortiz; François

    2000-06-01

    Simple and reliable protocols are described for an extensive analysis of metabolites in extracts from different biological sources. The separation was performed by high performance ionic-exchange chromatography (HPIC) at alkaline pH using two types of chromatography columns and two detection methods. Organic acids and inorganic anions were separated on an ionPac AS11 column using a 0.5 to 35 mM Na0H gradient. Detection limits in the range of milligrams per liter were achieved by use of a conductivity detector equipped with an anion self-regenerating suppressor. Twelve phosphorylated compounds belonging to the glycolytic and the pentose phosphate pathways could be resolved on a CarboPac PA1 column using a Na0H/Na-acetate gradient. Quantification was achieved by pulsed amperometry with detection limits in the micromolar range. Cell extracts obtained by extraction in boiling buffered ethanol described previously could be directly injected onto HPIC columns for the separation of metabolites because the extraction procedure affected neither the retention time nor the stability of most of the metabolites, and yielded very clean chromatograms. These improved protocols were applied for a dynamic analysis of intracellular metabolites in Saccharomyces cerevisiae in response to a glucose pulse.

  17. Electrogenerated chemiluminescence detector based on Ru(bpy)32+ immobilized in cation exchange resin for high-performance liquid chromatography: An approach to stable detection

    NASA Astrophysics Data System (ADS)

    Sun, Yonghua; Zhang, Zhujun; Zhang, Xinfeng

    2013-12-01

    In this work, an electrogenerated chemiluminescence (ECL) detector with improved stability was developed for high-performance liquid chromatography (HPLC) detection of hydrochlorothiazide (HCTZ). The detector was prepared by packing cation exchanged resin particles in a glass tube, followed by inserting Pt wires (working electrode) in this tube and sealing. The leakage of Ru(bpy)32+ from the resin was compensated by adding a small amount of Ru(bpy)32+ in the mobile phase. Factors affected the performance of the proposed ECL detector were investigated. Under the optimal conditions, the ECL intensity has a linear relationship with the concentration of HCTZ in the range of 5.0 × 10-8 g mL-1 - 2.5 × 10-5 g mL-1 and the detection limit was 2.0 × 10-8 g mL-1 (S/N = 3). Application of the detector to the analysis of HCTZ in human serum proved feasible.

  18. Electrogenerated chemiluminescence detector based on Ru(bpy)3(2+) immobilized in cation exchange resin for high-performance liquid chromatography: An approach to stable detection.

    PubMed

    Sun, Yonghua; Zhang, Zhujun; Zhang, Xinfeng

    2013-12-01

    In this work, an electrogenerated chemiluminescence (ECL) detector with improved stability was developed for high-performance liquid chromatography (HPLC) detection of hydrochlorothiazide (HCTZ). The detector was prepared by packing cation exchanged resin particles in a glass tube, followed by inserting Pt wires (working electrode) in this tube and sealing. The leakage of Ru(bpy)3(2+) from the resin was compensated by adding a small amount of Ru(bpy)3(2+) in the mobile phase. Factors affected the performance of the proposed ECL detector were investigated. Under the optimal conditions, the ECL intensity has a linear relationship with the concentration of HCTZ in the range of 5.0 × 10(-8) g mL(-1)-2.5 × 10(-5) g mL(-1) and the detection limit was 2.0 × 10(-8) g mL(-1) (S/N=3). Application of the detector to the analysis of HCTZ in human serum proved feasible.

  19. Chiral ligand-exchange high-performance liquid chromatography with copper (II)-L-phenylalanine complexes for separation of 3,4-dimethoxy-α-methylphenylalanine racemes.

    PubMed

    Jia, Dong-Xu; Ai, Zheng-Gui; Xue, Ya-Ping; Zheng, Yu-Guo

    2014-11-01

    L-3, 4-dimethoxy-α-methylphenylalanine (L-DMMD) is an important intermediate for the synthesis of 3-hydroxy-α-methyl-L-tyrosine (L-methyldopa). This paper describes an efficient, accurate, and low-priced method of high-performance liquid chromatography (HPLC) using chiral mobile phase and conventional C18 column to separate L-DMMD from its enantiomers. The effects of ligands, copper salts, organic modifiers, pHs of mobile phase, and temperatures on the retention factors (k') and selectivity (α) were evaluated to achieve optimal separation performance. Then, thermal analysis of the optimal separation conditions was investigated as well. It was confirmed that the optimal mobile phase was composed of 20 % (v/v) methanol, 8 mM L-phenylalanine (L-Phe), and 4 mM cupric sulfate in water of pH 3.2, and the column temperature was set at 20 °C. Baseline separation of two enantiomers could be obtained through the conventional C18 column with a resolution (R) of 3.18 in less than 18 min. Thermodynamic data (∆∆H and ∆∆S) obtained by Van't Hoff plots revealed the chiral separation was an enthalpy-controlled process. To the best of our knowledge, this is the first report regarding the enantioseparation of DMMD by chiral ligand-exchange HPLC.

  20. Quantification of S-carboxymethyl-(R)-cysteine in human plasma by high-performance ion-exchange liquid chromatography/atmospheric pressure ionization mass spectrometry.

    PubMed

    Anacardio, R; Cantalini, M G; De Angelis, F; Gentile, M

    1997-04-01

    The determination of S-carboxymethyl-(R)-cysteine (SCMC) in human plasma during extended bioequivalence studies demands a rapid, accurate and selective assay technique. A liquid chromatographic/mass spectrometric method was developed which involves rough protein precipitation followed by high-performance liquid chromatographic separation with an ion-exchange column and atmospheric pressure ionization (API) mass spectrometric detection, with the instrument operating with electrospray ionization (ESI) and in the selected-ion monitoring mode. The drug and the internal standard S-[(R)-1-carboxyethyl]-(R)-cysteine (SCEC) are detected by focusing the first quadrupole of the triple stage system on MH+ ions, thus permitting elimination of endogenous interfering substances and allowing a detection limit of 0.05 microgram ml-1. The chromatographic run time is 16 min and the method has sufficient sensitivity, precision, accuracy and selectivity for routine analyses of clinical plasma samples containing SCMC at concentrations in the range 0.2-20 micrograms ml-1. In summary, this LC/MS-based assay of SCMC demonstrates advantages of easy sample preparation, low limit of quantification (200 ng per ml of human plasma) without any derivatization step, high specificity and rapid sample analysis with an overall throughput of more than 60 analyses per day.

  1. Analysis of nonstructural carbohydrates in storage organs of 30 ornamental geophytes by high-performance anion-exchange chromatography with pulsed amperometric detection.

    PubMed

    Ranwala, Anil P; Miller, William B

    2008-01-01

    A comprehensive analysis of nonstructural carbohydrates in storage organs (bulbs and corms) of 30 ornamental geophytes was conducted by employing a variety of extraction techniques followed by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAE-PAD). Among species, starch, fructan, glucomannan and soluble sugars accounted for 50-80% of storage organ dry weight (DW). Starch ranged from 24 to 760 mg g(-1) DW, fructan (commonly occurring with starch) from 25 to 500 mg g(-1) DW, and glucomannan from 15 to 145 mg g(-1) DW. An acid hydrolysis protocol for concurrent determination of fructan and glucomannan was developed. The average degree of polymerization (DP) of ethanol and water-soluble fructan and the man : glu ratio of glucomannan also varied between species. The 80% ethanol fraction contained soluble sugars and short-chain fructans (< 25 DP), whereas water extracts contained soluble sugars, fructans (both short- and long-chain,

  2. Simultaneous detection of perchlorate and bromate using rapid high-performance ion exchange chromatography-tandem mass spectrometry and perchlorate removal in drinking water.

    PubMed

    West, Danielle M; Mu, Ruipu; Gamagedara, Sanjeewa; Ma, Yinfa; Adams, Craig; Eichholz, Todd; Burken, Joel G; Shi, Honglan

    2015-06-01

    Perchlorate and bromate occurrence in drinking water causes health concerns due to their effects on thyroid function and carcinogenicity, respectively. The purpose of this study was threefold: (1) to advance a sensitive method for simultaneous rapid detection of perchlorate and bromate in drinking water system, (2) to systematically study the occurrence of these two contaminants in Missouri drinking water treatment systems, and (3) to examine effective sorbents for minimizing perchlorate in drinking water. A rapid high-performance ion exchange chromatography-tandem mass spectrometry (HPIC-MS/MS) method was advanced for simultaneous detection of perchlorate and bromate in drinking water. The HPIC-MS/MS method was rapid, required no preconcentration of the water samples, and had detection limits for perchlorate and bromate of 0.04 and 0.01 μg/L, respectively. The method was applied to determine perchlorate and bromate concentrations in total of 23 selected Missouri drinking water treatment systems during differing seasons. The water systems selected include different source waters: groundwater, lake water, river water, and groundwater influenced by surface water. The concentrations of perchlorate and bromate were lower than or near to method detection limits in most of the drinking water samples monitored. The removal of perchlorate by various adsorbents was studied. A cationic organoclay (TC-99) exhibited effective removal of perchlorate from drinking water matrices.

  3. Monosaccharide composition of sweetpotato fiber and cell wall polysaccharides from sweetpotato, cassava, and potato analyzed by the high-performance anion exchange chromatography with pulsed amperometric detection method.

    PubMed

    Salvador, L D; Suganuma, T; Kitahara, K; Tanoue, H; Ichiki, M

    2000-08-01

    The cell wall materials (CWMs) from sweetpotato (Ipomoea batatas cv. Kokei 14), cassava (Manihot esculenta), and potato (Solanum tuberosum cv. Danshaku) and commercial sweetpotato fiber as well as their polysaccharide fractions were analyzed for sugar composition by the high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) method. The separation of arabinose and rhamnose, and xylose and mannose, by this method has been improved using a CarboPac PA 10 column. Pretreatment of the CWMs and cellulose fractions with 12 M H(2)SO(4) was required for complete hydrolysis to occur. Commercial sweetpotato fiber was found to be mainly composed of glucose (88.4%), but small amounts of other sugars were also detected. Among the root crops, sweetpotato CWM had the highest amount of pectin and galacturonic acid. Fucose was detected only in cassava CWM and its hemicellulose fraction, while galactose was present in the highest amount in potato CWM. Among the polysaccharide fractions, it was only in the hemicellulose fraction where significant differences in the sugar composition, especially in the galactose content, were observed among the root crops.

  4. Rapid and sensitive quantification of levoglucosan in aerosols by high-performance anion-exchange chromatography with positive electrospray ionization mass spectrometry (HPAEC-positive ESI-MS)

    NASA Astrophysics Data System (ADS)

    Asakawa, Daichi; Furuichi, Yuko; Yamamoto, Atsushi; Oku, Yuichiro; Funasaka, Kunihiro

    2015-12-01

    A convenient quantification method for underivatized levoglucosan, which is a tracer for biomass burning influenced particulate matter (PM), has been established using high-performance anion-exchange chromatography (HPAEC) coupled to positive electrospray ionization mass spectrometry ((+)ESI-MS). Levoglucosan was chromatographically separated from its isomers (mannosan and galactosan) and detected selectively with positive ESI-MS. Limits of detection and quantification for this method were 0.40 and 1.3 ng mL-1, respectively. A comparison of simultaneous measurements by this method and conventional derivatization gas chromatography/mass spectrometry showed a good linearity with a slope of 1.008 and a determination coefficient of 0.9932. The developed method was applied to ambient suspended particulate matter hourly collected by continuous particulate monitors at 10 stations. The hourly concentration of levoglucosan during August 9-11, 2011, was 1.7-918 ng m-3 and its distribution indicated the transportation of biomass burning aerosols of a forest fire. This is the first report of horizontal distribution of the hourly levoglucosan concentration in Japan.

  5. Dextrin characterization by high-performance anion-exchange chromatography--pulsed amperometric detection and size-exclusion chromatography--multi-angle light scattering--refractive index detection.

    PubMed

    White, D Richard; Hudson, Patricia; Adamson, Julie T

    2003-05-16

    Starch hydrolysis products, or dextrins, are widely used throughout the food industry for their functional properties. Dextrins are saccharide polymers linked primarily by alpha-(1 --> 4) D-glucose units and are prepared by partial hydrolysis of starch. Hydrolysis can be accomplished by the use of acid, enzymes, or by a combination of both. The hydrolysis products are typically characterized by the "dextrose equivalent" (DE), which refers to the total reducing power of all sugars present relative to glucose. While the DE gives the supplier and buyer a rough guide to the bulk properties of the material, the physiochemical properties of dextrins are dependent on the overall oligosaccharide profile. High-performance anion-exchange chromatography (HPAEC) with pulsed amperometric detection and size-exclusion chromatography (SEC) with multi-angle light-scattering and refractive index detection were used to characterize dextrins from commercial sources. HPAEC was used to acquire the oligosaccharide profile, and SEC to obtain an overall molar mass distribution. These methods in combination extended our understanding of the relationship between oligosaccharide profile, DE, and the hydrolysis process. Data from the two techniques enabled a method for estimating the DE that gave results in reasonable agreement with the accepted titration method.

  6. Simultaneous measurement of proline and related compounds in oak leaves by high-performance ligand-exchange chromatography and electrospray ionization mass spectrometry for environmental stress studies.

    PubMed

    Oufir, Mouhssin; Schulz, Nadine; Sha Vallikhan, Patan Shaik; Wilhelm, Eva; Burg, Kornel; Hausman, Jean-Francois; Hoffmann, Lucien; Guignard, Cedric

    2009-02-13

    A mass spectrometer was coupled to high-performance ligand-exchange liquid chromatography (HPLEC) for simultaneous analysis of stress associated solutes such as proline, hydroxyproline, methylproline, glycine betaine and trigonelline extracted from leaves of drought stressed oaks and an internal standard namely N-acetylproline. Methanol/chloroform/water extracts were analyzed using an Aminex HPX-87C column and specifically quantified by the positive ion mode of an electrospray ionisation-mass spectrometry (ESI-MS) in single ion monitoring (SIM) mode. The recovery of N-acetyl proline added to oak leaf extracts ranged from 85.2 to 122.1% for an intra-day study. Standard calibration curves showed good linearity in the measured range from 0.3125 to 10micromolL(-1) with the lowest correlation coefficient of 0.99961 for trigonelline. The advantages of this alternative procedure, compared to previously published methods using fluorescence or amperometric detections, are the simultaneous and direct detection of osmoprotectants in a single chromatographic run, a minimal sample preparation, a good specificity and reduced limits of quantification, ranging from 0.1 to 0.6micromolL(-1). Fifty-six days of water deficit exposure resulted in increased foliar free proline levels (2.4-fold, P<0.001, 155micromolg(-1) FW) and glycine betaine contents (2.5-fold, P<0.05, 175micromolg(-1) FW) of drought stressed oak compared to control.

  7. Cation-exchange high-performance liquid chromatography for variant hemoglobins and HbF/A2: What must hematopathologists know about methodology?

    PubMed Central

    Sharma, Prashant; Das, Reena

    2016-01-01

    Cation-exchange high-performance liquid chromatography (CE-HPLC) is a widely used laboratory test to detect variant hemoglobins as well as quantify hemoglobins F and A2 for the diagnosis of thalassemia syndromes. It’s versatility, speed, reproducibility and convenience have made CE-HPLC the method of choice to initially screen for hemoglobin disorders. Despite its popularity, several methodological aspects of the technology remain obscure to pathologists and this may have consequences in specific situations. This paper discusses the basic principles of the technique, the initial quality control steps and the interpretation of various controls and variables that are available on the instrument output. Subsequent sections are devoted to methodological considerations that arise during reporting of cases. For instance, common problems of misidentified peaks, totals crossing 100%, causes of total area being above or below acceptable limits and the importance of pre-integration region peaks are dealt with. Ultimately, CE-HPLC remains an investigation, the reporting of which combines in-depth knowledge of the biological basics with more than a working knowledge of the technological aspects of the technique. PMID:27019794

  8. Short communication: Quantification of carbohydrates in whey permeate products using high-performance anion-exchange chromatography with pulsed amperometric detection.

    PubMed

    Lee, Hyeyoung; de MeloSilva, Vitor Luiz; Liu, Yan; Barile, Daniela

    2015-11-01

    A method was developed for the characterization and quantification of the disaccharide lactose and 3 major bovine milk oligosaccharides (BMO) in dairy streams. Based on high-performance anion-exchange chromatography-pulsed amperometric detection (HPAE-PAD), this method is advantageous because it requires minimal sample preparation and achieves good chromatographic separation of oligosaccharide isomers within 30min. The linear dynamic range and limit of detection were 0.1 to 10mg/L and 0.03 to 0.22mg/L, respectively. Mean recoveries of the BMO were excellent and ranged from 98.4 to 100.4%. Without complicated sample preparation procedures, this HPAE-PAD method measured BMO [3'-sialyllactose (3'SL), 6'-sialyllactose (6'SL), and 6'-sialyllactosamine (6'SLN)] and lactose using a single instrument, therefore increasing the accuracy of the measurement and applicability for the dairy industry. In colostrum whey permeate, 3'SL, 6'SL, and 6'SLN were 94, 29, and 46mg/L, respectively. This work is the first to demonstrate that some commercial products, currently marketed for supporting a healthy immune system, contain significant amounts of bioactive BMO and therefore, carry additional bioactivities.

  9. Survey of inorganic arsenic in marine animals and marine certified reference materials by anion exchange high-performance liquid chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Sloth, Jens J; Larsen, Erik H; Julshamn, Kåre

    2005-07-27

    A method for the determination of inorganic arsenic in seafood samples using high-performance liquid chromatography-inductively coupled plasma mass spectrometry is described. The principle of the method relied on microwave-assisted alkaline dissolution of the sample, which at the same time oxidized arsenite [As(III)] to arsenate [As(V)], whereby inorganic arsenic could be determined as the single species As(V). Anion exchange chromatography using isocratic elution with aqueous ammonium carbonate as the mobile phase was used for the separation of As(V) from other coextracted organoarsenic compounds, including arsenobetaine. The stability of organoarsenic compounds during the sample pretreatment was investigated, and no degradation/conversion to inorganic arsenic was detected. The method was employed for the determination of inorganic arsenic in a variety of seafood samples including fish, crustaceans, bivalves, and marine mammals as well as a range of marine certified reference materials, and the results were compared to values published in the literature. For fish and marine mammals, the results were in most cases below the limit of detection. For other sample types, inorganic arsenic concentrations up to 0.060 mg kg(-)(1) were found. In all samples, the inorganic arsenic content constituted less than 1% of the total arsenic content.

  10. Monoclonal antibody heterogeneity analysis and deamidation monitoring with high-performance cation-exchange chromatofocusing using simple, two component buffer systems.

    PubMed

    Kang, Xuezhen; Kutzko, Joseph P; Hayes, Michael L; Frey, Douglas D

    2013-03-29

    The use of either a polyampholyte buffer or a simple buffer system for the high-performance cation-exchange chromatofocusing of monoclonal antibodies is demonstrated for the case where the pH gradient is produced entirely inside the column and with no external mixing of buffers. The simple buffer system used was composed of two buffering species, one which becomes adsorbed onto the column packing and one which does not adsorb, together with an adsorbed ion that does not participate in acid-base equilibrium. The method which employs the simple buffer system is capable of producing a gradual pH gradient in the neutral to acidic pH range that can be adjusted by proper selection of the starting and ending pH values for the gradient as well as the buffering species concentration, pKa, and molecular size. By using this approach, variants of representative monoclonal antibodies with isoelectric points of 7.0 or less were separated with high resolution so that the approach can serve as a complementary alternative to isoelectric focusing for characterizing a monoclonal antibody based on differences in the isoelectric points of the variants present. Because the simple buffer system used eliminates the use of polyampholytes, the method is suitable for antibody heterogeneity analysis coupled with mass spectrometry. The method can also be used at the preparative scale to collect highly purified isoelectric variants of an antibody for further study. To illustrate this, a single isoelectric point variant of a monoclonal antibody was collected and used for a stability study under forced deamidation conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Estimation of the measurement uncertainty of the high-performance anion-exchange chromatographic determination of carbohydrates in soluble (instant) coffee.

    PubMed

    Stöber, Paul; Giller, Véronique; Spack, Lionel; Prodolliet, Jacques

    2004-01-01

    The measurement uncertainty of the determination of free and total carbohydrates in soluble (instant) coffee using high-performance anion exchange chromatography with pulsed amperometric detection according to AOAC Method 995.13 and ISO standard 11292 was calculated. This method is important with regard to monitoring several carbohydrate concentrations and is used to assess the authenticity of soluble coffee. We followed the recommendations of the ISO, Eurachem, and Valid Analytical Measurement (VAM) guides: individual uncertainty contributions u(x) were identified, quantified, and expressed as relative standard deviations related to each specific source u(x)/x or RSD(x). Eventually, they were combined to yield the standard uncertainty and the relative standard uncertainty of a given carbohydrate concentration, c, that is respectively u(c) and u(c)/c. As a result of our study, we could demonstrate that the overall repeatability of the carbohydrate determination in duplicate, RSD(r); the repeatability of the integration of the peak area of the carbohydrate standards, RSD(r(area)(ST)); and the uncertainty of the linear calibration model used in our laboratory, RSD (linST), are the most significant contributions to the total uncertainty. The u(c)/c values thus determined differ for each carbohydrate and depend on their concentrations. The least standard uncertainties that can be achieved are about 2.5%. The question of trueness in the total carbohydrate assay (determination of monosaccharides obtained upon hydrolysis of coffee oligo- and polysaccharides) was addressed. For this purpose, we analyzed the data of 2 different collaborative trials in which our laboratory took part.

  12. Determination of carbohydrates, sugar alcohols, and glycols in cell cultures and fermentation broths using high-performance anion-exchange chromatography with pulsed amperometric detection.

    PubMed

    Hanko, V P; Rohrer, J S

    2000-08-01

    Cell cultures and fermentation broths are complex mixtures of organic and inorganic compounds. Many of these compounds are synthesized or metabolized by microorganisms, and their concentrations can impact the yields of desired products. Carbohydrates serve as carbon sources for many microorganisms, while sugar alcohols (alditols), glycols (glycerol), and alcohols (methanol and ethanol) are metabolic products. We used high-performance anion-exchange chromatography with pulsed amperometric detection (HPAE-PAD) to simultaneously analyze for carbohydrates, alditols, and glycerol in growing yeast (Saccharomyces cerevisiae) cultures and their final fermentation broths. Both cultures were grown on complex undefined media, aliquots centrifuged to remove particulates, and the supernatants diluted and directly injected for analysis. Pulsed amperometry allowed a direct detection of the carbohydrates, alditols, and glycols present in the cultures and fermentation broths with very little interference from other matrix components. The broad linear range of three to four orders of magnitude allowed samples to be analyzed without multiple dilutions. Peak area RSDs were 2-7% for 2, 3-butanediol, ethanol, glycerol, erythritol, rhamnose, arabitol, sorbitol, galactitol, mannitol, arabinose, glucose, galactose, lactose, ribose, raffinose, and maltose spiked into a heat-inactivated yeast culture broth supernatant that was analyzed repetitively for 48 h. This method is useful for directly monitoring culture changes during fermentation. The carbohydrates in yeast cultures were monitored over 1 day. A yeast culture with medium consisting primarily of glucose and trace levels of trehalose and arabinose showed a drop in sugar concentration over time and an increase in glycerol. Yeast growing on a modified culture medium consisting of multiple carbohydrates and alditols showed preference for specific carbon sources and showed the ability to regulate pathways leading to catalysis of

  13. High-performance anion-exchange chromatography-mass spectrometry method for determination of levoglucosan, mannosan, and galactosan in atmospheric fine particulate matter.

    PubMed

    Saarnio, Karri; Teinilä, Kimmo; Aurela, Minna; Timonen, Hilkka; Hillamo, Risto

    2010-11-01

    Biomass burning has a strong influence on the atmospheric aerosol composition through particulate organic, inorganic, and soot emissions. When biomass burns, cellulose and hemicelluloses degrade, producing monosaccharide anhydrides (MAs) such as levoglucosan, mannosan, and galactosan. Therefore, these compounds have been commonly used as tracers for biomass burning. In this study, a fast water-based method was developed for the routine analysis of MAs, based on high-performance anion-exchange chromatography with electrospray ionization mass spectrometry detection. This method combines simple sample preparation, fast separation, and the advantages of the selective detection with MS. Analysis run was optimized to the maximum separation of levoglucosan, mannosan, and galactosan with 15-min analysis. The validation results indicated that the method showed good applicability for determination of MA isomer concentrations in ambient samples. The limit of detection was 100 pg for levoglucosan and 50 pg for mannosan and galactosan. Wide determination ranges enabled the analysis of samples of different concentration levels. The method showed good precision, both for standard solutions (3.9-5.9% RSD) and for fine particle samples (4.3-8.5% RSD). Co-elution of internal standard (carbon-13-labeled levoglucosan) and sugar alcohols with levoglucosan decreased the sensitivity of levoglucosan determination. The method was used to determine the MA concentrations in ambient fine particle samples from urban background (Helsinki) and rural background (Hyytiälä) in Finland. The average levoglucosan, mannosan, and galactosan concentrations were 77, 8.8, and 4.2 ng m(-3) in Helsinki (winter 2008-2009) and 17, 2.3, and 1.4 ng m(-3) in Hyytiälä (spring 2007), respectively. The interrelation of the three MA isomers was fairly constant in the ambient fine particle samples.

  14. Simultaneous determination of synephrine, arecoline, and norisoboldine in Chinese patent medicine Si-Mo-Tang oral liquid preparation by strong cation exchange high performance liquid chromatography.

    PubMed

    Yi, Yue-Neng; Cheng, Xue-Mei; Liu, Ling-An; Hu, Gao-Yun; Wang, Zheng-Tao; Deng, Yi-De; Huang, Ke-Long; Cai, Guang-Xian; Wang, Chang-Hong

    2012-07-01

    Chinese patent medicine Si-Mo-Tang oral liquid preparation (SMT) is composed of Aucklandia luppa Decne (Compositae), Citrus aurantium Linn (Rutaceae), Lindera aggregata (Sims) Kosterm (Lauraceae), and Areca catechu Linn (Arecaceae). Studies of SMT have been impeded due to the lack of quality control methods. This study aimed to simultaneously determine three alkaloids including synephrine, arecoline, and norisoboldine in SMT for the first time. A strong cation exchange (SCX) high performance liquid chromatography (HPLC) method was developed to simultaneously determine synephrine, arecoline, and norisoboldine in SMT, and was compared with ion-pairing chromatography using regular reversed-phase chromatography columns. System suitability parameters of synephrine, arecoline, and norisoboldine using the SCX chromatography column were investigated. Results demonstrated that good separations were achieved on an Agilent SCX (250 × 4.6 mm, 5 µm) column at 35 °C. The mobile phase consisting of methanol-0.2% phosphoric acid was delivered at a constant flow of 1.0 mL min(-1) and the eluent was monitored at 215 nm. The HPLC method showed good linearity for the examined concentration ranges of 2.55-255.0, 1.30-208.0, and 2.06-201.6 µg mL(-1) for synephrine, arecoline, and norisoboldine, respectively. The limits of quantification (S/N = 10) were 2.55, 1.30, and 2.06 µg mL(-1), the limits of detection (S/N = 3) were 1.53, 0.78, and 1.21 µg mL(-1), and average recoveries were 98.99, 95.63 and 99.04%, respectively, for synephrine, arecoline, and norisoboldine. This method has been successfully applied to determine synephrine, arecoline, and norisoboldine in Chinese patent medicine SMT.

  15. Evaluation of fructans in various fresh and stewed fruits by high-performance anion-exchange chromatography with pulsed amperometric detection.

    PubMed

    L'homme, C; Peschet, J L; Puigserver, A; Biagini, A

    2001-06-22

    Fructans are food-grade non-digestible carbohydrates that exert beneficial nutritional effects. Their characterization and quantification is required for food-labeling purposes. We describe the suitability of high-performance anion-exchange chromatography coupled with pulsed amperometric detection for the identification and quantification of fructans in fresh fruits (various apple and pear cultivars, plum, banana) as well as in commercial stewed fruits obtained from a local manufacturer. After extraction with water and appropriate filtration, inulobiose [beta-D-Fru-(2-->1)-beta-D-fructofuranoside; F2], 1-kestose [beta-D-Fru-(2-->1)2-alpha-D-glucopyranoside; GF2] and nystose [beta-D-Fru-(2-->1)3-alpha-D-glucopyranoside; GF3] were completely separated in a single 36-min run using a Dionex CarboPac PA 100 column and the new quadruple-potential waveform, originally tailored for oligosaccharide separation. No measurable amounts of F3 and GF4 were detected within the group of studied fruit products. Peak identification was realized using standards. The method is easy, reproducible, and sensitive since as little as 28 microg of sugar per gram dry matter can be quantified. Banana and plum are the varieties containing the highest levels of fructans (about 6000 microg per gram dry matter). The maturity of the fruit appears to have a great influence on the level of GF2. Samples of apple-banana stewed fruits contained the highest total fructan concentration (about 700 microg per gram dry matter). Accurate quantification of fructans will allow more precise nutritional formulation and diet selection for higher fructan consumption.

  16. High Temperature Heat Exchanger Development

    DTIC Science & Technology

    2005-10-01

    Contract N00014-03-C-0444. Dr. Steven Fishman of the Office of Naval Research , Arlington VA administered the contract. The program manager at UTRC...tion ell- at e nger for Table 3.1 conditions. All rati av alen t transfer performance. C rat Tube spacin gth th Height Core Vol. Num. Mass varied

  17. Improved media performance in optimally coupled exchange spring layer media

    NASA Astrophysics Data System (ADS)

    Berger, A.; Supper, N.; Ikeda, Y.; Lengsfield, B.; Moser, A.; Fullerton, E. E.

    2008-09-01

    We have studied the recording performance of perpendicular exchange spring layer (ESL)-media for hard disk drive recording. In particular, we investigated the role of interlayer coupling by varying the thickness of a nonmagnetic coupling layer (CL). We demonstrate that not only the media writeability is improved upon optimizing the CL thickness, but also that substantial recording performance improvements can be achieved due to improved media noise properties. The potential of these media structures for high areal density recording is demonstrated by performing areal density measurements, which showed a substantial improvement for optimally coupled ESL-media.

  18. Enabling Detailed Energy Analyses via the Technology Performance Exchange: Preprint

    SciTech Connect

    Studer, D.; Fleming, K.; Lee, E.; Livingood, W.

    2014-08-01

    One of the key tenets to increasing adoption of energy efficiency solutions in the built environment is improving confidence in energy performance. Current industry practices make extensive use of predictive modeling, often via the use of sophisticated hourly or sub-hourly energy simulation programs, to account for site-specific parameters (e.g., climate zone, hours of operation, and space type) and arrive at a performance estimate. While such methods are highly precise, they invariably provide less than ideal accuracy due to a lack of high-quality, foundational energy performance input data. The Technology Performance Exchange was constructed to allow the transparent sharing of foundational, product-specific energy performance data, and leverages significant, external engineering efforts and a modular architecture to efficiently identify and codify the minimum information necessary to accurately predict product energy performance. This strongly-typed database resource represents a novel solution to a difficult and established problem. One of the most exciting benefits is the way in which the Technology Performance Exchange's application programming interface has been leveraged to integrate contributed foundational data into the Building Component Library. Via a series of scripts, data is automatically translated and parsed into the Building Component Library in a format that is immediately usable to the energy modeling community. This paper (1) presents a high-level overview of the project drivers and the structure of the Technology Performance Exchange; (2) offers a detailed examination of how technologies are incorporated and translated into powerful energy modeling code snippets; and (3) examines several benefits of this robust workflow.

  19. High pressure ceramic heat exchanger

    DOEpatents

    Harkins, B.D.; Ward, M.E.

    1998-09-22

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 5 figs.

  20. High pressure ceramic heat exchanger

    DOEpatents

    Harkins, Bruce D.; Ward, Michael E.

    1998-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  1. High pressure ceramic heat exchanger

    DOEpatents

    Harkins, Bruce D.; Ward, Michael E.

    1999-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the reinforcing member and having a strengthening member wrapped around the refractory material. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  2. Achievement goals and interpersonal behavior: how mastery and performance goals shape information exchange.

    PubMed

    Poortvliet, P Marijn; Janssen, Onne; Van Yperen, Nico W; Van de Vliert, Evert

    2007-10-01

    The present research examines the impact of achievement goals on task-related information exchange. Studies 1 and 2 reveal that relative to those with mastery goals or no goal, individuals pursuing performance goals were less open in their information giving to exchange partners. Study 2 further clarifies this effect of achievement goals by showing that performance goals generate an exploitation orientation toward information exchange. Furthermore, relative to individuals with mastery goals or no goal, people pursuing performance goals enhanced their task performance by utilizing more high-quality information obtained from their exchange partner (Study 1) and protected their task performance by more rigorously disregarding received low-quality information (Study 2).

  3. Airway exchange of highly soluble gases

    PubMed Central

    Powell, Frank L.; Anderson, Joseph C.

    2013-01-01

    Highly blood soluble gases exchange with the bronchial circulation in the airways. On inhalation, air absorbs highly soluble gases from the airway mucosa and equilibrates with the blood before reaching the alveoli. Highly soluble gas partial pressure is identical throughout all alveoli. At the end of exhalation the partial pressure of a highly soluble gas decreases from the alveolar level in the terminal bronchioles to the end-exhaled partial pressure at the mouth. A mathematical model simulated the airway exchange of four gases (methyl isobutyl ketone, acetone, ethanol, and propylene glycol monomethyl ether) that have high water and blood solubility. The impact of solubility on the relative distribution of airway exchange was studied. We conclude that an increase in water solubility shifts the distribution of gas exchange toward the mouth. Of the four gases studied, ethanol had the greatest decrease in partial pressure from the alveolus to the mouth at end exhalation. Single exhalation breath tests are inappropriate for estimating alveolar levels of highly soluble gases, particularly for ethanol. PMID:23305981

  4. Simplified enzymatic high-performance anion exchange chromatographic determination of total fructans in food and pet food-limitations and measurement uncertainty.

    PubMed

    Stöber, Paul; Bénet, Sylvie; Hischenhuber, Claudia

    2004-04-21

    A simplified method to determine total fructans in food and pet food has been developed and validated. It follows the principle of AOAC method 997.08, i.e., high-performance anion exchange chromatographic (HPAEC) determination of total fructose released from fructans (F(f)) and total glucose released from fructans (G(f)) after enzymatic fructan hydrolysis. Unlike AOAC method 997.08, calculation of total fructans is based on the determination of F(f) alone. This is motivated by the inherent difficulty to accurately determine low amounts of G(f) since many food and pet food products contain other sources of total glucose (e.g., starch and sucrose). In this case, a correction factor g can be used (1.05 by default) to take into account the theoretical contribution of G(f). At levels >5% of total fructans and in commercial fructan ingredients, both F(f) and G(f) can and should be accurately determined; hence, no correction factor g is required. The method is suitable to quantify total fructans in various food and pet food products at concentrations >or=0.2% providing that the product does not contain other significant sources of total fructose such as free fructose or sucrose. Recovery rates in commercial fructan ingredients and in selected food and pet food ranged from 97 to 102%. As part of a measurement uncertainty estimation study, individual contributions to the total uncertainty (u) of the total fructan content were identified and quantified by using the validation data available. As a result, a correlation between the sucrose content and the total uncertainty of the total fructan content was established allowing us to define a limit of quantitation as a function of the sucrose content. One can conclude that this method is limited to food products where the sucrose content does not exceed about three times the total fructan content. Despite this limitation, which is inherent to any total fructan method based on the same approach, this procedure represents an

  5. Silica-based monolithic columns with mixed-mode reversed-phase/weak anion-exchange selectivity principle for high-performance liquid chromatography.

    PubMed

    Nogueira, Raquel; Lubda, Dieter; Leitner, Alexander; Bicker, Wolfgang; Maier, Norbert M; Lämmerhofer, Michael; Lindner, Wolfgang

    2006-05-01

    This article describes the synthesis, chromatographic characterization, and performance evaluation of analytical (100 x 4.6 mm id) and semipreparative (100 x 10 mm id) monolithic silica columns with mixed-mode RP/weak anion-exchange (RP/WAX) surface modification. The monolithic RP/WAX columns were obtained by immobilization of N-(10-undecenoyl)-3-aminoquinuclidine onto thiol-modified monolithic silica columns (Chromolith) by a radical addition reaction. Their chromatographic characterization by Engelhardt and Tanaka tests revealed slightly lower hydrophobic selectivities than C-8 phases, as well as higher polarity and also improved shape selectivity than RP-18e silica rods. The surface modification enabled separation by both RP and anion-exchange chromatography principles, and thus showed complementary selectivities to the RP-18e monoliths. The mixed-mode monoliths have been tested for the separation of peptides and turned out to be particularly useful for hydrophilic acidic peptides, which are usually insufficiently retained on RP-18e monolithic columns. Compared to a corresponding particulate RP/WAX column (5 microm, 10 nm pore diameter), the analytical RP/WAX monolith caused lower system pressure drops and showed, as expected, higher efficiency (e.g. by a factor of about 2.5 lower C-term for a tetrapeptide). The upscaling from the analytical to semipreparative column dimension was also successful.

  6. Improved high performance liquid chromatographic separation of anthocyanin compounds from grapes using a novel mixed-mode ion-exchange reversed-phase column.

    PubMed

    McCallum, Jason L; Yang, Raymond; Young, J Christopher; Strommer, Judith N; Tsao, Rong

    2007-04-27

    A novel mixed mode HPLC method using a column combining both ion-exchange and reversed-phase separation mechanisms has been developed to facilitate analysis of anthocyanins in grapes. Chromatographic performance and subsequent analysis of anthocyanidin diglucosides and acylated compounds are significantly improved using the new column, compared to those associated with conventional C18 reversed-phase methods. The mixed mode column produces a distinctive eluting pattern for the different anthocyanin subgroups, avoiding overlaps found with C18 columns. The enhanced chromatographic resolution provides nearly complete separation of 37 anthocyanin types, and permits detection of delphinidin 3-O-(6''-O-caffeoyl) beta-D-glucoside for the first time in extracts of skins from Concord grapes.

  7. A Pd/C-CeO2 Anode Catalyst for High-Performance Platinum-Free Anion Exchange Membrane Fuel Cells.

    PubMed

    Miller, Hamish A; Lavacchi, Alessandro; Vizza, Francesco; Marelli, Marcello; Di Benedetto, Francesco; D'Acapito, Francesco; Paska, Yair; Page, Miles; Dekel, Dario R

    2016-05-10

    One of the biggest obstacles to the dissemination of fuel cells is their cost, a large part of which is due to platinum (Pt) electrocatalysts. Complete removal of Pt is a difficult if not impossible task for proton exchange membrane fuel cells (PEM-FCs). The anion exchange membrane fuel cell (AEM-FC) has long been proposed as a solution as non-Pt metals may be employed. Despite this, few examples of Pt-free AEM-FCs have been demonstrated with modest power output. The main obstacle preventing the realization of a high power density Pt-free AEM-FC is sluggish hydrogen oxidation (HOR) kinetics of the anode catalyst. Here we describe a Pt-free AEM-FC that employs a mixed carbon-CeO2 supported palladium (Pd) anode catalyst that exhibits enhanced kinetics for the HOR. AEM-FC tests run on dry H2 and pure air show peak power densities of more than 500 mW cm(-2) . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The joint effects of personality and workplace social exchange relationships in predicting task performance and citizenship performance.

    PubMed

    Kamdar, Dishan; Van Dyne, Linn

    2007-09-01

    This field study examines the joint effects of social exchange relationships at work (leader-member exchange and team-member exchange) and employee personality (conscientiousness and agreeableness) in predicting task performance and citizenship performance. Consistent with trait activation theory, matched data on 230 employees, their coworkers, and their supervisors demonstrated interactions in which high quality social exchange relationships weakened the positive relationships between personality and performance. Results demonstrate the benefits of consonant predictions in which predictors and outcomes are matched on the basis of specific targets. We discuss theoretical and practical implications.

  9. Design and performance of a new continuous-flow sample-introduction system for flame infrared-emission spectrometry: Applications in process analysis, flow injection analysis, and ion-exchange high-performance liquid chromatography.

    PubMed

    Lam, C K; Zhang, Y; Busch, M A; Busch, K W

    1993-06-01

    A new sample introduction system for the analysis of continuously flowing liquid streams by flame infrared-emission (FIRE) spectrometry has been developed. The system uses a specially designed purge cell to strip dissolved CO(2) from solution into a hydrogen gas stream that serves as the fuel for a hydrogen/air flame. Vibrationally excited CO(2) molecules present in the flame are monitored with a simple infrared filter (4.4 mum) photometer. The new system can be used to introduce analytes as a continuous liquid stream (process analysis mode) or on a discrete basis by sample injection (flow injection analysis mode). The key to the success of the method is the new purge-cell design. The small internal volume of the cell minimizes problems associated with purge-cell clean-out and produces sharp, reproducible signals. Spent analytical solution is continuously drained from the cell, making cell disconnection and cleaning between samples unnecessary. Under the conditions employed in this study, samples could be analyzed at a maximum rate of approximately 60/h. The new sample introduction system was successfully tested in both a process analysis- and a flow injection analysis mode for the determination of total inorganic carbon in Waco tap water. For the first time, flame infrared-emission spectrometry was successfully extended to non-volatile organic compounds by using chemical pretreatment with peroxydisulfate in the presence of silver ion to convert the analytes into dissolved carbon dioxide, prior to purging and detection by the FIRE radiometer. A test of the peroxydisulfate/Ag(+) reaction using six organic acids and five sugars indicated that all 11 compounds were oxidized to nearly the same extent. Finally, the new sample introduction system was used in conjunction with a simple filter FIRE radiometer as a detection system in ion-exchange high-performance liquid chromatography. Ion-exchange chromatograms are shown for two aqueous mixtures, one containing six organic

  10. Heat Transfer in Metal Foam Heat Exchangers at High Temperature

    NASA Astrophysics Data System (ADS)

    Hafeez, Pakeeza

    Heat transfer though open-cell metal foam is experimentally studied for heat exchanger and heat shield applications at high temperatures (˜750°C). Nickel foam sheets with pore densities of 10 and 40 pores per linear inch (PPI), have been used to make the heat exchangers and heat shields by using thermal spray coating to deposit an Inconel skin on a foam core. Heat transfer measurements were performed on a test rig capable of generating hot gas up to 1000°C. The heat exchangers were tested by exposing their outer surface to combustion gases at a temperature of 550°C and 750°C while being cooled by air flowing through them at room temperature at velocities up to 5 m/s. The temperature rise of the air, the surface temperature of the heat exchangers and the air temperature inside the heat exchanger were measured. The volumetric heat transfer coefficient and Nusselt number were calculated for different velocities. The heat transfer performance of the 40PPI sample brazed with the foil is found to be the most efficient. Pressure drop measurements were also performed for 10 and 40PPI metal foam. Thermographic measurements were done on 40PPI foam heat exchangers using a high temperature infrared camera. A high power electric heater was used to produce hot air at 300°C that passed over the foam heat exchanger while the cooling air was blown through it. Heat shields were made by depositing porous skins on metal foam and it was observed that a small amount of coolant leaking through the pores notably reduces the heat transfer from the hot gases. An analytical model was developed based assuming local thermal non-equilibrium that accounts for the temperature difference between solid and fluid phase. The experimental results are found to be in good agreement with the predicted values of the model.

  11. Performance, Performance System, and High Performance System

    ERIC Educational Resources Information Center

    Jang, Hwan Young

    2009-01-01

    This article proposes needed transitions in the field of human performance technology. The following three transitions are discussed: transitioning from training to performance, transitioning from performance to performance system, and transitioning from learning organization to high performance system. A proposed framework that comprises…

  12. EXCHANGE

    SciTech Connect

    Boltz, J.C.

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  13. Anion-exchange synthesis of a nanoporous crystalline CoB2O4 nanowire array for high-performance water oxidation electrocatalysis in borate solution.

    PubMed

    Zhu, Guilei; Yang, Lin; Zhang, Rong; Qu, Fengli; Liu, Zhiang; Du, Gu; Asiri, Abdullah M; Yao, Yadong; Sun, Xuping

    2017-08-31

    Developing nanoporous nanoarray electrocatalysts for efficient water oxidation in environmentally benign media is highly desired but still remains a key challenge. In this communication, we report the fabrication of a nanoporous crystalline CoB2O4 nanowire array on Ti mesh (CoB2O4/TM) from a Co(OH)F nanowire array on Ti mesh (Co(OH)F/TM) via an anion-exchange reaction. As a three dimensional (3D) catalyst electrode for water oxidation, CoB2O4/TM exhibits superior catalytic activity and needs an overpotential of only 446 mV to drive a geometrical catalytic current density of 10 mA cm(-2) in 0.1 M potassium borate (pH = 9.2). Notably, this catalyst also shows strong long-term electrochemical durability with high turnover frequency values of 0.19 and 0.81 mol O2 per s at overpotentials of 400 and 500 mV, respectively.

  14. Feedwater heater performance evaluation using the heat exchanger workstation

    SciTech Connect

    Ranganathan, K.M.; Singh, G.P.; Tsou, J.L.

    1995-12-01

    A Heat Exchanger Workstation (HEW) has been developed to monitor the condition of heat exchanging equipment power plants. HEW enables engineers to analyze thermal performance and failure events for power plant feedwater heaters. The software provides tools for heat balance calculation and performance analysis. It also contains an expert system that enables performance enhancement. The Operation and Maintenance (O&M) reference module on CD-ROM for HEW will be available by the end of 1995. Future developments of HEW would result in Condenser Expert System (CONES) and Balance of Plant Expert System (BOPES). HEW consists of five tightly integrated applications: A Database system for heat exchanger data storage, a Diagrammer system for creating plant heat exchanger schematics and data display, a Performance Analyst system for analyzing and predicting heat exchanger performance, a Performance Advisor expert system for expertise on improving heat exchanger performance and a Water Calculator system for computing properties of steam and water. In this paper an analysis of a feedwater heater which has been off-line is used to demonstrate how HEW can analyze the performance of the feedwater heater train and provide an economic justification for either replacing or repairing the feedwater heater.

  15. Borate-aided anion exchange high-performance liquid chromatography of uridine diphosphate-sugars in brain, heart, adipose and liver tissues.

    PubMed

    Oikari, Sanna; Venäläinen, Tuula; Tammi, Markku

    2014-01-03

    In this paper we describe a method optimized for the purification of uridine diphosphate (UDP)-sugars from liver, adipose tissue, brain, and heart, with highly reproducible up to 85% recoveries. Rapid tissue homogenization in cold ethanol, lipid removal by butanol extraction, and purification with a graphitized carbon column resulted in isolation of picomolar quantities of the UDP-sugars from 10 to 30mg of tissue. The UDP-sugars were baseline separated from each other, and from all major nucleotides using a CarboPac PA1 anion exchange column eluted with a gradient of acetate and borate buffers. The extraction and purification protocol produced samples with few unidentified peaks. UDP-N-acetylglucosamine was a dominant UDP-sugar in all the rat tissues studied. However, brain and adipose tissue showed high UDP-glucose levels, equal to that of UDP-N-acetylglucosamine. The UDP-N-acetylglucosamine showed 2.3-2.7 times higher levels than UDP-N-acetylgalactosamine in all tissues, and about the same ratio was found between UDP-glucose and UDP-galactose in adipose tissue and brain (2.6 and 2.8, respectively). Interestingly, the UDP-glucose/UDP-galactose ratio was markedly lower in liver (1.1) and heart (1.7). The UDP-N-acetylglucosamine/UDP-glucuronic acid ratio was also constant, between 9.7 and 7.7, except in liver with the ratio as low as 1.8. The distinct UDP-glucose/galactose ratio, and the abundance of UDP-glucuronic acid may reflect the specific role of liver in glycogen synthesis, and metabolism of hormones and xenobiotics, respectively, using these UDP-sugars as substrates.

  16. Parametric performance studies on fluidized-bed heat exchangers

    NASA Astrophysics Data System (ADS)

    Stoeffler, R. C.

    1982-01-01

    The performance of single and multistage shallow fluidized beds is investigated for possible application to the recovery of heat from sources such as waste heat, and coal combustion or coal gasification. Tests are conducted to (1) investigate the effects of fouling due to liquid condensate in the gas stream on fluidized bed heat exchanger performance, (2) investigate the performance of fluidized beds which are staged using baffle plates, and (3) investigate the effects of different heat exchanger surface geometries. Work is progressing in selecting the conditions for that portion of the program involving fouling by a liquid condensate, and in modifying the fluidized bed heat exchanger facility for the fouling experiments. Preliminary tests were conducted with water vapor injection. Water vapor and glycerol vapor were chosen as the condensates. The results are summarized as follows: (1) heat exchanger performance is seriously degraded by condensation when the dew point temperature exceeds the heat exchanger wall temperature; and (2) the performance decrease occurs as a result of particle adherence to the heat exchanger surface and not as a result of particle agglomeration.

  17. Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes

    NASA Astrophysics Data System (ADS)

    Lobato, Justo; Cañizares, Pablo; Rodrigo, Manuel A.; Úbeda, Diego; Pinar, F. Javier

    2011-10-01

    The fuel cell performance of a composite PBI-based membrane with TiO2 has been studied. The behaviour of the membrane has been evaluated by comparison with the fuel cell performance of other PBI-based membranes, all of which were cast from the same polymer with the same molecular weight. The PBI composite membrane incorporating TiO2 showed the best performance and reached 1000 mW cm-2 at 175 °C. Moreover, this new titanium composite PBI-based membrane also showed the best stability during the preliminary long-term test under our operation conditions. Thus, the slope of the increase in the ohmic resistance of the composite membrane was 0.041 mΩ cm2 h-1 and this is five times lower than that of the standard PBI membrane. The increased stability was due to the high phosphoric acid retention capacity - as confirmed during leaching tests, in which the Ti-based composite PBI membrane retained 5 mol of H3PO4/PBI r.u. whereas the PBI standard membrane only retained 1 mol H3PO4/PBI r.u. Taking into account the results obtained in this study, the TiO2-PBI based membranes are good candidates as electrolytes for high temperature PEMFCs.

  18. Highly charged swelling mica-type clays for selective Cu exchange.

    PubMed

    Ravella, Ramesh; Komarneni, Sridhar; Martinez, Carmen Enid

    2008-01-01

    There is a need to develop highly CU2+ selective materials which can potentially remediate copper contaminated soils and water. Here we show that several highly charged synthetic swelling mica-type clays are highly selective for copper exchange. The synthetic micas have cation exchange capacities (CECs), which are close to their theoretical values. Both Na-saturated and Mg-saturated micas were investigated for Cu ion exchange selectivity. Ion exchange isotherms and Kielland plots were constructed using the equilibrated solution analyses. From these studies it was found that Na-4-mica and Na-3-mica could selectively exchange copper at lower concentrations from solution, whereas Na-2-mica sample performed better by showing Cu ion exchange selectively to almost its capacity. The EPR spectra of Cu-exchanged micas coincide with the mica's charge characteristics that predict increased binding strength of exchangeable Cu in Na-4-mica and Na-3-mica than in Na-2-mica.

  19. Anion-exchange high-performance liquid chromatography with post-column detection for the analysis of phytic acid and other inositol phosphates.

    PubMed

    Rounds, M A; Nielsen, S S

    1993-10-29

    The use of gradient anion-exchange HPLC, with a simple post-column detection system, is described for the separation of myo-inositol phosphates, including "phytic acid" (myo-inositol hexaphosphate). Hexa-, penta-, tetra-, tri- and diphosphate members of this homologous series are clearly resolved within 30 min. This method should facilitate analysis and quantitation of "phytic acid" and other inositol phosphates in plant, food, and soil samples.

  20. Anion-exchange high-performance liquid chromatography with post-column detection for the analysis of phytic acid and other inositol phosphates

    NASA Technical Reports Server (NTRS)

    Rounds, M. A.; Nielsen, S. S.; Mitchell, C. A. (Principal Investigator)

    1993-01-01

    The use of gradient anion-exchange HPLC, with a simple post-column detection system, is described for the separation of myo-inositol phosphates, including "phytic acid" (myo-inositol hexaphosphate). Hexa-, penta-, tetra-, tri- and diphosphate members of this homologous series are clearly resolved within 30 min. This method should facilitate analysis and quantitation of "phytic acid" and other inositol phosphates in plant, food, and soil samples.

  1. Anion-exchange high-performance liquid chromatography with post-column detection for the analysis of phytic acid and other inositol phosphates

    NASA Technical Reports Server (NTRS)

    Rounds, M. A.; Nielsen, S. S.; Mitchell, C. A. (Principal Investigator)

    1993-01-01

    The use of gradient anion-exchange HPLC, with a simple post-column detection system, is described for the separation of myo-inositol phosphates, including "phytic acid" (myo-inositol hexaphosphate). Hexa-, penta-, tetra-, tri- and diphosphate members of this homologous series are clearly resolved within 30 min. This method should facilitate analysis and quantitation of "phytic acid" and other inositol phosphates in plant, food, and soil samples.

  2. Development of anion-exchange/reversed-phase high performance liquid chromatography-inductively coupled plasma-mass spectrometry methods for the speciation of bio-available iodine and bromine from edible seaweed.

    PubMed

    Romarís-Hortas, Vanessa; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2012-05-04

    Anion exchange high performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry has been novelly applied to assess inorganic (iodide and iodate) and organic (3-iodotyrosine - MIT, and 3,5-diiodotyrosine - DIT) iodine species in a single chromatographic run. The optimized operating conditions (Dionex IonPac AS7, gradient elution with 175 mM ammonium nitrate plus 15% (v/v) methanol, pH 3.8, as a mobile phase and flow rates within the 0.5-1.5 mL min(-1) range) have also been used to perform inorganic bromine speciation analysis (bromide and bromate). The developed method has been applied for determining the bio-available contents of iodine and bromine species in dialyzates from edible seaweed. Reverse phase high performance liquid chromatography (Zorbax Eclipse XDB-C8, gradient elution with 0.2% (m/m) acetic acid, and 0.2% (m/m) acetic acid in methanol, as mobile phases, and a constant flow rate of 0.75 mL min(-1)) also hyphenated with inductively coupled plasma-mass spectrometry was used to confirm the presence of organic iodine species (MIT and DIT) in the dialyzates. The verification of the presence of iodinated amino acids (MIT and DIT) in the extracts was also performed by reverse phase high performance liquid chromatography-electrospray ionization-mass spectrometry (LTQ Orbitrap). The developed methods have provided good repeatability (RSD values lower than 10% for both anion exchange and reverse phase separations) and analytical recoveries within the 90-105% range for all cases. The in vitro bio-availability method consisted of a simulated gastric and an intestinal digestion/dialysis (10 kDa molecular weight cut-off - MWCO) two-stage procedure. Iodide and MIT were the main bio-available species quantified, whereas bromide was the major bromine species found in the extracts.

  3. Aerodynamics of heat exchangers for high-altitude aircraft

    NASA Technical Reports Server (NTRS)

    Drela, Mark

    1996-01-01

    Reduction of convective beat transfer with altitude dictates unusually large beat exchangers for piston- engined high-altitude aircraft The relatively large aircraft drag fraction associated with cooling at high altitudes makes the efficient design of the entire heat exchanger installation an essential part of the aircraft's aerodynamic design. The parameters that directly influence cooling drag are developed in the context of high-altitude flight Candidate wing airfoils that incorporate heat exchangers are examined. Such integrated wing-airfoil/heat-exchanger installations appear to be attractive alternatives to isolated heat.exchanger installations. Examples are drawn from integrated installations on existing or planned high-altitude aircraft.

  4. Optimization of Transient Heat Exchanger Performance for Improved Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Bran Anleu, Gabriela; Kavehpour, Pirouz; Lavine, Adrienne; Wirz, Richard

    2014-11-01

    Heat exchangers are used in a multitude of applications within systems for energy generation, energy conversion, or energy storage. Many of these systems (e.g. solar power plants) function under transient conditions, but the design of the heat exchangers is typically optimized assuming steady state conditions. There is a potential for significant energy savings if the transient behavior of the heat exchanger is taken into account in designing the heat exchanger by optimizing its operating conditions in relation to the transient behavior of the overall system. The physics of the transient behavior of a heat exchanger needs to be understood to provide design parameters for transient heat exchangers to deliver energy savings. A numerical model was used to determine the optimized mass flow rates thermal properties for a thermal energy storage system. The transient behavior is strongly linked to the dimensionless parameters relating fluid properties, the mass flow rates, and the temperature of the fluids at the inlet of each stream. Smart metals, or advanced heat exchanger surface geometries and methods of construction will be used to meet the three goals mentioned before: 1) energy and cost reduction, 2) size reduction, and 3) optimal performance for all modes of operation.

  5. Determination of ephedrine alkaloids and synephrine in dietary supplements by column-switching cation exchange high-performance liquid chromatography with scanning-wavelength ultraviolet and fluorescence detection.

    PubMed

    Niemann, Richard A; Gay, Martha L

    2003-09-10

    An HPLC method with on-line cleanup coupled to the separation column is described for determination of (-)-norephedrine, (+)-norpseudoephedrine, (-)-ephedrine, (+)-pseudoephedrine, (-)-N-methylephedrine, (+)-N-methylpseudoephedrine, and (+/-)-synephrine in finished dietary supplement products. Test portions were extracted in acidified aqueous acetone. A filtered aliquot was cleaned up on a strong cation exchange (SCX) precolumn that later was automatically coupled to the SCX analytical column. Measurement was by full-scan UV spectra for confirmation of identity by spectral matching and real-time integration of three wavelength signals for multiple quantitation. (+/-)-Synephrine was also quantitated by native fluorescence. Recovery averaged 95-100%. Determination of the major ingredients (-)-ephedrine, (+)-pseudoephedrine, and (+/-)-synephrine compared favorably to findings by an independent LC-MS analysis for a set of 25 samples. The results of a survey were reported for total ephedrine alkaloid and synephrine content and were compared to content declaration, for approximately 48 finished products.

  6. Analysis of BNP7787 thiol-disulfide exchange reactions in phosphate buffer and human plasma using microscale electrochemical high performance liquid chromatography.

    PubMed

    Shanmugarajah, Dakshine; Ding, Daoyuan; Huang, Quili; Chen, Xinghai; Kochat, Harry; Petluru, Pavankumar N; Ayala, Philippe Y; Parker, Aulma R; Hausheer, Frederick H

    2009-04-01

    BNP7787 (disodium 2,2'-dithio-bis ethane sulfonate; Tavocept) is a novel water-soluble investigational agent that is undergoing clinical development for prevention and mitigation of cisplatin-induced nephrotoxicity. BNP7787 is a disulfide that undergoes thiol-disulfide exchange reactions in vivo with physiological thiols. Mesna-disulfide heteroconjugates that form as a result of these exchange reactions may play a key role in the protection against cisplatin-induced nephrotoxicity. Although several analytical methods have been used to detect thiols and disulfides, they have notable limitations including (i) low sensitivity, (ii) interference by chemical modification by derivatization reagents, and (iii) cumbersome sample preparation. In this paper, a sensitive micro-HPLC-EC method is described that identifies BNP7787 and mesna in plasma and phosphate buffer across a broad concentration range from 500nM to 100microM. This method utilizes a dual electrochemical detector equipped with a wall-jet gold electrode. The approach described here facilitates the identification of BNP7787 and mesna down to nanomolar levels. Although we did not focus on optimizing the approach for other thiol and disulfide compounds, we believe this approach could be optimized and used in the identification of other thiols and disulfides in plasma. The assay requires significantly less sample preparation and does not involve the use of derivatizing agents (i.e., the thiol and disulfide species can be detected directly) and represents an important advance over previous methods. This method was used to detect and quantitate BNP7787 and to monitor and kinetically characterize the interactions of BNP7787 with glutathione, cysteine, cysteinyl-glycine, cysteinyl-glutamate and homocysteine.

  7. Interference of hemoglobinA1c (HbA1c) detection using ion-exchange high performance liquid chromatography (HPLC) method by clinically silent hemoglobin variant in University Malaya Medical Centre (UMMC)--a case report.

    PubMed

    Thevarajah, M; Nadzimah, M N; Chew, Y Y

    2009-03-01

    Glycated hemoglobin, measured as HbA1c is used as an index of mean glycemia in diabetic patients over the preceding 2-3 months. Various assay methods are used to measure HbA1c and many factors may interfere with its measurement according to assay method used, causing falsely high or low results. To report a case of diabetic patient with clinically silent hemoglobin variant, causing undetectable HbA1c concentration using ion-exchange high performance liquid chromatography (HPLC) method. Our patient is a 65-year-old female with type 2 diabetes mellitus on diet control, hypertension and hypercholesterolemia. Her fasting blood glucose concentrations ranged from 6.2 to 7.8 mmol/L. Her HbA1c concentrations measured with immunoturbidimetry method (Cobas Integra, Roche Diagnostics) ranged from 6.11 to 7.23%, but were undetectable when measured with ion-exchange HPLC [Arkray HA8160, Diabetes Mode (also known as Menarini HA8160)]. Hemoglobin analysis identified the presence of a hemoglobin variant--Hemoglobin D Punjab. Clinical laboratories should be aware of limitations of the HbA1c assay method used, such as potential interference with hemoglobin variant as depicted by our case. Alternative methods for monitoring glycemic control in these patients should be considered.

  8. 2011 PERFORMANCE ASSESSMENT COMMUNITY OF PRACTICE TECHNICAL EXCHANGE - SUMMARY

    SciTech Connect

    Seitz, R.

    2011-12-30

    The Performance Assessment Community of Practice (PA CoP) was developed in 2008 to improve consistency and quality in the preparation of performance assessments (PAs) and risk assessments across the Department of Energy (DOE) Complex. The term, PA, is used to represent all of these modeling applications in this report. The PA CoP goals are to foster the exchange of information among PA practitioners and to share lessons learned from PAs conducted for DOE, commercial disposal facilities, and international entities. Technical exchanges and workshops are a cornerstone of PA CoP activities. Previous technical exchanges have addressed Engineered Barriers (2009 - http://www.cresp.org/education/workshops/pacop/), the Advanced Simulation Capability for Environmental Management and the Cementitious Barriers Partnership (2010 - http://srnl.doe.gov/copexchange/links.htm). Each technical exchange also includes summary presentations regarding activities at DOE, the Nuclear Regulatory Commission (NRC) and other organizations (e.g., International Atomic Energy Agency (IAEA)) as well as a number of presentations from selected sites to provide insight and perspective from on-going modeling activities. Through the deployment of PA Assistance Teams, the PA CoP has also been engaged in the development of new PAs across the DOE Complex. As a way of improving consistency in the preparation of new PAs, the teams provide technical advice and share experiences, noteworthy practices, and lessons learned from previous Low-Level Waste Disposal Facility Federal Review Group (LFRG) reviews. Teams have provided support for PAs at Hanford, Idaho, Paducah and Portsmouth. The third annual PA CoP Technical Exchange was held on May 25-26, 2011 in Atlanta, GA. The PA CoP Steering Committee Meeting held its first meeting on May 24 prior to the Technical Exchange. Decision making using models and software quality assurance were the topical emphasis for the exchange. A new feature at the 2011 technical

  9. High performance polymer development

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1991-01-01

    The term high performance as applied to polymers is generally associated with polymers that operate at high temperatures. High performance is used to describe polymers that perform at temperatures of 177 C or higher. In addition to temperature, other factors obviously influence the performance of polymers such as thermal cycling, stress level, and environmental effects. Some recent developments at NASA Langley in polyimides, poly(arylene ethers), and acetylenic terminated materials are discussed. The high performance/high temperature polymers discussed are representative of the type of work underway at NASA Langley Research Center. Further improvement in these materials as well as the development of new polymers will provide technology to help meet NASA future needs in high performance/high temperature applications. In addition, because of the combination of properties offered by many of these polymers, they should find use in many other applications.

  10. Production of high-performance and improved-durability Pt-catalyst /support for proton-exchange-membrane fuel cells with pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Huang, Ting-Wei; Qayyum, Hamza; Lin, Guan-Ren; Chen, Szu-yuan; Tseng, Chung-Jen

    2016-06-01

    Pulsed laser deposition in Ar atmosphere is used to deposit Pt nanoparticles onto gas diffusion layer, and its application to proton-exchange-membrane fuel cell is optimized and characterized. When used at anode side, with a Pt loading of 17 μg cm-2 the fuel-cell current density at 0.6 V reaches 1.08 A cm-2, which is close to that of a cell with the anode made by conventional slurry process using E-TEK Pt /C of 200 μg cm-2 Pt loading. The usage of Pt is decreased by 12 fold. Such a low usage of Pt prepared by pulsed laser deposition can be ascribed to the prevention of forming isolated regions that occurs with Pt /C slurry, good dispersion of Pt particles on support, and small particle sizes of 2-3 nm. Furthermore, using accelerated degradation test, it is found that the pulsed laser deposition sample retains 60% of its initial electrochemical surface area after 5000 potential cycles, much higher than that with E-TEK Pt /C, which retains only 7% of its initial electrochemical surface area. The higher electrochemical durability can be attributed to the higher degree of graphitization in the gas diffusion layer used as compared with the carbon black in E-TEK Pt /C, which leads to stronger binding of the Pt nanoparticles onto the carbon support and stronger corrosion resistance of the carbon support.

  11. New reversed phase-high performance liquid chromatographic method for selective separation of yttrium from all rare earth elements employing nitrilotriacetate complexes in anion exchange mode.

    PubMed

    Dybczyński, Rajmund S; Kulisa, Krzysztof; Pyszynska, Marta; Bojanowska-Czajka, Anna

    2015-03-20

    Separation of Y from other rare earth elements (REE) is difficult because of similarity of its ionic radius to ionic radii of Tb, Dy and Ho. In the new RP-HPLC system with C18 column, tetra-n-butyl ammonium hydroxide (TBAOH) as an ion interaction reagent (IIR), nitrilotriacetic acid (NTA) as a complexing agent at pH=2.8-3.5, and post column derivatization with Arsenazo III, yttrium is eluted in the region of light REE, between Nd and Sm and is base line separated from Nd and Sm and even from promethium. Simple model employing literature data on complex formation of REE with NTA and based on anion exchange mechanism was developed to foresee the order of elution of individual REE. The model correctly predicted that lanthanides up to Tb will be eluted in the order of increasing Atomic Number (At.No.) but all heavier REE will show smaller retention factors than Tb. Concurrent UV/VIS detection at 658nm and the use of radioactive tracers together with γ-ray spectrometric measurements made possible to establish an unique elution order of elution of REE: La, Ce, Pr, Nd, Pm, Y, Sm, Er, Ho, Tm, Yb, Eu, Lu, Dy+Gd, Tb, Sc. The real place of Y however, in this elution series differs from that predicted by the model (Y between Sm and Eu). The method described in this work enables selective separation of Y from La, Ce, Pr, Nd, Pm, Sm and all heavier REE treated as a group.

  12. Study on finned pipe performance as a ground heat exchanger

    NASA Astrophysics Data System (ADS)

    Lin, Qinglong; Ma, Jinghui; Shi, Lei

    2017-08-01

    The GHEs (ground heat exchangers) is an important element that determines the thermal efficiency of the entire ground-source heat-pump system. The aim of the present study is to clarify thermal performance of a new type GHE pipe, which consists straight fins of uniform cross sectional area. In this paper, GHE model is introduced and an analytical model of new type GHE pipe is developed. The heat exchange rate of BHEs utilizing finned pips is 40.42 W/m, which is 16.3% higher than normal BHEs, based on simulation analyses.

  13. Trace enrichment and characterization of polyphenols in Bistort Rhizoma using weak anion-exchange solid phase extraction and high performance liquid chromatography-quadrupole time-of-flight mass spectrometry.

    PubMed

    Wang, Shao-Teng; Yang, Hua; Gao, Wen; Li, Hui-Jun; Li, Ping

    2016-02-05

    The analysis of trace constituents in herbal medicines has always been a challenge due to complex matrices and structural diversities. In this work, a pH-sensitive solid phase extraction (SPE) procedure capable of enriching trace polyphenols in Bistort Rhizoma (BR) was proposed and preliminary chemical characterization was accomplished by high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-QTOF MS). A weak anion-exchange SPE column packed with divinylbenzene/vinylpyrrolidone bonding quaternary amine group was employed for anionic extraction, and the target fraction was obtained by eluting with acidic methanol (apparent pH 1.9). On the other hand, the MS/MS fragmentation rules of four reference polyphenols in negative ion mode were outlined. Using these rules, a total of 31 polyphenols including 20 benzoyl derivatives and 11 caffeoyl derivatives were screened out from BR extract, of which 26 trace members were found for the first time in this herb. Those findings demonstrated that the anion-exchange SPE could enhance the detection capability and selectivity for plant polyphenols in the LC-MS analysis and the strategy for deducing structures could be applied for analysis of polyphenols in BR and other herbal medicines.

  14. Investigation of a variety of cationic surfactants attached to cation-exchange silica for hydrophobicity optimization in admicellar solid-phase extraction for high-performance liquid and gas chromatography.

    PubMed

    Zhao, Qing; Simmons, Justin; Conte, Eric D

    2006-11-03

    A series of cationic surfactants were attached to cation-exchange silica that included silica modified with sulfopropyl groups and unmodified silica to create hydrophobic solid-phase extraction sorbents. Various chain lengths and chain numbers of amine, ammonium and pyridinium-based cationic surfactants were investigated to reach sufficient sorbent hydrophobicity to capture US Environmental Protection Agency (EPA) priority polycyclic aromatic hydrocarbons (PAHs). Of the tested surfactant/silica combinations, dihexadecyldimethylammonium cations attached to unmodified silica resulted in the sorbent having the greatest hydrophobicity. This sorbent provided strong hydrophobic attraction of PAHs and also efficient elution because the PAHs were removed together with the surfactant using a very mild 5% acetic acid in methanol rinse solution. This admicellar solid-phase extraction procedure was applied for the determination of these PAHs for both high-performance liquid and gas chromatography. The detection limits of these PAHs were below the EPA's maximum contaminant level of 0.2 microg/L.

  15. Field performance of GCL under ion exchange conditions

    SciTech Connect

    James, A.N.; Fullerton, D.; Drake, R.

    1997-10-01

    Five Victorian reservoirs of brick pillar and arch construction were renovated using geosynthetic clay liners (also called bentonite/geosynthetic composites) (GCL) as roof sealing materials. The GCL was predominantly sodium bentonite and contained some 2% of calcite. GCLs were laid on leveled, original puddled clay packed between and above the brick arches. There was an overlying gravel layer connected to a drainage system that, in turn, was covered with soil and seeded with grass. Leaks through roofs into stored potable water were discovered. Excavation and exposure of the GCL showed that they were finely cracked in many places. Samples of the GCL bentonite from several locations at each of five sites had a high moisture content. Also, the GCL had a much reduced exchangeable sodium and increased exchangeable calcium content when compared to the dry unused GCL. Laboratory experiments, lasting for a limited period, were carried out to simulate operating conditions of the GCL whereby water falling on the ground and reaching the GCL flowed across the GCL in the overlying gravel layer to collector drains. Similar but less extensive ion exchange, calcium for sodium, was found here also. The evidence demonstrates that calcium from calcite, contained in the GCL bentonite, exchanged with sodium and, in so doing, contributed to shrinkage and cracking. Supplementary sources of calcium for ion exchange probably came from overlying calcareous soil and water from firehoses used to field test the integrity of the GCL.

  16. ION EXCHANGE PERFORMANCE OF TITANOSILICATES, GERMANATES AND CARBON NANOTUBES

    SciTech Connect

    Alsobrook, A. N.; Hobbs, D. T.

    2013-04-24

    This report presents a summary of testing the affinity of titanosilicates (TSP), germanium-substituted titanosilicates (Ge-TSP) and multiwall carbon nanotubes (MWCNT) for lanthanide ions in dilute nitric acid solution. The K-TSP ion exchanger exhibited the highest affinity for lanthanides in dilute nitric acid solutions. The Ge-TSP ion exchanger shows promise as a material with high affinity, but additional tests are needed to confirm the preliminary results. The MWCNT exhibited much lower affinities than the K-TSP in dilute nitric acid solutions. However, the MWCNT are much more chemically stable to concentrated nitric acid solutions and, therefore, may candidates for ion exchange in more concentrated nitric acid solutions. This technical report serves as the deliverable documenting completion of the FY13 research milestone, M4FT-13SR0303061 – measure actinide and lanthanide distribution values in nitric acid solutions with sodium and potassium titanosilicate materials.

  17. Speciation analysis of calcium, iron, and zinc in casein phosphopeptide fractions from toddler milk-based formula by anion exchange and reversed-phase high-performance liquid chromatography-mass spectrometry/flame atomic-absorption spectroscopy.

    PubMed

    Miquel, Esther; Alegría, Amparo; Barberá, Reyes; Farré, Rosaura

    2005-03-01

    Casein phosphopeptides (CPP) are phosphorylated casein-derived peptides that can be released by in-vitro or in-vivo enzymatic hydrolysis of alpha(s1)-casein, alpha(s2)-casein, and beta-casein (CN). Many of these peptides contain a highly polar acidic sequence of three phosphoseryl groups followed by two glutamic acid residues. These domains are binding sites for minerals such as calcium, iron, and zinc and play an important role in mineral bioavailability. The aim of this study was speciation analysis of calcium, iron, and zinc in CPP fractions from the soluble fraction of a toddler milk-based formula. Methods for CPP separation by anion-exchange high-performance liquid chromatography (AE-HPLC) were combined with CPP identification by reversed-phase high performance liquid chromatography-electrospray ionization mass spectrometry and determination of the calcium, iron, zinc, and phosphorus content of the fractions obtained by AE-HPLC. Calcium and phosphorus were detected in all the analyzed AE-HPLC fractions. Calcium and zinc could be bound to CPP derived from alpha(s1)-CN and alpha(s2)-CN in fraction 3. Iron could be bound to CPP in fraction 4 in which beta-CN(15-34)4P was present with the cluster sequence S(P)S(P)S(P)EE. The results obtained prove the different distribution of calcium, iron, and zinc in heterogeneous CPP fractions.

  18. High effectiveness contour matching contact heat exchanger

    NASA Technical Reports Server (NTRS)

    Blakely, Robert L. (Inventor); Roebelen, George J., Jr. (Inventor); Davenport, Arthur K. (Inventor)

    1988-01-01

    There is a need in the art for a heat exchanger design having a flexible core providing contour matching capabilities, which compensates for manufacturing tolerance and distortion buildups, and which accordingly furnishes a relatively uniform thermal contact conductance between the core and external heat sources under essentially all operating conditions. The core of the heat exchanger comprises a top plate and a bottom plate, each having alternate rows of pins attached. Each of the pins fits into corresponding tight-fitting recesses in the opposite plate.

  19. High performance systems

    SciTech Connect

    Vigil, M.B.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  20. High-Differential-Pressure Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Hylin, Edward C.

    1987-01-01

    Heat exchanger accommodates large pressure difference between heat-transfer fluids. Designed so all welded joints inspected with x rays to ensure leak-free operation over many years. Joints between fluids and between each fluid and environment radiographically inspectable. Used in Stirling-cycle engines, including those in proposed nuclear and solar powerplants.

  1. Heat exchanger with transpired, highly porous fins

    DOEpatents

    Kutscher, Charles F.; Gawlik, Keith

    2002-01-01

    The heat exchanger includes a fin and tube assembly with increased heat transfer surface area positioned within a hollow chamber of a housing to provide effective heat transfer between a gas flowing within the hollow chamber and a fluid flowing in the fin and tube assembly. A fan is included to force a gas, such as air, to flow through the hollow chamber and through the fin and tube assembly. The fin and tube assembly comprises fluid conduits to direct the fluid through the heat exchanger, to prevent mixing with the gas, and to provide a heat transfer surface or pathway between the fluid and the gas. A heat transfer element is provided in the fin and tube assembly to provide extended heat transfer surfaces for the fluid conduits. The heat transfer element is corrugated to form fins between alternating ridges and grooves that define flow channels for directing the gas flow. The fins are fabricated from a thin, heat conductive material containing numerous orifices or pores for transpiring the gas out of the flow channel. The grooves are closed or only partially open so that all or substantially all of the gas is transpired through the fins so that heat is exchanged on the front and back surfaces of the fins and also within the interior of the orifices, thereby significantly increasing the available the heat transfer surface of the heat exchanger. The transpired fins also increase heat transfer effectiveness of the heat exchanger by increasing the heat transfer coefficient by disrupting boundary layer development on the fins and by establishing other beneficial gas flow patterns, all at desirable pressure drops.

  2. Determination of water-extractable nonstructural carbohydrates, including inulin, in grass samples with high-performance anion exchange chromatography and pulsed amperometric detection.

    PubMed

    Raessler, Michael; Wissuwa, Bianka; Breul, Alexander; Unger, Wolfgang; Grimm, Torsten

    2008-09-10

    The exact and reliable determination of carbohydrates in plant samples of different origin is of great importance with respect to plant physiology. Additionally, the identification and quantification of carbohydrates are necessary for the evaluation of the impact of these compounds on the biogeochemistry of carbon. To attain this goal, it is necessary to analyze a great number of samples with both high sensitivity and selectivity within a limited time frame. This paper presents a rugged and easy method that allows the isocratic chromatographic determination of 12 carbohydrates and sugar alcohols from one sample within 30 min. The method was successfully applied to a variety of plant materials with particular emphasis on perennial ryegrass samples of the species Lolium perenne. The method was easily extended to the analysis of the polysaccharide inulin after its acidic hydrolysis into the corresponding monomers without the need for substantial change of chromatographic conditions or even the use of enzymes. It therefore offers a fundamental advantage for the analysis of the complex mixture of nonstructural carbohydrates often found in plant samples.

  3. Thermal performance of a geofluid direct-contact heat exchanger

    SciTech Connect

    Wiggins, D.J.; Mines, G.L.; Wahl, E.

    1983-01-01

    A sieve-tray direct-contact heat exchanger was used to transfer heat from a 280/sup 0/F geothermal fluid to the working fluid, isobutane, in the Raft River 60kW prototype plant. A series of experiments were run at different working fluid-to-geofluid flow ratios which produced different boiling conditions. In this paper, the results of these experiments are analyzed on the basis of thermal performance. The flow ratio, the geofluid outlet temperature, the working fluid inlet temperature, the amount of working fluid dissolved or entrained in geofluid, and tray efficiency are varied and preheating temperature profiles are calculated. These are compared with the experimentally obtained temperature profiles and the relative effects of the variables are evaluated. From this, it was determined that the approach temperature difference was on the order of .1/sup 0/ after 17 preheating trays, and the tray efficiencies, which appear to be about the same for all trays, reached approx. 70%. It was also determined that entrainment has a negligible effect on column thermal performance. The thermal performance of this column compares favorably with a spray-tower direct-contact heat exchanger and a shell-and-tube heat exchanger in terms of overall heat-transfer coefficient. Distributor tray and boiling tray behavior are discussed. These is some discussion of operations and thermal hydraulics as well.

  4. High Performance Polymers

    NASA Technical Reports Server (NTRS)

    Venumbaka, Sreenivasulu R.; Cassidy, Patrick E.

    2003-01-01

    This report summarizes results from research on high performance polymers. The research areas proposed in this report include: 1) Effort to improve the synthesis and to understand and replicate the dielectric behavior of 6HC17-PEK; 2) Continue preparation and evaluation of flexible, low dielectric silicon- and fluorine- containing polymers with improved toughness; and 3) Synthesis and characterization of high performance polymers containing the spirodilactam moiety.

  5. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    NASA Astrophysics Data System (ADS)

    Andrzejczyk, Rafał; Muszyński, Tomasz

    2016-12-01

    The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  6. Samarium Ion Exchanged Montmorillonite for High Temperature Cumene Cracking Reaction

    NASA Astrophysics Data System (ADS)

    Binitha, N. N.; Silija, P. P.; Suraj, V.; Yaakob, Z.; Sugunan, S.

    2011-02-01

    Montmorillonite clay is cation exchanged with samarium and its catalytic influence in cumene cracking reaction is investigated. Effect of exchange with sodium ions on further exchange with samarium ions is also noted. Acidity measurements are done using Temperature Programmed Desorption (TPD) of ammonia. The retention of basic structure is proved from FTIR spectra and XRD patterns. Elemental analysis result shows that samarium exchange has occurred, which is responsible for the higher catalytic activity. Surface area and pore volume remains more or less unaffected upon exchange. Thermogravimetric analysis indicates the enhanced thermal stability on exchanging. Cumene cracking reaction is carried out at atmospheric pressure in a fixed bed glass reactor at 673 K. The predominance of Brønsted acidity is confirmed from high selectivity to benzene.

  7. Fabrication of High-Temperature Heat Exchangers by Plasma Spraying Exterior Skins on Nickel Foams

    NASA Astrophysics Data System (ADS)

    Hafeez, P.; Yugeswaran, S.; Chandra, S.; Mostaghimi, J.; Coyle, T. W.

    2016-06-01

    Thermal-sprayed heat exchangers were tested at high temperatures (750 °C), and their performances were compared to the foam heat exchangers made by brazing Inconel sheets to their surface. Nickel foil was brazed to the exterior surface of 10-mm-thick layers of 10 and 40 PPI nickel foam. A plasma torch was used to spray an Inconel coating on the surface of the foil. A burner test rig was built to produce hot combustion gases that flowed over exposed face of the heat exchanger. Cooling air flowed through the foam heat exchanger at rates of up to 200 SLPM. Surface temperature and air inlet/exit temperature were measured. Heat transfer to air flowing through the foam was significantly higher for the thermally sprayed heat exchangers than for the brazed heat exchangers. On an average, thermally sprayed heat exchangers show 36% higher heat transfer than conventionally brazed foam heat exchangers. At low flow rates, the convective resistance is large (~4 × 10-2 m2 K/W), and the effect of thermal contact resistance is negligible. At higher flow rates, the convective resistance decreases (~2 × 10-3 m2 K/W), and the lower contact resistance of the thermally sprayed heat exchanger provides better performance than the brazed heat exchangers.

  8. Performance of a Thermoelectric Device with Integrated Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Barry, Matthew M.; Agbim, Kenechi A.; Chyu, Minking K.

    2015-06-01

    Thermoelectric devices (TEDs) convert heat directly into electrical energy, making them well suited for waste heat recovery applications. An integrated thermoelectric device (iTED) is a restructured TED that allows more heat to enter the p-n junctions, thus producing a greater power output . An iTED has heat exchangers incorporated into the hot-side interconnectors with flow channels directing the working fluid through the heat exchangers. The iTED was constructed of p- and n-type bismuth-telluride semiconductors and copper interconnectors and rectangular heat exchangers. The performance of the iTED in terms of , produced voltage and current , heat input and conversion efficiency for various flow rates (), inlet temperatures (C) ) and load resistances () with a constant cold-side temperature ( = 0C) was conducted experimentally. An increase in had a greater effect on the performance than did an increase in . A 3-fold increase in resulted in a 3.2-, 3.1-, 9.7-, 3.5- and 2.8-fold increase in and respectively. For a constant of 50C, a 3-fold increase in from 3300 to 9920 resulted in 1.6-, 1.6-, 2.6-, 1.5- and 1.9-fold increases in , , , and respectively.

  9. A Novel Methodology to Synthesize Highly Conductive Anion Exchange Membranes

    NASA Astrophysics Data System (ADS)

    He, Yubin; Pan, Jiefeng; Wu, Liang; Zhu, Yuan; Ge, Xiaolin; Ran, Jin; Yang, Zhengjin; Xu, Tongwen

    2015-08-01

    Alkaline polyelectrolyte fuel cell now receives growing attention as a promising candidate to serve as the next generation energy-generating device by enabling the use of non-precious metal catalysts (silver, cobalt, nickel et al.). However, the development and application of alkaline polyelectrolyte fuel cell is still blocked by the poor hydroxide conductivity of anion exchange membranes. In order to solve this problem, we demonstrate a methodology for the preparation of highly OH- conductive anion exchange polyelectrolytes with good alkaline tolerance and excellent dimensional stability. Polymer backbones were grafted with flexible aliphatic chains containing two or three quaternized ammonium groups. The highly flexible and hydrophilic multi-functionalized side chains prefer to aggregate together to facilitate the formation of well-defined hydrophilic-hydrophobic microphase separation, which is crucial for the superior OH- conductivity of 69 mS/cm at room temperature. Besides, the as-prepared AEMs also exhibit excellent alkaline tolerance as well as improved dimensional stability due to their carefully designed polymer architecture, which provide new directions to pursue high performance AEMs and are promising to serve as a candidate for fuel cell technology.

  10. Effect of nebulizer/spray chamber interfaces on simultaneous, axial view inductively coupled plasma optical emission spectrometry for the direct determination of As and Se species separated by ion exchange high-performance liquid chromatography

    NASA Astrophysics Data System (ADS)

    Gettar, Raquel T.; Smichowski, Patricia; Garavaglia, Ricardo N.; Farías, Silvia; Batistoni, Daniel A.

    2005-06-01

    Different nebulizer/expansion chamber combinations were evaluated to assess their performance for sample introduction in the direct coupling with an axial view inductively coupled plasma multielement spectrometer for on-line determination of As and Se species previously separated by ion exchange-high performance liquid chromatography. The column effluents were injected into the plasma without prior derivatization. The instrument operation software was adapted for data acquisition and processing to allow multi-wavelength recording of the transient chromatographic peaks. After optimization of the chromatographic operating conditions, separation of mixtures of inorganic As and Se species, and of inorganic and two organic As species (monomethylarsonic and dimethylarsinic acids), was achieved with excellent resolution. Species discrimination from mixtures of As and Se oxyanions was further improved by the simultaneous element detection at specific analytical wavelengths. Three nebulizers and three spray chambers, employed in seven combinations, were tested as interfaces. Concentric nebulizers associated to a glass cyclonic chamber appear most suitable regarding sensitivity and signal to noise ratio. Measured element detection limits (3 σ) were around 10 ng ml - 1 for all the species considered, making the method a viable alternative to similar procedures that employ volatile hydride generation previous to sample injection into the plasma. Analytical recoveries both for inorganic and organic species ranged between 92 and 107%. The method was demonstrated to be apt for the analysis of surface waters potentially subjected to natural contamination with arsenic.

  11. Separation of oligo/polymers of 5-N-acetylneuraminic acid, 5-N-glycolylneuraminic acid, and 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid by high-performance anion-exchange chromatography with pulsed amperometric detector.

    PubMed

    Zhang, Y; Inoue, Y; Inoue, S; Lee, Y C

    1997-08-01

    A sensitive and efficient method to analyze oligo/ poly-sialic acids containing alpha2-8-linked 5-N-acetylneuraminic acid (Neu5Ac), 5-N-glycolylneuraminic acid (Neu5Gc), and deaminated neuraminic acid (KDN) using high-performance anion-exchange chromatography (HPAEC) with a pulsed amperometric detector (PAD-2) has been developed. Using a CarboPac PA-100 column and sodium nitrate as the pushing agent, polymers in colominic acid with degree of polymerization (DP) up to 80 were separated in 68 min. A similar DP-based resolution was also obtained on a CarboPac PA-1 column. The elution ladders of the Neu5Ac, Neu5Gc, and KDN series were sufficiently different to be used as diagnostic indices. This technique was applied to identification of the sialic acid components in a polysialoglycoprotein (PSGP) sample as well as monitoring the oligo/poly-KDN-containing fractions during the purification of KDN-containing glycoprotein (KDN-gp). The maximum DPs of oligo-Neu5Gc and oligo-KDN that can be detected in PSGP and KDN-gp hydrolysates were 11 and 8, respectively. The high sensitivity of this method was demonstrated by the quantification of Neu5Ac oligomers. Distributions of the monomer and oligo/polymers in the acid and enzymatic hydrolysates of colominic acid and PSGP under different conditions were also studied.

  12. Fast speciation of mercury in seawater by short-column high-performance liquid chromatography hyphenated to inductively coupled plasma spectrometry after on-line cation exchange column preconcentration.

    PubMed

    Jia, Xiao-Yu; Gong, Di-Rong; Han, Yi; Wei, Chao; Duan, Tai-Cheng; Chen, Hang-Ting

    2012-01-15

    A simple and fast method for trace speciation analysis of mercury (Hg(2+)), methylmercury (MeHg(+)) and ethylmercury (EtHg(+)) in seawater has been developed by short-column high-performance liquid chromatography hyphenated to inductively coupled plasma spectrometry (HPLC-ICP-MS) after on-line cation-exchange column (CEC) preconcentration. The analytes were firstly adsorbed on the CEC without any extraneous reagent, and then were eluted rapidly (within seconds) and completely with a very low concentration of l-cysteine solution, which provides the conveniency for the on-line coupling of the preconcentration method and detection technique. To our best knowledge, it is for the first time to employ the CEC preconcentration technique to trap all of the three mercury species simultaneously at their positive charged status for the purpose of speciation analysis. Under the optimized conditions, a very high preconcentration factor up to 1250 has been obtained with 30mL sample solution, which leads to the very low detection limits of 0.042ngL(-1) for Hg(2+), 0.016ngL(-1) for MeHg(+) and 0.008ngL(-1) for EtHg(+) (as Hg), respectively. With the established method, three seawater samples were also analyzed, and all the three mercury species have been found in each sample, albeit at a very low concentration. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  13. Analysis performance of proton exchange membrane fuel cell (PEMFC)

    NASA Astrophysics Data System (ADS)

    Mubin, A. N. A.; Bahrom, M. H.; Azri, M.; Ibrahim, Z.; Rahim, N. A.; Raihan, S. R. S.

    2017-06-01

    Recently, the proton exchange membrane fuel cell (PEMFC) has gained much attention to the technology of renewable energy due to its mechanically ideal and zero emission power source. PEMFC performance reflects from the surroundings such as temperature and pressure. This paper presents an analysis of the performance of the PEMFC by developing the mathematical thermodynamic modelling using Matlab/Simulink. Apart from that, the differential equation of the thermodynamic model of the PEMFC is used to explain the contribution of heat to the performance of the output voltage of the PEMFC. On the other hand, the partial pressure equation of the hydrogen is included in the PEMFC mathematical modeling to study the PEMFC voltage behaviour related to the input variable input hydrogen pressure. The efficiency of the model is 33.8% which calculated by applying the energy conversion device equations on the thermal efficiency. PEMFC’s voltage output performance is increased by increasing the hydrogen input pressure and temperature.

  14. Serial mixed-mode cation- and anion-exchange solid-phase extraction for separation of basic, neutral and acidic pharmaceuticals in wastewater and analysis by high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry.

    PubMed

    Lavén, Martin; Alsberg, Tomas; Yu, Yong; Adolfsson-Erici, Margaretha; Sun, Hongwen

    2009-01-02

    A novel solid-phase extraction (SPE) method is presented whereby 15 basic, neutral and acidic pharmaceuticals in wastewater were simultaneously extracted and subsequently separated into different fractions. This was achieved using mixed-mode cation- and anion-exchange SPE (Oasis MCX and MAX) in series. Analysis was performed by high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC/QTOF-MS). A fast separation was achieved, with all compounds eluting within 6min, narrow chromatographic peaks, with a peak base width of 6s on average, and a high mass accuracy of quantified wastewater sample ions, with average mass errors in absolute value of 0.7mDa or 2.7ppm. The recovery of the SPE method in the analysis of sewage treatment plant (STP) influent and effluent wastewater was on average 80% and the ion suppression 30%. For less demanding samples Oasis MCX used alone may be an alternative method, although for STP influent waters containing high loads of organic compounds the clean-up achieved using only Oasis MCX was insufficient, leading to unreliable quantitation. Furthermore, serial SPE separation according to molecular charge added an additional degree of analyte confirmation. For quantitation, an approach combining external standard calibration curves, isotopically labelled surrogate standards and single-point standard addition was used. The applicability of the method was demonstrated in the analysis of influent and effluent wastewater from an STP, using small sample volumes (25-50mL). The effluent wastewater had been subjected to three different treatments; activated sludge, activated sludge followed by ozonation, and a membrane bioreactor (MBR). Ozone treatment proved superior in removal of the analysed pharmaceuticals, while the MBR provided higher removal efficiencies than the activated sludge process.

  15. Performance analysis of a medical record exchanges model.

    PubMed

    Huang, Ean-Wen; Liou, Der-Ming

    2007-03-01

    Electronic medical record exchange among hospitals can provide more information for physician diagnosis and reduce costs from duplicate examinations. In this paper, we proposed and implemented a medical record exchange model. According to our study, exchange interface servers (EISs) are designed for hospitals to manage the information communication through the intra and interhospital networks linked with a medical records database. An index service center can be given responsibility for managing the EIS and publishing the addresses and public keys. The prototype system has been implemented to generate, parse, and transfer the health level seven query messages. Moreover, the system can encrypt and decrypt a message using the public-key encryption algorithm. The queuing theory is applied to evaluate the performance of our proposed model. We estimated the service time for each queue of the CPU, database, and network, and measured the response time and possible bottlenecks of the model. The capacity of the model is estimated to process the medical records of about 4000 patients/h in the 1-MB network backbone environments, which comprises about the 4% of the total outpatients in Taiwan.

  16. High performance polymeric foams

    SciTech Connect

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-08-28

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy.

  17. High-Performance Happy

    ERIC Educational Resources Information Center

    O'Hanlon, Charlene

    2007-01-01

    Traditionally, the high-performance computing (HPC) systems used to conduct research at universities have amounted to silos of technology scattered across the campus and falling under the purview of the researchers themselves. This article reports that a growing number of universities are now taking over the management of those systems and…

  18. High-Performance Happy

    ERIC Educational Resources Information Center

    O'Hanlon, Charlene

    2007-01-01

    Traditionally, the high-performance computing (HPC) systems used to conduct research at universities have amounted to silos of technology scattered across the campus and falling under the purview of the researchers themselves. This article reports that a growing number of universities are now taking over the management of those systems and…

  19. High performance parallel architectures

    SciTech Connect

    Anderson, R.E. )

    1989-09-01

    In this paper the author describes current high performance parallel computer architectures. A taxonomy is presented to show computer architecture from the user programmer's point-of-view. The effects of the taxonomy upon the programming model are described. Some current architectures are described with respect to the taxonomy. Finally, some predictions about future systems are presented. 5 refs., 1 fig.

  20. Improvement in performance of heat exchanger fitted with twisted tape

    SciTech Connect

    Sivashanmugam, P.; Sundaram, S.

    1999-04-01

    The improvement in performance of a double pipe heat exchanger fitted with twisted tape as a turbulence promoter with twist ratios of 15.649, 8.54, 5.882, 4.95, and 4.149 was experimentally studied. A maximum percentage gain of 44.7% in energy transfer rate was obtained for the twisted tape of twist ratio 4.149. For all twist ratios, the gain decreases with the Reynolds number and becomes constant for Reynolds numbers greater than 3,000. The smaller the twist ratio is, the larger the gain in energy for a specific Reynolds number.

  1. High-temperature self-circulating thermoacoustic heat exchanger

    NASA Astrophysics Data System (ADS)

    Backhaus, S.; Swift, G. W.; Reid, R. S.

    2005-07-01

    Thermoacoustic and Stirling engines and refrigerators use heat exchangers to transfer heat between the oscillating flow of their thermodynamic working fluids and external heat sources and sinks. An acoustically driven heat-exchange loop uses an engine's own pressure oscillations to steadily circulate its own thermodynamic working fluid through a physically remote high-temperature heat source without using moving parts, allowing for a significant reduction in the cost and complexity of thermoacoustic and Stirling heat exchangers. The simplicity and flexibility of such heat-exchanger loops will allow thermoacoustic and Stirling machines to access diverse heat sources and sinks. Measurements of the temperatures at the interface between such a heat-exchange loop and the hot end of a thermoacoustic-Stirling engine are presented. When the steady flow is too small to flush out the mixing chamber in one acoustic cycle, the heat transfer to the regenerator is excellent, with important implications for practical use.

  2. High Performance, Dependable Multiprocessor

    NASA Technical Reports Server (NTRS)

    Ramos, Jeremy; Samson, John R.; Troxel, Ian; Subramaniyan, Rajagopal; Jacobs, Adam; Greco, James; Cieslewski, Grzegorz; Curreri, John; Fischer, Michael; Grobelny, Eric; George, Alan; Aggarwal, Vikas; Patel, Minesh; Some, Raphael

    2006-01-01

    With the ever increasing demand for higher bandwidth and processing capacity of today's space exploration, space science, and defense missions, the ability to efficiently apply commercial-off-the-shelf (COTS) processors for on-board computing is now a critical need. In response to this need, NASA's New Millennium Program office has commissioned the development of Dependable Multiprocessor (DM) technology for use in payload and robotic missions. The Dependable Multiprocessor technology is a COTS-based, power efficient, high performance, highly dependable, fault tolerant cluster computer. To date, Honeywell has successfully demonstrated a TRL4 prototype of the Dependable Multiprocessor [I], and is now working on the development of a TRLS prototype. For the present effort Honeywell has teamed up with the University of Florida's High-performance Computing and Simulation (HCS) Lab, and together the team has demonstrated major elements of the Dependable Multiprocessor TRLS system.

  3. Interorganizational exchanges as performance markers in a community cancer network.

    PubMed Central

    McKinney, M M; Morrissey, J P; Kaluzny, A D

    1993-01-01

    OBJECTIVE. This study examines how "strategic partnerships" between community-based consortia of oncologists and hospitals (CCOPs) and clinical cooperative groups emerge, develop, and influence patient accruals (i.e., the number of patients enrolled in clinical trials) over time. DATA SOURCES AND STUDY SETTING. Study analyses are based on 65 pairwise relationships that 38 CCOPs established with eight clinical cooperative groups in September 1983 and maintained through February 1989. Data are drawn from grantee applications and progress reports. STUDY DESIGN. The study examines how different types of CCOP-cooperative group exchange relate to one another and to CCOP patient accruals over six time points. Key independent variables include resource dependence, information exchange (i.e., meeting attendance and committee membership), and protocol exchange (i.e., the number of different protocols used). DATA COLLECTION METHODS. Data extracted from secondary sources were entered in a data base. PRINCIPAL FINDINGS. The number of CCOP physicians and support staff who attend cooperative group meetings during the first two years of a clinical research partnership has a significant influence on meeting attendance and protocol use in later years. Two-thirds or more of the variance in patient accruals at each time point can be explained by the number of different protocols used and the number of CCOP representatives serving on cooperative group committees (or attending cooperative group meetings). CONCLUSIONS. The findings highlight the importance of historical relationships and anticipated resource dependence in shaping initial exchange patterns. They also suggest that strategic partnerships need to emphasize structures and processes that encourage early involvement in collaborative activities and that reward participants for maintaining high levels of interaction. PMID:8407338

  4. Molecularly imprinted solid-phase extraction and high-performance liquid chromatography with ultraviolet detection for the determination of urinary trans,trans-muconic acid: a comparison with ionic exchange extraction.

    PubMed

    Vieira, André Coutinho; Zampieri, Rodolfo Aurélio; de Siqueira, Maria Elisa Pereira Bastos; Martins, Isarita; Figueiredo, Eduardo Costa

    2012-05-21

    A new molecularly imprinted polymer (MIP) has been synthesized for the selective extraction of trans,trans-muconic acid (ttMA) from urine samples, followed by high-performance liquid chromatography analysis with ultraviolet detection. The synthesis was based on non-covalent interactions, and 4-vinylpyridine was used as a functional monomer. The analytical calibration curve was prepared using a pool of five urine samples of non-smokers spiked with ttMA standards with concentrations that ranged from 0.3 to 10 mg L(-1) (r(2) = 0.999). The limit of quantification was 0.3 mg L(-1) (lower than the biological exposure limits suggested by the ACGIH). The within-day and between-day precision and accuracy presented relative standard deviations and relative errors of less than 15%. The analytical frequency was 4 h(-1) (considering extraction and separation/quantification steps), and the same MIP cartridge was efficiently used for approximately 100 cycles. All figures of merit were similar or better than those obtained by the procedure based on ionic exchange extraction. The proposed method could be an interesting alternative for the routine analysis of ttMA in urine for biological monitoring procedures of human exposure to benzene.

  5. Separation and quantification of inulin in selected artichoke (Cynara scolymus L.) cultivars and dandelion (Taraxacum officinale WEB. ex WIGG.) roots by high-performance anion exchange chromatography with pulsed amperometric detection.

    PubMed

    Schütz, Katrin; Muks, Erna; Carle, Reinhold; Schieber, Andreas

    2006-12-01

    The profile of fructooligosaccharides and fructopolysaccharides in artichoke heads and dandelion roots was investigated. For this purpose, a suitable method for high-performance anion exchange chromatography with pulsed amperometic detection was developed. The separation of monomers, oligomers and polymers up to a chain length of 79 sugar residues was achieved in one single run. Glucose, fructose, sucrose and individual fructooligosaccharides (kestose, nystose, fructofuranosylnystose) were quantified in six different artichoke cultivars and in dandelion roots. The contents ranged from 12.9 g/kg DM to 71.7 g/kg DM for glucose, from 15.8 g/kg DM to 67.2 g/kg DM for fructose, and from 16.8 g/kg DM to 55.2 g/kg DM for sucrose in the artichoke heads. Kestose was the predominant fructooligosaccharide, followed by nystose and fructofuranosylnystose. In four cultivars fructofuranosylnystose was only detectable in traces and reached its maximum value of 3.6 g/kg DM in the cultivar Le Castel. Furthermore, an average degree of polymerization of 5.3 to 16.7 was calculated for the individual artichoke cultivars, which is noticeably lower than hitherto reported. In contrast, the contents of kestose, nystose and fructofuranosylnystose in dandelion root exceeded that of artichoke, reflecting the short chain characteristic of the inulin, which was confirmed by chromatographic analysis.

  6. A new method for separation and determination of Cr(III) and Cr(VI) in water samples by high-performance liquid chromatography based on anion exchange stationary phase of ionic liquid modified silica.

    PubMed

    Sadeghi, Susan; Moghaddam, Ali Zeraatkar

    2015-12-01

    In this work, N-methylimidazolium-chloride ionic liquid functionalized silica was prepared and used as an anion-exchange stationary phase for separation of chromium species by high-performance liquid chromatography (HPLC) with UV detection at 200 nm. The Cr(VI) as HCr2O7(-) and chelated Cr(III) with potassium hydrogen phthalate (PHP) as Cr(PHP)2 (-) was retained on the prepared column and separated using a mobile phase composed of 5% methanol in 25 mM phosphate buffer at pH 6.5. Several variables affecting the chelation/separation steps were modeled by response surface methodology (RSM) using Box-Behnken (BBD) design. The significance of the independent variables and their interactions were tested by the analysis of variances (ANOVA) with 95% confidence limit. Under the optimized conditions, the Cr(III) and Cr(VI) anionic species were well separated with a single peak for each Cr species at retention times of 2.3 and 4.3 min, respectively. The relationship between the peak area and concentration was linear in the range of 0.025-30 for Cr(III) and 0.5-20 mg L(-1) for Cr(VI) with detection limits of 0.010 and 0.210 mg L(-1) for Cr(III) and Cr(VI), respectively. The proposed method was validated by simultaneous separation and determination of the Cr species in tap and underground water samples without impose to any pretreatment.

  7. Development and application of a sensitive high performance ion-exchange chromatography method for the simultaneous measurement of dopamine, 5-hydroxytryptamine and norepinephrine in microdialysates from the rat brain.

    PubMed

    Heidbreder, C A; Lacroix, L; Atkins, A R; Organ, A J; Murray, S; West, A; Shah, A J

    2001-12-15

    A high performance liquid chromatography (HPLC) method based on cation exchange separation has been developed for the measurement of dopamine (DA), 5-hydroxytryptamine (5-HT) and norepinephrine (NE) in microdialysates. The separation conditions have been optimised for using electrochemical detection. All three bioamines were resolved in less than 22 min using isocratic conditions. The optimum oxidation potential for the three bioamines was found to be +0.4 V vs. in situ Ag/AgCl reference electrode. Linear regression analysis of HPLC-peak area as a function of concentrations in the range 1-50 ng x ml(-1) gave coefficients of correlation between 0.998 and 0.999. The limit of detection for DA, 5-HT and NE was found to be between 50 and 100 pg x ml(-1) with a signal to noise ratio of 3:1. The method has been applied to the simultaneous measurement of the three monoamines in microdialysates from the medial prefrontal cortex under basal conditions and following the administration of the antipsychotic drug clozapine (10 mg x kg(-1) s.c.).

  8. Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor

    SciTech Connect

    Piyush Sabharwall; Ali Siahpush; Michael McKellar; Michael Patterson; Eung Soo Kim

    2012-06-01

    The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangers—helical coiled heat exchanger and printed circuit heat exchanger—as possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants, each exchanger transfers 1,700 MW(t) with a parallel configuration; and (3) Three heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants. Each heat exchanger transfers 1,130 MW(t) with a parallel configuration. A preliminary cost comparison will be provided for all different cases along with challenges and recommendations.

  9. High performance steam development

    SciTech Connect

    Duffy, T.; Schneider, P.

    1995-12-31

    DOE has launched a program to make a step change in power plant to 1500 F steam, since the highest possible performance gains can be achieved in a 1500 F steam system when using a topping turbine in a back pressure steam turbine for cogeneration. A 500-hour proof-of-concept steam generator test module was designed, fabricated, and successfully tested. It has four once-through steam generator circuits. The complete HPSS (high performance steam system) was tested above 1500 F and 1500 psig for over 102 hours at full power.

  10. Application of high-performance anion-exchange chromatography-pulsed amperometric detection for measuring carbohydrates in routine daily filter samples collected by a national network: 2. Examination of sugar alcohols/polyols, sugars, and anhydrosugars in the upper Midwest

    NASA Astrophysics Data System (ADS)

    Sullivan, A. P.; Frank, N.; Kenski, D. M.; Collett, J. L., Jr.

    2011-04-01

    Carbohydrate measurements of ambient samples can provide insights into the biogenic fraction of the organic carbon (OC) aerosol. However, lack of measurement on a routine basis limits data analysis. In a companion paper, 1 year of archived 1-in-6 day FRM (Federal Reference Monitor) filter samples from the PM2.5 NAAQS compliance monitoring network collected at 10 sites in the upper Midwest were analyzed using high-performance anion-exchange chromatography with pulsed amperometric detection to determine the regional impact of biomass burning. Along with levoglucosan, 13 other carbohydrates were simultaneously measured, including two more anhydrosugars (mannosan and galactosan), five sugars (arabinose, galactose, glucose, mannose, xylose), and six sugar alcohols/polyols (glycerol, methyltetrols, threitol/erythritol, xylitol, sorbitol, mannitol). This paper focuses on the results from these carbohydrates in order to investigate their sources and trends both spatially and temporally. Mannosan, galactosan, arabinose, xylose, and threitol/erythritol all correlated with levoglucosan (R2 from 0.43 to 0.97), suggesting biomass burning as their main source. Glucose and mannitol exhibited higher concentrations in summer and at more southern sites, likely due to vegetation differences at the sites. Using mannitol, the contribution of spores to OC was found to be <1%. Methyltetrols were highly correlated with water-soluble OC (R2 from 0.63 to 0.95) and in higher concentrations at more eastern sites. This spatial pattern is possibly due to these sites being downwind of the high isoprene emission zones that occur in the western part of the Midwest from oak forests in the Ozarks and spruce forests in the northern lake states.

  11. Airside performances of finned eight-tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Li, Junming

    2016-11-01

    For applications in the relatively low temperature refrigeration systems with large constant temperature bath, the present work performed the experimental studies on the airside performances of the staggered finned eight-tube heat exchangers with large fin pitches. The airside heat transfer coefficients and pressure drops for three fin types and two fin pitches are obtained and analyzed. The heat transfer enhancement with louver fins is 11-16 % higher than the flat fins and that with sinusoidal corrugated fins is 1.1-3.4 % higher than the flat fins. Higher Re brings larger enhancement for various fins. Fin pitches show weak influence on heat transfer for eight tube rows. However, effects of fin pitch on heat transfer for both the sinusoidal corrugation and the louvered fin are larger than the flat fins and they are different from those for N ≤ 6. Airside Colburn j factor are compared with previous and it could be concluded that the airside j factor is almost constant for finned tube heat exchangers with eight tubes and large fin pitches, when Re is from 250 to 2500. The results are different from previous studies for fewer tube rows.

  12. Elongating axial conduction path design to enhance performance of cryogeinc compact pche (printed circuit heat exchanger)

    NASA Astrophysics Data System (ADS)

    Baek, Seungwhan; Kim, Jinhyuck; Hwang, Gyuwan; Jeong, Sangkwon

    2012-06-01

    PCHE (Printed Circuit Heat Exchanger) is one of the promising cryogenic compact heat exchangers due to its compactness, high NTU and robustness. The essential procedure for fabricating PCHE is chemical etching and diffusion bonding. These technologies can create sufficiently large heat transfer area for a heat exchanger with numerous micro channels (Dh<1 mm). However, PCHE shows disadvantages of high pressure drop and large axial conduction loss. Axial conduction is a critical design issue of a cryogenic heat exchanger when it is operated with a large temperature difference. Elongating the heat conduction path is implemented to reduce axial conduction in PCHE in this study. Two PCHEs with identical channel configuration are fabricated, for comparison, one of which is modified to have longer heat conduction path. Both heat exchangers are tested in cryogenic environment (300~70 K), and the modified PCHE shows better performance with significantly reduced axial conduction. The experimental results indicate that the modification of the heat conduction path is effective to increase the performance of PCHE. This paper discusses and analyses the thermal characteristics of the modified PCHE obtained experimentally.

  13. High Performance FORTRAN

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush

    1994-01-01

    High performance FORTRAN is a set of extensions for FORTRAN 90 designed to allow specification of data parallel algorithms. The programmer annotates the program with distribution directives to specify the desired layout of data. The underlying programming model provides a global name space and a single thread of control. Explicitly parallel constructs allow the expression of fairly controlled forms of parallelism in particular data parallelism. Thus the code is specified in a high level portable manner with no explicit tasking or communication statements. The goal is to allow architecture specific compilers to generate efficient code for a wide variety of architectures including SIMD, MIMD shared and distributed memory machines.

  14. High Performance Window Retrofit

    SciTech Connect

    Shrestha, Som S; Hun, Diana E; Desjarlais, Andre Omer

    2013-12-01

    The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2 F h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

  15. Investigations on the performance of chevron type plate heat exchangers

    NASA Astrophysics Data System (ADS)

    Dutta, Oruganti Yaga; Nageswara Rao, B.

    2017-07-01

    This paper presents empirical relations for the chevron type plate heat exchangers (PHEs) and demonstrated their validity through comparison of test data of PHEs. In order to examine the performance of PHEs, the pressure drop(ΔP), the overall heat transfer coefficient (U m ) and the effectiveness (ɛ) are estimated by considering the properties of plate material and working fluid, number of plates (N t ) and chevron angle(β). It is a known fact that, large surface area of the plate provides more rate of heat transfer ( \\dot{Q} ) thereby more effectiveness (ɛ). However, there is a possibility to achieve the required performance by increasing the number of plates without altering the plate dimensions, which avoids the new design of the system. Application of the Taguchi's design of experiments is examined with less number of experiments and demonstrated by setting the levels for the parameters and compared the test data with the estimated output responses.

  16. Performance of plate type heat exchanger as ammonia condenser

    NASA Astrophysics Data System (ADS)

    Rivera, Andrew

    In this study, I experimentally analyzed the performance of a commercial semi-welded plate type heat exchanger (PHE) for use with ammonia systems. I determined performance parameters such as overall heat transfer coefficient, capacity, and pressure drop of the semi-welded PHE. This was analyzed by varying different parameters which demonstrated changes in overall heat transfer coefficient, capacity, and pressure drop. Both water and ammonia flow rates to the semi-welded PHE were varied independently, and analyzed in order to understand how changes in flow rates affected performance. Inlet water temperature was also varied, in order to understand how raising condenser water inlet temperature would affect performance. Finally, pressure drop was monitored to better understand the performance limitations of the semi-welded PHE. Testing of the semi-welded will give insight as to the performance of the semi-welded PHE in a potential ocean thermal energy conversion system, and whether the semi-welded PHE is a viable choice for use as an ammonia condenser.

  17. Application of transient analysis methodology to quantify thermal performance of heat exchangers

    SciTech Connect

    Rampall, I.; Singh, K.P.; Soler, A.I.; Scott, B.H.

    1997-10-01

    A transient testing technique is developed to evaluate the thermal performance of industrial-scale heat exchangers. A Galerkin-based numerical method with a choice of spectral basis elements to account for spatial temperature variations in heat exchangers is developed to solve the transient heat exchanger model equations. Testing a heat exchanger in the transient state may be the only viable alternative where conventional steady-state testing procedures are impossible or infeasible. For example, this methodology is particularly suited to the determination of apparent fouling levels in component cooling water system heat exchangers in nuclear power plants. The heat load on these so-called component coolers under steady-state conditions is too small to permit meaningful testing. An adequate heat load develops immediately after a reactor shutdown when the exchanger inlet temperatures are highly time-dependent. The application of the analysis methodology is illustrated with reference to an in-situ transient testing carried out at a nuclear power plant. The method, however, is applicable to any transient testing application.

  18. Intraocular lens exchange for high myopia in pseudophakic children.

    PubMed

    Kraus, C L; Trivedi, R H; Wilson, M E

    2016-09-01

    PurposeThe purpose of this study was to examine the preoperative factors and postoperative outcomes following intraocular lens (IOL) exchange for high myopia in pseudophakic children.MethodsThe medical records of all patients undergoing IOL exchange for high myopia were retrospectively reviewed.ResultsA total of 15 eyes were identified that had undergone an IOL exchange for myopic shift. Average age of cataract extraction (CE) was 5.4 months. In all, 10/15 had a unilateral cataract. IOL exchange usually occurred at an average of 6 years following cataract surgery. The average spherical equivalent (SE) of the refractive error at that time was -9.6 D. Following IOL exchange, SE was -1.3 D. A two-line reduction in best-corrected visual acuity was observed in 1/13 of our patients for whom pre- and post-exchange data were available. The average axial length (AL) of the eye undergoing the IOL exchange was 24.0 mm, average AL in the non-operative eye was 22.1 mm. On average, the operative eyes grew 4.4 mm and the non-operative eyes 3.02 mm. No adverse events were seen in the operative eyes.ConclusionYounger age at the time of CE creates a greater likelihood of AL elongation and predisposes a child to myopic shift. IOL exchange should be considered an option to reduce anisometropia and associated aniseikonia to improve visual outcomes. Successful visual rehabilitation and predictable post-exchange refractions were seen with our patients.

  19. High Performance Buildings Database

    DOE Data Explorer

    The High Performance Buildings Database is a shared resource for the building industry, a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses. The database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site.

  20. Spatial proton exchange membrane fuel cell performance under bromomethane poisoning

    NASA Astrophysics Data System (ADS)

    Reshetenko, Tatyana V.; Artyushkova, Kateryna; St-Pierre, Jean

    2017-02-01

    The poisoning effects of 5 ppm CH3Br in the air on the spatial performance of a proton exchange membrane fuel cell (PEMFC) were studied using a segmented cell system. The presence of CH3Br caused performance loss from 0.650 to 0.335 V at 1 A cm-2 accompanied by local current density redistribution. The observed behavior was explained by possible bromomethane hydrolysis with the formation of Br-. Bromide and bromomethane negatively affected the oxygen reduction efficiency over a wide range of potentials because of their adsorption on Pt, which was confirmed by XPS. Moreover, the PEMFC exposure to CH3Br led to a decrease in the anode and cathode electrochemical surface area (∼52-57%) due to the growth of Pt particles through agglomeration and Ostwald ripening. The PEMFC did not restore its performance after stopping bromomethane introduction to the air stream. However, the H2/N2 purge of the anode/cathode and CV scans almost completely recovered the cell performance. The observed final loss of ∼50 mV was due to an increased activation overpotential. PEMFC exposure to CH3Br should be limited to concentrations much less than 5 ppm due to serious performance loss and lack of self-recovery.

  1. High power density proton exchange membrane fuel cells

    NASA Technical Reports Server (NTRS)

    Murphy, Oliver J.; Hitchens, G. Duncan; Manko, David J.

    1993-01-01

    Proton exchange membrane (PEM) fuel cells use a perfluorosulfonic acid solid polymer film as an electrolyte which simplifies water and electrolyte management. Their thin electrolyte layers give efficient systems of low weight, and their materials of construction show extremely long laboratory lifetimes. Their high reliability and their suitability for use in a microgravity environment makes them particularly attractive as a substitute for batteries in satellites utilizing high-power, high energy-density electrochemical energy storage systems. In this investigation, the Dow experimental PEM (XUS-13204.10) and unsupported high platinum loading electrodes yielded very high power densities, of the order of 2.5 W cm(exp -2). A platinum black loading of 5 mg per cm(exp 2) was found to be optimum. On extending the three-dimensional reaction zone of fuel cell electrodes by impregnating solid polymer electrolyte into the electrode structures, Nafion was found to give better performance than the Dow experimental PEM. The depth of penetration of the solid polymer electrolyte into electrode structures was 50-70 percent of the thickness of the platinum-catalyzed active layer. However, the degree of platinum utilization was only 16.6 percent and the roughness factor of a typical electrode was 274.

  2. Exchange inlet optimization by genetic algorithm for improved RBCC performance

    NASA Astrophysics Data System (ADS)

    Chorkawy, G.; Etele, J.

    2017-09-01

    A genetic algorithm based on real parameter representation using a variable selection pressure and variable probability of mutation is used to optimize an annular air breathing rocket inlet called the Exchange Inlet. A rapid and accurate design method which provides estimates for air breathing, mixing, and isentropic flow performance is used as the engine of the optimization routine. Comparison to detailed numerical simulations show that the design method yields desired exit Mach numbers to within approximately 1% over 75% of the annular exit area and predicts entrained air massflows to between 1% and 9% of numerically simulated values depending on the flight condition. Optimum designs are shown to be obtained within approximately 8000 fitness function evaluations in a search space on the order of 106. The method is also shown to be able to identify beneficial values for particular alleles when they exist while showing the ability to handle cases where physical and aphysical designs co-exist at particular values of a subset of alleles within a gene. For an air breathing engine based on a hydrogen fuelled rocket an exchange inlet is designed which yields a predicted air entrainment ratio within 95% of the theoretical maximum.

  3. High Performance Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Talcott, Stephen

    High performance liquid chromatography (HPLC) has many applications in food chemistry. Food components that have been analyzed with HPLC include organic acids, vitamins, amino acids, sugars, nitrosamines, certain pesticides, metabolites, fatty acids, aflatoxins, pigments, and certain food additives. Unlike gas chromatography, it is not necessary for the compound being analyzed to be volatile. It is necessary, however, for the compounds to have some solubility in the mobile phase. It is important that the solubilized samples for injection be free from all particulate matter, so centrifugation and filtration are common procedures. Also, solid-phase extraction is used commonly in sample preparation to remove interfering compounds from the sample matrix prior to HPLC analysis.

  4. High Performance Parallel Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek; Kaewpijit, Sinthop

    1998-01-01

    Traditional remote sensing instruments are multispectral, where observations are collected at a few different spectral bands. Recently, many hyperspectral instruments, that can collect observations at hundreds of bands, have been operational. Furthermore, there have been ongoing research efforts on ultraspectral instruments that can produce observations at thousands of spectral bands. While these remote sensing technology developments hold great promise for new findings in the area of Earth and space science, they present many challenges. These include the need for faster processing of such increased data volumes, and methods for data reduction. Dimension Reduction is a spectral transformation, aimed at concentrating the vital information and discarding redundant data. One such transformation, which is widely used in remote sensing, is the Principal Components Analysis (PCA). This report summarizes our progress on the development of a parallel PCA and its implementation on two Beowulf cluster configuration; one with fast Ethernet switch and the other with a Myrinet interconnection. Details of the implementation and performance results, for typical sets of multispectral and hyperspectral NASA remote sensing data, are presented and analyzed based on the algorithm requirements and the underlying machine configuration. It will be shown that the PCA application is quite challenging and hard to scale on Ethernet-based clusters. However, the measurements also show that a high- performance interconnection network, such as Myrinet, better matches the high communication demand of PCA and can lead to a more efficient PCA execution.

  5. High Performance Parallel Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek; Kaewpijit, Sinthop

    1998-01-01

    Traditional remote sensing instruments are multispectral, where observations are collected at a few different spectral bands. Recently, many hyperspectral instruments, that can collect observations at hundreds of bands, have been operational. Furthermore, there have been ongoing research efforts on ultraspectral instruments that can produce observations at thousands of spectral bands. While these remote sensing technology developments hold great promise for new findings in the area of Earth and space science, they present many challenges. These include the need for faster processing of such increased data volumes, and methods for data reduction. Dimension Reduction is a spectral transformation, aimed at concentrating the vital information and discarding redundant data. One such transformation, which is widely used in remote sensing, is the Principal Components Analysis (PCA). This report summarizes our progress on the development of a parallel PCA and its implementation on two Beowulf cluster configuration; one with fast Ethernet switch and the other with a Myrinet interconnection. Details of the implementation and performance results, for typical sets of multispectral and hyperspectral NASA remote sensing data, are presented and analyzed based on the algorithm requirements and the underlying machine configuration. It will be shown that the PCA application is quite challenging and hard to scale on Ethernet-based clusters. However, the measurements also show that a high- performance interconnection network, such as Myrinet, better matches the high communication demand of PCA and can lead to a more efficient PCA execution.

  6. High-performance anion-exchange chromatography coupled with pulsed amperometric detection and capillary zone electrophoresis with indirect ultra violet detection as powerful tools to evaluate prebiotic properties of fructooligosaccharides and inulin.

    PubMed

    Corradini, C; Bianchi, F; Matteuzzi, D; Amoretti, A; Rossi, M; Zanoni, S

    2004-10-29

    Fructooligosaccharides (FOS) and inulin are food grade non-digestible carbohydrates that exert beneficial nutritional effect. This paper describes the suitability of high-performance anion-exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD) and capillary zone electrophoresis (CZE) to evaluate fermentation properties of FOS and inulin in pure Bifidobacterium cultures; and to study their effects on faecal cultures (microbial population and short-chain fatty acids). Prebiotic effectiveness of FOS and inulin of different degrees of polymerization was evaluated monitoring the changes in their molecular weight distribution during the in vitro growth of selected Bifidobacterium strains. The qualitative analysis of the residual soluble oligosaccharides or polysaccharides from Raftilose Synergy, Raftiline HP and Raftilose P95 was carried out by HPAEC-PAD, using a CarboPac PA 100 column and an appositely optimized gradient elution program. Under the optimized gradient elution conditions, glucose, fructose, sucrose were resolved from each other and from fructans with a DP ranging from 3 (1-kestose) to 60. The chromatographic profiles of the spent broths pointed out that almost every strain presented a different capability to ferment fructan chains of variable DP, indicating wide strain to strain differences. To explore the prebiotic effect of FOS and inulin, related to of short chain fatty acids (SCFAs) accumulation in faecal cultures due to fermentative metabolism of intestinal microflora, analysis of SCFAs, acetic and lactic acid was achieved by co-electroosmotic capillary electrophoresis, where the electrophoretic mobility of the anionic analytes and electroosmotic flow (EOF) were similarly directed. Moreover, the use of UV detection for the analyses of our organic anions required a running electrolyte which allowed indirect detection. The optimization of the capillary electrophoretic conditions was carried out by applying a chemometric study

  7. High Performance Work Practices and Firm Performance.

    ERIC Educational Resources Information Center

    Department of Labor, Washington, DC. Office of the American Workplace.

    A literature survey established that a substantial amount of research has been conducted on the relationship between productivity and the following specific high performance work practices: employee involvement in decision making, compensation linked to firm or worker performance, and training. According to these studies, high performance work…

  8. High temperature polymers for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Einsla, Brian Russel

    Novel proton exchange membranes (PEMs) were investigated that show potential for operating at higher temperatures in both direct methanol (DMFC) and H 2/air PEM fuel cells. The need for thermally stable polymers immediately suggests the possibility of heterocyclic polymers bearing appropriate ion conducting sites. Accordingly, monomers and random disulfonated poly(arylene ether) copolymers containing either naphthalimide, benzoxazole or benzimidazole moieties were synthesized via direct copolymerization. The ion exchange capacity (IEC) was varied by simply changing the ratio of disulfonated monomer to nonsulfonated monomer in the copolymerization step. Water uptake and proton conductivity of cast membranes increased with IEC. The water uptake of these heterocyclic copolymers was lower than that of comparable disulfonated poly(arylene ether) systems, which is a desirable improvement for PEMs. Membrane electrode assemblies were prepared and the initial fuel cell performance of the disulfonated polyimide and polybenzoxazole (PBO) copolymers was very promising at 80°C compared to the state-of-the-art PEM (NafionRTM); nevertheless these membranes became brittle under operating conditions. Several series of poly(arylene ether)s based on disodium-3,3'-disulfonate-4,4 '-dichlorodiphenylsulfone (S-DCDPS) and a benzimidazole-containing bisphenol were synthesized and afforded copolymers with enhanced stability. Selected properties of these membranes were compared to separately prepared miscible blends of disulfonated poly(arylene ether sulfone) copolymers and polybenzimidazole (PBI). Complexation of the sulfonic acid groups with the PBI structure reduced water swelling and proton conductivity. The enhanced proton conductivity of NafionRTM membranes has been proposed to be due to the aggregation of the highly acidic side-chain sulfonic acid sites to form ion channels. A series of side-chain sulfonated poly(arylene ether sulfone) copolymers based on methoxyhydroquinone was

  9. High performance sapphire windows

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.; Liou, Larry

    1993-01-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  10. Charge Exchange with Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Glick, Jeremy; Ferri, Kevin; Schmitt, Jaclyn; Hanson, Joshua; Marler, Joan

    2016-05-01

    A detailed study of the physics of highly charged ions (HCIs) is critical for a deep understanding of observed phenomena resulting from interactions of HCIs with neutral atoms in astrophysical and fusion environments. Specifically the charge transfer rates and spectroscopy of the subsequent decay fluorescence are of great interest to these communities. Results from a laboratory based investigation of these rates will be presented. The experiment takes advantage of an energy and charge state selected beam of HCIs from the recently on-line Clemson University EBIT (CUEBIT). Progress towards an experimental apparatus for retrapping HCIs towards precision spectroscopy of HCIs will also be presented.

  11. Analysis of free and total myo-inositol in foods, feeds, and infant formula by high-performance anion exchange chromatography with pulsed amperometric detection, including a novel total extraction using microwave-assisted acid hydrolysis and enzymatic treatment.

    PubMed

    Ellingson, David; Pritchard, Ted; Foy, Pamela; King, Kathryn; Mitchell, Barbara; Austad, John; Winters, Doug; Sullivan, Darryl

    2012-01-01

    A method for the analysis of free and total myo-inositol in foods, feeds, and infant formulas has been developed and validated using high-performance anion exchange chromatography with pulsed amperometric detection. The option of a free myo-inositol determination or a complete total myo-inositol determination from main bound sources can be achieved. These sources include phytates, lower'phosphorylated forms, and phosphatidylinositol. This approach gives the option for subtraction of myo-inositol from nonbioavailable sources when it is quantified using other methods if a total bioavailable myo-inositol result is desired for nutritional labeling of a product. The free analysis was validated in a milk-based infant formula, giving RSD(R) of 2.29% and RSD, of 2.06%. A mean recovery of 97.9% was achieved from various spike levels of myo-inositol. Certified National Institute of Standards and Technology reference material verified the method's compatibility and specificity. Two different total analyses were validated in a soy-based infant formula and compared. One technique involved using a conventional acid hydrolysis with autoclave incubation for 6 h, while the other used a novel technique of microwave-assisted acid hydrolysis with enzymatic treatment that can minimize extraction to 1 day. The autoclave analysis had RSD(R) of 2.08% and RSDr of 1.55%, along with a mean spike recovery of 102.1% at various myo-inositol spike levels. The microwave/enzyme total analysis had RSD(R) of 4.34% and RSD, of 4.70%, along with a mean spike recovery of 104.2% at various spike levels of myo-inositol. Main sources of myo-inositol including phytic acid and phosphatidylinositol were tested with both total analyses. Mean recoveries of phytic acid and phosphatidylinositol through the autoclave total analysis were 90.4 and 98.3%, respectively. Mean spike recoveries for these same sources in soy- based infant formula through the microwave/enzyme total analysis were 97.2 and 96

  12. High performing micromachined retroreflector

    NASA Astrophysics Data System (ADS)

    Lundvall, Axel; Nikolajeff, Fredrik; Lindstrom, Tomas

    2003-10-01

    This paper reports on the realization of a type of micromachined retroreflecting sheeting material. The geometry presented has high reflection efficiency even at large incident angles, and it can be manufactured through polymer replication techniques. The paper consists of two parts: A theoretical section outlining the design parameters and their impact on the optical performance, and secondly, an experimental part comprising both manufacturing and optical evaluation for a candidate retroreflecting sheet material in traffic control devices. Experimental data show that the retroreflecting properties are promising. The retroreflector consists of a front layer of densely packed spherical microlenses, a back surface of densely packed spherical micromirrors, and a transparent spacer layer. The thickness of the spacer layer determines in part the optical characteristics of the retroreflector.

  13. P39-T Analysis of Oligosaccharides by Capillary-Scale High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection (CHPAEC-PAD) and On-Line Electrospray-Ionization Ion-Trap Mass Spectrometry (CHPAEC-ITMS)

    PubMed Central

    Bruggink, C.; Koeleman, C.; Barreto, V.; Lui, Y.; Pohl, C.; Ingendoh, A.; Wuhrer, M.; Hokke, C.; Deelder, A.

    2007-01-01

    High-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) is an established technique for selective separation and analysis of underivatized carbohydrates. The miniaturization of chromatographic techniques by means of capillary columns, and on-line coupling to mass spectrometry are critical to the further development of glycan analysis methods that are compatible with the current requirements in clinical settings. A system has been developed based on the Dionex BioLC equipped with a microbore gradient pump with PEEK flow splitter, a FAMOS micro autosampler, a modified electrochemical cell for on-line capillary PAD, and a capillary column (380 μm i.d.) packed with a new type of anion-exchange resin. This system operates with sensitivity in the low femtomol range. In addition, an on-line capillary desalter has been developed to allow direct coupling to the Bruker Esquire 3000 ion-trap mass spectrometer with electrospray ionization interface (ESI-IT-MS). Both systems have been evaluated using oligosaccharide standards as well as urine samples exhibiting various lysosomal oligosaccharide storage diseases. Initial data indicate that the robust and selective anion-exchange system, in combination with ESI-IT-MS for structure confirmation and analysis, provides a powerful platform that complements existing nano/capillary LC-MS methods for analytical determination of oligosaccharides in biological matrices.

  14. Effects of hemoglobin variants HbJ Bangkok, HbE, HbG Taipei, and HbH on analysis of glycated hemoglobin via ion-exchange high-performance liquid chromatography.

    PubMed

    Zhang, Xiu-Ming; Wen, Dong-Mei; Xu, Sheng-Nan; Suo, Ming-Huan; Chen, Ya-Qiong

    2017-04-13

    To explore the effects of HbJ Bangkok, HbE, HbG Taipei, and α-thalassemia HbH on the results of HbA1c assessment using ion-exchange high-performance liquid chromatography (IE-HPLC). We enrolled five patients in which the results of the IE-HPLC HbA1c assay were inconsistent with the average levels of FBG. We performed hemoglobin capillary (Hb) electrophoresis using whole-blood samples. We also sequenced the genes encoding Hb using dideoxy-mediated chain termination and analyzed HbA1c using borate affinity HPLC (BA-HPLC) and turbidimetric inhibition immunoassay (TINIA). Two patients had the HbJ Bangkok variant. Hb genotypes of these patients were β(41-42) /β(J Bangkok) and β(N) /β(J Bangkok) , and the content of HbJ Bangkok was 93.9% and 52.4%, respectively. The remaining three patients had the following: HbE (β(N) /β(E) Hb genotype, 23.6% HbE content), HbG Taipei (β(N) /β(G Taipei) Hb genotype, 39.4% HbG Taipei content), and α-thalassemia HbH (6.1% HbH content, 2.8% Hb Bart's content). In the patients with β-thalassemia and HbJ Bangkok variants, the presence of the variants interfered with the results of HbA1c analyses using IE-HPLC and TINIA; in the remaining four patients, there was interference with the results of HbA1c IE-HPLC but not with the TINIA assay. There was no interference with BA-HPLC HbA1c results. HbJ Bangkok, HbE, HbG Taipei Hb, and α-thalassemia HbH disease cause varying degrees of interference with the analysis of HbA1c using IE-HPLC. In these patients, we suggest using methods free from such interference for the analysis of HbA1c and other indicators to monitor blood glucose levels. © 2017 Wiley Periodicals, Inc.

  15. An Empirical Examination of the Mechanisms Mediating between High-Performance Work Systems and the Performance of Japanese Organizations

    ERIC Educational Resources Information Center

    Takeuchi, Riki; Lepak, David P.; Wang, Heli; Takeuchi, Kazuo

    2007-01-01

    The resource-based view of the firm and social exchange perspectives are invoked to hypothesize linkages among high-performance work systems, collective human capital, the degree of social exchange in an establishment, and establishment performance. The authors argue that high-performance work systems generate a high level of collective human…

  16. An Empirical Examination of the Mechanisms Mediating between High-Performance Work Systems and the Performance of Japanese Organizations

    ERIC Educational Resources Information Center

    Takeuchi, Riki; Lepak, David P.; Wang, Heli; Takeuchi, Kazuo

    2007-01-01

    The resource-based view of the firm and social exchange perspectives are invoked to hypothesize linkages among high-performance work systems, collective human capital, the degree of social exchange in an establishment, and establishment performance. The authors argue that high-performance work systems generate a high level of collective human…

  17. High-throughput charge exchange recombination spectroscopy system on MAST

    SciTech Connect

    Conway, N. J.; Carolan, P. G.; McCone, J.; Walsh, M. J.; Wisse, M.

    2006-10-15

    A major upgrade to the charge exchange recombination spectroscopy system on MAST has recently been implemented. The new system consists of a high-throughput spectrometer coupled to a total of 224 spatial channels, including toroidal and poloidal views of both neutral heating beams on MAST. Radial resolution is {approx}1 cm, comparable to the ion Larmor radius. The toroidal views are configured with 64 channels per beam, while the poloidal views have 32 channels per beam. Background channels for both poloidal and toroidal views are also provided. A large transmission grating is at the heart of the new spectrometer, with high quality single lens reflex lenses providing excellent imaging performance and permitting the full exploitation of the available etendue of the camera sensor. The charge-coupled device camera chosen has four-tap readout at a maximum aggregate speed of 8.8 MHz, and it is capable of reading out the full set of 224 channels in less than 4 ms. The system normally operates at 529 nm, viewing the C{sup 5+} emission line, but can operate at any wavelength in the range of 400-700 nm. Results from operating the system on MAST are shown, including impurity ion temperature and velocity profiles. The system's excellent spatial resolution is ideal for the study of transport barrier phenomena on MAST, an activity which has already been advanced significantly by data from the new diagnostic.

  18. Charge exchange processes of high energy heavy ions channeled in crystals

    NASA Astrophysics Data System (ADS)

    Andriamonje, S.; Chevallier, M.; Cohen, C.; Dural, J.; Genre, R.; Girard, Y.; Groeneveld, K. O.; Kemmler, J.; Kirsch, R.; L'Hoir, A.; Maier, R.; Poizat, J. C.; Quéré, Y.; Remillieux, J.; Schmaus, D.; Toulemonde, M.

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. The experiments show that high energy heavy ion channeling deeply modifies the slowing down and charge exchange processes. In this review, we describe the opportunity offered by channeling conditions to study the charge exchange processes. Some aspects of the charge exchange processes with high energy channeled heavy ions are selected from the extensive literature published over the past few years on this subject. Special attention is given to the work performed at the GANIL facility on the study of Radiative Electron Capture (REC), Electron Impact Ionisation (EII), and convoy electron emission. Finally we emphasize the interest of studying resonant charge exchange processes such as Resonant Coherent Excitation (RCE), Resonant Transfer and Excitation (RTE) or Dielectronic Recombination (DR) and the recently proposed Nuclear Excitation by Electron Capture (NEEC).

  19. High effectiveness liquid droplet/gas heat exchanger for space power applications

    NASA Astrophysics Data System (ADS)

    Bruckner, A. P.; Mattick, A. T.

    1983-09-01

    A high-effectiveness liquid droplet/gas heat exchanger (LDHX) concept for thermal management in space is described. Heat is transferred by direct contact between fine droplets (approx. 100 to 300 micron diameter) of a suitable low vapor pressure liquid and an inert working gas. Complete separation of the droplet and gas media in the zero-g environment is accomplished by configuring the LDHX as a vortex chamber. The large heat transfer area presented by the small droplets permits heat exchanger effectiveness of 0.9 to 0.95 in a compact, lightweight geometry which avoids many of the limitations of conventional plate and fin or tube and shell heat exchangers, such as their tendency toward single point failure. The application of the LDHX in a high temperature Bryaton cycle is discussed to illustrate the performance and operational characteristics of this heat exchanger concept.

  20. High effectiveness liquid droplet/gas heat exchanger for space power applications

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Mattick, A. T.

    1983-01-01

    A high-effectiveness liquid droplet/gas heat exchanger (LDHX) concept for thermal management in space is described. Heat is transferred by direct contact between fine droplets (approx. 100 to 300 micron diameter) of a suitable low vapor pressure liquid and an inert working gas. Complete separation of the droplet and gas media in the zero-g environment is accomplished by configuring the LDHX as a vortex chamber. The large heat transfer area presented by the small droplets permits heat exchanger effectiveness of 0.9 to 0.95 in a compact, lightweight geometry which avoids many of the limitations of conventional plate and fin or tube and shell heat exchangers, such as their tendency toward single point failure. The application of the LDHX in a high temperature Bryaton cycle is discussed to illustrate the performance and operational characteristics of this heat exchanger concept.

  1. High effectiveness liquid droplet/gas heat exchanger for space power applications

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Mattick, A. T.

    1983-01-01

    A high-effectiveness liquid droplet/gas heat exchanger (LDHX) concept for thermal management in space is described. Heat is transferred by direct contact between fine droplets (approximately 100-300 microns in diameter) of a suitable low vapor pressure liquid and an inert working gas. Complete separation of the droplet and gas media in the zero-g environment is accomplished by configuring the LDHX as a vortex chamber.The large heat transfer area presented by the small droplets permits heat exchanger effectiveness of 0.9-0.95 in a compact, lightweight geometry which avoids many of the limitations of conventional plate and fin or tube and shell heat exchangers, such as their tendency toward single point failure. The application of the LDHX in a high temperature Brayton cycle is discussed to illustrate the performance and operational characteristics of this new heat exchanger concept.

  2. Ex vivo assessment and validation of water exchange performance of 23 heat and moisture exchangers for laryngectomized patients.

    PubMed

    van den Boer, Cindy; Muller, Sara H; Vincent, Andrew D; van den Brekel, Michiel W M; Hilgers, Frans J M

    2014-08-01

    Breathing through a tracheostoma results in insufficient warming and humidification of the inspired air. This loss of air conditioning, especially humidification, can be partially restored with the application of a heat and moisture exchanger (HME) over the tracheostoma. For medical professionals, it is not easy to judge differences in water exchange performance of various HMEs owing to the lack of universal outcome measures. This study has three aims: assessment of the water exchange performance of commercially available HMEs for laryngectomized patients, validation of these results with absolute humidity outcomes, and assessment of the role of hygroscopic salt present in some of the tested HMEs. Measurements of weight and absolute humidity at end inspiration and end expiration at different breathing volumes of a healthy volunteer were performed using a microbalance and humidity sensor. Twenty-three HMEs from 6 different manufacturers were tested. Associations were determined between core weight, weight change, breathing volume, and absolute humidity, using both linear and nonlinear mixed effects models. Water exchange of the 23 HMEs at a breathing volume of 0.5 L varies between 0.5 and 3.6 mg. Both water exchange and wet core weight correlate strongly with the end-inspiratory absolute humidity values (r2 =0.89/0.87). Hygroscopic salt increases core weight. The 23 tested HMEs for laryngectomized patients show wide variation in water exchange performance. Water exchange correlates well with the end-inspiratory absolute humidity outcome, which validates the ex vivo weight change method. Wet core weight is a predictor of HME performance. Hygroscopic salt increases the weight of the core material. The results of this study can help medical professionals to obtain a more founded opinion about the performance of available HMEs for pulmonary rehabilitation in laryngectomized patients, and allow them to make an informed decision about which HME type to use.

  3. High Performance Work Systems and Firm Performance.

    ERIC Educational Resources Information Center

    Kling, Jeffrey

    1995-01-01

    A review of 17 studies of high-performance work systems concludes that benefits of employee involvement, skill training, and other high-performance work practices tend to be greater when new methods are adopted as part of a consistent whole. (Author)

  4. Improved chromatographic performances of glycidyl methacrylate anion-exchange monolith for fast nano-ion exchange chromatography.

    PubMed

    Bruchet, Anthony; Dugas, Vincent; Mariet, Clarisse; Goutelard, Florence; Randon, Jérôme

    2011-08-01

    An efficient and reproducible photopolymerized poly(glycidyl methacrylate-co-ethylene dimethacrylate) was synthesized in Teflon-coated fused-silica capillaries (100 μm id) and functionalized by reaction of triethylamine with reactive epoxy groups. We report here the successful transfer of a standard polymerization mixture optimized for the thermally initiated synthesis of glycidyl-based monolith to photo-induced polymerization. The monolith obtained after optimization of the photo-initiation conditions was characterized in reverse-phase chromatography evaluating its suitability in terms of efficiency, retention and hydrodynamic permeability. Reproducibility of the photo-induced procedure was satisfactory with RSD below 6% for retention and efficiency and slightly higher for hydrodynamic permeability (12%). The functionalized generic support was then used in nano-ion-exchange chromatography. Efficiencies up to 75,000 plates/m, ion-exchange capacity of 8 nano-equivalents/cm of monolithic column, with a combination of a satisfactory hydrodynamic permeability allowed to perform fast separations of five inorganic anions in <3 min maintaining baseline resolution. The efficiency of the monolith was not retention-dependent, demonstrating its wide range of possible applications for highly retained anions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effect of multi-stream heat exchanger on performance of natural gas liquefaction with mixed refrigerant

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung; Lim, Hye Su; Choe, Kun Hyung

    2012-12-01

    A thermodynamic study is carried out to investigate the effect of multi-stream heat exchanger on the performance of natural gas (NG) liquefaction with mixed refrigerant (MR). A cold stream (low-pressure MR) is in thermal contact with opposite flow of two hot streams (high-pressure MR and NG feed) at the same time. In typical process simulation with commercial software (such as Aspen HYSYS®), the liquefaction performance is estimated with a method of minimum temperature approach, simply assuming that two hot streams have the same temperature. In this study, local energy balance equations are rigorously solved with temperature-dependent properties of MR and NG feed, and are linked to the thermodynamic cycle analysis. The figure of merit (FOM) is quantitatively examined in terms of UA (the product of overall heat transfer coefficient and heat exchange area) between respective streams. In a single-stage MR process, it is concluded that the temperature profile from HYSYS is difficult to realize in practice, and the FOM value from HYSYS is an over-estimate, but can be closely achieved with a proper heat-exchanger design. It is also demonstrated that there exists a unique optimal ratio in three UA's, and no direct heat exchanger between hot streams is recommended.

  6. Humidification Performance of Heat and Moisture Exchangers for Pediatric Use

    PubMed Central

    Chikata, Yusuke; Sumida, Chihiro; Oto, Jun; Imanaka, Hideaki; Nishimura, Masaji

    2012-01-01

    Background. While heat and moisture exchangers (HMEs) have been increasingly used for humidification during mechanical ventilation, the efficacy of pediatric HMEs has not yet been fully evaluated. Methods. We tested ten pediatric HMEs when mechanically ventilating a model lung at respiratory rates of 20 and 30 breaths/min and pressure control of 10, 15, and 20 cmH2O. The expiratory gas passed through a heated humidifier. We created two rates of leakage: 3.2 L/min (small) and 5.1 L/min (large) when pressure was 10 cmH2O. We measured absolute humidity (AH) at the Y-piece. Results. Without leakage, eight of ten HMEs maintained AH at more than 30 mg/L. With the small leak, AH decreased below 30 mg/L (26.6 to 29.5 mg/L), decreasing further (19.7 to 27.3 mg/L) with the large leak. Respiratory rate and pressure control level did not affect AH values. Conclusions. Pediatric HMEs provide adequate humidification performance when leakage is absent. PMID:22312483

  7. Humidification performance of heat and moisture exchangers for pediatric use.

    PubMed

    Chikata, Yusuke; Sumida, Chihiro; Oto, Jun; Imanaka, Hideaki; Nishimura, Masaji

    2012-01-01

    Background. While heat and moisture exchangers (HMEs) have been increasingly used for humidification during mechanical ventilation, the efficacy of pediatric HMEs has not yet been fully evaluated. Methods. We tested ten pediatric HMEs when mechanically ventilating a model lung at respiratory rates of 20 and 30 breaths/min and pressure control of 10, 15, and 20 cmH(2)O. The expiratory gas passed through a heated humidifier. We created two rates of leakage: 3.2 L/min (small) and 5.1 L/min (large) when pressure was 10 cmH(2)O. We measured absolute humidity (AH) at the Y-piece. Results. Without leakage, eight of ten HMEs maintained AH at more than 30 mg/L. With the small leak, AH decreased below 30 mg/L (26.6 to 29.5 mg/L), decreasing further (19.7 to 27.3 mg/L) with the large leak. Respiratory rate and pressure control level did not affect AH values. Conclusions. Pediatric HMEs provide adequate humidification performance when leakage is absent.

  8. Development of a High-Throughput Ion-Exchange Resin Characterization Workflow.

    PubMed

    Liu, Chun; Dermody, Daniel; Harris, Keith; Boomgaard, Thomas; Sweeney, Jeff; Gisch, Daryl; Goltz, Bob

    2017-06-12

    A novel high-throughout (HTR) ion-exchange (IEX) resin workflow has been developed for characterizing ion exchange equilibrium of commercial and experimental IEX resins against a range of different applications where water environment differs from site to site. Because of its much higher throughput, design of experiment (DOE) methodology can be easily applied for studying the effects of multiple factors on resin performance. Two case studies will be presented to illustrate the efficacy of the combined HTR workflow and DOE method. In case study one, a series of anion exchange resins have been screened for selective removal of NO3(-) and NO2(-) in water environments consisting of multiple other anions, varied pH, and ionic strength. The response surface model (RSM) is developed to statistically correlate the resin performance with the water composition and predict the best resin candidate. In case study two, the same HTR workflow and DOE method have been applied for screening different cation exchange resins in terms of the selective removal of Mg(2+), Ca(2+), and Ba(2+) from high total dissolved salt (TDS) water. A master DOE model including all of the cation exchange resins is created to predict divalent cation removal by different IEX resins under specific conditions, from which the best resin candidates can be identified. The successful adoption of HTR workflow and DOE method for studying the ion exchange of IEX resins can significantly reduce the resources and time to address industry and application needs.

  9. An empirical examination of the mechanisms mediating between high-performance work systems and the performance of Japanese organizations.

    PubMed

    Takeuchi, Riki; Lepak, David P; Wang, Heli; Takeuchi, Kazuo

    2007-07-01

    The resource-based view of the firm and social exchange perspectives are invoked to hypothesize linkages among high-performance work systems, collective human capital, the degree of social exchange in an establishment, and establishment performance. The authors argue that high-performance work systems generate a high level of collective human capital and encourage a high degree of social exchange within an organization, and that these are positively related to the organization's overall performance. On the basis of a sample of Japanese establishments, the results provide support for the existence of these mediating mechanisms through which high-performance work systems affect overall establishment performance.

  10. Commoditization of High Performance Storage

    SciTech Connect

    Studham, Scott S.

    2004-04-01

    The commoditization of high performance computers started in the late 80s with the attack of the killer micros. Previously, high performance computers were exotic vector systems that could only be afforded by an illustrious few. Now everyone has a supercomputer composed of clusters of commodity processors. A similar commoditization of high performance storage has begun. Commodity disks are being used for high performance storage, enabling a paradigm change in storage and significantly changing the price point of high volume storage.

  11. OTEC-1 power system test program: performance of one-megawatt heat exchangers

    SciTech Connect

    Lorenz, J.J.; Yung, D.; Howard, P.A.; Panchal, C.B.; Poucher, F.W.

    1981-11-01

    Heat exchanger test results for the first deployment of OTEC-1 are reported. These tests were aimed at evaluating the performance of a state-of-the-art, 1-MWe titanium shell-and-tube evaporator and condenser in an ocean environment. The evaporator consisted of both a plain and an enhanced (Union Carbide High Flux) tube bundle, whereas the condenser had plain tubes only. All tests with the evaporator were conducted in the sprayed-bundle mode. Experimental results for the condenser and plain-tube portion of the evaporator were in excellent agreement with performance predictions. This result demonstrates that the thermal performance of large plain-tube heat exchangers can be predicted with a high level of confidence. However, the performance of the enhanced-tube portion of the evaporator was much lower thn predicted. Evidence strongly suggested that this poor performance was attributable mainly to fouling of the High Flux surface by corrosion products consisting predominantly of hydrated aluminum oxides.

  12. High Pt utilization PEMFC electrode obtained by alternative ion-exchange/electrodeposition.

    PubMed

    Chen, Siguo; Wei, Zidong; Li, Hua; Li, Li

    2010-12-14

    High Pt utilization PEMFC electrodes were prepared by an alternative ion-exchange/electrodeposition (AIEE) technique. The results demonstrated that the MEA employing an AIEE electrode with a Pt loading of 0.014 mg Pt cm(-2) exhibits performance approximately 2.2 times larger than that employing a conventional Nafion-bonded Pt/C electrode with a same Pt loading.

  13. Nanocrystalline high performance permanent magnets

    NASA Astrophysics Data System (ADS)

    Gutfleisch, O.; Bollero, A.; Handstein, A.; Hinz, D.; Kirchner, A.; Yan, A.; Müller, K.-H.; Schultz, L.

    2002-04-01

    Recent developments in nanocrystalline rare earth-transition metal magnets are reviewed and emphasis is placed on research work at IFW Dresden. Principal synthesis methods include high energy ball milling, melt spinning and hydrogen assisted methods such as reactive milling and hydrogenation-disproportionation-desorption-recombination. These techniques are applied to NdFeB-, PrFeB- and SmCo-type systems with the aim to produce high remanence magnets with high coercivity. Concepts of maximizing the energy density in nanostructured magnets by either inducing a texture via anisotropic HDDR or hot deformation or enhancing the remanence via magnetic exchange coupling are evaluated.

  14. Supercritical heat exchanger field test (SHEFT), I. Field performance data on shell-and-tube heat exchangers in geothermal service

    SciTech Connect

    Silvester, L.F.; Beaulaurier, L.O.; Mirk, K.F.; Fulton, R.L.

    1981-06-01

    Field performance data on shell-and-tube heat exchangers in geothermal service are presented. The test data were taken for geothermal brine on the tube side and hydrocarbon on the shell side in counterflow for six primary heat exchangers, and for hydrocarbon on the shell side and cooling water on the tube side for the condenser. Test data were for heating isobutane, 1 90/10 isobutane/isopentane mixture, and a 80/20 isobutane/isopentane mixture at supercritical conditions in the vicinity of their critical pressure and temperature, and for condensing the same fluids. The test data were used in a preliminary data analysis to determine the reported heat exchanger performance parameters.

  15. High Capacity Na+/H+ Exchange Activity in Mineralizing Osteoblasts

    PubMed Central

    Liu, Li; Schlesinger, Paul H.; Slack, Nicole M.; Friedman, Peter A.; Blair, Harry C.

    2015-01-01

    Osteoblasts synthesize bone in polarized groups of cells sealed by tight junctions. Large amounts of acid are produced as bone mineral is precipitated. We addressed the mechanism by which cells manage this acid load by measuring intracellular pH (pHi) in non-transformed osteoblasts in response to weak acid or bicarbonate loading. Basal pHi in mineralizing osteoblasts was ∼7.3 and decreased by ∼ 1.4 units upon replacing extracellular Na+ with N-methyl-d-glucamine. Loading with 40 mM acetic or propionic acids, in normal extracellular Na+, caused only mild cytosolic acidification. In contrast, in Na+-free solutions, weak acids reduced pHi dramatically. After Na+ reintroduction, pHi recovered rapidly, in keeping with Na+/H+exchanger (NHE) activity. Sodium-dependent pHi recovery from weak acid loading was inhibited by amiloride with the Ki consistent with NHEs. NHE1 and NHE6 were expressed strongly, and expression was upregulated highly, by mineralization, in human osteoblasts. Antibody labeling of mouse bone showed NHE1 on basolateral surfaces of all osteoblasts. NHE6 occurred on basolateral surfaces of osteoblasts mainly in areas of mineralization. Conversely, elevated HCO3- alkalinized osteoblasts, and pH recovered in medium containing CI-, with or without Na+, in keeping with Na+-independent CI-/HCO3- exchange. The exchanger AE2 also occurred on the basolateral surface of osteoblasts, consistent with CI-/HCO3- exchange for elimination of metabolic carbonate. Overexpression of NHE6 or knockdown of NHE1 in MG63 human osteosarcoma cells confirmed roles of NHE1 and NHE6 in maintaining pHi. We conclude that in mineralizing osteoblasts, slightly basic basal pHi is maintained, and external acid load is dissipated, by high-capacity Na+/H+ exchange via NHE1 and NHE6. PMID:21413028

  16. Can Leader-Member Exchange Contribute to Safety Performance in An Italian Warehouse?

    PubMed

    Mariani, Marco G; Curcuruto, Matteo; Matic, Mirna; Sciacovelli, Paolo; Toderi, Stefano

    2017-01-01

    Introduction: The research considers safety climate in a warehouse and wants to analyze the Leader-Member Exchange (LMX) role in respect to safety performance. Griffin and Neal's safety model was adopted and Leader-Member Exchange was inserted as moderator in the relationships between safety climate and proximal antecedents (motivation and knowledge) of safety performance constructs (compliance and participation). Materials and Methods: Survey data were collected from a sample of 133 full-time employees in an Italian warehouse. The statistical framework of Hayes (2013) was adopted for moderated mediation analysis. Results: Proximal antecedents partially mediated the relationship between Safety climate and safety participation, but not safety compliance. Moreover, the results from the moderation analysis showed that the Leader-Member Exchange moderated the influence of safety climate on proximal antecedents and the mediation exist only at the higher level of LMX. Conclusion: The study shows that the different aspects of leadership processes interact in explaining individual proficiency in safety practices. Practical Implications: Organizations as warehouses should improve the quality of the relationship between a leader and a subordinate based upon the dimensions of respect, trust, and obligation for high level of safety performance.

  17. Can Leader–Member Exchange Contribute to Safety Performance in An Italian Warehouse?

    PubMed Central

    Mariani, Marco G.; Curcuruto, Matteo; Matic, Mirna; Sciacovelli, Paolo; Toderi, Stefano

    2017-01-01

    Introduction: The research considers safety climate in a warehouse and wants to analyze the Leader–Member Exchange (LMX) role in respect to safety performance. Griffin and Neal’s safety model was adopted and Leader-Member Exchange was inserted as moderator in the relationships between safety climate and proximal antecedents (motivation and knowledge) of safety performance constructs (compliance and participation). Materials and Methods: Survey data were collected from a sample of 133 full-time employees in an Italian warehouse. The statistical framework of Hayes (2013) was adopted for moderated mediation analysis. Results: Proximal antecedents partially mediated the relationship between Safety climate and safety participation, but not safety compliance. Moreover, the results from the moderation analysis showed that the Leader–Member Exchange moderated the influence of safety climate on proximal antecedents and the mediation exist only at the higher level of LMX. Conclusion: The study shows that the different aspects of leadership processes interact in explaining individual proficiency in safety practices. Practical Implications: Organizations as warehouses should improve the quality of the relationship between a leader and a subordinate based upon the dimensions of respect, trust, and obligation for high level of safety performance. PMID:28553244

  18. High performance collectors

    NASA Astrophysics Data System (ADS)

    Ogawa, H.; Hozumi, S.; Mitsumata, T.; Yoshino, K.; Aso, S.; Ebisu, K.

    1983-04-01

    Materials and structures used for flat plate solar collectors and evacuated tubular collectors were examined relative to their overall performance to project effectiveness for building heating and cooling and the feasibility of use for generating industrial process heat. Thermal efficiencies were calculated for black paint single glazed, selective surface single glazed, and selective surface double glazed flat plate collectors. The efficiencies of a single tube and central tube accompanied by two side tube collectors were also studied. Techniques for extending the lifetimes of the collectors were defined. The selective surface collectors proved to have a performance superior to other collectors in terms of the average annual energy delivered. Addition of a black chrome-coated fin system to the evacuated collectors produced significant collection efficiency increases.

  19. High Performance Arcjet Engines

    NASA Technical Reports Server (NTRS)

    Kennel, Elliot B.; Ivanov, Alexey Nikolayevich; Nikolayev, Yuri Vyacheslavovich

    1994-01-01

    This effort sought to exploit advanced single crystal tungsten-tantalum alloy material for fabrication of a high strength, high temperature arcjet anode. The use of this material is expected to result in improved strength, temperature resistance, and lifetime compared to state of the art polycrystalline alloys. In addition, the use of high electrical and thermal conductivity carbon-carbon composites was considered, and is believed to be a feasible approach. Highly conductive carbon-carbon composite anode capability represents enabling technology for rotating-arc designs derived from the Russian Scientific Research Institute of Thermal Processes (NIITP) because of high heat fluxes at the anode surface. However, for US designs the anode heat flux is much smaller, and thus the benefits are not as great as in the case of NIITP-derived designs. Still, it does appear that the tensile properties of carbon-carbon can be even better than those of single crystal tungsten alloys, especially when nearly-single-crystal fibers such as vapor grown carbon fiber (VGCF) are used. Composites fabricated from such materials must be coated with a refractory carbide coating in order to ensure compatibility with high temperature hydrogen. Fabrication of tungsten alloy single crystals in the sizes required for fabrication of an arcjet anode has been shown to be feasible. Test data indicate that the material can be expected to be at least the equal of W-Re-HfC polycrystalline alloy in terms of its tensile properties, and possibly superior. We are also informed by our colleagues at Scientific Production Association Luch (NP0 Luch) that it is possible to use Russian technology to fabricate polycrystalline W-Re-HfC or other high strength alloys if desired. This is important because existing engines must rely on previously accumulated stocks of these materials, and a fabrication capability for future requirements is not assured.

  20. High Performance Organic Semiconductors

    DTIC Science & Technology

    2012-07-31

    the polymers in o-DCB. Grazing incidence X-ray diffraction (GIXD) studies performed on oADT-dTDPP thin films shows distinct out-of- plane (h00...have helped to promote interchain interactions and the formation of lamellar order. In- plane diffraction intensity profile along qxy shows multiple...perpendicular to the substrate, a motif that may give rise to better in- plane charge transport properties than previous less-ordered ADT-containing polymer

  1. High Performance Hollow Projectiles

    DTIC Science & Technology

    Development of hollow projectiles was first advocated to achieve ’silent’ (low pressure signal) projectiles having higher performance. Although the...present effort concentrates on small arms (specifically 7.62 mm), the confirmed fundamental theory applies to all sizes of hollow projectiles. The...report can thus serve as a basis for (1) evaluating specific hollow projectile developments and (2) formulating programs to develop a wide spectrum of

  2. Nanostructure-based proton exchange membrane for fuel cell applications at high temperature.

    PubMed

    Li, Junsheng; Wang, Zhengbang; Li, Junrui; Pan, Mu; Tang, Haolin

    2014-02-01

    As a clean and highly efficient energy source, the proton exchange membrane fuel cell (PEMFC) has been considered an ideal alternative to traditional fossil energy sources. Great efforts have been devoted to realizing the commercialization of the PEMFC in the past decade. To eliminate some technical problems that are associated with the low-temperature operation (such as catalyst poisoning and poor water management), PEMFCs are usually operated at elevated temperatures (e.g., > 100 degrees C). However, traditional proton exchange membrane (PEM) shows poor performance at elevated temperature. To achieve a high-performance PEM for high temperature fuel cell applications, novel PEMs, which are based on nanostructures, have been developed recently. In this review, we discuss and summarize the methods for fabricating the nanostructure-based PEMs for PEMFC operated at elevated temperatures and the high temperature performance of these PEMs. We also give an outlook on the rational design and development of the nanostructure-based PEMs.

  3. High pressure ratio cryocooler with integral expander and heat exchanger

    NASA Astrophysics Data System (ADS)

    Crunkleton, J. A.; Smith, J. L., Jr.; Iwasa, Y.

    A new 1 W, 4.2 K cryocooler is under development that is intended to miniaturize helium temperature refrigeration systems using a high-pressure-ratio Collins-type cycle. The configuration resulted from optimization studies of a saturated vapor compression (SCV) cycle that employs miniature parallel-plate heat exchangers. The basic configuration is a long displacer in a close-fitting, thin-walled cylinder. The displacer-to-cylinder gap is the high-pressure passage of the heat exchanger, and the low-pressure passage is formed by a thin tube over the OD of the cylinder. A solenoid-operated inlet valve admits 40 atm helium to the displacer-to-cylinder gap at room temperature, while the solenoid-operated exhaust valve operates at 4 atm. The single-stage cryocooler produces 1 W of refrigeration at 40 K without precooling and at 20 K with liquid nitrogen precooling.

  4. Performance of parallel flow HeII heat exchangers

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Chang, Y.; Witt, R. J.; Van Sciver, S. W.

    Previous studies of HeII heat exchangers have focused on tube-in-shell designs. The present paper examines the properties of a parallel flow HeII heat exchanger formed from two 254 mm lengths of copper channel having nominal rectangular dimensions 2 mm × 4 mm. Heaters positioned at the inlets and outlets of both channels permit the simulation of a variety of physically plausible boundary conditions. An iterative numerical method, based on one-dimensional energy balances in each channel with coupling through a heat transfer term, is presented and agrees well with the experimental results. As with tube-in-shell designs, parallel flow HeII heat exchangers may exhibit unusual temperature profiles.

  5. High Performance Magnets

    DTIC Science & Technology

    2000-03-29

    Our efforts in this project were focused on three different materials, namely; interstitial Sm-Fe carbides and nitrides, high energy product Nd2Fe14B ...magnets with MgO addition, and nanocomposite Nd2Fe14B /alpha-Fe consisting of a fine mixture of hard and soft phases. In the Sm-Fe carbides and

  6. Air side thermal performance of wavy fin heat exchangers produced by selective laser melting

    NASA Astrophysics Data System (ADS)

    Kuehndel, J.; Kerler, B.; Karcher, C.

    2016-09-01

    Wavy fins are widely used for off-road vehicle coolers, due to their dust resistance. In this study, heat exchanger elements with wavy fins were examined in an experimental study. Due to independence of tooling and degrees of freedom in design, rapid prototyping technique selective laser melting was used to produce heat exchanger elements with high dimensional accuracy. Tests were conducted for air side Reynolds number Re of 1400-7400 varying wavy amplitude and wave length at a constant water flow rate of 9.0m3/h inside the tubes. The effects of wavy amplitude and wave length on the air side thermal performance were studied. Experimental correlation equations for Nu and ­ were derived by regression analysis.

  7. Facile surface modification of anion-exchange membranes for improvement of diffusion dialysis performance.

    PubMed

    Kim, Do-Hyeong; Park, Han-Sol; Seo, Seok-Jun; Park, Jin-Soo; Moon, Seung-Hyeon; Choi, Young-Woo; Jiong, Young Su; Kim, Dong Hee; Kang, Moon-Sung

    2014-02-15

    In this study, a facile membrane modification method by spin-coating of pyrrole (Py) monomers dissolved in a volatile solvent followed by an interfacial polymerization is proposed. The surface of a commercial anion-exchange membrane (i.e., Neosepta-AFX, Astom Corp., Japan) was successfully modified with polypyrrole (Ppy) to improve the acid recovery performance in diffusion dialysis (DD). The result of DD experiments revealed that both the acid and metal ion transports are significantly influenced by the surface modification. The metal crossover through the membranes was largely reduced while mostly maintaining the acid permeability by introducing a thin Ppy layer with excellent repelling property to cations on the membrane surface. As a result, the anion-exchange membrane modified with the optimum content of Py monomer (5 vol.%) exhibited excellent acid dialysis coefficient (KAcid) and selectivity (KAcid/KMetal) which is approximately twice as high as that of the pristine membrane. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Chiral separation of amino acids by copper(II) complexes of tetradentate diaminodiamido-type ligands added to the eluent in reversed-phase high-performance liquid chromatography: a ligand exchange mechanism.

    PubMed

    Galaverna, G; Corradini, R; Dallavalle, F; Folesani, G; Dossena, A; Marchelli, R

    2001-07-13

    In this paper we report a study on the mechanism of the enantiomeric separation of unmodified D,L-amino acids in RP-HPLC by copper(II) complexes of two tetradentate diaminodiamido ligands, (S,S)-N,N'-bis(phenylalanyl)ethanediamine (PheNN-2) and (S,S)-N,N'-bis(methylphenylalanyl)ethanediamine (Me2PheNN-2), added to the eluent. The aim is to investigate whether and how a copper(II) complex with no free equatorial positions can perform chiral discrimination of bidentate analytes such as unmodified amino acids. The problem is approached in a systematic way by: (a) varying the different chromatographic parameters (pH, selector concentration, eluent polarity); (b) performing chiral separation with the selector adsorbed on the stationary phase; (c) studying the ternary complex formation of these ligands with D- and L-amino acids in solution by glass electrode potentiometry and electrospray ionization MS. All the experimental data are consistent with a mechanism of chiral recognition, based on ligand exchange, which involves as selectors the species [Cu2L2H(-2)]2+ and [CuLH(-2)] and proceeds by displacement of two binding sites from the equatorial positions, giving rise to the ternary species [CuLA]+ and [CuLH(-1) A]. The most important factor responsible for chiral discrimination seems to be the affinity of the diastereomeric ternary complexes for the stationary phase since no enantioselectivity is observed in solution.

  9. Polybenzimidazole-crosslinked poly(vinylbenzyl chloride) with quaternary 1,4-diazabicyclo (2.2.2) octane groups as high-performance anion exchange membrane for fuel cells

    NASA Astrophysics Data System (ADS)

    Lu, Wangting; Zhang, Geng; Li, Jin; Hao, Jinkai; Wei, Feng; Li, Wenhui; Zhang, Jiying; Shao, Zhi-Gang; Yi, Baolian

    2015-11-01

    Development of anion exchange membrane (AEM) with high conductivity, good dimensional stability, desirable toughness and long life-time simultaneously is still a challenge for the practical application of AEM fuel cells. Herein, a novel AEM (denoted as PBI-c-PVBC/OH) is fabricated by applying polybenzimidazole (PBI) and 1,4-diazabicyclo (2.2.2) octane (DABCO) as the macromolecular crosslinker and quaternizing reagent for poly(vinylbenzyl chloride) (PVBC), respectively. With the aid of crosslinking by PBI, PBI-c-PVBC/OH exhibits good flexibility and strength both in dry and water-saturated state. Moreover, high hydroxide conductivity (>25 mS cm-1 at room temperature) and low swelling ratio (∼13%) is obtained, especially the swelling ratio nearly does not increase with temperature. The membrane is also advanced for the superior chemical stability in alkaline environment due to the stable polymer backbone and ionic conductive group (only one nitrogen atom in a DABCO molecule is quaternized). Furthermore, a peak power density of 230 mW cm-2 at 50 °C is obtained on the H2/O2 fuel cell using PBI-c-PVBC/OH, and the membrane presents high durability both in the constant current and continuous open circuit voltage testing. Therefore, it is considered that the PBI crosslinking together with DABCO quaternization can be regarded as a promising strategy in the development of AEM for fuel cells.

  10. High Performance YBCO Films

    DTIC Science & Technology

    1992-07-01

    growing high quality MgO films on SrF2 substrates is the oxygen partial pressure during the growth. The x-ray data presented in Fig. 13 indicates a...fluo-ide and quartz substrates. The best result with two buffer layers (MgO and YSZ) on SrF2 was an onset temperature (Tc) of 82K and a transition...With a YSZ buffer an onset temperature of 85K and a transition width of 5K was achieved. Recent success was demonstrated by Neocera ( under a NASA

  11. High performance steam development

    SciTech Connect

    Duffy, T.; Schneider, P.

    1995-10-01

    Over 30 years ago U.S. industry introduced the world`s highest temperature (1200{degrees}F at 5000 psig) and most efficient power plant, the Eddystone coal-burning steam plant. The highest alloy material used in the plant was 316 stainless steel. Problems during the first few years of operation caused a reduction in operating temperature to 1100{degrees}F which has generally become the highest temperature used in plants around the world. Leadership in high temperature steam has moved to Japan and Europe over the last 30 years.

  12. High Voltage SPT Performance

    NASA Technical Reports Server (NTRS)

    Manzella, David; Jacobson, David; Jankovsky, Robert

    2001-01-01

    A 2.3 kW stationary plasma thruster designed to operate at high voltage was tested at discharge voltages between 300 and 1250 V. Discharge specific impulses between 1600 and 3700 sec were demonstrated with thrust between 40 and 145 mN. Test data indicated that discharge voltage can be optimized for maximum discharge efficiency. The optimum discharge voltage was between 500 and 700 V for the various anode mass flow rates considered. The effect of operating voltage on optimal magnet field strength was investigated. The effect of cathode flow rate on thruster efficiency was considered for an 800 V discharge.

  13. Tough high performance composite matrix

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor); Johnston, Norman J. (Inventor)

    1994-01-01

    This invention is a semi-interpentrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. Provided is an improved high temperature matrix resin which is capable of performing in the 200 to 300 C range. This resin has significantly improved toughness and microcracking resistance, excellent processability, mechanical performance, and moisture and solvent resistances.

  14. Performance Assessment of Sodium to Air Finned Heat Exchanger for FBR

    SciTech Connect

    Noushad, I.B.; Ellappan, T.R.; Rajan, K.K.; Rajan, M.; Vaidyanathan, G.; Vinod, V.; Suresh Kumar, V.A.

    2006-07-01

    In pool type Fast Breeder Reactors (FBR) a passive Safety Grade Decay Heat Removal (SGDHR) system removes decay heat produced in the core when normal heat removal path through steam water system is not available. This is essential to maintain the core temperatures within limits. A Decay Heat Exchanger (DHX) picks the heat from the pool and transfers the heat to atmosphere through sodium to Air Heat Exchanger (AHX) situated at high elevation. Due to the temperature differences existent in the system density differences are generated causing a buoyant convective heat transfer. The system is completely passive as primary sodium, secondary sodium and air flows under natural convection. DHX is a sodium to sodium counter flow heat exchanger with primary sodium on shell side and secondary sodium on tube side. AHX is a cross flow heat exchanger with sodium on tube side and air flows in cross flow across the finned tubes. Capacity of a single loop of SGDHR is 8 MW. Four such loops are available for the decay heat removal. It has been seen that the decay heat removal to a large extent depends on the AHX performance. AHX tested have shown reduced heat removal capacity much as 30 to 40%, essentially due to the bypassing of the finned tubes by the air. It was felt that a geometrically similar AHX be tested in sodium. Towards this a 2 MW Sodium to air heat exchanger (AHX) was tested in the Steam Generator Test Facility (SGTF) constructed at Indira Gandhi Center for Atomic Research (IGCAR), Kalpakkam. The casing arrangement of the AHX was designed to minimise bypassing of air. (authors)

  15. Highly Water Resistant Anion Exchange Membrane for Fuel Cells.

    PubMed

    Yang, Zhengjin; Hou, Jianqiu; Wang, Xinyu; Wu, Liang; Xu, Tongwen

    2015-07-01

    For anion exchange membranes (AEMs), achieving efficient hydroxide conductivity without excessive hydrophilicity presents a challenge. Hence, new strategies for constructing mechanically strengthened and hydroxide conductive (especially at controlled humidity) membranes are critical for developing better AEMs. Macromolecular modification involving ylide chemistry (Wittig reaction) for the fabrication of novel AEMs with an interpenetrating polymer network structure is reported. The macromolecular modification is cost effective, facile, and based on a one-pot synthesis. AEM water uptake is reduced to 3.6 wt% and a high hydroxide conductivity (69.7 mS cm(-1) , 90 °C) is achieved simultaneously. More importantly, the membrane exhibits similar tensile strength (>35 MPa) and comparable flexibility in both dry and wet states. These AEMs could find further applications within anion exchange membrane fuel cells with low humidity or photoelectric assemblies.

  16. Experimental investigation of a reticulated porous alumina heat exchanger for high temperature gas heat recovery

    SciTech Connect

    Banerjee, A; Chandran, RB; Davidson, JH

    2015-01-22

    The present study presents an experimental study of a prototype counter-flow heat exchanger designed to recover sensible heat from inert and reactive gases flowing through a high temperature solar reactor for splitting CO2. The tube-in-tube heat exchanger is comprised of two concentric alumina tubes, each filled with reticulated porous alumina with a nominal porosity of 80% and pore density of 5 pores per inch (ppi). The RPC provides high heat transfer surface area per unit volume (917 m(-1)) with low pressure drop. Measurements include the permeability, inertial coefficient, overall heat transfer coefficient, effectiveness and pressure drop. For laminar flow and an inlet gas temperature of 1240 K, the overall heat transfer coefficients are 36-41 W m(-2) K-1. The measured performance is in good agreement with a prior CFD model of the heat exchanger. (C) 2014 Elsevier Ltd. All rights reserved.

  17. High performance alloy electroforming

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Winkelman, D. M.

    1989-01-01

    Electroformed copper and nickel are used in structural applications for advanced propellant combustion chambers. An improved process has been developed by Bell Aerospace Textron, Inc. wherein electroformed nickel-manganese alloy has demonstrated superior mechanical and thermal stability when compared to previously reported deposits from known nickel plating processes. Solution chemistry and parametric operating procedures are now established and material property data is established for deposition of thick, large complex shapes such as the Space Shuttle Main Engine. The critical operating variables are those governing the ratio of codeposited nickel and manganese. The deposition uniformity which in turn affects the manganese concentration distribution is affected by solution resistance and geometric effects as well as solution agitation. The manganese concentration in the deposit must be between 2000 and 3000 ppm for optimum physical properties to be realized. The study also includes data regarding deposition procedures for achieving excellent bond strength at an interface with copper, nickel-manganese or INCONEL 718. Applications for this electroformed material include fabrication of complex or re-entry shapes which would be difficult or impossible to form from high strength alloys such as INCONEL 718.

  18. Thermal performance of a prototype plate heat exchanger with minichannels under boiling conditions

    NASA Astrophysics Data System (ADS)

    Wajs, J.; Mikielewicz, D.; Fornalik-Wajs, E.

    2016-09-01

    To solve the problem and to meet the requirements of customers in the field of high heat fluxes transfer in compact units, a new design of plate heat exchanger with minichannels (minichannels PHE) was proposed. The aim was to construct a compact heat exchanger of high effectiveness for the purpose of household cogeneration ORC system. In this paper the experimental analysis of an assembled prototype of such compact heat exchanger was described. The attention was paid to its thermal performance and the heat transfer coefficients under the boiling conditions. Water and ethanol were chosen as working fluids. The maximal value of transferred heat flux was about 84 kW/m2, while of the overall heat transfer coefficient was about 4000 W/(m2K). Estimated values of heat transfer coefficient on the ethanol (boiling) side reached the level of 7500 W/(m2K). The results are promising in the light of future applications, for example in cogeneration ORC systems, however further systematic investigations are necessary.

  19. Methionine/galactose ratio on newborn blood spots useful for reduction of false positives for homocystinuria and galactosemia by high-performance anion-exchange chromatography with pulsed amperometric detection.

    PubMed

    Lee, Ji-Ye; Sim, Hee-Jung; Kwon, Ha-Jeong; Lee, Yong-Moon; Yoon, Hye-Ran; Hong, Seon-Pyo

    2012-01-18

    Methionine (Met) in blood and urine is a useful diagnostic marker for homocystinuria (HCU). However, galactosemia could be misdiagnosed as HCU when Met is used as the sole marker, since elevated excretion of Met presents in both galactosemia and HCU. Use of a more specific diagnostic marker in addition to Met is therefore necessary for reduction of false positive results for HCU as well as confirmative diagnosis of HCU. Chromatographic separation was performed using an anion-exchange column. The levels of Met and galactose (Gal) on blood were measured and Met/Gal ratios were calculated from blood spot samples from 300 normal volunteers, eight galactosemia patients, and three HCU patients. The Met/Gal ratio ranged 0-4.95 for normal blood spots (n=300), 0-0.22 for galactosemia samples (n=8), and >1250 for HCU patient samples. Separation, extraction, and deproteinization procedures were established for Met and Gal in blood spots. And Met/Gal ratio allowed HCU to clearly distinguish from galactosemia. As a way of second tier confirmative analysis, the ratio is the best way to reduce false positives. The assay is most appropriate to reduce false positives in labs that do not screen for galactosemia. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Cation exchange pretreatment studies for high recovery - Yuma desalting plant

    SciTech Connect

    Kaakinen, J.W.; Laverty, P.E.

    1983-10-01

    The main purpose of the High Recovery Test Program was to obtain feasibility design data for cation exchange softening to allow a greater fractional recovery of desalted product water at the YDP(Yuma Desalting Plant). Compared to the original YDP design with 70-percent desalting recovery, additional removal of calcium in the desalting feed would allow recoveries over 90 percent. Pilot plant equipment to test this process was operated at the YDTF(Yuma Desalting Test Facility) and consisted of an IX unit and an electrodialyzer to supply reject-brine regenerant for the IX experiments. Gypsum scale buildup in the resin bed could be avoided by regeneration with a high upward flow rate causing a fluidized bed. Reuse of regenerant was also beneficial. Results show that the ion exchange high recovery pretreatment process is highly feasible, and that it is technically possible to achieve high recovery in the YDP. Numerous recommendations for a plant design are given and future studies are noted.

  1. High-performance liquid chromatography - Ultraviolet method for the determination of total specific migration of nine ultraviolet absorbers in food simulants based on 1,1,3,3-Tetramethylguanidine and organic phase anion exchange solid phase extraction to remove glyceride.

    PubMed

    Wang, Jianling; Xiao, Xiaofeng; Chen, Tong; Liu, Tingfei; Tao, Huaming; He, Jun

    2016-06-17

    The glyceride in oil food simulant usually causes serious interferences to target analytes and leads to failure of the normal function of the RP-HPLC column. In this work, a convenient HPLC-UV method for the determination of the total specific migration of nine ultraviolet (UV) absorbers in food simulants was developed based on 1,1,3,3-tetramethylguanidine (TMG) and organic phase anion exchange (OPAE) SPE to efficiently remove glyceride in olive oil simulant. In contrast to the normal ion exchange carried out in an aqueous solution or aqueous phase environment, the OPAE SPE was performed in the organic phase environments, and the time-consuming and challenging extraction of the nine UV absorbers from vegetable oil with aqueous solution could be readily omitted. The method was proved to have good linearity (r≥0.99992), precision (intra-day RSD≤3.3%), and accuracy(91.0%≤recoveries≤107%); furthermore, the lower limit of quantifications (0.05-0.2mg/kg) in five types of food simulants(10% ethanol, 3% acetic acid, 20% ethanol, 50% ethanol and olive oil) was observed. The method was found to be well suited for quantitative determination of the total specific migration of the nine UV absorbers both in aqueous and vegetable oil simulant according to Commission Regulation (EU) No. 10/2011. Migration levels of the nine UV absorbers were determined in 31 plastic samples, and UV-24, UV-531, HHBP and UV-326 were frequently detected, especially in olive oil simulant for UV-326 in PE samples. In addition, the OPAE SPE procedure was also been applied to efficiently enrich or purify seven antioxidants in olive oil simulant. Results indicate that this procedure will have more extensive applications in the enriching or purification of the extremely weak acidic compounds with phenol hydroxyl group that are relatively stable in TMG n-hexane solution and that can be barely extracted from vegetable oil. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. High temperature active heat exchanger research for latent heat storage

    NASA Astrophysics Data System (ADS)

    Alario, J.; Haslett, R.

    1982-02-01

    An active heat exchange method in a latent heat (salt) thermal energy storage system that prevents a low conductivity solid salt layer from forming on heat transfer surfaces was developed. An evaluation of suitable media with melting points in the temperature range of interest (250 to 400 C) limited the candidates to molten salts from the chloride, hydroxide and nitrate families, based on high storage capacity, good corrosion characteristics and availability in large quantities at reasonable cost. The specific salt recommended for laboratory tests was a choride eutectic (20.5KCL o 24.5NaCL o 55.MgCl2% by wt.), with a nominal melting point of 385 C. Various active heat exchange concepts were given a technical and economic comparison to a passive tube shell design for a reference application (300 MW sub t for 6 hours). Test hardware was then built for the most promising concept: a direct contact heat exchanger in which molten salt droplets are injected into a cooler counter flowing stream of liquid metal carrier fluid (lead/Bismuth).

  3. High Performance Computing at NASA

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Cooper, D. M. (Technical Monitor)

    1994-01-01

    The speaker will give an overview of high performance computing in the U.S. in general and within NASA in particular, including a description of the recently signed NASA-IBM cooperative agreement. The latest performance figures of various parallel systems on the NAS Parallel Benchmarks will be presented. The speaker was one of the authors of the NAS (National Aerospace Standards) Parallel Benchmarks, which are now widely cited in the industry as a measure of sustained performance on realistic high-end scientific applications. It will be shown that significant progress has been made by the highly parallel supercomputer industry during the past year or so, with several new systems, based on high-performance RISC processors, that now deliver superior performance per dollar compared to conventional supercomputers. Various pitfalls in reporting performance will be discussed. The speaker will then conclude by assessing the general state of the high performance computing field.

  4. Partition Coefficients of Selected Compounds Using Ion Exchange Separation of Cesium From High Level Waste

    SciTech Connect

    Toth, James J.; Blanchard, David L.; Arm, Stuart T.; Urie, Michael W.

    2004-04-24

    The removal of cesium radioisotope (137Cs) from the High Level Waste stored in underground storage tanks at the Hanford site is a formidable chemical separations challenge for the Waste Treatment Plant. An eluatable organic-based ion exchange resin was selected as the baseline technology (1). The baseline technology design employs a proprietary macrocyclic weak-acid ion exchange resin to adsorb the cesium (137Cs) during the process loading cycle in a fixed bed column design. Following loading, the cesium is eluted from the resin using a nitric acid eluant. Previous work provided limited understanding of the performance of the resin, processed with actual wastes, and under multiple load and elute conditions, which are required for the ion exchange technology to be underpinned sufficiently for resolution of all process-related design issues before flowsheet and construction drawings can be released. By performing multiple ion exchange column tests with waste feeds, and measuring the chemical and radionuclide compositions of the waste feeds, column effluents and column eluants, ion exchange stream composition information can be provided for supporting resolution of selected design issues.

  5. High Performance Fortran: An overview

    SciTech Connect

    Zosel, M.E.

    1992-12-23

    The purpose of this paper is to give an overview of the work of the High Performance Fortran Forum (HPFF). This group of industry, academic, and user representatives has been meeting to define a set of extensions for Fortran dedicated to the special problems posed by a very high performance computers, especially the new generation of parallel computers. The paper describes the HPFF effort and its goals and gives a brief description of the functionality of High Performance Fortran (HPF).

  6. Thermal performance of plate-fin heat exchanger using passive techniques: vortex-generator and nanofluid

    NASA Astrophysics Data System (ADS)

    Khoshvaght-Aliabadi, Morteza

    2016-04-01

    This experimental study investigates the effects of vortex-generator (VG) and Cu/water nanofluid flow on performance of plate-fin heat exchangers. The Cu/water nanofluids are produced by using a one-step method, namely electro-exploded wire technique, with four nanoparticles weight fractions (i.e. 0.1, 0.2, 0.3, and 0.4 %). Required properties of nanofluids are systematically measured, and empirical correlations are developed. A highly precise test loop is fabricated to obtain accurate results of the heat transfer and pressure drop characteristics. Experiments are conducted for nanofluids flow inside the plain and VG channels. Based on the experimental results, utilizing the VG channel instead of the plain channel enhances the heat transfer rate, remarkably. Also, the results show that the VG channel is more effective than the nanofluid on the performance of plate-fin heat exchangers. It is observed that the combination of the two heat transfer enhancement techniques has a noticeably high thermal-hydraulic performance, about 1.67. Finally, correlations are developed to predict Nusselt number and friction factor of nanofluids flow inside the VG channel.

  7. Comparison of high-performance liquid chromatography separation of red wine anthocyanins on a mixed-mode ion-exchange reversed-phase and on a reversed-phase column.

    PubMed

    Vergara, Carola; Mardones, Claudia; Hermosín-Gutiérrez, Isidro; von Baer, Dietrich

    2010-09-03

    Anthocyanins, which confer the characteristic color to red wine, can be used as markers to classify wines according to the grape variety. It is a complex separation that requires very high chromatographic efficiency, especially in the case of aged red wines, due to the formation of pyranoanthocyanins. A coelution between these kinds of compounds can affect the R(ac/coum) ratio of aged wines, and might lead to false results when classifying the wine variety. In 2007, the use of a novel mixed-mode ion-exchange reversed-phase column was reported to separate anthocyanins extracted from grapes of Vitis labrusca with different selectivity than C-18 columns. In the present work, the separation of anthocyanins including pyranoanthocyanins in young and aged Cabernet Sauvignon wines and other varieties is evaluated. The most interesting contributions of this research are the different elution order and selectivity obtained for anthocyanins and pyranoanthocyanins (only formed in wine), compared with those observed in C-18 stationary phases. Also interesting is the separation of the polymeric fraction, which elutes as a clearly separated peak at the chromatogram's end. However, a comparison with a high efficiency C-18 column with the same dimensions and particle size demonstrated that the tested mixed-mode column shows broader peaks with a theoretical plate number below 8000, for malvidin-3-glucoside peak, while it can be up to 10 times higher for a high efficiency C-18 column, depending on the column manufacturer. Under the tested conditions, in mixed-mode phase, the analysis time is almost twice that of a C-18 column with the same dimensions and particle size. A mixed-mode phase with increased efficiency should provide an interesting perspective for separation of anthocyanins in wine, due to its improved selectivity, combined with a useful role in a second-dimension separation in preparative anthocyanin chromatography. 2010 Elsevier B.V. All rights reserved.

  8. ZEOLITE PERFORMANCE AS AN ANION EXCHANGER FOR ARSENIC SEQUESTRATION IN WATER

    EPA Science Inventory

    Zeolites are well known for their use in ion exchange and acid catalysis reactions. The use of zeolites in anion or ligand exchange reactions is less studied. The NH4+ form of zeolite Y (NY6, Faujasite) has been tested in this work to evaluate its performance for arsenic removal...

  9. A computer program for condensing heat exchanger performance in the presence of noncondensable gases

    NASA Technical Reports Server (NTRS)

    Yendler, Boris

    1994-01-01

    A computer model has been developed which evaluates the performance of a heat exchanger. This model is general enough to be used to evaluate many heat exchanger geometries and a number of different operating conditions. The film approach is used to describe condensation in the presence of noncondensables. The model is also easily expanded to include other effects like fog formation or suction.

  10. ZEOLITE PERFORMANCE AS AN ANION EXCHANGER FOR ARSENIC SEQUESTRATION IN WATER

    EPA Science Inventory

    Zeolites are well known for their use in ion exchange and acid catalysis reactions. The use of zeolites in anion or ligand exchange reactions is less studied. The NH4+ form of zeolite Y (NY6, Faujasite) has been tested in this work to evaluate its performance for arsenic removal...

  11. A review on the performance and modelling of proton exchange membrane fuel cells

    SciTech Connect

    Boucetta, A. Ghodbane, H. Bahri, M.; Ayad, M. Y.

    2016-07-25

    Proton Exchange Membrane Fuel Cells (PEMFC), are energy efficient and environmentally friendly alternative to conventional energy conversion for various applications in stationary power plants, portable power device and transportation. PEM fuel cells provide low operating temperature and high-energy efficiency with near zero emission. A PEM fuel cell is a multiple distinct parts device and a series of mass, energy, transport through gas channels, electric current transport through membrane electrode assembly and electrochemical reactions at the triple-phase boundaries. These processes play a decisive role in determining the performance of the Fuel cell, so that studies on the phenomena of gas flows and the performance modelling are made deeply. This paper gives a comprehensive overview of the state of the art on the Study of the phenomena of gas flow and performance modelling of PEMFC.

  12. A review on the performance and modelling of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Boucetta, A.; Ghodbane, H.; Ayad, M. Y.; Bahri, M.

    2016-07-01

    Proton Exchange Membrane Fuel Cells (PEMFC), are energy efficient and environmentally friendly alternative to conventional energy conversion for various applications in stationary power plants, portable power device and transportation. PEM fuel cells provide low operating temperature and high-energy efficiency with near zero emission. A PEM fuel cell is a multiple distinct parts device and a series of mass, energy, transport through gas channels, electric current transport through membrane electrode assembly and electrochemical reactions at the triple-phase boundaries. These processes play a decisive role in determining the performance of the Fuel cell, so that studies on the phenomena of gas flows and the performance modelling are made deeply. This paper gives a comprehensive overview of the state of the art on the Study of the phenomena of gas flow and performance modelling of PEMFC.

  13. Welding of dissimilar alloys for high temperature heat exchangers for SOFC

    SciTech Connect

    Wilson, R.D.; Hatem, J.; Dogan, O.N.; King, P.E.

    2006-10-01

    Reduction in the cost of balance of plant applications is one of the top priority focus areas for the successful implementation of solid oxide fuel cell technology. High temperature heat exchangers are employed to heat cathode air utilizing either hot gases coming from the anode side of the stack or other hot gases generated by external processes. In order to reduce the cost of heat exchangers, it may be necessary to apply several different materials, each in a different temperature zone, for the construction of the heat exchanger. This technique would require the joining of dissimilar materials in the construction. In this work, welding of commercial candidate dissimilar materials is explored. Filler materials were identified using equilibrium phase diagrams and thermodynamic simulation software. Autogenous welding was performed and the welding defects were characterized. Finally, experimental weld microstructures were compared to phases predicted by the simulations.

  14. Graphene-doped electrospun nanofiber membrane electrodes and proton exchange membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Wei, Meng; Jiang, Min; Liu, Xiaobo; Wang, Min; Mu, Shichun

    2016-09-01

    A rational electrode structure can allow proton exchange membrane (PEM) fuel cells own high performance with a low noble metal loading and an optimal transport pathway for reaction species. In this study, we develop a graphene doped polyacrylonitile (PAN)/polyvinylident fluoride (PVDF) (GPP) electrospun nanofiber electrode with improved electrical conductivity and high porosity, which could enhance the triple reaction boundary and promote gas and water transport throughout the porous electrode. Thus the increased electrochemical active surface area (ECSA) of Pt catalysts and fuel cell performance can be expected. As results, the ECSA of hot-pressed electrospun electrodes with 2 wt% graphene oxide (GO) is up to 84.3 m2/g, which is greatly larger than that of the conventional electrode (59.5 m2/g). Significantly, the GPP nanofiber electrospun electrode with Pt loading of 0.2 mg/cm2 exhibits higher fuel cell voltage output and stability than the conventional electrode.

  15. High Performance Thin Layer Chromatography.

    ERIC Educational Resources Information Center

    Costanzo, Samuel J.

    1984-01-01

    Clarifies where in the scheme of modern chromatography high performance thin layer chromatography (TLC) fits and why in some situations it is a viable alternative to gas and high performance liquid chromatography. New TLC plates, sample applications, plate development, and instrumental techniques are considered. (JN)

  16. High Performance Thin Layer Chromatography.

    ERIC Educational Resources Information Center

    Costanzo, Samuel J.

    1984-01-01

    Clarifies where in the scheme of modern chromatography high performance thin layer chromatography (TLC) fits and why in some situations it is a viable alternative to gas and high performance liquid chromatography. New TLC plates, sample applications, plate development, and instrumental techniques are considered. (JN)

  17. Cyclic high temperature heat storage using borehole heat exchangers

    NASA Astrophysics Data System (ADS)

    Boockmeyer, Anke; Delfs, Jens-Olaf; Bauer, Sebastian

    2016-04-01

    The transition of the German energy supply towards mainly renewable energy sources like wind or solar power, termed "Energiewende", makes energy storage a requirement in order to compensate their fluctuating production and to ensure a reliable energy and power supply. One option is to store heat in the subsurface using borehole heat exchangers (BHEs). Efficiency of thermal storage is increasing with increasing temperatures, as heat at high temperatures is more easily injected and extracted than at temperatures at ambient levels. This work aims at quantifying achievable storage capacities, storage cycle times, injection and extraction rates as well as thermal and hydraulic effects induced in the subsurface for a BHE storage site in the shallow subsurface. To achieve these aims, simulation of these highly dynamic storage sites is performed. A detailed, high-resolution numerical simulation model was developed, that accounts for all BHE components in geometrical detail and incorporates the governing processes. This model was verified using high quality experimental data and is shown to achieve accurate simulation results with excellent fit to the available experimental data, but also leads to large computational times due to the large numerical meshes required for discretizing the highly transient effects. An approximate numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly was therefore developed for use in larger scale simulations. The approximate numerical model still includes all BHE components and represents the temporal and spatial temperature distribution with a deviation of less than 2% from the fully discretized model. Simulation times are reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. This model is then used to investigate achievable storage capacity, injection and extraction rates as well as induced effects for

  18. Evaluation of high-performance computing software

    SciTech Connect

    Browne, S.; Dongarra, J.; Rowan, T.

    1996-12-31

    The absence of unbiased and up to date comparative evaluations of high-performance computing software complicates a user`s search for the appropriate software package. The National HPCC Software Exchange (NHSE) is attacking this problem using an approach that includes independent evaluations of software, incorporation of author and user feedback into the evaluations, and Web access to the evaluations. We are applying this approach to the Parallel Tools Library (PTLIB), a new software repository for parallel systems software and tools, and HPC-Netlib, a high performance branch of the Netlib mathematical software repository. Updating the evaluations with feed-back and making it available via the Web helps ensure accuracy and timeliness, and using independent reviewers produces unbiased comparative evaluations difficult to find elsewhere.

  19. Numerical investigation on the performance of fin and tube heat exchangers using rectangular vortex generators

    NASA Astrophysics Data System (ADS)

    Zeeshan, Mohd; Hazarika, Saheera Azmi; Nath, Sujit; Bhanja, Dipankar

    2017-07-01

    In the present work, a 3-D numerical investigation has been performed to explore the effect of attack angles on the thermal-hydraulic performance of fin and tube heat exchanger (FTHE) using rectangular winglet pairs (RWPs). RWPs are placed adjacent to the tubes and three attack angels are considered for the study i.e. 5°, 15° and 25°. The effect of attack angles are examined on the heat transfer characteristics as well as in pressure drop penalty with airside Reynolds number Rea ranges from 500 to 900. Two performance evaluation criteria namely PEC1 i.e. area goodness factor (j/f) and PEC2 i.e. heat transfer rate per unit fan power consumption (Q/Pf) are considered for the performance evaluation. Furthermore, MOORA method is applied to obtain the performance order of FTHE configurations by taking PEC1 and PEC2 as beneficial attributes and fan power Pf as a non-beneficial attribute, keeping equal importance to each attribute. The results show that 5° attack angle provides the better performance in terms of PEC1 as heat transfer coefficient is increased by 27.70% at Rea=500 and 32.73% at Rea=900 respectively with 13.01% increased pressure drop penalty at Rea=500 and 14.26% at Rea=900 respectively. In terms of PEC2, though the 5° attack angle provides the high values of Q/Pf factor among the 15° and 25° attack angles, but it is found insignificant to replace the baseline configuration i.e. plain fin and tube heat exchanger configuration without vortex generators. Moreover, in MOORA optimization analysis also, it is found that 5° attack angle provides the better thermal-hydraulic performance.

  20. High-speed ion-exchange separations prior to neptunium, plutonium, and impurity assays

    SciTech Connect

    Maxwell, S.L. III; Forrest, M.H.

    1986-01-01

    Separation of actinides and/or impurities prior to assay is required when sample matrix components interfere with the assay method. Separations frequently must be performed in glove boxes or shielded and analytical cells due to high levels of alpha/beta-gamma radioactivity. Conventional ion-exchange separations are typically more effective and quantitative than solvent extraction, but are prohibitively slow for routine application. At the Savannah River Plant, effective ion-exchange purifications of process samples are now performed with a modified commercial vacuum extraction system. The combination of relatively small-size ion-exchange resin particles and applied vacuum provides rapid, efficient, quantitative separations. High-speed ion exchange has been successfully applied at SRP to the separation of neptunium from plutonium and to the separation of trace impurities from uranium product solutions prior to neptunium and impurity assays by direct current argon plasma (DCAP) emission spectrometry. This paper will describe several separations and will present details of developed procedures and subsequent assays.

  1. Selective Cu{sup 2+} and Pb{sup 2+} exchange with highly charged cation exchanger of Na-4-mica

    SciTech Connect

    Kodama, Tatsuya; Komarneni, Sridhar

    1999-09-01

    Selective cation exchange for Cu and Pb has been demonstrated with the high-charge-density sodium fluorophlogopite mica, Na-4-mica. The 2Na{sup +} {yields} M{sup 2+} exchange reaction (M = Cu or Pb) was investigated with Na-4-micas prepared by two different synthetic processes. One was easily and economically prepared by crystallization from a mixture of NaF, MgO, and metakaolin, the latter serves as an inexpensive aluminosilicate source. Another was prepared by solution-sol-gel processing. Ion-exchange isotherms for Cu{sup 2+} and Pb{sup 2+} were obtained at room temperature. The thermodynamic functions for the initial ion-exchange reactions were calculated because the isotherms were not completed., High selectivities for both copper and lead exchange were found on the highly crystallized Na-4-mica prepared from metakaolin. Their ion-exchange capacities were 225 and 257 milliequivalents per 100 g of dry clay for Cu{sup 2+} and Pb{sup 2+}, respectively. This high level decontamination of copper and lead with the highly crystallized Na-4-mica from metakaolin will be a very important separation required for purification of drinking water as well as for wastewater treatment and disposal.

  2. Thermal performance of direct contact heat exchangers for mixed hydrocarbons

    SciTech Connect

    Sharpe, L. Jr.; Coswami, D.Y.; Demuth, O.J.; Mines, G.

    1985-01-01

    This paper describes a physical and a mathematical model for evaluating the tray efficiencies for a direct contact heat exchanger (DCHX). The model is then used to determine the efficiencies for tests conducted on a 60kW sieve tray DCHX as heat is transferred from a geofluid (brine) to a working fluid (mixed hydrocarbons). It is assumed that there are three distinct regions in the column based on the state of the working fluid, as follows: Region I - Preheating with no vaporization; Region II - Preheating with moderate vaporization; and Region III - Major vaporization. The boundaries of these regions can be determined from the experimental data. In the model, mass balance and energy balance is written for a tray ''N'' in each of these regions. Finally, the ''tray efficiency'' or ''heat transfer'' effectiveness of the tray is calculated based on the definition that it is the ratio of the actual heat transfer to the maximum possible, thermodynamically.

  3. Performance of OTEC Heat Exchanger Materials in Tropical Seawaters

    NASA Astrophysics Data System (ADS)

    Larsen-Basse, Jorn

    1985-03-01

    The corrosion of several aluminum alloys in flowing Hawaiian surface seawater and water from 600 m depth for exposure periods up to three years has been studied. The alloys tested in cold water were Alclad (7072) 3003 and 3004; and bare 3004 and 5052). All show some pitting. Pit growth is slow, and pits do not penetrate the cladding. In the warm water, only uniform corrosion has been found. All alloys corrode at the same, low rate of˜3 μm/year after an initial short period of more rapid corrosion. This behavior is closely linked to the formation of a protective inorganic scale film on the surface. It consists of precipitated scale minerals from the seawater and aluminum corrosion products. The results indicate that OTEC evaporator heat exchangers constructed of aluminum alloys should have acceptable service lives.

  4. High porewater exchange in a mangrove-dominated estuary revealed from short-lived radium isotopes

    NASA Astrophysics Data System (ADS)

    Sadat-Noori, Mahmood; Santos, Isaac R.; Tait, Douglas R.; Reading, Michael J.; Sanders, Christian J.

    2017-10-01

    We hypothesise that mangroves play an important role in groundwater exchange processes in sub-tropical and tropical estuarine waters. To investigate this, multiple high resolution time series measurements of radium across a tidal estuary (Coffs Creek, NSW, Australia) were performed as well as a spatial survey in both bottom and surface layers. Results from the spatial survey revealed increasing radium concentrations in parts of the estuary surrounded by mangroves. The average radium concentration in estuary areas lined with mangroves was 2.5 times higher than the average concentration at the mouth of the estuary and 6.5-fold higher than upstream freshwater areas. Additionally, the area enriched in radium coincided with low dissolved oxygen concentrations, implying that porewater exchange may drive anoxia. A radium mass balance model based on 223Ra and 224Ra isotopes at different sections of the estuary confirmed higher porewater exchange rates from areas fringed with mangrove vegetation. Estimated porewater exchange rates were 27.8 ± 5.3 and 13.6 ± 2.1 cm d-1 (0.8 ± 0.1 and 0.4 ± 0.1 m3 s-1) based on 223Ra and 224Ra isotopes, respectively. The average saline porewater exchange was ∼ 10-fold larger than the upstream surface freshwater inputs to the estuary. We suggest that mangrove environments within subtropical estuaries are hotspots for porewater exchange due to the complex belowground structure of crab burrows and the effect of tidal pumping. Because porewater exchange releases carbon and nitrogen from coastal sediments, development and modification of mangrove areas in subtropical estuaries have a significant effect on coastal biogeochemical cycles.

  5. A high-altitude balloon platform for determining exchange of carbon dioxide over agricultural landscapes

    NASA Astrophysics Data System (ADS)

    Bouche, Angie; Beck-Winchatz, Bernhard; Potosnak, Mark J.

    2016-11-01

    The exchange of carbon dioxide between the terrestrial biosphere and the atmosphere is a key process in the global carbon cycle. Given emissions from fossil fuel combustion and the appropriation of net primary productivity by human activities, understanding the carbon dioxide exchange of cropland agroecosystems is critical for evaluating future trajectories of climate change. In addition, human manipulation of agroecosystems has been proposed as a technique of removing carbon dioxide from the atmosphere via practices such as no-tillage and cover crops. We propose a novel method of measuring the exchange of carbon dioxide over croplands using a high-altitude balloon (HAB) platform. The HAB methodology measures two sequential vertical profiles of carbon dioxide mixing ratio, and the surface exchange is calculated using a fixed-mass column approach. This methodology is relatively inexpensive, does not rely on any assumptions besides spatial homogeneity (no horizontal advection) and provides data over a spatial scale between stationary flux towers and satellite-based inversion calculations. The HAB methodology was employed during the 2014 and 2015 growing seasons in central Illinois, and the results are compared to satellite-based NDVI values and a flux tower located relatively near the launch site in Bondville, Illinois. These initial favorable results demonstrate the utility of the methodology for providing carbon dioxide exchange data over a large (10-100 km) spatial area. One drawback is its relatively limited temporal coverage. While recruiting citizen scientists to perform the launches could provide a more extensive dataset, the HAB methodology is not appropriate for providing estimates of net annual carbon dioxide exchange. Instead, a HAB dataset could provide an important check for upscaling flux tower results and verifying satellite-derived exchange estimates.

  6. High Performance Flexible Thermal Link

    NASA Astrophysics Data System (ADS)

    Sauer, Arne; Preller, Fabian

    2014-06-01

    The paper deals with the design and performance verification of a high performance and flexible carbon fibre thermal link.Project goal was to design a space qualified thermal link combining low mass, flexibility and high thermal conductivity with new approaches regarding selected materials and processes. The idea was to combine the advantages of existing metallic links regarding flexibility and the thermal performance of high conductive carbon pitch fibres. Special focus is laid on the thermal performance improvement of matrix systems by means of nano-scaled carbon materials in order to improve the thermal performance also perpendicular to the direction of the unidirectional fibres.One of the main challenges was to establish a manufacturing process which allows handling the stiff and brittle fibres, applying the matrix and performing the implementation into an interface component using unconventional process steps like thermal bonding of fibres after metallisation.This research was funded by the German Federal Ministry for Economic Affairs and Energy (BMWi).

  7. The performance of ammonium exchanged zeolite for the biodegradation of petroleum hydrocarbons migrating in soil water.

    PubMed

    Freidman, Benjamin L; Gras, Sally L; Snape, Ian; Stevens, Geoff W; Mumford, Kathryn A

    2016-08-05

    Nitrogen deficiency has been identified as the main inhibiting factor for biodegradation of petroleum hydrocarbons in low nutrient environments. This study examines the performance of ammonium exchanged zeolite to enhance biodegradation of petroleum hydrocarbons migrating in soil water within laboratory scale flow cells. Biofilm formation and biodegradation were accelerated by the exchange of cations in soil water with ammonium in the pores of the exchanged zeolite when compared with natural zeolite flow cells. These results have implications for sequenced permeable reactive barrier design and the longevity of media performance within such barriers at petroleum hydrocarbon contaminated sites deficient in essential soil nutrients.

  8. High Performance Networks for High Impact Science

    SciTech Connect

    Scott, Mary A.; Bair, Raymond A.

    2003-02-13

    This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

  9. Waiting for more: the performance of domestic dogs (Canis familiaris) on exchange tasks.

    PubMed

    Leonardi, Rebecca J; Vick, Sarah-Jane; Dufour, Valérie

    2012-01-01

    Five domestic dogs (Canis familiaris) were tested in a cooperative exchange task with an experimenter, as previously tested in non-human primates. In the first task, the dogs exchanged to maximise payoffs when presented with food items of differing quality. All consistently exchanged lower-value for higher-value rewards, as determined by their individual food preference, and exchanges corresponded significantly with the spontaneous preferences of three dogs. Next, all subjects demonstrated an ability to perform two and three exchanges in succession, to gain both qualitative and quantitatively increased rewards (group mean = 72 and 92% successful triple exchanges, respectively). Finally, the ability to delay gratification over increasing intervals was tested; the dogs kept one food item to exchange later for a larger item. As previously reported in non-human primates, there was considerable individual variation in the tolerance of delays, between 10 s and 10 min for the largest rewards. For those who reached longer time lags (>40 s), the dogs gave up the chance to exchange earlier than expected by each subject's general waiting capacity; the dogs anticipated delay duration and made decisions according to the relative reward values offered. Compared to primates, dogs tolerated relatively long delays for smaller value rewards, suggesting that the socio-ecological history of domestic dogs facilitates their performance on decision-making and delay of gratification tasks.

  10. Hydrogel-stabilized droplet bilayers for high speed solution exchange.

    PubMed

    Acharya, Shiv A; Portman, Alexander; Salazar, Carl S; Schmidt, Jacob J

    2013-11-05

    Many applications utilizing artificial lipid bilayers require the ability to exchange the bilayer's solution environment. However, because of the instability of the bilayer, the rate of solution exchange is limited, which significantly hinders the measurement rate and throughput. We have developed an artificial bilayer system that can withstand high flow speeds, up to 2.1 m/s, by supporting the bilayer with a hydrogel. We demonstrated the ability to measure during flow by measuring the conductance of gramicidin-A channels while switching between solutions of two different compositions, recording a time to measure 90% change in current of approximately 2.7 seconds at a flow rate of 0.1 m/s. We also demonstrated a potential application of this system by measuring the conductance modulation of the rat TRPM8 ion channel by an agonist and antagonist at varying concentrations, obtaining 7-point IC50 and EC50 values in approximately 7 minutes and 4-point values within 4 minutes.

  11. [Adjustment processes of foreign exchange high school students in Japan].

    PubMed

    Nagai, S

    1988-04-01

    The main purpose of the present study was to excavate the adjustment problems of 93 high school exchange students in Japan. Questionnaires including Cornell Medical Index (CMI) were administered longitudinally. In addition, individual interviews were held with those who had failed to adjust to the Japanese society. As for the subjective psychosomatic symptoms manifested in CMI, there was no significant sex difference while Asians were successively found to be significantly more liable to diseases and less adjusted than non-Asians. The questionnaires other than CMI disclosed difficulties which exchange students found in adjusting at Japanese home, including delicate personal relationships with host siblings, apparent lack of affective gestures (hugs and kisses), and early curfew. In the meanwhile, language barrier and trifling rules constituted the primary difficulties they faced at host school. On account of prejudice against women, girls had more unpleasant experiences than boys. Through individual interviews, all of the early returners were found to have already had a basic problem in their home countries.

  12. High-Performance Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Reuhs, Bradley L.; Rounds, Mary Ann

    High-performance liquid chromatography (HPLC) developed during the 1960s as a direct offshoot of classic column liquid chromatography through improvements in the technology of columns and instrumental components (pumps, injection valves, and detectors). Originally, HPLC was the acronym for high-pressure liquid chromatography, reflecting the high operating pressures generated by early columns. By the late 1970s, however, high-performance liquid chromatography had become the preferred term, emphasizing the effective separations achieved. In fact, newer columns and packing materials offer high performance at moderate pressure (although still high pressure relative to gravity-flow liquid chromatography). HPLC can be applied to the analysis of any compound with solubility in a liquid that can be used as the mobile phase. Although most frequently employed as an analytical technique, HPLC also may be used in the preparative mode.

  13. Performance of multiple mini-tube heat exchangers as an internal heat exchanger of a vapor-injection cycle heat pump

    NASA Astrophysics Data System (ADS)

    Jang, Jin Yong; Jeong, Ji Hwan

    2016-04-01

    A multiple mini-tube (MMT) heat exchanger was considered as an internal heat exchanger of vapor-injection cycle heat pump. Heat transfer and pressure drop in multiple mini-tube heat exchangers were numerically and experimentally investigated. Results show that the best performance of the MMT heat exchanger can be obtained when the intermediate-pressure two-phase refrigerant is supplied to the shell-side and this refrigerant reaches a saturated vapor state at the exit of the heat exchanger.

  14. Pressurized pulverized coal combustion combined cycle with high temperature heat exchanger

    SciTech Connect

    Ehlers, C.; Leithner, R.

    2000-07-01

    Among power plants based on coal combustion, a Pressurized Pulverized Coal Combustion Combined Cycle (PPCCCC) can achieve highest electrical efficiencies. This cycle is not yet state of the art as a reliable and sufficient system for gas cleaning from dust and alkaline compounds upstream of the gas turbine, which operates at inlet temperatures about 2,400 F, is still to be developed. Experience in fly ash precipitation can be derived from Circulating Fluidized Bed Combustion which--due to the sticky property of coal ash at higher temperatures--is restricted to temperatures below 1,700 F. At the Institute fur Warme- und Brennstofftechnik (IWBT) of the Technical University of Braunschweig a cycle has been developed that integrates a fly ash removal at these temperature into a combined cycle by means of a high temperature heat exchanger. The flue gas leaving the combustion chamber is cooled down in the heat exchanger before it is cleaned by means of ceramic filter candles. After that, the clean flue gas is heated up again in counterflow to the raw gas to drive the gas turbine. In this cycle, the heat exchanger provides acceptable temperatures for the gas cleaning. In a research project performed at the IWBT, a heat exchanger from ceramic material and the fly ash removal are tested in an atmospheric test facility. One goal of the test facility is to find out the maximum allowable operating temperature of the heat exchanger, concerning possible slagging and high temperature corrosion effects, according to the properties of the coal ash. Furthermore, the operation of the gas cleaning system in combination with the ceramic heat exchanger is investigated.

  15. Foundation Heat Exchanger Final Report: Demonstration, Measured Performance, and Validated Model and Design Tool

    SciTech Connect

    Hughes, Patrick; Im, Piljae

    2012-04-01

    Geothermal heat pumps, sometimes called ground-source heat pumps (GSHPs), have been proven capable of significantly reducing energy use and peak demand in buildings. Conventional equipment for controlling the temperature and humidity of a building, or supplying hot water and fresh outdoor air, must exchange energy (or heat) with the building's outdoor environment. Equipment using the ground as a heat source and heat sink consumes less non-renewable energy (electricity and fossil fuels) because the earth is cooler than outdoor air in summer and warmer in winter. The most important barrier to rapid growth of the GSHP industry is high first cost of GSHP systems to consumers. The most common GSHP system utilizes a closed-loop ground heat exchanger. This type of GSHP system can be used almost anywhere. There is reason to believe that reducing the cost of closed-loop systems is the strategy that would achieve the greatest energy savings with GSHP technology. The cost premium of closed-loop GSHP systems over conventional space conditioning and water heating systems is primarily associated with drilling boreholes or excavating trenches, installing vertical or horizontal ground heat exchangers, and backfilling the excavations. This project investigates reducing the cost of horizontal closed-loop ground heat exchangers by installing them in the construction excavations, augmented when necessary with additional trenches. This approach applies only to new construction of residential and light commercial buildings or additions to such buildings. In the business-as-usual scenario, construction excavations are not used for the horizontal ground heat exchanger (HGHX); instead the HGHX is installed entirely in trenches dug specifically for that purpose. The potential cost savings comes from using the construction excavations for the installation of ground heat exchangers, thereby minimizing the need and expense of digging additional trenches. The term foundation heat exchanger (FHX

  16. Foundation Heat Exchanger Final Report: Demonstration, Measured Performance, and Validated Model and Design Tool

    SciTech Connect

    Hughes, Patrick; Im, Piljae

    2012-01-01

    Geothermal heat pumps, sometimes called ground-source heat pumps (GSHPs), have been proven capable of significantly reducing energy use and peak demand in buildings. Conventional equipment for controlling the temperature and humidity of a building, or supplying hot water and fresh outdoor air, must exchange energy (or heat) with the building's outdoor environment. Equipment using the ground as a heat source and heat sink consumes less non-renewable energy (electricity and fossil fuels) because the earth is cooler than outdoor air in summer and warmer in winter. The most important barrier to rapid growth of the GSHP industry is high first cost of GSHP systems to consumers. The most common GSHP system utilizes a closed-loop ground heat exchanger. This type of GSHP system can be used almost anywhere. There is reason to believe that reducing the cost of closed-loop systems is the strategy that would achieve the greatest energy savings with GSHP technology. The cost premium of closed-loop GSHP systems over conventional space conditioning and water heating systems is primarily associated with drilling boreholes or excavating trenches, installing vertical or horizontal ground heat exchangers, and backfilling the excavations. This project investigates reducing the cost of horizontal closed-loop ground heat exchangers by installing them in the construction excavations, augmented when necessary with additional trenches. This approach applies only to new construction of residential and light commercial buildings or additions to such buildings. In the business-as-usual scenario, construction excavations are not used for the horizontal ground heat exchanger (HGHX); instead the HGHX is installed entirely in trenches dug specifically for that purpose. The potential cost savings comes from using the construction excavations for the installation of ground heat exchangers, thereby minimizing the need and expense of digging additional trenches. The term foundation heat exchanger (FHX

  17. Multilayer high performance insulation materials

    NASA Technical Reports Server (NTRS)

    Stuckey, J. M.

    1971-01-01

    A number of tests are required to evaluate both multilayer high performance insulation samples and the materials that comprise them. Some of the techniques and tests being employed for these evaluations and some of the results obtained from thermal conductivity tests, outgassing studies, effect of pressure on layer density tests, hypervelocity impact tests, and a multilayer high performance insulation ambient storage program at the Kennedy Space Center are presented.

  18. HIGH ASPECT RATIO ION EXCHANGE RESIN BED - HYDRAULIC RESULTS FOR SPERICAL RESIN BEADS

    SciTech Connect

    Duignan, M; Charles Nash, C; Timothy Punch, T

    2007-09-27

    A principal role of the DOE Savannah River Site is to safely dispose of a large volume of liquid nuclear waste held in many storage tanks. An in-tank ion exchange unit is being considered for cesium removal to accelerate waste processing. This unit is planned to have a relatively high bed height to diameter ratio (10:1). Complicating the design is the need to cool the ion exchange media; therefore, the ion exchange column will have a central cooling core making the flow path annular. To separate cesium from waste the media being considered is made of resorcinol formaldehyde resin deposited on spherical plastic beads and is a substitute for a previously tested resin made of crystalline silicotitanate. This spherical media not only has an advantage of being mechanically robust, but, unlike its predecessor, it is also reusable, that is, loaded cesium can be removed through elution and regeneration. Resin regeneration leads to more efficient operation and less spent resin waste, but its hydraulic performance in the planned ion exchange column was unknown. Moreover, the recycling process of this spherical resorcinol formaldehyde causes its volume to significantly shrink and swell. To determine the spherical media's hydraulic demand a linearly scaled column was designed and tested. The waste simulant used was prototypic of the wastes' viscosity and density. This paper discusses the hydraulic performance of the media that will be used to assist in the design of a full-scale unit.

  19. Measured performance of the heat exchanger in the NASA icing research tunnel under severe icing and dry-air conditions

    NASA Technical Reports Server (NTRS)

    Olsen, W.; Vanfossen, J.; Nussle, R.

    1987-01-01

    Measurements were made of the pressure drop and thermal perfomance of the unique refrigeration heat exchanger in the NASA Lewis Icing Research Tunnel (IRT) under severe icing and frosting conditions and also with dry air. This data will be useful to those planning to use or extend the capability of the IRT and other icing facilities (e.g., the Altitude Wind Tunnel-AWT). The IRT heat exchanger and refrigeration system is able to cool air passing through the test section down to at least a total temperature of -30 C (well below icing requirements), and usually up to -2 C. The system maintains a uniform temperature across the test section at all airspeeds, which is more difficult and time consuming at low airspeeds, at high temperatures, and on hot, humid days when the cooling towers are less efficient. The very small surfaces of the heat exchanger prevent any icing cloud droplets from passing through it and going through the tests section again. The IRT heat exchanger was originally designed not to be adversely affected by severe icing. During a worst-case icing test the heat exchanger iced up enough so that the temperature uniformaity was no worse than about +/- 1 deg C. The conclusion is that the heat exchanger design performs well.

  20. Ion Exchange Resin Bead Decoupled High-Pressure Electroosmotic Pump

    PubMed Central

    Yang, Bingcheng; Zhang, Feifang; Liang, Xinmiao; Dasgupta, Purnendu K.; Liu, Shaorong

    2009-01-01

    We describe an electroosmotic pump (EOP) that utilizes a cation exchange resin bead as the electric field decoupler. The resin bead serves as a electrical grounding joint without fluid leakage, thus eliminating electrolytic gas interference from the flow channels. The arrangement is easy to practice from readily available components, displays a very low electrical resistance, and is capable of bearing high backpressure (at least 3200 psi). We use a silica xerogel column as the EOP element to pump water and demonstrate a complete capillary ion chromatograph (CIC), which uses a similar bead based microelectrodialytic generator (μ-EDG) to generate a KOH eluent from the pumped water. We observed good operational stability of the complete arrangement over long periods. PMID:19449862

  1. High performance flexible heat pipes

    NASA Technical Reports Server (NTRS)

    Shaubach, R. M.; Gernert, N. J.

    1985-01-01

    A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.

  2. High performance flexible heat pipes

    NASA Technical Reports Server (NTRS)

    Shaubach, R. M.; Gernert, N. J.

    1985-01-01

    A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.

  3. Enhanced performance of anion exchange membranes via crosslinking of ion cluster regions for fuel cells

    NASA Astrophysics Data System (ADS)

    Lai, Ao Nan; Guo, Dong; Lin, Chen Xiao; Zhang, Qiu Gen; Zhu, Ai Mei; Ye, Mei Ling; Liu, Qing Lin

    2016-09-01

    Development of anion exchange membranes (AEMs) with high hydroxide conductivity, good dimensional and alkaline stabilities is still a challenge for the practical application of AEM fuel cells. In this study, we report a new strategy to prepare high-performance AEMs with crosslinked ionic regions. A series of phenolphthalein-containing poly(arylene ether sulfone)s crosslinked AEMs was synthesized by grafting ion groups selectively and densely on the phenolphthalein units to form ion clusters that are further crosslinked to generate the hydrophilic ionic regions. The crosslinking reaction not only improved the dimensional stability of the AEMs, but also increased the aggregation of the ion clusters leading to the formation of hydrophilic/hydrophobic phase-separated morphology and ion-conducting channels. As a result, enhancements in both ion conductivity and dimensional stability can be achieved. The crosslinked AEMs showed high hydroxide conductivities in the range of 52.2-143.4 mS cm-1 from 30 to 80 °C and a superb ratio of relative conductivity to relative swelling at 80 °C. Furthermore, the crosslinked AEMs also exhibited good mechanical properties, thermal and alkaline stabilities and desirable single cell performance. This work presents a promising strategy for the synthesis of high-performance AEMs for fuel cells.

  4. Prototype Vent Gas Heat Exchanger for Exploration EVA - Performance and Manufacturing Characteristics

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory J.; Strange, Jeremy; Jennings, Mallory

    2013-01-01

    NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system s liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems (UTAS), but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.57 lb. Performance of the heat exchanger met the requirements and the model predictions. The water side and gas side pressure drops were less 0.8 psid and 0.5 inches of water, respectively, and an effectiveness of 94% was measured at the nominal air side pressure of 4.1 psia.

  5. Determination of melamine and cyromazine in milk by high performance liquid chromatography coupled with online solid-phase extraction using a novel cation-exchange restricted access material synthesized by surface initiated atom transfer radical polymerization.

    PubMed

    Zhang, Yingying; Lin, Shen; Jiang, Ping; Zhu, Xudong; Ling, Jing; Zhang, Wen; Dong, Xiangchao

    2014-04-11

    A novel strong-cation-exchange restricted access material has been synthesized by atom transfer radical polymerization (ATRP). In the synthesis, poly(3-sulfopropyl methacrylate-co-ethylene dimethacrylate), [p(SPM/EDMA)] was grafted on the silica by surface-initiated ATRP first. The poly(glycerol mono-methacrylate) [pGMMA] was then immobilized on the external surface, which created a chemical diffusion barrier for protein exclusion. The resulting Sil-g-p(SPM/EDMA)-g-pGMMA has both functions of protein exclusion and cation exchange, exhibiting the property of cation-exchange restricted access material. The application of Sil-g-p(SPM/EDMA)-g-pGMMA has been studied by the determination of melamine and cyromazine in bovine milk using the online solid-phase extraction/HPLC method. In the process, the Sil-g-p(SPM/EDMA)-g-pGMMA was used for the sample pre-treatment and a HILIC column was employed as the analytical column. The method has shown good accuracy, precision and low limits of detections. The result demonstrated that the Sil-g-p(SPM/EDMA)-g-pGMMA can be used for the cation extraction from biological samples by direct HPLC injection.

  6. High performance dielectric materials development

    NASA Astrophysics Data System (ADS)

    Piche, Joe; Kirchner, Ted; Jayaraj, K.

    1994-09-01

    The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.

  7. High performance dielectric materials development

    NASA Technical Reports Server (NTRS)

    Piche, Joe; Kirchner, Ted; Jayaraj, K.

    1994-01-01

    The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.

  8. Performance analysis of distributed and centralized models for electronic medical record exchanges.

    PubMed

    Huang, Ean-Wen; Lee, Chiung-San; Jiang, Wey-Wen; Chiou, Shwu-Fen; Liu, Fei-Ying; Liou, Der-Ming

    2007-01-01

    Electronic medical record exchanges can save time and reduce cost by eliminating redundant data and typing errors. The major steps of record exchange consist of querying information from database, encoding data into messages, and sending and decoding messages. Three medical-record-exchange models were proposed in the past, including the distributed, centralized, and indexed models. In this paper, the queuing theory is applied to evaluate the performance of the three models. We estimate the service time for each queue of the CPU, database and network, and predict the response time, probable bottlenecks and system capacities of each model.

  9. High Performance Anion Chromatography of Gadolinium Chelates.

    PubMed

    Hajós, Peter; Lukács, Diana; Farsang, Evelin; Horváth, Krisztian

    2016-11-01

    High performance anion chromatography (HPIC) method to separate ionic Gd chelates, [Formula: see text], [Formula: see text], [Formula: see text] and free matrix anions was developed. At alkaline pHs, polydentate complexing agents such as ethylene-diamine-tetraacetate, diethylene-triamine pentaacetate and trans-1,2-diamine-cyclohexane-tetraacetate tend to form stable Gd chelate anions and can be separated by anion exchange. Separations were studied in the simple isocratic chromatographic run over the wide range of pH and concentration of carbonate eluent using suppressed conductivity detection. The ion exchange and complex forming equilibria were quantitatively described and demonstrated in order to understand major factors in the control of selectivity of Gd chelates. Parameters of optimized resolution between concurrent ions were presented on a 3D resolution surface. The applicability of the developed method is represented by the simultaneous analysis of Gd chelates and organic/inorganic anions. Inductively coupled plasma atomic emission spectroscopy  (ICP-AES) analysis was used for confirmation of HPIC results for Gd. Collection protocols for the heart-cutting procedure of chromatograms were applied. SPE procedures were also developed not only to extract traces of free gadolinium ions from samples, but also to remove the high level of interfering anions of the complex matrices. The limit of detection, the recoverability and the linearity of the method were also presented. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. The effect of high temperatures on tropical forest gas exchange.

    NASA Astrophysics Data System (ADS)

    Doughty, C. E.; Goulden, M.; Miller, S.; Da Rocha, H.

    2006-12-01

    Further research is required to understand the sensitivity of tropical forest to climate warming. Previous research has shown that tropical forest photosynthesis decreases and respiration increases at high leaf temperatures and that tree growth is reduced in years with higher average air temperatures (Clark et al 2003). Models indicate that the climate related destruction of the Amazon forest will amplify global warming by 1.5¢ª C, resulting in a mean temperature increase of 5.5¢ª C, as compared with 4¢ª C without this carbon cycle feedback (Cox et al 2000). These studies demonstrate the importance of temperature on tropical forest gas exchange. At the LBA Tapajos km 83 site we determined what controls tropical leaf temperature and how temperature affects photosynthesis and respiration. Sunlit leaves were substantially warmer than air temperatures and this had a negative effect on photosynthesis and stomatal conductance. We used eddy flux data to compare intervals of 10 minute cloudy periods followed by 20 minute sunny periods to see if similar trends could be seen at both the leaf and canopy level. The longer the sunny interval the warmer the canopy became and canopy conductance and CO2 exchange declined correspondingly. As the canopy warmed u* increased which increased turbulence and kept the canopy temperature from rising more. Long light intervals can cause heat stress in tropical forests but due to the very cloudy nature of the tropics such intervals are rare. However, if the tropics become both warmer and less cloudy such heat stress will increase.

  11. THERMAL PERFORMANCE ANALYSIS FOR SMALL ION-EXCHANGE CESIUM REMOVAL PROCESS

    SciTech Connect

    Lee, S.; King, W.

    2009-12-29

    The In-Riser Ion Exchange program focuses on the development of in-tank systems to decontaminate high level waste (HLW) salt solutions at the Savannah River Site (SRS) and the Hanford Site. Small Column Ion Exchange (SCIX) treatment for cesium removal is a primary in-riser technology for decontamination prior to final waste immobilization in Saltstone. Through this process, radioactive cesium from the salt solution is adsorbed onto the ion exchange media which is packed within a flow-through column. Spherical Resorcinol-Formaldehyde (RF) is being considered as the ion exchange media for the application of this technology at both sites. A packed column loaded with media containing radioactive cesium generates significant heat from radiolytic decay. Under normal operating conditions, process fluid flow through the column can provide adequate heat removal from the columns. However, in the unexpected event of loss of fluid flow or fluid drainage from the column, the design must be adequate to handle the thermal load to avoid unacceptable temperature excursions. Otherwise, hot spots may develop locally which could degrade the performance of the ion-exchange media or the temperature could rise above column safety limits. Data exists which indicates that performance degradation with regard to cesium removal occurs with RF at 65C. In addition, the waste supernate solution will boil around 130C. As a result, two temperature limits have been assumed for this analysis. An additional upset scenario was considered involving the loss of the supernate solution due to inadvertent fluid drainage through the column boundary. In this case, the column containing the loaded media could be completely dry. This event is expected to result in high temperatures that could damage the column or cause the RF sorbent material to undergo undesired physical changes. One objective of these calculations is to determine the range of temperatures that should be evaluated during testing with the RF

  12. Synthesis, structural characterization, and performance evaluation of resorcinol-formaldehyde (R-F) ion-exchange resin

    SciTech Connect

    Hubler, T.L.; Franz, J.A.; Shaw, W.J.; Bryan, S.A.; Hallen, R.T.; Brown, G.N.; Bray, L.A.; Linehan, J.C.

    1995-08-01

    The 177 underground storage tanks at the DOE`s Hanford Site contain an estimated 180 million tons of high-level radioactive wastes. It is desirable to remove and concentrate the highly radioactive fraction of the tank wastes for vitrification. Resorcinol-formaldehyde (R-F) resin, an organic ion-exchange resin with high selectivity and capacity for the cesium ion, which is a candidate ion-exchange material for use in remediation of tank wastes. The report includes information on the structure/function analysis of R-F resin and the synthetic factors that affect performance of the resin. CS-100, a commercially available phenol-formaldehyde (P-F) resin, and currently the baseline ion-exchanger for removal of cesium ion at Hanford, is compared with the R-F resin. The primary structural unit of the R-F resin was determined to consist of a 1,2,3,4-tetrasubstituted resorcinol ring unit while CS-100, was composed mainly of a 1,2,4-trisubstituted ring. CS-100 shows the presence of phenoxy-ether groups, and this may account for the much lower decontamination factor of CS-100 for cesium ion. Curing temperatures for the R-F resin were found to be optimal at 105--130C. At lower temperatures, insufficient curing, hence crosslinking, of the polymer resin occurs and selectivity for cesium drops. Curing at elevated temperatures leads to chemical degradation. Optimal particle size for R-F resin is in the range of 20--50 mesh-sized particles. R-F resin undergoes chemical degradation or oxidation which destroys ion-exchange sites. The ion-exchange sites (hydroxyl groups) are converted to quinones and ketones. CS-100, though it has much lower performance for cesium ion-exchange, is significantly more chemically stable than R-F resin. To gamma radiation, CS-100 is more radiolytically stable than R-F resin.

  13. Respiratory gas exchange of high altitude adapted chick embryos

    NASA Technical Reports Server (NTRS)

    Wangensteen, O. D.; Rahn, H.; Burton, R. R.; Smith, A. H.

    1974-01-01

    Study of gas exchange by embryos from chickens acclimatized to an altitude of 3800 m. The oxygen partial pressure and carbon dioxide partial pressure differences across the egg shell were measured and found to be less than the values previously reported for sea-level eggs by about a factor of two. Further measurements of embryonic oxygen consumption and shell conductivity to oxygen indicated that, compared to eggs at sea level, oxygen consumption was reduced by a factor of 0.58 while conductivity to oxygen was increased only by a factor of 1.07 in the high-altitude eggs. These independent measurements predict the change in oxygen partial pressure across the egg shell of the high-altitude eggs to be only 0.54 times that of sea-level eggs; the directly measured factor was 0.53. The authors conclude that at high altitude, a major adaptation of the chick embryo is a reduced metabolism which decreases the change in oxygen partial pressure across the egg shell since its gas conductivity remains essentially unchanged.

  14. Respiratory gas exchange of high altitude adapted chick embryos

    NASA Technical Reports Server (NTRS)

    Wangensteen, O. D.; Rahn, H.; Burton, R. R.; Smith, A. H.

    1974-01-01

    Study of gas exchange by embryos from chickens acclimatized to an altitude of 3800 m. The oxygen partial pressure and carbon dioxide partial pressure differences across the egg shell were measured and found to be less than the values previously reported for sea-level eggs by about a factor of two. Further measurements of embryonic oxygen consumption and shell conductivity to oxygen indicated that, compared to eggs at sea level, oxygen consumption was reduced by a factor of 0.58 while conductivity to oxygen was increased only by a factor of 1.07 in the high-altitude eggs. These independent measurements predict the change in oxygen partial pressure across the egg shell of the high-altitude eggs to be only 0.54 times that of sea-level eggs; the directly measured factor was 0.53. The authors conclude that at high altitude, a major adaptation of the chick embryo is a reduced metabolism which decreases the change in oxygen partial pressure across the egg shell since its gas conductivity remains essentially unchanged.

  15. Prototype Vent Gas Heat Exchanger for Exploration EVA - Performance and Manufacturing Characteristics

    NASA Technical Reports Server (NTRS)

    Jennings, Mallory; Quinn, Gregory; Strange, Jeremy

    2012-01-01

    NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system's liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems, but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.6 lb. The water side and gas side pressure drops were 0.8 psid and 0.5 inches of water, respectively. Performance of the heat exchanger at the nominal pressure of 4.1 psia was measured at 94%, while a gas inlet pressure of 25 psia resulted in an effectiveness of 84%. These results compared well with the model, which was scaled for the small size. Modeling of certain phenomena that affect performance, such as flow distribution in the headers was particularly difficult due to the small size of the heat exchanger. Data from the tests has confirmed the correction factors that were used in these parts of the model.

  16. INL High Performance Building Strategy

    SciTech Connect

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design

  17. Thermal-hydraulic performance of metal foam heat exchangers under dry operating conditions

    DOE PAGES

    Nawaz, Kashif; Bock, Jessica; Jacobi, Anthony M.

    2017-03-14

    High porosity metal foams with novel thermal, mechanical, electrical, and acoustic properties are being more widely adopted for application. Due to their large surface-area-to-volume ratio and complex structure which induces better fluid mixing, boundary layer restarting and wake destruction, they hold promise for heat transfer applications. In this study, the thermal-hydraulic performance of open-cell aluminum metal foam heat exchanger has been evaluated. The impact of flow conditions and metal foam geometry on the heat transfer coefficient and gradient have been investigated. Metal foam heat exchanger with same geometry (face area, flow depth and fin dimensions) consisting of four different typemore » of metal foams have been built for the study. Experiments are conducted in a closed-loop wind tunnel at different flow rate under dry operating condition. Metal foams with a smaller pore size (40 PPI) have a larger heat transfer coefficient compared to foams with a larger pore size (5 PPI). However, foams with larger pores result in relatively smaller pressure gradients. Current thermal-hydraulic modeling practices have been reviewed and potential issues have been identified. Permeability and inertia coefficients are determined and compared to data reported in open literature. Finally, on the basis of the new experimental results, correlations are developed relating the foam characteristics and flow conditions through the friction factor f and the Colburn j factor.« less

  18. Heat Transfer Characteristics and Performance of a Spirally Coiled Heat Exchanger under Sensible Cooling Conditions

    NASA Astrophysics Data System (ADS)

    Wongwises, Somchai; Naphon, Paisarn

    In the present study, new experimental data on the heat transfer characteristics and the performance of a spirally coiled heat exchanger under sensible cooling conditions is presented. The spiral-coil heat exchanger consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled tubes. Each tube is fabricated by bending a 9.27mm diameter straight copper tube into a spiral-coil of five turns. The innermost and outermost diameters of each spiral-coil are 67.7 and 227.6mm, respectively. Air and water are used as working fluids in shell side and tube side, respectively. A mathematical model based on the conservation of energy is developed to determine the heat transfer characteristics. There is a reasonable agreement between the results obtained from the experiment and those obtained from the model and a good agreement for the high air mass flow rate region. The results obtained from the parametric study are also discussed.

  19. Parametric performance studies on fluidized-bed heat exchangers. Task 1: Fouling characteristics

    NASA Astrophysics Data System (ADS)

    Stoeffler, R. C.

    1982-09-01

    Analyses and experiments are being performed to investigate the heat transfer performance of single and multistage shallow fluidized beds for application to the recovery of heat from sources such as waste heat, and coal combustion or coal gasification. Tests were conducted to investigate the effects of liquid condensate fouling on fluidized bed heat exchanger performance. Liquid condensates used in these tests were water and glycerol (which is more viscous than water). The tests showed that fluidized bed heat exchanger performance is degraded by condensation within the bed and the degradation is caused by bed particles adhering to the heat exchanger surface, not by particle agglomeration. Liquid condensate did not continuously build up within the bed. After a period of dry out, heat transfer equal to that obtained prior to condensation was again obtained.

  20. High-Performance Thermoelectric Semiconductors

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre; Caillat, Thierry; Borshchevsky, Alexander

    1994-01-01

    Figures of merit almost double current state-of-art thermoelectric materials. IrSb3 is semiconductor found to exhibit exceptional thermoelectric properties. CoSb3 and RhSb3 have same skutterudite crystallographic structure as IrSb3, and exhibit exceptional transport properties expected to contribute to high thermoelectric performance. These three compounds form solid solutions. Combination of properties offers potential for development of new high-performance thermoelectric materials for more efficient thermoelectric power generators, coolers, and detectors.

  1. Performance Evaluation of JPEG 2000 for Specialized Electronic Patient Record Exchanges.

    PubMed

    Puentes, J; Garcia Lorenzo, D

    2005-01-01

    Distant diagnostic services require the exchange of medical images and medical data in the form of specialized patient records. Given that multiple images for one patient are often used by these services, considerable demands are placed on support applications implementation, because of the processing and transmission infrastructure limitations found on isolated rural areas. This work proposes to evaluate the performance of medical image compression for such constrained scenario, based on the JPEG 2000 compression standard, in order to improve distant diagnostic services usability. Separate groups of 1 to 15 high resolution gray scale and color cytology images of fixed dimensions were compressed in one file, applying different possible bitrates, tile size and code-block size, for six discrete wavelet decomposition levels. Experimental results show that the adjustment of these parameters, allows compressing the worst data load case (135 MB with moderate lossy compression) in around two minutes, on an average current PC.

  2. High Performance Laser Package Design

    NASA Astrophysics Data System (ADS)

    Nelson, R. J.

    1987-01-01

    An optical coupling technique utilizing a high index lens to provide high coupling efficiencies (>75%) into single-mode fiber is described. This laser package design provides improved lateral tolerances (>1.5μm) over alternative designs. The improved tolerance provides for easier fiber alignment and assembly as well as excellent temperature stability. Data will be presented on coupling efficiency, lateral tolerance, temp-erature stability and laser performance characteristics.

  3. Space shuttle launch vehicle performance trajectory, exchange ratios, and dispersion analysis

    NASA Technical Reports Server (NTRS)

    Toelle, R. G.; Blackwell, D. L.; Lott, L. N.

    1973-01-01

    A baseline space shuttle performance trajectory for Mission 3A launched from WTR has been generated. Design constraints of maximum dynamic pressure, longitudinal acceleration, and delivered payload were satisfied. Payload exchange ratios are presented with explanation on use. Design envelopes of dynamic pressure, SRB staging point, aerodynamic heating and flight performance reserves are calculated and included.

  4. Heat exchanger performance calculations for enhanced-tube condenser applications

    SciTech Connect

    Rabas, T.J.

    1992-07-01

    The lack of a prediction method is sometimes used for the rejection of enhanced tubes for some condenser applications even though there is ample data from single-tube condensing experiments. Three methods are discussed that can be used to rate and/or size these multitube units based on the single-tube experimental results. The Kern vertical-number correction appears to be quite adequate for most operating conditions, the exceptions being large sizes and/or deep vacuum operation. The bundle-factor method is preferred for these applications; however, field test results are required to obtain this factor. If performance data are not available, pointwise or numerical methods are required but special care must be taken to insure that the adverse effects of noncondensable gas pockets and the saturation-temperature depression are properly addressed.

  5. Heat exchanger performance calculations for enhanced-tube condenser applications

    SciTech Connect

    Rabas, T.J.

    1992-01-01

    The lack of a prediction method is sometimes used for the rejection of enhanced tubes for some condenser applications even though there is ample data from single-tube condensing experiments. Three methods are discussed that can be used to rate and/or size these multitube units based on the single-tube experimental results. The Kern vertical-number correction appears to be quite adequate for most operating conditions, the exceptions being large sizes and/or deep vacuum operation. The bundle-factor method is preferred for these applications; however, field test results are required to obtain this factor. If performance data are not available, pointwise or numerical methods are required but special care must be taken to insure that the adverse effects of noncondensable gas pockets and the saturation-temperature depression are properly addressed.

  6. High field optical-pumping spin-exchange polarized deuterium source

    SciTech Connect

    Zghiche, A.; Coulter, K.P.; Holt, R.J.; Kinney, E.R.; Kowalczyk, R.S.; Potterveld, D.H.; Young, L.; Zeidman, B. ); Toporkov, D.K. . Inst. Yadernoj Fiziki)

    1991-01-01

    Recent progress in the performance of laser-driven source of polarized deuterium is described. Optical pumping of potassium atoms followed by spin exchange scattering with deuterium atoms in a high magnetic field and RF transitions in a medium field was found to produce an intense, highly spin-polarized beam of deuterium atoms. In particular, the atomic polarization of deuterium was determined to be 73{plus minus}3% at an intensity of 2.1 {times} 10{sup 17} Atomsis. The RF transition efficiency was measured and found to be 92{plus minus}5%.

  7. High field optical-pumping spin-exchange polarized deuterium source

    SciTech Connect

    Zghiche, A.; Coulter, K.P.; Holt, R.J.; Kinney, E.R.; Kowalczyk, R.S.; Potterveld, D.H.; Young, L.; Zeidman, B.; Toporkov, D.K.

    1991-12-31

    Recent progress in the performance of laser-driven source of polarized deuterium is described. Optical pumping of potassium atoms followed by spin exchange scattering with deuterium atoms in a high magnetic field and RF transitions in a medium field was found to produce an intense, highly spin-polarized beam of deuterium atoms. In particular, the atomic polarization of deuterium was determined to be 73{plus_minus}3% at an intensity of 2.1 {times} 10{sup 17} Atomsis. The RF transition efficiency was measured and found to be 92{plus_minus}5%.

  8. High performance rolling element bearing

    NASA Technical Reports Server (NTRS)

    Bursey, Jr., Roger W. (Inventor); Olinger, Jr., John B. (Inventor); Owen, Samuel S. (Inventor); Poole, William E. (Inventor); Haluck, David A. (Inventor)

    1993-01-01

    A high performance rolling element bearing (5) which is particularly suitable for use in a cryogenically cooled environment, comprises a composite cage (45) formed from glass fibers disposed in a solid lubricant matrix of a fluorocarbon polymer. The cage includes inserts (50) formed from a mixture of a soft metal and a solid lubricant such as a fluorocarbon polymer.

  9. High Performance Bulk Thermoelectric Materials

    SciTech Connect

    Ren, Zhifeng

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  10. High-Performance Polymeric Materials.

    DTIC Science & Technology

    1987-12-07

    interactions, Chain packing, Polybenzobisoxazoles Electrical conductivity Polybenzobisthiazoles Ceramic particles Chain flexibility Elastomer reinforcement...structures for the polybenzobisoxazole (PBO) and polybenzobisthiazole (PBT) chains originally synthesized and much studied because of their utility as...high-performance fibers and films. For cts-PBO, trans-PBO. and trans-PBT chains in their coplanar conformations, the band gaps in the axial direction

  11. Tuning a High Transmission Ion Guide to Prevent Gas-Phase Proton Exchange During H/D Exchange MS Analysis.

    PubMed

    Guttman, Miklos; Wales, Thomas E; Whittington, Dale; Engen, John R; Brown, Jeffery M; Lee, Kelly K

    2016-04-01

    Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for protein structural analysis has been adopted for many purposes, including biopharmaceutical development. One of the benefits of examining amide proton exchange by mass spectrometry is that it can readily resolve different exchange regimes, as evidenced by either binomial or bimodal isotope patterns. By careful analysis of the isotope pattern during exchange, more insight can be obtained on protein behavior in solution. However, one must be sure that any observed bimodal isotope patterns are not artifacts of analysis and are reflective of the true behavior in solution. Sample carryover and certain stationary phases are known as potential sources of bimodal artifacts. Here, we describe an additional undocumented source of deuterium loss resulting in artificial bimodal patterns for certain highly charged peptides. We demonstrate that this phenomenon is predominantly due to gas-phase proton exchange between peptides and bulk solvent within the initial stages of high-transmission conjoined ion guides. Minor adjustments of the ion guide settings, as reported here, eliminate the phenomenon without sacrificing signal intensity. Such gas-phase deuterium loss should be appreciated for all HDX-MS studies using such ion optics, even for routine studies not focused on interpreting bimodal spectra. Graphical Abstract ᅟ.

  12. Tuning a High Transmission Ion Guide to Prevent Gas-Phase Proton Exchange During H/D Exchange MS Analysis

    NASA Astrophysics Data System (ADS)

    Guttman, Miklos; Wales, Thomas E.; Whittington, Dale; Engen, John R.; Brown, Jeffery M.; Lee, Kelly K.

    2016-04-01

    Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for protein structural analysis has been adopted for many purposes, including biopharmaceutical development. One of the benefits of examining amide proton exchange by mass spectrometry is that it can readily resolve different exchange regimes, as evidenced by either binomial or bimodal isotope patterns. By careful analysis of the isotope pattern during exchange, more insight can be obtained on protein behavior in solution. However, one must be sure that any observed bimodal isotope patterns are not artifacts of analysis and are reflective of the true behavior in solution. Sample carryover and certain stationary phases are known as potential sources of bimodal artifacts. Here, we describe an additional undocumented source of deuterium loss resulting in artificial bimodal patterns for certain highly charged peptides. We demonstrate that this phenomenon is predominantly due to gas-phase proton exchange between peptides and bulk solvent within the initial stages of high-transmission conjoined ion guides. Minor adjustments of the ion guide settings, as reported here, eliminate the phenomenon without sacrificing signal intensity. Such gas-phase deuterium loss should be appreciated for all HDX-MS studies using such ion optics, even for routine studies not focused on interpreting bimodal spectra.

  13. High performance bilateral telerobot control.

    PubMed

    Kline-Schoder, Robert; Finger, William; Hogan, Neville

    2002-01-01

    Telerobotic systems are used when the environment that requires manipulation is not easily accessible to humans, as in space, remote, hazardous, or microscopic applications or to extend the capabilities of an operator by scaling motions and forces. The Creare control algorithm and software is an enabling technology that makes possible guaranteed stability and high performance for force-feedback telerobots. We have developed the necessary theory, structure, and software design required to implement high performance telerobot systems with time delay. This includes controllers for the master and slave manipulators, the manipulator servo levels, the communication link, and impedance shaping modules. We verified the performance using both bench top hardware as well as a commercial microsurgery system.

  14. Developing high-performance leaders.

    PubMed

    Melum, Mara

    2002-01-01

    Although there is widespread recognition that strong leadership is key in these challenging times, many companies provide only the tip of the iceberg of leadership development support. This article is a resource for high-powered leadership development systems that will have an impact on performance. Four topics are discussed: (1) models, (2) investment and results, (3) critical success factors, and (4) case studies of how the 3M Company and HealthPartners develop high-performance leaders. Studies that quantity the effect of leadership development on performance are noted. Five critical success factors are described, and examples from leadership development benchmark organizations such as General Electric and Reell Precision Manufacturing are discussed.

  15. Novel proton exchange membrane fuel cell electrodes to improve performance of reversible fuel cell systems

    NASA Astrophysics Data System (ADS)

    Brown, Tim Matthew

    Proton exchange membrane (PEM) fuel cells react fuel and oxidant to directly and efficiently produce electrical power, without the need for combustion, heat engines, or motor-generators. Additionally, PEM fuel cell systems emit zero to virtually zero criteria pollutants and have the ability to reduce CO2 emissions due to their efficient operation, including the production or processing of fuel. A reversible fuel cell (RFC) is one particular application for a PEM fuel cell. In this application the fuel cell is coupled with an electrolyzer and a hydrogen storage tank to complete a system that can store and release electrical energy. These devices can be highly tailored to specific energy storage applications, potentially surpassing the performance of current and future secondary battery technology. Like all PEM applications, RFCs currently suffer from performance and cost limitations. One approach to address these limitations is to improve the cathode performance by engineering more optimal catalyst layer geometry as compared to the microscopically random structure traditionally used. Ideal configurations are examined and computer modeling shows promising performance improvements are possible. Several novel manufacturing methods are used to build and test small PEM fuel cells with novel electrodes. Additionally, a complete, dynamic model of an RFC system is constructed and the performance is simulated using both traditional and novel cathode structures. This work concludes that PEM fuel cell microstructures can be tailored to optimize performance based on design operating conditions. Computer modeling results indicate that novel electrode microstructures can improve fuel cell performance, while experimental results show similar performance gains that bolster the theoretical predictions. A dynamic system model predicts that novel PEM fuel cell electrode structures may enable RFC systems to be more competitive with traditional energy storage technology options.

  16. High-Temperature Oxygen Isotope Exchange Between Meteorite Sample and Water Vapor: Preliminary Experimental Results

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Hewins, R. H.; Clayton, R. N.; Mayeda, T. K.

    1993-07-01

    Chondrules in carbonaceous and ordinary chondrites show slope-1 mixing lines on the oxygen three-isotope diagram, suggestive of a gas-melt exchange process during chondrule formation. In order to test this conjecture and to extend our existing knowledge of chondrule thermal history and the kinetics of reaction of interstellar dust with solar nebula gas, an experiment involving high- temperature oxygen isotope exchange between a 16O-rich sample (meteorite) and water vapor (terrestrial) has been designed. The experiment was conducted with a DELTECH vertical tube furnace with ceramic parts shielded with metal foil. The starting meteorite powder (one of two C3 carbonaceous chondrites--bulk Allende and Ornans) was pressed into a pellet and suspended at the hot spot inside the furnace. The furnace gas was a mixture of H2O vapor and H2 (1 atm total pressure, fO2 = IW-0.5) [1]. The preliminary experiments were performed at 1400 degrees C for durations from 5 minutes to 36 hours, and were terminated by quenching the samples into liquid nitrogen. The meteorite charges and the water samples collected were later analyzed for their oxygen isotope compositions. The experimental results (Fig.1) show that the exchange process has greatly modified delta-18O and delta-17O for both meteorites, which move towards the projected equilibrium point as the heating time increases. For Allende samples, the exchange proceeds quickly in the first 5 minutes, which accounts for most of the isotope exchange (~84% of total change in delta-18O(sub)A-W, and ~57% of total change in delta-17O). Then the exchange is dramatically slowed down, and takes at least 12 hours to finally reach equilibrium with the ambient water vapor. The approach to equilibrium is not a straight line on the three-isotope graph, possibly due to the presence of residual 16O-rich solids in the molten sample. A similar exchange profile is observed for Ornans samples. However, it takes longer for the Ornans sample to reach

  17. Cryo-SEM of hydrated high temperature proton exchange membranes

    SciTech Connect

    Perry, Kelly A; More, Karren Leslie; Walker, Larry R; Benicewicz, Brian

    2009-01-01

    Alternative energy technologies, such as high temperature fuel cells and hydrogen pumps, rely on proton exchange membranes (PEM). A chemically and thermally stable PEM with rapid proton transport is sol-gel phosphoric acid (PA)-doped polybenzimidazole (PBI) membranes. It is believed that the key to the high ionic conductivity of PA-doped PBI membranes is related to the gel morphology. However, the gel structure and general morphology of this PA-doped PBI membrane has not been widely investigated. In an effort to understand the gel morphology, two SEM sample preparation methodologies have been developed for PA-doped PBI membranes. Due to the high vacuum environment of conventional SEM, the beam-sensitivity of these membranes was reduced with a mild 120 C heat treatment to remove excess water without structural rearrangement (as verified from wide angle X-ray scattering). Cryo-SEM has also been implemented for both initial and heated membranes. Cryo-SEM is known to prevent dehydration of the specimen and reduce beam-sensitivity. The SEM cross-section image (Fig. 1A) of the heated samples exhibit 3{micro}m spheroidal features that are elongated in the direction of the casting blade. These features are distorted to 2{micro}m under conventional SEM conditions (Fig. 1B). The fine-scale gel morphology image (Fig. 2) is composed of 65nm diameter domains and 30nm walls, which resembles a cellular structure. In the future, the PA-doped PBI membranes will be cryo-microtomed and cryotransferred for elemental analysis in a TEM.

  18. High-temperature ceramic heat exchanger element for a solar thermal receiver

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.

    1982-01-01

    A study has been completed on the development of a high-temperature ceramic heat exchanger element to be integrated into a solar reciver producing heated air. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The ceramic shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is fabricated by an innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. Fabrication of a one-half scale demonstrator ceramic receiver has been completed.

  19. High Performance Tools And Technologies

    SciTech Connect

    Collette, M R; Corey, I R; Johnson, J R

    2005-01-24

    This goal of this project was to evaluate the capability and limits of current scientific simulation development tools and technologies with specific focus on their suitability for use with the next generation of scientific parallel applications and High Performance Computing (HPC) platforms. The opinions expressed in this document are those of the authors, and reflect the authors' current understanding and functionality of the many tools investigated. As a deliverable for this effort, we are presenting this report describing our findings along with an associated spreadsheet outlining current capabilities and characteristics of leading and emerging tools in the high performance computing arena. This first chapter summarizes our findings (which are detailed in the other chapters) and presents our conclusions, remarks, and anticipations for the future. In the second chapter, we detail how various teams in our local high performance community utilize HPC tools and technologies, and mention some common concerns they have about them. In the third chapter, we review the platforms currently or potentially available to utilize these tools and technologies on to help in software development. Subsequent chapters attempt to provide an exhaustive overview of the available parallel software development tools and technologies, including their strong and weak points and future concerns. We categorize them as debuggers, memory checkers, performance analysis tools, communication libraries, data visualization programs, and other parallel development aides. The last chapter contains our closing information. Included with this paper at the end is a table of the discussed development tools and their operational environment.

  20. High performance pyroelectric infrared detector

    NASA Astrophysics Data System (ADS)

    Hu, Xu; Luo, Haosu; Ji, Yulong; Yang, Chunli

    2015-10-01

    Single infrared detector made with Relaxative ferroelectric crystal(PMNT) present excellence performance. In this paper include detector capacitance, characteristic of frequency--response, characteristic of detectivity. The measure result show that detectivity of detector made with relaxative ferroelectric crystal(PMNT) exceed three times than made with LT, the D*achieved than 1*109cmHz0.5W-1. The detector will be applied on NDIR spectrograph, FFT spectrograph and so on. The high performance pyroelectric infrared detector be developed that will be broadened application area of infrared detector.

  1. Fabrication and Design Aspects of High-Temperature Compact Diffusion Bonded Heat Exchangers

    SciTech Connect

    Mylavarapu, Sai K.; Sun, Xiaodong; Christensen, Richard N.; Glosup, Richard E.; Unocic, Raymond R

    2012-01-01

    The very high temperature reactor (VHTR), using gas-cooled reactor technology, is one of the six reactor concepts selected by the Generation IV International Forum and is anticipated to be the reactor type for the next generation nuclear plant (NGNP). In this type of reactor with an indirect power cycle system, a high-temperature and high integrity intermediate heat exchanger (IHX) with high effectiveness is required to efficiently transfer the core thermal output to secondary fluid for electricity production, process heat, or hydrogen cogeneration. The current Technology Readiness Level status issued by NGNP to all components associated with the IHX for reactor core outlet temperatures of 750-800oC is 3 on a scale of 1 to 10 with 10 being the most ready. At present, there is no proven high-temperature IHX concept for VHTRs. Amongst the various potential IHX concepts available, diffusion bonded heat exchangers (henceforth called printed circuit heat exchangers, or PCHEs) appear promising for NGNP applications. The design and fabrication of this key component of NGNP is the primary focus of this paper. In the current study, two PCHEs were fabricated using Alloy 617 plates and will be experimentally investigated for their thermal-hydraulic performance in a high-temperature helium test facility (HTHF). The HTHF was primarily designed and constructed to test the thermal-hydraulic performance of PCHEs The test facility is primarily of Alloy 800H construction and is designed to facilitate experiments at temperatures and pressures up to 800oC and 3 MPa, respectively. The PCHE fabrication related processes, i.e., photochemical machining and diffusion bonding are briefly discussed for Alloy 617 plates. Diffusion bonding of Alloy 617 plates with and without a Ni interlayer is discussed. Furthermore, preliminary microstructural and mechanical characterization studies of representative diffusion bonded Alloy 617 specimens are presented.

  2. DESIGN OF A COMPACT HEAT EXCHANGER FOR HEAT RECUPERATION FROM A HIGH TEMPERATURE ELECTROLYSIS SYSTEM

    SciTech Connect

    G. K. Housley; J.E. O'Brien; G.L. Hawkes

    2008-11-01

    Design details of a compact heat exchanger and supporting hardware for heat recuperation in a high-temperature electrolysis application are presented. The recuperative heat exchanger uses a vacuum-brazed plate-fin design and operates between 300 and 800°C. It includes corrugated inserts for enhancement of heat transfer coefficients and extended heat transfer surface area. Two recuperative heat exchangers are required per each four-stack electrolysis module. The heat exchangers are mated to a base manifold unit that distributes the inlet and outlet flows to and from the four electrolysis stacks. Results of heat exchanger design calculations and assembly details are also presented.

  3. Patterns of exchange sex and HIV infection in high-risk heterosexual men and women.

    PubMed

    Jenness, Samuel M; Kobrak, Paul; Wendel, Travis; Neaigus, Alan; Murrill, Christopher S; Hagan, Holly

    2011-04-01

    Heterosexual partnerships involving the trade of money or goods for sex are a well-described HIV risk factor in Africa and Southeast Asia, but less research has been conducted on exchange partnerships and their impact on HIV infection in the United States. In our study, men and women were recruited from high-risk risk neighborhoods in New York City through respondent-driven sampling in 2006-2007. We examined the factors associated with having an exchange partner in the past year, the relationship between exchange partnerships and HIV infection, and the risk characteristics of those with exchange partners by the directionality of payment. Overall, 28% of men and 41% of women had a past-year exchange partner. For men, factors independently associated with exchange partnerships were older age, more total sexual partners, male partners, and frequent non-injection drug use. For women, factors were homelessness, more total sexual partners, more unprotected sex partners, and frequent non-injection drug use. Exchange partnerships were associated with HIV infection for both men and women, although the relationships were substantially confounded by other behavioral risks. Those who both bought and sold sex exhibited the highest levels of risk with their exchange and non-exchange partners. Exchange partnerships may be an HIV risk both directly and indirectly, given the overlap of this phenomenon with other risk factors that occur with both exchange and non-exchange partners.

  4. Toward high performance graphene fibers.

    PubMed

    Chen, Li; He, Yuling; Chai, Songgang; Qiang, Hong; Chen, Feng; Fu, Qiang

    2013-07-07

    Two-dimensional graphene and graphene-based materials have attracted tremendous interest, hence much attention has been drawn to exploring and applying their exceptional characteristics and properties. Integration of graphene sheets into macroscopic fibers is a very important way for their application and has received increasing interest. In this study, neat and macroscopic graphene fibers were continuously spun from graphene oxide (GO) suspensions followed by chemical reduction. By varying wet-spinning conditions, a series of graphene fibers were prepared, then, the structural features, mechanical and electrical performances of the fibers were investigated. We found the orientation of graphene sheets, the interaction between inter-fiber graphene sheets and the defects in the fibers have a pronounced effect on the properties of the fibers. Graphene fibers with excellent mechanical and electrical properties will yield great advances in high-tech applications. These findings provide guidance for the future production of high performance graphene fibers.

  5. High-performance sports medicine.

    PubMed

    Speed, Cathy

    2013-02-01

    High performance sports medicine involves the medical care of athletes, who are extraordinary individuals and who are exposed to intensive physical and psychological stresses during training and competition. The physician has a broad remit and acts as a 'medical guardian' to optimise health while minimising risks. This review describes this interesting field of medicine, its unique challenges and priorities for the physician in delivering best healthcare.

  6. New, high performance rotating parachute

    SciTech Connect

    Pepper, W.B. Jr.

    1983-01-01

    A new rotating parachute has been designed primarily for recovery of high performance reentry vehicles. Design and development/testing results are presented from low-speed wind tunnel testing, free-flight deployments at transonic speeds and tests in a supersonic wind tunnel at Mach 2.0. Drag coefficients of 1.15 based on the 2-ft diameter of the rotor have been measured in the wind tunnel. Stability of the rotor is excellent.

  7. High performance ammonium nitrate propellant

    NASA Technical Reports Server (NTRS)

    Anderson, F. A. (Inventor)

    1979-01-01

    A high performance propellant having greatly reduced hydrogen chloride emission is presented. It is comprised of: (1) a minor amount of hydrocarbon binder (10-15%), (2) at least 85% solids including ammonium nitrate as the primary oxidizer (about 40% to 70%), (3) a significant amount (5-25%) powdered metal fuel, such as aluminum, (4) a small amount (5-25%) of ammonium perchlorate as a supplementary oxidizer, and (5) optionally a small amount (0-20%) of a nitramine.

  8. Reduced Toxicity High Performance Monopropellant

    DTIC Science & Technology

    2011-09-01

    distribution unlimited Propellant Performance Characteristics LMP - 103S AF-M315E Hydrazine Flame Temperature 1600ºC 1900ºC 600 oC Isp 252 (theor)235 sec...public release; distribution unlimited Compatibility and Handling Propellant LMP - 103S AF-M315E Thruster Materials Compatibility High combustion...detonation Bikini gauges indicate > 103 kPa @ 50ft Fragments thrown > 185 m Punched hole in end cap 12 Distribution A: Approved for public

  9. High-performance permanent magnets

    NASA Astrophysics Data System (ADS)

    Goll, D.; Kronmüller, H.

    High-performance permanent magnets (pms) are based on compounds with outstanding intrinsic magnetic properties as well as on optimized microstructures and alloy compositions. The most powerful pm materials at present are RE-TM intermetallic alloys which derive their exceptional magnetic properties from the favourable combination of rare earth metals (RE=Nd, Pr, Sm) with transition metals (TM=Fe, Co), in particular magnets based on (Nd,Pr)2Fe14B and Sm2(Co,Cu,Fe,Zr)17. Their development during the last 20 years has involved a dramatic improvement in their performance by a factor of >15 compared with conventional ferrite pms therefore contributing positively to the ever-increasing demand for pms in many (including new) application fields, to the extent that RE-TM pms now account for nearly half of the worldwide market. This review article first gives a brief introduction to the basics of ferromagnetism to confer an insight into the variety of (permanent) magnets, their manufacture and application fields. We then examine the rather complex relationship between the microstructure and the magnetic properties for the two highest-performance and most promising pm materials mentioned. By using numerical micromagnetic simulations on the basis of the Finite Element technique the correlation can be quantitatively predicted, thus providing a powerful tool for the further development of optimized high-performance pms.

  10. High-performance permanent magnets.

    PubMed

    Goll, D; Kronmüller, H

    2000-10-01

    High-performance permanent magnets (pms) are based on compounds with outstanding intrinsic magnetic properties as well as on optimized microstructures and alloy compositions. The most powerful pm materials at present are RE-TM intermetallic alloys which derive their exceptional magnetic properties from the favourable combination of rare earth metals (RE = Nd, Pr, Sm) with transition metals (TM = Fe, Co), in particular magnets based on (Nd.Pr)2Fe14B and Sm2(Co,Cu,Fe,Zr)17. Their development during the last 20 years has involved a dramatic improvement in their performance by a factor of > 15 compared with conventional ferrite pms therefore contributing positively to the ever-increasing demand for pms in many (including new) application fields, to the extent that RE-TM pms now account for nearly half of the worldwide market. This review article first gives a brief introduction to the basics of ferromagnetism to confer an insight into the variety of (permanent) magnets, their manufacture and application fields. We then examine the rather complex relationship between the microstructure and the magnetic properties for the two highest-performance and most promising pm materials mentioned. By using numerical micromagnetic simulations on the basis of the Finite Element technique the correlation can be quantitatively predicted, thus providing a powerful tool for the further development of optimized high-performance pms.

  11. A numerical performance assessment of a commercial cardiopulmonary by-pass blood heat exchanger.

    PubMed

    Consolo, Filippo; Fiore, Gianfranco B; Pelosi, Alessandra; Reggiani, Stefano; Redaelli, Alberto

    2015-06-01

    We developed a numerical model, based on multi-physics computational fluid dynamics (CFD) simulations, to assist the design process of a plastic hollow-fiber bundle blood heat exchanger (BHE) integrated within the INSPIRE(TM), a blood oxygenator (OXY) for cardiopulmonary by-pass procedures, recently released by Sorin Group Italia. In a comparative study, we analyzed five different geometrical design solutions of the BHE module. Quantitative geometrical-dependent parameters providing a comprehensive evaluation of both the hemo- and thermo-dynamics performance of the device were extracted to identify the best-performing prototypical solution. A convenient design configuration was identified, characterized by (i) a uniform blood flow pattern within the fiber bundle, preventing blood flow shunting and the onset of stagnation/recirculation areas and/or high velocity pathways, (ii) an enhanced blood heating efficiency, and (iii) a reduced blood pressure drop. The selected design configuration was then prototyped and tested to experimentally characterize the device performance. Experimental results confirmed numerical predictions, proving the effectiveness of CFD modeling as a reliable tool for in silico identification of suitable working conditions of blood handling medical devices. Notably, the numerical approach limited the need for extensive prototyping, thus reducing the corresponding machinery costs and time-to-market.

  12. Manufacturing of a high-temperature resistojet heat exchanger by selective laser melting

    NASA Astrophysics Data System (ADS)

    Romei, F.; Grubišić, A. N.; Gibbon, D.

    2017-09-01

    The paper presents the design, manufacturing and postproduction analysis of a novel high-temperature spacecraft resistojet heat exchanger manufactured through selective laser melting to validate the manufacturing approach. The work includes the analysis of critical features of a heat exchanger with integrated converging-diverging nozzle as a single piece element. The metrology of the component is investigated using optical analysis and profilometry to verify the integrity of components. High-resolution micro-Computed Tomography (CT) is applied as a tool for volumetric non-destructive inspection and conformity since the complex geometry of the thruster does not allow internal examination. The CT volume data is utilised to determine a surface mesh on which a novel perform coordinate measurement technique is applied for nominal/actual comparison and wall thickness analysis. A thin-wall concentric tubular heat exchanger design is determined to meet dimensional accuracy requirements. The work indicates the production of fine structures with feature sizes below 200 μm in 316L stainless via selective laser melting is feasible and opens up new possibilities for the future developments in multiple industries.

  13. High Performance Parallel Computational Nanotechnology

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Craw, James M. (Technical Monitor)

    1995-01-01

    At a recent press conference, NASA Administrator Dan Goldin encouraged NASA Ames Research Center to take a lead role in promoting research and development of advanced, high-performance computer technology, including nanotechnology. Manufacturers of leading-edge microprocessors currently perform large-scale simulations in the design and verification of semiconductor devices and microprocessors. Recently, the need for this intensive simulation and modeling analysis has greatly increased, due in part to the ever-increasing complexity of these devices, as well as the lessons of experiences such as the Pentium fiasco. Simulation, modeling, testing, and validation will be even more important for designing molecular computers because of the complex specification of millions of atoms, thousands of assembly steps, as well as the simulation and modeling needed to ensure reliable, robust and efficient fabrication of the molecular devices. The software for this capacity does not exist today, but it can be extrapolated from the software currently used in molecular modeling for other applications: semi-empirical methods, ab initio methods, self-consistent field methods, Hartree-Fock methods, molecular mechanics; and simulation methods for diamondoid structures. In as much as it seems clear that the application of such methods in nanotechnology will require powerful, highly powerful systems, this talk will discuss techniques and issues for performing these types of computations on parallel systems. We will describe system design issues (memory, I/O, mass storage, operating system requirements, special user interface issues, interconnects, bandwidths, and programming languages) involved in parallel methods for scalable classical, semiclassical, quantum, molecular mechanics, and continuum models; molecular nanotechnology computer-aided designs (NanoCAD) techniques; visualization using virtual reality techniques of structural models and assembly sequences; software required to

  14. High Performance Parallel Computational Nanotechnology

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Craw, James M. (Technical Monitor)

    1995-01-01

    At a recent press conference, NASA Administrator Dan Goldin encouraged NASA Ames Research Center to take a lead role in promoting research and development of advanced, high-performance computer technology, including nanotechnology. Manufacturers of leading-edge microprocessors currently perform large-scale simulations in the design and verification of semiconductor devices and microprocessors. Recently, the need for this intensive simulation and modeling analysis has greatly increased, due in part to the ever-increasing complexity of these devices, as well as the lessons of experiences such as the Pentium fiasco. Simulation, modeling, testing, and validation will be even more important for designing molecular computers because of the complex specification of millions of atoms, thousands of assembly steps, as well as the simulation and modeling needed to ensure reliable, robust and efficient fabrication of the molecular devices. The software for this capacity does not exist today, but it can be extrapolated from the software currently used in molecular modeling for other applications: semi-empirical methods, ab initio methods, self-consistent field methods, Hartree-Fock methods, molecular mechanics; and simulation methods for diamondoid structures. In as much as it seems clear that the application of such methods in nanotechnology will require powerful, highly powerful systems, this talk will discuss techniques and issues for performing these types of computations on parallel systems. We will describe system design issues (memory, I/O, mass storage, operating system requirements, special user interface issues, interconnects, bandwidths, and programming languages) involved in parallel methods for scalable classical, semiclassical, quantum, molecular mechanics, and continuum models; molecular nanotechnology computer-aided designs (NanoCAD) techniques; visualization using virtual reality techniques of structural models and assembly sequences; software required to

  15. The performance of one belt and one road exchange rate: Based on improved singular spectrum analysis

    NASA Astrophysics Data System (ADS)

    Lai, Lin; Guo, Kun

    2017-10-01

    ;One Belt and One Road; strategy in China is on push of foreign trade openness at northwest, southwest and northeast, absorption of the excess capacity and new support for economic increase. However, the fluctuation in RMB exchange rate with the countries along the road is unstable so related Chinese enterprises will face high risk of exchange rate. Precise explanation or prediction for exchange rate has been the challengeable hop point in the international finance. This paper decomposed the One Belt One Road Exchange Rate Index (OBORR) and the RMB Effective Exchange Rate Index (CNYX) into trend term, market fluctuation term and noise term using improved singular spectrum analysis (SSA). It turns out that the increasing velocity of OBORR is greater than that of CNYX in the long term, and there is dynamic lead-lag structure in the medium term. In the short term, the fluctuation range and frequency of OBORR are greater than those of CNYX, which means there will be more exchange rate risks in One Belt and One Road countries.

  16. High Performance Pulse Tube Cryocoolers

    NASA Astrophysics Data System (ADS)

    Olson, J. R.; Roth, E.; Champagne, P.; Evtimov, B.; Nast, T. C.

    2008-03-01

    Lockheed Martin's Advanced Technology Center has been developing pulse tube cryocoolers for more than ten years. Recent innovations include successful testing of four-stage coldheads, no-load temperature below 4 K, and the recent development of a high-efficiency compressor. This paper discusses the predicted performance of single and multiple stage pulse tube coldheads driven by our new 6 kg "M5Midi" compressor, which is capable of 90% efficiency with 200 W input power, and a maximum input power of 1000 W. This compressor retains the simplicity of earlier LM-ATC compressors: it has a moving magnet and an external electrical coil, minimizing organics in the working gas and requiring no electrical penetrations through the pressure wall. Motor losses were minimized during design, resulting in a simple, easily-manufactured compressor with state-of-the-art motor efficiency. The predicted cryocooler performance is presented as simple formulae, allowing an engineer to include the impact of a highly-optimized cryocooler into a full system analysis. Performance is given as a function of the heat rejection temperature and the cold tip temperatures and cooling loads.

  17. High performance aerated lagoon systems

    SciTech Connect

    Rich, L.

    1999-08-01

    At a time when less money is available for wastewater treatment facilities and there is increased competition for the local tax dollar, regulatory agencies are enforcing stricter effluent limits on treatment discharges. A solution for both municipalities and industry is to use aerated lagoon systems designed to meet these limits. This monograph, prepared by a recognized expert in the field, provides methods for the rational design of a wide variety of high-performance aerated lagoon systems. Such systems range from those that can be depended upon to meet secondary treatment standards alone to those that, with the inclusion of intermittent sand filters or elements of sequenced biological reactor (SBR) technology, can also provide for nitrification and nutrient removal. Considerable emphasis is placed on the use of appropriate performance parameters, and an entire chapter is devoted to diagnosing performance failures. Contents include: principles of microbiological processes, control of algae, benthal stabilization, design for CBOD removal, design for nitrification and denitrification in suspended-growth systems, design for nitrification in attached-growth systems, phosphorus removal, diagnosing performance.

  18. HIGH PERFORMANCE EBIS FOR RHIC.

    SciTech Connect

    ALESSI,J.; BEEBE, E.; GOULD, O.; KPONOU, A.; LOCKEY, R.; PIKIN, A.; RAPARIA, D.; RITTER, J.; SNYDSTRUP, L.

    2007-06-25

    An Electron Beam Ion Source (EBIS), capable of producing high charge states and high beam currents of any heavy ion species in short pulses, is ideally suited for injection into a synchrotron. An EBIS-based, high current, heavy ion preinjector is now being built at Brookhaven to provide increased capabilities for the Relativistic Heavy Ion Collider (RHIC), and the NASA Space Radiation Laboratory (NSRL). Benefits of the new preinjector include the ability to produce ions of any species, fast switching between species to serve the simultaneous needs of multiple programs, and lower operating and maintenance costs. A state-of-the-art EBIS, operating with an electron beam current of up to 10 A, and producing multi-milliamperes of high charge state heavy ions, has been developed at Brookhaven, and has been operating very successfully on a test bench for several years. The present performance of this high-current EBIS is presented, along with details of the design of the scaled-up EBIS for RHIC, and the status of its construction. Other aspects of the project, including design and construction of the heavy ion RFQ, Linac, and matching beamlines, are also mentioned.

  19. High Performance Proactive Digital Forensics

    NASA Astrophysics Data System (ADS)

    Alharbi, Soltan; Moa, Belaid; Weber-Jahnke, Jens; Traore, Issa

    2012-10-01

    With the increase in the number of digital crimes and in their sophistication, High Performance Computing (HPC) is becoming a must in Digital Forensics (DF). According to the FBI annual report, the size of data processed during the 2010 fiscal year reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that requested Regional Computer Forensics Laboratory assistance increasing from 689 in 2009 to 722 in 2010. Since most investigation tools are both I/O and CPU bound, the next-generation DF tools are required to be distributed and offer HPC capabilities. The need for HPC is even more evident in investigating crimes on clouds or when proactive DF analysis and on-site investigation, requiring semi-real time processing, are performed. Although overcoming the performance challenge is a major goal in DF, as far as we know, there is almost no research on HPC-DF except for few papers. As such, in this work, we extend our work on the need of a proactive system and present a high performance automated proactive digital forensic system. The most expensive phase of the system, namely proactive analysis and detection, uses a parallel extension of the iterative z algorithm. It also implements new parallel information-based outlier detection algorithms to proactively and forensically handle suspicious activities. To analyse a large number of targets and events and continuously do so (to capture the dynamics of the system), we rely on a multi-resolution approach to explore the digital forensic space. Data set from the Honeynet Forensic Challenge in 2001 is used to evaluate the system from DF and HPC perspectives.

  20. Effect of long-term organic removal on ion exchange properties and performance during sewage tertiary treatment by conventional anion exchange resins.

    PubMed

    Sun, Jian; Li, Xiaofeng; Quan, Ying; Yin, Yunjun; Zheng, Shaokui

    2015-10-01

    This study evaluated the long-term dissolved organic matter (DOM), phosphorus and nitrogen removal performance of a commercially available conventional anion exchange resin (AER) from actual secondary effluent (SE) in a sewage treatment plant based on a pilot-scale operation (2.2 m(3) d(-1), 185 cycles, 37,000 bed volume, 1.5 years). Particular emphasis was given to the potential effect of DOM fouling on the ion exchange properties and performance during the long-term operation. Despite the large range of COD (15.6-33.5 mg L(-1)), BOD5 (3.0-5.6 mg L(-1)), DOC (6.5-24.2 mg L(-1)), and UV254 (UV absorption at 254 nm) (0.108-0.229 cm(-1)) levels in the SE, the removal efficiencies of the AER for the aforementioned parameters were 43±12%, 46±15%, 45±9%, and 72±4%, respectively. Based on three-dimensional fluorescence excitation-emission matrix data, i.e., the fluorescence intensities of four regions (peaks A-D), all organic components of the SE were effectively removed (peak A 74%, peak B 48%, peak C 55%, and peak D 45%) following the adsorption. The AER effluent still has considerable polycyclic aromatic hydrocarbons' ecological hazard on freshwater fishes when they were significantly removed from SE. The obvious DOM fouling on the AER, identified by color change, had no significant influence on the long-term removal of the representative inorganic anions (averaging 95±4% phosphate, 100±0% SO4(2-), and 62±17% NO3(-)) and AER properties (including total exchange capacity, moisture content, and true density). The conventional AER can produce high quality reclaimed water from SE at a low operational cost.

  1. Effects of flow maldistribution on the thermal performance of cross-flow micro heat exchangers

    NASA Astrophysics Data System (ADS)

    Nonino, C.; Savino, S.

    2016-09-01

    The combined effect of viscosity- and geometry-induced flow maldistribution on the thermal performance of cross-flow micro heat exchangers is investigated with reference to two microchannel cross-sectional geometries, three solid materials, three mass flow rates and three flow nonuniformity models. A FEM procedure, specifically developed for the analysis of the heat transfer between incompressible fluids in cross-flow micro heat exchangers, is used for the numerical simulations. The computed results indicate that flow maldistribution has limited effects on microchannel bulk temperatures, at least for the considered range of operating conditions.

  2. High speed ion exchange techniques for neptunium, plutonium, and uranium impurity assays

    SciTech Connect

    Maxwell, III, S L

    1988-01-01

    Rapid, efficient ion exchange separations can be performed 10 to 15 times faster than conventional flow rates by using a modified commercial vacuum extraction system and small particle resins. At the Savannah River Plant (SRP), these techniques are being applied to make ion exchange separation techniques more rapid and thus more practical for routine laboratory applications.

  3. Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns

    SciTech Connect

    Tang, L.H.; Zeng, M.; Wang, Q.W.

    2009-07-15

    Air-side heat transfer and friction characteristics of five kinds of fin-and-tube heat exchangers, with the number of tube rows (N = 12) and the diameter of tubes (D{sub o} = 18 mm), have been experimentally investigated. The test samples consist of five types of fin configurations: crimped spiral fin, plain fin, slit fin, fin with delta-wing longitudinal vortex generators (VGs) and mixed fin with front 6-row vortex-generator fin and rear 6-row slit fin. The heat transfer and friction factor correlations for different types of heat exchangers were obtained with the Reynolds numbers ranging from 4000 to 10000. It was found that crimped spiral fin provides higher heat transfer and pressure drop than the other four fins. The air-side performance of heat exchangers with the above five fins has been evaluated under three sets of criteria and it was shown that the heat exchanger with mixed fin (front vortex-generator fin and rear slit fin) has better performance than that with fin with delta-wing vortex generators, and the slit fin offers best heat transfer performance at high Reynolds numbers. Based on the correlations of numerical data, Genetic Algorithm optimization was carried out, and the optimization results indicated that the increase of VG attack angle or length, or decrease of VG height may enhance the performance of vortex-generator fin. The heat transfer performances for optimized vortex-generator fin and slit fin at hand have been compared with numerical method. (author)

  4. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    SciTech Connect

    Mittereder, Nick; Poerschke, Andrew

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season.

  5. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres.

    PubMed

    Zamora, Héctor; Plaza, Jorge; Cañizares, Pablo; Lobato, Justo; Rodrigo, Manuel A

    2016-05-23

    This work evaluates the use of carbon nanospheres (CNS) in microporous layers (MPL) of high temperature proton exchange membrane fuel cell (HT-PEMFC) electrodes and compares the characteristics and performance with those obtained using conventional MPL based on carbon black. XRD, hydrophobicity, Brunauer-Emmett-Teller theory, and gas permeability of MPL prepared with CNS were the parameters evaluated. In addition, a short life test in a fuel cell was carried out to evaluate performance under accelerated stress conditions. The results demonstrate that CNS is a promising alternative to traditional carbonaceous materials because of its high electrochemical stability and good electrical conductivity, suitable to be used in this technology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    SciTech Connect

    Mittereder, N.; Poerschke, A.

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

  7. Three-Dimensional Numerical Analysis of Laminar Heat Exchanger with Respect to Fin Shape and Fan Performance

    NASA Astrophysics Data System (ADS)

    Park, S. M.; Kim, J. Y.; Seol, S. S.; Lee, D. J.; Lee, M. C.

    2010-06-01

    The performances of the fin-and-tube heat exchangers with wavy or plain fins were numerically investigated using a commercial code based on the finite volume method implementing SIMPLE algorithm. The relations among the heat transfer performance, pressure and the fin shape were taken into consideration with the performance characteristic of the fan installed in the real heat exchanger. Generally, a heat exchanger with wavy fins shows better performance than that with plain fins under the same air flow rate. However, the performance of a heat exchanger was mainly affected by the performance characteristics of the installed fans. In case that a fan whose air flow rate remarkably changes by the minor pressure variation, the performance characteristic of the fan was much more important than the fin shape with respect to heat transfer rate. This is attributed to the fact that the air flow rates of fans were varied with the pressure loss of the heat exchanger.

  8. Performance evaluation of cross-flow single-phase liquid-to-gas polymer tube heat exchanger

    NASA Astrophysics Data System (ADS)

    Dewanjee, Sujan; Hossain, Md. Rakibul; Rahman, Md. Ashiqur

    2017-06-01

    Reduced core weight and material cost, higher corrosion resistance are some of the major eye catching properties to study polymers over metal in heat exchanger applications in spite of the former's relatively low thermal conductivity and low strength. In the present study, performance of polymer parallel thin tube heat exchanger is numerically evaluated for cross flow liquid to air applications for a wide range of design and operating parameters such as tube diameter, thickness, fluid velocity and temperature, etc. using Computational Fluid Dynamics (CFD). Among a range of available polymeric materials, those with a moderate to high thermal conductivity and strength are selected for this study. A 90 cm × 1 cm single unit of polymer tubes, with appropriate number of tubes such that at least a gap of 5 mm is maintained in between the tubes, is used as a basic unit and multiple combination in the transverse direction of this single unit is simulated to measure the effect. The tube inner diameter is varied from 2 mm to 4 mm and the pressure drop is measured to have a relative idea of pumping cost. For each inner diameter the thickness is varied from .5 mm to 2.5 mm. The water velocity and the air velocity are varied from 0.4 m/s to 2 m/s and 1 m/s to 5 m/s, respectively. The performance of the polymer heat exchanger is compared with that of metal heat exchanger through and an optimum design for polymer heat exchanger is sought out.

  9. The High Performance Storage System

    SciTech Connect

    Coyne, R.A.; Hulen, H.; Watson, R.

    1993-09-01

    The National Storage Laboratory (NSL) was organized to develop, demonstrate and commercialize technology for the storage system that will be the future repositories for our national information assets. Within the NSL four Department of Energy laboratories and IBM Federal System Company have pooled their resources to develop an entirely new High Performance Storage System (HPSS). The HPSS project concentrates on scalable parallel storage system for highly parallel computers as well as traditional supercomputers and workstation clusters. Concentrating on meeting the high end of storage system and data management requirements, HPSS is designed using network-connected storage devices to transfer data at rates of 100 million bytes per second and beyond. The resulting products will be portable to many vendor`s platforms. The three year project is targeted to be complete in 1995. This paper provides an overview of the requirements, design issues, and architecture of HPSS, as well as a description of the distributed, multi-organization industry and national laboratory HPSS project.

  10. Ion exchange membrane bioreactor for treating groundwater contaminated with high perchlorate concentrations.

    PubMed

    Fox, Shalom; Oren, Yoram; Ronen, Zeev; Gilron, Jack

    2014-01-15

    Perchlorate contamination of groundwater is a worldwide concern. The most cost efficient treatment for high concentrations is biological treatment. In order to improve and increase the acceptance of this treatment, there is a need to reduce the contact between micro organisms in the treatment unit and the final effluent. An ion exchange membrane bioreactor (IEMB), in which treated water is separated from the bioreactor, was suggested for this purpose. In this study, the IEMB's performance was studied at a concentration as high as 250mgL(-1) that were never studied before. In the bioreactor, glycerol was used as a low cost and nontoxic carbon and energy source for the reduction of perchlorate to chloride. We found that high perchlorate concentrations in the feed rendered the anion exchange membrane significantly less permeable to perchlorate. However, the presence of bacteria in the bio-compartment significantly increased the flux through the membrane by more than 25% in comparison to pure Donnan dialysis. In addition, the results suggested minimal secondary contamination (<3mgCL(-1)) of the treated water with the optimum feed of carbon substrate. Our results show that IEMB can efficiently treat groundwater contaminated with perchlorate as high as 250mgL(-1).

  11. The Effect of Circuiting Arrangement on the Thermal Performance of Refrigeration Mixtures in Tube-and-Fin Condensing Heat Exchangers

    SciTech Connect

    Chen, D.T.; Conklin, J.C.

    1999-03-15

    For the pure or azeotropic refrigerants typically used in present air conditioning and refrigeration applications, the refrigerant changes phase at a constant temperature. Thus, the refrigerant circuiting arrangement such as crossfiow, counterfiow, or cross-counterflow, has no effect on the thermal performance. For zeotropic refrigerant mixtures, however, the phase-change occurs over a temperature range, or "glide", and the refrigerant circuiting arrangement, or flow path through the heat exchanger, can affect the thermal performance of both the heat exchangers as well as the overall efficiency of the vapor compression cooling cycle. The effects of tsvo diflerent circuiting arrangements on the thermal performance of a zeotropic retligerant mixture and an almost azeotropic refrigerant mixture in a four-row cross-countertlow heat exchanger arrangement are reported here. The two condensers differ only in the manner of circuiting the refrigerant tubes, where one has refrigerant always flowing downward in the active heat transfer region ("identical order") and the other has refrigerant alternating flow direction in the active heat transfer region ("inverted order"). All other geometric parameters, such as bce are% fin louver geometry, refrigerant tube size and enhancement etc., are the same for both heat exchangers. One refrigerant mixture (R-41OA) un&rgoes a small temperature change ("low glide") during phase change, and the other retligerant mixture (a multi- component proprietary mixture) has a substantial temperature change ("high glide") of approximately 10"C during the phase change process. The overall thermal conductance, two-phase conductance, and pressure drop are presented. For the flow conditions of these tests, which are representative of resi&ntial cooling conditions, inverted order circuiting is more desirable than identical order. The potential thermal advantages of the i&ntical order arrangement for high-glide zeotropic refrigerant mixtures are negated

  12. Hanford high level waste: Sample Exchange/Evaluation (SEE) Program

    SciTech Connect

    King, A.G.

    1994-08-01

    The Pacific Northwest Laboratory (PNL)/Analytical Chemistry Laboratory (ACL) and the Westinghouse Hanford Company (WHC)/Process Analytical Laboratory (PAL) provide analytical support services to various environmental restoration and waste management projects/programs at Hanford. In response to a US Department of Energy -- Richland Field Office (DOE-RL) audit, which questioned the comparability of analytical methods employed at each laboratory, the Sample Exchange/Exchange (SEE) program was initiated. The SEE Program is a selfassessment program designed to compare analytical methods of the PAL and ACL laboratories using sitespecific waste material. The SEE program is managed by a collaborative, the Quality Assurance Triad (Triad). Triad membership is made up of representatives from the WHC/PAL, PNL/ACL, and WHC Hanford Analytical Services Management (HASM) organizations. The Triad works together to design/evaluate/implement each phase of the SEE Program.

  13. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    SciTech Connect

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  14. Process Heat Exchanger Options for the Advanced High Temperature Reactor

    SciTech Connect

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-06-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  15. High performance solar Stirling system

    NASA Technical Reports Server (NTRS)

    Stearns, J. W.; Haglund, R.

    1981-01-01

    A full-scale Dish-Stirling system experiment, at a power level of 25 kWe, has been tested during 1981 on the Test Bed Concentrator No. 2 at the Parabolic Dish Test Site, Edwards, CA. Test components, designed and developed primarily by industrial contractors for the Department of Energy, include an advanced Stirling engine driving an induction alternator, a directly-coupled solar receiver with a natural gas combustor for hybrid operation and a breadboard control system based on a programmable controller and standard utility substation components. The experiment demonstrated practicality of the solar Stirling application and high system performance into a utility grid. This paper describes the design and its functions, and the test results obtained.

  16. FPGA Based High Performance Computing

    SciTech Connect

    Bennett, Dave; Mason, Jeff; Sundararajan, Prasanna; Dellinger, Erik; Putnam, Andrew; Storaasli, Olaf O

    2008-01-01

    Current high performance computing (HPC) applications are found in many consumer, industrial and research fields. From web searches to auto crash simulations to weather predictions, these applications require large amounts of power by the compute farms and supercomputers required to run them. The demand for more and faster computation continues to increase along with an even sharper increase in the cost of the power required to operate and cool these installations. The ability of standard processor based systems to address these needs has declined in both speed of computation and in power consumption over the past few years. This paper presents a new method of computation based upon programmable logic as represented by Field Programmable Gate Arrays (FPGAs) that addresses these needs in a manner requiring only minimal changes to the current software design environment.

  17. High performance solar Stirling system

    NASA Astrophysics Data System (ADS)

    Stearns, J. W.; Haglund, R.

    1981-12-01

    A full-scale Dish-Stirling system experiment, at a power level of 25 kWe, has been tested during 1981 on the Test Bed Concentrator No. 2 at the Parabolic Dish Test Site, Edwards, CA. Test components, designed and developed primarily by industrial contractors for the Department of Energy, include an advanced Stirling engine driving an induction alternator, a directly-coupled solar receiver with a natural gas combustor for hybrid operation and a breadboard control system based on a programmable controller and standard utility substation components. The experiment demonstrated practicality of the solar Stirling application and high system performance into a utility grid. This paper describes the design and its functions, and the test results obtained.

  18. High performance phenolic pultrusion resin

    SciTech Connect

    Qureshi, S.P.; Ingram, W.H.; Smith, C.

    1996-11-01

    Today, Phenol-Formaldehyde (PF) resins are the materials of choice for aerospace interior applications, primarily due to low FST (flame, smoke and toxicity). Since 1990, growth of PF resins has been steadily increasing in non-aerospace applications (which include mass transit, construction, marine, mine ducting and offshore oil) due to low FST and reasonable cost. This paper describes one component phenol-formaldehyde resin that was jointly developed with Morrison Molded Fiber Glass for their pultrusion process. Physical properties of the resin with flame/smoke/toxicity, chemical resistance and mechanical performance of the pultruded RP are discussed. Neat resin screening tests to identify high-temperature formulations are explored. Research continues at Georgia-Pacific to investigate the effect of formulation variables on processing and mechanical properties.

  19. High Performance Perovskite Solar Cells.

    PubMed

    Tong, Xin; Lin, Feng; Wu, Jiang; Wang, Zhiming M

    2016-05-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long-term stable all-solid-state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost-effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole-transporting materials (HTMs) and electron-transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction.

  20. High Performance Perovskite Solar Cells

    PubMed Central

    Tong, Xin; Lin, Feng; Wu, Jiang

    2015-01-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long‐term stable all‐solid‐state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost‐effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole‐transporting materials (HTMs) and electron‐transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction. PMID:27774402

  1. CFD Simulation Studies on the Performance of Rectangular Coil Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Samsudeen, N.; Anantharaman, N.; Raviraj, Pol.

    2010-10-01

    The simulation studies are made to understand the concept of heat transfer by convection in a rectangular coiled type heat exchanger. The rectangular coil heat exchanger consists of inner and outer coil arrangements with several straight portions and bends so that the exterior flow is very similar to flow within tube-bundles. The present work focuses mainly on exploring the various flow pattern and temperature distribution through the pipe. Computer simulation studies were performed for four different angle of tube bundle inclination (0°, 30°, 60°, and 90°) with two set flow arrangements (inline and staggered arrangement) in the shell side of the heat exchanger. The simulation results show that the effect of the tube bundle inclination on the fluid velocity distribution and the heat transfer performance is observed maximum for the coil with tube bundle inclination angle between 30 degrees and 60 degrees with the staggered arrangement than with the inline arrangement due to proper mixing in the shell side and the outside flow over the tube bundle helps to create turbulence without increasing the velocity in the shell side of the heat exchanger.

  2. Fabrication and Design Aspects of High-Temperature Compact Diffusion Bonded Heat Exchangers

    SciTech Connect

    Sai K. Mylavarapu; Richard N. Christensen; Raymond R. Unocic; Richard E. Glosup; Mike W. Patterson

    2012-08-01

    The Very High Temperature Reactor (VHTR) using gas-cooled reactor technology is anticipated to be the reactor type for the Next Generation Nuclear Plant (NGNP). In this reactor concept with an indirect power cycle system, a high-temperature and high integrity Intermediate Heat Exchanger (IHX) with high effectiveness is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation, hydrogen production, and/or industrial process heat applications. At present, there is no proven IHX concept for VHTRs. The current Technology Readiness Level (TRL) status issued by NGNP to all components associated with the IHX for reduced nominal reactor outlet temperatures of 750–800 degrees C is 3 on a 1–10 scale, with 10 indicating omplete technological maturity. Among the various potential IHX concepts available, diffusion bonded heat exchangers (henceforth called printed circuit heat exchangers, or PCHEs) appear promising for NGNP applications. The design and fabrication of this key component of NGNP with Alloy 617, a candidate high-temperature structural material for NGNP applications, are the primary focus of this paper. In the current study, diffusion bonding of Alloy 617 has been demonstrated, although the optimum diffusion bonding process parameters to engineer a quasi interface-free joint are yet to be determined. The PCHE fabrication related processes, i.e., photochemical etching and diffusion bonding are discussed for Alloy 617 plates. In addition, the authors’ experiences with these non-conventional machining and joining techniques are discussed. Two PCHEs are fabricated using Alloy 617 plates and are being experimentally investigated for their thermal-hydraulic performance in a High-Temperature Helium Facility (HTHF). The HTHF is primarily of Alloy 800H construction and is designed to facilitate experiments at temperatures and pressures up to 800 degrees C and 3 MPa, respectively. Furthermore, some preliminary

  3. Analysis of high-resolution foreign exchange data of USD-JPY for 13 years

    NASA Astrophysics Data System (ADS)

    Mizuno, Takayuki; Kurihara, Shoko; Takayasu, Misako; Takayasu, Hideki

    2003-06-01

    We analyze high-resolution foreign exchange data consisting of 20 million data points of USD-JPY for 13 years to report firm statistical laws in distributions and correlations of exchange rate fluctuations. A conditional probability density analysis clearly shows the existence of trend-following movements at time scale of 8-ticks, about 1 min.

  4. Treatment of Perchlorate-Contaminated Groundwater Using Highly Selective, Regenerable Ion-Exchange Technologies

    SciTech Connect

    Gu, Baohua; Brown, Gilbert M

    2007-01-01

    Treatment of perchlorate-contaminated water using highly selective, regenerable ion-exchange and perchlorate-destruction technologies was demonstrated at a field site in California. Four treatment and four regeneration cycles were carried out, and no significant deterioration of resin performance was noted in two years. The bifunctional resin (Purolite A-530E) treated about 37,000 empty bed volumes (BVs) of groundwater before a significant breakthrough of perchlorate occurred at an average flow rate of 150 gpm (or 1 BV/min) and a feed perchlorate concentration of about 860 g/L. Sorbed perchlorate (~20 kg) was quantitatively recovered by eluting with as little as 1 BV of the FeCl3-HCl regenerant solution. The eluted ClO4- was highly concentrated in the third quarter of the first BV of the regenerant solution with a concentration up to 100,000 mg/L. This concentrated effluent greatly facilitated subsequent perchlorate destruction or recovery by precipitation as KClO4 salts. High perchlorate destruction efficiency (92 V97%) was observed by reduction with FeCl2 in a thermo-reactor, which enabled recycling of the FeCl3-HCl regenerant solution, thereby minimizing the need to dispose of secondary wastes containing ClO4-. This study demonstrates that a combination of novel selective, regenerable ion-exchange and perchlorate-destruction and/or recovery technologies could potentially lead to enhanced treatment efficiency and minimized secondary waste production.

  5. Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance.

    PubMed

    Choi, Mi-Jin; Chae, Kyu-Jung; Ajayi, Folusho F; Kim, Kyoung-Yeol; Yu, Hye-Weon; Kim, Chang-Won; Kim, In S

    2011-01-01

    This study examines the effects of biofouling on the electrochemical properties of cation exchange membranes (CEMs), such as membrane electrical resistance (MER), specific proton conductivity (SC), and ion transport number (t(+)), in addition to on microbial fuel cell (MFC) performance. CEM biofouling using a 15.5 ± 4.6 μm biofilm was found to slightly increase the MER from 15.65 Ω cm(2) (fresh Nafion) to 19.1 Ω cm(2), whereas an increase of almost two times was achieved when the electrolyte was changed from deionized water to an anolyte containing a high cation concentration supporting bacterial growth. The simple physical cleaning of CEMs had little effect on the Coulombic efficiency (CE), whereas replacing a biofouled CEM with new one resulted in considerable increase of up to 59.3%, compared to 45.1% for a biofouled membrane. These results clearly suggest the internal resistance increase of MFC was mainly caused by the sulfonate functional groups of CEM being occupied with cations contained in the anolyte, rather than biofouling itself.

  6. Effect of System Contaminants on the Performance of a Proton Exchange Membrane Fuel Cell

    DOE PAGES

    Mehrabadi, Bahareh Alsadat Tavakoli; Dinh, Huyen N.; Bender, Guido; ...

    2016-11-10

    The performance loss and recovery of the fuel cell due to Balance of Plant (BOP) contaminants was identified via a combination of experimental data and a mathematical model. The experiments were designed to study the influence of organic contaminants (e.g. those from BOP materials) on the resistance of the catalyst, ionomer and membrane, and a mathematical model was developed that allowed us to separate these competing resistances from the data collected on an operating fuel cell. For this reason, based on the functional groups, four organic contaminants found in BOP materials, diethylene glycol monoethyl ether (DGMEE), diethylene glycol monoethyl ethermore » acetate (DGMEA), benzyl alcohol (BzOH) and 2,6-diaminotoluene (2,6-DAT) were infused separately to the cathode side of the fuel cell. The cell voltage and high frequency impedance resistance was measured as a function of time. The contaminant feed was then discontinued and voltage recovery was measured. It was determined that compounds with ion exchange properties like 2,6-DAT can cause voltage loss with non-reversible recovery, so this compound was studied in more detail. Finally, the degree of voltage loss increased with an increase in concentration, and/or infusion time, and increased with a decrease in catalyst loadings.« less

  7. Effect of System Contaminants on the Performance of a Proton Exchange Membrane Fuel Cell

    SciTech Connect

    Mehrabadi, Bahareh Alsadat Tavakoli; Dinh, Huyen N.; Bender, Guido; Weidner, John W.

    2016-11-10

    The performance loss and recovery of the fuel cell due to Balance of Plant (BOP) contaminants was identified via a combination of experimental data and a mathematical model. The experiments were designed to study the influence of organic contaminants (e.g. those from BOP materials) on the resistance of the catalyst, ionomer and membrane, and a mathematical model was developed that allowed us to separate these competing resistances from the data collected on an operating fuel cell. For this reason, based on the functional groups, four organic contaminants found in BOP materials, diethylene glycol monoethyl ether (DGMEE), diethylene glycol monoethyl ether acetate (DGMEA), benzyl alcohol (BzOH) and 2,6-diaminotoluene (2,6-DAT) were infused separately to the cathode side of the fuel cell. The cell voltage and high frequency impedance resistance was measured as a function of time. The contaminant feed was then discontinued and voltage recovery was measured. It was determined that compounds with ion exchange properties like 2,6-DAT can cause voltage loss with non-reversible recovery, so this compound was studied in more detail. Finally, the degree of voltage loss increased with an increase in concentration, and/or infusion time, and increased with a decrease in catalyst loadings.

  8. Effect of System Contaminants on the Performance of a Proton Exchange Membrane Fuel Cell

    SciTech Connect

    Mehrabadi, Bahareh Alsadat Tavakoli; Dinh, Huyen N.; Bender, Guido; Weidner, John W.

    2016-01-01

    The performance loss and recovery of the fuel cell due to Balance of Plant (BOP) contaminants was identified via a combination of experimental data and a mathematical model. The experiments were designed to study the influence of organic contaminants (e.g. those from BOP materials) on the resistance of the catalyst, ionomer and membrane, and a mathematical model was developed that allowed us to separate these competing resistances from the data collected on an operating fuel cell. For this reason, based on the functional groups, four organic contaminants found in BOP materials, diethylene glycol monoethyl ether (DGMEE), diethylene glycol monoethyl ether acetate (DGMEA), benzyl alcohol (BzOH) and 2,6-diaminotoluene (2,6-DAT) were infused separately to the cathode side of the fuel cell. The cell voltage and high frequency impedance resistance was measured as a function of time. The contaminant feed was then discontinued and voltage recovery was measured. It was determined that compounds with ion exchange properties like 2,6-DAT can cause voltage loss with non-reversible recovery, so this compound was studied in more detail. The degree of voltage loss increased with an increase in concentration, and/or infusion time, and increased with a decrease in catalyst loadings.

  9. Human performance on negative slope schedules of points exchangeable for money: a failure of molar maximization.

    PubMed Central

    Jacobs, E A; Hackenberg, T D

    2000-01-01

    Panel pressing was generated and maintained in 5 adult humans by schedules of points exchangeable for money. Following exposure to a variable-interval 30-s schedule and to a linear variable-interval 30-s schedule (which permitted points to accumulate in an unseen "store" in the absence of responding), subjects were exposed to a series of conditions with a point-subtraction contingency arranged conjointly with the linear variable-interval schedule. Specifically, points were added to the store according to the linear-variable interval 30-s schedule and were subtracted from the store according to a ratio schedule. Ratio value varied across conditions and was determined individually for each subject such that the subtraction contingency would result in an approximately 50% reduction in the rate of point delivery. Conditions that included the subtraction contingency were termed negative slope schedules because the feedback functions were negatively sloped across all response rates greater than the inverse of the variable-interval schedule, in this case, two per minute. Overall response rates varied inversely with the subtraction ratio, indicating sensitivity to the negative slope conditions, but were in excess of that required by accounts based on strict maximization of overall reinforcement rate. Performance was also not well described by a matching-based account. Detailed analyses of response patterning revealed a consistent two-state pattern in which bursts of high-rate responding alternated with periods of prolonged pausing, perhaps reflecting the joint influence of local and overall reinforcement rates. PMID:10866350

  10. Experimental performance investigation of a shell and tube heat exchanger by exergy based sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Mert, Suha Orçun; Reis, Alper

    2016-06-01

    Heat exchangers are used extensively in many industrial branches, primarily so in chemical and energy sectors. They also have important household usage as they are used in central and local heating systems. Any betterment on heat exchangers will serve greatly in preserving our already dwindling and costly energy resources. Strong approach of exergy analysis -which helps find out where the first steps should be taken in determining sources of inefficiencies and how to remedy them- will be used as a means to this end. The maximum useful work that can be harnessed from systems relationships with its environment is defined as exergy. In this study, the inlet and outlet flow rate values of fluids and temperature of hot stream both on shell and tube parts of a shell-tube heat exchange system have been inspected and their effects on the exergy efficiency of this thermal system have been analyzed. It is seen that the combination of high tube side inlet temperature, low shell side flow rate and high tube side flow rate are found to be the optimum for this experimental system with reaching 75, 65, and 32 % efficiencies respectively. Selecting operating conditions suitable to this behavior will help to increase the overall efficiency of shell-tube heat exchange systems and cause an increment in energy conservation.

  11. High Performance Solution Processable TFTs

    NASA Astrophysics Data System (ADS)

    Gundlach, David

    2008-03-01

    Organic-based electronic devices offer the potential to significantly impact the functionality and pervasiveness of large-area electronics. We report on soluble acene-based organic thin film transistors (OTFTs) where the microstructure of as-cast films can be precisely controlled via interfacial chemistry. Chemically tailoring the source/drain contact interface is a novel route to self-patterning of soluble small molecule organic semiconductors and enables the growth of highly ordered regions along opposing contact edges which extend into the transistor channel. The unique film forming properties of soluble fluorinated anthradithiophenes allows us to fabricate high performance OTFTs, OTFT circuits, and to deterministically study the influence of the film microstructure on the electrical characteristics of devices. Most recently we have grown single crystals of soluble fluorinated anthradithiophenes by vapor transport method allowing us to probe deeper into their intrinsic properties and determine the potential and limitations of this promising family of oligomers for use in organic-based electronic devices. Co-Authors: O. D. Jurchescu^1,4, B. H. Hamadani^1, S. K. Park^4, D. A. Mourey^4, S. Subramanian^5, A. J. Moad^2, R. J. Kline^3, L. C. Teague^2, J. G. Kushmerick^2, L. J. Richter^2, T. N. Jackson^4, and J. E. Anthony^5 ^1Semiconductor Electronics Division, ^2Surface and Microanalysis Science Division, ^3Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 ^4Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 ^5Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055

  12. High nuclear polarization of 3He at low and high pressure by metastability exchange optical pumping at 1.5 tesla

    NASA Astrophysics Data System (ADS)

    Abboud, M.; Sinatra, A.; Maître, X.; Tastevin, G.; Nacher, P.-J.

    2004-11-01

    Metastability exchange optical pumping of helium-3 is performed in a strong magnetic field of 1.5 T. The achieved nuclear polarizations, between 80% at 1.33 mbar and 25% at 67 mbar, show a substantial improvement at high pressures with respect to standard low-field optical pumping. The specific mechanisms of metastability exchange optical pumping at high field are investigated, advantages and intrinsic limitations are discussed. From a practical point of view, these results open the way to alternative technological solutions for polarized helium-3 applications and in particular for magnetic-resonance imaging of human lungs.

  13. Tunable giant exchange bias in the single-phase rare-earth-transition-metal intermetallics YM n12 -xF ex with highly homogenous intersublattice exchange coupling

    NASA Astrophysics Data System (ADS)

    Xia, Yuanhua; Wu, Rui; Zhang, Yinfeng; Liu, Shunquan; Du, Honglin; Han, Jingzhi; Wang, Changsheng; Chen, Xiping; Xie, Lei; Yang, Yingchang; Yang, Jinbo

    2017-08-01

    A tunable giant exchange bias effect is discovered in a family of bulk intermetallic compounds YM n12 -xF ex . Experimental data demonstrate that the exchange bias effect originates from global interactions among ferromagnetic and antiferromagnetic sublattices but not the interfacial exchange coupling or inhomogeneous magnetic clusters. A giant exchange bias with a loop shift of up to 6.1 kOe has been observed in YM n4.4F e7.6 compound. In a narrow temperature range, the exchange bias field shows a sudden switching-off whereas the coercivity shows a sudden switching-on with increasing temperature. This unique feature indicates that the intersublattice exchange coupling is highly homogenous. Our theoretical calculations reveal this switching feature, which agrees very well with the experiments and provides insights into the physical underpinnings of the observed exchange bias and coercivity.

  14. Storage and Aging Effects on Spherical Resorcinol-Formaldehyde Resin Ion Exchange Performance

    SciTech Connect

    Fiskum, Sandra K.; Arm, Stuart T.; Edwards, Matthew K.; Steele, Marilyn J.; Thomas, Kathie K.

    2007-09-10

    Bechtel National, Inc. (BNI) is evaluating the alternate Cs ion exchanger, spherical resorcinol-formaldehyde (RF), for use in the River Protection Project-Waste Treatment Plant (RPP-WTP).( ) Previous test activities with spherical RF indicate that it has adequate capacity, selectivity, and kinetics to perform in the plant according to the flowsheet needs. It appears to have better elution and hydraulic properties than the existing alternatives: ground-gel RF and SuperLig® 644 (SL 644).( ) To date, the spherical RF performance testing has been conducted on freshly manufactured resin (within ~2 months of manufacture). The ion exchange resins will be manufactured and shipped to the WTP up to 1 year before being used in the plant. Changes in the resin properties during storage could reduce the capacity of the resin to remove Cs from low-activity waste solutions. Active sites on organic SL-644 resin have been shown to degrade during storage (Arm et al. 2004). Additional testing was needed to study the effects of storage conditions and aging on spherical RF ion exchange performance. Variables that could have a significant impact on ion exchange resins during storage include storage temperature, medium, and time. Battelle—Pacific Northwest Division (PNWD) was contracted to test the effects of various storage conditions on spherical RF resin. Data obtained from the testing will be used by the WTP operations to provide direction for suitable storage conditions and manage the spherical RF resin stock. Storage test conditions included wet and dry resin configurations under nitrogen at three temperatures. Work was initially conducted under contract number 24590-101-TSA-W000-00004 satisfying the needs defined in Appendix C of the Research and Technology Plan( ) TSS A-219 to evaluate the impact of storage conditions on RF resin performance. In February 2007, the contract mechanism was switched to Pacific Northwest National Laboratory (PNNL) Operating Contract DE-AC05-76RL

  15. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  16. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  17. Performance and cost characteristics of multi-electron transfer, common ion exchange non-aqueous redox flow batteries

    NASA Astrophysics Data System (ADS)

    Laramie, Sydney M.; Milshtein, Jarrod D.; Breault, Tanya M.; Brushett, Fikile R.; Thompson, Levi T.

    2016-09-01

    Non-aqueous redox flow batteries (NAqRFBs) have recently received considerable attention as promising high energy density, low cost grid-level energy storage technologies. Despite these attractive features, NAqRFBs are still at an early stage of development and innovative design techniques are necessary to improve performance and decrease costs. In this work, we investigate multi-electron transfer, common ion exchange NAqRFBs. Common ion systems decrease the supporting electrolyte requirement, which subsequently improves active material solubility and decreases electrolyte cost. Voltammetric and electrolytic techniques are used to study the electrochemical performance and chemical compatibility of model redox active materials, iron (II) tris(2,2‧-bipyridine) tetrafluoroborate (Fe(bpy)3(BF4)2) and ferrocenylmethyl dimethyl ethyl ammonium tetrafluoroborate (Fc1N112-BF4). These results help disentangle complex cycling behavior observed in flow cell experiments. Further, a simple techno-economic model demonstrates the cost benefits of employing common ion exchange NAqRFBs, afforded by decreasing the salt and solvent contributions to total chemical cost. This study highlights two new concepts, common ion exchange and multi-electron transfer, for NAqRFBs through a demonstration flow cell employing model active species. In addition, the compatibility analysis developed for asymmetric chemistries can apply to other promising species, including organics, metal coordination complexes (MCCs) and mixed MCC/organic systems, enabling the design of low cost NAqRFBs.

  18. High-temperature ceramic heat exchanger element for a solar thermal receiver

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.

    1982-01-01

    A study was performed by AiResearch Manufacturing Company, a division of The Garrett Corporation, on the development a high-temperature ceramic heat exchanger element to be integrated into a solar receiver producing heated air. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is to be fabricated by an innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. The unit is sized to produce 2150 F ar at 2.7 atm pressure, with a pressure drop of about 2 percent of the inlet pressure. This size is compatible with a solar collector providing a receiver input of 85 kw(th). Fabrication of a one-half scale demonstrator ceramic receiver has been completed.

  19. High-temperature ceramic heat exchanger element for a solar thermal receiver

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.

    1982-01-01

    A study was performed by AiResearch Manufacturing Company, a division of The Garrett Corporation, on the development a high-temperature ceramic heat exchanger element to be integrated into a solar receiver producing heated air. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is to be fabricated by an innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. The unit is sized to produce 2150 F ar at 2.7 atm pressure, with a pressure drop of about 2 percent of the inlet pressure. This size is compatible with a solar collector providing a receiver input of 85 kw(th). Fabrication of a one-half scale demonstrator ceramic receiver has been completed.

  20. High performance Cu adhesion coating

    SciTech Connect

    Lee, K.W.; Viehbeck, A.; Chen, W.R.; Ree, M.

    1996-12-31

    Poly(arylene ether benzimidazole) (PAEBI) is a high performance thermoplastic polymer with imidazole functional groups forming the polymer backbone structure. It is proposed that upon coating PAEBI onto a copper surface the imidazole groups of PAEBI form a bond with or chelate to the copper surface resulting in strong adhesion between the copper and polymer. Adhesion of PAEBI to other polymers such as poly(biphenyl dianhydride-p-phenylene diamine) (BPDA-PDA) polyimide is also quite good and stable. The resulting locus of failure as studied by XPS and IR indicates that PAEBI gives strong cohesive adhesion to copper. Due to its good adhesion and mechanical properties, PAEBI can be used in fabricating thin film semiconductor packages such as multichip module dielectric (MCM-D) structures. In these applications, a thin PAEBI coating is applied directly to a wiring layer for enhancing adhesion to both the copper wiring and the polymer dielectric surface. In addition, a thin layer of PAEBI can also function as a protection layer for the copper wiring, eliminating the need for Cr or Ni barrier metallurgies and thus significantly reducing the number of process steps.

  1. ALMA high performance nutating subreflector

    NASA Astrophysics Data System (ADS)

    Gasho, Victor L.; Radford, Simon J. E.; Kingsley, Jeffrey S.

    2003-02-01

    For the international ALMA project"s prototype antennas, we have developed a high performance, reactionless nutating subreflector (chopping secondary mirror). This single axis mechanism can switch the antenna"s optical axis by +/-1.5" within 10 ms or +/-5" within 20 ms and maintains pointing stability within the antenna"s 0.6" error budget. The light weight 75 cm diameter subreflector is made of carbon fiber composite to achieve a low moment of inertia, <0.25 kg m2. Its reflecting surface was formed in a compression mold. Carbon fiber is also used together with Invar in the supporting structure for thermal stability. Both the subreflector and the moving coil motors are mounted on flex pivots and the motor magnets counter rotate to absorb the nutation reaction force. Auxiliary motors provide active damping of external disturbances, such as wind gusts. Non contacting optical sensors measure the positions of the subreflector and the motor rocker. The principle mechanical resonance around 20 Hz is compensated with a digital PID servo loop that provides a closed loop bandwidth near 100 Hz. Shaped transitions are used to avoid overstressing mechanical links.

  2. Engineering the van der Waals interaction in cross-linking-free hydroxide exchange membranes for low swelling and high conductivity.

    PubMed

    Gu, Shuang; Skovgard, Jason; Yan, Yushan S

    2012-05-01

    What a swell for hydroxides: The typical trade-off between swelling control and ion conductivity in ion-conducting polymer membranes is overcome by enhancement of van der Waals interactions among polymer chains. Using a quaternary phosphonium-functionalized polymer, the simple combination of high electron density of the polymer and large dipole moment of the functional group leads to low membrane swelling, high hydroxide conductivity, and excellent hydroxide exchange membrane fuel cell performance.

  3. High switching efficiency in FePt exchange coupled composite media mediated by MgO exchange control layers

    NASA Astrophysics Data System (ADS)

    Dutta, Tanmay; Piramanayagam, S. N.; Saifullah, M. S. M.; Bhatia, C. S.

    2017-07-01

    Satisfying the mutually conflicting requirements of easy switchability and high thermal stability still remains a hindrance to achieving ultra-high areal densities in hard disk drives. Exchange coupled composite media used with proper exchange control layers (ECLs) presents a potential solution to circumvent this hindrance. In this work, we have studied the role of MgO and Ta ECLs of different thicknesses in reducing the switching field of FePt media. MgO ECL was found to be more effective than a Ta ECL. For a 2 nm MgO ECL, the switching field could be reduced by 41% and at the cost of only a limited loss in thermal stability. Furthermore, a very high switching efficiency of 1.9 was obtained using 2 nm MgO ECL. So, with a proper choice of ECL material and thickness, the switching field of FePt media can be substantially reduced while ensuring high thermal stability and a better signal-to-noise ratio, thus potentially paving the way for very high areal density media.

  4. Refrigerant Performance Evaluation Including Effects of Transport Properties and Optimized Heat Exchangers.

    PubMed

    Brignoli, Riccardo; Brown, J Steven; Skye, H; Domanski, Piotr A

    2017-08-01

    Preliminary refrigerant screenings typically rely on using cycle simulation models involving thermodynamic properties alone. This approach has two shortcomings. First, it neglects transport properties, whose influence on system performance is particularly strong through their impact on the performance of the heat exchangers. Second, the refrigerant temperatures in the evaporator and condenser are specified as input, while real-life equipment operates at imposed heat sink and heat source temperatures; the temperatures in the evaporator and condensers are established based on overall heat transfer resistances of these heat exchangers and the balance of the system. The paper discusses a simulation methodology and model that addresses the above shortcomings. This model simulates the thermodynamic cycle operating at specified heat sink and heat source temperature profiles, and includes the ability to account for the effects of thermophysical properties and refrigerant mass flux on refrigerant heat transfer and pressure drop in the air-to-refrigerant evaporator and condenser. Additionally, the model can optimize the refrigerant mass flux in the heat exchangers to maximize the Coefficient of Performance. The new model is validated with experimental data and its predictions are contrasted to those of a model based on thermodynamic properties alone.

  5. Working parameters affecting earth-air heat exchanger (EAHE) system performance for passive cooling: A review

    NASA Astrophysics Data System (ADS)

    Darius, D.; Misaran, M. S.; Rahman, Md. M.; Ismail, M. A.; Amaludin, A.

    2017-07-01

    The study on the effect of the working parameters such as pipe material, pipe length, pipe diameter, depth of burial of the pipe, air flow rate and different types of soils on the thermal performance of earth-air heat exchanger (EAHE) systems is very crucial to ensure that thermal comfort can be achieved. In the past decade, researchers have performed studies to develop numerical models for analysis of EAHE systems. Until recently, two-dimensional models replaced the numerical models in the 1990s and in recent times, more advanced analysis using three-dimensional models, specifically the Computational Fluid Dynamics (CFD) simulation in the analysis of EAHE system. This paper reviews previous models used to analyse the EAHE system and working parameters that affects the earth-air heat exchanger (EAHE) thermal performance as of February 2017. Recent findings on the parameters affecting EAHE performance are also presented and discussed. As a conclusion, with the advent of CFD methods, investigational work have geared up to modelling and simulation work as it saves time and cost. Comprehension of the EAHE working parameters and its effect on system performance is largely established. However, the study on type of soil and its characteristics on the performance of EAHEs systems are surprisingly barren. Therefore, future studies should focus on the effect of soil characteristics such as moisture content, density of soil, and type of soil on the thermal performance of EAHEs system.

  6. High performance silicon optical modulators

    NASA Astrophysics Data System (ADS)

    Reed, G. T.; Thomson, D. J.; Gardes, F. Y.; Hu, Y.; Owens, N.; Debnath, K.; O'Faolain, L.; Krauss, T. F.; Lever, L.; Ikonic, Z.; Kelsall, R. W.; Myronov, M.; Leadley, D. R.; Marko, I. P.; Sweeney, S. J.; Cox, D. C.; Brimont, A.; Sanchis, P.; Duan, G.-H.; Le Liepvre, A.; Jany, C.; Lamponi, M.; Make, D.; Lelarge, F.; Fedeli, J. M.; Messaoudene, S.; Keyvaninia, S.; Roelkens, G.; Van Thourhout, D.; Liu, S.; Yang, X.; Petropoulos, P.

    2012-11-01

    In this work we present results from high performance silicon optical modulators produced within the two largest silicon photonics projects in Europe; UK Silicon Photonics (UKSP) and HELIOS. Two conventional MZI based optical modulators featuring novel self-aligned fabrication processes are presented. The first is based in 400nm overlayer SOI and demonstrates 40Gbit/s modulation with the same extinction ratio for both TE and TM polarisations, which relaxes coupling requirements to the device. The second design is based in 220nm SOI and demonstrates 40Gbits/s modulation with a 10dB extinction ratio as well modulation at 50Gbit/s for the first time. A ring resonator based optical modulator, featuring FIB error correction is presented. 40Gbit/s, 32fJ/bit operation is also shown from this device which has a 6um radius. Further to this slow light enhancement of the modulation effect is demonstrated through the use of both convention photonic crystal structures and corrugated waveguides. Fabricated conventional photonic crystal modulators have shown an enhancement factor of 8 over the fast light case. The corrugated waveguide device shows modulation efficiency down to 0.45V.cm compared to 2.2V.cm in the fast light case. 40Gbit/s modulation is demonstrated with a 3dB modulation depth from this device. Novel photonic crystal based cavity modulators are also demonstrated which offer the potential for low fibre to fibre loss. In this case preliminary modulation results at 1Gbit/s are demonstrated. Ge/SiGe Stark effect devices operating at 1300nm are presented. Finally an integrated transmitter featuring a III-V source and MZI modulator operating at 10Gbit/s is presented.

  7. Performance evaluation of sea water heat exchanger installed in concrete structure of pontoon

    NASA Astrophysics Data System (ADS)

    Hwang, Kwang-Il; Sim, Young-Hoon; Kim, Yun-Hae

    2015-03-01

    At the viewpoint of energy saving and the increasing needs of seaside leisure activities in Korea, floating architecture is recently to be focused on, but it is in the early stage of technological development. Considering the features of floating structures that can float and move on sea and/or river, this study proposes Single-U type Sea Water Heat Exchanger (SWHEx) and Spring type SWHEx that installed into or outside the submerged concrete structure of pontoon, respectively. As the results from CFD and mock-up tests, it is found out that the mean temperature difference is 3°C between the inlet and outlet temperatures of working fluid which flows inside the Single-U type SWHEx and 1.5°C for Spring type SWHEx. Also it is clear that the heat exchange performance of Single-U type SWHEx is better than Spring type.

  8. High-dose immunoglobulin infusion for thrombotic thrombocytopenic purpura refractory to plasma exchange and steroid therapy.

    PubMed

    Park, Seh Jong; Kim, Seok Jin; Seo, Hee Yun; Jang, Moon Ju; Oh, Doyeun; Kim, Byung Soo; Kim, Jun Suk

    2008-09-01

    The outcomes of the treatment of thrombotic thrombocytopenic purpura (TTP) have been shown to be improved by the administration of plasma exchange. However, treatment options are currently limited for cases refractory to plasma exchange. The autoantibodies that block the activity of ADAMTS13 have been demonstrated to play a role in the pathogenesis of TTP; therefore, high-dose immunoglobulin, which can neutralize these autoantibodies, may be useful for refractory TTP. However, successful treatment with high-dose immunoglobulin for TTP refractory to plasma exchange and corticosteroids has yet to be reported in Korea. Herein, we describe a refractory case which was treated successfully with high-dose immunoglobulin. A 29-year-old male diagnosed with TTP failed to improve after plasma exchange coupled with additional high-dose corticosteroid therapy. As a salvage treatment, we initiated a 7-day regimen of high-dose immunoglobulin (400 mg/kg) infusions, which resulted in a complete remission, lasting up to the last follow-up at 18 months. High-dose immunoglobulin may prove to be a useful treatment for patients refractory to plasma exchange; it may also facilitate recovery and reduce the need for plasma exchange.

  9. Rocket Based Combined Cycle Exchange Inlet Performance Estimation at Supersonic Speeds

    NASA Astrophysics Data System (ADS)

    Murzionak, Aliaksandr

    A method to estimate the performance of an exchange inlet for a Rocket Based Combined Cycle engine is developed. This method is to be used for exchange inlet geometry optimization and as such should be able to predict properties that can be used in the design process within a reasonable amount of time to allow multiple configurations to be evaluated. The method is based on a curve fit of the shocks developed around the major components of the inlet using solutions for shocks around sharp cones and 2D estimations of the shocks around wedges with blunt leading edges. The total pressure drop across the estimated shocks as well as the mass flow rate through the exchange inlet are calculated. The estimations for a selected range of free-stream Mach numbers between 1.1 and 7 are compared against numerical finite volume method simulations which were performed using available commercial software (Ansys-CFX). The total pressure difference between the two methods is within 10% for the tested Mach numbers of 5 and below, while for the Mach 7 test case the difference is 30%. The mass flow rate on average differs by less than 5% for all tested cases with the maximum difference not exceeding 10%. The estimation method takes less than 3 seconds on 3.0 GHz single core processor to complete the calculations for a single flight condition as oppose to over 5 days on 8 cores at 2.4 GHz system while using 3D finite volume method simulation with 1.5 million elements mesh. This makes the estimation method suitable for the use with exchange inlet geometry optimization algorithm.

  10. IBM SP high-performance networking with a GRF.

    SciTech Connect

    Navarro, J.P.

    1999-05-27

    Increasing use of highly distributed applications, demand for faster data exchange, and highly parallel applications can push the limits of conventional external networking for IBM SP sites. In technical computing applications we have observed a growing use of a pipeline of hosts and networks collaborating to collect, process, and visualize large amounts of realtime data. The GRF, a high-performance IP switch from Ascend and IBM, is the first backbone network switch to offer a media card that can directly connect to an SP Switch. This enables switch attached hosts in an SP complex to communicate at near SP Switch speeds with other GRF attached hosts and networks.

  11. SISYPHUS: A high performance seismic inversion factory

    NASA Astrophysics Data System (ADS)

    Gokhberg, Alexey; Simutė, Saulė; Boehm, Christian; Fichtner, Andreas

    2016-04-01

    branches for the static process setup, inversion iterations, and solver runs, each branch specifying information at the event, station and channel levels. The workflow management framework is based on an embedded scripting engine that allows definition of various workflow scenarios using a high-level scripting language and provides access to all available inversion components represented as standard library functions. At present the SES3D wave propagation solver is integrated in the solution; the work is in progress for interfacing with SPECFEM3D. A separate framework is designed for interoperability with an optimization module; the workflow manager and optimization process run in parallel and cooperate by exchanging messages according to a specially designed protocol. A library of high-performance modules implementing signal pre-processing, misfit and adjoint computations according to established good practices is included. Monitoring is based on information stored in the inversion state database and at present implements a command line interface; design of a graphical user interface is in progress. The software design fits well into the common massively parallel system architecture featuring a large number of computational nodes running distributed applications under control of batch-oriented resource managers. The solution prototype has been implemented on the "Piz Daint" supercomputer provided by the Swiss Supercomputing Centre (CSCS).

  12. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers.

    PubMed

    Tu, Y D; Wang, R Z; Ge, T S; Zheng, X

    2017-01-12

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump's efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  13. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers

    NASA Astrophysics Data System (ADS)

    Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.

    2017-01-01

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8–3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  14. A high temperature ceramic heat exchanger element for a solar thermal receiver

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.

    1982-01-01

    The development of a high-temperature ceramic heat exchanger element to be integrated into a solar receiver producing heated air was studied. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is to be fabricated by a innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. The unit is sized to produce 2150 F air at 2.7 atm pressure, with a pressure drop of about 2 percent of the inlet pressure. This size is compatible with a solar collector providing a receiver input of 85 kw(th). Fabrication of a one-half scale demonstrator ceramic receiver was completed.

  15. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers

    PubMed Central

    Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.

    2017-01-01

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8–3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications. PMID:28079171

  16. Preparation of high purity egg phosvitin using anion exchange chromatography.

    PubMed

    Ren, Jiandong; Wu, Jianping

    2014-09-01

    Egg yolk phosvitin serves as a warehouse to provide metal ions for embryo development. It is significant for mineral metabolism study and also of great potential to be developed into functional foods with mineral absorption promoting ability. In this study, phosvitin was first extracted from yolk granules using 10% NaCl, dialysed and then adjusted to various pHs to remove impurities. The purity of phosvitin extracts was increased from 54.5% to 63.7% at decreasing pH from 8.0 to 5.5, and started to decrease afterwards. Both the yield and recovery were significantly decreased at decreasing pHs, especially at pHs close to its pI (pH 4.0), indicating the occurrence of co-precipitation of phosvitin with HDL. The extract prepared at pH 8.0 showed the highest recovery of 82.7%; its purity was increased from 54.5% to 97.1% by anion exchange chromatography, with a recovery of 42.0%. This simple method could be scaled up for industrial production.

  17. High Performance Torso Cooling Garment

    NASA Technical Reports Server (NTRS)

    Conger, Bruce

    2016-01-01

    The concept proposed in this paper is to improve thermal efficiencies of the liquid cooling and ventilation garment (LCVG) in the torso area, which could facilitate removal of LCVG tubing from the arms and legs, thereby increasing suited crew member mobility. EVA space suit mobility in micro-gravity is challenging, and it becomes even more challenging in the gravity of Mars. By using shaped water tubes that greatly increase the contact area with the skin in the torso region of the body, the heat transfer efficiency can be increased. This increase in efficiency could provide the required liquid cooling via torso tubing only; no arm or leg LCVG tubing would be required. Benefits of this approach include increased crewmember mobility, reduced LCVG mass, enhanced evaporation cooling, increased comfort during Mars EVA tasks, and easing of the overly dry condition in the helmet associated with the Advanced Extravehicular Mobility Unit (EMU) ventilation loop currently under development. This report describes analysis and test activities performed to evaluate the potential improvements to the thermal performance of the LCVG. Analyses evaluated potential tube shapes for improving the thermal performance of the LCVG. The analysis results fed into the selection of flat flow strips to improve thermal contact with the skin of the suited test subject. Testing of small segments was performed to compare thermal performance of the tubing approach of the current LCVG to the flat flow strips proposed as the new concept. Results of the testing is presented along with recommendations for future development of this new concept.

  18. High Performance Torso Cooling Garment

    NASA Technical Reports Server (NTRS)

    Conger, Bruce; Makinen, Janice

    2016-01-01

    The concept proposed in this paper is to improve thermal efficiencies of the liquid cooling and ventilation garment (LCVG) in the torso area, which could facilitate removal of LCVG tubing from the arms and legs, thereby increasing suited crew member mobility. EVA space suit mobility in micro-gravity is challenging, and it becomes even more challenging in the gravity of Mars. By using shaped water tubes that greatly increase the contact area with the skin in the torso region of the body, the heat transfer efficiency can be increased. This increase in efficiency could provide the required liquid cooling via torso tubing only; no arm or leg LCVG tubing would be required. Benefits of this approach include increased crewmember mobility, enhanced evaporation cooling, increased comfort during Mars EVA tasks, and easing of the overly dry condition in the helmet associated with the Advanced Extravehicular Mobility Unit (EMU) ventilation loop currently under development. This report describes analysis and test activities performed to evaluate the potential improvements to the thermal performance of the LCVG. Analyses evaluated potential tube shapes for improving the thermal performance of the LCVG. The analysis results fed into the selection of flat flow strips to improve thermal contact with the skin of the suited test subject. Testing of small segments was performed to compare thermal performance of the tubing approach of the current LCVG to the flat flow strips proposed as the new concept. Results of the testing is presented along with recommendations for future development of this new concept.

  19. Performance Characterization of a Microchannel Liquid/Liquid Heat Exchanger Throughout an Extended Duration Life Test

    NASA Technical Reports Server (NTRS)

    Sheth, Rubik B.; Stephan, Ryan A.; Hawkins-Reynolds Ebony

    2011-01-01

    Liquid/Liquid Heat Exchangers (L/L HX) are an integral portion of any spacecraft active thermal control system. For this study the X-38 L/L HX was used as a baseline. As detailed in a previous ICES manuscript, NASA paired with Pacific Northwest National Laboratory to develop a Microchannel L/L HX (MHX). This microchannel HX was designed to meet the same performance characteristics as the aforementioned X-38 HX. The as designed Microchannel HX has a 26% and 60% reduction in mass and volume, respectively. Due to the inherently smaller flow passages the design team was concerned about fouling affecting performance during extended missions. To address this concern, NASA has developed a test stand and is currently performing an 18 month life test on the MHX. This report will detail the up-to-date performance of the MHX during life testing.

  20. Analysis of field-performance data on shell-and-tube heat exchangers in geothermal service

    SciTech Connect

    Silvester, L.F.; Doyle, P.T.

    1982-03-01

    Analysis of field performance data from a binary cycle test loop using geothermal brine and a hydrocarbon working fluid is reported. Results include test loop operational problems, and shell-and-tube heat exchanger performance factors such as overall heat transfer coefficients, film coefficients, pinch points, and pressure drops. Performance factors are for six primary heaters having brine in the tubes and hydrocarbon in the shells in counterflow, and for a condenser having cooling water in the tubes and hydrocarbon in the shell. Working fluids reported are isobutane, 90/10 isobutane/isopentane, and 80/20 isobutane/isopentane. Performance factors are for heating each working fluid at supercritical conditions in the vicinity of their critical pressure and temperature and condensing the same fluid.

  1. Structural and performance characteristics of representative anion exchange resins used for weak partitioning chromatography.

    PubMed

    Zhang, Shaojie; Iskra, Tim; Daniels, William; Salm, Jeffrey; Gallo, Christopher; Godavarti, Ranga; Carta, Giorgio

    2016-12-20

    Weak partitioning chromatography (WPC) has been proposed for the purification of monoclonal antibodies using an anion exchange (AEX) resin to simultaneously remove both acidic and basic protein impurities. Despite potential advantages, the relationship between resin structure and WPC performance has not been evaluated systematically. In this work, we determine the structure of representative AEX resins (Fractogel® EMD TMAE HiCap, Q Sepharose FF, and POROS 50 HQ) using transmission electron microscopy and inverse size exclusion chromatography and characterize protein interactions while operating these resins under WPC conditions using two mAb monomers, a mAb dimer, mAb multimers, and BSA as model products and impurities. We determine the isocratic elution behavior of the weakly bound monomer and dimer species and the adsorptive and mass transfer properties of the strongly bound multimers and BSA by confocal laser scanning microscopy. The results show that for each resin, using the product Kp value as guidance, salt, and pH conditions can be found where mAb multimers and BSA are simultaneously removed. Isocratic elution and adsorption mechanisms are, however, different for each resin and for the different components. Under WPC conditions, the Fractogel resin exhibited very slow diffusion of both mAb monomer and dimer species but fast adsorption for both mAb multimers and BSA with high capacity for BSA, while the Sepharose resin, because of its small pore size, was unable to effectively remove mAb multimers. The POROS resin was instead able to bind both multimers and BSA effectively, while exhibiting a greater resolution of mAb monomer and dimer species. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 2017.

  2. High performance parallel implicit CFD.

    SciTech Connect

    Gropp, W. D.; Kaushik, D. K.; Keyes, D. E.; Smith, B. F.; Mathematics and Computer Science; Old Dominion Univ.

    2001-03-01

    Fluid dynamical simulations based on finite discretizations on (quasi-)static grids scale well in parallel, but execute at a disappointing percentage of per-processor peak floating point operation rates without special attention to layout and access ordering of data. We document both claims from our experience with an unstructured grid CFD code that is typical of the state of the practice at NASA. These basic performance characteristics of PDE-based codes can be understood with surprisingly simple models, for which we quote earlier work, presenting primarily experimental results. The performance models and experimental results motivate algorithmic and software practices that lead to improvements in both parallel scalability and per node performance. This snapshot of ongoing work updates our 1999 Bell Prize-winning simulation on ASCI computers.

  3. Rapid preparation of biosorbents with high ion exchange capacity from rice straw and bagasse for removal of heavy metals.

    PubMed

    Rungrodnimitchai, Supitcha

    2014-01-01

    This work describes the preparation of the cellulose phosphate with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. In this study, rice straw and bagasse were modified by the reaction with phosphoric acid in the presence of urea. The introduced phosphoric group is an ion exchangeable site for heavy metal ions. The reaction by microwave heating yielded modified rice straw and modified bagasse with greater ion exchange capacities (∼3.62 meq/g) and shorter reaction time (1.5-5.0 min) than the phosphorylation by oil bath heating. Adsorption experiments towards Pb²⁺, Cd²⁺, and Cr³⁺ ions of the modified rice straw and the modified bagasse were performed at room temperature (heavy metal concentration 40 ppm, adsorbent 2.0 g/L). The kinetics of adsorption agreed with the pseudo-second-order model. It was shown that the modified rice straw and the modified bagasse could adsorb heavy metal ions faster than the commercial ion exchange resin (Dowax). As a result of Pb²⁺ sorption test, the modified rice straw (RH-NaOH 450W) removed Pb²⁺ much faster in the initial step and reached 92% removal after 20 min, while Dowax (commercial ion exchange resin) took 90 min for the same removal efficiency.

  4. Rapid Preparation of Biosorbents with High Ion Exchange Capacity from Rice Straw and Bagasse for Removal of Heavy Metals

    PubMed Central

    2014-01-01

    This work describes the preparation of the cellulose phosphate with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. In this study, rice straw and bagasse were modified by the reaction with phosphoric acid in the presence of urea. The introduced phosphoric group is an ion exchangeable site for heavy metal ions. The reaction by microwave heating yielded modified rice straw and modified bagasse with greater ion exchange capacities (∼3.62 meq/g) and shorter reaction time (1.5–5.0 min) than the phosphorylation by oil bath heating. Adsorption experiments towards Pb2+, Cd2+, and Cr3+ ions of the modified rice straw and the modified bagasse were performed at room temperature (heavy metal concentration 40 ppm, adsorbent 2.0 g/L). The kinetics of adsorption agreed with the pseudo-second-order model. It was shown that the modified rice straw and the modified bagasse could adsorb heavy metal ions faster than the commercial ion exchange resin (Dowax). As a result of Pb2+ sorption test, the modified rice straw (RH-NaOH 450W) removed Pb2+ much faster in the initial step and reached 92% removal after 20 min, while Dowax (commercial ion exchange resin) took 90 min for the same removal efficiency. PMID:24578651

  5. Preparation and performance evaluation of novel alkaline stable anion exchange membranes

    NASA Astrophysics Data System (ADS)

    Irfan, Muhammad; Bakangura, Erigene; Afsar, Noor Ul; Hossain, Md. Masem; Ran, Jin; Xu, Tongwen

    2017-07-01

    Novel alkaline stable anion exchange membranes are prepared from various amounts of N-methyl dipicolylamine (MDPA) and brominated poly (2,6-dimethyl-1,4-phenylene oxide) (BPPO). The dipicolylamine and MDPA are synthesized through condensation reaction and confirmed by 1H NMR spectroscopy. The morphologies of prepared membranes are investigated by atomic force microscopy (AFM), fourier transform infrared spectroscopy (FTIR), 1H NMR spectroscopy and scanning electron microscopy (SEM). The electrochemical and physical properties of AEMs are tested comprising water uptake (WU), ion exchange capacity (IEC), alkaline stability, linear expansion ratio (LER), thermal stability and mechanical stability. The obtained hydroxide conductivity of MDPA-4 is 66.5 mS/cm at 80 °C. The MDPA-4 membrane shows good alkaline stability, high hydroxide conductivity, low methanol permeability (3.43 × 10-7 cm2/s), higher selectivity (8.26 × 107 mS s/cm3), less water uptake (41.1%) and lower linear expansion (11.1%) despite of high IEC value (1.62 mmol/g). The results prove that MDPA membranes have great potential application in anion exchange membrane fuel cell.

  6. High-performance composite chocolate

    NASA Astrophysics Data System (ADS)

    Dean, Julian; Thomson, Katrin; Hollands, Lisa; Bates, Joanna; Carter, Melvyn; Freeman, Colin; Kapranos, Plato; Goodall, Russell

    2013-07-01

    The performance of any engineering component depends on and is limited by the properties of the material from which it is fabricated. It is crucial for engineering students to understand these material properties, interpret them and select the right material for the right application. In this paper we present a new method to engage students with the material selection process. In a competition-based practical, first-year undergraduate students design, cost and cast composite chocolate samples to maximize a particular performance criterion. The same activity could be adapted for any level of education to introduce the subject of materials properties and their effects on the material chosen for specific applications.

  7. A high performance thermoacoustic engine

    NASA Astrophysics Data System (ADS)

    Tijani, M. E. H.; Spoelstra, S.

    2011-11-01

    In thermoacoustic systems heat is converted into acoustic energy and vice versa. These systems use inert gases as working medium and have no moving parts which makes the thermoacoustic technology a serious alternative to produce mechanical or electrical power, cooling power, and heating in a sustainable and environmentally friendly way. A thermoacoustic Stirling heat engine is designed and built which achieves a record performance of 49% of the Carnot efficiency. The design and performance of the engine is presented. The engine has no moving parts and is made up of few simple components.

  8. Design and Preliminary Thermal Performance of the Mars Science Laboratory Rover Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Mastropietro, A. J.; Beatty, John; Kelly, Frank; Birur, Gajanana; Bhandari, Pradeep; Pauken, Michael; Illsley, Peter; Liu, Yuanming; Bame, David; Miller, Jennifer

    2010-01-01

    The challenging range of proposed landing sites for the Mars Science Laboratory Rover requires a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 degrees Centigrade and as warm as 38 degrees Centigrade, the Rover relies upon a Mechanically Pumped Fluid Loop (MPFL) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 degrees Centigrade to 50 degrees Centigrade range. The MPFL also manages significant waste heat generated from the Rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG). The MMRTG produces 110 Watts of electrical power while generating waste heat equivalent to approximately 2000 Watts. Two similar Heat Exchanger (HX) assemblies were designed to both acquire the heat from the MMRTG and radiate waste heat from the onboard electronics to the surrounding Martian environment. Heat acquisition is accomplished on the interior surface of each HX while heat rejection is accomplished on the exterior surface of each HX. Since these two surfaces need to be at very different temperatures in order for the MPFL to perform efficiently, they need to be thermally isolated from one another. The HXs were therefore designed for high in-plane thermal conductivity and extremely low through-thickness thermal conductivity by using aerogel as an insulator inside composite honeycomb sandwich panels. A complex assembly of hand welded and uniquely bent aluminum tubes are bonded onto the HX panels and were specifically designed to be easily mated and demated to the rest of the Rover Heat Recovery and Rejection System (RHRS) in order to ease the integration effort. During the cruise phase to Mars, the HX assemblies serve the additional function of transferring heat from the Rover MPFL to the separate Cruise Stage MPFL so that heat

  9. Design and Preliminary Thermal Performance of the Mars Science Laboratory Rover Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Mastropietro, A. J.; Beatty, John; Kelly, Frank; Birur, Gajanana; Bhandari, Pradeep; Pauken, Michael; Illsley, Peter; Liu, Yuanming; Bame, David; Miller, Jennifer

    2010-01-01

    The challenging range of proposed landing sites for the Mars Science Laboratory Rover requires a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 degrees Centigrade and as warm as 38 degrees Centigrade, the Rover relies upon a Mechanically Pumped Fluid Loop (MPFL) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 degrees Centigrade to 50 degrees Centigrade range. The MPFL also manages significant waste heat generated from the Rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG). The MMRTG produces 110 Watts of electrical power while generating waste heat equivalent to approximately 2000 Watts. Two similar Heat Exchanger (HX) assemblies were designed to both acquire the heat from the MMRTG and radiate waste heat from the onboard electronics to the surrounding Martian environment. Heat acquisition is accomplished on the interior surface of each HX while heat rejection is accomplished on the exterior surface of each HX. Since these two surfaces need to be at very different temperatures in order for the MPFL to perform efficiently, they need to be thermally isolated from one another. The HXs were therefore designed for high in-plane thermal conductivity and extremely low through-thickness thermal conductivity by using aerogel as an insulator inside composite honeycomb sandwich panels. A complex assembly of hand welded and uniquely bent aluminum tubes are bonded onto the HX panels and were specifically designed to be easily mated and demated to the rest of the Rover Heat Recovery and Rejection System (RHRS) in order to ease the integration effort. During the cruise phase to Mars, the HX assemblies serve the additional function of transferring heat from the Rover MPFL to the separate Cruise Stage MPFL so that heat

  10. High-capacity anion exchangers based on poly (glycidylmethacrylate-divinylbenzene) microspheres for ion chromatography.

    PubMed

    Liu, Junwei; Wang, Yong; Cheng, Heli; Wang, Nani; Wu, Shuchao; Zhang, Peimin; Zhu, Yan

    2016-10-01

    Poly (glycidylmethacrylate-divinylbenzene) microspheres were prepared by the two-staged swelling and polymerization method and applied to prepare anion exchange stationary phases. Methylamine, dimethylamine, trimethylamine, diethylamine and triethylamine were selected to prepare the quaternary ammonium groups of anion exchangers, respectively. The diameters and surface characteristics of microspheres were measured by scanning electron microscope and nitrogen adsorption-desorption measurements. The anion exchangers were characterized by Fourier transform infrared spectrum, elemental analysis and breakthrough curve methods. The chromatographic performances of anion exchangers were illustrated by separating conventional anions, organic weak acids and carbohydrates. The results indicated that the anion exchange capacities were controllable by changing either the content of glycidylmethacrylate in microspheres or the number of bonded quaternary ammonium layer. Meanwhile, the substituents of quaternary ammonium groups greatly influenced the separation properties of anion exchangers. Finally, the three-layer methylamine-quaternized anion exchanger was successfully applied for the determination of fluoride in tea sample. The content of fluoride was detected to be 0.13mgg(-1) without the interference of acetate and formate.

  11. Investigation of Molecular Exchange Using DEXSY with Ultra-High Pulsed Field Gradients

    SciTech Connect

    Gratz, Marcel; Galvosas, Petrik

    2008-12-05

    Diffusion exchange spectroscopy has been employed for the investigation of water exchange between different regions of a cosmetic lotion as well as for the exchange of n-pentane between the inter- and intra-crystalline space in zeolite NaX. We successfully combined this two-dimensional (2D) NMR experiment with methods for the application of ultra-high pulsed field gradients of up to 35 T/m, resulting in observation times and mixing times as short as 2 ms and 2.8 ms, respectively.

  12. High frequency characteristics of NiO/(FeCo/NiO) 10 multilayers with exchange anisotropy

    NASA Astrophysics Data System (ADS)

    Chen, Jihong; Tang, Dongming; Li, Yuwei; Zhang, Baoshan; Yang, Yi; Lu, Mu; Lu, Huaixian

    2010-10-01

    [NiO/Fe 65Co 35] 10 exchange-coupled multilayer films for high frequency applications are fabricated, and their static magnetic property and microwave permeability are studied systematically. Both exchange bias field and ferromagnetic resonance frequency of the multilayers increase with decreasing Fe 65Co 35 thickness, which means that the microwave properties such as permeability and FMR frequency can be controlled by changing Fe 65Co 35 thickness in the exchange-coupled films. Ferromagnetic resonance frequencies beyond 7 GHz of the films are measured and reported for the first time.

  13. High temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    SciTech Connect

    Crossland, C.E.; Shelleman, D.L.; Spear, K.E.

    1996-08-01

    A vertical flow-through furnace has been built to study the effect of corrosion on the morphology and mechanical properties of ceramic hot gas filters. Sections of 3M Type 203 and DuPont Lanxide SiC-SiC filter tubes were sealed at one end and suspended in the furnace while being subjected to a simulated coal combustion environment at 870{degrees}C. X-ray diffraction and electron microscopy is used to identify phase and morphology changes due to corrosion while burst testing determines the loss of mechanical strength after exposure to the combustion gases. Additionally, a thermodynamic database of gaseous silicon compounds is currently being established so that calculations can be made to predict important products of the reaction of the environment with the ceramics. These thermodynamic calculations provide useful information concerning the regimes where the ceramic may be degraded by material vaporization. To verify the durability and predict lifetime performance of ceramic heat exchangers in coal combustion environments, long-term exposure testing of stressed (internally pressurized) tubes must be performed in actual coal combustion environments. The authors have designed a system that will internally pressurize 2 inch OD by 48 inch long ceramic heat exchanger tubes to a maximum pressure of 200 psi while exposing the outer surface of the tubes to coal combustion gas at the Combustion and Environmental Research Facility (CERF) at the Pittsburgh Energy and Technology Center. Water-cooled, internal o-ring pressure seals were designed to accommodate the existing 6 inch by 6 inch access panels of the CERF. Tubes will be exposed for up to a maximum of 500 hours at temperatures of 2500 and 2600{degrees}F with an internal pressure of 200 psi. If the tubes survive, their retained strength will be measured using the high temperature tube burst test facility at Penn State University. Fractographic analysis will be performed to identify the failure source(s) for the tubes.

  14. High performance, high density hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Frankenfeld, J. W.; Hastings, T. W.; Lieberman, M.; Taylor, W. F.

    1978-01-01

    The fuels were selected from 77 original candidates on the basis of estimated merit index and cost effectiveness. The ten candidates consisted of 3 pure compounds, 4 chemical plant streams and 3 refinery streams. Critical physical and chemical properties of the candidate fuels were measured including heat of combustion, density, and viscosity as a function of temperature, freezing points, vapor pressure, boiling point, thermal stability. The best all around candidate was found to be a chemical plant olefin stream rich in dicyclopentadiene. This material has a high merit index and is available at low cost. Possible problem areas were identified as low temperature flow properties and thermal stability. An economic analysis was carried out to determine the production costs of top candidates. The chemical plant and refinery streams were all less than 44 cent/kg while the pure compounds were greater than 44 cent/kg. A literature survey was conducted on the state of the art of advanced hydrocarbon fuel technology as applied to high energy propellents. Several areas for additional research were identified.

  15. Toward High-Performance Organizations.

    ERIC Educational Resources Information Center

    Lawler, Edward E., III

    2002-01-01

    Reviews management changes that companies have made over time in adopting or adapting four approaches to organizational performance: employee involvement, total quality management, re-engineering, and knowledge management. Considers future possibilities and defines a new view of what constitutes effective organizational design in management.…

  16. High-Performance Composite Chocolate

    ERIC Educational Resources Information Center

    Dean, Julian; Thomson, Katrin; Hollands, Lisa; Bates, Joanna; Carter, Melvyn; Freeman, Colin; Kapranos, Plato; Goodall, Russell

    2013-01-01

    The performance of any engineering component depends on and is limited by the properties of the material from which it is fabricated. It is crucial for engineering students to understand these material properties, interpret them and select the right material for the right application. In this paper we present a new method to engage students with…

  17. High-Performance Composite Chocolate

    ERIC Educational Resources Information Center

    Dean, Julian; Thomson, Katrin; Hollands, Lisa; Bates, Joanna; Carter, Melvyn; Freeman, Colin; Kapranos, Plato; Goodall, Russell

    2013-01-01

    The performance of any engineering component depends on and is limited by the properties of the material from which it is fabricated. It is crucial for engineering students to understand these material properties, interpret them and select the right material for the right application. In this paper we present a new method to engage students with…

  18. Toward High-Performance Organizations.

    ERIC Educational Resources Information Center

    Lawler, Edward E., III

    2002-01-01

    Reviews management changes that companies have made over time in adopting or adapting four approaches to organizational performance: employee involvement, total quality management, re-engineering, and knowledge management. Considers future possibilities and defines a new view of what constitutes effective organizational design in management.…

  19. High-performance electroabsorption modulator

    NASA Astrophysics Data System (ADS)

    Wei, Zhang; Jiaoqing, Pan; Hongliang, Zhu; Huan, Wang; Wei, Wang

    2009-09-01

    A 100-μm-long electroabsorption modulator monolithically integrated with passive waveguides at the input and output ports is fabricated through ion implantation induced quantum well intermixing, using only a two-step low-pressure metal-organic vapor phase epitaxial process. An InGaAsP/InGaAsP intra-step quantum well is introduced to the active region to improve the modulation properties. In the experiment high modulation speed and high extinction ratio are obtained simultaneously, the electrical-to-optical frequency response (E/O response) without any load termination reaches to 22 GHz, and extinction ration is as high as 16 dB.

  20. Indoor Air Quality in High Performance Schools

    EPA Pesticide Factsheets

    High performance schools are facilities that improve the learning environment while saving energy, resources, and money. The key is understanding the lifetime value of high performance schools and effectively managing priorities, time, and budget.

  1. Dry/wet performance of a plate-fin air-cooled heat exchanger with continuous corrugated fins

    SciTech Connect

    Hauser, S.G.; Kreid, D.K.; Johnson, B.M.

    1981-01-01

    The performance and operating characteristics of a plate-fin heat exchanger in dry/wet or deluge operations was experimentally determined. Development of the deluge heat/mass transfer model continued. The experiments were conducted in a specially-designed wind tunnel at the PNL. Air that was first heated and humidified to specified conditions was circulated at a controlled rate through a 2 ft x 6 ft heat exchanger module. The heat exchanger used in the tests was a wavy surface, plate fin on tube configuration. Hot water was circulated through the tubes at high flow rates to maintain an essentially isothermal condition on the tube side. Deionized water sprayed on the top of the vertically oriented plate fins was collected at the bottom of the core and recirculated. Instrumentation was provided for measurement of flow rates and thermodynamic conditions in the air, in the core circulation water, and in the deluge water. Measurements of the air side pressure drop and heat rejection rate were made as a function of air flow rate, air inlet temperature and humidity, deluge water flow rate, and the core inclination from the vertical. An overall heat transfer coefficient and an effective deluge film convective coefficient was determined. The deluge model, for predicting heat transfer from a wet finned heat exchanger was further developed and refined, and a major extension of the model was formulated that permits simultaneous calculation of both the heat transfer and evaporation rates from the wetted surface. The experiments showed an increase in the heat rejection rate due to wetting, accompanied by a proportional increase in the air side pressure drop. For operation at the same air side pressure drop, the enhancement ratio Q/sub w//Q/sub d/ varied between 2 and 5 for the conditions tested. Thus, the potential enhancement of heat transfer due to wetting can be substantial.

  2. Sustaining High Performance in Bad Times.

    ERIC Educational Resources Information Center

    Bassi, Laurie J.; Van Buren, Mark A.

    1997-01-01

    Summarizes the results of the American Society for Training and Development Human Resource and Performance Management Survey of 1996 that examined the performance outcomes of downsizing and high performance work systems, explored the relationship between high performance work systems and downsizing, and asked whether some downsizing practices were…

  3. High-Performance Miniature Hygrometer

    NASA Technical Reports Server (NTRS)

    Van Zandt, Thomas R.; Kaiser, William J.; Kenny, Thomas W.; Crisp, David

    1994-01-01

    Relatively inexpensive hygrometer that occupies volume less than 4 in.(3) measures dewpoints as much as 100 degrees C below ambient temperatures, with accuracy of 0.1 degrees C. Field tests indicate accuracy and repeatability identical to those of state-of-the-art larger dewpoint hygrometers. Operates up to 100 times as fast as older hygrometers, and offers simplicity and small size needed to meet cost and performance requirements of many applications.

  4. Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes

    USGS Publications Warehouse

    McGuire, A.D.; Wirth, C.; Apps, M.; Beringer, J.; Clein, J.; Epstein, H.; Kicklighter, D.W.; Bhatti, J.; Chapin, F. S.; De Groot, B.; Efremov, D.; Eugster, W.; Fukuda, M.; Gower, T.; Hinzman, L.; Huntley, B.; Jia, G.J.; Kasischke, E.; Melillo, J.; Romanovsky, V.; Shvidenko, A.; Vaganov, E.; Walker, D.

    2002-01-01

    The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.

  5. Carpet Aids Learning in High Performance Schools

    ERIC Educational Resources Information Center

    Hurd, Frank

    2009-01-01

    The Healthy and High Performance Schools Act of 2002 has set specific federal guidelines for school design, and developed a federal/state partnership program to assist local districts in their school planning. According to the Collaborative for High Performance Schools (CHPS), high-performance schools are, among other things, healthy, comfortable,…

  6. Carpet Aids Learning in High Performance Schools

    ERIC Educational Resources Information Center

    Hurd, Frank

    2009-01-01

    The Healthy and High Performance Schools Act of 2002 has set specific federal guidelines for school design, and developed a federal/state partnership program to assist local districts in their school planning. According to the Collaborative for High Performance Schools (CHPS), high-performance schools are, among other things, healthy, comfortable,…

  7. High Level Waste System Impacts from Small Column Ion Exchange Implementation

    SciTech Connect

    McCabe, D. J.; Hamm, L. L.; Aleman, S. E.; Peeler, D. K.; Herman, C. C.; Edwards, T. B.

    2005-08-18

    The objective of this task is to identify potential waste streams that could be treated with the Small Column Ion Exchange (SCIX) and perform an initial assessment of the impact of doing so on the High-Level Waste (HLW) system. Design of the SCIX system has been performed as a backup technology for decontamination of High-Level Waste (HLW) at the Savannah River Site (SRS). The SCIX consists of three modules which can be placed in risers inside underground HLW storage tanks. The pump and filter module and the ion exchange module are used to filter and decontaminate the aqueous tank wastes for disposition in Saltstone. The ion exchange module contains Crystalline Silicotitanate (CST in its engineered granular form is referred to as IONSIV{reg_sign} IE-911), and is selective for removal of cesium ions. After the IE-911 is loaded with Cs-137, it is removed and the column is refilled with a fresh batch. The grinder module is used to size-reduce the cesium-loaded IE-911 to make it compatible with the sludge vitrification system in the Defense Waste Processing Facility (DWPF). If installed at the SRS, this SCIX would need to operate within the current constraints of the larger HLW storage, retrieval, treatment, and disposal system. Although the equipment has been physically designed to comply with system requirements, there is also a need to identify which waste streams could be treated, how it could be implemented in the tank farms, and when this system could be incorporated into the HLW flowsheet and planning. This document summarizes a preliminary examination of the tentative HLW retrieval plans, facility schedules, decontamination factor targets, and vitrified waste form compatibility, with recommendations for a more detailed study later. The examination was based upon four batches of salt solution from the currently planned disposition pathway to treatment in the SCIX. Because of differences in capabilities between the SRS baseline and SCIX, these four batches were

  8. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    SciTech Connect

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

    1996-04-01

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy`s Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite{trademark} CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration.

  9. The effect of materials on proton exchange membrane fuel cell electrode performance

    NASA Astrophysics Data System (ADS)

    Millington, Ben; Du, Shangfeng; Pollet, Bruno G.

    This paper describes the optimisation in the fabrication materials and techniques used in proton exchange membrane fuel cell (PEMFC) electrodes. The effect on the performance of membrane electrode assemblies (MEAs) from the solvents used in producing catalyst inks is reported. Comparison in MEA performances between various gas diffusion layers (GDLs) and the importance of microporous layers (MPLs) in gas diffusion electrodes (GDEs) are also shown. It was found that the best performances were achieved for GDEs using tetrahydrofuran (THF) as the solvent in the catalyst ink formulation and Sigracet 10BC as the GDL. The results also showed that our in-house painted GDEs were comparable to commercial ones (using Johnson Matthey HiSpec™ and E-TEK catalysts).

  10. Investigation on the cooling performance of a compact heat exchanger using nanofluids

    NASA Astrophysics Data System (ADS)

    Abdul Jalal, M. F.; Shuaib, N. H.; Gunnasegaran, P.; Sandhita, E.

    2012-11-01

    In this paper, analysis of ethylene glycol (EG) as a base fluid with aluminum dioxide (Al2O3), diamond (DM), silicon dioxide (SiO2) and titanium dioxide (TiO2) as the coolants on compact heat exchangers (CHEs) with flattened tube plate fin is performed. By using ɛ-NTU rating method the cooling performance under cross flow arrangement of the CHEs with unmixed air and nanofluid as coolant will be investigated. The nanoparticles volume fraction φ is varied from 0 % to 4 %. The mathematical formulation, nanofluid properties and relevant input data are extracted from literatures. The CHE performance with respect to heat transfer coefficient, pressure drop and pumping power by means of MATLAB SIMULINK is investigated. The result shows that with the increase of nanoparticles volume fraction and nanofluid Reynold number, the CHE exhibits enhancement in term of heat transfer coefficient with the penalty of increase in pressure drop as well as pumping power.

  11. Performance Analysis of Air Breathing Proton Exchange Membrane Fuel Cell Stack (PEMFCS) At Different Operating Condition

    NASA Astrophysics Data System (ADS)

    Sunil, V.; Venkata siva, G.; Yoganjaneyulu, G.; Ravikumar, V. V.

    2017-08-01

    The answer for an emission free power source in future is in the form of fuel cells which combine hydrogen and oxygen producing electricity and a harmless by product-water. A proton exchange membrane (PEM) fuel cell is ideal for automotive applications. A single cell cannot supply the essential power for any application. Hence PEM fuel cell stacks are used. The effect of different operating parameters namely: type of convection, type of draught, hydrogen flow rate, hydrogen inlet pressure, ambient temperature and humidity, hydrogen humidity, cell orientation on the performance of air breathing PEM fuel cell stack was analyzed using a computerized fuel cell test station. Then, the fuel cell stack was subjected to different load conditions. It was found that the stack performs very poorly at full capacity (runs only for 30 min. but runs for 3 hours at 50% capacity). Hence, a detailed study was undertaken to maximize the duration of the stack’s performance at peak load.

  12. High-performance solar collector

    NASA Technical Reports Server (NTRS)

    Beekley, D. C.; Mather, G. R., Jr.

    1979-01-01

    Evacuated all-glass concentric tube collector using air or liquid transfer mediums is very efficient at high temperatures. Collector can directly drive existing heating systems that are presently driven by fossil fuel with relative ease of conversion and less expense than installation of complete solar heating systems.

  13. Ion-Exchange Interdiffusion Model with Potential Application to Long-Term Nuclear Waste Glass Performance

    SciTech Connect

    Neeway, James Joseph; Kerisit, Sebastien N.; Liu, Jia; Zhang, Jiandong; Zhu, Zihua; Riley, Brian Joseph; Ryan, Joseph Vincent

    2016-05-05

    Abstract: Ion exchange is an integral mechanism influencing the corrosion of glasses. Due to the formation of alteration layers in aqueous conditions, it is difficult to conclusively deconvolute the process of ion exchange from other processes, principally dissolution of the glass matrix. Therefore, we have developed a method to isolate alkali diffusion that involves contacting glass coupons with a solution of 6LiCl dissolved in functionally inert dimethyl sulfoxide. We employ the method at temperatures ranging from 25 to 150 °C with various glass formulations. Glass compositions include simulant nuclear waste glasses, such as SON68 and the international simple glass (ISG), glasses in which the nature of the alkali element was varied, and glasses that contained more than one alkali element. An interdiffusion model based on Fick’s second law was developed and applied to all experiments to extract diffusion coefficients. The model expands established models of interdiffusion to the case where multiple types of alkali sites are present in the glass. Activation energies for alkali ion exchange were calculated and the results are in agreement with those obtained in glass strengthening experiments but are nearly five times higher than values reported for diffusion-controlled processes in nuclear waste glass corrosion experiments. A discussion of the root causes for this apparent discrepancy is provided. The interdiffusion model derived from laboratory experiments is expected to be useful for modeling glass corrosion in a geological repository when the silicon concentration is high.

  14. High-resolution Studies of Charge Exchange in Supernova Remnants with Magellan, XMM-Newton, and Micro-X

    NASA Astrophysics Data System (ADS)

    Heine, Sarah N.; Figueroa-Feliciano, Enectali; Castro, Daniel

    2015-01-01

    Charge exchange, the semi-resonant transfer of an electron from a neutral atom to an excited state in an energetic ion, can occur in plasmas where energetic ions are incident on a cold, at least partially neutral gas. Supernova remnants, especially in the immediate shock region, provide conditions conducive to charge exchange. The emission from post charge-exchange ions as the captured electron cascades down to the ground state, can shed light on the physical conditions of the shock and the immediate post-shock material, providing an important tool to understanding supernova explosions and their aftermath.I present a study of charge exchange in the galactic supernova remnant G296.1-0.5 in two bands: the optical and the X-ray. The optical study, performed using both imaging and spectroscopy from the IMACS instrument on the Magellan Baade Telescope at Las Companas Observatory, seeks to identify `Balmer-dominated shocks' in the remnant, which occur when charge exchange occurs between hot, post-shock protons and colder neutral hydrogen in the environment. The X-ray study probes line ratios in dispersed spectral data obtained with XMM-Newton RGS from an X-ray lobe in the NW of the remnant to hunt for signatures of charge exchange. The dispersed data are degraded by the extended nature of the source, blending many of the lines.We are working towards the future of spectroscopic studies in the X-ray for such extended sources with Micro-X: a sounding rocket-borne, high energy resolution X-ray telescope, utilizing an array of microcalorimeters to achieve high energy resolution for extended sources. I describe the design and commissioning of the payload and the steps toward launch, which is anticipated in the summer of 2015.

  15. Performance analysis of three nanofluids in liquid to gas and liquid to liquid heat exchangers

    NASA Astrophysics Data System (ADS)

    Ray, Dustin R.

    One purpose of this research was to analyze the thermal and fluid dynamic performance of nanofluids in an automotive radiator (liquid to gas). Detailed computations were performed on an automotive radiator using three different nanofluids containing aluminum oxide, copper oxide and silicon dioxide nanoparticles dispersed in the base fluid, 60:40 ethylene glycol and water (EG/W) by mass. The computational scheme adopted was the effectiveness-Number of Transfer Unit (epsilon-NTU) method encoded in Matlab. The computational scheme was validated by comparing the predicted results with that of the base fluid reported by other researchers. Then, the scheme was adapted to compute the performance of nanofluids. Results show that a dilute 1% volumetric concentration of nanoparticles can have substantial savings in the pumping power or surface area of the heat exchanger, while transferring the same amount of heat as the base fluid. The second purpose of this research was to carry out experimental and theoretical studies for a plate heat exchanger (PHE). A benchmark test was performed with the minichannel PHE to validate the test apparatus with water. Next, using a 0.5% aluminum oxide nanoparticle concentration dispersed in EG/W preliminary correlations for the Nusselt number and the friction factor for nanofluid flow in a PHE were derived. Then, a theoretical study was conducted to compare the performance of three nanofluids comprised of aluminum oxide, copper oxide and silicon dioxide nanoparticles in EG/W. This theoretical analysis was conducted using the epsilon-NTU method. The operational parameters were set by the active thermal control system currently under design by NASA. The analysis showed that for a dilute particle volumetric concentration of 1%, all the nanofluids showed improvements in their performance over the base fluid by reducing the pumping power and surface area of the PHE.

  16. High-performance liquid chromatography of oligoguanylates at high pH

    NASA Technical Reports Server (NTRS)

    Stribling, R.; Deamer, D. (Principal Investigator)

    1991-01-01

    Because of the stable self-structures formed by oligomers of guanosine, standard high-performance liquid chromatography techniques for oligonucleotide fractionation are not applicable. Previously, oligoguanylate separations have been carried out at pH 12 using RPC-5 as the packing material. While RPC-5 provides excellent separations, there are several limitations, including the lack of a commercially available source. This report describes a new anion-exchange high-performance liquid chromatography method using HEMA-IEC BIO Q, which successfully separates different forms of the guanosine monomer as well as longer oligoguanylates. The reproducibility and stability at high pH suggests a versatile role for this material.

  17. Conventional Versus Video Laryngoscopy for Tracheal Tube Exchange: Glottic Visualization, Success Rates, Complications, and Rescue Alternatives in the High-Risk Difficult Airway Patient.

    PubMed

    Mort, Thomas C; Braffett, Barbara H

    2015-08-01

    Tracheal tube exchange is a simple concept but not a simple procedure because hypoxemia, esophageal intubation, and loss of airway may occur with life-threatening ramifications. Combining laryngoscopy with an airway exchange catheter (AEC) may lessen the exchange risk. Laryngoscopy is useful for a pre-exchange examination and to open a pathway for endotracheal tube (ETT) passage. Direct laryngoscopy (DL) is hampered by a restricted "line of sight"; thus, airway assessment and exchange may proceed blindly and contribute to difficulty and complications. We hypothesized that video laryngoscopy (VL), when compared with DL, will improve glottic viewing for airway assessment, and the VL-AEC method of ETT exchange will result in a reduction in airway and hemodynamic complications in high-risk patients when compared with a historical group of patients who underwent DL + AEC-assisted exchange. Critically ill patients requiring an ETT exchange underwent DL-assisted pre-exchange airway assessment. If the DL-assisted pre-exchange assessment rendered a "poor view," these patients underwent a VL-based airway assessment followed by a VL-assisted ETT exchange procedure. The DL and VL pre-exchange assessments were compared. The attempts, complications, and rescue devices required for ETT exchange were analyzed. These exchange results were then compared with a historical control group of patients who (1) were classified as a poor view on DL-assisted pre-exchange airway assessment; and (2) underwent a DL + AEC-assisted exchange. The airway assessment and ETT exchange were performed by a board-certified anesthesiologist from the Department of Anesthesiology alone or with anesthesia resident assistance. Three hundred twenty-eight patients with a poor view on initial DL examination underwent a subsequent VL with comparison of views with the 337 patients in the historical control group (DL + AEC). A majority (88%) had a "full or near-full view" on VL examination. The first-pass success

  18. High-performance magnetic gears

    NASA Astrophysics Data System (ADS)

    Atallah, Kais; Calverley, Stuart D.; Howe, David

    2004-05-01

    Magnetic gearing may offer significant advantages such as reduced maintenance and improved reliability, inherent overload protection, and physical isolation between input and output shafts. Despite these advantages, it has received relatively little attention, to date, probably due to the poor torque transmission capability of proposed magnetic gears. The paper describes a magnetic gear topology, which combines a significantly higher torque transmission capability and a very high efficiency.

  19. High performance, durable polymers including poly(phenylene)

    DOEpatents

    Fujimoto, Cy; Pratt, Harry; Anderson, Travis Mark

    2017-02-28

    The present invention relates to functionalized polymers including a poly(phenylene) structure. In some embodiments, the polymers and copolymers of the invention include a highly localized concentration of acidic moieties, which facilitate proton transport and conduction through networks formed from these polymers. In addition, the polymers can include functional moieties, such as electron-withdrawing moieties, to protect the polymeric backbone, thereby extending its durability. Such enhanced proton transport and durability can be beneficial for any high performance platform that employs proton exchange polymeric membranes, such as in fuel cells or flow batteries.

  20. Fractionation of whey proteins with high-capacity superparamagnetic ion-exchangers.

    PubMed

    Heebøll-Nielsen, Anders; Justesen, Sune F L; Thomas, Owen R T

    2004-09-30

    In this study we describe the design, preparation and testing of superparamagnetic anion-exchangers, and their use together with cation-exchangers in the fractionation of bovine whey proteins as a model study for high-gradient magnetic fishing. Adsorbents prepared by attachment of trimethyl amine to particles activated in sequential reactions with allyl bromide and N-bromosuccinimide yielded a maximum bovine serum albumin binding capacity of 156 mg g(-1) combined with a dissociation constant of 0.60 microM, whereas ion-exchangers created by linking polyethylene imine through superficial aldehydes bound up to 337 mg g(-1) with a dissociation constant of 0.042 microM. The latter anion-exchanger was selected for studies of whey protein fractionation. In these, crude bovine whey was treated with a superparamagnetic cation-exchanger to adsorb basic protein species, and the supernatant arising from this treatment was then contacted with the anion-exchanger. For both adsorbent classes of ion-exchanger, desorption selectivity was subsequently studied by sequentially increasing the concentration of NaCl in the elution buffer. In the initial cation-exchange step quantitative removal of lactoferrin (LF) and lactoperoxidase (LPO) was achieved with some simultaneous binding of immunoglobulins (Ig). The immunoglobulins were separated from the other two proteins by desorbing with a low concentration of NaCl (< or = 0.4 M), whereas lactoferrin and lactoperoxidase were co-eluted in significantly purer form, e.g. lactoperoxidase was purified 28-fold over the starting material, when the NaCl concentration was increased to 0.4-1 M. The anion-exchanger adsorbed beta-lactoglobulin (beta-LG) selectively allowing separation from the remaining protein.

  1. RESORCINOL-FORMALDEHYDE ION EXCHANGE RESIN CHEMISTRY FOR HIGH LEVEL WASTE TREATMENT

    SciTech Connect

    Nash, C.; Duignan, M.

    2010-01-14

    A principal goal at the Savannah River Site is to safely dispose of the large volume of liquid nuclear waste held in many storage tanks. In-tank ion exchange technology is being considered for cesium removal using a polymer resin made of resorcinol formaldehyde that has been engineered into microspheres. The waste under study is generally lower in potassium and organic components than Hanford waste; therefore, the resin performance was evaluated with actual dissolved salt waste. The ion exchange performance and resin chemistry results are discussed.

  2. High performance rotational vibration isolator

    NASA Astrophysics Data System (ADS)

    Sunderland, Andrew; Blair, David G.; Ju, Li; Golden, Howard; Torres, Francis; Chen, Xu; Lockwood, Ray; Wolfgram, Peter

    2013-10-01

    We present a new rotational vibration isolator with an extremely low resonant frequency of 0.055 ± 0.002 Hz. The isolator consists of two concentric spheres separated by a layer of water and joined by very soft silicone springs. The isolator reduces rotation noise at all frequencies above its resonance which is very important for airborne mineral detection. We show that more than 40 dB of isolation is achieved in a helicopter survey for rotations at frequencies between 2 Hz and 20 Hz. Issues affecting performance such as translation to rotation coupling and temperature are discussed. The isolator contains almost no metal, making it particularly suitable for electromagnetic sensors.

  3. High performance rotational vibration isolator.

    PubMed

    Sunderland, Andrew; Blair, David G; Ju, Li; Golden, Howard; Torres, Francis; Chen, Xu; Lockwood, Ray; Wolfgram, Peter

    2013-10-01

    We present a new rotational vibration isolator with an extremely low resonant frequency of 0.055 ± 0.002 Hz. The isolator consists of two concentric spheres separated by a layer of water and joined by very soft silicone springs. The isolator reduces rotation noise at all frequencies above its resonance which is very important for airborne mineral detection. We show that more than 40 dB of isolation is achieved in a helicopter survey for rotations at frequencies between 2 Hz and 20 Hz. Issues affecting performance such as translation to rotation coupling and temperature are discussed. The isolator contains almost no metal, making it particularly suitable for electromagnetic sensors.

  4. Plant Gas Exchange at High Wind Speeds 1

    PubMed Central

    Caldwell, Martyn M.

    1970-01-01

    High altitude Rhododendron ferrugineum L. and Pinus cembra L. seedlings were exposed to winds at 15 meters per second for 24-hour periods. Wind-sensitive stomata of Rhododendron seedlings immediately initiated a closing response which resulted in decreased photosynthesis and an even greater reduction in transpiration. Stomatal aperture and transpiration rates of P. cembra were only slightly reduced by high speed winds. However, photosynthesis was substantially reduced because of changes in needle display to available irradiation. PMID:16657501

  5. Therapeutic plasma exchange performed in tandem with hemodialysis for patients with M-protein disorders.

    PubMed

    Mahmood, Aftab; Sodano, Donata; Dash, Anthony; Weinstein, Robert

    2006-07-01

    M-proteins are monoclonal immunoglobulins or immunoglobulin fragments that aberrantly accumulate in the plasma. Hemodialysis (HD) patients with M-proteins may, under certain circumstances, also need therapeutic plasma exchange (TPE). We employed a protocol for tandem TPE/HD in patients with M-protein disorders. We followed the urea reduction ratio (URR), a measure of the efficiency of HD, to compare the effect of TPE on HD efficiency during tandem procedures versus the efficiency of HD performed as a stand-alone procedure in the same patients. Three men (J.M., R.T., M.M.) underwent 23, 80, and 25 tandem TPE/HD over 3, 17, and 7 months, respectively, almost all in the outpatient setting. Mean whole blood flow rate (in ml/min) was slower during hemodialysis alone than during TPE/HD for J.M. (289 +/- 24 vs. 332 +/- 22, P < 0.0001) and R.T. (310 +/- 20 vs. 367 +/- 15, P < 0.0001) but not for M.M. (395 +/- 65 vs. 404 +/- 62, P = 0.6844). URR was equivalent during hemodialysis alone and during TPE/HD for J.M. (54 +/- 4.2 vs. 58 +/- 1.4, P = 0.3333), R.T. (69 +/- 4.9 vs. 70 +/- 2.5, P = 0.9804), and M.M. (71 +/- 2.4 vs. 67 +/- 1.5, P = 0.1143). J.M.'s renal function recovered sufficiently to permit discontinuation of hemodialysis. R.T. experienced both subjective and objective improvement of his arthritic symptoms. M.M. achieved hemostatic control but ultimately died of amyloidosis. TPE/HD is feasible using disparate pieces of equipment when the therapeutic plasma exchange circuit is connected in parallel with the low-pressure side of the hemodialysis circuit. Our experience illustrates that therapeutic plasma exchange did not adversely impact hemodialysis when the two procedures were performed in tandem.

  6. Exchange and polarization effect in high-order harmonic imaging of molecular structures

    SciTech Connect

    Sukiasyan, Suren; Ivanov, Misha Yu.; Patchkovskii, Serguei; Smirnova, Olga; Brabec, Thomas

    2010-10-15

    We analyze the importance of exchange, polarization, and electron-electron correlation in high-order harmonic generation in molecules interacting with intense laser fields. We find that electron exchange can become particularly important for harmonic emission associated with intermediate excitations in the molecular ion. In particular, for orbitals associated with two-hole one-particle excitations, exchange effects can eliminate structure-related minima and maxima in the harmonic spectra. Laser-induced polarization of the neutral molecule may also have major effects on orbital structure-related minima and maxima in the harmonic spectra. Finally, we show how exchange terms in recombination can be viewed as a shakedownlike process induced by sudden electronic excitation in the ion.

  7. A tough high performance composite matrix

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor); Johnston, Norman J. (Inventor)

    1992-01-01

    This invention is a semi-interpenetrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. An improved high temperature matrix resin is provided which is capable of performing in the 200 to 300 C range. This resin has significantly improved toughness and microcracking resistance, excellent processability, mechanical performance and moisture and solvent resistances.

  8. High-Performance Synthetic Fibers for Composites

    DTIC Science & Technology

    1992-04-01

    series under subject contracts. 1989- 1955 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS High-Performance Synthetic Fibers for Composites MDA 903-89-K-0078...MDA 972-92-C-0028 6. AUTHOR(S) Committee on High-Performance Synthetic Fibers for Composites 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S...Maximum 200 words) This report describes the properties of the principal classes of high-performance synthetic fibers , as well as several current and

  9. Effect of nanofluid concentration on two-phase thermosyphon heat exchanger performance

    NASA Astrophysics Data System (ADS)

    Cieśliński, Janusz T.

    2016-06-01

    An approach - relaying on application of nanofluid as a working fluid, to improve performance of the two-phase thermosyphon heat exchanger (TPTHEx) has been proposed. The prototype heat exchanger consists of two horizontal cylindrical vessels connected by two risers and a downcomer. Tube bundles placed in the lower and upper cylinders work as an evaporator and a condenser, respectively. Distilled water and nanofluid water-Al2O3 solution were used as working fluids. Nanoparticles were tested at the concentration of 0.01% and 0.1% by weight. A modified Peclet equation and Wilson method were used to estimate the overall heat transfer coefficient of the tested TPTHEx. The obtained results indicate better performance of the TPTHEx with nanofluids as working fluid compared to distilled water, independent of nanoparticle concentration tested. However, increase in nanoparticle concentration results in overall heat transfer coefficient decrease of the TPTHEx examined. It has been observed that, independent of nanoparticle concentration tested, decrease in operating pressure results in evaporation heat transfer coefficient increase.

  10. Efficient Excitation of High-Frequency Exchange-Dominated Spin Waves in Periodic Ferromagnetic Structures

    NASA Astrophysics Data System (ADS)

    Navabi, Aryan; Chen, Cai; Barra, Anthony; Yazdani, Mohsen; Yu, Guoqiang; Montazeri, Mohammad; Aldosary, Mohammed; Li, Junxue; Wong, Kin; Hu, Qi; Shi, Jing; Carman, Gregory P.; Sepulveda, Abdon E.; Khalili Amiri, Pedram; Wang, Kang L.

    2017-03-01

    Spin waves are of great interest as an emerging solution for computing beyond the limitations of scaled transistor technology. In such applications, the frequency of the spin waves is important as it affects the overall frequency performance of the resulting devices. In conventional ferromagnetic thin films, the magnetization dynamics in ferromagnetic resonance and spin waves are limited by the saturation magnetization of the ferromagnetic (FM) material and the external bias field. High-frequency applications would require high external magnetic fields which limit the practicality in a realistic device. One solution is to couple microwave excitations to perpendicular standing spin waves (PSSWs) which can enable higher oscillation frequencies. However, efficient coupling to these modes remains a challenge since it requires an excitation that is nonuniform across the FM material thickness and current methods have proven to be inefficient, resulting in weak excitations. Here, we show that by creating periodic undulations in a 100-nm-thick Co40Fe40B20 layer, high-frequency PSSWs (>20 GHz ) can be efficiently excited using micrometer-sized transducers at bias fields below 100 Oe which absorb nearly 10% of the input rf power. Efficient excitation of such spin waves at low fields may enable high-frequency spintronic applications using exchange-dominated magnetic oscillations using very low external magnetic fields and, with design optimizations, can bring about alternative possibilities in the field.

  11. High performance light emitting transistors

    NASA Astrophysics Data System (ADS)

    Namdas, Ebinazar B.; Ledochowitsch, Peter; Yuen, Jonathan D.; Moses, Daniel; Heeger, Alan J.

    2008-05-01

    Solution processed light emitting field-effect transistors (LEFETs) with peak brightness exceeding 2500cd/m2 and external quantum efficiency of 0.15% are demonstrated. The devices utilized a bilayer film comprising a hole transporting polymer, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b] thiophene) and a light emitting polymer, Super Yellow, a polyphenylenevinylene derivative. The LEFETs were fabricated in the bottom gate architecture with top-contact Ca /Ag as source/drain electrodes. Light emission was controlled by the gate voltage which controls the hole current. These results indicate that high brightness LEFETs can be made by using the bilayer film (hole transporting layer and a light emitting polymer).

  12. High throughput determination of cleaning solutions to prevent the fouling of an anion exchange resin.

    PubMed

    Elich, Thomas; Iskra, Timothy; Daniels, William; Morrison, Christopher J

    2016-06-01

    Effective cleaning of chromatography resin is required to prevent fouling and maximize the number of processing cycles which can be achieved. Optimization of resin cleaning procedures, however, can lead to prohibitive material, labor, and time requirements, even when using milliliter scale chromatography columns. In this work, high throughput (HT) techniques were used to evaluate cleaning agents for a monoclonal antibody (mAb) polishing step utilizing Fractogel(®) EMD TMAE HiCap (M) anion exchange (AEX) resin. For this particular mAb feed stream, the AEX resin could not be fully restored with traditional NaCl and NaOH cleaning solutions, resulting in a loss of impurity capacity with resin cycling. Miniaturized microliter scale chromatography columns and an automated liquid handling system (LHS) were employed to evaluate various experimental cleaning conditions. Cleaning agents were monitored for their ability to maintain resin impurity capacity over multiple processing cycles by analyzing the flowthrough material for turbidity and high molecular weight (HMW) content. HT experiments indicated that a 167 mM acetic acid strip solution followed by a 0.5 M NaOH, 2 M NaCl sanitization provided approximately 90% cleaning improvement over solutions containing solely NaCl and/or NaOH. Results from the microliter scale HT experiments were confirmed in subsequent evaluations at the milliliter scale. These results identify cleaning agents which may restore resin performance for applications involving fouling species in ion exchange systems. In addition, this work demonstrates the use of miniaturized columns operated with an automated LHS for HT evaluation of chromatographic cleaning procedures, effectively decreasing material requirements while simultaneously increasing throughput. Biotechnol. Bioeng. 2016;113: 1251-1259. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. Air-sea exchange over Black Sea estimated from high resolution regional climate simulations

    NASA Astrophysics Data System (ADS)

    Velea, Liliana; Bojariu, Roxana; Cica, Roxana

    2013-04-01

    Black Sea is an important influencing factor for the climate of bordering countries, showing cyclogenetic activity (Trigo et al, 1999) and influencing Mediterranean cyclones passing over. As for other seas, standard observations of the atmosphere are limited in time and space and available observation-based estimations of air-sea exchange terms present quite large ranges of uncertainty. The reanalysis datasets (e.g. ERA produced by ECMWF) provide promising validation estimates of climatic characteristics against the ones in available climatic data (Schrum et al, 2001), while cannot reproduce some local features due to relatively coarse horizontal resolution. Detailed and realistic information on smaller-scale processes are foreseen to be provided by regional climate models, due to continuous improvements of physical parameterizations and numerical solutions and thus affording simulations at high spatial resolution. The aim of the study is to assess the potential of three regional climate models in reproducing known climatological characteristics of air-sea exchange over Black Sea, as well as to explore the added value of the model compared to the input (reanalysis) data. We employ results of long-term (1961-2000) simulations performed within ENSEMBLE project (http://ensemblesrt3.dmi.dk/) using models ETHZ-CLM, CNRM-ALADIN, METO-HadCM, for which the integration domain covers the whole area of interest. The analysis is performed for the entire basin for several variables entering the heat and water budget terms and available as direct output from the models, at seasonal and annual scale. A comparison with independent data (ERA-INTERIM) and findings from other studies (e.g. Schrum et al, 2001) is also presented. References: Schrum, C., Staneva, J., Stanev, E. and Ozsoy, E., 2001: Air-sea exchange in the Black Sea estimated from atmospheric analysis for the period 1979-1993, J. Marine Systems, 31, 3-19 Trigo, I. F., T. D. Davies, and G. R. Bigg (1999): Objective

  14. High energy density proton exchange membrane fuel cell with dry reactant gases

    SciTech Connect

    Srinivasan, S.; Gamburzev, S.; Velev, O.A.

    1996-12-31

    Proton exchange membrane fuel cells (PEMFC) require careful control of humidity levels in the cell stack to achieve a high and stable level of performance. External humidification of the reactant gases, as in the state-of-the-art PEMFCs, increases the complexity, the weight, and the volume of the fuel cell power plant. A method for the operation of PEMFCs without external humidification (i.e., self-humidified PEMFCs) was first developed and tested by Dhar at BCS Technology. A project is underway in our Center to develop a PEMFC cell stack, which can work without external humidification and attain a performance level of a current density of 0.7 A/cm{sup 2} at a cell potential of 0.7 V, with hydrogen/air as reactants at 1 atm pressure. In this paper, the results of our efforts to design and develop a PEMFC stack requiring no external humidification will be presented. This paper focuses on determining the effects of type of electrodes, the methods of their preparation, as well as that of the membrane and electrode assembly (MEA), platinum loading and types of electrocatalyst on the performance of the PEMFC will be illustrated.

  15. Designing high-performance jobs.

    PubMed

    Simons, Robert

    2005-01-01

    Tales of great strategies derailed by poor execution are all too common. That's because some organizations are designed to fail. For a company to achieve its potential, each employee's supply of organizational resources should equal the demand, and the same balance must apply to every business unit and to the company as a whole. To carry out his or her job, each employee has to know the answers to four basic questions: What resources do I control to accomplish my tasks? What measures will be used to evaluate my performance? Who do I need to interact with and influence to achieve my goals? And how much support can I expect when I reach out to others for help? The questions correspond to what the author calls the four basic spans of a job-control, accountability, influence, and support. Each span can be adjusted so that it is narrow or wide or somewhere in between. If you get the settings right, you can design a job in which a talented individual can successfully execute on your company's strategy. If you get the settings wrong, it will be difficult for an employee to be effective. The first step is to set the span of control to reflect the resources allocated to each position and unit that plays an important role in delivering customer value. This setting, like the others, is determined by how the business creates value for customers and differentiates its products and services. Next, you can dial in different levels of entrepreneurial behavior and creative tension by widening or narrowing spans of accountability and influence. Finally, you must adjust the span of support to ensure that the job or unit will get the informal help it needs.

  16. A Study on a Performance of Water-Spray-Type Ice Thermal Energy Storage Vessel with Vertical Heat Exchanger Plates

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kenji; Sasaguchi, Kengo; Fukuda, Toshihito; Koyama, Shigeru

    A system with a water-embedded-trpe ice storage vessel is widely used because of its simple structure and compactness. However, the water-embedded-type ice storage vessel has a disadvantage, that is, the solidification rate is very small. The use of falling water film seems to be one of promising ways for solving this disadvantage. We have found in a previous study that the use of the falling water film is very effective, especially for high initial water temperatures. In the present study, we eexamined the performance of a faling-water-film-type ice thermal energy storage vessel with pratical size, having vertical heat exchanger plates. The ice making performance coefficient, η, increases with time, and it becomes am aximum value of 2.5, after that, it decreases gradually. In order to make ice efficiently, it is necessary to set a flow rate of refrigerant properly and to adjust a difference between the evaporating temperature of refrigerant and the freezing point of water so that the refrigerant evaporates in the heat exchanger plates overall.

  17. HIGH-PERFORMANCE COATING MATERIALS

    SciTech Connect

    SUGAMA,T.

    2007-01-01

    Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

  18. Discrete hierarchy of sizes and performances in the exchange-traded fund universe

    NASA Astrophysics Data System (ADS)

    Vandermarliere, B.; Ryckebusch, J.; Schoors, K.; Cauwels, P.; Sornette, D.

    2017-03-01

    Using detailed statistical analyses of the size distribution of a universe of equity exchange-traded funds (ETFs), we discover a discrete hierarchy of sizes, which imprints a log-periodic structure on the probability distribution of ETF sizes that dominates the details of the asymptotic tail. This allows us to propose a classification of the studied universe of ETFs into seven size layers approximately organized according to a multiplicative ratio of 3.5 in their total market capitalization. Introducing a similarity metric generalizing the Herfindhal index, we find that the largest ETFs exhibit a significantly stronger intra-layer and inter-layer similarity compared with the smaller ETFs. Comparing the performance across the seven discerned ETF size layers, we find an inverse size effect, namely large ETFs perform significantly better than the small ones both in 2014 and 2015.

  19. A high field optical-pumping spin-exchange polarized deuterium source

    SciTech Connect

    Coulter, K.P.; Holt, R.J.; Kinney, E.R.; Kowalczyk, R.S.; Poelker, M.; Potterveld, D.H.; Young, L.; Zeidman, B. ); Toporkov, D. . Inst. Yadernoj Fiziki)

    1992-01-01

    Recent results from a prototype high field optical-pumping spin-exchange polarized deuterium source are presented. Atomic polarization as high as 62% have been observed with an intensity of 6.3 [times] 10[sup 17] atoms-sec[sup [minus]1] and 65% dissociation fraction.

  20. Solid State Joining of High Temperature Alloy Tubes for USC and Heat-Exchanger Systems

    SciTech Connect

    Bimal Kad

    2011-12-31

    The principal objective of this project was to develop materials enabling joining technologies for use in forward looking heat-exchanger fabrication in Brayton cycle HIPPS, IGCC, FutureGen concepts capable of operating at temperatures in excess of 1000{degree}C as well as conventional technology upgrades via Ultra Super-Critical (USC) Rankine-cycle boilers capable of operating at 760{degree}C (1400F)/38.5MPa (5500psi) steam, while still using coal as the principal fossil fuel. The underlying mission in Rankine, Brayton or Brayton-Rankine, or IGCC combined cycle heat engine is a steady quest to improving operating efficiency while mitigating global environmental concerns. There has been a progressive move to higher overall cycle efficiencies, and in the case of fossil fuels this has accelerated recently in part because of concerns about greenhouse gas emissions, notably CO{sub 2}. For a heat engine, the overall efficiency is closely related to the difference between the highest temperature in the cycle and the lowest temperature. In most cases, efficiency gains are prompted by an increase in the high temperature, and this in turn has led to increasing demands on the materials of construction used in the high temperature end of the systems. Our migration to new advanced Ni-base and Oxide Dispersion Strengthened (ODS) alloys poses significant fabrication challenges, as these materials are not readily weldable or the weld performs poorly in the high temperature creep regime. Thus the joining challenge is two-fold to a) devise appropriate joining methodologies for similar/dissimilar Ni-base and ODS alloys while b) preserving the near baseline creep performance in the welded region. Our program focus is on solid state joining of similar and dissimilar metals/alloys for heat exchanger components currently under consideration for the USC, HIPPS and IGCC power systems. The emphasis is to manipulate the joining methods and variables available to optimize joint creep

  1. Study of the Relationship between Leader-Member Exchange (LMX) and Individual Objective Performance within a University Learning Community

    ERIC Educational Resources Information Center

    Aikens, Shontarius D.

    2012-01-01

    The study examined the relationship between leader-member exchange (LMX) and individual objective performance. While the LMX literature suggests a positive correlation between LMX and performance, a closer look at the research examined showed that the performance measurements were based on subjective measurements rather than objective…

  2. Hydraulic Performance and Gas Behavior of a Tall Crystalline Silicotitanate Ion-Exchange Column

    SciTech Connect

    Welch, T.D.; Anderson, K.K.; Bostick, D.A.; Dillow, T.A.; Getting, M.W.; Hunt, R.D.; Lenarduzzi, R.; Mattus, A.J.; Taylor, P.A.; Wilmarth, W.R.

    2000-02-01

    Crystalline silicotitanate (CST) sorbent is one of several technologies being evaluated by the Savannah River Site (SRS) for removing cesium from high-level tank-waste supernatant. As currently envisioned, three large 5-ft-diam, 20-ft-high ion-exchange columns will be operated in series at a superficial velocity of 4.1 cm/min. The CST will be subjected to a high radiation field from the sorbed cesium. The tests described in this work were conducted to evaluate column hydraulics, to identify changes in the CST particles during operation, to explore how radiolytic gases generated during operation behave, and to demonstrate sluicing of CST into and out of columns.

  3. High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake

    PubMed Central

    DeMaere, Matthew Z.; Williams, Timothy J.; Allen, Michelle A.; Brown, Mark V.; Gibson, John A. E.; Rich, John; Lauro, Federico M.; Dyall-Smith, Michael; Davenport, Karen W.; Woyke, Tanja; Kyrpides, Nikos C.; Tringe, Susannah G.; Cavicchioli, Ricardo

    2013-01-01

    Deep Lake in Antarctica is a globally isolated, hypersaline system that remains liquid at temperatures down to −20 °C. By analyzing metagenome data and genomes of four isolates we assessed genome variation and patterns of gene exchange to learn how the lake community evolved. The lake is completely and uniformly dominated by haloarchaea, comprising a hierarchically structured, low-complexity community that differs greatly to temperate and tropical hypersaline environments. The four Deep Lake isolates represent distinct genera (∼85% 16S rRNA gene similarity and ∼73% genome average nucleotide identity) with genomic characteristics indicative of niche adaptation, and collectively account for ∼72% of the cellular community. Network analysis revealed a remarkable level of intergenera gene exchange, including the sharing of long contiguous regions (up to 35 kb) of high identity (∼100%). Although the genomes of closely related Halobacterium, Haloquadratum, and Haloarcula (>90% average nucleotide identity) shared regions of high identity between species or strains, the four Deep Lake isolates were the only distantly related haloarchaea to share long high-identity regions. Moreover, the Deep Lake high-identity regions did not match to any other hypersaline environment metagenome data. The most abundant species, tADL, appears to play a central role in the exchange of insertion sequences, but not the exchange of high-identity regions. The genomic characteristics of the four haloarchaea are consistent with a lake ecosystem that sustains a high level of intergenera gene exchange while selecting for ecotypes that maintain sympatric speciation. The peculiarities of this polar system restrict which species can grow and provide a tempo and mode for accentuating gene exchange. PMID:24082106

  4. High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake.

    PubMed

    DeMaere, Matthew Z; Williams, Timothy J; Allen, Michelle A; Brown, Mark V; Gibson, John A E; Rich, John; Lauro, Federico M; Dyall-Smith, Michael; Davenport, Karen W; Woyke, Tanja; Kyrpides, Nikos C; Tringe, Susannah G; Cavicchioli, Ricardo

    2013-10-15

    Deep Lake in Antarctica is a globally isolated, hypersaline system that remains liquid at temperatures down to -20 °C. By analyzing metagenome data and genomes of four isolates we assessed genome variation and patterns of gene exchange to learn how the lake community evolved. The lake is completely and uniformly dominated by haloarchaea, comprising a hierarchically structured, low-complexity community that differs greatly to temperate and tropical hypersaline environments. The four Deep Lake isolates represent distinct genera (∼85% 16S rRNA gene similarity and ∼73% genome average nucleotide identity) with genomic characteristics indicative of niche adaptation, and collectively account for ∼72% of the cellular community. Network analysis revealed a remarkable level of intergenera gene exchange, including the sharing of long contiguous regions (up to 35 kb) of high identity (∼100%). Although the genomes of closely related Halobacterium, Haloquadratum, and Haloarcula (>90% average nucleotide identity) shared regions of high identity between species or strains, the four Deep Lake isolates were the only distantly related haloarchaea to share long high-identity regions. Moreover, the Deep Lake high-identity regions did not match to any other hypersaline environment metagenome data. The most abundant species, tADL, appears to play a central role in the exchange of insertion sequences, but not the exchange of high-identity regions. The genomic characteristics of the four haloarchaea are consistent with a lake ecosystem that sustains a high level of intergenera gene exchange while selecting for ecotypes that maintain sympatric speciation. The peculiarities of this polar system restrict which species can grow and provide a tempo and mode for accentuating gene exchange.

  5. Carbon composite bipolar plate for high-temperature proton exchange membrane fuel cells (HT-PEMFCs)

    NASA Astrophysics Data System (ADS)

    Lee, Dongyoung; Lee, Dai Gil

    2016-09-01

    A carbon/epoxy composite bipolar plate is an ideal substitute for the brittle graphite bipolar plate for lightweight proton exchange membrane fuel cells (PEMFCs) because of its high specific strength and stiffness. However, conventional carbon/epoxy composite bipolar plates are not applicable for high-temperature PEMFCs (HT-PEMFCs) because these systems are operated at higher temperatures than the glass transition temperatures of conventional epoxies. Therefore, in this study, a cyanate ester-modified epoxy is adopted for the development of a carbon composite bipolar plate for HT-PEMFCs. The composite bipolar plate with exposed surface carbon fibers is produced without any surface treatments or coatings to increase the productivity and is integrated with a silicone gasket to reduce the assembly cost. The developed carbon composite bipolar plate exhibits not only superior electrical properties but also high thermo-mechanical properties. In addition, a unit cell test is performed, and the results are compared with those of the conventional graphite bipolar plate.

  6. Solar Wind Charge Exchange Studies of Highly Charged Ions on Atomic Hydrogen

    SciTech Connect

    Draganic, Ilija N; Seely, D. G.; McCammon, D; Havener, Charles C

    2011-01-01

    Accurate studies of low energy charge exchange (CX) are critical to understanding underlying soft X ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H like, and He like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H like ions of C, N, O and fully stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV u 20 keV u) and compared to previous H oven measurements. The present measurements are performed using a merged beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV u 3.3 keV u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  7. Solar Wind Charge Exchange Studies Of Highly Charged Ions On Atomic Hydrogen

    SciTech Connect

    Draganic, I. N.; Havener, C. C.; Seely, D. G.; McCammon, D.

    2011-06-01

    Accurate studies of low-energy charge exchange (CX) are critical to understanding underlying soft X-ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H-like, and He-like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H-like ions of C, N, O and fully-stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV/u-20 keV/u) and compared to previous H-oven measurements. The present measurements are performed using a merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV/u-3.3 keV/u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H-oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  8. Synthesis, spectroscopy, and hydrogen/deuterium exchange in high-spin iron(II) hydride complexes.

    PubMed

    Dugan, Thomas R; Bill, Eckhard; MacLeod, K Cory; Brennessel, William W; Holland, Patrick L

    2014-03-03

    Very few hydride complexes are known in which the metals have a high-spin electronic configuration. We describe the characterization of several high-spin iron(II) hydride/deuteride isotopologues and their exchange reactions with one another and with H2/D2. Though the hydride/deuteride signal is not observable in NMR spectra, the choice of isotope has an influence on the chemical shifts of distant protons in the dimers through the paramagnetic isotope effect on chemical shift. This provides the first way to monitor the exchange of H and D in the bridging positions of these hydride complexes. The rate of exchange depends on the size of the supporting ligand, and this is consistent with the idea that H2/D2 exchange into the hydrides occurs through the dimeric complexes rather than through a transient monomer. The understanding of H/D exchange mechanisms in these high-spin iron hydride complexes may be relevant to postulated nitrogenase mechanisms.

  9. Synthesis, Spectroscopy, and Hydrogen/Deuterium Exchange in High-Spin Iron(II) Hydride Complexes

    PubMed Central

    2015-01-01

    Very few hydride complexes are known in which the metals have a high-spin electronic configuration. We describe the characterization of several high-spin iron(II) hydride/deuteride isotopologues and their exchange reactions with one another and with H2/D2. Though the hydride/deuteride signal is not observable in NMR spectra, the choice of isotope has an influence on the chemical shifts of distant protons in the dimers through the paramagnetic isotope effect on chemical shift. This provides the first way to monitor the exchange of H and D in the bridging positions of these hydride complexes. The rate of exchange depends on the size of the supporting ligand, and this is consistent with the idea that H2/D2 exchange into the hydrides occurs through the dimeric complexes rather than through a transient monomer. The understanding of H/D exchange mechanisms in these high-spin iron hydride complexes may be relevant to postulated nitrogenase mechanisms. PMID:24555749

  10. Exchange-correlation asymptotics and high harmonic spectra

    NASA Astrophysics Data System (ADS)

    Mack, Michael R.; Whitenack, Daniel; Wasserman, Adam

    2013-02-01

    High harmonic spectra of N2 are calculated using time-dependent density functional theory. The adiabatic local density approximation (A-LDA) and the adiabatic van Leeuwen-Baerends (A-LB94) approximations are used to study effects of differing spatial asymptotics. The LB94 potential corrects the LDA potential to the exact -1/r decay, but does not satisfy the zero-force condition. The A-LB94 makes a significant change in ionization probabilities but not in the relevant orbital contributions to ionization. This leads to qualitatively similar spectra, the exception being harmonic intensities. We also discuss why spurious dipoles induced by the A-LB94 do not affect significantly the structure of the N2 harmonic spectrum.

  11. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes.

    PubMed

    Rozendal, René A; Hamelers, Hubertus V M; Molenkamp, Redmar J; Buisman, Cees J N

    2007-05-01

    In this paper hydrogen production through biocatalyzed electrolysis was studied for the first time in a single chamber configuration. Single chamber biocatalyzed electrolysis was tested in two configurations: (i) with a cation exchange membrane (CEM) and (ii) with an anion exchange membrane (AEM). Both configurations performed comparably and produced over 0.3 m3 H2/m3 reactor liquid volume/day at 1.0 V applied voltage (overall hydrogen efficiencies around 23%). Analysis of the water that permeated through the membrane revealed that a large part of potential losses in the system were associated with a pH gradient across the membrane (CEM DeltapH=6.4; AEM DeltapH=4.4). These pH gradient associated potential losses were lower in the AEM configuration (CEM 0.38 V; AEM 0.26 V) as a result of its alternative ion transport properties. This benefit of the AEM, however, was counteracted by the higher cathode overpotentials occurring in the AEM configuration (CEM 0.12 V at 2.39 A/m2; AEM 0.27 V at 2.15 A/m2) as a result of a less effective electroless plating method for the AEM membrane electrode assembly (MEA).

  12. Performance testing of grout-based waste forms for the solidification of anion exchange resins

    SciTech Connect

    Morgan, I.L.; Bostick, W.D.

    1990-10-01

    The solidification of spent ion exchanges resins in a grout matrix as a means of disposing of spent organic resins produced in the nuclear fuel cycle has many advantages in terms of process simplicity and economy, but associated with the process is the potential for water/cement/resins to interact and degrade the integrity of the waste form solidified. Described in this paper is one possible solution to preserving the integrity of these solidified waste forms: the encapsulation of beaded anion exchange resins in grout formulations containing ground granulated blast furnace slag, Type I-II (mixed) portland cement, and additives (clays, amorphous silica, silica fume, and fly ash). The results of the study reported herein show the cured waste form tested has a low leach rate for nitrate ion from the resin (and a low leach rate is inferred for Tc-99) and acceptable durability as assessed by the water immersion and freezing/thawing test protocols. The results also suggest a tested surrogate waste form prepared in vinyl ester styrene binder performs satisfactorily against the wetting/drying criterion, and it should offer additional insight into future work on the solidification of spent organic resins. 26 refs., 4 figs., 5 tabs.

  13. Statistical properties of high performance cesium standards

    NASA Technical Reports Server (NTRS)

    Percival, D. B.

    1973-01-01

    The intermediate term frequency stability of a group of new high-performance cesium beam tubes at the U.S. Naval Observatory were analyzed from two viewpoints: (1) by comparison of the high-performance standards to the MEAN(USNO) time scale and (2) by intercomparisons among the standards themselves. For sampling times up to 5 days, the frequency stability of the high-performance units shows significant improvement over older commercial cesium beam standards.

  14. Sensor fault detection and isolation via high-gain observers: application to a double-pipe heat exchanger.

    PubMed

    Escobar, R F; Astorga-Zaragoza, C M; Téllez-Anguiano, A C; Juárez-Romero, D; Hernández, J A; Guerrero-Ramírez, G V

    2011-07-01

    This paper deals with fault detection and isolation (FDI) in sensors applied to a concentric-pipe counter-flow heat exchanger. The proposed FDI is based on the analytical redundancy implementing nonlinear high-gain observers which are used to generate residuals when a sensor fault is presented (as software sensors). By evaluating the generated residual, it is possible to switch between the sensor and the observer when a failure is detected. Experiments in a heat exchanger pilot validate the effectiveness of the approach. The FDI technique is easy to implement allowing the industries to have an excellent alternative tool to keep their heat transfer process under supervision. The main contribution of this work is based on a dynamic model with heat transfer coefficients which depend on temperature and flow used to estimate the output temperatures of a heat exchanger. This model provides a satisfactory approximation of the states of the heat exchanger in order to allow its implementation in a FDI system used to perform supervision tasks.

  15. Method of making a high performance ultracapacitor

    DOEpatents

    Farahmandi, C. Joseph; Dispennette, John M.

    2000-07-26

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  16. High performance carbon nanocomposites for ultracapacitors

    DOEpatents

    Lu, Wen

    2012-10-02

    The present invention relates to composite electrodes for electrochemical devices, particularly to carbon nanotube composite electrodes for high performance electrochemical devices, such as ultracapacitors.

  17. Application of nonlinear time series analysis techniques to high-frequency currency exchange data

    NASA Astrophysics Data System (ADS)

    Strozzi, Fernanda; Zaldívar, José-Manuel; Zbilut, Joseph P.

    2002-09-01

    In this work we have applied nonlinear time series analysis to high-frequency currency exchange data. The time series studied are the exchange rates between the US Dollar and 18 other foreign currencies from within and without the Euro zone. Our goal was to determine if their dynamical behaviours were in some way correlated. The nonexistence of stationarity called for the application of recurrence quantification analysis as a tool for this analysis, and is based on the definition of several parameters that allow for the quantification of recurrence plots. The method was checked using the European Monetary System currency exchanges. The results show, as expected, the high correlation between the currencies that are part of the Euro, but also a strong correlation between the Japanese Yen, the Canadian Dollar and the British Pound. Singularities of the series are also demonstrated taking into account historical events, in 1996, in the Euro zone.

  18. Numerical simulation of proton exchange membrane fuel cells at high operating temperature

    NASA Astrophysics Data System (ADS)

    Peng, Jie; Lee, Seung Jae

    A three-dimensional, single-phase, non-isothermal numerical model for proton exchange membrane (PEM) fuel cell at high operating temperature (T ≥ 393 K) was developed and implemented into a computational fluid dynamic (CFD) code. The model accounts for convective and diffusive transport and allows predicting the concentration of species. The heat generated from electrochemical reactions, entropic heat and ohmic heat arising from the electrolyte ionic resistance were considered. The heat transport model was coupled with the electrochemical and mass transport models. The product water was assumed to be vaporous and treated as ideal gas. Water transportation across the membrane was ignored because of its low water electro-osmosis drag force in the polymer polybenzimidazole (PBI) membrane. The results show that the thermal effects strongly affect the fuel cell performance. The current density increases with the increasing of operating temperature. In addition, numerical prediction reveals that the width and distribution of gas channel and current collector land area are key optimization parameters for the cell performance improvement.

  19. Strategy Guideline: High Performance Residential Lighting

    SciTech Connect

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  20. Improving dynamic performance of proton-exchange membrane fuel cell system using time delay control

    NASA Astrophysics Data System (ADS)

    Kim, Young-Bae

    Transient behaviour is a key parameter for the vehicular application of proton-exchange membrane (PEM) fuel cell. The goal of this presentation is to construct better control technology to increase the dynamic performance of a PEM fuel cell. The PEM fuel cell model comprises a compressor, an injection pump, a humidifier, a cooler, inlet and outlet manifolds, and a membrane-electrode assembly. The model includes the dynamic states of current, voltage, relative humidity, stoichiometry of air and hydrogen, cathode and anode pressures, cathode and anode mass flow rates, and power. Anode recirculation is also included with the injection pump, as well as anode purging, for preventing anode flooding. A steady-state, isothermal analytical fuel cell model is constructed to analyze the mass transfer and water transportation in the membrane. In order to prevent the starvation of air and flooding in a PEM fuel cell, time delay control is suggested to regulate the optimum stoichiometry of oxygen and hydrogen, even when there are dynamical fluctuations of the required PEM fuel cell power. To prove the dynamical performance improvement of the present method, feed-forward control and Linear Quadratic Gaussian (LQG) control with a state estimator are compared. Matlab/Simulink simulation is performed to validate the proposed methodology to increase the dynamic performance of a PEM fuel cell system.

  1. Current short circuit implementation for performance improvement and lifetime extension of proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Zhan, Yuedong; Guo, Youguang; Zhu, Jianguo; Li, Li

    2014-12-01

    To improve its performance, extend its lifetime, and overcome the problem of the slow dynamic during the start-up and the operation process of a proton exchange membrane fuel cell (PEMFC), this paper presents current short circuit and smart energy management approaches for a main PEMFC with auxiliary PEMFC, battery and supercapacitor as hybrid power source in parallel with an intelligent uninterrupted power supply (UPS) system. The hybrid UPS system consists of two low-cost 63-cell 300 W PEMFC stacks, 3-cell lead-acid battery, and 20-cell series-connected supercapacitors. Based on the designed intelligent hybrid UPS system, experimental tests and theoretical studies are conducted. Firstly, the modeling of PEMFC is obtained and evaluated. Then the performance improvement mechanism of the current short circuit is proposed and analyzed based on the Faradaic process and non-Faradaic process of electrochemical theory. Finally, the performances of the main PEMFC with the auxiliary PEMFC/battery/supercapacitor hybrid power source and intelligent energy management are experimentally measured and analyzed. The proposed current short circuit method can significantly extend the lifetime, improve the performance of PEMFC and decrease the size of the main FC for stationary, backup power sources and vehicular applications.

  2. Polymer Composites for High-Temperature Proton-Exchange Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Zhu, Xiuling; Liu, Yuxiu; Zhu, Lei

    Recent advances in composite proton-exchange membranes for fuel cell applications at elevated temperature and low relative humidity are briefly reviewed in this chapter. Although a majority of research has focused on new sulfonated hydrocarbon and fluorocarbon polymers and their blends to directly enhance high temperature performance, we emphasize on polymer/inorganic composite membranes with the aim of improving the mechanical strength, thermal stability, and proton conductivity, which depend on water retention at elevated temperature and low relative humidity conditions. The polymer systems include perfluoronated polymers such as Nafion, sulfonated poly(arylene ether)s, polybenzimidazoles (PBI)s, and many others. The inorganic proton conductors are silica, heteropolyacids (HPA)s, layered zirconium phosphates, and liquid phosphoric acid. Direct use of sol-gel silica requires pressurization of fuel cells to maintain 100% relative humidity for high proton conductivity above 100°C. Direct incorporation of HPAs such as phosphotungstic acid (PTA) into polyelectrolyte membranes is capable of improving both proton conductivity and fuel cell performance above 100°C; however, they tend to leach out of the membrane whenever fuel cell flooding happens. To prevent HPA leaching, amine-functionalized mesoporous silica is used to immobilize PTA in Nafion membranes, whose proton conductivity and fuel cell performance are discussed. Compared with Nafion, sulfonated poly(arylene ether)s such as sulfonated poly(arylene ether sulfone)s are cost-effective materials with excellent thermal and electrochemical stability. Their composites with HPAs show increased proton conductivity at elevated temperatures when fully hydrated. Organic/inorganic hybrid membranes from acid-doped PBIs and other polymers are also discussed.

  3. Effect of divalent cations on RED performance and cation exchange membrane selection to enhance power densities.

    PubMed

    Rijnaarts, Timon; Huerta, Elisa; van Baak, Willem; Nijmeijer, Kitty

    2017-09-26

    Reverse Electrodialysis (RED) is a membrane-based renewable energy technology that can harvest energy from salinity gradients. The anticipated feed streams are natural river and seawater, both of which contain - next to monovalent ions - also divalent ions. However, RED using feed streams containing divalent ions experiences lower power densities due to both uphill transport and increased membrane resistance. In this study, we investigate the effects of divalent cations (Mg2+ and Ca2+) on RED and demonstrate the mitigation of those effects using both novel and existing commercial cation exchange membranes (CEMs). Monovalent-selective Neosepta CMS is known to block divalent cations transport and can therefore mitigate reductions in stack voltage. The newly developed multivalent-permeable Fuji T1 is able to transport divalent cations without a major increase in resistance. Both strategies significantly improve power densities compared to standard-grade CEMs when performing RED using streams containing divalent cations.

  4. Correlation Equations for Condensing Heat Exchangers Based on an Algorithmic Performance-Data Classification

    NASA Astrophysics Data System (ADS)

    Pacheco-Vega, Arturo

    2016-09-01

    In this work a new set of correlation equations is developed and introduced to accurately describe the thermal performance of compact heat exchangers with possible condensation. The feasible operating conditions for the thermal system correspond to dry- surface, dropwise condensation, and film condensation. Using a prescribed form for each condition, a global regression analysis for the best-fit correlation to experimental data is carried out with a simulated annealing optimization technique. The experimental data were taken from the literature and algorithmically classified into three groups -related to the possible operating conditions- with a previously-introduced Gaussian-mixture-based methodology. Prior to their use in the analysis, the correct data classification was assessed and confirmed via artificial neural networks. Predictions from the correlations obtained for the different conditions are within the uncertainty of the experiments and substantially more accurate than those commonly used.

  5. Exchange and electric fields enhanced spin thermoelectric performance of germanene nano-ribbon

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Chi, Feng; Guo, Yong

    2015-07-01

    The spin thermoelectric performance in a germanene nano-ribbon is studied by using the nonequilibrium Green’s function method. We demonstrate theoretically that the temperature bias Δ T can generate spin thermopower when an exchange field breaks the edge states of germanene leads. However, the spin thermoelectric efficiency is quite low with its maximum {{Z}s}T≃ 0.01 . When applying strong electric field in the central region, a relatively large spin-dependent band gap can be opened, and hence the spin figure of merit is predicted to be more than 100 times larger than the case without external field. The remarkably enhancement of ZsT (larger than one) comes from the suppression of the thermal conductance and the improvement of the spin Seebeck effect. These striking properties make ferromagnetic leads germanene nano-ribbon a promising pure spin thermoelectric nanogenerator.

  6. Performance evaluation of a shell and tube heat exchanger operated with oxide based nanofluids

    NASA Astrophysics Data System (ADS)

    Shahrul, I. M.; Mahbubul, I. M.; Saidur, R.; Khaleduzzaman, S. S.; Sabri, M. F. M.

    2016-08-01

    This study is about the performance evaluation of a shell and tube heat exchanger operated with nanofluid. Thermal conductivity, viscosity, and density of the nanofluids were increased, but the specific heat of the nanofluids was decreased with increasing the concentrations of the particles. The convective heat transfer coefficient was found to be 2-15 % higher than that of water at 50 kg/min of both side fluid. Nevertheless, energy effectiveness has improved about 23-52 % for the above-mentioned nanofluids. As, energy effectiveness (ɛ) is strongly depends on the density and specific heat of the operating fluids therefore, maximum ɛ has obtained for ZnO-W nanofluid and lowest found for SiO2-W nanofluid.

  7. Kinetics of the high temperature oxygen exchange reaction on 238PuO2 powder

    NASA Astrophysics Data System (ADS)

    Whiting, Christofer E.; Du, Miting; Felker, L. Kevin; Wham, Robert M.; Barklay, Chadwick D.; Kramer, Daniel P.

    2015-12-01

    Oxygen exchange reactions performed on PuO2 suggest the reaction is influenced by at least three mechanisms: an internal chemical reaction, surface mobility of active species/defects, and surface exchange of gaseous oxygen with lattice oxygen. Activation energies for the surface mobility and internal chemical reaction are presented. Determining which mechanism is dominant appears to be a complex function including at least specific surface area and temperature. Thermal exposure may also impact the oxygen exchange reaction by causing reductions in the specific surface area of PuO2. Previous CeO2 surrogate studies exhibit similar behavior, confirming that CeO2 is a good qualitative surrogate for PuO2, in regards to the oxygen exchange reaction. Comparison of results presented here with previous work on the PuO2 oxygen exchange reaction allows complexities in the previous work to be explained. These explanations allowed new conclusions to be drawn, many of which confirm the conclusions presented here.

  8. New insights into non-precious metal catalyst layer designs for proton exchange membrane fuel cells: Improving performance and stability

    NASA Astrophysics Data System (ADS)

    Banham, Dustin; Kishimoto, Takeaki; Sato, Tetsutaro; Kobayashi, Yoshikazu; Narizuka, Kumi; Ozaki, Jun-ichi; Zhou, Yingjie; Marquez, Emil; Bai, Kyoung; Ye, Siyu

    2017-03-01

    The activity of non-precious metal catalysts (NPMCs) has now reached a stage at which they can be considered as possible alternatives to Pt for some proton exchange membrane fuel cell (PEMFC) applications. However, despite significant efforts over the past 50 years on catalyst development, only limited studies have been performed on NPMC-based cathode catalyst layer (CCL) designs. In this work, an extensive ionomer study is performed to investigate the impact of ionomer equivalent weight on performance, which has uncovered two crucial findings. Firstly, it is demonstrated that beyond a critical CCL conductance, no further improvement in performance is observed. The procedure used to determine this critical conductance can be used by other researchers in this field to aid in their design of high performing NPMC-based CCLs. Secondly, it is shown that the stability of NPMC-based CCLs can be improved through the use of low equivalent weight ionomers. This represents a completely unexplored pathway for further stability improvements, and also provides new insights into the possible degradation mechanisms occurring in NPMC-based CCLs. These findings have broad implications on all future NPMC-based CCL designs.

  9. Status of Charge Exchange Cross Section Measurements for Highly Charged Ions on Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Draganic, I. N.; Havener, C. C.; Schultz, D. R.; Seely, D. G.; Schultz, P. C.

    2011-05-01

    Total cross sections of charge exchange (CX) for C5+, N6+, and O7+ ions on ground state atomic hydrogen are measured in an extended collision energy range of 1 - 20,000 eV/u. Absolute CX measurements are performed using an improved merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source mounted on a high voltage platform. In order to improve the problematic H+ signal collection for these exoergic CX collisions at low relative energies, a new double focusing electrostatic analyzer was installed. Experimental CX data are in good agreement with all previous H-oven relative measurements at higher collision energies. We compare our results with the most recent molecular orbital close-coupling (MOCC) and atomic orbital close-coupling (AOCC) theoretical calculations. Work supported by the NASA Solar & Heliospheric Physics Program NNH07ZDA001N, the Office of Fusion Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences, and the Office of Basic Energy Sciences of the U.S. DoE.

  10. Performance evaluation and characterization of metallic bipolar plates in a proton exchange membrane (PEM) fuel cell

    NASA Astrophysics Data System (ADS)

    Hung, Yue

    Bipolar plate and membrane electrode assembly (MEA) are the two most repeated components of a proton exchange membrane (PEM) fuel cell stack. Bipolar plates comprise more than 60% of the weight and account for 30% of the total cost of a fuel cell stack. The bipolar plates perform as current conductors between cells, provide conduits for reactant gases, facilitate water and thermal management through the cell, and constitute the backbone of a power stack. In addition, bipolar plates must have excellent corrosion resistance to withstand the highly corrosive environment inside the fuel cell, and they must maintain low interfacial contact resistance throughout the operation to achieve optimum power density output. Currently, commercial bipolar plates are made of graphite composites because of their relatively low interfacial contact resistance (ICR) and high corrosion resistance. However, graphite composite's manufacturability, permeability, and durability for shock and vibration are unfavorable in comparison to metals. Therefore, metals have been considered as a replacement material for graphite composite bipolar plates. Since bipolar plates must possess the combined advantages of both metals and graphite composites in the fuel cell technology, various methods and techniques are being developed to combat metallic corrosion and eliminate the passive layer formed on the metal surface that causes unacceptable power reduction and possible fouling of the catalyst and the electrolyte. The main objective of this study was to explore the possibility of producing efficient, cost-effective and durable metallic bipolar plates that were capable of functioning in the highly corrosive fuel cell environment. Bulk materials such as Poco graphite, graphite composite, SS310, SS316, incoloy 800, titanium carbide and zirconium carbide were investigated as potential bipolar plate materials. In this work, different alloys and compositions of chromium carbide coatings on aluminum and SS316

  11. Probabilistic performance-based design for high performance control systems

    NASA Astrophysics Data System (ADS)

    Micheli, Laura; Cao, Liang; Gong, Yongqiang; Cancelli, Alessandro; Laflamme, Simon; Alipour, Alice

    2017-04-01

    High performance control systems (HPCS) are advanced damping systems capable of high damping performance over a wide frequency bandwidth, ideal for mitigation of multi-hazards. They include active, semi-active, and hybrid damping systems. However, HPCS are more expensive than typical passive mitigation systems, rely on power and hardware (e.g., sensors, actuators) to operate, and require maintenance. In this paper, a life cycle cost analysis (LCA) approach is proposed to estimate the economic benefit these systems over the entire life of the structure. The novelty resides in the life cycle cost analysis in the performance based design (PBD) tailored to multi-level wind hazards. This yields a probabilistic performance-based design approach for HPCS. Numerical simulations are conducted on a building located in Boston, MA. LCA are conducted for passive control systems and HPCS, and the concept of controller robustness is demonstrated. Results highlight the promise of the proposed performance-based design procedure.

  12. Common Factors of High Performance Teams

    ERIC Educational Resources Information Center

    Jackson, Bruce; Madsen, Susan R.

    2005-01-01

    Utilization of work teams is now wide spread in all types of organizations throughout the world. However, an understanding of the important factors common to high performance teams is rare. The purpose of this content analysis is to explore the literature and propose findings related to high performance teams. These include definition and types,…

  13. Turning High-Poverty Schools into High-Performing Schools

    ERIC Educational Resources Information Center

    Parrett, William H.; Budge, Kathleen

    2012-01-01

    If some schools can overcome the powerful and pervasive effects of poverty to become high performing, shouldn't any school be able to do the same? Shouldn't we be compelled to learn from those schools? Although schools alone will never systemically eliminate poverty, high-poverty, high-performing (HP/HP) schools take control of what they can to…

  14. Turning High-Poverty Schools into High-Performing Schools

    ERIC Educational Resources Information Center

    Parrett, William H.; Budge, Kathleen

    2012-01-01

    If some schools can overcome the powerful and pervasive effects of poverty to become high performing, shouldn't any school be able to do the same? Shouldn't we be compelled to learn from those schools? Although schools alone will never systemically eliminate poverty, high-poverty, high-performing (HP/HP) schools take control of what they can to…

  15. Kinetically controlled patterning of highly cross-linked phosphonium photopolymers using simple anion exchange.

    PubMed

    Guterman, Ryan; Gillies, Elizabeth R; Ragogna, Paul J

    2015-05-12

    A phosphonium salt possessing three methacrylate groups has been incorporated into a photopolymeric system to generate highly cross-linked polyelectrolyte networks. Emergent chemical and physical properties in the polymers were observed and attributed to the tandem increase in cross-link density and ion-content upon incorporation of the self-cross-linking cation. Anion-exchange with bis(trifluoromethylsulfonyl)imide or dodecylbenzenesulfonate resulted in significant differences in wettability and ion-exchange behavior. The passivating effects of dodecylbenzenesulfonate were utilized to selectively pattern fluorescein dye into the polymer network, highlighting a new patterning procedure using ionic-bond forming reactions.

  16. Charge exchange processes involving highly charged ions and targets of interest in astrophysics and fusion plasmas

    NASA Astrophysics Data System (ADS)

    Otranto, S.

    2012-11-01

    Renewed interest in charge exchange processes involving highly charged ions arises because of their crucial role in the planned ITER reactor as well as to recent X-ray observations in the astrophysical context. In this work, the classical trajectory Monte Carlo method (CTMC) is used to calculate state selective single charge exchange n-level cross sections and line emission cross sections pertinent to both fields. These are contrasted to recent laboratory data from KVI for the Xe18+ + Na(3s) collision system and NIST/BERLIN-EBIT data for the Ar18+ +Ar system.

  17. High performance computing at Sandia National Labs

    SciTech Connect

    Cahoon, R.M.; Noe, J.P.; Vandevender, W.H.

    1995-10-01

    Sandia`s High Performance Computing Environment requires a hierarchy of resources ranging from desktop, to department, to centralized, and finally to very high-end corporate resources capable of teraflop performance linked via high-capacity Asynchronous Transfer Mode (ATM) networks. The mission of the Scientific Computing Systems Department is to provide the support infrastructure for an integrated corporate scientific computing environment that will meet Sandia`s needs in high-performance and midrange computing, network storage, operational support tools, and systems management. This paper describes current efforts at SNL/NM to expand and modernize centralized computing resources in support of this mission.

  18. Performance of gas diffusion layer from coconut waste for proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Widodo, H.; Destyorini, F.; Insiyanda, D. R.; Subhan, A.

    2017-04-01

    The performance of Gas Diffusion Layer (GDL) synthesized from coconut waste. Gas Diffusion Layer (GDL), produced from coconut waste, as a part of Proton Exchange Membrane Fuel Cell (PEMFC) component, has been characterized. In order to know the performance, the commercial products were used as the remaining parts of PEMFC. The proposed GDL possesses 69% porosity for diffusion of Hydrogen fuel and Oxygen, as well as for transporting electron. With the electrical conductivity of 500 mS.cm-1, it also has hydrophobic properties, which is important to avoid the reaction with water, with the contact angle of 139°. The 5 × 5 cm2 GDL paper was co-assembled with the catalyst, Nafion membrane, bipolar plate, current collector, end plate to obtain single Stack PEMFC. The performance was examined by flowing fuel and gas with the flow rate of 500 and 1000 ml.min-1, respectively, and analyse the I-V polarization curve. The measurements were carried out at 30, 35, and 40°C for 5 cycles to ensure the repeatability. The results shows that the current density and the maximum power density reaches 203 mA.cm-2 and 143 mW.cm-2, respectively, with a given voltage 0.6 V, at 40°C.

  19. Preparation and performance of nano silica/Nafion composite membrane for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Keping; McDermid, Scott; Li, Jing; Kremliakova, Natalia; Kozak, Paul; Song, Chaojie; Tang, Yanghua; Zhang, Jianlu; Zhang, Jiujun

    Composite membranes made from Nafion ionomer with nano phosphonic acid-functionalised silica and colloidal silica were prepared and evaluated for proton exchange membrane fuel cells (PEMFCs) operating at elevated temperature and low relative humidity (RH). The phosphonic acid-functionalised silica additive obtained from a sol-gel process was well incorporated into Nafion membrane. The particle size determined using transmission electron microscope (TEM) had a narrow distribution with an average value of approximately 11 nm and a standard deviation of ±4 nm. The phosphonic acid-functionalised silica additive enhanced proton conductivity and water retention by introducing both acidic groups and porous silica. The proton conductivity of the composite membrane with the acid-functionalised silica was 0.026 S cm -1, 24% higher than that of the unmodified Nafion membrane at 85 °C and 50% RH. Compared with the Nafion membrane, the phosphonic acid-functionalised silica (10% loading level) composite membrane exhibited 60 mV higher fuel cell performance at 1 A cm -2, 95 °C and 35% RH, and 80 mV higher at 0.8 A cm -2, 120 °C and 35% RH. The fuel cell performance of composite membrane made with 6% colloidal silica without acidic group was also higher than unmodified Nafion membrane, however, its performance was lower than the acid-functionalised silica additive composite membrane.

  20. Red cell exchange, erythrocytapheresis, in the treatment of malaria with high parasitaemia in returning travellers.

    PubMed

    Macallan, D C; Pocock, M; Robinson, G T; Parker-Williams, J; Bevan, D H

    2000-01-01

    In severe falciparum malaria with high parasitaemia, removal of parasitized erythrocytes is generally considered to be of value as adjunctive therapy in addition to standard chemotherapy. Such removal is commonly achieved by exchange transfusion but this procedure is time-consuming and may be associated with haemodynamic disturbance. Current-generation automated cell-separator hardware and software allows prompt red cell exchange, erythrocytapheresis, in a single continuous-flow isovolaemic procedure. We describe the application of this procedure to 5 cases of severe falciparum malaria in travellers returning to the UK from the tropics. All patients also received quinine and conventional supportive therapy. In all cases, dramatic reduction in parasitaemia was achieved within 2 h with subsequent complete clinical recovery. Erythrocytapheresis has significant advantages over exchange transfusion in terms of speed, efficiency, haemodynamic stability and retention of plasma components such as clotting factors and may thus represent an improvement in adjunctive therapy for severe malaria.