Science.gov

Sample records for exchange process pemisahan

  1. Alert Exchange Process Protocol

    NASA Technical Reports Server (NTRS)

    Groen, Frank

    2015-01-01

    The National Aeronautics and Space Administration of the United States of America (NASA), and the European Space Agency (ESA), and the Japanese Aerospace Exploration Agency (JAXA), acknowledging that NASA, ESA and JAXA have a mutual interest in exchanging Alerts and Alert Status Lists to enhance the information base for each system participant while fortifying the general level of cooperation between the policy agreement subscribers, and each Party will exchange Alert listings on regular basis and detailed Alert information on a need to know basis to the extent permitted by law.

  2. Mass exchange processes with input

    NASA Astrophysics Data System (ADS)

    Krapivsky, P. L.

    2015-05-01

    We investigate a system of interacting clusters evolving through mass exchange and supplemented by input of small clusters. Three possibilities depending on the rate of exchange generically occur when input is homogeneous: continuous growth, gelation, and instantaneous gelation. We mostly study the growth regime using scaling methods. An exchange process with reaction rates equal to the product of reactant masses admits an exact solution which allows us to justify the validity of scaling approaches in this special case. We also investigate exchange processes with a localized input. We show that if the diffusion coefficients are mass-independent, the cluster mass distribution becomes stationary and develops an algebraic tail far away from the source.

  3. Pu Anion Exchange Process Intensification

    SciTech Connect

    Taylor-Pashow, K.

    2015-10-08

    This project seeks to improve the efficiency of the plutonium anion-exchange process for purifying Pu through the development of alternate ion-exchange media. The objective of the project in FY15 was to develop and test a porous foam monolith material that could serve as a replacement for the current anion-exchange resin, Reillex® HPQ, used at the Savannah River Site (SRS) for purifying Pu. The new material provides advantages in efficiency over the current resin by the elimination of diffusive mass transport through large granular resin beads. By replacing the large resin beads with a porous foam there is much more efficient contact between the Pu solution and the anion-exchange sites present on the material. Several samples of a polystyrene based foam grafted with poly(4-vinylpyridine) were prepared and the Pu sorption was tested in batch contact tests.

  4. ION EXCHANGE ADSORPTION PROCESS FOR PLUTONIUM SEPARATION

    DOEpatents

    Boyd, G.E.; Russell, E.R.; Taylor, M.D.

    1961-07-11

    Ion exchange processes for the separation of plutonium from fission products are described. In accordance with these processes an aqueous solution containing plutonium and fission products is contacted with a cation exchange resin under conditions favoring adsorption of plutonium and fission products on the resin. A portion of the fission product is then eluted with a solution containing 0.05 to 1% by weight of a carboxylic acid. Plutonium is next eluted with a solution containing 2 to 8 per cent by weight of the same carboxylic acid, and the remaining fission products on the resin are eluted with an aqueous solution containing over 10 per cent by weight of sodium bisulfate.

  5. Process parameters optimization in ion exchange 238Pu aqueous processing

    NASA Astrophysics Data System (ADS)

    Pansoy-Hjelvik, M. E.; Nixon, J.; Laurinat, J.; Brock, J.; Silver, G.; Reimus, M.; Ramsey, K. B.

    2000-07-01

    This paper describes bench-scale efforts (5-7 grams of 238Pu) to optimize the ion exchange process for 234U separation with minimal 238Pu losses to the effluent and wash liquids. The bench-scale experiments also determine the methodology to be used for the full-scale process: 5 kg238Pu annual throughput. Heat transfer calculations used to determine the thermal gradients expected during ion exchange processing are also described. The calculations were performed in collaboration with Westinghouse Savannah River Technology Center (WSRTC) and provide information for the design of the full-scale ion exchange equipment.

  6. Highly tritiated water processing by isotopic exchange

    SciTech Connect

    Shu, W.M.; Willms, R.S.; Glugla, M.; Cristescu, I.; Michling, R.; Demange, D.

    2015-03-15

    Highly tritiated water (HTW) is produced in fusion machines and one of the promising technologies to process it is isotopic exchange. 3 kinds of Pt-catalyzed zeolite (13X-APG, CBV-100-CY and HiSiv-1000) were tested as candidates for isotopic exchange of highly tritiated water (HTW), and CBV-100-CY (Na-Y type with a SiO{sub 2}/Al{sub 2}O{sub 3} ratio of ∼ 5.0) shows the best performance. Small-scale tritium testing indicates that this method is efficient for reaching an exchange factor (EF) of 100. Full-scale non-tritium testing implies that an EF of 300 can be achieved in 24 hours of operation if a temperature gradient is applied along the column. For the isotopic exchange, deuterium recycled from the Isotope Separation System (deuterium with 1% T and/or 200 ppm T) should be employed, and the tritiated water regenerated from the Pt-catalyzed zeolite bed after isotopic exchange should be transferred to Water Detritiation System (WDS) for further processing.

  7. Heat exchanger for coal gasification process

    DOEpatents

    Blasiole, George A.

    1984-06-19

    This invention provides a heat exchanger, particularly useful for systems requiring cooling of hot particulate solids, such as the separated fines from the product gas of a carbonaceous material gasification system. The invention allows effective cooling of a hot particulate in a particle stream (made up of hot particulate and a gas), using gravity as the motive source of the hot particulate. In a preferred form, the invention substitutes a tube structure for the single wall tube of a heat exchanger. The tube structure comprises a tube with a core disposed within, forming a cavity between the tube and the core, and vanes in the cavity which form a flow path through which the hot particulate falls. The outside of the tube is in contact with the cooling fluid of the heat exchanger.

  8. Diffusion-Welded Microchannel Heat Exchanger for Industrial Processes

    SciTech Connect

    Piyush Sabharwall; Denis E. Clark; Michael V. Glazoff; Michael G. McKellar; Ronald E. Mizia

    2013-03-01

    The goal of next generation reactors is to increase energy ef?ciency in the production of electricity and provide high-temperature heat for industrial processes. The ef?cient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process. The need for ef?ciency, compactness, and safety challenge the boundaries of existing heat exchanger technology. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more ef?cient industrial processes. Modern compact heat exchangers can provide high compactness, a measure of the ratio of surface area-to-volume of a heat exchange. The microchannel heat exchanger studied here is a plate-type, robust heat exchanger that combines compactness, low pressure drop, high effectiveness, and the ability to operate with a very large pressure differential between hot and cold sides. The plates are etched and thereafter joined by diffusion welding, resulting in extremely strong all-metal heat exchanger cores. After bonding, any number of core blocks can be welded together to provide the required ?ow capacity. This study explores the microchannel heat exchanger and draws conclusions about diffusion welding/bonding for joining heat exchanger plates, with both experimental and computational modeling, along with existing challenges and gaps. Also, presented is a thermal design method for determining overall design speci?cations for a microchannel printed circuit heat exchanger for both supercritical (24 MPa) and subcritical (17 MPa) Rankine power cycles.

  9. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    SciTech Connect

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  10. Impurity charge-exchange processes processes in Tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Puiatti, M. E.; Breton, C.; Michelis, C.; Mattioll, M.

    1981-02-01

    Charge exchange reactions between multiply charged impurity ions and neutral hydrogen isotopes were considered. Ionization equilibrium and radiative losses were evaluated for oxygen and iron in the presence of either thermal or beam neutrals. The influence of thermal neutrals on recently reported results from chemically heated TFR discharges is also discussed.

  11. Neptunium Valence Chemistry in Anion Exchange Processing

    SciTech Connect

    KYSER, EDWARD

    2003-02-01

    The current anion resin in use in HB-Line Phase II, Reillex{trademark} HPQ, was tested in the laboratory under expected plant conditions for Np processing and was found to load between 50 and 70 g Np per liter of resin. Losses varied from 0.2 to 15 percent depending on a number of parameters. Hydrazine in the feed at 0.02 to 0.05 M appeared to keep the Np from oxidizing and increasing the losses within four to seven days after the FS addition. Losses of up to three percent were observed five days after FS addition when hydrazine was not used in the feed, compared with 0.3 percent when the feed was loaded immediately after FS addition. Based on these test results the following processing conditions are recommended: (1) Feed conditions: 8 M HNO{sub 3}, 0.02 M hydrazine, 0.05 M excess FS, less than 5 days storage of solution after FS addition. (2) Wash conditions: 100 liters of 8 M HNO{sub 3}, no FS, no hydrazine. (3) Elution conditions: 0.17 M HNO{sub 3}, 0.05 M hydrazine, no FS. (4) Precipitation feed conditions: 0.03 M excess ascorbic acid, no additional hydrazine, no FS, precipitation within three days.

  12. MODELING RESULTS FROM CESIUM ION EXCHANGE PROCESSING WITH SPHERICAL RESINS

    SciTech Connect

    Nash, C.; Hang, T.; Aleman, S.

    2011-01-03

    Ion exchange modeling was conducted at the Savannah River National Laboratory to compare the performance of two organic resins in support of Small Column Ion Exchange (SCIX). In-tank ion exchange (IX) columns are being considered for cesium removal at Hanford and the Savannah River Site (SRS). The spherical forms of resorcinol formaldehyde ion exchange resin (sRF) as well as a hypothetical spherical SuperLig{reg_sign} 644 (SL644) are evaluated for decontamination of dissolved saltcake wastes (supernates). Both SuperLig{reg_sign} and resorcinol formaldehyde resin beds can exhibit hydraulic problems in their granular (nonspherical) forms. SRS waste is generally lower in potassium and organic components than Hanford waste. Using VERSE-LC Version 7.8 along with the cesium Freundlich/Langmuir isotherms to simulate the waste decontamination in ion exchange columns, spherical SL644 was found to reduce column cycling by 50% for high-potassium supernates, but sRF performed equally well for the lowest-potassium feeds. Reduced cycling results in reduction of nitric acid (resin elution) and sodium addition (resin regeneration), therefore, significantly reducing life-cycle operational costs. These findings motivate the development of a spherical form of SL644. This work demonstrates the versatility of the ion exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. The value of a resin with increased selectivity for cesium over potassium can be assessed for further development.

  13. Membrane device and process for mass exchange, separation, and filtration

    DOEpatents

    Liu, Wei; Canfield, Nathan L.

    2016-11-15

    A membrane device and processes for fabrication and for using are disclosed. The membrane device may include a number of porous metal membranes that provide a high membrane surface area per unit volume. The membrane device provides various operation modes that enhance throughput and selectivity for mass exchange, mass transfer, separation, and/or filtration applications between feed flow streams and permeate flow streams.

  14. Self-Disclosure as an Exchange Process: Reinforcement Effects.

    ERIC Educational Resources Information Center

    Taylor, Dalmas A.

    In association with an extensive examination of the disclosure literature, this paper describes two laboratory studies designed to yield information regarding the effects of reinforcement on self-disclosing behaviors in an exchange process. In one series, the experimenters manipulated the patterns of personal reward/cost experiences, hypothesizing…

  15. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    SciTech Connect

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  16. Process Heat Exchanger Options for the Advanced High Temperature Reactor

    SciTech Connect

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-06-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  17. Thermally Activated Site Exchange and Quantum Exchange Coupling Processes in Unsymmetrical Trihydride Osmium Compounds.

    PubMed

    Castillo, Amaya; Barea, Guada; Esteruelas, Miguel A.; Lahoz, Fernando J.; LLedós, Agustí; Maseras, Feliu; Modrego, Javier; Oñate, Enrique; Oro, Luis A.; Ruiz, Natividad; Sola, Eduardo

    1999-04-19

    Reaction of the hexahydride complex OsH(6)(P(i)Pr(3))(2) (1) with pyridine-2-thiol leads to the trihydride derivative OsH(3){kappa-N,kappa-S-(2-Spy)}(P(i)Pr(3))(2) (2). The structure of 2 has been determined by X-ray diffraction. The geometry around the osmium atom can be described as a distorted pentagonal bipyramid with the phosphine ligands occupying axial positions. The equatorial plane contains the pyridine-2-thiolato group, attached through a bite angle of 65.7(1) degrees, and the three hydride ligands. The theoretical structure determination of the model complex OsH(3){kappa-N,kappa-S-(2-Spy)}(PH(3))(2) (2a) reveals that the hydride ligands form a triangle with sides of 1.623, 1.714, and 2.873 Å, respectively. A topological analysis of the electron density of 2a indicates that there is no significant electron density connecting the hydrogen atoms of the OsH(3) unit. In solution, the hydride ligands of 2 undergo two different thermally activated site exchange processes, which involve the central hydride with each hydride ligand situated close to the donor atoms of the chelate group. The activation barriers of both processes are similar. Theoretical calculations suggest that the transition states have a cis-hydride-dihydrogen nature. In addition to the thermally activated exchange processes, complex 2 shows quantum exchange coupling between the central hydride and the one situated close to the sulfur atom of the pyridine-2-thiolato group. The reactions of 1 with L-valine and 2-hydroxypyridine afford OsH(3){kappa-N,kappa-O-OC(O)CH[CH(CH(3))(2)]NH(2)}(P(i)Pr(3))(2) (3) and OsH(3){kappa-N,kappa-O-(2-Opy)}(P(i)Pr(3))(2) (4) respectively, which according to their spectroscopic data have a similar structure to that of 2. In solution, the hydride ligands of 3 and 4 also undergo two different thermally activated site exchange processes. However, they do not show quantum exchange coupling. The tetranuclear complexes [(P(i)Pr(3))(2)H(3)Os(&mgr;-biim)M(TFB)](2) [M = Rh

  18. Exchange effects and collision mechanisms in (e, 2e) processes

    NASA Astrophysics Data System (ADS)

    Zhang-jin, Chen; Zhi-xiang, Ni; Qi-cun, Shi; Ke-zun, Xu

    1998-07-01

    In this work the triple differential cross sections for electron impact ionization of helium at an incident energy of 64.6 eV is considered in the coplanar symmetric energy-sharing and fixed relative angles of the two out-going electrons kinematics. A new collision process called triple-binary collision is identified. It has been shown that the ordinary double-binary collision process is excluded from the collision kinematics considered here. It has also been shown how the exchange effects symmetrically contribute to the peaks in the cross sections.

  19. ION EXCHANGE PROCESS FOR THE RECOVERY AND PURIFICATION OF MATERIALS

    DOEpatents

    Long, R.S.; Bailes, R.H.

    1958-04-15

    A process for the recovery of certain metallic ions from aqueous solutions by ion exchange techniques is described. It is applicable to elements such as vanadium, chromium, nnanganese, and the like, which are capable of forming lower valent cations soluble in aqueous solutions and which also form ldgher valent anions soluble in aqueous acidic solutions. For example, small amounts of vanadium occurring in phosphoric acid prepared from phosphate rock may be recovered by reducing the vanadium to a trivalent cation adsorbing; the vanadium in a cationic exchange resin, then treating the resin with a suitable oxidizing agent to convert the adsorbed vanadium to a higher valent state, and finally eluting; the vanadium as an anion from the resin by means of an aqueous acidic solution.

  20. Fluctuations, exchange processes, and water diffusion in aqueous protein systems

    PubMed Central

    Kimmich, R.; Gneiting, T.; Kotitschke, K.; Schnur, G.

    1990-01-01

    Experimental frequency, concentration, and temperature dependences of the deuteron relaxation times T1 and T2 of D2O solutions of bovine serum albumin are reported and theoretically described in a closed form without formal parameters. Crucial processes of the theoretical concept are material exchange, translational diffusion of water molecules on the rugged surfaces of proteins, and tumbling of the macromolecules. It is also concluded that, apart from averaging of the relaxation rates in the diverse deuteron phases, material exchange contributes to transverse relaxation by exchange modulation of the Larmor frequency. The rate limiting factor of macromolecular tumbling is determined by the free water content. In a certain analogy to the classical free-volume theory, a “free-water-volume theory” is presented. There are two characteristic water mass fractions indicating the saturation of the hydration shells (Cs ≈ 0.3) and the onset of protein tumbling (C0 ≈ 0.6). The existence of the translational degrees of freedom of water molecules in the hydration shells has been verified by direct measurement of the diffusion coefficient using an NMR field-gradient technique. The concentration and temperature dependences show phenomena indicating a percolation transition of clusters of free water. The threshold water content was found to be Ccw ≈ 0.43. PMID:19431772

  1. The processes of nonequilibrium exchange in rotating plasma flows

    NASA Astrophysics Data System (ADS)

    Karimov, A. R.; Shatokhin, V. L.; Yu, M. Y.; Stenflo, L.

    2016-09-01

    The mechanisms of energy/momentum exchange in rotating and compressing plasma flows have been discussed. It has been shown that such flows are capable of transforming the energy of different degrees of freedom into the energy of one degree owing to the interaction of the coupled nonlinear radial, axial and azimuthal electron-ion oscillations. These processes may lead to the additional acceleration of the flow in azimuthal or axial direction so they might be instrumental for the creation of space thrusters employing pulse transformations for propulsion.

  2. CATIONIC EXCHANGE PROCESS FOR THE SEPARATION OF RARE EARTHS

    DOEpatents

    Choppin, G.R.; Thompson, S.G.; Harvey, B.G.

    1960-02-16

    A process for separating mixtures of elements in the lanthanum and actinium series of the periodic table is described. The mixture of elements is dissolved in 0.05 M HCI, wherein the elements exist as tripositive ions. The resulting solution is then transferred to a column of cationic exchange resin and the column eluted with 0.1 to 0.6 M aqueous ammonium alpha hydroxy isobutyrate solution of pH 3.8 to 5.0. The use of ammonium alpha hydroxy isobutyrate as an eluting agent results in sharper and more rapid separations than previously obtainable with eluants such as citric, tartaric, glycolic, and lactic acids.

  3. Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons.

    PubMed

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi

    2011-05-01

    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of nonequivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolite phantoms with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: (i) on-resonance SL is most sensitive to chemical exchanges in the intermediate-exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. (ii) Offset frequency-dependent SL and CEST spectra are very similar and can be explained well with an SL model recently developed by Trott and Palmer (J Magn Reson 2002;154:157-160). (iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. (iv) The asymmetry of the magnetization transfer ratio (MTR(asym)) is highly dependent on the choice of saturation pulse power. In the intermediate-exchange regime, MTR(asym) becomes complicated and should be interpreted with care.

  4. Anion-exchange resin-based desulfurization process. Final report

    SciTech Connect

    Sheth, A C; Dharmapurikar, R; Strevel, S D

    1994-01-01

    The following investigations were performed: (1) batch mode screening of eleven(11) commercially available resins and selection of three candidate resins for further evaluation in a fixed-bed setup. (2) Process variables study using three candidate resins in the fixed-bed setup and selection of the ``best`` resin for process economics development. (3) Exhaustion efficiency and solution concentration were found to be inversely related necessitating a trade-off between the resin cost versus the cost of evaporation/concentration of ensuing effluents. (4) Higher concentration of the HCO{sub 3}{sup {minus}} form of active sites over less active CO{sub 3}{sup 2{minus}} form of sites in the resin was believed to be the main reason for the observed increase in the equilibrium capacity of the resin at an elevated static CO{sub 2}-pressure. This Increase in capacity was found to level off around 80--120 psig range. The increase in CO{sub 2}-pressure, however, did not appear to affect the overall ion-exchange kinetics. (5) In the fixed-bed mode, the solution concentration was found to affect the equilibrium capacity of candidate resins. Their relationship was well satisfied by the Langmuir type non-linear equilibrium isotherm. Alternatively, the effect of solution concentration on overall ion-exchange kinetics varied from resin to resin. (6) Product inhibition effect on the resin was observed as an initial increase followed by a significant decrease in the resin`s equilibrium capacity for SO{sub 4}{sup 2{minus}} as the HCO{sub 3}{sup {minus}}/SO{sub 4}{sup 2{minus}} molar ratio in the solution was increased from 0 to 1.0. This ratio, however, did not affect the overall ion-exchange kinetics.

  5. Investigation of ammonia air-surface exchange processes in a ...

    EPA Pesticide Factsheets

    Recent assessments of atmospheric deposition in North America note the increasing importance of reduced (NHx = NH3 + NH4+) forms of nitrogen (N) relative to oxidized forms. This shift in in the composition of inorganic nitrogen deposition has both ecological and policy implications. Deposition budgets developed from inferential models applied at the landscape scale, as well as regional and global chemical transport models, indicate that NH3 dry deposition contributes a significant portion of inorganic N deposition in many areas. However, the bidirectional NH3 flux algorithms employed in these models have not been extensively evaluated for North American conditions (e.g, atmospheric chemistry, meteorology, biogeochemistry). Further understanding of the processes controlling NH3 air-surface exchange in natural systems is critically needed. Based on preliminary results from the Southern Appalachian Nitrogen Deposition Study (SANDS), this presentation examines processes of NH3 air-surface exchange in a deciduous montane forest at the Coweeta Hydrologic Laboratory in western North Carolina. A combination of measurements and modeling are used to investigate net fluxes of NH3 above the forest and sources and sinks of NH3 within the canopy and forest floor. Measurements of biogeochemical NH4+ pools are used to characterize emission potential and NH3 compensation points of canopy foliage (i.e., green vegetation), leaf litter, and soil and their relation to NH3 fluxes

  6. Anion-exchange resin-based desulfurization process

    SciTech Connect

    Sheth, A.C.; Strevel, S.D.; Dharmapurikar, R.

    1992-01-01

    Under the current grant, the University of Tennessee Space Institute (UTSI) will carry out the bench scale evaluation and further development of the anion-exchange resin-based desulfurization concept to desulfurize alkali metal sulfates. This concept has been developed and patented by UTSI under US Patent No. 4,917,874. The developmental program proposed under this DOE grant includes screening of commercially available resins to select three candidate resins for further study. These three resins will undergo a series of experiments designed to test the resins' performance under different process conditions (including the use of spent MHD seed material). The best of these resins will be used in optimizing the regeneration step and in testing the effects of performance enhancers. The process schematic developed from the results will be used to estimate the related economics. During this reporting period, October 1, 1991 to September 30, 1992, analysis of batch mode screening experiments was completed to select three candidate resins for process variables study in the fixed-bed set-up. This setup was modified and the experiments were carded out to evaluate effects of major process variables. The analysis of fixed-bed experiments is going on and we have also started simple batch mode experiments to identify desirable conditions for resin regeneration step. We have also started simple process engineering type calculations to determine the trade-off between the solution concentration and the resulting evaporation/concentration load.

  7. Treatment of chromium plating process effluents with ion exchange resins.

    PubMed

    Tenório, J A; Espinosa, D C

    2001-01-01

    The surface treatment industry deals with various heavy metals, including the elements Cr, Zn, Ni, Cd, and Cu. Conventional treatments of effluents generate class I solid residue. The aim of this investigation was to study the viability of ion exchange as an alternative process for treatment of rinse water and to determine the efficacy of two ion exchange systems, System 1: "strong" cationic resin-"strong" anionic resin and System 2: "strong" cationic resin-"weak" anionic resin. Commercial resins and solutions taken from rinse tanks of chromium plating companies were used in this investigation. A two-column system, one for the cationic resin and another for the anionic resin, both with 150 ml capacity was mounted. The solution was percolated at a rate of 10 ml/min. The following solutions were used for regeneration of the resins: 2% H2SO4 for the cationic and 4% NaOH for the anionic. The percolated solutions revealed chromium contents of less than 0.25 mg/l, independent of the system used. The "strong" cationic resin-"weak" anionic resin gave excellent regeneration results. The "strong" cationic-"strong" anionic resin presented problems during regeneration, and did not release the retained ions after percolation of 2000 ml of 4% NaOH solution. It is concluded that for this type of treatment, the system composed of "strong" cationic resin and "weak" anionic resin is more appropriate.

  8. EXCHANGE

    SciTech Connect

    Boltz, J.C.

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  9. Process-based upscaling of surface-atmosphere exchange

    NASA Astrophysics Data System (ADS)

    Keenan, T. F.; Prentice, I. C.; Canadell, J.; Williams, C. A.; Wang, H.; Raupach, M. R.; Collatz, G. J.; Davis, T.; Stocker, B.; Evans, B. J.

    2015-12-01

    Empirical upscaling techniques such as machine learning and data-mining have proven invaluable tools for the global scaling of disparate observations of surface-atmosphere exchange, but are not based on a theoretical understanding of the key processes involved. This makes spatial and temporal extrapolation outside of the training domain difficult at best. There is therefore a clear need for the incorporation of knowledge of ecosystem function, in combination with the strength of data mining. Here, we present such an approach. We describe a novel diagnostic process-based model of global photosynthesis and ecosystem respiration, which is directly informed by a variety of global datasets relevant to ecosystem state and function. We use the model framework to estimate global carbon cycling both spatially and temporally, with a specific focus on the mechanisms responsible for long-term change. Our results show the importance of incorporating process knowledge into upscaling approaches, and highlight the effect of key processes on the terrestrial carbon cycle.

  10. Countercurrent direct contact heat exchange process and system

    DOEpatents

    Wahl, III, Edward F.; Boucher, Frederic B.

    1979-01-01

    Recovery of energy from geothermal brines and other hot water sources by direct contact heat exchange with a working fluid, such as a hydrocarbon working fluid, e.g. isobutane. The process and system consists of a plurality of stages, each stage including mixing and settling units. In the first stage, hot brine and arm working fluid are intimately mixed and passed into a settler wherein the brine settles to the bottom of the settler and the hot working fluid rises to the top. The hot working fluid is passed to a heat engine or turbine to produce work and the working fluid is then recycled back into the system. The system is comprised of a series of stages each containing a settler and mixer, and wherein the working fluid and the brine flow in a countercurrent manner through the stages to recover the heat from the brine in increments and raise the temperature of the working fluid in increments.

  11. IMPACT OF THE SMALL COLUMN ION EXCHANGE PROCESS ON THE DEFENSE WASTE PROCESSING FACILITY - 12112

    SciTech Connect

    Koopman, D.; Lambert, D.; Fox, K.; Stone, M.

    2011-11-07

    The Savannah River Site (SRS) is investigating the deployment of a parallel technology to the Salt Waste Processing Facility (SWPF, presently under construction) to accelerate high activity salt waste processing. The proposed technology combines large waste tank strikes of monosodium titanate (MST) to sorb strontium and actinides with two ion exchange columns packed with crystalline silicotitanate (CST) resin to sorb cesium. The new process was designated Small Column Ion Exchange (SCIX), since the ion exchange columns were sized to fit within a waste storage tank riser. Loaded resins are to be combined with high activity sludge waste and fed to the Defense Waste Processing Facility (DWPF) for incorporation into the current glass waste form. Decontaminated salt solution produced by SCIX will be fed to the SRS Saltstone Facility for on-site immobilization as a grout waste form. Determining the potential impact of SCIX resins on DWPF processing was the basis for this study. Accelerated salt waste treatment is projected to produce a significant savings in the overall life cycle cost of waste treatment at SRS.

  12. Measuring gas temperature during spin-exchange optical pumping process

    NASA Astrophysics Data System (ADS)

    Normand, E.; Jiang, C. Y.; Brown, D. R.; Robertson, L.; Crow, L.; Tong, X.

    2016-04-01

    The gas temperature inside a Spin-Exchange Optical Pumping (SEOP) laser-pumping polarized 3He cell has long been a mystery. Different experimental methods were employed to measure this temperature but all were based on either modelling or indirect measurement. To date there has not been any direct experimental measurement of this quantity. Here we present the first direct measurement using neutron transmission to accurately determine the number density of 3He, the temperature is obtained using the ideal gas law. Our result showed a surprisingly high gas temperature of 380°C, compared to the 245°C of the 3He cell wall temperature and 178°C of the optical pumping oven temperature. This experiment result may be used to further investigate the unsolved puzzle of the "X-factor" in the SEOP process which places an upper bound to the 3He polarization that can be achieved. Additional spin relaxation mechanisms might exist due to the high gas temperature, which could explain the origin of the X-factor.

  13. Charge-Exchange Processes of Titanium-Doped Aluminate Crystals

    NASA Astrophysics Data System (ADS)

    Wong, Wing Cheong

    1995-01-01

    Titanium exists in more than one charge state in the aluminate crystals: it is stable as Ti^ {3+} and Ti^{4+}. Other than the intense Ti^{4+ } absorption, a ubiquitous absorption/luminescence excitation band in the UV region is identified as a titanium -bound exciton in Al_2rm O_3, Y_3Al_5rm O_{12}, {rm YAlO}_3, MgAl_2O _4, and LaMgAl_{11} {rm O}_{19}. One -step and two-step photoconductivities of Ti^ {3+} are measured and compared. While the selectivity of the two-step process is demonstrated, its use in locating the energy threshold is hampered by the small Franck-Condon factor for the transition between the Ti^{3+} ^2{ rm E} excited state and Ti^ {4+}. The titanium-bound exciton band, together with the one-step photocurrent signal, makes it possible to determine the photoionization energy threshold accurately. The charge-transfer transition energy thresholds of Ti^{4+} are obtained from the emission and the luminescence excitation spectra. Locally and non-locally charge compensated Ti^{4+ } are found in Al_2{rm O}_3. The luminescence kinetics for the two kinds of Ti^{4+} are well explained by a three-level system with a lower triplet excited state and a higher singlet excited state. These charge-exchange threshold energies can be deduced from the Born-Haber thermodynamical cycle. The electrostatic site potentials are calculated and from it, the calculated photoionization and charge-transfer energy thresholds are found to be consistent with the experimental results. The deficiency of this model is pointed out and possible improvement is discussed. Quantitatively, the sum of the two charge-exchange energy thresholds is close to the band-gap energy of the host crystal. This offers a convenient way for material characterization. Provided that any two of the three quantities (band-gap energy, photoionization energy threshold, and charge-transfer transition energy threshold) have been found, the third quantity can be calculated. In addition, the trapping of charge

  14. On boundary condition in heat-exchange processes

    NASA Astrophysics Data System (ADS)

    Stolyarov, E. P.

    2016-10-01

    This paper describes the numerical study of heat-exchange of solid body with high-temperature external flow. As follows from the Newton's boundary condition, connecting a heat-flux density with temperature difference between the flow and a body, the heat-exchange coefficient is physically equivalent to the body-surface-normal component of the entropy flux from external flow at equilibrium flow regime. The method of determination of the heat-exchange characteristics using the time-history temperature measurements by a thin-film thermocouple sensor is described. As it is shown from the numerical analysis, the asymptotic value of the heat-exchange coefficient that corresponded to equilibrium regime of external flow exists. Implementation time of this value, i.e. relaxation time, may be of some characteristic time scales of the sensor measuring layer.

  15. In Situ Investigations of Ion Exchange Processes in Microporous Materials

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Parise, J. B.; Hanson, J. C.

    2001-12-01

    The mechanism by which ions exchange in microporous and layered solids, such as zeolites and clays for example, has important implications in areas as diverse as soil fertility and environmental remediation. A detailed characterization of the ion-exchange pathway, the structural consequences of ion exchange and the specific sites involved in the course of exchange, is desirable. A probe that is both time- and structure-sensitive allows resolution of which specific sites are involved, along with the effects of different cation types on the uptake and release of ions. In order to discern the mechanism of ion exchange, it is necessary not only to observe the course of the reaction, which can now be done routinely using energy dispersive X-ray diffraction at synchrotron sources, but also to collect dynamic diffraction data of sufficient quality to allow structure refinement using Rietveld structure refinement techniques. This at present requires the collection of monochromatic data. Tradeoffs between time-resolution, peak-to-background discrimination and structural resolution are often required and depend on the problem at hand. We have developed a number of strategies for in situ ion exchange techniques that probe both structural and kinetic information from dynamic solid media. Examples include investigations of the site-specific ion-exchange mechanism in zeolite LSX using a combination of ex situ and in situ time-resolved synchrotron X-ray powder diffraction, Iterative Target Transformation Factor Analysis (ITTFA) and Rietveld structural refinements. Measurement of competitive ion depletion curves showed that the newly synthesized gallosilicate TsG-1 is more selective for Sr than mineral clinoptilolite, and the structural pathway of Sr-exchange in TsG-1 was monitored by in situ and ex situ synchrotron X-ray powder diffraction. In those cases where full structure refinement is desirable using less than optimal powder diffraction data, we found it necessary to first

  16. Surface gas-exchange processes of snow algae

    PubMed Central

    Williams, William E.; Gorton, Holly L.; Vogelmann, Thomas C.

    2003-01-01

    The red-colored chlorophyte Chlamydomonas nivalis is commonly found in summer snowfields. We used a modified Li-Cor gas-exchange system to investigate surface gas-exchange characteristics of snow colonized by this alga, finding rates of CO2 uptake up to 0.3 μmol m−2⋅s−1 in dense algal blooms. Experiments varying the irradiance resulted in light curves that resembled those of the leaves of higher plants. Red light was more effective than white and much more effective than green or blue, because of the red astaxanthin that surrounds and masks the algal chloroplasts. Integrating daily course measurements of gas exchange showed CO2 uptake around 2,300 μmol⋅m−2⋅day−1 in heavily colonized patches, indicating that summer snowfields can be surprisingly productive. PMID:12518048

  17. Circulation and exchange processes over the continental shelf and slope

    SciTech Connect

    Csanady, G.T.

    1988-01-01

    The theme of the work during the past triennium has been the SEEP experiment, data interpretation and modeling related to the goals of the experiment, and was characterized by increasing cooperation with colleagues from other disciplines. The theoretical contributions dealt with shelf-slope interaction, the dynamics and climatology of currents over the continental slope, and the behavior of fate of organic particles. Observational papers discussed various exchange mechanisms at the shelf edge, with special attention to particle exchange, and the quiescence of currents over the mid continental slope which is presumably responsible for the accumulation of organic particles.

  18. Communication and Social Exchange Processes in Community Theater Groups

    ERIC Educational Resources Information Center

    Kramer, Michael W.

    2005-01-01

    This study explores the communication experiences of two volunteer groups involved in the production of community theater musicals. Based on social exchange theory, it examined what group members perceived to be the positive benefits (primarily meeting people and having an opportunity to perform) and the negative costs (primarily disorganization,…

  19. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    SciTech Connect

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-04-01

    The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. The intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding.

  20. Chromatographic separation of neodymium isotopes by using chemical exchange process.

    PubMed

    Ismail, I M; Ibrahim, M; Aly, H F; Nomura, M; Fujii, Y

    2011-05-20

    The neodymium isotope effects were investigated in Nd-malate ligand exchange system using the highly porous cation exchange resin SQS-6. The temperature of the chromatographic columns was kept constant at 50°C by temperature controlled water passed through the columns jackets. The separation coefficient of neodymium isotopes, ɛ's, was calculated from the isotopic ratios precisely measured by means of an ICP mass spectrometer equipped with nine collectors as ion detectors. The separation coefficient, ɛ×10(5), were calculated and found to be 1.4, 4.8, 5.4, 10.6, 16.8 and 20.2 for (143)Nd, (144)Nd, (145)Nd, (146)Nd, (148)Nd and (150)Nd, respectively.

  1. Knowledge Exchange in the Shrines of Knowledge: The ''How's'' and ''Where's'' of Knowledge Sharing Processes

    ERIC Educational Resources Information Center

    Reychav, Iris; Te'eni, Dov

    2009-01-01

    Academic conferences are places of situated learning dedicated to the exchange of knowledge. Knowledge is exchanged between colleagues who are looking to enhance their future research by taking part in several formal and informal settings (lectures, discussions and social events). We studied the processes of knowledge sharing and the influence of…

  2. Evaluation of a new, macroporous polyvinylpyridine resin for processing plutonium using nitrate anion exchange

    SciTech Connect

    Marsh, S.F.

    1989-04-01

    Anion exchange in nitric acid is the major aqueous process used to recover and purify plutonium from impure scrap materials. Most strong-base anion exchange resins incorporate a styrene-divinylbenzene copolymer. A newly available, macroporous anion exchange resin based on a copolymer of 1-methyl-4-vinylpyridine and divinylbenzene has been evaluated. Comparative data for Pu(IV) sorption kinetics and capacity are presented for this new resin and two other commonly used anion exchange resins. The new resin offers high capacity and rapid sorption kinetics for Pu(IV) from nitric acid, as well as greatly stability to chemical and radiolytic degradation. 8 refs., 14 figs.

  3. [Adjustment processes of foreign exchange high school students in Japan].

    PubMed

    Nagai, S

    1988-04-01

    The main purpose of the present study was to excavate the adjustment problems of 93 high school exchange students in Japan. Questionnaires including Cornell Medical Index (CMI) were administered longitudinally. In addition, individual interviews were held with those who had failed to adjust to the Japanese society. As for the subjective psychosomatic symptoms manifested in CMI, there was no significant sex difference while Asians were successively found to be significantly more liable to diseases and less adjusted than non-Asians. The questionnaires other than CMI disclosed difficulties which exchange students found in adjusting at Japanese home, including delicate personal relationships with host siblings, apparent lack of affective gestures (hugs and kisses), and early curfew. In the meanwhile, language barrier and trifling rules constituted the primary difficulties they faced at host school. On account of prejudice against women, girls had more unpleasant experiences than boys. Through individual interviews, all of the early returners were found to have already had a basic problem in their home countries.

  4. Efficient separations and processing crosscutting program 1996 technical exchange meeting. Proceedings

    SciTech Connect

    1996-02-01

    This document contains summaries of technology development presented at the 1996 Efficient Separations and Processing Crosscutting Program Technical Exchange Meeting. This meeting is held annually to promote a free exchange of ideas among technology developers, potential users and other interested parties within the EM community. During this meeting the following many separation processes technologies were discussed such as ion exchange, membrane separation, vacuum distillation, selective sorption, and solvent extraction. Other topics discussed include: waste forms; testing or inorganic sorbents for radionuclide and heavy metal removal; selective crystallization; and electrochemical treatment of liquid wastes. This is the leading abstract, individual papers have been indexed separately for the databases.

  5. Heat exchange apparatus and process for rotary kilns

    SciTech Connect

    De Beus, A.J.

    1987-06-30

    This patent describes a heat exchange apparatus for use in a rotary kiln, the heat exchange apparatus comprising: refractory means for transferring heat from an upper heated portion of a rotary kiln above a bed disposed in a lower portion to within the bed as the rotary kiln is rotated. The refractory means comprises: tubular refractory members; means for attaching the refractory means in a spaced apart relationship with an interior wall of the rotary kiln in order to cause the refractory means to pass through the bed with a portion of the bed passing under the refractory means. A portion of the bed passes over the refractory means in order to enhance heat transfer as the rotary kiln is rotated. The means for attaching the refractory means comprises rods supported by stanchions and tubular refractory member disposed on the rods; the means for attaching the refractory means and the refractory means is configured and operative for stirring the bed as the refractory means pass through the bed without significant lifting of the bed to the heated upper portions of the rotary kiln as the rotary kiln is rotated; and compressible refractory spacer means disposed between each tubular refractory member for accommodating heat expansion and compressible refractory sleeve means dispersed between the rods and the tubular refractory members for accommodating heat expansion of the rods. Compressible refractory sleeve means and tubular refractory member sized so that the tubular refractory members are tightly held against the tubular refractory spacer means when the rotary kiln is at operating temperatures in order to inhibit fracture of the tubular refractory member as they pass through the bed.

  6. EXCHANGE

    SciTech Connect

    Boltz, J.C.

    1993-01-01

    This report contains the following news headlines: ADPE acquisition process made easy with SRP; scientific reference material available; ORPS WordPerfect macro setup procedure; system managed storage is here; LIBSPOOL for MVS mainframe end-users; training center course schedule for February 1993; enjoy NJOY; scientific user services staff decreased; new release of Forwarn, a static source code analysis tool for FORTRAN programs; out of the cold with HEAT; coping cells from one table to another in word perfect; used PC equipment pool; and video training.

  7. Denitration of Rocky Flats Ion-Exchange Resins: Recommendation of Denitration Processes, October 19, 1995

    SciTech Connect

    Jacob Espinoza; Mary Barr; Wayne Smith

    1998-12-01

    Resin denitration via anion-exchange is an implementable process that can effectively mitigate the hazards associated with stored resins in which the bulk of the nitrate consists of an "exchangeable nitrate" ionically bound to the cationic sites of the anion-exchange resins. Salicylate has been selected as the exchange anion of choice because of its superior selectivity for the Rocky Flats resins and its unique potential for comprehensive recovery and recycle. This report outlines a single recommended resin denigration procedure that is reasonably independent of the resin composition and the current stored form. This procedure is not optimized but rather seeks to `over-treat' the resins so that a single procedure works for the variety of stored resins. The recommended treatment with sodium salicylate reduces resins by 95-99+% the measured exothermic behavior of the ion-exchange.

  8. Integrated Ion Exchange Regeneration Process for Drinking Water

    DTIC Science & Technology

    2010-04-01

    IX Unit Process 87 5.7.1.16 Total Arsenic – IX Unit Process 87 5.7.1.17 Gross Alpha – IX Unit Process 87 5.7.1.18 Radon – IX Unit Process 88...and from source to source Radon SM7500-Rn or EPA 913.0 12 months of operation, 1 sample per month, 2 locations for IE adsorption system; plus 4...materials, such as rocks, minerals, soils , and water, whose radionuclide concentrations or potential for exposure to humans or the environment is enhanced

  9. Simulation of turbulent exchange processes in summertime leads

    NASA Astrophysics Data System (ADS)

    Skyllingstad, Eric D.; Paulson, Clayton A.; Pegau, W. Scott

    2005-05-01

    Ice-ocean heat exchange in polar leads was examined using a large-eddy simulation model coupled to a slab ice model. Simulations were performed using an idealized square domain for a range of lead sizes, surface wind stress (0.05-0.1 N m-2), and lead temperature/salinity profiles. Particular emphasis was placed on understanding the role of fresh water in leads and how stratification controls the heat budget and ice edge melting rate. With uniform initial conditions we found that solar heating was not strong enough to develop lead freshening via ice edge melting; even weak winds (0.02 N m-2) generated circulations that maintained a well-mixed lead. In the weak wind case, adding a fresh water flux representative of surface melt runoff provided enough additional stratification so that the lead water became isolated from the rest of the simulated ocean boundary layer. However, stronger winds (0.1 N m-2) prevented the fresh water layer from forming. Experiments initialized with temperature/salinity profiles similar to observed cases (fresh water layer capping the lead) demonstrated that lateral melting rates increase with expanding lead size, agreeing with simple heat balance calculations for a square lead without vertical mixing. However, with stronger winds, lateral melting rates decreased because of greater turbulent mixing of cold water from beneath the fresh layer. Inspection of the lead circulation indicated that the strongest melting occurred where the ice edge currents were the largest. Overall, melting fluxes for a 24 m2 lead ranged from 200 to 400 W m-2, depending on the wind speed. Without the fresh layer, fluxes ranged from 50 to 60 W m-2, suggesting that fresh water stratification can have a dominate role in controlling ice edge melting.

  10. Chromatographic evaluation of reversed-phase/anion-exchange/cation-exchange trimodal stationary phases prepared by electrostatically driven self-assembly process.

    PubMed

    Liu, Xiaodong; Pohl, Christopher; Woodruff, Andrew; Chen, Jinhua

    2011-06-03

    This work describes chromatographic properties of reversed-phase/cation-exchange/anion-exchange trimodal stationary phases. These stationary phases were based on high-purity porous spherical silica particles coated with nano-polymer beads using an electrostatically driven self-assembly process. The inner-pore area of the material was modified covalently with an organic layer that provided both reversed-phase and anion-exchange properties while the outer surface was coated with nano-sized polymer beads with strong cation-exchange characteristics. This design ensured spatial separation of the anion-exchange and the cation-exchange regions, and allowed reversed-phase, anion-exchange and cation-exchange retention mechanisms to function simultaneously. Chromatographic evaluation of ions and small molecules suggested that retention of ionic analytes was influenced by the ionic strength, pH, and mobile phase organic solvent content, and governed by both ion-exchange and hydrophobic interactions. Meanwhile, neutral analytes were retained by hydrophobic interaction and was mainly affected by mobile phase organic solvent content. Depending on the specific application, selectivity could be optimized by adjusting the anion-exchange/cation-exchange capacity ratio (selectivity), which was achieved experimentally by using porous silica particles with different surface areas.

  11. Intensification of heat and mass transfer by ultrasound: application to heat exchangers and membrane separation processes.

    PubMed

    Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E

    2015-07-01

    This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions.

  12. Aluminum-Cycle Ion Exchange Process for Hardness Removal: A New Approach for Sustainable Softening.

    PubMed

    Li, Jinze; Koner, Suman; German, Michael; SenGupta, Arup K

    2016-11-01

    From a sustainability viewpoint, sodium exchange softening, although used widely, is under scrutiny due to its production of excess Na-laden spent regenerant and subsequent discharge to the environment. Many arid regions are introducing regulations disallowing dumping of concentrated sodium salts, the residuals from popular Na-exchange softening. The sodium content of the softened water is, also, always higher than in the feed, which poses a dietary health concern when used for drinking or cooking. An efficient, easy-to-operate hardness removal process with reduced sodium in both the treated water and in the spent regenerant is an unmet global need. Use of a cation exchange resin in Al(3+)-form for hardness removal, that is, exchange of divalent Ca(2+) or Mg(2+) with trivalent Al(3+), is counterintuitive, and this is particularly so, because the aluminum ion to be exchanged has higher affinity than calcium. Nevertheless, ion exchange accompanied by precipitation of aluminum hydroxide allows progress of the cation exchange reaction leading to hardness removal. Experimental results demonstrated that calcium can be consistently removed for multiple cycles using a stoichiometric amount of AlCl3 as the regenerant. The process essentially operates at the maximum possible thermodynamic efficiency: removal of one equivalent of Ca(2+) corresponds to use of one equivalent of Al(3+) as a regenerant. During the Al-cycle process there is no increase in Na(+) concentration and partial reduction in the total dissolved solids (TDS) of the treated water. It is noteworthy that the ion-exchange resin used, components of the fixed-bed column and operational protocol are nearly the same as traditional softening processes on Na-cycle. Thus, existing Na-cycle systems can be retrofitted into Al-cycle operation without major difficulty.

  13. Processes Impacting Atmosphere-Surface Exchanges at Arctic Terrestrial Sites

    NASA Astrophysics Data System (ADS)

    Persson, Ola; Grachev, Andrey; Konopleva, Elena; Cox, Chris; Stone, Robert; Crepinsek, Sara; Shupe, Matthew; Uttal, Taneil

    2015-04-01

    Surface energy fluxes are key to the annual cycle of near-surface and soil temperature and biologic activity in the Arctic. While these energy fluxes are undoubtedly changing to produce the changes observed in the Arctic ecosystem over the last few decades, measurements have generally not been available to quantify what processes are regulating these fluxes and what is determining the characteristics of these annual cycles. The U.S. National Oceanic and Atmospheric Administration has established, or contributed to the establishment of, several terrestrial "supersites" around the perimeter of the Arctic Ocean at which detailed measurements of atmospheric structure, surface fluxes, and soil thermal properties are being made. These sites include Barrow, Alaska; Eureka and Alert, Canada; and Tiksi, Russia. Atmospheric structure measurements vary, but include radiosoundings at all sites and remote sensing of clouds at two sites. Additionally, fluxes of sensible heat and momentum are made at all of the sites, while fluxes of moisture and CO2 are made at two of the sites. Soil temperatures are also measured in the upper 120 cm at all sites, which is deep enough to define the soil active layer. The sites have been operating between 3 years (Tiksi) and 24 years (Barrow). While all sites are located north of 71° N, the summer vegetation range from lush tundra grasses to rocky soils with little vegetation. This presentation will illustrate some of the atmospheric processes that are key for determining the annual energy and temperature cycles at these sites, and some of the key characteristics that lead to differences in, for instance, the length of the summer soil active layer between the sites. Atmospheric features and processes such as cloud characteristics, snowfall, downslope wind events, and sea-breezes have impacts on the annual energy cycle. The presence of a "zero curtain" period, when autumn surface temperature remains approximately constant at the freezing point

  14. Recent developments on ion-exchange membranes and electro-membrane processes.

    PubMed

    Nagarale, R K; Gohil, G S; Shahi, Vinod K

    2006-02-28

    Rapid growth of chemical and biotechnology in diversified areas fuels the demand for the need of reliable green technologies for the down stream processes, which include separation, purification and isolation of the molecules. Ion-exchange membrane technologies are non-hazardous in nature and being widely used not only for separation and purification but their application also extended towards energy conversion devices, storage batteries and sensors etc. Now there is a quite demand for the ion-exchange membrane with better selectivities, less electrical resistance, high chemical, mechanical and thermal stability as well as good durability. A lot of work has been done for the development of these types of ion-exchange membranes during the past twenty-five years. Herein we have reviewed the preparation of various types of ion-exchange membranes, their characterization and applications for different electro-membrane processes. Primary attention has been given to the chemical route used for the membrane preparation. Several general reactions used for the preparation of ion-exchange membranes were described. Methodologies used for the characterization of these membranes and their applications were also reviewed for the benefit of readers, so that they can get all information about the ion-exchange membranes at one platform. Although there are large number of reports available regarding preparations and applications of ion-exchange membranes more emphasis were predicted for the usefulness of these membranes or processes for solving certain type of industrial or social problems. More efforts are needed to bring many products or processes to pilot scale and extent their applications.

  15. Measuring the heat exchange of a quantum process.

    PubMed

    Goold, John; Poschinger, Ulrich; Modi, Kavan

    2014-08-01

    Very recently, interferometric methods have been proposed to measure the full statistics of work performed on a driven quantum system [Dorner et al., Phys. Rev. Lett. 110, 230601 (2013) and Mazzola et al., Phys. Rev. Lett. 110, 230602 (2013)]. The advantage of such schemes is that they replace the necessity to make projective measurements by performing phase estimation on an appropriately coupled ancilla qubit. These proposals are one possible route to the tangible experimental exploration of quantum thermodynamics, a subject which is the center of much current attention due to the current control of mesoscopic quantum systems. In this Rapid Communication we demonstrate that a modification of the phase estimation protocols can be used in order to measure the heat distribution of a quantum process. In addition, we demonstrate how our scheme maybe implemented using ion trap technology. Our scheme should pave the way for experimental explorations of the Landauer principle and hence the intricate energy to information conversion in mesoscopic quantum systems.

  16. Evaluation Methodology for Advance Heat Exchanger Concepts Using Analytical Hierarchy Process

    SciTech Connect

    Piyush Sabharwall; Eung Soo Kim

    2012-07-01

    The primary purpose of this study is to aid in the development and selection of the secondary/process heat exchanger (SHX) for power production and process heat application for a Next Generation Nuclear Reactors (NGNR). The potential options for use as an SHX are explored such as shell and tube, printed circuit heat exchanger. A shell and tube (helical coiled) heat exchanger is a recommended for a demonstration reactor because of its reliability while the reactor design is being further developed. The basic setup for the selection of the SHX has been established with evaluation goals, alternatives, and criteria. This study describes how these criteria and the alternatives are evaluated using the analytical hierarchy process (AHP).

  17. Knowledge Exchange Processes in Organizations and Policy Arenas: A Narrative Systematic Review of the Literature

    PubMed Central

    Contandriopoulos, Damien; Lemire, Marc; Denis, Jean-Louis; Tremblay, Émile

    2010-01-01

    Context: This article presents the main results from a large-scale analytical systematic review on knowledge exchange interventions at the organizational and policymaking levels. The review integrated two broad traditions, one roughly focused on the use of social science research results and the other focused on policymaking and lobbying processes. Methods: Data collection was done using systematic snowball sampling. First, we used prospective snowballing to identify all documents citing any of a set of thirty-three seminal papers. This process identified 4,102 documents, 102 of which were retained for in-depth analysis. The bibliographies of these 102 documents were merged and used to identify retrospectively all articles cited five times or more and all books cited seven times or more. All together, 205 documents were analyzed. To develop an integrated model, the data were synthesized using an analytical approach. Findings: This article developed integrated conceptualizations of the forms of collective knowledge exchange systems, the nature of the knowledge exchanged, and the definition of collective-level use. This literature synthesis is organized around three dimensions of context: level of polarization (politics), cost-sharing equilibrium (economics), and institutionalized structures of communication (social structuring). Conclusions: The model developed here suggests that research is unlikely to provide context-independent evidence for the intrinsic efficacy of knowledge exchange strategies. To design a knowledge exchange intervention to maximize knowledge use, a detailed analysis of the context could use the kind of framework developed here. PMID:21166865

  18. EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Eastman, Michael P.

    1982-01-01

    Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…

  19. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    SciTech Connect

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-12-01

    The U.S. Department of Energy selected the high temperature gas-cooled reactor as the basis for the Next Generation Nuclear Plant (NGNP). The NGNP will demonstrate the use of nuclear power for electricity, hydrogen production, and process heat applications. The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. An intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding. This report describes the preliminary results of a scoping study that evaluated the diffusion welding process parameters and the resultant mechanical properties of diffusion welded joints using Alloy 800H. The long-term goal of the program is to progress towards demonstration of small heat exchanger unit cells fabricated with diffusion welds. Demonstration through mechanical testing of the unit cells will support American Society of Mechanical Engineers rules and standards development, reduce technical risk, and provide proof of concept for heat exchanger fabrication methods needed to deploy heat exchangers in several potential NGNP configurations.1 Researchers also evaluated the usefulness of modern thermodynamic and diffusion computational tools (Thermo-Calc and Dictra) in optimizing the parameters for diffusion welding of Alloy 800H. The modeling efforts suggested a temperature of 1150 C for 1 hour with an applied pressure of 5 MPa using 15 {micro}m nickel foil as joint filler to reduce chromium oxidation on the welded surfaces. Good agreement between modeled and experimentally determined concentration gradients was achieved

  20. Engineering study for the treatment of spent ion exchange resin resulting from nuclear process applications

    SciTech Connect

    Place, B.G.

    1990-09-01

    This document is an engineering study of spent ion exchange resin treatment processes with the purpose of identifying one or more suitable treatment technologies. Classifications of waste considered include all classes of low-level waste (LLW), mixed LLW, transuranic (TRU) waste, and mixed TRU waste. A total of 29 process alternatives have been evaluated. Evaluation parameters have included economic parameters (both total life-cycle costs and capital costs), demonstrated operability, environmental permitting, operational availability, waste volume reduction, programmatic consistency, and multiple utilization. The results of this study suggest that there are a number of alternative process configurations that are suitable for the treatment of spent ion exchange resin. The determinative evaluation parameters were economic variables (total life-cycle cost or capital cost) and waste volume reduction. Immobilization processes are generally poor in volume reduction. Thermal volume reduction processes tend to have high capital costs. There are immobilization processes and thermal volume reduction processes that can treat all classifications of spent ion exchange resin likely to be encountered. 40 refs., 19 figs., 17 tabs.

  1. Membrane permeation process for dehydration of organic liquid mixtures using sulfonated ion-exchange polyalkene membranes

    DOEpatents

    Cabasso, Israel; Korngold, Emmanuel

    1988-01-01

    A membrane permeation process for dehydrating a mixture of organic liquids, such as alcohols or close boiling, heat sensitive mixtures. The process comprises causing a component of the mixture to selectively sorb into one side of sulfonated ion-exchange polyalkene (e.g., polyethylene) membranes and selectively diffuse or flow therethrough, and then desorbing the component into a gas or liquid phase on the other side of the membranes.

  2. [Tissue oxygen exchange and oxidative processes in long-livers: age peculiarities].

    PubMed

    Korkushko, O V; Ivanov, L A; Shatilo, V B

    2012-01-01

    This work was undertaken to study tissue oxygen exchange and oxidative processes in the long-lived individuals who were assumed as the physiologically aging individuals. Oxygen tension was assessed in forearm subcutaneous cellular tissue by means of the polarographic method while performing 10 min oxygen inhalation tests (with spontaneous oxygemogram recording) and a 10 min clamping of vessels. The obtained data served as the tissue oxygen exchange indicator. This approach made us possible to evaluate the oxygen delivery and oxygen uptake. To study qualitative characteristics of oxidative processes, we assessed vacat-oxygen of the blood and urine and estimated the underoxidation coefficient proposed by Muller. We have found that tissue respiration intensity falls, the amount of underoxidated products of the blood and urine rises, and the underoxidation coefficient increases in aging. The decrease of tissue oxygen respiration intensity in subcutaneous cellular tissue reflects the development of tissue hypoxia associated with reduced activity of the enzymes, being involved in oxygen exchange. An age-related decrease of tissue perfusion leads to the formation of circulatory hypoxia and also contributes considerably to tissue hypoxia formation. The revealed changes in the tissue oxygen exchange and oxidative processes in the long-livers are generally correspondent to those that can be seen in the people of 80-89 years. This finding speaks in favor of the physiological aging in the long-livers.

  3. Identifying scale-emergent, nonlinear, asynchronous processes of wetland methane exchange

    NASA Astrophysics Data System (ADS)

    Sturtevant, Cove; Ruddell, Benjamin L.; Knox, Sara Helen; Verfaillie, Joseph; Matthes, Jaclyn Hatala; Oikawa, Patricia Y.; Baldocchi, Dennis

    2016-01-01

    Methane (CH4) exchange in wetlands is complex, involving nonlinear asynchronous processes across diverse time scales. These processes and time scales are poorly characterized at the whole-ecosystem level, yet are crucial for accurate representation of CH4 exchange in process models. We used a combination of wavelet analysis and information theory to analyze interactions between whole-ecosystem CH4 flux and biophysical drivers in two restored wetlands of Northern California from hourly to seasonal time scales, explicitly questioning assumptions of linear, synchronous, single-scale analysis. Although seasonal variability in CH4 exchange was dominantly and synchronously controlled by soil temperature, water table fluctuations, and plant activity were important synchronous and asynchronous controls at shorter time scales that propagated to the seasonal scale. Intermittent, subsurface water table decline promoted short-term pulses of methane emission but ultimately decreased seasonal CH4 emission through subsequent inhibition after rewetting. Methane efflux also shared information with evapotranspiration from hourly to multiday scales and the strength and timing of hourly and diel interactions suggested the strong importance of internal gas transport in regulating short-term emission. Traditional linear correlation analysis was generally capable of capturing the major diel and seasonal relationships, but mesoscale, asynchronous interactions and nonlinear, cross-scale effects were unresolved yet important for a deeper understanding of methane flux dynamics. We encourage wider use of these methods to aid interpretation and modeling of long-term continuous measurements of trace gas and energy exchange.

  4. Process industry demand for more efficient, more cost-effective heat exchanger tubing

    SciTech Connect

    Thors, P.

    1987-01-01

    In the future the process industry will see a bigger selection of enhanced heat transfer tubes, one of the reasons being the continued production of special patented technology involved in making them. Here the author mentions only some of the factors that might influence the increased usage of these enhanced tubes. In using more efficient tubing in a heat exchanger the designer has available the options to increase the total heat duty per unit volume, lower operating costs by reducing the mean temperature difference at a given heat duty, save material, or reduce the size and/or pumping power, among others. This can be achieved, for example, by replacing plain tubes with appropriate enhanced tubes in retubing applications, where old heat exchangers need to be upgraded and total efficiency improved. When a new heat exchanger is to be built, it is easier for the designer to include the more efficient tubing to utilize all the benefits of the increased thermal performance.

  5. The plasma membrane sodium-hydrogen exchanger and its role in physiological and pathophysiological processes.

    PubMed

    Mahnensmith, R L; Aronson, P S

    1985-06-01

    The plasma membranes of most if not all vertebrate cells contain a transport system that mediates the transmembrane exchange of sodium for hydrogen. The kinetic properties of this transport system include a 1:1 stoichiometry, affinity for lithium and ammonium ion in addition to sodium and hydrogen, the ability to function in multiple 1:1 exchange modes involving these four cations, sensitivity to inhibition by amiloride and its analogues, and allosteric regulation by intracellular protons. The plasma membrane sodium-hydrogen exchanger plays a physiological role in the regulation of intracellular pH, the control of cell growth and proliferation, stimulus-response coupling in white cells and platelets, the metabolic response to hormones such as insulin and glucocorticoids, the regulation of cell volume, and the transepithelial absorption and secretion of sodium, hydrogen, bicarbonate and chloride ions, and organic anions. Preliminary evidence raises the possibility that the sodium-hydrogen exchanger may play a pathophysiological role in such diverse conditions as renal acid-base disorders, essential hypertension, cancer, and tissue or organ hypertrophy. Thus, future research on cellular acid-base homeostasis in general, and on plasma membrane sodium-hydrogen exchange in particular, will enhance our understanding of a great variety of physiological and pathophysiological processes.

  6. TRANSIENT HEAT TRANSFER ANALYSIS FOR ION-EXCHANGE WASTE REMOVAL PROCESS

    SciTech Connect

    Lee, S.

    2010-07-12

    The small column ion exchange (SCIX) process treats low curie salt (LCS) waste before feeding it to the saltstone facility to be made into grout. Through this process, radioactive cesium from the salt solution is absorbed into the CST bed. A CST column loaded with radioactive cesium will generate significant heat from radiolytic decay. If engineering designs of the CST sorption column can not handle this thermal load, hot spots may develop locally within the column and degrade the performance of the ion-exchange process. The CST starts to degrade at about 80 to 85 C, and the CST completely changes to another material above 120 C. In addition, the process solution will boil around 130 C. If the column boiled dry, the sorbent could plug the column and require replacement of the column module. The objective of the present work is to compute temperature distributions across the column as a function of transit time after the initiation of accidents when there is loss of the salt solution flow in the CST column under abnormal conditions of the process operations. In this situation, the customer requested that the calculations should be conservative in that the model results would show the maximum centerline temperatures achievable by the CST design configurations. The thermal analysis results will be used to evaluate the fluid temperature distributions and the process component temperatures within the ion exchange system. This information will also assist in the system design and maintenance.

  7. On the Limiting Markov Process of Energy Exchanges in a Rarely Interacting Ball-Piston Gas

    NASA Astrophysics Data System (ADS)

    Bálint, Péter; Gilbert, Thomas; Nándori, Péter; Szász, Domokos; Tóth, Imre Péter

    2017-02-01

    We analyse the process of energy exchanges generated by the elastic collisions between a point-particle, confined to a two-dimensional cell with convex boundaries, and a `piston', i.e. a line-segment, which moves back and forth along a one-dimensional interval partially intersecting the cell. This model can be considered as the elementary building block of a spatially extended high-dimensional billiard modeling heat transport in a class of hybrid materials exhibiting the kinetics of gases and spatial structure of solids. Using heuristic arguments and numerical analysis, we argue that, in a regime of rare interactions, the billiard process converges to a Markov jump process for the energy exchanges and obtain the expression of its generator.

  8. On the Limiting Markov Process of Energy Exchanges in a Rarely Interacting Ball-Piston Gas

    NASA Astrophysics Data System (ADS)

    Bálint, Péter; Gilbert, Thomas; Nándori, Péter; Szász, Domokos; Tóth, Imre Péter

    2016-08-01

    We analyse the process of energy exchanges generated by the elastic collisions between a point-particle, confined to a two-dimensional cell with convex boundaries, and a `piston', i.e. a line-segment, which moves back and forth along a one-dimensional interval partially intersecting the cell. This model can be considered as the elementary building block of a spatially extended high-dimensional billiard modeling heat transport in a class of hybrid materials exhibiting the kinetics of gases and spatial structure of solids. Using heuristic arguments and numerical analysis, we argue that, in a regime of rare interactions, the billiard process converges to a Markov jump process for the energy exchanges and obtain the expression of its generator.

  9. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    SciTech Connect

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-28

    In this study, optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  10. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    DOE PAGES

    Ma, X.; Fang, F.; Li, Q.; ...

    2015-10-28

    In this study, optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recoverymore » time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.« less

  11. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    PubMed Central

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-01-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation. PMID:26508587

  12. Ion-Exchanged Waveguides for Signal Processing Applications - A Novel Electrolytic Process.

    DTIC Science & Technology

    1987-03-07

    1986 . 3] R. K. Lagu and V. Ramaswamy, "Fabrication of Single Mode Glass Waveguide by Electrolytic Release of Silver Ions," Appl. Phys. Lett., 45, pp...Quantum Electron., QE-22, pp. 883-891, 1986 . 7 [111] P. Chludzinski, R. V. Ramaswamy, and T. J. Anderson, "Ion-Fxchange Between Sode-Lime Silicate Glass and...Parameter Relationships for the Design of Planar, Silver Ion-Exchanged Glass Waveguide," IEEE J. Lightwave Tech., LT-4, pp. 176-131, 1986 . [20] R. K. Lagu

  13. Atmosphere-Snowpack NOx Exchange: Measurements at Summit, Greenland and Process-Scale Modeling

    NASA Astrophysics Data System (ADS)

    Murray, Keenan; Ganzeveld, Laurens; Kramer, Louisa; Doskey, Paul; Helmig, Detlev; Seok, Brian; Van Dam, Brie

    2013-04-01

    Atmosphere-Snowpack NOx Exchange: Measurements at Summit, Greenland and Process-Scale Modeling Keenan A. Murray, Laurens Ganzeveld, Louisa J. Kramer, Paul V. Doskey, Detlev Helmig, Brian Seok, Brie Van Dam Snowpack over glacial ice is a reservoir for reactive nitrogen gases. During the sunlit season, NOx is generated in the interstitial air of snowpack through photolysis of nitrate (NO3-) in snow. Gradients in NOx mixing ratios between snowpack interstitial air and the overlying atmosphere regulate transfer of NOx to/from snowpack and affect the atmospheric O3 budget, oxidation capacity and, consequently, climate. To better understand the dynamics in cryosphere-atmosphere exchange of NOx we have collected 2 years of meteorological and chemical data at Summit, Greenland. Profiles of NO, NO2 and O3 mixing ratios were measured in interstitial air at several depths in the snowpack and at 2 levels above the snow surface. NOx emissions are episodic, with large NOx events occurring in early spring during high wind speed events (10-20 mph) that elevate NOx levels to ~500 pptv to depths of 2.5 meters into the snowpack. The poster will present measurements of NO, NO2, O3, wind, and irradiance for a high NOx event in the snowpack during the 2008-2010 period. Analysis of these observations will be based upon the application of a 1-D process-scale model of the atmosphere-snowpack exchange of NOx, which includes representations of the snowpack chemistry of reactive nitrogen, peroxides, and small hydrocarbon species. A more highly parameterized version of the process-scale model is currently being developed for inclusion in a global-scale model to assess the implications of climate change on cryosphere-atmosphere NOx and Ox exchange. We will present a first comparison of the predicated NOx and O3 profiles and fluxes from the process-scale/parameterized models, respectively, to observed measurements.

  14. [Biological Role of Oligomerny Matriksny of Protein of the Cartilage in Exchange Processes Connecting Tissue].

    PubMed

    Belova, Yu S

    2015-01-01

    In the review the literary data on studying of biological role of a oligomerny matriksny of protein of the cartilage in exchange processes connecting tissue at people and animals are provided, and also results of own researches on definition of a oligomerny matriksny of protein of the cartilage as a modern marker of a metabolism of an articulate cartilage at children from undifferentiated displaziy conjunctive tissue are briefly described.

  15. Processes of Ammonia Air-Surface Exchange in a Fertilized Corn Canopy

    NASA Astrophysics Data System (ADS)

    Walker, J. T.; Bash, J. O.; Jones, M.; Nemitz, E.; Robarge, W. P.

    2009-12-01

    Processes of ammonia (NH3) air-surface exchange in fertilized crops include bi-directional flux (emission or deposition) from the soil, surface litter, leaf stomatal cavity, and leaf cuticle. These component fluxes establish the net exchange between the canopy and atmosphere. We conducted an experiment in the summer of 2007 in eastern North Carolina to quantify the net flux of NH3 from a fertilized corn canopy over the course of the growing season. A primary objective was to examine the relative importance of soil vs. foliage exchange pathways with respect to net canopy-scale fluxes. Continuous wet rotating denuder and photoacoustic spectroscopic NH3 measurement methods were configured in a gradient mode to measure canopy-scale fluxes using the modified Bowen-ratio technique. In-canopy source-sink relationships were examined by inverse modeling of NH3 concentration, temperature, and turbulence profiles. Additionally, measurements of NH4+ and H+ in the soil solution, leaf apoplast, and leaf surface water were used in combination with resistance modeling to examine the relationships between net canopy-scale fluxes and soil, stomatal, and cuticular exchange pathways. Measurement and modeling results are presented and the relevance of this work to national NH3 emission inventories and regional air quality modeling is discussed.

  16. Anaerobic-ion exchange (AN-IX) process for local-scale nitrogen recovery from wastewater.

    PubMed

    Smith, Daniel P; Smith, Nathaniel T

    2015-11-01

    An anaerobic-ion exchange (AN-IX) process was developed for point-of-origin recovery of nitrogen from household wastewater. The process features upflow solids-blanket anaerobic treatment (ammonification) followed by ammonium ion exchange onto natural zeolite. The AN-IX system is configured as a series of linked upflow chambers that operate passively without energy input, and is amenable to intermittent and seasonal operation. A 57L prototype was operated for over 1.8 years treating actual wastewater under field conditions. Total nitrogen removal exceeded 96% through the first 160 days of operation and effluent ammonium nitrogen remained below detection for 300 days. Ion exchange chambers exhibited sequential NH4(+)-N breakthrough over extended operation and complete media exhaustion was approached at Day 355. The ammonium capacity of zeolite was estimated as 13.5mg NH4(+)-N per gram dry weight. AN-IX is a resilient and cost effective process for local-scale nitrogen recovery and reuse, suitable for small scale and larger systems.

  17. Cumulative Significance of Hyporheic Exchange and Biogeochemical Processing in River Networks

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Gomez-Velez, J. D.

    2014-12-01

    Biogeochemical reactions in rivers that decrease excessive loads of nutrients, metals, organic compounds, etc. are enhanced by hydrologic interactions with microbially and geochemically active sediments of the hyporheic zone. The significance of reactions in individual hyporheic flow paths has been shown to be controlled by the contact time between river water and sediment and the intrinsic reaction rate in the sediment. However, little is known about how the cumulative effects of hyporheic processing in large river basins. We used the river network model NEXSS (Gomez-Velez and Harvey, submitted) to simulate hyporheic exchange through synthetic river networks based on the best available models of network topology, hydraulic geometry and scaling of geomorphic features, grain size, hydraulic conductivity, and intrinsic reaction rates of nutrients and metals in river sediment. The dimensionless reaction significance factor, RSF (Harvey et al., 2013) was used to quantify the cumulative removal fraction of a reactive solute by hyporheic processing. SF scales reaction progress in a single pass through the hyporheic zone with the proportion of stream discharge passing through the hyporheic zone for a specified distance. Reaction progress is optimal where the intrinsic reaction timescale in sediment matches the residence time of hyporheic flow and is less efficient in longer residence time hyporheic flow as a result of the decreasing proportion of river flow that is processed by longer residence time hyporheic flow paths. In contrast, higher fluxes through short residence time hyporheic flow paths may be inefficient because of the repeated surface-subsurface exchanges required to complete the reaction. Using NEXSS we found that reaction efficiency may be high in both small streams and large rivers, although for different reasons. In small streams reaction progress generally is dominated by faster pathways of vertical exchange beneath submerged bedforms. Slower exchange

  18. Energy exchange between orthogonally polarized waves by cascaded quasi-phase-matched processes

    NASA Astrophysics Data System (ADS)

    Johnston, B. F.; Dekker, P.; Saltiel, S. M.; Withford, M. J.; Kivshar, Y. S.

    2008-01-01

    By identifying appropriate quasi-phase-matching (QPM) conditions in z-cut congruent lithium niobate, we demonstrate simultaneous QPM of type-I (ooe) and higher order type-0 (eee) second-harmonic-generation, which share a common second harmonic wave. We demonstrate this experimentally at 1064nm, and show that cascading between these processes occurs. The cascading can result in energy exchange between the cross-polarized fundamentals, indicative of an equivalent 3rd order process. The nonlinear phase shifts and transfer functions resulting from this cascading are explored numerically.

  19. Modeling the Hydrogen-Proton Charge-Exchange Process in Global Heliospheric Simulations

    NASA Astrophysics Data System (ADS)

    DeStefano, A.; Heerikhuisen, J.

    2015-12-01

    The environment surrounding our Solar System has a vast and dynamic structure. As the Sun rounds the Milky Way galaxy, interstellar dust and gas interact with the Sun's outflow of solar wind. A bubble of hot plasma forms around the Sun due to this interaction, called the heliosphere. In order to understand the structure of the heliosphere, observations and simulations must work in tandem. Within the past decade or so, 3D models of the heliosphere have been developed exhibiting non- symmmetric as well as predicting structures such as the hydrogen wall and the IBEX ribbon. In this poster we explore new ways to compute charge-exchange source terms. The charge-exchange process is the coupling mechanism between the MHD and kinetic theories. The understanding of this process is crucial in order to make valuable predictions. Energy dependant cross section terms will aid in settling non-linear affects coupling the intestellar and solar particles. Through these new ways of computing source terms, resolving fine structures in the plasma in the heliopause may be possible. In addition, other non-trivial situations, such as charge-exchange mediated shocks, may be addressed.

  20. Magneto-optical indicator film study of the hybrid exchange spring formation and evolution processes

    NASA Astrophysics Data System (ADS)

    Nikitenko, V. I.; Gornakov, V. S.; Kabanov, Yu. P.; Shapiro, A. J.; Shull, R. D.; Chien, C. L.; Jiang, J. S.; Bader, S. D.

    2003-03-01

    The elementary events of the remagnetization processes in nanocomposite magnetic bilayers were investigated using iron-garnet indicator films with in-plane anisotropy. We have observed hybrid domain walls consisting of both ferromagnetic and antiferromagnetic sections perpendicular to the interface. The external magnetic field shifts only the ferromagnetic part of the domain walls. This leads to the formation of a hybrid exchange spin spring parallel to the interface. The processes of spring nucleation and untwisting occur at different locations. With the field oriented antiparallel to the macroscopic unidirectional anisotropy, remagnetization of the soft ferromagnet layer in the hard/soft nanocomposite starts by the formation of an exchange spring consisting of micrometer-scale sub-domains with opposite direction spin twisting. A rotating magnetic field (smaller than some critical value) creates firstly a single-chiral spin spiral; this spiral then loses stability, incoherently untwists and gradually inverts its chirality with increasing field rotation. Untwisting of the hybrid exchange spring at higher fields leads to the creation of unusual hybrid non-180° domain walls. The initial (ground) state of the bilayer with such noncollinear magnetized domains is not restored after stopping the field rotation and returning it to zero. The revealed phenomena are attributed to the influence of the dispersion in the unidirectional anisotropy induced by magnetization frustration in the interface and bilayer crystal lattice defects.

  1. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    SciTech Connect

    Tsai, Tsung-Han; Ertem, S. Piril; Maes, Ashley M.; Seifert, Soenke; Herring, Andrew M; Coughlin, E. Bryan

    2015-01-28

    Random copolymers of isoprene and 4-vinylbenzyl chloride (VBCl) with varying compositions were synthesized via nitroxide-mediated polymerization. Subsequent quaternization afforded solvent processable and cross-linkable ionomers with a wide range of ion exchange capacities (IECs). Solution cast membranes were thermally cross-linked to form anion exchange membranes. Cross-linking was achieved by taking advantage of the unsaturations on the polyisoprene backbone, without added cross-linkers. A strong correlation was found between water uptake and ion conductivity of the membranes: conductivities of the membranes with IECs beyond a critical value were found to be constant related to their high water absorption. Environmentally controlled small-angle X-ray scattering experiments revealed a correlation between the average distance between ionic clusters and the ion conductivity, indicating that a well-connected network of ion clusters is necessary for efficient ion conduction and high ion conductivity.

  2. Time Dependency of Psychotherapeutic Exchanges: The Contribution of the Theory of Dynamic Systems in Analyzing Process

    PubMed Central

    Salvatore, Sergio; Tschacher, Wolfgang

    2012-01-01

    This paper provides a general framework for the use of Theory of Dynamic Systems (TDS) in the field of psychotherapy research. Psychotherapy is inherently dynamic, namely a function of time. Consequently, the improvement of construct validity and clinical relevance of psychotherapy process research require the development of models of investigation allowing dynamic mappings of clinical exchange. Thus, TDS becomes a significant theoretical and methodological reference. The paper focuses two topics. First, the main concepts of TDS are briefly introduced together with a basic typology of approaches developed within this domain. Second, we propose a repertoire of investigation strategies that can be used to capture the dynamic nature of clinical exchange. In this way we intend to highlight the feasibility and utility of strategies of analysis informed by TDS. PMID:22848205

  3. Processing of Spent Ion Exchange Resins in a Rotary Calciner - 12212

    SciTech Connect

    Kascheev, Vladimir; Musatov, Nikolay

    2012-07-01

    Processing Russian nuclear ion exchange resin KU-2 using a 'Rotary' calciner was conducted. The resulting product is a dry free flowing powder (moisture content 3 wt.%, Angle of repose of ≅ 20 deg.). Compared with the original exchange resin the volume of the final product is about 3 times less.. Rotary calciner product can be stored in metal drums or in special reinforced concrete cubicles. After thermal treatment in a rotary calciner, the spent resin product can be solidified in cement yielding the following attributes: - The cemented waste is only a 35% increase over the volume of powder product; - The volume of cement calciner product is almost 9 times less (8.7) than the volume of cement solidified resin; - The mechanical strength of cemented calciner product meets the radioactive waste regulations in Russia. (authors)

  4. Downstream processing of human antibodies integrating an extraction capture step and cation exchange chromatography.

    PubMed

    Azevedo, Ana M; Rosa, Paula A J; Ferreira, I Filipa; de Vries, J; Visser, T J; Aires-Barros, M Raquel

    2009-01-01

    In this paper we explore an alternative process for the purification of human antibodies from a Chinese hamster ovary (CHO) cell supernatant comprising a ligand-enhanced extraction capture step and cation exchange chromatography (CEX). The extraction of human antibodies was performed in an aqueous two-phase system (ATPS) composed of dextran and polyethylene glycol (PEG), in which the terminal hydroxyl groups of the PEG molecule were modified with an amino acid mimetic ligand in order to enhance the partition of the antibodies to the PEG-rich phase. This capture step was optimized using a design of experiments and a central composite design allowed the determination of the conditions that favor the partition of the antibodies to the phase containing the PEG diglutaric acid (PEG-GA) polymer, in terms of system composition. Accordingly, higher recovery yields were obtained for higher concentrations of PEG-GA and lower concentrations of dextran. The highest yield experimentally obtained was observed for an ATPS composed of 5.17% (w/w) dextran and 8% (w/w) PEG-GA. Higher purities were however predicted for higher concentrations of both polymers. A compromise between yield and purity was achieved using 5% dextran and 10% PEG-GA, which allowed the recovery of 82% of the antibodies with a protein purity of 96% and a total purity of 63%, determined by size-exclusion chromatography. ATPS top phases were further purified by cation exchange chromatography and it was observed that the most adequate cation exchange ligand was carboxymethyl, as the sulfopropyl ligand induced the formation of multi-aggregates or denatured forms. This column allowed the elution of 89% of the antibodies present in the top phase, with a protein purity of 100% and a total purity of 91%. The overall process containing a ligand-enhanced extraction step and a cation exchange chromatography step had an overall yield of 73%.

  5. LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING

    SciTech Connect

    King, W

    2007-11-30

    This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials have been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA

  6. Impact of natural organic matter properties on the kinetics of suspended ion exchange process.

    PubMed

    Bazri, Mohammad Mahdi; Mohseni, Madjid

    2016-03-15

    Removal kinetics of four standard organic matter isolates under the application of strongly basic ion exchange resins (IEX) in suspended mode was studied under commercial application conditions. Suwannee River natural organic matter (SRNOM), SR fulvic acid (SRFA), and Pony Lake fulvic acid (PLFA) were greatly removed (>90%) and highly preferred by IEX resins (α > 5, over Cl(-), and HCO3(-)) while SR humic acid (SRHA) was the least preferred organic structure among the four isolates studied (α ≈ 1). Moreover, the efficacy of removal for fulvic acids (i.e., SRFA, PLFA) was consistent over consecutive reuse of IEX resins (i.e., loading cycles) whereas it decreased for SRNOM and SRHA over the course of operation. The stoichiometric correlation between the chloride released from the resins as a result of organic molecules uptake indicated that ion exchange was the dominant mechanism. Results obtained indicated that molecular weight and charge density of isolates played a major role in the performance of ion exchange process for organic matter removal. Furthermore, various empirical and physical models were evaluated using the experimental data and pore diffusion was found to be the rate-liming step during the uptake of organic matters; hence, it was used as the appropriate model to predict the kinetics of removal. Consequently, free liquid diffusivities and effective pore diffusion coefficients of organic molecules were estimated and findings were in agreement with the literature data that were obtained from spectrophotometric methods.

  7. Extended ion exchange process for removal and recovery of technetium from soluble waste

    SciTech Connect

    Bibler, J.P.; Wallace, R.M.

    1984-05-22

    A well-established method of separation of /sup 99/Tc from soluble waste is sorption of pertechnetate ion, TcO/sub 4//sup -/, onto a strong base anion exchange resin such as Dowex 1x8. Pertechnetate ion can then be removed from the resin by elution with 4M HNO/sub 3/. An improved ion exchange method which encompasses removal and recovery of /sup 99/Tc from defense waste supernate has been demonstrated. The introduction of a second ion exchange step using a weak base resin allows for the reclamation and recycling of large volumes of nitric acid generated in the initial collection of TcO/sub 4//sup -/ on the strong base resin. Also, the total amount of waste NaNO/sub 3/ which is added to the system in the process of removing /sup 99/Tc from the supernate is significantly reduced from 8% to 1%. /sup 99/Tc can be recovered from solution by precipitation as Tc/sub 2/S/sub 7/ with sulfide or as TcO/sub 2/ following reduction with aluminum or zinc amalgam, affording the ultimate recovery of the pure metal.

  8. Hydrological processes involved in groundwater-surface water exchange at a lowland river: measurements and modelling

    NASA Astrophysics Data System (ADS)

    Nuetzmann, G.; Lewandowski, J.

    2009-04-01

    Water exchange processes in the floodplain of a lowland groundwater-surface water system are studied on the basis of a study site near Freienbrink, NE Germany. The surface water boundaries of this site are formed by an oxbow and the current bed of the river Spree, section Müggelspree. Surface and ground water levels and water temperatures were collected in 12 piezometers and 2 recording stage gauges of a 300 m long transect throughout a one-year-period. Due to water level fluctuations alternation of infiltration and exfiltration occurred. However, most of the time groundwater flux is directed into the river Spree and, river water infiltration events into the aquifer are usually short and of minor importance. Due to clogging of the oxbow bed with a mud layer of different thickness the hydraulic contact between the oxbow and the adjacent aquifer is heterogeneously distributed and partially marginal. These features are modelled quantitatively using MODFLOW and MT3DMS in order to simulate ground water flow and heat transport. Two different model approaches are developed: with the help of a 3D model the whole test site was simulated describing the main vertical and lateral flow components; with a 2D vertical model along transect the exchange processes close to the surface water bodies are studied in more detail in order to quantify the leakage parameters of both river sections. With the results the following questions will be answered: (1) How fast does the exchange between the surface water and the aquifer occur? (2) Can the hydraulic processes (in- and exfiltration) between both river sections and the aquifer be identified and quantified? (3) What are the driving forces for groundwater dynamics in the floodplain - groundwater recharge, regional groundwater flow, or water level fluctuations of the river sections?

  9. Fabrication 3D buried channel optical waveguide modulators on field-driven ion exchange process

    NASA Astrophysics Data System (ADS)

    Zhou, Zigang; Chen, Wenqiang; Zhu, Li; Li, Jing; Luo, Xiaoying

    2010-10-01

    A high electric field technique was developed to fabricate buried optical waveguide modulator on K9 optical glass. The 80V voltage was applied on the glass to accelerate the field-driven ion exchange process by expeditiously replacing host sodium ions in the glass with silver ions. As a result, the optical loss for optical waveguide modulator was measured using the edge coupling technique with a 0.6328μm He-Ne laser. Loss of 0.20 dB/cm was obtained for channel waveguides of 25μm in depth, relatively low for waveguides of such depth at red wavelength.

  10. Aeronautical Satellite-Assisted Process for Information Exchange Through Network Technologies (Aero-SAPIENT) Conducted

    NASA Technical Reports Server (NTRS)

    Zernic, Michael J.

    2002-01-01

    Broadband satellite communications for aeronautics marries communication and network technologies to address NASA's goals in information technology base research and development, thereby serving the safety and capacity needs of the National Airspace System. This marriage of technology increases the interactivity between airborne vehicles and ground systems. It improves decision-making and efficiency, reduces operation costs, and improves the safety and capacity of the National Airspace System. To this end, a collaborative project called the Aeronautical Satellite Assisted Process for Information Exchange through Network Technologies, or Aero-SAPIENT, was conducted out of Tinker AFB, Oklahoma, during November and December 2000.

  11. Shelf edge exchange processes-II SEEP2-06, R/V Endeavor cruise 186

    SciTech Connect

    Wilson, C.; Behrens, W.J.; Flagg, C.N.; Wallace, D.W.R.; Wilke, R.J.; Wyman, K.D.

    1989-12-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. Phase I of SEEP consisted of a series of nine cruises and a mooring array across the outer continental shelf of New England during 1983--1984. Phase II focused specifically on the shelf/slope frontal region of the mid-Atlantic bight off the Delmarva Peninsula. Hydrographic data were collected on eight of the six cruises.

  12. Chemical treatment of plutonium with hydrogen peroxide before nitrate anion exchange processing. [Reduction to (IV)

    SciTech Connect

    Marsh, S.F.; Gallegos, T.D.

    1987-05-01

    The major aqueous process used to recover and purify plutonium at the Los Alamos Plutonium Facility is anion exchange in nitric acid. This process is highly selective for plutonium; however, all plutonium must be as Pu(IV) to form the strongly sorbed anionic nitrato complex. The previous ''full-reduction treatment'' used at Los Alamos to obtain Pu(IV) results in a three- to fourfold increase in the feed solution volume and the introduction of kilogram quantities of extraneous salts immediately before a process whose function is to remove such impurities. That treatment has been successfully replaced by a single reagent, hydrogen peroxide, which converts all plutonium to Pu(IV), minimally increases the feed volume, and introduces no residual impurities. Safety aspects of this revised chemical treatment are addressed.

  13. Design of a fixed-bed ion-exchange process for the treatment of rinse waters generated in the galvanization process using Laminaria hyperborea as natural cation exchanger.

    PubMed

    Mazur, Luciana P; Pozdniakova, Tatiana A; Mayer, Diego A; Boaventura, Rui A R; Vilar, Vítor J P

    2016-03-01

    In this study, the removal of zinc from galvanization wastewaters was performed in a fixed bed column packed with brown macro-algae Laminaria hyperborea, acting as a natural cation exchanger (resin). The rinse wastewater presents a zinc concentration between 9 and 22 mg/L, a high concentration of light metals (mainly Na and Ca), a high conductivity (0.5-1.5 mS/cm) and a low organic content (DOC = 7-15 mg C/L). The zinc speciation diagram showed that approximately 80% of zinc is in the form of Zn(2+) and ≅20% as ZnSO4, considering the effluent matrix. From all operational conditions tested for zinc uptake (17 < bed height<27 cm, 4.5 < flow rate<18.2 BV/h, 0.8 < particle equivalent diameter<2.0 mm), the highest useful capacity (7.1 mg Zn/g algae) was obtained for D/dp = 31, L/D = 11, 9.1 BV/h, τ = 6.4 min, corresponding to a service capacity of 124 BV (endpoint of 2 mg Zn/L). Elution was faster and near to 100% effective using 10 BV of HCl (1 M, 3.0%, 363 g HCl/L of resin), for flow rates higher than 4.5 BV/h. Calcium chloride solution (0.1 M) was selected as the best regenerant, allowing the reuse of the natural resin for more than 3 saturation/elution/regeneration cycles. The best operation conditions were scaled-up and tested in a pre-pilot plant. The scale-up design of the cation exchange process was proposed for the treatment of 2.4 m(3)/day of galvanization wastewater, resulting in an estimated reactants cost of 2.44 €/m(3).

  14. An efficient process of generating bispecific antibodies via controlled Fab-arm exchange using culture supernatants.

    PubMed

    Paul, Suparna; Connor, Judy; Nesspor, Tom; Haytko, Peter; Boakye, Ken; Chiu, Mark L; Jiang, Haiyan

    2016-05-01

    Bispecific antibody generation is actively pursued for therapeutic and research antibody development. Although there are multiple strategies for generating bispecific antibodies (bsAbs); the common challenge is to develop a scalable method to prepare bsAbs with high purity and yield. The controlled Fab-arm exchange (cFAE) method combines two parental monoclonal antibodies (mAbs), each with a matched point mutation, F405L and K409R in the respective CH3 domains. The conventional process employs two steps: the purification of two parental mAbs from culture supernatants followed by cFAE. Following a reduction/oxidation reaction, the bispecific mAb is formed with greater than 95% heterodimerization efficiency. In this study, cFAE was initiated in culture supernatants expressing the two parental mAbs, thereby eliminating the need to first purify the parental mAbs. The bsAbs formed in culture supernatant was then purified using a Protein A affinity chromatography. The BsAbs generated in this manner had efficiency comparable to the conventional method using purified parental mAbs. BsAbs prepared by two different routes showed indistinguishable characteristics by SDS capillary electrophoresis, analytical size exclusion, and cation exchange chromatography. This alternative method significantly shortened timelines and reduced resources required for bsAb generation, providing an improved process with potential benefits in large-scale bsAb preparation, as well as for HTP small-scale bsAb matrix selection.

  15. Exchange between Escherichia coli polymerases II and III on a processivity clamp

    PubMed Central

    Kath, James E.; Chang, Seungwoo; Scotland, Michelle K.; Wilbertz, Johannes H.; Jergic, Slobodan; Dixon, Nicholas E.; Sutton, Mark D.; Loparo, Joseph J.

    2016-01-01

    Escherichia coli has three DNA polymerases implicated in the bypass of DNA damage, a process called translesion synthesis (TLS) that alleviates replication stalling. Although these polymerases are specialized for different DNA lesions, it is unclear if they interact differently with the replication machinery. Of the three, DNA polymerase (Pol) II remains the most enigmatic. Here we report a stable ternary complex of Pol II, the replicative polymerase Pol III core complex and the dimeric processivity clamp, β. Single-molecule experiments reveal that the interactions of Pol II and Pol III with β allow for rapid exchange during DNA synthesis. As with another TLS polymerase, Pol IV, increasing concentrations of Pol II displace the Pol III core during DNA synthesis in a minimal reconstitution of primer extension. However, in contrast to Pol IV, Pol II is inefficient at disrupting rolling-circle synthesis by the fully reconstituted Pol III replisome. Together, these data suggest a β-mediated mechanism of exchange between Pol II and Pol III that occurs outside the replication fork. PMID:26657641

  16. THERMAL ANALYSIS FOR IN-TANK ION-EXCHANGE COLUMN PROCESS

    SciTech Connect

    Lee, S; Frank02 Smith, F

    2009-01-05

    High Level Waste (HLW) at the Savannah River Site (SRS) is stored in three forms: sludge, saltcake, and supernate. A small column ion-exchange (SCIX) process is being designed to treat dissolved saltcake waste before feeding it to the saltstone facility to be made into grout. The waste is caustic with high concentrations of various sodium salts and lower concentrations of radionuclides. Two cation exchange media being considered are a granular form of crystalline silicotitanate (CST) and a spherical form of resorcinol-formaldehyde (RF) resin. CST is an inorganic material highly selective for cesium that is not elutable. Through this process, radioactive cesium from the salt solution is absorbed into ion exchange media (either CST or RF) which is packed within a flow-through column. A packed column loaded with radioactive cesium generates significant heat from radiolytic decay. If engineering designs cannot handle this thermal load, hot spots may develop locally which could degrade the performance of the ion-exchange media. Performance degradation with regard to cesium removal has been observed between 50 and 80 C for CST [1] and at 65 C for RF resin [2]. In addition, the waste supernate solution will boil around 130 C. If the columns boiled dry, the sorbent material could plug the column and lead to replacement of the entire column module. Alternatively, for organic resins such as RF there is risk of fire at elevated temperatures. The objective of the work is to compute temperature distributions across CST- and RF-packed columns immersed in waste supernate under accident scenarios involving loss of salt solution flow through the beds and, in some cases, loss of coolant system flow. For some cases, temperature distributions are determined as a function of time after the initiation of a given accident scenario and in other cases only the final steady-state temperature distributions are calculated. In general, calculations are conducted to ensure conservative and

  17. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato

    2001-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  18. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato; Gula, Michael J.; Xue, Sui; Harvey, James T.

    2002-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  19. Effects Of Thermal Exchange On Material Flow During Steel Thixoextrusion Process

    SciTech Connect

    Becker, Eric; Gu Guochao; Langlois, Laurent; Bigot, Regis; Pesci, Raphael

    2011-01-17

    Semisolid processing is an innovative technology for near net-shape production of components, where the metallic alloys are processed in the semisolid state. Taking advantage of the thixotropic behavior of alloys in the semisolid state, significant progress has been made in semisolid processing. However, the consequences of such behavior on the flow during thixoforming are still not completely understood. To explore and better understand the influence of the different parameters on material flow during thixoextrusion process, thixoextrusion experiments were performed using the low carbon steel C38. The billet was partially melted at high solid fraction. Effects of various process parameters including the initial billet temperature, the temperature of die, the punch speed during process and the presence of a Ceraspray layer at the interface of tool and billet were investigated through experiments and simulation. After analyzing the results thus obtained, it was identified that the aforementioned parameters mainly affect thermal exchanges between die and part. The Ceraspray layer not only plays a lubricant role, but also acts as a thermal barrier at the interface of tool and billet. Furthermore, the thermal effects can affect the material flow which is composed of various distinct zones.

  20. An evaluation of solution algorithms and numerical approximation methods for modeling an ion exchange process

    SciTech Connect

    Bu Sunyoung Huang Jingfang Boyer, Treavor H. Miller, Cass T.

    2010-07-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.

  1. An Evaluation of Solution Algorithms and Numerical Approximation Methods for Modeling an Ion Exchange Process.

    PubMed

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H; Miller, Cass T

    2010-07-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward-difference-formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.

  2. An Evaluation of Solution Algorithms and Numerical Approximation Methods for Modeling an Ion Exchange Process

    PubMed Central

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.

    2010-01-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward-difference-formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications. PMID:20577570

  3. Characterization of atmosphere-water exchange processes of CO 2 in estuaries using dynamic simulation

    NASA Astrophysics Data System (ADS)

    García-Luque, E.; Forja, J. M.; Gómez-Parra, A.

    2005-12-01

    CO 2 is one of the so-called "greenhouse effect" gases; therefore, its rates of water-atmosphere exchange are very relevant for studies of climate change. Coastal zones (which include estuarine systems) are of special interest in relation to the global carbon cycle. Thus, an estuary simulator, which operates in a dynamic mixing regime, is specifically applied in an initial study of the estuarine dynamic of inorganic carbon, focusing basically on the influence of salinity and pH on the water-atmosphere fluxes of CO 2 in these zones. The simulation has been performed under two assumptions: (i) considering that the system is subjected to a stationary gradient of salinity and (ii) taking into account the effect of the tides, owing to the daily oscillations introduced by this phenomenon in the process of CO 2 transfer between the water and the atmosphere. After analysing the results, it has been observed that a potential source of error exists when choosing the coefficients of gas exchange ( k) for CO 2 studies. Nevertheless, the evolution of CO 2 fluxes along the salinity and pH gradients achieved shows the same trends with those observed in a wide variety of real estuaries described in the related literature.

  4. Dynamics of the fully stripped ion-hydrogen atom charge exchange process in dense quantum plasmas

    SciTech Connect

    Zhang, Ling-yu; Wan, Jiang-feng; Zhao, Xiao-ying; Xiao, Guo-qing; Duan, Wen-shan; Qi, Xin; Yang, Lei

    2014-09-15

    The plasma screening effects of dense quantum plasmas on charge exchange processes of a fully stripped ion colliding with a hydrogen atom are studied by the classical trajectory Monte Carlo method. The inter-particle interactions are described by the exponential cosine-screened Coulomb potentials. It is found that in weak screening conditions, cross sections increase with the increase of the ionic charge Z. However, in strong screening conditions, the dependence of cross sections on the ionic charge is related to the incident particle energy. At high energies, cross sections show a linear increase with the increase of Z, whereas at low energies, cross sections for Z≥4 become approximately the same. The He{sup 2+} and C{sup 6+} impacting charge exchange cross sections in dense quantum plasmas are also compared with those in weakly coupled plasmas. The interactions are described by the static screened Coulomb potential. It is found that for both He{sup 2+} and C{sup 6+}, the oscillatory screening effects of dense quantum plasmas are almost negligible in weak screening conditions. However, in strong screening conditions, the oscillatory screening effects enhance the screening effects of dense quantum plasmas, and the enhancement becomes more and more significant with the increase of the screening parameter and the ionic charge.

  5. Knowledge transfer and exchange processes for environmental health issues in Canadian Aboriginal communities.

    PubMed

    Jack, Susan M; Brooks, Sandy; Furgal, Chris M; Dobbins, Maureen

    2010-02-01

    Within Canadian Aboriginal communities, the process for utilizing environmental health research evidence in the development of policies and programs is not well understood. This fundamental qualitative descriptive study explored the perceptions of 28 environmental health researchers, senior external decision-makers and decision-makers working within Aboriginal communities about factors influencing knowledge transfer and exchange, beliefs about research evidence and Traditional Knowledge and the preferred communication channels for disseminating and receiving evidence. The results indicate that collaborative relationships between researchers and decision-makers, initiated early and maintained throughout a research project, promote both the efficient conduct of a study and increase the likelihood of knowledge transfer and exchange. Participants identified that empirical research findings and Traditional Knowledge are different and distinct types of evidence that should be equally valued and used where possible to provide a holistic understanding of environmental issues and support decisions in Aboriginal communities. To facilitate the dissemination of research findings within Aboriginal communities, participants described the elements required for successfully crafting key messages, locating and using credible messengers to deliver the messages, strategies for using cultural brokers and identifying the communication channels commonly used to disseminate and receive this type of information.

  6. Proceedings of the Efficient Separations and Processing Cross-Cutting Program Annual Technical Exchange Meeting

    SciTech Connect

    1995-02-01

    This document contains summaries of technology development presented at the 1995 Efficient Separations and Processing Cross-Cutting Program (ESP) Annual Technical Exchange Meeting. The ESP is sponsored by the US Department of Energy`s Office of Environmental Management (EM), Office of Technology Development. The meeting is held annually to promote a free exchange of ideas among technology developers, potential users (for example, EM focus areas), and other interested parties within EM. During this meeting, developers of ESP-funded technologies describe the problems and needs addressed by their technologies; the technical approach, accomplishments, and resolution of issues; the strategy and schedule for commercialization; and evolving potential applications. Presenters are asked to address the following areas: Target waste management problem, waste stream, or data need; scientific background and technical approach; technical accomplishments and resolution of technical issues; schedule and strategy for commercializing and implementing the technology or acquiring needed data; potential alternate applications of the technology or data, including outside of DOE/EM. The meeting is not a program review of the individual tasks or subtasks; but instead focuses on the technical aspects and implementation of ESP-sponsored technology or data. The meeting is also attended by members of the ESP Technical Review Team, who have the opportunity at that time to review the ESP as a whole.

  7. Fuel processing in integrated micro-structured heat-exchanger reactors

    NASA Astrophysics Data System (ADS)

    Kolb, G.; Schürer, J.; Tiemann, D.; Wichert, M.; Zapf, R.; Hessel, V.; Löwe, H.

    Micro-structured fuel processors are under development at IMM for different fuels such as methanol, ethanol, propane/butane (LPG), gasoline and diesel. The target application are mobile, portable and small scale stationary auxiliary power units (APU) based upon fuel cell technology. The key feature of the systems is an integrated plate heat-exchanger technology which allows for the thermal integration of several functions in a single device. Steam reforming may be coupled with catalytic combustion in separate flow paths of a heat-exchanger. Reactors and complete fuel processors are tested up to the size range of 5 kW power output of a corresponding fuel cell. On top of reactor and system prototyping and testing, catalyst coatings are under development at IMM for numerous reactions such as steam reforming of LPG, ethanol and methanol, catalytic combustion of LPG and methanol, and for CO clean-up reactions, namely water-gas shift, methanation and the preferential oxidation of carbon monoxide. These catalysts are investigated in specially developed testing reactors. In selected cases 1000 h stability testing is performed on catalyst coatings at weight hourly space velocities, which are sufficiently high to meet the demands of future fuel processing reactors.

  8. Modeling Ion-Exchange Processing With Spherical Resins For Cesium Removal

    SciTech Connect

    Hang, T.; Nash, C. A.; Aleman, S. E.

    2012-09-19

    The spherical Resorcinol-Formaldehyde and hypothetical spherical SuperLig(r) 644 ion-exchange resins are evaluated for cesium removal from radioactive waste solutions. Modeling results show that spherical SuperLig(r) 644 reduces column cycling by 50% for high-potassium solutions. Spherical Resorcinol Formaldehyde performs equally well for the lowest-potassium wastes. Less cycling reduces nitric acid usage during resin elution and sodium addition during resin regeneration, therefore, significantly decreasing life-cycle operational costs. A model assessment of the mechanism behind ''cesium bleed'' is also conducted. When a resin bed is eluted, a relatively small amount of cesium remains within resin particles. Cesium can bleed into otherwise decontaminated product in the next loading cycle. The bleed mechanism is shown to be fully isotherm-controlled vs. mass transfer controlled. Knowledge of residual post-elution cesium level and resin isotherm can be utilized to predict rate of cesium bleed in a mostly non-loaded column. Overall, this work demonstrates the versatility of the ion-exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. This evaluation justifies further development of a spherical form of the SL644 resin.

  9. Quantifying urban river-aquifer fluid exchange processes: a multi-scale problem.

    PubMed

    Ellis, Paul A; Mackay, Rae; Rivett, Michael O

    2007-04-01

    Groundwater-river exchanges in an urban setting have been investigated through long term field monitoring and detailed modelling of a 7 km reach of the Tame river as it traverses the unconfined Triassic Sandstone aquifer that lies beneath the City of Birmingham, UK. Field investigations and numerical modelling have been completed at a range of spatial and temporal scales from the metre to the kilometre scale and from event (hourly) to multi-annual time scales. The objective has been to quantify the spatial and temporal flow distributions governing mixing processes at the aquifer-river interface that can affect the chemical activity in the hyporheic zone of this urbanised river. The hyporheic zone is defined to be the zone of physical mixing of river and aquifer water. The results highlight the multi-scale controls that govern the fluid exchange distributions that influence the thickness of the mixing zone between urban rivers and groundwater and the patterns of groundwater flow through the bed of the river. The morphologies of the urban river bed and the adjacent river bank sediments are found to be particularly influential in developing the mixing zone at the interface between river and groundwater. Pressure transients in the river are also found to exert an influence on velocity distribution in the bed material. Areas of significant mixing do not appear to be related to the areas of greatest groundwater discharge and therefore this relationship requires further investigation to quantify the actual remedial capacity of the physical hyporheic zone.

  10. RECENT ADVANCES IN ION EXCHANGE MATERIALS AND PROCESSES FOR POLLUTION PREVENTION

    EPA Science Inventory

    The goal of this article was to summarize the recent advances in ion exchange technology for the metal finishing industry. Even though the ion exchange technology is mature and is widely employed in the industry, new applications, approaches and ion exchange materials are emergi...

  11. Radionuclide tracers for the fate of metals in the Savannah estuary: River-ocean exchange processes

    SciTech Connect

    Olsen, C.R.; Thein, M.; Larsen, I.L.; Byrd, J.T.; Windom, H.L.

    1989-01-01

    Plutonium-238 from the US Department of Energy's Savannah River Plant labels riverborne particles, providing a unique opportunity for examining the fate of metals in estuaries and for tracing river-ocean exchange processes. Results indicate that plutonium and lead-210 are enriched on estuarine particles and that inputs of plutonium from oceanic sources greatly exceed inputs from riverborne or drainage-basin sources as far upstream as the landward limit of seawater penetration. We suggest that these radionuclides (and other chemically reactive metals) are being scavenged from oceanic water by sorption onto particles in turbid estuarine and coastal areas. Since estuaries, bays, mangroves, and intertidal areas serve as effective traps for fine particles and associated trace substances, these results have important implications concerning the disposal of chemically reactive substances in oceanic waters. 13 refs., 1 fig., 1 tab.

  12. Numerical analysis of heat exchange processes for the ground source heat pump system

    NASA Astrophysics Data System (ADS)

    Saito, H.; Muto, H.; Moritani, S.; Kohgo, Y.; Hamamoto, S.; Takemura, T.; Ohnishi, J.; Komatsu, T.

    2012-12-01

    Ground source heat pump systems (GSHP) use ground or groundwater as a heat source. They can achieve much higher coefficient of performance (COP) than conventional air source heat pump systems because the temperature of the ground is much more stable than that of the air. Heat energy in the ground is then viewed as one of the renewable energy sources. GSHP has been receiving great interests among countries in North America and Western Europe, as well as some developed countries in Asia because it can potentially reduce energy consumption and greenhouse gas emission. While GSHP can inject heat from the buildings to the ground for cooling during the summer, it can pump heat stored in the ground for heating during the winter. As some physical, chemical, and biological properties of the ground and groundwater are temperature dependent, running GSHP can eventually affect groundwater quality. The main objective of this project was to develop a model that allows predicting not only ground and groundwater temperatures but also changes in physical, chemical, and biological properties of ground and groundwater with GSHP under operations. This particular study aims at simulating heat exchange and transfer processes in the ground for a vertical-loop closed GSHP system. In the closed GSHP system, an anti-freezing solution is circulated inside the closed-loop tube, called U-tube, that is buried in the ground. Heat is then transferred to the anti-freezing solution in the U-tube by a heat exchanger. In this study we used HYDRUS to predict temperature of the anti-freezing solution, as well as that of the ground. HYDRUS allows one to simulate variably-saturated water flow and solute and heat transport in porous media numerically in two- and three-dimensional domains with great flexibility in defining boundary conditions. At first changes in anti-freezing solution temperatures measured were predicted in response to Thermal Response Test (TRT) conducted at our study site. Then, heat

  13. Process Model for Studying Regional 13C Stable Isotope Exchange between Vegetation and Atmosphere

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Chen, B.; Huang, L.; Tans, P.; Worthy, D.; Ishizawa, M.; Chan, D.

    2007-12-01

    The variation of the stable isotope 13CO2 in the air in exchange with land ecosystems results from fractionation processes in both plants and soil during photosynthesis and respiration. Its diurnal and seasonal variations therefore contain information on the carbon cycle. We developed a model (BEPS-iso) to simulate its exchange between vegetation and the atmosphere. To be useful for regional carbon cycle studies, the model has the following characteristics: (i) it considers the turbulent mixing in the vertical profile from the soil surface to the top of the planetary boundary layer (PBL); (ii) it scales individual leaf photosynthetic discrimination to the whole canopy through the separation of sunlit and shaded leaf groups; (iii) through simulating leaf-level photosynthetic processes, it has the capacity to mechanistically examine isotope discrimination resulting from meteorological forcings, such as radiation, precipitation and humidity; and (iv) through complete modeling of radiation, energy and water fluxes, it also simulates soil moisture and temperature needed for estimating ecosystem respiration and the 13C signal from the soil. After validation using flask data acquired at 20 m level on a tower near Fraserdale, Ontario, Canada, during intensive campaigns (1998-2000), the model has been used for several purposes: (i) to investigate the diurnal and seasonal variations in the disequilibrium in 13C fractionation between ecosystem respiration and photosynthesis, which is an important step in using 13C measurements to separate these carbon cycle components; (ii) to quantify the 13C rectification in the PBL, which differs significantly from CO2 rectification because of the diurnal and seasonal disequilibriums; and (iii) to model the 13C spatial and temporal variations over the global land surface for the purpose of CO2 inversion using 13C as an additional constraint.

  14. Observation of atmosphere-forest exchange processes at the new TERENO site Wüstebach

    NASA Astrophysics Data System (ADS)

    Graf, A.; Drüe, C.; Ney, P.; Heinemann, G.; Pütz, T.

    2012-12-01

    The Wüstebach site is located in a spruce forest covering the catchment of a small creek called 'Wüstebach' in the German National Park Eifel. It is part of the 'Eifel/Lower Rhine Valley' Observatory within the German Terrestrial Environmental Observatories (TERENO) network. The site hosts a 36-m tower with instrumentation to yield long-term monitoring of the atmosphere-canopy exchange processes of a typical mid-latitude forest. To characterize the entire exchange process, quantities are measured above, within and below the vegetation: Flux measurements, i.e. eddy-covariance (EC) measurements of heat, momentum, CO2 and water-vapor fluxes, are taken above the canopy. Profile measurements of mean quantities are taken from the ground to 1.2 times canopy height; CO2 and N2O concentration profiles are planned. Surface and soil property measurements are performed around the tower base. Cosmic ray probes deployed in the area and 150 soil measurement stations with 900 soil moisture and 300 temperature sensors allow insight into temporal dynamics of soil moisture patterns. Both enable investigations of the coherence of footprint and spatio-temporal moisture patterns. The tower is planned to become integrated into the ICOS (Integrated Carbon Observation System) program as a secondary site. Additionally, it will serve as a reference for a nearby clear cut intended to accelerate succession from the current spruce plantation (picea abies) to natural vegetation dominated by beech. Results are shown for the first two years of eddy-covariance data. In addition, an evaluation for different quality control schemes is presented.

  15. Removal of fluorescent dissolved organic matter in biologically treated textile effluents by NDMP anion exchange process: efficiency and mechanism.

    PubMed

    Li, Wen-Tao; Xu, Zi-Xiao; Shuang, Chen-Dong; Zhou, Qing; Li, Hai-Bo; Li, Ai-Min

    2016-03-01

    The efficiency and mechanism of anion exchange resin Nanda Magnetic Polymer (NDMP) for removal of fluorescent dissolved organic matter in biologically treated textile effluents were studied. The bench-scale experiments showed that as well as activated carbon, anion exchange resin could efficiently remove both aniline-like and humic-like fluorescent components, which can be up to 40 % of dissolved organic matter. The humic-like fluorescent component HS-Em460-Ex3 was more hydrophilic than HS-Em430-Ex2 and contained fewer alkyl chains but more acid groups. As a result, HS-Em460-Ex3 was eliminated more preferentially by NDMP anion exchange. However, compared with adsorption resins, the polarity of fluorescent components had a relatively small effect on the performance of anion exchange resin. The long-term pilot-scale experiments showed that the NDMP anion exchange process could remove approximately 30 % of the chemical oxygen demand and about 90 % of color from the biologically treated textile effluents. Once the issue of waste brine from resin desorption is solved, the NDMP anion exchange process could be a promising alternative for the advanced treatment of textile effluents.

  16. Fouling of an anion exchange chromatography operation in a monoclonal antibody process: Visualization and kinetic studies

    PubMed Central

    Close, Edward J; Salm, Jeffrey R; Iskra, Timothy; Sørensen, Eva; Bracewell, Daniel G

    2013-01-01

    Fouling of chromatographic resins over their operational lifetimes can be a significant problem for commercial bioseparations. In this article, scanning electron microscopy (SEM), batch uptake experiments, confocal laser scanning microscopy (CLSM) and small-scale column studies were applied to characterize a case study where fouling had been observed during process development. The fouling was found to occur on an anion exchange (AEX) polishing step following a protein A affinity capture step in a process for the purification of a monoclonal antibody. Fouled resin samples analyzed by SEM and batch uptake experiments indicated that after successive batch cycles, significant blockage of the pores at the resin surface occurred, thereby decreasing the protein uptake rate. Further studies were performed using CLSM to allow temporal and spatial measurements of protein adsorption within the resin, for clean, partially fouled and extensively fouled resin samples. These samples were packed within a miniaturized flowcell and challenged with fluorescently labeled albumin that enabled in situ measurements. The results indicated that the foulant has a significant impact on the kinetics of adsorption, severely decreasing the protein uptake rate, but only results in a minimal decrease in saturation capacity. The impact of the foulant on the kinetics of adsorption was further investigated by loading BSA onto fouled resin over an extended range of flow rates. By decreasing the flow rate during BSA loading, the capacity of the resin was recovered. These data support the hypothesis that the foulant is located on the particle surface, only penetrating the particle to a limited degree. The increased understanding into the nature of the fouling can help in the continued process development of this industrial example. Scanning electron microscopy (SEM), batch uptake experiments, confocal laser scanning microscopy (CLSM) and small-scale column experiments were applied to characterize a

  17. Unmasking the effect of a precipitation pulse on the biological processes composing Net Ecosystem Carbon Exchange

    NASA Astrophysics Data System (ADS)

    Lopez-Ballesteros, Ana; Sanchez-Cañete, Enrique P.; Serrano-Ortiz, Penelope; Oyonarte, Cecilio; Kowalski, Andrew S.; Perez-Priego, Oscar; Domingo, Francisco

    2015-04-01

    Drylands occupy 47.2% of the global terrestrial area and are key ecosystems that significantly determine the inter-annual variability of the global carbon balance. However, it is still necessary to delve into the functional behavior of arid and semiarid ecosystems due to the complexity of drivers and interactions between underpinning processes (whether biological or abiotic) that modulate net ecosystem CO2 exchange (NEE). In this context, water inputs are crucial to biological organisms survival in arid ecosystems and frequently arrive via rain events that are commonly stochastic and unpredictable (i.e. precipitation pulses) and strongly control arid land ecosystem structure and function. The eddy covariance technique can be used to investigate the effect of precipitation pulses on NEE, but provide limited understanding of what exactly happens after a rain event. The chief reasons are that, firstly, we cannot measure separately autotrophic and heterotrophic components, and secondly, the partitioning techniques widely utilized to separate Gross Primary Production and Total Ecosystem Respiration, do not work properly in these water-limited ecosystems, resulting in biased estimations of plant and soil processes. Consequently, it is essential to combine eddy covariance measurements with other techniques to disentangle the different biological processes composing NEE that are activated by a precipitation pulse. Accordingly, the main objectives of this work were: (i) to quantify the contribution of precipitation pulse events to annual NEE using the eddy covariance technique in a semiarid steppe located in Almería (Spain), and (ii) to simulate a realistic precipitation pulse in order to understand its effect on the ecosystem, soil and plant CO2 exchanges by using a transitory-state closed canopy chamber, soil respiration chambers and continuous monitoring CO2 sensors inserted in the subsoil. Preliminary results showed, as expected, a delay between soil and plant

  18. A novel process for key exchange avoiding man-inmiddle attack

    NASA Astrophysics Data System (ADS)

    Biswas, Barun; Basuli, Krishnendu

    2012-09-01

    For the security porpoise in the internet cryptography is one of the most important subjects nowadays. Designing a cypher for data exchange between two nodes or receiver and sender deals with one of the troubleshoot jobs. In our proposed algorithm we try to introduce a new technique in the field of cryptography. We are hopeful that this new technique will sure reduces the overhead of data or key exchange between nodes. Here we will discuss the symmetric key exchange between nodes

  19. Shelf Edge Exchange Processes, II: SEEP2-08, R/V ENDEAVOR cruise 188

    SciTech Connect

    Wilson, C.; Behrens, W.J.; Flagg, C.N.; Wallace, D.W.R.; Wilke, R.J.; Wyman, K.D.

    1989-12-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. Phase I of SEEP consisted of a series of nine cruises and a mooring array across the outer continental shelf of New England during 1983--1984 (Behrens and Flagg, 1986). Phase II focused specifically on the shelf/slope frontal region of the mid-Atlantic bight off the Delmarva Peninsula. This project consisted of a series of ten cruises, a mooring array, and a series of over-flights by NASA aircraft. Hydrographic data were collected on eight of the cruises, six of which were primarily mooring deployment or recovery cruises. The cruises were consecutively designated SEEP2-01 to SEEP2-10. Two cruises (SEEP2-04 and SEEP2-07) were dedicated to investigating benthic processes and hydrographic data were not collected.

  20. Information exchange between registered nurses and district nurses during the discharge planning process: cross-sectional analysis of survey data.

    PubMed

    Nordmark, Sofi; Söderberg, Siv; Skär, Lisa

    2015-01-01

    Objectives: Discharge planning is an important care process for managing transitions from the hospital to the community. It has been studied for >20 years, but few studies clarify the information exchanged between healthcare providers. This study aimed to describe nurses' experiences and perceptions of information exchange during the discharge planning process, focused on what, when and how information is exchanged between the hospital and primary healthcare. Method: A web-based census survey was used to collect data; the data were analyzed using descriptive statistics and chi-squared test. A questionnaire was distributed to 194 registered nurses (129 respondents) from a central county hospital and 67 district nurses (42 respondents) working in 13 primary healthcare centres. Results: The results show a significant difference between given and received information between the two groups. Both groups thought the information exchange worked best when all participants met at the discharge planning conference and that the electronic information system was difficult to use. Conclusion: This study shows difficulties knowing what patient-related information needs to give and not receiving the expected information. These results can be used to develop knowledge about roles, work tasks and needs to enhance the outcome of the process and the information exchanged.

  1. Novel simple process for tocopherols selective recovery from vegetable oils by adsorption and desorption with an anion-exchange resin.

    PubMed

    Hiromori, Kousuke; Shibasaki-Kitakawa, Naomi; Nakashima, Kazunori; Yonemoto, Toshikuni

    2016-03-01

    A novel and simple low-temperature process was used to recover tocopherols from a deodorizer distillate, which is a by-product of edible oil refining. The process consists of three operations: the esterification of free fatty acids with a cation-exchange resin catalyst, the adsorption of tocopherols onto an anion-exchange resin, and tocopherol desorption from the resin. No degradation of tocopherols occurred during these processes. In the tocopherol-rich fraction, no impurities such as sterols or glycerides were present. These impurities are commonly found in the product of the conventional process. This novel process improves the overall recovery ratio and the mass fraction of the product (75.9% and 51.0wt%) compared with those in the conventional process (50% and 35wt%).

  2. River temperature processes under contrasting riparian land cover: linking microclimate, heat exchange and water thermal dynamics

    NASA Astrophysics Data System (ADS)

    Hannah, D. M.; Kantola, K.; Malcolm, I.

    2012-12-01

    River temperature influences strongly growth and survival in salmonid fish, which are often the target of river management strategies. Temperature is controlled by transfers of heat and water to/ from the river system, with land and water management modifying exchanges and consequently thermal regime. In the UK, fisheries managers are promoting riparian forest planting as a climate change adaption measure to reduce water temperature extremes. However, scientific understanding lags behind management and policy needs. Specifically, there is an urgent requirement to determine planting strategies that maximise expected benefits of riparian forest in terms of reduction in maximum water temperature. Scientific knowledge is necessary to underpin conceptual and deterministic models to inform management. To address this research gap, this paper analyses high resolution (15 minute) hydrometeorological data collected over a calendar year in the western Scottish Highlands (Loch Ard) to understand the controls and processes determining river temperature dynamics under open moorland (control), semi-natural woodland and commercial forest. The research programme aims: (1) to characterise spatial and temporal variability in riparian microclimate and stream water temperature regime across forest treatments; (2) to identify the hydrological, climatological and site-specific factors affecting stream temperature; (3) to estimate the energy balance at sites representative of each forest treatment and, thus, yield physical process understanding about dominant heat exchanges driving thermal variability; and (4) to use 1-3 to predict stream temperature sensitivity under different forestry and hydroclimatological scenarios. Results indicated that inter-treatment differences in mean and maximum daily water column temperature were ordered open > semi-natural > commercial during summer, but semi-natural > commercial > open during winter. Minimum water temperature was ordered commercial > semi

  3. Design of a Carousel Process for Removing Cesium from SRS Waste Using Crystalline Silicotitanate Ion Exchanger

    SciTech Connect

    Walker, D.D.

    1999-01-15

    Designs of a three-column carousel process based on crystalline silicotitanate (CST) ion exchanger have been developed for removing radioactive 137Cs+ from Savannah River Site's (SRS) nuclear wastes. A multicomponent ion exchange equilibrium model (Zheng et al., 1997) from Texas A&M University, which is based on batch data obtained from CST powder, is used to generate cesium loading data at different cesium concentrations for various types of SRS wastes. These loading data are fit to the Langmuir equation to obtain effective single-component cesium isotherm parameters. The predictions are in reasonable agreement with batch test data obtained from CST powder, an early CST pellet batch (38B), and a later batch (IE911) using two SRS waste simulants. The ratios between experimental cesium distribution coefficients and predicted values are between 0.56 and 1.0. The variation appears to be due to inadequate equilibration time in some of the batches. Mass transfer parameters are estimated by analyzing column data of a simulated SRS waste and Melton Valley Storage Tank W29 (MVST-W29) waste. The intraparticle diffusivity estimated for the two wastes can be well correlated by means of the Stokes-Einstein equation.Simulations are performed to determine the length of the mass transfer zone for given feed compositions, Cs+ concentrations, and linear velocities. In order to ensure high column utilization during both the transient and cyclic steady state periods, the length of a single segment in the carousel process is chosen to be the mass transfer zone length after the concentration wave achieves a constant pattern. Analysis of the dimensionless groups in the differential mass balance equations reveals that the normalized mass transfer zone length is linearly proportional to the particle Peclet number. The proportionality constant is a function of the waste composition and the Cs+ concentration in the waste. The higher the effective Cs+ capacity and the higher the Cs

  4. Three layer functional model and energy exchange concept of aging process

    PubMed Central

    Mihajlovic, William

    2006-01-01

    Relying on a certain degree of abstraction, we can propose that no particular distinction exists between animate or living matter and inanimate matter. While focusing attention on some specifics, the dividing line between the two can be drawn. The most apparent distinction is in the level of structural and functional organization with the dissimilar streams of ‘energy flow’ between the observed entity and the surrounding environment. In essence, living matter is created from inanimate matter which is organized to contain internal intense energy processes and maintain lower intensity energy exchange processes with the environment. Taking internal and external energy processes into account, we contend in this paper that living matter can be referred to as matter of dissipative structure, with this structure assumed to be a common quality of all living creatures and living matter in general. Interruption of internal energy conversion processes and terminating the controlled energy exchange with the environment leads to degeneration of dissipative structure and reduction of the same to inanimate matter, (gas, liquid and/or solid inanimate substances), and ultimately what can be called ‘death.’ This concept of what we call dissipative nature can be extended from living organisms to social groups of animals, to mankind. An analogy based on the organization of matter provides a basis for a functional model of living entities. The models relies on the parallels among the three central structures of any cell (nucleus, cytoplasm and outer membrane) and the human body (central organs, body fluids along with the connective tissues, and external skin integument). This three-part structural organization may be observed almost universally in nature. It can be observed from the atomic structure to the planetary and intergalactic organizations. This similarity is corroborated by the membrane theory applied to living organisms. According to the energy nature of living matter

  5. Crystal structure of human CD1e reveals a groove suited for lipid-exchange processes.

    PubMed

    Garcia-Alles, Luis F; Giacometti, Gaelle; Versluis, Cees; Maveyraud, Laurent; de Paepe, Diane; Guiard, Julie; Tranier, Samuel; Gilleron, Martine; Prandi, Jacques; Hanau, Daniel; Heck, Albert J R; Mori, Lucia; De Libero, Gennaro; Puzo, Germain; Mourey, Lionel; de la Salle, Henri

    2011-08-09

    CD1e is the only human CD1 protein existing in soluble form in the late endosomes of dendritic cells, where it facilitates the processing of glycolipid antigens that are ultimately recognized by CD1b-restricted T cells. The precise function of CD1e remains undefined, thus impeding efforts to predict the participation of this protein in the presentation of other antigens. To gain insight into its function, we determined the crystal structure of recombinant CD1e expressed in human cells at 2.90-Å resolution. The structure revealed a groove less intricate than in other CD1 proteins, with a significantly wider portal characterized by a 2 Å-larger spacing between the α1 and α2 helices. No electron density corresponding to endogenous ligands was detected within the groove, despite the presence of ligands unequivocally established by native mass spectrometry in recombinant CD1e. Our structural data indicate that the water-exposed CD1e groove could ensure the establishment of loose contacts with lipids. In agreement with this possibility, lipid association and dissociation processes were found to be considerably faster with CD1e than with CD1b. Moreover, CD1e was found to mediate in vitro the transfer of lipids to CD1b and the displacement of lipids from stable CD1b-antigen complexes. Altogether, these data support that CD1e could have evolved to mediate lipid-exchange/editing processes with CD1b and point to a pathway whereby the repertoire of lipid antigens presented by human dendritic cells might be expanded.

  6. Transport properties of proton-exchange membranes: Effect of supercritical-fluid processing and chemical functionality

    NASA Astrophysics Data System (ADS)

    Pulido Ayazo

    NafionRTM membranes commonly used in direct methanol fuel cells (DMFC), are tipically limited by high methanol permeability (also known as the cross-over limitation). These membranes have phase segregated sulfonated ionic domains in a perfluorinated backbone, which makes processing challenging and limited by phase equilibria considerations. This study used supercritical fluids (SCFs) as a processing alternative, since the gas-like mass transport properties of SCFs allow a better penetration into the membranes and the use of polar co-solvents influenced their morphology, fine-tuning the physical and transport properties in the membrane. Measurements of methanol permeability and proton conductivity were performed to the NafionRTM membranes processed with SCFs at 40ºC and 200 bar and the co-solvents as: acetone, tetrahydrofuran (THF), isopropyl alcohol, HPLC-grade water, acetic acid, cyclohexanone. The results obtained for the permeability data were of the order of 10 -8-10-9 cm2/s, two orders of magnitude lower than unprocessed Nafion. Proton conductivity results obtained using AC impedance electrochemical spectroscopy was between 0.02 and 0.09 S/cm, very similar to the unprocessed Nafion. SCF processing with ethanol as co-solvent reduced the methanol permeability by two orders of magnitude, while the proton conductivity was only reduced by 4%. XRD analysis made to the treated samples exhibited a decreasing pattern in the crystallinity, which affects the transport properties of the membrane. Also, SAXS profiles of the Nafion membranes processed were obtained with the goal of determining changes produced by the SCF processing in the hydrophilic domains of the polymer. With the goal of searching for new alternatives in proton exchange membranes (PEMs) triblock copolymer of poly(styrene-isobutylene-styrene) (SIBS) and poly(styrene-isobutylene-styrene) SEBS were studied. These sulfonated tri-block copolymers had lower methanol permeabilities, but also lower proton

  7. Aquatic flower-inspired cell culture platform with simplified medium exchange process for facilitating cell-surface interaction studies.

    PubMed

    Hong, Hyeonjun; Park, Sung Jea; Han, Seon Jin; Lim, Jiwon; Kim, Dong Sung

    2016-02-01

    Establishing fundamentals for regulating cell behavior with engineered physical environments, such as topography and stiffness, requires a large number of cell culture experiments. However, cell culture experiments in cell-surface interaction studies are generally labor-intensive and time-consuming due to many experimental tasks, such as multiple fabrication processes in sample preparation and repetitive medium exchange in cell culture. In this work, a novel aquatic flower-inspired cell culture platform (AFIP) is presented. AFIP aims to facilitate the experiments on the cell-surface interaction studies, especially the medium exchange process. AFIP was devised to capture and dispense cell culture medium based on interactions between an elastic polymer substrate and a liquid medium. Thus, the medium exchange can be performed easily and without the need of other instruments, such as a vacuum suction and pipette. An appropriate design window of AFIP, based on scaling analysis, was identified to provide a criterion for achieving stability in medium exchange as well as various surface characteristics of the petal substrates. The developed AFIP, with physically engineered petal substrates, was also verified to exchange medium reliably and repeatedly. A closed structure capturing the medium was sustained stably during cell culture experiments. NIH3T3 proliferation results also demonstrated that AFIP can be applied to the cell-surface interaction studies as an alternative to the conventional method.

  8. Tropical tropopause water isotopes in a GCM: Sensitivity to cloud processes and stratosphere-troposphere exchange

    NASA Astrophysics Data System (ADS)

    Schmidt, G. A.; Hoffmann, G.; Hu, Y.

    2004-05-01

    Water isotopes ratios (δ 18O, δ D) are very sensitive tracers of the history of the water in the atmosphere. For example, depletion of heavy isotopes in convective plumes can be extreme and thus isotope ratios can be used to discriminate between upwelled and in-situ condensation. We present results with state-of-the-art GCMs that include water isotopes in every aspect of the modelled water cycle, including the relatively sophisticated prognostic cloud water scheme. These models also have reasonable representations of the stratospheric circulation and so can be used to look at the processes involved in stratosphere-troposphere exchange. We demonstrate that the models show a similar range of variability near the tropical tropopause to that seen in recent data, and that the zonal mean values are less depleted than a simple Rayleigh distillation column would suggest. Importantly, we show that the isotopes can be sensitive to uncertain details of the cloud parameterizations and thus may help in improving and validating cloud schemes in models.

  9. LES FOR SIMULATING THE GAS EXCHANGE PROCESS IN A SPARK IGNITION ENGINE

    SciTech Connect

    Ameen, Muhsin M; yang, xiaofeng; kuo, tang-wei; Xue, Qingluan; Som, Sibendu

    2015-01-01

    The gas exchange process is known to be a significant source of cyclic variability in Internal Combustion Engines (ICE). Traditionally, Large Eddy Simulations (LES) are expected to capture these cycle-to-cycle variations. This paper reports a numerical effort to establish best practices for capturing cyclic variability with LES tools in a Transparent Combustion Chamber (TCC) spark ignition engine. The main intention is to examine the sensitivity of cycle averaged mean and Root Mean Square (RMS) flow fields and Proper Orthogonal Decomposition (POD) modes to different computational hardware, adaptive mesh refinement (AMR) and LES sub-grid scale (SGS) models, since these aspects have received little attention in the past couple of decades. This study also examines the effect of near-wall resolution on the predicted wall shear stresses. LES is pursued with commercially available CONVERGE code. Two different SGS models are tested, a one-equation eddy viscosity model and dynamic structure model. The results seem to indicate that both mean and RMS fields without any SGS model are not much different than those with LES models, either one-equation eddy viscosity or dynamic structure model. Computational hardware results in subtle quantitative differences, especially in RMS distributions. The influence of AMR on both mean and RMS fields is negligible. The predicted shear stresses near the liner walls is also found to be relatively insensitive to near-wall resolution except in the valve curtain region.

  10. Wood Xylowall: New process to reduce water exchange by an intra-graft of polymer

    NASA Astrophysics Data System (ADS)

    Uyttenhove, Anne; Tilquin, Bernard

    2005-07-01

    Our research shows that poplar treated with selected monomer mixture and then irradiated at 50 kGy reduces the water exchange without adversely altering the desirable qualities of wood. Moreover, the environment is not polluted. To retard changes in moisture content and dimensions, different commercial Radcures (UCB) were tested. A comparative study on the water retention showed significant reduction between non-treated and Xylowall wood for the species: poplar. The physical and mechanical measurements (density, volumetric shrinkage, elasticity, rupture, impact bending, hardness, compression strength) on poplar and pine show that the properties of the wood are not affected negatively by Xylowall treatment with irradiation. Moreover, the process does not discharge any toxic volatile residues into the atmosphere as proven by GC-MS trace analysis of heated wood samples. The stereomicroscope by imagery reveals an impregnation of 0.5 mm on cross-section of darker-stained areas, and sometimes more due to the texture (the relative size and arrangement of the wood cells) of the wood.

  11. On charge exchange and knock-on processes in the exosphere of Io

    NASA Technical Reports Server (NTRS)

    Ip, W.-H.

    1982-01-01

    One direct consequence of magnetospheric interaction of Io is the strong dynamical coupling of its neutral atmosphere with the corotating plasma. The absorption of the thermal ions and the associated neutral injection is an improtant issue not yet explored. As far as nonthermal escape of the neutral atmosphere is concerned, three processes stand out. That is, apart from sputtering, exospheric interactions like atom-ion knock-on collision and charge exchange recombination could be a significant source of the neutral clouds in the Jovian system. Using a current electrodynamic model of Io, both the absorption rate of the corotating thermal plasma and the production rates of new exospheric ions and the fast neutrals are considered. It is found that the source strength of the neutral atoms and molecules with speeds of about 100 km/sec could amount to 10 to the 26th/sec whereas exospheric neutrals emitted at lower speed (of about 10 km/sec) amounts to 4 x 10 to the 25th/sec. The generation of the new ions in connection with the streaming of the magnetospheric plasma around Io could also produce an asymmetric sputtering with a neutral flux of about 10 to the 27th/sec emitted from the region of Io which faces Jupiter. These results may be related to a number of sodium observations.

  12. The Intercultural and Non-Formal Learning Processes of Children in Primary School Exchange Programmes in France and Germany

    ERIC Educational Resources Information Center

    Melin, Valérie; Wagner, Bernd

    2015-01-01

    This paper is based on educational anthropology, and presents the initial findings of a three-year international comparative study of primary school children's learning-processes during travel and cross-cultural encounters. A French-German research team investigated and here reports on primary school exchange programmes. Open coding of the…

  13. Greenhouse-gas exchange of croplands worldwide: a process-based model simulation

    NASA Astrophysics Data System (ADS)

    Inatomi, M.; Ito, A.

    2009-12-01

    Croplands cover about 15% of the land surface, and play unique roles in global biogeochemical cycles. Especially, greenhouse gas budget of croplands is important for climate projection in the future and for mitigation toward climate stabilization. Sustainable cropland is carbon-neutral (i.e., neither a sink nor a source of CO2 for a long time), but those in developed countries consume fossil fuels for agricultural operations and releases CO2 as revealed by LCAs. Paddy field is one of the substantial sources of CH4, and cropland may be the largest anthropogenic source of N2O. However, these features have not been evaluated and discussed using a spatial-explicit comprehensive framework at the global scale. This study applies a process-based terrestrial ecosystem model (VISIT) to worldwide croplands. Exchange of CO2 is simulated as a difference between photosynthesis and respiration, each of which is calculated in a biogeochemical carbon cycle scheme. Net carbon budget accounts for carbon flows by planting, compost input, and harvest. Exchange of CH4 is simulated as a difference between oxidation by aerobic soils and production by anaerobic soils, each of which is calculated using mechanistic schemes. Emission of N2O from nitrification and denitrification is simulated with a semi-mechanistic scheme on the basis of leaky-pipe concept. We are also validating the model through comparison with chamber and tower flux measurements. Global simulations were conducted during a period from 1901 to 2100 on the basis of historical and projected climate and land-use conditions, at a spatial resolution of 0.5 x 0.5 degree. Cropland type and distribution was derived from SAGE-HYDE dataset and country-base fertilizer input was obtained from FAOSTAT. Our preliminary simulation for the 1990s estimated that croplands are a net sink of CO2 by 1.1 Gt C/yr; this sink is offset by emission by food consumption. Paddy fields are estimated to release CH4 by 46 Tg CH4/yr, and croplands

  14. Comparison of platinum/MWCNTs Nanocatalysts Synthesis Processes for Proton Exchange Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Liu, Xuan

    Due to the growing concerns on the depletion of petroleum based energy resources and climate change; fuel cell technologies have received much attention in recent years. Proton exchange membrane fuel cell (PEMFCs) features high energy conversion efficiency and nearly zero greenhouse gas emissions, because of its combination of the hydrogen oxidation reaction (HOR) at anode side and oxygen reduction reaction (ORR) at cathode side. Synthesis of Pt nanoparticles supported on multi walled carbon nanotubes (MWCNTs) possess a highly durable electrochemical surface area (ESA) and show good power output on proton exchange membrane (PEM) fuel cell performance. Platinum on multi-walled carbon nanotubes (MWCNTs) support were synthesized by two different processes to transfer PtCl62- from aqueous to organic phase. While the first method of Pt/MWCNTs synthesis involved dodecane thiol (DDT) and octadecane thiol (ODT) as anchoring agent, the second method used ammonium lauryl sulfate (ALS) as the dispersion/anchoring agent. The particle size and distribution of platinum were examined by high-resolution transmission electron microscope (HRTEM). The TEM images showed homogenous distribution and uniform particle size of platinum deposited on the surface of MWCNTs. The single cell fuel cell performance of the Pt/MWCNTs synthesized thiols and ALS based electrode containing 0.2 (anode) and 0.4 mg (cathode) Pt.cm-2 were evaluated using Nafion-212 electrolyte with H2 and O2 gases at 80 °C and ambient pressure. The catalyst synthesis with ALS is relatively simple compared to that with thiols and also showed higher performance (power density reaches about 1070 mW.cm -2). The Electrodes with Pt/MWCNTs nanocatalysts synthesized using ALS were characterized by cyclic voltammetry (CV) for durability evaluation using humidified H2 and N2 gases at room temperature (21 °C) along with commercial Pt/C for comparison. The ESA measured by cyclic voltammetry between 0.15 and 1.2 V showed significant

  15. Process-oriented tests for validation of baroclinic shallow water models: The lock-exchange problem

    NASA Astrophysics Data System (ADS)

    Kolar, R. L.; Kibbey, T. C. G.; Szpilka, C. M.; Dresback, K. M.; Tromble, E. M.; Toohey, I. P.; Hoggan, J. L.; Atkinson, J. H.

    A first step often taken to validate prognostic baroclinic codes is a series of process-oriented tests, as those suggested by Haidvogel and Beckmann [Haidvogel, D., Beckmann, A., 1999. Numerical Ocean Circulation Modeling. Imperial College Press, London], among others. One of these tests is the so-called "lock-exchange" test or "dam break" problem, wherein water of different densities is separated by a vertical barrier, which is removed at time zero. Validation against these tests has primarily consisted of comparing the propagation speed of the wave front, as predicted by various theoretical and experimental results, to model output. In addition, inter-model comparisons of the lock-exchange test have been used to validate codes. Herein, we present a high resolution data set, taken from a laboratory-scale model, for direct and quantitative comparison of experimental and numerical results throughout the domain, not just the wave front. Data is captured every 0.2 s using high resolution digital photography, with salt concentration extracted by comparing pixel intensity of the dyed fluid against calibration standards. Two scenarios are discussed in this paper, symmetric and asymmetric mixing, depending on the proportion of dense/light water (17.5 ppt/0.0 ppt) in the experiment; the Boussinesq approximation applies to both. Front speeds, cast in terms of the dimensionless Froude number, show excellent agreement with literature-reported values. Data are also used to quantify the degree of mixing, as measured by the front thickness, which also provides an error band on the front speed. Finally, experimental results are used to validate baroclinic enhancements to the barotropic shallow water ADvanced CIRCulation (ADCIRC) model, including the effect of the vertical mixing scheme on simulation results. Based on salinity data, the model provides an average root-mean-square (rms) error of 3.43 ppt for the symmetric case and 3.74 ppt for the asymmetric case, most of which can

  16. SCALING SOLID RESUSPENSION AND SORPTION FOR THE SMALL COLUMN ION EXCHANGE PROCESSING TANK

    SciTech Connect

    Poirier, M.; Qureshi, Z.

    2010-12-14

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing 1.3 million gallon waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending and resuspending Monosodium Titanate (MST), Crystalline Silicotitanate (CST), and simulated sludge. In addition, SRNL will also be conducting pilot-scale tests to determine the mixing requirements for the strontium and actinide sorption. As part of this task, the results from the pilot-scale tests must be scaled up to a full-scale waste tank. This document describes the scaling approach. The pilot-scale tank is a 1/10.85 linear scale model of Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX Program (Risers B5 and B2 for two pump configurations and Risers B5, B3, and B1 for three pump configurations). MST additions are through Riser E1, the proposed MST addition riser in Tank 41H. To determine the approach to scaling the results from the pilot-scale tank to Tank 41H, the authors took the following approach. They reviewed the technical literature for methods to scale mixing with jets and suspension of solid particles with jets, and the technical literature on mass transfer from a liquid to a solid particle to develop approaches to scaling the test data. SRNL assembled a team of internal experts to review the scaling approach and to identify alternative approaches that should be considered.

  17. What can be Learned from X-ray Spectroscopy Concerning Hot Gas in Local Bubble and Charge Exchange Processes?

    NASA Technical Reports Server (NTRS)

    Snowden, Steve

    2007-01-01

    What can be learned from x-ray spectroscopy in observing hot gas in local bubble and charge exchange processes depends on spectral resolution, instrumental grasp, instrumental energy band, signal-to-nose, field of view, angular resolution and observatory location. Early attempts at x-ray spectroscopy include ROSAT; more recently, astronomers have used diffuse x-ray spectrometers, XMM Newton, sounding rocket calorimeters, and Suzaku. Future observations are expected with calorimeters on the Spectrum Roentgen Gamma mission, and the Solar Wind Charge Exchange (SWCX). The Geospheric SWCX may provide remote sensing of the solar wind and magnetosheath and remote observations of solar CMEs moving outward from the sun.

  18. RHEOLOGY OF SETTLED SOLIDS IN THE SMALL COLUMN ION EXCHANGE PROCESS

    SciTech Connect

    Poirier, M.; Ferguson, C.; Koopman, D.

    2011-01-27

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. This process adds monosodium titanate (MST) to a waste tank containing salt solution (and entrained sludge solids). While the process is operating, the solid particles will begin to settle at temperatures up to 45 C. Previous testing has shown that sludge-MST slurries that sit for extended periods (i.e., 1-61 days) at elevated temperatures (i.e., 23-80 C) can develop large shear strengths which could make them difficult to resuspend and remove from the tank. The authors are conducting rheological testing of mixtures containing various concentrations of sludge, MST, and crystalline silicotitanate (CST, ground and unground) that have been aged at different times (i.e., 0 to 13 weeks) and isothermally heated to 30, 45, or 60 C. Additional tests are being conducted that will allow the solid particles to settle at 45 C for 6, 12, and 24 months. The objectives of this task are to determine the impact of settling time and temperature on the shear strength, yield stress, and consistency of the slurries and to determine the impact of radiation on slurry rheology. The testing will determine the relative impact of these parameters rather than predict the shear strength, yield stress, and consistency as a function of feed and operating conditions. This document describes the rheology of slurries containing MST and simulated sludge that sat at elevated temperatures (i.e., up to 60 C) for up to 13 weeks. Rheology of CST-containing slurries, as well as results of the long term settling (6, 12, and 24 months) and irradiation tests (10 and 100 MRad), will be reported later. The conclusions from this analysis follow: (1) MST only slurries that sat at elevated temperatures had larger shear strength, yield stress, and consistency than MST plus sludge slurries that

  19. Processes of ammonia air-surface exchange in a fertilized Zea mays canopy

    NASA Astrophysics Data System (ADS)

    Walker, J. T.; Jones, M. R.; Bash, J. O.; Myles, L.; Meyers, T.; Schwede, D.; Herrick, J.; Nemitz, E.; Robarge, W.

    2013-02-01

    Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this represents a significant advancement over previous approaches, the evaluation and improvement of such modeling systems for fertilized crops requires process-level field measurements over extended periods of time that capture the range of soil, vegetation, and atmospheric conditions that drive short-term (i.e., post-fertilization) and total growing season NH3 fluxes. This study examines the processes of NH3 air-surface exchange in a fertilized corn (Zea mays) canopy over the majority of a growing season to characterize soil emissions after fertilization and investigate soil-canopy interactions. Micrometeorological flux measurements above the canopy, measurements of soil, leaf apoplast and dew/guttation chemistry, and a combination of in-canopy measurements, inverse source/sink, and resistance modeling were employed. Over a period of approximately 10 weeks following fertilization, daily mean and median net canopy-scale fluxes yielded cumulative total N losses of 8.4% and 6.1%, respectively, of the 134 kg N ha-1 surface applied to the soil as urea ammonium nitrate (UAN). During the first month after fertilization, daily mean emission fluxes were positively correlated with soil temperature and soil volumetric water. Diurnally, maximum hourly average fluxes of ≈ 700 ng N m-2 s-1 occurred near mid-day, coincident with the daily maximum in friction velocity. Net emission was still observed 5 to 10 weeks after fertilization, although mid-day peak fluxes had declined to ≈ 125 ng N m-2 s-1. A key finding of the surface chemistry measurements was the observation of high pH (7.0-8.5) in leaf dew/guttation, which reduced the ability of the canopy to recapture soil emissions during wet periods. In-canopy measurements near peak

  20. Processes of ammonia air-surface exchange in a fertilized Zea mays canopy

    NASA Astrophysics Data System (ADS)

    Walker, J. T.; Jones, M. R.; Bash, J. O.; Myles, L.; Meyers, T.; Schwede, D.; Herrick, J.; Nemitz, E.; Robarge, W.

    2012-06-01

    Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this represents a significant advancement over previous approaches, the evaluation and improvement of such modeling systems for fertilized crops requires process level field measurements over extended periods of time that capture the range of soil, vegetation, and atmospheric conditions that drive short term (i.e., post fertilization) and total growing seasonNH3 fluxes. This study examines the processes of NH3 air-surface exchange in a fertilized corn (Zea mays) canopy over the majority of a growing season to characterize soil emissions after fertilization and investigate soil-canopy interactions. Micrometeorological flux measurements above the canopy, measurements of soil, leaf apoplast and dew/guttation chemistry, and a combination of in-canopy measurements, inverse source/sink, and resistance modeling were employed. Over a period of approximately 10 weeks following fertilization, daily mean and median net canopy-scale fluxes yielded cumulative total N losses of 8.4% and 6.1%, respectively, of the 134 kg N ha-1 surface applied to the soil as urea ammonium nitrate (UAN). During the first month after fertilization, daily mean emission fluxes were positively correlated with soil temperature and soil volumetric water. Diurnally, maximum hourly average fluxes of ≈700 ng N m-2 s-1 occurred near mid-day, coincident with the daily maximum in friction velocity. Net emission was still observed 5 to 10 weeks after fertilization, although mid-day peak fluxes had declined to ≈125 ng N m-2 s-1 A key finding of the surface chemistry measurements was the observation of high pH (7.0 - 8.5) in leaf dew/guttation, which reduced the ability of the canopy to recapture soil emissions during wet periods. In-canopy measurements near peak LAI

  1. Removal of uranium, arsenic, and nitrate by continuously regenerated ion exchange process

    SciTech Connect

    Chang, D.; Awad, J.; Panahi, Z.

    1996-11-01

    Groundwater is the major source of water supply for the City of Riverside (the City). Groundwater from some of the local wells contains high levels of uranium, arsenic, and nitrate. The City is evaluating treatment technologies that can remove these contaminants, in order to be prepared to select appropriate treatment technologies when groundwater treatment is required. Treatment technologies identified by the USEPA as best available technology (BAT) for uranium and arsenic removal are coagulation/filtration, lime softening, ion exchange, and reverse osmosis. Among these technologies, ion exchange is the most cost-effective and suitable for wellhead treatment applications. Ion exchange is also effective for nitrate removal. An ion exchange pilot study was conducted for the removal of uranium, arsenic and nitrate from groundwater. This paper presents a summary of the tests results, conceptual design criteria, and preliminary cost estimate for a full-scale facility.

  2. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    SciTech Connect

    Smith, F; Luther Hamm, L; Sebastian Aleman, S; Johnston Michael, J

    2008-08-26

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system.

  3. Microchannel heat exchanger for two-phase Mixed Refrigerant Joule Thomson process

    NASA Astrophysics Data System (ADS)

    Baek, Seungwhan; Lee, Jisung; Lee, Cheonkyu; Jeong, Sangkwon

    2014-01-01

    Mixed Refrigerant Joule Thomson (MR-JT) refrigerators are widely used in various kinds of cryogenic systems these days. Printed Circuit Heat Exchanger (PCHE) is one of the promising cryogenic compact recuperators for MR-JT refrigerators due to its compactness, high NTU and robustness. However, PCHE composed with microchannel bundles can cause flow mal-distribution, and it can cause the degradation of thermal performance of the system. To mitigate the flow mal-distribution problem, the cross link (or intra-layer bypass) can be adapted to parallel microchannels. Two heat exchangers are fabricated in this study; one has straight channels, and the other one has intra-layer bypass structure between channels to enhance the flow distribution. The MR-JT refrigerators are operated with these two heat exchanger and the no-load temperatures are compared. The lower no load temperature achieved with the intra-layer bypass structured heat exchanger. The results indicate that the flow mal-distribution in the microchannel heat exchanger can be mitigated with intra-layer bypass structure, and relaxation of flow mal-distribution in the heat exchanger guarantee the MR-JT refrigerator's performance.

  4. Mechanistic modeling of ion-exchange process chromatography of charge variants of monoclonal antibody products.

    PubMed

    Kumar, Vijesh; Leweke, Samuel; von Lieres, Eric; Rathore, Anurag S

    2015-12-24

    Ion-exchange chromatography (IEX) is universally accepted as the optimal method for achieving process scale separation of charge variants of a monoclonal antibody (mAb) therapeutic. These variants are closely related to the product and a baseline separation is rarely achieved. The general practice is to fractionate the eluate from the IEX column, analyze the fractions and then pool the desired fractions to obtain the targeted composition of variants. This is, however, a very cumbersome and time consuming exercise. A mechanistic model that is capable of simulating the peak profile will be a much more elegant and effective way to make a decision on the pooling strategy. This paper proposes a mechanistic model, based on the general rate model, to predict elution peak profile for separation of the main product from its variants. The proposed approach uses inverse fit of process scale chromatogram for estimation of model parameters using the initial values that are obtained from theoretical correlations. The packed bed column has been modeled along with the chromatographic system consisting of the mixer, tubing and detectors as a series of dispersed plug flow and continuous stirred tank reactors. The model uses loading ranges starting at 25% to a maximum of 70% of the loading capacity and hence is applicable to process scale separations. Langmuir model has been extended to include the effects of salt concentration and temperature on the model parameters. The extended Langmuir model that has been proposed uses one less parameter than the SMA model and this results in a significant ease of estimating the model parameters from inverse fitting. The proposed model has been validated with experimental data and has been shown to successfully predict peak profile for a range of load capacities (15-28mg/mL), gradient lengths (10-30CV), bed heights (6-20cm), and for three different resins with good accuracy (as measured by estimation of residuals). The model has been also

  5. Contribution of understorey vegetation and soil processes to boreal forest isoprenoid exchange

    NASA Astrophysics Data System (ADS)

    Mäki, Mari; Heinonsalo, Jussi; Hellén, Heidi; Bäck, Jaana

    2017-03-01

    Boreal forest floor emits biogenic volatile organic compounds (BVOCs) from the understorey vegetation and the heterogeneous soil matrix, where the interactions of soil organisms and soil chemistry are complex. Earlier studies have focused on determining the net exchange of VOCs from the forest floor. This study goes one step further, with the aim of separately determining whether the photosynthesized carbon allocation to soil affects the isoprenoid production by different soil organisms, i.e., decomposers, mycorrhizal fungi, and roots. In each treatment, photosynthesized carbon allocation through roots for decomposers and mycorrhizal fungi was controlled by either preventing root ingrowth (50 µm mesh size) or the ingrowth of roots and fungi (1 µm mesh) into the soil volume, which is called the trenching approach. Isoprenoid fluxes were measured using dynamic (steady-state flow-through) chambers from the different treatments. This study aimed to analyze how important the understorey vegetation is as a VOC sink. Finally, a statistical model was constructed based on prevailing temperature, seasonality, trenching treatments, understory vegetation cover, above canopy photosynthetically active radiation (PAR), soil water content, and soil temperature to estimate isoprenoid fluxes. The final model included parameters with a statistically significant effect on the isoprenoid fluxes. The results show that the boreal forest floor emits monoterpenes, sesquiterpenes, and isoprene. Monoterpenes were the most common group of emitted isoprenoids, and the average flux from the non-trenched forest floor was 23 µg m-2 h-1. The results also show that different biological factors, including litterfall, carbon availability, biological activity in the soil, and physico-chemical processes, such as volatilization and absorption to the surfaces, are important at various times of the year. This study also discovered that understorey vegetation is a strong sink of monoterpenes. The

  6. The shelf edge exchange processes experiment, SEEP-II: an introduction to hypotheses, results and conclusions

    NASA Astrophysics Data System (ADS)

    Biscaye, Pierre E.; Flagg, Charles N.; Falkowski, Paul G.

    The SEEP (Shelf Edge Exchange Processes)-II experiment was the second of two that took place in the Middle Atlantic Bight (MAB) of the eastern U.S. continental shelf and slope. The experiment included an array of 10 multi-instrumented moorings deployed for 15 months and 10 oceanographic cruises, all designed to address the problem of the fate of continental shelf particulate matter in general, and organic carbon in particular. This paper provides the setting and background for the SEEP Program, the SEEP-II experiment and an introduction to the 18 papers constituting the subject of this special volume. Because those papers lack one of a general nature on the physical oceanographic setting of the experiment, that aspect is treated in somewhat more detail here. The results of the experiment overwhelmingly show that the working hypothesis on which the SEEP Program was undertaken and sponsored by the Department of Energy is not valid. That is, there is not an export to the adjacent slope and open ocean of a large proportion of the particulate matter introduced to and biologically generated in the waters of the continental shelf; most of the biogenic particulate matter is recycled by consumption (bacterial and otherwise) and oxidation on the shelf, and only a small proportion (of order ≪5%) is exported to the adjacent slope. The small amount that is exported appears to be deposited preferentially in the sediments of an area of the slope centered at about 1000 m, and the export and sedimentation to that depocenter appears to increase from the northern to the southern MAB.

  7. Hydrogen exchange kinetics of proteins in denaturants: a generalized two-process model.

    PubMed

    Qian, H; Chan, S I

    1999-02-19

    The recent progress in measurements on the amide hydrogen exchange (HX) in proteins under varying denaturing conditions, both at equilibrium and in transient relaxation, necessitates the development of a unifying theory which quantitatively relates the HX rates to the conformational energetics of the proteins. We present here a comprehensive kinetic model for the site-specific HX of proteins under varying solvent denaturing conditions based on the two-state protein folding model. The generalized two-process model considers both conformational fluctuations and residual protections, respectively, within the folded and unfolded states of a protein, as well as a global kinetic folding-unfolding transition between the two states. The global transition can be either rapid or slow, depending on the solvent condition for the protein. This novel model is applicable to the traditional equilibrium HX measurements in both EX2 and EX1 regimes, and also the recently introduced transient pulse-labeling HX experiments. A set of simple analytical equations is provided for quantitative interpretation of experimental data. The model emphasizes the use of full time-course of bi-exponential HX kinetics, rather than fitting time-course data to single rate constants, to obtain quantitative information about fluctuating conformers within the folded and unfolded states of proteins. This HX kinetic model naturally unfolds into a simple two-state and two-stage kinetic interpretation for protein folding. It suggests that the various observed intermediates of a protein can be interpreted as dominant isomers of either the folded or the unfolded state under different solvent conditions. This simple, minimalist's view of protein folding is consistent with various recent experimental observations on folding kinetics by HX.

  8. Inter-annual variability of exchange processes at the outer Black Sea shelf

    NASA Astrophysics Data System (ADS)

    Shapiro, Georgy; Wobus, Fred; Yuan, Dongliang; Wang, Zheng

    2014-05-01

    The advection of cold water below the surface mixed layer has a significant role in shaping the properties of the Cold Intermediate Layer (CIL) in the Black Sea, and thus the horizontal redistribution of nutrients. The minimal temperature of the CIL in the southwest deep region of the sea in summer was shown to be lower than the winter surface temperature at the same location, indicating the horizontal advective nature of CIL formation in the area (Kolesnikov, 1953). In addition to advection in the deep area of the sea, the transport of cold waters from the northwest Black Sea shelf across the shelf break in winter was shown to contribute to the formation of the CIL (Filippov, 1968; Staneva and Stanev, 1997). However less is known of the exchanges between the CIL waters and the outer shelf areas in summer, when a surface mixed layer and the underlying seasonal thermocline are formed. Ivanov et al. (1997) suggested that the cross frontal exchange within the CIL is strongly inhibited, so that CIL waters formed in the deep sea (i.e. offshore of the Rim Current) do not replenish the CIL waters onshore of the Rim Current (also known as near-bottom shelf waters, or BSW), due to strong cross frontal gradients in potential vorticity (PV). To the contrary, Shapiro et al. (2011) analysed in-situ observations over the period of 1950-2001 and showed a high correlation between the CIL temperatures in the open sea and outer shelf. However, the statistical methods alone were not able to clearly establish the relation between the cause and the consequences. In this study we use a 3D numerical model of the Black Sea (NEMO-SHELF-BLS) to quantify the exchange of CIL waters between the open sea and the outer northwest Black Sea shelf and to assess its significance for the replenishment of BSW on the outer shelf. The model has a resolution of 1/16º latitude × 1/12º longitude and 33 levels in the vertical. In order to represent near-bottom processes better, the model uses a hybrid

  9. Exchange processes from the deep interior to the surface of icy moons

    NASA Astrophysics Data System (ADS)

    Grasset, O.

    Space exploration provides outstanding images of planetary surfaces. Galileo space- craft around Jupiter, and now Cassini in the saturnian system have revealed to us the variety of icy surfaces in the solar system. While Europa, Enceladus, and maybe Titan present past or even active tectonic and volcanic activities, many other moons have been dead worlds for more than 3 billions years. Composition of ices is also complex and it is now commonly admitted that icy surfaces are never composed of pure ices. Water ice can be mixed with salts (Europa?), with hydrocarbons (Titan?) or with silicates (Callisto). The present surfaces of icy moons are the results of both internal (tectonic; volcanism; mantle composition; magnetic field; . . . ) and external processes (radiations, atmospheres, impacts, . . . ). Internal activity (past or present) is almost unknown. While the surfaces indicate clearly that an important activity existed (Ganymede, Europa, Titan, . . . ) or still exists (Enceladus, Titan?, . . . ), volcanic and tectonic processes within icy mantles are still very poorly understood. This project proposes some key studies for improving our knowledge of exchange processes within icy moons, which are: 1) Surface compositions: Interpretation of mapping spectrometer data. It addresses the interpretation of remote sensing data. These data are difficult to understand and a debate between people involved in Galileo and those who are now trying to interpret Cassini data might be fruitful. As an example, interpretation of Galileo data on Europa are still controversial. It is impossible to affirm that the "non-icy" material which does not present the classic infrared signature of pure ice is due to the presence of magnesium hydrates, sodium hydrates, magnesium sulfurs, "clays", or even altered water ice. Discussion on the subject are still needed. On Titan, the presence of the atmosphere impedes to link IR data from Cassini to the composition of the surface. 2) Past and

  10. PILOT SCALE TESTING OF MONOSODIUM TITANATE MIXING FOR THE SRS SMALL COLUMN ION EXCHANGE PROCESS - 11224

    SciTech Connect

    Poirier, M.; Restivo, M.; Williams, M.; Herman, D.; Steeper, T.

    2011-01-25

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and select actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is to determine the requirements for the pumps to suspend the MST particles so that they can contact the strontium and actinides in the liquid and be removed from the tank. The pilot-scale tank is a 1/10.85 linear scaled model of SRS Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5 and B2 for two pump configurations and Risers B5, B3, and B1 for three pump configurations). The conclusions from this work follow: (i) Neither two standard slurry pumps nor two quad volute slurry pumps will provide sufficient power to initially suspend MST in an SRS waste tank. (ii) Two Submersible Mixer Pumps (SMPs) will provide sufficient power to initially suspend MST in an SRS waste tank. However, the testing shows the required pump discharge velocity is close to the maximum discharge velocity of the pump (within 12%). (iii) Three SMPs will provide sufficient power to initially suspend MST in an SRS waste tank. The testing shows the required pump discharge velocity is 66% of the maximum discharge velocity of the pump. (iv) Three SMPs are needed to resuspend MST that has settled in a waste tank at nominal 45 C for four weeks. The testing shows the required pump discharge velocity is 77% of the maximum discharge velocity of the pump. Two SMPs are not sufficient to resuspend MST that settled under these

  11. Ontology-Based Exchange and Immediate Application of Business Calculation Definitions for Online Analytical Processing

    NASA Astrophysics Data System (ADS)

    Kehlenbeck, Matthias; Breitner, Michael H.

    Business users define calculated facts based on the dimensions and facts contained in a data warehouse. These business calculation definitions contain necessary knowledge regarding quantitative relations for deep analyses and for the production of meaningful reports. The business calculation definitions are implementation and widely organization independent. But no automated procedures facilitating their exchange across organization and implementation boundaries exist. Separately each organization currently has to map its own business calculations to analysis and reporting tools. This paper presents an innovative approach based on standard Semantic Web technologies. This approach facilitates the exchange of business calculation definitions and allows for their automatic linking to specific data warehouses through semantic reasoning. A novel standard proxy server which enables the immediate application of exchanged definitions is introduced. Benefits of the approach are shown in a comprehensive case study.

  12. Calculation of the Helfferich number to identify the rate-controlling step of ion exchange for a batch process

    SciTech Connect

    Bunzl, K.

    1995-08-01

    The Helfferich number He is used frequently as a valuable criterion to decide whether for an ion exchange process film diffusion or particle diffusion of the ions is the rate-determining step. The corresponding equation given by Helfferich is restricted, however, for the boundary condition of an infinite solution volume. In the present paper, the Helfferich number is calculated also for a finite solution volume, i.e., for a typical batch process. Because the resulting equation can be solved only numerically, the results are presented in graphical form. It is also examined for which batch processes the conventional Helfferich number already yields a conservative and thus a very simple and useful estimate of the rate-determining step. Information on the kinetics of ion exchange reactions is required not only for the economic employment of synthetic ion exchangers in the industry and the laboratory but also for a better understanding of these processes in natural systems, as, e.g., the sorption of nutrient and toxic ions by the soil.

  13. Circulation and exchange processes over the continental shelf and slope. Final report

    SciTech Connect

    Csanady, G.T.

    1988-12-31

    The theme of the work during the past triennium has been the SEEP experiment, data interpretation and modeling related to the goals of the experiment, and was characterized by increasing cooperation with colleagues from other disciplines. The theoretical contributions dealt with shelf-slope interaction, the dynamics and climatology of currents over the continental slope, and the behavior of fate of organic particles. Observational papers discussed various exchange mechanisms at the shelf edge, with special attention to particle exchange, and the quiescence of currents over the mid continental slope which is presumably responsible for the accumulation of organic particles.

  14. Continuous process of preparation of n-butyl(meth)acrylate by esterification of (meth)acrylic acid by butanol on thermostable sulfo-cation exchanger

    SciTech Connect

    Zheleznaya, L.L.; Karakhanov, R.A.; Lunin, A.F.; Magadov, R.S.; Meshcheryakov, S.V.; Mkrtychan, V.R.; Fomin, V.A.

    1987-11-10

    The authors propose an effective thermostable sulfo-cation exchanger based on polymers with a system of conjugated bonds, sulfopolyphenylene ketone (SPP) differing from the known cation exchangers by the high thermostability (up to 250/sup 0/C), and also having the effect of the stabilization of the double bond in unsaturated monomers. The combination of inhibiting and cation exchange properties makes it also possible to use these sulfo-cation exchangers in the processes of esterification of (meth)acrylic acids by alcohols without addition of special inhibitors. The SPP catalyst was tested in esterification processes of acrylic an methacrylic acid by butanol at a pilot plant.

  15. Determination of 16O and 18O sensitivity factors and charge-exchange processes in low-energy ion scattering

    NASA Astrophysics Data System (ADS)

    Téllez, H.; Chater, R. J.; Fearn, S.; Symianakis, E.; Brongersma, H. H.; Kilner, J. A.

    2012-10-01

    Quantitative analysis in low-energy ion scattering (LEIS) requires an understanding of the charge-exchange processes to estimate the elemental sensitivity factors. In this work, the neutralization of He+ scattered by 18O-exchanged silica at energies between 0.6 and 7 keV was studied. The process is dominated by Auger neutralization for Ei < 0.8 keV. An additional mechanism starts above the reionization threshold. This collision-induced neutralization becomes the dominant mechanism for Ei > 2 keV. The ion fractions P+ were determined for Si and O using the characteristic velocity method to quantify the surface density. The 18O/16O sensitivity ratio indicates an 18% higher sensitivity for the heavier O isotope.

  16. Lateral Mixing Processes in an Estuary: San Francisco Bay and its Exchange With Perimeter Habitat

    NASA Astrophysics Data System (ADS)

    MacVean, L. J.; Stacey, M. T.

    2008-12-01

    Observations from the South San Francisco Bay are presented to examine lateral mixing processes in an estuary. Irregularities in the shoreline lead to lateral density gradients that are set up by tidal trapping, which disrupts the phasing of flows and scalar concentrations along the estuary's axis. In South San Francisco Bay, thousands of acres of salt ponds are being breached to the Bay's influence for the first time in decades as part of a landscape-scale salt marsh restoration project. The tides deliver salt, sediment, and nutrients to the subsided ponds, aggrading their surfaces and converting them to marsh. These newly inter-tidal ponds around the perimeter of the South San Francisco Bay constitute a highly irregular shoreline, capable of initiating steep, periodic lateral density gradients. In this study, we focus on a small cluster of salt ponds and the tidal slough to which they were breached. The exchange between the tidal slough and the ponds is representative of the larger estuary, but of a spatial scale small enough that we can conduct field experiments to examine the flows and transport of scalars in detail. We conducted two boat-mounted transecting surveys of the tidal slough in June and July of 2008, during which we collected profiles of velocity with a down-looking 1200 kHz ADCP, continuous CTD measurements of surface water temperature and salinity, and discrete CTD profiles of salinity and temperature. We have observed that water and salt are trapped in the ponds on the flood tide, and released on the ebb out of phase with the slough's primary salinity gradient. Additionally, the momentum of the ebbing flow in the channel confines the pond effluent to the near bank just down-estuary of the breach. This leads to the coincidence of two distinct water masses, and a sharp change in salinity of 3 PSU over a distance less than 10 meters. We use our data to construct detailed velocity and density fields across and along the tidal slough as the lateral

  17. An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater.

    PubMed

    Mahmoud, Akrama; Hoadley, Andrew F A

    2012-06-15

    Hybrid ion exchange electrodialysis, also called electrodeionization (IXED), is a technology in which a conventional ion exchange (IX) is combined with electrodialysis (ED) to intensify mass transfer and to increase the limiting current density and therefore to carry out the treatment process more effectively. It allows the purification of metal-containing waters, as well as the production of concentrated metal salt solutions, which could be recycled. The objective of this paper was to investigate the ability of the IXED technique for the treatment of acidified copper sulphate solutions simulating rinsing water of copper plating lines. A single-stage IXED process at lab-scale with a small bed of ion exchanger resin with a uniform composition was evaluated, and the treatment performance of the process was thoroughly investigated. The IXED stack was assembled as a bed layered with the ion exchanger resin (strong acid cation-exchange Dowex™) and inert materials. The stack configuration was designed to prevent a non-uniform distribution of the current in the bed and to allow faster establishment of steady-state in the cell for IXED operation. The influence of operating conditions (e.g. ion exchanger resin with a cross-linking degree from 2 to 8% DVB, and current density) on IXED performance was examined. A response surface methodology (RSM) was used to evaluate the effects of the processing parameters of IXED on (i) the abatement yield of the metal cation, which is a fundamental purification parameter and an excellent indicator of the extent of IXED, (ii) the current yield or the efficiency of copper transport induced by the electrical field and (iii) the energy consumption. The experimental results showed that the performance at steady-state of the IXED operation with a layered bed remained modest, because of the small dimension of the bed and notably the current efficiency varied from 25 to 47% depending on the conditions applied. The feasibility of using the IXED

  18. Processes of Ammonia Air-Surface Exchange in a Fertilized Zea Mays Canopy

    EPA Science Inventory

    Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this advancement represents a sig...

  19. Perspectives on an Induction Process for International Exchange Teachers: A Leadership Perspective

    ERIC Educational Resources Information Center

    Siler, James Thomas

    2012-01-01

    This study traces the first year experiences of six international exchange teachers employed in three public and charter schools settings from three districts in two southeastern states. Interviews with these teachers from China, Germany and Colombia, and with their school and district leaders enabled me to produce a narrative of how international…

  20. Combination of ion exchange and partial nitritation/Anammox process for ammonium removal from mainstream municipal wastewater.

    PubMed

    Malovanyy, Andriy; Plaza, Elzbieta; Trela, Jozef; Malovanyy, Myroslav

    2014-01-01

    In this study, a new technology of nitrogen removal from mainstream municipal wastewater is proposed. It is based on ammonium removal by ion exchange and regeneration of ion exchange material with 10-30 g/L NaCl solution with further nitrogen removal from spent regenerant by partial nitritation/Anammox process. Influence of regenerant strength on performance of ion exchange and biological parts of the proposed technology was evaluated. Moreover, the technology was tested in batch mode using pretreated municipal wastewater, strong acid cation (SAC) resin and partial nitritation/Anammox biomass. It was shown that with ion exchange it is possible to remove 99.9% of ammonium from wastewater while increasing the concentration of ammonium in spent regenerant by 18 times. Up to 95% of nitrogen from spent regenerant, produced by regeneration of SAC resin with 10 g/L NaCl solution, was removed biologically by partial nitritation/Anammox biomass. Moreover, the possibilities of integration of the technology into municipal wastewater treatment technology, and the challenges and advantages are discussed.

  1. Preparation SnO₂ nanolayer on flexible polyimide substrates via direct ion-exchange and in situ oxidation process.

    PubMed

    Cui, Guanghui; Wu, Dezhen; Qi, Shengli; Jin, Shao; Wu, Zhanpeng; Jin, Riguang

    2011-03-01

    Tin oxide (SnO(2)) nanolayers were formed on flexible polyimide (PI) substrate via direct ion-exchange and in situ oxidation process utilizing pyromellitic dianhydride/4,4'-oxidianiline-based poly(amic acid) films as polyimide precursor. During an ion-exchange process, stannous ions were doped into the precursor by immersion in ethanolic solution of stannous chloride. Subsequent thermal treatment of the tin(II)-containing precursor at a constant heating rate not only imidized poly(amic acid) to PI but also converted stannous ions into SnO(2) clusters, which diffused and aggregated onto the surface of polymer matrix, forming continuous tin oxide layers. Inductively coupled plasma (ICP) was used to investigate the ion-exchange process. Changes in chemical structure of the poly(amic acid) film and the crystal structure of tin oxides were analyzed by attenuated total reflection-Fourier transform infrared (ATR-FTIR) and X-ray diffraction (XRD). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to study the microstructure of the PI/SnO(2) nanocomposite films. The nanocomposite film maintained essential mechanical property and thermal stability of pristine PI films.

  2. Safety research of multi-functional reprocessing process considering nonproliferation based on an ion-exchange method

    SciTech Connect

    Koyama, Shin-ichi; Ozawa, Masaki |; Okada, Ken; Kurosawa, Kiyoko; Suzuki, Tatsuya; Fujii, Yasuhiko

    2007-07-01

    A simplified separation process was proposed based on an ion-exchange technique. A tertiary pyridine-type ion-exchange resin was used in this process to treat the mixed oxide fuel highly irradiated in the experimental fast reactor 'JOYO'. It was demonstrated that the process is a realistic candidate for future reprocessing using hydrochloric acid and a mixed eluent solution of nitric acid and methanol. In order to develop an engineering scale concept, it is indispensable to establish the conditions for safe operation, so two types of experiments were done to obtain fundamental aspects. The corrosion experiment for structural materials in hydrochloric acid at room temperature was done using tantalum, zirconium, niobium, hastelloy and SUS316L. Results showed that tantalum, zirconium, niobium, and hastelloy had good corrosion resistance to hydrochloric acid. The second experiment looked at the thermal hazards of pyridine-type ion-exchange resin and the methanol, or nitric acid eluent system from the viewpoints of fire and explosion safety. No hazardous reactions occurred between the resin and the eluent system. Above 150 deg. C, attention should be paid to the exothermic reactions for the dried resin. (authors)

  3. SPECIAL ANALYSIS FOR SLIT TRENCH DISPOSAL OF THE REACTOR PROCESS HEAT EXCHANGERS

    SciTech Connect

    Hamm, L.; Collard, L.; Aleman, S.; Gorensek, M.; Butcher, T.

    2012-06-18

    The Savannah River National Laboratory (SRNL), in response to a request from Solid Waste Management (SWM), conducted a Special Analysis (SA) to evaluate the performance of nineteen heat exchangers that are to be disposed in the E-Area low level waste facility Slit Trench 9 (ST 9). Although these nineteen heat exchangers were never decontaminated, the majority of the radionuclides in the heat exchanger inventory list were determined to be acceptable for burial because they are less than the 'generic' waste form inventory limits given in the 2008 Performance Assessment (PA) (WSRC, 2008). However, as generic waste, the H-3 and C-14 inventories resulted in unacceptable sum-of-fractions (SOFs). Initial scoping analyses performed by SRNL indicated that if alterations were made to certain external nozzles to mitigate various potential leak paths, acceptable SOFs could be achieved through the use of a 'Special' waste form. This SA provides the technical basis for this new 'Special' waste form and provides the inventory limits for H-3 and C-14 for these nineteen heat exchangers such that the nineteen heat exchangers can be disposed in ST 9. This 'Special' waste form is limited to these nineteen heat exchangers in ST 9 and applies for H-3 and C-14, which are designated as H-3X and C-14X, respectively. The SA follows the same methodology used in the 2008 PA and the 2008 SA except for the modeling enhancements noted below. Infiltration rates above the heat exchangers are identical to those used in the 2008 PA; however, flow through the heat exchangers is unique. Because it is unknown exactly how sealed heat exchanger openings will perform and how surface and embedded contaminants will be released, multiple base cases or scenarios were established to investigate a set of performances. Each scenario consists of flow options (based on the performance of sealed openings) and a near-field release of contaminants (based on corrosion and diffusion performance). Two disposal

  4. Improving Information Exchange in the Chicken Processing Sector Using Standardised Data Lists

    NASA Astrophysics Data System (ADS)

    Donnelly, Kathryn Anne-Marie; van der Roest, Joop; Höskuldsson, Stefán Torfi; Olsen, Petter; Karlsen, Kine Mari

    Research has shown that to improve electronic communication between companies, universal standardised data lists are necessary. In food supply chains in particular there is an increased need to exchange data in the wake of food safety incidents. Food supply chain companies already record numerous measurements, properties and parameters. These records are necessary for legal reasons, labelling, traceability, profiling desirable characteristics, showing compliance and for meeting customer requirements. Universal standards for name and content of each of these data elements would improve information exchange between buyers, sellers, authorities, consumers and other interested parties. A case study, carried out for the chicken sector, attempted to identify the most relevant parameters including which of these were already communicated to external bodies.

  5. Probing two-particle exchange processes in two-mode Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Benet, Luis; Espitia, Diego; Sahagún, Daniel

    2017-03-01

    We study the fidelity decay and its freeze for an initial coherent state of two-mode Bose-Einstein condensates in the Fock regime considering a Bose-Hubbard model that includes two-particle tunneling terms. By using linear-response theory we find scaling properties of the fidelity as a function of the particle number that prove the existence of two-particle mode exchange when a nondegeneracy condition is fulfilled. Tuning the energy difference of the two modes serves to distinguish the presence of two-particle mode-exchange terms through the appearance of certain singularities. We present numerical calculations that illustrate our findings, and propose exploiting a Feshbach resonance to verify experimentally our predictions.

  6. The characteristic assessment of spent ion exchange resin from PUSPATI TRIGA REACTOR (RTP) for immobilization process

    SciTech Connect

    Wahida, Nurul; Yasir, Muhamad Samudi; Majid, Amran Ab; Irwan, M. N.; Wahab, Mohd Abd; Marzukee, Nik; Paulus, Wilfred; Phillip, Esther; Thanaletchumy

    2014-09-03

    In this paper, spent ion exchange resin generated from PUSPATI TRIGA reactor (RTP) in Malaysian Nuclear Agency were characterized based on the water content, radionuclide content and radionuclide leachability. The result revealed that the water content in the spent resin is 48%. Gamma spectrometry analysis indicated the presence of {sup 134}Cs, {sup 137}Cs, {sup 152}Eu, {sup 54}Mn, {sup 58}Co, {sup 60}Co and {sup 65}Zn. The leachability test shows a small concentrations (<1 Bq/l) of {sup 152}Eu and {sup 134}Cs were leached out from the spent resin while {sup 60}Co activity concentrations slightly exceeded the limit generally used for industrial wastewater i.e. 1 Bq/l. Characterization of spent ion exchange resin sampled from RTP show that this characterization is important as a basis to immobilize this radioactive waste using geopolymer technology.

  7. The characteristic assessment of spent ion exchange resin from PUSPATI TRIGA REACTOR (RTP) for immobilization process

    NASA Astrophysics Data System (ADS)

    Wahida, Nurul; Yasir, Muhamad Samudi; Majid, Amran Ab; Wahab, Mohd Abd; Marzukee, Nik; Paulus, Wilfred; Phillip, Esther; Thanaletchumy, Irwan, M. N.

    2014-09-01

    In this paper, spent ion exchange resin generated from PUSPATI TRIGA reactor (RTP) in Malaysian Nuclear Agency were characterized based on the water content, radionuclide content and radionuclide leachability. The result revealed that the water content in the spent resin is 48%. Gamma spectrometry analysis indicated the presence of 134Cs, 137Cs, 152Eu, 54Mn, 58Co, 60Co and 65Zn. The leachability test shows a small concentrations (<1 Bq/l) of 152Eu and 134Cs were leached out from the spent resin while 60Co activity concentrations slightly exceeded the limit generally used for industrial wastewater i.e. 1 Bq/l. Characterization of spent ion exchange resin sampled from RTP show that this characterization is important as a basis to immobilize this radioactive waste using geopolymer technology.

  8. A Widely-Accessible Distributed MEMS Processing Environment. The MEMS Exchange Program

    DTIC Science & Technology

    2012-10-29

    development of an advanced DPG device that would not require a charge-dissipating coating ; this proposal is currently under review. The MEMS Exchange... Medical Applications Biomaterials Science: An Integrated Clinical and Engineering Approach, edited by Yitzhak Rosen and Noel Elman, CRC Press, Boca...Tailorable Titanium -Tungsten Alloy Material Thermally Matched to Semiconductor Substrates and Devices ”  “An Improved Method of Fabrication of MEMS, NEMS

  9. On a Time-Optimal Control Problem Associated with the Heat Exchange Process

    SciTech Connect

    Albeverio, Sergio Alimov, Shavkat

    2008-02-15

    The initial-boundary problem for the heat conduction equation inside a bounded domain is considered. It is supposed that on the boundary of this domain the heat exchange according to Newton's law takes place. The control parameter is equal to the magnitude of output of hot or cold air and is defined on a given part of the boundary. An estimate of the minimal time for achieving the given average temperature is found.

  10. Theoretical considerations for anticipating of function analysis on a gradient index-lens fabrication through double ion-exchange process.

    PubMed

    Zakeri, Banafsheh; Sabatyan, Arash

    2012-09-10

    Based on precise and detailed theoretical examination of diffusion equation analysis, two-step Ag(+)-Na(+) and Na(+)-Ag(+) ion-exchange parameters were optimized in order to fabricate a gradient index (GRIN) lens in the BK7 glass rod. Using the diffusion equation, the impact of the concentration ratio of the exchanged ion during the first and second steps was examined in detail. Then, based on the calculated effective parameters such as concentration ratio and immersion time, a fabrication process was proposed. We managed to get the optimum parameters (the bath stop time, temperature, and length) to make a quarter pitch lens. As a result, some samples of the GRIN lens were fabricated and tested successfully. Theoretical considerations and experimental results are presented.

  11. Dynamic NMR of Intramolecular Exchange Processes in EDTA Complexes of Sc[superscript 3+], Y[superscript 3+], and La[superscript 3+

    ERIC Educational Resources Information Center

    Ba, Yong; Han, Steven; Ni, Lily; Su, Tony; Garcia, Andres

    2006-01-01

    Dynamic NMR makes use of the effect of chemical exchanges on NMR spectra to study kinetics and thermodynamics. An advanced physical chemistry lab experiment was developed to study the intramolecular exchange processes of EDTA (the disodium salt of ethylenediaminetetraacetic acid) metal complexes. EDTA is an important chelating agent, used in…

  12. Integration of ion-exchange and nanofiltration processes for recovering Cr(III) salts from synthetic tannery wastewater.

    PubMed

    Gando-Ferreira, Licínio M; Marques, Joana C; Quina, Margarida J

    2015-01-01

    This study aims to investigate the possibility of integrating both ion-exchange (IX) and nanofiltration (NF) processes for the recovery of Cr(III) salts from a synthetic solution prepared with concentrations of Cr(III), [Formula: see text] and Cl(-) in the range of industrial effluents of tanneries. Ion exchange should be used as a pre-treatment for uptaking Cl(-) ions from the effluent, and thereafter the treated solution is fed to an NF unit to recover chromium sulphate salt for reuse in the tanning bath. The strong anionic resin Diaion PA316 was selected for evaluating chloride-sulphate ion-exchange equilibrium, with respect to mass of resin, NaCl concentration, temperature and ratio [Formula: see text]. It was observed that the separation factor, [Formula: see text], depends on the total electrolyte concentration and the ratio [Formula: see text] plays a role as well. Moreover, it was determined that the resin prefers sulphate over chloride since [Formula: see text] is less than 1. The performance of the NF process is dependent on [Formula: see text] and the rejection of Cr(III) may decrease from 90% to 70% as the ratio increases from 0.5 to 2. Regarding the integration of both IX and NF, the feed solution after treatement with the resin was fed to NF where the ratio of [Formula: see text] led to the best operating conditions for this process (90% of Cr(III) rejection and up to 77% for [Formula: see text] ions). This strategy may be considered as a sustainable approach since it permits to obtain a solution enriched in Cr(III) salt for reuse in the tanning process, thus contributing to environmental protection.

  13. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    DTIC Science & Technology

    2015-01-15

    under reduced pressure at 40 °C for 20 h. The quaternized polymer polyisoprene-ran- poly(vinylbenzyltrimethylammonium chloride) (PI-ran- P [VBTMA]- [Cl...was obtained as pale yellow solid. The quaternized polymers are denoted as PI-ran- P [VBTMA][Cl]-x, where x is the ion exchange capacity (IEC) of the...Characterization of PI-ran- P [VBTMA]- [Cl]-x Copolymers. Precursor copolymers of PI-ran-PVBCl were synthesized through nitroxide-mediated polymerization

  14. Practically convenient and industrially-aligned methods for iridium-catalysed hydrogen isotope exchange processes.

    PubMed

    Cochrane, A R; Idziak, C; Kerr, W J; Mondal, B; Paterson, L C; Tuttle, T; Andersson, S; Nilsson, G N

    2014-06-14

    The use of alternative solvents in the iridium-catalysed hydrogen isotope exchange reaction with developing phosphine/NHC Ir(I) complexes has identified reaction media which are more widely applicable and industrially acceptable than the commonly employed chlorinated solvent, dichloromethane. Deuterium incorporation into a variety of substrates has proceeded to deliver high levels of labelling (and regioselectivity) in the presence of low catalyst loadings and over short reaction times. The preparative outputs have been complemented by DFT studies to explore ligand orientation, as well as solvent and substrate binding energies within the catalyst system.

  15. Exchange processes across sandy beach barriers: Examples from Malibu and Younger Lagoons, California

    NASA Astrophysics Data System (ADS)

    Swarzenski, P. W.; Dimova, N. T.; Izbicki, J. A.

    2010-12-01

    Estuarine systems in California can manifest themselves as shallow lagoons that are seasonally closed to the ocean by wave-built sand barriers. When a lagoon is physically isolated from the ocean, restricted circulation and sustained material inputs may cause eutrophication, low-oxygen conditions, and persistent algal blooms. During such times, the flow of water and material to the ocean must occur through a beach barrier rather than as surface-water runoff. This subsurface exchange can be modulated by the tides and expressed as a form of submarine groundwater discharge, SGD. Biogeochemically, this transport mode is much different than when a lagoon can exchange freely with the ocean, as redox conditions, organic matter concentrations, water residence times, and salinity can change dramatically. The objectives of this study were to: 1) characterize the seasonal patterns of SGD and associated nutrient loadings in two lagoonal systems that are intermittently isolated from the ocean; 2) assess the physical drivers of this exchange - can we identify the terrestrial versus marine forcing factors and what do these results imply for land / sea exchange along California’s coastline that has many such intermittent coastal systems? Two lagoons in California were studied: Younger Lagoon, an agriculturally-impacted coastal lagoon just north of Santa Cruz, and Malibu Lagoon located north of Los Angeles. Our observations during wet (October 2009 and April 2010) and dry conditions (July 2009) in Malibu captured both open- and closed-barrier scenarios. Lagoon water, groundwater, and seawater were analyzed for 222Rn, salinity, nutrients, DOC, and trace metals during all three field efforts. Initial data and calculations based on radon modeling indicate at least an order of magnitude larger groundwater flux to the lagoon during April 2010 (open barrier) as compared to July 2009, when the barrier was closed. A strong correlation (R2=0.85) between (NO2+NO3) concentrations in surface

  16. Spin Saturation Transfer Difference NMR (SSTD NMR): A New Tool to Obtain Kinetic Parameters of Chemical Exchange Processes

    PubMed Central

    Quirós, María Teresa; Macdonald, Colin; Angulo, Jesús; Muñoz, María Paz

    2016-01-01

    This detailed protocol describes the new Spin Saturation Transfer Difference Nuclear Magnetic Resonance protocol (SSTD NMR), recently developed in our group to study processes of mutual-site chemical exchange that are difficult to analyze by traditional methods. As the name suggests, this method combines the Spin Saturation Transfer method used for small molecules, with the Saturation Transfer Difference (STD) NMR method employed for the study of protein-ligand interactions, by measuring transient spin saturation transfer along increasing saturation times (build-up curves) in small organic and organometallic molecules undergoing chemical exchange. Advantages of this method over existing ones are: there is no need to reach coalescence of the exchanging signals; the method can be applied as long as one signal of the exchanging sites is isolated; there is no need to measure T1 or reach steady state saturation; rate constant values are measured directly, and T1 values are obtained in the same experiment, using only one set of experiments. To test the method, we have studied the dynamics of the hindered rotation of N,N-dimethylamides, for which much data is available for comparison. The thermodynamic parameters obtained using SSTD are very similar to the reported ones (spin-saturation transfer techniques and line-shape analysis). The method can be applied to more challenging substrates that cannot be studied by previous methods. We envisage that the simple experimental set up and the wide applicability of the method to a great variety of substrates will make this a common technique amongst organic and organometallic chemists without extensive expertise in NMR. PMID:27911361

  17. Sorption processes and XRD analysis of a natural zeolite exchanged with Pb(2+), Cd(2+) and Zn(2+) cations.

    PubMed

    Castaldi, Paola; Santona, Laura; Enzo, Stefano; Melis, Pietro

    2008-08-15

    In this study the Pb(2+), Cd(2+) and Zn(2+) adsorption capacity of a natural zeolite was evaluated in batch tests at a constant pH of 5.5 by polluting this mineral with solutions containing increasing concentrations of the three cations to obtain adsorption isotherms. In addition X-ray powder diffraction (XRD) was used to investigate the changes of zeolite structure caused by the exchange with cations of different ionic radius. The zeolite adsorption capacity for the three cations was Zn>Pb>Cd. Moreover a sequential extraction procedure [H(2)O, 0.05 M Ca(NO(3))(2) and 0.02 M EDTA] was applied to zeolite samples used in the adsorption experiments to determine the chemical form of the cations bound to the sorbent. Using this approach it was shown that low concentrations of Pb(2+), Cd(2+) and Zn(2+) were present as water-soluble and exchangeable fractions (<25% of the Me adsorbed), while EDTA extracted most of the adsorbed cations from the zeolite (>27% of the Me adsorbed). The XRD pattern of zeolite, analysed according to the Rietveld method, showed that the main mineralogical phase involved in the adsorption process was clinoptilolite. Besides structure information showed that the incorporation of Pb(2+), Cd(2+) and Zn(2+), into the zeolite frameworks changed slightly but appreciably the lattice parameters. XRD analysis also showed the occurrence of some isomorphic substitution phenomena where the Al(3+) ions of the clinoptilolite framework were replaced by exchanged Pb(2+) cations in the course of the ion exchange reaction. This mechanism was instead less evident in the patterns of the samples doped with Cd(2+) and Zn(2+) cations.

  18. Shelf edge exchange processes-II SEEP2-06, R/V Endeavor cruise 186. Hydrographic data report

    SciTech Connect

    Wilson, C.; Behrens, W.J.; Flagg, C.N.; Wallace, D.W.R.; Wilke, R.J.; Wyman, K.D.

    1989-12-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. Phase I of SEEP consisted of a series of nine cruises and a mooring array across the outer continental shelf of New England during 1983--1984. Phase II focused specifically on the shelf/slope frontal region of the mid-Atlantic bight off the Delmarva Peninsula. Hydrographic data were collected on eight of the six cruises.

  19. The organic sea surface microlayer in the upwelling region off Peru and implications for air-sea exchange processes

    NASA Astrophysics Data System (ADS)

    Engel, A.; Galgani, L.

    2015-07-01

    The sea surface microlayer (SML) is at the very surface of the ocean, linking the hydrosphere with the atmosphere, and central to a range of global biogeochemical and climate-related processes. The presence and enrichment of organic compounds in the SML have been suggested to influence air-sea gas exchange processes as well as the emission of primary organic aerosols. Among these organic compounds, primarily of plankton origin, are dissolved exopolymers, specifically polysaccharides and proteins, and gel particles, such as Transparent Exopolymer Particles (TEP) and Coomassie Stainable Particles (CSP). These organic substances often accumulate in the surface ocean when plankton productivity is high. Here, we report results obtained in December 2012 during the SOPRAN Meteor 91 cruise to the highly productive, coastal upwelling regime off Peru. Samples were collected from the SML and from ~ 20 cm below, and were analyzed for polysaccharidic and proteinaceous compounds, gel particles, total and dissolved organic carbon, bacterial and phytoplankton abundance. Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.

  20. Circulation and exchange processes on the South Atlantic Bight Continental Shelf: Progress report, July 1, 1988 to June 30, 1989

    SciTech Connect

    Lee, T.N.

    1989-03-01

    The work reported here is part of the Department of Energy sponsored Southeast US Continental Shelf Program. The DOE Program is a coordinated, multi-university, interdisciplinary investigation aimed at understanding the physical, chemical and biological processes in the South Atlantic Bight (SAB: east coast continental shelf region from Cape Hatteras to Cape Canaveral). The program is coordinated by Dr. David Menzel of Skidaway Oceanographic Institute. The activities of the other Program Investigators will be discussed briefly under Program Overview. The University of Miami component of the program involves an investigation of the physical processes regulating the transport and exchange of materials in the shelf waters. The guiding scientific objective of this work is to improve the capability for prediction of the physical environment. The principal scientific task is to determine the relative importance of the forces driving shelf circulation and exchange and to measure the shelf waters' response over variable time and space scales. The influence of physical processes on chemical and biological distributions and their interactions is studied through interdisciplinary investigations, joint analysis and interpretation of data and joint publications. 103 refs., 14 figs.

  1. A counter-intuitive approach to calculating non-exchangeable 2H isotopic composition of hair: treating the molar exchange fraction fE as a process-related rather than compound-specific variable

    USGS Publications Warehouse

    Landwehr, J.M.; Meier-Augenstein, W.; Kemp, H.F.

    2011-01-01

    Hair is a keratinous tissue that incorporates hydrogen from material that an animal consumes but it is metabolically inert following synthesis. The stable hydrogen isotope composition of hair has been used in ecological studies to track migrations of mammals as well as for forensic and archaeological purposes to determine the provenance of human remains or the recent geographic life trajectory of living people. Measurement of the total hydrogen isotopic composition of a hair sample yields a composite value comprised of both metabolically informative, non-exchangeable hydrogen and exchangeable hydrogen, with the latter reflecting ambient or sample preparation conditions. Neither of these attributes is directly measurable, and the non-exchangeable hydrogen composition is obtained by estimation using a commonly applied mathematical expression incorporating sample measurements obtained from two distinct equilibration procedures. This commonly used approach treats the fraction of exchangeable hydrogen as a mixing ratio, with a minimal procedural fractionation factor assumed to be close or equal to 1. Instead, we propose to use full molar ratios to derive an expression for the non-exchangeable hydrogen composition explicitly as a function of both the procedural fractionation factor α and the molar hydrogen exchange fraction fE. We apply these derivations in a longitudinal study of a hair sample and demonstrate that the molar hydrogen exchange fraction fE should, like the procedural fractionation factor α, be treated as a process-dependent parameter, i.e. a reaction-specific constant. This is a counter-intuitive notion given that maximum theoretical values for the molar hydrogen exchange fraction fE can be calculated that are arguably protein-type specific and, as such, fE could be regarded as a compound-specific constant. We also make some additional suggestions for future approaches to determine the non-exchangeable hydrogen composition of hair and the use of

  2. ANIONIC EXCHANGE PROCESS FOR THE RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS

    DOEpatents

    Bailes, R.H.; Ellis, D.A.; Long, R.S.

    1958-12-16

    Uranium and vanadium can be economically purified and recovered from non- salt roast carbonate leach liquors by adsorption on a strongly basic anionic exchange resin and subsequent selective elution by one of three alternative methods. Method 1 comprises selectively eluting uranium from the resin with an ammonium sulfate solution followed by eluting vanadium from the resin with either 5 M NaCl, saturated (NH/sub 4/)/sub 2/CO/sub 3/, saturated NaHCO/sub 3/, 1 M NaOH, or saturated S0/sub 2/ solutions. Method II comprises selectively eluting vanadium from the resin with either concentrated NaCl or S0/sub 2/ solutions subsequent to pretreatment of the column with either S0/sub 2/ gas, 1 N HCl, or 0.1 N H/sub 2/8O/sub 4/ followed by eluting uranium from the resin with solutions containing 0.9 M NH/sub 4/Cl or NaCl and 0.1 Cl. Method III comprises flowing the carbonate leac solutlon through a first column of a strongly basic anlonlc exchange resin untll vanadium breakthrough occurs, so that the effluent solution is enriched ln uranium content and the vanadium is chiefly retalned by the resln, absorbing the uranlum from the enriched effluent solution on a second column of a strongly basic anionic exchange resin, pretreating the first column with either 0.1 N HCl, 0.1 H/sub 2/SO/sub 4/, C0/sub 2/ gas, or ammonium sulfate, selectively eluting the vanadlum from the column with saturated S0/sub 2/ solution, pretreatlng the second column with either 0.1 N HCl or S0/sub 2/ gas, selectively eluting residual vanadium from the column with saturated S0/sub 2/ solution, and then eluting the uranium from the column with either 0.1 N HCl and 1 N NaCl orO.l N HCl and 1 N NH/sub 4/Cl.

  3. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    DOEpatents

    Sharp, David W.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  4. Modeling foreign exchange market activity around macroeconomic news: Hawkes-process approach

    NASA Astrophysics Data System (ADS)

    Rambaldi, Marcello; Pennesi, Paris; Lillo, Fabrizio

    2015-01-01

    We present a Hawkes-model approach to the foreign exchange market in which the high-frequency price dynamics is affected by a self-exciting mechanism and an exogenous component, generated by the pre-announced arrival of macroeconomic news. By focusing on time windows around the news announcement, we find that the model is able to capture the increase of trading activity after the news, both when the news has a sizable effect on volatility and when this effect is negligible, either because the news in not important or because the announcement is in line with the forecast by analysts. We extend the model by considering noncausal effects, due to the fact that the existence of the news (but not its content) is known by the market before the announcement.

  5. Carbon mass-balance modeling and carbon isotope exchange processes in the Curonian Lagoon

    NASA Astrophysics Data System (ADS)

    Barisevičiūtė, Rūta; Žilius, Mindaugas; Ertürk, Ali; Petkuvienė, Jolita

    2016-04-01

    The Curonian lagoon one of the largest coastal lagoons in Europe is located in the southeastern part of the Baltic Sea and lies along the Baltic coast of Lithuania and the Kaliningrad region of Russia. It is influenced by a discharge of the Nemunas and other smaller rivers and saline water of the Baltic Sea. The narrow (width 0.4 km, deep 8-14 m) Klaipėda Strait is the only way for fresh water run-off and brackish water intrusions. This research is focused on carbon isotope fractionations related with air - water exchange, primary production and organic carbon sedimentation, mineralization and uptake from both marine and terrestrial sources.

  6. Modeling foreign exchange market activity around macroeconomic news: Hawkes-process approach.

    PubMed

    Rambaldi, Marcello; Pennesi, Paris; Lillo, Fabrizio

    2015-01-01

    We present a Hawkes-model approach to the foreign exchange market in which the high-frequency price dynamics is affected by a self-exciting mechanism and an exogenous component, generated by the pre-announced arrival of macroeconomic news. By focusing on time windows around the news announcement, we find that the model is able to capture the increase of trading activity after the news, both when the news has a sizable effect on volatility and when this effect is negligible, either because the news in not important or because the announcement is in line with the forecast by analysts. We extend the model by considering noncausal effects, due to the fact that the existence of the news (but not its content) is known by the market before the announcement.

  7. Development of shut-down process for a proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung-Juhn; Lim, Sang Jin; Lee, Jeung Woo; Min, In-Gyu; Lee, Sang-Yeop; Cho, EunAe; Oh, In-Hwan; Lee, Jong Hyun; Oh, Seung-Chan; Lim, Tae-Won; Lim, Tae-Hoon

    Several different shut-down procedures were carried out to reduce the degradation of membrane electrode assembly (MEA) in a proton exchange membrane fuel cell (PEMFC). The effects of close/open state of outlets of a single cell and application of a dummy load during the shut-down on the degradation of the MEA were investigated. Also, we elucidated the relationship between the thickness of the electrolyte membrane and the degradation of the MEA for different shut-down procedures. When a thin electrolyte membrane was used, the closer of outlets mitigated the degradation during on/off operation. For the thicker electrolyte membrane, the dummy load which eliminates residual hydrogen and oxygen in the electrodes should be applied to lower the degradation.

  8. Using Process Knowledge to Manage Disposal Classification of Ion-Exchange Resin - 13566

    SciTech Connect

    Bohnsack, Jonathan N.; James, David W.

    2013-07-01

    It has been previously shown by EPRI [1] that Class B and C resins represent a small portion by volume of the overall generation of radioactively contaminated resins. In fact, if all of the resins were taken together the overall classification would meet Class A disposal requirements. Lowering the classification of the ion exchange resins as they are presented for disposal provides a path for minimizing the amount of waste stored. Currently there are commercial options for blending wastes from various generators for Class A disposal in development. The NRC may have by this time introduced changes and clarifications to the Branch Technical Position (BTP) on Concentration Averaging and Encapsulation [2] that may ultimately add more flexibility to what can be done at the plant level. The BTP has always maintained that mixtures of resins that are combined for ALARA purposes or operational efficiency can be classified on the basis of the mixture. This is a point often misinterpreted and misapplied. This paper will address options that can be exercised by the generator that can limit B and C waste generation by more rigorous tracking of generation and taking advantage of the normal mix of wastes. This can be achieved through the monitoring of reactor coolant chemistry data and coupled with our knowledge of radionuclide production mechanisms. This knowledge can be used to determine the overall accumulation of activity in ion-exchange resins and provides a 'real-time' waste classification determination of the resin and thereby provide a mechanism to reduce the production of waste that exceeds class A limits. It should be noted that this alternative approach, although rarely used in a nuclear power plant setting, is acknowledged in the original BTP on classification [3] as a viable option for determining radionuclide inventories for classification of waste. Also included is a discussion of an examination performed at the Byron plant to estimate radionuclide content in the

  9. Airborne mapping of earth-atmosphere exchange processes and remote sensing of surface characteristics over heterogeneous areas

    SciTech Connect

    Schuepp, P.H.; Ogunjemiyo, S.; Mitic, C.M.

    1996-10-01

    Given the spatial heterogeneity of much of the biosphere, and the difficulty in establishing representative observation points at the surface, airborne flux observations coupled with airborne and satellite-based remote sensing plays an increasing role in the description of surface-atmosphere exchange processes. Our paper summarizes flux mapping procedures based on low level airborne sampling by the Canadian Twin Otter research aircraft, over three ecosystems with different degrees of spatial heterogeneity (grassland, mixed agricultural land and boreal forest). Observations show that the degree to which flux maps for heat, moisture and trace gases are correlated, among themselves and with maps of radiometrically observable surface features, cannot be generalized. This means that, wherever possible, algorithms for the prediction of surface-atmosphere exchange processes based on remote sensing observations should be developed for - and tested in - each structurally different ecosystem. The flexibility of deployment of aircraft serves well, both for the gathering of data to develop such algorithms, as well as for their testing at scales that integrate over an adequate sample of the various components that constitute a spatially heterogeneous ecosystem. 23 refs., 4 figs.

  10. A Weibull distribution with power-law tails that describes the first passage time processes of foreign currency exchanges

    NASA Astrophysics Data System (ADS)

    Sazuka, Naoya; Inoue, Jun-Ichi

    2007-03-01

    A Weibull distribution with power-law tails is confirmed as a good candidate to describe the first passage time process of foreign currency exchange rates. The Lorentz curve and the corresponding Gini coefficient for a Weibull distribution are derived analytically. We show that the coefficient is in good agreement with the same quantity calculated from the empirical data. We also calculate the average waiting time which is an important measure to estimate the time for customers to wait until the next price change after they login to their computer systems. By assuming that the first passage time distribution might change its shape from the Weibull to the power-law at some critical time, we evaluate the averaged waiting time by means of the renewal-reward theorem. We find that our correction of tails of the distribution makes the averaged waiting time much closer to the value obtained from empirical data analysis. We also discuss the deviation from the estimated average waiting time by deriving the waiting time distribution directly. These results make us conclude that the first passage process of the foreign currency exchange rates is well described by a Weibull distribution with power-law tails.

  11. Enhanced ammonia nitrogen removal using consistent ammonium exchange of modified zeolite and biological regeneration in a sequencing batch reactor process.

    PubMed

    Wei, Yun Xia; Ye, Zheng Fang; Wang, Yao Long; Ma, Ming Guang; Li, Yan Feng

    2011-01-01

    Utilizing preferential ion exchange of the modified zeolite, the zeo-sequencing batch reactor (SBR) is recommended for a new nitrogen removal process. In this study, natural zeolite was modified by sodium chloride to enhance sorption capacity for ammoniacal nitrogen. The untreated and treated zeolite was characterized by XPS and XRD techniques. The sorption isotherm tests showed that equilibrium sorption data were better represented by the Langmuir model than by the Freundlich model. Treatment of natural zeolite by sodium chloride increased the sorption capacity for ammoniacal nitrogen removal from aqueous solutions. As a result of the continuous bioregeneration of ammonium saturated zeolite-floc in the SBR, the nitrogen removal efficiency of the zeo-SBR was relatively ideal. Scanning electron microscopy results showed that microbes were abundant in the zeo-SBR process.

  12. Conversion of ion-exchange resins, catalysts and sludges to glass with optional noble metal recovery using the GMODS process

    SciTech Connect

    Forsberg, C.W.; Beahm, E.C.

    1996-11-01

    Chemical processing and cleanup of waste streams (air and water) typically result in products, clean air, clean water, and concentrated hazardous residues (ion exchange resins, catalysts, sludges, etc.). Typically, these streams contain significant quantities of complex organics. For disposal, it is desirable to destroy the organics and immobilize any heavy metals or radioactive components into stable waste forms. If there are noble metals in the residues, it is desirable to recover these for reuse. The Glass Material Oxidation and Dissolution System (GMODS) is a new process that directly converts radioactive and hazardous chemical wastes to borosilicate glass. GMODS oxidizes organics with the residue converted to glass; converts metals, ceramics, and amorphous solids to glass; converts halides (eg chlorides) to borosilicate glass and a secondary sodium halide stream; and recovers noble metals. GMODS has been demonstrated on a small laboratory scale (hundreds of grams), and the equipment needed for larger masses has been identified.

  13. Exchange bias in (La,Ca)MnO3 bilayers: influence of cooling process

    NASA Astrophysics Data System (ADS)

    Restrepo-Parra, E.; Agudelo, J. D.; Restrepo, J.

    2012-12-01

    The exchange bias (EB) phenomenon in La2/3Ca1/3MnO3/La1/3Ca2/3MnO3 bilayers was studied using Monte Carlo simulations combined with the Heisenberg model and the Metropolis algorithm. These simulations were carried out using the model proposed by Kiwi for an uncompensated interface. The Hamiltonian considered several terms corresponding to the nearest neighbor interaction, magnetocrystalline anisotropy and Zeeman effect. Several interactions in the ferromagnetic (FM), antiferromagnetic (AFM) and FM/AFM interface were considered, depending on the type of interacting ion (Mn3+eg, Mn3+eg‧ or Mn4+d3). The influence of field cooling and cooling temperature on the EB was analyzed and discussed. Regarding the field cooling, it caused an increase in the EB until a certain critical value was reached. After that, its effect was almost negligible. On the other hand, at low values of cooling temperature, not only the EB but also the coercive field were enhanced.

  14. Influence of exchange group of modified glycidyl methacrylate polymer on phenol removal: A study by batch and continuous flow processes.

    PubMed

    Aversa, Thiago Muza; da Silva, Carla Michele Frota; da Rocha, Paulo Cristiano Silva; Lucas, Elizabete Fernandes

    2016-11-01

    Contamination of water by phenol is potentially a serious problem due to its high toxicity and its acid character. In this way some treatment process to remove or reduce the phenol concentration before contaminated water disposal on the environment is required. Currently, phenol can be removed by charcoal adsorption, but this process does not allow easy regeneration of the adsorbent. In contrast, polymeric resins are easily regenerated and can be reused in others cycles of adsorption process. In this work, the interaction of phenol with two polymeric resins was investigated, one of them containing a weakly basic anionic exchange group (GD-DEA) and the other, a strongly basic group (GD-QUAT). Both ion exchange resins were obtained through chemical modifications from a base porous resin composed of glycidyl methacrylate (GMA) and divinyl benzene (DVB). Evaluation tests with resins were carried out with 30 mg/L of phenol in water solution, at pH 6 and 10, employing two distinct processes: (i) batch, to evaluate the effect of temperature, and (ii) continuous flow, to assess the breakthrough of the resins. Batch tests revealed that the systems did not follow the model proposed by Langmuir due to the negative values obtained for the constant b and for the maximum adsorption capacity, Q0. However, satisfactory results for the constants KF and n allowed assuming that the behavior of systems followed the Freundlich model, leading to the conclusion that resin GD-DEA had the best interaction with the phenol when in a solution having pH 10 (phenoxide ions). The continuous flow tests corroborated this conclusion since the performance of GD-DEA in removing phenol was also best at pH 10, indicating that the greater availability of the electron pair in the resin with the weakly basic donor group contributed to enhance the resin's interaction with the phenoxide ions.

  15. Extensive separations (CLEAN) processing strategy compared to TRUEX strategy and sludge wash ion exchange

    SciTech Connect

    Knutson, B.J.; Jansen, G.; Zimmerman, B.D.; Seeman, S.E.; Lauerhass, L.; Hoza, M.

    1994-08-01

    Numerous pretreatment flowsheets have been proposed for processing the radioactive wastes in Hanford`s 177 underground storage tanks. The CLEAN Option is examined along with two other flowsheet alternatives to quantify the trade-off of greater capital equipment and operating costs for aggressive separations with the reduced waste disposal costs and decreased environmental/health risks. The effect on the volume of HLW glass product and radiotoxicity of the LLW glass or grout product is predicted with current assumptions about waste characteristics and separations processes using a mass balance model. The prediction is made on three principal processing options: washing of tank wastes with removal of cesium and technetium from the supernatant, with washed solids routed directly to the glass (referred to as the Sludge Wash C processing strategy); the previous steps plus dissolution of the solids and removal of transuranic (TRU) elements, uranium, and strontium using solvent extraction processes (referred to as the Transuranic Extraction Option C (TRUEX-C) processing strategy); and an aggressive yet feasible processing strategy for separating the waste components to meet several main goals or objectives (referred to as the CLEAN Option processing strategy), such as the LLW is required to meet the US Nuclear Regulatory Commission Class A limits; concentrations of technetium, iodine, and uranium are reduced as low as reasonably achievable; and HLW will be contained within 1,000 borosilicate glass canisters that meet current Hanford Waste Vitrification Plant glass specifications.

  16. Numerical evaluation of static-chamber measurements of soil-atmospheric gas exchange--Identification of physical processes

    USGS Publications Warehouse

    Healy, Richard W.; Striegl, Robert G.; Russell, Thomas F.; Hutchinson, Gordon L.; Livingston, Gerald P.

    1996-01-01

    The exchange of gases between soil and atmosphere is an important process that affects atmospheric chemistry and therefore climate. The static-chamber method is the most commonly used technique for estimating the rate of that exchange. We examined the method under hypothetical field conditions where diffusion was the only mechanism for gas transport and the atmosphere outside the chamber was maintained at a fixed concentration. Analytical and numerical solutions to the soil gas diffusion equation in one and three dimensions demonstrated that gas flux density to a static chamber deployed on the soil surface was less in magnitude than the ambient exchange rate in the absence of the chamber. This discrepancy, which increased with chamber deployment time and air-filled porosity of soil, is attributed to two physical factors: distortion of the soil gas concentration gradient (the magnitude was decreased in the vertical component and increased in the radial component) and the slow transport rate of diffusion relative to mixing within the chamber. Instantaneous flux density to a chamber decreased continuously with time; steepest decreases occurred so quickly following deployment and in response to such slight changes in mean chamber headspace concentration that they would likely go undetected by most field procedures. Adverse influences of these factors were reduced by mixing the chamber headspace, minimizing deployment time, maximizing the height and radius of the chamber, and pushing the rim of the chamber into the soil. Nonlinear models were superior to a linear regression model for estimating flux densities from mean headspace concentrations, suggesting that linearity of headspace concentration with time was not necessarily a good indicator of measurement accuracy.

  17. Anion-exchange resin-based desulfurization process. Annual technical progress report, October 1, 1991--September 30, 1992

    SciTech Connect

    Sheth, A.C.; Strevel, S.D.; Dharmapurikar, R.

    1992-12-31

    Under the current grant, the University of Tennessee Space Institute (UTSI) will carry out the bench scale evaluation and further development of the anion-exchange resin-based desulfurization concept to desulfurize alkali metal sulfates. This concept has been developed and patented by UTSI under US Patent No. 4,917,874. The developmental program proposed under this DOE grant includes screening of commercially available resins to select three candidate resins for further study. These three resins will undergo a series of experiments designed to test the resins` performance under different process conditions (including the use of spent MHD seed material). The best of these resins will be used in optimizing the regeneration step and in testing the effects of performance enhancers. The process schematic developed from the results will be used to estimate the related economics. During this reporting period, October 1, 1991 to September 30, 1992, analysis of batch mode screening experiments was completed to select three candidate resins for process variables study in the fixed-bed set-up. This setup was modified and the experiments were carded out to evaluate effects of major process variables. The analysis of fixed-bed experiments is going on and we have also started simple batch mode experiments to identify desirable conditions for resin regeneration step. We have also started simple process engineering type calculations to determine the trade-off between the solution concentration and the resulting evaporation/concentration load.

  18. The Exchange of Soil Nitrite and Atmospheric HONO: a Missing Process in the Nitrogen Cycle and Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Cheng, Yafang; Su, Hang; Oswald, Robert; Behrendt, Thomas; Trebs, Ivonne; Meixner, Franz X.; Andreae, Meinrat O.; Pöschl, Ulrich

    2013-04-01

    Hydroxyl radicals (OH) are a key species in atmospheric photochemistry. In the lower atmosphere, up to ~30% of the primary OH radical production is attributed to the photolysis of nitrous acid (HONO), and field observations suggest a large missing source of HONO. The dominant sources of N(III) in soil, however, are biological nitrification and denitrification processes, which produce nitrite ions from ammonium (by nitrifying microbes) as well as from nitrate (by denitrifying microbes). We show that soil nitrite can release HONO and explain the reported strength and diurnal variation of the missing source. We also show that the soil-atmosphere exchange of N(III), though not considered in the N cycle, might result in significant amount of reactive nitrogen emission (comparable to soil NO emissions). Fertilized soils with low pH appear to be particularly strong sources of HONO and OH. Thus, agricultural activities and land-use changes may strongly influence the oxidizing capacity of the atmosphere. Because of the widespread occurrence of nitrite-producing microbes and increasing N and acid deposition, the release of HONO from soil may also be important in natural environments, including forests and boreal regions. In view of the potentially large impact on atmospheric chemistry and global environmental change, we recommend further studies of HONO release from soil nitrite and related processes in the biogeochemical cycling of N in both agricultural and natural environments. Reference: Su, H., Cheng, Y., et al., Soil Nitrite as a Source of Atmospheric HONO and OH Radicals, Science, 333, 1616-1618, 10.1126/science.1207687, 2011. Su, H., et al., The Exchange of Soil Nitrite and Atmospheric HONO: A Missing Process in the Nitrogen Cycle and Atmospheric Chemistry, NATO Science for Peace and Security Series C: Environmental Security, Springer Netherlands, 93-99, 2013.

  19. Processes for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil, and apparatuses for treating biomass-derived pyrolysis oil

    DOEpatents

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-11-24

    Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed through the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.

  20. Air-snow exchange of nitrate: a modelling approach to investigate physicochemical processes in surface snow at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Bock, Josué; Savarino, Joël; Picard, Ghislain

    2016-10-01

    Snowpack is a multiphase (photo)chemical reactor that strongly influences the air composition in polar and snow-covered regions. Snowpack plays a special role in the nitrogen cycle, as it has been shown that nitrate undergoes numerous recycling stages (including photolysis) in the snow before being permanently buried in the ice. However, the current understanding of these physicochemical processes remains very poor. Several modelling studies have attempted to reproduce (photo)chemical reactions inside snow grains, but these have relied on strong assumptions to characterise snow reactive properties, which are not well defined. Air-snow exchange processes such as adsorption, solid-state diffusion, or co-condensation also affect snow chemical composition. Here, we present a physically based model of these processes for nitrate. Using as input a 1-year-long time series of atmospheric nitrate concentration measured at Dome C, Antarctica, our model reproduces with good agreement the nitrate measurements in the surface snow. By investigating the relative importance of the main exchange processes, this study shows that, on the one hand, the combination of bulk diffusion and co-condensation allows a good reproduction of the measurements (correlation coefficient r = 0.95), with a correct amplitude and timing of summer peak concentration of nitrate in snow. During winter, nitrate concentration in surface snow is mainly driven by thermodynamic equilibrium, whilst the peak observed in summer is explained by the kinetic process of co-condensation. On the other hand, the adsorption of nitric acid on the surface of the snow grains, constrained by an already existing parameterisation for the isotherm, fails to fit the observed variations. During winter and spring, the modelled concentration of adsorbed nitrate is respectively 2.5 and 8.3-fold higher than the measured one. A strong diurnal variation driven by the temperature cycle and a peak occurring in early spring are two other

  1. Large-Scale Testing of Treatment Processes as Alternatives to Ballast Exchange

    DTIC Science & Technology

    2003-09-01

    or P ha eo ph yt in ( µg L -1 ) Chlorophyll a Phaeophytin Figure 7. Effect of hydrocyclone, screen and UV unit processes on total phytoplankton ...varying turbidities on total phytoplankton population. 0.00 0.20 0.40 0.60 0.80 25,000 40,000 60,000 UV Dose (µW s cm-2) Ph yt op la nk to n...r P ha eo ph yt in ( µ g L- 1 ) Chlorophyll a Phaeophytin Figure 19. Effect of screen and UV unit processes on total phytoplankton population at

  2. A two-process model describes the hydrogen exchange behavior of cytochrome c in the molten globule state with various extents of acetylation.

    PubMed

    Szewczuk, Z; Konishi, Y; Goto, Y

    2001-08-14

    Acetylation of Lys residues of horse cytochrome c steadily stabilizes the molten globule state in 18 mM HCl as more Lys residues are acetylated [Goto and Nishikiori (1991) J. Mol. Biol. 222, 679-686]. The dynamic features of the molten globule state were characterized by hydrogen/deuterium exchange of amide protons, monitored by mass spectrometry as each deuteration increased the protein mass by 1 Da. Electrospray mass spectrometry enabled us to monitor simultaneously the exchange kinetics of more than seven species with a different number of acetyl groups. One to four Lys residue-acetylated cytochrome c showed almost no protection of the amide protons from rapid exchange. The transition from the unprotected to the protected state occurred between five and eight Lys residue-acetylated species. For species with more than nine acetylated Lys residues, the exchange kinetics were independent of the extent of acetylation, and 26 amide protons were protected at 60 min of exchange, indicating the formation of a rigid hydrophobic core with hydrogen-bonded secondary structures. The apparent transition to the protected state required a higher degree of acetylation than the conformational transition measured by circular dichroism, which had a midpoint at about four acetylated residues. This difference in the transitions suggested a two-process model in which the exchange occurs either from the protected folded state or from the unprotected unfolded state through global unfolding. On the basis of a two-process model and with the reported values of the exchange and stability parameters, we simulated the exchange kinetics of a series of acetylated cytochrome c species. The simulated kinetics reproduced the observed kinetics well, indicating validity of this model for hydrogen exchange of the molten globule state.

  3. Analytical characterization of complex, biotechnological feedstocks by pH gradient ion exchange chromatography for purification process development.

    PubMed

    Kröner, Frieder; Hanke, Alexander T; Nfor, Beckley K; Pinkse, Martijn W H; Verhaert, Peter D E M; Ottens, Marcel; Hubbuch, Jürgen

    2013-10-11

    The accelerating growth of the market for proteins and the growing interest in new, more complex molecules are bringing new challenges to the downstream process development of these proteins. This results in a demand for faster, more cost efficient, and highly understood downstream processes. Screening procedures based on high-throughput methods are widely applied nowadays to develop purification processes for proteins. However, screening highly complex biotechnological feedstocks, such as complete cell lysates containing target proteins often expressed with a low titre, is still very challenging. In this work we demonstrate a multidimensional, analytical screening approach based on pH gradient ion exchange chromatography (IEC), gel electrophoresis and protein identification via mass spectrometry to rationally characterize a biotechnological feedstock for the purpose of purification process development. With this very simple characterization strategy a two-step purification based on consecutive IEC operations was rapidly laid out for the purification of a diagnostic protein from a cell lysate reaching a purity of ∼80%. The target protein was recombinantly produced using an insect cell expression system.

  4. Reverse process of usual optical analysis of boson-exchange superconductors: impurity effects on s- and d-wave superconductors.

    PubMed

    Hwang, Jungseek

    2015-03-04

    We performed a reverse process of the usual optical data analysis of boson-exchange superconductors. We calculated the optical self-energy from two (MMP and MMP+peak) input model electron-boson spectral density functions using Allen's formula for one normal and two (s- and d-wave) superconducting cases. We obtained the optical constants including the optical conductivity and the dynamic dielectric function from the optical self-energy using an extended Drude model, and finally calculated the reflectance spectrum. Furthermore, to investigate impurity effects on optical quantities we added various levels of impurities (from the clean to the dirty limit) in the optical self-energy and performed the same reverse process to obtain the optical conductivity, the dielectric function, and reflectance. From these optical constants obtained from the reverse process we extracted the impurity-dependent superfluid densities for two superconducting cases using two independent methods (the Ferrel-Glover-Tinkham sum rule and the extrapolation to zero frequency of -ϵ1(ω)ω(2)); we found that a certain level of impurities is necessary to get a good agreement on results obtained by the two methods. We observed that impurities give similar effects on various optical constants of s- and d-wave superconductors; the greater the impurities the more distinct the gap feature and the lower the superfluid density. However, the s-wave superconductor gives the superconducting gap feature more clearly than the d-wave superconductor because in the d-wave superconductors the optical quantities are averaged over the anisotropic Fermi surface. Our results supply helpful information to see how characteristic features of the electron-boson spectral function and the s- and d-wave superconducting gaps appear in various optical constants including raw reflectance spectrum. Our study may help with a thorough understanding of the usual optical analysis process. Further systematic study of experimental

  5. Ab initio study of the H + HONO reaction: Direct abstraction versus indirect exchange processes

    SciTech Connect

    Hsu, C.C.; Lin, M.C.; Mebel, A.M.; Melius, C.F.

    1997-01-02

    The mechanism of the H + HONO reaction (for which no experimental data are available) has been elucidated by ab initio molecular orbital calculations using modified G2 and BAC-MP4 methods. These results indicate that the reaction occurs predominantly by two indirect metathetical processes. One produces OH + HNO and H{sub 2}O + NO from the decomposition of vibrationally excited hydroxyl nitroxide, HN(O)OH, formed by H atom addition to the N atom of HONO. The other produces H{sub 2}O + NO from the decomposition of vibrationally excited dihydroxylamino radical, N(OH){sub 2}, formed by H atom addition to the terminal O atom. These indirect displacement processes are much more efficient than the commonly assumed, direct H-abstraction reaction producing H{sub 2} + NO{sub 2}. A transition-state theory calculation for the direct abstraction reaction and RRKM calculations for the two indirect displacement processes give rise to the following rate constants, in units of cm{sup 3} molecule{sup -1} s{sup -1} for the 300-3500 K temperature range under atmospheric conditions: k{sub H(2)} = 3.33 x 10{sup -16}T{sup 1.55} exp(-3328.5/T), k{sub OH} = 9.36 x 10{sup -14}T{sup 0.86} exp(-2500.8/T), k{sub H(2)O} = 1.35 x 10{sup -17}T{sup 1.89} exp-(-1935.7/T), where the rate constant for H{sub 2}O production represents the sum from both indirect displacement reactions. 32 refs., 3 figs., 7 tabs.

  6. K Basin Sludge Conditioning Process Testing Project Results from Test 4, ''Acid Digestion of Mixed-Bed Ion Exchange Resin''

    SciTech Connect

    Pool, K.H.; Delegard, C.H.; Schmidt, A.J.; Thornton, B.M.; Silvers, K.L.

    1999-04-02

    Approximately 73 m{sup 3} of heterogeneous solid material, ''sludge,'' (upper bound estimate, Packer 1997) have accumulated at the bottom of the K Basins in the 100 K Area of the Hanford Site. This sludge is a mixture of spent fuel element corrosion products, ion exchange materials (organic and inorganic), graphite-based gasket materials, iron and aluminum metal corrosion products, sand, and debris (Makenas et al. 1996, 1997). In addition, small amounts of polychlorinated biphenyls (PCBs) have been found. Ultimately, it is planned to transfer the K Basins sludge to the Hanford double shell tanks (DSTs). The Hanford Spent Nuclear Fuel (HSNF) project has conducted a number of evaluations to examine technology and processing alternatives to pretreat K Basin sludge to meet storage and disposal requirements. From these evaluations, chemical pretreatment has been selected to address criticality issues, reactivity, and the destruction or removal of PCBs before the K Basin sludge can be transferred to the DSTs. Chemical pretreatment, referred to as the K Basin sludge conditioning process, includes nitric acid dissolution of the sludge (with removal of acid insoluble solids), neutrons absorber addition, neutralization, and reprecipitation. Laboratory testing is being conducted by the Pacific Northwest National Laboratory (PNNL) to provide data necessary to develop the sludge conditioning process.

  7. Ion exchange membrane bioreactor for selective removal of nitrate from drinking water: control of ion fluxes and process performance.

    PubMed

    Velizarov, Svetlozar; Crespo, João G; Reis, Maria A

    2002-01-01

    An ion exchange membrane bioreactor (IEMB), consisting of a monoanion permselective membrane dialyzer coupled to a stirred anoxic vessel with an enriched mixed denitrifying culture, has been studied for nitrate removal from drinking water. The influence of nitrate and chloride concentrations on the selectivity of nitrate transport in the IEMB process was investigated. With appropriate dosing of chloride ions to the IEMB biocompartment, it was possible to regulate the net bicarbonate flux in the system, thus maintaining the bicarbonate concentration in the treated water at the desired level. The latter was not possible to achieve in Donnan dialysis, operated as a single process in which, besides the lower nitrate removal efficiency found, bicarbonate was co-extracted together with nitrate from the polluted water stream. Residual carbon source (ethanol) and nitrite were not detected in the treated water produced in the IEMB system. With a concentration of nitrate in the polluted water three times higher than the maximum contaminant level of 50 mg L(-1) allowed, the IEMB process was successfully operated for a period of 1 month before exceeding this limit.

  8. Multilayered composite proton exchange membrane and a process for manufacturing the same

    DOEpatents

    Santurri, Pasco R; Duvall, James H; Katona, Denise M; Mausar, Joseph T; Decker, Berryinne

    2015-05-05

    A multilayered membrane for use with fuel cells and related applications. The multilayered membrane includes a carrier film, at least one layer of an undoped conductive polymer electrolyte material applied onto the carrier film, and at least one layer of a conductive polymer electrolyte material applied onto the adjacent layer of polymer electrolyte material. Each layer of conductive polymer electrolyte material is doped with a plurality of nanoparticles. Each layer of undoped electrolyte material and doped electrolyte material may be applied in an alternating configuration, or alternatively, adjacent layers of doped conductive polymer electrolyte material is employed. The process for producing a multilayered composite membrane includes providing a carrier substrate and solution casting a layer of undoped conductive polymer electrolyte material and a layer of conductive polymer electrolyte material doped with nanoparticles in an alternating arrangement or in an arrangement where doped layers are adjacent to one another.

  9. Summary of innovative concepts for industrial process improvement: An experimental technology exchange

    SciTech Connect

    Conger, R.L.; Lee, V.E.; Buel, L.M.

    1995-08-01

    This document is a compilation of one-page technical briefs that summarize the highlights of thirty-eight innovations that were presented at the seventh Innovative Concepts Fair, held in Denver, Colorado on April 20--21, 1995. Sixteen of the innovations were funded through the Innovative Concepts Program, and twenty-two innovations represent other state or federally funded programs. The concepts in this year`s fair addressed innovations that can substantially improve industrial processes. Each tech brief describes the need for the proposed concept; the concept being proposed; and the concept`s economics and market potential, key experimental results, and future development needs. A contact block is also included with each flier.

  10. Investigation of gas exchange processes in peat bog ecosystems by means of innovative Raman gas spectroscopy.

    PubMed

    Frosch, Torsten; Keiner, Robert; Michalzik, Beate; Fischer, Bernhard; Popp, Jürgen

    2013-02-05

    Highly sensitive Raman gas spectroscopy is introduced for simultaneous real time analysis of O(2), CO(2), CH(4), and N(2) in order to elucidate the dynamics of greenhouse gases evolving from climate-sensitive ecosystems. The concentrations and fluxes of this suite of biogenic gases were quantified in the head space of a water-saturated, raised peat bog ecotron. The intact peat bog, exhibiting various degradation stages of peat and sphagnum moss, was exposed to various light regimes in order to determine important ecosystem parameters such as the maximum photosynthesis rate of the sphagnum as well as the extent of soil and plant respiration. Miniaturized Raman gas spectroscopy was proven to be an extremely versatile analytical technique that allows for onsite multigas analysis in high temporal resolution. Therefore it is an urgently needed tool for elucidation of complex biochemical processes especially in climate-sensitive ecosystems and consequently for the estimation of climate-relevant gas budgets.

  11. Collaborative distributed sensor management and information exchange flow control for multitarget tracking using Markov decision processes

    NASA Astrophysics Data System (ADS)

    Akselrod, Dimitry; Kirubarajan, T.

    2008-04-01

    In this paper, we consider the problem of collaborative management of uninhabited aerial vehicles (UAVs) for multitarget tracking. In addition to providing a solution to the problem of controlling individual UAVs, we present a method for controlling the information flow among them. The latter provides a solution to one of the main problems in decentralized tracking, namely, distributed information transfer and fusion among the participating platforms. The problem of decentralized cooperative control considered in this paper is an optimization of the information obtained by a number of UAVs, carrying out surveillance over a region, which includes a number of confirmed and suspected moving targets with the goal to track confirmed targets and detects new targets in the area. Each UAV has to decide on the most optimal path with the objective to track as many targets as possible, maximizing the information obtained during its operation with the maximum possible accuracy at the lowest possible cost. Limited communication between UAVs and uncertainty in the information obtained by each UAV regarding the location of the ground targets are addressed in the problem formulation. In order to handle these issues, the problem is presented as an operation of a group of decision makers. Markov Decision Processes (MDPs) are incorporated into the solution. A decision mechanism for collaborative distributed data fusion provides each UAV with the required data for the fusion process while substantially reducing redundancy in the information flow in the overall system. We consider a distributed data fusion system consisting of UAVs that are decentralized, heterogenous, and potentially unreliable. Simulation results are presented on a representative multisensor-multitarget tracking problem.

  12. Processing Information about Support Exchanges in Close Relationships: The Role of a Knowledge Structure

    PubMed Central

    Turan, Bulent

    2016-01-01

    People develop knowledge of interpersonal interaction patterns (e.g., prototypes and schemas), which shape how they process incoming information. One such knowledge structure based on attachment theory was examined: the secure base script (the prototypic sequence of events when an attachment figure comforts a close relationship partner in distress). In two studies (N = 53 and N = 119), participants were shown animated film clips in which geometric figures depicted the secure base script and asked to describe the animations. Both studies found that many people readily recognize the secure-base script from these minimal cues quite well, suggesting that this script is not only available in the context of specific relationships (i.e., a relationship-specific knowledge): The generalized (abstract) structure of the script is also readily accessible, which would make it possible to apply it to any relationship (including new relationships). Regression analyses suggested that participants who recognized the script were more likely to (a) include more animation elements when describing the animations, (b) see a common theme in different animations, (c) create better organized stories, and (d) later recall more details of the animations. These findings suggest that access to this knowledge structure helps a person organize and remember relevant incoming information. Furthermore, in both Study 1 and Study 2, individual differences in the ready recognition of the script were associated with individual differences in having access to another related knowledge: indicators suggesting that a potential relationship partner can be trusted to be supportive and responsive at times of stress. Results of Study 2 also suggest that recognizing the script is associated with those items of an attachment measure that concern giving and receiving support. Thus, these knowledge structures may shape how people process support-relevant information in their everyday lives, potentially affecting

  13. Global carbon exchange and methane emissions from natural wetlands: Application of a process-based model

    NASA Astrophysics Data System (ADS)

    Cao, Mingkui; Marshall, Stewart; Gregson, Keith

    1996-06-01

    Wetlands are one of the most important sources of atmospheric methane (CH4), but the strength of this source is still highly uncertain. To improve estimates of CH4 emission at the regional and global scales and predict future variation requires a process-based model integrating the controls of climatic and edaphic factors and complex biological processes over CH4 flux rates. This study used a methane emission model based on the hypothesis that plant primary production and soil organic matter decomposition act to control the supply of substrate needed by methanogens; the rate of substrate supply and environmental factors, in turn, control the rate of CH4 production, and the balance between CH4 production and methanotrophic oxidation determines the rate of CH4 emission into the atmosphere. Coupled to data sets for climate, vegetation, soil, and wetland distribution, the model was used to calculate spatial and seasonal distributions of CH4 emissions at a resolution of 1° latitude × 1° longitude. The calculated net primary production (NPP) of wetlands ranged from 45 g C m-2 yr-1 for northern bogs to 820 g C m-2 yr-1 for tropical swamps. CH4 emission rates from individual gridcells ranged from 0.0 to 661 mg CH4 m-2 d-1, with a mean of 40 mg CH4 m-2 d-1 for northern wetland, 150 mg CH4 m-2 d-1 for temperate wetland, and 199 mg CH4 m-2 d-1 for tropical wetland. Total CH4 emission was 92 Tg yr-1. Sensitivity analysis showed that the response of CH4 emission to climate change depends upon the combined effects of soil carbon storage, rate of decomposition, soil moisture and activity of methanogens.

  14. Modeling of a data exchange process in the Automatic Process Control System on the base of the universal SCADA-system

    NASA Astrophysics Data System (ADS)

    Topolskiy, D.; Topolskiy, N.; Solomin, E.; Topolskaya, I.

    2016-04-01

    In the present paper the authors discuss some ways of solving energy saving problems in mechanical engineering. In authors' opinion one of the ways of solving this problem is integrated modernization of power engineering objects of mechanical engineering companies, which should be intended for the energy supply control efficiency increase and electric energy commercial accounting improvement. The author have proposed the usage of digital current and voltage transformers for these purposes. To check the compliance of this equipment with the IEC 61850 International Standard, we have built a mathematic model of the data exchange process between measuring transformers and a universal SCADA-system. The results of modeling show that the discussed equipment corresponds to the mentioned Standard requirements and the usage of the universal SCADA-system for these purposes is preferable and economically reasonable. In modeling the authors have used the following software: MasterScada, Master OPC_DI_61850, OPNET.

  15. Engineering Analysis of Intermediate Loop and Process Heat Exchanger Requirements to Include Configuration Analysis and Materials Needs

    SciTech Connect

    T.M. Lillo; R.L. Williamson; T.R. Reed; C.B. Davis; D.M. Ginosar

    2005-09-01

    The need to locate advanced hydrogen production facilities a finite distance away from a nuclear power source necessitates the need for an intermediate heat transport loop (IHTL). This IHTL must not only efficiently transport energy over distances up to 500 meters but must also be capable of operating at high temperatures (>850oC) for many years. High temperature, long term operation raises concerns of material strength, creep resistance and general material stability (corrosion resistance). IHTL design is currently in the initial stages. Many questions remain to be answered before intelligent design can begin. The report begins to look at some of the issues surrounding the main components of an IHTL. Specifically, a stress analysis of a compact heat exchanger design under expected operating conditions is reported. Also the results of a thermal analysis performed on two ITHL pipe configurations for different heat transport fluids are presented. The configurations consist of separate hot supply and cold return legs as well as annular design in which the hot fluid is carried in an inner pipe and the cold return fluids travels in the opposite direction in the annular space around the hot pipe. The effects of insulation configurations on pipe configuration performance are also reported. Finally, a simple analysis of two different process heat exchanger designs, one a tube in shell type and the other a compact or microchannel reactor are evaluated in light of catalyst requirements. Important insights into the critical areas of research and development are gained from these analyses, guiding the direction of future areas of research.

  16. Raman spectroscopic study of the aging and nitration of actinide processing anion-exchange resins in concentrated nitric acid

    SciTech Connect

    Buscher, C. T.; Donohoe, R. J.; Mecklenburg, S. L.; Berg, J. M.; Tait, C. D.; Morris, D. E. [Chemical Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

    1999-08-01

    Degradation of two types of anion exchange resins, Dowex 11 and Reillex HPQ, from the action of concentrated nitric acid (4 to 12 M) and radiolysis [from depleted uranium as UO{sub 2}{sup 2+} nitrate species and {sup 239}Pu as Pu(IV) nitrate species] was followed as a function of time with Raman vibrational spectroscopy. Elevated temperatures ({approx}50 degree sign C) were used in the absence of actinide metal loading to simulate longer exposures of the resin to a HNO{sub 3} process stream and waste storage conditions. In the absence of actinide loading, only minor changes in the Dowex resin at acid concentrations {<=}10 M were observed, while at 12 M acid concentration, the emergence of a Raman peak at 1345 cm-1 indicates the addition of nitro functional groups to the resin. Similar studies with the Reillex resin show it to be more resistant to nitric acid attack at all acid concentrations. Incorporation of weakly radioactive depleted uranium as the UO{sub 2}{sup 2+} nitrate species to the ion-exchange sites of Dowex 11 under differing nitric acid concentrations (6 to 12 M) at room temperature showed no Raman evidence of resin degradation or nitration, even after several hundred days of contact. In contrast, Raman spectra for Dowex 11 in the presence of {sup 239}Pu as Pu(IV) nitrate species reveal numerous changes indicating resin alterations, including a new mode at 1345 cm-1 consistent with a Pu(IV)-nitrate catalyzed addition of nitro groups to the resin backbone. (c) 2000 Society for Applied Spectroscopy.

  17. Wire rod coating process of gas diffusion layers fabrication for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kannan, A. M.; Sadananda, S.; Parker, D.; Munukutla, L.; Wertz, J.; Thommes, M.

    Gas diffusion layers (GDLs) were fabricated using non-woven carbon paper as a macro-porous layer substrate developed by Hollingsworth & Vose Company. A commercially viable coating process was developed using wire rod for coating micro-porous layer by a single pass. The thickness as well as carbon loading in the micro-porous layer was controlled by selecting appropriate wire thickness of the wire rod. Slurry compositions with solid loading as high as 10 wt.% using nano-chain and nano-fiber type carbons were developed using dispersion agents to provide cohesive and homogenous micro-porous layer without any mud-cracking. The surface morphology, wetting characteristics and pore size distribution of the wire rod coated GDLs were examined using FESEM, Goniometer and Hg porosimetry, respectively. The GDLs were evaluated in single cell PEMFC under various operating conditions (temperature and RH) using hydrogen and air as reactants. It was observed that the wire rod coated micro-porous layer with 10 wt.% nano-fibrous carbon based GDLs showed the highest fuel cell performance at 85 °C using H 2 and air at 50% RH, compared to all other compositions.

  18. DNA pairing is an important step in the process of targeted nucleotide exchange.

    PubMed

    Drury, Miya D; Kmiec, Eric B

    2003-02-01

    Modified single-stranded DNA oligonucleotides can direct the repair of genetic mutations in yeast, plant and mammalian cells. The mechanism by which these molecules exert their effect is being elucidated, but the first phase is likely to involve the homologous alignment of the single strand with its complementary sequence in the target gene. In this study, we establish the importance of such DNA pairing in facilitating the gene repair event. Oligonucleotide-directed repair occurs at a low frequency in an Escherichia coli strain (DH10B) lacking the RECA DNA pairing function. Repair activity can be rescued by using purified RecA protein to catalyze the assimilation of oligonucleotide vectors into a plasmid containing a mutant kanamycin resistance gene in vitro. Electroporation of the preformed complex into DH10B cells results in high levels of gene repair activity, evidenced by the appearance of kanamycin-resistant colonies. Gene repair is dependent on the formation of a double-displacement loop (double-D-loop), a recombination intermediate containing two single-stranded oligonucleotides hybridized to opposite strands of the plasmid at the site of the point mutation. The heightened level of stability of the double-D-loop enables it to serve as an active template for the DNA repair events. The data establish DNA pairing and the formation of the double-D-loop as important first steps in the process of gene repair.

  19. Boundary Layer Vertical Exchange Processes and the Mass Budget of Ozone: Observations and Model Results

    SciTech Connect

    Berkowitz, Carl M.; Fast, Jerome D.; Easter, Richard C.

    2000-06-16

    An Eulerian chemical model is used to assess the relative importance of a variety of processes associated with producing high surface ozone episodes during selected periods of the NARSTO 1995 field campaign over the northeastern United States. A comparison of the observed and predicted hourly surface ozone mixing ratios showed that the model qualitatively reproduced the observed ozone trends over the northeastern U.S. The model, however, over-predicted the surface concentrations by 10 to 15 ppb. The simulated mass budget tendency terms are compared for days with low ozone values immediately followed by days with high values. The later days showed observed and simulated ozone mixing ratios aloft to be of order twice that found on preceding days, although the associated chemical mix appeared to have relatively little potential for the subsequent generation of "new" ozone. Under conditions of shallow mixing over urban regions, simulated surface ozone production rates were negative (a net loss) throughout much of the day with convective mixing bringing newly produced ozone from aloft to the surface. It is noted that surface ozone levels appeared to be relatively insensitive to mixing layer growth rates.

  20. Intercalation chemistry in a LDH system: anion exchange process and staging phenomenon investigated by means of time-resolved, in situ X-ray diffraction.

    PubMed

    Taviot-Guého, Christine; Feng, Yongjun; Faour, Azzam; Leroux, Fabrice

    2010-07-14

    Using time-resolved, in situ energy-dispersive X-ray diffraction (EDXRD), the formation of interstratified LDH structures, with alternate interlayer spaces occupied by different anions, have been demonstrated during anion exchange reactions. Novel hybrid LDH nanostructures can thus be prepared, combining the physicochemical properties of two intercalated anions plus those of the LDH host. A general trend is that inorganic-inorganic anion exchange reactions occur in a one-step process while inorganic-organic exchanges may proceed via a second-stage intermediate, suggesting that staging occurs partly as a result of organic-inorganic separation. Yet, other influencing parameters must be considered such as LDH host composition, LDH affinity for different anions and LDH particle size as well as extrinsic parameters like the reaction temperature. Hence, a correlation between the occurrence of staging phenomenon and the difficulty of the exchange of the initial anion is observed, suggesting that staging is needed to overcome the energy barrier in the case of the exchange by organic anions. Notwithstanding the LiAl(2) system, staging has mainly been observed with Zn(2)Cr LDH host so far, a peculiar LDH composition with a unique Zn/Cr ratio of two and a local order of the cations within the hydroxide layers. The formation of a higher order-staged intermediate than stage two, observed during the exchange reaction of CO(3)(2-) or SO(4)(2-) anions with Zn(2)Cr-tartrate, is in favour of a Daumas-Herold model although this model implies a bending of LDH layers. The analysis of the X-ray powder diffraction pattern of Zn(2)Cr-Cl/tartrate second-stage intermediate, isolated almost as a pure phase during the exchange of Cl(-) with tartrate anions in Zn(2)Cr LDH, indicates a disorder in the stacking sequence and a relative proportion of the two kinds of interlayers slightly different from 50/50. Besides, the microstructural analysis of the XRD pattern reveals a great reduction of the

  1. Recovery of salts from ion-exchange regeneration streams by a coupled nanofiltration-membrane distillation process.

    PubMed

    Jiříček, Tomáš; De Schepper, Wim; Lederer, Tomáš; Cauwenberg, Peter; Genné, Inge

    2015-01-01

    Ion-exchange tap water demineralization for process water preparation results in a saline regeneration wastewater (20-100 mS cm(-1)) that is increasingly problematic in view of discharge. A coupled nanofiltration-membrane distillation (NF-MD) process is evaluated for the recovery of water and sodium chloride from this wastewater. NF-MD treatment of mixed regeneration wastewater is compared to NF-MD treatment of separate anion- and cation-regenerate fractions. NF on mixed regeneration wastewater results in a higher flux (30 L m(-2) h(-1) at 7 bar) compared to NF on the separate fractions (6-9 L m(-2) h(-1) at 30 bar). NF permeate recovery is strongly limited by scaling (50% for separate and 60% for mixed, respectively). Physical signs of scaling were found during MD treatment of the NF permeates but did not result in flux decline for mixed regeneration wastewater. Final salt composition is expected to qualify as a road de-icing salt. NF-MD is an economically viable alternative compared to external disposal of wastewater for larger-scale installations (1.4 versus 2.5 euro m(-3) produced demineralized water for a 10 m3 regenerate per day plant). The cost benefits of water re-use and salt recuperation are small when compared to total treatment costs for mixed regenerate wastewater.

  2. SEEP II, Shelf Edge Exchange Processes-II: Chlorophyll a fluorescence, temperature, and beam attenuation measurements from moored fluorometers

    SciTech Connect

    Medeiros, W.H.; Wirick, C.D.

    1992-02-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. The first SEEP experiment (SEEP I) was across the outer continental shelf of New England during 1983--1984 and consisted of a series of nine cruises and a mooring array. The second experiment (SEEP II) focused specifically of the shelf/slope frontal region of the mid-Atlantic Bight off the Delmarva peninsula. This report presents data collected during SEEP II. The SEEP II experiment consisted of a series of ten cruises and mooring arrays as well as over-flights by NASA aircraft. The cruises were consecutively designated SEEP2-01 to SEEP2-10. Hydrographic data were collected on all cruises except SEEP2-04 and SEEP2-07 during which benthic processes were investigated. Mooring arrays were deployed during three cruises in the Spring, Summer and Winter of 1988. Brookhaven National Laboratory deployed sixteen fluorometer instrument packages on their moorings with sensors to measure: the in vivo fluorescence of phytoplankton, temperature, subsurface light, dissolved oxygen, and water transparency. Data from the fluorometer, temperature, and transmissometer sensors are reported herein.

  3. Shelf Edge Exchange Processes, II: SEEP2-08, R/V ENDEAVOR cruise 188. Hydrographic data report

    SciTech Connect

    Wilson, C.; Behrens, W.J.; Flagg, C.N.; Wallace, D.W.R.; Wilke, R.J.; Wyman, K.D.

    1989-12-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. Phase I of SEEP consisted of a series of nine cruises and a mooring array across the outer continental shelf of New England during 1983--1984 (Behrens and Flagg, 1986). Phase II focused specifically on the shelf/slope frontal region of the mid-Atlantic bight off the Delmarva Peninsula. This project consisted of a series of ten cruises, a mooring array, and a series of over-flights by NASA aircraft. Hydrographic data were collected on eight of the cruises, six of which were primarily mooring deployment or recovery cruises. The cruises were consecutively designated SEEP2-01 to SEEP2-10. Two cruises (SEEP2-04 and SEEP2-07) were dedicated to investigating benthic processes and hydrographic data were not collected.

  4. Air-snow exchange of nitrate: a modelling approach to investigate physicochemical processes in surface snow at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Bock, Josué; Savarino, Joël; Picard, Ghislain

    2016-04-01

    Snowpack is a multiphase (photo)chemical reactor that strongly influences the air composition in polar and snow-covered regions. Snowpack plays a special role in the nitrogen cycle, as it has been shown that nitrate undergoes numerous recycling stages (including photolysis) in the snow before being permanently buried in the firn. However, the current understanding of these physicochemical processes remains very poor. Several modelling studies have attempted to reproduce (photo)chemical reactions inside snow grains, but these required strong assumptions to characterise snow reactive properties, which are not well defined. Physical processes such as adsorption, solid state diffusion and co-condensation also affect snow chemical composition. We developed a model including a physically based parameterisation of these air-snow exchange processes for nitrate. This modelling study divides into two distinct parts: firstly, surface concentration of nitrate adsorbed onto snow is calculated using existing isotherm parametrisation. Secondly, bulk concentration of nitrate in solid solution into the ice matrix is modelled. In this second approach, solid state diffusion drives the evolution of nitrate concentration inside a layered spherical snow grain. A physically-based parameterisation defining the concentration at the air-snow interface was developed to account for the the co-condensation process. The model uses as input a one-year long time series of atmospheric nitrate concentration measured at Dome C, Antarctica. The modelled nitrate concentration in surface snow is compared to field measurements. We show that on the one hand, the adsorption of nitric acid on the surface of the snow grains fails to fit the observed variations. During winter and spring, the modelled adsorbed concentration of nitrate is 2.5 and 8.3-fold higher than the measured one, respectively. A strong diurnal variation driven by the temperature cycle and a peak occurring in early spring are two other

  5. Preliminary flowsheet: Ion exchange process for the separation of cesium from Hanford tank waste using Duolite{trademark} CS-100 resin

    SciTech Connect

    Eager, K.M.; Penwell, D.L.; Knutson, B.J.

    1994-12-01

    This preliminary flowsheet document describes an ion exchange process which uses Duolite{trademark} CS-100 resin to remove cesium from Hanford Tank waste. The flowsheet describes one possible equipment configuration, and contains mass balances based on that configuration with feeds of Neutralized Current Acid Waste, and Double Shell Slurry Feed. Process alternatives, unresolved issues, and development needs are discussed which relate to the process.

  6. High Resolution CH4 Emissions and Dissolved CH4 Measurements Elucidate Surface Gas Exchange Processes in Toolik Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Del Sontro, T.; Sollberger, S.; Kling, G. W.; Shaver, G. R.; Eugster, W.

    2013-12-01

    Approximately 14% of the Alaskan North Slope is covered in lakes of various sizes and depths. Diffusive carbon emissions (CH4 and CO2) from these lakes offset the tundra sink by ~20 %, but the offset would substantially increase if ebullitive CH4 emissions were also considered. Ultimately, arctic lake CH4 emissions are not insignificant in the global CH4 budget and their contribution is bound to increase due to impacts from climate change. Here we present high resolution CH4 emission data as measured via eddy covariance and a Los Gatos gas analyzer during the ice free period from Toolik Lake, a deep (20 m) Arctic lake located on the Alaskan North Slope, over the last few summers. Emissions are relatively low (< 25 mg CH4 m-2 d-1) with little variation over the summer. Diurnal variations regularly occur, however, with up to 3 times higher fluxes at night. Gas exchange is a relatively difficult process to estimate, but is normally done so as the product of the CH4 gradient across the air-water interface and the gas transfer velocity, k. Typically, k is determined based on the turbulence on the water side of the interface, which is most commonly approximated by wind speed; however, it has become increasingly apparent that this assumption does not remain valid across all water bodies. Dissolved CH4 profiles in Toolik revealed a subsurface peak in CH4 at the thermocline of up to 3 times as much CH4 as in the surface water. We hypothesize that convective mixing at night due to cooling surface waters brings the subsurface CH4 to the surface and causes the higher night fluxes. In addition to high resolution flux emission estimates, we also acquired high resolution data for dissolved CH4 in surface waters of Toolik Lake during the last two summers using a CH4 equilibrator system connected to a Los Gatos gas analyzer. Thus, having both the flux and the CH4 gradient across the air-water interface measured directly, we can calculate k and investigate the processes influencing

  7. 45 CFR 155.315 - Verification process related to eligibility for enrollment in a QHP through the Exchange.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... enrollment in a QHP through the Exchange. 155.315 Section 155.315 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES REQUIREMENTS RELATING TO HEALTH CARE ACCESS EXCHANGE ESTABLISHMENT STANDARDS AND OTHER... circumstances as to why the applicant does not have documentation. (h) Flexibility in information collection...

  8. 45 CFR 155.315 - Verification process related to eligibility for enrollment in a QHP through the Exchange.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... enrollment in a QHP through the Exchange. 155.315 Section 155.315 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES REQUIREMENTS RELATING TO HEALTH CARE ACCESS EXCHANGE ESTABLISHMENT STANDARDS AND OTHER... explanation of circumstances as to why the applicant does not have documentation. (h) Flexibility...

  9. Hydrogen and methanol exchange processes for (TMP)Rh-OCH3(CH3OH) in binary solutions of methanol and benzene.

    PubMed

    Sarkar, Sounak; Li, Shan; Wayland, Bradford B

    2011-04-18

    Tetramesityl porphinato rhodium(III) methoxide ((TMP)Rh-OCH(3)) binds with methanol in benzene to form a 1:1 methanol complex ((TMP)Rh-OCH(3)(CH(3)OH)) (1). Dynamic processes are observed to occur for the rhodium(III) methoxide methanol complex (1) that involve both hydrogen and methanol exchange. Hydrogen exchange between coordinated methanol and methoxide through methanol in solution results in an interchange of the environments for the non-equivalent porphyrin faces that contain methoxide and methanol ligands. Interchange of the environments of the coordinated methanol and methoxide sites in 1 produces interchange of the inequivalent mesityl o-CH(3) groups, but methanol ligand exchange occurs on one face of the porphyrin and the mesityl o-CH(3) groups remain inequivalent. Rate constants for dynamic processes are evaluated by full line shape analysis for the (1)H NMR of the mesityl o-CH(3) and high field methyl resonances of coordinated methanol and methoxide groups in 1. The rate constant for interchange of the inequivalent porphyrin faces is associated with hydrogen exchange between 1 and methanol in solution and is observed to increase regularly with the increase in the mole fraction of methanol. The rate constant for methanol ligand exchange between 1 and the solution varies with the solution composition and fluctuates in a manner that parallels the change in the activation energy for methanol diffusion which is a consequence of solution non-ideality from hydrogen bonded clusters.

  10. STRONTIUM AND ACTINIDE SORPTION BY MST AND MMST UNDER CONDITIONS REVELANT TO THE SMALL COLUMN ION-EXCHANGE PROCESS

    SciTech Connect

    Taylor-Pashow, K.; Hobbs, D.; Poirier, M.

    2011-05-06

    A series of tests were performed to examine the kinetics of Sr and actinide removal by monosodium titanate (MST) and modified monosodium titanate (mMST) under mixing conditions similar to what will be provided in the Small Column Ion Exchange (SCIX) Program. Similar removal kinetics were seen for two different mixing energies, indicating that under these conditions bulk solution transport is not the rate limiting step for Sr and actinide removal. Sr removal was found to be rapid for both MST and mMST, reaching steady-state conditions within six hours. In contrast, at least six weeks is necessary to reach steady-state conditions for Pu with MST. For mMST, steady-state conditions for Pu were achieved within two weeks. The actual contact time required for the SCIX process will depend on starting sorbate concentrations as well as the requirements for the decontaminated salt solution. During testing leaks occurred in both the MST and mMST tests and evidence of potential desorption was observed. The desorption likely occurred as a result of the change in solids to liquid phase ratio that occurred due to the loss of solution. Based on these results, Savannah River National Laboratory (SRNL) recommended additional testing to further study the effect of changing phase ratios on desorption. This testing is currently in progress and results will be documented in a separate report.

  11. How do leader-member exchange quality and differentiation affect performance in teams? An integrated multilevel dual process model.

    PubMed

    Li, Alex Ning; Liao, Hui

    2014-09-01

    Integrating leader-member exchange (LMX) research with role engagement theory (Kahn, 1990) and role system theory (Katz & Kahn, 1978), we propose a multilevel, dual process model to understand the mechanisms through which LMX quality at the individual level and LMX differentiation at the team level simultaneously affect individual and team performance. With regard to LMX differentiation, we introduce a new configural approach focusing on the pattern of LMX differentiation to complement the traditional approach focusing on the degree of LMX differentiation. Results based on multiphase, multisource data from 375 employees of 82 teams revealed that, at the individual level, LMX quality positively contributed to customer-rated employee performance through enhancing employee role engagement. At the team level, LMX differentiation exerted negative influence on teams' financial performance through disrupting team coordination. In particular, teams with the bimodal form of LMX configuration (i.e., teams that split into 2 LMX-based subgroups with comparable size) suffered most in team performance because they experienced greatest difficulty in coordinating members' activities. Furthermore, LMX differentiation strengthened the relationship between LMX quality and role engagement, and team coordination strengthened the relationship between role engagement and employee performance. Theoretical and practical implications of the findings are discussed.

  12. Spatial characteristics of coherent turbulent structures and exchange processes in the atmospheric surface layer within and above an orchard canopy

    NASA Astrophysics Data System (ADS)

    Zhang, Changan

    1991-05-01

    Spatial features of coherent turbulent structures and the associated exchange processes in the atmospheric surface layer within and above an orchard canopy were investigated, based on field measurements and data analyses. The experiment was conducted using longitudinal (along-wind) and then a transverse (cross-wind) setup in an English walnut orchard near Winters, California in July and August, 1989. Five towers were set along the prevailing wind direction in the longitudinal setup and seven towers were located in the cross-wind direction in the transverse setup. Arrays of fast response sonic anemometers, thermometers, hygrometers, and a CO2/H2O sensor were mounted at multiple levels. The translation speed of coherent structures was almost independent of height and distance with magnitude of 1.6 times the mean wind speed at the canopy top in a narrow range of unstable conditions, based on calculations using conditional sampling, correlation, and phase coherence. A vortex structure behind the microfront may be responsible for maintaining a constant translation speed. The time scale of the structures was 15 s for ejection and sweeps. Sizes of the coherent structures were approximately 9-12 times the canopy height (h) in the longitudinal dimension and at least 3-4 h in the transverse dimension. Microfront angles were almost constant from 2/3 h up to about 2 h with a value of 32 deg, and decreased to 17 deg at 1/3 h. Microfront angles were modified by the mean wind shear. The coherent structures were dominant and efficient in the exchange of momentum and scalars. While structures occupied 44-51 percent of the total time, they were associated with 65-70 percent of the momentum and scalar fluxes. Sweeps were more efficient than ejections inside the canopy, but ejections became as important as sweeps at 2 h. Triple products connected with the coherent structures were slightly asymmetric. Further study is needed to determine the translation speed under a larger stability

  13. The impact of fouling on the process performance of the thermal treatment of pig slurry using tubular heat exchangers.

    PubMed

    Cunault, C; Burton, C H; Pourcher, A M

    2013-03-15

    The aim of this study was to determine the kinetics of fouling and their influence on the performance of a thermal treatment process used for sanitisation of pig slurry. Two temperatures (55 °C and 80 °C) were investigated. One trial was carried out at 55 °C and 80 °C in which the slurry was not re-circulated and one trial at 80 °C in which 100% or 50% of the slurry was re-circulated. Fouling of the heat exchangers was assessed by on-line monitoring of the drop in pressure, changes in treatment temperature, heat transfer coefficients, heat recycling rate, and energy consumption. Similar energy consumption of around 38 kWh m(-3) of effluent was observed at the two temperatures. The operating periods prior to excessive fouling or blockage were 18 days at 55 °C and four days at 80 °C. Recycling treated manure to obtain 50% dilution of the raw feed increased the viable operating period to 14 days at 80 °C but doubled energy consumption. At 55 °C, the significant drop in the target temperature (>7 °C) with fouling severely jeopardised the process. The nature of the decline in performance suggests that the main fouling mechanisms were bio-fouling at 55 °C and organic/mineral deposits at 80 °C. Recycling treated manure enabled the operating period to be extended but increased the total cost of heating. One hundred percent recycling showed that the fouling potential of the manure was largely eliminated after one thermal treatment, suggesting a pretreatment may be advantageous.

  14. A combined process of activated carbon adsorption, ion exchange resin treatment and membrane concentration for recovery of dissolved organics in pre-hydrolysis liquor of the kraft-based dissolving pulp production process.

    PubMed

    Shen, Jing; Kaur, Ishneet; Baktash, Mir Mojtaba; He, Zhibin; Ni, Yonghao

    2013-01-01

    To recover dissolved organics in pre-hydrolysis liquor (PHL) of the kraft-based dissolving pulp production process, a new combined process concept of sequential steps of activated carbon adsorption, ion exchange resin treatment, and membrane concentration, was proposed. The removal of lignin in the PHL was achieved in the activated carbon adsorption step, which also facilitates the subsequent operations, such as the membrane filtration and ion exchange resin treatment. The ion exchange resin treatment resulted in the removal/concentration of acetic acid, which opens the door for acetic acid recovery. The membrane filtration is to recover/concentrate the dissolved sugars. The combined process resulted in the production of PHL-based concentrate with relatively high concentration of hemicellulosic sugars, i.e., 22.13%.

  15. Rat subchronic inhalation study of smoke from cigarettes containing flue-cured tobacco cured either by direct-fired or heat-exchanger curing processes.

    PubMed

    Kinsler, Steven; Pence, Deborah H; Shreve, W Keith; Mosberg, Arnold T; Ayres, Paul H; Sagartz, John W

    2003-07-01

    A subchronic, nose-only inhalation study compared the effects of mainstream smoke from a cigarette containing 100% flue-cured tobacco cured by a direct-fired process to that of a cigarette containing 100% flue-cured tobacco cured by a heat exchanger process. The tobaccos and mainstream smoke from tobaccos cured by the heat exchanger process have been shown to have significantly lower levels of tobacco-specific nitrosamines than tobaccos cured by a direct-fired process. Male and female rats were exposed for 1 h/day, 5 days/wk, for 13 wk to mainstream smoke at 0, 0.06, 0.20, or 0.80 mg wet total particulate matter per liter of air. Clinical signs, body and organ weights, clinical chemistry, hematology, carboxyhemoglobin, serum nicotine, plethysmography, gross pathology, and histopathology were determined. When histologic changes resulting from exposure to smoke from the two types of cigarettes were compared, the only significant difference was increased epithelial hyperplasia of the anterior nasal cavity in males in the high-exposure group for the heat-exchanger cigarette. At the end of the exposure period, subsets of rats from each group were maintained without smoke exposures for an additional 13 wk (recovery period). At the end of the recovery period, there were no statistically significant differences in histopathological findings observed between the heat-exchanger-cured tobacco cigarette when compared to the direct-fired cured tobacco cigarette. The complete toxicological assessment in this study of heat exchanger and direct-fired tobaccos suggests no overall biologically significant differences between the two cigarettes.

  16. Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system

    NASA Astrophysics Data System (ADS)

    Katul, Gabriel G.; Oren, Ram; Manzoni, Stefano; Higgins, Chad; Parlange, Marc B.

    2012-09-01

    The role of evapotranspiration (ET) in the global, continental, regional, and local water cycles is reviewed. Elevated atmospheric CO2, air temperature, vapor pressure deficit (D), turbulent transport, radiative transfer, and reduced soil moisture all impact biotic and abiotic processes controlling ET that must be extrapolated to large scales. Suggesting a blueprint to achieve this link is the main compass of this review. Leaf-scale transpiration (fe) as governed by the plant biochemical demand for CO2 is first considered. When this biochemical demand is combined with mass transfer formulations, the problem remains mathematically intractable, requiring additional assumptions. A mathematical "closure" that assumes stomatal aperture is autonomously regulated so as to maximize the leaf carbon gain while minimizing water loss is proposed, which leads to analytical expressions for leaf-scale transpiration. This formulation predicts well the effects of elevated atmospheric CO2 and increases in D on fe. The case of soil moisture stress is then considered using extensive gas exchange measurements collected in drought studies. Upscaling the fe to the canopy is then discussed at multiple time scales. The impact of limited soil water availability within the rooting zone on the upscaled ET as well as some plant strategies to cope with prolonged soil moisture stress are briefly presented. Moving further up in direction and scale, the soil-plant system is then embedded within the atmospheric boundary layer, where the influence of soil moisture on rainfall is outlined. The review concludes by discussing outstanding challenges and how to tackle them by means of novel theoretical, numerical, and experimental approaches.

  17. Recurrent fractal neural networks: a strategy for the exchange of local and global information processing in the brain.

    PubMed

    Bieberich, Erhard

    2002-01-01

    The regulation of biological networks relies significantly on convergent feedback signaling loops that render a global output locally accessible. Ideally, the recurrent connectivity within these systems is self-organized by a time-dependent phase-locking mechanism. This study analyzes recurrent fractal neural networks (RFNNs), which utilize a self-similar or fractal branching structure of dendrites and downstream networks for phase-locking of reciprocal feedback loops: output from outer branch nodes of the network tree enters inner branch nodes of the dendritic tree in single neurons. This structural organization enables RFNNs to amplify re-entrant input by over-the-threshold signal summation from feedback loops with equivalent signal traveling times. The columnar organization of pyramidal neurons in the neocortical layers V and III is discussed as the structural substrate for this network architecture. RFNNs self-organize spike trains and render the entire neural network output accessible to the dendritic tree of each neuron within this network. As the result of a contraction mapping operation, the local dendritic input pattern contains a downscaled version of the network output coding structure. RFNNs perform robust, fractal data compression, thus coping with a limited number of feedback loops for signal transport in convergent neural networks. This property is discussed as a significant step toward the solution of a fundamental problem in neuroscience: how is neuronal computation in separate neurons and remote brain areas unified as an instance of experience in consciousness? RFNNs are promising candidates for engaging neural networks into a coherent activity and provide a strategy for the exchange of global and local information processing in the human brain, thereby ensuring the completeness of a transformation from neuronal computation into conscious experience.

  18. Excess titanium dioxide nanoparticles on the cell surface induce cytotoxicity by hindering ion exchange and disrupting exocytosis processes

    NASA Astrophysics Data System (ADS)

    Wang, Yanli; Yao, Chenjie; Li, Chenchen; Ding, Lin; Liu, Jian; Dong, Peng; Fang, Haiping; Lei, Zhendong; Shi, Guosheng; Wu, Minghong

    2015-07-01

    To date, considerable effort has been devoted to determine the potential toxicity of nanoparticles to cells and organisms. However, determining the mechanism of cytotoxicity induced by different types of nanoparticles remains challenging. Herein, typically low toxicity nanomaterials were used as a model to investigate the mechanism of cytotoxicity induced by low toxicity nanomaterials. We studied the effect of nano-TiO2, nano-Al2O3 and nano-SiO2 deposition films on the ion concentration on a cell-free system simulating the cell membrane. The results showed that the ion concentration of K+, Ca2+, Na+, Mg2+ and SO42- decreased significantly following filtration of the prepared deposition films. More specifically, at a high nano-TiO2 concentration (200 mg L-1) and a long nano-TiO2 deposition time (48 h), the concentration of Na+ decreased from 2958.01 to 2775.72, 2749.86, 2757.36, and 2719.82 mg L-1, respectively, for the four types of nano-TiO2 studied. Likewise, the concentration of SO42- decreased from 38.83 to 35.00, 35.80, 35.40, and 35.27 mg L-1, respectively. The other two kinds of typical low toxicity nanomaterials (nano-Al2O3 and nano-SiO2) have a similar impact on the ion concentration change trend. Adsorption of ions on nanoparticles and the hydrated shell around the ions strongly hindered the ions through the nanoparticle films. The endocytosed nanoparticles could be released from the cells without inducing cytotoxicity. Hindering the ion exchange and disrupting the exocytosis process are the main factors that induce cytotoxicity in the presence of excess nano-TiO2 on the cell surface. The current findings may offer a universal principle for understanding the mechanism of cytotoxicity induced by low toxicity nanomaterials.To date, considerable effort has been devoted to determine the potential toxicity of nanoparticles to cells and organisms. However, determining the mechanism of cytotoxicity induced by different types of nanoparticles remains challenging

  19. Capture and isotopic exchange method for water and hydrogen isotopes on zeolite catalysts up to technical scale for pre-study of processing highly tritiated water

    SciTech Connect

    Michling, R.; Braun, A.; Cristescu, I.; Dittrich, H.; Gramlich, N.; Lohr, N.; Glugla, M.; Shu, W.; Willms, S.

    2015-03-15

    Highly tritiated water (HTW) may be generated at ITER by various processes and, due to the excessive radio toxicity, the self-radiolysis and the exceedingly corrosive property of HTW, a potential hazard is associated with its storage and process. Therefore, the capture and exchange method for HTW utilizing Molecular Sieve Beds (MSB) was investigated in view of adsorption capacity, isotopic exchange performance and process parameters. For the MSB, different types of zeolite were selected. All zeolite materials were additionally coated with platinum. The following work comprised the selection of the most efficient zeolite candidate based on detailed parametric studies during the H{sub 2}/D{sub 2}O laboratory scale exchange experiments (about 25 g zeolite per bed) at the Tritium Laboratory Karlsruhe (TLK). For the zeolite, characterization analytical techniques such as Infrared Spectroscopy, Thermogravimetry and online mass spectrometry were implemented. Followed by further investigation of the selected zeolite catalyst under full technical operation, a MSB (about 22 kg zeolite) was processed with hydrogen flow rates up to 60 mol*h{sup -1} and deuterated water loads up to 1.6 kg in view of later ITER processing of arising HTW. (authors)

  20. Wherever I may roam: Processes of self-esteem development from adolescence to emerging adulthood in the context of international student exchange.

    PubMed

    Hutteman, Roos; Nestler, Steffen; Wagner, Jenny; Egloff, Boris; Back, Mitja D

    2015-05-01

    Previous studies on self-esteem development show substantial changes as well as interindividual differences in change from adolescence to young adulthood. However, the processes underlying these developmental trajectories are still not well understood. The aim of the present study was to shed light on the macro- and microprocesses of self-esteem development. We investigated a sample of 876 German high school students (M = 16.0 years at Time 1) participating in an international exchange year. Exchange students provided 3 waves of trait self-esteem data (shortly before they departed, immediately after return, and 1 year later), as well as 9 monthly state measures of self-esteem and social inclusion during their stay abroad. In addition, a control group of high school students who stayed in Germany (N = 714) provided 2 waves of trait self-esteem data. From a macroperspective, results showed an effect of student exchange on trait self-esteem development: Exchange students showed a steeper mean-level increase and a lower rank-order stability compared with control students. Zooming in on the microprocesses underlying these developmental patterns, we found trait changes in exchange students to be mediated by state changes in self-esteem during their exchange. These fluctuations in state self-esteem were found to be predicted by feelings of social inclusion in the host country, and vice versa, providing support for both sociometer and self-broadcasting perspectives on self-esteem dynamics. In sum, our findings emphasize the importance of incorporating a microanalytical approach when investigating self-esteem development by showing that the environment triggers changes in this relatively stable personality trait through changes in states.

  1. Determination of {sup 16}O and {sup 18}O sensitivity factors and charge-exchange processes in low-energy ion scattering

    SciTech Connect

    Tellez, H.; Chater, R. J.; Fearn, S.; Symianakis, E.; Kilner, J. A.; Brongersma, H. H.

    2012-10-08

    Quantitative analysis in low-energy ion scattering (LEIS) requires an understanding of the charge-exchange processes to estimate the elemental sensitivity factors. In this work, the neutralization of He{sup +} scattered by {sup 18}O-exchanged silica at energies between 0.6 and 7 keV was studied. The process is dominated by Auger neutralization for E{sub i} < 0.8 keV. An additional mechanism starts above the reionization threshold. This collision-induced neutralization becomes the dominant mechanism for E{sub i} > 2 keV. The ion fractions P{sup +} were determined for Si and O using the characteristic velocity method to quantify the surface density. The {sup 18}O/{sup 16}O sensitivity ratio indicates an 18% higher sensitivity for the heavier O isotope.

  2. Processing arctic eddy-flux data using a simple carbon-exchange model embedded in the ensemble Kalman filter.

    PubMed

    Rastetter, Edward B; Williams, Mathew; Griffin, Kevin L; Kwiatkowski, Bonnie L; Tomasky, Gabrielle; Potosnak, Mark J; Stoy, Paul C; Shaver, Gaius R; Stieglitz, Marc; Hobbie, John E; Kling, George W

    2010-07-01

    Continuous time-series estimates of net ecosystem carbon exchange (NEE) are routinely made using eddy covariance techniques. Identifying and compensating for errors in the NEE time series can be automated using a signal processing filter like the ensemble Kalman filter (EnKF). The EnKF compares each measurement in the time series to a model prediction and updates the NEE estimate by weighting the measurement and model prediction relative to a specified measurement error estimate and an estimate of the model-prediction error that is continuously updated based on model predictions of earlier measurements in the time series. Because of the covariance among model variables, the EnKF can also update estimates of variables for which there is no direct measurement. The resulting estimates evolve through time, enabling the EnKF to be used to estimate dynamic variables like changes in leaf phenology. The evolving estimates can also serve as a means to test the embedded model and reconcile persistent deviations between observations and model predictions. We embedded a simple arctic NEE model into the EnKF and filtered data from an eddy covariance tower located in tussock tundra on the northern foothills of the Brooks Range in northern Alaska, USA. The model predicts NEE based only on leaf area, irradiance, and temperature and has been well corroborated for all the major vegetation types in the Low Arctic using chamber-based data. This is the first application of the model to eddy covariance data. We modified the EnKF by adding an adaptive noise estimator that provides a feedback between persistent model data deviations and the noise added to the ensemble of Monte Carlo simulations in the EnKF. We also ran the EnKF with both a specified leaf-area trajectory and with the EnKF sequentially recalibrating leaf-area estimates to compensate for persistent model-data deviations. When used together, adaptive noise estimation and sequential recalibration substantially improved filter

  3. An Experimental Investigation of the Process of Isotope Exchange that Takes Place when Heavy Water Is Exposed to the Atmosphere

    ERIC Educational Resources Information Center

    Deeney, F. A.; O'Leary, J. P.

    2009-01-01

    We have used the recently developed method for rapid measurement of maximum density temperature to determine the rate at which hydrogen and deuterium isotope exchange takes place when a sample of heavy water is exposed to the atmosphere. We also provide a simple explanation for the observed linear rate of transition. (Contains 2 figures.)

  4. EXCHANGE PROCESSES OF VOLATILE ORGANIC COMPOUNDS ABOVE A TROPICAL RAIN FOREST: IMPLICATIONS FOR MODELING TROPOSPHERIC CHEMISTRY ABOVE DENSE VEGETATION

    EPA Science Inventory

    Measurements of bi-directional ammonia exchange over a fertilized soybean canopy are presented for an 8 week period during the summer of 2002. This modified Bowen-ratio approach was used to determine fluxes from vertical NH3 and temperature gradients in combination with eddy cova...

  5. Incorporation of silver nanoparticles into the bulk of the electrospun ultrafine polyimide nanofibers via a direct ion exchange self-metallization process.

    PubMed

    Han, Enlin; Wu, Dezhen; Qi, Shengli; Tian, Guofeng; Niu, Hongqing; Shang, Gongping; Yan, Xiaona; Yang, Xiaoping

    2012-05-01

    This paper reports our works on the preparation of the silver-nanoparticle-incorporated ultrafine polyimide (PI) ultrafine fibers via a direct ion exchange self-metallization technique using silver ammonia complex cation ([Ag(NH(3))(2)](+)) as the silver precursor and pyromellitic dianhydride (PMDA)/4,4'-oxidianiline (4,4'-ODA) polyimide as the matrix. The polyimide precursor, poly(amic acid) (PAA), was synthesized and then electrospun into ultrafine fibers. By thermally treating the silver(I)-doped PAA ultrafine fibers, where the silver(I) ions were loaded through the ion exchange reactions of the carboxylic acid groups of the PAA macromolecules with the [Ag(NH(3))(2)](+) cations in an aqueous solution, ultrafine polyimide fibers embedded with silver nanoparticles with diameters less than 20 nm were successfully fabricated. The fiber-electrospinning process, the ion exchange process, and various factors influencing the hybrid ultrafine fibers preparation process such as the thermal treatment atmospheres and the thermal catalytic oxidative degradation effect of the reduced silver nanoparticles were discussed. The ultrafine fibers were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA).

  6. Regulation of the rabbit ileal brush-border Na+/H+ exchanger by an ATP-requiring Ca++/calmodulin-mediated process.

    PubMed Central

    Rood, R P; Emmer, E; Wesolek, J; McCullen, J; Husain, Z; Cohen, M E; Braithwaite, R S; Murer, H; Sharp, G W; Donowitz, M

    1988-01-01

    Brush-border vesicles purified from rabbit ileal villus cells were used to evaluate how Ca++/calmodulin (CaM) regulates the neutral linked NaCl absorptive process, part of which is a Na+/H+ exchanger. After freezing and thawing to allow incorporation of macromolecules into the vesicles, the effect of Ca++/CaM on brush-border Na+ uptake with an acid inside pH gradient, and on Na+/H+ exchange was determined. Freezing and thawing vesicles with 0.85 microM free Ca++ plus 5 microM exogenous CaM failed to alter Na+/H+ exchange as did the addition of exogenous ATP plus an ATP regenerating system, which was sufficient to elevate intravesicular ATP to 47 microM from a basal level of 0.4 microM. However, the combination of Ca++/CaM plus ATP inhibited Na+ uptake in the presence of an acid inside pH gradient and inhibited Na+/H+ exchange, while Na+ uptake in the absence of a pH gradient was not altered. This effect required a hydrolyzable form of ATP, and did not occur when the nonhydrolyzable ATP analogue, AMP-PNP, replaced ATP. Under the identical intravesicular conditions used for the transport studies, Ca++ (0.85 microM) plus exogenous CaM (5 microM), in the presence of magnesium plus ATP, increased phosphorylation of five brush-border peptides. These data are consistent with Ca++/CaM acting via phosphorylation to regulate the ileal brush-border Na+/H+ exchanger. PMID:2843567

  7. Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: a case study from northwestern Saudi Arabia.

    PubMed

    Zaidi, Faisal K; Nazzal, Yousef; Jafri, Muhammad Kamran; Naeem, Muhammad; Ahmed, Izrar

    2015-10-01

    Assessment of groundwater quality is of utmost significance in arid regions like Saudi Arabia where the lack of present-day recharge and high evaporation rates coupled with increasing groundwater withdrawal may restrict its usage for domestic or agricultural purposes. In the present study, groundwater samples collected from agricultural farms in Hail (15 samples), Al Jawf (15 samples), and Tabuk (30 samples) regions were analyzed for their major ion concentration. The objective of the study was to determine the groundwater facies, the main hydrochemical process governing the groundwater chemistry, the saturation index with respect to the principal mineral phases, and the suitability of the groundwater for irrigational use. The groundwater samples fall within the Ca-Cl type, mixed Ca-Mg-Cl type, and Na-Cl type. Evaporation and reverse ion exchange appear to be the major processes controlling the groundwater chemistry though reverse ion exchange process is the more dominating factor. The various ionic relationships confirmed the reverse ion exchange process where the Ca and Mg in the aquifer matrix have been replaced by Na at favorable exchange sites. This phenomenon has accounted for the dominance of Ca and Mg ions over Na ion at all the sites. The process of reverse ion exchange was further substantiated by the use of modified Piper diagram (Chadha's classification) and the chloro-alkaline indices. Evaporation as a result of extreme aridity has resulted in the groundwater being oversaturated with aragonite/calcite and dolomite as revealed by the saturation indices. The groundwater samples were classified as safe (less than 10) in terms of sodium adsorption ratio (SAR) values, good (less than 1.25) in terms of residual sodium carbonate (RSC) values, and safe to moderate (between 0 and 3) in terms of Mg hazard for irrigation purposes. Though the high salinity groundwater in the three regions coupled with low SAR values are good for the soil structure, it can have a

  8. Search for and Identification of Graviton Exchange Effects in Drell-Yan Process at Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Pankov, A. A.; Serenkova, I. A.; Tsytrinov, A. V.

    New physics signatures arising from different sources may be confused when first observed at future colliders. Thus it is important to examine how various scenarios may be differentiated given the availability of only limited information. Here, we explore the capability of the Large Hadron Collider (LHC) to distinguish spin-2 Kaluza-Klein towers of gravitons exchange from other new physics effects which might be conveniently parametrized by the four-fermion contact interactions. We find that the LHC with planned energies and luminosities will be capable of discovering (and identifying) graviton exchange effects in the large extra dimensions with the cutoff parameter of order 4.6 - 9.4 TeV (3.6 - 6.0 TeV) depending on energy, luminosity and number of extra dimensions.

  9. Ag-doped 45S5 Bioglass®-based bone scaffolds by molten salt ion exchange: processing and characterisation.

    PubMed

    Newby, P J; El-Gendy, R; Kirkham, J; Yang, X B; Thompson, I D; Boccaccini, A R

    2011-03-01

    There is increasing interest in developing scaffolds with therapeutic and antibacterial potential for bone tissue engineering. Silver is a proven antibacterial agent which bacteria such as MRSA have little or no defense against. Using an ion exchange method, silver ions have been introduced into 45S5 Bioglass(®) based scaffolds that were fabricated using the foam replication technique. This technique allows the introduction of Ag(+) ions onto the surface of the scaffold without compromising the scaffold bioactivity and other physical properties such as porosity. Controlling the amount of Ag(+) ions introduced onto the surface of the scaffold was achieved by tailoring the ion exchange parameters to fabricate samples with repeatable and predictable Ag(+) ion release behavior. In vitro studies in simulated body fluid were carried out to ensure that the scaffolds maintained their bioactivity after the introduction of Ag(+) ions. It was also shown that the addition of low concentrations (2000:1 w/w) of silver ions supported the attachment and viability of human periodontal ligament stromal cells on the 3D scaffolds. This work has thus confirmed ion exchange as an effective technique to introduce Ag(+) ions into 45S5 Bioglass(®) scaffolds without compromising the basic properties of 45S5 Bioglass(®) which are required for applications in bone tissue engineering.

  10. A three-dimensional, quantum mechanical study of exchange and charge transfer processes in the (Ar+H2) + system

    NASA Astrophysics Data System (ADS)

    Baer, Michael; Nakamura, Hiroki

    1987-10-01

    A three-dimensional quantum mechanical study of the (Ar+H2)+ system was carried out within the reactive infinite order sudden approximation. All three arrangement channels for exchange and charge transfer were treated simultaneously. Steric factors, opacity functions, angular distributions, and integral cross sections were calculated. Whenever possible, these were compared with both experimental and trajectory surface hopping (TSH) results. Whereas the fit with the TSH results was reasonable, the fit obtained with the experiment was less satisfactory. The reason for that can be attributed at least partially to the semiempirical DIM potential employed in the calculation.

  11. Exchange Processes in Shibasaki's Rare Earth Alkali Metal BINOLate Frameworks and Their Relevance in Multifunctional Asymmetric Catalysis.

    PubMed

    Robinson, Jerome R; Gu, Jun; Carroll, Patrick J; Schelter, Eric J; Walsh, Patrick J

    2015-06-10

    Shibasaki's rare earth alkali metal BINOLate (REMB) catalysts (REMB; RE = Sc, Y, La - Lu; M = Li, Na, K; B = 1,1-bi-2-naphtholate; RE/M/B = 1/3/3) are among the most successful enantioselective catalysts and have been employed in a broad range of mechanistically diverse reactions. Despite the phenomenal success of these catalysts, several fundamental questions central to their reactivity remain unresolved. Combined reactivity and spectroscopic studies were undertaken to probe the identity of the active catalyst(s) in Lewis-acid (LA) and Lewis-acid/Brønsted-base (LA/BB) catalyzed reactions. Exchange spectroscopy provided a method to obtain rates of ligand and alkali metal self-exchange in the RE/Li frameworks, demonstrating the utility of this technique for probing solution dynamics of REMB catalysts. Isolation of the first crystallographically characterized REMB complex with substrate bound enabled stoichiometric and catalytic reactivity studies, wherein we observed that substrate deprotonation by the catalyst framework was necessary to achieve selectivity. Our spectroscopic observations in LA/BB catalysis are inconsistent with previous mechanistic proposals, which considered only tris(BINOLate) species as active catalysts. These findings significantly expand our understanding of the catalyst structure in these privileged multifunctional frameworks and identify new directions for development of new catalysts.

  12. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    SciTech Connect

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-01-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission's Technical Position on Waste Form'' (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity.

  13. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    SciTech Connect

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-08-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission`s ``Technical Position on Waste Form`` (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity.

  14. Optimizing liquid waste treatment processing in PWRs: focus on modeling of the variation of ion-exchange resins selectivity coefficients

    SciTech Connect

    Gressier, Frederic; Van der Lee, Jan; Schneider, Helene; Bachet, Martin; Catalette, Hubert

    2007-07-01

    A bibliographic survey has highlighted the essential role of selectivity on resin efficiency, especially the variation of selectivity coefficients in function of the resin saturation state and the operating conditions. This phenomenon has been experimentally confirmed but is not yet implemented into an ion-exchange model specific for resins. This paper reviews the state of the art in predicting sorption capacity of ion-exchange resins. Different models accounting for ions activities inside the resin phase are available. Moreover, a comparison between the values found in the literature and our results has been done. The results of sorption experiments of cobalt chloride on a strong cationic gel type resin used in French PWRs are presented. The graph describing the variation of selectivity coefficient with respect to cobalt equivalent fraction is drawn. The parameters determined by the analysis of this graph are injected in a new physico-chemical law. Implementation of this model in the chemical speciation simulation code CHESS enables to study the overall effect of this approach for the sorption in a batch. (authors)

  15. A versatile and scalable two-step ion-exchange chromatography process for the purification of recombinant adeno-associated virus serotypes-2 and -5.

    PubMed

    Brument, Nicole; Morenweiser, Robert; Blouin, Véronique; Toublanc, Estelle; Raimbaud, Isabelle; Chérel, Yan; Folliot, Sébastien; Gaden, Florence; Boulanger, Pierre; Kroner-Lux, Gabrielle; Moullier, Philippe; Rolling, Fabienne; Salvetti, Anna

    2002-11-01

    Here we describe the development of a two-step chromatography process based on the use of ion-exchange resins for the purification of recombinant adeno-associated virus (rAAV) serotypes-2 and-5. In vitro and in vivo results demonstrate that this method, which does not require any prepurification step of the cell lysate, can be applied to obtain highly pure rAAV2 and rAAV5 stocks. As such,this procedure can be easily transferred in vector cores and also scaled up, allowing the direct comparison of these two, and potentially other, AAV serotypes in large animal models.

  16. The Na+/H+ exchanger NHE6 modulates endosomal pH to control processing of amyloid precursor protein in a cell culture model of Alzheimer disease.

    PubMed

    Prasad, Hari; Rao, Rajini

    2015-02-27

    Early intervention may be key to safe and effective therapies in patients with Alzheimer disease. Endosomal dysfunction is an early step in neurodegeneration. Endosomes are a major site of production of Aβ peptide from the processing of amyloid precursor protein (APP) by clipping enzymes (β- and γ-secretases). The β-secretase enzyme BACE1 requires acidic lumen pH for optimum function, and acid pH promotes Aβ aggregation. The Na(+)/H(+) exchanger NHE6 provides a leak pathway for protons, limiting luminal acidification by proton pumps. Like APP, NHE6 expression was induced upon differentiation of SH-SY5Y neuroblastoma cells and localized to an endosomal compartment. Therefore, we investigated whether NHE6 expression altered APP localization and processing in a stably transfected cell culture model of human APP expression. We show that co-expression with NHE6 or treatment with the Na(+)/H(+) ionophore monensin shifted APP away from the trans-Golgi network into early and recycling endosomes in HEK293 cells. NHE6 alkalinized the endosomal lumen, similar to monensin, and significantly attenuated APP processing and Aβ secretion. In contrast, Aβ production was elevated upon NHE6 knockdown. We show that NHE6 transcript and protein levels are lowered in Alzheimer brains relative to control. These findings, taken together with emerging genetic evidence linking endosomal Na(+)/H(+) exchangers with Alzheimer disease, suggest that proton leak pathways may regulate Aβ generation and contribute to disease etiology.

  17. Optimization of SHINE Process: Design and Verification of Plant-Scale AG 1 Anion-Exchange Concentration Column and Titania Sorbent Pretreatment

    SciTech Connect

    Stepinski, Dominique C.; Abdul, Momen; Youker, Amanda J.; Rotsch, David A.; Tkac, Peter; Chemerisov, Sergey; Vandegrift, George F.

    2016-06-01

    Argonne National Laboratory has developed a Mo-recovery and -purification system for the SHINE medical technologies process, which uses a uranyl sulfate solution for the accelerator-driven production of Mo-99. The objective of this effort is to reduce the processing time for the acidification of the Mo-99 product prior to loading onto a concentration column and concentration of the Mo-99 product solution. Two methods were investigated: (1) the replacement of the titania concentration column by an anion-exchange column to decrease processing time and increase the radioiodine-decontamination efficiency and (2) pretreatment of the titania sorbent to improve its effectiveness for the Mo-recovery and -concentration columns. Promising results are reported for both methods.

  18. Gamma irradiation-induced modifications of polymers found in nuclear waste embedding processes Part II: The ion-exchange resin

    NASA Astrophysics Data System (ADS)

    Debré, O.; Nsouli, B.; Thomas, J.-P.; Stevenson, I.; Colombini, D.; Romero, M.-A.

    1997-08-01

    Ion exchange resins (IERs) saturated in cesium and borate ions are well representative of low and medium activity nuclear waste to be embedded in an epoxy resin/amine hardener, such a conditioning procedure being under qualification. In order to test these materials in realistic conditions they are externally irradiated (air and water), in mixed beds saturated in fixed ions (cesium and borate) and water. Irradiation effects are evidenced with the HSF-SIMS technique by the variation of the emission characteristic of both the fixed ions, the chemical structure of the IERs and their interrelationship, both from the analysis of the solid material and of the residual or rinsing water. It appears that the fixed ions can be released in surrounding water as a consequence of radiation-induced resin fragments solubility.

  19. Titanium-indiffused proton-exchanged waveguide lenses in LiNbO3 for optical information processing

    NASA Astrophysics Data System (ADS)

    Zang, D. Y.; Tsai, C. S.

    1986-07-01

    Design, fabrication, measurement, and performance characteristics of the titanium-indiffused proton-exchanged microlenses, microlens arrays, and their combinations in LiNbO3 with emphasis on the most recent results are detailed first. Utilization of such TIPE microlenses for acoustooptic Bragg diffraction in a LiNbO3 channel-planar composite waveguide and realization of an integrated AO Bragg modulator module in a substrate size of 0.2 x 1.0 x 2.0 cm are then described. Some of the potential applications of such an integrated optic module together with the preliminary results of a simple experiment on matrix-vector multiplication are also presented.

  20. 22 CFR 41.57 - International cultural exchange visitors and visitors under the Irish Peace Process Cultural and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... visitors under the Irish Peace Process Cultural and Training Program Act (IPPCTPA). 41.57 Section 41.57... visitors and visitors under the Irish Peace Process Cultural and Training Program Act (IPPCTPA). (a... operation of the Irish Peace Process Cultural and Training Program (IPPCTP) which establishes at a...

  1. Heterodimers formed through a partial anionic exchange process: scanning tunneling spectroscopy to monitor bands across the junction vis-à-vis photoinduced charge separation.

    PubMed

    Bera, Abhijit; Saha, Sudip K; Pal, Amlan J

    2015-11-07

    We report controlled formation of heterodimers and their charge separation properties. CdS|CdTe heterodimers were formed through an anionic exchange process of CdS nanostructures. With control over the duration of the anionic exchange process, bulk|dot, bulk|bulk, and then dot|bulk phases of the semiconductors could be observed to have formed. A mapping of density of states as derived from scanning tunneling spectroscopy (STS) brought out conduction and valence band-edges along the nanostructures and heterodimers. The CdS|CdTe heterodimers evidenced a type-II band-alignment between the semiconductors along with the formation of a depletion region at the interface. The width (of the depletion region) and the energy-offset at the interface depended on the size of the semiconductors. We report that the width that is instrumental for photoinduced charge separation in the heterodimers has a direct correlation with the performance of hybrid bulk-heterojunction solar cells based on the nanostructures in a polymer matrix.

  2. CdS and CdS/CdSe sensitized ZnO nanorod array solar cells prepared by a solution ions exchange process

    SciTech Connect

    Chen, Ling; Gong, Haibo; Zheng, Xiaopeng; Zhu, Min; Zhang, Jun; Yang, Shikuan; Cao, Bingqiang

    2013-10-15

    Graphical abstract: - Highlights: • CdS and CdS/CdSe quantum dots are assembled on ZnO nanorods by ion exchange process. • The CdS/CdSe sensitization of ZnO effectively extends the absorption spectrum. • The performance of ZnO/CdS/CdSe cell is improved by extending absorption spectrum. - Abstract: In this paper, cadmium sulfide (CdS) and cadmium sulfide/cadmium selenide (CdS/CdSe) quantum dots (QDs) are assembled onto ZnO nanorod arrays by a solution ion exchange process for QD-sensitized solar cell application. The morphology, composition and absorption properties of different photoanodes were characterized with scanning electron microscope, transmission electron microscope, energy-dispersive X-ray spectrum and Raman spectrum in detail. It is shown that conformal and uniform CdS and CdS/CdSe shells can grow on ZnO nanorod cores. Quantum dot sensitized solar cells based on ZnO/CdS and ZnO/CdS/CdSe nanocable arrays were assembled with gold counter electrode and polysulfide electrolyte solution. The CdS/CdSe sensitization of ZnO can effectively extend the absorption spectrum up to 650 nm, which has a remarkable impact on the performance of a photovoltaic device by extending the absorption spectrum. Preliminary results show one fourth improvement in solar cell efficiency.

  3. Determination of some aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography with conductimetric detection on a weakly acidic cation-exchange resin column.

    PubMed

    Ito, Kazuaki; Takayama, Yohichi; Ikedo, Mikaru; Mori, Masanobu; Taoda, Hiroshi; Xu, Qun; Hu, Wenzhi; Sunahara, Hiroshi; Hayashi, Tsuneo; Sato, Shinji; Hirokawa, Takeshi; Tanaka, Kazuhiko

    2004-06-11

    The determination of seven aliphatic carboxylic acids, formic, acetic, propionic, isobutyric, n-butyric, isovaleric and n-valeric acids in anaerobic digestion process waters was examined using ion-exclusion chromatography with conductimetric detection. The analysis of these biologically important carboxylic acids is necessary as a measure for evaluating and controlling the process. The ion-exclusion chromatography system employed consisted of polymethacrylate-based weakly acidic cation-exchange resin columns (TSKgel OApak-A or TSKgel Super IC-A/C). weakly acidic eluent (benzoic acid), and conductimetric detection. Particle size and cation-exchange capacity were 5 microm and 0.1 meq./ml for TSKgel OApak-A and 3 microm and 0.2 meq./ml for TSKgel Super IC-A/C, respectively. A dilute eluent (1.0-2.0 mM) of benzoic acid was effective for the high resolution and highly conductimetric detection of the carboxylic acids. The good separation of isobutyric and n-butyric acids was performed using the TSKgel Super IC-A/C column (150 mm x 6.0 mm i.d. x 2). The simple and good chromatograms were obtained by the optimized ion-exclusion chromatography conditions for real samples from mesophilic anaerobic digestors, thus the aliphatic carboxylic acids were successfully determined without any interferences.

  4. Hexicon 2: Automated Processing of Hydrogen-Deuterium Exchange Mass Spectrometry Data with Improved Deuteration Distribution Estimation

    NASA Astrophysics Data System (ADS)

    Lindner, Robert; Lou, Xinghua; Reinstein, Jochen; Shoeman, Robert L.; Hamprecht, Fred A.; Winkler, Andreas

    2014-06-01

    Hydrogen-deuterium exchange (HDX) experiments analyzed by mass spectrometry (MS) provide information about the dynamics and the solvent accessibility of protein backbone amide hydrogen atoms. Continuous improvement of MS instrumentation has contributed to the increasing popularity of this method; however, comprehensive automated data analysis is only beginning to mature. We present Hexicon 2, an automated pipeline for data analysis and visualization based on the previously published program Hexicon (Lou et al. 2010). Hexicon 2 employs the sensitive NITPICK peak detection algorithm of its predecessor in a divide-and-conquer strategy and adds new features, such as chromatogram alignment and improved peptide sequence assignment. The unique feature of deuteration distribution estimation was retained in Hexicon 2 and improved using an iterative deconvolution algorithm that is robust even to noisy data. In addition, Hexicon 2 provides a data browser that facilitates quality control and provides convenient access to common data visualization tasks. Analysis of a benchmark dataset demonstrates superior performance of Hexicon 2 compared with its predecessor in terms of deuteration centroid recovery and deuteration distribution estimation. Hexicon 2 greatly reduces data analysis time compared with manual analysis, whereas the increased number of peptides provides redundant coverage of the entire protein sequence. Hexicon 2 is a standalone application available free of charge under http://hx2.mpimf-heidelberg.mpg.de.

  5. Experimental investigation of the reaction of helium ions with dimethyl ether: stereodynamics of the dissociative charge exchange process.

    PubMed

    Cernuto, Andrea; Tosi, Paolo; Martini, Luca Matteo; Pirani, Fernando; Ascenzi, Daniela

    2017-03-09

    The fate of dimethyl ether (DME, CH3OCH3) in collisions with He(+) ions is of high relevance for astrochemical models aimed at reproducing the abundances of complex organic molecules in the interstellar medium. Here we report an investigation on the reaction of He(+) ions with DME carried out using a Guided Ion Beam Mass Spectrometer (GIB-MS), which allows the measurement of reactive cross-sections and branching ratios (BRs) as a function of the collision energy. We obtain insights into the dissociative charge (electron) exchange mechanism by investigating the nature of the non-adiabatic transitions between the relevant potential energy surfaces (PESs) in an improved Landau-Zener approach. We find that the large interaction anisotropy could induce a pronounced orientation of the polar DME molecule in the electric field generated by He(+) so that at short distances the collision complex is confined within pendular states, a particular case of bending motion, which gives rise to intriguing stereodynamic effects. The positions of the intermolecular potential energy curve crossings indicate that He(+) captures an electron from an inner valence orbital of DME, thus causing its dissociation. In addition to the crossing positions, the symmetry of the electron density distribution of the involved DME orbitals turns out to be a further major point affecting the probability of electron transfer. Thus, the anisotropy of the intermolecular interaction and the electron densities of the orbitals involved in the reaction are the key "ingredients" for describing the dynamics of this dissociative charge transfer.

  6. Ion exchange technology assessment report

    SciTech Connect

    Duhn, E.F.

    1992-01-01

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW's. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

  7. Ion exchange technology assessment report

    SciTech Connect

    Duhn, E.F.

    1992-12-31

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW`s. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

  8. Catalysis of H(2)/D(2) scrambling and other H/D exchange processes by [Fe]-hydrogenase model complexes.

    PubMed

    Zhao, Xuan; Georgakaki, Irene P; Miller, Matthew L; Mejia-Rodriguez, Rosario; Chiang, Chao-Yi; Darensbourg, Marcetta Y

    2002-07-29

    Protonation of the [Fe]-hydrogenase model complex (mu-pdt)[Fe(CO)(2)(PMe(3))](2) (pdt = SCH(2)CH(2)CH(2)S) produces a species with a high field (1)H NMR resonance, isolated as the stable [(mu-H)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)](+)[PF(6)](-) salt. Structural characterization found little difference in the 2Fe2S butterfly cores, with Fe.Fe distances of 2.555(2) and 2.578(1) A for the Fe-Fe bonded neutral species and the bridging hydride species, respectively (Zhao, X.; Georgakaki, I. P.; Miller, M. L.; Yarbrough, J. C.; Darensbourg, M. Y. J. Am. Chem. Soc. 2001, 123, 9710). Both are similar to the average Fe.Fe distance found in structures of three Fe-only hydrogenase active site 2Fe2S clusters: 2.6 A. A series of similar complexes (mu-edt)-, (mu-o-xyldt)-, and (mu-SEt)(2)[Fe(CO)(2)(PMe(3))](2) (edt = SCH(2)CH(2)S; o-xyldt = SCH(2)C(6)H(4)CH(2)S), (mu-pdt)[Fe(CO)(2)(PMe(2)Ph)](2), and their protonated derivatives likewise show uniformity in the Fe-Fe bond lengths of the neutral complexes and Fe.Fe distances in the cationic bridging hydrides. The positions of the PMe(3) and PMe(2)Ph ligands are dictated by the orientation of the S-C bonds in the (mu-SRS) or (mu-SR)(2) bridges and the subsequent steric hindrance of R. The Fe(II)(mu-H)Fe(II) complexes were compared for their ability to facilitate H/D exchange reactions, as have been used as assays of H(2)ase activity. In a reaction that is promoted by light but inhibited by CO, the [(mu-H)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)](+) complex shows H/D exchange activity with D(2), producing [(mu-D)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)](+) in CH(2)Cl(2) and in acetone, but not in CH(3)CN. In the presence of light, H/D scrambling between D(2)O and H(2) is also promoted by the Fe(II)(mu-H)Fe(II) catalyst. The requirement of an open site suggests that the key step in the reactions involves D(2) or H(2) binding to Fe(II) followed by deprotonation by the internal hydride base, or by external water. As indicated by similar catalytic efficiencies

  9. Exchange Network

    EPA Pesticide Factsheets

    The Environmental Information Exchange Network (EIEN) is an Internet-based system used by state, tribal and territorial partners to securely share environmental and health information with one another and EPA.

  10. Gas exchange

    MedlinePlus Videos and Cool Tools

    ... during exhalation. Gas exchange is the delivery of oxygen from the lungs to the bloodstream, and the ... share a membrane with the capillaries in which oxygen and carbon dioxide move freely between the respiratory ...

  11. Interaction of arginine with protein during refolding process probed by amide H/D exchange mass spectrometry and isothermal titration calorimetry.

    PubMed

    Zhao, Dawei; Liu, Yongdong; Zhang, Guifeng; Zhang, Chun; Li, Xiunan; Wang, Qingqing; Shi, Hong; Su, Zhiguo

    2015-01-01

    Arginine has been widely used as low molecular weight additive to promote protein refolding by suppressing aggregate formation. However, methods to investigate the role of arginine in protein refolding are often limited on protein's global conformational properties. Here, hydrogen/deuterium exchange mass spectrometry (HDX-MS) was used to study the effects of arginine on recombinant human granulocyte colony-stimulating factor (rhG-CSF) refolding at the scale of peptide mapping. It was found that deuteration levels of rhG-CSF refolded with arginine was higher than that without arginine during the whole refolding process, but they became almost the same when the refolding reached equilibrium. This phenomenon indicated that arginine could protect some amide deuterium atoms from being exchanged with hydrogen, but the protection diminished gradually along with refolding proceeding. Enzymatic digestion revealed six particular peptides of 16-47, 72-84, 84-93, 114-124, 145-153 and 154-162 were mainly responsible for the deuteration, and all of them dominantly located in protein's α-helix domain. Furthermore, thermodynamics analysis by isothermal titration calorimetry provided direct evidence that arginine could only react with denatured and partially refolded rhG-CSF. Taking all of the results together, we suggest that arginine suppresses protein aggregation by a reversible combination. At the initial refolding stage, arginine could combine with the denatured protein mainly through hydrogen bonding. Subsequently, arginine is gradually excluded from protein with protein's native conformation recovering.

  12. HEAT EXCHANGER

    DOEpatents

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  13. The organic sea-surface microlayer in the upwelling region off the coast of Peru and potential implications for air-sea exchange processes

    NASA Astrophysics Data System (ADS)

    Engel, Anja; Galgani, Luisa

    2016-02-01

    The sea-surface microlayer (SML) is at the uppermost surface of the ocean, linking the hydrosphere with the atmosphere. The presence and enrichment of organic compounds in the SML have been suggested to influence air-sea gas exchange processes as well as the emission of primary organic aerosols. Here, we report on organic matter components collected from an approximately 50 µm thick SML and from the underlying water (ULW), ˜ 20 cm below the SML, in December 2012 during the SOPRAN METEOR 91 cruise to the highly productive, coastal upwelling regime off the coast of Peru. Samples were collected at 37 stations including coastal upwelling sites and off-shore stations with less organic matter and were analyzed for total and dissolved high molecular weight (> 1 kDa) combined carbohydrates (TCCHO, DCCHO), free amino acids (FAA), total and dissolved hydrolyzable amino acids (THAA, DHAA), transparent exopolymer particles (TEP), Coomassie stainable particles (CSPs), total and dissolved organic carbon (TOC, DOC), total and dissolved nitrogen (TN, TDN), as well as bacterial and phytoplankton abundance. Our results showed a close coupling between organic matter concentrations in the water column and in the SML for almost all components except for FAA and DHAA that showed highest enrichment in the SML on average. Accumulation of gel particles (i.e., TEP and CSP) in the SML differed spatially. While CSP abundance in the SML was not related to wind speed, TEP abundance decreased with wind speed, leading to a depletion of TEP in the SML at about 5 m s-1. Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.

  14. Experimental data and analysis to support the design of an ion-exchange process for the treatment of Hanford tank waste supernatant liquids

    SciTech Connect

    Kurath, D.E.; Bray, L.A.; Brooks, K.P.; Brown, G.N.; Bryan, S.A.; Carlson, C.D.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.; Kim, A.Y.

    1994-12-01

    Hanford`s 177 underground storage tanks contain a mixture of sludge, salt cake, and alkaline supernatant liquids. Disposal options for these wastes are high-level waste (HLW) glass for disposal in a repository or low-level waste (LLW) glass for onsite disposal. Systems-engineering studies show that economic and environmental considerations preclude disposal of these wastes without further treatment. Difficulties inherent in transportation and disposal of relatively large volumes of HLW make it impossible to vitrify all of the tank waste as HLW. Potential environmental impacts make direct disposal of all of the tank waste as LLW glass unacceptable. Although the pretreatment and disposal requirements are still being defined, most pretreatment scenarios include retrieval of the aqueous liquids, dissolution of the salt cakes, and washing of the sludges to remove soluble components. Most of the cesium is expected to be in the aqueous liquids, which are the focus of this report on cesium removal by ion exchange. The main objectives of the ion-exchange process are removing cesium from the bulk of the tank waste (i.e., decontamination) and concentrating the separated cesium for vitrification. Because exact requirements for removal of {sup 137}Cs have not yet been defined, a range of removal requirements will be considered. This study addresses requirements to achieve {sup 137}Cs levels in LLW glass between (1) the Nuclear Regulatory Commission (NRC) Class C (10 CFR 61) limit of 4600 Ci/m{sup 3} and (2) 1/10th of the NRC Class A limit of 1 Ci/m{sup 3} i.e., 0.1/m{sup 3}. The required degrees of separation of cesium from other waste components is a complex function involving interactions between the design of the vitrification process, waste form considerations, and other HLW stream components that are to be vitrified.

  15. Deciphering the Mode of Action of the Processive Polysaccharide Modifying Enzyme Dermatan Sulfate Epimerase 1 by Hydrogen–Deuterium Exchange Mass Spectrometry

    PubMed Central

    Tykesson, Emil; Mao, Yang; Maccarana, Marco; Pu, Yi; Gao, Jinshan; Lin, Cheng; Zaia, Joseph; Westergren-Thorsson, Gunilla; Ellervik, Ulf; Malmström, Lars; Malmström, Anders

    2015-01-01

    Distinct from template-directed biosynthesis of nucleic acids and proteins, the enzymatic synthesis of heterogeneous polysaccharides is a complex process that is difficult to study using common analytical tools. Therefore, the mode of action and processivity of those enzymes are largely unknown. Dermatan sulfate epimerase 1 (DS-epi1) is the predominant enzyme during the formation of iduronic acid residues in the glycosaminoglycan dermatan sulfate. Using recombinant DS-epi1 as a model enzyme, we describe a tandem mass spectrometry-based method to study the mode of action of polysaccharide processing enzymes. The enzyme action on the substrate was monitored by hydrogen-deuterium exchange mass spectrometry and the sequence information was then fed into mathematical models with two different assumptions of the mode of action for the enzyme: processive reducing end to non-reducing end, and processive non-reducing end to reducing end. Model data was scored by correlation to experimental data and it was found that DS-epi1 attacks its substrate on a random position, followed by a processive mode of modification towards the non-reducing end and that the substrate affinity of the enzyme is negatively affected by each additional epimerization event. It could also be shown that the smallest active substrate was the reducing end uronic acid in a tetrasaccharide and that octasaccharides and longer oligosaccharides were optimal substrates. The method of using tandem mass spectrometry to generate sequence information of the complex enzymatic products in combination with in silico modeling can be potentially applied to study the mode of action of other enzymes involved in polysaccharide biosynthesis. PMID:26900446

  16. Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange

    DOEpatents

    Lewis, Arthur E.; Braun, Robert L.; Mallon, Richard G.; Walton, Otis R.

    1986-01-01

    A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  17. Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange

    DOEpatents

    Lewis, A.E.; Braun, R.L.; Mallon, R.G.; Walton, O.R.

    1983-09-21

    A cascading bed retorting process and apparatus are disclosed in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  18. Strong ion exchange in centrifugal partition extraction (SIX-CPE): effect of partition cell design and dimensions on purification process efficiency.

    PubMed

    Hamzaoui, Mahmoud; Hubert, Jane; Reynaud, Romain; Marchal, Luc; Foucault, Alain; Renault, Jean-Hugues

    2012-07-20

    The aim of this article was to evaluate the influence of the column design of a hydrostatic support-free liquid-liquid chromatography device on the process efficiency when the strong ion-exchange (SIX) development mode is used. The purification of p-hydroxybenzylglucosinolate (sinalbin) from a crude aqueous extract of white mustard seeds (Sinapis alba L.) was achieved on two types of devices: a centrifugal partition chromatograph (CPC) and a centrifugal partition extractor (CPE). They differ in the number, volume and geometry of their partition cells. The SIX-CPE process was evaluated in terms of productivity and sinalbin purification capability as compared to previously optimized SIX-CPC protocols that were carried out on columns of 200 mL and 5700 mL inner volume, respectively. The objective was to determine whether the decrease in partition cell number, the increase in their volume and the use of a "twin cell" design would induce a significant increase in productivity by applying higher mobile phase flow rate while maintaining a constant separation quality. 4.6g of sinalbin (92% recovery) were isolated from 25 g of a crude white mustard seed extract, in only 32 min and with a purity of 94.7%, thus corresponding to a productivity of 28 g per hour and per liter of column volume (g/h/LV(c)). Therefore, the SIX-CPE process demonstrates promising industrial technology transfer perspectives for the large-scale isolation of ionized natural products.

  19. Ion-exchange reactions on clay minerals coupled with advection/dispersion processes. Application to Na+/Ca2+ exchange on vermiculite: Reactive-transport modeling, batch and stirred flow-through reactor experiments

    NASA Astrophysics Data System (ADS)

    Tertre, E.; Hubert, F.; Bruzac, S.; Pacreau, M.; Ferrage, E.; Prêt, D.

    2013-07-01

    The present study aims at testing the validity of using an Na+/Ca2+ ion-exchange model, derived from batch data to interpret experimental Ca2+-for-Na+ exchange breakthrough curves obtained on vermiculite (a common swelling clay mineral in surface environments). The ion-exchange model was constructed considering the multi-site nature of the vermiculite surface as well as the exchange of all aqueous species (Mg2+ derived from the dissolution of the solid and H+). The proposed ion-exchange model was then coupled with a transport model, and the predicted breakthrough curves were compared with the experimental ones obtained using a well stirred flow-through reactor. For a given solute residence time in the reactor (typically 50 min), our thermodynamic model based on instantaneous equilibrium was found to accurately reproduce several of the experimental breakthrough curves, depending on the Na+ and Ca2+ concentrations of the influents pumped through the reactor. However the model failed to reproduce experimental breakthrough curves obtained at high flow rates and low chemical gradient between the exchanger phase and the solution. An alternative model based on a hybrid equilibrium/kinetic approach was thus used and allowed predicting experimental data. Based on these results, we show that a simple parameter can be used to differentiate between thermodynamic and kinetic control of the exchange reaction with water flow. The results of this study are relevant for natural systems where two aquatic environments having contrasted chemistries interact. Indeed, the question regarding the attainment of a full equilibrium in such a system during the contact time of the aqueous phase with the particle/colloid remains most often open. In this context, we show that when a river (a flow of fresh water) encounters marine colloids, a systematic full equilibrium can be assumed (i.e., the absence of kinetic effects) when the residence time of the solute in 1 m3 of the system is ⩾6200 h.

  20. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 2, Industrial liquid waste processing, industrial gaseous waste processing

    SciTech Connect

    Lee, V.E.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarize the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Individual reports are indexed separately.

  1. Shelf Edge Exchange Processes: 2, SEEP2-09, R/V ENDEAVOR cruise 193: Hydrographic data report

    SciTech Connect

    Behrens, W.J.; Wilson, C.; Flagg, C.N.; Wallace, D.W.R.; Wilke, R.J.; Wyman, K.D.

    1990-01-01

    The R/V ENDEAVOR cruise 193, SEEP2-09, took place from 17--23 March 1989 and focused primarily on biological processes in the SEEP2 area. Mooring 1 was recovered and re-deployed and a replacement for mooring 4 was deployed. A 24 hour time series was conducted at mooring 1 to study primary and secondary production. The time series involved sampling nutrients, dissolved oxygen, chlorophyll {und a}, zooplankton abundance and distribution and fecal pellet production. Experiments to estimate grazing rates the fecal pellet production of the dominant copepods were also done. MOCNESS tows and box core samples were also taken during the cruise. Sediment and zooplankton data are not reported here. During this cruise 46 CTD casts were made measuring pressure, temperature, conductivity, dissolved oxygen, fluorescence and light transmission. Discrete samples were taken in rosette-mounted Niskin bottles and analyzed for concentration of nutrients, chlorophyll {und a}, dissolved oxygen, and particulate organic carbon and nitrogen.

  2. Purification of the two major proteins from whey concentrate using a cation-exchange selective adsorption process.

    PubMed

    El-Sayed, Mayyada M H; Chase, Howard A

    2010-01-01

    The packed-bed adsorption and elution of aqueous solutions of whey concentrate powders were investigated at pH 3.7 using a 5-mL SP Sepharose FF column to separate and isolate two major proteins namely, alpha-lactalbumin (ALA) and beta-lactoglobulin (BLG) from these solutions. ALA displaced and eluted BLG from the column in a pure form. Pure ALA could then be eluted with good recovery. A novel consecutive two-stage separation process was developed to separate ALA and BLG from whey concentrate mixtures. Almost all of the BLG in the feed was recovered, with 78% being recovered at 95% purity and a further 20% at 86% purity. In addition, 67% of ALA was recovered, 48% at 54% purity and 19% at 60% purity.

  3. Microtube strip heat exchanger

    SciTech Connect

    Doty, F.D.

    1992-07-09

    The purpose of this contract has been to explore the limits of miniaturization of heat exchangers with the goals of (1) improving the theoretical understanding of laminar heat exchangers, (2) evaluating various manufacturing difficulties, and (3) identifying major applications for the technology. A low-cost, ultra-compact heat exchanger could have an enormous impact on industry in the areas of cryocoolers and energy conversion. Compact cryocoolers based on the reverse Brayton cycle (RBC) would become practical with the availability of compact heat exchangers. Many experts believe that hardware advances in personal computer technology will rapidly slow down in four to six years unless lowcost, portable cryocoolers suitable for the desktop supercomputer can be developed. Compact refrigeration systems would permit dramatic advances in high-performance computer work stations with conventional'' microprocessors operating at 150 K, and especially with low-cost cryocoolers below 77 K. NASA has also expressed strong interest in our MTS exchanger for space-based RBC cryocoolers for sensor cooling. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.

  4. The importance of sub-mesoscale processes for the exchange of properties through the Strait of Gibraltar

    NASA Astrophysics Data System (ADS)

    Bruno, M.; Chioua, J.; Romero, J.; Vázquez, A.; Macías, D.; Dastis, C.; Ramírez-Romero, E.; Echevarria, F.; Reyes, J.; García, C. M.

    2013-09-01

    This article presents a detailed analysis of the sub-mesoscale transport processes in the Strait of Gibraltar. The interest is focussed on the Camarinal Sill region, and special attention is paid to the across-strait transport processes, the divergences and convergences in the central zone, and the small-scale circulation patterns along the northern coastal margin. The analysis is based on high-resolution (7 m) SST images acquired by an air-borne hyper-spectral scanner, and has been complemented with a rhodamine-release experiment, continuous thermo-salinograph records, acoustic Doppler current (ADCP) profiles from both moorings and vessel-mounted experiments, and numerical modelling. It is deduced from the analysis that the coupling between the upwelling processes, induced by the internal tide and the generation of large-amplitude internal waves, and the cyclonic eddies formed on the coastal margin, seems to be the mechanism that explains the chlorophyll maxima frequently found on the coastal margin of the studied area. Further, as a consequence of the small-scale patterns of circulation induced by the internal waves, the suspended substances are displaced from the coastal margins toward the central zones and later are carried by the westward current toward the convergence zones created by the internal waves, where they may be retained and accumulate. Then, in the eastward phase of the tidal current over the Camarinal Sill, these nuclei of concentrated substances (nutrients, chlorophyll, and plankton) are transported toward the Alboran Sea, where they must contribute, in part, to the primary productivity there. High-resolution (7 m) SST images acquired by an Airborne Hyper-spectral Scanner (AHS) provided by the Spanish Institute of Aerospace Techniques (INTA). Measurements made along vessel transects crossing the studied zone, of current velocity and echo-intensity profiles acquired by ADCP, and sea surface temperature, salinity and released rhodamine (see Fig. 1

  5. Process development for robust removal of aggregates using cation exchange chromatography in monoclonal antibody purification with implementation of quality by design.

    PubMed

    Xu, Zhihao; Li, Jason; Zhou, Joe X

    2012-01-01

    Aggregate removal is one of the most important aspects in monoclonal antibody (mAb) purification. Cation-exchange chromatography (CEX), a widely used polishing step in mAb purification, is able to clear both process-related impurities and product-related impurities. In this study, with the implementation of quality by design (QbD), a process development approach for robust removal of aggregates using CEX is described. First, resin screening studies were performed and a suitable CEX resin was chosen because of its relatively better selectivity and higher dynamic binding capacity. Second, a pH-conductivity hybrid gradient elution method for the CEX was established, and the risk assessment for the process was carried out. Third, a process characterization study was used to evaluate the impact of the potentially important process parameters on the process performance with respect to aggregate removal. Accordingly, a process design space was established. Aggregate level in load is the critical parameter. Its operating range is set at 0-3% and the acceptable range is set at 0-5%. Equilibration buffer is the key parameter. Its operating range is set at 40 ± 5 mM acetate, pH 5.0 ± 0.1, and acceptable range is set at 40 ± 10 mM acetate, pH 5.0 ± 0.2. Elution buffer, load mass, and gradient elution volume are non-key parameters; their operating ranges and acceptable ranges are equally set at 250 ± 10 mM acetate, pH 6.0 ± 0.2, 45 ± 10 g/L resin, and 10 ± 20% CV respectively. Finally, the process was scaled up 80 times and the impurities removal profiles were revealed. Three scaled-up runs showed that the size-exclusion chromatography (SEC) purity of the CEX pool was 99.8% or above and the step yield was above 92%, thereby proving that the process is both consistent and robust.

  6. Shelf Edge Exchange Processes-2: Seep2-02, R/V CAPE HATTERAS cruise CH01-88

    SciTech Connect

    Wilson, C.; Behrens, W.J.; Flagg, C.N.; Wallace, D.W.R.; Wilke, R.J.; Wyman, K.D.

    1989-11-01

    The R/V CAPE HATTERAS cruise CH01-88, SEEP2-02, took place from 3--20 March, 1988 and focused primarily on biological processes in the SEEP2 area. A short term sediment trap mooring was deployed near mooring 1 and recovered during the cruise. The mooring consisted of two 0.07 sq. meter and one 0.7 sq. meter sediment traps. Two time series, approximately 48 hours each, were conducted in the area of the sediment trap mooring. The time series were designed to study primary and secondary productivity and involved sampling nutrients, dissolved oxygen, chlorophyll, zooplankton abundance and distribution, and zooplankton fecal pellet distribution. Experiments to estimate grazing rates and fecal pellet production of the dominant copepods were also done. Sediment trap and zooplankton data are not reported here. During this cruise 99 CTD casts were made measuring pressure, temperature, conductivity, dissolved oxygen, fluorescence and light transmission. Discrete samples were taken in rosette-mounted Niskin bottles and analyzed for concentration of nutrients, chlorophyll a, dissolved oxygen, and particulate organic carbon and nitrogen.

  7. Non-homologous end joining: Common interaction sites and exchange of multiple factors in the DNA repair process.

    PubMed

    Rulten, Stuart L; Grundy, Gabrielle J

    2017-03-01

    Non-homologous end-joining (NHEJ) is the dominant means of repairing chromosomal DNA double strand breaks (DSBs), and is essential in human cells. Fifteen or more proteins can be involved in the detection, signalling, synapsis, end-processing and ligation events required to repair a DSB, and must be assembled in the confined space around the DNA ends. We review here a number of interaction points between the core NHEJ components (Ku70, Ku80, DNA-PKcs, XRCC4 and Ligase IV) and accessory factors such as kinases, phosphatases, polymerases and structural proteins. Conserved protein-protein interaction sites such as Ku-binding motifs (KBMs), XLF-like motifs (XLMs), FHA and BRCT domains illustrate that different proteins compete for the same binding sites on the core machinery, and must be spatially and temporally regulated. We discuss how post-translational modifications such as phosphorylation, ADP-ribosylation and ubiquitinylation may regulate sequential steps in the NHEJ pathway or control repair at different types of DNA breaks.

  8. Heat exchanger

    DOEpatents

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  9. The Dynamics of Multilateral Exchange

    NASA Astrophysics Data System (ADS)

    Hausken, Kjell; Moxnes, John F.

    The article formulates a dynamic mathematical model where arbitrarily many players produce, consume, exchange, loan, and deposit arbitrarily many goods over time to maximize utility. Consuming goods constitutes a benefit, and producing, exporting, and loaning away goods constitute a cost. Utilities are benefits minus costs, which depend on the exchange ratios and bargaining functions. Three-way exchange occurs when one player acquires, through exchange, one good from another player with the sole purpose of using this good to exchange against the desired good from a third player. Such a triple handshake is not merely a set of double handshakes since the player assigns no interest to the first good in his benefit function. Cognitive and organization costs increase dramatically for higher order exchanges. An exchange theory accounting for media of exchange follows from simple generalization of two-way exchange. The examples of r-way exchange are the triangle trade between Africa, the USA, and England in the 17th and 18th centuries, the hypothetical hypercycle involving RNAs as players and enzymes as goods, and reaction-diffusion processes. The emergence of exchange, and the role of trading agents are discussed. We simulate an example where two-way exchange gives zero production and zero utility, while three-way exchange causes considerable production and positive utility. Maximum utility for each player is reached when exchanges of the same order as the number of players in society are allowed. The article merges micro theory and macro theory within the social, natural, and physical sciences.

  10. Integrated Studies of Atmosphere-Surface Exchanges and Processes at the Tiksi Hydrometeorological Observatory in the Russian Far East

    NASA Astrophysics Data System (ADS)

    Uttal, Taneil; Makshtas, Alexander; Laurila, Tuomas

    2013-04-01

    The Tiksi Hydrometeorological Observatory facility has been developed over the last 6 years through a partnership between Russian, U.S. and Finnish agencies responsible for environmental monitoring. The current facility has a clean air facility, a 20 meter tower and an upgraded weather station. Measurements are being made of LW/SW radiation, climate grade meteorological parameters, turbulent fluxes, CO2, methane, aerosols, H2O, greenhouse gases (via flask sampling), black carbon, ozone, surface temperatures and permafrost active layer temperature profiles. Tiksi is located in a boundary region at the confluence of Atlantic and Pacific influences on the Arctic atmosphere; this results in a wide variety of air masses with variable cloud, aerosol and pollutant characteristics in the vicinity of the Tiksi Hydrometeorological Observatory creating a natural laboratory to study the influence that the various source regions of Russia, Northern America, Europe and Central Asia have on regional boundary layer processes. Tiksi is on the edge of the Laptev Sea that is an area of such large ice production that it has been termed "the ice factory of the Arctic Ocean" providing much of the sea ice in the Arctic Ocean. Thus the observatory sensors are frequently influenced by the maritime as well as continental air which is already showing up in multiple data lines as having distinctive properties. An integrated picture is emerging of ozone depletion events, black carbon on snow impacts, methane and CO2 flux seasonal variability, and short-lived temperature events that can be interpreted in the context of feed-backs with the local off-shore ice conditions and on-shore active layer morphology. This presentation summaries preliminary results with an emphasis on identifying linkages being study lines that are typically conducted separately.

  11. A high-throughput 2D-analytical technique to obtain single protein parameters from complex cell lysates for in silico process development of ion exchange chromatography.

    PubMed

    Kröner, Frieder; Elsäßer, Dennis; Hubbuch, Jürgen

    2013-11-29

    The accelerating growth of the market for biopharmaceutical proteins, the market entry of biosimilars and the growing interest in new, more complex molecules constantly pose new challenges for bioseparation process development. In the presented work we demonstrate the application of a multidimensional, analytical separation approach to obtain the relevant physicochemical parameters of single proteins in a complex mixture for in silico chromatographic process development. A complete cell lysate containing a low titre target protein was first fractionated by multiple linear salt gradient anion exchange chromatography (AEC) with varying gradient length. The collected fractions were subsequently analysed by high-throughput capillary gel electrophoresis (HT-CGE) after being desalted and concentrated. From the obtained data of the 2D-separation the retention-volumes and the concentration of the single proteins were determined. The retention-volumes of the single proteins were used to calculate the related steric-mass action model parameters. In a final evaluation experiment the received parameters were successfully applied to predict the retention behaviour of the single proteins in salt gradient AEC.

  12. Strategic assay deployment as a method for countering analytical bottlenecks in high throughput process development: case studies in ion exchange chromatography.

    PubMed

    Konstantinidis, Spyridon; Heldin, Eva; Chhatre, Sunil; Velayudhan, Ajoy; Titchener-Hooker, Nigel

    2012-01-01

    High throughput approaches to facilitate the development of chromatographic separations have now been adopted widely in the biopharmaceutical industry, but issues of how to reduce the associated analytical burden remain. For example, acquiring experimental data by high level factorial designs in 96 well plates can place a considerable strain upon assay capabilities, generating a bottleneck that limits significantly the speed of process characterization. This article proposes an approach designed to counter this challenge; Strategic Assay Deployment (SAD). In SAD, a set of available analytical methods is investigated to determine which set of techniques is the most appropriate to use and how best to deploy these to reduce the consumption of analytical resources while still enabling accurate and complete process characterization. The approach is demonstrated by investigating how salt concentration and pH affect the binding of green fluorescent protein from Escherichia coli homogenate to an anion exchange resin presented in a 96-well filter plate format. Compared with the deployment of routinely used analytical methods alone, the application of SAD reduced both the total assay time and total assay material consumption by at least 40% and 5%, respectively. SAD has significant utility in accelerating bioprocess development activities.

  13. High Temperature Heat Exchanger Project

    SciTech Connect

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  14. The Kinetics of Isotopic Exchange Reactions.

    ERIC Educational Resources Information Center

    Logan, S. R.

    1990-01-01

    Discussed are the kinetic interactions of these chemical processes and the determination of the actual order of such reactions. Included are multiple exchange, catalytic exchange with deuterium, and depletion of the original substrate. (CW)

  15. Exchange Rates and Old People.

    ERIC Educational Resources Information Center

    Dowd, James J.

    1980-01-01

    Extends earlier work on aging as a process of exchange by focusing on the issue of exchange rates and how they are negotiated. Access to power resources declines with age, placing the old person in the position of negotiating from weakness. (Author)

  16. Determination of free sulfites (SO3-2) in dried fruits processed with sulfur dioxide by ion chromatography through anion exchange column and conductivity detection.

    PubMed

    Liao, Benjamin S; Sram, Jacqueline C; Files, Darin J

    2013-01-01

    A simple and effective anion ion chromatography (IC) method with anion exchange column and conductivity detector has been developed to determine free sulfites (SO3-2) in dried fruits processed with sulfur dioxide. No oxidation agent, such as hydrogen peroxide, is used to convert sulfites to sulfates for IC analysis. In addition, no stabilizing agent, such as formaldehyde, fructose or EDTA, is required during the sample extraction. This method uses aqueous 0.2 N NaOH as the solvent for standard preparation and sample extraction. The sulfites, either prepared from standard sodium sulfite powder or extracted from food samples, are presumed to be unbound SO3-2 in aqueous 0.2 N NaOH (pH > 13), because the bound sulfites in the sample matrix are released at pH > 10. In this study, sulfites in the standard solutions were stable at room temperature (i.e., 15-25 degrees C) for up to 12 days. The lowest standard of the linear calibration curve is set at 1.59 microg/mL SO3-2 (equivalent to 6.36 microg/g sample with no dilution) for analysis of processed dried fruits that would contain high levels (>1000 microg/g) of sulfites. As a consequence, this method typically requires significant dilution of the sample extract. Samples are prepared with a simple procedure of sample compositing, extraction with aqueous 0.2 N NaOH, centrifugation, dilution as needed, and filtration prior to IC. The sulfites in these sample extracts are stable at room temperature for up to 20 h. Using anion IC, the sulfites are eluted under isocratic conditions with 10 mM aqueous sodium carbonate solution as the mobile phase passing through an anion exchange column. The sulfites are easily separated, with an analysis run time of 18 min, regardless of the dried fruit matrix. Recoveries from samples spiked with sodium sulfites were demonstrated to be between 81 and 105% for five different fruit matrixes (apricot, golden grape, white peach, fig, and mango). Overall, this method is simple to perform and

  17. A process-based model to estimate gas exchange and monoterpene emission rates in the mediterranean maquis - comparisons between modelled and measured fluxes at different scales

    NASA Astrophysics Data System (ADS)

    Vitale, M.; Matteucci, G.; Fares, S.; Davison, B.

    2009-02-01

    This paper concerns the application of a process-based model (MOCA, Modelling of Carbon Assessment) as an useful tool for estimating gas exchange, and integrating the empirical algorithms for calculation of monoterpene fluxes, in a Mediterranean maquis of central Italy (Castelporziano, Rome). Simulations were carried out for a range of hypothetical but realistic canopies of the evergreen Quercus ilex (holm oak), Arbutus unedo (strawberry tree) and Phillyrea latifolia. More, the dependence on total leaf area and leaf distribution of monoterpene fluxes at the canopy scale has been considered in the algorithms. Simulation of the gas exchange rates showed higher values for P. latifolia and A. unedo (2.39±0.30 and 3.12±0.27 gC m-2 d-1, respectively) with respect to Q. ilex (1.67±0.08 gC m-2 d-1) in the measuring campaign (May-June). Comparisons of the average Gross Primary Production (GPP) values with those measured by eddy covariance were well in accordance (7.98±0.20 and 6.00±1.46 gC m-2 d-1, respectively, in May-June), although some differences (of about 30%) were evident in a point-to-point comparison. These differences could be explained by considering the non uniformity of the measuring site where diurnal winds blown S-SW direction affecting thus calculations of CO2 and water fluxes. The introduction of some structural parameters in the algorithms for monoterpene calculation allowed to simulate monoterpene emission rates and fluxes which were in accord to those measured (6.50±2.25 vs. 9.39±4.5μg g-1DW h-1 for Q. ilex, and 0.63±0.207μg g-1DW h-1 vs. 0.98±0.30μg g-1DW h-1 for P. latifolia). Some constraints of the MOCA model are discussed, but it is demonstrated to be an useful tool to simulate physiological processes and BVOC fluxes in a very complicated plant distributions and environmental conditions, and necessitating also of a low number of input data.

  18. Are channels standalone? Analysis of channel to land interactions using a physically-based surface-subsurface processes model with multi-way exchanges

    NASA Astrophysics Data System (ADS)

    Shen, C.; Smithgall, K. M.; Riley, W. J.

    2014-12-01

    Large-scale land surface models commonly assumed that land-channel exchanges are unidirectional, in which the channel network receives runoff, baseflow, sediments, and other materials from land and conveys them to the outlet. The physiographic and geomorphological characteristics of channels, as well as flow conditions, exert no influence on simulated upland dynamics. In this work we study the feedbacks to upland hydrologic and ecosystem states and fluxes provided by channels. We employ a physically-based surface-subsurface processes model (PAWS+CLM) that fully resolves the multi-way interactions between channel flow, overland flow, groundwater, soil water and wetlands. We found notable influences of channels on land surface fluxes, which are explained by the baseflow mechanism and the efficient conveyance mechanism. We systematically quantify the extent of the impact and link channel characteristics to these impacts. Our results indicate that to further improve our understanding of the land-water system, the influence of channels need to be included in integrated models.

  19. Effects of weakly coupled and dense quantum plasmas environments on charge exchange and ionization processes in Na+ + Rb(5s) atom collisions

    NASA Astrophysics Data System (ADS)

    Pandey, Mukesh Kumar; Lin, Yen-Chang; Ho, Yew Kam

    2017-02-01

    The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.

  20. Wet chemical preparation and isotope exchange process of H/D-terminated Si(111) and Si(110) studied by adsorbate vibrational analysis

    NASA Astrophysics Data System (ADS)

    Kawamoto, Erina; Kang, Jungmin; Matsuda, Takuya; Yamada, Taro; Suto, Shozo

    2017-02-01

    A convenient procedure for preparing D-terminated Si(111)-(1×1) and Si(110)-(1×1) by wet chemical etching was developed and applied to the vibrational analysis of these surfaces by high-resolution electron-energy loss spectroscopy (HREELS). Fully H-terminated Si(111)/(110) was first prepared in regular 40% NH4F/H2O solution, followed by immersion in saturated KF/D2O solution. HREELS revealed partially D-terminated H:Si(111)/(110) with the amount of deuterium termination depending on the immersion time. A series of various immersion times revealed the H/D exchange reaction kinetics, which are associated with the Si substrate etching processes on Si(111) (step-flow etching) and Si(110) (zipper reaction). The H-Si and D-Si stretching vibration frequencies as functions of the surface D fraction did not appear to change on Si(111), but on Si(110) the H-Si signal red shifted at a high D fraction. This is due to the adsorbate-adsorbate interaction, which is more intense on Si(110) because of the short nearest-neighbor distance of the adsorbates.

  1. Iridium-imine and -amine complexes relevant to the (S)-metolachlor process: structures, exchange kinetics, and C-H activation by Iri causing racemization.

    PubMed

    Dorta, Romano; Broggini, Diego; Kissner, Reinhard; Togni, Antonio

    2004-09-20

    Iridium complexes of DMA-imine [2,6-dimethylphenyl-1'-methyl-2'-methoxyethylimine, 1 a) and (R)-DMA-amine [(1'R)-2,6-dimethylphenyl-1'-methyl-2'-methoxyethylamine, 2 a] that are relevant to the catalytic imine hydrogenation step of the Syngenta (S)-Metolachlor process were synthesized: metathetical exchange of [Ir2Cl2(cod)2] (cod=1,5-cyclooctadiene) with [Ag(1 a)2]BF4 and [Ag((R)-2 a)2]BF4 afforded [Ir(cod)(kappa2- -1 a)]BF4 (11) and [Ir(cod)(kappa2-(R)-2 a)]BF4 ((R)-19)), respectively. These complexes were then used in stopped-flow experiments to study the displacement of amine 2 a from complex 19 by imine 1 a to form the imine complex 11, thus modeling the product/substrate exchange step in the catalytic cycle. The data suggest a two-step associative mechanism characterized by k1=(2.6+/-0.3) x 10(2) M(-1) s(-1) and k2=(4.3+/-0.6) x 10(-2) s(-1) with the respective activation energies EA1=(7.5+/-0.6) kJ mol(-1) and EA2=(37+/-3) kJ mol(-1). Furthermore, complex 11 reacted with H2O to afford the hydrolysis product [Ir(cod)(eta(6-)-2,6-dimethylaniline)]BF4 (12), and with I2 to liberate quantitatively the DMA-iminium salt 14. On the other hand, the chiral amine complex (R)-19 formed the optically inactive eta6-bound compound [Ir(cod)(eta6-rac-2 a)]BF4 (rac-18) upon dissolution in THF at room temperature, presumably via intramolecular C-H activation. This racemization was found to be a two-step event with k'1=9.0 x 10(-4) s(-1) and k2=2.89 x 10(-5) s(-1), featuring an optically active intermediate prior to sp3 C-H activation. Compounds 11, 12, rac-18, and (R)-19 were structurally characterized by single-crystal X-ray analyses.

  2. Process coupling and control over the response of net ecosystem CO2 exchange to climate variability and insect disturbance in subalpine forests of the Western US

    NASA Astrophysics Data System (ADS)

    Monson, R. K.; Moore, D. J.; Trahan, N. A.; Scott-Denton, L.; Burns, S. P.; Hu, J.; Bowling, D. R.

    2011-12-01

    Following ten years of studies in subalpine forest ecosystems of the Western US, we have concluded that the tight coupling between gross primary productivity (GPP) and the autotrophic component of soil respiration (Ra) drives responses of net ecosystem CO2 exchange (NEE) to climate variability and insect disturbance. This insight has been gained through long-term eddy flux observations, manipulative plot experiments, analyses of dynamics in the stable isotope compositions of CO2 and H2O, and chamber gas-exchange measurements. Using past observations from these studies, we deployed model-data assimilation techniques and forecast weather/climate modeling to estimate how the coupling between GPP and Ra is likely to affect future (Year 2100) dynamics in NEE. The amount of winter snow and its melting dynamics in the spring represents the dominant control over interannual variation in GPP. Using the SIPNET ecosystem process model, combined with knowledge about the stable isotope content of different water sources, we estimated that approximately 75% of growing season GPP is coupled to the use of snowmelt water, whereas approximately 25% is coupled to summer rain. The tight coupling between GPP and winter snow pack drives a similar tight coupling between soil respiration (Rs) and winter snow pack. Manipulation of snow pack on forest plots has shown that Rs increases with increased snow pack, and this effect disappears when trees are girdled, which stops the transfer of GPP to roots and the soil rhizosphere. Higher-than-normal winter snowpacks cause the carbon isotope ratios of soil-respired CO2 to be depleted in 13C, reflecting a signal of lower photosynthetic water-use efficiency in the GPP that is transferred to the soil rhizosphere. Large-scale forest disturbance due to catastrophic tree mortality from mountain pine beetle attack causes an initial (2-3 year) reduction in Rs, which is attributable to the loss of GPP and its effect on Ra. This near-term reduction in Rs

  3. Probing dynamics and mechanism of exchange process of quaternary ammonium dimeric surfactants, 14-s-14, in the presence of conventional surfactants.

    PubMed

    Liu, Jun; Jiang, Yan; Chen, Hong; Mao, Shi Zhen; Du, You Ru; Liu, Mai Li

    2012-12-27

    In this Article, we investigated effects of different types of conventional surfactants on exchange dynamics of quaternary ammonium dimeric surfactants, with chemical formula C(14)H(29)N(+)(CH(3))(2)- (CH(2))(s)-N(+)(CH(3))(2)C(14)H(29)·2Br(-), or 14-s-14 for short. Two nonionic surfactants, TritonX-100 (TX-100) and polyethylene glycol (23) laurylether (Brij-35), and one cationic surfactant, n-tetradecyltrimethyl ammonium bromide (TTAB), and one ionic surfactant, sodium dodecyl sulfate (SDS) were chosen as typical conventional surfactants. Exchange rates of 14-s-14 (s = 2, 3, and 4) between the micelle form and monomer in solution were detected by two NMR methods: one-dimensional (1D) line shape analysis and two-dimensional (2D) exchange spectroscopy (EXSY). Results show that the nonionic surfactants (TX-100 and Brij-35), the cationic surfactant (TTAB), and the ionic surfactant (SDS) respectively accelerated, barely influenced, and slowed the exchange rate of 14-s-14. The effect mechanism was investigated by the self-diffusion experiment, relaxation time measurements (T(2)/T(1)), the fluorescence experiment (I(1)/I(3)) and observed chemical shift variations. Results reveal that, nonionic conventional surfactants (TX-100 and Brij-35) loosened the molecule arrangement and decreased hydrophobic interactions in the micelle, and thus accelerated the exchange rate of 14-s-14. The cationic conventional surfactant (TTAB) barely changed the molecule arrangement and thus barely influenced the exchange rate of 14-s-14. The ionic conventional surfactant (SDS) introduced the electrostatic attraction effect, tightened the molecule arrangement, and increased hydrophobic interactions in the micelle, and thus slowed down the exchange rate of 14-s-14. Additionally, the two-step exchange mechanism of 14-s-14 in the mixed solution was revealed through interesting variation tendencies of exchange rates of 14-s-14.

  4. Optimizing exchanger design early

    SciTech Connect

    Lacunza, M.; Vaschetti, G.; Campana, H.

    1987-08-01

    It is not practical for process engineers and designers to make a rigorous economic evaluation for each component of a process due to the loss of time and money. But, it's very helpful and useful to have a method for a quick design evaluation of heat exchangers, considering their important contribution to the total fixed investment in a process plant. This article is devoted to this subject, and the authors present a method that has been proved in some design cases. Linking rigorous design procedures with a quick cost-estimation method provides a good technique for obtaining the right heat exchanger. The cost will be appropriate, sometimes not the lowest because of design restrictions, but a good approach to the optimum in an earlier process design stage. The authors intend to show the influence of the design variables in a shell and tube heat exchanger on capital investment, or conversely, taking into account the general limiting factors of the process such as thermodynamics, operability, corrosion, etc., and/or from the mechanical design of the calculated unit. The last is a special consideration for countries with no access to industrial technology or with difficulties in obtaining certain construction materials or equipment.

  5. Microtube strip heat exchanger

    NASA Astrophysics Data System (ADS)

    Doty, F. D.

    1991-04-01

    During the last quarter, Doty Scientific, Inc. (DSI) continued to make progress on the microtube strip (MTS) heat exchangers. The team has begun a heat exchanger stress analysis; however, they have been concentrating the bulk of their analytical energies on a computational fluid dynmaics (CFD) model to determine the location and magnitude of shell-side flow maldistribution which decreases heat exchanger effectiveness. DSI received 120 fineblanked tubestrips from Southern Fineblanking (SFB) for manufacturing process development. Both SFB and NIST provided inspection reports of the tubestrips. DSI completed the tooling required to encapsulate a tube array and press tubestrips on the array. Pressing the tubestrips on tube arrays showed design deficiencies both in the tubestrip design and the tooling design. DSI has a number of revisions in process to correct these deficiencies. The research effort has identified a more economical fusible alloy for encapsulating the tube array, and determined the parameters required to successfully encapsulate the tube array with the new alloy. A more compact MTS heat exchanger bank was designed.

  6. Heat exchanger

    DOEpatents

    Brackenbury, Phillip J.

    1986-04-01

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  7. Pharmaceutical Applications of Ion-Exchange Resins

    ERIC Educational Resources Information Center

    Elder, David

    2005-01-01

    The historical uses of ion-exchanged resins and a summary of the basic chemical principles involved in the ion-exchanged process are discussed. Specific applications of ion-exchange are provided that include drug stabilization, pharmaceutical excipients, taste-masking agents, oral sustained-release products, topical products for local application…

  8. Thermal decomposition of [Co(en)3][Fe(CN)6]∙ 2H2O: Topotactic dehydration process, valence and spin exchange mechanism elucidation

    PubMed Central

    2013-01-01

    Background The Prussian blue analogues represent well-known and extensively studied group of coordination species which has many remarkable applications due to their ion-exchange, electron transfer or magnetic properties. Among them, Co-Fe Prussian blue analogues have been extensively studied due to the photoinduced magnetization. Surprisingly, their suitability as precursors for solid-state synthesis of magnetic nanoparticles is almost unexplored. In this paper, the mechanism of thermal decomposition of [Co(en)3][Fe(CN)6] ∙∙ 2H2O (1a) is elucidated, including the topotactic dehydration, valence and spins exchange mechanisms suggestion and the formation of a mixture of CoFe2O4-Co3O4 (3:1) as final products of thermal degradation. Results The course of thermal decomposition of 1a in air atmosphere up to 600°C was monitored by TG/DSC techniques, 57Fe Mössbauer and IR spectroscopy. As first, the topotactic dehydration of 1a to the hemihydrate [Co(en)3][Fe(CN)6] ∙∙ 1/2H2O (1b) occurred with preserving the single-crystal character as was confirmed by the X-ray diffraction analysis. The consequent thermal decomposition proceeded in further four stages including intermediates varying in valence and spin states of both transition metal ions in their structures, i.e. [FeII(en)2(μ-NC)CoIII(CN)4], FeIII(NH2CH2CH3)2(μ-NC)2CoII(CN)3] and FeIII[CoII(CN)5], which were suggested mainly from 57Fe Mössbauer, IR spectral and elemental analyses data. Thermal decomposition was completed at 400°C when superparamagnetic phases of CoFe2O4 and Co3O4 in the molar ratio of 3:1 were formed. During further temperature increase (450 and 600°C), the ongoing crystallization process gave a new ferromagnetic phase attributed to the CoFe2O4-Co3O4 nanocomposite particles. Their formation was confirmed by XRD and TEM analyses. In-field (5 K / 5 T) Mössbauer spectrum revealed canting of Fe(III) spin in almost fully inverse spinel structure of CoFe2O4. Conclusions It has been found

  9. Counterflow Regolith Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Jonscher, Peter

    2013-01-01

    A problem exists in reducing the total heating power required to extract oxygen from lunar regolith. All such processes require heating a great deal of soil, and the heat energy is wasted if it cannot be recycled from processed material back into new material. The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat exchanger with internal and external augers attached to the inner rotating tube to move the regolith. Hot regolith in the outer tube is moved in one direction by a right-hand - ed auger, and the cool regolith in the inner tube is moved in the opposite direction by a left-handed auger attached to the inside of the rotating tube. In this counterflow arrangement, a large fraction of the heat from the expended regolith is transferred to the new regolith. The spent regolith leaves the heat exchanger close to the temperature of the cold new regolith, and the new regolith is pre-heated close to the initial temperature of the spent regolith. Using the CoRHE can reduce the heating requirement of a lunar ISRU system by 80%, reducing the total power consumption by a factor of two. The unique feature of this system is that it allows for counterflow heat exchange to occur between solids, instead of liquids or gases, as is commonly done. In addition, in variants of this concept, the hydrogen reduction can be made to occur within the counterflow heat exchanger itself, enabling a simplified lunar ISRU (in situ resource utilization) system with excellent energy economy and continuous nonbatch mode operation.

  10. Segmented heat exchanger

    DOEpatents

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  11. Fault-Tolerant Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  12. Interannual variability in the atmosphere-biosphere CO2 exchange as simulated by a process-based model for the last decades

    NASA Astrophysics Data System (ADS)

    Ito, A.

    2001-05-01

    Atmosphere-biosphere CO2 exchange induces not only seasonal oscillation but also interannual change in the atmospheric CO2 concentration. Actually, in 1998, atmospheric CO2 concentration increased at a remarkably high rate, while the growth rate was apparently depressed in 1992 and 1993. Elucidating whether these anomalies were attributable to the ocean or the terrestrial biosphere is an important challenge for carbon cycle researchers. In this study, a process-based model of terrestrial carbon dynamics (Sim-CYCLE) was constructed and used to simulate the terrestrial carbon balance for the period from 1953 to 1999. Climatic variables related to ecosystem processes were derived from the U.S NCEP/NCAR-reanalysis data (T62 spatial resolution), and the Matthews's biome map was adopted. The atmospheric CO2 fertilization effect during the experimental period was also considered in the simulation analysis. Sim-CYCLE includes five carbon compartments (leaves, stems, roots, litter, and humus), and calculates fluxes among them at a monthly step, with taking environmental regulations into account. Accordingly, I could obtain a time-series of net carbon budget, i.e. net ecosystem production (NEP), on the global scale. Through the experimental period, global annual NEP exhibited a considerable interannual variability ranging from +2.0 Pg C in 1971 to ?2.5 Pg C in 1998 (SD 1.1 Pg C yr-1). Tropical ecosystems were most responsible for the interannual variability, especially in such ENSO years as 1973, 1983, and 1998. The estimated NEP anomalies were negatively correlated with surface temperature anomaly, due to the high sensitivity of respiration and decomposition to temperature. Thus, it is inferred that higher temperatures induced by the strong 1997-98 ENSO event would lead to extra CO2 emission and consequently the largest negative NEP anomaly. The estimated responsiveness of terrestrial carbon budget seems enough large to cause anomalies in atmospheric CO2 concentration

  13. Ion Exchange and Adsorption of Inorganic Contaminants

    EPA Science Inventory

    In the first part of the chapter, the fundamentals of ion exchange and adsorption processes are explained, with the goal of demonstrating how these principles influence process design for inorganic contaminant removal. In the second part, ion exchange and adsorption processes th...

  14. Chromatography process development in the quality by design paradigm I: Establishing a high-throughput process development platform as a tool for estimating "characterization space" for an ion exchange chromatography step.

    PubMed

    Bhambure, R; Rathore, A S

    2013-01-01

    This article describes the development of a high-throughput process development (HTPD) platform for developing chromatography steps. An assessment of the platform as a tool for establishing the "characterization space" for an ion exchange chromatography step has been performed by using design of experiments. Case studies involving use of a biotech therapeutic, granulocyte colony-stimulating factor have been used to demonstrate the performance of the platform. We discuss the various challenges that arise when working at such small volumes along with the solutions that we propose to alleviate these challenges to make the HTPD data suitable for empirical modeling. Further, we have also validated the scalability of this platform by comparing the results from the HTPD platform (2 and 6 μL resin volumes) against those obtained at the traditional laboratory scale (resin volume, 0.5 mL). We find that after integration of the proposed correction factors, the HTPD platform is capable of performing the process optimization studies at 170-fold higher productivity. The platform is capable of providing semi-quantitative assessment of the effects of the various input parameters under consideration. We think that platform such as the one presented is an excellent tool for examining the "characterization space" and reducing the extensive experimentation at the traditional lab scale that is otherwise required for establishing the "design space." Thus, this platform will specifically aid in successful implementation of quality by design in biotech process development. This is especially significant in view of the constraints with respect to time and resources that the biopharma industry faces today.

  15. Educator Exchange Resource Guide.

    ERIC Educational Resources Information Center

    Garza, Cris; Rodriguez, Victor

    This resource guide was developed for teachers and administrators interested in participating in intercultural and international exchange programs or starting an exchange program. An analysis of an exchange program's critical elements discusses exchange activities; orientation sessions; duration of exchange; criteria for participation; travel,…

  16. Scraped surface heat exchangers.

    PubMed

    Rao, Chetan S; Hartel, Richard W

    2006-01-01

    Scraped surface heat exchangers (SSHEs) are commonly used in the food, chemical, and pharmaceutical industries for heat transfer, crystallization, and other continuous processes. They are ideally suited for products that are viscous, sticky, that contain particulate matter, or that need some degree of crystallization. Since these characteristics describe a vast majority of processed foods, SSHEs are especially suited for pumpable food products. During operation, the product is brought in contact with a heat transfer surface that is rapidly and continuously scraped, thereby exposing the surface to the passage of untreated product. In addition to maintaining high and uniform heat exchange, the scraper blades also provide simultaneous mixing and agitation. Heat exchange for sticky and viscous foods such as heavy salad dressings, margarine, chocolate, peanut butter, fondant, ice cream, and shortenings is possible only by using SSHEs. High heat transfer coefficients are achieved because the boundary layer is continuously replaced by fresh material. Moreover, the product is in contact with the heating surface for only a few seconds and high temperature gradients can be used without the danger of causing undesirable reactions. SSHEs are versatile in the use of heat transfer medium and the various unit operations that can be carried out simultaneously. This article critically reviews the current understanding of the operations and applications of SSHEs.

  17. Role of σ exchange in the γ p →ϕ p process and scaling with the f1 axial vector meson from a Reggeized model

    NASA Astrophysics Data System (ADS)

    Yu, Byung-Geel; Kim, Hungchong; Kong, Kook-Jin

    2017-01-01

    We investigate the role driven by the scalar meson σ exchange in the photoproduction of the vector meson ϕ (1020 ) off a proton by using a Reggeized model. Based on the π0(135 )+σ (500 )+f2(1270 ) +Pomeron exchanges, we demonstrate that the σ exchange plays the role to reproduce the bump structure at the forward angle in the differential cross section as well as the peaking behavior in the total cross section observed in the CLAS Collaboration. We also discuss the possible observation of the scaled cross section s7d σ /d t at the production angle θ =9 0 ° from the CLAS data. It is found that the axial vector meson f1(1285 ) exchange with the trajectory αf 1(t )=0.028 t +0.9 ±0.2 arising from the axial anomaly of the QCD vacuum plays the role to clarify the scaling up to 5 GeV.

  18. The impact of water exchange rate and treatment processes on water-borne hormones in recirculation aquaculture systems containing sexually maturing Atlantic salmon Salmo salar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A controlled seven-month study was conducted in six replicated water recirculation aquaculture systems (WRAS) to assess post-smolt Atlantic salmon (Salmo salar) performance in relation to WRAS water exchange rate. Unexpectedly high numbers of precocious sexually mature fish were observed in all WRAS...

  19. Heat exchangers of gas turbine engines

    NASA Astrophysics Data System (ADS)

    Baranov, Iu. F.; Mitin, B. M.

    1991-07-01

    The papers presented in this volume focus on methods for studying the thermal and hydraulic characteristics of heat exchangers used in gas turbine engines and methods for the analysis and experimental investigation of the dynamic characteristics of heat exchangers with different coolant flow schemes, including cryogenic heat exchangers. In particular, attention is given to the effect of tube bundle parameters on the dimensional and mass characteristics of high-temperature heat exchangers, a numerical method for calculating the dynamic characteristics of a fuel-air heat exchanger with a buffer cavity, and an experimental study of the air drying process in air coolers.

  20. Corrosive resistant heat exchanger

    DOEpatents

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  1. 21 CFR 173.20 - Ion-exchange membranes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ion-exchange membranes. 173.20 Section 173.20 Food... for Food Treatment § 173.20 Ion-exchange membranes. Ion-exchange membranes may be safely used in the processing of food under the following prescribed conditions: (a) The ion-exchange membrane is prepared...

  2. Exchange frequency in replica exchange molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sindhikara, Daniel; Meng, Yilin; Roitberg, Adrian E.

    2008-01-01

    The effect of the exchange-attempt frequency on sampling efficiency is studied in replica exchange molecular dynamics (REMD). We show that sampling efficiency increases with increasing exchange-attempt frequency. This conclusion is contrary to a commonly expressed view in REMD. Five peptides (1-21 residues long) are studied with a spectrum of exchange-attempt rates. Convergence rates are gauged by comparing ensemble properties between fixed length test REMD simulations and longer reference simulations. To show the fundamental correlation between exchange frequency and convergence time, a simple model is designed and studied, displaying the same basic behavior of much more complex systems.

  3. Influence of time dependent longitudinal magnetic fields on the cooling process, exchange bias and magnetization reversal mechanism in FM core/AFM shell nanoparticles: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Yüksel, Yusuf; Akıncı, Ümit

    2016-12-01

    Using Monte Carlo simulations, we have investigated the dynamic phase transition properties of magnetic nanoparticles with ferromagnetic core coated by an antiferromagnetic shell structure. Effects of field amplitude and frequency on the thermal dependence of magnetizations, magnetization reversal mechanisms during hysteresis cycles, as well as on the exchange bias and coercive fields have been examined, and the feasibility of applying dynamic magnetic fields on the particle have been discussed for technological and biomedical purposes.

  4. Influence of phase transformations and heat and mass exchange on the course of the processes of pyrolysis of single high-ash-coal particles at elevated pressures

    SciTech Connect

    V.P. Patskov

    2007-03-15

    A comparative analysis of equilibrium and nonequilibrium models for calculation of the rates of phase transitions (evaporation and condensation) of pyrolysis products and the influence of convective heat and mass exchange with inert ash particles and the gas flow in pyrolysis of single particles of high-ash bituminous coals in the operation of technological units with a circulating fluidized bed under pressure is made.

  5. Application of a chromatography model with linear gradient elution experimental data to the rapid scale-up in ion-exchange process chromatography of proteins.

    PubMed

    Ishihara, Takashi; Kadoya, Toshihiko; Yamamoto, Shuichi

    2007-08-24

    We applied the model described in our previous paper to the rapid scale-up in the ion exchange chromatography of proteins, in which linear flow velocity, column length and gradient slope were changed. We carried out linear gradient elution experiments, and obtained data for the peak salt concentration and peak width. From these data, the plate height (HETP) was calculated as a function of the mobile phase velocity and iso-resolution curve (the separation time and elution volume relationship for the same resolution) was calculated. The scale-up chromatography conditions were determined by the iso-resolution curve. The scale-up of the linear gradient elution from 5 to 100mL and 2.5L column sizes was performed both by the separation of beta-lactoglobulin A and beta-lactoglobulin B with anion-exchange chromatography and by the purification of a recombinant protein with cation-exchange chromatography. Resolution, recovery and purity were examined in order to verify the proposed method.

  6. The influence of particle size and AgNO3 concentration in the ionic exchange process on the fungicidal action of antimicrobial glass.

    PubMed

    Mendes, E; Piletti, R; Barichello, T; Oliveira, C M; Kniess, C T; Angioletto, E; Riella, H G; Fiori, M A

    2012-08-01

    Antimicrobial materials have long been used as an effective means of reducing the risks posed to humans by fungi, bacteria and other microorganisms. These materials are essential in environments where cleanliness, comfort and hygiene are the predominate concerns. This work presents preliminary results for the development of a fungicidal vitreous material that is produced by the incorporation of a silver ionic specimen through ionic exchange reactions. Silver ions were incorporated into powdered glass via ionic exchange in an ionic medium containing silver species with different concentrations of AgNO3. The fungicidal efficiency of the samples was studied as a function of the AgNO3 concentration and the particle size of the glass using the agar diffusion test for the microbiological analysis of the fungus species Candida albicans. The samples were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The experimental results showed that the fungicidal effect was dependent on the AgNO3 concentration in the ionic exchange medium but was not dependent on the particle size of the glass.

  7. Exchange-driven growth.

    PubMed

    Ben-Naim, E; Krapivsky, P L

    2003-09-01

    We study a class of growth processes in which clusters evolve via exchange of particles. We show that depending on the rate of exchange there are three possibilities: (I) Growth-clusters grow indefinitely, (II) gelation-all mass is transformed into an infinite gel in a finite time, and (III) instant gelation. In regimes I and II, the cluster size distribution attains a self-similar form. The large size tail of the scaling distribution is Phi(x) approximately exp(-x(2-nu)), where nu is a homogeneity degree of the rate of exchange. At the borderline case nu=2, the distribution exhibits a generic algebraic tail, Phi(x) approximately x(-5). In regime III, the gel nucleates immediately and consumes the entire system. For finite systems, the gelation time vanishes logarithmically, T approximately [lnN](-(nu-2)), in the large system size limit N--> infinity. The theory is applied to coarsening in the infinite range Ising-Kawasaki model and in electrostatically driven granular layers.

  8. Woven heat exchanger

    DOEpatents

    Piscitella, Roger R.

    1987-05-05

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  9. Woven heat exchanger

    DOEpatents

    Piscitella, Roger R.

    1987-01-01

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  10. Cross-Shelf Exchange.

    PubMed

    Brink, K H

    2016-01-01

    Cross-shelf exchange dominates the pathways and rates by which nutrients, biota, and materials on the continental shelf are delivered and removed. This follows because cross-shelf gradients of most properties are usually far greater than those in the alongshore direction. The resulting transports are limited by Earth's rotation, which inhibits flow from crossing isobaths. Thus, cross-shelf flows are generally weak compared with alongshore flows, and this leads to interesting observational issues. Cross-shelf flows are enabled by turbulent mixing processes, nonlinear processes (such as momentum advection), and time dependence. Thus, there is a wide range of possible effects that can allow these critical transports, and different natural settings are often governed by different combinations of processes. This review discusses examples of representative transport mechanisms and explores possible observational and theoretical paths to future progress.

  11. Study of anomalous behaviour of LiTaO3 during the annealed proton exchange process of optical waveguide’s formation comparison with LiNbO3

    NASA Astrophysics Data System (ADS)

    Salavcova, Linda; Spirkova, Jarmila; Ondracek, Frantisek; Mackova, Anna; Vacik, Jiri; Kreissig, Ulrich; Eichhorn, Frank; Groetzschel, Rainer

    2007-03-01

    This paper deals with a detailed study of changes that lithium tantalate (LT) and lithium niobate (LN) single crystals undergo during the annealed proton exchange (APE) process of optical waveguides' formation. It is a well-known fact that several cases of anomalous behaviour are connected to the APE:LT samples, bringing thus an obstruction for the practical utilization of the APE:LT waveguides. As the LT crystal possesses even better optical properties than the LN crystal (e.g., it is less susceptible to optical damage), it is desirable to provide research focused on its behaviour during the APE process in order to acquire a control over the fabrication of the APE:LT devices. Neutron depth profiling (NDP), elastic recoil detection analysis (ERDA) and heavy ion ERDA (HI-ERDA) were performed to study changes in the surface of the LT and LN Z-cut wafers caused by the APE treatment and to determine the concentration depth profiles of the exchanged ions (lithium and hydrogen). Information on modifications of the crystals during the APE was obtained using X-ray diffraction (XRD) analysis. Optical/waveguiding properties of the samples were obtained by means of the standard mode spectroscopy at 633 nm. The experiments proved that the LT is significantly less affected by the APE process compared to the LN and that most characteristics of the APE:LT layers can be easily restored towards that of the virgin crystal by the annealing process.

  12. Woven heat exchanger

    DOEpatents

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  13. Atmosphere-surface exchange measurements.

    PubMed

    Dabberdt, W F; Lenschow, D H; Horst, T W; Zimmerman, P R; Oncley, S P; Delany, A C

    1993-06-04

    The exchange of various trace species and energy at the earth's surface plays an important role in climate, ecology, and human health and welfare. Surface exchange measurements can be difficult to obtain yet are important to understand physical processes, assess environmental and global change impacts, and develop robust parameterizations of atmospheric processes. The physics and turbulent structure of the atmospheric boundary layer are reviewed as they contribute to dry surface exchange rates (fluxes). Micrometeorological, budget, and enclosure techniques used to measure or estimate surface fluxes are described, along with their respective advantages and limitations. Various measurement issues (such as site characteristics, sampling considerations, sensor attributes, and flow distortion) impact on the ability to obtain representative surface-based and airborne flux data.

  14. Electrically Switched Cesium Ion Exchange

    SciTech Connect

    JPH Sukamto; ML Lilga; RK Orth

    1998-10-23

    This report discusses the results of work to develop Electrically Switched Ion Exchange (ESIX) for separations of ions from waste streams relevant to DOE site clean-up. ESIX combines ion exchange and electrochemistry to provide a selective, reversible method for radionuclide separation that lowers costs and minimizes secondary waste generation typically associated with conventional ion exchange. In the ESIX process, an electroactive ion exchange film is deposited onto. a high surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. As a result, the production of secondary waste is minimized, since the large volumes of solution associated with elution, wash, and regeneration cycles typical of standard ion exchange are not needed for the ESIX process. The document is presented in two parts: Part I, the Summary Report, discusses the objectives of the project, describes the ESIX concept and the approach taken, and summarizes the major results; Part II, the Technology Description, provides a technical description of the experimental procedures and in-depth discussions on modeling, case studies, and cost comparisons between ESIX and currently used technologies.

  15. Host-guest chemistry of a water-soluble pillar[5]arene: evidence for an ionic-exchange recognition process and different complexation modes.

    PubMed

    Gómez, Borja; Francisco, Vitor; Fernández-Nieto, Fernando; Garcia-Rio, Luis; Martín-Pastor, M; Paleo, M Rita; Sardina, F Javier

    2014-09-15

    The complexation of an anionic guest by a cationic water-soluble pillararene is reported. Isothermal titration calorimetry (ITC), (1)H NMR, (1)H and (19)F DOSY, and STD NMR experiments were performed to characterize the complex formed under aqueous neutral conditions. The results of ITC and (1)H NMR analyses showed the inclusion of the guest inside the cavity of the pillar[5]arene, with the binding constant and thermodynamic parameters influenced by the counter ion of the macrocycle. NMR diffusion experiments showed that although a fraction of the counter ions are expelled from the host cavity by exchange with the guest, a complex with both counter ions and the guest inside the pillararene is formed. The results also showed that at higher concentrations of guest in solution, in addition to the inclusion of one guest molecule in the cavity, the pillararene can also form an external complex with a second guest molecule.

  16. Throughfall deposition and canopy exchange processes along a vertical gradient within the canopy of beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst).

    PubMed

    Adriaenssens, Sandy; Hansen, Karin; Staelens, Jeroen; Wuyts, Karen; De Schrijver, An; Baeten, Lander; Boeckx, Pascal; Samson, Roeland; Verheyen, Kris

    2012-03-15

    To assess the impact of air pollution on forest ecosystems, the canopy is usually considered as a constant single layer in interaction with the atmosphere and incident rain, which could influence the measurement accuracy. In this study the variation of througfall deposition and derived dry deposition and canopy exchange were studied along a vertical gradient in the canopy of one European beech (Fagus sylvatica L.) tree and two Norway spruce (Picea abies (L.) Karst) trees. Throughfall and net throughfall deposition of all ions other than H(+) increased significantly with canopy depth in the middle and lower canopy of the beech tree and in the whole canopy of the spruce trees. Moreover, throughfall and net throughfall of all ions in the spruce canopy decreased with increasing distance to the trunk. Dry deposition occurred mainly in the upper canopy and was highest during the growing season for H(+), NH(4)(+), NO(3)(-) and highest during the dormant season for Na(+), Cl(-), SO(4)(2-) (beech and spruce) and K(+), Ca(2+) and Mg(2+) (spruce only). Canopy leaching of K(+), Ca(2+) and Mg(2+) was observed at all canopy levels and was higher for the beech tree compared to the spruce trees. Canopy uptake of inorganic nitrogen and H(+) occurred mainly in the upper canopy, although significant canopy uptake was found in the middle canopy as well. Canopy exchange was always higher during the growing season compared to the dormant season. This spatial and temporal variation indicates that biogeochemical deposition models would benefit from a multilayer approach for shade-tolerant tree species such as beech and spruce.

  17. Effects of ionizing radiation on modern ion exchange materials

    SciTech Connect

    Marsh, S.F.; Pillay, K.K.S.

    1993-10-01

    We review published studies of the effects of ionizing radiation on ion exchange materials, emphasizing those published in recent years. A brief overview is followed by a more detailed examination of recent developments. Our review includes styrene/divinylbenzene copolymers with cation-exchange or anion-exchange functional groups, polyvinylpyridine anion exchangers, chelating resins, multifunctional resins, and inorganic exchangers. In general, strong-acid cation exchange resins are more resistant to radiation than are strong-base anion exchange resins, and polyvinylpyridine resins are more resistant than polystyrene resins. Cross-linkage, salt form, moisture content, and the surrounding medium all affect the radiation stability of a specific exchanger. Inorganic exchangers usually, but not always, exhibit high radiation resistance. Liquid ion exchangers, which have been used so extensively in nuclear processing applications, also are included.

  18. Timing matters in foreign exchange markets

    NASA Astrophysics Data System (ADS)

    Hirata, Yoshito; Aihara, Kazuyuki

    2012-02-01

    We show using nonlinear time series analysis that the timing of trades in foreign exchange markets has significant information. We apply a set of methods for analyzing point process data developed in neuroscience and nonlinear science. Our results imply that foreign exchange markets might be chaotic and have short-term predictability.

  19. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, A.W.; Gatrone, R.C.; Alexandratos, S.; Horwitz, E.P.

    1997-04-08

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorus. The pendent groups have the formula as shown in the patent wherein R is hydrogen, a cation or mixtures thereof; and R{sup 1} is hydrogen or an C{sub 1}-C{sub 2} alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  20. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1998-01-27

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange-resin are also disclosed.

  1. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1997-01-01

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  2. Indiana Health Information Exchange

    Cancer.gov

    The Indiana Health Information Exchange is comprised of various Indiana health care institutions, established to help improve patient safety and is recognized as a best practice for health information exchange.

  3. [Comparison of the effects of exchange forms on social solidarity].

    PubMed

    Inaba, Misato; Takahashi, Nobuyuki

    2012-04-01

    Although social solidarity is an essential component that helps maintaining social order, what produces solidarity and how does it work have not been fully investigated. We conducted an experiment to examine whether experiencing different forms of social exchange produces different levels of solidarity. We compared four forms of social exchange: reciprocal exchange (exchange resources without negotiation), negotiated exchange (with negotiation), pure-generalized exchange (giver can choose who to give) and chain-generalized exchange (giver cannot choose who to give). Two dimensions classify these exchanges: the number of players (two vs. more than two), and involvement of negotiation. Reciprocal and negotiated exchanges occur within dyads, while pure- and chain-generalized exchanges involve three or more players. Only the negotiated exchange involves negotiation process; the other exchanges are purely unilateral giving. Participants played a one-shot social dilemma game (SDG) before and after social exchange session. The more the players cooperated in SDG, the stronger the social solidarity. Results show that the cooperation rate in SDG increased more in the reciprocal, pure- and chain-generalized exchange conditions than that in the negotiated exchange condition, suggesting that social solidarity is facilitated by experiencing social exchange which does not involve negotiation.

  4. Air-sea CO2 exchange process in the southern Yellow Sea in April of 2011, and June, July, October of 2012

    NASA Astrophysics Data System (ADS)

    Qu, Baoxiao; Song, Jinming; Yuan, Huamao; Li, Xuegang; Li, Ning

    2014-06-01

    The partial pressure of CO2 (pCO2) and air-sea CO2 exchange flux (FCO2) in the southern Yellow Sea (SYS, 120-125°E, 31.5-37°N) were investigated basing on the field surveys conducted in April of 2011, and June, July, October of 2012. With significant spatial variations, surface pCO2 ranged from 243 to 574 μatm, 206 to 620 μatm, 102 to 655 μatm and 328 to 557 μatm in April, June, July and October, respectively. Nearshore area of Shandong Peninsula and Jiangsu Shallow (depth<50 m) were pCO2-supersaturated (pCO2=400-600 μatm), as the result of intensive water mixing which brought the bottom CO2-rich water to the surface layer. Conversely, offshore area of SYS center (depth>50 m) was pCO2-undersaturated (pCO2<390 μatm) in April, June and October, but supersaturated in July. Phytoplankton production sustained by abundant nutrient and suitable hydrodynamic conditions was of great importance for this undersaturated pCO2. Moreover, extreme low pCO2 (pCO2<300 μatm) was observed in the Changjiang plume (32.5-33.5°N, 123-125°E) in July, which was also related with the biological uptake of CO2. Average air-sea CO2 exchange flux of the SYS in April, June, July and October was -3.16±0.40 mmol m-2 d-1, -4.56±0.34 mmol m-2 d-1, -0.36±0.51 mmol m-2 d-1, and 6.67±0.57 mmol m-2 d-1, respectively. As a whole, the SYS behaved as a weak CO2 sink during April to October, with an average flux for about -0.35 mmol m-2 d-1. As for the controlling factors for pCO2 variation, temperature played the dominant role in October, whereas the non-temperature factors, such as vertical mixing, Changjiang plume and biological activity, were considered as the primary controlling factors in June and July. Spatially, the control of temperature on pCO2 was predominant in the offshore SYS; the non-temperature factors were predominant in the shallow nearshore area, especially in coast of Shandong Peninsula and the Jiangsu Shallow.

  5. Charge exchange system

    DOEpatents

    Anderson, Oscar A.

    1978-01-01

    An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.

  6. Spaceborne Microwave Remote Sensing of Seasonal Freeze-Thaw Processes in the Terrestrial High Latitudes: Relationships with Land-Atmosphere CO2 exchange

    NASA Technical Reports Server (NTRS)

    McDonald, Kyle C.; Kimball, John S.; Zhao, Maosheng; Njoku, Eni; Zimmermann, Reiner; Running, Steven W.

    2004-01-01

    Landscape transitions between seasonally frozen and thawed conditions occur each year over roughly 50 million square kilometers of Earth's Northern Hemisphere. These relatively abrupt transitions represent the closest analog to a biospheric and hydrologic on/off switch existing in nature, affecting surface meteorological conditions, ecological trace gas dynamics, energy exchange and hydrologic activity profoundly. We utilize time series satellite-borne microwave remote sensing measurements from the Special Sensor Microwave Imager (SSM/I) to examine spatial and temporal variability in seasonal freeze/thaw cycles for the pan-Arctic basin and Alaska. Regional measurements of spring thaw timing are derived using daily brightness temperature measurements from the 19 GHz, horizontally polarized channel, separately for overpasses with 6 AM and 6 PM equatorial crossing times. Spatial and temporal patterns in regional freeze/thaw dynamics show distinct differences between North America and Eurasia, and boreal forest and Arctic tundra biomes. Annual anomalies in the timing of thawing in spring also correspond closely to seasonal atmospheric CO2 concentration anomalies derived from NOAA CMDL arctic and subarctic monitoring stations. Classification differences between AM and PM overpass data average approximately 5 days for the region, though both appear to be effective surrogates for monitoring annual growing seasons at high latitudes.

  7. Controlled synthesis of Bi2S3/ZnS microspheres by an in situ ion-exchange process with enhanced visible light photocatalytic activity.

    PubMed

    Wu, Zhudong; Chen, Linlin; Xing, Chaosheng; Jiang, Deli; Xie, Jimin; Chen, Min

    2013-09-28

    A novel Bi2S3/ZnS heterostructure has been synthesized through an in situ cation-exchange method between ZnS and bismuth(III) chloride. The obtained samples were characterized by multiform techniques, such as X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission microscopy, UV-visible diffuse-reflectance spectroscopy, and photoluminescence spectra. The photocatalytic activities of the obtained photocatalysts were measured by the degradation of rhodamine B (RhB) and refractory oxytetracycline (OTC) under visible-light irradiation (λ ≥ 400 nm). The as-prepared Bi2S3/ZnS photocatalysts exhibit wide absorption in the visible-light region and display superior visible-light-driven photocatalytic activities in degradation of RhB and OTC compared with pristine ZnS microspheres and Bi2S3 nanorods. The dramatic enhancement in the visible light photocatalytic performance of the Bi2S3/ZnS composites could be attributed to the effective electron-hole separations at the interfaces of the two semiconductors, which facilitate the transfer of the photoinduced carriers. The present study provides helpful insight into the design of novel and highly efficient sulfate heterostructure photocatalysts.

  8. Spaceborne microwave remote sensing of seasonal freeze-thaw processes in theterrestrial high l atitudes : relationships with land-atmosphere CO2 exchange

    NASA Technical Reports Server (NTRS)

    McDonald, Kyle C.; Kimball, John S.; Zhao, Maosheng; Njoku, Eni; Zimmermann, Reiner; Running, Steven W.

    2004-01-01

    Landscape transitions between seasonally frozen and thawed conditions occur each year over roughly 50 million square kilometers of Earth's Northern Hemisphere. These relatively abrupt transitions represent the closest analog to a biospheric and hydrologic on/off switch existing in nature, affecting surface meteorological conditions, ecological trace gas dynamics, energy exchange and hydrologic activity profoundly. We utilize time series satellite-borne microwave remote sensing measurements from the Special Sensor Microwave Imager (SSM/I) to examine spatial and temporal variability in seasonal freeze/thaw cycles for the pan-Arctic basin and Alaska. Regional measurements of spring thaw timing are derived using daily brightness temperature measurements from the 19 GHz, horizontally polarized channel, separately for overpasses with 6 AM and 6 PM equatorial crossing times. Spatial and temporal patterns in regional freeze/thaw dynamics show distinct differences between North America and Eurasia, and boreal forest and Arctic tundra biomes. Annual anomalies in the timing of thawing in spring also correspond closely to seasonal atmospheric CO2 concentration anomalies derived from NOAA CMDL arctic and subarctic monitoring stations. Classification differences between AM and PM overpass data average approximately 5 days for the region, though both appear to be effective surrogates for monitoring annual growing seasons at high latitudes.

  9. Monitoring a coordinated exchange process in a four-component biological interaction system: development of a time-resolved terbium-based one-donor/three-acceptor multicolor FRET system.

    PubMed

    Kim, Sung Hoon; Gunther, Jillian R; Katzenellenbogen, John A

    2010-04-07

    Hormonal regulation of cellular function involves the binding of small molecules with receptors that then coordinate subsequent interactions with other signal transduction proteins. These dynamic, multicomponent processes are difficult to track in cells and even in reconstituted in vitro systems, and most methods can monitor only two-component interactions, often with limited capacity to follow dynamic changes. Through a judicious choice of three organic acceptor fluorophores paired with a terbium donor fluorophore, we have developed the first example of a one-donor/three-acceptor multicolor time-resolved fluorescence energy transfer (TR-FRET) system, and we have exemplified its use by monitoring a ligand-regulated protein-protein exchange process in a four-component biological system. By careful quantification of the emission from each of the three acceptors at the four channels for terbium donor emission, we demonstrate that any of these donor channels can be used to estimate the magnitude of the three FRET signals in this terbium-donor triple-acceptor system with minimal bleedthrough. Using this three-channel terbium-based, TR-FRET assay system, we show in one experiment that the addition of a fluorescein-labeled estrogen agonist displaces a SNAPFL-labeled antiestrogen from the ligand binding pocket of a terbium-labeled estrogen receptor, at the same time causing a Cy5-labeled coactivator to be recruited to the estrogen receptor. This experiment demonstrates the power of a four-color TR-FRET experiment, and it shows that the overall process of estrogen receptor ligand exchange and coactivator binding is a dynamic but precisely coordinated process.

  10. South Atlantic interbasin exchange

    NASA Technical Reports Server (NTRS)

    Rintoul, Stephen Rich

    1991-01-01

    The exchange of mass and heat between the South Atlantic and the neighboring ocean basins was estimated using hydrographic data and inverse methods, in order to gain information on the links between the deep-water formation processes occurring within the Atlantic and the global thermohaline circulation. Results demonstrate that the global thermohaline cell associated with the formation and export of North Atlantic deep water (NADW) is closed primarily by a 'cold water path' in which deep water leaving the Atlantic ultimately returns as intermediate water entering the basin through Drake Passage. This conclusion conflicts with the suggestion by Gordon (1986) that the global thermohaline circulation associated with the formation of NADW is closed primarily by a 'warm water path', in which the export of NADW is compensated by an inflow of warm Indian Ocean thermocline water south of Africa.

  11. [Regulation of the Na/Ca exchanger].

    PubMed

    DiPolo, R; Rojas, H; Beaugé, L

    1993-01-01

    The introduction of the squid giant axon preparation to studies on Ca homeostasis has proven very useful in laying the foundations in the study of Ca regulation. In particular the Na/Ca exchange mechanism has been characterized in terms of its regulatory processes using the well define technique of intracellular dialysis and membrane potential control. The Na/Ca exchange countertransport system plays a critical role in physiological processes including cardiac contractility and photoreception. It has also been implicate in the etiology of essential hypertension, cardiac arrhythmias and cell death. The ability of the Na/Ca exchanger to regulate the intracellular ionized Ca concentration ([Ca2+i]) under physiological conditions, is determined by the direction (net Ca efflux or Ca influx), and magnitude of transport. The direction of Ca transport is decided by the chemical gradient of sodium and calcium. The magnitude of the exchange is regulated by kinetic factors. This kinetic factors are critical since they decide whether the exchanger will mediate a net Ca movement under certain conditions. Recently, a large effort has been put together to characterize the secondary modulation of the Na/Ca exchanger. In particular modulation by MgATP and intracellular Ca2+. In nerve cells we have discover that MgATP regulates the exchanger through as phosphorylation-dephosphorylation processes most probably relate to the action of a kinase-phosphatase system. The other important ligand that regulates the exchange activity is the level of [Ca2+i]. We have found the presence of a regulatory site in the cytoplasmic face of the exchanger different from the transport site and probably responsible for turning the carrier "on" or "off". In this article we will depict some of the processes involved in the metabolic and ionic regulation of the Na/Ca exchanger.

  12. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 1, Industrial solid waste processing municipal waste reduction/recycling

    SciTech Connect

    Lee, V.E.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarizes the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  13. 40 CFR 63.1409 - Heat exchange system provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Heat exchange system provisions. 63... exchange system provisions. (a) Unless one or more of the conditions specified in paragraphs (a)(1) through... each heat exchange system used to cool process equipment in an affected source, according to...

  14. Design and performance of a new continuous-flow sample-introduction system for flame infrared-emission spectrometry: Applications in process analysis, flow injection analysis, and ion-exchange high-performance liquid chromatography.

    PubMed

    Lam, C K; Zhang, Y; Busch, M A; Busch, K W

    1993-06-01

    A new sample introduction system for the analysis of continuously flowing liquid streams by flame infrared-emission (FIRE) spectrometry has been developed. The system uses a specially designed purge cell to strip dissolved CO(2) from solution into a hydrogen gas stream that serves as the fuel for a hydrogen/air flame. Vibrationally excited CO(2) molecules present in the flame are monitored with a simple infrared filter (4.4 mum) photometer. The new system can be used to introduce analytes as a continuous liquid stream (process analysis mode) or on a discrete basis by sample injection (flow injection analysis mode). The key to the success of the method is the new purge-cell design. The small internal volume of the cell minimizes problems associated with purge-cell clean-out and produces sharp, reproducible signals. Spent analytical solution is continuously drained from the cell, making cell disconnection and cleaning between samples unnecessary. Under the conditions employed in this study, samples could be analyzed at a maximum rate of approximately 60/h. The new sample introduction system was successfully tested in both a process analysis- and a flow injection analysis mode for the determination of total inorganic carbon in Waco tap water. For the first time, flame infrared-emission spectrometry was successfully extended to non-volatile organic compounds by using chemical pretreatment with peroxydisulfate in the presence of silver ion to convert the analytes into dissolved carbon dioxide, prior to purging and detection by the FIRE radiometer. A test of the peroxydisulfate/Ag(+) reaction using six organic acids and five sugars indicated that all 11 compounds were oxidized to nearly the same extent. Finally, the new sample introduction system was used in conjunction with a simple filter FIRE radiometer as a detection system in ion-exchange high-performance liquid chromatography. Ion-exchange chromatograms are shown for two aqueous mixtures, one containing six organic

  15. The Electrically Controlled Exchange Bias

    NASA Astrophysics Data System (ADS)

    Harper, Jacob

    Controlling magnetism via voltage in the virtual absence of electric current is the key to reduce power consumption while enhancing processing speed, integration density and functionality in comparison with present-day information technology. Almost all spintronic devices rely on tailored interface magnetism. Controlling magnetism at thin-film interfaces, preferably by purely electrical means, is therefore a key challenge to better spintronics. However, there is no direct interaction between magnetization and electric fields, thus making voltage control of magnetism in general a scientific challenge. The significance of controlled interface magnetism started with the exchange-bias effect. Exchange bias is a coupling phenomenon at magnetic interfaces that manifests itself prominently in the shift of the ferromagnetic hysteresis loop along the magnetic-field axis. Various attempts on controlling exchange bias via voltage utilizing different scientific principles have been intensively studied recently. The majority of present research is emphasizing on various complex oxides. Our approach can be considered as a paradigm shift away from complex oxides. We focus on a magnetoelectric antiferromagnetic simple oxide Cr2O3. From a combination of experimental and theoretical efforts, we show that the (0001) surface of magnetoelectric Cr2O3 has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr2O3 single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This is a significant scientific breakthrough providing a new route towards potentially revolutionizing information technology. In addition, a second path of electrically controlled exchange bias is introduced by exploiting the piezoelectric property of BaTiO3. An exchange-bias Co

  16. Nonsurvivable momentum exchange system

    NASA Technical Reports Server (NTRS)

    Roder, Russell (Inventor); Ahronovich, Eliezer (Inventor); Davis, III, Milton C. (Inventor)

    2007-01-01

    A demiseable momentum exchange system includes a base and a flywheel rotatably supported on the base. The flywheel includes a web portion defining a plurality of web openings and a rim portion. The momentum exchange system further includes a motor for driving the flywheel and a cover for engaging the base to substantially enclose the flywheel. The system may also include components having a melting temperature below 1500 degrees Celsius. The momentum exchange system is configured to demise on reentry.

  17. Recommended Methodology for Inter-Service/Agency Automated Message Processing Exchange (I-S/A AMPE). Cost and Schedule Analysis of Security Alternatives.

    DTIC Science & Technology

    1982-02-23

    select the cost and schedule tools . The methodology draws from four models chosen from the Programmed Review * of Information for Costing and...costing techniques selected for this task are a combination of different processes because there is no single general-purpose tool or model that...PRICE famiily of models has been selected as the primary estimation tool . Because SLIM utilizes a different algorithm, and can be executed at very

  18. Text Exchange System

    NASA Technical Reports Server (NTRS)

    Snyder, W. V.; Hanson, R. J.

    1986-01-01

    Text Exchange System (TES) exchanges and maintains organized textual information including source code, documentation, data, and listings. System consists of two computer programs and definition of format for information storage. Comprehensive program used to create, read, and maintain TES files. TES developed to meet three goals: First, easy and efficient exchange of programs and other textual data between similar and dissimilar computer systems via magnetic tape. Second, provide transportable management system for textual information. Third, provide common user interface, over wide variety of computing systems, for all activities associated with text exchange.

  19. Heat exchanger expert system logic

    NASA Technical Reports Server (NTRS)

    Cormier, R.

    1988-01-01

    The reduction is described of the operation and fault diagnostics of a Deep Space Network heat exchanger to a rule base by the application of propositional calculus to a set of logic statements. The value of this approach lies in the ease of converting the logic and subsequently implementing it on a computer as an expert system. The rule base was written in Process Intelligent Control software.

  20. Fock exchange in FLAPW method

    NASA Astrophysics Data System (ADS)

    Shishidou, Tatsuya; Oguchi, Tamio

    2008-03-01

    Fock exchange potential has distinct features which cannnot be seen in the LDA exchange potential. (i) It is self-interaction free potential and (ii) nonlocal potential and thus state-dependent potential. With appropriate correlation effects added, these two features may produce significantly improved results over the conventional LDA results, as one can witness in the GW calculations. Massidda et al. (1993) proposed a way to calculate Fock exchange potential of extended solids within the FLAPW method. Their idea was to apply Weinert's Poisson solver to infinite lattice summation as is done for the Hartree potential calculation. Due to the long range nature of Coulomb interaction, one encounters singularity problem in this process. They handled it by simply extending Gygi's prescription (1986), which was originally developed for the norm-conserving pseudopotential framework. In this paper, we present our formula in calculating Fock exchange matrix of solids based on the FLAPW method. Following Massidda's idea, we use Weinert's Poisson solver. However, in treating the Coulomb singularity, we have developed more accurate way: the occupied eigenfunctions in Fock operator are expanded upto the second order in terms of q vector based on the k.p perturbation theory, whearas Gygi's way corresponds to the zeroth order expansion. With this higher order expansion, one can achieve faster convergence for the Brillouin zone integration appearing in the Fock operator.

  1. 48 CFR 873.113 - Exchanges with offerors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... judgment. Clarifications, communications, and discussions, as provided for in the FAR, are concepts not... take place throughout the source selection process. Exchanges may start in the planning stages...

  2. Higher Education Exchange, 2012

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2012-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape…

  3. Higher Education Exchange, 2004

    ERIC Educational Resources Information Center

    Brown, David W., Ed; Witte, Deborah, Ed.

    2004-01-01

    The Higher Education Exchange is part of a movement to strengthen higher education's democratic mission and foster a more democratic culture throughout American society. Working in this tradition, the Higher Education Exchange publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic…

  4. Direct fired heat exchanger

    DOEpatents

    Reimann, Robert C.; Root, Richard A.

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  5. Higher Education Exchange, 2011

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2011-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape…

  6. Optimization of Heat Exchangers

    SciTech Connect

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  7. Higher Education Exchange, 2010

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2010-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  8. Higher Education Exchange, 2008

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2008-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape…

  9. Building Relationships through Exchange

    ERIC Educational Resources Information Center

    Primavera, Angi; Hall, Ellen

    2011-01-01

    From the moment of birth, children form and develop relationships with others in their world based on exchange. Children recognize that engaging in such encounters offers them the opportunity to enter into a relationship with another individual and to nurture that relationship through the exchange of messages and gifts, items and ideas. At Boulder…

  10. Handicapping Social Exchange Theory.

    ERIC Educational Resources Information Center

    Mishler, Barbara

    The economic theory of social exchange has some serious shortcomings when applied to minorities--especially the disabled. First, it assumes dyads comprise the basic unit where exchange occurs and that rewards and costs must occur at that level. Second, the model standardizes the experience of white, Western European and American males. The model…

  11. Convection and interfacial mass exchange

    NASA Astrophysics Data System (ADS)

    Colinet, P.; Legros, J. C.; Dauby, P. C.; Lebon, G.; Bestehorn, M.; Stephan, P.; Tadrist, L.; Cerisier, P.; Poncelet, D.; Barremaecker, L.

    2005-10-01

    Mass-exchange through fluid interfaces is ubiquitous in many natural and industrial processes. Yet even basic phase-change processes such as evaporation of a pure liquid are not fully understood, in particular when coupled with fluid motions in the vicinity of the phase-change interface, or with microscopic physical phenomena in the vicinity of a triple line (where the interface meets a solid). Nowadays, many industries recognise that this lack of fundamental knowledge is hindering the optimisation of existing processes. Their modelling tools are too dependent on empirical correlations with a limited - and often unknown - range of applicability. In addition to the intrinsic multiscale nature of the phenomena involved in typical industrial processes linked to interfacial mass exchange, their study is highly multi-disciplinary, involving tools and techniques belonging to physical chemistry, chemical engineering, fluid dynamics, non-linear physics, non-equilibrium thermodynamics, chemistry and statistical physics. From the experimental point of view, microgravity offers a unique environment to obtain valuable data on phase-change processes, greatly reducing the influence of body forces and allowing the detailed and accurate study of interfacial dynamics. In turn, such improved understanding leads to optimisation of industrial processes and devices involving phase-change, both for space and ground applications.

  12. A hypothetical model of organic matter sea-to-air exchange processes based on stable carbon fractionation in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Ceburnis, D.; Masalaite, A.; Garbaras, A.; Ovadnevaite, J.; Maenhaut, W.; Claeys, M.; Sciare, J.; O'Dowd, C. D. D.; Remeikis, V.

    2015-12-01

    Marine aerosol contributes significantly to the global aerosol loading and consequently has a significant impact on both the Earth's albedo and climate. Biological productivity in the global ocean is often resulting in significant amounts of primary organic matter in the aerosol phase. The North Atlantic Ocean is among the most productive oceanic regions and is the most studied ocean on Earth. The Southern Ocean, on the other hand, has been far less studied, even though similar organic matter enrichment patterns have been observed in marine aerosol. While numerous processes can contribute to organic matter in marine aerosols, carbon isotope analysis offers the most unambiguous estimates of the contributing sources. The stable carbon isotope ratios in marine aerosol samples collected during austral summer of 2007 at Amsterdam Island (Southern Indian Ocean) were examined. The measured δ13C values in the fine (Da <2.5µm) and coarse (Da >2.5µm) particle fractions were found to be evenly distributed between -28.2‰ and -20.0‰. These values are far lower than the previously reported ones as typical of unperturbed marine aerosol (-20‰). The δ13C values in the fine and coarse particle fractions were correlated with organic matter enrichment in sea spray. It was attempted to explain the variation of the δ13C values by the competition of the "fresh" and "old" organic matter pools in sea water during transfer into the aerosol phase, thereby implicating trophic level interactions. The hypothetical model suggests that fresh organic matter readily results in organic matter enrichment in sea spray particles and likely contains fresh colloidal and nanogel particulate matter, while the old organic matter is largely dissolved and unable to significantly enrich sea spray. Air mass back trajectory analysis suggests that the most productive regions, where sea spray particles are the most enriched in organic matter, are associated with low sea-water temperatures around the

  13. Development of carbon nanotubes based gas diffusion layers by in situ chemical vapor deposition process for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kannan, A. M.; Kanagala, P.; Veedu, V.

    A proprietary in situ chemical vapor deposition (CVD) process was developed for gas diffusion layer (GDL) by growing a micro-porous layer on the macro-porous, non-woven fibrous carbon paper. The characteristics of the GDL samples such as, surface morphology, wetting characteristics, and cross-section were characterized using electron microscopes, goniometer and focused ion beam, respectively. Fuel cell performance of the GDLs was evaluated using single cell with hydrogen/oxygen as well as hydrogen/air at ambient pressure, at elevated temperature and various RH conditions using Nafion-212 as an electrolyte. The GDLs with in situ growth of micro-porous layers containing carbon nanotubes (CNTs) without any hydrophobic agent showed significant improvement in mechanical robustness as well as fuel cell performance at elevated temperature at lower RH conditions. The micro-porous layer of the GDLs as seen under scanning electron microscope showed excellent surface morphology with surface homogeneity through reinforcement by the multi-walled CNTs.

  14. In vivo sup 23 Na and sup 31 P NMR measurement of a tonoplast Na sup + /H sup + exchange process and its characteristics in two barley cultivars

    SciTech Connect

    Fan, T.W.M.; Norlyn, J.; Epstein, E. ); Higashi, R.M. )

    1989-12-01

    A Na{sup +} uptake-associated vacuolar alkalinization was observed in roots of two barley cultivars (Arivat and the more salt-tolerant California Mariout) by using {sup 23}Na and {sup 31}P in vivo NMR spectroscopy. A NaCl uptake-associated broadening was also noted for both vacuolar P{sub i} and intracellular Na NMR peaks, consistent with Na{sup +} uptake into the same compartment as the vacuolar P{sub i}. A close coupling of Na{sup +} with H{sup +} transport (presumably the Na{sup +}/H{sup +} antiport) in vivo was evidence by qualitative and quantitative correlations between Na{sup +} accumulation and vacuolar alkalinization for both cultivars. Prolongation of the low NaCl pretreatment (30 mM) increased the activity of the putative antiport in Arivat but reduced it in California Mariout. This putative antiport also showed a dependence on NaCl concentration for California Mariout but not for Arivat. No cytoplasmic acidification accompanied the antiporter activity for either cultivar. The response of adenosine phosphates indicated that ATP utilization exceeded the capacity for ATP synthesis in Arivat, but the two processes seemed balanced in California Mariout. These comparisons provide clues to the role of the tonoplast Na{sup +}/H{sup +} antiport and compensatory cytoplasmic adjustments including pH, osymolytes, and energy phosphates in governing the different salt tolerance of the two cultivars.

  15. Competitions hatch butterfly attractors in foreign exchange markets

    NASA Astrophysics Data System (ADS)

    Jin, Yu Ying

    2005-03-01

    Chaos in foreign exchange markets is a common issue of concern in the study of economic dynamics. In this work, we mainly investigate the competition effect on chaos in foreign exchange markets. As one of the main economic structures in the globalization process, competition between two target exchange rates with the same base currency forms a simple competitive exchange rate relation, where each exchange rate follows the chaotic model of De Grauwe (Exchange Rate Theory-Chaotic Models of Foreign Exchange Markets, Blackwell, Oxford, Cambridge, MA, 1993). The main discovery is, while each exchange rate is in its non-chaotic parameter regions, the effect of competition will “hatch” butterfly-like chaotic attractors in the competitive market. The positive Lyapunov exponent in the market explains the reason why chaos occurs.

  16. Exploring knowledge exchange: a useful framework for practice and policy.

    PubMed

    Ward, Vicky; Smith, Simon; House, Allan; Hamer, Susan

    2012-02-01

    Knowledge translation is underpinned by a dynamic and social knowledge exchange process but there are few descriptions of how this unfolds in practice settings. This has hampered attempts to produce realistic and useful models to help policymakers and researchers understand how knowledge exchange works. This paper reports the results of research which investigated the nature of knowledge exchange. We aimed to understand whether dynamic and fluid definitions of knowledge exchange are valid and to produce a realistic, descriptive framework of knowledge exchange. Our research was informed by a realist approach. We embedded a knowledge broker within three service delivery teams across a mental health organisation in the UK, each of whom was grappling with specific challenges. The knowledge broker participated in the team's problem-solving process and collected observational fieldnotes. We also interviewed the team members. Observational and interview data were analysed quantitatively and qualitatively in order to determine and describe the nature of the knowledge exchange process in more detail. This enabled us to refine our conceptual framework of knowledge exchange. We found that knowledge exchange can be understood as a dynamic and fluid process which incorporates distinct forms of knowledge from multiple sources. Quantitative analysis illustrated that five broadly-defined components of knowledge exchange (problem, context, knowledge, activities, use) can all be in play at any one time and do not occur in a set order. Qualitative analysis revealed a number of distinct themes which better described the nature of knowledge exchange. By shedding light on the nature of knowledge exchange, our findings problematise some of the linear, technicist approaches to knowledge translation. The revised model of knowledge exchange which we propose here could therefore help to reorient thinking about knowledge exchange and act as a starting point for further exploration and

  17. Four particle exchange in solid He-3

    NASA Technical Reports Server (NTRS)

    Mcmahan, A. K.

    1975-01-01

    Calculations which demonstrate a physically important four-atom exchange process in bodycentered cubic He crystal and thus an important four-spin term in the exchange Hamiltonian are discussed. A simple, mean-field analysis of this Hamiltonian appears to account for a number of the perplexing properties of bodycentered cubic He crystal. It is suggested that an understanding of other properties may require treatment of the exact four-spin term.

  18. Energy-Exchange Project

    SciTech Connect

    Not Available

    1982-04-01

    The purpose of the study was to determine what energy savings can be achieved by coordinating the resources and requirements of two facilities, the 26th Ward Water Pollution Control Plant (WPCP) and a housing development named Starrett City with its own total energy system. It was determined that three energy exchange options were economically and technically feasible. These include: the transfer of digester gas produced at the 26th Ward to the boilers at the Starrett City's total energy plant (TEP); the transfer of hot water heated at the TEP to the 26th Ward for space and process heating; and the transfer of coal effluent waste water from the 26th Ward to the condenser cooling systems at the TEP. Technical information is presented to support the findings. The report addresses those tasks of the statement of work dedicated to data acquisition, analysis, and energy conservation strategies internal to the Starrett City TEP and the community it supplies as well as to the 26th Ward WPCP. (MCW)

  19. Electrically switched ion exchange

    SciTech Connect

    Lilga, M.A.; Schwartz, D.T.; Genders, D.

    1997-10-01

    A variety of waste types containing radioactive {sup 137}Cs are found throughout the DOE complex. These waste types include water in reactor cooling basins, radioactive high-level waste (HLW) in underground storage tanks, and groundwater. Safety and regulatory requirements and economics require the removal of radiocesium before these wastes can be permanently disposed of. Electrically Switched Ion Exchange (ESIX) is an approach for radioactive cesium separation that combines IX and electrochemistry to provide a selective, reversible, and economic separation method that also produces little or no secondary waste. In the ESIX process, an electroactive IX film is deposited electrochemically onto a high-surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. For cesium, the electroactive films under investigation are ferrocyanides, which are well known to have high selectivities for cesium in concentrated sodium solutions. When a cathode potential is applied to the film, Fe{sup +3} is reduced to the Fe{sup +2} state, and a cation must be intercalated into the film to maintain charge neutrality (i.e., Cs{sup +} is loaded). Conversely, if an anodic potential is applied, a cation must be released from the film (i.e., Cs{sup +} is unloaded). Therefore, to load the film with cesium, the film is simply reduced; to unload cesium, the film is oxidized.

  20. Starrett City energy exchange

    SciTech Connect

    Not Available

    1982-01-01

    The Starrett City/26th Ward Energy Project is a joint effort of Starrett City (a privately owned and operated 5881-unit high rise housing complex located in Brooklyn, NY) and the city of New York Department of Environmental Protection to develop the means to utilize waste-derived energy produced as by-products of municipal waste water treatment. Starrett City, a development of over 20,000 residents with its own schools, shopping and community centers, and power plant, is located directly across the street from the City of New York's 26th Ward Water Pollution Control Plant. Out of five energy exchange options, a cooperative project team recommended three: (1) transmitting all digester gas from the 26th Ward wastewater sewage-treatment facility to Starrett's cogeneration-type total energy plant (TEP), (2) piping hot water from the Starrett TEP to provide space and process heat to the 26th Ward, and (3) pumping treated effluent from the 26th Ward to the TEP to eliminate the need for Starrett's cooling tower. Starrett City assumed all installation and maintenance costs, both on city property and the TEP. Starrett projects a 53$ million saving in fuel costs over the next 20 years. The project will serve as a model for similar energy resource development efforts and offer the rationale for the private sector and municipalities to build together for the future.

  1. Anion exchange membrane

    DOEpatents

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  2. Wound tube heat exchanger

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  3. Cryptographic Securities Exchanges

    NASA Astrophysics Data System (ADS)

    Thorpe, Christopher; Parkes, David C.

    While transparency in financial markets should enhance liquidity, its exploitation by unethical and parasitic traders discourages others from fully embracing disclosure of their own information. Traders exploit both the private information in upstairs markets used to trade large orders outside traditional exchanges and the public information present in exchanges' quoted limit order books. Using homomorphic cryptographic protocols, market designers can create "partially transparent" markets in which every matched trade is provably correct and only beneficial information is revealed. In a cryptographic securities exchange, market operators can hide information to prevent its exploitation, and still prove facts about the hidden information such as bid/ask spread or market depth.

  4. Modeling structure-function interdependence of pulmonary gas exchange.

    PubMed

    Weibel, Ewald R

    2008-01-01

    Modeling functional processes, such as gas exchange, that occur deep in the lung far from where one can directly observe, depends on knowledge about the precise and quantitative design of the structure of the gas exchanger. This is the case as well for the actual arrangement of alveoli and blood capillaries at the gas exchange surface as for the disposition of gas exchange units with respect to the airway and vascular trees. The serial arrangement of alveoli and their perfusion as parallel units have important consequences for gas exchange.

  5. Ion Exchange Formation via Sulfonated Bicomponent Nonwovens

    NASA Astrophysics Data System (ADS)

    Stoughton, Hannah L.

    For many years ion exchange resins were used to: remove heavy metals from water, recover materials from wastewater, and eliminate harmful gases from the air. While use of these resin beads dominates the ion exchange industry, the beads have limitations that should be considered when decisions are made to employ them. For instance, officials must balance the inherent zero sum surface area and porosity of the materials. This series of studies investigates the use of bicomponent nonwovens as a base substrate for producing high surface area ion exchange materials for the removal of heavy metal ions. Functionalized materials were produced in a two-step process: (1) PET/PE spunbond bicomponent fibers were fractured completely, producing the high surface area nonwoven to be used as the base ion exchange material, and (2) the conditions for functionalizing the PET fibers of the nonwoven webs were investigated where an epoxy containing monomer was grafted to the surface followed by sulfonation of the monomer. The functionalization reactions of the PET fibers were monitored based on: weight gain, FTIR, TOF-SIMS, and SEM. Ion exchange properties were evaluated using titration and copper ion removal capacity from test solutions. The relationship between web structure and removal efficiency of the metal ions was defined through a comparison of the bicomponent and homocomponent nonwovens for copper ion removal efficiency. The investigation revealed that utilizing the high surface area, fractured bicomponent nonwoven ion exchange materials with capacities comparable to commercially available ion exchange resins could be produced.

  6. Active microchannel heat exchanger

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Roberts, Gary L [West Richland, WA; Call, Charles J [Pasco, WA; Wegeng, Robert S [Richland, WA; Wang, Yong [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  7. Compact, super heat exchanger

    NASA Technical Reports Server (NTRS)

    Fortini, A.; Kazaroff, J. M.

    1980-01-01

    Heat exchanger uses porous media to enhance heat transfer through walls of cooling channels, thereby lowering wall temperature. Porous media within cooling channel increases internal surface area from which heat can be transferred to coolant. Comparison data shows wall has lower temperature and coolant has higher temperature when porous medium is used within heat exchanger. Media can be sintered powedered metal, metal fibers, woven wire layers, or any porous metal having desired permeability and porosity.

  8. Hibernation and gas exchange.

    PubMed

    Milsom, William K; Jackson, Donald C

    2011-01-01

    Hibernation in endotherms and ectotherms is characterized by an energy-conserving metabolic depression due to low body temperatures and poorly understood temperature-independent mechanisms. Rates of gas exchange are correspondly reduced. In hibernating mammals, ventilation falls even more than metabolic rate leading to a relative respiratory acidosis that may contribute to metabolic depression. Breathing in some mammals becomes episodic and in some small mammals significant apneic gas exchange may occur by passive diffusion via airways or skin. In ectothermic vertebrates, extrapulmonary gas exchange predominates and in reptiles and amphibians hibernating underwater accounts for all gas exchange. In aerated water diffusive exchange permits amphibians and many species of turtles to remain fully aerobic, but hypoxic conditions can challenge many of these animals. Oxygen uptake into blood in both endotherms and ectotherms is enhanced by increased affinity of hemoglobin for O₂ at low temperature. Regulation of gas exchange in hibernating mammals is predominately linked to CO₂/pH, and in episodic breathers, control is principally directed at the duration of the apneic period. Control in submerged hibernating ectotherms is poorly understood, although skin-diffusing capacity may increase under hypoxic conditions. In aerated water blood pH of frogs and turtles either adheres to alphastat regulation (pH ∼8.0) or may even exhibit respiratory alkalosis. Arousal in hibernating mammals leads to restoration of euthermic temperature, metabolic rate, and gas exchange and occurs periodically even as ambient temperatures remain low, whereas body temperature, metabolic rate, and gas exchange of hibernating ectotherms are tightly linked to ambient temperature.

  9. Cryptographic Combinatorial Securities Exchanges

    NASA Astrophysics Data System (ADS)

    Thorpe, Christopher; Parkes, David C.

    We present a useful new mechanism that facilitates the atomic exchange of many large baskets of securities in a combinatorial exchange. Cryptography prevents information about the securities in the baskets from being exploited, enhancing trust. Our exchange offers institutions who wish to trade large positions a new alternative to existing methods of block trading: they can reduce transaction costs by taking advantage of other institutions’ available liquidity, while third party liquidity providers guarantee execution—preserving their desired portfolio composition at all times. In our exchange, institutions submit encrypted orders which are crossed, leaving a “remainder”. The exchange proves facts about the portfolio risk of this remainder to third party liquidity providers without revealing the securities in the remainder, the knowledge of which could also be exploited. The third parties learn either (depending on the setting) the portfolio risk parameters of the remainder itself, or how their own portfolio risk would change if they were to incorporate the remainder into a portfolio they submit. In one setting, these third parties submit bids on the commission, and the winner supplies necessary liquidity for the entire exchange to clear. This guaranteed clearing, coupled with external price discovery from the primary markets for the securities, sidesteps difficult combinatorial optimization problems. This latter method of proving how taking on the remainder would change risk parameters of one’s own portfolio, without revealing the remainder’s contents or its own risk parameters, is a useful protocol of independent interest.

  10. Vacuum powered heat exchanger

    SciTech Connect

    Ruffolo, R.F.

    1986-06-24

    In an internal combustion engine including an oil lubrication system, a liquid cooling system, and an improved air intake system is described. The improved air intake system comprises: a housing including a first opening in one end, which opening is open to the atmosphere and a second opening comprising an air outlet opening in the other end open to the air intake manifold of the engine, a heat exchanger positioned in the first opening. The heat exchanger consists of a series of coils positioned in the flow path of the atmospheric air as it enters the housing, the heat exchanger being fluidly connected to either the engine lubrication system or the cooling system to provide a warm heat source for the incoming air to the housing, acceleration means positioned in the housing downstream of the heat exchanger, the acceleration means comprising a honeycomb structure positioned across the air intake flow path. The honey-comb structure includes a multitude of honey combed mini-venturi cells through which the heated air flows in an accelerated mode, a removable air filter positioned between the heat exchanger and the acceleration means and a single opening provided in the housing through which the air filter can be passed and removed, and additional openings in the housing positioned downstream of the heat exchanger and upstream of the air filter, the additional openings including removable flaps for opening and closing the openings to control the temperature of the air flowing through the housing.

  11. 8. VIEW OF GLOVE BOXES USED IN THE ANION EXCHANGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF GLOVE BOXES USED IN THE ANION EXCHANGE PROCESS. THE ANION EXCHANGE PROCESS PURIFIED AND CONCENTRATED PLUTONIUM-BEARING NITRIC ACID SOLUTIONS TO MAKE THEM ACCEPTABLE AS FEED FOR CONVERSION TO METAL. (6/20/60) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

  12. Seed exchange networks, ethnicity, and sorghum diversity

    PubMed Central

    Labeyrie, Vanesse; Thomas, Mathieu; Muthamia, Zachary K.; Leclerc, Christian

    2016-01-01

    Recent studies investigating the relationship between crop genetic diversity and human cultural diversity patterns showed that seed exchanges are embedded in farmers’ social organization. However, our understanding of the social processes involved remains limited. We investigated how farmers’ membership in three major social groups interacts in shaping sorghum seed exchange networks in a cultural contact zone on Mount Kenya. Farmers are members of residence groups at the local scale and of dialect groups clustered within larger ethnolinguistic units at a wider scale. The Chuka and Tharaka, who are allied in the same ethnolinguistic unit, coexist with the Mbeere dialect group in the study area. We assessed farmers’ homophily, propensity to exchange seeds with members of the same group, using exponential random graph models. We showed that homophily is significant within both residence and ethnolinguistic groups. At these two levels, homophily is driven by the kinship system, particularly by the combination of patrilocal residence and ethnolinguistic endogamy, because most seeds are exchanged among relatives. Indeed, residential homophily in seed exchanges results from local interactions between women and their in-law family, whereas at a higher level, ethnolinguistic homophily is driven by marriage endogamy. Seed exchanges and marriage ties are interrelated, and both are limited between the Mbeere and the other groups, although frequent between the Chuka and Tharaka. The impact of these social homophily processes on crop diversity is discussed. PMID:26699480

  13. Modeling of Crystalline Silicotitanate Ion Exchange Columns

    SciTech Connect

    Walker, D.D.

    1999-03-09

    Non-elutable ion exchange is being considered as a potential replacement for the In-Tank Precipitation process for removing cesium from Savannah River Site (SRS) radioactive waste. Crystalline silicotitanate (CST) particles are the reference ion exchange medium for the process. A major factor in the construction cost of this process is the size of the ion exchange column required to meet product specifications for decontaminated waste. To validate SRS column sizing calculations, SRS subcontracted two reknowned experts in this field to perform similar calculations: Professor R. G. Anthony, Department of Chemical Engineering, Texas A&038;M University, and Professor S. W. Wang, Department of Chemical Engineering, Purdue University. The appendices of this document contain reports from the two subcontractors. Definition of the design problem came through several meetings and conference calls between the participants and SRS personnel over the past few months. This document summarizes the problem definition and results from the two reports.

  14. Ion exchanges in apatites for biomedical application.

    PubMed

    Cazalbou, S; Eichert, D; Ranz, X; Drouet, C; Combes, C; Harmand, M F; Rey, C

    2005-05-01

    The modification of the composition of apatite materials can be made by several processes corresponding to ion exchange reactions which can conveniently be adapted to current coatings and ceramics and are an alternative to setting up of new synthesis methods. In addition to high temperature thermal treatments, which can partly or almost totally replace the monovalent OH- anion of stoichiometric hydroxyapatite by any halogen ion or carbonate, aqueous processes corresponding to dissolution-reprecipitation reactions have also been proposed and used. However, the most interesting possibilities are provided by aqueous ion exchange reactions involving nanocrystalline apatites. These apatites are characterised by the existence on the crystal surface of a hydrated layer of loosely bound mineral ions which can be easily exchanged in solution. This layer offers a possibility to trap mineral ions and possibly active molecules which can modify the apatite properties. Such processes are involved in mineralised tissues and could be used in biomaterials for the release of active mineral species.

  15. Dynamic Analysis of Capture Devices for Momentum Exchange with Tethers

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen

    2002-01-01

    One of the significant challenges in developing a momentum exchange / electrodynamic reboost tether system is in the analysis and design of the capture device and its effects on the overall dynamics of the system. The goal of this work is to develop appropriate tether momentum exchange models that can simulate and evaluate the requirements of such a system, and be used to create specifications on the design of a capture device. This report briefly describes dynamic model development, simulation of the momentum exchange process, evaluation of dynamic effects of errors in the momentum exchange process, and the development of guidelines in selecting dynamic properties in the design of a capture device.

  16. Shell-and-double concentric-tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Bougriou, Chérif; Baadache, Khireddine

    2010-03-01

    This study concerns a new type of heat exchangers, which is that of shell-and-double concentric-tube heat exchangers. These heat exchangers can be used in many specific applications such as air conditioning, waste heat recovery, chemical processing, pharmaceutical industries, power production, transport, distillation, food processing, cryogenics, etc. The case studies include both design calculations and performance calculations. It is demonstrated that the relative diameter sizes of the two tubes with respect to each other are the most important parameters that influence the heat exchanger size.

  17. Ion exchange tempering of glass ophthalmic lenses.

    PubMed

    Keeney, A H; Duerson, H L

    1975-08-01

    We performed low velocity drop-ball tests using 5/8-, 7/8-, and 1-inch diameter steel balls on ophthalmic crown glass lenses chemically tempered by the ion exchange process. Four representative dioptric strengths (+ 2.50 spherical, - 2.50 spherical, -2.50 cylindrical, and plano) were studied with the isolated lenses mounted, convex side up, on the American National Standards Institute Z80 test block. New ion exchange lenses exhibited a 100 to 350% greater capacity for attenuation of energy from low velocity, large size missiles than matched lenses of similar strength prepared by the conventional heat-treating and air-quenching process.

  18. TECHNICAL COMPARISON OF CANDIDATE ION EXCHANGE MEDIA FOR SMALL COLUMN ION EXCHANGE (SCIX) APPLICATIONS IN SUPPORT OF SUPPLEMENTAL LAW PRETREATMENT

    SciTech Connect

    RAMSEY AA; THORSON MR

    2010-12-28

    At-tank supplemental pretreatment including both filtration and small column ion exchange is currently under evaluation to facilitate salt waste retrieval and processing in the Hanford tank farms. Spherical resorcinol formaldehyde (sRF) resin is the baseline ion exchange resin for use in the Waste Treatment and Immobilization Plant (WTP). This document provides background and technical rationale to assist in determining whether spherical resorcinol formaldehyde (sRF) is also the appropriate ion exchange resin for supplemental LAW pretreatment processes and compares sRF with crystalline silicotitanate (CST) as potential supplemental pretreatment ion exchange media.

  19. Microgravity condensing heat exchanger

    NASA Technical Reports Server (NTRS)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor); North, Andrew (Inventor); Weislogel, Mark M. (Inventor)

    2011-01-01

    A heat exchanger having a plurality of heat exchanging aluminum fins with hydrophilic condensing surfaces which are stacked and clamped between two cold plates. The cold plates are aligned radially along a plane extending through the axis of a cylindrical duct and hold the stacked and clamped portions of the heat exchanging fins along the axis of the cylindrical duct. The fins extend outwardly from the clamped portions along approximately radial planes. The spacing between fins is symmetric about the cold plates, and are somewhat more closely spaced as the angle they make with the cold plates approaches 90.degree.. Passageways extend through the fins between vertex spaces which provide capillary storage and communicate with passageways formed in the stacked and clamped portions of the fins, which communicate with water drains connected to a pump externally to the duct. Water with no entrained air is drawn from the capillary spaces.

  20. Ion exchange phenomena

    SciTech Connect

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  1. Reliability analysis on a shell and tube heat exchanger

    NASA Astrophysics Data System (ADS)

    Lingeswara, S.; Omar, R.; Mohd Ghazi, T. I.

    2016-06-01

    A shell and tube heat exchanger reliability was done in this study using past history data from a carbon black manufacturing plant. The heat exchanger reliability study is vital in all related industries as inappropriate maintenance and operation of the heat exchanger will lead to major Process Safety Events (PSE) and loss of production. The overall heat exchanger coefficient/effectiveness (Uo) and Mean Time between Failures (MTBF) were analyzed and calculated. The Aspen and down time data was taken from a typical carbon black shell and tube heat exchanger manufacturing plant. As a result of the Uo calculated and analyzed, it was observed that the Uo declined over a period caused by severe fouling and heat exchanger limitation. This limitation also requires further burn out period which leads to loss of production. The MTBF calculated is 649.35 hours which is very low compared to the standard 6000 hours for the good operation of shell and tube heat exchanger. The guidelines on heat exchanger repair, preventive and predictive maintenance was identified and highlighted for better heat exchanger inspection and repair in the future. The fouling of heat exchanger and the production loss will be continuous if proper heat exchanger operation and repair using standard operating procedure is not followed.

  2. Heat exchanger panel

    NASA Technical Reports Server (NTRS)

    Warburton, Robert E. (Inventor); Cuva, William J. (Inventor)

    2005-01-01

    The present invention relates to a heat exchanger panel which has broad utility in high temperature environments. The heat exchanger panel has a first panel, a second panel, and at least one fluid containment device positioned intermediate the first and second panels. At least one of the first panel and the second panel have at least one feature on an interior surface to accommodate the at least one fluid containment device. In a preferred embodiment, each of the first and second panels is formed from a high conductivity, high temperature composite material. Also, in a preferred embodiment, the first and second panels are joined together by one or more composite fasteners.

  3. Microscale Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  4. Microtube strip heat exchanger. Final technical report

    SciTech Connect

    Doty, F.D.

    1992-07-09

    The purpose of this contract has been to explore the limits of miniaturization of heat exchangers with the goals of (1) improving the theoretical understanding of laminar heat exchangers, (2) evaluating various manufacturing difficulties, and (3) identifying major applications for the technology. A low-cost, ultra-compact heat exchanger could have an enormous impact on industry in the areas of cryocoolers and energy conversion. Compact cryocoolers based on the reverse Brayton cycle (RBC) would become practical with the availability of compact heat exchangers. Many experts believe that hardware advances in personal computer technology will rapidly slow down in four to six years unless lowcost, portable cryocoolers suitable for the desktop supercomputer can be developed. Compact refrigeration systems would permit dramatic advances in high-performance computer work stations with ``conventional`` microprocessors operating at 150 K, and especially with low-cost cryocoolers below 77 K. NASA has also expressed strong interest in our MTS exchanger for space-based RBC cryocoolers for sensor cooling. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.

  5. Cellulosic ion-exchange membranes for hemodialysis.

    PubMed

    Mollison, A N; Graydon, W F

    1977-07-01

    The application of cellulosic ion-exchange membranes to hemodialysis was studied in vitro. The membranes were prepared by radiation-grafting methacrylic acid and vinylpyridine to films of DuPont cellophane PD-215 to produce cation-exchange and anion-exchange membranes, respectively. Solutions of urea, creatinine, glucose, and uric acid were studied for their interactions with and diffusion through the membranes. Ultrafiltration rates were also determined. Cuprophane and PD-215 cellophane were studied as controls. Dialysis plots for the membranes revealed a mechanism of "assisted transport." Initially, the solutes were removed from solution by a sorption/adsorption mechanism followed by a steady-state diffusion process. The calculated diffusivities for these later steady-state regions increased linearly with capacity for urea, creatinine, and uric acid, while for glucose the reverse was true. The combined processes involved provided considerably greater mass transport per unit thickness than either DuPont PD-215 cellophane or Cupropane.

  6. Currency Exchange Rates.

    ERIC Educational Resources Information Center

    Siler, Carl R.

    This curriculum unit of the Muncie (Indiana) Southside High School is to simulate the dynamics of foreign currency exchange rates from the perspectives of: (1) a major U.S. corporation, ABB Power T & D Company, Inc., of Muncie, Indiana, a manufacturer of large power transformers for the domestic and foreign markets; and (2) individual…

  7. Chimney heat exchanger

    SciTech Connect

    Whiteley, I.C.

    1981-09-01

    A heat exchanger for installation on the top of a chimney of a building includes a housing having a lower end receiving the top of the chimney and an upper end with openings permitting the escape of effluent from the chimney and a heat exchanger assembly disposed in the housing including a central chamber and a spirally arranged duct network defining an effluent spiral path between the top of the chimney and the central chamber and a fresh air spiral path between an inlet disposed at the lower end of the housing and the central chamber, the effluent and fresh air spiral paths being in heat exchange relationship such that air passing through the fresh air spiral path is heated by hot effluent gases passing upward through the chimney and the effluent spiral path for use in heating the building. A pollution trap can be disposed in the central chamber of the heat exchanger assembly for removing pollutants from the effluent, the pollution trap including a rotating cage carrying pumice stones for absorbing pollutants from the effluent with the surface of the pumice gradually ground off to reveal fresh stone as the cage rotates.

  8. Higher Education Exchange, 2014

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2014-01-01

    Research shows that not only does higher education not see the public; when the public, in turn, looks at higher education, it sees mostly malaise, inefficiencies, expense, and unfulfilled promises. Yet, the contributors to this issue of the "Higher Education Exchange" tell of bright spots in higher education where experiments in working…

  9. Technology Performance Exchange

    SciTech Connect

    2015-09-01

    To address the need for accessible, high-quality data, the Department of Energy has developed the Technology Performance Exchange (TPEx). TPEx enables technology suppliers, third-party testing laboratories, and other entities to share product performance data. These data are automatically transformed into a format that technology evaluators can easily use in their energy modeling assessments to inform procurement decisions.

  10. Nature's Heat Exchangers.

    ERIC Educational Resources Information Center

    Barnes, George

    1991-01-01

    Discusses the heat-transfer systems of different animals. Systems include heat conduction into the ground, heat transferred by convection, heat exchange in lizards, fish and polar animals, the carotid rete system, electromagnetic radiation from animals and people, and plant and animal fiber optics. (MDH)

  11. Research Exchange, 2002.

    ERIC Educational Resources Information Center

    Research Exchange, 2002

    2002-01-01

    These three issues of the "Research Exchange" focus on how better to conduct disability research and disseminate research results. The first issue examines the topic of human subject/human research participant protection, with a focus on research funded through the National Institute on Disability and Rehabilitation Research (NIDRR). It…

  12. Visiting Scholar Exchange Reports.

    ERIC Educational Resources Information Center

    Rubin, Kyna, Ed.

    1986-01-01

    Provides reports of four United States scholars who visited China as part of the Visiting Scholar Exchange Program. The titles of the reports are (1) "China Journey: A Political Scientist's Look at Yan'an," (2) "The Social Consequences of Land Reclamation in Chinese Coastal Ecosystems," (3) "Anthropology Lectures in South…

  13. Higher Education Exchange

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2009-01-01

    This volume begins with an essay by Noelle McAfee, a contributor who is familiar to readers of Higher Education Exchange (HEX). She reiterates Mathews' argument regarding the disconnect between higher education's sense of engagement and the public's sense of engagement, and suggests a way around the epistemological conundrum of "knowledge…

  14. Higher Education Exchange 2006

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2006-01-01

    Contributors to this issue of the Higher Education Exchange debate the issues around knowledge production, discuss the acquisition of deliberative skills for democracy, and examine how higher education prepares, or does not prepare, students for citizenship roles. Articles include: (1) "Foreword" (Deborah Witte); (2) "Knowledge,…

  15. Chemical exchange program analysis.

    SciTech Connect

    Waffelaert, Pascale

    2007-09-01

    As part of its EMS, Sandia performs an annual environmental aspects/impacts analysis. The purpose of this analysis is to identify the environmental aspects associated with Sandia's activities, products, and services and the potential environmental impacts associated with those aspects. Division and environmental programs established objectives and targets based on the environmental aspects associated with their operations. In 2007 the most significant aspect identified was Hazardous Materials (Use and Storage). The objective for Hazardous Materials (Use and Storage) was to improve chemical handling, storage, and on-site movement of hazardous materials. One of the targets supporting this objective was to develop an effective chemical exchange program, making a business case for it in FY07, and fully implementing a comprehensive chemical exchange program in FY08. A Chemical Exchange Program (CEP) team was formed to implement this target. The team consists of representatives from the Chemical Information System (CIS), Pollution Prevention (P2), the HWMF, Procurement and the Environmental Management System (EMS). The CEP Team performed benchmarking and conducted a life-cycle analysis of the current management of chemicals at SNL/NM and compared it to Chemical Exchange alternatives. Those alternatives are as follows: (1) Revive the 'Virtual' Chemical Exchange Program; (2) Re-implement a 'Physical' Chemical Exchange Program using a Chemical Information System; and (3) Transition to a Chemical Management Services System. The analysis and benchmarking study shows that the present management of chemicals at SNL/NM is significantly disjointed and a life-cycle or 'Cradle-to-Grave' approach to chemical management is needed. This approach must consider the purchasing and maintenance costs as well as the cost of ultimate disposal of the chemicals and materials. A chemical exchange is needed as a mechanism to re-apply chemicals on site. This will not only reduce the quantity of

  16. A corrosive resistant heat exchanger

    DOEpatents

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  17. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, Gordon D.; Marsh, S. Fredric; Bartsch, Richard A.

    1997-01-01

    Anion exchange resins including at least two positively charged sites and a ell-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  18. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, G.D.; Marsh, S.F.; Bartsch, R.A.

    1997-09-23

    Anion exchange resins including at least two positively charged sites and a well-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  19. 48 CFR 1446.170 - Government-Industry Data Exchange Program (GIDEP).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... THE INTERIOR CONTRACT MANAGEMENT QUALITY ASSURANCE General 1446.170 Government-Industry Data Exchange... cooperative program managed and funded by the U.S. Government to exchange engineering, failure experience... construction materials), manufacturing processes, environmental issues associated with those...

  20. 48 CFR 1446.170 - Government-Industry Data Exchange Program (GIDEP).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... THE INTERIOR CONTRACT MANAGEMENT QUALITY ASSURANCE General 1446.170 Government-Industry Data Exchange... cooperative program managed and funded by the U.S. Government to exchange engineering, failure experience... construction materials), manufacturing processes, environmental issues associated with those...

  1. 48 CFR 1446.170 - Government-Industry Data Exchange Program (GIDEP).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... THE INTERIOR CONTRACT MANAGEMENT QUALITY ASSURANCE General 1446.170 Government-Industry Data Exchange... cooperative program managed and funded by the U.S. Government to exchange engineering, failure experience... construction materials), manufacturing processes, environmental issues associated with those...

  2. 76 FR 45626 - Self-Regulatory Organizations; Chicago Stock Exchange, Inc.; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... Processing Fees for fingerprinting, background checks and the provision of access badges by the Exchange.\\5\\ The Exchange no longer provides either fingerprinting or background checking services for current...

  3. Elimination of spin diffusion effects in saturation transfer experiments: application to hydrogen exchange in proteins.

    PubMed

    Jensen, Malene Ringkjøbing; Kristensen, Søren M; Led, Jens J

    2007-03-01

    The NMR saturation transfer experiment is widely used to characterize exchange processes in proteins that take place on the ms-s timescale. However, spin diffusion effects are inherently associated with the saturation transfer experiment and may overshadow the effect of the exchange processes of interest. As shown here, the effects from spin diffusion and exchange processes can be separated by varying the field strength of the saturation pulse, thereby allowing correct exchange rates to be obtained. The method is demonstrated using the hydrogen exchange process in the protein Escherichia coli thioredoxin as an example.

  4. Hydrogen and oxygen isotope exchange reactions between clay minerals and water

    USGS Publications Warehouse

    O'Neil, J.R.; Kharaka, Y.K.

    1976-01-01

    The extent of hydrogen and oxygen isotope exchange between clay minerals and water has been measured in the temperature range 100-350?? for bomb runs of up to almost 2 years. Hydrogen isotope exchange between water and the clays was demonstrable at 100??. Exchange rates were 3-5 times greater for montmorillonite than for kaolinite or illite and this is attributed to the presence of interlayer water in the montmorillonite structure. Negligible oxygen isotope exchange occurred at these low temperatures. The great disparity in D and O18 exchange rates observed in every experiment demonstrates that hydrogen isotope exchange occurred by a mechanism of proton exchange independent of the slower process of O18 exchange. At 350?? kaolinite reacted to form pyrophyllite and diaspore. This was accompanied by essentially complete D exchange but minor O18 exchange and implies that intact structural units in the pyrophyllite were inherited from the kaolinite precursor. ?? 1976.

  5. New Trends in Magnetic Exchange Bias

    NASA Astrophysics Data System (ADS)

    Mougin, Alexandra; Mangin, Stéphane; Bobo, Jean-Francois; Loidl, Alois

    2005-05-01

    -of-plane exchange bias, depending on the field cooling direction. This is of particular interest since it allows probing of the three-dimensional spin structure of the AF layer. The interface magnetic configuration is extremely important in the perpendicular geometry, as the short-range exchange coupling competes with a long-range dipolar interaction; the induced uniaxial anisotropy must overcome the demagnetization energy to establish perpendicular anisotropy films. Those new studies are of primary importance for the magnetic media industry as perpendicular recording exhibits potential for strongly increased storage densities. 3. Parameters tuning exchange bias in polycrystalline samples and magnetic configurations: Different parameters can be used to tune the exchange bias coupling in polycrystalline samples similar to those used in devices. Particularly fascinating aspects are the questions of the appearance of exchange bias or coercivity in ferromagnet/antiferromagnet heterostructures, and its relation to magnetic configurations formed on either side of the interface. Several papers report on either growth choices or post preparation treatments that enable tuning of the exchange bias in bilayers. The additional complexity and novel features of the exchange coupled interface make the problem particularly rich. 4. Dynamics and magnetization reversal: Linear response experiments, such as ferromagnetic resonance, have been used with great success to identify interface, surface anisotropies and interlayer exchange in multilayer systems. The exchange bias structure is particularly well suited to study because interface driven changes in the spin wave frequencies in the ferromagnet can be readily related to interlayer exchange and anisotropy parameters associated with the antiferromagnet. Because the exchange bias is intimately connected with details of the magnetization process during reversal and the subsequent formation of hysteresis, considerations of time dependence and

  6. Guided Autobiography's Developmental Exchange: What's in It for Me?

    ERIC Educational Resources Information Center

    Thornton, James E.; Collins, John B.; Birren, James E.; Svensson, Cheryl

    2011-01-01

    The developmental exchange is a central feature of social development, interpersonal dynamics, situated learning, and personal transformation. It is the enabling process in Guided Autobiography (GAB) settings that promotes the achievement of personal goals and group accomplishments. Nevertheless, these exchanges are embedded in the GAB structures…

  7. Shell-and-tube heat exchangers in refrigeration. Part 1

    SciTech Connect

    Cole, R.A.

    1996-12-01

    This article covers the basics of sizing and selecting shell-and-tube heat exchangers for refrigeration applications. The heat exchanger is an indispensable device in many instances where heat must be transferred from one fluid to another. Its use is necessary in many applications involving thermal energy transfer in both heating and cooling processes, and there are a variety of designs on the market. This article will focus on the shell-and-tube (S and T) type. While the ensuing discussion will deal with heat exchangers in this field, the discourse on shell-and-tube heat exchanger construction and operation is fundamental to all S and T applications.

  8. Hadron Spectroscopy in Double Pomeron Exchange Experiments

    SciTech Connect

    Albrow, Michael

    2016-11-15

    Central exclusive production in hadron-hadron collisions at high energies, for example p + p -> p + X + p, where the "+" represents a large rapidity gap, is a valuable process for spectroscopy of mesonic states X. At collider energies the gaps can be large enough to be dominated by pomeron exchange, and then the quantum numbers of the state X are restricted. Isoscalar JPC = 0++ and 2++ mesons are selected, and our understanding of these spectra is incomplete. In particular, soft pomeron exchanges favor gluon-dominated states such as glueballs, which are expected in QCD but not yet well established. I will review some published data.

  9. Organic ion exchange resin separation methods evaluation

    SciTech Connect

    Witwer, K.S.

    1998-05-27

    This document describes testing to find effective methods to separate Organic Ion Exchange Resin (OIER) from a sludge simulant. This task supports a comprehensive strategy for treatment and processing of K-Basin sludge. The simulant to be used resembles sludge that has accumulated in the 105KE and 105KW Basins in the 1OOK area of the Hanford Site. The sludge is an accumulation of fuel element corrosion products, organic and inorganic ion exchange materials, canister gasket materials, iron and aluminum corrosion products, sand, dirt, and other minor amounts of organic matter.

  10. Charge exchange in the Io torus and exosphere

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.; Strobel, D. F.

    1982-01-01

    Charge-exchange cross sections and their velocity dependence have been estimated for the most important reactions in the Io torus and exosphere. The methods used for calculating the cross sections are given and discussed in some detail. For symmetric-resonant single and double charge exchange, the cross sections are slowly varying functions of velocity. For inelastic charge-exchange collisions, the transition probabilities into a given final state can depend critically on velocity. Models are described which can be used to estimate both the most rapid charge-exchange processes and those states which play an important role. Calculated cross sections are used to obtain reaction rates as a function of radial position, demonstrating the importance of charge exchange in the inner torus. Charge-exchange reactions of torus ions with molecular species in Io's exosphere may yield a net supply of neutrals and plasma to the torus.

  11. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  12. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  13. Improved ceramic heat exchange material

    NASA Technical Reports Server (NTRS)

    Mccollister, H. L.

    1977-01-01

    Improved corrosion resistant ceramic materials that are suitable for use as regenerative heat exchangers for vehicular gas turbines is reported. Two glass-ceramic materials, C-144 and C-145, have superior durability towards sulfuric acid and sodium sulfate compared to lithium aluminosilicate (LAS) Corning heat exchange material 9455. Material C-144 is a leached LAS material whose major crystalline phase is silica keatite plus mullite, and C-145 is a LAS keatite solid solution (S.S.) material. In comparison to material 9455, material C-144 is two orders of magnitude better in dimensional stability to sulfuric acid at 300 C, and one order of magnitude better in stability to sodium sulfate at 1000 C. Material C-145 is initially two times better in stability to sulfuric acid, and about one order of magnitude better in stability to sodium sulfate. Both C-144 and C-145 have less than 300 ppm delta L/L thermal expansion from ambient to 1000 C, and good dimensional stability of less than approximately 100 ppm delta L/L after exposure to 1000 C for 100 hours. The glass-ceramic fabrication process produced a hexagonal honeycomb matrix having an 85% open frontal area, 50 micrometer wall thickness, and less than 5% porosity.

  14. Catalysis using hydrous metal oxide ion exchangers

    DOEpatents

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  15. Catalysis using hydrous metal oxide ion exchanges

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  16. Exchange rate rebounds after foreign exchange market interventions

    NASA Astrophysics Data System (ADS)

    Hoshikawa, Takeshi

    2017-03-01

    This study examined the rebounds in the exchange rate after foreign exchange intervention. When intervention is strongly effective, the exchange rate rebounds at next day. The effect of intervention is reduced slightly by the rebound after the intervention. The exchange rate might have been 67.12-77.47 yen to a US dollar without yen-selling/dollar-purchasing intervention of 74,691,100 million yen implemented by the Japanese government since 1991, in comparison to the actual exchange rate was 103.19 yen to the US dollar at the end of March 2014.

  17. Intergranular exchange coupling

    NASA Astrophysics Data System (ADS)

    Muller, M. W.; Indeck, R. S.

    1994-02-01

    We evaluate the exchange interaction between neighboring grains of a polycrystalline magnetic material with uniaxial magnetocrystalline anisotropy, based on the energy of the domain wall formed at the portion of the interface in atomic contact. The analysis suggests that previous work [J.-G. Zhu and H. N. Bertram, in Solid State Physics Vol. 46, edited by H. Ehrenreich and T. Turnbull (Academic, San Diego, 1992)] may underestimate the interaction, and it predicts a different dependence on grain size.

  18. Heat exchange apparatus

    DOEpatents

    Degtiarenko, Pavel V.

    2003-08-12

    A heat exchange apparatus comprising a coolant conduit or heat sink having attached to its surface a first radial array of spaced-apart parallel plate fins or needles and a second radial array of spaced-apart parallel plate fins or needles thermally coupled to a body to be cooled and meshed with, but not contacting the first radial array of spaced-apart parallel plate fins or needles.

  19. Heat exchanger tube mounts

    DOEpatents

    Wolowodiuk, W.; Anelli, J.; Dawson, B.E.

    1974-01-01

    A heat exchanger in which tubes are secured to a tube sheet by internal bore welding is described. The tubes may be moved into place in preparation for welding with comparatively little trouble. A number of segmented tube support plates are provided which allow a considerable portion of each of the tubes to be moved laterally after the end thereof has been positioned in preparation for internal bore welding to the tube sheet. (auth)

  20. Impact of watershed topography on hyporheic exchange

    NASA Astrophysics Data System (ADS)

    Caruso, Alice; Ridolfi, Luca; Boano, Fulvio

    2016-08-01

    Among the interactions between surface water bodies and aquifers, hyporheic exchange has been recognized as a key process for nutrient cycling and contaminant transport. Even though hyporheic exchange is strongly controlled by groundwater discharge, our understanding of the impact of the regional groundwater flow on hyporheic fluxes is still limited because of the complexity arising from the multi-scale nature of these interactions. In this work, we investigate the role of watershed topography on river-aquifer interactions by way of a semi-analytical model, in which the landscape topography is used to approximate the groundwater head distribution. The analysis of a case study shows how the complex topographic structure is the direct cause of a substantial spatial variability of the aquifer-river exchange. Groundwater upwelling along the river corridor is estimated and its influence on the hyporheic zone is discussed. In particular, the fragmentation of the hyporeic corridor induced by groundwater discharge at the basin scale is highlighted.

  1. Use of Cation Exchange Resins for Production of U{sub 3}O{sub 8} Suitable for the Al-U{sub 3}O{sub 8} Powder Metallurgy Process

    SciTech Connect

    Mosley, W.C.

    2001-09-17

    This report describes the production of U{sub 3}O{sub 8} powders from three types of cation exchange resins: Dowex 50W, a strong acid, sulfonate resin; AG MP-50, a macroporous form of sulfonate resin; and Bio-Rex 70, a weak acid, carboxylic resin.

  2. The Effect of Tidal Exchange on Residence Time

    NASA Astrophysics Data System (ADS)

    Rynne, P.; Reniers, A.; Van De Kreeke, J.; MacMahan, J. H.

    2014-12-01

    As the conduit between the ocean and an inland body of water such as a lagoon, estuary or harbor, tidal inlets serve an important role in the hydrodynamics of the nearshore environment. As the global population grows in a world where 13% of the coastline is composed of barrier islands, an understanding of the physical processes that influence the transport of inland waters offshore is increasingly paramount. Water renewal, or the replacement of old lagoon water with new seawater has been well studied and is controlled by the tides through the process of tidal exchange or 'tidal pumping'. The magnitude of tidal exchange is influenced by the inlet hydraulics and geometry of the inlet and various physical processes driven by the tide, wind, and waves. To examine the correlation between tidal exchange and the renewal of lagoon water with seawater, a new method to quantify lagoon residence time is explored. Modeling experiments in Delft3D of idealized inlet systems are used to quantify the effect that tidal exchange has on residence time. Tidal exchange is decomposed into two fractions, an ocean exchange fraction and a lagoon exchange fraction. A simple transport model that utilizes both these fractions is compared to both a tidal prism model that neglects the lagoon exchange fraction and Delft3D. The tidal prism model over predicts the seaward transport of lagoon water as compared to Delft3D for all inlet channel geometries studied. The transport model shows good agreement with Delft3D for narrower inlets that support high ocean exchange fractions, but less agreement for wider inlets that support low ocean exchange fractions. Residence time distributions for each geometry are calculated using a new virtual tracer method in Delft3D. The spatially averaged residence time in the lagoon is found to be inversely proportional to the product of the two exchange fractions of each inlet system. Funded by ONR and NDSEG

  3. Lightweight Long Life Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moore, E. K.

    1976-01-01

    A shuttle orbiter flight configuration aluminum heat exchanger was designed, fabricated, and tested. The heat exchanger utilized aluminum clad titanium composite parting sheets for protection against parting sheet pin hole corrosion. The heat exchanger, which is fully interchangeable with the shuttle condensing heat exchanger, includes slurpers (a means for removing condensed water from the downstream face of the heat exchanger), and both the core air passes and slurpers were hydrophilic coated to enhance wettability. The test program included performance tests which demonstrated the adequacy of the design and confirmed the predicted weight savings.

  4. 40 CFR 63.1084 - What heat exchange systems are exempt from the requirements of this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Units: Heat Exchange Systems and Waste Operations Applicability for Heat Exchange Systems § 63.1084 What... (a) through (e) of this section. (a) Your heat exchange system operates with the minimum pressure on... normal range. (e) Your recirculating or once-through heat exchange system cools process fluids...

  5. Multifractal Behaviors in Foreign Exchange Markets

    NASA Astrophysics Data System (ADS)

    Kim, Kyungsik; Kim, Soo Yong; Lim, Gyuchang; Scalas, Enrico; Lee, Dong-In

    2008-03-01

    The market information and its intensity for the context of two-phase phenomenon is introduced in financial exchange markets. To find the underlying process of the formation of market information, we investigate the multifractal properties of the market information in terms of the multifractal and the detrended fluctuation analysis and also examine the higher order correlations between successive pieces of market information. Although the multifractal properties of the market information process is clearly confirmed, the simple binomial multiplicative process is not appropriate to catch its dynamics. It means that the market information process can be essentially different from the fully developed turbulence.

  6. 1-MWE heat exchangers for OTEC. Final design report

    SciTech Connect

    Sprouse, A.M.

    1980-06-19

    The design of a 1 MWe OTEC heat exchanger is documented, including the designs of the evaporator and associated systems, condenser, instrumentation, and materials for corrosion/erosion control and fabrication processes. (LEW)

  7. Minimizing back exchange in the hydrogen exchange-mass spectrometry experiment.

    PubMed

    Walters, Benjamin T; Ricciuti, Alec; Mayne, Leland; Englander, S Walter

    2012-12-01

    The addition of mass spectrometry (MS) analysis to the hydrogen exchange (HX) proteolytic fragmentation experiment extends powerful HX methodology to the study of large biologically important proteins. A persistent problem is the degradation of HX information due to back exchange of deuterium label during the fragmentation-separation process needed to prepare samples for MS measurement. This paper reports a systematic analysis of the factors that influence back exchange (solution pH, ionic strength, desolvation temperature, LC column interaction, flow rates, system volume). The many peptides exhibit a range of back exchange due to intrinsic amino acid HX rate differences. Accordingly, large back exchange leads to large variability in D-recovery from one residue to another as well as one peptide to another that cannot be corrected for by reference to any single peptide-level measurement. The usual effort to limit back exchange by limiting LC time provides little gain. Shortening the LC elution gradient by 3-fold only reduced back exchange by ~2%, while sacrificing S/N and peptide count. An unexpected dependence of back exchange on ionic strength as well as pH suggests a strategy in which solution conditions are changed during sample preparation. Higher salt should be used in the first stage of sample preparation (proteolysis and trapping) and lower salt (<20 mM) and pH in the second stage before electrospray injection. Adjustment of these and other factors together with recent advances in peptide fragment detection yields hundreds of peptide fragments with D-label recovery of 90% ± 5%.

  8. Ion exchange chromatography of proteins and clearance of aggregates.

    PubMed

    Yigzaw, Y; Hinckley, P; Hewig, A; Vedantham, G

    2009-06-01

    Clearance of product related aggregates in therapeutic proteins is a major focus of purification process development. A typical purification process will have one or two chromatographic steps that remove these product related aggregates to an acceptable level. Both cation exchange and anion exchange chromatography can provide robust clearance of aggregates. The primary factors that are critical for aggregate clearance are: resin chemistry, binding and elution condition, peak collection and column load factor. This review covers how these factors can be optimized to increase the effectiveness of ion exchange chromatography in removing aggregates.

  9. Compact heat exchangers for condensation applications: Yesterday, today and tomorrow

    SciTech Connect

    Panchal, C.B.

    1993-07-01

    Compact heat exchangers are being increasingly considered for condensation applications in the process, cryogenic, aerospace, power and refrigeration industries. In this paper, different configurations available for condensation applications are analyzed and the current state-of-the-knowledge for the design of compact condensers is evaluated. The key technical issues for the design and development of compact heat exchangers for condensation applications are analyzed and major advantages are identified. The experimental data and performance prediction methods reported in the literature are analyzed to evaluate the present design capabilities for different compact heat-exchanger configurations. The design flexibility is evaluated for the development of new condensation applications, including integration with other process equipment.

  10. Symposium on Condensing Heat Exchangers. Volume 2: Proceedings

    NASA Astrophysics Data System (ADS)

    1982-03-01

    Heat exchangers designed to recover a portion of the latent heat of the water vapor formed in the combustion process are discussed. They are applicable to equipment fired by either conventional power burners or pulse-combustion systems. Heat exchanger concepts and performance, corrosion resistant materials, condensate disposal, venting of flue gases and codes and standards are considered. Applications include use of condensing heat exchangers in conjunction with furnaces for space heating, and also with boilers for generation of steam or hot water for use in space heating or industrial processing.

  11. Heat exchanger for fuel cell power plant reformer

    DOEpatents

    Misage, Robert; Scheffler, Glenn W.; Setzer, Herbert J.; Margiott, Paul R.; Parenti, Jr., Edmund K.

    1988-01-01

    A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

  12. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Lynch, Victoria H.

    1967-01-01

    The oxygen production of a photosynthetic gas exchanger containing Chlorella pyrenoidosa (1% packed cell volume) was measured when various concentrations of carbon dioxide were present within the culture unit. The internal carbon dioxide concentrations were obtained by manipulating the entrance gas concentration and the flow rate. Carbon dioxide percentages were monitored by means of electrodes placed directly in the nutrient medium. The concentration of carbon dioxide in the nutrient medium which produced maximal photosynthesis was in the range of 1.5 to 2.5% by volume. Results were unaffected by either the level of carbon dioxide in the entrance gas or the rate of gas flow. Entrance gases containing 2% carbon dioxide flowing at 320 ml/min, 3% carbon dioxide at 135 ml/min, and 4% carbon dioxide at 55 ml/min yielded optimal carbon dioxide concentrations in the particular unit studied. By using carbon dioxide electrodes implanted directly in the gas exchanger to optimize the carbon dioxide concentration throughout the culture medium, it should be possible to design more efficient large-scale units. PMID:4382391

  13. Heat exchanger-accumulator

    DOEpatents

    Ecker, Amir L.

    1980-01-01

    What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.

  14. 40 CFR 63.1085 - What are the general requirements for heat exchange systems?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SOURCE CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Heat Exchange System Requirements § 63.1085 What are the general... heat exchange systems? 63.1085 Section 63.1085 Protection of Environment ENVIRONMENTAL...

  15. 78 FR 8617 - Self-Regulatory Organizations; BATS Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... order displayed by the Exchange, the Exchange has proposed to slide the ranked price of its displayed... price slid bid to buy 100 shares that is ranked at $10.12 and displayed at $10.11. If an external market... NBBO. The Exchange's default price sliding process slides and ranks an order on entry so that it...

  16. 77 FR 10026 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing of a Proposed Rule Change Related to Stock-Option Processing February 14, 2012. Pursuant to Section 19(b)(1) of the Securities Exchange Act of 1934...

  17. 40 CFR 63.1085 - What are the general requirements for heat exchange systems?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... heat exchange systems? 63.1085 Section 63.1085 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Heat Exchange System Requirements § 63.1085 What are the...

  18. Extraction of Carbon Dioxide From Seawater by Ion Exchange Resin. Part 2. Using Strong Base Anion Exchange Resin

    DTIC Science & Technology

    2009-09-29

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6180--09-9211 Extraction of Carbon Dioxide from Sea water by Ion Exchange Resin Part...STRONG BASE ANION EXCHANGE RESIN 1.0 BACKGROUND The Ocean Thermal Energy Conversion (OTEC) process converts solar thermal energy absorbed by the ocean...into electrical power [1,2]. During the OTEC process dissolved carbon dioxide (CO2) in ocean water is liberated as a gas. Since CO2 is implicated in

  19. Physical explosion analysis in heat exchanger network design

    NASA Astrophysics Data System (ADS)

    Pasha, M.; Zaini, D.; Shariff, A. M.

    2016-06-01

    The failure of shell and tube heat exchangers is being extensively experienced by the chemical process industries. This failure can create a loss of production for long time duration. Moreover, loss of containment through heat exchanger could potentially lead to a credible event such as fire, explosion and toxic release. There is a need to analyse the possible worst case effect originated from the loss of containment of the heat exchanger at the early design stage. Physical explosion analysis during the heat exchanger network design is presented in this work. Baker and Prugh explosion models are deployed for assessing the explosion effect. Microsoft Excel integrated with process design simulator through object linking and embedded (OLE) automation for this analysis. Aspen HYSYS V (8.0) used as a simulation platform in this work. A typical heat exchanger network of steam reforming and shift conversion process was presented as a case study. It is investigated from this analysis that overpressure generated from the physical explosion of each heat exchanger can be estimated in a more precise manner by using Prugh model. The present work could potentially assist the design engineer to identify the critical heat exchanger in the network at the preliminary design stage.

  20. Circulating heat exchangers for oscillating wave engines and refrigerators

    DOEpatents

    Swift, Gregory W.; Backhaus, Scott N.

    2003-10-28

    An oscillating-wave engine or refrigerator having a regenerator or a stack in which oscillating flow of a working gas occurs in a direction defined by an axis of a trunk of the engine or refrigerator, incorporates an improved heat exchanger. First and second connections branch from the trunk at locations along the axis in selected proximity to one end of the regenerator or stack, where the trunk extends in two directions from the locations of the connections. A circulating heat exchanger loop is connected to the first and second connections. At least one fluidic diode within the circulating heat exchanger loop produces a superimposed steady flow component and oscillating flow component of the working gas within the circulating heat exchanger loop. A local process fluid is in thermal contact with an outside portion of the circulating heat exchanger loop.

  1. HYDROGEN-DEUTERIUM EXCHANGE IN PHOTOLYZED METHANE-WATER ICES

    SciTech Connect

    Weber, Amanda S.; Hodyss, Robert; Johnson, Paul V.; Willacy, Karen; Kanik, Isik

    2009-09-20

    Previous work has concluded that H-D exchange occurs readily in polycyclic aromatic hydrocarbons frozen in deuterated water (D{sub 2}O) irradiated with ultraviolet light. Here, we examine H-D exchange in methane-water ices following exposure to ultraviolet radiation and analyze the products formed as a result. We find that H-D exchange also occurs in methane-water ices by means of ultraviolet photolysis. Exchange proceeds through a radical mechanism that implies that almost all organic species will undergo significant H-D exchange with the matrix in water ices exposed to ultraviolet radiation. Given sufficient energetic processing of the ice, the H/D ratio of an ice matrix may be transferred to the organic species in the ice.

  2. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1977-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  3. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1980-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  4. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Yen, S. P. S.; Klein, E. (Inventor)

    1976-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, crosslinked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  5. Molecular simulations of ion exchange in NaA zeolite membranes

    NASA Astrophysics Data System (ADS)

    Murad, S.; Jia, W.; Krishnamurthy, M.

    2003-02-01

    Molecular simulations using the method of molecular dynamics have been carried out to determine the possibility of studying ion exchanges between electrolyte solutions (here an aqueous LiCl solution) and an ion-exchange membrane (NaA zeolite) using direct simulations of upto a nanosecond. Our results show that with appropriate driving forces, such ion-exchange processes can be clearly witnessed and investigated using molecular simulations. We have also attempted to understand the phenomenon at the molecular level. Our results have shown that the ion-exchange process is energetically driven and entropic forces are not playing any significant role in the exchanges observed.

  6. Recovery of boric acid from ion exchangers

    DOEpatents

    Pollock, Charles W.

    1976-01-01

    The recovery of boric acid from an anion exchange resin is improved by eluting the boric acid with an aqueous solution of ammonium bicarbonate. The boric acid can be readily purified and concentrated by distilling off the water and ammonium bicarbonate. This process is especially useful for the recovery of boric acid containing a high percentage of .sup.10 B which may be found in some nuclear reactor coolant solutions.

  7. Pressurized-Flat-Interface Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Voss, F. E.; Howell, H. R.; Winkler, R. V.

    1990-01-01

    High thermal conductance obtained without leakage between loops. Heat-exchanger interface enables efficient transfer of heat between two working fluids without allowing fluids to intermingle. Interface thin, flat, and easy to integrate into thermal system. Possible application in chemical or pharmaceutical manufacturing when even trace contamination of process stream with water or other coolant ruins product. Reduces costs when highly corrosive fluids must be cooled or heated.

  8. Time and foreign exchange markets

    NASA Astrophysics Data System (ADS)

    Berardi, Luca; Serva, Maurizio

    2005-08-01

    The definition of time is still an open question when one deals with high-frequency time series. If time is simply the calendar time, prices can be modeled as continuous random processes and values resulting from transactions or given quotes are discrete samples of this underlying dynamics. On the contrary, if one takes the business time point of view, price dynamics is a discrete random process, and time is simply the ordering according to which prices are quoted in the market. In this paper, we suggest that the business time approach is perhaps a better way of modeling price dynamics than calendar time. This conclusion comes from testing probability densities and conditional variances predicted by the two models against the experimental ones. The data set we use contains the DEM/USD exchange quotes provided to us by Olsen & Associates during a period of one year from January to December 1998. In this period, 1,620,843 quotes entries in the EFX system were recorded.

  9. Monogroove liquid heat exchanger

    NASA Technical Reports Server (NTRS)

    Brown, Richard F. (Inventor); Edelstein, Fred (Inventor)

    1990-01-01

    A liquid supply control is disclosed for a heat transfer system which transports heat by liquid-vapor phase change of a working fluid. An assembly (10) of monogroove heat pipe legs (15) can be operated automatically as either heat acquisition devices or heat discharge sources. The liquid channels (27) of the heat pipe legs (15) are connected to a reservoir (35) which is filled and drained by respective filling and draining valves (30, 32). Information from liquid level sensors (50, 51) on the reservoir (35) is combined (60) with temperature information (55) from the liquid heat exchanger (12) and temperature information (56) from the assembly vapor conduit (42) to regulate filling and draining of the reservoir (35), so that the reservoir (35) in turn serves the liquid supply/drain needs of the heat pipe legs (15), on demand, by passive capillary action (20, 28).

  10. Hybrid Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Tu, Jianping Gene; Shih, Wei

    2010-01-01

    A hybrid light-weight heat exchanger concept has been developed that uses high-conductivity carbon-carbon (C-C) composites as the heat-transfer fins and uses conventional high-temperature metals, such as Inconel, nickel, and titanium as the parting sheets to meet leakage and structural requirements. In order to maximize thermal conductivity, the majority of carbon fiber is aligned in the fin direction resulting in 300 W/m.K or higher conductivity in the fin directions. As a result of this fiber orientation, the coefficient of thermal expansion (CTE) of the C-C composite in both non-fiber directions matches well with the CTE of various high-temperature metal alloys. This allows the joining of fins and parting sheets by using high-temperature braze alloys.

  11. International Cell Exchange, 1994.

    PubMed

    Lau, M; Terasaki, P I; Park, M S

    1994-01-01

    1. We summarize typings of 40 cells for Class I antigens and 20 cultured cell lines for Class II antigens through the International Cell Exchange in 1994. Serologic Class II typings were compared with DNA typings for the same 20 cells. Two hundred eighty-one laboratories participated in the monthly Class I Serum Exchange. One hundred nineteen serology laboratories and 74 DNA laboratories reported Class II specificities on a monthly basis. 2. The average detection levels, as well as the high detection levels, were determined for 16 A-locus and 27 B-locus antigens. Mean detection rates of 95% or greater average detection were obtained for 12 A-locus and 10 B-locus antigens. Lower than 80% agreement was calculated for one A-locus antigen (A74) and 7 B-locus (B46, B48, B61, B67, B73, B75, B77) antigens. 3. We compared discrepancy rates of 10 A-locus and 7 B-locus antigens typed 3 times or more. The false-negative discrepancy rates, i.e. how often the antigen was missed, were greater for more of the B-locus specificities than for the A-locus antigens. B62, having the highest false-positive rate, tended to be overassigned. The discrepancy rates, especially the false-negative rate, for B70 were shown to decrease over a 7-year period. 4. In 1994, 8 laboratories attained records of total no misses for all analyzed antigens. Twelve laboratories had final records of only one discrepancy, and 5 laboratories had impressive perfect records (zero false negatives and false positives) for their yearly antigen reports. 5. Retyping of 12 Class I and 8 Class II reference cells showed improved detection of antigens. Results of a donor typed 4 times over 11 years demonstrated marked improvement, nearly doubling for A33, B38, and B75. Two cells first typed in 1991, then retyped in 1994, showed improved detection for Class II splits by serology and DNA typing. 6. We updated the list of sequenced Class I Exchange cells. Seven new cells were added as well as confirmatory sequence data for A

  12. Grain Exchange Probabilities Within a Gravel Bed

    NASA Astrophysics Data System (ADS)

    Haschenburger, J.

    2008-12-01

    Sediment transfers in gravel-bed rivers involve the vertical exchange of sediments during floods. These exchanges regulate the virtual velocity of sediment and bed material texture. This study describes general tendencies in the vertical exchange of gravels within the substrate that result from multiple floods. Empirical observations come from Carnation Creek, a small gravel-bed river with large woody debris located on the west coast of Vancouver Island, British Columbia. Frequent floods and the relatively limited armor layer facilitate streambed activity and relatively high bedload transport rates, typically under partial sediment transport conditions. Over 2000 magnetically tagged stones, ranging in size from 16 to 180 mm, were deployed on the bed surface between 1991 and 1992. These tracers have been recovered 10 times over 12 flood seasons to quantify their vertical position in the streambed. For analysis, the bed is divided into layers based on armor layer thickness. Once tracers are well mixed within the streambed, grains in the surface layer are most likely to be mixed into the subsurface, while subsurface grains are most likely to persist within the subsurface. Fractional exchange probabilities approach size independence when the most active depth of the substrate is considered. Overall these results highlight vertical mixing as an important process in the dispersion of gravels.

  13. 40 CFR 63.1083 - Does this subpart apply to my heat exchange system?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange... or operate an ethylene production unit expressly referenced to this subpart XX from subpart YY...

  14. 40 CFR 63.1083 - Does this subpart apply to my heat exchange system?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange... or operate an ethylene production unit expressly referenced to this subpart XX from subpart YY...

  15. 40 CFR 63.1083 - Does this subpart apply to my heat exchange system?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange... or operate an ethylene production unit expressly referenced to this subpart XX from subpart YY...

  16. 40 CFR 63.1083 - Does this subpart apply to my heat exchange system?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange... or operate an ethylene production unit expressly referenced to this subpart XX from subpart YY...

  17. 40 CFR 63.1083 - Does this subpart apply to my heat exchange system?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange... or operate an ethylene production unit expressly referenced to this subpart XX from subpart YY...

  18. Ion-exchange equilibrium of N-acetyl-D-neuraminic acid on a strong anionic exchanger.

    PubMed

    Wu, Jinglan; Ke, Xu; Zhang, Xudong; Zhuang, Wei; Zhou, Jingwei; Ying, Hanjie

    2015-09-15

    N-acetyl-D-neuraminic acid (Neu5Ac) is a high value-added product widely applied in the food industry. A suitable equilibrium model is required for purification of Neu5Ac based on ion-exchange chromatography. Hence, the equilibrium uptake of Neu5Ac on a strong anion exchanger, AD-1 was investigated experimentally and theoretically. The uptake of Neu5Ac by the hydroxyl form of the resin occurred primarily by a stoichiometric exchange of Neu5Ac(-) and OH(-). The experimental data showed that the selectivity coefficient for the exchange of Neu5Ac(-) with OH(-) was a non-constant quantity. Subsequently, the Saunders' model, which took into account the dissociation reactions of Neu5Ac and the condition of electroneutrality, was used to correlate the Neu5Ac sorption isotherms at various solution pHs and Neu5Ac concentrations. The model provided an excellent fit to the binary exchange data for Cl(-)/OH(-) and Neu5Ac(-)/OH(-), and an approximate prediction of equilibrium in the ternary system Cl(-)/Neu5Ac(-)/OH(-). This basic information combined with the general mass transfer model could lay the foundation for the prediction of dynamic behavior of fixed bed separation process afterwards.

  19. The NESACS Exchange with Germany

    ERIC Educational Resources Information Center

    Hoffman, Morton Z.; Tanner, Ruth; Strem, Michael

    2007-01-01

    The Northeastern Section of the American Chemical Society (NESACS) is going to host visit to the representatives of the German Chemical Society (GDCh) at their annual exchange program this year. The delegation is expected to spotlight the ACS international effects, in addition to the advantages of the exchange between the two organizations.

  20. Macroreticular chelating ion-exchangers.

    PubMed

    Hirsch, R F; E Gancher, R; Russo, F R

    1970-06-01

    Two macroreticular chelating ion-exchangers have been prepared and characterized. One contains the iminodiacetate group and the second contains the arsonate group as the ion-exchanging site. The macroreticular resins show selectivities among metal ions similar to those of the commercially available naicroreticular chelating resins. Chromatographie separations on the new resins are rapid and sharp.

  1. EXCHANGE. Volume 9-92

    SciTech Connect

    Boltz, J.C.

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  2. Technology Performance Exchange (Fact Sheet)

    SciTech Connect

    Not Available

    2012-10-01

    This fact sheet, 'The Technology Performance Exchange' will be presented at the ET Summit, held at the Pasadena Convention Center on October 15-17, 2012. The Technology Performance Exchange will be a centralized, Web-based portal for finding and sharing energy performance data for commercial building technologies.

  3. The Transatlantic Orientation Exchange Project

    ERIC Educational Resources Information Center

    Gisevius, Annette; Weber, Robin A.

    2009-01-01

    The Transatlantic Orientation Exchange/Multiplikatorenschulung im transatlan-tischen Austausch is a collaboration between volunteers and staff in both the US and German AFS organizations. The goal of the project is to increase the level of intercultural learning of German and US secondary education exchange participants and their host families.…

  4. Educators Exchange: A Program Evaluation.

    ERIC Educational Resources Information Center

    Armstrong, William B.

    The Educators Exchange Program (EEP) was established under a training and educational exchange agreement reached by California's San Diego Community College District (SDCCD) and the republic of Mexico. In the program, the District provided a 4-week technological training program to faculty at Centros de Capacitacion Tecnologica Industrial…

  5. Cu Vacancies Boost Cation Exchange Reactions in Copper Selenide Nanocrystals

    PubMed Central

    2015-01-01

    We have investigated cation exchange reactions in copper selenide nanocrystals using two different divalent ions as guest cations (Zn2+ and Cd2+) and comparing the reactivity of close to stoichiometric (that is, Cu2Se) nanocrystals with that of nonstoichiometric (Cu2–xSe) nanocrystals, to gain insights into the mechanism of cation exchange at the nanoscale. We have found that the presence of a large density of copper vacancies significantly accelerated the exchange process at room temperature and corroborated vacancy diffusion as one of the main drivers in these reactions. Partially exchanged samples exhibited Janus-like heterostructures made of immiscible domains sharing epitaxial interfaces. No alloy or core–shell structures were observed. The role of phosphines, like tri-n-octylphosphine, in these reactions, is multifaceted: besides acting as selective solvating ligands for Cu+ ions exiting the nanoparticles during exchange, they also enable anion diffusion, by extracting an appreciable amount of selenium to the solution phase, which may further promote the exchange process. In reactions run at a higher temperature (150 °C), copper vacancies were quickly eliminated from the nanocrystals and major differences in Cu stoichiometries, as well as in reactivities, between the initial Cu2Se and Cu2–xSe samples were rapidly smoothed out. These experiments indicate that cation exchange, under the specific conditions of this work, is more efficient at room temperature than at higher temperature. PMID:26140622

  6. Cu Vacancies Boost Cation Exchange Reactions in Copper Selenide Nanocrystals.

    PubMed

    Lesnyak, Vladimir; Brescia, Rosaria; Messina, Gabriele C; Manna, Liberato

    2015-07-29

    We have investigated cation exchange reactions in copper selenide nanocrystals using two different divalent ions as guest cations (Zn(2+) and Cd(2+)) and comparing the reactivity of close to stoichiometric (that is, Cu2Se) nanocrystals with that of nonstoichiometric (Cu(2-x)Se) nanocrystals, to gain insights into the mechanism of cation exchange at the nanoscale. We have found that the presence of a large density of copper vacancies significantly accelerated the exchange process at room temperature and corroborated vacancy diffusion as one of the main drivers in these reactions. Partially exchanged samples exhibited Janus-like heterostructures made of immiscible domains sharing epitaxial interfaces. No alloy or core-shell structures were observed. The role of phosphines, like tri-n-octylphosphine, in these reactions, is multifaceted: besides acting as selective solvating ligands for Cu(+) ions exiting the nanoparticles during exchange, they also enable anion diffusion, by extracting an appreciable amount of selenium to the solution phase, which may further promote the exchange process. In reactions run at a higher temperature (150 °C), copper vacancies were quickly eliminated from the nanocrystals and major differences in Cu stoichiometries, as well as in reactivities, between the initial Cu2Se and Cu(2-x)Se samples were rapidly smoothed out. These experiments indicate that cation exchange, under the specific conditions of this work, is more efficient at room temperature than at higher temperature.

  7. Miniature Joule - Thomson liquefier with sintered heat exchanger

    NASA Astrophysics Data System (ADS)

    Eugeniusz, Bodio; Maciej, Chorowski; Marta, Wilczek; Arkadiusz, Bozek

    Conventional Joule-Thomson refrigerators are made with finned, capillary tubing for the heat exchanger and a throttling valve for reducing the pressure [1]. A new kind of recuperative miniature heat-exchanger can be developed if a powder metallurgy technology is used. A high pressure capillary tube is sintered with metal powder. The grains of metal should be ball shaped or similar. In result of sintering process a good thermal contact between an outside tube surface and powder grains is achieved. The heat exchange surface is well developed and a porous sinter acts as a low pressure gas canal.

  8. DNA Strand Exchange and RecA Homologs in Meiosis

    PubMed Central

    Brown, M. Scott; Bishop, Douglas K.

    2015-01-01

    Homology search and DNA strand–exchange reactions are central to homologous recombination in meiosis. During meiosis, these processes are regulated such that the probability of choosing a homolog chromatid as recombination partner is enhanced relative to that of choosing a sister chromatid. This regulatory process occurs as homologous chromosomes pair in preparation for assembly of the synaptonemal complex. Two strand–exchange proteins, Rad51 and Dmc1, cooperate in regulated homology search and strand exchange in most organisms. Here, we summarize studies on the properties of these two proteins and their accessory factors. In addition, we review current models for the assembly of meiotic strand–exchange complexes and the possible mechanisms through which the interhomolog bias of recombination partner choice is achieved. PMID:25475089

  9. DNA strand exchange and RecA homologs in meiosis.

    PubMed

    Brown, M Scott; Bishop, Douglas K

    2014-12-04

    Homology search and DNA strand-exchange reactions are central to homologous recombination in meiosis. During meiosis, these processes are regulated such that the probability of choosing a homolog chromatid as recombination partner is enhanced relative to that of choosing a sister chromatid. This regulatory process occurs as homologous chromosomes pair in preparation for assembly of the synaptonemal complex. Two strand-exchange proteins, Rad51 and Dmc1, cooperate in regulated homology search and strand exchange in most organisms. Here, we summarize studies on the properties of these two proteins and their accessory factors. In addition, we review current models for the assembly of meiotic strand-exchange complexes and the possible mechanisms through which the interhomolog bias of recombination partner choice is achieved.

  10. Charge exchange avalanche at the cometopause

    NASA Technical Reports Server (NTRS)

    Gombosi, Tamas I.

    1987-01-01

    A sharp transition from a solar wind proton dominated flow to a plasma population primarily consisting of relatively cold cometary heavy ions has been observed at a cometocentric distance of about 160,000 km by the VEGA and GIOTTO missions. This boundary (the cometopause) was thought to be related to charge transfer processes, but its location and thickness are inconsistent with conventionally estimated ion - neutral coupling boundaries. In this paper a two-fluid model is used to investigate the major physical processes at the cometopause. By adopting observed comet Halley parameters the model is able to reproduce the location and the thickness of this charge exchange boundary.

  11. Modular heat exchanger

    DOEpatents

    Giardina, A.R.

    1981-03-03

    A shell and tube heat exchanger is described having a plurality of individually removable tube bundle modules. A lattice of structural steel forming rectangular openings therein is placed at each end of a cylindrical shell. Longitudinal structural members are placed in the shell between corners of the rectangular openings situated on opposite ends of the shell. Intermediate support members interconnect the longitudinal supports so as to increase the longitudinal supports rigidity. Rectangular parallelepiped tube bundle modules occupy the space defined by the longitudinal supports and end supports and each include a rectangular tube sheet situated on each end of a plurality of tubes extending there through, a plurality of rectangular tube supports located between the tube sheets, and a tube bundle module stiffening structure disposed about the bundle's periphery and being attached to the tube sheets and tube supports. The corners of each tube bundle module have longitudinal framework members which are mateable with and supported by the longitudinal support members. Intermediate support members constitute several lattices, each of which is situated in a plane between the end support members. The intermediate support members constituting the several lattices extend horizontally and vertically between longitudinal supports of adjacent tube module voids. An alternative embodiment for intermediate support members constitute a series of structural plates situated at the corners of the module voids and having recesses therein for receiving the respective longitudinal support members adjacent thereto, protrusions separating the recesses, and a plurality of struts situated between protrusions of adjacent structural plates. 12 figs.

  12. Aluminum heat exchanger

    SciTech Connect

    Koisuka, M.; Aoki, H.

    1986-11-04

    This patent describes a heat exchanger comprising a flat metal tube for conducting fluid having opposite first and second ends, of metal fins fixed onto outer surfaces of the flat metal tube, first and second header pipes fixedly mounted on the opposite ends of the flat metal tube, respectively, so that the flat metal tube communicates with the interior of the header pipes. Each of the header pipes has a first end that is open and a second end that is closed. An inlet tube is connected to the first end of the first header pipe, and an outlet tube is connected to the first end of the second header pipe. The improvement described here comprises one of the inlet and outlet tubes having an end portion inserted into the first end of the corresponding interconnected header pipe. The end portion has a cut-away portion in the form of a first axial slit extending axially inwardly from an open end at the adjacent end of the one tube. The first axial slit has an axial intermediate portion slightly smaller than the thickness of the flat metal tube, and a tapered portion diverging towards the open end of the first axial slit, and the first end of the flat metal tube extends into the corresponding interconnected header pipe and is closely fitted into the first axial slit.

  13. Modular heat exchanger

    DOEpatents

    Giardina, Angelo R. [Marple Township, Delaware County, PA

    1981-03-03

    A shell and tube heat exchanger having a plurality of individually removable tube bundle modules. A lattice of structural steel forming rectangular openings therein is placed at each end of a cylindrical shell. Longitudinal structural members are placed in the shell between corners of the rectangular openings situated on opposite ends of the shell. Intermediate support members interconnect the longitudinal supports so as to increase the longitudinal supports rigidity. Rectangular parallelpiped tube bundle moldules occupy the space defined by the longitudinal supports and end supports and each include a rectangular tube sheet situated on each end of a plurality of tubes extending therethrough, a plurality of rectangular tube supports located between the tube sheets, and a tube bundle module stiffening structure disposed about the bundle's periphery and being attached to the tube sheets and tube supports. The corners of each tube bundle module have longitudinal framework members which are mateable with and supported by the longitudinal support members. Intermediate support members constitute several lattice, each of which is situate d in a plane between the end support members. The intermediate support members constituting the several lattice extend horizontally and vertically between longitudinal supports of adjacent tube module voids. An alternative embodiment for intermediate support members constitute a series of structural plates situated at the corners of the module voids and having recesses therein for receiving the respective longitudinal support members adjacent thereto, protrusions separating the recesses, and a plurality of struts situated between protrusions of adjacent structural plates.

  14. Novel silica-based ion exchange resin

    SciTech Connect

    1997-11-01

    Eichrom`s highly successful Diphonixo resin resembles a conventional ion exchange resin in its use of sulfonic acid ligands on a styrene- divinylbenzene matrix. Diphonix resin exhibits rapid exchange kinetics that allow economical operation of ion exchange systems. Unlike conventional resins, Diphonix resin contains chelating ligands that are diphosphonic acid groups that recognize and remove the targeted metals and reject the more common elements such as sodium, calcium and magnesium. This latter property makes Diphonix ideal for many industrial scale applications, including those involving waste treatment. For treatment of low-level, transuranic (TRU) and high- level radioactive wastes, Diphonix`s polystyrene backbone hinders its application due to radiolytic stability of the carbon-hydrogen bonds and lack of compatibility with expected vitrification schemes. Polystyrene-based Diphonix is approximately 60% carbon- hydrogen. In response to an identified need within the Department of Energy for a resin with the positive attributes of Diphonix that also exhibits greater radiolytic stability and final waste form compatibility, Eichrom has successfully developed a new, silica-based resin version of Diphonix. Target application for this new resin is for use in environmental restoration and waste management situations involving the processing of low-level, transuranic and high-level radioactive wastes. The resin can also be used for processing liquid mixed waste (waste that contains low level radioactivity and hazardous constituents) including mixed wastes contaminated with organic compounds. Silica-based Diphonix is only 10% carbon-hydrogen, with the bulk of the matrix silica.

  15. Dynamics of water and salt exchange at Maryland Coastal Bays

    NASA Astrophysics Data System (ADS)

    Kang, Xinyi; Xia, Meng; Pitula, Joseph S.; Chigbu, Paulinus

    2017-04-01

    The exchange processes between the Maryland Coastal Bays system (MCBs) and their adjacent coastal ocean were simulated using a three-dimensional unstructured-grid based hydrodynamic model, which was validated by observed data including water level, current velocity and salinity. Idealized experiments were then carried out to investigate the impact of wind forcing on water exchange and salt flux. Through these experiments, the exchanges between the MCBs and coastal ocean were investigated at two inlets (Ocean City Inlet and Chincoteague Inlet). Given that winds and tides are two key external forces known to impact estuarine dynamics, the effect of each individual force on the exchange processes was studied to evaluate the corresponding influence on the inlet dynamics. It was found that wind forcing significantly impacts the inlet dynamics: the effect of wind directions on exchange processes under strong wind speeds is substantial; for example, northwesterly winds push flux to the southern part of the bays, while southwesterly winds pile up flux towards northern Chincoteague Bay. The effect of wind forcing on the exchange dynamics becomes stronger with the augmentation of its speed. Meanwhile, tidal forcing is the major driver of exchange dynamics at weak wind speeds (e.g., 3 m/s), and its effect on exchange process gradually weakens with stronger wind speeds (e.g., 7 m/s, 15 m/s). In addition, sensitivity tests elucidated that closing either inlet results in a significant impact on the water elevation, current velocity and salinity nearby the relevant cut-off inlet areas.

  16. Probing color-singlet exchange at D0

    SciTech Connect

    Abbott, B.; Abolins, M.; Acharya, B.S.; D0 Collaboration

    1997-07-01

    We present latest preliminary results on hard color-singlet exchange in proton-antiproton collisions. The fraction of dijet events produced via color-singlet exchange is measured as a function of jet transverse energy, dijet pseudorapidity separation, and proton-antiproton center-of-mass energy. These results are qualitatively consistent with a color-singlet fraction that increases with increasing quark-initiated processes.

  17. Ion Exchanged, Glass Laminates that Exhibit a Threshold Strength

    DTIC Science & Technology

    2006-07-10

    tests. The glass was then annealed at 550 ’C for 8hr to remove any residual stress. The ion exchange process was accomplished in a vertical clam ...bonded together (described below) before the ion exchange. Hence, when the bilayer plate was separated using a razor blade (described below), each...strain energy release rate for the bonded interface using the double cantilever beam test configuration. As detailed by Maszara et. al., 19 a razor blade

  18. Four-particle exchange in solid He-3

    NASA Technical Reports Server (NTRS)

    Mcmahan, A. K.; Wilkins, J. W.

    1975-01-01

    Calculations are reported which suggest that there is a physically important four-atom exchange process in bcc He-3 and an important four-spin term in the exchange Hamiltonian. A simple mean-field analysis of this Hamiltonian appears to account for a number of the perplexing properties of bcc He-3. An understanding of other properties may require treatment of the exact four-spin term.

  19. Proton Exchange in a Paramagnetic Chemical Exchange Saturation Transfer Agent from Experimental Studies and ab Initio Metadynamics Simulation.

    PubMed

    Pollet, Rodolphe; Bonnet, Célia S; Retailleau, Pascal; Durand, Philippe; Tóth, Éva

    2017-03-27

    The proton-exchange process between water and a carbamate has been studied experimentally and theoretically in a lanthanide-based paramagnetic chemical exchange saturation transfer agent endowed with potential multimodality detection capabilities (optical imaging, or T1 MRI for the Gd(III) analogue). In addition to an in-depth structural analysis by a combined approach (using X-ray crystallography, NMR, and molecular dynamics), our ab initio simulation in aqueous solution sheds light on the reaction mechanism for this proton exchange, which involves structural Grotthuss diffusion.

  20. Meson exchange and neutral weak currents

    SciTech Connect

    Beck, D.H.

    1994-04-01

    Measurements of parity-violating electron scattering asymmetries to determine weak neutral currents in nuclei will be effected by the presence of meson exchange currents. Present low momentum transfer calculations, based on a flavor independent framework, show these effects to be small. In general, however, as the momentum transfer increases to values typical of deep-inelastic scattering, fragmentation functions show a clear flavor dependence. It is suggested that a good experimental starting point for understanding the flavor dependence of meson production and exchange currents is the Q{sup 2} dependence of parity-violating asymmetry in inclusive single pion electroproduction. A CEBAF facility with doubled energy is necessary to approach momentum transfers where this process begins to scale.