Science.gov

Sample records for exchange process pemisahan

  1. Laser Processed Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Hansen, Scott

    2017-01-01

    The Laser Processed Heat Exchanger project will investigate the use of laser processed surfaces to reduce mass and volume in liquid/liquid heat exchangers as well as the replacement of the harmful and problematic coatings of the Condensing Heat Exchangers (CHX). For this project, two scale unit test articles will be designed, manufactured, and tested. These two units are a high efficiency liquid/liquid HX and a high reliability CHX.

  2. Alert Exchange Process Protocol

    NASA Technical Reports Server (NTRS)

    Groen, Frank

    2015-01-01

    The National Aeronautics and Space Administration of the United States of America (NASA), and the European Space Agency (ESA), and the Japanese Aerospace Exploration Agency (JAXA), acknowledging that NASA, ESA and JAXA have a mutual interest in exchanging Alerts and Alert Status Lists to enhance the information base for each system participant while fortifying the general level of cooperation between the policy agreement subscribers, and each Party will exchange Alert listings on regular basis and detailed Alert information on a need to know basis to the extent permitted by law.

  3. Mass exchange processes with input

    NASA Astrophysics Data System (ADS)

    Krapivsky, P. L.

    2015-05-01

    We investigate a system of interacting clusters evolving through mass exchange and supplemented by input of small clusters. Three possibilities depending on the rate of exchange generically occur when input is homogeneous: continuous growth, gelation, and instantaneous gelation. We mostly study the growth regime using scaling methods. An exchange process with reaction rates equal to the product of reactant masses admits an exact solution which allows us to justify the validity of scaling approaches in this special case. We also investigate exchange processes with a localized input. We show that if the diffusion coefficients are mass-independent, the cluster mass distribution becomes stationary and develops an algebraic tail far away from the source.

  4. Pu Anion Exchange Process Intensification

    SciTech Connect

    Taylor-Pashow, K.

    2015-10-08

    This project seeks to improve the efficiency of the plutonium anion-exchange process for purifying Pu through the development of alternate ion-exchange media. The objective of the project in FY15 was to develop and test a porous foam monolith material that could serve as a replacement for the current anion-exchange resin, Reillex® HPQ, used at the Savannah River Site (SRS) for purifying Pu. The new material provides advantages in efficiency over the current resin by the elimination of diffusive mass transport through large granular resin beads. By replacing the large resin beads with a porous foam there is much more efficient contact between the Pu solution and the anion-exchange sites present on the material. Several samples of a polystyrene based foam grafted with poly(4-vinylpyridine) were prepared and the Pu sorption was tested in batch contact tests.

  5. ION EXCHANGE ADSORPTION PROCESS FOR PLUTONIUM SEPARATION

    DOEpatents

    Boyd, G.E.; Russell, E.R.; Taylor, M.D.

    1961-07-11

    Ion exchange processes for the separation of plutonium from fission products are described. In accordance with these processes an aqueous solution containing plutonium and fission products is contacted with a cation exchange resin under conditions favoring adsorption of plutonium and fission products on the resin. A portion of the fission product is then eluted with a solution containing 0.05 to 1% by weight of a carboxylic acid. Plutonium is next eluted with a solution containing 2 to 8 per cent by weight of the same carboxylic acid, and the remaining fission products on the resin are eluted with an aqueous solution containing over 10 per cent by weight of sodium bisulfate.

  6. Process parameters optimization in ion exchange 238Pu aqueous processing

    NASA Astrophysics Data System (ADS)

    Pansoy-Hjelvik, M. E.; Nixon, J.; Laurinat, J.; Brock, J.; Silver, G.; Reimus, M.; Ramsey, K. B.

    2000-07-01

    This paper describes bench-scale efforts (5-7 grams of 238Pu) to optimize the ion exchange process for 234U separation with minimal 238Pu losses to the effluent and wash liquids. The bench-scale experiments also determine the methodology to be used for the full-scale process: 5 kg238Pu annual throughput. Heat transfer calculations used to determine the thermal gradients expected during ion exchange processing are also described. The calculations were performed in collaboration with Westinghouse Savannah River Technology Center (WSRTC) and provide information for the design of the full-scale ion exchange equipment.

  7. Highly tritiated water processing by isotopic exchange

    SciTech Connect

    Shu, W.M.; Willms, R.S.; Glugla, M.; Cristescu, I.; Michling, R.; Demange, D.

    2015-03-15

    Highly tritiated water (HTW) is produced in fusion machines and one of the promising technologies to process it is isotopic exchange. 3 kinds of Pt-catalyzed zeolite (13X-APG, CBV-100-CY and HiSiv-1000) were tested as candidates for isotopic exchange of highly tritiated water (HTW), and CBV-100-CY (Na-Y type with a SiO{sub 2}/Al{sub 2}O{sub 3} ratio of ∼ 5.0) shows the best performance. Small-scale tritium testing indicates that this method is efficient for reaching an exchange factor (EF) of 100. Full-scale non-tritium testing implies that an EF of 300 can be achieved in 24 hours of operation if a temperature gradient is applied along the column. For the isotopic exchange, deuterium recycled from the Isotope Separation System (deuterium with 1% T and/or 200 ppm T) should be employed, and the tritiated water regenerated from the Pt-catalyzed zeolite bed after isotopic exchange should be transferred to Water Detritiation System (WDS) for further processing.

  8. Laser Processed Condensing Heat Exchanger Technology Development

    NASA Technical Reports Server (NTRS)

    Hansen, Scott; Wright, Sarah; Wallace, Sarah; Hamilton, Tanner; Dennis, Alexander; Zuhlke, Craig; Roth, Nick; Sanders, John

    2017-01-01

    The reliance on non-permanent coatings in Condensing Heat Exchanger (CHX) designs is a significant technical issue to be solved before long-duration spaceflight can occur. Therefore, high reliability CHXs have been identified by the Evolvable Mars Campaign (EMC) as critical technologies needed to move beyond low earth orbit. The Laser Processed Condensing Heat Exchanger project aims to solve these problems through the use of femtosecond laser processed surfaces, which have unique wetting properties and potentially exhibit anti-microbial growth properties. These surfaces were investigated to identify if they would be suitable candidates for a replacement CHX surface. Among the areas researched in this project include microbial growth testing, siloxane flow testing in which laser processed surfaces were exposed to siloxanes in an air stream, and manufacturability.

  9. Heat exchanger for coal gasification process

    DOEpatents

    Blasiole, George A.

    1984-06-19

    This invention provides a heat exchanger, particularly useful for systems requiring cooling of hot particulate solids, such as the separated fines from the product gas of a carbonaceous material gasification system. The invention allows effective cooling of a hot particulate in a particle stream (made up of hot particulate and a gas), using gravity as the motive source of the hot particulate. In a preferred form, the invention substitutes a tube structure for the single wall tube of a heat exchanger. The tube structure comprises a tube with a core disposed within, forming a cavity between the tube and the core, and vanes in the cavity which form a flow path through which the hot particulate falls. The outside of the tube is in contact with the cooling fluid of the heat exchanger.

  10. Diffusion-Welded Microchannel Heat Exchanger for Industrial Processes

    SciTech Connect

    Piyush Sabharwall; Denis E. Clark; Michael V. Glazoff; Michael G. McKellar; Ronald E. Mizia

    2013-03-01

    The goal of next generation reactors is to increase energy ef?ciency in the production of electricity and provide high-temperature heat for industrial processes. The ef?cient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process. The need for ef?ciency, compactness, and safety challenge the boundaries of existing heat exchanger technology. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more ef?cient industrial processes. Modern compact heat exchangers can provide high compactness, a measure of the ratio of surface area-to-volume of a heat exchange. The microchannel heat exchanger studied here is a plate-type, robust heat exchanger that combines compactness, low pressure drop, high effectiveness, and the ability to operate with a very large pressure differential between hot and cold sides. The plates are etched and thereafter joined by diffusion welding, resulting in extremely strong all-metal heat exchanger cores. After bonding, any number of core blocks can be welded together to provide the required ?ow capacity. This study explores the microchannel heat exchanger and draws conclusions about diffusion welding/bonding for joining heat exchanger plates, with both experimental and computational modeling, along with existing challenges and gaps. Also, presented is a thermal design method for determining overall design speci?cations for a microchannel printed circuit heat exchanger for both supercritical (24 MPa) and subcritical (17 MPa) Rankine power cycles.

  11. Moderating Effect of Intimate Exchange on Delinquent Socialization Processes

    ERIC Educational Resources Information Center

    Gaertner, Alden E.; Fite, Paula J.; Colder, Craig R.

    2011-01-01

    Research indicates peer socialization processes affect the development of problem behavior in childhood and adolescence; however moderating peer factors have not been readily examined. Friendship intimate exchange may be an important factor to consider, as literature suggests that intimate exchange becomes an increasingly important aspect of…

  12. Carbon Exchange and Loss Processes on Mars

    NASA Image and Video Library

    2015-11-24

    This graphic depicts paths by which carbon has been exchanged between Martian interior, surface rocks, polar caps, waters and atmosphere, and also depicts a mechanism by which carbon is lost from the atmosphere with a strong effect on isotope ratio. Carbon dioxide (CO2) to generate the Martian atmosphere originated in the planet's mantle and has been released directly through volcanoes or trapped in rocks crystallized from magmas and released later. Once in the atmosphere, the CO2 can exchange with the polar caps, passing from gas to ice and back to gas again. The CO2 can also dissolve into waters, which can then precipitate out solid carbonates, either in lakes at the surface or in shallow aquifers. Carbon dioxide gas in the atmosphere is continually lost to space at a rate controlled in part by the sun's activity. One loss mechanism is called ultraviolet photodissociation. It occurs when ultraviolet radiation (indicated on the graphic as "hv") encounters a CO2 molecule, breaking the bonds to first form carbon monoxide (CO) molecules and then carbon (C) atoms. The ratio of carbon isotopes remaining in the atmosphere is affected as these carbon atoms are lost to space, because the lighter carbon-12 (12C) isotope is more easily removed than the heavier carbon-13 (13C) isotope. This fractionation, the preferential loss of carbon-12 to space, leaves a fingerprint: enrichment of the heavy carbon-13 isotope, measured in the atmosphere of Mars today. http://photojournal.jpl.nasa.gov/catalog/PIA20163

  13. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    SciTech Connect

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  14. Heat exchange units boiling process numerical modeling at subatmospheric pressure

    NASA Astrophysics Data System (ADS)

    Slobodina, E. N.; Mikhailov, A. G.

    2017-08-01

    The paper deals with the boiling process mechanism, the results of the boiling intensification methods analysis at subatmospheric pressure are presented. The calculation methodology for the boiling process on the surface performed in the form of capillary slotted channels is represented. Heat transfer coefficients variations calculation dependences defined by analytical and numerical methods applying are described. The heat exchange surface geometrical characteristics impact on the heat exchange capacity in vacuum conditions was investigated.

  15. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    SciTech Connect

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change

  16. Impurity charge-exchange processes processes in Tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Puiatti, M. E.; Breton, C.; Michelis, C.; Mattioll, M.

    1981-02-01

    Charge exchange reactions between multiply charged impurity ions and neutral hydrogen isotopes were considered. Ionization equilibrium and radiative losses were evaluated for oxygen and iron in the presence of either thermal or beam neutrals. The influence of thermal neutrals on recently reported results from chemically heated TFR discharges is also discussed.

  17. Neptunium Valence Chemistry in Anion Exchange Processing

    SciTech Connect

    KYSER, EDWARD

    2003-02-01

    The current anion resin in use in HB-Line Phase II, Reillex{trademark} HPQ, was tested in the laboratory under expected plant conditions for Np processing and was found to load between 50 and 70 g Np per liter of resin. Losses varied from 0.2 to 15 percent depending on a number of parameters. Hydrazine in the feed at 0.02 to 0.05 M appeared to keep the Np from oxidizing and increasing the losses within four to seven days after the FS addition. Losses of up to three percent were observed five days after FS addition when hydrazine was not used in the feed, compared with 0.3 percent when the feed was loaded immediately after FS addition. Based on these test results the following processing conditions are recommended: (1) Feed conditions: 8 M HNO{sub 3}, 0.02 M hydrazine, 0.05 M excess FS, less than 5 days storage of solution after FS addition. (2) Wash conditions: 100 liters of 8 M HNO{sub 3}, no FS, no hydrazine. (3) Elution conditions: 0.17 M HNO{sub 3}, 0.05 M hydrazine, no FS. (4) Precipitation feed conditions: 0.03 M excess ascorbic acid, no additional hydrazine, no FS, precipitation within three days.

  18. MODELING RESULTS FROM CESIUM ION EXCHANGE PROCESSING WITH SPHERICAL RESINS

    SciTech Connect

    Nash, C.; Hang, T.; Aleman, S.

    2011-01-03

    Ion exchange modeling was conducted at the Savannah River National Laboratory to compare the performance of two organic resins in support of Small Column Ion Exchange (SCIX). In-tank ion exchange (IX) columns are being considered for cesium removal at Hanford and the Savannah River Site (SRS). The spherical forms of resorcinol formaldehyde ion exchange resin (sRF) as well as a hypothetical spherical SuperLig{reg_sign} 644 (SL644) are evaluated for decontamination of dissolved saltcake wastes (supernates). Both SuperLig{reg_sign} and resorcinol formaldehyde resin beds can exhibit hydraulic problems in their granular (nonspherical) forms. SRS waste is generally lower in potassium and organic components than Hanford waste. Using VERSE-LC Version 7.8 along with the cesium Freundlich/Langmuir isotherms to simulate the waste decontamination in ion exchange columns, spherical SL644 was found to reduce column cycling by 50% for high-potassium supernates, but sRF performed equally well for the lowest-potassium feeds. Reduced cycling results in reduction of nitric acid (resin elution) and sodium addition (resin regeneration), therefore, significantly reducing life-cycle operational costs. These findings motivate the development of a spherical form of SL644. This work demonstrates the versatility of the ion exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. The value of a resin with increased selectivity for cesium over potassium can be assessed for further development.

  19. Membrane device and process for mass exchange, separation, and filtration

    DOEpatents

    Liu, Wei; Canfield, Nathan L.

    2016-11-15

    A membrane device and processes for fabrication and for using are disclosed. The membrane device may include a number of porous metal membranes that provide a high membrane surface area per unit volume. The membrane device provides various operation modes that enhance throughput and selectivity for mass exchange, mass transfer, separation, and/or filtration applications between feed flow streams and permeate flow streams.

  20. Self-Disclosure as an Exchange Process: Reinforcement Effects.

    ERIC Educational Resources Information Center

    Taylor, Dalmas A.

    In association with an extensive examination of the disclosure literature, this paper describes two laboratory studies designed to yield information regarding the effects of reinforcement on self-disclosing behaviors in an exchange process. In one series, the experimenters manipulated the patterns of personal reward/cost experiences, hypothesizing…

  1. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    SciTech Connect

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  2. Process Heat Exchanger Options for the Advanced High Temperature Reactor

    SciTech Connect

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-06-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  3. Thermally Activated Site Exchange and Quantum Exchange Coupling Processes in Unsymmetrical Trihydride Osmium Compounds.

    PubMed

    Castillo, Amaya; Barea, Guada; Esteruelas, Miguel A.; Lahoz, Fernando J.; LLedós, Agustí; Maseras, Feliu; Modrego, Javier; Oñate, Enrique; Oro, Luis A.; Ruiz, Natividad; Sola, Eduardo

    1999-04-19

    Reaction of the hexahydride complex OsH(6)(P(i)Pr(3))(2) (1) with pyridine-2-thiol leads to the trihydride derivative OsH(3){kappa-N,kappa-S-(2-Spy)}(P(i)Pr(3))(2) (2). The structure of 2 has been determined by X-ray diffraction. The geometry around the osmium atom can be described as a distorted pentagonal bipyramid with the phosphine ligands occupying axial positions. The equatorial plane contains the pyridine-2-thiolato group, attached through a bite angle of 65.7(1) degrees, and the three hydride ligands. The theoretical structure determination of the model complex OsH(3){kappa-N,kappa-S-(2-Spy)}(PH(3))(2) (2a) reveals that the hydride ligands form a triangle with sides of 1.623, 1.714, and 2.873 Å, respectively. A topological analysis of the electron density of 2a indicates that there is no significant electron density connecting the hydrogen atoms of the OsH(3) unit. In solution, the hydride ligands of 2 undergo two different thermally activated site exchange processes, which involve the central hydride with each hydride ligand situated close to the donor atoms of the chelate group. The activation barriers of both processes are similar. Theoretical calculations suggest that the transition states have a cis-hydride-dihydrogen nature. In addition to the thermally activated exchange processes, complex 2 shows quantum exchange coupling between the central hydride and the one situated close to the sulfur atom of the pyridine-2-thiolato group. The reactions of 1 with L-valine and 2-hydroxypyridine afford OsH(3){kappa-N,kappa-O-OC(O)CH[CH(CH(3))(2)]NH(2)}(P(i)Pr(3))(2) (3) and OsH(3){kappa-N,kappa-O-(2-Opy)}(P(i)Pr(3))(2) (4) respectively, which according to their spectroscopic data have a similar structure to that of 2. In solution, the hydride ligands of 3 and 4 also undergo two different thermally activated site exchange processes. However, they do not show quantum exchange coupling. The tetranuclear complexes [(P(i)Pr(3))(2)H(3)Os(&mgr;-biim)M(TFB)](2) [M = Rh

  4. Exchange effects and collision mechanisms in (e, 2e) processes

    NASA Astrophysics Data System (ADS)

    Zhang-jin, Chen; Zhi-xiang, Ni; Qi-cun, Shi; Ke-zun, Xu

    1998-07-01

    In this work the triple differential cross sections for electron impact ionization of helium at an incident energy of 64.6 eV is considered in the coplanar symmetric energy-sharing and fixed relative angles of the two out-going electrons kinematics. A new collision process called triple-binary collision is identified. It has been shown that the ordinary double-binary collision process is excluded from the collision kinematics considered here. It has also been shown how the exchange effects symmetrically contribute to the peaks in the cross sections.

  5. Magnetization processes in core/shell exchange-spring structures.

    SciTech Connect

    Jiang, J. S.

    2015-03-27

    The magnetization reversal processes in cylindrical and spherical soft core/hard shell exchange-spring structures are investigated via the analytical nucleation theory, and are verified with numerical micromagnetic simulations. At small core sizes, the nucleation of magnetic reversal proceeds via the modified bulging mode, where the transverse component of the magnetization is only semi-coherent in direction and the nucleation field contains a contribution from self-demagnetization. For large core sizes, the modified curling mode, where the magnetization configuration is vortex-like, is favored at nucleation. The preference for the modified curling mode is beneficial in that the fluxclosure allows cylindrical and spherical core/shell exchange-spring elements to be densely packed into bulk permanent magnets without affecting the nucleation field, thereby offering the potential for high energy product.

  6. ION EXCHANGE PROCESS FOR THE RECOVERY AND PURIFICATION OF MATERIALS

    DOEpatents

    Long, R.S.; Bailes, R.H.

    1958-04-15

    A process for the recovery of certain metallic ions from aqueous solutions by ion exchange techniques is described. It is applicable to elements such as vanadium, chromium, nnanganese, and the like, which are capable of forming lower valent cations soluble in aqueous solutions and which also form ldgher valent anions soluble in aqueous acidic solutions. For example, small amounts of vanadium occurring in phosphoric acid prepared from phosphate rock may be recovered by reducing the vanadium to a trivalent cation adsorbing; the vanadium in a cationic exchange resin, then treating the resin with a suitable oxidizing agent to convert the adsorbed vanadium to a higher valent state, and finally eluting; the vanadium as an anion from the resin by means of an aqueous acidic solution.

  7. Fluctuations, exchange processes, and water diffusion in aqueous protein systems

    PubMed Central

    Kimmich, R.; Gneiting, T.; Kotitschke, K.; Schnur, G.

    1990-01-01

    Experimental frequency, concentration, and temperature dependences of the deuteron relaxation times T1 and T2 of D2O solutions of bovine serum albumin are reported and theoretically described in a closed form without formal parameters. Crucial processes of the theoretical concept are material exchange, translational diffusion of water molecules on the rugged surfaces of proteins, and tumbling of the macromolecules. It is also concluded that, apart from averaging of the relaxation rates in the diverse deuteron phases, material exchange contributes to transverse relaxation by exchange modulation of the Larmor frequency. The rate limiting factor of macromolecular tumbling is determined by the free water content. In a certain analogy to the classical free-volume theory, a “free-water-volume theory” is presented. There are two characteristic water mass fractions indicating the saturation of the hydration shells (Cs ≈ 0.3) and the onset of protein tumbling (C0 ≈ 0.6). The existence of the translational degrees of freedom of water molecules in the hydration shells has been verified by direct measurement of the diffusion coefficient using an NMR field-gradient technique. The concentration and temperature dependences show phenomena indicating a percolation transition of clusters of free water. The threshold water content was found to be Ccw ≈ 0.43. PMID:19431772

  8. Multistep ion exchange processes of gradient refractive index rod lens.

    PubMed

    Lv, Hao; Liu, Aimei; Tong, Jufang; Yi, Xunong; Li, Qianguang; Wang, Xinmin; Ding, Yaoming

    2011-01-01

    A mathematical model for research on the refractive index profile (RIP) of multistep ion exchange processes (IEPs) of gradient refractive index rod lenses (GRINs) is established by the different initial condition and boundary condition, based on the Fickian diffusion equation. GRIN rod lenses have been fabricated using the three-step IEPs. Research results indicate that the experimental deviations of refractive index (DRI) are in good agreement with the theoretical data. The DRI of three-step IEPs is superior to the one- and two-step IEPs and smaller than 10(-5).

  9. CATIONIC EXCHANGE PROCESS FOR THE SEPARATION OF RARE EARTHS

    DOEpatents

    Choppin, G.R.; Thompson, S.G.; Harvey, B.G.

    1960-02-16

    A process for separating mixtures of elements in the lanthanum and actinium series of the periodic table is described. The mixture of elements is dissolved in 0.05 M HCI, wherein the elements exist as tripositive ions. The resulting solution is then transferred to a column of cationic exchange resin and the column eluted with 0.1 to 0.6 M aqueous ammonium alpha hydroxy isobutyrate solution of pH 3.8 to 5.0. The use of ammonium alpha hydroxy isobutyrate as an eluting agent results in sharper and more rapid separations than previously obtainable with eluants such as citric, tartaric, glycolic, and lactic acids.

  10. The processes of nonequilibrium exchange in rotating plasma flows

    NASA Astrophysics Data System (ADS)

    Karimov, A. R.; Shatokhin, V. L.; Yu, M. Y.; Stenflo, L.

    2016-09-01

    The mechanisms of energy/momentum exchange in rotating and compressing plasma flows have been discussed. It has been shown that such flows are capable of transforming the energy of different degrees of freedom into the energy of one degree owing to the interaction of the coupled nonlinear radial, axial and azimuthal electron-ion oscillations. These processes may lead to the additional acceleration of the flow in azimuthal or axial direction so they might be instrumental for the creation of space thrusters employing pulse transformations for propulsion.

  11. Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons.

    PubMed

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi

    2011-05-01

    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of nonequivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolite phantoms with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: (i) on-resonance SL is most sensitive to chemical exchanges in the intermediate-exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. (ii) Offset frequency-dependent SL and CEST spectra are very similar and can be explained well with an SL model recently developed by Trott and Palmer (J Magn Reson 2002;154:157-160). (iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. (iv) The asymmetry of the magnetization transfer ratio (MTR(asym)) is highly dependent on the choice of saturation pulse power. In the intermediate-exchange regime, MTR(asym) becomes complicated and should be interpreted with care. Copyright © 2010 Wiley-Liss, Inc.

  12. Spin-locking vs. chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons

    PubMed Central

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi

    2010-01-01

    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of non-equivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolites with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: i) On-resonance SL is most sensitive to chemical exchanges in the intermediate exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. ii) Offset frequency-dependent SL and CEST spectra are very similar, and can be explained well with an SL model recently developed by Trott and Palmer. iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. iv) The asymmetry of the magnetization transfer ratio (MTRasym) is highly dependent on the choice of saturation pulse power. In the intermediate exchange regime, MTRasym becomes complicated and should be interpreted with care. PMID:21500270

  13. Anion-exchange resin-based desulfurization process. Final report

    SciTech Connect

    Sheth, A C; Dharmapurikar, R; Strevel, S D

    1994-01-01

    The following investigations were performed: (1) batch mode screening of eleven(11) commercially available resins and selection of three candidate resins for further evaluation in a fixed-bed setup. (2) Process variables study using three candidate resins in the fixed-bed setup and selection of the ``best`` resin for process economics development. (3) Exhaustion efficiency and solution concentration were found to be inversely related necessitating a trade-off between the resin cost versus the cost of evaporation/concentration of ensuing effluents. (4) Higher concentration of the HCO{sub 3}{sup {minus}} form of active sites over less active CO{sub 3}{sup 2{minus}} form of sites in the resin was believed to be the main reason for the observed increase in the equilibrium capacity of the resin at an elevated static CO{sub 2}-pressure. This Increase in capacity was found to level off around 80--120 psig range. The increase in CO{sub 2}-pressure, however, did not appear to affect the overall ion-exchange kinetics. (5) In the fixed-bed mode, the solution concentration was found to affect the equilibrium capacity of candidate resins. Their relationship was well satisfied by the Langmuir type non-linear equilibrium isotherm. Alternatively, the effect of solution concentration on overall ion-exchange kinetics varied from resin to resin. (6) Product inhibition effect on the resin was observed as an initial increase followed by a significant decrease in the resin`s equilibrium capacity for SO{sub 4}{sup 2{minus}} as the HCO{sub 3}{sup {minus}}/SO{sub 4}{sup 2{minus}} molar ratio in the solution was increased from 0 to 1.0. This ratio, however, did not affect the overall ion-exchange kinetics.

  14. Investigation of ammonia air-surface exchange processes in a ...

    EPA Pesticide Factsheets

    Recent assessments of atmospheric deposition in North America note the increasing importance of reduced (NHx = NH3 + NH4+) forms of nitrogen (N) relative to oxidized forms. This shift in in the composition of inorganic nitrogen deposition has both ecological and policy implications. Deposition budgets developed from inferential models applied at the landscape scale, as well as regional and global chemical transport models, indicate that NH3 dry deposition contributes a significant portion of inorganic N deposition in many areas. However, the bidirectional NH3 flux algorithms employed in these models have not been extensively evaluated for North American conditions (e.g, atmospheric chemistry, meteorology, biogeochemistry). Further understanding of the processes controlling NH3 air-surface exchange in natural systems is critically needed. Based on preliminary results from the Southern Appalachian Nitrogen Deposition Study (SANDS), this presentation examines processes of NH3 air-surface exchange in a deciduous montane forest at the Coweeta Hydrologic Laboratory in western North Carolina. A combination of measurements and modeling are used to investigate net fluxes of NH3 above the forest and sources and sinks of NH3 within the canopy and forest floor. Measurements of biogeochemical NH4+ pools are used to characterize emission potential and NH3 compensation points of canopy foliage (i.e., green vegetation), leaf litter, and soil and their relation to NH3 fluxes

  15. Anion-exchange resin-based desulfurization process

    SciTech Connect

    Sheth, A.C.; Strevel, S.D.; Dharmapurikar, R.

    1992-01-01

    Under the current grant, the University of Tennessee Space Institute (UTSI) will carry out the bench scale evaluation and further development of the anion-exchange resin-based desulfurization concept to desulfurize alkali metal sulfates. This concept has been developed and patented by UTSI under US Patent No. 4,917,874. The developmental program proposed under this DOE grant includes screening of commercially available resins to select three candidate resins for further study. These three resins will undergo a series of experiments designed to test the resins' performance under different process conditions (including the use of spent MHD seed material). The best of these resins will be used in optimizing the regeneration step and in testing the effects of performance enhancers. The process schematic developed from the results will be used to estimate the related economics. During this reporting period, October 1, 1991 to September 30, 1992, analysis of batch mode screening experiments was completed to select three candidate resins for process variables study in the fixed-bed set-up. This setup was modified and the experiments were carded out to evaluate effects of major process variables. The analysis of fixed-bed experiments is going on and we have also started simple batch mode experiments to identify desirable conditions for resin regeneration step. We have also started simple process engineering type calculations to determine the trade-off between the solution concentration and the resulting evaporation/concentration load.

  16. Treatment of chromium plating process effluents with ion exchange resins.

    PubMed

    Tenório, J A; Espinosa, D C

    2001-01-01

    The surface treatment industry deals with various heavy metals, including the elements Cr, Zn, Ni, Cd, and Cu. Conventional treatments of effluents generate class I solid residue. The aim of this investigation was to study the viability of ion exchange as an alternative process for treatment of rinse water and to determine the efficacy of two ion exchange systems, System 1: "strong" cationic resin-"strong" anionic resin and System 2: "strong" cationic resin-"weak" anionic resin. Commercial resins and solutions taken from rinse tanks of chromium plating companies were used in this investigation. A two-column system, one for the cationic resin and another for the anionic resin, both with 150 ml capacity was mounted. The solution was percolated at a rate of 10 ml/min. The following solutions were used for regeneration of the resins: 2% H2SO4 for the cationic and 4% NaOH for the anionic. The percolated solutions revealed chromium contents of less than 0.25 mg/l, independent of the system used. The "strong" cationic resin-"weak" anionic resin gave excellent regeneration results. The "strong" cationic-"strong" anionic resin presented problems during regeneration, and did not release the retained ions after percolation of 2000 ml of 4% NaOH solution. It is concluded that for this type of treatment, the system composed of "strong" cationic resin and "weak" anionic resin is more appropriate.

  17. 45 CFR 155.150 - Transition process for existing State health insurance exchanges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Transition process for existing State health insurance exchanges. 155.150 Section 155.150 Public Welfare Department of Health and Human Services... Transition process for existing State health insurance exchanges. (a) Presumption. Unless an exchange...

  18. 45 CFR 155.150 - Transition process for existing State health insurance exchanges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Transition process for existing State health insurance exchanges. 155.150 Section 155.150 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES... Transition process for existing State health insurance exchanges. (a) Presumption. Unless an exchange...

  19. 45 CFR 155.150 - Transition process for existing State health insurance exchanges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Transition process for existing State health insurance exchanges. 155.150 Section 155.150 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES... Transition process for existing State health insurance exchanges. (a) Presumption. Unless an exchange...

  20. EXCHANGE

    SciTech Connect

    Boltz, J.C.

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  1. Process-based upscaling of surface-atmosphere exchange

    NASA Astrophysics Data System (ADS)

    Keenan, T. F.; Prentice, I. C.; Canadell, J.; Williams, C. A.; Wang, H.; Raupach, M. R.; Collatz, G. J.; Davis, T.; Stocker, B.; Evans, B. J.

    2015-12-01

    Empirical upscaling techniques such as machine learning and data-mining have proven invaluable tools for the global scaling of disparate observations of surface-atmosphere exchange, but are not based on a theoretical understanding of the key processes involved. This makes spatial and temporal extrapolation outside of the training domain difficult at best. There is therefore a clear need for the incorporation of knowledge of ecosystem function, in combination with the strength of data mining. Here, we present such an approach. We describe a novel diagnostic process-based model of global photosynthesis and ecosystem respiration, which is directly informed by a variety of global datasets relevant to ecosystem state and function. We use the model framework to estimate global carbon cycling both spatially and temporally, with a specific focus on the mechanisms responsible for long-term change. Our results show the importance of incorporating process knowledge into upscaling approaches, and highlight the effect of key processes on the terrestrial carbon cycle.

  2. Countercurrent direct contact heat exchange process and system

    DOEpatents

    Wahl, III, Edward F.; Boucher, Frederic B.

    1979-01-01

    Recovery of energy from geothermal brines and other hot water sources by direct contact heat exchange with a working fluid, such as a hydrocarbon working fluid, e.g. isobutane. The process and system consists of a plurality of stages, each stage including mixing and settling units. In the first stage, hot brine and arm working fluid are intimately mixed and passed into a settler wherein the brine settles to the bottom of the settler and the hot working fluid rises to the top. The hot working fluid is passed to a heat engine or turbine to produce work and the working fluid is then recycled back into the system. The system is comprised of a series of stages each containing a settler and mixer, and wherein the working fluid and the brine flow in a countercurrent manner through the stages to recover the heat from the brine in increments and raise the temperature of the working fluid in increments.

  3. IMPACT OF THE SMALL COLUMN ION EXCHANGE PROCESS ON THE DEFENSE WASTE PROCESSING FACILITY - 12112

    SciTech Connect

    Koopman, D.; Lambert, D.; Fox, K.; Stone, M.

    2011-11-07

    The Savannah River Site (SRS) is investigating the deployment of a parallel technology to the Salt Waste Processing Facility (SWPF, presently under construction) to accelerate high activity salt waste processing. The proposed technology combines large waste tank strikes of monosodium titanate (MST) to sorb strontium and actinides with two ion exchange columns packed with crystalline silicotitanate (CST) resin to sorb cesium. The new process was designated Small Column Ion Exchange (SCIX), since the ion exchange columns were sized to fit within a waste storage tank riser. Loaded resins are to be combined with high activity sludge waste and fed to the Defense Waste Processing Facility (DWPF) for incorporation into the current glass waste form. Decontaminated salt solution produced by SCIX will be fed to the SRS Saltstone Facility for on-site immobilization as a grout waste form. Determining the potential impact of SCIX resins on DWPF processing was the basis for this study. Accelerated salt waste treatment is projected to produce a significant savings in the overall life cycle cost of waste treatment at SRS.

  4. Measuring gas temperature during spin-exchange optical pumping process

    NASA Astrophysics Data System (ADS)

    Normand, E.; Jiang, C. Y.; Brown, D. R.; Robertson, L.; Crow, L.; Tong, X.

    2016-04-01

    The gas temperature inside a Spin-Exchange Optical Pumping (SEOP) laser-pumping polarized 3He cell has long been a mystery. Different experimental methods were employed to measure this temperature but all were based on either modelling or indirect measurement. To date there has not been any direct experimental measurement of this quantity. Here we present the first direct measurement using neutron transmission to accurately determine the number density of 3He, the temperature is obtained using the ideal gas law. Our result showed a surprisingly high gas temperature of 380°C, compared to the 245°C of the 3He cell wall temperature and 178°C of the optical pumping oven temperature. This experiment result may be used to further investigate the unsolved puzzle of the "X-factor" in the SEOP process which places an upper bound to the 3He polarization that can be achieved. Additional spin relaxation mechanisms might exist due to the high gas temperature, which could explain the origin of the X-factor.

  5. Charge-Exchange Processes of Titanium-Doped Aluminate Crystals

    NASA Astrophysics Data System (ADS)

    Wong, Wing Cheong

    1995-01-01

    Titanium exists in more than one charge state in the aluminate crystals: it is stable as Ti^ {3+} and Ti^{4+}. Other than the intense Ti^{4+ } absorption, a ubiquitous absorption/luminescence excitation band in the UV region is identified as a titanium -bound exciton in Al_2rm O_3, Y_3Al_5rm O_{12}, {rm YAlO}_3, MgAl_2O _4, and LaMgAl_{11} {rm O}_{19}. One -step and two-step photoconductivities of Ti^ {3+} are measured and compared. While the selectivity of the two-step process is demonstrated, its use in locating the energy threshold is hampered by the small Franck-Condon factor for the transition between the Ti^{3+} ^2{ rm E} excited state and Ti^ {4+}. The titanium-bound exciton band, together with the one-step photocurrent signal, makes it possible to determine the photoionization energy threshold accurately. The charge-transfer transition energy thresholds of Ti^{4+} are obtained from the emission and the luminescence excitation spectra. Locally and non-locally charge compensated Ti^{4+ } are found in Al_2{rm O}_3. The luminescence kinetics for the two kinds of Ti^{4+} are well explained by a three-level system with a lower triplet excited state and a higher singlet excited state. These charge-exchange threshold energies can be deduced from the Born-Haber thermodynamical cycle. The electrostatic site potentials are calculated and from it, the calculated photoionization and charge-transfer energy thresholds are found to be consistent with the experimental results. The deficiency of this model is pointed out and possible improvement is discussed. Quantitatively, the sum of the two charge-exchange energy thresholds is close to the band-gap energy of the host crystal. This offers a convenient way for material characterization. Provided that any two of the three quantities (band-gap energy, photoionization energy threshold, and charge-transfer transition energy threshold) have been found, the third quantity can be calculated. In addition, the trapping of charge

  6. On boundary condition in heat-exchange processes

    NASA Astrophysics Data System (ADS)

    Stolyarov, E. P.

    2016-10-01

    This paper describes the numerical study of heat-exchange of solid body with high-temperature external flow. As follows from the Newton's boundary condition, connecting a heat-flux density with temperature difference between the flow and a body, the heat-exchange coefficient is physically equivalent to the body-surface-normal component of the entropy flux from external flow at equilibrium flow regime. The method of determination of the heat-exchange characteristics using the time-history temperature measurements by a thin-film thermocouple sensor is described. As it is shown from the numerical analysis, the asymptotic value of the heat-exchange coefficient that corresponded to equilibrium regime of external flow exists. Implementation time of this value, i.e. relaxation time, may be of some characteristic time scales of the sensor measuring layer.

  7. In Situ Investigations of Ion Exchange Processes in Microporous Materials

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Parise, J. B.; Hanson, J. C.

    2001-12-01

    The mechanism by which ions exchange in microporous and layered solids, such as zeolites and clays for example, has important implications in areas as diverse as soil fertility and environmental remediation. A detailed characterization of the ion-exchange pathway, the structural consequences of ion exchange and the specific sites involved in the course of exchange, is desirable. A probe that is both time- and structure-sensitive allows resolution of which specific sites are involved, along with the effects of different cation types on the uptake and release of ions. In order to discern the mechanism of ion exchange, it is necessary not only to observe the course of the reaction, which can now be done routinely using energy dispersive X-ray diffraction at synchrotron sources, but also to collect dynamic diffraction data of sufficient quality to allow structure refinement using Rietveld structure refinement techniques. This at present requires the collection of monochromatic data. Tradeoffs between time-resolution, peak-to-background discrimination and structural resolution are often required and depend on the problem at hand. We have developed a number of strategies for in situ ion exchange techniques that probe both structural and kinetic information from dynamic solid media. Examples include investigations of the site-specific ion-exchange mechanism in zeolite LSX using a combination of ex situ and in situ time-resolved synchrotron X-ray powder diffraction, Iterative Target Transformation Factor Analysis (ITTFA) and Rietveld structural refinements. Measurement of competitive ion depletion curves showed that the newly synthesized gallosilicate TsG-1 is more selective for Sr than mineral clinoptilolite, and the structural pathway of Sr-exchange in TsG-1 was monitored by in situ and ex situ synchrotron X-ray powder diffraction. In those cases where full structure refinement is desirable using less than optimal powder diffraction data, we found it necessary to first

  8. Surface gas-exchange processes of snow algae

    PubMed Central

    Williams, William E.; Gorton, Holly L.; Vogelmann, Thomas C.

    2003-01-01

    The red-colored chlorophyte Chlamydomonas nivalis is commonly found in summer snowfields. We used a modified Li-Cor gas-exchange system to investigate surface gas-exchange characteristics of snow colonized by this alga, finding rates of CO2 uptake up to 0.3 μmol m−2⋅s−1 in dense algal blooms. Experiments varying the irradiance resulted in light curves that resembled those of the leaves of higher plants. Red light was more effective than white and much more effective than green or blue, because of the red astaxanthin that surrounds and masks the algal chloroplasts. Integrating daily course measurements of gas exchange showed CO2 uptake around 2,300 μmol⋅m−2⋅day−1 in heavily colonized patches, indicating that summer snowfields can be surprisingly productive. PMID:12518048

  9. Circulation and exchange processes over the continental shelf and slope

    SciTech Connect

    Csanady, G.T.

    1988-01-01

    The theme of the work during the past triennium has been the SEEP experiment, data interpretation and modeling related to the goals of the experiment, and was characterized by increasing cooperation with colleagues from other disciplines. The theoretical contributions dealt with shelf-slope interaction, the dynamics and climatology of currents over the continental slope, and the behavior of fate of organic particles. Observational papers discussed various exchange mechanisms at the shelf edge, with special attention to particle exchange, and the quiescence of currents over the mid continental slope which is presumably responsible for the accumulation of organic particles.

  10. Communication and Social Exchange Processes in Community Theater Groups

    ERIC Educational Resources Information Center

    Kramer, Michael W.

    2005-01-01

    This study explores the communication experiences of two volunteer groups involved in the production of community theater musicals. Based on social exchange theory, it examined what group members perceived to be the positive benefits (primarily meeting people and having an opportunity to perform) and the negative costs (primarily disorganization,…

  11. Salt Processing Through Ion Exchange at the Savannah River Site Selection of Exchange Media and Column Configuration - 9198

    SciTech Connect

    Spires, Renee; Punch, Timothy; McCabe, Daniel

    2009-02-11

    The Department of Energy (DOE) has developed, modeled, and tested several different ion exchange media and column designs for cesium removal. One elutable resin and one non-elutable resin were considered for this salt processing application. Deployment of non-elutable Crystalline Silicotitanate and elutable Resorcinol Formaldehyde in several different column configurations were assessed in a formal Systems Engineering Evaluation (SEE). Salt solutions were selected that would allow a grouping of non-compliant tanks to be closed. Tests were run with the elutable resin to determine compatibility with the resin configuration required for an in-tank ion exchange system. Models were run to estimate the ion exchange cycles required with the two resins in several column configurations. Material balance calculations were performed to estimate the impact on the High Level Waste (HLW) system at the Savannah River Site (SRS). Conceptual process diagrams were used to support the hazard analysis. Data from the hazard analysis was used to determine the relative impact on safety. This report will discuss the technical inputs, SEE methods, results and path forward to complete the technical maturation of ion exchange.

  12. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    SciTech Connect

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-04-01

    The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. The intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding.

  13. Chromatographic separation of neodymium isotopes by using chemical exchange process.

    PubMed

    Ismail, I M; Ibrahim, M; Aly, H F; Nomura, M; Fujii, Y

    2011-05-20

    The neodymium isotope effects were investigated in Nd-malate ligand exchange system using the highly porous cation exchange resin SQS-6. The temperature of the chromatographic columns was kept constant at 50°C by temperature controlled water passed through the columns jackets. The separation coefficient of neodymium isotopes, ɛ's, was calculated from the isotopic ratios precisely measured by means of an ICP mass spectrometer equipped with nine collectors as ion detectors. The separation coefficient, ɛ×10(5), were calculated and found to be 1.4, 4.8, 5.4, 10.6, 16.8 and 20.2 for (143)Nd, (144)Nd, (145)Nd, (146)Nd, (148)Nd and (150)Nd, respectively.

  14. Evaluation of a new, macroporous polyvinylpyridine resin for processing plutonium using nitrate anion exchange

    SciTech Connect

    Marsh, S.F.

    1989-04-01

    Anion exchange in nitric acid is the major aqueous process used to recover and purify plutonium from impure scrap materials. Most strong-base anion exchange resins incorporate a styrene-divinylbenzene copolymer. A newly available, macroporous anion exchange resin based on a copolymer of 1-methyl-4-vinylpyridine and divinylbenzene has been evaluated. Comparative data for Pu(IV) sorption kinetics and capacity are presented for this new resin and two other commonly used anion exchange resins. The new resin offers high capacity and rapid sorption kinetics for Pu(IV) from nitric acid, as well as greatly stability to chemical and radiolytic degradation. 8 refs., 14 figs.

  15. Knowledge Exchange in the Shrines of Knowledge: The ''How's'' and ''Where's'' of Knowledge Sharing Processes

    ERIC Educational Resources Information Center

    Reychav, Iris; Te'eni, Dov

    2009-01-01

    Academic conferences are places of situated learning dedicated to the exchange of knowledge. Knowledge is exchanged between colleagues who are looking to enhance their future research by taking part in several formal and informal settings (lectures, discussions and social events). We studied the processes of knowledge sharing and the influence of…

  16. [Adjustment processes of foreign exchange high school students in Japan].

    PubMed

    Nagai, S

    1988-04-01

    The main purpose of the present study was to excavate the adjustment problems of 93 high school exchange students in Japan. Questionnaires including Cornell Medical Index (CMI) were administered longitudinally. In addition, individual interviews were held with those who had failed to adjust to the Japanese society. As for the subjective psychosomatic symptoms manifested in CMI, there was no significant sex difference while Asians were successively found to be significantly more liable to diseases and less adjusted than non-Asians. The questionnaires other than CMI disclosed difficulties which exchange students found in adjusting at Japanese home, including delicate personal relationships with host siblings, apparent lack of affective gestures (hugs and kisses), and early curfew. In the meanwhile, language barrier and trifling rules constituted the primary difficulties they faced at host school. On account of prejudice against women, girls had more unpleasant experiences than boys. Through individual interviews, all of the early returners were found to have already had a basic problem in their home countries.

  17. Charge exchange processes of high energy heavy ions channeled in crystals

    NASA Astrophysics Data System (ADS)

    Andriamonje, S.; Chevallier, M.; Cohen, C.; Dural, J.; Genre, R.; Girard, Y.; Groeneveld, K. O.; Kemmler, J.; Kirsch, R.; L'Hoir, A.; Maier, R.; Poizat, J. C.; Quéré, Y.; Remillieux, J.; Schmaus, D.; Toulemonde, M.

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. The experiments show that high energy heavy ion channeling deeply modifies the slowing down and charge exchange processes. In this review, we describe the opportunity offered by channeling conditions to study the charge exchange processes. Some aspects of the charge exchange processes with high energy channeled heavy ions are selected from the extensive literature published over the past few years on this subject. Special attention is given to the work performed at the GANIL facility on the study of Radiative Electron Capture (REC), Electron Impact Ionisation (EII), and convoy electron emission. Finally we emphasize the interest of studying resonant charge exchange processes such as Resonant Coherent Excitation (RCE), Resonant Transfer and Excitation (RTE) or Dielectronic Recombination (DR) and the recently proposed Nuclear Excitation by Electron Capture (NEEC).

  18. Efficient separations and processing crosscutting program 1996 technical exchange meeting. Proceedings

    SciTech Connect

    1996-02-01

    This document contains summaries of technology development presented at the 1996 Efficient Separations and Processing Crosscutting Program Technical Exchange Meeting. This meeting is held annually to promote a free exchange of ideas among technology developers, potential users and other interested parties within the EM community. During this meeting the following many separation processes technologies were discussed such as ion exchange, membrane separation, vacuum distillation, selective sorption, and solvent extraction. Other topics discussed include: waste forms; testing or inorganic sorbents for radionuclide and heavy metal removal; selective crystallization; and electrochemical treatment of liquid wastes. This is the leading abstract, individual papers have been indexed separately for the databases.

  19. Heat exchange apparatus and process for rotary kilns

    SciTech Connect

    De Beus, A.J.

    1987-06-30

    This patent describes a heat exchange apparatus for use in a rotary kiln, the heat exchange apparatus comprising: refractory means for transferring heat from an upper heated portion of a rotary kiln above a bed disposed in a lower portion to within the bed as the rotary kiln is rotated. The refractory means comprises: tubular refractory members; means for attaching the refractory means in a spaced apart relationship with an interior wall of the rotary kiln in order to cause the refractory means to pass through the bed with a portion of the bed passing under the refractory means. A portion of the bed passes over the refractory means in order to enhance heat transfer as the rotary kiln is rotated. The means for attaching the refractory means comprises rods supported by stanchions and tubular refractory member disposed on the rods; the means for attaching the refractory means and the refractory means is configured and operative for stirring the bed as the refractory means pass through the bed without significant lifting of the bed to the heated upper portions of the rotary kiln as the rotary kiln is rotated; and compressible refractory spacer means disposed between each tubular refractory member for accommodating heat expansion and compressible refractory sleeve means dispersed between the rods and the tubular refractory members for accommodating heat expansion of the rods. Compressible refractory sleeve means and tubular refractory member sized so that the tubular refractory members are tightly held against the tubular refractory spacer means when the rotary kiln is at operating temperatures in order to inhibit fracture of the tubular refractory member as they pass through the bed.

  20. Method for modeling social care processes for national information exchange.

    PubMed

    Miettinen, Aki; Mykkänen, Juha; Laaksonen, Maarit

    2012-01-01

    Finnish social services include 21 service commissions of social welfare including Adoption counselling, Income support, Child welfare, Services for immigrants and Substance abuse care. This paper describes the method used for process modeling in the National project for IT in Social Services in Finland (Tikesos). The process modeling in the project aimed to support common national target state processes from the perspective of national electronic archive, increased interoperability between systems and electronic client documents. The process steps and other aspects of the method are presented. The method was developed, used and refined during the three years of process modeling in the national project.

  1. EXCHANGE

    SciTech Connect

    Boltz, J.C.

    1993-01-01

    This report contains the following news headlines: ADPE acquisition process made easy with SRP; scientific reference material available; ORPS WordPerfect macro setup procedure; system managed storage is here; LIBSPOOL for MVS mainframe end-users; training center course schedule for February 1993; enjoy NJOY; scientific user services staff decreased; new release of Forwarn, a static source code analysis tool for FORTRAN programs; out of the cold with HEAT; coping cells from one table to another in word perfect; used PC equipment pool; and video training.

  2. Adsorption and ion exchange: basic principles and their application in food processing.

    PubMed

    Kammerer, Judith; Carle, Reinhold; Kammerer, Dietmar R

    2011-01-12

    A comprehensive overview of adsorption and ion exchange technology applied for food and nutraceutical production purposes is given in the present paper. Emanating from these fields of application, the main adsorbent and ion-exchange resin materials, their historical development, industrial production, and the main parameters characterizing these sorbents are covered. Furthermore, adsorption and ion exchange processes are detailed, also providing profound insights into kinetics, thermodynamics, and equilibrium model assumptions. In addition, the most important industrial adsorber and ion exchange processes making use of vessels and columns are summarized. Finally, an extensive overview of selected industrial applications of these technologies is provided, which is divided into general applications, food production applications, and the recovery of valuable bio- and technofunctional compounds from the byproducts of plant food processing, which may be used as natural food additives or for their potential health-beneficial effects in functional or enriched foods and nutraceuticals.

  3. Nanomaterials-Enhanced Electrically Switched Ion Exchange Process for Water Treatment

    SciTech Connect

    Lin, Yuehe; Choi, Daiwon; Wang, Jun; Bontha, Jagannadha R.

    2009-01-01

    The objective of our work is to develop an electrically switched ion exchange (ESIX) system based on conducting polymer/carbon nanotube (CNT) nanocomposites as a new and cost-effective approach for removal of radioactive cesium, chromate, and perchlorate from contaminated groundwater. The ESIX technology combines ion exchange and electrochemistry to provide a selective, reversible method for the removal of target species from wastewater. In this technique, an electroactive ion exchange layer is deposited on a conducting substrate, and ion uptake and elution are controlled directly by modulation of the potential of the layer. ESIX offers the advantages of highly-efficient use of electrical energy combined with no secondary waste generation. Recently, we have improved upon the ESIX process by modifying the conducting substrate with carbon nanotubes prior to the deposition of the electroactive ion exchanger. The nanomaterial-based electroactive ion exchange technology will remove cesium-137, chromate, and perchlorate rapidly from wastewater. The high porosity and high surface area of the electroactive ion exchange nanocomposites results in high loading capacity and minimize interferences for non-target species. Since the ion adsorption/desorption is controlled electrically without generating a secondary waste, this electrically active ion exchange process is a green process technology that will greatly reduce operating costs.

  4. Denitration of Rocky Flats Ion-Exchange Resins: Recommendation of Denitration Processes, October 19, 1995

    SciTech Connect

    Jacob Espinoza; Mary Barr; Wayne Smith

    1998-12-01

    Resin denitration via anion-exchange is an implementable process that can effectively mitigate the hazards associated with stored resins in which the bulk of the nitrate consists of an "exchangeable nitrate" ionically bound to the cationic sites of the anion-exchange resins. Salicylate has been selected as the exchange anion of choice because of its superior selectivity for the Rocky Flats resins and its unique potential for comprehensive recovery and recycle. This report outlines a single recommended resin denigration procedure that is reasonably independent of the resin composition and the current stored form. This procedure is not optimized but rather seeks to `over-treat' the resins so that a single procedure works for the variety of stored resins. The recommended treatment with sodium salicylate reduces resins by 95-99+% the measured exothermic behavior of the ion-exchange.

  5. Simulation of turbulent exchange processes in summertime leads

    NASA Astrophysics Data System (ADS)

    Skyllingstad, Eric D.; Paulson, Clayton A.; Pegau, W. Scott

    2005-05-01

    Ice-ocean heat exchange in polar leads was examined using a large-eddy simulation model coupled to a slab ice model. Simulations were performed using an idealized square domain for a range of lead sizes, surface wind stress (0.05-0.1 N m-2), and lead temperature/salinity profiles. Particular emphasis was placed on understanding the role of fresh water in leads and how stratification controls the heat budget and ice edge melting rate. With uniform initial conditions we found that solar heating was not strong enough to develop lead freshening via ice edge melting; even weak winds (0.02 N m-2) generated circulations that maintained a well-mixed lead. In the weak wind case, adding a fresh water flux representative of surface melt runoff provided enough additional stratification so that the lead water became isolated from the rest of the simulated ocean boundary layer. However, stronger winds (0.1 N m-2) prevented the fresh water layer from forming. Experiments initialized with temperature/salinity profiles similar to observed cases (fresh water layer capping the lead) demonstrated that lateral melting rates increase with expanding lead size, agreeing with simple heat balance calculations for a square lead without vertical mixing. However, with stronger winds, lateral melting rates decreased because of greater turbulent mixing of cold water from beneath the fresh layer. Inspection of the lead circulation indicated that the strongest melting occurred where the ice edge currents were the largest. Overall, melting fluxes for a 24 m2 lead ranged from 200 to 400 W m-2, depending on the wind speed. Without the fresh layer, fluxes ranged from 50 to 60 W m-2, suggesting that fresh water stratification can have a dominate role in controlling ice edge melting.

  6. Magnetization reversal processes of isotropic permanent magnets with various inter-grain exchange interactions

    NASA Astrophysics Data System (ADS)

    Tsukahara, Hiroshi; Iwano, Kaoru; Mitsumata, Chiharu; Ishikawa, Tadashi; Ono, Kanta

    2017-05-01

    We performed a large-scale micromagnetics simulation on a supercomputing system to investigate the properties of isotropic nanocrystalline permanent magnets consisting of cubic grains. In the simulation, we solved the Landau-Lifshitz-Gilbert equation under a periodic boundary condition for accurate calculation of the magnetization dynamics inside the nanocrystalline isotropic magnet. We reduced the inter-grain exchange interaction perpendicular and parallel to the external field independently. Propagation of the magnetization reversal process is inhibited by reducing the inter-grain exchange interaction perpendicular to the external field, and the coercivity is enhanced by this restraint. In contrast, when we reduce the inter-grain exchange interaction parallel to the external field, the coercivity decreases because the magnetization reversal process propagates owing to dipole interaction. These behaviors show that the coercivity of an isotropic permanent magnet depends on the direction of the inter-grain exchange interaction.

  7. Chromatographic evaluation of reversed-phase/anion-exchange/cation-exchange trimodal stationary phases prepared by electrostatically driven self-assembly process.

    PubMed

    Liu, Xiaodong; Pohl, Christopher; Woodruff, Andrew; Chen, Jinhua

    2011-06-03

    This work describes chromatographic properties of reversed-phase/cation-exchange/anion-exchange trimodal stationary phases. These stationary phases were based on high-purity porous spherical silica particles coated with nano-polymer beads using an electrostatically driven self-assembly process. The inner-pore area of the material was modified covalently with an organic layer that provided both reversed-phase and anion-exchange properties while the outer surface was coated with nano-sized polymer beads with strong cation-exchange characteristics. This design ensured spatial separation of the anion-exchange and the cation-exchange regions, and allowed reversed-phase, anion-exchange and cation-exchange retention mechanisms to function simultaneously. Chromatographic evaluation of ions and small molecules suggested that retention of ionic analytes was influenced by the ionic strength, pH, and mobile phase organic solvent content, and governed by both ion-exchange and hydrophobic interactions. Meanwhile, neutral analytes were retained by hydrophobic interaction and was mainly affected by mobile phase organic solvent content. Depending on the specific application, selectivity could be optimized by adjusting the anion-exchange/cation-exchange capacity ratio (selectivity), which was achieved experimentally by using porous silica particles with different surface areas.

  8. Aluminum-Cycle Ion Exchange Process for Hardness Removal: A New Approach for Sustainable Softening.

    PubMed

    Li, Jinze; Koner, Suman; German, Michael; SenGupta, Arup K

    2016-11-01

    From a sustainability viewpoint, sodium exchange softening, although used widely, is under scrutiny due to its production of excess Na-laden spent regenerant and subsequent discharge to the environment. Many arid regions are introducing regulations disallowing dumping of concentrated sodium salts, the residuals from popular Na-exchange softening. The sodium content of the softened water is, also, always higher than in the feed, which poses a dietary health concern when used for drinking or cooking. An efficient, easy-to-operate hardness removal process with reduced sodium in both the treated water and in the spent regenerant is an unmet global need. Use of a cation exchange resin in Al(3+)-form for hardness removal, that is, exchange of divalent Ca(2+) or Mg(2+) with trivalent Al(3+), is counterintuitive, and this is particularly so, because the aluminum ion to be exchanged has higher affinity than calcium. Nevertheless, ion exchange accompanied by precipitation of aluminum hydroxide allows progress of the cation exchange reaction leading to hardness removal. Experimental results demonstrated that calcium can be consistently removed for multiple cycles using a stoichiometric amount of AlCl3 as the regenerant. The process essentially operates at the maximum possible thermodynamic efficiency: removal of one equivalent of Ca(2+) corresponds to use of one equivalent of Al(3+) as a regenerant. During the Al-cycle process there is no increase in Na(+) concentration and partial reduction in the total dissolved solids (TDS) of the treated water. It is noteworthy that the ion-exchange resin used, components of the fixed-bed column and operational protocol are nearly the same as traditional softening processes on Na-cycle. Thus, existing Na-cycle systems can be retrofitted into Al-cycle operation without major difficulty.

  9. CADCAM-005: An introduction to the data exchange process using IGES

    SciTech Connect

    Kelly, J.C.; Parks, R.E.; Saylors, D.B.

    1987-03-01

    This introductory report deals with some of the ingredients of the data exchange process. Current vendor interactive graphics CAD/CAM systems (Applicon, Calma, Computervision, CD-2000, ANVIL-4000, etc.) are discussed from a generic point of view. Also discussed is the data format given in the Initial Graphics Exchange Specification, which is intended to be a standardized format for the communication of data between interactive graphics CAD/CAM systems. 12 refs., 7 figs.

  10. Intensification of heat and mass transfer by ultrasound: application to heat exchangers and membrane separation processes.

    PubMed

    Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E

    2015-07-01

    This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions.

  11. Basis document for PFP plutonium nitrate ion exchange process in Room 228A

    SciTech Connect

    Risenmay, H.R.

    1997-04-23

    The PFP facility currently has approximately 4300 liters of plutonium nitrate solution in storage. This material will be calcined by the Vertical Denigration Calciner (VDC) located in room 230C. However, part of the material needs to be purified to remove constituents that will interfere with the calcination process. An Ion Exchange process using Reillex{trademark} HPQ anion exchange resin was tested by the Plutonium Process Support Laboratories (PPSL) (I). The Ion exchange process is to be installed in glovebox HC-7 in room 228A/234-5Z. The plutonium separated from the interfering constituents will be in a concentrated condition ready to be calcined by the VDC in room 230C. The oxide product of the VDC will be placed into the 2736-Z vaults for long term storage.

  12. Optimized heat exchange in a CO2 de-sublimation process

    DOEpatents

    Baxter, Larry; Terrien, Paul; Tessier, Pascal; Hoeger, Christopher

    2017-09-19

    The present invention is a process for removing carbon dioxide from a compressed gas stream including cooling the compressed gas in a first heat exchanger, introducing the cooled gas into a de-sublimating heat exchanger, thereby producing a first solid carbon dioxide stream and a first carbon dioxide poor gas stream, expanding the carbon dioxide poor gas stream, thereby producing a second solid carbon dioxide stream and a second carbon dioxide poor gas stream, combining the first solid carbon dioxide stream and the second solid carbon dioxide stream, thereby producing a combined solid carbon dioxide stream, and indirectly exchanging heat between the combined solid carbon dioxide stream and the compressed gas in the first heat exchanger.

  13. Processes Impacting Atmosphere-Surface Exchanges at Arctic Terrestrial Sites

    NASA Astrophysics Data System (ADS)

    Persson, Ola; Grachev, Andrey; Konopleva, Elena; Cox, Chris; Stone, Robert; Crepinsek, Sara; Shupe, Matthew; Uttal, Taneil

    2015-04-01

    Surface energy fluxes are key to the annual cycle of near-surface and soil temperature and biologic activity in the Arctic. While these energy fluxes are undoubtedly changing to produce the changes observed in the Arctic ecosystem over the last few decades, measurements have generally not been available to quantify what processes are regulating these fluxes and what is determining the characteristics of these annual cycles. The U.S. National Oceanic and Atmospheric Administration has established, or contributed to the establishment of, several terrestrial "supersites" around the perimeter of the Arctic Ocean at which detailed measurements of atmospheric structure, surface fluxes, and soil thermal properties are being made. These sites include Barrow, Alaska; Eureka and Alert, Canada; and Tiksi, Russia. Atmospheric structure measurements vary, but include radiosoundings at all sites and remote sensing of clouds at two sites. Additionally, fluxes of sensible heat and momentum are made at all of the sites, while fluxes of moisture and CO2 are made at two of the sites. Soil temperatures are also measured in the upper 120 cm at all sites, which is deep enough to define the soil active layer. The sites have been operating between 3 years (Tiksi) and 24 years (Barrow). While all sites are located north of 71° N, the summer vegetation range from lush tundra grasses to rocky soils with little vegetation. This presentation will illustrate some of the atmospheric processes that are key for determining the annual energy and temperature cycles at these sites, and some of the key characteristics that lead to differences in, for instance, the length of the summer soil active layer between the sites. Atmospheric features and processes such as cloud characteristics, snowfall, downslope wind events, and sea-breezes have impacts on the annual energy cycle. The presence of a "zero curtain" period, when autumn surface temperature remains approximately constant at the freezing point

  14. Influence of wind and river discharge on the vertical exchange process in the Pearl River Estuary

    NASA Astrophysics Data System (ADS)

    Hong, B.; Peng, S.

    2016-02-01

    Vertical exchange process is controlled by the buoyancy input from river discharge and the momentum input by wind forcing. This study investigates the vertical exchange process in the Pearl River Estuary by using a 3-D numerical model. The vertical exchange time (VET) is used to quantify the magnitude of vertical exchange process in response to changing local wind and river discharge. During the dry season, it only takes about 2 days for the surface layer water mass being transported to the bottom layer. During the wet season, such transport will take more than 20 days in a large portion of the main channel. The water in the slope area can be well ventilated. Linear regression of VET indicates that water column stratification can be used to estimate the VET and up to 71% of the variance can be accounted. The estimation by using river runoff can only account for about 49% of the variance. The effects of wind speed and direction are investigated separately. Neither river runoff nor the stratification can properly predict the VET during the typical wet season. Further investigations are needed to reveal the dynamics of vertical exchange process and find out other factors that influence the VET during the wet season.

  15. Measuring the heat exchange of a quantum process.

    PubMed

    Goold, John; Poschinger, Ulrich; Modi, Kavan

    2014-08-01

    Very recently, interferometric methods have been proposed to measure the full statistics of work performed on a driven quantum system [Dorner et al., Phys. Rev. Lett. 110, 230601 (2013) and Mazzola et al., Phys. Rev. Lett. 110, 230602 (2013)]. The advantage of such schemes is that they replace the necessity to make projective measurements by performing phase estimation on an appropriately coupled ancilla qubit. These proposals are one possible route to the tangible experimental exploration of quantum thermodynamics, a subject which is the center of much current attention due to the current control of mesoscopic quantum systems. In this Rapid Communication we demonstrate that a modification of the phase estimation protocols can be used in order to measure the heat distribution of a quantum process. In addition, we demonstrate how our scheme maybe implemented using ion trap technology. Our scheme should pave the way for experimental explorations of the Landauer principle and hence the intricate energy to information conversion in mesoscopic quantum systems.

  16. Recent developments on ion-exchange membranes and electro-membrane processes.

    PubMed

    Nagarale, R K; Gohil, G S; Shahi, Vinod K

    2006-02-28

    Rapid growth of chemical and biotechnology in diversified areas fuels the demand for the need of reliable green technologies for the down stream processes, which include separation, purification and isolation of the molecules. Ion-exchange membrane technologies are non-hazardous in nature and being widely used not only for separation and purification but their application also extended towards energy conversion devices, storage batteries and sensors etc. Now there is a quite demand for the ion-exchange membrane with better selectivities, less electrical resistance, high chemical, mechanical and thermal stability as well as good durability. A lot of work has been done for the development of these types of ion-exchange membranes during the past twenty-five years. Herein we have reviewed the preparation of various types of ion-exchange membranes, their characterization and applications for different electro-membrane processes. Primary attention has been given to the chemical route used for the membrane preparation. Several general reactions used for the preparation of ion-exchange membranes were described. Methodologies used for the characterization of these membranes and their applications were also reviewed for the benefit of readers, so that they can get all information about the ion-exchange membranes at one platform. Although there are large number of reports available regarding preparations and applications of ion-exchange membranes more emphasis were predicted for the usefulness of these membranes or processes for solving certain type of industrial or social problems. More efforts are needed to bring many products or processes to pilot scale and extent their applications.

  17. Evaluation Methodology for Advance Heat Exchanger Concepts Using Analytical Hierarchy Process

    SciTech Connect

    Piyush Sabharwall; Eung Soo Kim

    2012-07-01

    The primary purpose of this study is to aid in the development and selection of the secondary/process heat exchanger (SHX) for power production and process heat application for a Next Generation Nuclear Reactors (NGNR). The potential options for use as an SHX are explored such as shell and tube, printed circuit heat exchanger. A shell and tube (helical coiled) heat exchanger is a recommended for a demonstration reactor because of its reliability while the reactor design is being further developed. The basic setup for the selection of the SHX has been established with evaluation goals, alternatives, and criteria. This study describes how these criteria and the alternatives are evaluated using the analytical hierarchy process (AHP).

  18. Medication errors in residential aged care facilities: a distributed cognition analysis of the information exchange process.

    PubMed

    Tariq, Amina; Georgiou, Andrew; Westbrook, Johanna

    2013-05-01

    Medication safety is a pressing concern for residential aged care facilities (RACFs). Retrospective studies in RACF settings identify inadequate communication between RACFs, doctors, hospitals and community pharmacies as the major cause of medication errors. Existing literature offers limited insight about the gaps in the existing information exchange process that may lead to medication errors. The aim of this research was to explicate the cognitive distribution that underlies RACF medication ordering and delivery to identify gaps in medication-related information exchange which lead to medication errors in RACFs. The study was undertaken in three RACFs in Sydney, Australia. Data were generated through ethnographic field work over a period of five months (May-September 2011). Triangulated analysis of data primarily focused on examining the transformation and exchange of information between different media across the process. The findings of this study highlight the extensive scope and intense nature of information exchange in RACF medication ordering and delivery. Rather than attributing error to individual care providers, the explication of distributed cognition processes enabled the identification of gaps in three information exchange dimensions which potentially contribute to the occurrence of medication errors namely: (1) design of medication charts which complicates order processing and record keeping (2) lack of coordination mechanisms between participants which results in misalignment of local practices (3) reliance on restricted communication bandwidth channels mainly telephone and fax which complicates the information processing requirements. The study demonstrates how the identification of these gaps enhances understanding of medication errors in RACFs. Application of the theoretical lens of distributed cognition can assist in enhancing our understanding of medication errors in RACFs through identification of gaps in information exchange. Understanding

  19. Method for isotope replenishment in an exchange liquid used in a laser induced isotope enrichment process

    SciTech Connect

    Keyser, G.M.; Mader, D.L.; O'Neill, J.A.

    1986-11-04

    A method is described for deuterium or tritium isotope replenishment of an exchange liquid in a process for concentrating deuterium or tritium by means of a laser induced selective photodissociation of a deuterium or tritium containing working compound mixed with its protiated or deuterated analog. The working compound is selected from the group consisting of a dueterated or tritiated analog of a dihalomethane, a trihalomethane, a 1,2-dihaloethylene, a trihaloethylene, a tetrahaloethane, and a pentahaloethane. The method comprises: selectively laser photodissociating the working compound to give an isotope enriched compound and an isotope depleted working compound; contacting the isotope depleted working compound mixture countercurrently with an exchange liquid having approximately the isotope concentration of an external source feed stream of water of D/sub 2/O in a first contacting column. The countercurrent contacting provides an isotope replenishment of the working compound as it moves up the column and an isotope depletion of the exchange liquid as it moves down the column. The exchange liquid consists essentially of a mixture of water of D/sub 2/O and a strong base catalyst; removing isotope deplated exchange liquid from the bottom of the first column; contacting the isotope depleted exchange liquid countercurrently with the feed stream in a second contacting apparatus thereby providing isotope replenishment of the exchange liquid and isotope depletion of the feed stream without causing salting out of the base catalyst; and removing the isotope replenished exchange liquid from one end of the second apparatus for use in the first column and removing isotope depleted water of D/sub 2/O steam from the other end of the second apparatus.

  20. Knowledge Exchange Processes in Organizations and Policy Arenas: A Narrative Systematic Review of the Literature

    PubMed Central

    Contandriopoulos, Damien; Lemire, Marc; Denis, Jean-Louis; Tremblay, Émile

    2010-01-01

    Context: This article presents the main results from a large-scale analytical systematic review on knowledge exchange interventions at the organizational and policymaking levels. The review integrated two broad traditions, one roughly focused on the use of social science research results and the other focused on policymaking and lobbying processes. Methods: Data collection was done using systematic snowball sampling. First, we used prospective snowballing to identify all documents citing any of a set of thirty-three seminal papers. This process identified 4,102 documents, 102 of which were retained for in-depth analysis. The bibliographies of these 102 documents were merged and used to identify retrospectively all articles cited five times or more and all books cited seven times or more. All together, 205 documents were analyzed. To develop an integrated model, the data were synthesized using an analytical approach. Findings: This article developed integrated conceptualizations of the forms of collective knowledge exchange systems, the nature of the knowledge exchanged, and the definition of collective-level use. This literature synthesis is organized around three dimensions of context: level of polarization (politics), cost-sharing equilibrium (economics), and institutionalized structures of communication (social structuring). Conclusions: The model developed here suggests that research is unlikely to provide context-independent evidence for the intrinsic efficacy of knowledge exchange strategies. To design a knowledge exchange intervention to maximize knowledge use, a detailed analysis of the context could use the kind of framework developed here. PMID:21166865

  1. Knowledge exchange processes in organizations and policy arenas: a narrative systematic review of the literature.

    PubMed

    Contandriopoulos, Damien; Lemire, Marc; Denis, Jean-Louis; Tremblay, Emile

    2010-12-01

    This article presents the main results from a large-scale analytical systematic review on knowledge exchange interventions at the organizational and policymaking levels. The review integrated two broad traditions, one roughly focused on the use of social science research results and the other focused on policymaking and lobbying processes. Data collection was done using systematic snowball sampling. First, we used prospective snowballing to identify all documents citing any of a set of thirty-three seminal papers. This process identified 4,102 documents, 102 of which were retained for in-depth analysis. The bibliographies of these 102 documents were merged and used to identify retrospectively all articles cited five times or more and all books cited seven times or more. All together, 205 documents were analyzed. To develop an integrated model, the data were synthesized using an analytical approach. This article developed integrated conceptualizations of the forms of collective knowledge exchange systems, the nature of the knowledge exchanged, and the definition of collective-level use. This literature synthesis is organized around three dimensions of context: level of polarization (politics), cost-sharing equilibrium (economics), and institutionalized structures of communication (social structuring). The model developed here suggests that research is unlikely to provide context-independent evidence for the intrinsic efficacy of knowledge exchange strategies. To design a knowledge exchange intervention to maximize knowledge use, a detailed analysis of the context could use the kind of framework developed here. © 2010 Milbank Memorial Fund. Published by Wiley Periodicals Inc.

  2. EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Eastman, Michael P.

    1982-01-01

    Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…

  3. Ethnic Minority Family Research in an Urban Setting: A Process of Exchange

    ERIC Educational Resources Information Center

    Cromwell, Ronald E.; And Others

    1975-01-01

    The stated purpose of this paper is to attempt to formulate the dynamics of research as a process of exchange by discussing the authors' experience in responding to community resistance to a study of Anglo, Black, and Mexican-American parents and their elementary school children in a multi-ethnic urban community. (Author/JM)

  4. EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Eastman, Michael P.

    1982-01-01

    Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…

  5. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    SciTech Connect

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-12-01

    The U.S. Department of Energy selected the high temperature gas-cooled reactor as the basis for the Next Generation Nuclear Plant (NGNP). The NGNP will demonstrate the use of nuclear power for electricity, hydrogen production, and process heat applications. The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. An intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding. This report describes the preliminary results of a scoping study that evaluated the diffusion welding process parameters and the resultant mechanical properties of diffusion welded joints using Alloy 800H. The long-term goal of the program is to progress towards demonstration of small heat exchanger unit cells fabricated with diffusion welds. Demonstration through mechanical testing of the unit cells will support American Society of Mechanical Engineers rules and standards development, reduce technical risk, and provide proof of concept for heat exchanger fabrication methods needed to deploy heat exchangers in several potential NGNP configurations.1 Researchers also evaluated the usefulness of modern thermodynamic and diffusion computational tools (Thermo-Calc and Dictra) in optimizing the parameters for diffusion welding of Alloy 800H. The modeling efforts suggested a temperature of 1150 C for 1 hour with an applied pressure of 5 MPa using 15 {micro}m nickel foil as joint filler to reduce chromium oxidation on the welded surfaces. Good agreement between modeled and experimentally determined concentration gradients was achieved

  6. Engineering study for the treatment of spent ion exchange resin resulting from nuclear process applications

    SciTech Connect

    Place, B.G.

    1990-09-01

    This document is an engineering study of spent ion exchange resin treatment processes with the purpose of identifying one or more suitable treatment technologies. Classifications of waste considered include all classes of low-level waste (LLW), mixed LLW, transuranic (TRU) waste, and mixed TRU waste. A total of 29 process alternatives have been evaluated. Evaluation parameters have included economic parameters (both total life-cycle costs and capital costs), demonstrated operability, environmental permitting, operational availability, waste volume reduction, programmatic consistency, and multiple utilization. The results of this study suggest that there are a number of alternative process configurations that are suitable for the treatment of spent ion exchange resin. The determinative evaluation parameters were economic variables (total life-cycle cost or capital cost) and waste volume reduction. Immobilization processes are generally poor in volume reduction. Thermal volume reduction processes tend to have high capital costs. There are immobilization processes and thermal volume reduction processes that can treat all classifications of spent ion exchange resin likely to be encountered. 40 refs., 19 figs., 17 tabs.

  7. Charge exchange processes involving highly charged ions and targets of interest in astrophysics and fusion plasmas

    NASA Astrophysics Data System (ADS)

    Otranto, S.

    2012-11-01

    Renewed interest in charge exchange processes involving highly charged ions arises because of their crucial role in the planned ITER reactor as well as to recent X-ray observations in the astrophysical context. In this work, the classical trajectory Monte Carlo method (CTMC) is used to calculate state selective single charge exchange n-level cross sections and line emission cross sections pertinent to both fields. These are contrasted to recent laboratory data from KVI for the Xe18+ + Na(3s) collision system and NIST/BERLIN-EBIT data for the Ar18+ +Ar system.

  8. Temperature and thermal stress evolutions in sapphire crystal during the cooling process by heat exchanger method

    NASA Astrophysics Data System (ADS)

    Ma, Wencheng; Zhao, Wenhan; Wu, Ming; Ding, Guoqiang; Liu, Lijun

    2017-09-01

    Transient numerical calculations were carried out to predict the evolutions of temperature and thermal stress in sapphire single crystal during the cooling process by heat exchanger method (HEM). Internal radiation in the semitransparent sapphire crystal was taken into account using the finite volume method (FVM) in the global heat transfer model. The numerical results seem to indicate that the narrow bottom region of the sapphire crystal is subjected to high thermal stress during the cooling process, which could be responsible for the seed cracking of the as-grown crystal, while the thermal stress is relatively small in the central main body of the crystal, and is less than 10 MPa during the whole cooling process. The fast decrease of the thermal stress in the bottom region of the crystal during the initial stage of cooling process is dominated by the reduction of the cooling helium gas in the heat exchanger shaft, and is not significantly affected by the heating power reduction rate.

  9. Membrane permeation process for dehydration of organic liquid mixtures using sulfonated ion-exchange polyalkene membranes

    DOEpatents

    Cabasso, Israel; Korngold, Emmanuel

    1988-01-01

    A membrane permeation process for dehydrating a mixture of organic liquids, such as alcohols or close boiling, heat sensitive mixtures. The process comprises causing a component of the mixture to selectively sorb into one side of sulfonated ion-exchange polyalkene (e.g., polyethylene) membranes and selectively diffuse or flow therethrough, and then desorbing the component into a gas or liquid phase on the other side of the membranes.

  10. Identifying scale-emergent, nonlinear, asynchronous processes of wetland methane exchange

    NASA Astrophysics Data System (ADS)

    Sturtevant, Cove; Ruddell, Benjamin L.; Knox, Sara Helen; Verfaillie, Joseph; Matthes, Jaclyn Hatala; Oikawa, Patricia Y.; Baldocchi, Dennis

    2016-01-01

    Methane (CH4) exchange in wetlands is complex, involving nonlinear asynchronous processes across diverse time scales. These processes and time scales are poorly characterized at the whole-ecosystem level, yet are crucial for accurate representation of CH4 exchange in process models. We used a combination of wavelet analysis and information theory to analyze interactions between whole-ecosystem CH4 flux and biophysical drivers in two restored wetlands of Northern California from hourly to seasonal time scales, explicitly questioning assumptions of linear, synchronous, single-scale analysis. Although seasonal variability in CH4 exchange was dominantly and synchronously controlled by soil temperature, water table fluctuations, and plant activity were important synchronous and asynchronous controls at shorter time scales that propagated to the seasonal scale. Intermittent, subsurface water table decline promoted short-term pulses of methane emission but ultimately decreased seasonal CH4 emission through subsequent inhibition after rewetting. Methane efflux also shared information with evapotranspiration from hourly to multiday scales and the strength and timing of hourly and diel interactions suggested the strong importance of internal gas transport in regulating short-term emission. Traditional linear correlation analysis was generally capable of capturing the major diel and seasonal relationships, but mesoscale, asynchronous interactions and nonlinear, cross-scale effects were unresolved yet important for a deeper understanding of methane flux dynamics. We encourage wider use of these methods to aid interpretation and modeling of long-term continuous measurements of trace gas and energy exchange.

  11. [Tissue oxygen exchange and oxidative processes in long-livers: age peculiarities].

    PubMed

    Korkushko, O V; Ivanov, L A; Shatilo, V B

    2012-01-01

    This work was undertaken to study tissue oxygen exchange and oxidative processes in the long-lived individuals who were assumed as the physiologically aging individuals. Oxygen tension was assessed in forearm subcutaneous cellular tissue by means of the polarographic method while performing 10 min oxygen inhalation tests (with spontaneous oxygemogram recording) and a 10 min clamping of vessels. The obtained data served as the tissue oxygen exchange indicator. This approach made us possible to evaluate the oxygen delivery and oxygen uptake. To study qualitative characteristics of oxidative processes, we assessed vacat-oxygen of the blood and urine and estimated the underoxidation coefficient proposed by Muller. We have found that tissue respiration intensity falls, the amount of underoxidated products of the blood and urine rises, and the underoxidation coefficient increases in aging. The decrease of tissue oxygen respiration intensity in subcutaneous cellular tissue reflects the development of tissue hypoxia associated with reduced activity of the enzymes, being involved in oxygen exchange. An age-related decrease of tissue perfusion leads to the formation of circulatory hypoxia and also contributes considerably to tissue hypoxia formation. The revealed changes in the tissue oxygen exchange and oxidative processes in the long-livers are generally correspondent to those that can be seen in the people of 80-89 years. This finding speaks in favor of the physiological aging in the long-livers.

  12. An Effective Deuterium Exchange Method for Neutron Crystal Structure Analysis with Unfolding-Refolding Processes.

    PubMed

    Kita, Akiko; Morimoto, Yukio

    2016-02-01

    A method of hydrogen/deuterium (H/D) exchange with an unfolding-refolding process has been applied to hen egg-white lysozyme (HWL), and accurate evaluation of its deuteration was carried out by time-of-flight mass spectroscopy. Neutron crystallography requires a suitable crystal with enough deuterium exchanged in the protein to decrease incoherent scattering from hydrogens. It is very expensive to prepare a fully deuterated protein, and therefore a simple H/D exchange technique is desirable for this purpose. Acid or base addition to protein solutions with heating effectively increased the number of deuterium up to more than 20 % of that of all hydrogen atoms, and refolded structures were determined by X-ray structure analysis at 1.8 Å resolution. Refolded HWL had increased deuterium content in its protein core and its native structure, determined at atomic resolution, was fully preserved.

  13. Process industry demand for more efficient, more cost-effective heat exchanger tubing

    SciTech Connect

    Thors, P.

    1987-01-01

    In the future the process industry will see a bigger selection of enhanced heat transfer tubes, one of the reasons being the continued production of special patented technology involved in making them. Here the author mentions only some of the factors that might influence the increased usage of these enhanced tubes. In using more efficient tubing in a heat exchanger the designer has available the options to increase the total heat duty per unit volume, lower operating costs by reducing the mean temperature difference at a given heat duty, save material, or reduce the size and/or pumping power, among others. This can be achieved, for example, by replacing plain tubes with appropriate enhanced tubes in retubing applications, where old heat exchangers need to be upgraded and total efficiency improved. When a new heat exchanger is to be built, it is easier for the designer to include the more efficient tubing to utilize all the benefits of the increased thermal performance.

  14. The plasma membrane sodium-hydrogen exchanger and its role in physiological and pathophysiological processes.

    PubMed

    Mahnensmith, R L; Aronson, P S

    1985-06-01

    The plasma membranes of most if not all vertebrate cells contain a transport system that mediates the transmembrane exchange of sodium for hydrogen. The kinetic properties of this transport system include a 1:1 stoichiometry, affinity for lithium and ammonium ion in addition to sodium and hydrogen, the ability to function in multiple 1:1 exchange modes involving these four cations, sensitivity to inhibition by amiloride and its analogues, and allosteric regulation by intracellular protons. The plasma membrane sodium-hydrogen exchanger plays a physiological role in the regulation of intracellular pH, the control of cell growth and proliferation, stimulus-response coupling in white cells and platelets, the metabolic response to hormones such as insulin and glucocorticoids, the regulation of cell volume, and the transepithelial absorption and secretion of sodium, hydrogen, bicarbonate and chloride ions, and organic anions. Preliminary evidence raises the possibility that the sodium-hydrogen exchanger may play a pathophysiological role in such diverse conditions as renal acid-base disorders, essential hypertension, cancer, and tissue or organ hypertrophy. Thus, future research on cellular acid-base homeostasis in general, and on plasma membrane sodium-hydrogen exchange in particular, will enhance our understanding of a great variety of physiological and pathophysiological processes.

  15. TRANSIENT HEAT TRANSFER ANALYSIS FOR ION-EXCHANGE WASTE REMOVAL PROCESS

    SciTech Connect

    Lee, S.

    2010-07-12

    The small column ion exchange (SCIX) process treats low curie salt (LCS) waste before feeding it to the saltstone facility to be made into grout. Through this process, radioactive cesium from the salt solution is absorbed into the CST bed. A CST column loaded with radioactive cesium will generate significant heat from radiolytic decay. If engineering designs of the CST sorption column can not handle this thermal load, hot spots may develop locally within the column and degrade the performance of the ion-exchange process. The CST starts to degrade at about 80 to 85 C, and the CST completely changes to another material above 120 C. In addition, the process solution will boil around 130 C. If the column boiled dry, the sorbent could plug the column and require replacement of the column module. The objective of the present work is to compute temperature distributions across the column as a function of transit time after the initiation of accidents when there is loss of the salt solution flow in the CST column under abnormal conditions of the process operations. In this situation, the customer requested that the calculations should be conservative in that the model results would show the maximum centerline temperatures achievable by the CST design configurations. The thermal analysis results will be used to evaluate the fluid temperature distributions and the process component temperatures within the ion exchange system. This information will also assist in the system design and maintenance.

  16. On the Limiting Markov Process of Energy Exchanges in a Rarely Interacting Ball-Piston Gas

    NASA Astrophysics Data System (ADS)

    Bálint, Péter; Gilbert, Thomas; Nándori, Péter; Szász, Domokos; Tóth, Imre Péter

    2016-08-01

    We analyse the process of energy exchanges generated by the elastic collisions between a point-particle, confined to a two-dimensional cell with convex boundaries, and a `piston', i.e. a line-segment, which moves back and forth along a one-dimensional interval partially intersecting the cell. This model can be considered as the elementary building block of a spatially extended high-dimensional billiard modeling heat transport in a class of hybrid materials exhibiting the kinetics of gases and spatial structure of solids. Using heuristic arguments and numerical analysis, we argue that, in a regime of rare interactions, the billiard process converges to a Markov jump process for the energy exchanges and obtain the expression of its generator.

  17. On the Limiting Markov Process of Energy Exchanges in a Rarely Interacting Ball-Piston Gas

    NASA Astrophysics Data System (ADS)

    Bálint, Péter; Gilbert, Thomas; Nándori, Péter; Szász, Domokos; Tóth, Imre Péter

    2017-02-01

    We analyse the process of energy exchanges generated by the elastic collisions between a point-particle, confined to a two-dimensional cell with convex boundaries, and a `piston', i.e. a line-segment, which moves back and forth along a one-dimensional interval partially intersecting the cell. This model can be considered as the elementary building block of a spatially extended high-dimensional billiard modeling heat transport in a class of hybrid materials exhibiting the kinetics of gases and spatial structure of solids. Using heuristic arguments and numerical analysis, we argue that, in a regime of rare interactions, the billiard process converges to a Markov jump process for the energy exchanges and obtain the expression of its generator.

  18. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    DOE PAGES

    Ma, X.; Fang, F.; Li, Q.; ...

    2015-10-28

    In this study, optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recoverymore » time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.« less

  19. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    SciTech Connect

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-28

    In this study, optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  20. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    PubMed Central

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-01-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation. PMID:26508587

  1. Hydrogeochemistry and cation-exchange processes in the coastal aquifer of Mar Del Plata, Argentina

    NASA Astrophysics Data System (ADS)

    Martínez, D. E.; Bocanegra, E. M.

    2002-06-01

    The aquifer of Mar del Plata is unconfined and composed of silt and fine sand. The sand fraction is mainly quartz, potassium feldspars, chalcedony, and gypsum. Volcanic-glass shards (40-60%) dominate the silt fraction, and the clays are of the smectite and illite groups. Calcium carbonate, in caliche form, constitutes about 10-20% of the sediment. Groundwater flow is from west to east, and discharge is in the Atlantic Ocean. Because of overexploitation, the flow direction was reversed in a coastal belt about 3.5 km wide, and this has resulted in seawater intrusion. The groundwater is the CaHCO3 type in the recharge zone, and becomes NaHCO3 type towards the discharge area. Salinization by marine intrusion and seawater/fresh-water mixing produces an increase in the major-ion concentrations of the groundwater. The calcium content of the groundwater is higher and the sodium content is lower than those that would be expected if the mixing is considered as just the addition of seawater and fresh water in determined proportions without reactive processes taking place. Hydrogeochemical modeling was applied to the study of hydrogeochemical processes, mainly cation exchange, using the codes NETPATH and PHREEQM. Calcite and gypsum equilibrium, together with cation exchange, are the main hydrogeochemical processes. Cation-exchange capacity of the solid phase was determined by empirical calculations and experimental methods. The affinity order for the groundwater in contact with the aquifer matrix is Ca>Mg>Na in the regional-flow system, but the order is reversed in the salinization process. Reactive transport modeling using the code PHREEQM is useful for analyzing cation exchange in a marine-intrusion process.

  2. Ion-Exchanged Waveguides for Signal Processing Applications - A Novel Electrolytic Process.

    DTIC Science & Technology

    1987-03-07

    1986 . 3] R. K. Lagu and V. Ramaswamy, "Fabrication of Single Mode Glass Waveguide by Electrolytic Release of Silver Ions," Appl. Phys. Lett., 45, pp...Quantum Electron., QE-22, pp. 883-891, 1986 . 7 [111] P. Chludzinski, R. V. Ramaswamy, and T. J. Anderson, "Ion-Fxchange Between Sode-Lime Silicate Glass and...Parameter Relationships for the Design of Planar, Silver Ion-Exchanged Glass Waveguide," IEEE J. Lightwave Tech., LT-4, pp. 176-131, 1986 . [20] R. K. Lagu

  3. Atmosphere-Snowpack NOx Exchange: Measurements at Summit, Greenland and Process-Scale Modeling

    NASA Astrophysics Data System (ADS)

    Murray, Keenan; Ganzeveld, Laurens; Kramer, Louisa; Doskey, Paul; Helmig, Detlev; Seok, Brian; Van Dam, Brie

    2013-04-01

    Atmosphere-Snowpack NOx Exchange: Measurements at Summit, Greenland and Process-Scale Modeling Keenan A. Murray, Laurens Ganzeveld, Louisa J. Kramer, Paul V. Doskey, Detlev Helmig, Brian Seok, Brie Van Dam Snowpack over glacial ice is a reservoir for reactive nitrogen gases. During the sunlit season, NOx is generated in the interstitial air of snowpack through photolysis of nitrate (NO3-) in snow. Gradients in NOx mixing ratios between snowpack interstitial air and the overlying atmosphere regulate transfer of NOx to/from snowpack and affect the atmospheric O3 budget, oxidation capacity and, consequently, climate. To better understand the dynamics in cryosphere-atmosphere exchange of NOx we have collected 2 years of meteorological and chemical data at Summit, Greenland. Profiles of NO, NO2 and O3 mixing ratios were measured in interstitial air at several depths in the snowpack and at 2 levels above the snow surface. NOx emissions are episodic, with large NOx events occurring in early spring during high wind speed events (10-20 mph) that elevate NOx levels to ~500 pptv to depths of 2.5 meters into the snowpack. The poster will present measurements of NO, NO2, O3, wind, and irradiance for a high NOx event in the snowpack during the 2008-2010 period. Analysis of these observations will be based upon the application of a 1-D process-scale model of the atmosphere-snowpack exchange of NOx, which includes representations of the snowpack chemistry of reactive nitrogen, peroxides, and small hydrocarbon species. A more highly parameterized version of the process-scale model is currently being developed for inclusion in a global-scale model to assess the implications of climate change on cryosphere-atmosphere NOx and Ox exchange. We will present a first comparison of the predicated NOx and O3 profiles and fluxes from the process-scale/parameterized models, respectively, to observed measurements.

  4. [Biological Role of Oligomerny Matriksny of Protein of the Cartilage in Exchange Processes Connecting Tissue].

    PubMed

    Belova, Yu S

    2015-01-01

    In the review the literary data on studying of biological role of a oligomerny matriksny of protein of the cartilage in exchange processes connecting tissue at people and animals are provided, and also results of own researches on definition of a oligomerny matriksny of protein of the cartilage as a modern marker of a metabolism of an articulate cartilage at children from undifferentiated displaziy conjunctive tissue are briefly described.

  5. Processes of Ammonia Air-Surface Exchange in a Fertilized Corn Canopy

    NASA Astrophysics Data System (ADS)

    Walker, J. T.; Bash, J. O.; Jones, M.; Nemitz, E.; Robarge, W. P.

    2009-12-01

    Processes of ammonia (NH3) air-surface exchange in fertilized crops include bi-directional flux (emission or deposition) from the soil, surface litter, leaf stomatal cavity, and leaf cuticle. These component fluxes establish the net exchange between the canopy and atmosphere. We conducted an experiment in the summer of 2007 in eastern North Carolina to quantify the net flux of NH3 from a fertilized corn canopy over the course of the growing season. A primary objective was to examine the relative importance of soil vs. foliage exchange pathways with respect to net canopy-scale fluxes. Continuous wet rotating denuder and photoacoustic spectroscopic NH3 measurement methods were configured in a gradient mode to measure canopy-scale fluxes using the modified Bowen-ratio technique. In-canopy source-sink relationships were examined by inverse modeling of NH3 concentration, temperature, and turbulence profiles. Additionally, measurements of NH4+ and H+ in the soil solution, leaf apoplast, and leaf surface water were used in combination with resistance modeling to examine the relationships between net canopy-scale fluxes and soil, stomatal, and cuticular exchange pathways. Measurement and modeling results are presented and the relevance of this work to national NH3 emission inventories and regional air quality modeling is discussed.

  6. Anaerobic-ion exchange (AN-IX) process for local-scale nitrogen recovery from wastewater.

    PubMed

    Smith, Daniel P; Smith, Nathaniel T

    2015-11-01

    An anaerobic-ion exchange (AN-IX) process was developed for point-of-origin recovery of nitrogen from household wastewater. The process features upflow solids-blanket anaerobic treatment (ammonification) followed by ammonium ion exchange onto natural zeolite. The AN-IX system is configured as a series of linked upflow chambers that operate passively without energy input, and is amenable to intermittent and seasonal operation. A 57L prototype was operated for over 1.8 years treating actual wastewater under field conditions. Total nitrogen removal exceeded 96% through the first 160 days of operation and effluent ammonium nitrogen remained below detection for 300 days. Ion exchange chambers exhibited sequential NH4(+)-N breakthrough over extended operation and complete media exhaustion was approached at Day 355. The ammonium capacity of zeolite was estimated as 13.5mg NH4(+)-N per gram dry weight. AN-IX is a resilient and cost effective process for local-scale nitrogen recovery and reuse, suitable for small scale and larger systems.

  7. Analysing hyporheic exchange processes during unsteady flow in a small gravel bed river

    NASA Astrophysics Data System (ADS)

    Kurtenbach, Andreas; Schuetz, Tobias; Krein, Andreas; Bierl, Reinhard

    2017-04-01

    Quantifying hyporheic exchange in gravel dominated rivers still remains a challenging task in stream ecology and hydrology, in particular during unsteady flow. We adopted three strategies to decipher exchange processes with the hyporheic zone during unsteady boundary conditions. First, artificial floods were generated in the mid-mountain gravel bed river system of the Olewiger Bach, Germany (24 km2). The advantage of the artificial flood approach lies in the selective control of governing processes by experimental design. Consequently, hydraulic boundary conditions such as maximum discharge, runoff volume and flood duration are steerable during the field experiments and the composition of the discharged water (e.g. low conductivity values) is known. Second, hyporheic exchange was analysed via heat dynamics using air, water and sediment pore water temperatures. Temperature dynamics in the hyporheic zone were monitored at the head, mid and tail of a riffle using specific lances (length: 67 cm, Ø: 3cm) containing temperature sensors in depths of 2, 5, 10, 15, 25, 45 and 65 cm. Short-term temperature variability during the unsteady artificial flood waves were analysed in high resolution of 10-30 seconds. In order to capture long-term seasonal fluctuations and dynamics during natural floods temperature was continuously measured at 5-min resolution. However, heat transfer in the hyporheic zone is affected by both advective and conductive transport. In a third strategy we therefore measure electrical conductivity and selected solutes in pore water during three artificial floods in 2015. Pore water was sampled from different sediment depths (5, 15, 25 and 45 cm) via stainless steel multilevel probes (length: 58 cm, Ø: 4cm). The investigation of temperature and pore water dynamics reveals that precedent hydrological conditions and ground-water levels are significant determinants for hyporheic exchange during unsteady flow. Stable groundwater stratification in spring for

  8. Cumulative Significance of Hyporheic Exchange and Biogeochemical Processing in River Networks

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Gomez-Velez, J. D.

    2014-12-01

    Biogeochemical reactions in rivers that decrease excessive loads of nutrients, metals, organic compounds, etc. are enhanced by hydrologic interactions with microbially and geochemically active sediments of the hyporheic zone. The significance of reactions in individual hyporheic flow paths has been shown to be controlled by the contact time between river water and sediment and the intrinsic reaction rate in the sediment. However, little is known about how the cumulative effects of hyporheic processing in large river basins. We used the river network model NEXSS (Gomez-Velez and Harvey, submitted) to simulate hyporheic exchange through synthetic river networks based on the best available models of network topology, hydraulic geometry and scaling of geomorphic features, grain size, hydraulic conductivity, and intrinsic reaction rates of nutrients and metals in river sediment. The dimensionless reaction significance factor, RSF (Harvey et al., 2013) was used to quantify the cumulative removal fraction of a reactive solute by hyporheic processing. SF scales reaction progress in a single pass through the hyporheic zone with the proportion of stream discharge passing through the hyporheic zone for a specified distance. Reaction progress is optimal where the intrinsic reaction timescale in sediment matches the residence time of hyporheic flow and is less efficient in longer residence time hyporheic flow as a result of the decreasing proportion of river flow that is processed by longer residence time hyporheic flow paths. In contrast, higher fluxes through short residence time hyporheic flow paths may be inefficient because of the repeated surface-subsurface exchanges required to complete the reaction. Using NEXSS we found that reaction efficiency may be high in both small streams and large rivers, although for different reasons. In small streams reaction progress generally is dominated by faster pathways of vertical exchange beneath submerged bedforms. Slower exchange

  9. Energy exchange between orthogonally polarized waves by cascaded quasi-phase-matched processes

    NASA Astrophysics Data System (ADS)

    Johnston, B. F.; Dekker, P.; Saltiel, S. M.; Withford, M. J.; Kivshar, Y. S.

    2008-01-01

    By identifying appropriate quasi-phase-matching (QPM) conditions in z-cut congruent lithium niobate, we demonstrate simultaneous QPM of type-I (ooe) and higher order type-0 (eee) second-harmonic-generation, which share a common second harmonic wave. We demonstrate this experimentally at 1064nm, and show that cascading between these processes occurs. The cascading can result in energy exchange between the cross-polarized fundamentals, indicative of an equivalent 3rd order process. The nonlinear phase shifts and transfer functions resulting from this cascading are explored numerically.

  10. Modeling the Hydrogen-Proton Charge-Exchange Process in Global Heliospheric Simulations

    NASA Astrophysics Data System (ADS)

    DeStefano, A.; Heerikhuisen, J.

    2015-12-01

    The environment surrounding our Solar System has a vast and dynamic structure. As the Sun rounds the Milky Way galaxy, interstellar dust and gas interact with the Sun's outflow of solar wind. A bubble of hot plasma forms around the Sun due to this interaction, called the heliosphere. In order to understand the structure of the heliosphere, observations and simulations must work in tandem. Within the past decade or so, 3D models of the heliosphere have been developed exhibiting non- symmmetric as well as predicting structures such as the hydrogen wall and the IBEX ribbon. In this poster we explore new ways to compute charge-exchange source terms. The charge-exchange process is the coupling mechanism between the MHD and kinetic theories. The understanding of this process is crucial in order to make valuable predictions. Energy dependant cross section terms will aid in settling non-linear affects coupling the intestellar and solar particles. Through these new ways of computing source terms, resolving fine structures in the plasma in the heliopause may be possible. In addition, other non-trivial situations, such as charge-exchange mediated shocks, may be addressed.

  11. [Circulation and exchange processes on the South Atlantic Bight Continental Shelf]. [Progress summary for 1986

    SciTech Connect

    Not Available

    1986-12-31

    A continuation of the physical oceanography program to investigate circulation and exchange processes on the South Atlantic Bight (SAB) Continental Shelf is proposed. The transport and dispersal of materials entering the inner shelf zone with river discharge is not well understood at present. Climatological data, satellite imagery, and numerical modeling results indicate two removal routes for these nearshore waters: northeast transport and offshore exchange between Cape Fear and Savannah during the spring and summer when maximum run-off and northward winds prevail; and southward transport and offshore exchange near Cape Canaveral during the fall when southward winds prevail. We have conducted interdisciplinary experiments to investigate the transport processes in the inner to outer shelf between Savannah, Georgia and Cape Fear, North Carolina. In addition we propose to continue synthesis and interpretation of current measurements. The analyses will focus on determining the coupling mechanisms of inner shelf and outer shelf waters with special emphasis placed on resolving the modes and rates of shelf water removal.

  12. Magneto-optical indicator film study of the hybrid exchange spring formation and evolution processes

    NASA Astrophysics Data System (ADS)

    Nikitenko, V. I.; Gornakov, V. S.; Kabanov, Yu. P.; Shapiro, A. J.; Shull, R. D.; Chien, C. L.; Jiang, J. S.; Bader, S. D.

    2003-03-01

    The elementary events of the remagnetization processes in nanocomposite magnetic bilayers were investigated using iron-garnet indicator films with in-plane anisotropy. We have observed hybrid domain walls consisting of both ferromagnetic and antiferromagnetic sections perpendicular to the interface. The external magnetic field shifts only the ferromagnetic part of the domain walls. This leads to the formation of a hybrid exchange spin spring parallel to the interface. The processes of spring nucleation and untwisting occur at different locations. With the field oriented antiparallel to the macroscopic unidirectional anisotropy, remagnetization of the soft ferromagnet layer in the hard/soft nanocomposite starts by the formation of an exchange spring consisting of micrometer-scale sub-domains with opposite direction spin twisting. A rotating magnetic field (smaller than some critical value) creates firstly a single-chiral spin spiral; this spiral then loses stability, incoherently untwists and gradually inverts its chirality with increasing field rotation. Untwisting of the hybrid exchange spring at higher fields leads to the creation of unusual hybrid non-180° domain walls. The initial (ground) state of the bilayer with such noncollinear magnetized domains is not restored after stopping the field rotation and returning it to zero. The revealed phenomena are attributed to the influence of the dispersion in the unidirectional anisotropy induced by magnetization frustration in the interface and bilayer crystal lattice defects.

  13. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    SciTech Connect

    Tsai, Tsung-Han; Ertem, S. Piril; Maes, Ashley M.; Seifert, Soenke; Herring, Andrew M; Coughlin, E. Bryan

    2015-01-28

    Random copolymers of isoprene and 4-vinylbenzyl chloride (VBCl) with varying compositions were synthesized via nitroxide-mediated polymerization. Subsequent quaternization afforded solvent processable and cross-linkable ionomers with a wide range of ion exchange capacities (IECs). Solution cast membranes were thermally cross-linked to form anion exchange membranes. Cross-linking was achieved by taking advantage of the unsaturations on the polyisoprene backbone, without added cross-linkers. A strong correlation was found between water uptake and ion conductivity of the membranes: conductivities of the membranes with IECs beyond a critical value were found to be constant related to their high water absorption. Environmentally controlled small-angle X-ray scattering experiments revealed a correlation between the average distance between ionic clusters and the ion conductivity, indicating that a well-connected network of ion clusters is necessary for efficient ion conduction and high ion conductivity.

  14. Processing of Spent Ion Exchange Resins in a Rotary Calciner - 12212

    SciTech Connect

    Kascheev, Vladimir; Musatov, Nikolay

    2012-07-01

    Processing Russian nuclear ion exchange resin KU-2 using a 'Rotary' calciner was conducted. The resulting product is a dry free flowing powder (moisture content 3 wt.%, Angle of repose of ≅ 20 deg.). Compared with the original exchange resin the volume of the final product is about 3 times less.. Rotary calciner product can be stored in metal drums or in special reinforced concrete cubicles. After thermal treatment in a rotary calciner, the spent resin product can be solidified in cement yielding the following attributes: - The cemented waste is only a 35% increase over the volume of powder product; - The volume of cement calciner product is almost 9 times less (8.7) than the volume of cement solidified resin; - The mechanical strength of cemented calciner product meets the radioactive waste regulations in Russia. (authors)

  15. Time Dependency of Psychotherapeutic Exchanges: The Contribution of the Theory of Dynamic Systems in Analyzing Process

    PubMed Central

    Salvatore, Sergio; Tschacher, Wolfgang

    2012-01-01

    This paper provides a general framework for the use of Theory of Dynamic Systems (TDS) in the field of psychotherapy research. Psychotherapy is inherently dynamic, namely a function of time. Consequently, the improvement of construct validity and clinical relevance of psychotherapy process research require the development of models of investigation allowing dynamic mappings of clinical exchange. Thus, TDS becomes a significant theoretical and methodological reference. The paper focuses two topics. First, the main concepts of TDS are briefly introduced together with a basic typology of approaches developed within this domain. Second, we propose a repertoire of investigation strategies that can be used to capture the dynamic nature of clinical exchange. In this way we intend to highlight the feasibility and utility of strategies of analysis informed by TDS. PMID:22848205

  16. Downstream processing of human antibodies integrating an extraction capture step and cation exchange chromatography.

    PubMed

    Azevedo, Ana M; Rosa, Paula A J; Ferreira, I Filipa; de Vries, J; Visser, T J; Aires-Barros, M Raquel

    2009-01-01

    In this paper we explore an alternative process for the purification of human antibodies from a Chinese hamster ovary (CHO) cell supernatant comprising a ligand-enhanced extraction capture step and cation exchange chromatography (CEX). The extraction of human antibodies was performed in an aqueous two-phase system (ATPS) composed of dextran and polyethylene glycol (PEG), in which the terminal hydroxyl groups of the PEG molecule were modified with an amino acid mimetic ligand in order to enhance the partition of the antibodies to the PEG-rich phase. This capture step was optimized using a design of experiments and a central composite design allowed the determination of the conditions that favor the partition of the antibodies to the phase containing the PEG diglutaric acid (PEG-GA) polymer, in terms of system composition. Accordingly, higher recovery yields were obtained for higher concentrations of PEG-GA and lower concentrations of dextran. The highest yield experimentally obtained was observed for an ATPS composed of 5.17% (w/w) dextran and 8% (w/w) PEG-GA. Higher purities were however predicted for higher concentrations of both polymers. A compromise between yield and purity was achieved using 5% dextran and 10% PEG-GA, which allowed the recovery of 82% of the antibodies with a protein purity of 96% and a total purity of 63%, determined by size-exclusion chromatography. ATPS top phases were further purified by cation exchange chromatography and it was observed that the most adequate cation exchange ligand was carboxymethyl, as the sulfopropyl ligand induced the formation of multi-aggregates or denatured forms. This column allowed the elution of 89% of the antibodies present in the top phase, with a protein purity of 100% and a total purity of 91%. The overall process containing a ligand-enhanced extraction step and a cation exchange chromatography step had an overall yield of 73%.

  17. Experimental study on the gas exchange process of different intake valve closing in a 4-stroke diesel engine

    NASA Astrophysics Data System (ADS)

    Wang, Ziyu; Wu, Peishan; Li, Yaozong; Cai, Zhongzhou; Liu, Jinlong

    2017-05-01

    A single cylinder diesel engine was modified to operate at different late intake valve closing timings (LIVC), the gas exchange process is studied by experiment. The results shows that with the retard of intake valve closing times (IVC), the losses of gas exchange work are decreased at the same intake air flow conditions, and the pressure drops of intake process are increased, the scavenging processes strengthen, and the residual gas fractions in cylinder are obviously decreased.

  18. LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING

    SciTech Connect

    King, W

    2007-11-30

    This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials have been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA

  19. New insights into proton surface mobility processes in PEMFC catalysts using isotopic exchange methods.

    PubMed

    Ferreira-Aparicio, Paloma

    2009-09-01

    The surface chemistry and the adsorption/desorption/exchange behavior of a proton-exchange membrane fuel cell catalyst are analyzed as a case study for the development of tailor-made support materials of enhanced performance and stability. By using H2, D2, and CO as probe molecules, the relevance of some surface functional groups of the catalyst support on several diffusion processes taking place during the adsorption is shown. Sulfonic groups associated with the vulcanized carbon black surface have been detected by means of spectroscopic techniques (X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy) and by analysis of the desorbed products during temperature-programmed desorption tests by mass spectrometry. Such hydrophilic species have been observed to favor proton surface mobility and exchange with Pt-adsorbed deuterium even in the presence of adsorbed CO. This behavior is relevant both for the proper characterization of these kinds of catalysts using adsorption probes and for the design of new surface-modified carbon supports, enabling alternative proton-transfer pathways throughout the catalytic layers toward the membrane.

  20. Impact of natural organic matter properties on the kinetics of suspended ion exchange process.

    PubMed

    Bazri, Mohammad Mahdi; Mohseni, Madjid

    2016-03-15

    Removal kinetics of four standard organic matter isolates under the application of strongly basic ion exchange resins (IEX) in suspended mode was studied under commercial application conditions. Suwannee River natural organic matter (SRNOM), SR fulvic acid (SRFA), and Pony Lake fulvic acid (PLFA) were greatly removed (>90%) and highly preferred by IEX resins (α > 5, over Cl(-), and HCO3(-)) while SR humic acid (SRHA) was the least preferred organic structure among the four isolates studied (α ≈ 1). Moreover, the efficacy of removal for fulvic acids (i.e., SRFA, PLFA) was consistent over consecutive reuse of IEX resins (i.e., loading cycles) whereas it decreased for SRNOM and SRHA over the course of operation. The stoichiometric correlation between the chloride released from the resins as a result of organic molecules uptake indicated that ion exchange was the dominant mechanism. Results obtained indicated that molecular weight and charge density of isolates played a major role in the performance of ion exchange process for organic matter removal. Furthermore, various empirical and physical models were evaluated using the experimental data and pore diffusion was found to be the rate-liming step during the uptake of organic matters; hence, it was used as the appropriate model to predict the kinetics of removal. Consequently, free liquid diffusivities and effective pore diffusion coefficients of organic molecules were estimated and findings were in agreement with the literature data that were obtained from spectrophotometric methods.

  1. Extended ion exchange process for removal and recovery of technetium from soluble waste

    SciTech Connect

    Bibler, J.P.; Wallace, R.M.

    1984-05-22

    A well-established method of separation of /sup 99/Tc from soluble waste is sorption of pertechnetate ion, TcO/sub 4//sup -/, onto a strong base anion exchange resin such as Dowex 1x8. Pertechnetate ion can then be removed from the resin by elution with 4M HNO/sub 3/. An improved ion exchange method which encompasses removal and recovery of /sup 99/Tc from defense waste supernate has been demonstrated. The introduction of a second ion exchange step using a weak base resin allows for the reclamation and recycling of large volumes of nitric acid generated in the initial collection of TcO/sub 4//sup -/ on the strong base resin. Also, the total amount of waste NaNO/sub 3/ which is added to the system in the process of removing /sup 99/Tc from the supernate is significantly reduced from 8% to 1%. /sup 99/Tc can be recovered from solution by precipitation as Tc/sub 2/S/sub 7/ with sulfide or as TcO/sub 2/ following reduction with aluminum or zinc amalgam, affording the ultimate recovery of the pure metal.

  2. Investigation of Pt-Ti doped carbon aerogel as bi-metallic catalyst for H/D exchange process

    NASA Astrophysics Data System (ADS)

    Bhartiya, Sushmita; Kohli, D. K.; Singh, Ashish; Singh, Rashmi; Singh, M. K.

    2017-05-01

    Platinum (Pt) carbon based catalyst for hydrogen-deuterium (H/D) exchange between hydrogen and water is one of the benign processes being explored for heavy water production. Platinum being precious, presents a significant contribution on overall cost of catalyst. Titanium (Ti), a potential catalyst was explored for the H/D exchange to reduce the cost of catalyst. Titanium oxide co-doped with platinum in carbon aerogel (CA) was investigated for the exchange process. The present studies involve synthesis and characterization of TiO2 nanoparticles doped in carbon aerogel. Pt and TiO2 doping (5% by weight for both) in CA was used to prepare the bimetallic PtTi-CA catalyst. The H/D exchange efficiency obtained for the PtTi-CA catalyst (with 50% Pt economy) was 57% which compares well with Pt-CA catalyst having exchange efficiency of 67%.

  3. Hydrological processes involved in groundwater-surface water exchange at a lowland river: measurements and modelling

    NASA Astrophysics Data System (ADS)

    Nuetzmann, G.; Lewandowski, J.

    2009-04-01

    Water exchange processes in the floodplain of a lowland groundwater-surface water system are studied on the basis of a study site near Freienbrink, NE Germany. The surface water boundaries of this site are formed by an oxbow and the current bed of the river Spree, section Müggelspree. Surface and ground water levels and water temperatures were collected in 12 piezometers and 2 recording stage gauges of a 300 m long transect throughout a one-year-period. Due to water level fluctuations alternation of infiltration and exfiltration occurred. However, most of the time groundwater flux is directed into the river Spree and, river water infiltration events into the aquifer are usually short and of minor importance. Due to clogging of the oxbow bed with a mud layer of different thickness the hydraulic contact between the oxbow and the adjacent aquifer is heterogeneously distributed and partially marginal. These features are modelled quantitatively using MODFLOW and MT3DMS in order to simulate ground water flow and heat transport. Two different model approaches are developed: with the help of a 3D model the whole test site was simulated describing the main vertical and lateral flow components; with a 2D vertical model along transect the exchange processes close to the surface water bodies are studied in more detail in order to quantify the leakage parameters of both river sections. With the results the following questions will be answered: (1) How fast does the exchange between the surface water and the aquifer occur? (2) Can the hydraulic processes (in- and exfiltration) between both river sections and the aquifer be identified and quantified? (3) What are the driving forces for groundwater dynamics in the floodplain - groundwater recharge, regional groundwater flow, or water level fluctuations of the river sections?

  4. Aeronautical Satellite-Assisted Process for Information Exchange Through Network Technologies (Aero-SAPIENT) Conducted

    NASA Technical Reports Server (NTRS)

    Zernic, Michael J.

    2002-01-01

    Broadband satellite communications for aeronautics marries communication and network technologies to address NASA's goals in information technology base research and development, thereby serving the safety and capacity needs of the National Airspace System. This marriage of technology increases the interactivity between airborne vehicles and ground systems. It improves decision-making and efficiency, reduces operation costs, and improves the safety and capacity of the National Airspace System. To this end, a collaborative project called the Aeronautical Satellite Assisted Process for Information Exchange through Network Technologies, or Aero-SAPIENT, was conducted out of Tinker AFB, Oklahoma, during November and December 2000.

  5. Effect of leaf phenology on canopy exchange processes in temperate tree species

    NASA Astrophysics Data System (ADS)

    Adriaenssens, S.; Staelens, J.; Wuyts, K.; Samson, R.; Boeckx, P. F.; Verheyen, K.

    2011-12-01

    Many forest ecosystems worldwide are exposed to enhanced atmospheric deposition of nitrogen (N) and sulphur (S), which may have adverse effects on forest structure and functioning. Canopy exchange processes, i.e. ion exchange between the water layer covering plant tissues and the underlying apoplast, as well as stomatal or cuticular uptake of gases, can play an important role in determining the impact of air pollution on forest ecosystems and in studying internal nutrient cycling. However, leaf phenology exhibits a large influence on these processes, in particular for deciduous trees where leaf longevity is restricted to one growing season. In a first experiment, 15N-labelled sources were used to investigate the uptake of dissolved (NH4+, NO3-) and gaseous N (NH3) by leaves and twigs at four phenological stages, i.e. the period of leaf development, the fully leafed period, the period of leaf senescence and the leafless period. For this purpose, potted saplings of tree deciduous species, i.e. European beech (Fagus sylvatica L.), pedunculate oak (Quercus robur L.) and common birch (Betula pendula L.), and one coniferous species, Scots pine (Pinus sylvestris L.) were used. Along with the uptake of dissolved N, leaf water storage capacity, leaf wettability and canopy leaching of ions in throughfall water were assessed. In general, dissolved N uptake was highest during leaf senescence, while for gaseous N this was during the fully leafed period. Dissolved NH4+ uptake was significantly correlated with the leaching of base cations (K+, Mg2+ and Ca2+), but only during the growing season. Furthermore, dissolved N uptake was related to leaf wettability and not to leaf water storage capacity. A second experiment assessed the temporal variation of throughfall water along a vertical gradient within the canopy of an adult European beech tree. To analyse temporal trends a generalized additive model was used, which showed that throughfall deposition at all canopy levels followed

  6. Shelf edge exchange processes-II SEEP2-06, R/V Endeavor cruise 186

    SciTech Connect

    Wilson, C.; Behrens, W.J.; Flagg, C.N.; Wallace, D.W.R.; Wilke, R.J.; Wyman, K.D.

    1989-12-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. Phase I of SEEP consisted of a series of nine cruises and a mooring array across the outer continental shelf of New England during 1983--1984. Phase II focused specifically on the shelf/slope frontal region of the mid-Atlantic bight off the Delmarva Peninsula. Hydrographic data were collected on eight of the six cruises.

  7. Fabrication 3D buried channel optical waveguide modulators on field-driven ion exchange process

    NASA Astrophysics Data System (ADS)

    Zhou, Zigang; Chen, Wenqiang; Zhu, Li; Li, Jing; Luo, Xiaoying

    2010-10-01

    A high electric field technique was developed to fabricate buried optical waveguide modulator on K9 optical glass. The 80V voltage was applied on the glass to accelerate the field-driven ion exchange process by expeditiously replacing host sodium ions in the glass with silver ions. As a result, the optical loss for optical waveguide modulator was measured using the edge coupling technique with a 0.6328μm He-Ne laser. Loss of 0.20 dB/cm was obtained for channel waveguides of 25μm in depth, relatively low for waveguides of such depth at red wavelength.

  8. Raman spectroscopy investigation and improved knowledge on industrial cation-exchange membranes involved in electrodialysis process

    NASA Astrophysics Data System (ADS)

    Chaouki, M.; Huguet, P.; Bribes, J.-L.

    1996-06-01

    Raman spectra of three specific, industrial, cation-exchange membranes (CEMs) have shown the existence of an extra vibrational band. The relative intensity of this band is different in each membrane spectrum recorded. Chlorosulfonation of polymeric ethylenetrifluoroethylene (ETFE) film grafted with polystyrene chains is used to obtain these CEMs involved in the electrodialysis process. A Raman study of the above reaction has been undertaken and has shown that non-sulfonated polystyrene rings give rise to this extra vibrational band. Different behavior of CEMs synthesized under similar conditions can be explained by a variable amount of non-sulfonated polystyrene rings contained in these materials.

  9. Generation of spatial structures by nonlinear mass-exchange processes in a multicomponent rotating disk

    NASA Astrophysics Data System (ADS)

    Korchagin, V. I.; Ryabtsev, A. D.

    1994-10-01

    We consider hydrodynamic motions in a multicomponent rotating disk taking into account interchange processes between its three components (cold clouds, warm gas, and massive stars). The analysis of the system's linear stability demonstrates the existence of two branches of oscillations: the 'chemical mode' (C-mode) and the hydrodynamic mode (H-mode). The C-mode as well as the H-mode could be unstable in a rigidly rotating disk without self-gravity. The frequencies and the growth rates of unstable modes depend on parameters of mass-exchange processes and are of the order of a few times the life of massive stars. The nonlinear analysis has been performed under the condition of C-mode instability. The result of the evolution depends on the angular velocity of the disk rotation. Two regimes have been found to exist: the formation of regular grand design spiral waves and the development of spatial chaos. Thus, the nonlinear exchange processes in a rotating multicomponent disk could be a mechanism of generation of different kinds of spatial structures in disk galaxies.

  10. Chemical treatment of plutonium with hydrogen peroxide before nitrate anion exchange processing. [Reduction to (IV)

    SciTech Connect

    Marsh, S.F.; Gallegos, T.D.

    1987-05-01

    The major aqueous process used to recover and purify plutonium at the Los Alamos Plutonium Facility is anion exchange in nitric acid. This process is highly selective for plutonium; however, all plutonium must be as Pu(IV) to form the strongly sorbed anionic nitrato complex. The previous ''full-reduction treatment'' used at Los Alamos to obtain Pu(IV) results in a three- to fourfold increase in the feed solution volume and the introduction of kilogram quantities of extraneous salts immediately before a process whose function is to remove such impurities. That treatment has been successfully replaced by a single reagent, hydrogen peroxide, which converts all plutonium to Pu(IV), minimally increases the feed volume, and introduces no residual impurities. Safety aspects of this revised chemical treatment are addressed.

  11. Design of a fixed-bed ion-exchange process for the treatment of rinse waters generated in the galvanization process using Laminaria hyperborea as natural cation exchanger.

    PubMed

    Mazur, Luciana P; Pozdniakova, Tatiana A; Mayer, Diego A; Boaventura, Rui A R; Vilar, Vítor J P

    2016-03-01

    In this study, the removal of zinc from galvanization wastewaters was performed in a fixed bed column packed with brown macro-algae Laminaria hyperborea, acting as a natural cation exchanger (resin). The rinse wastewater presents a zinc concentration between 9 and 22 mg/L, a high concentration of light metals (mainly Na and Ca), a high conductivity (0.5-1.5 mS/cm) and a low organic content (DOC = 7-15 mg C/L). The zinc speciation diagram showed that approximately 80% of zinc is in the form of Zn(2+) and ≅20% as ZnSO4, considering the effluent matrix. From all operational conditions tested for zinc uptake (17 < bed height<27 cm, 4.5 < flow rate<18.2 BV/h, 0.8 < particle equivalent diameter<2.0 mm), the highest useful capacity (7.1 mg Zn/g algae) was obtained for D/dp = 31, L/D = 11, 9.1 BV/h, τ = 6.4 min, corresponding to a service capacity of 124 BV (endpoint of 2 mg Zn/L). Elution was faster and near to 100% effective using 10 BV of HCl (1 M, 3.0%, 363 g HCl/L of resin), for flow rates higher than 4.5 BV/h. Calcium chloride solution (0.1 M) was selected as the best regenerant, allowing the reuse of the natural resin for more than 3 saturation/elution/regeneration cycles. The best operation conditions were scaled-up and tested in a pre-pilot plant. The scale-up design of the cation exchange process was proposed for the treatment of 2.4 m(3)/day of galvanization wastewater, resulting in an estimated reactants cost of 2.44 €/m(3).

  12. Estradiol Uptake in a Combined Magnetic Ion Exchange - Ultrafiltration (MIEX-UF) Process During Water Treatment.

    PubMed

    Imbrogno, Alessandra; Biscarat, Jennifer; Schafer, Andrea Iris

    2017-01-01

    Estrogens and their synthetic analogues are widely used as pharmaceuticals. Upon oral administration these drugs are eventually excreted via urine. The persistence of these pharmaceuticals and inefficient removal by water treatment lead to accumulation in surface water and effluents with negative effects for aquatic life and human health. In this study, the uptake of estradiol by a combined magnetic ion exchange resin - ultrafiltration process (MIEX-UF) was investigated. This is a relatively common process used in drinking water treatment for the removal of natural organic matter. However, uptake of micropollutants, such as steroidal pharmaceuticals, may occur as a side effect of water treatment due to the high affinity for polymeric materials. To elucidate the mechanism governing estradiol partitioning between water, resin and membrane, the influence of different parameters, such as pH, humic acid concentration and membrane molecular-weight-cut-off (MWCO) was studied. Humic acid concentration and pH affected estradiol uptake most. At pH 11 the most significant increase of estradiol uptake was observed for MIEX-UF process (30 ng/g corresponding to 80%) compared with individual UF (17 ng/g corresponding to 12%). The presence of humic acid slightly reduced estradiol uptake at pH 11 (about 55%) due to competition for the ion exchange binding sites. Results demonstrated that the uptake of estradiol, which is amongst the most potent EDCs detected in surface water, in the MIEX-UF process can reach significant quantities (30 ng/g of resin) leading to uncontrolled accumulation of this micropollutant during drinking water treatment. This study gives a novel contribution in the understanding the mechanism of the unanticipated accumulation of pharmaceuticals, such as estradiol, in the drinking water treatment process. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. The tropopause inversion layer at midlatitudes: Formation processes and relation to stratosphere-troposphere exchange

    NASA Astrophysics Data System (ADS)

    Kunkel, D.; Hoor, P. M.; Wirth, V.

    2016-12-01

    Recent studies revealed the existence of a quasi-permanent layer of enhanced static stability above the thermal tropopause. This so-called tropopause inversion layer (TIL) is evident in adiabatic baroclinic life cycles suggesting that dry dynamics contribute to its formation. However, compared to observations the TIL in these life cycles is too weak, indicating that other contributions from diabatic processes are relevant. Such processes could be related to moisture or radiation, or other non-linear, subgrid-scale processes such as gravity wave breaking. Moreover, whether there is a causal relation between the occurrence of the TIL and stratosphere-troposphere exchange (STE) is still under debate. In this study various types of baroclinic life cycles are simulated using a non-hydrostatic model in an idealized mid-latitude channel configuration. A simulation using only the dynamical core of the model serves as base simulation, which is modified subsequently by adding different processes. First, these processes such as vertical turbulence, cloud microphysics, radiation as well as surface fluxes for heat and momentum are added individually. In a second set of simulations combinations of these processes are studied to assess the relative importance of the individual processes in the formation of the TIL. Finally, the static stability is analyzed in regions of STE. These regions are identified with the help of passive tracer as well as a Lagrangian trajectory analysis.

  14. Being in an exchange process: experiences of patient participation in multimodal pain rehabilitation.

    PubMed

    Nordin, Catharina; Gard, Gunvor; Fjellman-Wiklund, Anncristine

    2013-06-01

    To explore primary healthcare patients' experiences of patients participation in multimodal pain rehabilitation. A total of 17 patients who had completed multimodal rehabilitation for persistent pain were interviewed. The interviews were analysed using qualitative content analysis. One theme, Being in an exchange process, and 4 categories emerged. The theme depicted patient participation as a continuous exchange of emotions, thoughts and knowledge. The category Fruitful encounters represented the basic prerequisites for patient participation through dialogue and platforms to meet. Patients' emotional and cognitive resources and restrictions, as well as knowledge gaps, were conditions influencing patient participation in the category Inequality in co-operation. Mutual trust and respect were crucial conditions in patient's personal relationships with the health professionals, forming the category Confidence-inspiring alliance. In the category Competent health professionals, the health professionals' expertise, empathy and personal qualities, were emphasized to favour patient participation. Patient participation can be understood as complex and individualized. A confidence-inspiring alliance enables a trusting relationship to be formed between patients and health professionals. Patients emphasized that health professionals need to play an active role in building common ground in the interaction. Understanding each patient's needs in the participation process may favour patient participation.

  15. Exchange between Escherichia coli polymerases II and III on a processivity clamp

    PubMed Central

    Kath, James E.; Chang, Seungwoo; Scotland, Michelle K.; Wilbertz, Johannes H.; Jergic, Slobodan; Dixon, Nicholas E.; Sutton, Mark D.; Loparo, Joseph J.

    2016-01-01

    Escherichia coli has three DNA polymerases implicated in the bypass of DNA damage, a process called translesion synthesis (TLS) that alleviates replication stalling. Although these polymerases are specialized for different DNA lesions, it is unclear if they interact differently with the replication machinery. Of the three, DNA polymerase (Pol) II remains the most enigmatic. Here we report a stable ternary complex of Pol II, the replicative polymerase Pol III core complex and the dimeric processivity clamp, β. Single-molecule experiments reveal that the interactions of Pol II and Pol III with β allow for rapid exchange during DNA synthesis. As with another TLS polymerase, Pol IV, increasing concentrations of Pol II displace the Pol III core during DNA synthesis in a minimal reconstitution of primer extension. However, in contrast to Pol IV, Pol II is inefficient at disrupting rolling-circle synthesis by the fully reconstituted Pol III replisome. Together, these data suggest a β-mediated mechanism of exchange between Pol II and Pol III that occurs outside the replication fork. PMID:26657641

  16. An efficient process of generating bispecific antibodies via controlled Fab-arm exchange using culture supernatants.

    PubMed

    Paul, Suparna; Connor, Judy; Nesspor, Tom; Haytko, Peter; Boakye, Ken; Chiu, Mark L; Jiang, Haiyan

    2016-05-01

    Bispecific antibody generation is actively pursued for therapeutic and research antibody development. Although there are multiple strategies for generating bispecific antibodies (bsAbs); the common challenge is to develop a scalable method to prepare bsAbs with high purity and yield. The controlled Fab-arm exchange (cFAE) method combines two parental monoclonal antibodies (mAbs), each with a matched point mutation, F405L and K409R in the respective CH3 domains. The conventional process employs two steps: the purification of two parental mAbs from culture supernatants followed by cFAE. Following a reduction/oxidation reaction, the bispecific mAb is formed with greater than 95% heterodimerization efficiency. In this study, cFAE was initiated in culture supernatants expressing the two parental mAbs, thereby eliminating the need to first purify the parental mAbs. The bsAbs formed in culture supernatant was then purified using a Protein A affinity chromatography. The BsAbs generated in this manner had efficiency comparable to the conventional method using purified parental mAbs. BsAbs prepared by two different routes showed indistinguishable characteristics by SDS capillary electrophoresis, analytical size exclusion, and cation exchange chromatography. This alternative method significantly shortened timelines and reduced resources required for bsAb generation, providing an improved process with potential benefits in large-scale bsAb preparation, as well as for HTP small-scale bsAb matrix selection.

  17. THERMAL ANALYSIS FOR IN-TANK ION-EXCHANGE COLUMN PROCESS

    SciTech Connect

    Lee, S; Frank02 Smith, F

    2009-01-05

    High Level Waste (HLW) at the Savannah River Site (SRS) is stored in three forms: sludge, saltcake, and supernate. A small column ion-exchange (SCIX) process is being designed to treat dissolved saltcake waste before feeding it to the saltstone facility to be made into grout. The waste is caustic with high concentrations of various sodium salts and lower concentrations of radionuclides. Two cation exchange media being considered are a granular form of crystalline silicotitanate (CST) and a spherical form of resorcinol-formaldehyde (RF) resin. CST is an inorganic material highly selective for cesium that is not elutable. Through this process, radioactive cesium from the salt solution is absorbed into ion exchange media (either CST or RF) which is packed within a flow-through column. A packed column loaded with radioactive cesium generates significant heat from radiolytic decay. If engineering designs cannot handle this thermal load, hot spots may develop locally which could degrade the performance of the ion-exchange media. Performance degradation with regard to cesium removal has been observed between 50 and 80 C for CST [1] and at 65 C for RF resin [2]. In addition, the waste supernate solution will boil around 130 C. If the columns boiled dry, the sorbent material could plug the column and lead to replacement of the entire column module. Alternatively, for organic resins such as RF there is risk of fire at elevated temperatures. The objective of the work is to compute temperature distributions across CST- and RF-packed columns immersed in waste supernate under accident scenarios involving loss of salt solution flow through the beds and, in some cases, loss of coolant system flow. For some cases, temperature distributions are determined as a function of time after the initiation of a given accident scenario and in other cases only the final steady-state temperature distributions are calculated. In general, calculations are conducted to ensure conservative and

  18. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato

    2001-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  19. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato; Gula, Michael J.; Xue, Sui; Harvey, James T.

    2002-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  20. Capital dissipation minimization for a class of complex irreversible resource exchange processes

    NASA Astrophysics Data System (ADS)

    Xia, Shaojun; Chen, Lingen

    2017-05-01

    A model of a class of irreversible resource exchange processes (REPes) between a firm and a producer with commodity flow leakage from the producer to a competitive market is established in this paper. The REPes are assumed to obey the linear commodity transfer law (LCTL). Optimal price paths for capital dissipation minimization (CDM) (it can measure economic process irreversibility) are obtained. The averaged optimal control theory is used. The optimal REP strategy is also compared with other strategies, such as constant-firm-price operation and constant-commodity-flow operation, and effects of the amount of commodity transferred and the commodity flow leakage on the optimal REP strategy are also analyzed. The commodity prices of both the producer and the firm for the CDM of the REPes with commodity flow leakage change with the time exponentially.

  1. Effects Of Thermal Exchange On Material Flow During Steel Thixoextrusion Process

    SciTech Connect

    Becker, Eric; Gu Guochao; Langlois, Laurent; Bigot, Regis; Pesci, Raphael

    2011-01-17

    Semisolid processing is an innovative technology for near net-shape production of components, where the metallic alloys are processed in the semisolid state. Taking advantage of the thixotropic behavior of alloys in the semisolid state, significant progress has been made in semisolid processing. However, the consequences of such behavior on the flow during thixoforming are still not completely understood. To explore and better understand the influence of the different parameters on material flow during thixoextrusion process, thixoextrusion experiments were performed using the low carbon steel C38. The billet was partially melted at high solid fraction. Effects of various process parameters including the initial billet temperature, the temperature of die, the punch speed during process and the presence of a Ceraspray layer at the interface of tool and billet were investigated through experiments and simulation. After analyzing the results thus obtained, it was identified that the aforementioned parameters mainly affect thermal exchanges between die and part. The Ceraspray layer not only plays a lubricant role, but also acts as a thermal barrier at the interface of tool and billet. Furthermore, the thermal effects can affect the material flow which is composed of various distinct zones.

  2. Numerical Modeling of Freezing and Melting Processes around a Borehole Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Shao, Haibing; Zheng, Tianyuan; Nagel, Thomas; Kolditz, Olaf

    2015-04-01

    In ground sourced heat pump (GSHP) systems, heat energy stored in the shallow subsurface is extracted through borehole heat exchangers (BHE) and then utilized for domestic heating. In cold regions, the continuous heat deficit in the vicinity of the BHE can cause freezing of the surrounding soil. Its material properties, such as permeability and heat conductivity, will then significantly change and lead to a series of coupled thermal, hydraulic, and mechanical processes. In particular, the heat exchange performance of the BHE will be altered, and the frozen soil may also induce ground lift or subsidence in the vicinity of the building. As the first step of modelling this coupled system, we followed the approach proposed by Al-Khoury et al (2010) and Diersch et al (2011), where the BHE has been fully integrated into the numerical model in a dual-continuum way. Additionally, we extended the existing heat transport module in the numerical simulator OpenGeoSys to include the freezing and melting processes, whereas the ice volume fraction in the soil is non-linearly dependent on the temperature, and the soil properties were determined based on the degree of freezing/melting. The non-linearity of the coupled model was numerically solved by a Newton scheme. The extended model has been verified by comparing numerical results against analytical solutions and also findings from other numerical codes. Moreover, we proposed and simulated a hypothetical scenario, where ice is gradually forming around a BHE in response to the continuous operation of a heat pump. The model is capable of reproducing the thermodynamic freezing process as well as the heat transport affected by it. Future work will be focused on the integration of deformation processes into the model.

  3. An Evaluation of Solution Algorithms and Numerical Approximation Methods for Modeling an Ion Exchange Process

    PubMed Central

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.

    2010-01-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward-difference-formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications. PMID:20577570

  4. An Evaluation of Solution Algorithms and Numerical Approximation Methods for Modeling an Ion Exchange Process.

    PubMed

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H; Miller, Cass T

    2010-07-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward-difference-formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.

  5. An evaluation of solution algorithms and numerical approximation methods for modeling an ion exchange process

    SciTech Connect

    Bu Sunyoung Huang Jingfang Boyer, Treavor H. Miller, Cass T.

    2010-07-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.

  6. THERMAL PERFORMANCE ANALYSIS FOR SMALL ION-EXCHANGE CESIUM REMOVAL PROCESS

    SciTech Connect

    Lee, S.; King, W.

    2009-12-29

    The In-Riser Ion Exchange program focuses on the development of in-tank systems to decontaminate high level waste (HLW) salt solutions at the Savannah River Site (SRS) and the Hanford Site. Small Column Ion Exchange (SCIX) treatment for cesium removal is a primary in-riser technology for decontamination prior to final waste immobilization in Saltstone. Through this process, radioactive cesium from the salt solution is adsorbed onto the ion exchange media which is packed within a flow-through column. Spherical Resorcinol-Formaldehyde (RF) is being considered as the ion exchange media for the application of this technology at both sites. A packed column loaded with media containing radioactive cesium generates significant heat from radiolytic decay. Under normal operating conditions, process fluid flow through the column can provide adequate heat removal from the columns. However, in the unexpected event of loss of fluid flow or fluid drainage from the column, the design must be adequate to handle the thermal load to avoid unacceptable temperature excursions. Otherwise, hot spots may develop locally which could degrade the performance of the ion-exchange media or the temperature could rise above column safety limits. Data exists which indicates that performance degradation with regard to cesium removal occurs with RF at 65C. In addition, the waste supernate solution will boil around 130C. As a result, two temperature limits have been assumed for this analysis. An additional upset scenario was considered involving the loss of the supernate solution due to inadvertent fluid drainage through the column boundary. In this case, the column containing the loaded media could be completely dry. This event is expected to result in high temperatures that could damage the column or cause the RF sorbent material to undergo undesired physical changes. One objective of these calculations is to determine the range of temperatures that should be evaluated during testing with the RF

  7. Knowledge transfer and exchange processes for environmental health issues in Canadian Aboriginal communities.

    PubMed

    Jack, Susan M; Brooks, Sandy; Furgal, Chris M; Dobbins, Maureen

    2010-02-01

    Within Canadian Aboriginal communities, the process for utilizing environmental health research evidence in the development of policies and programs is not well understood. This fundamental qualitative descriptive study explored the perceptions of 28 environmental health researchers, senior external decision-makers and decision-makers working within Aboriginal communities about factors influencing knowledge transfer and exchange, beliefs about research evidence and Traditional Knowledge and the preferred communication channels for disseminating and receiving evidence. The results indicate that collaborative relationships between researchers and decision-makers, initiated early and maintained throughout a research project, promote both the efficient conduct of a study and increase the likelihood of knowledge transfer and exchange. Participants identified that empirical research findings and Traditional Knowledge are different and distinct types of evidence that should be equally valued and used where possible to provide a holistic understanding of environmental issues and support decisions in Aboriginal communities. To facilitate the dissemination of research findings within Aboriginal communities, participants described the elements required for successfully crafting key messages, locating and using credible messengers to deliver the messages, strategies for using cultural brokers and identifying the communication channels commonly used to disseminate and receive this type of information.

  8. Fuel processing in integrated micro-structured heat-exchanger reactors

    NASA Astrophysics Data System (ADS)

    Kolb, G.; Schürer, J.; Tiemann, D.; Wichert, M.; Zapf, R.; Hessel, V.; Löwe, H.

    Micro-structured fuel processors are under development at IMM for different fuels such as methanol, ethanol, propane/butane (LPG), gasoline and diesel. The target application are mobile, portable and small scale stationary auxiliary power units (APU) based upon fuel cell technology. The key feature of the systems is an integrated plate heat-exchanger technology which allows for the thermal integration of several functions in a single device. Steam reforming may be coupled with catalytic combustion in separate flow paths of a heat-exchanger. Reactors and complete fuel processors are tested up to the size range of 5 kW power output of a corresponding fuel cell. On top of reactor and system prototyping and testing, catalyst coatings are under development at IMM for numerous reactions such as steam reforming of LPG, ethanol and methanol, catalytic combustion of LPG and methanol, and for CO clean-up reactions, namely water-gas shift, methanation and the preferential oxidation of carbon monoxide. These catalysts are investigated in specially developed testing reactors. In selected cases 1000 h stability testing is performed on catalyst coatings at weight hourly space velocities, which are sufficiently high to meet the demands of future fuel processing reactors.

  9. Modeling Ion-Exchange Processing With Spherical Resins For Cesium Removal

    SciTech Connect

    Hang, T.; Nash, C. A.; Aleman, S. E.

    2012-09-19

    The spherical Resorcinol-Formaldehyde and hypothetical spherical SuperLig(r) 644 ion-exchange resins are evaluated for cesium removal from radioactive waste solutions. Modeling results show that spherical SuperLig(r) 644 reduces column cycling by 50% for high-potassium solutions. Spherical Resorcinol Formaldehyde performs equally well for the lowest-potassium wastes. Less cycling reduces nitric acid usage during resin elution and sodium addition during resin regeneration, therefore, significantly decreasing life-cycle operational costs. A model assessment of the mechanism behind ''cesium bleed'' is also conducted. When a resin bed is eluted, a relatively small amount of cesium remains within resin particles. Cesium can bleed into otherwise decontaminated product in the next loading cycle. The bleed mechanism is shown to be fully isotherm-controlled vs. mass transfer controlled. Knowledge of residual post-elution cesium level and resin isotherm can be utilized to predict rate of cesium bleed in a mostly non-loaded column. Overall, this work demonstrates the versatility of the ion-exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. This evaluation justifies further development of a spherical form of the SL644 resin.

  10. Dynamics of the fully stripped ion-hydrogen atom charge exchange process in dense quantum plasmas

    SciTech Connect

    Zhang, Ling-yu; Wan, Jiang-feng; Zhao, Xiao-ying; Xiao, Guo-qing; Duan, Wen-shan; Qi, Xin; Yang, Lei

    2014-09-15

    The plasma screening effects of dense quantum plasmas on charge exchange processes of a fully stripped ion colliding with a hydrogen atom are studied by the classical trajectory Monte Carlo method. The inter-particle interactions are described by the exponential cosine-screened Coulomb potentials. It is found that in weak screening conditions, cross sections increase with the increase of the ionic charge Z. However, in strong screening conditions, the dependence of cross sections on the ionic charge is related to the incident particle energy. At high energies, cross sections show a linear increase with the increase of Z, whereas at low energies, cross sections for Z≥4 become approximately the same. The He{sup 2+} and C{sup 6+} impacting charge exchange cross sections in dense quantum plasmas are also compared with those in weakly coupled plasmas. The interactions are described by the static screened Coulomb potential. It is found that for both He{sup 2+} and C{sup 6+}, the oscillatory screening effects of dense quantum plasmas are almost negligible in weak screening conditions. However, in strong screening conditions, the oscillatory screening effects enhance the screening effects of dense quantum plasmas, and the enhancement becomes more and more significant with the increase of the screening parameter and the ionic charge.

  11. Proceedings of the Efficient Separations and Processing Cross-Cutting Program Annual Technical Exchange Meeting

    SciTech Connect

    1995-02-01

    This document contains summaries of technology development presented at the 1995 Efficient Separations and Processing Cross-Cutting Program (ESP) Annual Technical Exchange Meeting. The ESP is sponsored by the US Department of Energy`s Office of Environmental Management (EM), Office of Technology Development. The meeting is held annually to promote a free exchange of ideas among technology developers, potential users (for example, EM focus areas), and other interested parties within EM. During this meeting, developers of ESP-funded technologies describe the problems and needs addressed by their technologies; the technical approach, accomplishments, and resolution of issues; the strategy and schedule for commercialization; and evolving potential applications. Presenters are asked to address the following areas: Target waste management problem, waste stream, or data need; scientific background and technical approach; technical accomplishments and resolution of technical issues; schedule and strategy for commercializing and implementing the technology or acquiring needed data; potential alternate applications of the technology or data, including outside of DOE/EM. The meeting is not a program review of the individual tasks or subtasks; but instead focuses on the technical aspects and implementation of ESP-sponsored technology or data. The meeting is also attended by members of the ESP Technical Review Team, who have the opportunity at that time to review the ESP as a whole.

  12. Proceedings of the efficient separations and processing crosscutting program 1997 technical exchange meeting

    SciTech Connect

    Gephart, J.M.

    1997-05-01

    This document contains summaries of technology development presented at the 1997 Efficient Separations and Processing Crosscutting Program (ESP-CP) Technical Exchange Meeting (TEM), held January 28-30, 1997, in Gaithersburg, Maryland. The ESP-CP is sponsored by the U.S. Department of Energy`s Office of Environmental Management (DOE/EM), Office of Science and Technology. The ESP-CP TEM is held annually to: (1) Present current technology development activities funded by the ESP-CP. Developers of ESP-CP-funded technologies describe the problems and needs addressed by their technologies; the technical approach, accomplishments, and resolution of issues; the strategy and schedule for commercialization; and evolving potential applications. Representatives from DOE/EM`s Focus Areas also present their technology needs. (2) Promote the exchange of technical information among those developing new separations technologies, those responsible for providing new separations technologies to meet DOE/EM needs, and those who need or will potentially make use of such technologies. (3) Familiarize the ESP-CP Technical Review Team with the FY 1997 program and solicit reviewers` views on the program as a whole. This meeting is not a program review of the individual tasks, but instead focuses on the technical aspects and implementation of ESP-CP-sponsored technology or data. This document also contains a list of ESP-CP-sponsored publications, presentations, and patents. Separate abstracts have been indexed into the energy database for contributions to this proceedings.

  13. Characterization of atmosphere-water exchange processes of CO 2 in estuaries using dynamic simulation

    NASA Astrophysics Data System (ADS)

    García-Luque, E.; Forja, J. M.; Gómez-Parra, A.

    2005-12-01

    CO 2 is one of the so-called "greenhouse effect" gases; therefore, its rates of water-atmosphere exchange are very relevant for studies of climate change. Coastal zones (which include estuarine systems) are of special interest in relation to the global carbon cycle. Thus, an estuary simulator, which operates in a dynamic mixing regime, is specifically applied in an initial study of the estuarine dynamic of inorganic carbon, focusing basically on the influence of salinity and pH on the water-atmosphere fluxes of CO 2 in these zones. The simulation has been performed under two assumptions: (i) considering that the system is subjected to a stationary gradient of salinity and (ii) taking into account the effect of the tides, owing to the daily oscillations introduced by this phenomenon in the process of CO 2 transfer between the water and the atmosphere. After analysing the results, it has been observed that a potential source of error exists when choosing the coefficients of gas exchange ( k) for CO 2 studies. Nevertheless, the evolution of CO 2 fluxes along the salinity and pH gradients achieved shows the same trends with those observed in a wide variety of real estuaries described in the related literature.

  14. On the processes controlling shelf-basin exchange and outer shelf dynamics in the Bering Sea

    NASA Astrophysics Data System (ADS)

    Clement Kinney, J.; Maslowski, W.; Okkonen, S.

    2009-08-01

    We use a 9-km pan-Arctic ice-ocean model to better understand the circulation and exchanges in the Bering Sea, particularly near the shelf break. This region has, historically, been undersampled for physical, chemical, and biological properties. Very little is known about how water from the deep basin reaches the large, shallow Bering Sea shelf. To address this, we examine here the relationship between the Bering Slope Current and exchange across the shelf break and resulting mass and property fluxes onto the shelf. This understanding is critical to gain insight into the effects that the Bering Sea has on the Arctic Ocean, especially in regard to recent indications of a warming climate in this region. The Bering Sea shelf break region is characterized by the northwestward-flowing Bering Slope Current. Previously, it was thought that once this current neared the Siberian coast, a portion of it made a sharp turn northward and encircled the Gulf of Anadyr in an anticyclonic fashion. Our model results indicate a significantly different circulation scheme whereby water from the deep basin is periodically moved northward onto the shelf by mesoscale processes along the shelf break. Canyons along the shelf break appear to be more prone to eddy activity and, therefore, are associated with higher rates of on-shelf transport. The horizontal resolution configured in this model now allows for the representation of eddies with diameters greater than 36 km; however, we are unable to resolve the smaller eddies.

  15. Quantifying urban river-aquifer fluid exchange processes: a multi-scale problem.

    PubMed

    Ellis, Paul A; Mackay, Rae; Rivett, Michael O

    2007-04-01

    Groundwater-river exchanges in an urban setting have been investigated through long term field monitoring and detailed modelling of a 7 km reach of the Tame river as it traverses the unconfined Triassic Sandstone aquifer that lies beneath the City of Birmingham, UK. Field investigations and numerical modelling have been completed at a range of spatial and temporal scales from the metre to the kilometre scale and from event (hourly) to multi-annual time scales. The objective has been to quantify the spatial and temporal flow distributions governing mixing processes at the aquifer-river interface that can affect the chemical activity in the hyporheic zone of this urbanised river. The hyporheic zone is defined to be the zone of physical mixing of river and aquifer water. The results highlight the multi-scale controls that govern the fluid exchange distributions that influence the thickness of the mixing zone between urban rivers and groundwater and the patterns of groundwater flow through the bed of the river. The morphologies of the urban river bed and the adjacent river bank sediments are found to be particularly influential in developing the mixing zone at the interface between river and groundwater. Pressure transients in the river are also found to exert an influence on velocity distribution in the bed material. Areas of significant mixing do not appear to be related to the areas of greatest groundwater discharge and therefore this relationship requires further investigation to quantify the actual remedial capacity of the physical hyporheic zone.

  16. RECENT ADVANCES IN ION EXCHANGE MATERIALS AND PROCESSES FOR POLLUTION PREVENTION

    EPA Science Inventory

    The goal of this article was to summarize the recent advances in ion exchange technology for the metal finishing industry. Even though the ion exchange technology is mature and is widely employed in the industry, new applications, approaches and ion exchange materials are emergi...

  17. RECENT ADVANCES IN ION EXCHANGE MATERIALS AND PROCESSES FOR POLLUTION PREVENTION

    EPA Science Inventory

    The goal of this article was to summarize the recent advances in ion exchange technology for the metal finishing industry. Even though the ion exchange technology is mature and is widely employed in the industry, new applications, approaches and ion exchange materials are emergi...

  18. Electron-Nuclear Dynamics of collision processes: Charge exchange and energy loss

    NASA Astrophysics Data System (ADS)

    Cabrera-Trujillo, Remigio; Sabin, John R.; Öhrn, Yngve; Deumens, Erik

    2004-03-01

    We present the Electron-Nuclear Dynamics (END) method for the study of time-dependent scattering processes. The END is a general approach for treating time-dependent problems which includes the dynamics of electrons and nuclei simultaneously by considering the full electron-nuclear coupling in the system and thus eliminates the necessity of constructing potential-energy surfaces. The theory approximates the time dependent Schrödinger equation starting from the time dependent variational principle by deriving a Hamiltonian dynamical system for time dependent nuclear and electronic wave function parameters. The wave function is described in a coherent state manifold, which leads to a system of Hamilton's equations of motion. Emphasis is put on electron exchange, differential cross section and energy loss (stopping cross section) of collision of ions, atoms and molecules involving H, He, C, N, O, and Ne atoms. We compare our results to available experimental data.

  19. Radionuclide tracers for the fate of metals in the Savannah estuary: River-ocean exchange processes

    SciTech Connect

    Olsen, C.R.; Thein, M.; Larsen, I.L.; Byrd, J.T.; Windom, H.L.

    1989-01-01

    Plutonium-238 from the US Department of Energy's Savannah River Plant labels riverborne particles, providing a unique opportunity for examining the fate of metals in estuaries and for tracing river-ocean exchange processes. Results indicate that plutonium and lead-210 are enriched on estuarine particles and that inputs of plutonium from oceanic sources greatly exceed inputs from riverborne or drainage-basin sources as far upstream as the landward limit of seawater penetration. We suggest that these radionuclides (and other chemically reactive metals) are being scavenged from oceanic water by sorption onto particles in turbid estuarine and coastal areas. Since estuaries, bays, mangroves, and intertidal areas serve as effective traps for fine particles and associated trace substances, these results have important implications concerning the disposal of chemically reactive substances in oceanic waters. 13 refs., 1 fig., 1 tab.

  20. Digital processing of solid state detector signals in pellet charge exchange measurements on LHD

    SciTech Connect

    Goncharov, P.R.; Ozaki, T.; Sudo, S.; Tamura, N.; Isobe, M.; Sasao, M.; Saida, T.; Krasilnikov, A.V.; Sergeev, V.Yu.

    2004-10-01

    Radially resolved measurements of the plasma ion distribution function by detecting charge exchange neutrals from an impurity pellet ablation cloud require a fast operating energy analyzer working at high count rates to build several spectra during the pellet flight. Currently a solid state detector in the pulse height analysis (PHA) mode is used for such measurements on the Large Helical Device. Traditional PHA techniques cannot provide the operating speed required for a good spatial resolution. An algorithm has been proposed based on digital processing of noisy data series containing charge-sensitive preamplifier signals with discontinuities corresponding to incident particles. The algorithm employs the modified Tikhonov regularization and the successive detection-estimation of signal increments at discontinuity points. Such an approach allows one to realize an ultrafast particle energy spectroscopy by taking advantage of detector/preamplifier capabilities without limiting the system throughput by subsequent electronics.

  1. Influence of nuclear exchange on nonadiabatic electron processes in H(+)+H2 collisions.

    PubMed

    Errea, L F; Illescas, Clara; Macías, A; Méndez, L; Pons, B; Rabadán, I; Riera, A

    2010-12-28

    H(+)+H(2) collisions are studied by means of a semiclassical approach that explicitly accounts for nuclear rearrangement channels in nonadiabatic electron processes. A set of classical trajectories is used to describe the nuclear motion, while the electronic degrees of freedom are treated quantum mechanically in terms of a three-state expansion of the collision wavefunction. We describe electron capture and vibrational excitation, which can also involve nuclear exchange and dissociation, in the E = 2-1000 eV impact energy range. We compare dynamical results obtained with two parametrizations of the potential energy surface of H(3)(+) ground electronic state. Total cross sections for E > 10 eV agree with previous results using a vibronic close-coupling expansion, and with experimental data for E < 10 eV. Additionally, some prototypical features of both nuclear and electron dynamics at low E are discussed.

  2. Surface-segregated Si and Ge ultrathin films formed by Ag-induced layer exchange process

    NASA Astrophysics Data System (ADS)

    Kurosawa, Masashi; Ohta, Akio; Araidai, Masaaki; Zaima, Shigeaki

    2016-08-01

    We have developed a new method of growing Si or Ge ultrathin films on a Ag(111) surface by using a Ag-induced layer exchange (ALEX) process toward the creation of 2D honeycomb sheets of Si and Ge, known as silicene and germanene, respectively. In the present paper, we clarify ALEX features, specifically the surface segregation of Si (or Ge) atoms from the underlying substrate, focusing on the annealing temperature and time. Hard X-ray photoelectron spectroscopy analyses demonstrate that surface-segregated Si (or Ge) exists on the Ag surfaces after the epitaxial growth of the Ag layer on Si(111) [or Ge(111)] substrates; the amount of segregated Si (or Ge) can be controlled by a subsequent annealing. Also, we find that the segregation of an ultrathin Si or Ge layer proceeds at an interface between Ag and the AlO x capping layer.

  3. Numerical analysis of heat exchange processes for the ground source heat pump system

    NASA Astrophysics Data System (ADS)

    Saito, H.; Muto, H.; Moritani, S.; Kohgo, Y.; Hamamoto, S.; Takemura, T.; Ohnishi, J.; Komatsu, T.

    2012-12-01

    Ground source heat pump systems (GSHP) use ground or groundwater as a heat source. They can achieve much higher coefficient of performance (COP) than conventional air source heat pump systems because the temperature of the ground is much more stable than that of the air. Heat energy in the ground is then viewed as one of the renewable energy sources. GSHP has been receiving great interests among countries in North America and Western Europe, as well as some developed countries in Asia because it can potentially reduce energy consumption and greenhouse gas emission. While GSHP can inject heat from the buildings to the ground for cooling during the summer, it can pump heat stored in the ground for heating during the winter. As some physical, chemical, and biological properties of the ground and groundwater are temperature dependent, running GSHP can eventually affect groundwater quality. The main objective of this project was to develop a model that allows predicting not only ground and groundwater temperatures but also changes in physical, chemical, and biological properties of ground and groundwater with GSHP under operations. This particular study aims at simulating heat exchange and transfer processes in the ground for a vertical-loop closed GSHP system. In the closed GSHP system, an anti-freezing solution is circulated inside the closed-loop tube, called U-tube, that is buried in the ground. Heat is then transferred to the anti-freezing solution in the U-tube by a heat exchanger. In this study we used HYDRUS to predict temperature of the anti-freezing solution, as well as that of the ground. HYDRUS allows one to simulate variably-saturated water flow and solute and heat transport in porous media numerically in two- and three-dimensional domains with great flexibility in defining boundary conditions. At first changes in anti-freezing solution temperatures measured were predicted in response to Thermal Response Test (TRT) conducted at our study site. Then, heat

  4. Process-based modelling of NH3 exchange with grazed grasslands

    NASA Astrophysics Data System (ADS)

    Móring, Andrea; Vieno, Massimo; Doherty, Ruth M.; Milford, Celia; Nemitz, Eiko; Twigg, Marsailidh M.; Horváth, László; Sutton, Mark A.

    2017-09-01

    In this study the GAG model, a process-based ammonia (NH3) emission model for urine patches, was extended and applied for the field scale. The new model (GAG_field) was tested over two modelling periods, for which micrometeorological NH3 flux data were available. Acknowledging uncertainties in the measurements, the model was able to simulate the main features of the observed fluxes. The temporal evolution of the simulated NH3 exchange flux was found to be dominated by NH3 emission from the urine patches, offset by simultaneous NH3 deposition to areas of the field not affected by urine. The simulations show how NH3 fluxes over a grazed field in a given day can be affected by urine patches deposited several days earlier, linked to the interaction of volatilization processes with soil pH dynamics. Sensitivity analysis showed that GAG_field was more sensitive to soil buffering capacity (β), field capacity (θfc) and permanent wilting point (θpwp) than the patch-scale model. The reason for these different sensitivities is dual. Firstly, the difference originates from the different scales. Secondly, the difference can be explained by the different initial soil pH and physical properties, which determine the maximum volume of urine that can be stored in the NH3 source layer. It was found that in the case of urine patches with a higher initial soil pH and higher initial soil water content, the sensitivity of NH3 exchange to β was stronger. Also, in the case of a higher initial soil water content, NH3 exchange was more sensitive to the changes in θfc and θpwp. The sensitivity analysis showed that the nitrogen content of urine (cN) is associated with high uncertainty in the simulated fluxes. However, model experiments based on cN values randomized from an estimated statistical distribution indicated that this uncertainty is considerably smaller in practice. Finally, GAG_field was tested with a constant soil pH of 7.5. The variation of NH3 fluxes simulated in this way

  5. Observation of atmosphere-forest exchange processes at the new TERENO site Wüstebach

    NASA Astrophysics Data System (ADS)

    Graf, A.; Drüe, C.; Ney, P.; Heinemann, G.; Pütz, T.

    2012-12-01

    The Wüstebach site is located in a spruce forest covering the catchment of a small creek called 'Wüstebach' in the German National Park Eifel. It is part of the 'Eifel/Lower Rhine Valley' Observatory within the German Terrestrial Environmental Observatories (TERENO) network. The site hosts a 36-m tower with instrumentation to yield long-term monitoring of the atmosphere-canopy exchange processes of a typical mid-latitude forest. To characterize the entire exchange process, quantities are measured above, within and below the vegetation: Flux measurements, i.e. eddy-covariance (EC) measurements of heat, momentum, CO2 and water-vapor fluxes, are taken above the canopy. Profile measurements of mean quantities are taken from the ground to 1.2 times canopy height; CO2 and N2O concentration profiles are planned. Surface and soil property measurements are performed around the tower base. Cosmic ray probes deployed in the area and 150 soil measurement stations with 900 soil moisture and 300 temperature sensors allow insight into temporal dynamics of soil moisture patterns. Both enable investigations of the coherence of footprint and spatio-temporal moisture patterns. The tower is planned to become integrated into the ICOS (Integrated Carbon Observation System) program as a secondary site. Additionally, it will serve as a reference for a nearby clear cut intended to accelerate succession from the current spruce plantation (picea abies) to natural vegetation dominated by beech. Results are shown for the first two years of eddy-covariance data. In addition, an evaluation for different quality control schemes is presented.

  6. Process Model for Studying Regional 13C Stable Isotope Exchange between Vegetation and Atmosphere

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Chen, B.; Huang, L.; Tans, P.; Worthy, D.; Ishizawa, M.; Chan, D.

    2007-12-01

    The variation of the stable isotope 13CO2 in the air in exchange with land ecosystems results from fractionation processes in both plants and soil during photosynthesis and respiration. Its diurnal and seasonal variations therefore contain information on the carbon cycle. We developed a model (BEPS-iso) to simulate its exchange between vegetation and the atmosphere. To be useful for regional carbon cycle studies, the model has the following characteristics: (i) it considers the turbulent mixing in the vertical profile from the soil surface to the top of the planetary boundary layer (PBL); (ii) it scales individual leaf photosynthetic discrimination to the whole canopy through the separation of sunlit and shaded leaf groups; (iii) through simulating leaf-level photosynthetic processes, it has the capacity to mechanistically examine isotope discrimination resulting from meteorological forcings, such as radiation, precipitation and humidity; and (iv) through complete modeling of radiation, energy and water fluxes, it also simulates soil moisture and temperature needed for estimating ecosystem respiration and the 13C signal from the soil. After validation using flask data acquired at 20 m level on a tower near Fraserdale, Ontario, Canada, during intensive campaigns (1998-2000), the model has been used for several purposes: (i) to investigate the diurnal and seasonal variations in the disequilibrium in 13C fractionation between ecosystem respiration and photosynthesis, which is an important step in using 13C measurements to separate these carbon cycle components; (ii) to quantify the 13C rectification in the PBL, which differs significantly from CO2 rectification because of the diurnal and seasonal disequilibriums; and (iii) to model the 13C spatial and temporal variations over the global land surface for the purpose of CO2 inversion using 13C as an additional constraint.

  7. Far-from-equilibrium processes without net thermal exchange via energy sorting.

    PubMed

    Vilar, Jose M G; Rubi, J Miguel

    2012-02-14

    Many important processes at the microscale require far-from-equilibrium conditions to occur, as in the functioning of mesoscopic bioreactors, nanoscopic rotors, and nanoscale mass conveyors. Achieving such conditions, however, is typically based on energy inputs that strongly affect the thermal properties of the environment and the controllability of the system itself. Here, we present a general class of far-from-equilibrium processes that suppress the net thermal exchange with the environment by maintaining the Maxwell-Boltzmann velocity distribution intact. This new phenomenon, referred to as ghost equilibrium, results from the statistical cancellation of superheated and subcooled nonequilibrated degrees of freedom that are autonomously generated through a microscale energy sorting process. We provide general conditions to observe this phenomenon and study its implications for manipulating energy at the microscale. The results are applied explicitly to two mechanistically different cases, an ensemble of rotational dipoles and a gas of trapped particles, which encompass a great variety of common situations involving both rotational and translational degrees of freedom. © 2012 American Institute of Physics

  8. Removal of fluorescent dissolved organic matter in biologically treated textile effluents by NDMP anion exchange process: efficiency and mechanism.

    PubMed

    Li, Wen-Tao; Xu, Zi-Xiao; Shuang, Chen-Dong; Zhou, Qing; Li, Hai-Bo; Li, Ai-Min

    2016-03-01

    The efficiency and mechanism of anion exchange resin Nanda Magnetic Polymer (NDMP) for removal of fluorescent dissolved organic matter in biologically treated textile effluents were studied. The bench-scale experiments showed that as well as activated carbon, anion exchange resin could efficiently remove both aniline-like and humic-like fluorescent components, which can be up to 40 % of dissolved organic matter. The humic-like fluorescent component HS-Em460-Ex3 was more hydrophilic than HS-Em430-Ex2 and contained fewer alkyl chains but more acid groups. As a result, HS-Em460-Ex3 was eliminated more preferentially by NDMP anion exchange. However, compared with adsorption resins, the polarity of fluorescent components had a relatively small effect on the performance of anion exchange resin. The long-term pilot-scale experiments showed that the NDMP anion exchange process could remove approximately 30 % of the chemical oxygen demand and about 90 % of color from the biologically treated textile effluents. Once the issue of waste brine from resin desorption is solved, the NDMP anion exchange process could be a promising alternative for the advanced treatment of textile effluents.

  9. Fouling of an anion exchange chromatography operation in a monoclonal antibody process: Visualization and kinetic studies

    PubMed Central

    Close, Edward J; Salm, Jeffrey R; Iskra, Timothy; Sørensen, Eva; Bracewell, Daniel G

    2013-01-01

    Fouling of chromatographic resins over their operational lifetimes can be a significant problem for commercial bioseparations. In this article, scanning electron microscopy (SEM), batch uptake experiments, confocal laser scanning microscopy (CLSM) and small-scale column studies were applied to characterize a case study where fouling had been observed during process development. The fouling was found to occur on an anion exchange (AEX) polishing step following a protein A affinity capture step in a process for the purification of a monoclonal antibody. Fouled resin samples analyzed by SEM and batch uptake experiments indicated that after successive batch cycles, significant blockage of the pores at the resin surface occurred, thereby decreasing the protein uptake rate. Further studies were performed using CLSM to allow temporal and spatial measurements of protein adsorption within the resin, for clean, partially fouled and extensively fouled resin samples. These samples were packed within a miniaturized flowcell and challenged with fluorescently labeled albumin that enabled in situ measurements. The results indicated that the foulant has a significant impact on the kinetics of adsorption, severely decreasing the protein uptake rate, but only results in a minimal decrease in saturation capacity. The impact of the foulant on the kinetics of adsorption was further investigated by loading BSA onto fouled resin over an extended range of flow rates. By decreasing the flow rate during BSA loading, the capacity of the resin was recovered. These data support the hypothesis that the foulant is located on the particle surface, only penetrating the particle to a limited degree. The increased understanding into the nature of the fouling can help in the continued process development of this industrial example. Scanning electron microscopy (SEM), batch uptake experiments, confocal laser scanning microscopy (CLSM) and small-scale column experiments were applied to characterize a

  10. Unmasking the effect of a precipitation pulse on the biological processes composing Net Ecosystem Carbon Exchange

    NASA Astrophysics Data System (ADS)

    Lopez-Ballesteros, Ana; Sanchez-Cañete, Enrique P.; Serrano-Ortiz, Penelope; Oyonarte, Cecilio; Kowalski, Andrew S.; Perez-Priego, Oscar; Domingo, Francisco

    2015-04-01

    Drylands occupy 47.2% of the global terrestrial area and are key ecosystems that significantly determine the inter-annual variability of the global carbon balance. However, it is still necessary to delve into the functional behavior of arid and semiarid ecosystems due to the complexity of drivers and interactions between underpinning processes (whether biological or abiotic) that modulate net ecosystem CO2 exchange (NEE). In this context, water inputs are crucial to biological organisms survival in arid ecosystems and frequently arrive via rain events that are commonly stochastic and unpredictable (i.e. precipitation pulses) and strongly control arid land ecosystem structure and function. The eddy covariance technique can be used to investigate the effect of precipitation pulses on NEE, but provide limited understanding of what exactly happens after a rain event. The chief reasons are that, firstly, we cannot measure separately autotrophic and heterotrophic components, and secondly, the partitioning techniques widely utilized to separate Gross Primary Production and Total Ecosystem Respiration, do not work properly in these water-limited ecosystems, resulting in biased estimations of plant and soil processes. Consequently, it is essential to combine eddy covariance measurements with other techniques to disentangle the different biological processes composing NEE that are activated by a precipitation pulse. Accordingly, the main objectives of this work were: (i) to quantify the contribution of precipitation pulse events to annual NEE using the eddy covariance technique in a semiarid steppe located in Almería (Spain), and (ii) to simulate a realistic precipitation pulse in order to understand its effect on the ecosystem, soil and plant CO2 exchanges by using a transitory-state closed canopy chamber, soil respiration chambers and continuous monitoring CO2 sensors inserted in the subsoil. Preliminary results showed, as expected, a delay between soil and plant

  11. A novel process for key exchange avoiding man-inmiddle attack

    NASA Astrophysics Data System (ADS)

    Biswas, Barun; Basuli, Krishnendu

    2012-09-01

    For the security porpoise in the internet cryptography is one of the most important subjects nowadays. Designing a cypher for data exchange between two nodes or receiver and sender deals with one of the troubleshoot jobs. In our proposed algorithm we try to introduce a new technique in the field of cryptography. We are hopeful that this new technique will sure reduces the overhead of data or key exchange between nodes. Here we will discuss the symmetric key exchange between nodes

  12. Leveraging health information exchange to improve population health reporting processes: lessons in using a collaborative-participatory design process.

    PubMed

    Revere, Debra; Dixon, Brian E; Hills, Rebecca; Williams, Jennifer L; Grannis, Shaun J

    2014-01-01

    Surveillance, or the systematic monitoring of disease within a population, is a cornerstone function of public health. Despite significant investment in information technologies (IT) to improve the public's health, health care providers continue to rely on manual, spontaneous reporting processes that can result in incomplete and delayed surveillance activities. Participatory design principles advocate including real users and stakeholders when designing an information system to ensure high ecological validity of the product, incorporate relevance and context into the design, reduce misconceptions designers can make due to insufficient domain expertise, and ultimately reduce barriers to adoption of the system. This paper focuses on the collaborative and informal participatory design process used to develop enhanced, IT-enabled reporting processes that leverage available electronic health records in a health information exchange to prepopulate notifiable-conditions report forms used by public health authorities. Over nine months, public health stakeholders, technical staff, and informatics researchers were engaged in a multiphase participatory design process that included public health stakeholder focus groups, investigator-engineering team meetings, public health survey and census regarding high-priority data elements, and codesign of exploratory prototypes and final form mock-ups. A number of state-mandated report fields that are not highly used or desirable for disease investigation were eliminated, which allowed engineers to repurpose form space for desired and high-priority data elements and improve the usability of the forms. Our participatory design process ensured that IT development was driven by end user expertise and needs, resulting in significant improvements to the layout and functionality of the reporting forms. In addition to informing report form development, engaging with public health end users and stakeholders through the participatory design

  13. Shelf Edge Exchange Processes, II: SEEP2-08, R/V ENDEAVOR cruise 188

    SciTech Connect

    Wilson, C.; Behrens, W.J.; Flagg, C.N.; Wallace, D.W.R.; Wilke, R.J.; Wyman, K.D.

    1989-12-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. Phase I of SEEP consisted of a series of nine cruises and a mooring array across the outer continental shelf of New England during 1983--1984 (Behrens and Flagg, 1986). Phase II focused specifically on the shelf/slope frontal region of the mid-Atlantic bight off the Delmarva Peninsula. This project consisted of a series of ten cruises, a mooring array, and a series of over-flights by NASA aircraft. Hydrographic data were collected on eight of the cruises, six of which were primarily mooring deployment or recovery cruises. The cruises were consecutively designated SEEP2-01 to SEEP2-10. Two cruises (SEEP2-04 and SEEP2-07) were dedicated to investigating benthic processes and hydrographic data were not collected.

  14. Shelf Edge Exchange Processes--II: SEEP2-10, R/V ENDEAVOR cruise 195

    SciTech Connect

    Behrens, W.J.; Wilson, C.; Flagg, C.N.; Wallace, D.W.R.; Wilke, R.J.; Wyman, K.D.

    1990-04-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. This project consisted of a series of ten cruises, a mooring array, and a series of over-flights by NASA aircraft. Hydrographic data were collected on eight of the cruises, six of which were primarily mooring deployment or recovery cruises. The cruises were consecutively designated SEEP2-01 to SEEP2-10. Two cruises (SEEP2-04 and SEEP2-07) were dedicated to investigating benthic processes and hydrographic data were not collected. The R/V ENDEAVOR cruise 193, SEEP2-09, took place from 2--12 May 1989 and recovered ten mornings along two cross-shelf lines across the outer continental shelf. During this cruise 77 CTD casts were made measuring pressure, temperature, conductivity, dissolved oxygen, fluorescence and light transmission. Discrete samples were taken in rosette-mounted Niskin bottles and analyzed for concentration of nutrients, chlorophyll a, dissolved oxygen, and particulate organic carbon and nitrogen. 14 refs., 9 figs., 3 tabs.

  15. Information exchange between registered nurses and district nurses during the discharge planning process: cross-sectional analysis of survey data.

    PubMed

    Nordmark, Sofi; Söderberg, Siv; Skär, Lisa

    2015-01-01

    Objectives: Discharge planning is an important care process for managing transitions from the hospital to the community. It has been studied for >20 years, but few studies clarify the information exchanged between healthcare providers. This study aimed to describe nurses' experiences and perceptions of information exchange during the discharge planning process, focused on what, when and how information is exchanged between the hospital and primary healthcare. Method: A web-based census survey was used to collect data; the data were analyzed using descriptive statistics and chi-squared test. A questionnaire was distributed to 194 registered nurses (129 respondents) from a central county hospital and 67 district nurses (42 respondents) working in 13 primary healthcare centres. Results: The results show a significant difference between given and received information between the two groups. Both groups thought the information exchange worked best when all participants met at the discharge planning conference and that the electronic information system was difficult to use. Conclusion: This study shows difficulties knowing what patient-related information needs to give and not receiving the expected information. These results can be used to develop knowledge about roles, work tasks and needs to enhance the outcome of the process and the information exchanged.

  16. Novel simple process for tocopherols selective recovery from vegetable oils by adsorption and desorption with an anion-exchange resin.

    PubMed

    Hiromori, Kousuke; Shibasaki-Kitakawa, Naomi; Nakashima, Kazunori; Yonemoto, Toshikuni

    2016-03-01

    A novel and simple low-temperature process was used to recover tocopherols from a deodorizer distillate, which is a by-product of edible oil refining. The process consists of three operations: the esterification of free fatty acids with a cation-exchange resin catalyst, the adsorption of tocopherols onto an anion-exchange resin, and tocopherol desorption from the resin. No degradation of tocopherols occurred during these processes. In the tocopherol-rich fraction, no impurities such as sterols or glycerides were present. These impurities are commonly found in the product of the conventional process. This novel process improves the overall recovery ratio and the mass fraction of the product (75.9% and 51.0wt%) compared with those in the conventional process (50% and 35wt%).

  17. River temperature processes under contrasting riparian land cover: linking microclimate, heat exchange and water thermal dynamics

    NASA Astrophysics Data System (ADS)

    Hannah, D. M.; Kantola, K.; Malcolm, I.

    2012-12-01

    River temperature influences strongly growth and survival in salmonid fish, which are often the target of river management strategies. Temperature is controlled by transfers of heat and water to/ from the river system, with land and water management modifying exchanges and consequently thermal regime. In the UK, fisheries managers are promoting riparian forest planting as a climate change adaption measure to reduce water temperature extremes. However, scientific understanding lags behind management and policy needs. Specifically, there is an urgent requirement to determine planting strategies that maximise expected benefits of riparian forest in terms of reduction in maximum water temperature. Scientific knowledge is necessary to underpin conceptual and deterministic models to inform management. To address this research gap, this paper analyses high resolution (15 minute) hydrometeorological data collected over a calendar year in the western Scottish Highlands (Loch Ard) to understand the controls and processes determining river temperature dynamics under open moorland (control), semi-natural woodland and commercial forest. The research programme aims: (1) to characterise spatial and temporal variability in riparian microclimate and stream water temperature regime across forest treatments; (2) to identify the hydrological, climatological and site-specific factors affecting stream temperature; (3) to estimate the energy balance at sites representative of each forest treatment and, thus, yield physical process understanding about dominant heat exchanges driving thermal variability; and (4) to use 1-3 to predict stream temperature sensitivity under different forestry and hydroclimatological scenarios. Results indicated that inter-treatment differences in mean and maximum daily water column temperature were ordered open > semi-natural > commercial during summer, but semi-natural > commercial > open during winter. Minimum water temperature was ordered commercial > semi

  18. Design of a Carousel Process for Removing Cesium from SRS Waste Using Crystalline Silicotitanate Ion Exchanger

    SciTech Connect

    Walker, D.D.

    1999-01-15

    Designs of a three-column carousel process based on crystalline silicotitanate (CST) ion exchanger have been developed for removing radioactive 137Cs+ from Savannah River Site's (SRS) nuclear wastes. A multicomponent ion exchange equilibrium model (Zheng et al., 1997) from Texas A&M University, which is based on batch data obtained from CST powder, is used to generate cesium loading data at different cesium concentrations for various types of SRS wastes. These loading data are fit to the Langmuir equation to obtain effective single-component cesium isotherm parameters. The predictions are in reasonable agreement with batch test data obtained from CST powder, an early CST pellet batch (38B), and a later batch (IE911) using two SRS waste simulants. The ratios between experimental cesium distribution coefficients and predicted values are between 0.56 and 1.0. The variation appears to be due to inadequate equilibration time in some of the batches. Mass transfer parameters are estimated by analyzing column data of a simulated SRS waste and Melton Valley Storage Tank W29 (MVST-W29) waste. The intraparticle diffusivity estimated for the two wastes can be well correlated by means of the Stokes-Einstein equation.Simulations are performed to determine the length of the mass transfer zone for given feed compositions, Cs+ concentrations, and linear velocities. In order to ensure high column utilization during both the transient and cyclic steady state periods, the length of a single segment in the carousel process is chosen to be the mass transfer zone length after the concentration wave achieves a constant pattern. Analysis of the dimensionless groups in the differential mass balance equations reveals that the normalized mass transfer zone length is linearly proportional to the particle Peclet number. The proportionality constant is a function of the waste composition and the Cs+ concentration in the waste. The higher the effective Cs+ capacity and the higher the Cs

  19. Three layer functional model and energy exchange concept of aging process

    PubMed Central

    Mihajlovic, William

    2006-01-01

    Relying on a certain degree of abstraction, we can propose that no particular distinction exists between animate or living matter and inanimate matter. While focusing attention on some specifics, the dividing line between the two can be drawn. The most apparent distinction is in the level of structural and functional organization with the dissimilar streams of ‘energy flow’ between the observed entity and the surrounding environment. In essence, living matter is created from inanimate matter which is organized to contain internal intense energy processes and maintain lower intensity energy exchange processes with the environment. Taking internal and external energy processes into account, we contend in this paper that living matter can be referred to as matter of dissipative structure, with this structure assumed to be a common quality of all living creatures and living matter in general. Interruption of internal energy conversion processes and terminating the controlled energy exchange with the environment leads to degeneration of dissipative structure and reduction of the same to inanimate matter, (gas, liquid and/or solid inanimate substances), and ultimately what can be called ‘death.’ This concept of what we call dissipative nature can be extended from living organisms to social groups of animals, to mankind. An analogy based on the organization of matter provides a basis for a functional model of living entities. The models relies on the parallels among the three central structures of any cell (nucleus, cytoplasm and outer membrane) and the human body (central organs, body fluids along with the connective tissues, and external skin integument). This three-part structural organization may be observed almost universally in nature. It can be observed from the atomic structure to the planetary and intergalactic organizations. This similarity is corroborated by the membrane theory applied to living organisms. According to the energy nature of living matter

  20. Crystal structure of human CD1e reveals a groove suited for lipid-exchange processes

    PubMed Central

    Garcia-Alles, Luis F.; Giacometti, Gaelle; Versluis, Cees; Maveyraud, Laurent; de Paepe, Diane; Guiard, Julie; Tranier, Samuel; Gilleron, Martine; Prandi, Jacques; Hanau, Daniel; Heck, Albert J. R.; Mori, Lucia; De Libero, Gennaro; Puzo, Germain; Mourey, Lionel; de la Salle, Henri

    2011-01-01

    CD1e is the only human CD1 protein existing in soluble form in the late endosomes of dendritic cells, where it facilitates the processing of glycolipid antigens that are ultimately recognized by CD1b-restricted T cells. The precise function of CD1e remains undefined, thus impeding efforts to predict the participation of this protein in the presentation of other antigens. To gain insight into its function, we determined the crystal structure of recombinant CD1e expressed in human cells at 2.90-Å resolution. The structure revealed a groove less intricate than in other CD1 proteins, with a significantly wider portal characterized by a 2 Å-larger spacing between the α1 and α2 helices. No electron density corresponding to endogenous ligands was detected within the groove, despite the presence of ligands unequivocally established by native mass spectrometry in recombinant CD1e. Our structural data indicate that the water-exposed CD1e groove could ensure the establishment of loose contacts with lipids. In agreement with this possibility, lipid association and dissociation processes were found to be considerably faster with CD1e than with CD1b. Moreover, CD1e was found to mediate in vitro the transfer of lipids to CD1b and the displacement of lipids from stable CD1b–antigen complexes. Altogether, these data support that CD1e could have evolved to mediate lipid-exchange/editing processes with CD1b and point to a pathway whereby the repertoire of lipid antigens presented by human dendritic cells might be expanded. PMID:21788486

  1. Crystal structure of human CD1e reveals a groove suited for lipid-exchange processes.

    PubMed

    Garcia-Alles, Luis F; Giacometti, Gaelle; Versluis, Cees; Maveyraud, Laurent; de Paepe, Diane; Guiard, Julie; Tranier, Samuel; Gilleron, Martine; Prandi, Jacques; Hanau, Daniel; Heck, Albert J R; Mori, Lucia; De Libero, Gennaro; Puzo, Germain; Mourey, Lionel; de la Salle, Henri

    2011-08-09

    CD1e is the only human CD1 protein existing in soluble form in the late endosomes of dendritic cells, where it facilitates the processing of glycolipid antigens that are ultimately recognized by CD1b-restricted T cells. The precise function of CD1e remains undefined, thus impeding efforts to predict the participation of this protein in the presentation of other antigens. To gain insight into its function, we determined the crystal structure of recombinant CD1e expressed in human cells at 2.90-Å resolution. The structure revealed a groove less intricate than in other CD1 proteins, with a significantly wider portal characterized by a 2 Å-larger spacing between the α1 and α2 helices. No electron density corresponding to endogenous ligands was detected within the groove, despite the presence of ligands unequivocally established by native mass spectrometry in recombinant CD1e. Our structural data indicate that the water-exposed CD1e groove could ensure the establishment of loose contacts with lipids. In agreement with this possibility, lipid association and dissociation processes were found to be considerably faster with CD1e than with CD1b. Moreover, CD1e was found to mediate in vitro the transfer of lipids to CD1b and the displacement of lipids from stable CD1b-antigen complexes. Altogether, these data support that CD1e could have evolved to mediate lipid-exchange/editing processes with CD1b and point to a pathway whereby the repertoire of lipid antigens presented by human dendritic cells might be expanded.

  2. Transport properties of proton-exchange membranes: Effect of supercritical-fluid processing and chemical functionality

    NASA Astrophysics Data System (ADS)

    Pulido Ayazo

    NafionRTM membranes commonly used in direct methanol fuel cells (DMFC), are tipically limited by high methanol permeability (also known as the cross-over limitation). These membranes have phase segregated sulfonated ionic domains in a perfluorinated backbone, which makes processing challenging and limited by phase equilibria considerations. This study used supercritical fluids (SCFs) as a processing alternative, since the gas-like mass transport properties of SCFs allow a better penetration into the membranes and the use of polar co-solvents influenced their morphology, fine-tuning the physical and transport properties in the membrane. Measurements of methanol permeability and proton conductivity were performed to the NafionRTM membranes processed with SCFs at 40ºC and 200 bar and the co-solvents as: acetone, tetrahydrofuran (THF), isopropyl alcohol, HPLC-grade water, acetic acid, cyclohexanone. The results obtained for the permeability data were of the order of 10 -8-10-9 cm2/s, two orders of magnitude lower than unprocessed Nafion. Proton conductivity results obtained using AC impedance electrochemical spectroscopy was between 0.02 and 0.09 S/cm, very similar to the unprocessed Nafion. SCF processing with ethanol as co-solvent reduced the methanol permeability by two orders of magnitude, while the proton conductivity was only reduced by 4%. XRD analysis made to the treated samples exhibited a decreasing pattern in the crystallinity, which affects the transport properties of the membrane. Also, SAXS profiles of the Nafion membranes processed were obtained with the goal of determining changes produced by the SCF processing in the hydrophilic domains of the polymer. With the goal of searching for new alternatives in proton exchange membranes (PEMs) triblock copolymer of poly(styrene-isobutylene-styrene) (SIBS) and poly(styrene-isobutylene-styrene) SEBS were studied. These sulfonated tri-block copolymers had lower methanol permeabilities, but also lower proton

  3. Aquatic flower-inspired cell culture platform with simplified medium exchange process for facilitating cell-surface interaction studies.

    PubMed

    Hong, Hyeonjun; Park, Sung Jea; Han, Seon Jin; Lim, Jiwon; Kim, Dong Sung

    2016-02-01

    Establishing fundamentals for regulating cell behavior with engineered physical environments, such as topography and stiffness, requires a large number of cell culture experiments. However, cell culture experiments in cell-surface interaction studies are generally labor-intensive and time-consuming due to many experimental tasks, such as multiple fabrication processes in sample preparation and repetitive medium exchange in cell culture. In this work, a novel aquatic flower-inspired cell culture platform (AFIP) is presented. AFIP aims to facilitate the experiments on the cell-surface interaction studies, especially the medium exchange process. AFIP was devised to capture and dispense cell culture medium based on interactions between an elastic polymer substrate and a liquid medium. Thus, the medium exchange can be performed easily and without the need of other instruments, such as a vacuum suction and pipette. An appropriate design window of AFIP, based on scaling analysis, was identified to provide a criterion for achieving stability in medium exchange as well as various surface characteristics of the petal substrates. The developed AFIP, with physically engineered petal substrates, was also verified to exchange medium reliably and repeatedly. A closed structure capturing the medium was sustained stably during cell culture experiments. NIH3T3 proliferation results also demonstrated that AFIP can be applied to the cell-surface interaction studies as an alternative to the conventional method.

  4. RHEOLOGY OF SETTLED SOLIDS IN THE SMALL COLUMN ION EXCHANGE PROCESS

    SciTech Connect

    Ferguson, C.; Prior, M.; Koopman, D.; Edwards, T.

    2011-06-20

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank as process housing. This method includes the addition of monosodium titanate (MST) to a waste tank containing salt solution and entrained sludge solids, followed by tank mixing and filtration. The filtrate is then processed through in-tank ion exchange columns containing crystalline silicotitanate (CST) media. While the process is operating, it is known that solid particles begin to settle in the tank and temperatures may reach beyond 45 C. Previous testing has shown that sludge-MST slurries that sit for extended periods at elevated temperatures can develop large shear strengths, making them difficult to resuspend and remove from the tank. The authors conducted rheological testing of mixtures containing various concentrations of sludge simulant, MST, and CST (three preparations) that were aged at different times (i.e., 0 to 13 weeks) and isothermally maintained to 30, 45, or 60 C. Two types of grinding methodologies were employed to prepare CST for this testing, herein called Savannah River National Laboratory (SRNL) and Vitreous State Laboratory (VSL) ground materials. Unground CST particles were also tested. A small number of samples were irradiated prior to 4 week settling and 60 C temperature treatment, with exposures ranging from 0 to 100 MRad. Additional tests are also being conducted that will allow the solid particles to settle at 45 C for 6, 12, and 24 months. The objectives of this task are to determine the impact of feed composition, settling time, and temperature on the shear strength, yield stress, and consistency of the slurries and to determine the impact of radiation on slurry rheology. The testing will determine the relative impact of these parameters rather than predict the shear strength, yield stress, and consistency as a function of feed and operating conditions. This

  5. Wood Xylowall: New process to reduce water exchange by an intra-graft of polymer

    NASA Astrophysics Data System (ADS)

    Uyttenhove, Anne; Tilquin, Bernard

    2005-07-01

    Our research shows that poplar treated with selected monomer mixture and then irradiated at 50 kGy reduces the water exchange without adversely altering the desirable qualities of wood. Moreover, the environment is not polluted. To retard changes in moisture content and dimensions, different commercial Radcures (UCB) were tested. A comparative study on the water retention showed significant reduction between non-treated and Xylowall wood for the species: poplar. The physical and mechanical measurements (density, volumetric shrinkage, elasticity, rupture, impact bending, hardness, compression strength) on poplar and pine show that the properties of the wood are not affected negatively by Xylowall treatment with irradiation. Moreover, the process does not discharge any toxic volatile residues into the atmosphere as proven by GC-MS trace analysis of heated wood samples. The stereomicroscope by imagery reveals an impregnation of 0.5 mm on cross-section of darker-stained areas, and sometimes more due to the texture (the relative size and arrangement of the wood cells) of the wood.

  6. Modeling coupled thermal-mechanical processes of frozen soil induced by borehole heat exchanger

    NASA Astrophysics Data System (ADS)

    Shao, H.

    2015-12-01

    To utilize the shallow geothermal energy, heat pumps are often coupled with Borehole Heat Exchangers (BHE) to provide heating and cooling for buildings. In cold regions, soil freezing around the BHE is a potential problem which will dramatically influence the underground soil temperature distribution, subsequently the inlet and outlet refrigerant temperature of the BHE, and finally the efficiency of the heat pump. In this study, a numerical model has been developed to simulate the coupled temperature evolution both inside the BHE, and the propagating freezing front in the surrounding soil. The coupled model was validated against analytical solutions and experimental data. The influence of the freezing process on the overall system performance is investigated by comparing one long BHE configuration without freezing and another short one with latent heat from the frozen groundwater. It is found that when freezing happens, the coefficient of performance (COP) of the heat pump will decrease by around 0.5, leading to more electricity consumption. Furthermore, analysis of the simulation result reveals that the exploitation of latent heat through groundwater freezing is only economically attractive if electricity price is low and interest rate high, and it is not the case is most European countries.

  7. LES FOR SIMULATING THE GAS EXCHANGE PROCESS IN A SPARK IGNITION ENGINE

    SciTech Connect

    Ameen, Muhsin M; yang, xiaofeng; kuo, tang-wei; Xue, Qingluan; Som, Sibendu

    2015-01-01

    The gas exchange process is known to be a significant source of cyclic variability in Internal Combustion Engines (ICE). Traditionally, Large Eddy Simulations (LES) are expected to capture these cycle-to-cycle variations. This paper reports a numerical effort to establish best practices for capturing cyclic variability with LES tools in a Transparent Combustion Chamber (TCC) spark ignition engine. The main intention is to examine the sensitivity of cycle averaged mean and Root Mean Square (RMS) flow fields and Proper Orthogonal Decomposition (POD) modes to different computational hardware, adaptive mesh refinement (AMR) and LES sub-grid scale (SGS) models, since these aspects have received little attention in the past couple of decades. This study also examines the effect of near-wall resolution on the predicted wall shear stresses. LES is pursued with commercially available CONVERGE code. Two different SGS models are tested, a one-equation eddy viscosity model and dynamic structure model. The results seem to indicate that both mean and RMS fields without any SGS model are not much different than those with LES models, either one-equation eddy viscosity or dynamic structure model. Computational hardware results in subtle quantitative differences, especially in RMS distributions. The influence of AMR on both mean and RMS fields is negligible. The predicted shear stresses near the liner walls is also found to be relatively insensitive to near-wall resolution except in the valve curtain region.

  8. Tropical tropopause water isotopes in a GCM: Sensitivity to cloud processes and stratosphere-troposphere exchange

    NASA Astrophysics Data System (ADS)

    Schmidt, G. A.; Hoffmann, G.; Hu, Y.

    2004-05-01

    Water isotopes ratios (δ 18O, δ D) are very sensitive tracers of the history of the water in the atmosphere. For example, depletion of heavy isotopes in convective plumes can be extreme and thus isotope ratios can be used to discriminate between upwelled and in-situ condensation. We present results with state-of-the-art GCMs that include water isotopes in every aspect of the modelled water cycle, including the relatively sophisticated prognostic cloud water scheme. These models also have reasonable representations of the stratospheric circulation and so can be used to look at the processes involved in stratosphere-troposphere exchange. We demonstrate that the models show a similar range of variability near the tropical tropopause to that seen in recent data, and that the zonal mean values are less depleted than a simple Rayleigh distillation column would suggest. Importantly, we show that the isotopes can be sensitive to uncertain details of the cloud parameterizations and thus may help in improving and validating cloud schemes in models.

  9. On charge exchange and knock-on processes in the exosphere of Io

    NASA Technical Reports Server (NTRS)

    Ip, W.-H.

    1982-01-01

    One direct consequence of magnetospheric interaction of Io is the strong dynamical coupling of its neutral atmosphere with the corotating plasma. The absorption of the thermal ions and the associated neutral injection is an improtant issue not yet explored. As far as nonthermal escape of the neutral atmosphere is concerned, three processes stand out. That is, apart from sputtering, exospheric interactions like atom-ion knock-on collision and charge exchange recombination could be a significant source of the neutral clouds in the Jovian system. Using a current electrodynamic model of Io, both the absorption rate of the corotating thermal plasma and the production rates of new exospheric ions and the fast neutrals are considered. It is found that the source strength of the neutral atoms and molecules with speeds of about 100 km/sec could amount to 10 to the 26th/sec whereas exospheric neutrals emitted at lower speed (of about 10 km/sec) amounts to 4 x 10 to the 25th/sec. The generation of the new ions in connection with the streaming of the magnetospheric plasma around Io could also produce an asymmetric sputtering with a neutral flux of about 10 to the 27th/sec emitted from the region of Io which faces Jupiter. These results may be related to a number of sodium observations.

  10. The Intercultural and Non-Formal Learning Processes of Children in Primary School Exchange Programmes in France and Germany

    ERIC Educational Resources Information Center

    Melin, Valérie; Wagner, Bernd

    2015-01-01

    This paper is based on educational anthropology, and presents the initial findings of a three-year international comparative study of primary school children's learning-processes during travel and cross-cultural encounters. A French-German research team investigated and here reports on primary school exchange programmes. Open coding of the…

  11. The Intercultural and Non-Formal Learning Processes of Children in Primary School Exchange Programmes in France and Germany

    ERIC Educational Resources Information Center

    Melin, Valérie; Wagner, Bernd

    2015-01-01

    This paper is based on educational anthropology, and presents the initial findings of a three-year international comparative study of primary school children's learning-processes during travel and cross-cultural encounters. A French-German research team investigated and here reports on primary school exchange programmes. Open coding of the…

  12. Comparison of platinum/MWCNTs Nanocatalysts Synthesis Processes for Proton Exchange Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Liu, Xuan

    Due to the growing concerns on the depletion of petroleum based energy resources and climate change; fuel cell technologies have received much attention in recent years. Proton exchange membrane fuel cell (PEMFCs) features high energy conversion efficiency and nearly zero greenhouse gas emissions, because of its combination of the hydrogen oxidation reaction (HOR) at anode side and oxygen reduction reaction (ORR) at cathode side. Synthesis of Pt nanoparticles supported on multi walled carbon nanotubes (MWCNTs) possess a highly durable electrochemical surface area (ESA) and show good power output on proton exchange membrane (PEM) fuel cell performance. Platinum on multi-walled carbon nanotubes (MWCNTs) support were synthesized by two different processes to transfer PtCl62- from aqueous to organic phase. While the first method of Pt/MWCNTs synthesis involved dodecane thiol (DDT) and octadecane thiol (ODT) as anchoring agent, the second method used ammonium lauryl sulfate (ALS) as the dispersion/anchoring agent. The particle size and distribution of platinum were examined by high-resolution transmission electron microscope (HRTEM). The TEM images showed homogenous distribution and uniform particle size of platinum deposited on the surface of MWCNTs. The single cell fuel cell performance of the Pt/MWCNTs synthesized thiols and ALS based electrode containing 0.2 (anode) and 0.4 mg (cathode) Pt.cm-2 were evaluated using Nafion-212 electrolyte with H2 and O2 gases at 80 °C and ambient pressure. The catalyst synthesis with ALS is relatively simple compared to that with thiols and also showed higher performance (power density reaches about 1070 mW.cm -2). The Electrodes with Pt/MWCNTs nanocatalysts synthesized using ALS were characterized by cyclic voltammetry (CV) for durability evaluation using humidified H2 and N2 gases at room temperature (21 °C) along with commercial Pt/C for comparison. The ESA measured by cyclic voltammetry between 0.15 and 1.2 V showed significant

  13. Greenhouse-gas exchange of croplands worldwide: a process-based model simulation

    NASA Astrophysics Data System (ADS)

    Inatomi, M.; Ito, A.

    2009-12-01

    Croplands cover about 15% of the land surface, and play unique roles in global biogeochemical cycles. Especially, greenhouse gas budget of croplands is important for climate projection in the future and for mitigation toward climate stabilization. Sustainable cropland is carbon-neutral (i.e., neither a sink nor a source of CO2 for a long time), but those in developed countries consume fossil fuels for agricultural operations and releases CO2 as revealed by LCAs. Paddy field is one of the substantial sources of CH4, and cropland may be the largest anthropogenic source of N2O. However, these features have not been evaluated and discussed using a spatial-explicit comprehensive framework at the global scale. This study applies a process-based terrestrial ecosystem model (VISIT) to worldwide croplands. Exchange of CO2 is simulated as a difference between photosynthesis and respiration, each of which is calculated in a biogeochemical carbon cycle scheme. Net carbon budget accounts for carbon flows by planting, compost input, and harvest. Exchange of CH4 is simulated as a difference between oxidation by aerobic soils and production by anaerobic soils, each of which is calculated using mechanistic schemes. Emission of N2O from nitrification and denitrification is simulated with a semi-mechanistic scheme on the basis of leaky-pipe concept. We are also validating the model through comparison with chamber and tower flux measurements. Global simulations were conducted during a period from 1901 to 2100 on the basis of historical and projected climate and land-use conditions, at a spatial resolution of 0.5 x 0.5 degree. Cropland type and distribution was derived from SAGE-HYDE dataset and country-base fertilizer input was obtained from FAOSTAT. Our preliminary simulation for the 1990s estimated that croplands are a net sink of CO2 by 1.1 Gt C/yr; this sink is offset by emission by food consumption. Paddy fields are estimated to release CH4 by 46 Tg CH4/yr, and croplands

  14. Process-oriented tests for validation of baroclinic shallow water models: The lock-exchange problem

    NASA Astrophysics Data System (ADS)

    Kolar, R. L.; Kibbey, T. C. G.; Szpilka, C. M.; Dresback, K. M.; Tromble, E. M.; Toohey, I. P.; Hoggan, J. L.; Atkinson, J. H.

    A first step often taken to validate prognostic baroclinic codes is a series of process-oriented tests, as those suggested by Haidvogel and Beckmann [Haidvogel, D., Beckmann, A., 1999. Numerical Ocean Circulation Modeling. Imperial College Press, London], among others. One of these tests is the so-called "lock-exchange" test or "dam break" problem, wherein water of different densities is separated by a vertical barrier, which is removed at time zero. Validation against these tests has primarily consisted of comparing the propagation speed of the wave front, as predicted by various theoretical and experimental results, to model output. In addition, inter-model comparisons of the lock-exchange test have been used to validate codes. Herein, we present a high resolution data set, taken from a laboratory-scale model, for direct and quantitative comparison of experimental and numerical results throughout the domain, not just the wave front. Data is captured every 0.2 s using high resolution digital photography, with salt concentration extracted by comparing pixel intensity of the dyed fluid against calibration standards. Two scenarios are discussed in this paper, symmetric and asymmetric mixing, depending on the proportion of dense/light water (17.5 ppt/0.0 ppt) in the experiment; the Boussinesq approximation applies to both. Front speeds, cast in terms of the dimensionless Froude number, show excellent agreement with literature-reported values. Data are also used to quantify the degree of mixing, as measured by the front thickness, which also provides an error band on the front speed. Finally, experimental results are used to validate baroclinic enhancements to the barotropic shallow water ADvanced CIRCulation (ADCIRC) model, including the effect of the vertical mixing scheme on simulation results. Based on salinity data, the model provides an average root-mean-square (rms) error of 3.43 ppt for the symmetric case and 3.74 ppt for the asymmetric case, most of which can

  15. SCALING SOLID RESUSPENSION AND SORPTION FOR THE SMALL COLUMN ION EXCHANGE PROCESSING TANK

    SciTech Connect

    Poirier, M.; Qureshi, Z.

    2010-12-14

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing 1.3 million gallon waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending and resuspending Monosodium Titanate (MST), Crystalline Silicotitanate (CST), and simulated sludge. In addition, SRNL will also be conducting pilot-scale tests to determine the mixing requirements for the strontium and actinide sorption. As part of this task, the results from the pilot-scale tests must be scaled up to a full-scale waste tank. This document describes the scaling approach. The pilot-scale tank is a 1/10.85 linear scale model of Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX Program (Risers B5 and B2 for two pump configurations and Risers B5, B3, and B1 for three pump configurations). MST additions are through Riser E1, the proposed MST addition riser in Tank 41H. To determine the approach to scaling the results from the pilot-scale tank to Tank 41H, the authors took the following approach. They reviewed the technical literature for methods to scale mixing with jets and suspension of solid particles with jets, and the technical literature on mass transfer from a liquid to a solid particle to develop approaches to scaling the test data. SRNL assembled a team of internal experts to review the scaling approach and to identify alternative approaches that should be considered.

  16. The exchange bias in NiFe2O4-CoO nanocomposite prepared by polyol process

    NASA Astrophysics Data System (ADS)

    Sarveena, Singh, M.; Sharma, S. K.

    2017-05-01

    Exchange coupled NiFe2O4-CoO nanocomposite (NFOC) was synthesized by polyol process using NiFe2O4 seed. The nanocomposite was characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM) and SQUID magnetometer. A Field cooled hysteresis curve of NFOC at 4 K is clear signature of strong internal interaction and co-existence of different magnetic phases into the individual particles. The strong interfacial exchange coupling between the AFM and FiM part results in high value of coercivity with completely shifted loop along negative field axis.

  17. What can be Learned from X-ray Spectroscopy Concerning Hot Gas in Local Bubble and Charge Exchange Processes?

    NASA Technical Reports Server (NTRS)

    Snowden, Steve

    2007-01-01

    What can be learned from x-ray spectroscopy in observing hot gas in local bubble and charge exchange processes depends on spectral resolution, instrumental grasp, instrumental energy band, signal-to-nose, field of view, angular resolution and observatory location. Early attempts at x-ray spectroscopy include ROSAT; more recently, astronomers have used diffuse x-ray spectrometers, XMM Newton, sounding rocket calorimeters, and Suzaku. Future observations are expected with calorimeters on the Spectrum Roentgen Gamma mission, and the Solar Wind Charge Exchange (SWCX). The Geospheric SWCX may provide remote sensing of the solar wind and magnetosheath and remote observations of solar CMEs moving outward from the sun.

  18. Energy exchange between two orthogonally polarized waves by cascading of two quasi-phase-matched quadratic processes.

    PubMed

    Johnston, Benjamin F; Dekker, Peter; Saltiel, Solomon M; Kivshar, Yuri S; Withford, Michael J

    2007-10-17

    We demonstrate energy exchange between two orthogonally polarized optical waves as a consequence of a two-color multistep parametric interaction. The energy exchange results from cascading of two quasi-phase-matched (QPM) second-harmonic parametric processes, and it is intrinsically instantaneous. The effect is observed when both the type-I (ooe) second-harmonic generation process and higher QPM order type-0 (eee) second-harmonic generation processes are phase-matched simultaneously in a congruent periodically-poled lithium niobate crystal. The two second-harmonic generation processes share a common second-harmonic wave which couple the two cross-polarized fundamental components and facilitate an energy flow between them. We demonstrate a good agreement between the experimental data and the results of numerical simulations.

  19. RHEOLOGY OF SETTLED SOLIDS IN THE SMALL COLUMN ION EXCHANGE PROCESS

    SciTech Connect

    Poirier, M.; Ferguson, C.; Koopman, D.

    2011-01-27

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. This process adds monosodium titanate (MST) to a waste tank containing salt solution (and entrained sludge solids). While the process is operating, the solid particles will begin to settle at temperatures up to 45 C. Previous testing has shown that sludge-MST slurries that sit for extended periods (i.e., 1-61 days) at elevated temperatures (i.e., 23-80 C) can develop large shear strengths which could make them difficult to resuspend and remove from the tank. The authors are conducting rheological testing of mixtures containing various concentrations of sludge, MST, and crystalline silicotitanate (CST, ground and unground) that have been aged at different times (i.e., 0 to 13 weeks) and isothermally heated to 30, 45, or 60 C. Additional tests are being conducted that will allow the solid particles to settle at 45 C for 6, 12, and 24 months. The objectives of this task are to determine the impact of settling time and temperature on the shear strength, yield stress, and consistency of the slurries and to determine the impact of radiation on slurry rheology. The testing will determine the relative impact of these parameters rather than predict the shear strength, yield stress, and consistency as a function of feed and operating conditions. This document describes the rheology of slurries containing MST and simulated sludge that sat at elevated temperatures (i.e., up to 60 C) for up to 13 weeks. Rheology of CST-containing slurries, as well as results of the long term settling (6, 12, and 24 months) and irradiation tests (10 and 100 MRad), will be reported later. The conclusions from this analysis follow: (1) MST only slurries that sat at elevated temperatures had larger shear strength, yield stress, and consistency than MST plus sludge slurries that

  20. Processes of ammonia air-surface exchange in a fertilized Zea mays canopy

    NASA Astrophysics Data System (ADS)

    Walker, J. T.; Jones, M. R.; Bash, J. O.; Myles, L.; Meyers, T.; Schwede, D.; Herrick, J.; Nemitz, E.; Robarge, W.

    2013-02-01

    Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this represents a significant advancement over previous approaches, the evaluation and improvement of such modeling systems for fertilized crops requires process-level field measurements over extended periods of time that capture the range of soil, vegetation, and atmospheric conditions that drive short-term (i.e., post-fertilization) and total growing season NH3 fluxes. This study examines the processes of NH3 air-surface exchange in a fertilized corn (Zea mays) canopy over the majority of a growing season to characterize soil emissions after fertilization and investigate soil-canopy interactions. Micrometeorological flux measurements above the canopy, measurements of soil, leaf apoplast and dew/guttation chemistry, and a combination of in-canopy measurements, inverse source/sink, and resistance modeling were employed. Over a period of approximately 10 weeks following fertilization, daily mean and median net canopy-scale fluxes yielded cumulative total N losses of 8.4% and 6.1%, respectively, of the 134 kg N ha-1 surface applied to the soil as urea ammonium nitrate (UAN). During the first month after fertilization, daily mean emission fluxes were positively correlated with soil temperature and soil volumetric water. Diurnally, maximum hourly average fluxes of ≈ 700 ng N m-2 s-1 occurred near mid-day, coincident with the daily maximum in friction velocity. Net emission was still observed 5 to 10 weeks after fertilization, although mid-day peak fluxes had declined to ≈ 125 ng N m-2 s-1. A key finding of the surface chemistry measurements was the observation of high pH (7.0-8.5) in leaf dew/guttation, which reduced the ability of the canopy to recapture soil emissions during wet periods. In-canopy measurements near peak

  1. Processes of ammonia air-surface exchange in a fertilized Zea mays canopy

    NASA Astrophysics Data System (ADS)

    Walker, J. T.; Jones, M. R.; Bash, J. O.; Myles, L.; Meyers, T.; Schwede, D.; Herrick, J.; Nemitz, E.; Robarge, W.

    2012-06-01

    Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this represents a significant advancement over previous approaches, the evaluation and improvement of such modeling systems for fertilized crops requires process level field measurements over extended periods of time that capture the range of soil, vegetation, and atmospheric conditions that drive short term (i.e., post fertilization) and total growing seasonNH3 fluxes. This study examines the processes of NH3 air-surface exchange in a fertilized corn (Zea mays) canopy over the majority of a growing season to characterize soil emissions after fertilization and investigate soil-canopy interactions. Micrometeorological flux measurements above the canopy, measurements of soil, leaf apoplast and dew/guttation chemistry, and a combination of in-canopy measurements, inverse source/sink, and resistance modeling were employed. Over a period of approximately 10 weeks following fertilization, daily mean and median net canopy-scale fluxes yielded cumulative total N losses of 8.4% and 6.1%, respectively, of the 134 kg N ha-1 surface applied to the soil as urea ammonium nitrate (UAN). During the first month after fertilization, daily mean emission fluxes were positively correlated with soil temperature and soil volumetric water. Diurnally, maximum hourly average fluxes of ≈700 ng N m-2 s-1 occurred near mid-day, coincident with the daily maximum in friction velocity. Net emission was still observed 5 to 10 weeks after fertilization, although mid-day peak fluxes had declined to ≈125 ng N m-2 s-1 A key finding of the surface chemistry measurements was the observation of high pH (7.0 - 8.5) in leaf dew/guttation, which reduced the ability of the canopy to recapture soil emissions during wet periods. In-canopy measurements near peak LAI

  2. Removal of uranium, arsenic, and nitrate by continuously regenerated ion exchange process

    SciTech Connect

    Chang, D.; Awad, J.; Panahi, Z.

    1996-11-01

    Groundwater is the major source of water supply for the City of Riverside (the City). Groundwater from some of the local wells contains high levels of uranium, arsenic, and nitrate. The City is evaluating treatment technologies that can remove these contaminants, in order to be prepared to select appropriate treatment technologies when groundwater treatment is required. Treatment technologies identified by the USEPA as best available technology (BAT) for uranium and arsenic removal are coagulation/filtration, lime softening, ion exchange, and reverse osmosis. Among these technologies, ion exchange is the most cost-effective and suitable for wellhead treatment applications. Ion exchange is also effective for nitrate removal. An ion exchange pilot study was conducted for the removal of uranium, arsenic and nitrate from groundwater. This paper presents a summary of the tests results, conceptual design criteria, and preliminary cost estimate for a full-scale facility.

  3. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    SciTech Connect

    Smith, F; Luther Hamm, L; Sebastian Aleman, S; Johnston Michael, J

    2008-08-26

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system.

  4. Influence of collector heat capacity and internal conditions of heat exchanger on cool-down process of small gas liquefier

    NASA Astrophysics Data System (ADS)

    Saberimoghaddam, Ali; Bahri Rasht Abadi, Mohammad Mahdi

    2017-07-01

    Joule-Thomson cooling systems are commonly used in gas liquefaction. In small gas liquefiers, transient cool-down time is high. Selecting suitable conditions for cooling down process leads to decrease in time and cost. In the present work, transient thermal behavior of Joule-Thomson cooling system including counter current helically coiled tube in tube heat exchanger, expansion valve, and collector was studied using experimental tests and simulations. The experiments were performed using small gas liquefier and nitrogen gas as working fluid. The heat exchanger was thermally studied by experimental data obtained from a small gas liquefier. In addition, the simulations were performed using experimental data as variable boundary conditions. A comparison was done between presented and conventional methods. The effect of collector heat capacity and convection heat transfer coefficient inside the tubes on system performance was studied using temperature profiles along the heat exchanger.

  5. Microchannel heat exchanger for two-phase Mixed Refrigerant Joule Thomson process

    NASA Astrophysics Data System (ADS)

    Baek, Seungwhan; Lee, Jisung; Lee, Cheonkyu; Jeong, Sangkwon

    2014-01-01

    Mixed Refrigerant Joule Thomson (MR-JT) refrigerators are widely used in various kinds of cryogenic systems these days. Printed Circuit Heat Exchanger (PCHE) is one of the promising cryogenic compact recuperators for MR-JT refrigerators due to its compactness, high NTU and robustness. However, PCHE composed with microchannel bundles can cause flow mal-distribution, and it can cause the degradation of thermal performance of the system. To mitigate the flow mal-distribution problem, the cross link (or intra-layer bypass) can be adapted to parallel microchannels. Two heat exchangers are fabricated in this study; one has straight channels, and the other one has intra-layer bypass structure between channels to enhance the flow distribution. The MR-JT refrigerators are operated with these two heat exchanger and the no-load temperatures are compared. The lower no load temperature achieved with the intra-layer bypass structured heat exchanger. The results indicate that the flow mal-distribution in the microchannel heat exchanger can be mitigated with intra-layer bypass structure, and relaxation of flow mal-distribution in the heat exchanger guarantee the MR-JT refrigerator's performance.

  6. Mechanistic modeling of ion-exchange process chromatography of charge variants of monoclonal antibody products.

    PubMed

    Kumar, Vijesh; Leweke, Samuel; von Lieres, Eric; Rathore, Anurag S

    2015-12-24

    Ion-exchange chromatography (IEX) is universally accepted as the optimal method for achieving process scale separation of charge variants of a monoclonal antibody (mAb) therapeutic. These variants are closely related to the product and a baseline separation is rarely achieved. The general practice is to fractionate the eluate from the IEX column, analyze the fractions and then pool the desired fractions to obtain the targeted composition of variants. This is, however, a very cumbersome and time consuming exercise. A mechanistic model that is capable of simulating the peak profile will be a much more elegant and effective way to make a decision on the pooling strategy. This paper proposes a mechanistic model, based on the general rate model, to predict elution peak profile for separation of the main product from its variants. The proposed approach uses inverse fit of process scale chromatogram for estimation of model parameters using the initial values that are obtained from theoretical correlations. The packed bed column has been modeled along with the chromatographic system consisting of the mixer, tubing and detectors as a series of dispersed plug flow and continuous stirred tank reactors. The model uses loading ranges starting at 25% to a maximum of 70% of the loading capacity and hence is applicable to process scale separations. Langmuir model has been extended to include the effects of salt concentration and temperature on the model parameters. The extended Langmuir model that has been proposed uses one less parameter than the SMA model and this results in a significant ease of estimating the model parameters from inverse fitting. The proposed model has been validated with experimental data and has been shown to successfully predict peak profile for a range of load capacities (15-28mg/mL), gradient lengths (10-30CV), bed heights (6-20cm), and for three different resins with good accuracy (as measured by estimation of residuals). The model has been also

  7. Characterizations and ion-exchange properties of zeolite NaA synthesized in a continuous process

    NASA Astrophysics Data System (ADS)

    Viet, Thieu Quang Quoc; Nhung, Tran Dinh; Long, Nguyen Quang

    2017-09-01

    Synthesis of zeolite through hydrothermal process has been commonly used for decades. However, slow crystallization kinetics and a limited thermo-dynamical stability of the target crystal phase are characteristic to zeolite formation, representing some of the key obstructions for fast zeolite synthesis. In this paper, the possibility of accelerating Zeolite NaA synthesis in a continuous flow reactor (CFR) was designed and installed. The CFR reduces the thermal lag by improving the crystallization rates of Zeolite NaA and decreasing the zeolite synthesis time. The optimal conditions for the synthesis of Zeolite NaA in the CFR were determined as a gel composition of Na2O:SiO2:Al2O3:H2O = 3.17 : 2 : 1 : 128, aging the gel mixture in 48 hours at ambient temperature. The synthesized powders were characterized by XRD, SEM. The results showed that the complete crystallization of typical cubic synthesized by the CFR was achieved at a synthesis temperature of 120°C during 5.5 mins with about 1 wt.% zeolite NaA seed, much faster than conventional hydrothermal synthesis (about 24 hours). The final zeolite powder with the addition of other additives (bentonite, Polyethylene glycol - PEG) and moisture was manufactured into cylindrical pellet by the methods of cold press and sintered pellets. The size of the pellet was 5mm in length and 2mm in diameter. The synthesized pellet was proved to show an equivalent cation exchange capacity (CEC) to commercial Zeolite NaA.

  8. Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem

    NASA Astrophysics Data System (ADS)

    Knohl, Alexander; Baldocchi, Dennis D.

    2008-06-01

    Forest ecosystems across the globe show an increase in ecosystem carbon uptake efficiency under conditions with high fraction of diffuse radiation. Here, we combine eddy covariance flux measurements at a deciduous temperate forest in central Germany with canopy-scale modeling using the biophysical multilayer model CANVEG to investigate the impact of diffuse radiation on various canopy gas exchange processes and to elucidate the underlying mechanisms. Increasing diffuse radiation enhances canopy photosynthesis by redistributing the solar radiation load from light saturated sunlit leaves to nonsaturated shade leaves. Interactions with atmospheric vapor pressure deficit and reduced leaf respiration are only of minor importance to canopy photosynthesis. The response strength of carbon uptake to diffuse radiation depends on canopy characteristics such as leaf area index and leaf optical properties. Our model computations shows that both canopy photosynthesis and transpiration increase initially with diffuse fraction, but decrease after an optimum at a diffuse fraction of 0.45 due to reduction in global radiation. The initial increase in canopy photosynthesis exceeds the increase in transpiration, leading to a rise in water-use-efficiency. Our model predicts an increase in carbon isotope discrimination with water-use-efficiency resulting from differences in the leaf-to-air vapor pressure gradient and atmospheric vapor pressure deficit. This finding is in contrast to those predicted with simple big-leaf models that do not explicitly calculate leaf energy balance. At an annual scale, we estimate a decrease in annual carbon uptake for a potential increase in diffuse fraction, since diffuse fraction was beyond the optimum for 61% of the data.

  9. The shelf edge exchange processes experiment, SEEP-II: an introduction to hypotheses, results and conclusions

    NASA Astrophysics Data System (ADS)

    Biscaye, Pierre E.; Flagg, Charles N.; Falkowski, Paul G.

    The SEEP (Shelf Edge Exchange Processes)-II experiment was the second of two that took place in the Middle Atlantic Bight (MAB) of the eastern U.S. continental shelf and slope. The experiment included an array of 10 multi-instrumented moorings deployed for 15 months and 10 oceanographic cruises, all designed to address the problem of the fate of continental shelf particulate matter in general, and organic carbon in particular. This paper provides the setting and background for the SEEP Program, the SEEP-II experiment and an introduction to the 18 papers constituting the subject of this special volume. Because those papers lack one of a general nature on the physical oceanographic setting of the experiment, that aspect is treated in somewhat more detail here. The results of the experiment overwhelmingly show that the working hypothesis on which the SEEP Program was undertaken and sponsored by the Department of Energy is not valid. That is, there is not an export to the adjacent slope and open ocean of a large proportion of the particulate matter introduced to and biologically generated in the waters of the continental shelf; most of the biogenic particulate matter is recycled by consumption (bacterial and otherwise) and oxidation on the shelf, and only a small proportion (of order ≪5%) is exported to the adjacent slope. The small amount that is exported appears to be deposited preferentially in the sediments of an area of the slope centered at about 1000 m, and the export and sedimentation to that depocenter appears to increase from the northern to the southern MAB.

  10. Hydrogen exchange kinetics of proteins in denaturants: a generalized two-process model.

    PubMed

    Qian, H; Chan, S I

    1999-02-19

    The recent progress in measurements on the amide hydrogen exchange (HX) in proteins under varying denaturing conditions, both at equilibrium and in transient relaxation, necessitates the development of a unifying theory which quantitatively relates the HX rates to the conformational energetics of the proteins. We present here a comprehensive kinetic model for the site-specific HX of proteins under varying solvent denaturing conditions based on the two-state protein folding model. The generalized two-process model considers both conformational fluctuations and residual protections, respectively, within the folded and unfolded states of a protein, as well as a global kinetic folding-unfolding transition between the two states. The global transition can be either rapid or slow, depending on the solvent condition for the protein. This novel model is applicable to the traditional equilibrium HX measurements in both EX2 and EX1 regimes, and also the recently introduced transient pulse-labeling HX experiments. A set of simple analytical equations is provided for quantitative interpretation of experimental data. The model emphasizes the use of full time-course of bi-exponential HX kinetics, rather than fitting time-course data to single rate constants, to obtain quantitative information about fluctuating conformers within the folded and unfolded states of proteins. This HX kinetic model naturally unfolds into a simple two-state and two-stage kinetic interpretation for protein folding. It suggests that the various observed intermediates of a protein can be interpreted as dominant isomers of either the folded or the unfolded state under different solvent conditions. This simple, minimalist's view of protein folding is consistent with various recent experimental observations on folding kinetics by HX.

  11. Contribution of understorey vegetation and soil processes to boreal forest isoprenoid exchange

    NASA Astrophysics Data System (ADS)

    Mäki, Mari; Heinonsalo, Jussi; Hellén, Heidi; Bäck, Jaana

    2017-03-01

    Boreal forest floor emits biogenic volatile organic compounds (BVOCs) from the understorey vegetation and the heterogeneous soil matrix, where the interactions of soil organisms and soil chemistry are complex. Earlier studies have focused on determining the net exchange of VOCs from the forest floor. This study goes one step further, with the aim of separately determining whether the photosynthesized carbon allocation to soil affects the isoprenoid production by different soil organisms, i.e., decomposers, mycorrhizal fungi, and roots. In each treatment, photosynthesized carbon allocation through roots for decomposers and mycorrhizal fungi was controlled by either preventing root ingrowth (50 µm mesh size) or the ingrowth of roots and fungi (1 µm mesh) into the soil volume, which is called the trenching approach. Isoprenoid fluxes were measured using dynamic (steady-state flow-through) chambers from the different treatments. This study aimed to analyze how important the understorey vegetation is as a VOC sink. Finally, a statistical model was constructed based on prevailing temperature, seasonality, trenching treatments, understory vegetation cover, above canopy photosynthetically active radiation (PAR), soil water content, and soil temperature to estimate isoprenoid fluxes. The final model included parameters with a statistically significant effect on the isoprenoid fluxes. The results show that the boreal forest floor emits monoterpenes, sesquiterpenes, and isoprene. Monoterpenes were the most common group of emitted isoprenoids, and the average flux from the non-trenched forest floor was 23 µg m-2 h-1. The results also show that different biological factors, including litterfall, carbon availability, biological activity in the soil, and physico-chemical processes, such as volatilization and absorption to the surfaces, are important at various times of the year. This study also discovered that understorey vegetation is a strong sink of monoterpenes. The

  12. Inter-annual variability of exchange processes at the outer Black Sea shelf

    NASA Astrophysics Data System (ADS)

    Shapiro, Georgy; Wobus, Fred; Yuan, Dongliang; Wang, Zheng

    2014-05-01

    The advection of cold water below the surface mixed layer has a significant role in shaping the properties of the Cold Intermediate Layer (CIL) in the Black Sea, and thus the horizontal redistribution of nutrients. The minimal temperature of the CIL in the southwest deep region of the sea in summer was shown to be lower than the winter surface temperature at the same location, indicating the horizontal advective nature of CIL formation in the area (Kolesnikov, 1953). In addition to advection in the deep area of the sea, the transport of cold waters from the northwest Black Sea shelf across the shelf break in winter was shown to contribute to the formation of the CIL (Filippov, 1968; Staneva and Stanev, 1997). However less is known of the exchanges between the CIL waters and the outer shelf areas in summer, when a surface mixed layer and the underlying seasonal thermocline are formed. Ivanov et al. (1997) suggested that the cross frontal exchange within the CIL is strongly inhibited, so that CIL waters formed in the deep sea (i.e. offshore of the Rim Current) do not replenish the CIL waters onshore of the Rim Current (also known as near-bottom shelf waters, or BSW), due to strong cross frontal gradients in potential vorticity (PV). To the contrary, Shapiro et al. (2011) analysed in-situ observations over the period of 1950-2001 and showed a high correlation between the CIL temperatures in the open sea and outer shelf. However, the statistical methods alone were not able to clearly establish the relation between the cause and the consequences. In this study we use a 3D numerical model of the Black Sea (NEMO-SHELF-BLS) to quantify the exchange of CIL waters between the open sea and the outer northwest Black Sea shelf and to assess its significance for the replenishment of BSW on the outer shelf. The model has a resolution of 1/16º latitude × 1/12º longitude and 33 levels in the vertical. In order to represent near-bottom processes better, the model uses a hybrid

  13. Exchange processes from the deep interior to the surface of icy moons

    NASA Astrophysics Data System (ADS)

    Grasset, O.

    Space exploration provides outstanding images of planetary surfaces. Galileo space- craft around Jupiter, and now Cassini in the saturnian system have revealed to us the variety of icy surfaces in the solar system. While Europa, Enceladus, and maybe Titan present past or even active tectonic and volcanic activities, many other moons have been dead worlds for more than 3 billions years. Composition of ices is also complex and it is now commonly admitted that icy surfaces are never composed of pure ices. Water ice can be mixed with salts (Europa?), with hydrocarbons (Titan?) or with silicates (Callisto). The present surfaces of icy moons are the results of both internal (tectonic; volcanism; mantle composition; magnetic field; . . . ) and external processes (radiations, atmospheres, impacts, . . . ). Internal activity (past or present) is almost unknown. While the surfaces indicate clearly that an important activity existed (Ganymede, Europa, Titan, . . . ) or still exists (Enceladus, Titan?, . . . ), volcanic and tectonic processes within icy mantles are still very poorly understood. This project proposes some key studies for improving our knowledge of exchange processes within icy moons, which are: 1) Surface compositions: Interpretation of mapping spectrometer data. It addresses the interpretation of remote sensing data. These data are difficult to understand and a debate between people involved in Galileo and those who are now trying to interpret Cassini data might be fruitful. As an example, interpretation of Galileo data on Europa are still controversial. It is impossible to affirm that the "non-icy" material which does not present the classic infrared signature of pure ice is due to the presence of magnesium hydrates, sodium hydrates, magnesium sulfurs, "clays", or even altered water ice. Discussion on the subject are still needed. On Titan, the presence of the atmosphere impedes to link IR data from Cassini to the composition of the surface. 2) Past and

  14. PILOT SCALE TESTING OF MONOSODIUM TITANATE MIXING FOR THE SRS SMALL COLUMN ION EXCHANGE PROCESS - 11224

    SciTech Connect

    Poirier, M.; Restivo, M.; Williams, M.; Herman, D.; Steeper, T.

    2011-01-25

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and select actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is to determine the requirements for the pumps to suspend the MST particles so that they can contact the strontium and actinides in the liquid and be removed from the tank. The pilot-scale tank is a 1/10.85 linear scaled model of SRS Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5 and B2 for two pump configurations and Risers B5, B3, and B1 for three pump configurations). The conclusions from this work follow: (i) Neither two standard slurry pumps nor two quad volute slurry pumps will provide sufficient power to initially suspend MST in an SRS waste tank. (ii) Two Submersible Mixer Pumps (SMPs) will provide sufficient power to initially suspend MST in an SRS waste tank. However, the testing shows the required pump discharge velocity is close to the maximum discharge velocity of the pump (within 12%). (iii) Three SMPs will provide sufficient power to initially suspend MST in an SRS waste tank. The testing shows the required pump discharge velocity is 66% of the maximum discharge velocity of the pump. (iv) Three SMPs are needed to resuspend MST that has settled in a waste tank at nominal 45 C for four weeks. The testing shows the required pump discharge velocity is 77% of the maximum discharge velocity of the pump. Two SMPs are not sufficient to resuspend MST that settled under these

  15. Ontology-Based Exchange and Immediate Application of Business Calculation Definitions for Online Analytical Processing

    NASA Astrophysics Data System (ADS)

    Kehlenbeck, Matthias; Breitner, Michael H.

    Business users define calculated facts based on the dimensions and facts contained in a data warehouse. These business calculation definitions contain necessary knowledge regarding quantitative relations for deep analyses and for the production of meaningful reports. The business calculation definitions are implementation and widely organization independent. But no automated procedures facilitating their exchange across organization and implementation boundaries exist. Separately each organization currently has to map its own business calculations to analysis and reporting tools. This paper presents an innovative approach based on standard Semantic Web technologies. This approach facilitates the exchange of business calculation definitions and allows for their automatic linking to specific data warehouses through semantic reasoning. A novel standard proxy server which enables the immediate application of exchanged definitions is introduced. Benefits of the approach are shown in a comprehensive case study.

  16. Calculation of the Helfferich number to identify the rate-controlling step of ion exchange for a batch process

    SciTech Connect

    Bunzl, K.

    1995-08-01

    The Helfferich number He is used frequently as a valuable criterion to decide whether for an ion exchange process film diffusion or particle diffusion of the ions is the rate-determining step. The corresponding equation given by Helfferich is restricted, however, for the boundary condition of an infinite solution volume. In the present paper, the Helfferich number is calculated also for a finite solution volume, i.e., for a typical batch process. Because the resulting equation can be solved only numerically, the results are presented in graphical form. It is also examined for which batch processes the conventional Helfferich number already yields a conservative and thus a very simple and useful estimate of the rate-determining step. Information on the kinetics of ion exchange reactions is required not only for the economic employment of synthetic ion exchangers in the industry and the laboratory but also for a better understanding of these processes in natural systems, as, e.g., the sorption of nutrient and toxic ions by the soil.

  17. Circulation and exchange processes over the continental shelf and slope. Final report

    SciTech Connect

    Csanady, G.T.

    1988-12-31

    The theme of the work during the past triennium has been the SEEP experiment, data interpretation and modeling related to the goals of the experiment, and was characterized by increasing cooperation with colleagues from other disciplines. The theoretical contributions dealt with shelf-slope interaction, the dynamics and climatology of currents over the continental slope, and the behavior of fate of organic particles. Observational papers discussed various exchange mechanisms at the shelf edge, with special attention to particle exchange, and the quiescence of currents over the mid continental slope which is presumably responsible for the accumulation of organic particles.

  18. Continuous process of preparation of n-butyl(meth)acrylate by esterification of (meth)acrylic acid by butanol on thermostable sulfo-cation exchanger

    SciTech Connect

    Zheleznaya, L.L.; Karakhanov, R.A.; Lunin, A.F.; Magadov, R.S.; Meshcheryakov, S.V.; Mkrtychan, V.R.; Fomin, V.A.

    1987-11-10

    The authors propose an effective thermostable sulfo-cation exchanger based on polymers with a system of conjugated bonds, sulfopolyphenylene ketone (SPP) differing from the known cation exchangers by the high thermostability (up to 250/sup 0/C), and also having the effect of the stabilization of the double bond in unsaturated monomers. The combination of inhibiting and cation exchange properties makes it also possible to use these sulfo-cation exchangers in the processes of esterification of (meth)acrylic acids by alcohols without addition of special inhibitors. The SPP catalyst was tested in esterification processes of acrylic an methacrylic acid by butanol at a pilot plant.

  19. Determination of 16O and 18O sensitivity factors and charge-exchange processes in low-energy ion scattering

    NASA Astrophysics Data System (ADS)

    Téllez, H.; Chater, R. J.; Fearn, S.; Symianakis, E.; Brongersma, H. H.; Kilner, J. A.

    2012-10-01

    Quantitative analysis in low-energy ion scattering (LEIS) requires an understanding of the charge-exchange processes to estimate the elemental sensitivity factors. In this work, the neutralization of He+ scattered by 18O-exchanged silica at energies between 0.6 and 7 keV was studied. The process is dominated by Auger neutralization for Ei < 0.8 keV. An additional mechanism starts above the reionization threshold. This collision-induced neutralization becomes the dominant mechanism for Ei > 2 keV. The ion fractions P+ were determined for Si and O using the characteristic velocity method to quantify the surface density. The 18O/16O sensitivity ratio indicates an 18% higher sensitivity for the heavier O isotope.

  20. Lateral Mixing Processes in an Estuary: San Francisco Bay and its Exchange With Perimeter Habitat

    NASA Astrophysics Data System (ADS)

    MacVean, L. J.; Stacey, M. T.

    2008-12-01

    Observations from the South San Francisco Bay are presented to examine lateral mixing processes in an estuary. Irregularities in the shoreline lead to lateral density gradients that are set up by tidal trapping, which disrupts the phasing of flows and scalar concentrations along the estuary's axis. In South San Francisco Bay, thousands of acres of salt ponds are being breached to the Bay's influence for the first time in decades as part of a landscape-scale salt marsh restoration project. The tides deliver salt, sediment, and nutrients to the subsided ponds, aggrading their surfaces and converting them to marsh. These newly inter-tidal ponds around the perimeter of the South San Francisco Bay constitute a highly irregular shoreline, capable of initiating steep, periodic lateral density gradients. In this study, we focus on a small cluster of salt ponds and the tidal slough to which they were breached. The exchange between the tidal slough and the ponds is representative of the larger estuary, but of a spatial scale small enough that we can conduct field experiments to examine the flows and transport of scalars in detail. We conducted two boat-mounted transecting surveys of the tidal slough in June and July of 2008, during which we collected profiles of velocity with a down-looking 1200 kHz ADCP, continuous CTD measurements of surface water temperature and salinity, and discrete CTD profiles of salinity and temperature. We have observed that water and salt are trapped in the ponds on the flood tide, and released on the ebb out of phase with the slough's primary salinity gradient. Additionally, the momentum of the ebbing flow in the channel confines the pond effluent to the near bank just down-estuary of the breach. This leads to the coincidence of two distinct water masses, and a sharp change in salinity of 3 PSU over a distance less than 10 meters. We use our data to construct detailed velocity and density fields across and along the tidal slough as the lateral

  1. An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater.

    PubMed

    Mahmoud, Akrama; Hoadley, Andrew F A

    2012-06-15

    Hybrid ion exchange electrodialysis, also called electrodeionization (IXED), is a technology in which a conventional ion exchange (IX) is combined with electrodialysis (ED) to intensify mass transfer and to increase the limiting current density and therefore to carry out the treatment process more effectively. It allows the purification of metal-containing waters, as well as the production of concentrated metal salt solutions, which could be recycled. The objective of this paper was to investigate the ability of the IXED technique for the treatment of acidified copper sulphate solutions simulating rinsing water of copper plating lines. A single-stage IXED process at lab-scale with a small bed of ion exchanger resin with a uniform composition was evaluated, and the treatment performance of the process was thoroughly investigated. The IXED stack was assembled as a bed layered with the ion exchanger resin (strong acid cation-exchange Dowex™) and inert materials. The stack configuration was designed to prevent a non-uniform distribution of the current in the bed and to allow faster establishment of steady-state in the cell for IXED operation. The influence of operating conditions (e.g. ion exchanger resin with a cross-linking degree from 2 to 8% DVB, and current density) on IXED performance was examined. A response surface methodology (RSM) was used to evaluate the effects of the processing parameters of IXED on (i) the abatement yield of the metal cation, which is a fundamental purification parameter and an excellent indicator of the extent of IXED, (ii) the current yield or the efficiency of copper transport induced by the electrical field and (iii) the energy consumption. The experimental results showed that the performance at steady-state of the IXED operation with a layered bed remained modest, because of the small dimension of the bed and notably the current efficiency varied from 25 to 47% depending on the conditions applied. The feasibility of using the IXED

  2. Processes of Ammonia Air-Surface Exchange in a Fertilized Zea Mays Canopy

    EPA Science Inventory

    Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this advancement represents a sig...

  3. Processes of Ammonia Air-Surface Exchange in a Fertilized Zea Mays Canopy

    EPA Science Inventory

    Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this advancement represents a sig...

  4. Perspectives on an Induction Process for International Exchange Teachers: A Leadership Perspective

    ERIC Educational Resources Information Center

    Siler, James Thomas

    2012-01-01

    This study traces the first year experiences of six international exchange teachers employed in three public and charter schools settings from three districts in two southeastern states. Interviews with these teachers from China, Germany and Colombia, and with their school and district leaders enabled me to produce a narrative of how international…

  5. Fractionation of sulphite spent liquor for biochemical processing using ion exchange resins.

    PubMed

    Fernandes, D L A; Silva, C M; Xavier, A M R B; Evtuguin, D V

    2012-12-31

    Sulphite spent liquor (SSL) is a side product from acidic sulphite pulping of wood, which organic counterpart is composed mainly by lignosulphonates (LS) and sugars. The last are a prominent substrate for the bioprocessing although a previous purification step is necessary to eliminate microbial inhibitors. In this study a fractionation of hardwood SSL (HSSL) has been accomplished employing ion exchange resins in order to separate sugars fraction from concomitant inhibitors: LS, acetic acid, furan derivatives, phenolics, acetic acid and excess of inorganic salts. The fractionation of HSSL has been carried out using two fixed-bed ion exchangers in series (cationic+anionic). The first cation exchange column packed with Dowex 50WX2 resin was able to eliminate free cations and partially separate sugars from high molecular weight LS and furan derivatives. The second anion exchange column packed with Amberlite IRA-96 sorbed remaining LS, phenolics and acetic acid. Overall, the series arrangement under investigation has removed 99.99% of Mg(2+), 99.0% of Ca(2+), 99.6% of LS, and 100% of acetic acid, whereas the yield of recovered sugars was at least 72% of their total amount in HSSL. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Perspectives on an Induction Process for International Exchange Teachers: A Leadership Perspective

    ERIC Educational Resources Information Center

    Siler, James Thomas

    2012-01-01

    This study traces the first year experiences of six international exchange teachers employed in three public and charter schools settings from three districts in two southeastern states. Interviews with these teachers from China, Germany and Colombia, and with their school and district leaders enabled me to produce a narrative of how international…

  7. Understanding Groundwater and Surface Water Exchange Processes Along a Controlled Stream Using Thermal Remote Sensing and In-Situ Measurements

    NASA Astrophysics Data System (ADS)

    Varli, D.; Yilmaz, K. K.

    2016-12-01

    Effective management of water resources requires understanding and quantification of interaction between groundwater and surface water bodies. Moreover, the exchange processes have recently received increasing attention due to important influences on biogeochemical and ecological status of watersheds. In this study we investigated the exchange processes between surface water and groundwater along Kirmir stream - a controlled stream nearby Kizilcahamam, Ankara, Turkey. At the first stage, potential stream reaches where the exchange processes could occur were pinpointed using geological and geomorphological information. Then, thermal remote sensing was utilized to further narrow down the potential locations in which interaction could occur at a smaller scale. Nested piezometers were installed at identified locations to observe the variations in vertical hydraulic gradient over time. Differential discharge measurements were performed to understand the gains and losses along the stream reach. Streambed temperature measurements were taken at two different depths for a period of time using temperature loggers to calculate the vertical fluid fluxes through the streambed at various locations. Basic water quality field parameters (temperature, electrical conductivity, total dissolved solid amount, dissolved oxygen, pH and oxidation - reduction potential) were measured along the stream reach, from surface water and the piezometers as wells as from the nearby springs and wells. Chloride mass balance was performed to find the contribution of groundwater and chloride concentrations were associated with the geology of the area. This hierarchical, multi-scale methodology provided an efficient and effective way to determine the locations and the direction of groundwater and surface water exchange processes within the study area.

  8. Combination of ion exchange and partial nitritation/Anammox process for ammonium removal from mainstream municipal wastewater.

    PubMed

    Malovanyy, Andriy; Plaza, Elzbieta; Trela, Jozef; Malovanyy, Myroslav

    2014-01-01

    In this study, a new technology of nitrogen removal from mainstream municipal wastewater is proposed. It is based on ammonium removal by ion exchange and regeneration of ion exchange material with 10-30 g/L NaCl solution with further nitrogen removal from spent regenerant by partial nitritation/Anammox process. Influence of regenerant strength on performance of ion exchange and biological parts of the proposed technology was evaluated. Moreover, the technology was tested in batch mode using pretreated municipal wastewater, strong acid cation (SAC) resin and partial nitritation/Anammox biomass. It was shown that with ion exchange it is possible to remove 99.9% of ammonium from wastewater while increasing the concentration of ammonium in spent regenerant by 18 times. Up to 95% of nitrogen from spent regenerant, produced by regeneration of SAC resin with 10 g/L NaCl solution, was removed biologically by partial nitritation/Anammox biomass. Moreover, the possibilities of integration of the technology into municipal wastewater treatment technology, and the challenges and advantages are discussed.

  9. Handbook on heat exchangers

    NASA Astrophysics Data System (ADS)

    Bazhan, Pavel I.; Kanevets, Georgii E.; Seliverstov, Vladimir M.

    Essential data on heat exchange equipment used in ship, locomotive, automotive, and aircraft powerplants are presented in a systematic manner. The data cover the principal types and technical and performance characteristics of heat exchangers, fundamentals of the theory of heat exchange, calculation of heat transfer coefficients for different types of heat exchange apparatus, optimization of heat exchangers, computer-aided design of heat exchange equipment, testing techniques, and test result processing.

  10. Preparation SnO₂ nanolayer on flexible polyimide substrates via direct ion-exchange and in situ oxidation process.

    PubMed

    Cui, Guanghui; Wu, Dezhen; Qi, Shengli; Jin, Shao; Wu, Zhanpeng; Jin, Riguang

    2011-03-01

    Tin oxide (SnO(2)) nanolayers were formed on flexible polyimide (PI) substrate via direct ion-exchange and in situ oxidation process utilizing pyromellitic dianhydride/4,4'-oxidianiline-based poly(amic acid) films as polyimide precursor. During an ion-exchange process, stannous ions were doped into the precursor by immersion in ethanolic solution of stannous chloride. Subsequent thermal treatment of the tin(II)-containing precursor at a constant heating rate not only imidized poly(amic acid) to PI but also converted stannous ions into SnO(2) clusters, which diffused and aggregated onto the surface of polymer matrix, forming continuous tin oxide layers. Inductively coupled plasma (ICP) was used to investigate the ion-exchange process. Changes in chemical structure of the poly(amic acid) film and the crystal structure of tin oxides were analyzed by attenuated total reflection-Fourier transform infrared (ATR-FTIR) and X-ray diffraction (XRD). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to study the microstructure of the PI/SnO(2) nanocomposite films. The nanocomposite film maintained essential mechanical property and thermal stability of pristine PI films.

  11. Safety research of multi-functional reprocessing process considering nonproliferation based on an ion-exchange method

    SciTech Connect

    Koyama, Shin-ichi; Ozawa, Masaki |; Okada, Ken; Kurosawa, Kiyoko; Suzuki, Tatsuya; Fujii, Yasuhiko

    2007-07-01

    A simplified separation process was proposed based on an ion-exchange technique. A tertiary pyridine-type ion-exchange resin was used in this process to treat the mixed oxide fuel highly irradiated in the experimental fast reactor 'JOYO'. It was demonstrated that the process is a realistic candidate for future reprocessing using hydrochloric acid and a mixed eluent solution of nitric acid and methanol. In order to develop an engineering scale concept, it is indispensable to establish the conditions for safe operation, so two types of experiments were done to obtain fundamental aspects. The corrosion experiment for structural materials in hydrochloric acid at room temperature was done using tantalum, zirconium, niobium, hastelloy and SUS316L. Results showed that tantalum, zirconium, niobium, and hastelloy had good corrosion resistance to hydrochloric acid. The second experiment looked at the thermal hazards of pyridine-type ion-exchange resin and the methanol, or nitric acid eluent system from the viewpoints of fire and explosion safety. No hazardous reactions occurred between the resin and the eluent system. Above 150 deg. C, attention should be paid to the exothermic reactions for the dried resin. (authors)

  12. SPECIAL ANALYSIS FOR SLIT TRENCH DISPOSAL OF THE REACTOR PROCESS HEAT EXCHANGERS

    SciTech Connect

    Hamm, L.; Collard, L.; Aleman, S.; Gorensek, M.; Butcher, T.

    2012-06-18

    The Savannah River National Laboratory (SRNL), in response to a request from Solid Waste Management (SWM), conducted a Special Analysis (SA) to evaluate the performance of nineteen heat exchangers that are to be disposed in the E-Area low level waste facility Slit Trench 9 (ST 9). Although these nineteen heat exchangers were never decontaminated, the majority of the radionuclides in the heat exchanger inventory list were determined to be acceptable for burial because they are less than the 'generic' waste form inventory limits given in the 2008 Performance Assessment (PA) (WSRC, 2008). However, as generic waste, the H-3 and C-14 inventories resulted in unacceptable sum-of-fractions (SOFs). Initial scoping analyses performed by SRNL indicated that if alterations were made to certain external nozzles to mitigate various potential leak paths, acceptable SOFs could be achieved through the use of a 'Special' waste form. This SA provides the technical basis for this new 'Special' waste form and provides the inventory limits for H-3 and C-14 for these nineteen heat exchangers such that the nineteen heat exchangers can be disposed in ST 9. This 'Special' waste form is limited to these nineteen heat exchangers in ST 9 and applies for H-3 and C-14, which are designated as H-3X and C-14X, respectively. The SA follows the same methodology used in the 2008 PA and the 2008 SA except for the modeling enhancements noted below. Infiltration rates above the heat exchangers are identical to those used in the 2008 PA; however, flow through the heat exchangers is unique. Because it is unknown exactly how sealed heat exchanger openings will perform and how surface and embedded contaminants will be released, multiple base cases or scenarios were established to investigate a set of performances. Each scenario consists of flow options (based on the performance of sealed openings) and a near-field release of contaminants (based on corrosion and diffusion performance). Two disposal

  13. Probing two-particle exchange processes in two-mode Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Benet, Luis; Espitia, Diego; Sahagún, Daniel

    2017-03-01

    We study the fidelity decay and its freeze for an initial coherent state of two-mode Bose-Einstein condensates in the Fock regime considering a Bose-Hubbard model that includes two-particle tunneling terms. By using linear-response theory we find scaling properties of the fidelity as a function of the particle number that prove the existence of two-particle mode exchange when a nondegeneracy condition is fulfilled. Tuning the energy difference of the two modes serves to distinguish the presence of two-particle mode-exchange terms through the appearance of certain singularities. We present numerical calculations that illustrate our findings, and propose exploiting a Feshbach resonance to verify experimentally our predictions.

  14. Improving Information Exchange in the Chicken Processing Sector Using Standardised Data Lists

    NASA Astrophysics Data System (ADS)

    Donnelly, Kathryn Anne-Marie; van der Roest, Joop; Höskuldsson, Stefán Torfi; Olsen, Petter; Karlsen, Kine Mari

    Research has shown that to improve electronic communication between companies, universal standardised data lists are necessary. In food supply chains in particular there is an increased need to exchange data in the wake of food safety incidents. Food supply chain companies already record numerous measurements, properties and parameters. These records are necessary for legal reasons, labelling, traceability, profiling desirable characteristics, showing compliance and for meeting customer requirements. Universal standards for name and content of each of these data elements would improve information exchange between buyers, sellers, authorities, consumers and other interested parties. A case study, carried out for the chicken sector, attempted to identify the most relevant parameters including which of these were already communicated to external bodies.

  15. Charge exchange processes in He+/Cu scattering at low energy

    NASA Astrophysics Data System (ADS)

    Khalal-Kouache, K.; Bruckner, B.; Roth, D.; Goebl, D.; Bauer, P.

    2016-09-01

    In this paper we present results on charge exchange of He+ ions at a polycrystalline Cu surface. Monte Carlo simulations were used to calculate the trajectories of projectiles scattered by an angle Θ = 136 ° . By including Auger neutralization and charge exchange in close collisions, energy spectra of the scattered ions as well as ion fraction values were calculated for primary energies in the range 0.5-5 keV and compared to experimental results. In the simulations, the Auger neutralization rate Γ and the probabilities of resonant neutralization (PRN) and reionization (PRI) are treated as free parameters. Using well accepted values from literature for these quantities very good agreement between simulations and experimental data was achieved.

  16. The characteristic assessment of spent ion exchange resin from PUSPATI TRIGA REACTOR (RTP) for immobilization process

    SciTech Connect

    Wahida, Nurul; Yasir, Muhamad Samudi; Majid, Amran Ab; Irwan, M. N.; Wahab, Mohd Abd; Marzukee, Nik; Paulus, Wilfred; Phillip, Esther; Thanaletchumy

    2014-09-03

    In this paper, spent ion exchange resin generated from PUSPATI TRIGA reactor (RTP) in Malaysian Nuclear Agency were characterized based on the water content, radionuclide content and radionuclide leachability. The result revealed that the water content in the spent resin is 48%. Gamma spectrometry analysis indicated the presence of {sup 134}Cs, {sup 137}Cs, {sup 152}Eu, {sup 54}Mn, {sup 58}Co, {sup 60}Co and {sup 65}Zn. The leachability test shows a small concentrations (<1 Bq/l) of {sup 152}Eu and {sup 134}Cs were leached out from the spent resin while {sup 60}Co activity concentrations slightly exceeded the limit generally used for industrial wastewater i.e. 1 Bq/l. Characterization of spent ion exchange resin sampled from RTP show that this characterization is important as a basis to immobilize this radioactive waste using geopolymer technology.

  17. The characteristic assessment of spent ion exchange resin from PUSPATI TRIGA REACTOR (RTP) for immobilization process

    NASA Astrophysics Data System (ADS)

    Wahida, Nurul; Yasir, Muhamad Samudi; Majid, Amran Ab; Wahab, Mohd Abd; Marzukee, Nik; Paulus, Wilfred; Phillip, Esther; Thanaletchumy, Irwan, M. N.

    2014-09-01

    In this paper, spent ion exchange resin generated from PUSPATI TRIGA reactor (RTP) in Malaysian Nuclear Agency were characterized based on the water content, radionuclide content and radionuclide leachability. The result revealed that the water content in the spent resin is 48%. Gamma spectrometry analysis indicated the presence of 134Cs, 137Cs, 152Eu, 54Mn, 58Co, 60Co and 65Zn. The leachability test shows a small concentrations (<1 Bq/l) of 152Eu and 134Cs were leached out from the spent resin while 60Co activity concentrations slightly exceeded the limit generally used for industrial wastewater i.e. 1 Bq/l. Characterization of spent ion exchange resin sampled from RTP show that this characterization is important as a basis to immobilize this radioactive waste using geopolymer technology.

  18. Transfer of biosynthesized gold nanoparticles from water into an ionic liquid using alkyltrimethyl ammonium bromide: an anion-exchange process.

    PubMed

    Zhou, Yao; Lin, Wenshuang; Wang, Huixuan; Li, Qingbiao; Huang, Jiale; Du, Mingming; Lin, Liqin; Gao, Yixian; Lin, Ling; He, Ning

    2011-01-04

    Biosynthesized gold nanoparticles (GNPs) were transferred from water to a hydrophobic ionic liquid (IL), [Bmim]PF(6), with the assistance of alkyl trimethyl ammonium bromide. The phase transfer mechanism was illustrated through the exemplification of cetyltrimethyl ammonium bromide (CTAB). Interaction between GNPs and CTAB was demonstrated through zeta potential analysis. Moreover, an anion-exchange process was discovered between CTAB and IL. During the process, the hydrophobic CTAPF(6) formed in situ on the GNPs led to the hydrophobization and thus phase transfer of the GNPs. The phase transfer efficiency was found to be size-dependent.

  19. A Widely-Accessible Distributed MEMS Processing Environment. The MEMS Exchange Program

    DTIC Science & Technology

    2012-10-29

    development of an advanced DPG device that would not require a charge-dissipating coating ; this proposal is currently under review. The MEMS Exchange... Medical Applications Biomaterials Science: An Integrated Clinical and Engineering Approach, edited by Yitzhak Rosen and Noel Elman, CRC Press, Boca...Tailorable Titanium -Tungsten Alloy Material Thermally Matched to Semiconductor Substrates and Devices ”  “An Improved Method of Fabrication of MEMS, NEMS

  20. On a Time-Optimal Control Problem Associated with the Heat Exchange Process

    SciTech Connect

    Albeverio, Sergio Alimov, Shavkat

    2008-02-15

    The initial-boundary problem for the heat conduction equation inside a bounded domain is considered. It is supposed that on the boundary of this domain the heat exchange according to Newton's law takes place. The control parameter is equal to the magnitude of output of hot or cold air and is defined on a given part of the boundary. An estimate of the minimal time for achieving the given average temperature is found.

  1. On the interaction of isotopic exchange processes with photochemical reactions in atmospheric oxides of nitrogen

    SciTech Connect

    Freyer, H.D.; Kley, D.; Volz-Thomas, A.; Kobel, K.

    1993-08-20

    The authors study the isotopic composition of nitic oxide and nitrogen dioxide in the atmosphere. They model the observed results for {sup 15}N/{sup 14}N ratios in terms of isotopic exchange reactions with ozone and photolytic reactions on the oxides. They find there has to be an interaction of these two reactions, in conjunction with seasonl variations of nitrogen oxide/ozone ratios, to account for observed isotopic ratios of the nitrogen isotopes.

  2. Modulating methane storage in anionic nano-porous MOF materials via post-synthetic cation exchange process.

    PubMed

    Akhbari, Kamran; Morsali, Ali

    2013-04-14

    The post-synthesis cation exchange process of [HDMA]2[Zn2(BDC)3(DMA)2]·6DMF (1) (HDMA(+): dimethylamonnium, BDC(2-): 1,4-benzenedicarboxilate, DMA: dimethylamine and DMF: N,N'-dimethylformamide) anionic MOF with Ni(2+), Cu(2+), Li(+), Na(+) and K(+) ions was investigated by ICP, CHN, XRD, (1)H-NMR and TG analyses. Replacement of the organic cation with the smaller Li(+) ion in 1 leads to an increase in its internal surface area and methane sorption capacity. By the strategy developed here, we were able to prepare ion exchanged MOFs with higher surface area and methane sorption capacity capable of operating at more ambient temperature and pressure.

  3. Theoretical considerations for anticipating of function analysis on a gradient index-lens fabrication through double ion-exchange process.

    PubMed

    Zakeri, Banafsheh; Sabatyan, Arash

    2012-09-10

    Based on precise and detailed theoretical examination of diffusion equation analysis, two-step Ag(+)-Na(+) and Na(+)-Ag(+) ion-exchange parameters were optimized in order to fabricate a gradient index (GRIN) lens in the BK7 glass rod. Using the diffusion equation, the impact of the concentration ratio of the exchanged ion during the first and second steps was examined in detail. Then, based on the calculated effective parameters such as concentration ratio and immersion time, a fabrication process was proposed. We managed to get the optimum parameters (the bath stop time, temperature, and length) to make a quarter pitch lens. As a result, some samples of the GRIN lens were fabricated and tested successfully. Theoretical considerations and experimental results are presented.

  4. Dynamic NMR of Intramolecular Exchange Processes in EDTA Complexes of Sc[superscript 3+], Y[superscript 3+], and La[superscript 3+

    ERIC Educational Resources Information Center

    Ba, Yong; Han, Steven; Ni, Lily; Su, Tony; Garcia, Andres

    2006-01-01

    Dynamic NMR makes use of the effect of chemical exchanges on NMR spectra to study kinetics and thermodynamics. An advanced physical chemistry lab experiment was developed to study the intramolecular exchange processes of EDTA (the disodium salt of ethylenediaminetetraacetic acid) metal complexes. EDTA is an important chelating agent, used in…

  5. Dynamic NMR of Intramolecular Exchange Processes in EDTA Complexes of Sc[superscript 3+], Y[superscript 3+], and La[superscript 3+

    ERIC Educational Resources Information Center

    Ba, Yong; Han, Steven; Ni, Lily; Su, Tony; Garcia, Andres

    2006-01-01

    Dynamic NMR makes use of the effect of chemical exchanges on NMR spectra to study kinetics and thermodynamics. An advanced physical chemistry lab experiment was developed to study the intramolecular exchange processes of EDTA (the disodium salt of ethylenediaminetetraacetic acid) metal complexes. EDTA is an important chelating agent, used in…

  6. Integration of ion-exchange and nanofiltration processes for recovering Cr(III) salts from synthetic tannery wastewater.

    PubMed

    Gando-Ferreira, Licínio M; Marques, Joana C; Quina, Margarida J

    2015-01-01

    This study aims to investigate the possibility of integrating both ion-exchange (IX) and nanofiltration (NF) processes for the recovery of Cr(III) salts from a synthetic solution prepared with concentrations of Cr(III), [Formula: see text] and Cl(-) in the range of industrial effluents of tanneries. Ion exchange should be used as a pre-treatment for uptaking Cl(-) ions from the effluent, and thereafter the treated solution is fed to an NF unit to recover chromium sulphate salt for reuse in the tanning bath. The strong anionic resin Diaion PA316 was selected for evaluating chloride-sulphate ion-exchange equilibrium, with respect to mass of resin, NaCl concentration, temperature and ratio [Formula: see text]. It was observed that the separation factor, [Formula: see text], depends on the total electrolyte concentration and the ratio [Formula: see text] plays a role as well. Moreover, it was determined that the resin prefers sulphate over chloride since [Formula: see text] is less than 1. The performance of the NF process is dependent on [Formula: see text] and the rejection of Cr(III) may decrease from 90% to 70% as the ratio increases from 0.5 to 2. Regarding the integration of both IX and NF, the feed solution after treatement with the resin was fed to NF where the ratio of [Formula: see text] led to the best operating conditions for this process (90% of Cr(III) rejection and up to 77% for [Formula: see text] ions). This strategy may be considered as a sustainable approach since it permits to obtain a solution enriched in Cr(III) salt for reuse in the tanning process, thus contributing to environmental protection.

  7. Role of energy exchange in vibrational dephasing processes in liquids and solids

    SciTech Connect

    Marks, S.

    1981-08-01

    Three theories which claim relevance to the dephasing of molecular vibrations in condensed phase matter are presented. All of these theories predict (in certain limiting cases) that the widths and shifts of molecular vibrations will obey an Arrhenius temperature dependence. The basic tenets of the theories are detailed so that the differences between them may be used in an experiment to distinguish between them. One model, based on intermolecular energy exchange of low-frequency modes, results in dephasing the high-frequency modes when anharmonic coupling is present. A computer analysis of temperature dependent experimental lineshapes can result in the extraction of various parameters such as the anharmonic shifts and the exchange rates. It is shown that, in order to properly assess the relative validity of the three models, other evidence must be obtained such as the spectral parameters of the low-frequency modes, the combination bands, and the isotopic dilution behavior. This evidence is presented for d/sub 14/-durene (perdeutero-1,2,4,5-tetramethylbenzene) and compared to previous data obtained on pure h/sub 14/-durene. An extension of the (HSC) intermolecular energy exchange model which allows for the possibility of partial delocalization of the low-frequency modes gives an adequate description of the experimental evidence. Isotopic dilution experiments, in particular, have resulted in a detailed picture of the energy transfer dynamics of the low-frequency modes. A section in which some spontaneous Raman spectra support a model of inhomogeneous broadening in liquids based on results of picosecond stimulated Raman spectroscopy is presented. The model is that a distribution of environmental sites is created by a distribution in the local density and thus creates inhomogeneous broadening.

  8. Exchange processes across sandy beach barriers: Examples from Malibu and Younger Lagoons, California

    NASA Astrophysics Data System (ADS)

    Swarzenski, P. W.; Dimova, N. T.; Izbicki, J. A.

    2010-12-01

    Estuarine systems in California can manifest themselves as shallow lagoons that are seasonally closed to the ocean by wave-built sand barriers. When a lagoon is physically isolated from the ocean, restricted circulation and sustained material inputs may cause eutrophication, low-oxygen conditions, and persistent algal blooms. During such times, the flow of water and material to the ocean must occur through a beach barrier rather than as surface-water runoff. This subsurface exchange can be modulated by the tides and expressed as a form of submarine groundwater discharge, SGD. Biogeochemically, this transport mode is much different than when a lagoon can exchange freely with the ocean, as redox conditions, organic matter concentrations, water residence times, and salinity can change dramatically. The objectives of this study were to: 1) characterize the seasonal patterns of SGD and associated nutrient loadings in two lagoonal systems that are intermittently isolated from the ocean; 2) assess the physical drivers of this exchange - can we identify the terrestrial versus marine forcing factors and what do these results imply for land / sea exchange along California’s coastline that has many such intermittent coastal systems? Two lagoons in California were studied: Younger Lagoon, an agriculturally-impacted coastal lagoon just north of Santa Cruz, and Malibu Lagoon located north of Los Angeles. Our observations during wet (October 2009 and April 2010) and dry conditions (July 2009) in Malibu captured both open- and closed-barrier scenarios. Lagoon water, groundwater, and seawater were analyzed for 222Rn, salinity, nutrients, DOC, and trace metals during all three field efforts. Initial data and calculations based on radon modeling indicate at least an order of magnitude larger groundwater flux to the lagoon during April 2010 (open barrier) as compared to July 2009, when the barrier was closed. A strong correlation (R2=0.85) between (NO2+NO3) concentrations in surface

  9. New Aspects of the Application of Nuclear Magnetic Resonance to the Study of Chemical Exchange Processes

    NASA Astrophysics Data System (ADS)

    Aganov, A. V.; Klochkov, V. V.; Samitov, Yu Yu

    1985-10-01

    The application of the analysis of the total line shape (ATLS) in dynamic NMR to the investigation of complex chemical exchange is examined. Theoretical aspects of this problem, illustrated in relation to the available experimental data, are described. The methodological problems of dynamic NMR are discussed: the sources of error and the role of the medium, the interpretation of the activation parameters ΔH≠, ΔG≠, and ΔS≠, and also the new varieties of the method and their applications. The bibliography includes 171 references.

  10. Practically convenient and industrially-aligned methods for iridium-catalysed hydrogen isotope exchange processes.

    PubMed

    Cochrane, A R; Idziak, C; Kerr, W J; Mondal, B; Paterson, L C; Tuttle, T; Andersson, S; Nilsson, G N

    2014-06-14

    The use of alternative solvents in the iridium-catalysed hydrogen isotope exchange reaction with developing phosphine/NHC Ir(I) complexes has identified reaction media which are more widely applicable and industrially acceptable than the commonly employed chlorinated solvent, dichloromethane. Deuterium incorporation into a variety of substrates has proceeded to deliver high levels of labelling (and regioselectivity) in the presence of low catalyst loadings and over short reaction times. The preparative outputs have been complemented by DFT studies to explore ligand orientation, as well as solvent and substrate binding energies within the catalyst system.

  11. Formation of silver nanoclusters in transparent polyimides by Ag-K ion-exchange process

    NASA Astrophysics Data System (ADS)

    Carturan, S.; Quaranta, A.; Bonafini, M.; Vomiero, A.; Maggioni, G.; Mattei, G.; de Julián Fernández, C.; Bersani, M.; Mazzoldi, P.; Della Mea, G.

    2007-05-01

    Silver nanoclusters embedded in two transparent fluorinated polyimides, 4,4'-hexafluoroisopropylidene diphthalic anhydride 2,3,5,6-tetramethyl paraphenylene diamine (6FDA-DAD) and 3,3',4,4' biphenyltetracarboxylic acid dianhydride 1,1-bis(4-aminophenyl)-1-phenyl-2,2,2-trifluoroethane (BPDA-3F), have been produced by surface modification with KOH aqueous solution followed by K-assisted Ag doping and thermal reduction in hydrogen atmosphere. The reaction rate of the nucleophilic hydrolysis in KOH, studied by Fourier transform infrared spectroscopy (FT-IR) and Rutherford backscattering spectrometry (RBS), depends on the polyimide chemical structure. After ion-exchange in AgNO{3} solution and subsequent annealing, the polyimide structure recovery was monitored by FT-IR whereas the characteristic surface plasmon absorption band of silver nanoparticles was evidenced by optical absorption measurements. The structure of silver nanoclusters as related to size and size distribution in the different polyimide matrices was thoroughly investigated by Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The collected data evidenced a uniform distribution of Ag clusters of nanometric size after thermal treatment at 300 circC in both polyimides. For the same ion-exchange treatment parameters and annealing temperature, XRD analyses evidenced the presence of crystallites with similar sizes.

  12. Savannah River reactor process water heat exchanger tube structural integrity margin Task Number 92-005-1

    SciTech Connect

    Mertz, G.E.; Barnes, D.M.; Sindelar, R.L.

    1992-02-01

    Twelve process water heat exchangers are designed to remove heat generated in the reactor tank. Each heat exchanger has approximately 9000, 1/2 inch diameter {times} 0.049 inches thick tubes. Minimum structural tubing requirements and the leak rate through postulated tubing defects are developed in this report A comparison of the structural requirements and the defect size calculated to produce leak rates of 0.5 lbs./day demonstrate adequate structural margins against gross tube rupture. Commercial nuclear experience with pressurized water reactor (PWR) steam generator plugging criteria are used for guidance in performing this analysis. It is important to note that the SRS reactors are low energy systems with normal operating pressures of 203 psig at 130{degree}F while the PWR is a high energy system with operating pressures near 2200 psig at 600{degree}F. Clearly the PVM steam generator has loadings which are more severe than the SRS heat exchangers. Consistent with the Regulatory Guide 1.121 criteria both wastage (wall thinning) and cracking are addressed. Structural limits on wall thinning and crack size are developed to preclude gross rupture. ASME Section XI criteria, with the factors of safety recommended by Regulatory Guide 1.121 are used to develop the allowable crack size criteria. Normal operating conditions (pressure, dead weight, and hydraulic drag) are considered with seismic and water hammer accident conditions. Both the wall thinning and crack size criteria are developed for the end-of-evaluation period. Allowances for corrosion, wear, or crack growth have not been included in this analysis Structurally, the tubing is over designed and can tolerate large defects with adequate margins against gross rupture. The structural margins of heat exchanger tubing are evident by contrasting the tubing's structural capacity, per the ASME Code, with its operating conditions/configuration.

  13. Savannah River reactor process water heat exchanger tube structural integrity margin Task Number 92-005-1

    SciTech Connect

    Mertz, G.E.; Barnes, D.M.; Sindelar, R.L.

    1992-02-01

    Twelve process water heat exchangers are designed to remove heat generated in the reactor tank. Each heat exchanger has approximately 9000, 1/2 inch diameter {times} 0.049 inches thick tubes. Minimum structural tubing requirements and the leak rate through postulated tubing defects are developed in this report A comparison of the structural requirements and the defect size calculated to produce leak rates of 0.5 lbs./day demonstrate adequate structural margins against gross tube rupture. Commercial nuclear experience with pressurized water reactor (PWR) steam generator plugging criteria are used for guidance in performing this analysis. It is important to note that the SRS reactors are low energy systems with normal operating pressures of 203 psig at 130{degree}F while the PWR is a high energy system with operating pressures near 2200 psig at 600{degree}F. Clearly the PVM steam generator has loadings which are more severe than the SRS heat exchangers. Consistent with the Regulatory Guide 1.121 criteria both wastage (wall thinning) and cracking are addressed. Structural limits on wall thinning and crack size are developed to preclude gross rupture. ASME Section XI criteria, with the factors of safety recommended by Regulatory Guide 1.121 are used to develop the allowable crack size criteria. Normal operating conditions (pressure, dead weight, and hydraulic drag) are considered with seismic and water hammer accident conditions. Both the wall thinning and crack size criteria are developed for the end-of-evaluation period. Allowances for corrosion, wear, or crack growth have not been included in this analysis Structurally, the tubing is over designed and can tolerate large defects with adequate margins against gross rupture. The structural margins of heat exchanger tubing are evident by contrasting the tubing`s structural capacity, per the ASME Code, with its operating conditions/configuration.

  14. Sorption processes and XRD analysis of a natural zeolite exchanged with Pb(2+), Cd(2+) and Zn(2+) cations.

    PubMed

    Castaldi, Paola; Santona, Laura; Enzo, Stefano; Melis, Pietro

    2008-08-15

    In this study the Pb(2+), Cd(2+) and Zn(2+) adsorption capacity of a natural zeolite was evaluated in batch tests at a constant pH of 5.5 by polluting this mineral with solutions containing increasing concentrations of the three cations to obtain adsorption isotherms. In addition X-ray powder diffraction (XRD) was used to investigate the changes of zeolite structure caused by the exchange with cations of different ionic radius. The zeolite adsorption capacity for the three cations was Zn>Pb>Cd. Moreover a sequential extraction procedure [H(2)O, 0.05 M Ca(NO(3))(2) and 0.02 M EDTA] was applied to zeolite samples used in the adsorption experiments to determine the chemical form of the cations bound to the sorbent. Using this approach it was shown that low concentrations of Pb(2+), Cd(2+) and Zn(2+) were present as water-soluble and exchangeable fractions (<25% of the Me adsorbed), while EDTA extracted most of the adsorbed cations from the zeolite (>27% of the Me adsorbed). The XRD pattern of zeolite, analysed according to the Rietveld method, showed that the main mineralogical phase involved in the adsorption process was clinoptilolite. Besides structure information showed that the incorporation of Pb(2+), Cd(2+) and Zn(2+), into the zeolite frameworks changed slightly but appreciably the lattice parameters. XRD analysis also showed the occurrence of some isomorphic substitution phenomena where the Al(3+) ions of the clinoptilolite framework were replaced by exchanged Pb(2+) cations in the course of the ion exchange reaction. This mechanism was instead less evident in the patterns of the samples doped with Cd(2+) and Zn(2+) cations.

  15. Spin Saturation Transfer Difference NMR (SSTD NMR): A New Tool to Obtain Kinetic Parameters of Chemical Exchange Processes.

    PubMed

    Quirós, María Teresa; Macdonald, Colin; Angulo, Jesús; Muñoz, María Paz

    2016-11-12

    This detailed protocol describes the new Spin Saturation Transfer Difference Nuclear Magnetic Resonance protocol (SSTD NMR), recently developed in our group to study processes of mutual-site chemical exchange that are difficult to analyze by traditional methods. As the name suggests, this method combines the Spin Saturation Transfer method used for small molecules, with the Saturation Transfer Difference (STD) NMR method employed for the study of protein-ligand interactions, by measuring transient spin saturation transfer along increasing saturation times (build-up curves) in small organic and organometallic molecules undergoing chemical exchange. Advantages of this method over existing ones are: there is no need to reach coalescence of the exchanging signals; the method can be applied as long as one signal of the exchanging sites is isolated; there is no need to measure T1 or reach steady state saturation; rate constant values are measured directly, and T1 values are obtained in the same experiment, using only one set of experiments. To test the method, we have studied the dynamics of the hindered rotation of N,N-dimethylamides, for which much data is available for comparison. The thermodynamic parameters obtained using SSTD are very similar to the reported ones (spin-saturation transfer techniques and line-shape analysis). The method can be applied to more challenging substrates that cannot be studied by previous methods. We envisage that the simple experimental set up and the wide applicability of the method to a great variety of substrates will make this a common technique amongst organic and organometallic chemists without extensive expertise in NMR.

  16. Spin Saturation Transfer Difference NMR (SSTD NMR): A New Tool to Obtain Kinetic Parameters of Chemical Exchange Processes

    PubMed Central

    Quirós, María Teresa; Macdonald, Colin; Angulo, Jesús; Muñoz, María Paz

    2016-01-01

    This detailed protocol describes the new Spin Saturation Transfer Difference Nuclear Magnetic Resonance protocol (SSTD NMR), recently developed in our group to study processes of mutual-site chemical exchange that are difficult to analyze by traditional methods. As the name suggests, this method combines the Spin Saturation Transfer method used for small molecules, with the Saturation Transfer Difference (STD) NMR method employed for the study of protein-ligand interactions, by measuring transient spin saturation transfer along increasing saturation times (build-up curves) in small organic and organometallic molecules undergoing chemical exchange. Advantages of this method over existing ones are: there is no need to reach coalescence of the exchanging signals; the method can be applied as long as one signal of the exchanging sites is isolated; there is no need to measure T1 or reach steady state saturation; rate constant values are measured directly, and T1 values are obtained in the same experiment, using only one set of experiments. To test the method, we have studied the dynamics of the hindered rotation of N,N-dimethylamides, for which much data is available for comparison. The thermodynamic parameters obtained using SSTD are very similar to the reported ones (spin-saturation transfer techniques and line-shape analysis). The method can be applied to more challenging substrates that cannot be studied by previous methods. We envisage that the simple experimental set up and the wide applicability of the method to a great variety of substrates will make this a common technique amongst organic and organometallic chemists without extensive expertise in NMR. PMID:27911361

  17. Shelf edge exchange processes-II SEEP2-06, R/V Endeavor cruise 186. Hydrographic data report

    SciTech Connect

    Wilson, C.; Behrens, W.J.; Flagg, C.N.; Wallace, D.W.R.; Wilke, R.J.; Wyman, K.D.

    1989-12-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. Phase I of SEEP consisted of a series of nine cruises and a mooring array across the outer continental shelf of New England during 1983--1984. Phase II focused specifically on the shelf/slope frontal region of the mid-Atlantic bight off the Delmarva Peninsula. Hydrographic data were collected on eight of the six cruises.

  18. A counter-intuitive approach to calculating non-exchangeable 2H isotopic composition of hair: treating the molar exchange fraction fE as a process-related rather than compound-specific variable

    USGS Publications Warehouse

    Landwehr, J.M.; Meier-Augenstein, W.; Kemp, H.F.

    2011-01-01

    Hair is a keratinous tissue that incorporates hydrogen from material that an animal consumes but it is metabolically inert following synthesis. The stable hydrogen isotope composition of hair has been used in ecological studies to track migrations of mammals as well as for forensic and archaeological purposes to determine the provenance of human remains or the recent geographic life trajectory of living people. Measurement of the total hydrogen isotopic composition of a hair sample yields a composite value comprised of both metabolically informative, non-exchangeable hydrogen and exchangeable hydrogen, with the latter reflecting ambient or sample preparation conditions. Neither of these attributes is directly measurable, and the non-exchangeable hydrogen composition is obtained by estimation using a commonly applied mathematical expression incorporating sample measurements obtained from two distinct equilibration procedures. This commonly used approach treats the fraction of exchangeable hydrogen as a mixing ratio, with a minimal procedural fractionation factor assumed to be close or equal to 1. Instead, we propose to use full molar ratios to derive an expression for the non-exchangeable hydrogen composition explicitly as a function of both the procedural fractionation factor α and the molar hydrogen exchange fraction fE. We apply these derivations in a longitudinal study of a hair sample and demonstrate that the molar hydrogen exchange fraction fE should, like the procedural fractionation factor α, be treated as a process-dependent parameter, i.e. a reaction-specific constant. This is a counter-intuitive notion given that maximum theoretical values for the molar hydrogen exchange fraction fE can be calculated that are arguably protein-type specific and, as such, fE could be regarded as a compound-specific constant. We also make some additional suggestions for future approaches to determine the non-exchangeable hydrogen composition of hair and the use of

  19. Anion-exchange resin-based desulfurization process. Annual technical progress report, October 1, 1992--September 30, 1993

    SciTech Connect

    Sheth, A.C.; Dharmapurikar, R.; Strevel, S.D.

    1993-11-01

    Under the DOE Grant No. DE-FG22-90PC90309, the University of Tennessee Space Institute (UTSI) has been directed to further develop an anion-exchange, resin-based desulfurization concept that has been developed and tested on a limited scope for feasibility. From environmental as well as the economic viewpoints, it is necessary that the soluble sulfates of alkali metal sorbents be desulfurized (regenerated) and recycled to make regenerative flue gas desulfurization and MHD spent seed regeneration options more attractive. In order to achieve this, a low-temperature, low-cost desulfurization process to reactivate spent alkali metal sorbents is necessary. UTSI`s anion-exchange, resin-based concept uses the available technology and is believed to satisfy this requirement. In this DOE-sponsored project, UTSI, will perform the following investigations: Screening of commercially available resins; process variables study and improving resin performance; optimization of resin-regeneration step; evaluation of performance enhancers; development of Best-Process Schematic and related economics, and planning for proof-of-concept (POC) scale testing. The above activities have been grouped into five major tasks and the entire project is expected to take thirty-six months to complete.

  20. Circulation and exchange processes on the South Atlantic Bight Continental Shelf: Progress report, July 1, 1988 to June 30, 1989

    SciTech Connect

    Lee, T.N.

    1989-03-01

    The work reported here is part of the Department of Energy sponsored Southeast US Continental Shelf Program. The DOE Program is a coordinated, multi-university, interdisciplinary investigation aimed at understanding the physical, chemical and biological processes in the South Atlantic Bight (SAB: east coast continental shelf region from Cape Hatteras to Cape Canaveral). The program is coordinated by Dr. David Menzel of Skidaway Oceanographic Institute. The activities of the other Program Investigators will be discussed briefly under Program Overview. The University of Miami component of the program involves an investigation of the physical processes regulating the transport and exchange of materials in the shelf waters. The guiding scientific objective of this work is to improve the capability for prediction of the physical environment. The principal scientific task is to determine the relative importance of the forces driving shelf circulation and exchange and to measure the shelf waters' response over variable time and space scales. The influence of physical processes on chemical and biological distributions and their interactions is studied through interdisciplinary investigations, joint analysis and interpretation of data and joint publications. 103 refs., 14 figs.

  1. The organic sea surface microlayer in the upwelling region off Peru and implications for air-sea exchange processes

    NASA Astrophysics Data System (ADS)

    Engel, A.; Galgani, L.

    2015-07-01

    The sea surface microlayer (SML) is at the very surface of the ocean, linking the hydrosphere with the atmosphere, and central to a range of global biogeochemical and climate-related processes. The presence and enrichment of organic compounds in the SML have been suggested to influence air-sea gas exchange processes as well as the emission of primary organic aerosols. Among these organic compounds, primarily of plankton origin, are dissolved exopolymers, specifically polysaccharides and proteins, and gel particles, such as Transparent Exopolymer Particles (TEP) and Coomassie Stainable Particles (CSP). These organic substances often accumulate in the surface ocean when plankton productivity is high. Here, we report results obtained in December 2012 during the SOPRAN Meteor 91 cruise to the highly productive, coastal upwelling regime off Peru. Samples were collected from the SML and from ~ 20 cm below, and were analyzed for polysaccharidic and proteinaceous compounds, gel particles, total and dissolved organic carbon, bacterial and phytoplankton abundance. Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.

  2. Weak interaction processes in supernovae: New probes using charge exchange reaction at intermediate energies

    NASA Astrophysics Data System (ADS)

    Frekers, Dieter

    2005-04-01

    Spin-isospin-flip excitations in nuclei at vanishing momentum transfer are generally referred to as Gamov-Teller (GT) transitions. They are being studied because the simplicity of the excitation makes them an ideal probe for testing nuclear structure models. In astrophysics, GT transitions provide an important input for model calculations and element formation during the explosive phase of a massive star at the end of its life-time. GT transitions in the β- direction (also referred to as isospin lowering T< transitions) have extensively been studied through (p,n) and (3He,t) charge-exchange reactions [B.D. Anderson et al., Phys. Rev. C 36 (1987) 2195, B.D. Anderson et al., Phys. Rev. C 43 (1991) 50, J. Rapaport et al., Phys. Rev. C 24 (1981) 335, H. Akimune et al., Nucl. Phys. A 569 (1994) 245c, Y. Fujita et al., Phys. Lett. B 365 (1996) 29]. The generally good resolution allows easy extraction of the GT distribution and the total B(GT-) strength in the final nucleus. On the other hand, determination of B(GT+) strength through a charge-exchange reaction in the T> direction were mostly done with secondary neutron beams, and as such, they come with significant experimental difficulties. TRIUMF has pioneered this field in the late 80's and early 90's with a rich and highly successful (n,p) program using a several hundred MeV neutron beam from a 7Li(p,n)7Be reaction [R. Helmer, Can. J. Phys. 65 (1987) 588]. In this paper we present the (d,2He) reaction at intermediate energies as another and potentially even more powerful tool for charge-exchange reactions in the T>, resp. β+ direction. The key issue here will be the high resolution of order 100 keV, which provides new and sometimes unexpected insight into nuclear structure phenomena. This program has been launched at the AGOR Superconducting Cyclotron Facility at the KVI Groningen. By now, it covers a wide field of physics questions ranging from few-body physics, the structure of halo-nuclei, to questions pertaining

  3. ANIONIC EXCHANGE PROCESS FOR THE RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS

    DOEpatents

    Bailes, R.H.; Ellis, D.A.; Long, R.S.

    1958-12-16

    Uranium and vanadium can be economically purified and recovered from non- salt roast carbonate leach liquors by adsorption on a strongly basic anionic exchange resin and subsequent selective elution by one of three alternative methods. Method 1 comprises selectively eluting uranium from the resin with an ammonium sulfate solution followed by eluting vanadium from the resin with either 5 M NaCl, saturated (NH/sub 4/)/sub 2/CO/sub 3/, saturated NaHCO/sub 3/, 1 M NaOH, or saturated S0/sub 2/ solutions. Method II comprises selectively eluting vanadium from the resin with either concentrated NaCl or S0/sub 2/ solutions subsequent to pretreatment of the column with either S0/sub 2/ gas, 1 N HCl, or 0.1 N H/sub 2/8O/sub 4/ followed by eluting uranium from the resin with solutions containing 0.9 M NH/sub 4/Cl or NaCl and 0.1 Cl. Method III comprises flowing the carbonate leac solutlon through a first column of a strongly basic anlonlc exchange resin untll vanadium breakthrough occurs, so that the effluent solution is enriched ln uranium content and the vanadium is chiefly retalned by the resln, absorbing the uranlum from the enriched effluent solution on a second column of a strongly basic anionic exchange resin, pretreating the first column with either 0.1 N HCl, 0.1 H/sub 2/SO/sub 4/, C0/sub 2/ gas, or ammonium sulfate, selectively eluting the vanadlum from the column with saturated S0/sub 2/ solution, pretreatlng the second column with either 0.1 N HCl or S0/sub 2/ gas, selectively eluting residual vanadium from the column with saturated S0/sub 2/ solution, and then eluting the uranium from the column with either 0.1 N HCl and 1 N NaCl orO.l N HCl and 1 N NH/sub 4/Cl.

  4. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    DOEpatents

    Sharp, David W.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  5. Modeling foreign exchange market activity around macroeconomic news: Hawkes-process approach

    NASA Astrophysics Data System (ADS)

    Rambaldi, Marcello; Pennesi, Paris; Lillo, Fabrizio

    2015-01-01

    We present a Hawkes-model approach to the foreign exchange market in which the high-frequency price dynamics is affected by a self-exciting mechanism and an exogenous component, generated by the pre-announced arrival of macroeconomic news. By focusing on time windows around the news announcement, we find that the model is able to capture the increase of trading activity after the news, both when the news has a sizable effect on volatility and when this effect is negligible, either because the news in not important or because the announcement is in line with the forecast by analysts. We extend the model by considering noncausal effects, due to the fact that the existence of the news (but not its content) is known by the market before the announcement.

  6. Modeling foreign exchange market activity around macroeconomic news: Hawkes-process approach.

    PubMed

    Rambaldi, Marcello; Pennesi, Paris; Lillo, Fabrizio

    2015-01-01

    We present a Hawkes-model approach to the foreign exchange market in which the high-frequency price dynamics is affected by a self-exciting mechanism and an exogenous component, generated by the pre-announced arrival of macroeconomic news. By focusing on time windows around the news announcement, we find that the model is able to capture the increase of trading activity after the news, both when the news has a sizable effect on volatility and when this effect is negligible, either because the news in not important or because the announcement is in line with the forecast by analysts. We extend the model by considering noncausal effects, due to the fact that the existence of the news (but not its content) is known by the market before the announcement.

  7. Carbon mass-balance modeling and carbon isotope exchange processes in the Curonian Lagoon

    NASA Astrophysics Data System (ADS)

    Barisevičiūtė, Rūta; Žilius, Mindaugas; Ertürk, Ali; Petkuvienė, Jolita

    2016-04-01

    The Curonian lagoon one of the largest coastal lagoons in Europe is located in the southeastern part of the Baltic Sea and lies along the Baltic coast of Lithuania and the Kaliningrad region of Russia. It is influenced by a discharge of the Nemunas and other smaller rivers and saline water of the Baltic Sea. The narrow (width 0.4 km, deep 8-14 m) Klaipėda Strait is the only way for fresh water run-off and brackish water intrusions. This research is focused on carbon isotope fractionations related with air - water exchange, primary production and organic carbon sedimentation, mineralization and uptake from both marine and terrestrial sources.

  8. Using Process Knowledge to Manage Disposal Classification of Ion-Exchange Resin - 13566

    SciTech Connect

    Bohnsack, Jonathan N.; James, David W.

    2013-07-01

    It has been previously shown by EPRI [1] that Class B and C resins represent a small portion by volume of the overall generation of radioactively contaminated resins. In fact, if all of the resins were taken together the overall classification would meet Class A disposal requirements. Lowering the classification of the ion exchange resins as they are presented for disposal provides a path for minimizing the amount of waste stored. Currently there are commercial options for blending wastes from various generators for Class A disposal in development. The NRC may have by this time introduced changes and clarifications to the Branch Technical Position (BTP) on Concentration Averaging and Encapsulation [2] that may ultimately add more flexibility to what can be done at the plant level. The BTP has always maintained that mixtures of resins that are combined for ALARA purposes or operational efficiency can be classified on the basis of the mixture. This is a point often misinterpreted and misapplied. This paper will address options that can be exercised by the generator that can limit B and C waste generation by more rigorous tracking of generation and taking advantage of the normal mix of wastes. This can be achieved through the monitoring of reactor coolant chemistry data and coupled with our knowledge of radionuclide production mechanisms. This knowledge can be used to determine the overall accumulation of activity in ion-exchange resins and provides a 'real-time' waste classification determination of the resin and thereby provide a mechanism to reduce the production of waste that exceeds class A limits. It should be noted that this alternative approach, although rarely used in a nuclear power plant setting, is acknowledged in the original BTP on classification [3] as a viable option for determining radionuclide inventories for classification of waste. Also included is a discussion of an examination performed at the Byron plant to estimate radionuclide content in the

  9. Airborne mapping of earth-atmosphere exchange processes and remote sensing of surface characteristics over heterogeneous areas

    SciTech Connect

    Schuepp, P.H.; Ogunjemiyo, S.; Mitic, C.M.

    1996-10-01

    Given the spatial heterogeneity of much of the biosphere, and the difficulty in establishing representative observation points at the surface, airborne flux observations coupled with airborne and satellite-based remote sensing plays an increasing role in the description of surface-atmosphere exchange processes. Our paper summarizes flux mapping procedures based on low level airborne sampling by the Canadian Twin Otter research aircraft, over three ecosystems with different degrees of spatial heterogeneity (grassland, mixed agricultural land and boreal forest). Observations show that the degree to which flux maps for heat, moisture and trace gases are correlated, among themselves and with maps of radiometrically observable surface features, cannot be generalized. This means that, wherever possible, algorithms for the prediction of surface-atmosphere exchange processes based on remote sensing observations should be developed for - and tested in - each structurally different ecosystem. The flexibility of deployment of aircraft serves well, both for the gathering of data to develop such algorithms, as well as for their testing at scales that integrate over an adequate sample of the various components that constitute a spatially heterogeneous ecosystem. 23 refs., 4 figs.

  10. Near-infrared spectroscopic observation of the ageing process in archaeological wood using a deuterium exchange method.

    PubMed

    Tsuchikawa, Satoru; Yonenobu, Hitoshi; Siesler, H W

    2005-03-01

    The ageing degradation of the fine wood structure of dry-exposed archaeological wood was investigated by Fourier transform near-infrared spectroscopy with the aid of a deuterium exchange method. The archaeological wood sample was taken from an old wooden temple in Japan (late 7th century), which has been designated as a UNESCO world heritage site. Comparing the analytical results with those of a modern wood sample of the same species, the ageing process of archaeological wood was clarified as a change in the state of order on a macromolecular structural level. It can be concluded from NIR spectra that the amorphous region, and partially semi-crystalline region, in cellulose, hemicellulose, and lignin decreased by the ageing degradation, whereas the crystalline region in cellulose was not affected by the ageing. The accessibility of the diffusant to effect H/D-exchange was monitored by an OH-related absorption band obtained from FT-NIR transmission spectroscopy and characteristically varied with the ageing process of the wood samples, the absorption bands characteristic of a specific state of order and the diffusion agent. Finally, we proposed a morphological model to describe the variation of the fine structure of the microfibrils in the cell wall with ageing degradation. The state of microfibrils changed loosely by ageing, so that elementary fibrils were arranged loosely under 5 A, whereas several elementary fibrils in the modern wood were arranged in very close proximity under 3 A to each other.

  11. Anion-exchange resin-based desulfurization process. Quarterly technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Sheth, A.C.; Dharmapurikar, R.

    1993-06-01

    Under DOE Grant No. FG22-90PC90309, the University of Tennessee Space Institute (UTSI) is contracted to further develop its anion-exchange, resin-based desulfurization concept to desulfurize alkali metal sulfates. From environmental as well as economic viewpoints, it is necessary to remove soluble sulfates from the wastes created by flue gas desulfurization systems. In order to do this economically, a low-cost desulfurization process for spent sorbents is necessary. UTSI`s anion-exchange resin-based desulfurization concept is believed to satisfy these requirements. UTSI has completed the batch mode experiments to locate the position of the CO{sub 3}{sup 2} and SO{sub 4}{sup 2} ions in the affinity chart. Also, the reviews of the ASPEN Code`s capabilities and EPRI-TAG document`s methodology are in progress for developing the Best Process Schematic and related economics. The fixed-bed experiments are also in progress to evaluate the cycle efficiency of the candidate resins. So far we have completed ten consecutive cycles of exhaustion/carbonation and regeneration for IRA-35 resin. Because of the past problems (now resolved) with the fixed-bed system, the addition of batch mode screening experiments, Christmas holidays and spring break, and the moving of UTSI`s Chemistry Laboratory to a new location, the program is about 6--8 weeks behind schedule, but well within the budget.

  12. A Weibull distribution with power-law tails that describes the first passage time processes of foreign currency exchanges

    NASA Astrophysics Data System (ADS)

    Sazuka, Naoya; Inoue, Jun-Ichi

    2007-03-01

    A Weibull distribution with power-law tails is confirmed as a good candidate to describe the first passage time process of foreign currency exchange rates. The Lorentz curve and the corresponding Gini coefficient for a Weibull distribution are derived analytically. We show that the coefficient is in good agreement with the same quantity calculated from the empirical data. We also calculate the average waiting time which is an important measure to estimate the time for customers to wait until the next price change after they login to their computer systems. By assuming that the first passage time distribution might change its shape from the Weibull to the power-law at some critical time, we evaluate the averaged waiting time by means of the renewal-reward theorem. We find that our correction of tails of the distribution makes the averaged waiting time much closer to the value obtained from empirical data analysis. We also discuss the deviation from the estimated average waiting time by deriving the waiting time distribution directly. These results make us conclude that the first passage process of the foreign currency exchange rates is well described by a Weibull distribution with power-law tails.

  13. Site-resolved measurement of microsecond-to-millisecond conformational-exchange processes in proteins by solid-state NMR spectroscopy.

    PubMed

    Tollinger, Martin; Sivertsen, Astrid C; Meier, Beat H; Ernst, Matthias; Schanda, Paul

    2012-09-12

    We demonstrate that conformational exchange processes in proteins on microsecond-to-millisecond time scales can be detected and quantified by solid-state NMR spectroscopy. We show two independent approaches that measure the effect of conformational exchange on transverse relaxation parameters, namely Carr-Purcell-Meiboom-Gill relaxation-dispersion experiments and measurement of differential multiple-quantum coherence decay. Long coherence lifetimes, as required for these experiments, are achieved by the use of highly deuterated samples and fast magic-angle spinning. The usefulness of the approaches is demonstrated by application to microcrystalline ubiquitin. We detect a conformational exchange process in a region of the protein for which dynamics have also been observed in solution. Interestingly, quantitative analysis of the data reveals that the exchange process is more than 1 order of magnitude slower than in solution, and this points to the impact of the crystalline environment on free energy barriers.

  14. Processes Controlling Air-Sea Exchange of CO2 in a Subtropical Pacific Estuary

    NASA Astrophysics Data System (ADS)

    Fagan, K. E.; MacKenzie, F. T.; Andersson, A. J.

    2004-12-01

    In contrast to the open ocean, shallow-water coastal ocean air-sea CO2 exchange has been given relatively little attention. Available data suggest that continental shelves may act as sinks for atmospheric CO2 while estuaries, coral reefs, and upwelling regions, in general may act as sources. However, all data do not comply with these general trends and the data available are geographically relatively scarce and short in duration. Consequently, at the time, it is not possible to unequivocally conclude whether the global shallow-water ocean acts as a source or a sink of atmospheric CO2. The present study represents the first evaluation of air-sea CO2 exchange for a subtropical high island of the Pacific. Kaneohe Bay, located on the eastern side of Oahu, Hawaii, is a complex estuarine system with a large barrier coral reef, numerous patch reefs, and several riverine inputs. Since Sep 2003 surface water has been collected bimonthly throughout the bay for total alkalinity (TA) and dissolved inorganic carbon (DIC) analysis. The partial pressure of carbon dioxide (PCO2) is calculated using TA, DIC, and constants from Mehrbach et al. (1973), refit by Dickson and Millero (1987). For all data collected before Dec 2003, PCO2s were above the atmospheric level (375 uatm) for all sites throughout the bay (400 to 1300 uatm). The highest values occurred at sites within Kaneohe Stream. The lowest values, still above atmospheric concentration, occurred at sites outside the barrier reef, indicating that high surface water PCO2s extend beyond the boundaries of the bay. Two large storms occurred at the end of Nov 2003 and the end of Feb 2004 that dramatically reduced PCO2s to at or below the atmospheric partial pressure throughout the entire bay. This appears to be the result of increased river runoff adding excess nutrients to the bay that enhanced photosynthesis throughout the bay thereby drawing down surface water CO2. Despite the significant effects of the storms, average PCO2s for

  15. Conversion of ion-exchange resins, catalysts and sludges to glass with optional noble metal recovery using the GMODS process

    SciTech Connect

    Forsberg, C.W.; Beahm, E.C.

    1996-11-01

    Chemical processing and cleanup of waste streams (air and water) typically result in products, clean air, clean water, and concentrated hazardous residues (ion exchange resins, catalysts, sludges, etc.). Typically, these streams contain significant quantities of complex organics. For disposal, it is desirable to destroy the organics and immobilize any heavy metals or radioactive components into stable waste forms. If there are noble metals in the residues, it is desirable to recover these for reuse. The Glass Material Oxidation and Dissolution System (GMODS) is a new process that directly converts radioactive and hazardous chemical wastes to borosilicate glass. GMODS oxidizes organics with the residue converted to glass; converts metals, ceramics, and amorphous solids to glass; converts halides (eg chlorides) to borosilicate glass and a secondary sodium halide stream; and recovers noble metals. GMODS has been demonstrated on a small laboratory scale (hundreds of grams), and the equipment needed for larger masses has been identified.

  16. Enhanced ammonia nitrogen removal using consistent ammonium exchange of modified zeolite and biological regeneration in a sequencing batch reactor process.

    PubMed

    Wei, Yun Xia; Ye, Zheng Fang; Wang, Yao Long; Ma, Ming Guang; Li, Yan Feng

    2011-01-01

    Utilizing preferential ion exchange of the modified zeolite, the zeo-sequencing batch reactor (SBR) is recommended for a new nitrogen removal process. In this study, natural zeolite was modified by sodium chloride to enhance sorption capacity for ammoniacal nitrogen. The untreated and treated zeolite was characterized by XPS and XRD techniques. The sorption isotherm tests showed that equilibrium sorption data were better represented by the Langmuir model than by the Freundlich model. Treatment of natural zeolite by sodium chloride increased the sorption capacity for ammoniacal nitrogen removal from aqueous solutions. As a result of the continuous bioregeneration of ammonium saturated zeolite-floc in the SBR, the nitrogen removal efficiency of the zeo-SBR was relatively ideal. Scanning electron microscopy results showed that microbes were abundant in the zeo-SBR process.

  17. Modeling of cold start processes and performance optimization for proton exchange membrane fuel cell stacks

    NASA Astrophysics Data System (ADS)

    Zhou, Yibo; Luo, Yueqi; Yu, Shuhai; Jiao, Kui

    2014-02-01

    In this study, a cold start model for proton exchange membrane fuel cell (PEMFC) stacks is developed, and a novel start-up method, variable heating and load control (VHLC), is proposed and evaluated. The main idea is to only apply load to the neighboring still-active cells, and to apply external heating to certain cells inside the stack simultaneously (load is not applied to the cells fully blocked by ice, although these cells can gain heat from neighboring cells). With the VHLC method, it is found that the stack voltage first increases, then decreases due to the full blockage of ice in some of the individual cells, and finally the dead cells are heated by the other active cells and activated again one by one. Based on this method, the external heating power and the stack self-heating ability are utilized more efficiently. With proper implementation of the VHLC method, it is demonstrated that the cold stat performance can be improved significantly, which is critically important for PEMFC in automotive applications.

  18. RANS Simulation of Passive Scalar Residence Times and Exchange Processes in Idealized and Natural Stream Systems

    NASA Astrophysics Data System (ADS)

    Drost, Kevin; Jackson, Tracie; Haggerty, Roy; Apte, Sourabh

    2011-11-01

    Natural stream systems contain a variety of dead zones characterized by flow separation, a mixing layer, and a recirculation zone. These dead zones play an important role in stream solute transport studies. Previous published work has focused on idealized storage zone geometries studied in laboratory flumes. Using RANS simulations, this study first examines these idealized geometries to determine the appropriate scaling relationships between idealized dead zone geometries and the residence times of a passive scalar. These scaling relationships are then applied to measurements from natural systems. The field-measured geometries are located in Oak and Soap creeks near Corvallis, Oregon. Field measurements for the natural systems included: (a) survey measurements to delineate storage zone morphologies; (b) Marsh-McBirney and acoustic Doppler velocimetry measurements for model boundary conditions and computation of turbulence parameters; and (c) continuous salt injections within storage zones and electrical conductivity measurements at point locations in the main channel and storage zones to quantify exchange rates and residence times. This work is sponsored by NSF-EAR project #0943570.

  19. Exchange bias in (La,Ca)MnO3 bilayers: influence of cooling process

    NASA Astrophysics Data System (ADS)

    Restrepo-Parra, E.; Agudelo, J. D.; Restrepo, J.

    2012-12-01

    The exchange bias (EB) phenomenon in La2/3Ca1/3MnO3/La1/3Ca2/3MnO3 bilayers was studied using Monte Carlo simulations combined with the Heisenberg model and the Metropolis algorithm. These simulations were carried out using the model proposed by Kiwi for an uncompensated interface. The Hamiltonian considered several terms corresponding to the nearest neighbor interaction, magnetocrystalline anisotropy and Zeeman effect. Several interactions in the ferromagnetic (FM), antiferromagnetic (AFM) and FM/AFM interface were considered, depending on the type of interacting ion (Mn3+eg, Mn3+eg‧ or Mn4+d3). The influence of field cooling and cooling temperature on the EB was analyzed and discussed. Regarding the field cooling, it caused an increase in the EB until a certain critical value was reached. After that, its effect was almost negligible. On the other hand, at low values of cooling temperature, not only the EB but also the coercive field were enhanced.

  20. Influence of exchange group of modified glycidyl methacrylate polymer on phenol removal: A study by batch and continuous flow processes.

    PubMed

    Aversa, Thiago Muza; da Silva, Carla Michele Frota; da Rocha, Paulo Cristiano Silva; Lucas, Elizabete Fernandes

    2016-11-01

    Contamination of water by phenol is potentially a serious problem due to its high toxicity and its acid character. In this way some treatment process to remove or reduce the phenol concentration before contaminated water disposal on the environment is required. Currently, phenol can be removed by charcoal adsorption, but this process does not allow easy regeneration of the adsorbent. In contrast, polymeric resins are easily regenerated and can be reused in others cycles of adsorption process. In this work, the interaction of phenol with two polymeric resins was investigated, one of them containing a weakly basic anionic exchange group (GD-DEA) and the other, a strongly basic group (GD-QUAT). Both ion exchange resins were obtained through chemical modifications from a base porous resin composed of glycidyl methacrylate (GMA) and divinyl benzene (DVB). Evaluation tests with resins were carried out with 30 mg/L of phenol in water solution, at pH 6 and 10, employing two distinct processes: (i) batch, to evaluate the effect of temperature, and (ii) continuous flow, to assess the breakthrough of the resins. Batch tests revealed that the systems did not follow the model proposed by Langmuir due to the negative values obtained for the constant b and for the maximum adsorption capacity, Q0. However, satisfactory results for the constants KF and n allowed assuming that the behavior of systems followed the Freundlich model, leading to the conclusion that resin GD-DEA had the best interaction with the phenol when in a solution having pH 10 (phenoxide ions). The continuous flow tests corroborated this conclusion since the performance of GD-DEA in removing phenol was also best at pH 10, indicating that the greater availability of the electron pair in the resin with the weakly basic donor group contributed to enhance the resin's interaction with the phenoxide ions.

  1. Extensive separations (CLEAN) processing strategy compared to TRUEX strategy and sludge wash ion exchange

    SciTech Connect

    Knutson, B.J.; Jansen, G.; Zimmerman, B.D.; Seeman, S.E.; Lauerhass, L.; Hoza, M.

    1994-08-01

    Numerous pretreatment flowsheets have been proposed for processing the radioactive wastes in Hanford`s 177 underground storage tanks. The CLEAN Option is examined along with two other flowsheet alternatives to quantify the trade-off of greater capital equipment and operating costs for aggressive separations with the reduced waste disposal costs and decreased environmental/health risks. The effect on the volume of HLW glass product and radiotoxicity of the LLW glass or grout product is predicted with current assumptions about waste characteristics and separations processes using a mass balance model. The prediction is made on three principal processing options: washing of tank wastes with removal of cesium and technetium from the supernatant, with washed solids routed directly to the glass (referred to as the Sludge Wash C processing strategy); the previous steps plus dissolution of the solids and removal of transuranic (TRU) elements, uranium, and strontium using solvent extraction processes (referred to as the Transuranic Extraction Option C (TRUEX-C) processing strategy); and an aggressive yet feasible processing strategy for separating the waste components to meet several main goals or objectives (referred to as the CLEAN Option processing strategy), such as the LLW is required to meet the US Nuclear Regulatory Commission Class A limits; concentrations of technetium, iodine, and uranium are reduced as low as reasonably achievable; and HLW will be contained within 1,000 borosilicate glass canisters that meet current Hanford Waste Vitrification Plant glass specifications.

  2. Numerical evaluation of static-chamber measurements of soil-atmospheric gas exchange--Identification of physical processes

    USGS Publications Warehouse

    Healy, Richard W.; Striegl, Robert G.; Russell, Thomas F.; Hutchinson, Gordon L.; Livingston, Gerald P.

    1996-01-01

    The exchange of gases between soil and atmosphere is an important process that affects atmospheric chemistry and therefore climate. The static-chamber method is the most commonly used technique for estimating the rate of that exchange. We examined the method under hypothetical field conditions where diffusion was the only mechanism for gas transport and the atmosphere outside the chamber was maintained at a fixed concentration. Analytical and numerical solutions to the soil gas diffusion equation in one and three dimensions demonstrated that gas flux density to a static chamber deployed on the soil surface was less in magnitude than the ambient exchange rate in the absence of the chamber. This discrepancy, which increased with chamber deployment time and air-filled porosity of soil, is attributed to two physical factors: distortion of the soil gas concentration gradient (the magnitude was decreased in the vertical component and increased in the radial component) and the slow transport rate of diffusion relative to mixing within the chamber. Instantaneous flux density to a chamber decreased continuously with time; steepest decreases occurred so quickly following deployment and in response to such slight changes in mean chamber headspace concentration that they would likely go undetected by most field procedures. Adverse influences of these factors were reduced by mixing the chamber headspace, minimizing deployment time, maximizing the height and radius of the chamber, and pushing the rim of the chamber into the soil. Nonlinear models were superior to a linear regression model for estimating flux densities from mean headspace concentrations, suggesting that linearity of headspace concentration with time was not necessarily a good indicator of measurement accuracy.

  3. Anion-exchange resin-based desulfurization process. Annual technical progress report, October 1, 1991--September 30, 1992

    SciTech Connect

    Sheth, A.C.; Strevel, S.D.; Dharmapurikar, R.

    1992-12-31

    Under the current grant, the University of Tennessee Space Institute (UTSI) will carry out the bench scale evaluation and further development of the anion-exchange resin-based desulfurization concept to desulfurize alkali metal sulfates. This concept has been developed and patented by UTSI under US Patent No. 4,917,874. The developmental program proposed under this DOE grant includes screening of commercially available resins to select three candidate resins for further study. These three resins will undergo a series of experiments designed to test the resins` performance under different process conditions (including the use of spent MHD seed material). The best of these resins will be used in optimizing the regeneration step and in testing the effects of performance enhancers. The process schematic developed from the results will be used to estimate the related economics. During this reporting period, October 1, 1991 to September 30, 1992, analysis of batch mode screening experiments was completed to select three candidate resins for process variables study in the fixed-bed set-up. This setup was modified and the experiments were carded out to evaluate effects of major process variables. The analysis of fixed-bed experiments is going on and we have also started simple batch mode experiments to identify desirable conditions for resin regeneration step. We have also started simple process engineering type calculations to determine the trade-off between the solution concentration and the resulting evaporation/concentration load.

  4. The Exchange of Soil Nitrite and Atmospheric HONO: a Missing Process in the Nitrogen Cycle and Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Cheng, Yafang; Su, Hang; Oswald, Robert; Behrendt, Thomas; Trebs, Ivonne; Meixner, Franz X.; Andreae, Meinrat O.; Pöschl, Ulrich

    2013-04-01

    Hydroxyl radicals (OH) are a key species in atmospheric photochemistry. In the lower atmosphere, up to ~30% of the primary OH radical production is attributed to the photolysis of nitrous acid (HONO), and field observations suggest a large missing source of HONO. The dominant sources of N(III) in soil, however, are biological nitrification and denitrification processes, which produce nitrite ions from ammonium (by nitrifying microbes) as well as from nitrate (by denitrifying microbes). We show that soil nitrite can release HONO and explain the reported strength and diurnal variation of the missing source. We also show that the soil-atmosphere exchange of N(III), though not considered in the N cycle, might result in significant amount of reactive nitrogen emission (comparable to soil NO emissions). Fertilized soils with low pH appear to be particularly strong sources of HONO and OH. Thus, agricultural activities and land-use changes may strongly influence the oxidizing capacity of the atmosphere. Because of the widespread occurrence of nitrite-producing microbes and increasing N and acid deposition, the release of HONO from soil may also be important in natural environments, including forests and boreal regions. In view of the potentially large impact on atmospheric chemistry and global environmental change, we recommend further studies of HONO release from soil nitrite and related processes in the biogeochemical cycling of N in both agricultural and natural environments. Reference: Su, H., Cheng, Y., et al., Soil Nitrite as a Source of Atmospheric HONO and OH Radicals, Science, 333, 1616-1618, 10.1126/science.1207687, 2011. Su, H., et al., The Exchange of Soil Nitrite and Atmospheric HONO: A Missing Process in the Nitrogen Cycle and Atmospheric Chemistry, NATO Science for Peace and Security Series C: Environmental Security, Springer Netherlands, 93-99, 2013.

  5. Processes for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil, and apparatuses for treating biomass-derived pyrolysis oil

    DOEpatents

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-11-24

    Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed through the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.

  6. Air-snow exchange of nitrate: a modelling approach to investigate physicochemical processes in surface snow at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Bock, Josué; Savarino, Joël; Picard, Ghislain

    2016-10-01

    Snowpack is a multiphase (photo)chemical reactor that strongly influences the air composition in polar and snow-covered regions. Snowpack plays a special role in the nitrogen cycle, as it has been shown that nitrate undergoes numerous recycling stages (including photolysis) in the snow before being permanently buried in the ice. However, the current understanding of these physicochemical processes remains very poor. Several modelling studies have attempted to reproduce (photo)chemical reactions inside snow grains, but these have relied on strong assumptions to characterise snow reactive properties, which are not well defined. Air-snow exchange processes such as adsorption, solid-state diffusion, or co-condensation also affect snow chemical composition. Here, we present a physically based model of these processes for nitrate. Using as input a 1-year-long time series of atmospheric nitrate concentration measured at Dome C, Antarctica, our model reproduces with good agreement the nitrate measurements in the surface snow. By investigating the relative importance of the main exchange processes, this study shows that, on the one hand, the combination of bulk diffusion and co-condensation allows a good reproduction of the measurements (correlation coefficient r = 0.95), with a correct amplitude and timing of summer peak concentration of nitrate in snow. During winter, nitrate concentration in surface snow is mainly driven by thermodynamic equilibrium, whilst the peak observed in summer is explained by the kinetic process of co-condensation. On the other hand, the adsorption of nitric acid on the surface of the snow grains, constrained by an already existing parameterisation for the isotherm, fails to fit the observed variations. During winter and spring, the modelled concentration of adsorbed nitrate is respectively 2.5 and 8.3-fold higher than the measured one. A strong diurnal variation driven by the temperature cycle and a peak occurring in early spring are two other

  7. Standardised electronic information exchange between nurses in home care and GPs - the medication information processes.

    PubMed

    Lyngstad, Merete; Melby, Line; Hellesø, Ragnhild

    2012-01-01

    Improving the transfer of medication information between home care nurses and patient's general practitioners (GP) is assessed as essential for ensuring safe care. In this paper, we report on a Norwegian study in which we investigated how home care nurses experienced using standardised electronic messages in their communication with the GPs. Standardised electronic solutions were developed and implemented to resolve gaps in the medication information processes when patients received nursing care in their homes. Data was collected combining focus group interviews and individual interviews with nurses from home care in two municipalities in Norway. The data was analysed using systematic text condensation. We found that the nurses reported mostly advantages, but also some disadvantages regarding accuracy, consistency, availability and efficiency in the medication information process when they used standardised electronic messages. Efforts to refine the electronic messages to achieve better work processes and patient safety should be addressed.

  8. Standardised electronic information exchange between nurses in home care and GPs – the medication information processes

    PubMed Central

    Lyngstad, Merete; Melby, Line; Hellesø, Ragnhild

    2012-01-01

    Improving the transfer of medication information between home care nurses and patient’s general practitioners (GP) is assessed as essential for ensuring safe care. In this paper, we report on a Norwegian study in which we investigated how home care nurses experienced using standardised electronic messages in their communication with the GPs. Standardised electronic solutions were developed and implemented to resolve gaps in the medication information processes when patients received nursing care in their homes. Data was collected combining focus group interviews and individual interviews with nurses from home care in two municipalities in Norway. The data was analysed using systematic text condensation. We found that the nurses reported mostly advantages, but also some disadvantages regarding accuracy, consistency, availability and efficiency in the medication information process when they used standardised electronic messages. Efforts to refine the electronic messages to achieve better work processes and patient safety should be addressed. PMID:24199097

  9. A two-process model describes the hydrogen exchange behavior of cytochrome c in the molten globule state with various extents of acetylation.

    PubMed

    Szewczuk, Z; Konishi, Y; Goto, Y

    2001-08-14

    Acetylation of Lys residues of horse cytochrome c steadily stabilizes the molten globule state in 18 mM HCl as more Lys residues are acetylated [Goto and Nishikiori (1991) J. Mol. Biol. 222, 679-686]. The dynamic features of the molten globule state were characterized by hydrogen/deuterium exchange of amide protons, monitored by mass spectrometry as each deuteration increased the protein mass by 1 Da. Electrospray mass spectrometry enabled us to monitor simultaneously the exchange kinetics of more than seven species with a different number of acetyl groups. One to four Lys residue-acetylated cytochrome c showed almost no protection of the amide protons from rapid exchange. The transition from the unprotected to the protected state occurred between five and eight Lys residue-acetylated species. For species with more than nine acetylated Lys residues, the exchange kinetics were independent of the extent of acetylation, and 26 amide protons were protected at 60 min of exchange, indicating the formation of a rigid hydrophobic core with hydrogen-bonded secondary structures. The apparent transition to the protected state required a higher degree of acetylation than the conformational transition measured by circular dichroism, which had a midpoint at about four acetylated residues. This difference in the transitions suggested a two-process model in which the exchange occurs either from the protected folded state or from the unprotected unfolded state through global unfolding. On the basis of a two-process model and with the reported values of the exchange and stability parameters, we simulated the exchange kinetics of a series of acetylated cytochrome c species. The simulated kinetics reproduced the observed kinetics well, indicating validity of this model for hydrogen exchange of the molten globule state.

  10. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    DTIC Science & Technology

    2015-01-15

    ethylene -ran- butylene)-block-polystyrene (QSEBS). Compared to QSEBS, the preparative process of PI-ran-P[VBTMA][Cl] is more environmental friendly...monomers; high ionic content can be achieved leading to high IEC. While QSEBS membranes were prepared by quaternizing films cast from chlorinated SEBS

  11. Novel process combining anaerobic-aerobic digestion and ion exchange resin for full recycling of cassava stillage in ethanol fermentation.

    PubMed

    Yang, Xinchao; Wang, Ke; Wang, Huijun; Zhang, Jianhua; Mao, Zhonggui

    2017-04-01

    A novel cleaner ethanol production process has been developed. Thin stillage is treated initially by anaerobic digestion followed by aerobic digestion and then further treated by chloride anion exchange resin. This allows the fully-digested and resin-treated stillage to be completely recycled for use as process water in the next ethanol fermentation batch, which eliminates wastewater discharges and minimizes consumption of fresh water. The method was evaluated at the laboratory scale. Process parameters were very similar to those found using tap water. Maximal ethanol production rate in the fully-recycled stillage was 0.9g/L/h, which was similar to the 0.9g/L/h found with the tap water control. The consumption of fresh water was reduced from 4.1L/L (fresh water/ethanol) to zero. Compared with anaerobically-aerobically digested stillage which had not been treated with resin, the fermentation time was reduced by 28% (from 72h to 52h) and reached the level achieved with tap water. This novel process can assist in sustainable development of the ethanol industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Analytical characterization of complex, biotechnological feedstocks by pH gradient ion exchange chromatography for purification process development.

    PubMed

    Kröner, Frieder; Hanke, Alexander T; Nfor, Beckley K; Pinkse, Martijn W H; Verhaert, Peter D E M; Ottens, Marcel; Hubbuch, Jürgen

    2013-10-11

    The accelerating growth of the market for proteins and the growing interest in new, more complex molecules are bringing new challenges to the downstream process development of these proteins. This results in a demand for faster, more cost efficient, and highly understood downstream processes. Screening procedures based on high-throughput methods are widely applied nowadays to develop purification processes for proteins. However, screening highly complex biotechnological feedstocks, such as complete cell lysates containing target proteins often expressed with a low titre, is still very challenging. In this work we demonstrate a multidimensional, analytical screening approach based on pH gradient ion exchange chromatography (IEC), gel electrophoresis and protein identification via mass spectrometry to rationally characterize a biotechnological feedstock for the purpose of purification process development. With this very simple characterization strategy a two-step purification based on consecutive IEC operations was rapidly laid out for the purification of a diagnostic protein from a cell lysate reaching a purity of ∼80%. The target protein was recombinantly produced using an insect cell expression system.

  13. Circulation and exchange processes on the South Atlantic Bight: Progress report, June 1, 1986 to May 31, 1987

    SciTech Connect

    Lee, T.N.

    1987-01-01

    A SPring Removal EXperiment (SPREX) was devised to investigate the processes involved in the transport of fresh water from the inner-shelf in the vicinity of Savannah GA where river discharge is greatest, to the outer shelf south of Cape Fear, SC, where rapid exchange with the offshore current can occur. The SPREX experiment was conducted in the spring of 1985, however prior to this we conducted a pilot experiment called pre-SPREX during the spring of 1984. The studies took place in the spring in order to investigate the processes associated with the offshore transport of low salinity nearshore waters to the oceanic sink that is believed to occur during this season. Available evidence indicates that this spring removal process occurs as an episodic response to: (1) accumulation of river run-off in the Coastal Boundary zone, (2) northeastward wind events, and (3) seasonal development of shelf stratification. During the period from June 1, 1986 to May 31, 1987, efforts were concentrated on: (1) publication of scientific results from the GABEX studies; (2) processing and analysis of the pre-SPREX and SPREX data sets; (3) cooperative studies with other DOE/SAB investigators; and (4) planning for the Fall Transport Experiment (FLEX).

  14. NNARX model structure for the purposes of controller design and optimization of heat exchanger process control training system operation

    NASA Astrophysics Data System (ADS)

    Mulyana, Tatang

    2017-04-01

    This paper presents a performance of Neural Network Autoregressive with Exogenous Input (NNARX) model structure and evaluates the training data that provides robust model on fresh data set, using neural network type of back-propagation known as multilayer perceptron (MPP). The plant under test is a heat exchanger process control training system called QAD Model BDT 921. A real input-output data has been collected and will be used to identify the plant. The model was estimated by prediction error method with Levenberg-Marquardt algorithm for training neural networks. It is expected that the training data covering the full operating condition will be the optimum training data. The model was validated by residual analysis and model fit. It will be presented and concluded. The simulation results show that the identification is able to identify plant's good model. This identification can be used to design the plant controller and improve its performance.

  15. What Can Be Learned from X-Ray Spectroscopy Concerning Hot Gas in the Local Bubble and Charge Exchange Processes?

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.

    2008-01-01

    Both solar wind charge exchange emission and diffuse thermal emission from the Local Bubble are strongly dominated in the soft X-ray band by lines from highly ionized elements. While both processes share many of the same lines, the spectra should differ significantly due to the different production mechanisms, abundances, and ionization states. Despite their distinct spectral signatures, current and past observatories have lacked the spectral resolution to adequately distinguish between the two sources. High-resolution X-ray spectroscopy instrumentation proposed for future missions has the potential to answer fundamental questions such as whether there is any hot plasma in the Local Hot Bubble, and if so, what are the abundances of the emitting plasma and whether the plasma is in equilibrium. Such instrumentation will provide dynamic information about the solar wind including data on ion species which are currently difficult to track. It will also make possible remote sensing of the solar wind.

  16. Influence of nuclear exchange on nonadiabatic electron processes in H{sup +}+H{sub 2} collisions

    SciTech Connect

    Errea, L. F.; Illescas, Clara; Macias, A.; Mendez, L.; Rabadan, I.; Riera, A.; Pons, B.

    2010-12-28

    H{sup +}+H{sub 2} collisions are studied by means of a semiclassical approach that explicitly accounts for nuclear rearrangement channels in nonadiabatic electron processes. A set of classical trajectories is used to describe the nuclear motion, while the electronic degrees of freedom are treated quantum mechanically in terms of a three-state expansion of the collision wavefunction. We describe electron capture and vibrational excitation, which can also involve nuclear exchange and dissociation, in the E= 2-1000 eV impact energy range. We compare dynamical results obtained with two parametrizations of the potential energy surface of H{sub 3}{sup +} ground electronic state. Total cross sections for E > 10 eV agree with previous results using a vibronic close-coupling expansion, and with experimental data for E < 10 eV. Additionally, some prototypical features of both nuclear and electron dynamics at low E are discussed.

  17. Shelf Exchange Processes of CO2, Ra, and Ba in the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Thomas, Helmuth; Dehairs, Frank; Mol, Jacoba

    2017-04-01

    The Canadian Arctic Archipelago has been sampled during the Canadian GEOTRACES program in summer 2015. In Baffin Bay and Archipelagic waters dissolved inorganic carbon (DIC), alkalinity (AT), and barium (Ba) measurements have been performed, which were paralleled at selected stations by measurements of the two short-lived radium isotopes 223Ra and 224Ra. Using these observations we investigate relevant transport processes within the Canadian Arctic Archipelago: lateral and vertical diffusion from the sediments, river runoff, transport of water masses through the Archipelago and inflow of water masses of Atlantic and Pacific origin, respectively into the Archipelago. The impact of theses processes on the biogeochemistry, and in particular ocean acidification will be assessed.

  18. Air-sea exchange - a mixture of atmospheric and oceanic processes

    NASA Astrophysics Data System (ADS)

    Smedman, A.-S.

    2010-09-01

    The marine atmosphere and the ocean form a coupled system where waves and surface temperature are the common parameters linking the two together. Physical processes in the atmosphere such as geostrophic wind, radiation, turbulent transport of momentum and heat together with ocean mixing and turbulence make up the structure of the whole marine atmospheric boundary layer. A situation which is incompletely described in models. The Influence of waves in connection with atmospheric stability and wave age is discussed for the whole boundary layer up to ~300 m including transport mechanisms for heat and momentum. A new concept of a ‘residual layer' is also introduced. Data from the BASE experiment at Östergarnsholm in the Baltic Sea are used to illustrate the processes.

  19. Reverse process of usual optical analysis of boson-exchange superconductors: impurity effects on s- and d-wave superconductors

    NASA Astrophysics Data System (ADS)

    Hwang, Jungseek

    2015-03-01

    We performed a reverse process of the usual optical data analysis of boson-exchange superconductors. We calculated the optical self-energy from two (MMP and MMP+peak) input model electron-boson spectral density functions using Allen's formula for one normal and two (s- and d-wave) superconducting cases. We obtained the optical constants including the optical conductivity and the dynamic dielectric function from the optical self-energy using an extended Drude model, and finally calculated the reflectance spectrum. Furthermore, to investigate impurity effects on optical quantities we added various levels of impurities (from the clean to the dirty limit) in the optical self-energy and performed the same reverse process to obtain the optical conductivity, the dielectric function, and reflectance. From these optical constants obtained from the reverse process we extracted the impurity-dependent superfluid densities for two superconducting cases using two independent methods (the Ferrel-Glover-Tinkham sum rule and the extrapolation to zero frequency of -ɛ1(ω)ω2) we found that a certain level of impurities is necessary to get a good agreement on results obtained by the two methods. We observed that impurities give similar effects on various optical constants of s- and d-wave superconductors; the greater the impurities the more distinct the gap feature and the lower the superfluid density. However, the s-wave superconductor gives the superconducting gap feature more clearly than the d-wave superconductor because in the d-wave superconductors the optical quantities are averaged over the anisotropic Fermi surface. Our results supply helpful information to see how characteristic features of the electron-boson spectral function and the s- and d-wave superconducting gaps appear in various optical constants including raw reflectance spectrum. Our study may help with a thorough understanding of the usual optical analysis process. Further systematic study of experimental data

  20. Reverse process of usual optical analysis of boson-exchange superconductors: impurity effects on s- and d-wave superconductors.

    PubMed

    Hwang, Jungseek

    2015-03-04

    We performed a reverse process of the usual optical data analysis of boson-exchange superconductors. We calculated the optical self-energy from two (MMP and MMP+peak) input model electron-boson spectral density functions using Allen's formula for one normal and two (s- and d-wave) superconducting cases. We obtained the optical constants including the optical conductivity and the dynamic dielectric function from the optical self-energy using an extended Drude model, and finally calculated the reflectance spectrum. Furthermore, to investigate impurity effects on optical quantities we added various levels of impurities (from the clean to the dirty limit) in the optical self-energy and performed the same reverse process to obtain the optical conductivity, the dielectric function, and reflectance. From these optical constants obtained from the reverse process we extracted the impurity-dependent superfluid densities for two superconducting cases using two independent methods (the Ferrel-Glover-Tinkham sum rule and the extrapolation to zero frequency of -ϵ1(ω)ω(2)); we found that a certain level of impurities is necessary to get a good agreement on results obtained by the two methods. We observed that impurities give similar effects on various optical constants of s- and d-wave superconductors; the greater the impurities the more distinct the gap feature and the lower the superfluid density. However, the s-wave superconductor gives the superconducting gap feature more clearly than the d-wave superconductor because in the d-wave superconductors the optical quantities are averaged over the anisotropic Fermi surface. Our results supply helpful information to see how characteristic features of the electron-boson spectral function and the s- and d-wave superconducting gaps appear in various optical constants including raw reflectance spectrum. Our study may help with a thorough understanding of the usual optical analysis process. Further systematic study of experimental

  1. Ab initio study of the H + HONO reaction: Direct abstraction versus indirect exchange processes

    SciTech Connect

    Hsu, C.C.; Lin, M.C.; Mebel, A.M.; Melius, C.F.

    1997-01-02

    The mechanism of the H + HONO reaction (for which no experimental data are available) has been elucidated by ab initio molecular orbital calculations using modified G2 and BAC-MP4 methods. These results indicate that the reaction occurs predominantly by two indirect metathetical processes. One produces OH + HNO and H{sub 2}O + NO from the decomposition of vibrationally excited hydroxyl nitroxide, HN(O)OH, formed by H atom addition to the N atom of HONO. The other produces H{sub 2}O + NO from the decomposition of vibrationally excited dihydroxylamino radical, N(OH){sub 2}, formed by H atom addition to the terminal O atom. These indirect displacement processes are much more efficient than the commonly assumed, direct H-abstraction reaction producing H{sub 2} + NO{sub 2}. A transition-state theory calculation for the direct abstraction reaction and RRKM calculations for the two indirect displacement processes give rise to the following rate constants, in units of cm{sup 3} molecule{sup -1} s{sup -1} for the 300-3500 K temperature range under atmospheric conditions: k{sub H(2)} = 3.33 x 10{sup -16}T{sup 1.55} exp(-3328.5/T), k{sub OH} = 9.36 x 10{sup -14}T{sup 0.86} exp(-2500.8/T), k{sub H(2)O} = 1.35 x 10{sup -17}T{sup 1.89} exp-(-1935.7/T), where the rate constant for H{sub 2}O production represents the sum from both indirect displacement reactions. 32 refs., 3 figs., 7 tabs.

  2. Heat conduction and the nonequilibrium stationary states of stochastic energy exchange processes

    NASA Astrophysics Data System (ADS)

    Gilbert, Thomas

    2017-08-01

    I revisit the exactly solvable Kipnis-Marchioro-Presutti model of heat conduction (Kipnis et al 1982 J. Stat. Phys. 27 65) and describe, for one-dimensional systems of arbitrary sizes whose ends are in contact with thermal baths at different temperatures, a systematic characterisation of their non-equilibrium stationary states. These arguments avoid resorting to the analysis of a dual process and yield a straightforward derivation of Fourier’s law, as well as higher-order static correlations, such as the covariant matrix. The transposition of these results to families of gradient models generalising the KMP model is established and specific cases are examined.

  3. Air-Sea and Lateral Exchange Processes in East Indian Coastal Current off Sri Lanka

    DTIC Science & Technology

    2015-09-30

    project, which is funded under the Northern Arabian Sea circulation autonomously researched (NAScar) DRI. The PIs seek long term collaboration with...scale processes in the southern BoB during the southwest monsoons, including regional circulation , internal waves and mixing in the upper ocean, all...northward velocity component of about 0.6 m/s. Data collected along the zonal transect 8°N, 85.5°E – 88.5°E show mostly eastward flow at the western half

  4. Ion exchange membrane bioreactor for selective removal of nitrate from drinking water: control of ion fluxes and process performance.

    PubMed

    Velizarov, Svetlozar; Crespo, João G; Reis, Maria A

    2002-01-01

    An ion exchange membrane bioreactor (IEMB), consisting of a monoanion permselective membrane dialyzer coupled to a stirred anoxic vessel with an enriched mixed denitrifying culture, has been studied for nitrate removal from drinking water. The influence of nitrate and chloride concentrations on the selectivity of nitrate transport in the IEMB process was investigated. With appropriate dosing of chloride ions to the IEMB biocompartment, it was possible to regulate the net bicarbonate flux in the system, thus maintaining the bicarbonate concentration in the treated water at the desired level. The latter was not possible to achieve in Donnan dialysis, operated as a single process in which, besides the lower nitrate removal efficiency found, bicarbonate was co-extracted together with nitrate from the polluted water stream. Residual carbon source (ethanol) and nitrite were not detected in the treated water produced in the IEMB system. With a concentration of nitrate in the polluted water three times higher than the maximum contaminant level of 50 mg L(-1) allowed, the IEMB process was successfully operated for a period of 1 month before exceeding this limit.

  5. K Basin Sludge Conditioning Process Testing Project Results from Test 4, ''Acid Digestion of Mixed-Bed Ion Exchange Resin''

    SciTech Connect

    Pool, K.H.; Delegard, C.H.; Schmidt, A.J.; Thornton, B.M.; Silvers, K.L.

    1999-04-02

    Approximately 73 m{sup 3} of heterogeneous solid material, ''sludge,'' (upper bound estimate, Packer 1997) have accumulated at the bottom of the K Basins in the 100 K Area of the Hanford Site. This sludge is a mixture of spent fuel element corrosion products, ion exchange materials (organic and inorganic), graphite-based gasket materials, iron and aluminum metal corrosion products, sand, and debris (Makenas et al. 1996, 1997). In addition, small amounts of polychlorinated biphenyls (PCBs) have been found. Ultimately, it is planned to transfer the K Basins sludge to the Hanford double shell tanks (DSTs). The Hanford Spent Nuclear Fuel (HSNF) project has conducted a number of evaluations to examine technology and processing alternatives to pretreat K Basin sludge to meet storage and disposal requirements. From these evaluations, chemical pretreatment has been selected to address criticality issues, reactivity, and the destruction or removal of PCBs before the K Basin sludge can be transferred to the DSTs. Chemical pretreatment, referred to as the K Basin sludge conditioning process, includes nitric acid dissolution of the sludge (with removal of acid insoluble solids), neutrons absorber addition, neutralization, and reprecipitation. Laboratory testing is being conducted by the Pacific Northwest National Laboratory (PNNL) to provide data necessary to develop the sludge conditioning process.

  6. ISO 18629 PSL : A Standardized Language for Specifying and Exchanging Process Information

    SciTech Connect

    Pouchard, Line Catherine; Cutting-Decelle, A. F.; Michel, Jean-Jacques; Gruninger, Michael

    2006-01-01

    As enterprise integration increases, developers face increasingly complex problems related to interoperability. When enterprises collaborate, a common frame of reference or at least a common terminology is necessary for human-to-human, human-to-machine, and machine-to-machine communication. Ontology engineering offers a direction towards solving the inter-operability problems brought about by semantic obstacles related to the definitions of business terms and software classes. Ontology engineering is a set of tasks related to the development of ontologies for a particular domain. This paper is aimed at presenting the approach of ISO 18629, i.e., the Process Specification Language (PSL), to this problem. In the first part, the architecture of the standard is described, with the main features of the language. Then, the problems of the interoperability with PSL and the conformance to the standard are presented. The paper ends with an example showing the use of the standard for interoperability.

  7. Multilayered composite proton exchange membrane and a process for manufacturing the same

    DOEpatents

    Santurri, Pasco R; Duvall, James H; Katona, Denise M; Mausar, Joseph T; Decker, Berryinne

    2015-05-05

    A multilayered membrane for use with fuel cells and related applications. The multilayered membrane includes a carrier film, at least one layer of an undoped conductive polymer electrolyte material applied onto the carrier film, and at least one layer of a conductive polymer electrolyte material applied onto the adjacent layer of polymer electrolyte material. Each layer of conductive polymer electrolyte material is doped with a plurality of nanoparticles. Each layer of undoped electrolyte material and doped electrolyte material may be applied in an alternating configuration, or alternatively, adjacent layers of doped conductive polymer electrolyte material is employed. The process for producing a multilayered composite membrane includes providing a carrier substrate and solution casting a layer of undoped conductive polymer electrolyte material and a layer of conductive polymer electrolyte material doped with nanoparticles in an alternating arrangement or in an arrangement where doped layers are adjacent to one another.

  8. Summary of innovative concepts for industrial process improvement: An experimental technology exchange

    SciTech Connect

    Conger, R.L.; Lee, V.E.; Buel, L.M.

    1995-08-01

    This document is a compilation of one-page technical briefs that summarize the highlights of thirty-eight innovations that were presented at the seventh Innovative Concepts Fair, held in Denver, Colorado on April 20--21, 1995. Sixteen of the innovations were funded through the Innovative Concepts Program, and twenty-two innovations represent other state or federally funded programs. The concepts in this year`s fair addressed innovations that can substantially improve industrial processes. Each tech brief describes the need for the proposed concept; the concept being proposed; and the concept`s economics and market potential, key experimental results, and future development needs. A contact block is also included with each flier.

  9. A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger.

    PubMed

    Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Zhu, Huacheng; Yang, Yang; Liu, Changjun; Huang, Kama

    2017-10-08

    Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects.

  10. Investigation of gas exchange processes in peat bog ecosystems by means of innovative Raman gas spectroscopy.

    PubMed

    Frosch, Torsten; Keiner, Robert; Michalzik, Beate; Fischer, Bernhard; Popp, Jürgen

    2013-02-05

    Highly sensitive Raman gas spectroscopy is introduced for simultaneous real time analysis of O(2), CO(2), CH(4), and N(2) in order to elucidate the dynamics of greenhouse gases evolving from climate-sensitive ecosystems. The concentrations and fluxes of this suite of biogenic gases were quantified in the head space of a water-saturated, raised peat bog ecotron. The intact peat bog, exhibiting various degradation stages of peat and sphagnum moss, was exposed to various light regimes in order to determine important ecosystem parameters such as the maximum photosynthesis rate of the sphagnum as well as the extent of soil and plant respiration. Miniaturized Raman gas spectroscopy was proven to be an extremely versatile analytical technique that allows for onsite multigas analysis in high temporal resolution. Therefore it is an urgently needed tool for elucidation of complex biochemical processes especially in climate-sensitive ecosystems and consequently for the estimation of climate-relevant gas budgets.

  11. Processing Information about Support Exchanges in Close Relationships: The Role of a Knowledge Structure

    PubMed Central

    Turan, Bulent

    2016-01-01

    People develop knowledge of interpersonal interaction patterns (e.g., prototypes and schemas), which shape how they process incoming information. One such knowledge structure based on attachment theory was examined: the secure base script (the prototypic sequence of events when an attachment figure comforts a close relationship partner in distress). In two studies (N = 53 and N = 119), participants were shown animated film clips in which geometric figures depicted the secure base script and asked to describe the animations. Both studies found that many people readily recognize the secure-base script from these minimal cues quite well, suggesting that this script is not only available in the context of specific relationships (i.e., a relationship-specific knowledge): The generalized (abstract) structure of the script is also readily accessible, which would make it possible to apply it to any relationship (including new relationships). Regression analyses suggested that participants who recognized the script were more likely to (a) include more animation elements when describing the animations, (b) see a common theme in different animations, (c) create better organized stories, and (d) later recall more details of the animations. These findings suggest that access to this knowledge structure helps a person organize and remember relevant incoming information. Furthermore, in both Study 1 and Study 2, individual differences in the ready recognition of the script were associated with individual differences in having access to another related knowledge: indicators suggesting that a potential relationship partner can be trusted to be supportive and responsive at times of stress. Results of Study 2 also suggest that recognizing the script is associated with those items of an attachment measure that concern giving and receiving support. Thus, these knowledge structures may shape how people process support-relevant information in their everyday lives, potentially affecting

  12. Collaborative distributed sensor management and information exchange flow control for multitarget tracking using Markov decision processes

    NASA Astrophysics Data System (ADS)

    Akselrod, Dimitry; Kirubarajan, T.

    2008-04-01

    In this paper, we consider the problem of collaborative management of uninhabited aerial vehicles (UAVs) for multitarget tracking. In addition to providing a solution to the problem of controlling individual UAVs, we present a method for controlling the information flow among them. The latter provides a solution to one of the main problems in decentralized tracking, namely, distributed information transfer and fusion among the participating platforms. The problem of decentralized cooperative control considered in this paper is an optimization of the information obtained by a number of UAVs, carrying out surveillance over a region, which includes a number of confirmed and suspected moving targets with the goal to track confirmed targets and detects new targets in the area. Each UAV has to decide on the most optimal path with the objective to track as many targets as possible, maximizing the information obtained during its operation with the maximum possible accuracy at the lowest possible cost. Limited communication between UAVs and uncertainty in the information obtained by each UAV regarding the location of the ground targets are addressed in the problem formulation. In order to handle these issues, the problem is presented as an operation of a group of decision makers. Markov Decision Processes (MDPs) are incorporated into the solution. A decision mechanism for collaborative distributed data fusion provides each UAV with the required data for the fusion process while substantially reducing redundancy in the information flow in the overall system. We consider a distributed data fusion system consisting of UAVs that are decentralized, heterogenous, and potentially unreliable. Simulation results are presented on a representative multisensor-multitarget tracking problem.

  13. Processing Information about Support Exchanges in Close Relationships: The Role of a Knowledge Structure.

    PubMed

    Turan, Bulent

    2016-01-01

    People develop knowledge of interpersonal interaction patterns (e.g., prototypes and schemas), which shape how they process incoming information. One such knowledge structure based on attachment theory was examined: the secure base script (the prototypic sequence of events when an attachment figure comforts a close relationship partner in distress). In two studies (N = 53 and N = 119), participants were shown animated film clips in which geometric figures depicted the secure base script and asked to describe the animations. Both studies found that many people readily recognize the secure-base script from these minimal cues quite well, suggesting that this script is not only available in the context of specific relationships (i.e., a relationship-specific knowledge): The generalized (abstract) structure of the script is also readily accessible, which would make it possible to apply it to any relationship (including new relationships). Regression analyses suggested that participants who recognized the script were more likely to (a) include more animation elements when describing the animations, (b) see a common theme in different animations, (c) create better organized stories, and (d) later recall more details of the animations. These findings suggest that access to this knowledge structure helps a person organize and remember relevant incoming information. Furthermore, in both Study 1 and Study 2, individual differences in the ready recognition of the script were associated with individual differences in having access to another related knowledge: indicators suggesting that a potential relationship partner can be trusted to be supportive and responsive at times of stress. Results of Study 2 also suggest that recognizing the script is associated with those items of an attachment measure that concern giving and receiving support. Thus, these knowledge structures may shape how people process support-relevant information in their everyday lives, potentially affecting

  14. Global carbon exchange and methane emissions from natural wetlands: Application of a process-based model

    NASA Astrophysics Data System (ADS)

    Cao, Mingkui; Marshall, Stewart; Gregson, Keith

    1996-06-01

    Wetlands are one of the most important sources of atmospheric methane (CH4), but the strength of this source is still highly uncertain. To improve estimates of CH4 emission at the regional and global scales and predict future variation requires a process-based model integrating the controls of climatic and edaphic factors and complex biological processes over CH4 flux rates. This study used a methane emission model based on the hypothesis that plant primary production and soil organic matter decomposition act to control the supply of substrate needed by methanogens; the rate of substrate supply and environmental factors, in turn, control the rate of CH4 production, and the balance between CH4 production and methanotrophic oxidation determines the rate of CH4 emission into the atmosphere. Coupled to data sets for climate, vegetation, soil, and wetland distribution, the model was used to calculate spatial and seasonal distributions of CH4 emissions at a resolution of 1° latitude × 1° longitude. The calculated net primary production (NPP) of wetlands ranged from 45 g C m-2 yr-1 for northern bogs to 820 g C m-2 yr-1 for tropical swamps. CH4 emission rates from individual gridcells ranged from 0.0 to 661 mg CH4 m-2 d-1, with a mean of 40 mg CH4 m-2 d-1 for northern wetland, 150 mg CH4 m-2 d-1 for temperate wetland, and 199 mg CH4 m-2 d-1 for tropical wetland. Total CH4 emission was 92 Tg yr-1. Sensitivity analysis showed that the response of CH4 emission to climate change depends upon the combined effects of soil carbon storage, rate of decomposition, soil moisture and activity of methanogens.

  15. Characterizing hyporheic exchange processes using high-frequency electrical conductivity-discharge relationships on subhourly to interannual timescales

    NASA Astrophysics Data System (ADS)

    Singley, Joel G.; Wlostowski, Adam N.; Bergstrom, Anna J.; Sokol, Eric R.; Torrens, Christa L.; Jaros, Chris; Wilson, Colleen E.; Hendrickson, Patrick J.; Gooseff, Michael N.

    2017-05-01

    Concentration-discharge (C-Q) relationships are often used to quantify source water contributions and biogeochemical processes occurring within catchments, especially during discrete hydrological events. Yet, the interpretation of C-Q hysteresis is often confounded by complexity of the critical zone, such as numerous source waters and hydrochemical nonstationarity. Consequently, researchers must often ignore important runoff pathways and geochemical sources/sinks, especially the hyporheic zone because it lacks a distinct hydrochemical signature. Such simplifications limit efforts to identify processes responsible for the transience of C-Q hysteresis over time. To address these limitations, we leverage the hydrologic simplicity and long-term, high-frequency Q and electrical conductivity (EC) data from streams in the McMurdo Dry Valleys, Antarctica. In this two end-member system, EC can serve as a proxy for the concentration of solutes derived from the hyporheic zone. We utilize a novel approach to decompose loops into subhysteretic EC-Q dynamics to identify individual mechanisms governing hysteresis across a wide range of timescales. We find that hydrologic and hydraulic processes govern EC response to diel and seasonal Q variability and that the effects of hyporheic mixing processes on C-Q transience differ in short and long streams. We also observe that variable hyporheic turnover rates govern EC-Q patterns at daily to interannual timescales. Last, subhysteretic analysis reveals a period of interannual freshening of glacial meltwater streams related to the effects of unsteady flow on hyporheic exchange. The subhysteretic analysis framework we introduce may be applied more broadly to constrain the processes controlling C-Q transience and advance understanding of catchment evolution.

  16. Modeling of a data exchange process in the Automatic Process Control System on the base of the universal SCADA-system

    NASA Astrophysics Data System (ADS)

    Topolskiy, D.; Topolskiy, N.; Solomin, E.; Topolskaya, I.

    2016-04-01

    In the present paper the authors discuss some ways of solving energy saving problems in mechanical engineering. In authors' opinion one of the ways of solving this problem is integrated modernization of power engineering objects of mechanical engineering companies, which should be intended for the energy supply control efficiency increase and electric energy commercial accounting improvement. The author have proposed the usage of digital current and voltage transformers for these purposes. To check the compliance of this equipment with the IEC 61850 International Standard, we have built a mathematic model of the data exchange process between measuring transformers and a universal SCADA-system. The results of modeling show that the discussed equipment corresponds to the mentioned Standard requirements and the usage of the universal SCADA-system for these purposes is preferable and economically reasonable. In modeling the authors have used the following software: MasterScada, Master OPC_DI_61850, OPNET.

  17. Engineering Analysis of Intermediate Loop and Process Heat Exchanger Requirements to Include Configuration Analysis and Materials Needs

    SciTech Connect

    T.M. Lillo; R.L. Williamson; T.R. Reed; C.B. Davis; D.M. Ginosar

    2005-09-01

    The need to locate advanced hydrogen production facilities a finite distance away from a nuclear power source necessitates the need for an intermediate heat transport loop (IHTL). This IHTL must not only efficiently transport energy over distances up to 500 meters but must also be capable of operating at high temperatures (>850oC) for many years. High temperature, long term operation raises concerns of material strength, creep resistance and general material stability (corrosion resistance). IHTL design is currently in the initial stages. Many questions remain to be answered before intelligent design can begin. The report begins to look at some of the issues surrounding the main components of an IHTL. Specifically, a stress analysis of a compact heat exchanger design under expected operating conditions is reported. Also the results of a thermal analysis performed on two ITHL pipe configurations for different heat transport fluids are presented. The configurations consist of separate hot supply and cold return legs as well as annular design in which the hot fluid is carried in an inner pipe and the cold return fluids travels in the opposite direction in the annular space around the hot pipe. The effects of insulation configurations on pipe configuration performance are also reported. Finally, a simple analysis of two different process heat exchanger designs, one a tube in shell type and the other a compact or microchannel reactor are evaluated in light of catalyst requirements. Important insights into the critical areas of research and development are gained from these analyses, guiding the direction of future areas of research.

  18. Raman spectroscopic study of the aging and nitration of actinide processing anion-exchange resins in concentrated nitric acid

    SciTech Connect

    Buscher, C. T.; Donohoe, R. J.; Mecklenburg, S. L.; Berg, J. M.; Tait, C. D.; Morris, D. E. [Chemical Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

    1999-08-01

    Degradation of two types of anion exchange resins, Dowex 11 and Reillex HPQ, from the action of concentrated nitric acid (4 to 12 M) and radiolysis [from depleted uranium as UO{sub 2}{sup 2+} nitrate species and {sup 239}Pu as Pu(IV) nitrate species] was followed as a function of time with Raman vibrational spectroscopy. Elevated temperatures ({approx}50 degree sign C) were used in the absence of actinide metal loading to simulate longer exposures of the resin to a HNO{sub 3} process stream and waste storage conditions. In the absence of actinide loading, only minor changes in the Dowex resin at acid concentrations {<=}10 M were observed, while at 12 M acid concentration, the emergence of a Raman peak at 1345 cm-1 indicates the addition of nitro functional groups to the resin. Similar studies with the Reillex resin show it to be more resistant to nitric acid attack at all acid concentrations. Incorporation of weakly radioactive depleted uranium as the UO{sub 2}{sup 2+} nitrate species to the ion-exchange sites of Dowex 11 under differing nitric acid concentrations (6 to 12 M) at room temperature showed no Raman evidence of resin degradation or nitration, even after several hundred days of contact. In contrast, Raman spectra for Dowex 11 in the presence of {sup 239}Pu as Pu(IV) nitrate species reveal numerous changes indicating resin alterations, including a new mode at 1345 cm-1 consistent with a Pu(IV)-nitrate catalyzed addition of nitro groups to the resin backbone. (c) 2000 Society for Applied Spectroscopy.

  19. Boundary Layer Vertical Exchange Processes and the Mass Budget of Ozone: Observations and Model Results

    SciTech Connect

    Berkowitz, Carl M.; Fast, Jerome D.; Easter, Richard C.

    2000-06-16

    An Eulerian chemical model is used to assess the relative importance of a variety of processes associated with producing high surface ozone episodes during selected periods of the NARSTO 1995 field campaign over the northeastern United States. A comparison of the observed and predicted hourly surface ozone mixing ratios showed that the model qualitatively reproduced the observed ozone trends over the northeastern U.S. The model, however, over-predicted the surface concentrations by 10 to 15 ppb. The simulated mass budget tendency terms are compared for days with low ozone values immediately followed by days with high values. The later days showed observed and simulated ozone mixing ratios aloft to be of order twice that found on preceding days, although the associated chemical mix appeared to have relatively little potential for the subsequent generation of "new" ozone. Under conditions of shallow mixing over urban regions, simulated surface ozone production rates were negative (a net loss) throughout much of the day with convective mixing bringing newly produced ozone from aloft to the surface. It is noted that surface ozone levels appeared to be relatively insensitive to mixing layer growth rates.

  20. DNA pairing is an important step in the process of targeted nucleotide exchange.

    PubMed

    Drury, Miya D; Kmiec, Eric B

    2003-02-01

    Modified single-stranded DNA oligonucleotides can direct the repair of genetic mutations in yeast, plant and mammalian cells. The mechanism by which these molecules exert their effect is being elucidated, but the first phase is likely to involve the homologous alignment of the single strand with its complementary sequence in the target gene. In this study, we establish the importance of such DNA pairing in facilitating the gene repair event. Oligonucleotide-directed repair occurs at a low frequency in an Escherichia coli strain (DH10B) lacking the RECA DNA pairing function. Repair activity can be rescued by using purified RecA protein to catalyze the assimilation of oligonucleotide vectors into a plasmid containing a mutant kanamycin resistance gene in vitro. Electroporation of the preformed complex into DH10B cells results in high levels of gene repair activity, evidenced by the appearance of kanamycin-resistant colonies. Gene repair is dependent on the formation of a double-displacement loop (double-D-loop), a recombination intermediate containing two single-stranded oligonucleotides hybridized to opposite strands of the plasmid at the site of the point mutation. The heightened level of stability of the double-D-loop enables it to serve as an active template for the DNA repair events. The data establish DNA pairing and the formation of the double-D-loop as important first steps in the process of gene repair.

  1. Wire rod coating process of gas diffusion layers fabrication for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kannan, A. M.; Sadananda, S.; Parker, D.; Munukutla, L.; Wertz, J.; Thommes, M.

    Gas diffusion layers (GDLs) were fabricated using non-woven carbon paper as a macro-porous layer substrate developed by Hollingsworth & Vose Company. A commercially viable coating process was developed using wire rod for coating micro-porous layer by a single pass. The thickness as well as carbon loading in the micro-porous layer was controlled by selecting appropriate wire thickness of the wire rod. Slurry compositions with solid loading as high as 10 wt.% using nano-chain and nano-fiber type carbons were developed using dispersion agents to provide cohesive and homogenous micro-porous layer without any mud-cracking. The surface morphology, wetting characteristics and pore size distribution of the wire rod coated GDLs were examined using FESEM, Goniometer and Hg porosimetry, respectively. The GDLs were evaluated in single cell PEMFC under various operating conditions (temperature and RH) using hydrogen and air as reactants. It was observed that the wire rod coated micro-porous layer with 10 wt.% nano-fibrous carbon based GDLs showed the highest fuel cell performance at 85 °C using H 2 and air at 50% RH, compared to all other compositions.

  2. Talk, trust and time: a longitudinal study evaluating knowledge translation and exchange processes for research on violence against women

    PubMed Central

    2011-01-01

    Background Violence against women (VAW) is a major public health problem. Translation of VAW research to policy and practice is an area that remains understudied, but provides the opportunity to examine knowledge translation and exchange (KTE) processes in a complex, multi-stakeholder context. In a series of studies including two randomized trials, the McMaster University VAW Research Program studied one key research gap: evidence about the effectiveness of screening women for exposure to intimate partner violence. This project developed and evaluated KTE strategies to share research findings with policymakers, health and community service providers, and women's advocates. Methods A longitudinal cross-sectional design, applying concurrent mixed data collection methods (surveys, interviews, and focus groups), was used to evaluate the utility of specific KTE strategies, including a series of workshops and a day-long Family Violence Knowledge Exchange Forum, on research sharing, uptake, and use. Results Participants valued the opportunity to meet with researchers, provide feedback on key messages, and make personal connections with other stakeholders. A number of factors specific to the knowledge itself, stakeholders' contexts, and the nature of the knowledge gap being addressed influenced the uptake, sharing, and use of the research. The types of knowledge use changed across time, and were specifically related to both the types of decisions being made, and to stage of decision making; most reported use was conceptual or symbolic, with few examples of instrumental use. Participants did report actively sharing the research findings with their own networks. Further examination of these second-order knowledge-sharing processes is required, including development of appropriate methods and measures for its assessment. Some participants reported that they would not use the research evidence in their decision making when it contradicted professional experiences, while others

  3. Intercalation chemistry in a LDH system: anion exchange process and staging phenomenon investigated by means of time-resolved, in situ X-ray diffraction.

    PubMed

    Taviot-Guého, Christine; Feng, Yongjun; Faour, Azzam; Leroux, Fabrice

    2010-07-14

    Using time-resolved, in situ energy-dispersive X-ray diffraction (EDXRD), the formation of interstratified LDH structures, with alternate interlayer spaces occupied by different anions, have been demonstrated during anion exchange reactions. Novel hybrid LDH nanostructures can thus be prepared, combining the physicochemical properties of two intercalated anions plus those of the LDH host. A general trend is that inorganic-inorganic anion exchange reactions occur in a one-step process while inorganic-organic exchanges may proceed via a second-stage intermediate, suggesting that staging occurs partly as a result of organic-inorganic separation. Yet, other influencing parameters must be considered such as LDH host composition, LDH affinity for different anions and LDH particle size as well as extrinsic parameters like the reaction temperature. Hence, a correlation between the occurrence of staging phenomenon and the difficulty of the exchange of the initial anion is observed, suggesting that staging is needed to overcome the energy barrier in the case of the exchange by organic anions. Notwithstanding the LiAl(2) system, staging has mainly been observed with Zn(2)Cr LDH host so far, a peculiar LDH composition with a unique Zn/Cr ratio of two and a local order of the cations within the hydroxide layers. The formation of a higher order-staged intermediate than stage two, observed during the exchange reaction of CO(3)(2-) or SO(4)(2-) anions with Zn(2)Cr-tartrate, is in favour of a Daumas-Herold model although this model implies a bending of LDH layers. The analysis of the X-ray powder diffraction pattern of Zn(2)Cr-Cl/tartrate second-stage intermediate, isolated almost as a pure phase during the exchange of Cl(-) with tartrate anions in Zn(2)Cr LDH, indicates a disorder in the stacking sequence and a relative proportion of the two kinds of interlayers slightly different from 50/50. Besides, the microstructural analysis of the XRD pattern reveals a great reduction of the

  4. SEEP II, Shelf Edge Exchange Processes-II: Chlorophyll a fluorescence, temperature, and beam attenuation measurements from moored fluorometers

    SciTech Connect

    Medeiros, W.H.; Wirick, C.D.

    1992-02-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. The first SEEP experiment (SEEP I) was across the outer continental shelf of New England during 1983--1984 and consisted of a series of nine cruises and a mooring array. The second experiment (SEEP II) focused specifically of the shelf/slope frontal region of the mid-Atlantic Bight off the Delmarva peninsula. This report presents data collected during SEEP II. The SEEP II experiment consisted of a series of ten cruises and mooring arrays as well as over-flights by NASA aircraft. The cruises were consecutively designated SEEP2-01 to SEEP2-10. Hydrographic data were collected on all cruises except SEEP2-04 and SEEP2-07 during which benthic processes were investigated. Mooring arrays were deployed during three cruises in the Spring, Summer and Winter of 1988. Brookhaven National Laboratory deployed sixteen fluorometer instrument packages on their moorings with sensors to measure: the in vivo fluorescence of phytoplankton, temperature, subsurface light, dissolved oxygen, and water transparency. Data from the fluorometer, temperature, and transmissometer sensors are reported herein.

  5. Shelf Edge Exchange Processes, II: SEEP2-08, R/V ENDEAVOR cruise 188. Hydrographic data report

    SciTech Connect

    Wilson, C.; Behrens, W.J.; Flagg, C.N.; Wallace, D.W.R.; Wilke, R.J.; Wyman, K.D.

    1989-12-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. Phase I of SEEP consisted of a series of nine cruises and a mooring array across the outer continental shelf of New England during 1983--1984 (Behrens and Flagg, 1986). Phase II focused specifically on the shelf/slope frontal region of the mid-Atlantic bight off the Delmarva Peninsula. This project consisted of a series of ten cruises, a mooring array, and a series of over-flights by NASA aircraft. Hydrographic data were collected on eight of the cruises, six of which were primarily mooring deployment or recovery cruises. The cruises were consecutively designated SEEP2-01 to SEEP2-10. Two cruises (SEEP2-04 and SEEP2-07) were dedicated to investigating benthic processes and hydrographic data were not collected.

  6. SEEP II, Shelf Edge Exchange Processes-II: Chlorophyll a fluorescence, temperature, and beam attenuation measurements from moored fluorometers

    SciTech Connect

    Medeiros, W.H.; Wirick, C.D.

    1992-02-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. The first SEEP experiment (SEEP I) was across the outer continental shelf of New England during 1983--1984 and consisted of a series of nine cruises and a mooring array. The second experiment (SEEP II) focused specifically of the shelf/slope frontal region of the mid-Atlantic Bight off the Delmarva peninsula. This report presents data collected during SEEP II. The SEEP II experiment consisted of a series of ten cruises and mooring arrays as well as over-flights by NASA aircraft. The cruises were consecutively designated SEEP2-01 to SEEP2-10. Hydrographic data were collected on all cruises except SEEP2-04 and SEEP2-07 during which benthic processes were investigated. Mooring arrays were deployed during three cruises in the Spring, Summer and Winter of 1988. Brookhaven National Laboratory deployed sixteen fluorometer instrument packages on their moorings with sensors to measure: the in vivo fluorescence of phytoplankton, temperature, subsurface light, dissolved oxygen, and water transparency. Data from the fluorometer, temperature, and transmissometer sensors are reported herein.

  7. Recovery of salts from ion-exchange regeneration streams by a coupled nanofiltration-membrane distillation process.

    PubMed

    Jiříček, Tomáš; De Schepper, Wim; Lederer, Tomáš; Cauwenberg, Peter; Genné, Inge

    2015-01-01

    Ion-exchange tap water demineralization for process water preparation results in a saline regeneration wastewater (20-100 mS cm(-1)) that is increasingly problematic in view of discharge. A coupled nanofiltration-membrane distillation (NF-MD) process is evaluated for the recovery of water and sodium chloride from this wastewater. NF-MD treatment of mixed regeneration wastewater is compared to NF-MD treatment of separate anion- and cation-regenerate fractions. NF on mixed regeneration wastewater results in a higher flux (30 L m(-2) h(-1) at 7 bar) compared to NF on the separate fractions (6-9 L m(-2) h(-1) at 30 bar). NF permeate recovery is strongly limited by scaling (50% for separate and 60% for mixed, respectively). Physical signs of scaling were found during MD treatment of the NF permeates but did not result in flux decline for mixed regeneration wastewater. Final salt composition is expected to qualify as a road de-icing salt. NF-MD is an economically viable alternative compared to external disposal of wastewater for larger-scale installations (1.4 versus 2.5 euro m(-3) produced demineralized water for a 10 m3 regenerate per day plant). The cost benefits of water re-use and salt recuperation are small when compared to total treatment costs for mixed regenerate wastewater.

  8. Thermal nanoimprint process for high-temperature fabrication of mesoscale epitaxial exchange-biased metallic wire arrays

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Weiss, D. N.; Krishnan, K. M.

    2011-04-01

    A thermal nanoimprint process for the high-temperature (400 °C) fabrication of submicron, epitaxial, metallic wire arrays over areas > 1 × 1 cm2 is reported. Based on a method using an imprinted polymeric bilayer resist template that is transferred to a metallic (molybdenum) mask, this process is enabled by an appropriate undercut profile of the Mo mask. The undercut profile is obtained from a distinctive wedge-shaped profile of the polymeric resist layers by carefully controlling the etch parameters. Using flexible ethylene tetrafluoroethylene imprint molds, we demonstrate defect-free imprinting on MgO substrates. Epitaxial patterning is demonstrated with Fe/MnPd bilayer wire arrays subsequently grown along well-defined crystallographic orientations. X-ray diffraction of the patterned arrays reveals that the MnPd can be grown in two different crystallographic orientations (c-axis and a-axis normals). The epitaxial nature of the patterned arrays is further confirmed by magnetic measurements that demonstrate the competing effects of intrinsic (magnetocrystalline and exchange) and lithography-induced shape anisotropies on the magnetization reversal characteristics along different directions with respect to the axis of the wire arrays.

  9. European seismological data exchange, access and processing: current status of the Research Infrastructure project NERIES

    NASA Astrophysics Data System (ADS)

    Giardini, D.; van Eck, T.; Bossu, R.; Wiemer, S.

    2009-04-01

    The EC Research infrastructure project NERIES, an Integrated Infrastructure Initiative in seismology for 2006-2010 has passed its mid-term point. We will present a short concise overview of the current state of the project, established cooperation with other European and global projects and the planning for the last year of the project. Earthquake data archiving and access within Europe has dramatically improved during the last two years. This concerns earthquake parameters, digital broadband and acceleration waveforms and historical data. The Virtual European Broadband Seismic Network (VEBSN) consists currently of more then 300 stations. A new distributed data archive concept, the European Integrated Waveform Data Archive (EIDA), has been implemented in Europe connecting the larger European seismological waveform data. Global standards for earthquake parameter data (QuakeML) and tomography models have been developed and are being established. Web application technology has been and is being developed to make a jump start to the next generation data services. A NERIES data portal provides a number of services testing the potential capacities of new open-source web technologies. Data application tools like shakemaps, lossmaps, site response estimation and tools for data processing and visualisation are currently available, although some of these tools are still in an alpha version. A European tomography reference model will be discussed at a special workshop in June 2009. Shakemaps, coherent with the NEIC application, are implemented in, among others, Turkey, Italy, Romania, Switzerland, several countries. The comprehensive site response software is being distributed and used both inside and outside the project. NERIES organises several workshops inviting both consortium and non-consortium participants and covering a wide range of subjects: ‘Seismological observatory operation tools', ‘Tomography', ‘Ocean bottom observatories', 'Site response software training

  10. Air-snow exchange of nitrate: a modelling approach to investigate physicochemical processes in surface snow at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Bock, Josué; Savarino, Joël; Picard, Ghislain

    2016-04-01

    Snowpack is a multiphase (photo)chemical reactor that strongly influences the air composition in polar and snow-covered regions. Snowpack plays a special role in the nitrogen cycle, as it has been shown that nitrate undergoes numerous recycling stages (including photolysis) in the snow before being permanently buried in the firn. However, the current understanding of these physicochemical processes remains very poor. Several modelling studies have attempted to reproduce (photo)chemical reactions inside snow grains, but these required strong assumptions to characterise snow reactive properties, which are not well defined. Physical processes such as adsorption, solid state diffusion and co-condensation also affect snow chemical composition. We developed a model including a physically based parameterisation of these air-snow exchange processes for nitrate. This modelling study divides into two distinct parts: firstly, surface concentration of nitrate adsorbed onto snow is calculated using existing isotherm parametrisation. Secondly, bulk concentration of nitrate in solid solution into the ice matrix is modelled. In this second approach, solid state diffusion drives the evolution of nitrate concentration inside a layered spherical snow grain. A physically-based parameterisation defining the concentration at the air-snow interface was developed to account for the the co-condensation process. The model uses as input a one-year long time series of atmospheric nitrate concentration measured at Dome C, Antarctica. The modelled nitrate concentration in surface snow is compared to field measurements. We show that on the one hand, the adsorption of nitric acid on the surface of the snow grains fails to fit the observed variations. During winter and spring, the modelled adsorbed concentration of nitrate is 2.5 and 8.3-fold higher than the measured one, respectively. A strong diurnal variation driven by the temperature cycle and a peak occurring in early spring are two other

  11. The Role of Aeolian Transport Processes in the Intertidal Zone on Sediment Exchange Between Marine and Aeolian Coastal Zones.

    NASA Astrophysics Data System (ADS)

    de Vries, S.; Verheijen, A.; Cohn, N.; Vos, S.; Hoonhout, B.; Ruggiero, P.

    2016-12-01

    Coastal dunes are generally dynamic due to a combination of marine and aeolian sediment transport processes. The growth of coastal dunes is generally governed by wind driven sediment transport. Quantifying and predicting aeolian sediment transport processes is a scientific and practical challenge. This is caused by the uncertainties in the relative importance of the transport capacity of the wind and the availability of sediment (or sediment supply). Especially sediment supply has recently been hypothesized to be of governing importance but no quantitative knowledge is available yet. The intertidal zone adds further complexity since sediment supply is likely influenced by alternating marine and aeolian processes on the tide timescale. However, while sediment availability is likely to vary along the coastal zone, no measurements of sediment supply and availability has been successful in the past. In this study we use detailed measurements of wind driven erosion and sedimentation in the intertidal and supra-tidal coastal zone to quantify sediment supply for aeolian sediment transport and associated dune growth. During the 6 weeks SEDEX2 field campaign, a RIEGL 200VZ laser scanner is used to collect high resolution topographic data with 15-minute intervals during several tidal cycles. The data reveals the small but significant erosion in the intertidal zone due to wind driven processes within a tidal cycle for the first time. At the same time the small but significant sedimentation at the dry beach and dunes is measured on the tidal timescale. These data are essential in understanding sediment exchange between marine and aeolian zones and the growth of coastal dunes.

  12. Preliminary flowsheet: Ion exchange process for the separation of cesium from Hanford tank waste using Duolite{trademark} CS-100 resin

    SciTech Connect

    Eager, K.M.; Penwell, D.L.; Knutson, B.J.

    1994-12-01

    This preliminary flowsheet document describes an ion exchange process which uses Duolite{trademark} CS-100 resin to remove cesium from Hanford Tank waste. The flowsheet describes one possible equipment configuration, and contains mass balances based on that configuration with feeds of Neutralized Current Acid Waste, and Double Shell Slurry Feed. Process alternatives, unresolved issues, and development needs are discussed which relate to the process.

  13. High Resolution CH4 Emissions and Dissolved CH4 Measurements Elucidate Surface Gas Exchange Processes in Toolik Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Del Sontro, T.; Sollberger, S.; Kling, G. W.; Shaver, G. R.; Eugster, W.

    2013-12-01

    Approximately 14% of the Alaskan North Slope is covered in lakes of various sizes and depths. Diffusive carbon emissions (CH4 and CO2) from these lakes offset the tundra sink by ~20 %, but the offset would substantially increase if ebullitive CH4 emissions were also considered. Ultimately, arctic lake CH4 emissions are not insignificant in the global CH4 budget and their contribution is bound to increase due to impacts from climate change. Here we present high resolution CH4 emission data as measured via eddy covariance and a Los Gatos gas analyzer during the ice free period from Toolik Lake, a deep (20 m) Arctic lake located on the Alaskan North Slope, over the last few summers. Emissions are relatively low (< 25 mg CH4 m-2 d-1) with little variation over the summer. Diurnal variations regularly occur, however, with up to 3 times higher fluxes at night. Gas exchange is a relatively difficult process to estimate, but is normally done so as the product of the CH4 gradient across the air-water interface and the gas transfer velocity, k. Typically, k is determined based on the turbulence on the water side of the interface, which is most commonly approximated by wind speed; however, it has become increasingly apparent that this assumption does not remain valid across all water bodies. Dissolved CH4 profiles in Toolik revealed a subsurface peak in CH4 at the thermocline of up to 3 times as much CH4 as in the surface water. We hypothesize that convective mixing at night due to cooling surface waters brings the subsurface CH4 to the surface and causes the higher night fluxes. In addition to high resolution flux emission estimates, we also acquired high resolution data for dissolved CH4 in surface waters of Toolik Lake during the last two summers using a CH4 equilibrator system connected to a Los Gatos gas analyzer. Thus, having both the flux and the CH4 gradient across the air-water interface measured directly, we can calculate k and investigate the processes influencing

  14. 45 CFR 155.315 - Verification process related to eligibility for enrollment in a QHP through the Exchange.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... enrollment in a QHP through the Exchange. 155.315 Section 155.315 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES REQUIREMENTS RELATING TO HEALTH CARE ACCESS EXCHANGE ESTABLISHMENT STANDARDS AND OTHER... circumstances as to why the applicant does not have documentation. (h) Flexibility in information collection...

  15. Hydrogen and methanol exchange processes for (TMP)Rh-OCH3(CH3OH) in binary solutions of methanol and benzene.

    PubMed

    Sarkar, Sounak; Li, Shan; Wayland, Bradford B

    2011-04-18

    Tetramesityl porphinato rhodium(III) methoxide ((TMP)Rh-OCH(3)) binds with methanol in benzene to form a 1:1 methanol complex ((TMP)Rh-OCH(3)(CH(3)OH)) (1). Dynamic processes are observed to occur for the rhodium(III) methoxide methanol complex (1) that involve both hydrogen and methanol exchange. Hydrogen exchange between coordinated methanol and methoxide through methanol in solution results in an interchange of the environments for the non-equivalent porphyrin faces that contain methoxide and methanol ligands. Interchange of the environments of the coordinated methanol and methoxide sites in 1 produces interchange of the inequivalent mesityl o-CH(3) groups, but methanol ligand exchange occurs on one face of the porphyrin and the mesityl o-CH(3) groups remain inequivalent. Rate constants for dynamic processes are evaluated by full line shape analysis for the (1)H NMR of the mesityl o-CH(3) and high field methyl resonances of coordinated methanol and methoxide groups in 1. The rate constant for interchange of the inequivalent porphyrin faces is associated with hydrogen exchange between 1 and methanol in solution and is observed to increase regularly with the increase in the mole fraction of methanol. The rate constant for methanol ligand exchange between 1 and the solution varies with the solution composition and fluctuates in a manner that parallels the change in the activation energy for methanol diffusion which is a consequence of solution non-ideality from hydrogen bonded clusters.

  16. Study of the cell reversal process of large area proton exchange membrane fuel cells under fuel starvation

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Shen, Qiang; Hou, Ming; Shao, Zhigang; Yi, Baolian

    In this research, the fuel starvation phenomena in a single proton exchange membrane fuel cell (PEMFC) are investigated experimentally. The response characteristics of a single cell under the different degrees of fuel starvation are explored. The key parameters (cell voltage, current distribution, cathode and anode potentials, and local interfacial potentials between anode and membrane, etc.) are measured in situ with a specially constructed segmented fuel cell. Experimental results show that during the cell reversal process due to the fuel starvation, the current distribution is extremely uneven, the local high interfacial potential is suffered near the anode outlet, hydrogen and water are oxidized simultaneously in the different regions at the anode, and the carbon corrosion is proved to occur at the anode by analyzing the anode exhaust gas. When the fuel starvation becomes severer, the water electrolysis current gets larger, the local interfacial potential turns higher, and the carbon corrosion near the anode outlet gets more significant. The local interfacial potential near the anode outlet increases from ca. 1.8 to 2.6 V when the hydrogen stoichiometry decreases from 0.91 to 0.55. The producing rate of the carbon dioxide also increases from 18 to 20 ml min -1.

  17. Anion-exchange resin-based desulfurization process. Quarterly technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Sheth, A.C.; Dharmapurikar, R.

    1993-09-01

    Under the current grant (No. DE-FG22-90PC90309), the University of Tennessee Space Institute (UTSI) will perform the bench scale evaluation and further development of the anion-exchange resin-based desulfurization concept to desulfurize alkali metal sulfates. The developmental program proposed under this DOE grant includes screening of commercially available resins to select three candidate resins for further study. These three resins will undergo a series of experiments designed to test the resins` performance under different process conditions (including the use of spent MHD seed material). The best of these resins will be used in optimizing the regeneration step and in testing the effects of performance enhancers. During this reporting period, April 1, 1993 to June 30, 1993, the procedure to evaluate the cycle efficiency of candidate resins in the fixed-bed mode was slightly modified to ensure complete regeneration of the exhausted resin. Using this revised procedure, ten consecutive cycles for all the three resins have been completed and the results are being analyzed.

  18. STRONTIUM AND ACTINIDE SORPTION BY MST AND MMST UNDER CONDITIONS REVELANT TO THE SMALL COLUMN ION-EXCHANGE PROCESS

    SciTech Connect

    Taylor-Pashow, K.; Hobbs, D.; Poirier, M.

    2011-05-06

    A series of tests were performed to examine the kinetics of Sr and actinide removal by monosodium titanate (MST) and modified monosodium titanate (mMST) under mixing conditions similar to what will be provided in the Small Column Ion Exchange (SCIX) Program. Similar removal kinetics were seen for two different mixing energies, indicating that under these conditions bulk solution transport is not the rate limiting step for Sr and actinide removal. Sr removal was found to be rapid for both MST and mMST, reaching steady-state conditions within six hours. In contrast, at least six weeks is necessary to reach steady-state conditions for Pu with MST. For mMST, steady-state conditions for Pu were achieved within two weeks. The actual contact time required for the SCIX process will depend on starting sorbate concentrations as well as the requirements for the decontaminated salt solution. During testing leaks occurred in both the MST and mMST tests and evidence of potential desorption was observed. The desorption likely occurred as a result of the change in solids to liquid phase ratio that occurred due to the loss of solution. Based on these results, Savannah River National Laboratory (SRNL) recommended additional testing to further study the effect of changing phase ratios on desorption. This testing is currently in progress and results will be documented in a separate report.

  19. How do leader-member exchange quality and differentiation affect performance in teams? An integrated multilevel dual process model.

    PubMed

    Li, Alex Ning; Liao, Hui

    2014-09-01

    Integrating leader-member exchange (LMX) research with role engagement theory (Kahn, 1990) and role system theory (Katz & Kahn, 1978), we propose a multilevel, dual process model to understand the mechanisms through which LMX quality at the individual level and LMX differentiation at the team level simultaneously affect individual and team performance. With regard to LMX differentiation, we introduce a new configural approach focusing on the pattern of LMX differentiation to complement the traditional approach focusing on the degree of LMX differentiation. Results based on multiphase, multisource data from 375 employees of 82 teams revealed that, at the individual level, LMX quality positively contributed to customer-rated employee performance through enhancing employee role engagement. At the team level, LMX differentiation exerted negative influence on teams' financial performance through disrupting team coordination. In particular, teams with the bimodal form of LMX configuration (i.e., teams that split into 2 LMX-based subgroups with comparable size) suffered most in team performance because they experienced greatest difficulty in coordinating members' activities. Furthermore, LMX differentiation strengthened the relationship between LMX quality and role engagement, and team coordination strengthened the relationship between role engagement and employee performance. Theoretical and practical implications of the findings are discussed.

  20. A continuous process for biodiesel production in a fixed bed reactor packed with cation-exchange resin as heterogeneous catalyst.

    PubMed

    Feng, Yaohui; Zhang, Aiqing; Li, Jianxin; He, Benqiao

    2011-02-01

    Continuous esterification of free fatty acids (FFA) from acidified oil with methanol was carried out with NKC-9 cation-exchange resin in a fixed bed reactor with an internal diameter of 25 mm and a height of 450 mm to produce biodiesel. The results showed that the FFA conversion increased with increases in methanol/oil mass ratio, reaction temperature and catalyst bed height, whereas decreased with increases in initial water content in feedstock and feed flow rate. The FFA conversion kept over 98.0% during 500 h of continuous esterification processes under 2.8:1 methanol to oleic acid mass ratio, 44.0 cm catalyst bed height, 0.62 ml/min feed flow rate and 65°C reaction temperature, showing a much high conversion and operational stability. Furthermore, the loss of sulfonic acid groups from NKC-9 resin into the production was not found during continuous esterification. In sum, NKC-9 resin shows the potential commercial applications to esterification of FFA. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Spatial characteristics of coherent turbulent structures and exchange processes in the atmospheric surface layer within and above an orchard canopy

    NASA Astrophysics Data System (ADS)

    Zhang, Changan

    1991-05-01

    Spatial features of coherent turbulent structures and the associated exchange processes in the atmospheric surface layer within and above an orchard canopy were investigated, based on field measurements and data analyses. The experiment was conducted using longitudinal (along-wind) and then a transverse (cross-wind) setup in an English walnut orchard near Winters, California in July and August, 1989. Five towers were set along the prevailing wind direction in the longitudinal setup and seven towers were located in the cross-wind direction in the transverse setup. Arrays of fast response sonic anemometers, thermometers, hygrometers, and a CO2/H2O sensor were mounted at multiple levels. The translation speed of coherent structures was almost independent of height and distance with magnitude of 1.6 times the mean wind speed at the canopy top in a narrow range of unstable conditions, based on calculations using conditional sampling, correlation, and phase coherence. A vortex structure behind the microfront may be responsible for maintaining a constant translation speed. The time scale of the structures was 15 s for ejection and sweeps. Sizes of the coherent structures were approximately 9-12 times the canopy height (h) in the longitudinal dimension and at least 3-4 h in the transverse dimension. Microfront angles were almost constant from 2/3 h up to about 2 h with a value of 32 deg, and decreased to 17 deg at 1/3 h. Microfront angles were modified by the mean wind shear. The coherent structures were dominant and efficient in the exchange of momentum and scalars. While structures occupied 44-51 percent of the total time, they were associated with 65-70 percent of the momentum and scalar fluxes. Sweeps were more efficient than ejections inside the canopy, but ejections became as important as sweeps at 2 h. Triple products connected with the coherent structures were slightly asymmetric. Further study is needed to determine the translation speed under a larger stability

  2. The impact of fouling on the process performance of the thermal treatment of pig slurry using tubular heat exchangers.

    PubMed

    Cunault, C; Burton, C H; Pourcher, A M

    2013-03-15

    The aim of this study was to determine the kinetics of fouling and their influence on the performance of a thermal treatment process used for sanitisation of pig slurry. Two temperatures (55 °C and 80 °C) were investigated. One trial was carried out at 55 °C and 80 °C in which the slurry was not re-circulated and one trial at 80 °C in which 100% or 50% of the slurry was re-circulated. Fouling of the heat exchangers was assessed by on-line monitoring of the drop in pressure, changes in treatment temperature, heat transfer coefficients, heat recycling rate, and energy consumption. Similar energy consumption of around 38 kWh m(-3) of effluent was observed at the two temperatures. The operating periods prior to excessive fouling or blockage were 18 days at 55 °C and four days at 80 °C. Recycling treated manure to obtain 50% dilution of the raw feed increased the viable operating period to 14 days at 80 °C but doubled energy consumption. At 55 °C, the significant drop in the target temperature (>7 °C) with fouling severely jeopardised the process. The nature of the decline in performance suggests that the main fouling mechanisms were bio-fouling at 55 °C and organic/mineral deposits at 80 °C. Recycling treated manure enabled the operating period to be extended but increased the total cost of heating. One hundred percent recycling showed that the fouling potential of the manure was largely eliminated after one thermal treatment, suggesting a pretreatment may be advantageous.

  3. 41 CFR 102-33.360 - What is the process for selling or exchanging aircraft parts for replacement?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or GSA, Federal Supply Service (FSS)) may transact an exchange or sale directly with a non-federal... arising from or incident to purchase, use, or resale of this item. (b) GSA, Federal Supply Service (FSS...

  4. 41 CFR 102-33.360 - What is the process for selling or exchanging aircraft parts for replacement?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... or GSA, Federal Supply Service (FSS)) may transact an exchange or sale directly with a non-federal... arising from or incident to purchase, use, or resale of this item. (b) GSA, Federal Supply Service (FSS...

  5. 45 CFR 155.315 - Verification process related to eligibility for enrollment in a QHP through the Exchange.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... eligible for enrollment in a QHP through the Exchange. (b) Validation of Social Security number. (1) For... methods to be used for collection of information and verification of information as set forth in this...

  6. Flows and Heat Exchange in a Geothermal Bed in the Process of Extraction of a Vapor-Water Mixture from It

    NASA Astrophysics Data System (ADS)

    Ramazanov, M. M.; Alkhasova, D. A.; Abasov, G. M.

    2017-05-01

    With the use of the finite-difference method, a nonstationary nonlinear problem on the heat and mass transfer in a geothermal bed in the process of extraction of a vapor-water mixture from it was solved numerically with regard for the heat exchange between the bed and the surrounding rocks. The results obtained were analyzed and compared with the results of earlier investigations. It was established that the heat exchange between the bed and its roof and bottom influences the heat and mass transfer in the neighborhood of a producing well in it. It is shown that this heat exchange increases somewhat the pressure (temperature) of the phase transition of the heat-transfer medium and changes its saturation with water. At the stage of stationary heat and mass transfer in the bed, this change leads to a decrease in the water saturation of the heat-transfer medium, i.e., to an additional evaporation of water from it. However, at the stage of substantially nonstationary heat and mass transfer in the bed, the pattern is more complex: within certain time intervals, the heat exchange in separate regions of the bed decreases the content of vapor in the heat-transfer medium (increases its saturation with water). Moreover, in both the cases of absence and presence of heat exchange between the bed and the surrounding rocks, the distributions of the water saturation of the heat-transfer medium in the bed executes damped oscillations and, in so doing, approaches the stationary state.

  7. A combined process of activated carbon adsorption, ion exchange resin treatment and membrane concentration for recovery of dissolved organics in pre-hydrolysis liquor of the kraft-based dissolving pulp production process.

    PubMed

    Shen, Jing; Kaur, Ishneet; Baktash, Mir Mojtaba; He, Zhibin; Ni, Yonghao

    2013-01-01

    To recover dissolved organics in pre-hydrolysis liquor (PHL) of the kraft-based dissolving pulp production process, a new combined process concept of sequential steps of activated carbon adsorption, ion exchange resin treatment, and membrane concentration, was proposed. The removal of lignin in the PHL was achieved in the activated carbon adsorption step, which also facilitates the subsequent operations, such as the membrane filtration and ion exchange resin treatment. The ion exchange resin treatment resulted in the removal/concentration of acetic acid, which opens the door for acetic acid recovery. The membrane filtration is to recover/concentrate the dissolved sugars. The combined process resulted in the production of PHL-based concentrate with relatively high concentration of hemicellulosic sugars, i.e., 22.13%.

  8. Rat subchronic inhalation study of smoke from cigarettes containing flue-cured tobacco cured either by direct-fired or heat-exchanger curing processes.

    PubMed

    Kinsler, Steven; Pence, Deborah H; Shreve, W Keith; Mosberg, Arnold T; Ayres, Paul H; Sagartz, John W

    2003-07-01

    A subchronic, nose-only inhalation study compared the effects of mainstream smoke from a cigarette containing 100% flue-cured tobacco cured by a direct-fired process to that of a cigarette containing 100% flue-cured tobacco cured by a heat exchanger process. The tobaccos and mainstream smoke from tobaccos cured by the heat exchanger process have been shown to have significantly lower levels of tobacco-specific nitrosamines than tobaccos cured by a direct-fired process. Male and female rats were exposed for 1 h/day, 5 days/wk, for 13 wk to mainstream smoke at 0, 0.06, 0.20, or 0.80 mg wet total particulate matter per liter of air. Clinical signs, body and organ weights, clinical chemistry, hematology, carboxyhemoglobin, serum nicotine, plethysmography, gross pathology, and histopathology were determined. When histologic changes resulting from exposure to smoke from the two types of cigarettes were compared, the only significant difference was increased epithelial hyperplasia of the anterior nasal cavity in males in the high-exposure group for the heat-exchanger cigarette. At the end of the exposure period, subsets of rats from each group were maintained without smoke exposures for an additional 13 wk (recovery period). At the end of the recovery period, there were no statistically significant differences in histopathological findings observed between the heat-exchanger-cured tobacco cigarette when compared to the direct-fired cured tobacco cigarette. The complete toxicological assessment in this study of heat exchanger and direct-fired tobaccos suggests no overall biologically significant differences between the two cigarettes.

  9. Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system

    NASA Astrophysics Data System (ADS)

    Katul, Gabriel G.; Oren, Ram; Manzoni, Stefano; Higgins, Chad; Parlange, Marc B.

    2012-09-01

    The role of evapotranspiration (ET) in the global, continental, regional, and local water cycles is reviewed. Elevated atmospheric CO2, air temperature, vapor pressure deficit (D), turbulent transport, radiative transfer, and reduced soil moisture all impact biotic and abiotic processes controlling ET that must be extrapolated to large scales. Suggesting a blueprint to achieve this link is the main compass of this review. Leaf-scale transpiration (fe) as governed by the plant biochemical demand for CO2 is first considered. When this biochemical demand is combined with mass transfer formulations, the problem remains mathematically intractable, requiring additional assumptions. A mathematical "closure" that assumes stomatal aperture is autonomously regulated so as to maximize the leaf carbon gain while minimizing water loss is proposed, which leads to analytical expressions for leaf-scale transpiration. This formulation predicts well the effects of elevated atmospheric CO2 and increases in D on fe. The case of soil moisture stress is then considered using extensive gas exchange measurements collected in drought studies. Upscaling the fe to the canopy is then discussed at multiple time scales. The impact of limited soil water availability within the rooting zone on the upscaled ET as well as some plant strategies to cope with prolonged soil moisture stress are briefly presented. Moving further up in direction and scale, the soil-plant system is then embedded within the atmospheric boundary layer, where the influence of soil moisture on rainfall is outlined. The review concludes by discussing outstanding challenges and how to tackle them by means of novel theoretical, numerical, and experimental approaches.

  10. Excess titanium dioxide nanoparticles on the cell surface induce cytotoxicity by hindering ion exchange and disrupting exocytosis processes.

    PubMed

    Wang, Yanli; Yao, Chenjie; Li, Chenchen; Ding, Lin; Liu, Jian; Dong, Peng; Fang, Haiping; Lei, Zhendong; Shi, Guosheng; Wu, Minghong

    2015-08-14

    To date, considerable effort has been devoted to determine the potential toxicity of nanoparticles to cells and organisms. However, determining the mechanism of cytotoxicity induced by different types of nanoparticles remains challenging. Herein, typically low toxicity nanomaterials were used as a model to investigate the mechanism of cytotoxicity induced by low toxicity nanomaterials. We studied the effect of nano-TiO2, nano-Al2O3 and nano-SiO2 deposition films on the ion concentration on a cell-free system simulating the cell membrane. The results showed that the ion concentration of K(+), Ca(2+), Na(+), Mg(2+) and SO4(2-) decreased significantly following filtration of the prepared deposition films. More specifically, at a high nano-TiO2 concentration (200 mg L(-1)) and a long nano-TiO2 deposition time (48 h), the concentration of Na(+) decreased from 2958.01 to 2775.72, 2749.86, 2757.36, and 2719.82 mg L(-1), respectively, for the four types of nano-TiO2 studied. Likewise, the concentration of SO4(2-) decreased from 38.83 to 35.00, 35.80, 35.40, and 35.27 mg L(-1), respectively. The other two kinds of typical low toxicity nanomaterials (nano-Al2O3 and nano-SiO2) have a similar impact on the ion concentration change trend. Adsorption of ions on nanoparticles and the hydrated shell around the ions strongly hindered the ions through the nanoparticle films. The endocytosed nanoparticles could be released from the cells without inducing cytotoxicity. Hindering the ion exchange and disrupting the exocytosis process are the main factors that induce cytotoxicity in the presence of excess nano-TiO2 on the cell surface. The current findings may offer a universal principle for understanding the mechanism of cytotoxicity induced by low toxicity nanomaterials.

  11. Recurrent fractal neural networks: a strategy for the exchange of local and global information processing in the brain.

    PubMed

    Bieberich, Erhard

    2002-01-01

    The regulation of biological networks relies significantly on convergent feedback signaling loops that render a global output locally accessible. Ideally, the recurrent connectivity within these systems is self-organized by a time-dependent phase-locking mechanism. This study analyzes recurrent fractal neural networks (RFNNs), which utilize a self-similar or fractal branching structure of dendrites and downstream networks for phase-locking of reciprocal feedback loops: output from outer branch nodes of the network tree enters inner branch nodes of the dendritic tree in single neurons. This structural organization enables RFNNs to amplify re-entrant input by over-the-threshold signal summation from feedback loops with equivalent signal traveling times. The columnar organization of pyramidal neurons in the neocortical layers V and III is discussed as the structural substrate for this network architecture. RFNNs self-organize spike trains and render the entire neural network output accessible to the dendritic tree of each neuron within this network. As the result of a contraction mapping operation, the local dendritic input pattern contains a downscaled version of the network output coding structure. RFNNs perform robust, fractal data compression, thus coping with a limited number of feedback loops for signal transport in convergent neural networks. This property is discussed as a significant step toward the solution of a fundamental problem in neuroscience: how is neuronal computation in separate neurons and remote brain areas unified as an instance of experience in consciousness? RFNNs are promising candidates for engaging neural networks into a coherent activity and provide a strategy for the exchange of global and local information processing in the human brain, thereby ensuring the completeness of a transformation from neuronal computation into conscious experience.

  12. Excess titanium dioxide nanoparticles on the cell surface induce cytotoxicity by hindering ion exchange and disrupting exocytosis processes

    NASA Astrophysics Data System (ADS)

    Wang, Yanli; Yao, Chenjie; Li, Chenchen; Ding, Lin; Liu, Jian; Dong, Peng; Fang, Haiping; Lei, Zhendong; Shi, Guosheng; Wu, Minghong

    2015-07-01

    To date, considerable effort has been devoted to determine the potential toxicity of nanoparticles to cells and organisms. However, determining the mechanism of cytotoxicity induced by different types of nanoparticles remains challenging. Herein, typically low toxicity nanomaterials were used as a model to investigate the mechanism of cytotoxicity induced by low toxicity nanomaterials. We studied the effect of nano-TiO2, nano-Al2O3 and nano-SiO2 deposition films on the ion concentration on a cell-free system simulating the cell membrane. The results showed that the ion concentration of K+, Ca2+, Na+, Mg2+ and SO42- decreased significantly following filtration of the prepared deposition films. More specifically, at a high nano-TiO2 concentration (200 mg L-1) and a long nano-TiO2 deposition time (48 h), the concentration of Na+ decreased from 2958.01 to 2775.72, 2749.86, 2757.36, and 2719.82 mg L-1, respectively, for the four types of nano-TiO2 studied. Likewise, the concentration of SO42- decreased from 38.83 to 35.00, 35.80, 35.40, and 35.27 mg L-1, respectively. The other two kinds of typical low toxicity nanomaterials (nano-Al2O3 and nano-SiO2) have a similar impact on the ion concentration change trend. Adsorption of ions on nanoparticles and the hydrated shell around the ions strongly hindered the ions through the nanoparticle films. The endocytosed nanoparticles could be released from the cells without inducing cytotoxicity. Hindering the ion exchange and disrupting the exocytosis process are the main factors that induce cytotoxicity in the presence of excess nano-TiO2 on the cell surface. The current findings may offer a universal principle for understanding the mechanism of cytotoxicity induced by low toxicity nanomaterials.To date, considerable effort has been devoted to determine the potential toxicity of nanoparticles to cells and organisms. However, determining the mechanism of cytotoxicity induced by different types of nanoparticles remains challenging

  13. Capture and isotopic exchange method for water and hydrogen isotopes on zeolite catalysts up to technical scale for pre-study of processing highly tritiated water

    SciTech Connect

    Michling, R.; Braun, A.; Cristescu, I.; Dittrich, H.; Gramlich, N.; Lohr, N.; Glugla, M.; Shu, W.; Willms, S.

    2015-03-15

    Highly tritiated water (HTW) may be generated at ITER by various processes and, due to the excessive radio toxicity, the self-radiolysis and the exceedingly corrosive property of HTW, a potential hazard is associated with its storage and process. Therefore, the capture and exchange method for HTW utilizing Molecular Sieve Beds (MSB) was investigated in view of adsorption capacity, isotopic exchange performance and process parameters. For the MSB, different types of zeolite were selected. All zeolite materials were additionally coated with platinum. The following work comprised the selection of the most efficient zeolite candidate based on detailed parametric studies during the H{sub 2}/D{sub 2}O laboratory scale exchange experiments (about 25 g zeolite per bed) at the Tritium Laboratory Karlsruhe (TLK). For the zeolite, characterization analytical techniques such as Infrared Spectroscopy, Thermogravimetry and online mass spectrometry were implemented. Followed by further investigation of the selected zeolite catalyst under full technical operation, a MSB (about 22 kg zeolite) was processed with hydrogen flow rates up to 60 mol*h{sup -1} and deuterated water loads up to 1.6 kg in view of later ITER processing of arising HTW. (authors)

  14. PAPER STUDY EVALUATIONS OF THE INTRODUCTION OF SMALL COLUMN ION EXCHANGE WASTE STREAMS TO THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Fox, K.; Edwards, T.; Stone, M.; Koopman, D.

    2010-06-29

    The objective of this paper study is to provide guidance on the impact of Monosodium Titanate (MST) and Crystalline Silicotitanate (CST) streams from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) flowsheet and glass waste form. A series of waste processing scenarios was evaluated, including projected compositions of Sludge Batches 8 through 17 (SB8 through SB17), MST additions, CST additions to Tank 40 or to a sludge batch preparation tank (Tank 42 or Tank 51, referred to generically as Tank 51 in this report), streams from the Salt Waste Processing Facility (SWPF), and two canister production rates. A wide array of potential glass frit compositions was used to support this assessment. The sludge and frit combinations were evaluated using the predictive models in the current DWPF Product Composition Control System (PCCS). The results were evaluated based on the number of frit compositions available for a particular sludge composition scenario. A large number of candidate frit compositions (e.g., several dozen to several hundred) is typically a good indicator of a sludge composition for which there is flexibility in forming an acceptable waste glass and meeting canister production rate commitments. The MST and CST streams will significantly increase the concentrations of certain components in glass, such as Nb{sub 2}O{sub 5}, TiO{sub 2}, and ZrO{sub 2}, to levels much higher than have been previously processed at DWPF. Therefore, several important assumptions, described in detail in the report, had to be made in performing the evaluations. The results of the paper studies, which must be applied carefully given the assumptions made concerning the impact of higher Ti, Zr, and Nb concentrations on model validity, provided several observations: (1) There was difficulty in identifying a reasonable number of candidate frits (and in some cases an inability to identify any candidate frits) when a waste loading of 40% is

  15. The use of conferencing technologies to support drug policy group knowledge exchange processes: an action case approach.

    PubMed

    Househ, Mowafa Said; Kushniruk, Andre; Maclure, Malcolm; Carleton, Bruce; Cloutier-Fisher, Denise

    2011-04-01

    To describe experiences, lessons and the implications related to the use of conferencing technology to support three drug policy research groups within a three-year period, using the action case research method. An action case research field study was executed. Three different drug policy groups participated: research, educator, and decision-maker task groups. There were a total of 61 participants in the study. The study was conducted between 2004 and 2007. Each group used audio-teleconferencing, web-conferencing or both to support their knowledge exchange activities. Data were collected over three years and consisted of observation notes, interviews, and meeting transcripts. Content analysis was used to analyze the data using NIVIO qualitative data analysis software. The study found six key lessons regarding the impact of conferencing technologies on knowledge exchange within drug policy groups. We found that 1) groups adapt to technology to facilitate group communication, 2) web-conferencing communication is optimal under certain conditions, 3) audio conferencing is convenient, 4) web-conferencing forces group interactions to be "within text", 5) facilitation contributes to successful knowledge exchange, and 6) technology impacts information sharing. This study highlights lessons related to the use of conferencing technologies to support distant knowledge exchange within drug policy groups. Key lessons from this study can be used by drug policy groups to support successful knowledge exchange activities using conferencing technologies. 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Wherever I may roam: Processes of self-esteem development from adolescence to emerging adulthood in the context of international student exchange.

    PubMed

    Hutteman, Roos; Nestler, Steffen; Wagner, Jenny; Egloff, Boris; Back, Mitja D

    2015-05-01

    Previous studies on self-esteem development show substantial changes as well as interindividual differences in change from adolescence to young adulthood. However, the processes underlying these developmental trajectories are still not well understood. The aim of the present study was to shed light on the macro- and microprocesses of self-esteem development. We investigated a sample of 876 German high school students (M = 16.0 years at Time 1) participating in an international exchange year. Exchange students provided 3 waves of trait self-esteem data (shortly before they departed, immediately after return, and 1 year later), as well as 9 monthly state measures of self-esteem and social inclusion during their stay abroad. In addition, a control group of high school students who stayed in Germany (N = 714) provided 2 waves of trait self-esteem data. From a macroperspective, results showed an effect of student exchange on trait self-esteem development: Exchange students showed a steeper mean-level increase and a lower rank-order stability compared with control students. Zooming in on the microprocesses underlying these developmental patterns, we found trait changes in exchange students to be mediated by state changes in self-esteem during their exchange. These fluctuations in state self-esteem were found to be predicted by feelings of social inclusion in the host country, and vice versa, providing support for both sociometer and self-broadcasting perspectives on self-esteem dynamics. In sum, our findings emphasize the importance of incorporating a microanalytical approach when investigating self-esteem development by showing that the environment triggers changes in this relatively stable personality trait through changes in states.

  17. What can be Learned from X-Ray Spectroscopy Concerning Hot Gas in the Local Bubble and Charge Exchange Processes

    NASA Technical Reports Server (NTRS)

    Snowden, Steven L.

    2007-01-01

    Solar wind charge exchange produces diffuse X-ray emission with a variable surface brightness comparable to that of the cosmic background. While the temporal variation of the charge exchange emission allows some separation of the components, there remains a great deal of uncertainty as to the zero level of both. Because the production mechanisms of the two components are considerably different, their spectra would provide critical diagnostics to the understanding of both. However, current X-ray observatories are very limited in both spectral resolution and sensitivity in the critical soft X-ray (less than 1.0 keV) energy range. Non-dispersive high-resolution spectrometers, such as the calorimeter proposed for the Spectrum Roentgen Gamma mission, will be extremely useful in distinguishing the cascade emission of charge exchange from the spectra of thermal bremsstrahlung cosmic plasmas.

  18. Determination of {sup 16}O and {sup 18}O sensitivity factors and charge-exchange processes in low-energy ion scattering

    SciTech Connect

    Tellez, H.; Chater, R. J.; Fearn, S.; Symianakis, E.; Kilner, J. A.; Brongersma, H. H.

    2012-10-08

    Quantitative analysis in low-energy ion scattering (LEIS) requires an understanding of the charge-exchange processes to estimate the elemental sensitivity factors. In this work, the neutralization of He{sup +} scattered by {sup 18}O-exchanged silica at energies between 0.6 and 7 keV was studied. The process is dominated by Auger neutralization for E{sub i} < 0.8 keV. An additional mechanism starts above the reionization threshold. This collision-induced neutralization becomes the dominant mechanism for E{sub i} > 2 keV. The ion fractions P{sup +} were determined for Si and O using the characteristic velocity method to quantify the surface density. The {sup 18}O/{sup 16}O sensitivity ratio indicates an 18% higher sensitivity for the heavier O isotope.

  19. Processing arctic eddy-flux data using a simple carbon-exchange model embedded in the ensemble Kalman filter.

    PubMed

    Rastetter, Edward B; Williams, Mathew; Griffin, Kevin L; Kwiatkowski, Bonnie L; Tomasky, Gabrielle; Potosnak, Mark J; Stoy, Paul C; Shaver, Gaius R; Stieglitz, Marc; Hobbie, John E; Kling, George W

    2010-07-01

    Continuous time-series estimates of net ecosystem carbon exchange (NEE) are routinely made using eddy covariance techniques. Identifying and compensating for errors in the NEE time series can be automated using a signal processing filter like the ensemble Kalman filter (EnKF). The EnKF compares each measurement in the time series to a model prediction and updates the NEE estimate by weighting the measurement and model prediction relative to a specified measurement error estimate and an estimate of the model-prediction error that is continuously updated based on model predictions of earlier measurements in the time series. Because of the covariance among model variables, the EnKF can also update estimates of variables for which there is no direct measurement. The resulting estimates evolve through time, enabling the EnKF to be used to estimate dynamic variables like changes in leaf phenology. The evolving estimates can also serve as a means to test the embedded model and reconcile persistent deviations between observations and model predictions. We embedded a simple arctic NEE model into the EnKF and filtered data from an eddy covariance tower located in tussock tundra on the northern foothills of the Brooks Range in northern Alaska, USA. The model predicts NEE based only on leaf area, irradiance, and temperature and has been well corroborated for all the major vegetation types in the Low Arctic using chamber-based data. This is the first application of the model to eddy covariance data. We modified the EnKF by adding an adaptive noise estimator that provides a feedback between persistent model data deviations and the noise added to the ensemble of Monte Carlo simulations in the EnKF. We also ran the EnKF with both a specified leaf-area trajectory and with the EnKF sequentially recalibrating leaf-area estimates to compensate for persistent model-data deviations. When used together, adaptive noise estimation and sequential recalibration substantially improved filter

  20. EXCHANGE PROCESSES OF VOLATILE ORGANIC COMPOUNDS ABOVE A TROPICAL RAIN FOREST: IMPLICATIONS FOR MODELING TROPOSPHERIC CHEMISTRY ABOVE DENSE VEGETATION

    EPA Science Inventory

    Measurements of bi-directional ammonia exchange over a fertilized soybean canopy are presented for an 8 week period during the summer of 2002. This modified Bowen-ratio approach was used to determine fluxes from vertical NH3 and temperature gradients in combination with eddy cova...

  1. 41 CFR 102-33.360 - What is the process for selling or exchanging aircraft parts for replacement?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or GSA, Federal Supply Service (FSS)) may transact an exchange or sale directly with a non-federal... from any or all debts, liabilities, judgments, costs, demands, suits, actions, or claims of any nature arising from or incident to purchase, use, or resale of this item. (b) GSA, Federal Supply Service (FSS...

  2. An Experimental Investigation of the Process of Isotope Exchange that Takes Place when Heavy Water Is Exposed to the Atmosphere

    ERIC Educational Resources Information Center

    Deeney, F. A.; O'Leary, J. P.

    2009-01-01

    We have used the recently developed method for rapid measurement of maximum density temperature to determine the rate at which hydrogen and deuterium isotope exchange takes place when a sample of heavy water is exposed to the atmosphere. We also provide a simple explanation for the observed linear rate of transition. (Contains 2 figures.)

  3. An Experimental Investigation of the Process of Isotope Exchange that Takes Place when Heavy Water Is Exposed to the Atmosphere

    ERIC Educational Resources Information Center

    Deeney, F. A.; O'Leary, J. P.

    2009-01-01

    We have used the recently developed method for rapid measurement of maximum density temperature to determine the rate at which hydrogen and deuterium isotope exchange takes place when a sample of heavy water is exposed to the atmosphere. We also provide a simple explanation for the observed linear rate of transition. (Contains 2 figures.)

  4. EXCHANGE PROCESSES OF VOLATILE ORGANIC COMPOUNDS ABOVE A TROPICAL RAIN FOREST: IMPLICATIONS FOR MODELING TROPOSPHERIC CHEMISTRY ABOVE DENSE VEGETATION

    EPA Science Inventory

    Measurements of bi-directional ammonia exchange over a fertilized soybean canopy are presented for an 8 week period during the summer of 2002. This modified Bowen-ratio approach was used to determine fluxes from vertical NH3 and temperature gradients in combination with eddy cova...

  5. Incorporation of silver nanoparticles into the bulk of the electrospun ultrafine polyimide nanofibers via a direct ion exchange self-metallization process.

    PubMed

    Han, Enlin; Wu, Dezhen; Qi, Shengli; Tian, Guofeng; Niu, Hongqing; Shang, Gongping; Yan, Xiaona; Yang, Xiaoping

    2012-05-01

    This paper reports our works on the preparation of the silver-nanoparticle-incorporated ultrafine polyimide (PI) ultrafine fibers via a direct ion exchange self-metallization technique using silver ammonia complex cation ([Ag(NH(3))(2)](+)) as the silver precursor and pyromellitic dianhydride (PMDA)/4,4'-oxidianiline (4,4'-ODA) polyimide as the matrix. The polyimide precursor, poly(amic acid) (PAA), was synthesized and then electrospun into ultrafine fibers. By thermally treating the silver(I)-doped PAA ultrafine fibers, where the silver(I) ions were loaded through the ion exchange reactions of the carboxylic acid groups of the PAA macromolecules with the [Ag(NH(3))(2)](+) cations in an aqueous solution, ultrafine polyimide fibers embedded with silver nanoparticles with diameters less than 20 nm were successfully fabricated. The fiber-electrospinning process, the ion exchange process, and various factors influencing the hybrid ultrafine fibers preparation process such as the thermal treatment atmospheres and the thermal catalytic oxidative degradation effect of the reduced silver nanoparticles were discussed. The ultrafine fibers were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA).

  6. Regulation of the rabbit ileal brush-border Na+/H+ exchanger by an ATP-requiring Ca++/calmodulin-mediated process.

    PubMed Central

    Rood, R P; Emmer, E; Wesolek, J; McCullen, J; Husain, Z; Cohen, M E; Braithwaite, R S; Murer, H; Sharp, G W; Donowitz, M

    1988-01-01

    Brush-border vesicles purified from rabbit ileal villus cells were used to evaluate how Ca++/calmodulin (CaM) regulates the neutral linked NaCl absorptive process, part of which is a Na+/H+ exchanger. After freezing and thawing to allow incorporation of macromolecules into the vesicles, the effect of Ca++/CaM on brush-border Na+ uptake with an acid inside pH gradient, and on Na+/H+ exchange was determined. Freezing and thawing vesicles with 0.85 microM free Ca++ plus 5 microM exogenous CaM failed to alter Na+/H+ exchange as did the addition of exogenous ATP plus an ATP regenerating system, which was sufficient to elevate intravesicular ATP to 47 microM from a basal level of 0.4 microM. However, the combination of Ca++/CaM plus ATP inhibited Na+ uptake in the presence of an acid inside pH gradient and inhibited Na+/H+ exchange, while Na+ uptake in the absence of a pH gradient was not altered. This effect required a hydrolyzable form of ATP, and did not occur when the nonhydrolyzable ATP analogue, AMP-PNP, replaced ATP. Under the identical intravesicular conditions used for the transport studies, Ca++ (0.85 microM) plus exogenous CaM (5 microM), in the presence of magnesium plus ATP, increased phosphorylation of five brush-border peptides. These data are consistent with Ca++/CaM acting via phosphorylation to regulate the ileal brush-border Na+/H+ exchanger. PMID:2843567

  7. Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: a case study from northwestern Saudi Arabia.

    PubMed

    Zaidi, Faisal K; Nazzal, Yousef; Jafri, Muhammad Kamran; Naeem, Muhammad; Ahmed, Izrar

    2015-10-01

    Assessment of groundwater quality is of utmost significance in arid regions like Saudi Arabia where the lack of present-day recharge and high evaporation rates coupled with increasing groundwater withdrawal may restrict its usage for domestic or agricultural purposes. In the present study, groundwater samples collected from agricultural farms in Hail (15 samples), Al Jawf (15 samples), and Tabuk (30 samples) regions were analyzed for their major ion concentration. The objective of the study was to determine the groundwater facies, the main hydrochemical process governing the groundwater chemistry, the saturation index with respect to the principal mineral phases, and the suitability of the groundwater for irrigational use. The groundwater samples fall within the Ca-Cl type, mixed Ca-Mg-Cl type, and Na-Cl type. Evaporation and reverse ion exchange appear to be the major processes controlling the groundwater chemistry though reverse ion exchange process is the more dominating factor. The various ionic relationships confirmed the reverse ion exchange process where the Ca and Mg in the aquifer matrix have been replaced by Na at favorable exchange sites. This phenomenon has accounted for the dominance of Ca and Mg ions over Na ion at all the sites. The process of reverse ion exchange was further substantiated by the use of modified Piper diagram (Chadha's classification) and the chloro-alkaline indices. Evaporation as a result of extreme aridity has resulted in the groundwater being oversaturated with aragonite/calcite and dolomite as revealed by the saturation indices. The groundwater samples were classified as safe (less than 10) in terms of sodium adsorption ratio (SAR) values, good (less than 1.25) in terms of residual sodium carbonate (RSC) values, and safe to moderate (between 0 and 3) in terms of Mg hazard for irrigation purposes. Though the high salinity groundwater in the three regions coupled with low SAR values are good for the soil structure, it can have a

  8. Search for and Identification of Graviton Exchange Effects in Drell-Yan Process at Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Pankov, A. A.; Serenkova, I. A.; Tsytrinov, A. V.

    New physics signatures arising from different sources may be confused when first observed at future colliders. Thus it is important to examine how various scenarios may be differentiated given the availability of only limited information. Here, we explore the capability of the Large Hadron Collider (LHC) to distinguish spin-2 Kaluza-Klein towers of gravitons exchange from other new physics effects which might be conveniently parametrized by the four-fermion contact interactions. We find that the LHC with planned energies and luminosities will be capable of discovering (and identifying) graviton exchange effects in the large extra dimensions with the cutoff parameter of order 4.6 - 9.4 TeV (3.6 - 6.0 TeV) depending on energy, luminosity and number of extra dimensions.

  9. Ag-doped 45S5 Bioglass®-based bone scaffolds by molten salt ion exchange: processing and characterisation.

    PubMed

    Newby, P J; El-Gendy, R; Kirkham, J; Yang, X B; Thompson, I D; Boccaccini, A R

    2011-03-01

    There is increasing interest in developing scaffolds with therapeutic and antibacterial potential for bone tissue engineering. Silver is a proven antibacterial agent which bacteria such as MRSA have little or no defense against. Using an ion exchange method, silver ions have been introduced into 45S5 Bioglass(®) based scaffolds that were fabricated using the foam replication technique. This technique allows the introduction of Ag(+) ions onto the surface of the scaffold without compromising the scaffold bioactivity and other physical properties such as porosity. Controlling the amount of Ag(+) ions introduced onto the surface of the scaffold was achieved by tailoring the ion exchange parameters to fabricate samples with repeatable and predictable Ag(+) ion release behavior. In vitro studies in simulated body fluid were carried out to ensure that the scaffolds maintained their bioactivity after the introduction of Ag(+) ions. It was also shown that the addition of low concentrations (2000:1 w/w) of silver ions supported the attachment and viability of human periodontal ligament stromal cells on the 3D scaffolds. This work has thus confirmed ion exchange as an effective technique to introduce Ag(+) ions into 45S5 Bioglass(®) scaffolds without compromising the basic properties of 45S5 Bioglass(®) which are required for applications in bone tissue engineering.

  10. Effect of the morphology of cadmium sulfide films on the process of ion-exchange substitution at the interface with a lead salt solution

    NASA Astrophysics Data System (ADS)

    Forostyanaya, N. A.; Maskaeva, L. N.; Bakhteev, S. A.; Yusupov, R. A.; Markov, V. F.; Vasil'ev, S. G.; Voronin, V. I.

    2017-08-01

    Comparative data on the effect morphological features of core CdS films chemically precipitated from citrate, ethylenediamine, and citrate-ammonia reaction systems have on the intensity of heterogenic ion-exchange substitution when they come into contact with an aqueous lead salt solution are given. The key role of the initial adsorption stage in this process is revealed. Based on an analysis of the kinetic curves of lead accumulation in the initial film surface, it is shown that CdS layers that are obtained from a citrate-ammonia system and have the maximum specific surface (154.4 ± 0.2 m2/g) yield higher values (0.020 s-1) of kinetic constant W 1 of the ion-exchange substitution rate.

  11. RecA protein reinitiates strand exchange on isolated protein-free DNA intermediates. An ADP-resistant process.

    PubMed

    Rao, B J; Jwang, B; Radding, C M

    1990-06-20

    Efficient homologous pairing de novo of linear duplex DNA with a circular single strand (plus strand) coated with RecA protein requires saturation and extension of the single strand by the protein. However, strand exchange, the transfer of a strand from duplex DNA to the nucleoprotein filament, which follows homologous pairing, does not require the stable binding of RecA protein to single-stranded DNA. When RecA protein was added back to isolated protein-free DNA intermediates in the presence of sufficient ADP to inhibit strongly the binding of RecA protein to single-stranded DNA, strand exchange nonetheless resumed at the original rate and went to completion. Characterization of the protein-free DNA intermediate suggested that it has a special site or region to which RecA protein binds. Part of the nascent displaced plus strand of the deproteinized intermediate was unavailable as a cofactor for the ATPase activity of RecA protein, and about 30% resisted digestion by P1 endonuclease, which acts preferentially on single-stranded DNA. At the completion of strand exchange, when the distal 5' end of the linear minus strand had been fully incorporated into heteroduplex DNA, a nucleoprotein complex remained that contained all three strands of DNA from which the nascent displaced strand dissociated only over the next 50 to 60 minutes. Deproteinization of this intermediate yielded a complex that also contained three strands of DNA in which the nascent displaced strand was partially resistant to both Escherichia coli exonuclease I and P1 endonuclease. The deproteinized complex showed a broad melting transition between 37 degrees C and temperatures high enough to melt duplex DNA. These results show that strand exchange can be subdivided into two stages: (1) the exchange of base-pairs, which creates a new heteroduplex pair in place of a parental pair; and (2) strand separation, which is the physical displacement of the unpaired strand from the nucleoprotein filament. Between

  12. Evaluation of high-capacity cation exchange chromatography for direct capture of monoclonal antibodies from high-titer cell culture processes.

    PubMed

    Tao, Yinying; Ibraheem, Aladein; Conley, Lynn; Cecchini, Douglas; Ghose, Sanchayita

    2014-07-01

    Advances in molecular biology and cell culture technology have led to monoclonal antibody titers in excess of 10 g/L. Such an increase can pose concern to traditional antibody purification processes due to limitations in column hardware and binding capacity of Protein A resins. Recent development of high capacity cation exchangers can make cation exchange chromatography (CEX) a promising and economic alternative to Protein A capture. This work investigates the feasibility of using CEX for direct capture of monoclonal antibodies from high titer cell culture fluids. Two resin candidates were selected from seven newer generation cation exchangers for their higher binding capacity and selectivity. Two monoclonal antibodies with widely differing pI values were used to evaluate the capability of CEX as a platform capture step. Screening of loading pH and conductivity showed both resins to be capable of directly capturing both antibodies from undiluted cell culture fluid. At appropriate acidic pH range, product loading of over 65 g/L resin was achieved for both antibodies. A systematic design of experiment (DOE) approach was used to optimize the elution conditions for the CEX step. Elution pH showed the most significant impact on clearance of host cell proteins (HCPs). Under optimal conditions, HCP reduction factors in the range of 9-44 were achieved on the CEX step based on the pI of the antibody. Apart from comparing CEX directly to Protein A as the capture method, material from either modality was also processed through the subsequent polishing steps to compare product quality at the drug substance level. Process performance and product quality was found to be acceptable using the non-affinity based process scheme. The results shown here present a cheaper and higher capacity generic capture method for high-titer antibody processes. © 2014 Wiley Periodicals, Inc.

  13. A three-dimensional, quantum mechanical study of exchange and charge transfer processes in the (Ar+H2) + system

    NASA Astrophysics Data System (ADS)

    Baer, Michael; Nakamura, Hiroki

    1987-10-01

    A three-dimensional quantum mechanical study of the (Ar+H2)+ system was carried out within the reactive infinite order sudden approximation. All three arrangement channels for exchange and charge transfer were treated simultaneously. Steric factors, opacity functions, angular distributions, and integral cross sections were calculated. Whenever possible, these were compared with both experimental and trajectory surface hopping (TSH) results. Whereas the fit with the TSH results was reasonable, the fit obtained with the experiment was less satisfactory. The reason for that can be attributed at least partially to the semiempirical DIM potential employed in the calculation.

  14. Design and implementation of an informed consent process for a standardized health information exchange solution on the example of the lower saxony bank of health.

    PubMed

    Schwartze, Jonas; Haarbrandt, Birger; Rochon, Maike; Wagner, Markus; Haux, Reinhold; Kleinschmidt, Thorsten; Plischke, Maik; Seidel, Christoph

    2013-01-01

    Multicenter medical treatment requires health related data to be available across institutions. Since health information exchange solutions are emergent, fulfillment of privacy needs, including patients' informed consent, is vital for successful data exchange. We designed a software supported consent process for the recently founded Lower Saxony Bank of Health (LSBH) with regard to particularities of German law. To implement the application, web technologies and well-described interfaces to IHE XDS profile components have been used. A two staged process has been developed. A special consent application creates a customized form containing all orally given constraints defined by the patient. The form is printed out and signed by the patient while an electronic policy is created and registered at the LSBH. The process completely reflects a conventional informed consent procedure but increases simplicity, clarity and understandability of the consent form. Technical and legal restrictions in Germany create a media split becoming a media crack in some environments. Availability of signature cards could improve the process by making it completely electronic.

  15. Magnetic exchange coupling in hard/soft ferromagnetic composite thin films of cobalt platinum/cobalt: Role of processing and structure

    NASA Astrophysics Data System (ADS)

    Kim, Jihwan

    2001-12-01

    microstructural data are considered together, this study shows that the properties of hard/soft nanocomposites depend not only on the dimensions of both phases, but also on the physical and magnetic characteristics of each phase. A most significant outcome of this work is the demonstration that exchange coupling may be altered, and perhaps tailored, by processing-induced changes in the interphase interface.

  16. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    SciTech Connect

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-08-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission`s ``Technical Position on Waste Form`` (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity.

  17. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    SciTech Connect

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-01-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission's Technical Position on Waste Form'' (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity.

  18. Optimizing liquid waste treatment processing in PWRs: focus on modeling of the variation of ion-exchange resins selectivity coefficients

    SciTech Connect

    Gressier, Frederic; Van der Lee, Jan; Schneider, Helene; Bachet, Martin; Catalette, Hubert

    2007-07-01

    A bibliographic survey has highlighted the essential role of selectivity on resin efficiency, especially the variation of selectivity coefficients in function of the resin saturation state and the operating conditions. This phenomenon has been experimentally confirmed but is not yet implemented into an ion-exchange model specific for resins. This paper reviews the state of the art in predicting sorption capacity of ion-exchange resins. Different models accounting for ions activities inside the resin phase are available. Moreover, a comparison between the values found in the literature and our results has been done. The results of sorption experiments of cobalt chloride on a strong cationic gel type resin used in French PWRs are presented. The graph describing the variation of selectivity coefficient with respect to cobalt equivalent fraction is drawn. The parameters determined by the analysis of this graph are injected in a new physico-chemical law. Implementation of this model in the chemical speciation simulation code CHESS enables to study the overall effect of this approach for the sorption in a batch. (authors)

  19. Exchange Processes in Shibasaki's Rare Earth Alkali Metal BINOLate Frameworks and Their Relevance in Multifunctional Asymmetric Catalysis.

    PubMed

    Robinson, Jerome R; Gu, Jun; Carroll, Patrick J; Schelter, Eric J; Walsh, Patrick J

    2015-06-10

    Shibasaki's rare earth alkali metal BINOLate (REMB) catalysts (REMB; RE = Sc, Y, La - Lu; M = Li, Na, K; B = 1,1-bi-2-naphtholate; RE/M/B = 1/3/3) are among the most successful enantioselective catalysts and have been employed in a broad range of mechanistically diverse reactions. Despite the phenomenal success of these catalysts, several fundamental questions central to their reactivity remain unresolved. Combined reactivity and spectroscopic studies were undertaken to probe the identity of the active catalyst(s) in Lewis-acid (LA) and Lewis-acid/Brønsted-base (LA/BB) catalyzed reactions. Exchange spectroscopy provided a method to obtain rates of ligand and alkali metal self-exchange in the RE/Li frameworks, demonstrating the utility of this technique for probing solution dynamics of REMB catalysts. Isolation of the first crystallographically characterized REMB complex with substrate bound enabled stoichiometric and catalytic reactivity studies, wherein we observed that substrate deprotonation by the catalyst framework was necessary to achieve selectivity. Our spectroscopic observations in LA/BB catalysis are inconsistent with previous mechanistic proposals, which considered only tris(BINOLate) species as active catalysts. These findings significantly expand our understanding of the catalyst structure in these privileged multifunctional frameworks and identify new directions for development of new catalysts.

  20. A versatile and scalable two-step ion-exchange chromatography process for the purification of recombinant adeno-associated virus serotypes-2 and -5.

    PubMed

    Brument, Nicole; Morenweiser, Robert; Blouin, Véronique; Toublanc, Estelle; Raimbaud, Isabelle; Chérel, Yan; Folliot, Sébastien; Gaden, Florence; Boulanger, Pierre; Kroner-Lux, Gabrielle; Moullier, Philippe; Rolling, Fabienne; Salvetti, Anna

    2002-11-01

    Here we describe the development of a two-step chromatography process based on the use of ion-exchange resins for the purification of recombinant adeno-associated virus (rAAV) serotypes-2 and-5. In vitro and in vivo results demonstrate that this method, which does not require any prepurification step of the cell lysate, can be applied to obtain highly pure rAAV2 and rAAV5 stocks. As such,this procedure can be easily transferred in vector cores and also scaled up, allowing the direct comparison of these two, and potentially other, AAV serotypes in large animal models.

  1. Observation of lines above 2000 A in OVIII and CVI in the PLT tokamak due to charge-exchange processes: diagnostic applications

    SciTech Connect

    Suckewer, S; Skinner, C.H.; Stratton, B.; Bell, R.; Cavallo, A.; Hosea, J.; Hwang, D.; Schilling, G.

    1984-02-01

    Hydrogen-like oxygen and carbon lines from high-n transitions with wavelengths above 2000 A were observed as a result of charge-exchange processes during neutral beam injection of hydrogen atoms into the Princeton Large Torus (PLT) tokamak. The lines are: OVIII 2976 A (8 ..-->.. 7 transitions), CVI 3434 A (7 ..-->.. 6), and CVI 5291 A (8 ..-->.. 7). Application of these lines for Doppler ion temperature measurements and initial obeservations of neutral beam vertical and horizontal distributions in the plasma are presented.

  2. The Na+/H+ exchanger NHE6 modulates endosomal pH to control processing of amyloid precursor protein in a cell culture model of Alzheimer disease.

    PubMed

    Prasad, Hari; Rao, Rajini

    2015-02-27

    Early intervention may be key to safe and effective therapies in patients with Alzheimer disease. Endosomal dysfunction is an early step in neurodegeneration. Endosomes are a major site of production of Aβ peptide from the processing of amyloid precursor protein (APP) by clipping enzymes (β- and γ-secretases). The β-secretase enzyme BACE1 requires acidic lumen pH for optimum function, and acid pH promotes Aβ aggregation. The Na(+)/H(+) exchanger NHE6 provides a leak pathway for protons, limiting luminal acidification by proton pumps. Like APP, NHE6 expression was induced upon differentiation of SH-SY5Y neuroblastoma cells and localized to an endosomal compartment. Therefore, we investigated whether NHE6 expression altered APP localization and processing in a stably transfected cell culture model of human APP expression. We show that co-expression with NHE6 or treatment with the Na(+)/H(+) ionophore monensin shifted APP away from the trans-Golgi network into early and recycling endosomes in HEK293 cells. NHE6 alkalinized the endosomal lumen, similar to monensin, and significantly attenuated APP processing and Aβ secretion. In contrast, Aβ production was elevated upon NHE6 knockdown. We show that NHE6 transcript and protein levels are lowered in Alzheimer brains relative to control. These findings, taken together with emerging genetic evidence linking endosomal Na(+)/H(+) exchangers with Alzheimer disease, suggest that proton leak pathways may regulate Aβ generation and contribute to disease etiology.

  3. The Na+/H+ Exchanger NHE6 Modulates Endosomal pH to Control Processing of Amyloid Precursor Protein in a Cell Culture Model of Alzheimer Disease*

    PubMed Central

    Prasad, Hari; Rao, Rajini

    2015-01-01

    Early intervention may be key to safe and effective therapies in patients with Alzheimer disease. Endosomal dysfunction is an early step in neurodegeneration. Endosomes are a major site of production of Aβ peptide from the processing of amyloid precursor protein (APP) by clipping enzymes (β- and γ-secretases). The β-secretase enzyme BACE1 requires acidic lumen pH for optimum function, and acid pH promotes Aβ aggregation. The Na+/H+ exchanger NHE6 provides a leak pathway for protons, limiting luminal acidification by proton pumps. Like APP, NHE6 expression was induced upon differentiation of SH-SY5Y neuroblastoma cells and localized to an endosomal compartment. Therefore, we investigated whether NHE6 expression altered APP localization and processing in a stably transfected cell culture model of human APP expression. We show that co-expression with NHE6 or treatment with the Na+/H+ ionophore monensin shifted APP away from the trans-Golgi network into early and recycling endosomes in HEK293 cells. NHE6 alkalinized the endosomal lumen, similar to monensin, and significantly attenuated APP processing and Aβ secretion. In contrast, Aβ production was elevated upon NHE6 knockdown. We show that NHE6 transcript and protein levels are lowered in Alzheimer brains relative to control. These findings, taken together with emerging genetic evidence linking endosomal Na+/H+ exchangers with Alzheimer disease, suggest that proton leak pathways may regulate Aβ generation and contribute to disease etiology. PMID:25561733

  4. Optimization of SHINE Process: Design and Verification of Plant-Scale AG 1 Anion-Exchange Concentration Column and Titania Sorbent Pretreatment

    SciTech Connect

    Stepinski, Dominique C.; Abdul, Momen; Youker, Amanda J.; Rotsch, David A.; Tkac, Peter; Chemerisov, Sergey; Vandegrift, George F.

    2016-06-01

    Argonne National Laboratory has developed a Mo-recovery and -purification system for the SHINE medical technologies process, which uses a uranyl sulfate solution for the accelerator-driven production of Mo-99. The objective of this effort is to reduce the processing time for the acidification of the Mo-99 product prior to loading onto a concentration column and concentration of the Mo-99 product solution. Two methods were investigated: (1) the replacement of the titania concentration column by an anion-exchange column to decrease processing time and increase the radioiodine-decontamination efficiency and (2) pretreatment of the titania sorbent to improve its effectiveness for the Mo-recovery and -concentration columns. Promising results are reported for both methods.

  5. Higher-order processes of excitation energy transfer in supramolecular complexes: Liouville space analysis of bridge molecule mediated transfer and direct photon exchange.

    PubMed

    May, Volkhard

    2008-09-21

    Long-range electronic excitation energy transfer is studied in the framework of a generalized master equation approach, which offers a systematic account for higher-order processes. Bridge molecule mediated transfer is confronted with the direct excitation energy exchange via photon emission and absorption. It is the central aim of this paper to present a systematic study of fourth-order rates, which describe both types of transfer processes characterized by the presence of intermediate states. While such a Liouville space formulation of rates is known from bridge mediated transfer, it is new for the case of photon mediated processes. In the former case, however, a novel approach to account for intermediate state relaxation is introduced. Finally and for illustration, some estimates are offered for the length dependence of the various discussed transfer rates.

  6. Titanium-indiffused proton-exchanged waveguide lenses in LiNbO3 for optical information processing

    NASA Astrophysics Data System (ADS)

    Zang, D. Y.; Tsai, C. S.

    1986-07-01

    Design, fabrication, measurement, and performance characteristics of the titanium-indiffused proton-exchanged microlenses, microlens arrays, and their combinations in LiNbO3 with emphasis on the most recent results are detailed first. Utilization of such TIPE microlenses for acoustooptic Bragg diffraction in a LiNbO3 channel-planar composite waveguide and realization of an integrated AO Bragg modulator module in a substrate size of 0.2 x 1.0 x 2.0 cm are then described. Some of the potential applications of such an integrated optic module together with the preliminary results of a simple experiment on matrix-vector multiplication are also presented.

  7. Gamma irradiation-induced modifications of polymers found in nuclear waste embedding processes Part II: The ion-exchange resin

    NASA Astrophysics Data System (ADS)

    Debré, O.; Nsouli, B.; Thomas, J.-P.; Stevenson, I.; Colombini, D.; Romero, M.-A.

    1997-08-01

    Ion exchange resins (IERs) saturated in cesium and borate ions are well representative of low and medium activity nuclear waste to be embedded in an epoxy resin/amine hardener, such a conditioning procedure being under qualification. In order to test these materials in realistic conditions they are externally irradiated (air and water), in mixed beds saturated in fixed ions (cesium and borate) and water. Irradiation effects are evidenced with the HSF-SIMS technique by the variation of the emission characteristic of both the fixed ions, the chemical structure of the IERs and their interrelationship, both from the analysis of the solid material and of the residual or rinsing water. It appears that the fixed ions can be released in surrounding water as a consequence of radiation-induced resin fragments solubility.

  8. 22 CFR 41.57 - International cultural exchange visitors and visitors under the Irish Peace Process Cultural and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... visitors under the Irish Peace Process Cultural and Training Program Act (IPPCTPA). 41.57 Section 41.57... visitors and visitors under the Irish Peace Process Cultural and Training Program Act (IPPCTPA). (a... operation of the Irish Peace Process Cultural and Training Program (IPPCTP) which establishes at a...

  9. Microtube strip heat exchanger

    SciTech Connect

    Doty, F.D.

    1991-10-16

    This progress report is for the September--October 1991 quarter. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.

  10. Green Synthesis of ZnO Nanoparticles by an Alginate Mediated Ion-Exchange Process and a case study for Photocatalysis of Methylene Blue Dye

    NASA Astrophysics Data System (ADS)

    Keong, Choo Cheng; Sunitha Vivek, Yamini; Salamatinia, Babak; Amini Horri, Bahman

    2017-04-01

    In this study, zinc oxide (ZnO) was prepared via extrusion-dripping method through an ion exchange mediated process using sodium alginate. The samples were synthesized at 500 °C and 600 °C to study the effect of calcination temperature. The morphology, microstructure and optical activity of the calcined ZnO nanoparticles were analyzed by TGA, FESEM and XRD. It was found that ZnO nanoparticles synthesized at 600 °C was of higher purity with high crystallinity. To enhance the photocatalytic efficiency of zinc oxide, ZnO/NCC films were synthesized at varying ZnO loading fractions of 10 wt%, 15 wt%, 20 wt% and 25 wt% and were evaluated by photodegradation of Methylene blue dye and the highest dye percentage removal is found to be 96% which is obtained at ZnO loadings of 25 wt%. The usage of ion-exchange process has shown promising results in producing ZnO of desirable characteristics.

  11. CdS and CdS/CdSe sensitized ZnO nanorod array solar cells prepared by a solution ions exchange process

    SciTech Connect

    Chen, Ling; Gong, Haibo; Zheng, Xiaopeng; Zhu, Min; Zhang, Jun; Yang, Shikuan; Cao, Bingqiang

    2013-10-15

    Graphical abstract: - Highlights: • CdS and CdS/CdSe quantum dots are assembled on ZnO nanorods by ion exchange process. • The CdS/CdSe sensitization of ZnO effectively extends the absorption spectrum. • The performance of ZnO/CdS/CdSe cell is improved by extending absorption spectrum. - Abstract: In this paper, cadmium sulfide (CdS) and cadmium sulfide/cadmium selenide (CdS/CdSe) quantum dots (QDs) are assembled onto ZnO nanorod arrays by a solution ion exchange process for QD-sensitized solar cell application. The morphology, composition and absorption properties of different photoanodes were characterized with scanning electron microscope, transmission electron microscope, energy-dispersive X-ray spectrum and Raman spectrum in detail. It is shown that conformal and uniform CdS and CdS/CdSe shells can grow on ZnO nanorod cores. Quantum dot sensitized solar cells based on ZnO/CdS and ZnO/CdS/CdSe nanocable arrays were assembled with gold counter electrode and polysulfide electrolyte solution. The CdS/CdSe sensitization of ZnO can effectively extend the absorption spectrum up to 650 nm, which has a remarkable impact on the performance of a photovoltaic device by extending the absorption spectrum. Preliminary results show one fourth improvement in solar cell efficiency.

  12. Determination of some aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography with conductimetric detection on a weakly acidic cation-exchange resin column.

    PubMed

    Ito, Kazuaki; Takayama, Yohichi; Ikedo, Mikaru; Mori, Masanobu; Taoda, Hiroshi; Xu, Qun; Hu, Wenzhi; Sunahara, Hiroshi; Hayashi, Tsuneo; Sato, Shinji; Hirokawa, Takeshi; Tanaka, Kazuhiko

    2004-06-11

    The determination of seven aliphatic carboxylic acids, formic, acetic, propionic, isobutyric, n-butyric, isovaleric and n-valeric acids in anaerobic digestion process waters was examined using ion-exclusion chromatography with conductimetric detection. The analysis of these biologically important carboxylic acids is necessary as a measure for evaluating and controlling the process. The ion-exclusion chromatography system employed consisted of polymethacrylate-based weakly acidic cation-exchange resin columns (TSKgel OApak-A or TSKgel Super IC-A/C). weakly acidic eluent (benzoic acid), and conductimetric detection. Particle size and cation-exchange capacity were 5 microm and 0.1 meq./ml for TSKgel OApak-A and 3 microm and 0.2 meq./ml for TSKgel Super IC-A/C, respectively. A dilute eluent (1.0-2.0 mM) of benzoic acid was effective for the high resolution and highly conductimetric detection of the carboxylic acids. The good separation of isobutyric and n-butyric acids was performed using the TSKgel Super IC-A/C column (150 mm x 6.0 mm i.d. x 2). The simple and good chromatograms were obtained by the optimized ion-exclusion chromatography conditions for real samples from mesophilic anaerobic digestors, thus the aliphatic carboxylic acids were successfully determined without any interferences.

  13. Heterodimers formed through a partial anionic exchange process: scanning tunneling spectroscopy to monitor bands across the junction vis-à-vis photoinduced charge separation.

    PubMed

    Bera, Abhijit; Saha, Sudip K; Pal, Amlan J

    2015-11-07

    We report controlled formation of heterodimers and their charge separation properties. CdS|CdTe heterodimers were formed through an anionic exchange process of CdS nanostructures. With control over the duration of the anionic exchange process, bulk|dot, bulk|bulk, and then dot|bulk phases of the semiconductors could be observed to have formed. A mapping of density of states as derived from scanning tunneling spectroscopy (STS) brought out conduction and valence band-edges along the nanostructures and heterodimers. The CdS|CdTe heterodimers evidenced a type-II band-alignment between the semiconductors along with the formation of a depletion region at the interface. The width (of the depletion region) and the energy-offset at the interface depended on the size of the semiconductors. We report that the width that is instrumental for photoinduced charge separation in the heterodimers has a direct correlation with the performance of hybrid bulk-heterojunction solar cells based on the nanostructures in a polymer matrix.

  14. Ion exchange technology assessment report

    SciTech Connect

    Duhn, E.F.

    1992-01-01

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW's. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

  15. Ion exchange technology assessment report

    SciTech Connect

    Duhn, E.F.

    1992-12-31

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW`s. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

  16. Gamma-Aminobutyric Acid Production Using Immobilized Glutamate Decarboxylase Followed by Downstream Processing with Cation Exchange Chromatography

    PubMed Central

    Lee, Seungwoon; Ahn, Jungoh; Kim, Yeon-Gu; Jung, Joon-Ki; Lee, Hongweon; Lee, Eun Gyo

    2013-01-01

    We have developed a gamma-aminobutyric acid (GABA) production technique using his-tag mediated immobilization of Escherichia coli-derived glutamate decarboxylase (GAD), an enzyme that catalyzes the conversion of glutamate to GABA. The GAD was obtained at 1.43 g/L from GAD-overexpressed E. coli fermentation and consisted of 59.7% monomer, 29.2% dimer and 2.3% tetramer with a 97.6% soluble form of the total GAD. The harvested GAD was immobilized to metal affinity gel with an immobilization yield of 92%. Based on an investigation of specific enzyme activity and reaction characteristics, glutamic acid (GA) was chosen over monosodium glutamate (MSG) as a substrate for immobilized GAD, resulting in conversion of 2.17 M GABA in a 1 L reactor within 100 min. The immobilized enzymes retained 58.1% of their initial activities after ten consecutive uses. By using cation exchange chromatography followed by enzymatic conversion, GABA was separated from the residual substrate and leached GAD. As a consequence, the glutamic acid was mostly removed with no detectable GAD, while 91.2% of GABA was yielded in the purification step. PMID:23322022

  17. Hexicon 2: Automated Processing of Hydrogen-Deuterium Exchange Mass Spectrometry Data with Improved Deuteration Distribution Estimation

    NASA Astrophysics Data System (ADS)

    Lindner, Robert; Lou, Xinghua; Reinstein, Jochen; Shoeman, Robert L.; Hamprecht, Fred A.; Winkler, Andreas

    2014-06-01

    Hydrogen-deuterium exchange (HDX) experiments analyzed by mass spectrometry (MS) provide information about the dynamics and the solvent accessibility of protein backbone amide hydrogen atoms. Continuous improvement of MS instrumentation has contributed to the increasing popularity of this method; however, comprehensive automated data analysis is only beginning to mature. We present Hexicon 2, an automated pipeline for data analysis and visualization based on the previously published program Hexicon (Lou et al. 2010). Hexicon 2 employs the sensitive NITPICK peak detection algorithm of its predecessor in a divide-and-conquer strategy and adds new features, such as chromatogram alignment and improved peptide sequence assignment. The unique feature of deuteration distribution estimation was retained in Hexicon 2 and improved using an iterative deconvolution algorithm that is robust even to noisy data. In addition, Hexicon 2 provides a data browser that facilitates quality control and provides convenient access to common data visualization tasks. Analysis of a benchmark dataset demonstrates superior performance of Hexicon 2 compared with its predecessor in terms of deuteration centroid recovery and deuteration distribution estimation. Hexicon 2 greatly reduces data analysis time compared with manual analysis, whereas the increased number of peptides provides redundant coverage of the entire protein sequence. Hexicon 2 is a standalone application available free of charge under http://hx2.mpimf-heidelberg.mpg.de.

  18. Experimental investigation of the reaction of helium ions with dimethyl ether: stereodynamics of the dissociative charge exchange process.

    PubMed

    Cernuto, Andrea; Tosi, Paolo; Martini, Luca Matteo; Pirani, Fernando; Ascenzi, Daniela

    2017-03-09

    The fate of dimethyl ether (DME, CH3OCH3) in collisions with He(+) ions is of high relevance for astrochemical models aimed at reproducing the abundances of complex organic molecules in the interstellar medium. Here we report an investigation on the reaction of He(+) ions with DME carried out using a Guided Ion Beam Mass Spectrometer (GIB-MS), which allows the measurement of reactive cross-sections and branching ratios (BRs) as a function of the collision energy. We obtain insights into the dissociative charge (electron) exchange mechanism by investigating the nature of the non-adiabatic transitions between the relevant potential energy surfaces (PESs) in an improved Landau-Zener approach. We find that the large interaction anisotropy could induce a pronounced orientation of the polar DME molecule in the electric field generated by He(+) so that at short distances the collision complex is confined within pendular states, a particular case of bending motion, which gives rise to intriguing stereodynamic effects. The positions of the intermolecular potential energy curve crossings indicate that He(+) captures an electron from an inner valence orbital of DME, thus causing its dissociation. In addition to the crossing positions, the symmetry of the electron density distribution of the involved DME orbitals turns out to be a further major point affecting the probability of electron transfer. Thus, the anisotropy of the intermolecular interaction and the electron densities of the orbitals involved in the reaction are the key "ingredients" for describing the dynamics of this dissociative charge transfer.

  19. On-line strong cation exchange micro-HPLC-ESI-MS/MS for protein identification and process optimization.

    PubMed

    Le Bihan, Thierry; Duewel, Henry S; Figeys, Daniel

    2003-07-01

    We have developed an on-line strong cation exchange (SCX)-ESI-MS/MS platform for the rapid identification of proteins contained in mixtures. This platform consists of a SCX precolumn followed by a nanoflow SCX column on-line with an electrospray ion trap mass spectrometer. We also used this platform to study the dynamics of peptide separation/extraction by SCX, in particular to understand the parameters affecting the performance of SCX in multidimensional chromatography. For example, we have demonstrated that the buffer typically used for tryptic digestion of protein mixtures can have a detrimental effect on the chromatographic behaviour of peptides during SCX separations, thereby affecting certain peptide quantitation approaches that rely on reproducible peptide fractionation. We have also demonstrated that band broadening results when a step (discontinuous) gradient approach is used to displace peptides from the SCX precolumn, reducing the separation power of SCX in multidimensional chromatography. In contrast, excellent chromatographic peak shapes are observed when a defined (continuous) gradient is used. Finally, using a tryptic digest of a protein extract derived from human K562 cells, we observed that larger molecular weight peptides are identified using this on-line SCX approach compared to the more conventional reverse phase (RP) LC/MS approach. Both methods used in tandem complement each other and can lead to a greater number of peptide identifications from a given sample.

  20. Radiation exchange

    SciTech Connect

    Taylor, J.H. )

    1990-01-01

    This book deals with radiation laws, the phenomena of radiation exchange, the quantification of radiation, and the mechanisms whereby radiation is attenuated in passing through the earth's atmosphere. Applications of radiation exchange are discussed, such as the measurement of the effective radiating temperature of the ozonosphere. Also presented is the development of the concept of atmospheric windows and atmospheric transmittance. Radiation exchange experiments between Earth and space are presented and their interpretations given. The book fives detailed, step-by-step procedures for carrying out the radiometric calibration of an infrared prism spectrometer and a radiation thermopile.

  1. Catalysis of H(2)/D(2) scrambling and other H/D exchange processes by [Fe]-hydrogenase model complexes.

    PubMed

    Zhao, Xuan; Georgakaki, Irene P; Miller, Matthew L; Mejia-Rodriguez, Rosario; Chiang, Chao-Yi; Darensbourg, Marcetta Y

    2002-07-29

    Protonation of the [Fe]-hydrogenase model complex (mu-pdt)[Fe(CO)(2)(PMe(3))](2) (pdt = SCH(2)CH(2)CH(2)S) produces a species with a high field (1)H NMR resonance, isolated as the stable [(mu-H)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)](+)[PF(6)](-) salt. Structural characterization found little difference in the 2Fe2S butterfly cores, with Fe.Fe distances of 2.555(2) and 2.578(1) A for the Fe-Fe bonded neutral species and the bridging hydride species, respectively (Zhao, X.; Georgakaki, I. P.; Miller, M. L.; Yarbrough, J. C.; Darensbourg, M. Y. J. Am. Chem. Soc. 2001, 123, 9710). Both are similar to the average Fe.Fe distance found in structures of three Fe-only hydrogenase active site 2Fe2S clusters: 2.6 A. A series of similar complexes (mu-edt)-, (mu-o-xyldt)-, and (mu-SEt)(2)[Fe(CO)(2)(PMe(3))](2) (edt = SCH(2)CH(2)S; o-xyldt = SCH(2)C(6)H(4)CH(2)S), (mu-pdt)[Fe(CO)(2)(PMe(2)Ph)](2), and their protonated derivatives likewise show uniformity in the Fe-Fe bond lengths of the neutral complexes and Fe.Fe distances in the cationic bridging hydrides. The positions of the PMe(3) and PMe(2)Ph ligands are dictated by the orientation of the S-C bonds in the (mu-SRS) or (mu-SR)(2) bridges and the subsequent steric hindrance of R. The Fe(II)(mu-H)Fe(II) complexes were compared for their ability to facilitate H/D exchange reactions, as have been used as assays of H(2)ase activity. In a reaction that is promoted by light but inhibited by CO, the [(mu-H)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)](+) complex shows H/D exchange activity with D(2), producing [(mu-D)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)](+) in CH(2)Cl(2) and in acetone, but not in CH(3)CN. In the presence of light, H/D scrambling between D(2)O and H(2) is also promoted by the Fe(II)(mu-H)Fe(II) catalyst. The requirement of an open site suggests that the key step in the reactions involves D(2) or H(2) binding to Fe(II) followed by deprotonation by the internal hydride base, or by external water. As indicated by similar catalytic efficiencies

  2. Exchange processes of volatile organic compounds above a tropical rain forest: Implications for modeling tropospheric chemistry above dense vegetation

    NASA Astrophysics Data System (ADS)

    Karl, Thomas; Potosnak, Mark; Guenther, Alex; Clark, Deborah; Walker, John; Herrick, Jeffrey D.; Geron, Chris

    2004-09-01

    Disjunct eddy covariance in conjunction with continuous in-canopy gradient measurements allowed for the first time to quantify the fine-scale source and sink distribution of some of the most abundant biogenic (isoprene, monoterpenes, methanol, acetaldehyde, and acetone) and photooxidized (MVK+MAC, acetone, acetaldehyde, acetic, and formic acid) VOCs in an old growth tropical rain forest. Our measurements revealed substantial isoprene emissions (up to 2.50 mg m-2 h-1) and light-dependent monoterpene emissions (up to 0.33 mg m-2 h-1) at the peak of the dry season (April and May 2003). Oxygenated species such as methanol, acetone, and acetaldehyde were typically emitted during daytime with net fluxes up to 0.50, 0.36, and 0.20 mg m-2 h-1, respectively. When generalized for tropical rain forests, these fluxes would add up to a total emission of 36, 16, 19, 106, and 7.2 Tg/yr for methanol, acetaldehyde, acetone, isoprene, and monoterpenes, respectively. During nighttime we observed strong sinks for oxygenated and nitrogen-containing compounds such as methanol, acetone, acetaldehyde, MVK+MAC, and acetonitrile with deposition velocities close to the aerodynamic limit. This suggests that the canopy resistance (Rc) is very small and not the rate-limiting step for the nighttime deposition of many VOCs. Our measured mean dry deposition velocities of methanol, acetone, acetaldehyde, MVK+MAC, and acetonitrile were a factor 10-20 higher than estimated from traditional deposition models. If our measurements are generalized, this could have important implications for the redistribution of VOCs in atmospheric chemistry models. Our observations indicate that the current understanding of reactive carbon exchange can only be seen as a first-order approximation.

  3. Exchange Network

    EPA Pesticide Factsheets

    The Environmental Information Exchange Network (EIEN) is an Internet-based system used by state, tribal and territorial partners to securely share environmental and health information with one another and EPA.

  4. HEAT EXCHANGER

    DOEpatents

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  5. Building Cohesion in Positively Connected Exchange Networks

    ERIC Educational Resources Information Center

    Schaefer, David R.; Kornienko, Olga

    2009-01-01

    This research investigates the process through which individuals build cohesive relationships in positively connected exchange relations. Positive connections exist any time exchange in one relation must precede exchange in another. Such situations arise through gatekeeping, in generalized exchange contexts, and when resources diffuse across a…

  6. Interaction of arginine with protein during refolding process probed by amide H/D exchange mass spectrometry and isothermal titration calorimetry.

    PubMed

    Zhao, Dawei; Liu, Yongdong; Zhang, Guifeng; Zhang, Chun; Li, Xiunan; Wang, Qingqing; Shi, Hong; Su, Zhiguo

    2015-01-01

    Arginine has been widely used as low molecular weight additive to promote protein refolding by suppressing aggregate formation. However, methods to investigate the role of arginine in protein refolding are often limited on protein's global conformational properties. Here, hydrogen/deuterium exchange mass spectrometry (HDX-MS) was used to study the effects of arginine on recombinant human granulocyte colony-stimulating factor (rhG-CSF) refolding at the scale of peptide mapping. It was found that deuteration levels of rhG-CSF refolded with arginine was higher than that without arginine during the whole refolding process, but they became almost the same when the refolding reached equilibrium. This phenomenon indicated that arginine could protect some amide deuterium atoms from being exchanged with hydrogen, but the protection diminished gradually along with refolding proceeding. Enzymatic digestion revealed six particular peptides of 16-47, 72-84, 84-93, 114-124, 145-153 and 154-162 were mainly responsible for the deuteration, and all of them dominantly located in protein's α-helix domain. Furthermore, thermodynamics analysis by isothermal titration calorimetry provided direct evidence that arginine could only react with denatured and partially refolded rhG-CSF. Taking all of the results together, we suggest that arginine suppresses protein aggregation by a reversible combination. At the initial refolding stage, arginine could combine with the denatured protein mainly through hydrogen bonding. Subsequently, arginine is gradually excluded from protein with protein's native conformation recovering.

  7. Fertilization effects on forest carbon storage and exchange, and net primary production: A new hybrid process model for stand management

    Treesearch

    D. A. Sampson; R. H. Waring; C. A. Maier; C. M. Gough; M. J. Ducey; K. H. Johnsen

    2006-01-01

    A critical ecological question in plantation management is whether fertilization, which generally increases yield, results in enhanced C sequestration over short rotations. We present a rotation-length hybrid process model (SECRETS-3PG) that was calibrated (using control treatments; CW) and verified (using fertilized treatments; FW) using daily estimates of H

  8. Fertilization effects on forest carbon storage and exchange, and net primary production: a new hybrid process model for stand management

    Treesearch

    D.A. Sampson; R.H. Waring; C.A. Maier; C.M. Gough; M.J. Ducey; K.H. Kohnsen

    2006-01-01

    A critical ecological question in plantation management is whether fertilization, which generally increases yield, results in enhanced C sequestration over short rotations. We present a rotation-length hybrid process model (SECRETS-3PG) that was calibrated (using control treatments; CW) and verified (using fertilized treatments; FW) using daily estimates of H

  9. The organic sea-surface microlayer in the upwelling region off the coast of Peru and potential implications for air-sea exchange processes

    NASA Astrophysics Data System (ADS)

    Engel, Anja; Galgani, Luisa

    2016-02-01

    The sea-surface microlayer (SML) is at the uppermost surface of the ocean, linking the hydrosphere with the atmosphere. The presence and enrichment of organic compounds in the SML have been suggested to influence air-sea gas exchange processes as well as the emission of primary organic aerosols. Here, we report on organic matter components collected from an approximately 50 µm thick SML and from the underlying water (ULW), ˜ 20 cm below the SML, in December 2012 during the SOPRAN METEOR 91 cruise to the highly productive, coastal upwelling regime off the coast of Peru. Samples were collected at 37 stations including coastal upwelling sites and off-shore stations with less organic matter and were analyzed for total and dissolved high molecular weight (> 1 kDa) combined carbohydrates (TCCHO, DCCHO), free amino acids (FAA), total and dissolved hydrolyzable amino acids (THAA, DHAA), transparent exopolymer particles (TEP), Coomassie stainable particles (CSPs), total and dissolved organic carbon (TOC, DOC), total and dissolved nitrogen (TN, TDN), as well as bacterial and phytoplankton abundance. Our results showed a close coupling between organic matter concentrations in the water column and in the SML for almost all components except for FAA and DHAA that showed highest enrichment in the SML on average. Accumulation of gel particles (i.e., TEP and CSP) in the SML differed spatially. While CSP abundance in the SML was not related to wind speed, TEP abundance decreased with wind speed, leading to a depletion of TEP in the SML at about 5 m s-1. Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.

  10. Experimental data and analysis to support the design of an ion-exchange process for the treatment of Hanford tank waste supernatant liquids

    SciTech Connect

    Kurath, D.E.; Bray, L.A.; Brooks, K.P.; Brown, G.N.; Bryan, S.A.; Carlson, C.D.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.; Kim, A.Y.

    1994-12-01

    Hanford`s 177 underground storage tanks contain a mixture of sludge, salt cake, and alkaline supernatant liquids. Disposal options for these wastes are high-level waste (HLW) glass for disposal in a repository or low-level waste (LLW) glass for onsite disposal. Systems-engineering studies show that economic and environmental considerations preclude disposal of these wastes without further treatment. Difficulties inherent in transportation and disposal of relatively large volumes of HLW make it impossible to vitrify all of the tank waste as HLW. Potential environmental impacts make direct disposal of all of the tank waste as LLW glass unacceptable. Although the pretreatment and disposal requirements are still being defined, most pretreatment scenarios include retrieval of the aqueous liquids, dissolution of the salt cakes, and washing of the sludges to remove soluble components. Most of the cesium is expected to be in the aqueous liquids, which are the focus of this report on cesium removal by ion exchange. The main objectives of the ion-exchange process are removing cesium from the bulk of the tank waste (i.e., decontamination) and concentrating the separated cesium for vitrification. Because exact requirements for removal of {sup 137}Cs have not yet been defined, a range of removal requirements will be considered. This study addresses requirements to achieve {sup 137}Cs levels in LLW glass between (1) the Nuclear Regulatory Commission (NRC) Class C (10 CFR 61) limit of 4600 Ci/m{sup 3} and (2) 1/10th of the NRC Class A limit of 1 Ci/m{sup 3} i.e., 0.1/m{sup 3}. The required degrees of separation of cesium from other waste components is a complex function involving interactions between the design of the vitrification process, waste form considerations, and other HLW stream components that are to be vitrified.

  11. Assessment of Life Cycle Information Exchanges (LCie): Understanding the Value-Added Benefit of a COBie Process

    DTIC Science & Technology

    2013-10-01

    hours) ~Planner Rate ($ / hour) SubTot al $0.00 $0.00 so.ool RECREATING/ COBie REFORMA TTIIIGI COBie Expected Process 050.01 Utilize...hours/set) ~ArchiTect Drafter Rate (S I hour) Copying Cost SubTotal so.oo $0.00 $0.00 HAfiDLitiG/ ELEC.OOC. REFORMA TTINGJ COBie 030.05 Receive

  12. Water-sediment exchanges control microbial processes associated with leaf litter degradation in the hyporheic zone: a microcosm study.

    PubMed

    Navel, Simon; Mermillod-Blondin, Florian; Montuelle, Bernard; Chauvet, Eric; Simon, Laurent; Marmonier, Pierre

    2011-05-01

    The present study aimed to experimentally quantify the influence of a reduction of surface sediment permeability on microbial characteristics and ecological processes (respiration and leaf litter decomposition) occurring in the hyporheic zone (i.e. the sedimentary interface between surface water and groundwater). The physical structure of the water-sediment interface was manipulated by adding a 2-cm layer of coarse sand (unclogged systems) or fine sand (clogged systems) at the sediment surface of slow filtration columns filled with a heterogeneous gravel/sand sedimentary matrix. The influence of clogging was quantified through measurements of hydraulic conductivity, water chemistry, microbial abundances and activities and associated processes (decomposition of alder leaf litter inserted at a depth of 9 cm in sediments, oxygen and nitrate consumption by microorganisms). Fine sand deposits drastically reduced hydraulic conductivity (by around 8-fold in comparison with unclogged systems topped by coarse sand) and associated water flow, leading to a sharp decrease in oxygen (reaching less than 1 mg L(-1) at 3 cm depth) and nitrate concentrations with depth in sediments. The shift from aerobic to anaerobic conditions in clogged systems favoured the establishment of denitrifying bacteria living on sediments. Analyses performed on buried leaf litter showed a reduction by 30% of organic matter decomposition in clogged systems in comparison with unclogged systems. This reduction was linked to a negative influence of clogging on the activities and abundances of leaf-associated microorganisms. Finally, our study clearly demonstrated that microbial processes involved in organic matter decomposition were dependent on hydraulic conductivity and oxygen availability in the hyporheic zone.

  13. Deciphering the Mode of Action of the Processive Polysaccharide Modifying Enzyme Dermatan Sulfate Epimerase 1 by Hydrogen–Deuterium Exchange Mass Spectrometry

    PubMed Central

    Tykesson, Emil; Mao, Yang; Maccarana, Marco; Pu, Yi; Gao, Jinshan; Lin, Cheng; Zaia, Joseph; Westergren-Thorsson, Gunilla; Ellervik, Ulf; Malmström, Lars; Malmström, Anders

    2015-01-01

    Distinct from template-directed biosynthesis of nucleic acids and proteins, the enzymatic synthesis of heterogeneous polysaccharides is a complex process that is difficult to study using common analytical tools. Therefore, the mode of action and processivity of those enzymes are largely unknown. Dermatan sulfate epimerase 1 (DS-epi1) is the predominant enzyme during the formation of iduronic acid residues in the glycosaminoglycan dermatan sulfate. Using recombinant DS-epi1 as a model enzyme, we describe a tandem mass spectrometry-based method to study the mode of action of polysaccharide processing enzymes. The enzyme action on the substrate was monitored by hydrogen-deuterium exchange mass spectrometry and the sequence information was then fed into mathematical models with two different assumptions of the mode of action for the enzyme: processive reducing end to non-reducing end, and processive non-reducing end to reducing end. Model data was scored by correlation to experimental data and it was found that DS-epi1 attacks its substrate on a random position, followed by a processive mode of modification towards the non-reducing end and that the substrate affinity of the enzyme is negatively affected by each additional epimerization event. It could also be shown that the smallest active substrate was the reducing end uronic acid in a tetrasaccharide and that octasaccharides and longer oligosaccharides were optimal substrates. The method of using tandem mass spectrometry to generate sequence information of the complex enzymatic products in combination with in silico modeling can be potentially applied to study the mode of action of other enzymes involved in polysaccharide biosynthesis. PMID:26900446

  14. Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange

    DOEpatents

    Lewis, A.E.; Braun, R.L.; Mallon, R.G.; Walton, O.R.

    1983-09-21

    A cascading bed retorting process and apparatus are disclosed in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  15. Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange

    DOEpatents

    Lewis, Arthur E.; Braun, Robert L.; Mallon, Richard G.; Walton, Otis R.

    1986-01-01

    A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  16. Ion-exchange reactions on clay minerals coupled with advection/dispersion processes. Application to Na+/Ca2+ exchange on vermiculite: Reactive-transport modeling, batch and stirred flow-through reactor experiments

    NASA Astrophysics Data System (ADS)

    Tertre, E.; Hubert, F.; Bruzac, S.; Pacreau, M.; Ferrage, E.; Prêt, D.

    2013-07-01

    The present study aims at testing the validity of using an Na+/Ca2+ ion-exchange model, derived from batch data to interpret experimental Ca2+-for-Na+ exchange breakthrough curves obtained on vermiculite (a common swelling clay mineral in surface environments). The ion-exchange model was constructed considering the multi-site nature of the vermiculite surface as well as the exchange of all aqueous species (Mg2+ derived from the dissolution of the solid and H+). The proposed ion-exchange model was then coupled with a transport model, and the predicted breakthrough curves were compared with the experimental ones obtained using a well stirred flow-through reactor. For a given solute residence time in the reactor (typically 50 min), our thermodynamic model based on instantaneous equilibrium was found to accurately reproduce several of the experimental breakthrough curves, depending on the Na+ and Ca2+ concentrations of the influents pumped through the reactor. However the model failed to reproduce experimental breakthrough curves obtained at high flow rates and low chemical gradient between the exchanger phase and the solution. An alternative model based on a hybrid equilibrium/kinetic approach was thus used and allowed predicting experimental data. Based on these results, we show that a simple parameter can be used to differentiate between thermodynamic and kinetic control of the exchange reaction with water flow. The results of this study are relevant for natural systems where two aquatic environments having contrasted chemistries interact. Indeed, the question regarding the attainment of a full equilibrium in such a system during the contact time of the aqueous phase with the particle/colloid remains most often open. In this context, we show that when a river (a flow of fresh water) encounters marine colloids, a systematic full equilibrium can be assumed (i.e., the absence of kinetic effects) when the residence time of the solute in 1 m3 of the system is ⩾6200 h.

  17. Strong ion exchange in centrifugal partition extraction (SIX-CPE): effect of partition cell design and dimensions on purification process efficiency.

    PubMed

    Hamzaoui, Mahmoud; Hubert, Jane; Reynaud, Romain; Marchal, Luc; Foucault, Alain; Renault, Jean-Hugues

    2012-07-20

    The aim of this article was to evaluate the influence of the column design of a hydrostatic support-free liquid-liquid chromatography device on the process efficiency when the strong ion-exchange (SIX) development mode is used. The purification of p-hydroxybenzylglucosinolate (sinalbin) from a crude aqueous extract of white mustard seeds (Sinapis alba L.) was achieved on two types of devices: a centrifugal partition chromatograph (CPC) and a centrifugal partition extractor (CPE). They differ in the number, volume and geometry of their partition cells. The SIX-CPE process was evaluated in terms of productivity and sinalbin purification capability as compared to previously optimized SIX-CPC protocols that were carried out on columns of 200 mL and 5700 mL inner volume, respectively. The objective was to determine whether the decrease in partition cell number, the increase in their volume and the use of a "twin cell" design would induce a significant increase in productivity by applying higher mobile phase flow rate while maintaining a constant separation quality. 4.6g of sinalbin (92% recovery) were isolated from 25 g of a crude white mustard seed extract, in only 32 min and with a purity of 94.7%, thus corresponding to a productivity of 28 g per hour and per liter of column volume (g/h/LV(c)). Therefore, the SIX-CPE process demonstrates promising industrial technology transfer perspectives for the large-scale isolation of ionized natural products.

  18. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 2, Industrial liquid waste processing, industrial gaseous waste processing

    SciTech Connect

    Lee, V.E.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarize the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Individual reports are indexed separately.

  19. Microtube strip heat exchanger

    SciTech Connect

    Doty, F.D.

    1992-07-09

    The purpose of this contract has been to explore the limits of miniaturization of heat exchangers with the goals of (1) improving the theoretical understanding of laminar heat exchangers, (2) evaluating various manufacturing difficulties, and (3) identifying major applications for the technology. A low-cost, ultra-compact heat exchanger could have an enormous impact on industry in the areas of cryocoolers and energy conversion. Compact cryocoolers based on the reverse Brayton cycle (RBC) would become practical with the availability of compact heat exchangers. Many experts believe that hardware advances in personal computer technology will rapidly slow down in four to six years unless lowcost, portable cryocoolers suitable for the desktop supercomputer can be developed. Compact refrigeration systems would permit dramatic advances in high-performance computer work stations with conventional'' microprocessors operating at 150 K, and especially with low-cost cryocoolers below 77 K. NASA has also expressed strong interest in our MTS exchanger for space-based RBC cryocoolers for sensor cooling. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.

  20. Hydrogen-exchange reactions via hot hydrogen atoms produced in the dissociation process of molecular hydrogen on Ir{111}

    NASA Astrophysics Data System (ADS)

    Moritani, Kousuke; Okada, Michio; Nakamura, Mamiko; Kasai, Toshio; Murata, Yoshitada

    2001-12-01

    Adsorption and reaction of hydrogen (deuterium) on the Ir{111} surface has been studied with temperature-programmed desorption and direct measurements of desorbing molecules using a quadrupole mass spectrometer at ˜100 K. H2 exposure of the D-precovered Ir{111} surface was found to induce the desorption of HD and D2 molecules. This result suggests that energetic H atoms (hot H atoms) produced in the dissociation process of incident H2 molecules react with preadsorbed D atoms and desorb as HD molecules or produce secondary energetic D atoms via energy transfer. Secondary energetic D atoms (secondary hot D atoms) also induce the associative reactions with preadsorbed D atoms and desorb as D2 molecules. We will discuss the hot-H-atom-mediated reaction based on both empirical and steady-state approximation models for interpreting the present experimental results.

  1. Shelf Edge Exchange Processes: 2, SEEP2-09, R/V ENDEAVOR cruise 193: Hydrographic data report

    SciTech Connect

    Behrens, W.J.; Wilson, C.; Flagg, C.N.; Wallace, D.W.R.; Wilke, R.J.; Wyman, K.D.

    1990-01-01

    The R/V ENDEAVOR cruise 193, SEEP2-09, took place from 17--23 March 1989 and focused primarily on biological processes in the SEEP2 area. Mooring 1 was recovered and re-deployed and a replacement for mooring 4 was deployed. A 24 hour time series was conducted at mooring 1 to study primary and secondary production. The time series involved sampling nutrients, dissolved oxygen, chlorophyll {und a}, zooplankton abundance and distribution and fecal pellet production. Experiments to estimate grazing rates the fecal pellet production of the dominant copepods were also done. MOCNESS tows and box core samples were also taken during the cruise. Sediment and zooplankton data are not reported here. During this cruise 46 CTD casts were made measuring pressure, temperature, conductivity, dissolved oxygen, fluorescence and light transmission. Discrete samples were taken in rosette-mounted Niskin bottles and analyzed for concentration of nutrients, chlorophyll {und a}, dissolved oxygen, and particulate organic carbon and nitrogen.

  2. Purification of the two major proteins from whey concentrate using a cation-exchange selective adsorption process.

    PubMed

    El-Sayed, Mayyada M H; Chase, Howard A

    2010-01-01

    The packed-bed adsorption and elution of aqueous solutions of whey concentrate powders were investigated at pH 3.7 using a 5-mL SP Sepharose FF column to separate and isolate two major proteins namely, alpha-lactalbumin (ALA) and beta-lactoglobulin (BLG) from these solutions. ALA displaced and eluted BLG from the column in a pure form. Pure ALA could then be eluted with good recovery. A novel consecutive two-stage separation process was developed to separate ALA and BLG from whey concentrate mixtures. Almost all of the BLG in the feed was recovered, with 78% being recovered at 95% purity and a further 20% at 86% purity. In addition, 67% of ALA was recovered, 48% at 54% purity and 19% at 60% purity.

  3. New insights into cinchonine-aluminium complexes and their application as chiral building blocks: unprecedented ligand-exchange processes in the presence of ZnR2 compounds.

    PubMed

    Kaczorowski, Tomasz; Justyniak, Iwona; Prochowicz, Daniel; Zelga, Karolina; Kornowicz, Arkadiusz; Lewiński, Janusz

    2012-10-15

    Previous studies have demonstrated that [(CN)(2)AlCl] and [R(2)Al(μ-CN)](2) (CN=deprotonated cinchonine) complexes can effectively act as chiral, semirigid, N,N-ditopic metalloligands for Zn-containing nodes, and provide viable means for constructing new, homochiral, heterometallic, coordination polymers of zigzag and helical topologies. These findings have prompted further investigations on the organometallic analogues of the formula [(CN)(2)AlR], anticipating their utility as N,N-metalloligands for ZnR(2) units. Surprisingly, reactions of [(CN)(2)AlMe]-type metalloligands with ZnR(2) compounds (R=Me or Et) revealed unprecedented ligand-exchange processes, including zinc-to-aluminium and aluminium-to-zinc transmetalations of alkyl groups. The molecular and crystal structure of the resulting compounds was determined by X-ray diffraction analysis. From the reaction of [(CN)(2)AlMe] with ZnMe(2) a new pseudopolymorphic form of a noncovalent porous material based on [Me(2)Al(μ-CN)](2) molecules was isolated. Strikingly, the analogous reaction involving ZnEt(2) led to the generation of a new chiral 4N-tetratopic heterometalloligand [(CN)EtAl(μ-CN)(2)ZnEt]. The latter unit was successfully connected by alkyl-exchanged ZnMe(2) nodes to give an original homochiral heterometallic {[(CN)EtAl(μ-CN)(2)ZnEt]ZnMe(2)}(n) coordination polymer adopting a snake 1D motif. The outcome of the revealed reactions indicates the complicated multistep reaction route that involves redistribution of cinchonine and alkyl ligands among the Al and Zn centers, and a general reaction scheme is proposed. The results are in strong contrast with the previously studied inorganic-organic [(CN)(2)AlCl/ZnCl(2)] system, which exclusively affords a helical coordination polymer based on ZnCl(2) nodes and (CN)(2)AlCl metalloligands and lacks the exchange of CN ligands. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Pseudo-rotation mechanism for fast olefin exchange and substitution processes at orthometalated C,N-complexes of platinum(II).

    PubMed

    Otto, Stefanus; Samuleev, Pavel V; Polyakov, Vladimir A; Ryabov, Alexander D; Elding, Lars I

    2004-11-07

    Bridge splitting in chloroform of the orthometalated chloro-bridged complex [Pt(micro-Cl)(2-Me(2)NCH(2)C(6)H(4))](2)(1), with ethene, cyclooctene, allyl alcohol and phosphine according to 1+ 2L --> 2[PtCl(2-Me(2)NCH(2)C(6)H(4))(L)], where L = C(2)H(4)(3a), C(8)H(14), (3b), CH(2)CHCH(2)OH (3c), and PPh(3)(4a and 4b) gives monomeric species with L coordinated trans or cis to aryl. With olefins the thermodynamically stable isomer with L coordinated cis to aryl is formed directly without an observable intermediate. With phosphine and pyridine, the kinetically controlled trans-product isomerizes slowly to the more stable cis-isomer. Bridge splitting by olefins is slow and first-order in 1 and L, with largely negative DeltaS(++). Substitution of ethene cis to aryl by cyclooctene and allyl alcohol to form 3b and 3c, and substitution of cot from 3b by allyl alcohol to form 3c are first order in olefin and complex, ca. six orders of magnitude faster than bridge cleavage due to a large decrease in DeltaH(++), and with largely negative DeltaS(++). Cyclooctene exchange at 3b is first-order with respect to free cyclooctene and platinum complex. All experimental data for olefin substitution and exchange are compatible with a concerted substitution/isomerization process via a turnstile twist pseudo-rotation in a short-lived labile five-coordinated intermediate, involving initial attack on the labile coordination position trans to the sigma-bonded aryl. Bridge-cleavage reactions of the analogous bridged complexes occur similarly, but are much slower because of their ground-state stabilization and steric hindrance.

  5. The importance of sub-mesoscale processes for the exchange of properties through the Strait of Gibraltar

    NASA Astrophysics Data System (ADS)

    Bruno, M.; Chioua, J.; Romero, J.; Vázquez, A.; Macías, D.; Dastis, C.; Ramírez-Romero, E.; Echevarria, F.; Reyes, J.; García, C. M.

    2013-09-01

    This article presents a detailed analysis of the sub-mesoscale transport processes in the Strait of Gibraltar. The interest is focussed on the Camarinal Sill region, and special attention is paid to the across-strait transport processes, the divergences and convergences in the central zone, and the small-scale circulation patterns along the northern coastal margin. The analysis is based on high-resolution (7 m) SST images acquired by an air-borne hyper-spectral scanner, and has been complemented with a rhodamine-release experiment, continuous thermo-salinograph records, acoustic Doppler current (ADCP) profiles from both moorings and vessel-mounted experiments, and numerical modelling. It is deduced from the analysis that the coupling between the upwelling processes, induced by the internal tide and the generation of large-amplitude internal waves, and the cyclonic eddies formed on the coastal margin, seems to be the mechanism that explains the chlorophyll maxima frequently found on the coastal margin of the studied area. Further, as a consequence of the small-scale patterns of circulation induced by the internal waves, the suspended substances are displaced from the coastal margins toward the central zones and later are carried by the westward current toward the convergence zones created by the internal waves, where they may be retained and accumulate. Then, in the eastward phase of the tidal current over the Camarinal Sill, these nuclei of concentrated substances (nutrients, chlorophyll, and plankton) are transported toward the Alboran Sea, where they must contribute, in part, to the primary productivity there. High-resolution (7 m) SST images acquired by an Airborne Hyper-spectral Scanner (AHS) provided by the Spanish Institute of Aerospace Techniques (INTA). Measurements made along vessel transects crossing the studied zone, of current velocity and echo-intensity profiles acquired by ADCP, and sea surface temperature, salinity and released rhodamine (see Fig. 1

  6. Heat exchanger

    DOEpatents

    Wolowodiuk, Walter

    1976-01-06

    A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

  7. Heat exchanger

    DOEpatents

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  8. Shelf Edge Exchange Processes-2: Seep2-02, R/V CAPE HATTERAS cruise CH01-88

    SciTech Connect

    Wilson, C.; Behrens, W.J.; Flagg, C.N.; Wallace, D.W.R.; Wilke, R.J.; Wyman, K.D.

    1989-11-01

    The R/V CAPE HATTERAS cruise CH01-88, SEEP2-02, took place from 3--20 March, 1988 and focused primarily on biological processes in the SEEP2 area. A short term sediment trap mooring was deployed near mooring 1 and recovered during the cruise. The mooring consisted of two 0.07 sq. meter and one 0.7 sq. meter sediment traps. Two time series, approximately 48 hours each, were conducted in the area of the sediment trap mooring. The time series were designed to study primary and secondary productivity and involved sampling nutrients, dissolved oxygen, chlorophyll, zooplankton abundance and distribution, and zooplankton fecal pellet distribution. Experiments to estimate grazing rates and fecal pellet production of the dominant copepods were also done. Sediment trap and zooplankton data are not reported here. During this cruise 99 CTD casts were made measuring pressure, temperature, conductivity, dissolved oxygen, fluorescence and light transmission. Discrete samples were taken in rosette-mounted Niskin bottles and analyzed for concentration of nutrients, chlorophyll a, dissolved oxygen, and particulate organic carbon and nitrogen.

  9. Non-homologous end joining: Common interaction sites and exchange of multiple factors in the DNA repair process.

    PubMed

    Rulten, Stuart L; Grundy, Gabrielle J

    2017-03-01

    Non-homologous end-joining (NHEJ) is the dominant means of repairing chromosomal DNA double strand breaks (DSBs), and is essential in human cells. Fifteen or more proteins can be involved in the detection, signalling, synapsis, end-processing and ligation events required to repair a DSB, and must be assembled in the confined space around the DNA ends. We review here a number of interaction points between the core NHEJ components (Ku70, Ku80, DNA-PKcs, XRCC4 and Ligase IV) and accessory factors such as kinases, phosphatases, polymerases and structural proteins. Conserved protein-protein interaction sites such as Ku-binding motifs (KBMs), XLF-like motifs (XLMs), FHA and BRCT domains illustrate that different proteins compete for the same binding sites on the core machinery, and must be spatially and temporally regulated. We discuss how post-translational modifications such as phosphorylation, ADP-ribosylation and ubiquitinylation may regulate sequential steps in the NHEJ pathway or control repair at different types of DNA breaks.

  10. Heat exchanger restart evaluation

    SciTech Connect

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-03-18

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized.

  11. Heat exchanger restart evaluation

    SciTech Connect

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-02-28

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4kA was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized herein.

  12. Heat exchanger restart evaluation

    SciTech Connect

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-03-18

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summary herein.

  13. Process development for robust removal of aggregates using cation exchange chromatography in monoclonal antibody purification with implementation of quality by design.

    PubMed

    Xu, Zhihao; Li, Jason; Zhou, Joe X

    2012-01-01

    Aggregate removal is one of the most important aspects in monoclonal antibody (mAb) purification. Cation-exchange chromatography (CEX), a widely used polishing step in mAb purification, is able to clear both process-related impurities and product-related impurities. In this study, with the implementation of quality by design (QbD), a process development approach for robust removal of aggregates using CEX is described. First, resin screening studies were performed and a suitable CEX resin was chosen because of its relatively better selectivity and higher dynamic binding capacity. Second, a pH-conductivity hybrid gradient elution method for the CEX was established, and the risk assessment for the process was carried out. Third, a process characterization study was used to evaluate the impact of the potentially important process parameters on the process performance with respect to aggregate removal. Accordingly, a process design space was established. Aggregate level in load is the critical parameter. Its operating range is set at 0-3% and the acceptable range is set at 0-5%. Equilibration buffer is the key parameter. Its operating range is set at 40 ± 5 mM acetate, pH 5.0 ± 0.1, and acceptable range is set at 40 ± 10 mM acetate, pH 5.0 ± 0.2. Elution buffer, load mass, and gradient elution volume are non-key parameters; their operating ranges and acceptable ranges are equally set at 250 ± 10 mM acetate, pH 6.0 ± 0.2, 45 ± 10 g/L resin, and 10 ± 20% CV respectively. Finally, the process was scaled up 80 times and the impurities removal profiles were revealed. Three scaled-up runs showed that the size-exclusion chromatography (SEC) purity of the CEX pool was 99.8% or above and the step yield was above 92%, thereby proving that the process is both consistent and robust.

  14. The Dynamics of Multilateral Exchange

    NASA Astrophysics Data System (ADS)

    Hausken, Kjell; Moxnes, John F.

    The article formulates a dynamic mathematical model where arbitrarily many players produce, consume, exchange, loan, and deposit arbitrarily many goods over time to maximize utility. Consuming goods constitutes a benefit, and producing, exporting, and loaning away goods constitute a cost. Utilities are benefits minus costs, which depend on the exchange ratios and bargaining functions. Three-way exchange occurs when one player acquires, through exchange, one good from another player with the sole purpose of using this good to exchange against the desired good from a third player. Such a triple handshake is not merely a set of double handshakes since the player assigns no interest to the first good in his benefit function. Cognitive and organization costs increase dramatically for higher order exchanges. An exchange theory accounting for media of exchange follows from simple generalization of two-way exchange. The examples of r-way exchange are the triangle trade between Africa, the USA, and England in the 17th and 18th centuries, the hypothetical hypercycle involving RNAs as players and enzymes as goods, and reaction-diffusion processes. The emergence of exchange, and the role of trading agents are discussed. We simulate an example where two-way exchange gives zero production and zero utility, while three-way exchange causes considerable production and positive utility. Maximum utility for each player is reached when exchanges of the same order as the number of players in society are allowed. The article merges micro theory and macro theory within the social, natural, and physical sciences.

  15. Integrated Studies of Atmosphere-Surface Exchanges and Processes at the Tiksi Hydrometeorological Observatory in the Russian Far East

    NASA Astrophysics Data System (ADS)

    Uttal, Taneil; Makshtas, Alexander; Laurila, Tuomas

    2013-04-01

    The Tiksi Hydrometeorological Observatory facility has been developed over the last 6 years through a partnership between Russian, U.S. and Finnish agencies responsible for environmental monitoring. The current facility has a clean air facility, a 20 meter tower and an upgraded weather station. Measurements are being made of LW/SW radiation, climate grade meteorological parameters, turbulent fluxes, CO2, methane, aerosols, H2O, greenhouse gases (via flask sampling), black carbon, ozone, surface temperatures and permafrost active layer temperature profiles. Tiksi is located in a boundary region at the confluence of Atlantic and Pacific influences on the Arctic atmosphere; this results in a wide variety of air masses with variable cloud, aerosol and pollutant characteristics in the vicinity of the Tiksi Hydrometeorological Observatory creating a natural laboratory to study the influence that the various source regions of Russia, Northern America, Europe and Central Asia have on regional boundary layer processes. Tiksi is on the edge of the Laptev Sea that is an area of such large ice production that it has been termed "the ice factory of the Arctic Ocean" providing much of the sea ice in the Arctic Ocean. Thus the observatory sensors are frequently influenced by the maritime as well as continental air which is already showing up in multiple data lines as having distinctive properties. An integrated picture is emerging of ozone depletion events, black carbon on snow impacts, methane and CO2 flux seasonal variability, and short-lived temperature events that can be interpreted in the context of feed-backs with the local off-shore ice conditions and on-shore active layer morphology. This presentation summaries preliminary results with an emphasis on identifying linkages being study lines that are typically conducted separately.

  16. A high-throughput 2D-analytical technique to obtain single protein parameters from complex cell lysates for in silico process development of ion exchange chromatography.

    PubMed

    Kröner, Frieder; Elsäßer, Dennis; Hubbuch, Jürgen

    2013-11-29

    The accelerating growth of the market for biopharmaceutical proteins, the market entry of biosimilars and the growing interest in new, more complex molecules constantly pose new challenges for bioseparation process development. In the presented work we demonstrate the application of a multidimensional, analytical separation approach to obtain the relevant physicochemical parameters of single proteins in a complex mixture for in silico chromatographic process development. A complete cell lysate containing a low titre target protein was first fractionated by multiple linear salt gradient anion exchange chromatography (AEC) with varying gradient length. The collected fractions were subsequently analysed by high-throughput capillary gel electrophoresis (HT-CGE) after being desalted and concentrated. From the obtained data of the 2D-separation the retention-volumes and the concentration of the single proteins were determined. The retention-volumes of the single proteins were used to calculate the related steric-mass action model parameters. In a final evaluation experiment the received parameters were successfully applied to predict the retention behaviour of the single proteins in salt gradient AEC.

  17. Strategic assay deployment as a method for countering analytical bottlenecks in high throughput process development: case studies in ion exchange chromatography.

    PubMed

    Konstantinidis, Spyridon; Heldin, Eva; Chhatre, Sunil; Velayudhan, Ajoy; Titchener-Hooker, Nigel

    2012-01-01

    High throughput approaches to facilitate the development of chromatographic separations have now been adopted widely in the biopharmaceutical industry, but issues of how to reduce the associated analytical burden remain. For example, acquiring experimental data by high level factorial designs in 96 well plates can place a considerable strain upon assay capabilities, generating a bottleneck that limits significantly the speed of process characterization. This article proposes an approach designed to counter this challenge; Strategic Assay Deployment (SAD). In SAD, a set of available analytical methods is investigated to determine which set of techniques is the most appropriate to use and how best to deploy these to reduce the consumption of analytical resources while still enabling accurate and complete process characterization. The approach is demonstrated by investigating how salt concentration and pH affect the binding of green fluorescent protein from Escherichia coli homogenate to an anion exchange resin presented in a 96-well filter plate format. Compared with the deployment of routinely used analytical methods alone, the application of SAD reduced both the total assay time and total assay material consumption by at least 40% and 5%, respectively. SAD has significant utility in accelerating bioprocess development activities.

  18. Microbial production of propionic acid with Propionibacterium freudenreichii using an anion exchanger-based in situ product recovery (ISPR) process with direct and indirect contact of cells.

    PubMed

    Wang, Peng; Wang, Yunshan; Su, Zhiguo

    2012-02-01

    The recovery of an inhibiting product from a bioreactor soon after its formation is an important issue in industrial bioprocess development. In the present study, the potential of the anion exchanger-based in situ product recovery (ISPR) technique for the biocatalytic production of propionic acid was discussed. The focus of the current work was the selection of a suitable configuration of metabolically active cells for application in propionic acid production. Accumulation of propionic acid in fermentation broth caused feedback inhibition of the growth and biotransformation activity of Propionibacterium freudenreichii CICC 10019. Relevant product inhibition kinetics was discussed, and the results showed that keeping the aqueous propionic acid concentration below 10.02 g L⁻¹ was an essential prerequisite for ISPR process. A batch study, in which three ISPR configuration mode designs were compared, was conducted. The comparison indicated that employing an external direct mode had significant advantages over other modes in terms of increased productivity and product yield, with a corresponding decrease in the number of downstream processing steps, as well as in substrate consumption. The fed-batch culture using an external direct mode for the continuous accumulation of propionic acid resulted in a cumulative propionic acid concentration of 62.5 g L⁻¹, with a corresponding product yield of 0.78 g propionic acid/g glucose.

  19. Defects in processing and trafficking of the AE1 Cl-/HCO3- exchanger associated with inherited distal renal tubular acidosis.

    PubMed

    Shayakul, Chairat; Alper, Seth L

    2004-03-01

    Distal renal tubular acidosis (dRTA) results from impaired urinary acidification by the renal collecting duct. Acquired dRTA can be secondary to diverse pathological processes, including diabetic, ischemic, fibrosing, or immunological processes; less frequently it presents as a familial disorder with either an autosomal recessive or dominant pattern of transmission. Mutations in the SLC4A1/AE1/band 3 Cl(-)/HCO(3)(-) exchanger gene have been identified as causes for both dominant and recessive forms of dRTA. These mutations comprise a group almost entirely distinct from the SLC4A1 mutations that underlie the familial hemolytic anemia of hereditary spherocytosis. Why does one group of mutations express almost exclusively an isolated erythroid phenotype, whereas the second group of mutations expresses almost exclusively a phenotype explicable entirely by defective function of renal collecting duct type A intercalated cells? This review summarizes current research addressing this central question in the pathobiology of inherited dRTA associated with mutations in the SLC4A1 gene. Studying dRTA-associated mutant AE1 polypeptides can provide novel insights into the biology of the intercalated cell and the collecting duct as well as more generally into mechanisms by which epithelial cells generate and maintain functional polarity.

  20. High Temperature Heat Exchanger Project

    SciTech Connect

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  1. The Kinetics of Isotopic Exchange Reactions.

    ERIC Educational Resources Information Center

    Logan, S. R.

    1990-01-01

    Discussed are the kinetic interactions of these chemical processes and the determination of the actual order of such reactions. Included are multiple exchange, catalytic exchange with deuterium, and depletion of the original substrate. (CW)

  2. The Kinetics of Isotopic Exchange Reactions.

    ERIC Educational Resources Information Center

    Logan, S. R.

    1990-01-01

    Discussed are the kinetic interactions of these chemical processes and the determination of the actual order of such reactions. Included are multiple exchange, catalytic exchange with deuterium, and depletion of the original substrate. (CW)

  3. Extreme heterogeneity of land surface in spring inducing highly complex micrometeorological flow features and heat exchange processes over partly snow covered areas

    NASA Astrophysics Data System (ADS)

    Mott, Rebecca; Schlögl, Sebastian; Dirks, Lisa; Lehning, Michael

    2017-04-01

    The melting mountain snow cover in spring typically changes from a continuous snow cover to a mosaic of patches of snow and bare ground inducing an extreme heterogeneity of the land surface. Energy balance models typically assume a continuous snow cover, neglecting the complex interaction between the atmospheric boundary layer and the strongly variable surface. We experimentally investigated the small-scale boundary layer dynamics over snow patches and their effect on the energy balance at the snow surface. A comprehensive measurement campaign, the Dischma Experiment, was conducted during three entire ablation periods in spring 2014, 2015 and 2016. The aim of this project is to investigate the boundary layer development and the energy exchange over a melting snow cover with a gradually decreasing snow cover fraction. For this purpose, two measurement towers equipped with five to six ultrasonic anemometers were installed over a long-lasting snow patch. Furthermore, temporally and spatially high resolution ablation rates and snow surface temperatures were determined with a terrestrial laser scanner and an Infrared camera. This data set allows us to relate the spatial patterns of ablation rates and snow surface temperatures to boundary layer dynamics and the changing snow cover fraction. Experimental data reveal that wind conditions, snow cover distribution, local wind fetch distance and topographical curvature control the near-surface boundary layer characteristics and heat exchange processes over snow. The strong heterogeneity of land surface induced by the patchy snow cover caused a high spatial and temporal variability of snow surface temperature and snow melt patterns. Small scale flow features, such as katabatic flows or wind sheltering can be shown to strongly affect the temporal evolution of snow surface patterns. Furthermore, turbulence data reveal a strong correlation of turbulent heat exchange over melting snow with the occurrence of internal thermal

  4. Exchange Rates and Old People.

    ERIC Educational Resources Information Center

    Dowd, James J.

    1980-01-01

    Extends earlier work on aging as a process of exchange by focusing on the issue of exchange rates and how they are negotiated. Access to power resources declines with age, placing the old person in the position of negotiating from weakness. (Author)

  5. Determination of free sulfites (SO3-2) in dried fruits processed with sulfur dioxide by ion chromatography through anion exchange column and conductivity detection.

    PubMed

    Liao, Benjamin S; Sram, Jacqueline C; Files, Darin J

    2013-01-01

    A simple and effective anion ion chromatography (IC) method with anion exchange column and conductivity detector has been developed to determine free sulfites (SO3-2) in dried fruits processed with sulfur dioxide. No oxidation agent, such as hydrogen peroxide, is used to convert sulfites to sulfates for IC analysis. In addition, no stabilizing agent, such as formaldehyde, fructose or EDTA, is required during the sample extraction. This method uses aqueous 0.2 N NaOH as the solvent for standard preparation and sample extraction. The sulfites, either prepared from standard sodium sulfite powder or extracted from food samples, are presumed to be unbound SO3-2 in aqueous 0.2 N NaOH (pH > 13), because the bound sulfites in the sample matrix are released at pH > 10. In this study, sulfites in the standard solutions were stable at room temperature (i.e., 15-25 degrees C) for up to 12 days. The lowest standard of the linear calibration curve is set at 1.59 microg/mL SO3-2 (equivalent to 6.36 microg/g sample with no dilution) for analysis of processed dried fruits that would contain high levels (>1000 microg/g) of sulfites. As a consequence, this method typically requires significant dilution of the sample extract. Samples are prepared with a simple procedure of sample compositing, extraction with aqueous 0.2 N NaOH, centrifugation, dilution as needed, and filtration prior to IC. The sulfites in these sample extracts are stable at room temperature for up to 20 h. Using anion IC, the sulfites are eluted under isocratic conditions with 10 mM aqueous sodium carbonate solution as the mobile phase passing through an anion exchange column. The sulfites are easily separated, with an analysis run time of 18 min, regardless of the dried fruit matrix. Recoveries from samples spiked with sodium sulfites were demonstrated to be between 81 and 105% for five different fruit matrixes (apricot, golden grape, white peach, fig, and mango). Overall, this method is simple to perform and

  6. A process-based model to estimate gas exchange and monoterpene emission rates in the mediterranean maquis - comparisons between modelled and measured fluxes at different scales

    NASA Astrophysics Data System (ADS)

    Vitale, M.; Matteucci, G.; Fares, S.; Davison, B.

    2009-02-01

    This paper concerns the application of a process-based model (MOCA, Modelling of Carbon Assessment) as an useful tool for estimating gas exchange, and integrating the empirical algorithms for calculation of monoterpene fluxes, in a Mediterranean maquis of central Italy (Castelporziano, Rome). Simulations were carried out for a range of hypothetical but realistic canopies of the evergreen Quercus ilex (holm oak), Arbutus unedo (strawberry tree) and Phillyrea latifolia. More, the dependence on total leaf area and leaf distribution of monoterpene fluxes at the canopy scale has been considered in the algorithms. Simulation of the gas exchange rates showed higher values for P. latifolia and A. unedo (2.39±0.30 and 3.12±0.27 gC m-2 d-1, respectively) with respect to Q. ilex (1.67±0.08 gC m-2 d-1) in the measuring campaign (May-June). Comparisons of the average Gross Primary Production (GPP) values with those measured by eddy covariance were well in accordance (7.98±0.20 and 6.00±1.46 gC m-2 d-1, respectively, in May-June), although some differences (of about 30%) were evident in a point-to-point comparison. These differences could be explained by considering the non uniformity of the measuring site where diurnal winds blown S-SW direction affecting thus calculations of CO2 and water fluxes. The introduction of some structural parameters in the algorithms for monoterpene calculation allowed to simulate monoterpene emission rates and fluxes which were in accord to those measured (6.50±2.25 vs. 9.39±4.5μg g-1DW h-1 for Q. ilex, and 0.63±0.207μg g-1DW h-1 vs. 0.98±0.30μg g-1DW h-1 for P. latifolia). Some constraints of the MOCA model are discussed, but it is demonstrated to be an useful tool to simulate physiological processes and BVOC fluxes in a very complicated plant distributions and environmental conditions, and necessitating also of a low number of input data.

  7. Wet chemical preparation and isotope exchange process of H/D-terminated Si(111) and Si(110) studied by adsorbate vibrational analysis

    NASA Astrophysics Data System (ADS)

    Kawamoto, Erina; Kang, Jungmin; Matsuda, Takuya; Yamada, Taro; Suto, Shozo

    2017-02-01

    A convenient procedure for preparing D-terminated Si(111)-(1×1) and Si(110)-(1×1) by wet chemical etching was developed and applied to the vibrational analysis of these surfaces by high-resolution electron-energy loss spectroscopy (HREELS). Fully H-terminated Si(111)/(110) was first prepared in regular 40% NH4F/H2O solution, followed by immersion in saturated KF/D2O solution. HREELS revealed partially D-terminated H:Si(111)/(110) with the amount of deuterium termination depending on the immersion time. A series of various immersion times revealed the H/D exchange reaction kinetics, which are associated with the Si substrate etching processes on Si(111) (step-flow etching) and Si(110) (zipper reaction). The H-Si and D-Si stretching vibration frequencies as functions of the surface D fraction did not appear to change on Si(111), but on Si(110) the H-Si signal red shifted at a high D fraction. This is due to the adsorbate-adsorbate interaction, which is more intense on Si(110) because of the short nearest-neighbor distance of the adsorbates.

  8. Are channels standalone? Analysis of channel to land interactions using a physically-based surface-subsurface processes model with multi-way exchanges

    NASA Astrophysics Data System (ADS)

    Shen, C.; Smithgall, K. M.; Riley, W. J.

    2014-12-01

    Large-scale land surface models commonly assumed that land-channel exchanges are unidirectional, in which the channel network receives runoff, baseflow, sediments, and other materials from land and conveys them to the outlet. The physiographic and geomorphological characteristics of channels, as well as flow conditions, exert no influence on simulated upland dynamics. In this work we study the feedbacks to upland hydrologic and ecosystem states and fluxes provided by channels. We employ a physically-based surface-subsurface processes model (PAWS+CLM) that fully resolves the multi-way interactions between channel flow, overland flow, groundwater, soil water and wetlands. We found notable influences of channels on land surface fluxes, which are explained by the baseflow mechanism and the efficient conveyance mechanism. We systematically quantify the extent of the impact and link channel characteristics to these impacts. Our results indicate that to further improve our understanding of the land-water system, the influence of channels need to be included in integrated models.

  9. Effects of weakly coupled and dense quantum plasmas environments on charge exchange and ionization processes in Na+ + Rb(5s) atom collisions

    NASA Astrophysics Data System (ADS)

    Pandey, Mukesh Kumar; Lin, Yen-Chang; Ho, Yew Kam

    2017-02-01

    The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.

  10. Can simulations of flux exchanges between the land surface and the atmosphere be improved by a more complex description of soil and plant processes?

    NASA Astrophysics Data System (ADS)

    Klein, Christian

    2013-04-01

    Can simulations of flux exchanges between the land surface and the atmosphere be improved by a more complex description of soil and plant processes? Christian Klein, Christian Biernath, Peter Hoffmann and Eckart Priesack Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Soil Ecology, Oberschleissheim, Germany christian.klein@helmholtz-muenchen.de, ++ 49 89 3187 3015 Recent studies show, that uncertainties in regional and global climate simulations are partly caused by inadequate descriptions of soil-plant-atmosphere. Therefore, we coupled the soil-plant model system Expert-N to the regional climate and weather forecast model WRF. Key features of the Expert-N model system are the simulation of water flow, heat transfer and solute transport in soils and the transpiration of grassland and forest stands. Particularly relevant for the improvement of regional weather forecast are simulations of the feedback between the land surface and atmosphere, which influences surface temperature, surface pressure and precipitation. The WRF model was modified to optionally select either the land surface model Expert-N or NOAH to simulate the exchange of water and energy fluxes between the land surface and the atmosphere for every single grid cell within the simulation domain. Where the standard land surface model NOAH interpolates monthly LAI input values to simulate interactions between plant and atmosphere Expert-N simulates a dynamic plant growth with respect to water and nutrient availability in the soil. In this way Expert-N can be applied to study the effect of dynamic vegetation growth simulation on regional climate simulation results. For model testing Expert-N was used with two different soil parameterizations. The first parametrization used the USGS soil texture classification and simplifies the soil profile to one horizon (similar to the NOAH model). The second parameterization is based on the German soil texture classification

  11. Iridium-imine and -amine complexes relevant to the (S)-metolachlor process: structures, exchange kinetics, and C-H activation by Iri causing racemization.

    PubMed

    Dorta, Romano; Broggini, Diego; Kissner, Reinhard; Togni, Antonio

    2004-09-20

    Iridium complexes of DMA-imine [2,6-dimethylphenyl-1'-methyl-2'-methoxyethylimine, 1 a) and (R)-DMA-amine [(1'R)-2,6-dimethylphenyl-1'-methyl-2'-methoxyethylamine, 2 a] that are relevant to the catalytic imine hydrogenation step of the Syngenta (S)-Metolachlor process were synthesized: metathetical exchange of [Ir2Cl2(cod)2] (cod=1,5-cyclooctadiene) with [Ag(1 a)2]BF4 and [Ag((R)-2 a)2]BF4 afforded [Ir(cod)(kappa2- -1 a)]BF4 (11) and [Ir(cod)(kappa2-(R)-2 a)]BF4 ((R)-19)), respectively. These complexes were then used in stopped-flow experiments to study the displacement of amine 2 a from complex 19 by imine 1 a to form the imine complex 11, thus modeling the product/substrate exchange step in the catalytic cycle. The data suggest a two-step associative mechanism characterized by k1=(2.6+/-0.3) x 10(2) M(-1) s(-1) and k2=(4.3+/-0.6) x 10(-2) s(-1) with the respective activation energies EA1=(7.5+/-0.6) kJ mol(-1) and EA2=(37+/-3) kJ mol(-1). Furthermore, complex 11 reacted with H2O to afford the hydrolysis product [Ir(cod)(eta(6-)-2,6-dimethylaniline)]BF4 (12), and with I2 to liberate quantitatively the DMA-iminium salt 14. On the other hand, the chiral amine complex (R)-19 formed the optically inactive eta6-bound compound [Ir(cod)(eta6-rac-2 a)]BF4 (rac-18) upon dissolution in THF at room temperature, presumably via intramolecular C-H activation. This racemization was found to be a two-step event with k'1=9.0 x 10(-4) s(-1) and k2=2.89 x 10(-5) s(-1), featuring an optically active intermediate prior to sp3 C-H activation. Compounds 11, 12, rac-18, and (R)-19 were structurally characterized by single-crystal X-ray analyses.

  12. Probing dynamics and mechanism of exchange process of quaternary ammonium dimeric surfactants, 14-s-14, in the presence of conventional surfactants.

    PubMed

    Liu, Jun; Jiang, Yan; Chen, Hong; Mao, Shi Zhen; Du, You Ru; Liu, Mai Li

    2012-12-27

    In this Article, we investigated effects of different types of conventional surfactants on exchange dynamics of quaternary ammonium dimeric surfactants, with chemical formula C(14)H(29)N(+)(CH(3))(2)- (CH(2))(s)-N(+)(CH(3))(2)C(14)H(29)·2Br(-), or 14-s-14 for short. Two nonionic surfactants, TritonX-100 (TX-100) and polyethylene glycol (23) laurylether (Brij-35), and one cationic surfactant, n-tetradecyltrimethyl ammonium bromide (TTAB), and one ionic surfactant, sodium dodecyl sulfate (SDS) were chosen as typical conventional surfactants. Exchange rates of 14-s-14 (s = 2, 3, and 4) between the micelle form and monomer in solution were detected by two NMR methods: one-dimensional (1D) line shape analysis and two-dimensional (2D) exchange spectroscopy (EXSY). Results show that the nonionic surfactants (TX-100 and Brij-35), the cationic surfactant (TTAB), and the ionic surfactant (SDS) respectively accelerated, barely influenced, and slowed the exchange rate of 14-s-14. The effect mechanism was investigated by the self-diffusion experiment, relaxation time measurements (T(2)/T(1)), the fluorescence experiment (I(1)/I(3)) and observed chemical shift variations. Results reveal that, nonionic conventional surfactants (TX-100 and Brij-35) loosened the molecule arrangement and decreased hydrophobic interactions in the micelle, and thus accelerated the exchange rate of 14-s-14. The cationic conventional surfactant (TTAB) barely changed the molecule arrangement and thus barely influenced the exchange rate of 14-s-14. The ionic conventional surfactant (SDS) introduced the electrostatic attraction effect, tightened the molecule arrangement, and increased hydrophobic interactions in the micelle, and thus slowed down the exchange rate of 14-s-14. Additionally, the two-step exchange mechanism of 14-s-14 in the mixed solution was revealed through interesting variation tendencies of exchange rates of 14-s-14.

  13. Process coupling and control over the response of net ecosystem CO2 exchange to climate variability and insect disturbance in subalpine forests of the Western US

    NASA Astrophysics Data System (ADS)

    Monson, R. K.; Moore, D. J.; Trahan, N. A.; Scott-Denton, L.; Burns, S. P.; Hu, J.; Bowling, D. R.

    2011-12-01

    Following ten years of studies in subalpine forest ecosystems of the Western US, we have concluded that the tight coupling between gross primary productivity (GPP) and the autotrophic component of soil respiration (Ra) drives responses of net ecosystem CO2 exchange (NEE) to climate variability and insect disturbance. This insight has been gained through long-term eddy flux observations, manipulative plot experiments, analyses of dynamics in the stable isotope compositions of CO2 and H2O, and chamber gas-exchange measurements. Using past observations from these studies, we deployed model-data assimilation techniques and forecast weather/climate modeling to estimate how the coupling between GPP and Ra is likely to affect future (Year 2100) dynamics in NEE. The amount of winter snow and its melting dynamics in the spring represents the dominant control over interannual variation in GPP. Using the SIPNET ecosystem process model, combined with knowledge about the stable isotope content of different water sources, we estimated that approximately 75% of growing season GPP is coupled to the use of snowmelt water, whereas approximately 25% is coupled to summer rain. The tight coupling between GPP and winter snow pack drives a similar tight coupling between soil respiration (Rs) and winter snow pack. Manipulation of snow pack on forest plots has shown that Rs increases with increased snow pack, and this effect disappears when trees are girdled, which stops the transfer of GPP to roots and the soil rhizosphere. Higher-than-normal winter snowpacks cause the carbon isotope ratios of soil-respired CO2 to be depleted in 13C, reflecting a signal of lower photosynthetic water-use efficiency in the GPP that is transferred to the soil rhizosphere. Large-scale forest disturbance due to catastrophic tree mortality from mountain pine beetle attack causes an initial (2-3 year) reduction in Rs, which is attributable to the loss of GPP and its effect on Ra. This near-term reduction in Rs

  14. Optimizing exchanger design early

    SciTech Connect

    Lacunza, M.; Vaschetti, G.; Campana, H.

    1987-08-01

    It is not practical for process engineers and designers to make a rigorous economic evaluation for each component of a process due to the loss of time and money. But, it's very helpful and useful to have a method for a quick design evaluation of heat exchangers, considering their important contribution to the total fixed investment in a process plant. This article is devoted to this subject, and the authors present a method that has been proved in some design cases. Linking rigorous design procedures with a quick cost-estimation method provides a good technique for obtaining the right heat exchanger. The cost will be appropriate, sometimes not the lowest because of design restrictions, but a good approach to the optimum in an earlier process design stage. The authors intend to show the influence of the design variables in a shell and tube heat exchanger on capital investment, or conversely, taking into account the general limiting factors of the process such as thermodynamics, operability, corrosion, etc., and/or from the mechanical design of the calculated unit. The last is a special consideration for countries with no access to industrial technology or with difficulties in obtaining certain construction materials or equipment.

  15. Microtube strip heat exchanger

    NASA Astrophysics Data System (ADS)

    Doty, F. D.

    1991-04-01

    During the last quarter, Doty Scientific, Inc. (DSI) continued to make progress on the microtube strip (MTS) heat exchangers. The team has begun a heat exchanger stress analysis; however, they have been concentrating the bulk of their analytical energies on a computational fluid dynmaics (CFD) model to determine the location and magnitude of shell-side flow maldistribution which decreases heat exchanger effectiveness. DSI received 120 fineblanked tubestrips from Southern Fineblanking (SFB) for manufacturing process development. Both SFB and NIST provided inspection reports of the tubestrips. DSI completed the tooling required to encapsulate a tube array and press tubestrips on the array. Pressing the tubestrips on tube arrays showed design deficiencies both in the tubestrip design and the tooling design. DSI has a number of revisions in process to correct these deficiencies. The research effort has identified a more economical fusible alloy for encapsulating the tube array, and determined the parameters required to successfully encapsulate the tube array with the new alloy. A more compact MTS heat exchanger bank was designed.

  16. Heat exchanger

    DOEpatents

    Brackenbury, Phillip J.

    1986-04-01

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  17. Advanced Technique and the Results of a Research of a Heat-Mass-Exchange Processes in Clothes Packages in the Subnormal Climate

    NASA Astrophysics Data System (ADS)

    Rodicheva, M. V.; Abramov, A. V.; Kanatnikov, N. V.; Kanatnikova, P. A.

    2017-05-01

    Quality of clothes in the conditions of subnormal temperatures can be provided by using a scientifically based approach for completing of a set of materials. In the article, the method of a research of heat-mass-exchange in the conditions of a non-stationary heat-mass-exchange is stated; the results of a research of influence of materials on the efficiency of heat-protective clothes are considered.

  18. Pharmaceutical Applications of Ion-Exchange Resins

    ERIC Educational Resources Information Center

    Elder, David

    2005-01-01

    The historical uses of ion-exchanged resins and a summary of the basic chemical principles involved in the ion-exchanged process are discussed. Specific applications of ion-exchange are provided that include drug stabilization, pharmaceutical excipients, taste-masking agents, oral sustained-release products, topical products for local application…

  19. Pharmaceutical Applications of Ion-Exchange Resins

    ERIC Educational Resources Information Center

    Elder, David

    2005-01-01

    The historical uses of ion-exchanged resins and a summary of the basic chemical principles involved in the ion-exchanged process are discussed. Specific applications of ion-exchange are provided that include drug stabilization, pharmaceutical excipients, taste-masking agents, oral sustained-release products, topical products for local application…

  20. Thermal decomposition of [Co(en)3][Fe(CN)6]∙ 2H2O: Topotactic dehydration process, valence and spin exchange mechanism elucidation

    PubMed Central

    2013-01-01

    Background The Prussian blue analogues represent well-known and extensively studied group of coordination species which has many remarkable applications due to their ion-exchange, electron transfer or magnetic properties. Among them, Co-Fe Prussian blue analogues have been extensively studied due to the photoinduced magnetization. Surprisingly, their suitability as precursors for solid-state synthesis of magnetic nanoparticles is almost unexplored. In this paper, the mechanism of thermal decomposition of [Co(en)3][Fe(CN)6] ∙∙ 2H2O (1a) is elucidated, including the topotactic dehydration, valence and spins exchange mechanisms suggestion and the formation of a mixture of CoFe2O4-Co3O4 (3:1) as final products of thermal degradation. Results The course of thermal decomposition of 1a in air atmosphere up to 600°C was monitored by TG/DSC techniques, 57Fe Mössbauer and IR spectroscopy. As first, the topotactic dehydration of 1a to the hemihydrate [Co(en)3][Fe(CN)6] ∙∙ 1/2H2O (1b) occurred with preserving the single-crystal character as was confirmed by the X-ray diffraction analysis. The consequent thermal decomposition proceeded in further four stages including intermediates varying in valence and spin states of both transition metal ions in their structures, i.e. [FeII(en)2(μ-NC)CoIII(CN)4], FeIII(NH2CH2CH3)2(μ-NC)2CoII(CN)3] and FeIII[CoII(CN)5], which were suggested mainly from 57Fe Mössbauer, IR spectral and elemental analyses data. Thermal decomposition was completed at 400°C when superparamagnetic phases of CoFe2O4 and Co3O4 in the molar ratio of 3:1 were formed. During further temperature increase (450 and 600°C), the ongoing crystallization process gave a new ferromagnetic phase attributed to the CoFe2O4-Co3O4 nanocomposite particles. Their formation was confirmed by XRD and TEM analyses. In-field (5 K / 5 T) Mössbauer spectrum revealed canting of Fe(III) spin in almost fully inverse spinel structure of CoFe2O4. Conclusions It has been found

  1. Counterflow Regolith Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Jonscher, Peter

    2013-01-01

    A problem exists in reducing the total heating power required to extract oxygen from lunar regolith. All such processes require heating a great deal of soil, and the heat energy is wasted if it cannot be recycled from processed material back into new material. The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat exchanger with internal and external augers attached to the inner rotating tube to move the regolith. Hot regolith in the outer tube is moved in one direction by a right-hand - ed auger, and the cool regolith in the inner tube is moved in the opposite direction by a left-handed auger attached to the inside of the rotating tube. In this counterflow arrangement, a large fraction of the heat from the expended regolith is transferred to the new regolith. The spent regolith leaves the heat exchanger close to the temperature of the cold new regolith, and the new regolith is pre-heated close to the initial temperature of the spent regolith. Using the CoRHE can reduce the heating requirement of a lunar ISRU system by 80%, reducing the total power consumption by a factor of two. The unique feature of this system is that it allows for counterflow heat exchange to occur between solids, instead of liquids or gases, as is commonly done. In addition, in variants of this concept, the hydrogen reduction can be made to occur within the counterflow heat exchanger itself, enabling a simplified lunar ISRU (in situ resource utilization) system with excellent energy economy and continuous nonbatch mode operation.

  2. A parameterization for land-atmosphere-cloud-exchange (PLACE): Documentation and testing of a detailed process model of the partly cloudy boundary layer over heterogeneous land

    SciTech Connect

    Wetzel, P.J.; Boone, A.

    1995-07-01

    This paper presents a general description of, and demonstrates the capabilities of, the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE). The PLACE model is a detailed process model of the partly cloudy atmospheric boundary layer and underlying heterogeneous land surfaces. In its development, particular attention has been given to three of the model`s subprocesses: the prediction of boundary layer cloud amount, the treatment of surface and soil subgrid heterogeneity, and the liquid water budget. The model includes a three-parameter nonprecipitating cumulus model that feeds back to the surface and boundary layer though radiative effects. Surface heterogeneity in the PLACE model is treated both statistically and by resolving explicit subgrid patches. The model maintains a vertical column of liquid water that is divided into seven reservoirs, from the surface interception store down to bedrock. Five single-day demonstration cases are presented, in which the PLACE model was initialized, run, and compared to field observations from four diverse sites. The model is shown to predict cloud amount well in these cases while predicting the surface fluxes with similar accuracy. A slight tendency to underpredict boundary layer depth is noted in all cases. Sensitivity tests were also run using anemometer-level forcing provided by the Project for Inter-comparison of Land-surface Parameterization Schemes (PILPS). The purpose is to demonstrate the relative impact of heterogeneity of surface parameters on the predicted annual mean surface fluxes. Significant sensitivity to subgrid variability of certain parameters is demonstrated, particularly to parameters related to soil moisture. A major result is that the PLACE-computed impact of total (homogeneous) deforestation of a rain forest is comparable in magnitude to the effect of imposing heterogeneity of certain surface variables. 58 refs., 6 figs., 1 tab.

  3. Segmented heat exchanger

    DOEpatents

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  4. Fault-Tolerant Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  5. Interannual variability in the atmosphere-biosphere CO2 exchange as simulated by a process-based model for the last decades

    NASA Astrophysics Data System (ADS)

    Ito, A.

    2001-05-01

    Atmosphere-biosphere CO2 exchange induces not only seasonal oscillation but also interannual change in the atmospheric CO2 concentration. Actually, in 1998, atmospheric CO2 concentration increased at a remarkably high rate, while the growth rate was apparently depressed in 1992 and 1993. Elucidating whether these anomalies were attributable to the ocean or the terrestrial biosphere is an important challenge for carbon cycle researchers. In this study, a process-based model of terrestrial carbon dynamics (Sim-CYCLE) was constructed and used to simulate the terrestrial carbon balance for the period from 1953 to 1999. Climatic variables related to ecosystem processes were derived from the U.S NCEP/NCAR-reanalysis data (T62 spatial resolution), and the Matthews's biome map was adopted. The atmospheric CO2 fertilization effect during the experimental period was also considered in the simulation analysis. Sim-CYCLE includes five carbon compartments (leaves, stems, roots, litter, and humus), and calculates fluxes among them at a monthly step, with taking environmental regulations into account. Accordingly, I could obtain a time-series of net carbon budget, i.e. net ecosystem production (NEP), on the global scale. Through the experimental period, global annual NEP exhibited a considerable interannual variability ranging from +2.0 Pg C in 1971 to ?2.5 Pg C in 1998 (SD 1.1 Pg C yr-1). Tropical ecosystems were most responsible for the interannual variability, especially in such ENSO years as 1973, 1983, and 1998. The estimated NEP anomalies were negatively correlated with surface temperature anomaly, due to the high sensitivity of respiration and decomposition to temperature. Thus, it is inferred that higher temperatures induced by the strong 1997-98 ENSO event would lead to extra CO2 emission and consequently the largest negative NEP anomaly. The estimated responsiveness of terrestrial carbon budget seems enough large to cause anomalies in atmospheric CO2 concentration

  6. Ion Exchange and Adsorption of Inorganic Contaminants

    EPA Science Inventory

    In the first part of the chapter, the fundamentals of ion exchange and adsorption processes are explained, with the goal of demonstrating how these principles influence process design for inorganic contaminant removal. In the second part, ion exchange and adsorption processes th...

  7. Ion Exchange and Adsorption of Inorganic Contaminants

    EPA Science Inventory

    In the first part of the chapter, the fundamentals of ion exchange and adsorption processes are explained, with the goal of demonstrating how these principles influence process design for inorganic contaminant removal. In the second part, ion exchange and adsorption processes th...

  8. Chromatography process development in the quality by design paradigm I: Establishing a high-throughput process development platform as a tool for estimating "characterization space" for an ion exchange chromatography step.

    PubMed

    Bhambure, R; Rathore, A S

    2013-01-01

    This article describes the development of a high-throughput process development (HTPD) platform for developing chromatography steps. An assessment of the platform as a tool for establishing the "characterization space" for an ion exchange chromatography step has been performed by using design of experiments. Case studies involving use of a biotech therapeutic, granulocyte colony-stimulating factor have been used to demonstrate the performance of the platform. We discuss the various challenges that arise when working at such small volumes along with the solutions that we propose to alleviate these challenges to make the HTPD data suitable for empirical modeling. Further, we have also validated the scalability of this platform by comparing the results from the HTPD platform (2 and 6 μL resin volumes) against those obtained at the traditional laboratory scale (resin volume, 0.5 mL). We find that after integration of the proposed correction factors, the HTPD platform is capable of performing the process optimization studies at 170-fold higher productivity. The platform is capable of providing semi-quantitative assessment of the effects of the various input parameters under consideration. We think that platform such as the one presented is an excellent tool for examining the "characterization space" and reducing the extensive experimentation at the traditional lab scale that is otherwise required for establishing the "design space." Thus, this platform will specifically aid in successful implementation of quality by design in biotech process development. This is especially significant in view of the constraints with respect to time and resources that the biopharma industry faces today.

  9. Educator Exchange Resource Guide.

    ERIC Educational Resources Information Center

    Garza, Cris; Rodriguez, Victor

    This resource guide was developed for teachers and administrators interested in participating in intercultural and international exchange programs or starting an exchange program. An analysis of an exchange program's critical elements discusses exchange activities; orientation sessions; duration of exchange; criteria for participation; travel,…

  10. Scraped surface heat exchangers.

    PubMed

    Rao, Chetan S; Hartel, Richard W

    2006-01-01

    Scraped surface heat exchangers (SSHEs) are commonly used in the food, chemical, and pharmaceutical industries for heat transfer, crystallization, and other continuous processes. They are ideally suited for products that are viscous, sticky, that contain particulate matter, or that need some degree of crystallization. Since these characteristics describe a vast majority of processed foods, SSHEs are especially suited for pumpable food products. During operation, the product is brought in contact with a heat transfer surface that is rapidly and continuously scraped, thereby exposing the surface to the passage of untreated product. In addition to maintaining high and uniform heat exchange, the scraper blades also provide simultaneous mixing and agitation. Heat exchange for sticky and viscous foods such as heavy salad dressings, margarine, chocolate, peanut butter, fondant, ice cream, and shortenings is possible only by using SSHEs. High heat transfer coefficients are achieved because the boundary layer is continuously replaced by fresh material. Moreover, the product is in contact with the heating surface for only a few seconds and high temperature gradients can be used without the danger of causing undesirable reactions. SSHEs are versatile in the use of heat transfer medium and the various unit operations that can be carried out simultaneously. This article critically reviews the current understanding of the operations and applications of SSHEs.

  11. The impact of water exchange rate and treatment processes on water-borne hormones in recirculation aquaculture systems containing sexually maturing Atlantic salmon Salmo salar

    USDA-ARS?s Scientific Manuscript database

    A controlled seven-month study was conducted in six replicated water recirculation aquaculture systems (WRAS) to assess post-smolt Atlantic salmon (Salmo salar) performance in relation to WRAS water exchange rate. Unexpectedly high numbers of precocious sexually mature fish were observed in all WRAS...

  12. Role of σ exchange in the γ p →ϕ p process and scaling with the f1 axial vector meson from a Reggeized model

    NASA Astrophysics Data System (ADS)

    Yu, Byung-Geel; Kim, Hungchong; Kong, Kook-Jin

    2017-01-01

    We investigate the role driven by the scalar meson σ exchange in the photoproduction of the vector meson ϕ (1020 ) off a proton by using a Reggeized model. Based on the π0(135 )+σ (500 )+f2(1270 ) +Pomeron exchanges, we demonstrate that the σ exchange plays the role to reproduce the bump structure at the forward angle in the differential cross section as well as the peaking behavior in the total cross section observed in the CLAS Collaboration. We also discuss the possible observation of the scaled cross section s7d σ /d t at the production angle θ =9 0 ° from the CLAS data. It is found that the axial vector meson f1(1285 ) exchange with the trajectory αf 1(t )=0.028 t +0.9 ±0.2 arising from the axial anomaly of the QCD vacuum plays the role to clarify the scaling up to 5 GeV.

  13. Membrane events and ionic processes involved in dopamine release from tuberoinfundibular neurons. II. Effect of the inhibition of the Na+-Ca++ exchange by amiloride

    SciTech Connect

    Taglialatela, M.; Amoroso, S.; Canzoniero, L.M.; Di Renzo, G.F.; Annunziato, L.

    1988-08-01

    In the present study we investigated the effect of amiloride, a rather specific inhibitor of the membrane Na+-Ca++ exchange system, on the release of endogenous dopamine (DA) and previously taken-up (3H)DA from tuberoinfundibular dopaminergic neurons. Amiloride (300 microM) stimulated either endogenous DA or (3H)DA release. Amiloride-induced stimulation of (3H)DA release was prevented in a Ca++-free plus ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid medium. Amiloride, at the same concentration, reinforced both high K+- and electrically-induced stimulation of (3H)DA release. These results are explained on the basis of the ability of amiloride in blocking the Na+-Ca++ exchange system, therefore causing an elevation of intracellular Ca++ levels in resting conditions, and a further accumulation of Ca++ ions after high K+- or electrically elicited opening of voltage-operated channels specific for Ca++ ions. The enhanced intracellular Ca++ availability may trigger the stimulation of neurotransmitter release. In addition, amiloride was able to block in a dose-dependent manner (70-300 microM) the ouabain-induced (3H)DA release, suggesting that, when intracellular concentrations of Na+ are increased by the blockade of Na+,K+-adenosine triphosphatase the Na+-Ca+;+ exchange carrier reverses its resting mode of operation, mediating the influx of extracellular Ca++ ions. Amiloride, by blocking the Na+-Ca++ exchange mechanism, prevents the ouabain-elicited entrance of extracellular Ca++ ions, therefore inhibiting (3H)DA release stimulated by the cardioactive glycoside. Collectively, the results of the present study seem to be compatible with the idea that the Na+-Ca++ exchange mechanism is involved in the regulation of (3H)DA release from tuberoinfundibular dopaminergic neurons, through the regulation of Ca++ movements across the plasma membrane.

  14. Corrosive resistant heat exchanger

    DOEpatents

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  15. Heat exchangers of gas turbine engines

    NASA Astrophysics Data System (ADS)

    Baranov, Iu. F.; Mitin, B. M.

    1991-07-01

    The papers presented in this volume focus on methods for studying the thermal and hydraulic characteristics of heat exchangers used in gas turbine engines and methods for the analysis and experimental investigation of the dynamic characteristics of heat exchangers with different coolant flow schemes, including cryogenic heat exchangers. In particular, attention is given to the effect of tube bundle parameters on the dimensional and mass characteristics of high-temperature heat exchangers, a numerical method for calculating the dynamic characteristics of a fuel-air heat exchanger with a buffer cavity, and an experimental study of the air drying process in air coolers.

  16. 21 CFR 173.20 - Ion-exchange membranes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ion-exchange membranes. 173.20 Section 173.20 Food... for Food Treatment § 173.20 Ion-exchange membranes. Ion-exchange membranes may be safely used in the processing of food under the following prescribed conditions: (a) The ion-exchange membrane is prepared...

  17. Exchange frequency in replica exchange molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sindhikara, Daniel; Meng, Yilin; Roitberg, Adrian E.

    2008-01-01

    The effect of the exchange-attempt frequency on sampling efficiency is studied in replica exchange molecular dynamics (REMD). We show that sampling efficiency increases with increasing exchange-attempt frequency. This conclusion is contrary to a commonly expressed view in REMD. Five peptides (1-21 residues long) are studied with a spectrum of exchange-attempt rates. Convergence rates are gauged by comparing ensemble properties between fixed length test REMD simulations and longer reference simulations. To show the fundamental correlation between exchange frequency and convergence time, a simple model is designed and studied, displaying the same basic behavior of much more complex systems.

  18. Heat exchangers: Selection, rating, and thermal design

    SciTech Connect

    Kakac, S.; Liu, H.

    1998-01-01

    This book takes a systematic approach to the subject, focusing on the selection, design, rating, and operational challenges of various types of heat exchangers. Written by well-known authors in the field of heat transfer, this book covers all the most commonly used types of heat exchangers, including condensers and evaporators. The text begins with the classification of the different types of heat exchangers and discusses methods for their sizing and rating. Single phase forced convection correlations in ducts and pressure drop and pumping power analysis are also covered. A chapter is devoted to the special problem of fouling. Thermal design methods and processes, including designs for condensers and evaporators, complete this thorough introduction to the subject. The appendix provides information on the thermophysical properties of fluids, including the new refrigerants. Every topic features worked examples to illustrate the methods and procedures presented, and additional problems are included at the end of each chapter, with examples to be used as a student design project. An instructor's manual is available, including complete solutions to selected problems in the text. The contents include: classification of heat exchangers; basic design methods of heat exchangers; forced convection correlations for single-phase side of heat exchangers; heat exchanger pressure drop and pumping power; fouling of heat exchangers; double-pipe heat exchangers; design correlations for condensers and evaporators; shell-and-tube heat exchangers; compact heat exchangers; gasketed-plate heat exchangers; and condensers and evaporators.

  19. Cation exchange-based post-processing of (68)Ga-eluate: a comparison of three solvent systems for labelling of DOTATOC, NO2AP(BP) and DATA(m.).

    PubMed

    Seemann, Johanna; Eppard, Elisabeth; Waldron, Bradley P; Ross, Tobias L; Roesch, Frank

    2015-04-01

    Interest in (68)Ga has led to a number of innovations for its provision suitable for clinical application. Several post-processing methods are available to reduce eluate volume and remove metal trace impurities. In this work three cation exchange resin based post-processing methods (acetone, ethanol and NaCl) have been compared, using three model precursors (DOTATOC, NO2AP(BP) and DATA(m)), in terms of labelling yield and reproducibility. The acetone and ethanol based methods provided greater reproducibility and yields that makes subsequent purification unnecessary. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Exchange-driven growth.

    PubMed

    Ben-Naim, E; Krapivsky, P L

    2003-09-01

    We study a class of growth processes in which clusters evolve via exchange of particles. We show that depending on the rate of exchange there are three possibilities: (I) Growth-clusters grow indefinitely, (II) gelation-all mass is transformed into an infinite gel in a finite time, and (III) instant gelation. In regimes I and II, the cluster size distribution attains a self-similar form. The large size tail of the scaling distribution is Phi(x) approximately exp(-x(2-nu)), where nu is a homogeneity degree of the rate of exchange. At the borderline case nu=2, the distribution exhibits a generic algebraic tail, Phi(x) approximately x(-5). In regime III, the gel nucleates immediately and consumes the entire system. For finite systems, the gelation time vanishes logarithmically, T approximately [lnN](-(nu-2)), in the large system size limit N--> infinity. The theory is applied to coarsening in the infinite range Ising-Kawasaki model and in electrostatically driven granular layers.

  1. Influence of phase transformations and heat and mass exchange on the course of the processes of pyrolysis of single high-ash-coal particles at elevated pressures

    SciTech Connect

    V.P. Patskov

    2007-03-15

    A comparative analysis of equilibrium and nonequilibrium models for calculation of the rates of phase transitions (evaporation and condensation) of pyrolysis products and the influence of convective heat and mass exchange with inert ash particles and the gas flow in pyrolysis of single particles of high-ash bituminous coals in the operation of technological units with a circulating fluidized bed under pressure is made.

  2. Influence of time dependent longitudinal magnetic fields on the cooling process, exchange bias and magnetization reversal mechanism in FM core/AFM shell nanoparticles: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Yüksel, Yusuf; Akıncı, Ümit

    2016-12-01

    Using Monte Carlo simulations, we have investigated the dynamic phase transition properties of magnetic nanoparticles with ferromagnetic core coated by an antiferromagnetic shell structure. Effects of field amplitude and frequency on the thermal dependence of magnetizations, magnetization reversal mechanisms during hysteresis cycles, as well as on the exchange bias and coercive fields have been examined, and the feasibility of applying dynamic magnetic fields on the particle have been discussed for technological and biomedical purposes.

  3. Influence of time dependent longitudinal magnetic fields on the cooling process, exchange bias and magnetization reversal mechanism in FM core/AFM shell nanoparticles: a Monte Carlo study.

    PubMed

    Yüksel, Yusuf; Akıncı, Ümit

    2016-12-07

    Using Monte Carlo simulations, we have investigated the dynamic phase transition properties of magnetic nanoparticles with ferromagnetic core coated by an antiferromagnetic shell structure. Effects of field amplitude and frequency on the thermal dependence of magnetizations, magnetization reversal mechanisms during hysteresis cycles, as well as on the exchange bias and coercive fields have been examined, and the feasibility of applying dynamic magnetic fields on the particle have been discussed for technological and biomedical purposes.

  4. Application of a chromatography model with linear gradient elution experimental data to the rapid scale-up in ion-exchange process chromatography of proteins.

    PubMed

    Ishihara, Takashi; Kadoya, Toshihiko; Yamamoto, Shuichi

    2007-08-24

    We applied the model described in our previous paper to the rapid scale-up in the ion exchange chromatography of proteins, in which linear flow velocity, column length and gradient slope were changed. We carried out linear gradient elution experiments, and obtained data for the peak salt concentration and peak width. From these data, the plate height (HETP) was calculated as a function of the mobile phase velocity and iso-resolution curve (the separation time and elution volume relationship for the same resolution) was calculated. The scale-up chromatography conditions were determined by the iso-resolution curve. The scale-up of the linear gradient elution from 5 to 100mL and 2.5L column sizes was performed both by the separation of beta-lactoglobulin A and beta-lactoglobulin B with anion-exchange chromatography and by the purification of a recombinant protein with cation-exchange chromatography. Resolution, recovery and purity were examined in order to verify the proposed method.

  5. The influence of particle size and AgNO3 concentration in the ionic exchange process on the fungicidal action of antimicrobial glass.

    PubMed

    Mendes, E; Piletti, R; Barichello, T; Oliveira, C M; Kniess, C T; Angioletto, E; Riella, H G; Fiori, M A

    2012-08-01

    Antimicrobial materials have long been used as an effective means of reducing the risks posed to humans by fungi, bacteria and other microorganisms. These materials are essential in environments where cleanliness, comfort and hygiene are the predominate concerns. This work presents preliminary results for the development of a fungicidal vitreous material that is produced by the incorporation of a silver ionic specimen through ionic exchange reactions. Silver ions were incorporated into powdered glass via ionic exchange in an ionic medium containing silver species with different concentrations of AgNO3. The fungicidal efficiency of the samples was studied as a function of the AgNO3 concentration and the particle size of the glass using the agar diffusion test for the microbiological analysis of the fungus species Candida albicans. The samples were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The experimental results showed that the fungicidal effect was dependent on the AgNO3 concentration in the ionic exchange medium but was not dependent on the particle size of the glass.

  6. 40 CFR 63.1409 - Heat exchange system provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... subpart shall monitor each heat exchange system used to cool process equipment in an affected source... normal range. (5) The recirculating heat exchange system is used to cool process fluids that contain less...-through heat exchange system is used to cool process fluids that contain less than 5 percent by weight of...

  7. Woven heat exchanger

    DOEpatents

    Piscitella, Roger R.

    1987-01-01

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  8. Woven heat exchanger

    DOEpatents

    Piscitella, Roger R.

    1987-05-05

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  9. Cross-Shelf Exchange.

    PubMed

    Brink, K H

    2016-01-01

    Cross-shelf exchange dominates the pathways and rates by which nutrients, biota, and materials on the continental shelf are delivered and removed. This follows because cross-shelf gradients of most properties are usually far greater than those in the alongshore direction. The resulting transports are limited by Earth's rotation, which inhibits flow from crossing isobaths. Thus, cross-shelf flows are generally weak compared with alongshore flows, and this leads to interesting observational issues. Cross-shelf flows are enabled by turbulent mixing processes, nonlinear processes (such as momentum advection), and time dependence. Thus, there is a wide range of possible effects that can allow these critical transports, and different natural settings are often governed by different combinations of processes. This review discusses examples of representative transport mechanisms and explores possible observational and theoretical paths to future progress.

  10. Woven heat exchanger

    DOEpatents

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  11. Study of anomalous behaviour of LiTaO3 during the annealed proton exchange process of optical waveguide’s formation comparison with LiNbO3

    NASA Astrophysics Data System (ADS)

    Salavcova, Linda; Spirkova, Jarmila; Ondracek, Frantisek; Mackova, Anna; Vacik, Jiri; Kreissig, Ulrich; Eichhorn, Frank; Groetzschel, Rainer

    2007-03-01

    This paper deals with a detailed study of changes that lithium tantalate (LT) and lithium niobate (LN) single crystals undergo during the annealed proton exchange (APE) process of optical waveguides' formation. It is a well-known fact that several cases of anomalous behaviour are connected to the APE:LT samples, bringing thus an obstruction for the practical utilization of the APE:LT waveguides. As the LT crystal possesses even better optical properties than the LN crystal (e.g., it is less susceptible to optical damage), it is desirable to provide research focused on its behaviour during the APE process in order to acquire a control over the fabrication of the APE:LT devices. Neutron depth profiling (NDP), elastic recoil detection analysis (ERDA) and heavy ion ERDA (HI-ERDA) were performed to study changes in the surface of the LT and LN Z-cut wafers caused by the APE treatment and to determine the concentration depth profiles of the exchanged ions (lithium and hydrogen). Information on modifications of the crystals during the APE was obtained using X-ray diffraction (XRD) analysis. Optical/waveguiding properties of the samples were obtained by means of the standard mode spectroscopy at 633 nm. The experiments proved that the LT is significantly less affected by the APE process compared to the LN and that most characteristics of the APE:LT layers can be easily restored towards that of the virgin crystal by the annealing process.

  12. Atmosphere-surface exchange measurements.

    PubMed

    Dabberdt, W F; Lenschow, D H; Horst, T W; Zimmerman, P R; Oncley, S P; Delany, A C

    1993-06-04

    The exchange of various trace species and energy at the earth's surface plays an important role in climate, ecology, and human health and welfare. Surface exchange measurements can be difficult to obtain yet are important to understand physical processes, assess environmental and global change impacts, and develop robust parameterizations of atmospheric processes. The physics and turbulent structure of the atmospheric boundary layer are reviewed as they contribute to dry surface exchange rates (fluxes). Micrometeorological, budget, and enclosure techniques used to measure or estimate surface fluxes are described, along with their respective advantages and limitations. Various measurement issues (such as site characteristics, sampling considerations, sensor attributes, and flow distortion) impact on the ability to obtain representative surface-based and airborne flux data.

  13. GDP-GTP exchange processes of G{alpha}i1 protein are accelerated/decelerated depending on the type and the concentration of added detergents.

    PubMed

    Kubota, Makoto; Tanaka, Takeshi; Kohno, Toshiyuki; Wakamatsu, Kaori

    2009-12-01

    Although detergents have been widely used in G-protein studies to increase solubility and stability of the protein, we noticed that detergents modulate the nucleotide-binding properties of G-proteins. Hence, we analysed the effects of detergents on guanine nucleotide exchange reactions of Galpha(i1). Lubrol PX, a non-ionic detergent, which has been widely used in nucleotide dissociation/binding assays, was found to accelerate both GDP dissociation and GTPgammaS binding from/to Galpha in parallel at above its critical micelle concentration (cmc). Sodium cholate, an anionic detergent, which have been used to extract G-proteins from animal tissues, decelerated and accelerated GDP dissociation below and above its cmc, respectively. Surprisingly, micellar cholate decelerated GTPgammaS binding, and the binding rate constant was decreased by three orders of magnitude in the presence of 2% cholate. These results demonstrate that the guanine nucleotide exchange reactions of Galpha(i1) are drastically modulated by detergents differently depending on the type and the state (monomeric or micellar) of the detergents and that dissociation of GDP from Galpha(i1) does not necessarily lead to immediate binding of GTP to Galpha(i1) in some cases. These effects of detergents on G-proteins must be taken into account in G-protein experiments.

  14. The effects of exchange and interfacial reaction in two-phase systems on N.M.R. lineshapes and relaxation processes

    NASA Astrophysics Data System (ADS)

    Belton, P. S.; Hills, B. P.

    The effects of molecular exchange between two immiscible fluid phases are of considerable importance when interpreting N.M.R. lineshapes and relaxation times in systems such as emulsions or coacervates, but have not been fully explored theoretically. In general the nuclei in each phase must be considered as belonging to distinct chemical species which are interchanged by chemical reaction localized at the interface between the two fluids. By solving the Bloch-Torrey equations with new generalized boundary conditions describing this localized interfacial reaction we show how the N.M.R. spectral lineshape and relaxation times depend on the morphology of the system as well as on the rates of diffusion and interfacial reaction. Our results differ fundamentally from the traditional phenomenological description of exchange based on the Bloch-McConnell or Zimmerman-Brittin equations which take no explicit account of these factors. In order to illustrate these differences exact analytical solutions are derived for the simplest geometry where the two phases are lamellar. More complicated geometries can be treated by numerical methods.

  15. Cross-Shore Exchange on Natural Beaches

    DTIC Science & Technology

    2014-09-01

    words) The cross-shore exchange of material is examined on beaches of varying morphology and hydrodynamics. On a dissipative, rip-channeled beach...cross-shore exchange of material is examined on beaches of varying morphology and hydrodynamics. On a dissipative, rip-channeled beach in Monterey...Onshore and offshore exchange occurs by various processes, depending on beach morphology , beach slope, wave conditions, and resulting current patterns

  16. Electrically Switched Cesium Ion Exchange

    SciTech Connect

    JPH Sukamto; ML Lilga; RK Orth

    1998-10-23

    This report discusses the results of work to develop Electrically Switched Ion Exchange (ESIX) for separations of ions from waste streams relevant to DOE site clean-up. ESIX combines ion exchange and electrochemistry to provide a selective, reversible method for radionuclide separation that lowers costs and minimizes secondary waste generation typically associated with conventional ion exchange. In the ESIX process, an electroactive ion exchange film is deposited onto. a high surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. As a result, the production of secondary waste is minimized, since the large volumes of solution associated with elution, wash, and regeneration cycles typical of standard ion exchange are not needed for the ESIX process. The document is presented in two parts: Part I, the Summary Report, discusses the objectives of the project, describes the ESIX concept and the approach taken, and summarizes the major results; Part II, the Technology Description, provides a technical description of the experimental procedures and in-depth discussions on modeling, case studies, and cost comparisons between ESIX and currently used technologies.

  17. Host-guest chemistry of a water-soluble pillar[5]arene: evidence for an ionic-exchange recognition process and different complexation modes.

    PubMed

    Gómez, Borja; Francisco, Vitor; Fernández-Nieto, Fernando; Garcia-Rio, Luis; Martín-Pastor, M; Paleo, M Rita; Sardina, F Javier

    2014-09-15

    The complexation of an anionic guest by a cationic water-soluble pillararene is reported. Isothermal titration calorimetry (ITC), (1)H NMR, (1)H and (19)F DOSY, and STD NMR experiments were performed to characterize the complex formed under aqueous neutral conditions. The results of ITC and (1)H NMR analyses showed the inclusion of the guest inside the cavity of the pillar[5]arene, with the binding constant and thermodynamic parameters influenced by the counter ion of the macrocycle. NMR diffusion experiments showed that although a fraction of the counter ions are expelled from the host cavity by exchange with the guest, a complex with both counter ions and the guest inside the pillararene is formed. The results also showed that at higher concentrations of guest in solution, in addition to the inclusion of one guest molecule in the cavity, the pillararene can also form an external complex with a second guest molecule.

  18. Throughfall deposition and canopy exchange processes along a vertical gradient within the canopy of beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst).

    PubMed

    Adriaenssens, Sandy; Hansen, Karin; Staelens, Jeroen; Wuyts, Karen; De Schrijver, An; Baeten, Lander; Boeckx, Pascal; Samson, Roeland; Verheyen, Kris

    2012-03-15

    To assess the impact of air pollution on forest ecosystems, the canopy is usually considered as a constant single layer in interaction with the atmosphere and incident rain, which could influence the measurement accuracy. In this study the variation of througfall deposition and derived dry deposition and canopy exchange were studied along a vertical gradient in the canopy of one European beech (Fagus sylvatica L.) tree and two Norway spruce (Picea abies (L.) Karst) trees. Throughfall and net throughfall deposition of all ions other than H(+) increased significantly with canopy depth in the middle and lower canopy of the beech tree and in the whole canopy of the spruce trees. Moreover, throughfall and net throughfall of all ions in the spruce canopy decreased with increasing distance to the trunk. Dry deposition occurred mainly in the upper canopy and was highest during the growing season for H(+), NH(4)(+), NO(3)(-) and highest during the dormant season for Na(+), Cl(-), SO(4)(2-) (beech and spruce) and K(+), Ca(2+) and Mg(2+) (spruce only). Canopy leaching of K(+), Ca(2+) and Mg(2+) was observed at all canopy levels and was higher for the beech tree compared to the spruce trees. Canopy uptake of inorganic nitrogen and H(+) occurred mainly in the upper canopy, although significant canopy uptake was found in the middle canopy as well. Canopy exchange was always higher during the growing season compared to the dormant season. This spatial and temporal variation indicates that biogeochemical deposition models would benefit from a multilayer approach for shade-tolerant tree species such as beech and spruce. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Effects of ionizing radiation on modern ion exchange materials

    SciTech Connect

    Marsh, S.F.; Pillay, K.K.S.

    1993-10-01

    We review published studies of the effects of ionizing radiation on ion exchange materials, emphasizing those published in recent years. A brief overview is followed by a more detailed examination of recent developments. Our review includes styrene/divinylbenzene copolymers with cation-exchange or anion-exchange functional groups, polyvinylpyridine anion exchangers, chelating resins, multifunctional resins, and inorganic exchangers. In general, strong-acid cation exchange resins are more resistant to radiation than are strong-base anion exchange resins, and polyvinylpyridine resins are more resistant than polystyrene resins. Cross-linkage, salt form, moisture content, and the surrounding medium all affect the radiation stability of a specific exchanger. Inorganic exchangers usually, but not always, exhibit high radiation resistance. Liquid ion exchangers, which have been used so extensively in nuclear processing applications, also are included.

  20. Charge exchange in H^+ + He^+ collision

    NASA Astrophysics Data System (ADS)

    Guevara Leon, Nicolais; Sabin, John R.; Deumens, Erik; Ohrn, Yngve

    2008-05-01

    Charge exchange in H^+ + He^+ collision are investigated theoretically at projectile energies below the ionization threshold at about 100 keV/amu. The electron nuclear dynamics (END) method is used to analyze the collision processes. Total charge exchange cross sections were calculated and compared with other theoretical and experimental data.