Science.gov

Sample records for exchange process pemisahan

  1. Alert Exchange Process Protocol

    NASA Technical Reports Server (NTRS)

    Groen, Frank

    2015-01-01

    The National Aeronautics and Space Administration of the United States of America (NASA), and the European Space Agency (ESA), and the Japanese Aerospace Exploration Agency (JAXA), acknowledging that NASA, ESA and JAXA have a mutual interest in exchanging Alerts and Alert Status Lists to enhance the information base for each system participant while fortifying the general level of cooperation between the policy agreement subscribers, and each Party will exchange Alert listings on regular basis and detailed Alert information on a need to know basis to the extent permitted by law.

  2. Pu Anion Exchange Process Intensification

    SciTech Connect

    Taylor-Pashow, K.

    2015-10-08

    This project seeks to improve the efficiency of the plutonium anion-exchange process for purifying Pu through the development of alternate ion-exchange media. The objective of the project in FY15 was to develop and test a porous foam monolith material that could serve as a replacement for the current anion-exchange resin, Reillex® HPQ, used at the Savannah River Site (SRS) for purifying Pu. The new material provides advantages in efficiency over the current resin by the elimination of diffusive mass transport through large granular resin beads. By replacing the large resin beads with a porous foam there is much more efficient contact between the Pu solution and the anion-exchange sites present on the material. Several samples of a polystyrene based foam grafted with poly(4-vinylpyridine) were prepared and the Pu sorption was tested in batch contact tests.

  3. ION EXCHANGE ADSORPTION PROCESS FOR PLUTONIUM SEPARATION

    DOEpatents

    Boyd, G.E.; Russell, E.R.; Taylor, M.D.

    1961-07-11

    Ion exchange processes for the separation of plutonium from fission products are described. In accordance with these processes an aqueous solution containing plutonium and fission products is contacted with a cation exchange resin under conditions favoring adsorption of plutonium and fission products on the resin. A portion of the fission product is then eluted with a solution containing 0.05 to 1% by weight of a carboxylic acid. Plutonium is next eluted with a solution containing 2 to 8 per cent by weight of the same carboxylic acid, and the remaining fission products on the resin are eluted with an aqueous solution containing over 10 per cent by weight of sodium bisulfate.

  4. Highly tritiated water processing by isotopic exchange

    SciTech Connect

    Shu, W.M.; Willms, R.S.; Glugla, M.; Cristescu, I.; Michling, R.; Demange, D.

    2015-03-15

    Highly tritiated water (HTW) is produced in fusion machines and one of the promising technologies to process it is isotopic exchange. 3 kinds of Pt-catalyzed zeolite (13X-APG, CBV-100-CY and HiSiv-1000) were tested as candidates for isotopic exchange of highly tritiated water (HTW), and CBV-100-CY (Na-Y type with a SiO{sub 2}/Al{sub 2}O{sub 3} ratio of ∼ 5.0) shows the best performance. Small-scale tritium testing indicates that this method is efficient for reaching an exchange factor (EF) of 100. Full-scale non-tritium testing implies that an EF of 300 can be achieved in 24 hours of operation if a temperature gradient is applied along the column. For the isotopic exchange, deuterium recycled from the Isotope Separation System (deuterium with 1% T and/or 200 ppm T) should be employed, and the tritiated water regenerated from the Pt-catalyzed zeolite bed after isotopic exchange should be transferred to Water Detritiation System (WDS) for further processing.

  5. Heat exchanger for coal gasification process

    DOEpatents

    Blasiole, George A.

    1984-06-19

    This invention provides a heat exchanger, particularly useful for systems requiring cooling of hot particulate solids, such as the separated fines from the product gas of a carbonaceous material gasification system. The invention allows effective cooling of a hot particulate in a particle stream (made up of hot particulate and a gas), using gravity as the motive source of the hot particulate. In a preferred form, the invention substitutes a tube structure for the single wall tube of a heat exchanger. The tube structure comprises a tube with a core disposed within, forming a cavity between the tube and the core, and vanes in the cavity which form a flow path through which the hot particulate falls. The outside of the tube is in contact with the cooling fluid of the heat exchanger.

  6. High temperature heat exchange: nuclear process heat applications

    SciTech Connect

    Vrable, D.L.

    1980-09-01

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment.

  7. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOEpatents

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  8. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    SciTech Connect

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change

  9. Neptunium Valence Chemistry in Anion Exchange Processing

    SciTech Connect

    KYSER, EDWARD

    2003-02-01

    The current anion resin in use in HB-Line Phase II, Reillex{trademark} HPQ, was tested in the laboratory under expected plant conditions for Np processing and was found to load between 50 and 70 g Np per liter of resin. Losses varied from 0.2 to 15 percent depending on a number of parameters. Hydrazine in the feed at 0.02 to 0.05 M appeared to keep the Np from oxidizing and increasing the losses within four to seven days after the FS addition. Losses of up to three percent were observed five days after FS addition when hydrazine was not used in the feed, compared with 0.3 percent when the feed was loaded immediately after FS addition. Based on these test results the following processing conditions are recommended: (1) Feed conditions: 8 M HNO{sub 3}, 0.02 M hydrazine, 0.05 M excess FS, less than 5 days storage of solution after FS addition. (2) Wash conditions: 100 liters of 8 M HNO{sub 3}, no FS, no hydrazine. (3) Elution conditions: 0.17 M HNO{sub 3}, 0.05 M hydrazine, no FS. (4) Precipitation feed conditions: 0.03 M excess ascorbic acid, no additional hydrazine, no FS, precipitation within three days.

  10. MODELING RESULTS FROM CESIUM ION EXCHANGE PROCESSING WITH SPHERICAL RESINS

    SciTech Connect

    Nash, C.; Hang, T.; Aleman, S.

    2011-01-03

    Ion exchange modeling was conducted at the Savannah River National Laboratory to compare the performance of two organic resins in support of Small Column Ion Exchange (SCIX). In-tank ion exchange (IX) columns are being considered for cesium removal at Hanford and the Savannah River Site (SRS). The spherical forms of resorcinol formaldehyde ion exchange resin (sRF) as well as a hypothetical spherical SuperLig{reg_sign} 644 (SL644) are evaluated for decontamination of dissolved saltcake wastes (supernates). Both SuperLig{reg_sign} and resorcinol formaldehyde resin beds can exhibit hydraulic problems in their granular (nonspherical) forms. SRS waste is generally lower in potassium and organic components than Hanford waste. Using VERSE-LC Version 7.8 along with the cesium Freundlich/Langmuir isotherms to simulate the waste decontamination in ion exchange columns, spherical SL644 was found to reduce column cycling by 50% for high-potassium supernates, but sRF performed equally well for the lowest-potassium feeds. Reduced cycling results in reduction of nitric acid (resin elution) and sodium addition (resin regeneration), therefore, significantly reducing life-cycle operational costs. These findings motivate the development of a spherical form of SL644. This work demonstrates the versatility of the ion exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. The value of a resin with increased selectivity for cesium over potassium can be assessed for further development.

  11. Anion-exchange resin-based desulfurization process

    SciTech Connect

    Sheth, A.C.; Strevel, S.D.; Dharmapurikar, R.

    1992-01-01

    Under DOE Grant No. FG22-90PC90309, the University of Tennessee Space Institute (UTSI) is contracted to further develop its anion-exchange, resin-based desulfurization concept to desulfurize alkali metal sulfates. From environmental as well as economic viewpoints, it is necessary to remove soluble sulfates from the wastes created by flue gas desulfurization systems. In order to do this economically, a low-cost desulfurization process for spent sorbents is necessary. UTSI's anion-exchange resin-based desulfurization concept is believed to satisfy these requirements.

  12. Process Heat Exchanger Options for the Advanced High Temperature Reactor

    SciTech Connect

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-06-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  13. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    SciTech Connect

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  14. Mimos: a description framework for exchanging medical image processing results.

    PubMed

    Aubry, F; Todd-Pokropek, A

    2001-01-01

    Image processing plays increasingly important role in using medical images, both for routine as for research purposes, due to the growing interest in functional studies (PET, MR, etc.). Unfortunately, there exist nearly as many formats for data and results coding as image processing procedures. If Dicom presently supports a kind of structured reporting of image studies, it does not take into account the semantics of the image handling domain. This can impede the exchange and the interpretation of processing results. In order to facilitate the use of image processing results, we have designed a framework for representing image processing results. This framework, whose principle is called an "ontology" in the literature, extends the formalism, which we have used in our previous work on image databases. It permits a systematic representation of the entities and information involved in the processing, that is not only input data, command parameters, output data, but also software and hardware descriptions, and relationships between these different parameters. Consequently, this framework allows the building of standardized documents, which can be exchanged amongst various users. As the framework is based on a formal grammar, documents can be encoded using XML. They are thus compatible with Internet / Intranet technology. In this paper, the main characteristics of the framework are presented and illustrated. We also discuss implementation issues in order to be able to integrate documents, and correlated images, handling these with a classical Web browser.

  15. ION EXCHANGE PROCESS FOR THE RECOVERY AND PURIFICATION OF MATERIALS

    DOEpatents

    Long, R.S.; Bailes, R.H.

    1958-04-15

    A process for the recovery of certain metallic ions from aqueous solutions by ion exchange techniques is described. It is applicable to elements such as vanadium, chromium, nnanganese, and the like, which are capable of forming lower valent cations soluble in aqueous solutions and which also form ldgher valent anions soluble in aqueous acidic solutions. For example, small amounts of vanadium occurring in phosphoric acid prepared from phosphate rock may be recovered by reducing the vanadium to a trivalent cation adsorbing; the vanadium in a cationic exchange resin, then treating the resin with a suitable oxidizing agent to convert the adsorbed vanadium to a higher valent state, and finally eluting; the vanadium as an anion from the resin by means of an aqueous acidic solution.

  16. The Importance of Biophysicochemical Transport Processes in Hyporheic Exchange

    NASA Astrophysics Data System (ADS)

    Packman, A. I.

    2001-12-01

    Hyporheic exchange processes are generally analyzed in terms of hydrologic stream-subsurface interactions, biogeochemical reactions in the hyporheic zone, or nutrient and carbon uptake in the context of stream metabolism. Often, investigations are motivated primarily by applications in hydrology, contaminant transport, or stream ecology, and thus focus on only one of these aspects of hyporheic exchange. However, it is important to consider the interrelationships between biological, physical, and chemical processes, which are inevitably and inextricably linked because the hyporheic zone represents an extraordinary complex environmental system. The nature of biophysicochemical linkages in the hyporheic zone will be discussed in general terms and illustrated with two important examples. The transport of microorganisms such as the pathogen Cryptosporidium parvum in streams is dependent on both physical transport processes and physicochemical interactions in the hyporheic zone. The transport of labile particulate organic matter to the hyporheic zone is dependent on similar processes, but also induces biologically-mediated alteration of the subsurface environment. In these types of studies, insufficient characterization of either physical, chemical, or biological processes can lead to errors in interpretation of overall system behavior.

  17. The processes of nonequilibrium exchange in rotating plasma flows

    NASA Astrophysics Data System (ADS)

    Karimov, A. R.; Shatokhin, V. L.; Yu, M. Y.; Stenflo, L.

    2016-09-01

    The mechanisms of energy/momentum exchange in rotating and compressing plasma flows have been discussed. It has been shown that such flows are capable of transforming the energy of different degrees of freedom into the energy of one degree owing to the interaction of the coupled nonlinear radial, axial and azimuthal electron-ion oscillations. These processes may lead to the additional acceleration of the flow in azimuthal or axial direction so they might be instrumental for the creation of space thrusters employing pulse transformations for propulsion.

  18. CATIONIC EXCHANGE PROCESS FOR THE SEPARATION OF RARE EARTHS

    DOEpatents

    Choppin, G.R.; Thompson, S.G.; Harvey, B.G.

    1960-02-16

    A process for separating mixtures of elements in the lanthanum and actinium series of the periodic table is described. The mixture of elements is dissolved in 0.05 M HCI, wherein the elements exist as tripositive ions. The resulting solution is then transferred to a column of cationic exchange resin and the column eluted with 0.1 to 0.6 M aqueous ammonium alpha hydroxy isobutyrate solution of pH 3.8 to 5.0. The use of ammonium alpha hydroxy isobutyrate as an eluting agent results in sharper and more rapid separations than previously obtainable with eluants such as citric, tartaric, glycolic, and lactic acids.

  19. Anion-exchange resin-based desulfurization process. Final report

    SciTech Connect

    Sheth, A C; Dharmapurikar, R; Strevel, S D

    1994-01-01

    The following investigations were performed: (1) batch mode screening of eleven(11) commercially available resins and selection of three candidate resins for further evaluation in a fixed-bed setup. (2) Process variables study using three candidate resins in the fixed-bed setup and selection of the ``best`` resin for process economics development. (3) Exhaustion efficiency and solution concentration were found to be inversely related necessitating a trade-off between the resin cost versus the cost of evaporation/concentration of ensuing effluents. (4) Higher concentration of the HCO{sub 3}{sup {minus}} form of active sites over less active CO{sub 3}{sup 2{minus}} form of sites in the resin was believed to be the main reason for the observed increase in the equilibrium capacity of the resin at an elevated static CO{sub 2}-pressure. This Increase in capacity was found to level off around 80--120 psig range. The increase in CO{sub 2}-pressure, however, did not appear to affect the overall ion-exchange kinetics. (5) In the fixed-bed mode, the solution concentration was found to affect the equilibrium capacity of candidate resins. Their relationship was well satisfied by the Langmuir type non-linear equilibrium isotherm. Alternatively, the effect of solution concentration on overall ion-exchange kinetics varied from resin to resin. (6) Product inhibition effect on the resin was observed as an initial increase followed by a significant decrease in the resin`s equilibrium capacity for SO{sub 4}{sup 2{minus}} as the HCO{sub 3}{sup {minus}}/SO{sub 4}{sup 2{minus}} molar ratio in the solution was increased from 0 to 1.0. This ratio, however, did not affect the overall ion-exchange kinetics.

  20. Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons.

    PubMed

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi

    2011-05-01

    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of nonequivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolite phantoms with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: (i) on-resonance SL is most sensitive to chemical exchanges in the intermediate-exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. (ii) Offset frequency-dependent SL and CEST spectra are very similar and can be explained well with an SL model recently developed by Trott and Palmer (J Magn Reson 2002;154:157-160). (iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. (iv) The asymmetry of the magnetization transfer ratio (MTR(asym)) is highly dependent on the choice of saturation pulse power. In the intermediate-exchange regime, MTR(asym) becomes complicated and should be interpreted with care.

  1. Inline Monitors for the SRS Small Column Ion Exchange Process

    SciTech Connect

    VITO, CASELLA

    2005-05-16

    A Small Column Ion Exchange (SCIX) system, designed by the Oak Ridge and Savannah River National Laboratories (ORNL and SRNL), is a potential way to reduce Cs-137 concentrations in high-level radioactive waste at the Savannah River Site (SRS). SRNL has developed gamma-ray monitors for six locations within the SCIX system to verify the proper operation of the ion exchange system, detect cesium breakthrough, and confirm the presence of cesium before and after used resin is transferred to a grinder module. Two sodium iodide breakthrough monitors, one Geiger-Mueller breakthrough monitor, and three Geiger-Mueller transfer monitors were used. The present work provides a means of measuring the Cs-137 and Ba-137m breakthrough by taking multiple measurements in a process flow diversion and isolation loop. A lead shield was used for the NaI detectors, and the aperture of the collimator tube in this shield was designed using Monte Carlo analyses to provide the desired count rate for the gamma rays of interest. A computer program was written to collect data from the process monitors, provide alarm notification, and plot the data for ease of operation.

  2. Using solvent extraction to process nitrate anion exchange column effluents

    SciTech Connect

    Yarbro, S.L.

    1987-10-01

    Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), a new organophosphorous extractant, and a new centrifugal mixer-settler both recently developed at Argonne were evaluated for their potential use in the recovery of actinides from nitrate anion exchange column effluents. The performance of the extractant was evaluated by measuring the extraction coefficient values as a function of acid and salt concentration. Additional performance parameters include extraction coefficient behavior as a function of the total metal concentration in the organic phase, and comparison of different stripping and organic scrubbing techniques. A simulated effluent stream was used to evaluate the performance of the centrifugal mixer-settlers by comparing experimental and calculated interstage concentration profiles. Both the CMPO extractant and the centrifugal mixer-settlers have potential for processing nitrate column effluents, particularly if the stripping behavior can be improved. Details of the proposed process are presented in the flowsheet and contactor design analyses.

  3. Solar System X-rays from Charge Exchange Processes

    NASA Astrophysics Data System (ADS)

    Lisse, Carey M.; Christian, D. J.; Bhardwaj, A.; Dennerl, K.; Wolk, S. J.; Bodewits, D.; Combi, M. R.; Zurbuchen, T. H.; Lepri, S. T.

    2013-04-01

    The discovery of high energy x-ray emission in 1996 from comet C/1996 B2 (Hyakutake) uncovered a new class of x-ray emitting objects. Subsequent detections of the morphology, spectra, and time dependence of the x-rays from more than 20 comets have shown that the very soft (E < 1 keV) emission is due to a charge-exchange interaction between highly charged solar wind minor ions and the comet's extended neutral atmosphere. Many solar system objects are now known to shine in the X-ray, including Venus, Mars, the Moon, the Earth, Jupiter, and Saturn, with total power outputs on the MW - GW scale. Like comets, the X-ray emission from the Earth's geo-corona, the Jovian & Saturnian aurorae, and the Martian halo are thought to be driven by charge exchange between highly charged minor (heavy) ions in the solar wind and gaseous neutral species in the bodies' atmosphere. The non-auroral X-ray emissions from Jupiter, Saturn, and Earth, and those from disks of Mars, Venus, and the Moon are produced by scattering of solar X-rays. The first soft X-ray observations of Earth’s aurora by Chandra shows that it is highly variable, and the giant planet aurorae are fascinating puzzles that are just beginning to yield their secrets and may be the only x-ray sources not driven directly by the Sun in the whole system as well as properties of hot exo-solar Jupiters. Observations of local solar system charge exchange processes can also help inform us about x-rays produced at more distant hot ionized gas/cold neutral gas interfaces, like the heliopause, stellar astrospheres, galactic star forming regions, and starburst galaxies.

  4. Anion-exchange resin-based desulfurization process

    SciTech Connect

    Sheth, A.C.; Strevel, S.D.; Dharmapurikar, R.

    1992-01-01

    Under the current grant, the University of Tennessee Space Institute (UTSI) will carry out the bench scale evaluation and further development of the anion-exchange resin-based desulfurization concept to desulfurize alkali metal sulfates. This concept has been developed and patented by UTSI under US Patent No. 4,917,874. The developmental program proposed under this DOE grant includes screening of commercially available resins to select three candidate resins for further study. These three resins will undergo a series of experiments designed to test the resins' performance under different process conditions (including the use of spent MHD seed material). The best of these resins will be used in optimizing the regeneration step and in testing the effects of performance enhancers. The process schematic developed from the results will be used to estimate the related economics. During this reporting period, October 1, 1991 to September 30, 1992, analysis of batch mode screening experiments was completed to select three candidate resins for process variables study in the fixed-bed set-up. This setup was modified and the experiments were carded out to evaluate effects of major process variables. The analysis of fixed-bed experiments is going on and we have also started simple batch mode experiments to identify desirable conditions for resin regeneration step. We have also started simple process engineering type calculations to determine the trade-off between the solution concentration and the resulting evaporation/concentration load.

  5. EXCHANGE

    SciTech Connect

    Boltz, J.C.

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  6. Process-based upscaling of surface-atmosphere exchange

    NASA Astrophysics Data System (ADS)

    Keenan, T. F.; Prentice, I. C.; Canadell, J.; Williams, C. A.; Wang, H.; Raupach, M. R.; Collatz, G. J.; Davis, T.; Stocker, B.; Evans, B. J.

    2015-12-01

    Empirical upscaling techniques such as machine learning and data-mining have proven invaluable tools for the global scaling of disparate observations of surface-atmosphere exchange, but are not based on a theoretical understanding of the key processes involved. This makes spatial and temporal extrapolation outside of the training domain difficult at best. There is therefore a clear need for the incorporation of knowledge of ecosystem function, in combination with the strength of data mining. Here, we present such an approach. We describe a novel diagnostic process-based model of global photosynthesis and ecosystem respiration, which is directly informed by a variety of global datasets relevant to ecosystem state and function. We use the model framework to estimate global carbon cycling both spatially and temporally, with a specific focus on the mechanisms responsible for long-term change. Our results show the importance of incorporating process knowledge into upscaling approaches, and highlight the effect of key processes on the terrestrial carbon cycle.

  7. Countercurrent direct contact heat exchange process and system

    DOEpatents

    Wahl, III, Edward F.; Boucher, Frederic B.

    1979-01-01

    Recovery of energy from geothermal brines and other hot water sources by direct contact heat exchange with a working fluid, such as a hydrocarbon working fluid, e.g. isobutane. The process and system consists of a plurality of stages, each stage including mixing and settling units. In the first stage, hot brine and arm working fluid are intimately mixed and passed into a settler wherein the brine settles to the bottom of the settler and the hot working fluid rises to the top. The hot working fluid is passed to a heat engine or turbine to produce work and the working fluid is then recycled back into the system. The system is comprised of a series of stages each containing a settler and mixer, and wherein the working fluid and the brine flow in a countercurrent manner through the stages to recover the heat from the brine in increments and raise the temperature of the working fluid in increments.

  8. Sludge exchange process on two serial CSTRs anaerobic digestions: process failure and recovery.

    PubMed

    Kafle, Gopi Krishna; Kim, Sang Hun

    2011-07-01

    The sludge exchange process using two anaerobic digesters (CSTRs) in series was investigated under the mesophilic condition (36-38°C). At first, the digesting sludge of the CSTRs in series with different TVFA/alkalinity ratios was tested in the laboratory by mixing the digesting sludge of two CSTRs from 6.5% to 50% based on volume. The sludge exchange test was then performed using the same CSTRs under batch and continuous processes. The change in the TVFA/alkalinity ratio was found to be linear with the digesting sludge exchange volume. The CSTR of TVFA/alkalinity ratio 1.970 recovered completely failed within 11 days for the batch process and the CSTR of TVFA/alkalinity ratio 1.514 within 3 weeks for the continuous feeding process at a sludge exchange volume of 13%. The reactor operation was stable when the TVFA/alkalinity ratio was less than 1.0 and when the TVFA concentration was lower than 10,000 mg L(-1).

  9. IMPACT OF THE SMALL COLUMN ION EXCHANGE PROCESS ON THE DEFENSE WASTE PROCESSING FACILITY - 12112

    SciTech Connect

    Koopman, D.; Lambert, D.; Fox, K.; Stone, M.

    2011-11-07

    The Savannah River Site (SRS) is investigating the deployment of a parallel technology to the Salt Waste Processing Facility (SWPF, presently under construction) to accelerate high activity salt waste processing. The proposed technology combines large waste tank strikes of monosodium titanate (MST) to sorb strontium and actinides with two ion exchange columns packed with crystalline silicotitanate (CST) resin to sorb cesium. The new process was designated Small Column Ion Exchange (SCIX), since the ion exchange columns were sized to fit within a waste storage tank riser. Loaded resins are to be combined with high activity sludge waste and fed to the Defense Waste Processing Facility (DWPF) for incorporation into the current glass waste form. Decontaminated salt solution produced by SCIX will be fed to the SRS Saltstone Facility for on-site immobilization as a grout waste form. Determining the potential impact of SCIX resins on DWPF processing was the basis for this study. Accelerated salt waste treatment is projected to produce a significant savings in the overall life cycle cost of waste treatment at SRS.

  10. Measuring gas temperature during spin-exchange optical pumping process

    NASA Astrophysics Data System (ADS)

    Normand, E.; Jiang, C. Y.; Brown, D. R.; Robertson, L.; Crow, L.; Tong, X.

    2016-04-01

    The gas temperature inside a Spin-Exchange Optical Pumping (SEOP) laser-pumping polarized 3He cell has long been a mystery. Different experimental methods were employed to measure this temperature but all were based on either modelling or indirect measurement. To date there has not been any direct experimental measurement of this quantity. Here we present the first direct measurement using neutron transmission to accurately determine the number density of 3He, the temperature is obtained using the ideal gas law. Our result showed a surprisingly high gas temperature of 380°C, compared to the 245°C of the 3He cell wall temperature and 178°C of the optical pumping oven temperature. This experiment result may be used to further investigate the unsolved puzzle of the "X-factor" in the SEOP process which places an upper bound to the 3He polarization that can be achieved. Additional spin relaxation mechanisms might exist due to the high gas temperature, which could explain the origin of the X-factor.

  11. Charge-Exchange Processes of Titanium-Doped Aluminate Crystals

    NASA Astrophysics Data System (ADS)

    Wong, Wing Cheong

    1995-01-01

    Titanium exists in more than one charge state in the aluminate crystals: it is stable as Ti^ {3+} and Ti^{4+}. Other than the intense Ti^{4+ } absorption, a ubiquitous absorption/luminescence excitation band in the UV region is identified as a titanium -bound exciton in Al_2rm O_3, Y_3Al_5rm O_{12}, {rm YAlO}_3, MgAl_2O _4, and LaMgAl_{11} {rm O}_{19}. One -step and two-step photoconductivities of Ti^ {3+} are measured and compared. While the selectivity of the two-step process is demonstrated, its use in locating the energy threshold is hampered by the small Franck-Condon factor for the transition between the Ti^{3+} ^2{ rm E} excited state and Ti^ {4+}. The titanium-bound exciton band, together with the one-step photocurrent signal, makes it possible to determine the photoionization energy threshold accurately. The charge-transfer transition energy thresholds of Ti^{4+} are obtained from the emission and the luminescence excitation spectra. Locally and non-locally charge compensated Ti^{4+ } are found in Al_2{rm O}_3. The luminescence kinetics for the two kinds of Ti^{4+} are well explained by a three-level system with a lower triplet excited state and a higher singlet excited state. These charge-exchange threshold energies can be deduced from the Born-Haber thermodynamical cycle. The electrostatic site potentials are calculated and from it, the calculated photoionization and charge-transfer energy thresholds are found to be consistent with the experimental results. The deficiency of this model is pointed out and possible improvement is discussed. Quantitatively, the sum of the two charge-exchange energy thresholds is close to the band-gap energy of the host crystal. This offers a convenient way for material characterization. Provided that any two of the three quantities (band-gap energy, photoionization energy threshold, and charge-transfer transition energy threshold) have been found, the third quantity can be calculated. In addition, the trapping of charge

  12. On boundary condition in heat-exchange processes

    NASA Astrophysics Data System (ADS)

    Stolyarov, E. P.

    2016-10-01

    This paper describes the numerical study of heat-exchange of solid body with high-temperature external flow. As follows from the Newton's boundary condition, connecting a heat-flux density with temperature difference between the flow and a body, the heat-exchange coefficient is physically equivalent to the body-surface-normal component of the entropy flux from external flow at equilibrium flow regime. The method of determination of the heat-exchange characteristics using the time-history temperature measurements by a thin-film thermocouple sensor is described. As it is shown from the numerical analysis, the asymptotic value of the heat-exchange coefficient that corresponded to equilibrium regime of external flow exists. Implementation time of this value, i.e. relaxation time, may be of some characteristic time scales of the sensor measuring layer.

  13. Circulation and exchange processes over the continental shelf and slope

    SciTech Connect

    Csanady, G.T.

    1988-01-01

    The theme of the work during the past triennium has been the SEEP experiment, data interpretation and modeling related to the goals of the experiment, and was characterized by increasing cooperation with colleagues from other disciplines. The theoretical contributions dealt with shelf-slope interaction, the dynamics and climatology of currents over the continental slope, and the behavior of fate of organic particles. Observational papers discussed various exchange mechanisms at the shelf edge, with special attention to particle exchange, and the quiescence of currents over the mid continental slope which is presumably responsible for the accumulation of organic particles.

  14. Salt Processing Through Ion Exchange at the Savannah River Site Selection of Exchange Media and Column Configuration - 9198

    SciTech Connect

    Spires, Renee; Punch, Timothy; McCabe, Daniel

    2009-02-11

    The Department of Energy (DOE) has developed, modeled, and tested several different ion exchange media and column designs for cesium removal. One elutable resin and one non-elutable resin were considered for this salt processing application. Deployment of non-elutable Crystalline Silicotitanate and elutable Resorcinol Formaldehyde in several different column configurations were assessed in a formal Systems Engineering Evaluation (SEE). Salt solutions were selected that would allow a grouping of non-compliant tanks to be closed. Tests were run with the elutable resin to determine compatibility with the resin configuration required for an in-tank ion exchange system. Models were run to estimate the ion exchange cycles required with the two resins in several column configurations. Material balance calculations were performed to estimate the impact on the High Level Waste (HLW) system at the Savannah River Site (SRS). Conceptual process diagrams were used to support the hazard analysis. Data from the hazard analysis was used to determine the relative impact on safety. This report will discuss the technical inputs, SEE methods, results and path forward to complete the technical maturation of ion exchange.

  15. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    SciTech Connect

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-04-01

    The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. The intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding.

  16. Knowledge Exchange in the Shrines of Knowledge: The ''How's'' and ''Where's'' of Knowledge Sharing Processes

    ERIC Educational Resources Information Center

    Reychav, Iris; Te'eni, Dov

    2009-01-01

    Academic conferences are places of situated learning dedicated to the exchange of knowledge. Knowledge is exchanged between colleagues who are looking to enhance their future research by taking part in several formal and informal settings (lectures, discussions and social events). We studied the processes of knowledge sharing and the influence of…

  17. Evaluation of a new, macroporous polyvinylpyridine resin for processing plutonium using nitrate anion exchange

    SciTech Connect

    Marsh, S.F.

    1989-04-01

    Anion exchange in nitric acid is the major aqueous process used to recover and purify plutonium from impure scrap materials. Most strong-base anion exchange resins incorporate a styrene-divinylbenzene copolymer. A newly available, macroporous anion exchange resin based on a copolymer of 1-methyl-4-vinylpyridine and divinylbenzene has been evaluated. Comparative data for Pu(IV) sorption kinetics and capacity are presented for this new resin and two other commonly used anion exchange resins. The new resin offers high capacity and rapid sorption kinetics for Pu(IV) from nitric acid, as well as greatly stability to chemical and radiolytic degradation. 8 refs., 14 figs.

  18. Process calculation for ion-exchanger regeneration in apparatus with stationary layer

    SciTech Connect

    Zen'kevich, L.A.; Konstantinov, V.A.; Volzhinskii, A.I.; Smirnov, N.N.

    1986-09-20

    Ion exchange is widely used in various branches of chemical technology, including water treatment and waste water purification. The economic efficiency of an ion exchange process is determined mainly by the cost of exchanger regeneration. In order to reduce this cost it is necessary to accurately determine the technological parameters of the process: reagent concentration, flow rate, and amount of reagent needed to achieve the desired degree of exchange resin purity. The present work presents a study of the effect of concentration and hydrodynamic conditions on the kinetics of the regeneration of the leading industrial strong-acid cation-exchanger KU-2-ich from Cu/sup 2 +/, Ni/sup 2 +/, Co/sup 2 +/, and Fe/sup 3 +/. On the basis of the experimental data an effective diffusion coefficients was calculated for various regenerant concentrations. The results of the calculation are evidence for a significant change of diffusion coefficient with acid concentration.

  19. Heat exchange apparatus and process for rotary kilns

    SciTech Connect

    De Beus, A.J.

    1987-06-30

    This patent describes a heat exchange apparatus for use in a rotary kiln, the heat exchange apparatus comprising: refractory means for transferring heat from an upper heated portion of a rotary kiln above a bed disposed in a lower portion to within the bed as the rotary kiln is rotated. The refractory means comprises: tubular refractory members; means for attaching the refractory means in a spaced apart relationship with an interior wall of the rotary kiln in order to cause the refractory means to pass through the bed with a portion of the bed passing under the refractory means. A portion of the bed passes over the refractory means in order to enhance heat transfer as the rotary kiln is rotated. The means for attaching the refractory means comprises rods supported by stanchions and tubular refractory member disposed on the rods; the means for attaching the refractory means and the refractory means is configured and operative for stirring the bed as the refractory means pass through the bed without significant lifting of the bed to the heated upper portions of the rotary kiln as the rotary kiln is rotated; and compressible refractory spacer means disposed between each tubular refractory member for accommodating heat expansion and compressible refractory sleeve means dispersed between the rods and the tubular refractory members for accommodating heat expansion of the rods. Compressible refractory sleeve means and tubular refractory member sized so that the tubular refractory members are tightly held against the tubular refractory spacer means when the rotary kiln is at operating temperatures in order to inhibit fracture of the tubular refractory member as they pass through the bed.

  20. EXCHANGE

    SciTech Connect

    Boltz, J.C.

    1993-01-01

    This report contains the following news headlines: ADPE acquisition process made easy with SRP; scientific reference material available; ORPS WordPerfect macro setup procedure; system managed storage is here; LIBSPOOL for MVS mainframe end-users; training center course schedule for February 1993; enjoy NJOY; scientific user services staff decreased; new release of Forwarn, a static source code analysis tool for FORTRAN programs; out of the cold with HEAT; coping cells from one table to another in word perfect; used PC equipment pool; and video training.

  1. Efficient separations and processing crosscutting program 1996 technical exchange meeting. Proceedings

    SciTech Connect

    1996-02-01

    This document contains summaries of technology development presented at the 1996 Efficient Separations and Processing Crosscutting Program Technical Exchange Meeting. This meeting is held annually to promote a free exchange of ideas among technology developers, potential users and other interested parties within the EM community. During this meeting the following many separation processes technologies were discussed such as ion exchange, membrane separation, vacuum distillation, selective sorption, and solvent extraction. Other topics discussed include: waste forms; testing or inorganic sorbents for radionuclide and heavy metal removal; selective crystallization; and electrochemical treatment of liquid wastes. This is the leading abstract, individual papers have been indexed separately for the databases.

  2. Composition change of uranium perchlorates with organic ligands upon mechanochemical activation of exchange processes

    NASA Astrophysics Data System (ADS)

    Zazhogin, A. P.; Zazhogin, A. A.; Komyak, A. I.; Umreiko, D. S.

    2008-03-01

    Results of studies on the effect of mechanochemical activation of ligand exchange processes in uranyl perchlorate-dimethylsulfoxide are presented. Spectroscopic data show that mechanical activation of the exchange process in this system results in the replacement of H2O in the first coordination sphere of uranyl UO{2/2+} by DMSO to form nanocrystals with a defined ligand sphere. Possible factors governing the noted features are considered.

  3. Nanomaterials-Enhanced Electrically Switched Ion Exchange Process for Water Treatment

    SciTech Connect

    Lin, Yuehe; Choi, Daiwon; Wang, Jun; Bontha, Jagannadha R.

    2009-01-01

    The objective of our work is to develop an electrically switched ion exchange (ESIX) system based on conducting polymer/carbon nanotube (CNT) nanocomposites as a new and cost-effective approach for removal of radioactive cesium, chromate, and perchlorate from contaminated groundwater. The ESIX technology combines ion exchange and electrochemistry to provide a selective, reversible method for the removal of target species from wastewater. In this technique, an electroactive ion exchange layer is deposited on a conducting substrate, and ion uptake and elution are controlled directly by modulation of the potential of the layer. ESIX offers the advantages of highly-efficient use of electrical energy combined with no secondary waste generation. Recently, we have improved upon the ESIX process by modifying the conducting substrate with carbon nanotubes prior to the deposition of the electroactive ion exchanger. The nanomaterial-based electroactive ion exchange technology will remove cesium-137, chromate, and perchlorate rapidly from wastewater. The high porosity and high surface area of the electroactive ion exchange nanocomposites results in high loading capacity and minimize interferences for non-target species. Since the ion adsorption/desorption is controlled electrically without generating a secondary waste, this electrically active ion exchange process is a green process technology that will greatly reduce operating costs.

  4. Denitration of Rocky Flats Ion-Exchange Resins: Recommendation of Denitration Processes, October 19, 1995

    SciTech Connect

    Jacob Espinoza; Mary Barr; Wayne Smith

    1998-12-01

    Resin denitration via anion-exchange is an implementable process that can effectively mitigate the hazards associated with stored resins in which the bulk of the nitrate consists of an "exchangeable nitrate" ionically bound to the cationic sites of the anion-exchange resins. Salicylate has been selected as the exchange anion of choice because of its superior selectivity for the Rocky Flats resins and its unique potential for comprehensive recovery and recycle. This report outlines a single recommended resin denigration procedure that is reasonably independent of the resin composition and the current stored form. This procedure is not optimized but rather seeks to `over-treat' the resins so that a single procedure works for the variety of stored resins. The recommended treatment with sodium salicylate reduces resins by 95-99+% the measured exothermic behavior of the ion-exchange.

  5. Intensification of heat and mass transfer by ultrasound: application to heat exchangers and membrane separation processes.

    PubMed

    Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E

    2015-07-01

    This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions.

  6. Magnetically controlled exchange process in an ultracold atom-dimer mixture.

    PubMed

    Knoop, S; Ferlaino, F; Berninger, M; Mark, M; Nägerl, H-C; Grimm, R; D'Incao, J P; Esry, B D

    2010-02-01

    We report on the observation of an elementary exchange process in an optically trapped ultracold sample of atoms and Feshbach molecules. We can magnetically control the energetic nature of the process and tune it from endoergic to exoergic, enabling the observation of a pronounced threshold behavior. In contrast to relaxation to more deeply bound molecular states, the exchange process does not lead to trap loss. We find excellent agreement between our experimental observations and calculations based on the solutions of three-body Schrödinger equation in the adiabatic hyperspherical representation. The high efficiency of the exchange process is explained by the halo character of both the initial and final molecular states. PMID:20366759

  7. Slow process in confined polymer melts: Layer exchange dynamics at a polymer solid interface

    NASA Astrophysics Data System (ADS)

    Yelash, L.; Virnau, P.; Binder, K.; Paul, W.

    2010-11-01

    Employing Molecular Dynamics simulations of a chemically realistic model of 1,4-polybutadiene between graphite walls we show that the mass exchange between layers close to the walls is a slow process already in the melt state. For the glass transition of confined polymers this process competes with the slowing down due to packing effects and intramolecular rotation barriers.

  8. Processes Impacting Atmosphere-Surface Exchanges at Arctic Terrestrial Sites

    NASA Astrophysics Data System (ADS)

    Persson, Ola; Grachev, Andrey; Konopleva, Elena; Cox, Chris; Stone, Robert; Crepinsek, Sara; Shupe, Matthew; Uttal, Taneil

    2015-04-01

    Surface energy fluxes are key to the annual cycle of near-surface and soil temperature and biologic activity in the Arctic. While these energy fluxes are undoubtedly changing to produce the changes observed in the Arctic ecosystem over the last few decades, measurements have generally not been available to quantify what processes are regulating these fluxes and what is determining the characteristics of these annual cycles. The U.S. National Oceanic and Atmospheric Administration has established, or contributed to the establishment of, several terrestrial "supersites" around the perimeter of the Arctic Ocean at which detailed measurements of atmospheric structure, surface fluxes, and soil thermal properties are being made. These sites include Barrow, Alaska; Eureka and Alert, Canada; and Tiksi, Russia. Atmospheric structure measurements vary, but include radiosoundings at all sites and remote sensing of clouds at two sites. Additionally, fluxes of sensible heat and momentum are made at all of the sites, while fluxes of moisture and CO2 are made at two of the sites. Soil temperatures are also measured in the upper 120 cm at all sites, which is deep enough to define the soil active layer. The sites have been operating between 3 years (Tiksi) and 24 years (Barrow). While all sites are located north of 71° N, the summer vegetation range from lush tundra grasses to rocky soils with little vegetation. This presentation will illustrate some of the atmospheric processes that are key for determining the annual energy and temperature cycles at these sites, and some of the key characteristics that lead to differences in, for instance, the length of the summer soil active layer between the sites. Atmospheric features and processes such as cloud characteristics, snowfall, downslope wind events, and sea-breezes have impacts on the annual energy cycle. The presence of a "zero curtain" period, when autumn surface temperature remains approximately constant at the freezing point

  9. Electron-exchange effects on the charge capture process in degenerate quantum plasmas

    SciTech Connect

    Jung, Young-Dae; Akbari-Moghanjoughi, M.

    2014-03-15

    The electron-exchange effects on the charge capture process are investigated in degenerate quantum plasmas. The Bohr-Lindhard formalism with the effective interaction potential is employed to obtain the charge capture radius, capture probability, and capture cross section as functions of the impact parameter, projectile energy, electron-exchange parameter, Fermi energy, and plasmon energy. The result shows that the electron-exchange effect enhances the charge capture radius and the charge capture cross section in semiconductor quantum plasmas. It is also found that the charge capture radius and charge capture cross section increases with an increase of the Fermi energy and, however, decreases with increasing plasmon energy. Additionally, it is found that the peak position of the charge capture cross section is receded from the collision center with an increase of the electron-exchange parameter.

  10. Evaluation Methodology for Advance Heat Exchanger Concepts Using Analytical Hierarchy Process

    SciTech Connect

    Piyush Sabharwall; Eung Soo Kim

    2012-07-01

    The primary purpose of this study is to aid in the development and selection of the secondary/process heat exchanger (SHX) for power production and process heat application for a Next Generation Nuclear Reactors (NGNR). The potential options for use as an SHX are explored such as shell and tube, printed circuit heat exchanger. A shell and tube (helical coiled) heat exchanger is a recommended for a demonstration reactor because of its reliability while the reactor design is being further developed. The basic setup for the selection of the SHX has been established with evaluation goals, alternatives, and criteria. This study describes how these criteria and the alternatives are evaluated using the analytical hierarchy process (AHP).

  11. Recycling of Cu powder from industrial sludge by combined acid leaching, chemical exchange and ferrite process.

    PubMed

    Tu, Yao-Jen; Chang, Chien-Kuei; You, Chen-Feng; Lou, Jie-Chung

    2010-09-15

    A method in combination of acid leaching, chemical exchange and ferrite process was applied to recycle copper and confer higher chemical stability to the sludge generated from etching process in printed circuit board industry. Ninety-five percent copper could be recycled in the form of powder from the sludge. Moreover, not only the wastewater after chemical exchange can be treated to fulfill the effluent standard, but also the sludge can satisfy the toxicity characteristic leaching procedure (TCLP) limits made by Taiwan's environmental protection administration. PMID:20638967

  12. On the limits of generalizability: applying resource exchange theory to gay relationship processes.

    PubMed

    Gaines, Stanley O; Henderson, Michael C

    2004-01-01

    In the present studies, we examined patterns of interpersonal resource exchange (E. B. Foa & U. G. Foa, 1980; U. G. Foa & E. B. Foa, 1974) among gay male and female couples. Study 1 was quantitative in nature, whereas Study 2 was qualitative in nature. In Study 1 (n's = 61 male couples and 54 female couples), we explicitly tested the hypotheses that partners in same-sex romantic relationships would exchange affection and respect positively and significantly; results indicated that affection (but not respect) was exchanged or reciprocated positively and significantly among gay male (but not gay female) pairs. In Study 2 (n's = 15 male couples and 15 female couples), we asked the research question, but did not test any formal hypotheses, as to whether same-sex romantic pairs would spontaneously invoke interpersonal resource exchange and other reinforcement processes when describing their relationships; results indicated that gay female (but not gay male) couples appeared to adopt a communal, rather than exchange, orientation toward their relationships with regard to displays of affection. Implications for the study of relationship processes among same-sex romantic pairs are discussed.

  13. Knowledge Exchange Processes in Organizations and Policy Arenas: A Narrative Systematic Review of the Literature

    PubMed Central

    Contandriopoulos, Damien; Lemire, Marc; Denis, Jean-Louis; Tremblay, Émile

    2010-01-01

    Context: This article presents the main results from a large-scale analytical systematic review on knowledge exchange interventions at the organizational and policymaking levels. The review integrated two broad traditions, one roughly focused on the use of social science research results and the other focused on policymaking and lobbying processes. Methods: Data collection was done using systematic snowball sampling. First, we used prospective snowballing to identify all documents citing any of a set of thirty-three seminal papers. This process identified 4,102 documents, 102 of which were retained for in-depth analysis. The bibliographies of these 102 documents were merged and used to identify retrospectively all articles cited five times or more and all books cited seven times or more. All together, 205 documents were analyzed. To develop an integrated model, the data were synthesized using an analytical approach. Findings: This article developed integrated conceptualizations of the forms of collective knowledge exchange systems, the nature of the knowledge exchanged, and the definition of collective-level use. This literature synthesis is organized around three dimensions of context: level of polarization (politics), cost-sharing equilibrium (economics), and institutionalized structures of communication (social structuring). Conclusions: The model developed here suggests that research is unlikely to provide context-independent evidence for the intrinsic efficacy of knowledge exchange strategies. To design a knowledge exchange intervention to maximize knowledge use, a detailed analysis of the context could use the kind of framework developed here. PMID:21166865

  14. Anion effects to deliver enhanced iridium catalysts for hydrogen isotope exchange processes.

    PubMed

    Kennedy, Alan R; Kerr, William J; Moir, Rory; Reid, Marc

    2014-10-28

    Synthesis of a series of iridium(I) complexes of the type [(COD)Ir(IMes)(PPh3)]X (X = BF4, OTf, and BArF) has been established. Application of these species in mild hydrogen isotope exchange processes revealed more efficient catalysis and, further, a wider solvent scope when employing larger, more weakly coordinating counterions. PMID:25208265

  15. EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Eastman, Michael P.

    1982-01-01

    Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…

  16. Ethnic Minority Family Research in an Urban Setting: A Process of Exchange

    ERIC Educational Resources Information Center

    Cromwell, Ronald E.; And Others

    1975-01-01

    The stated purpose of this paper is to attempt to formulate the dynamics of research as a process of exchange by discussing the authors' experience in responding to community resistance to a study of Anglo, Black, and Mexican-American parents and their elementary school children in a multi-ethnic urban community. (Author/JM)

  17. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    SciTech Connect

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-12-01

    The U.S. Department of Energy selected the high temperature gas-cooled reactor as the basis for the Next Generation Nuclear Plant (NGNP). The NGNP will demonstrate the use of nuclear power for electricity, hydrogen production, and process heat applications. The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. An intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding. This report describes the preliminary results of a scoping study that evaluated the diffusion welding process parameters and the resultant mechanical properties of diffusion welded joints using Alloy 800H. The long-term goal of the program is to progress towards demonstration of small heat exchanger unit cells fabricated with diffusion welds. Demonstration through mechanical testing of the unit cells will support American Society of Mechanical Engineers rules and standards development, reduce technical risk, and provide proof of concept for heat exchanger fabrication methods needed to deploy heat exchangers in several potential NGNP configurations.1 Researchers also evaluated the usefulness of modern thermodynamic and diffusion computational tools (Thermo-Calc and Dictra) in optimizing the parameters for diffusion welding of Alloy 800H. The modeling efforts suggested a temperature of 1150 C for 1 hour with an applied pressure of 5 MPa using 15 {micro}m nickel foil as joint filler to reduce chromium oxidation on the welded surfaces. Good agreement between modeled and experimentally determined concentration gradients was achieved

  18. Charge exchange processes involving highly charged ions and targets of interest in astrophysics and fusion plasmas

    NASA Astrophysics Data System (ADS)

    Otranto, S.

    2012-11-01

    Renewed interest in charge exchange processes involving highly charged ions arises because of their crucial role in the planned ITER reactor as well as to recent X-ray observations in the astrophysical context. In this work, the classical trajectory Monte Carlo method (CTMC) is used to calculate state selective single charge exchange n-level cross sections and line emission cross sections pertinent to both fields. These are contrasted to recent laboratory data from KVI for the Xe18+ + Na(3s) collision system and NIST/BERLIN-EBIT data for the Ar18+ +Ar system.

  19. Membrane permeation process for dehydration of organic liquid mixtures using sulfonated ion-exchange polyalkene membranes

    DOEpatents

    Cabasso, Israel; Korngold, Emmanuel

    1988-01-01

    A membrane permeation process for dehydrating a mixture of organic liquids, such as alcohols or close boiling, heat sensitive mixtures. The process comprises causing a component of the mixture to selectively sorb into one side of sulfonated ion-exchange polyalkene (e.g., polyethylene) membranes and selectively diffuse or flow therethrough, and then desorbing the component into a gas or liquid phase on the other side of the membranes.

  20. An Effective Deuterium Exchange Method for Neutron Crystal Structure Analysis with Unfolding-Refolding Processes.

    PubMed

    Kita, Akiko; Morimoto, Yukio

    2016-02-01

    A method of hydrogen/deuterium (H/D) exchange with an unfolding-refolding process has been applied to hen egg-white lysozyme (HWL), and accurate evaluation of its deuteration was carried out by time-of-flight mass spectroscopy. Neutron crystallography requires a suitable crystal with enough deuterium exchanged in the protein to decrease incoherent scattering from hydrogens. It is very expensive to prepare a fully deuterated protein, and therefore a simple H/D exchange technique is desirable for this purpose. Acid or base addition to protein solutions with heating effectively increased the number of deuterium up to more than 20 % of that of all hydrogen atoms, and refolded structures were determined by X-ray structure analysis at 1.8 Å resolution. Refolded HWL had increased deuterium content in its protein core and its native structure, determined at atomic resolution, was fully preserved. PMID:26718545

  1. Process industry demand for more efficient, more cost-effective heat exchanger tubing

    SciTech Connect

    Thors, P.

    1987-01-01

    In the future the process industry will see a bigger selection of enhanced heat transfer tubes, one of the reasons being the continued production of special patented technology involved in making them. Here the author mentions only some of the factors that might influence the increased usage of these enhanced tubes. In using more efficient tubing in a heat exchanger the designer has available the options to increase the total heat duty per unit volume, lower operating costs by reducing the mean temperature difference at a given heat duty, save material, or reduce the size and/or pumping power, among others. This can be achieved, for example, by replacing plain tubes with appropriate enhanced tubes in retubing applications, where old heat exchangers need to be upgraded and total efficiency improved. When a new heat exchanger is to be built, it is easier for the designer to include the more efficient tubing to utilize all the benefits of the increased thermal performance.

  2. TRANSIENT HEAT TRANSFER ANALYSIS FOR ION-EXCHANGE WASTE REMOVAL PROCESS

    SciTech Connect

    Lee, S.

    2010-07-12

    The small column ion exchange (SCIX) process treats low curie salt (LCS) waste before feeding it to the saltstone facility to be made into grout. Through this process, radioactive cesium from the salt solution is absorbed into the CST bed. A CST column loaded with radioactive cesium will generate significant heat from radiolytic decay. If engineering designs of the CST sorption column can not handle this thermal load, hot spots may develop locally within the column and degrade the performance of the ion-exchange process. The CST starts to degrade at about 80 to 85 C, and the CST completely changes to another material above 120 C. In addition, the process solution will boil around 130 C. If the column boiled dry, the sorbent could plug the column and require replacement of the column module. The objective of the present work is to compute temperature distributions across the column as a function of transit time after the initiation of accidents when there is loss of the salt solution flow in the CST column under abnormal conditions of the process operations. In this situation, the customer requested that the calculations should be conservative in that the model results would show the maximum centerline temperatures achievable by the CST design configurations. The thermal analysis results will be used to evaluate the fluid temperature distributions and the process component temperatures within the ion exchange system. This information will also assist in the system design and maintenance.

  3. On the Limiting Markov Process of Energy Exchanges in a Rarely Interacting Ball-Piston Gas

    NASA Astrophysics Data System (ADS)

    Bálint, Péter; Gilbert, Thomas; Nándori, Péter; Szász, Domokos; Tóth, Imre Péter

    2016-08-01

    We analyse the process of energy exchanges generated by the elastic collisions between a point-particle, confined to a two-dimensional cell with convex boundaries, and a `piston', i.e. a line-segment, which moves back and forth along a one-dimensional interval partially intersecting the cell. This model can be considered as the elementary building block of a spatially extended high-dimensional billiard modeling heat transport in a class of hybrid materials exhibiting the kinetics of gases and spatial structure of solids. Using heuristic arguments and numerical analysis, we argue that, in a regime of rare interactions, the billiard process converges to a Markov jump process for the energy exchanges and obtain the expression of its generator.

  4. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    DOE PAGES

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-28

    In this study, optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recoverymore » time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.« less

  5. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    SciTech Connect

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-28

    In this study, optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  6. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    PubMed Central

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-01-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation. PMID:26508587

  7. Hydrogeochemistry and cation-exchange processes in the coastal aquifer of Mar Del Plata, Argentina

    NASA Astrophysics Data System (ADS)

    Martínez, D. E.; Bocanegra, E. M.

    2002-06-01

    The aquifer of Mar del Plata is unconfined and composed of silt and fine sand. The sand fraction is mainly quartz, potassium feldspars, chalcedony, and gypsum. Volcanic-glass shards (40-60%) dominate the silt fraction, and the clays are of the smectite and illite groups. Calcium carbonate, in caliche form, constitutes about 10-20% of the sediment. Groundwater flow is from west to east, and discharge is in the Atlantic Ocean. Because of overexploitation, the flow direction was reversed in a coastal belt about 3.5 km wide, and this has resulted in seawater intrusion. The groundwater is the CaHCO3 type in the recharge zone, and becomes NaHCO3 type towards the discharge area. Salinization by marine intrusion and seawater/fresh-water mixing produces an increase in the major-ion concentrations of the groundwater. The calcium content of the groundwater is higher and the sodium content is lower than those that would be expected if the mixing is considered as just the addition of seawater and fresh water in determined proportions without reactive processes taking place. Hydrogeochemical modeling was applied to the study of hydrogeochemical processes, mainly cation exchange, using the codes NETPATH and PHREEQM. Calcite and gypsum equilibrium, together with cation exchange, are the main hydrogeochemical processes. Cation-exchange capacity of the solid phase was determined by empirical calculations and experimental methods. The affinity order for the groundwater in contact with the aquifer matrix is Ca>Mg>Na in the regional-flow system, but the order is reversed in the salinization process. Reactive transport modeling using the code PHREEQM is useful for analyzing cation exchange in a marine-intrusion process.

  8. Cumulative Significance of Hyporheic Exchange and Biogeochemical Processing in River Networks

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Gomez-Velez, J. D.

    2014-12-01

    Biogeochemical reactions in rivers that decrease excessive loads of nutrients, metals, organic compounds, etc. are enhanced by hydrologic interactions with microbially and geochemically active sediments of the hyporheic zone. The significance of reactions in individual hyporheic flow paths has been shown to be controlled by the contact time between river water and sediment and the intrinsic reaction rate in the sediment. However, little is known about how the cumulative effects of hyporheic processing in large river basins. We used the river network model NEXSS (Gomez-Velez and Harvey, submitted) to simulate hyporheic exchange through synthetic river networks based on the best available models of network topology, hydraulic geometry and scaling of geomorphic features, grain size, hydraulic conductivity, and intrinsic reaction rates of nutrients and metals in river sediment. The dimensionless reaction significance factor, RSF (Harvey et al., 2013) was used to quantify the cumulative removal fraction of a reactive solute by hyporheic processing. SF scales reaction progress in a single pass through the hyporheic zone with the proportion of stream discharge passing through the hyporheic zone for a specified distance. Reaction progress is optimal where the intrinsic reaction timescale in sediment matches the residence time of hyporheic flow and is less efficient in longer residence time hyporheic flow as a result of the decreasing proportion of river flow that is processed by longer residence time hyporheic flow paths. In contrast, higher fluxes through short residence time hyporheic flow paths may be inefficient because of the repeated surface-subsurface exchanges required to complete the reaction. Using NEXSS we found that reaction efficiency may be high in both small streams and large rivers, although for different reasons. In small streams reaction progress generally is dominated by faster pathways of vertical exchange beneath submerged bedforms. Slower exchange

  9. Removal of disinfection by-product precursors by coagulation and an innovative suspended ion exchange process.

    PubMed

    Metcalfe, David; Rockey, Chris; Jefferson, Bruce; Judd, Simon; Jarvis, Peter

    2015-12-15

    This investigation aimed to compare the disinfection by-product formation potentials (DBPFPs) of three UK surface waters (1 upland reservoir and 2 lowland rivers) with differing characteristics treated by (a) a full scale conventional process and (b) pilot scale processes using a novel suspended ion exchange (SIX) process and inline coagulation (ILCA) followed by ceramic membrane filtration (CMF). Liquid chromatography-organic carbon detection analysis highlighted clear differences between the organic fractions removed by coagulation and suspended ion exchange. Pretreatments which combined SIX and coagulation resulted in significant reductions in dissolved organic carbon (DOC), UV absorbance (UVA), trihalomethane and haloacetic acid formation potential (THMFP, HAAFP), in comparison with the SIX or coagulation process alone. Further experiments showed that in addition to greater overall DOC removal, the processes also reduced the concentration of brominated DBPs and selectively removed organic compounds with high DBPFP. The SIX/ILCA/CMF process resulted in additional removals of DOC, UVA, THMFP, HAAFP and brominated DBPs of 50, 62, 62, 62% and 47% respectively compared with conventional treatment.

  10. Removal of disinfection by-product precursors by coagulation and an innovative suspended ion exchange process.

    PubMed

    Metcalfe, David; Rockey, Chris; Jefferson, Bruce; Judd, Simon; Jarvis, Peter

    2015-12-15

    This investigation aimed to compare the disinfection by-product formation potentials (DBPFPs) of three UK surface waters (1 upland reservoir and 2 lowland rivers) with differing characteristics treated by (a) a full scale conventional process and (b) pilot scale processes using a novel suspended ion exchange (SIX) process and inline coagulation (ILCA) followed by ceramic membrane filtration (CMF). Liquid chromatography-organic carbon detection analysis highlighted clear differences between the organic fractions removed by coagulation and suspended ion exchange. Pretreatments which combined SIX and coagulation resulted in significant reductions in dissolved organic carbon (DOC), UV absorbance (UVA), trihalomethane and haloacetic acid formation potential (THMFP, HAAFP), in comparison with the SIX or coagulation process alone. Further experiments showed that in addition to greater overall DOC removal, the processes also reduced the concentration of brominated DBPs and selectively removed organic compounds with high DBPFP. The SIX/ILCA/CMF process resulted in additional removals of DOC, UVA, THMFP, HAAFP and brominated DBPs of 50, 62, 62, 62% and 47% respectively compared with conventional treatment. PMID:26378728

  11. Process-Scale Modeling of Atmosphere-Snowpack Exchange of Nitrogen Oxides

    NASA Astrophysics Data System (ADS)

    Murray, K. A.; Doskey, P. V.; Ganzeveld, L.

    2013-12-01

    Snowpack over glacial ice is a reservoir for reactive nitrogen gases. Previous studies indicate nitrogen oxides (NOx) are generated in snowpack interstitial air through photolysis of nitrate (NO3-). Gradients in NOx mixing ratios between snowpack interstitial air and the overlying atmosphere regulate exchange of NOx with snowpack, which affects the Arctic ozone budget and climate. To better understand the dynamics of cryosphere-atmosphere exchange of NOx in the Arctic, we collected 2 years of meteorological and chemical data in and above the snowpack at Summit, Greenland. The comprehensive dataset indicates NOx emissions are episodic, with NOx enhancements in snowpack in early spring during high wind speed events (10-20 mph), which elevate NOx levels to ~500 pptv at depths of 2.5 m. Analysis of the observations will be based upon application of a 1-D process-scale model of atmosphere-snowpack exchange of NOx. The model will include representations of the snowpack chemistry in gas and aqueous phases, mass transfer of chemical species between phases, and physical transport by diffusion and wind pumping. The model will calculate the chemical and physical tendencies in three dimensions: depth, time, and intensity. Analysis of the tendencies will allow us to perform model sensitivity tests of pertinent snowpack physical and chemical processes. The end-goal of the project is to simplify the major tendencies into a parameterized model add-on for use in global models to determine the importance of properly representing snowpack in global model simulations.

  12. [Circulation and exchange processes on the South Atlantic Bight Continental Shelf]. [Progress summary for 1986

    SciTech Connect

    Not Available

    1986-12-31

    A continuation of the physical oceanography program to investigate circulation and exchange processes on the South Atlantic Bight (SAB) Continental Shelf is proposed. The transport and dispersal of materials entering the inner shelf zone with river discharge is not well understood at present. Climatological data, satellite imagery, and numerical modeling results indicate two removal routes for these nearshore waters: northeast transport and offshore exchange between Cape Fear and Savannah during the spring and summer when maximum run-off and northward winds prevail; and southward transport and offshore exchange near Cape Canaveral during the fall when southward winds prevail. We have conducted interdisciplinary experiments to investigate the transport processes in the inner to outer shelf between Savannah, Georgia and Cape Fear, North Carolina. In addition we propose to continue synthesis and interpretation of current measurements. The analyses will focus on determining the coupling mechanisms of inner shelf and outer shelf waters with special emphasis placed on resolving the modes and rates of shelf water removal.

  13. Modeling the Hydrogen-Proton Charge-Exchange Process in Global Heliospheric Simulations

    NASA Astrophysics Data System (ADS)

    DeStefano, A.; Heerikhuisen, J.

    2015-12-01

    The environment surrounding our Solar System has a vast and dynamic structure. As the Sun rounds the Milky Way galaxy, interstellar dust and gas interact with the Sun's outflow of solar wind. A bubble of hot plasma forms around the Sun due to this interaction, called the heliosphere. In order to understand the structure of the heliosphere, observations and simulations must work in tandem. Within the past decade or so, 3D models of the heliosphere have been developed exhibiting non- symmmetric as well as predicting structures such as the hydrogen wall and the IBEX ribbon. In this poster we explore new ways to compute charge-exchange source terms. The charge-exchange process is the coupling mechanism between the MHD and kinetic theories. The understanding of this process is crucial in order to make valuable predictions. Energy dependant cross section terms will aid in settling non-linear affects coupling the intestellar and solar particles. Through these new ways of computing source terms, resolving fine structures in the plasma in the heliopause may be possible. In addition, other non-trivial situations, such as charge-exchange mediated shocks, may be addressed.

  14. Processing of Spent Ion Exchange Resins in a Rotary Calciner - 12212

    SciTech Connect

    Kascheev, Vladimir; Musatov, Nikolay

    2012-07-01

    Processing Russian nuclear ion exchange resin KU-2 using a 'Rotary' calciner was conducted. The resulting product is a dry free flowing powder (moisture content 3 wt.%, Angle of repose of ≅ 20 deg.). Compared with the original exchange resin the volume of the final product is about 3 times less.. Rotary calciner product can be stored in metal drums or in special reinforced concrete cubicles. After thermal treatment in a rotary calciner, the spent resin product can be solidified in cement yielding the following attributes: - The cemented waste is only a 35% increase over the volume of powder product; - The volume of cement calciner product is almost 9 times less (8.7) than the volume of cement solidified resin; - The mechanical strength of cemented calciner product meets the radioactive waste regulations in Russia. (authors)

  15. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    SciTech Connect

    Tsai, Tsung-Han; Ertem, S. Piril; Maes, Ashley M.; Seifert, Soenke; Herring, Andrew M; Coughlin, E. Bryan

    2015-01-28

    Random copolymers of isoprene and 4-vinylbenzyl chloride (VBCl) with varying compositions were synthesized via nitroxide-mediated polymerization. Subsequent quaternization afforded solvent processable and cross-linkable ionomers with a wide range of ion exchange capacities (IECs). Solution cast membranes were thermally cross-linked to form anion exchange membranes. Cross-linking was achieved by taking advantage of the unsaturations on the polyisoprene backbone, without added cross-linkers. A strong correlation was found between water uptake and ion conductivity of the membranes: conductivities of the membranes with IECs beyond a critical value were found to be constant related to their high water absorption. Environmentally controlled small-angle X-ray scattering experiments revealed a correlation between the average distance between ionic clusters and the ion conductivity, indicating that a well-connected network of ion clusters is necessary for efficient ion conduction and high ion conductivity.

  16. Time Dependency of Psychotherapeutic Exchanges: The Contribution of the Theory of Dynamic Systems in Analyzing Process

    PubMed Central

    Salvatore, Sergio; Tschacher, Wolfgang

    2012-01-01

    This paper provides a general framework for the use of Theory of Dynamic Systems (TDS) in the field of psychotherapy research. Psychotherapy is inherently dynamic, namely a function of time. Consequently, the improvement of construct validity and clinical relevance of psychotherapy process research require the development of models of investigation allowing dynamic mappings of clinical exchange. Thus, TDS becomes a significant theoretical and methodological reference. The paper focuses two topics. First, the main concepts of TDS are briefly introduced together with a basic typology of approaches developed within this domain. Second, we propose a repertoire of investigation strategies that can be used to capture the dynamic nature of clinical exchange. In this way we intend to highlight the feasibility and utility of strategies of analysis informed by TDS. PMID:22848205

  17. Qualification of Reillex{trademark} HPQ anion exchange resin for use in SRS processes

    SciTech Connect

    Crooks, W.J. III

    2000-05-18

    The Phase 2 portion of the HB-Line facility was built in the early 1980's to process plutonium and neptunium from nitric acid solutions into oxide suitable for storage in a vault. Although the other portions of HB-Line were started up in the mid 1980's and have operated since that time, the anion exchange and precipitation processes in Phase 2 were never started up. As part of the material stabilization efforts, Phase 2 is currently being started up. A new anion exchange resin is needed because the resins that were proposed for use 10 years ago are limited by performance characteristics, disposal requirements, or are no longer commercially available. SRTC is responsible for qualifying all resins prior to their use in Nuclear Materials Stabilization and Storage (NMSS) processes. Qualification consists of both process suitability and thermal stability with nitric acid. This report describes the thermal stability qualification of Reillex{trademark} HPQ, the new resin proposed for processing plutonium and neptunium in the HB Line facility.

  18. LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING

    SciTech Connect

    King, W

    2007-11-30

    This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials have been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA

  19. Impact of natural organic matter properties on the kinetics of suspended ion exchange process.

    PubMed

    Bazri, Mohammad Mahdi; Mohseni, Madjid

    2016-03-15

    Removal kinetics of four standard organic matter isolates under the application of strongly basic ion exchange resins (IEX) in suspended mode was studied under commercial application conditions. Suwannee River natural organic matter (SRNOM), SR fulvic acid (SRFA), and Pony Lake fulvic acid (PLFA) were greatly removed (>90%) and highly preferred by IEX resins (α > 5, over Cl(-), and HCO3(-)) while SR humic acid (SRHA) was the least preferred organic structure among the four isolates studied (α ≈ 1). Moreover, the efficacy of removal for fulvic acids (i.e., SRFA, PLFA) was consistent over consecutive reuse of IEX resins (i.e., loading cycles) whereas it decreased for SRNOM and SRHA over the course of operation. The stoichiometric correlation between the chloride released from the resins as a result of organic molecules uptake indicated that ion exchange was the dominant mechanism. Results obtained indicated that molecular weight and charge density of isolates played a major role in the performance of ion exchange process for organic matter removal. Furthermore, various empirical and physical models were evaluated using the experimental data and pore diffusion was found to be the rate-liming step during the uptake of organic matters; hence, it was used as the appropriate model to predict the kinetics of removal. Consequently, free liquid diffusivities and effective pore diffusion coefficients of organic molecules were estimated and findings were in agreement with the literature data that were obtained from spectrophotometric methods.

  20. Hydrological processes involved in groundwater-surface water exchange at a lowland river: measurements and modelling

    NASA Astrophysics Data System (ADS)

    Nuetzmann, G.; Lewandowski, J.

    2009-04-01

    Water exchange processes in the floodplain of a lowland groundwater-surface water system are studied on the basis of a study site near Freienbrink, NE Germany. The surface water boundaries of this site are formed by an oxbow and the current bed of the river Spree, section Müggelspree. Surface and ground water levels and water temperatures were collected in 12 piezometers and 2 recording stage gauges of a 300 m long transect throughout a one-year-period. Due to water level fluctuations alternation of infiltration and exfiltration occurred. However, most of the time groundwater flux is directed into the river Spree and, river water infiltration events into the aquifer are usually short and of minor importance. Due to clogging of the oxbow bed with a mud layer of different thickness the hydraulic contact between the oxbow and the adjacent aquifer is heterogeneously distributed and partially marginal. These features are modelled quantitatively using MODFLOW and MT3DMS in order to simulate ground water flow and heat transport. Two different model approaches are developed: with the help of a 3D model the whole test site was simulated describing the main vertical and lateral flow components; with a 2D vertical model along transect the exchange processes close to the surface water bodies are studied in more detail in order to quantify the leakage parameters of both river sections. With the results the following questions will be answered: (1) How fast does the exchange between the surface water and the aquifer occur? (2) Can the hydraulic processes (in- and exfiltration) between both river sections and the aquifer be identified and quantified? (3) What are the driving forces for groundwater dynamics in the floodplain - groundwater recharge, regional groundwater flow, or water level fluctuations of the river sections?

  1. Shelf edge exchange processes-II SEEP2-06, R/V Endeavor cruise 186

    SciTech Connect

    Wilson, C.; Behrens, W.J.; Flagg, C.N.; Wallace, D.W.R.; Wilke, R.J.; Wyman, K.D.

    1989-12-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. Phase I of SEEP consisted of a series of nine cruises and a mooring array across the outer continental shelf of New England during 1983--1984. Phase II focused specifically on the shelf/slope frontal region of the mid-Atlantic bight off the Delmarva Peninsula. Hydrographic data were collected on eight of the six cruises.

  2. Aeronautical Satellite-Assisted Process for Information Exchange Through Network Technologies (Aero-SAPIENT) Conducted

    NASA Technical Reports Server (NTRS)

    Zernic, Michael J.

    2002-01-01

    Broadband satellite communications for aeronautics marries communication and network technologies to address NASA's goals in information technology base research and development, thereby serving the safety and capacity needs of the National Airspace System. This marriage of technology increases the interactivity between airborne vehicles and ground systems. It improves decision-making and efficiency, reduces operation costs, and improves the safety and capacity of the National Airspace System. To this end, a collaborative project called the Aeronautical Satellite Assisted Process for Information Exchange through Network Technologies, or Aero-SAPIENT, was conducted out of Tinker AFB, Oklahoma, during November and December 2000.

  3. Solvent Processable Tetraalkylammonium-Functionalized Polyethylene for Use as an Alkaline Anion Exchange Membrane

    SciTech Connect

    Kostalik, IV, Henry A.; Clark, Timothy J.; Robertson, Nicholas J.; Mutolo, Paul F.; Longo, Julie M.; Abruña, Héctor D.; Coates, Geoffrey W.

    2010-08-02

    We report the synthesis of a solvent processable, tetraalkylammonium-functionalized polyethylene for use as an alkaline anion exchange membrane (AAEM). The membranes are insoluble in both pure water and aqueous methanol (50 vol % water) at 50 °C but exhibit excellent solubility in a variety of other aqueous alcohols (e.g., 5 wt % AAEM in aqueous n-propanol, 50 vol % water). These solubility characteristics extend the potential utility of this system for use as both an AAEM and ionomer electrode material from a single polymer composition. The AAEMs generated are mechanically strong and exhibit high hydroxide and carbonate conductivities.

  4. Design of a fixed-bed ion-exchange process for the treatment of rinse waters generated in the galvanization process using Laminaria hyperborea as natural cation exchanger.

    PubMed

    Mazur, Luciana P; Pozdniakova, Tatiana A; Mayer, Diego A; Boaventura, Rui A R; Vilar, Vítor J P

    2016-03-01

    In this study, the removal of zinc from galvanization wastewaters was performed in a fixed bed column packed with brown macro-algae Laminaria hyperborea, acting as a natural cation exchanger (resin). The rinse wastewater presents a zinc concentration between 9 and 22 mg/L, a high concentration of light metals (mainly Na and Ca), a high conductivity (0.5-1.5 mS/cm) and a low organic content (DOC = 7-15 mg C/L). The zinc speciation diagram showed that approximately 80% of zinc is in the form of Zn(2+) and ≅20% as ZnSO4, considering the effluent matrix. From all operational conditions tested for zinc uptake (17 < bed height<27 cm, 4.5 < flow rate<18.2 BV/h, 0.8 < particle equivalent diameter<2.0 mm), the highest useful capacity (7.1 mg Zn/g algae) was obtained for D/dp = 31, L/D = 11, 9.1 BV/h, τ = 6.4 min, corresponding to a service capacity of 124 BV (endpoint of 2 mg Zn/L). Elution was faster and near to 100% effective using 10 BV of HCl (1 M, 3.0%, 363 g HCl/L of resin), for flow rates higher than 4.5 BV/h. Calcium chloride solution (0.1 M) was selected as the best regenerant, allowing the reuse of the natural resin for more than 3 saturation/elution/regeneration cycles. The best operation conditions were scaled-up and tested in a pre-pilot plant. The scale-up design of the cation exchange process was proposed for the treatment of 2.4 m(3)/day of galvanization wastewater, resulting in an estimated reactants cost of 2.44 €/m(3).

  5. Design of a fixed-bed ion-exchange process for the treatment of rinse waters generated in the galvanization process using Laminaria hyperborea as natural cation exchanger.

    PubMed

    Mazur, Luciana P; Pozdniakova, Tatiana A; Mayer, Diego A; Boaventura, Rui A R; Vilar, Vítor J P

    2016-03-01

    In this study, the removal of zinc from galvanization wastewaters was performed in a fixed bed column packed with brown macro-algae Laminaria hyperborea, acting as a natural cation exchanger (resin). The rinse wastewater presents a zinc concentration between 9 and 22 mg/L, a high concentration of light metals (mainly Na and Ca), a high conductivity (0.5-1.5 mS/cm) and a low organic content (DOC = 7-15 mg C/L). The zinc speciation diagram showed that approximately 80% of zinc is in the form of Zn(2+) and ≅20% as ZnSO4, considering the effluent matrix. From all operational conditions tested for zinc uptake (17 < bed height<27 cm, 4.5 < flow rate<18.2 BV/h, 0.8 < particle equivalent diameter<2.0 mm), the highest useful capacity (7.1 mg Zn/g algae) was obtained for D/dp = 31, L/D = 11, 9.1 BV/h, τ = 6.4 min, corresponding to a service capacity of 124 BV (endpoint of 2 mg Zn/L). Elution was faster and near to 100% effective using 10 BV of HCl (1 M, 3.0%, 363 g HCl/L of resin), for flow rates higher than 4.5 BV/h. Calcium chloride solution (0.1 M) was selected as the best regenerant, allowing the reuse of the natural resin for more than 3 saturation/elution/regeneration cycles. The best operation conditions were scaled-up and tested in a pre-pilot plant. The scale-up design of the cation exchange process was proposed for the treatment of 2.4 m(3)/day of galvanization wastewater, resulting in an estimated reactants cost of 2.44 €/m(3). PMID:26766159

  6. An efficient process of generating bispecific antibodies via controlled Fab-arm exchange using culture supernatants.

    PubMed

    Paul, Suparna; Connor, Judy; Nesspor, Tom; Haytko, Peter; Boakye, Ken; Chiu, Mark L; Jiang, Haiyan

    2016-05-01

    Bispecific antibody generation is actively pursued for therapeutic and research antibody development. Although there are multiple strategies for generating bispecific antibodies (bsAbs); the common challenge is to develop a scalable method to prepare bsAbs with high purity and yield. The controlled Fab-arm exchange (cFAE) method combines two parental monoclonal antibodies (mAbs), each with a matched point mutation, F405L and K409R in the respective CH3 domains. The conventional process employs two steps: the purification of two parental mAbs from culture supernatants followed by cFAE. Following a reduction/oxidation reaction, the bispecific mAb is formed with greater than 95% heterodimerization efficiency. In this study, cFAE was initiated in culture supernatants expressing the two parental mAbs, thereby eliminating the need to first purify the parental mAbs. The bsAbs formed in culture supernatant was then purified using a Protein A affinity chromatography. The BsAbs generated in this manner had efficiency comparable to the conventional method using purified parental mAbs. BsAbs prepared by two different routes showed indistinguishable characteristics by SDS capillary electrophoresis, analytical size exclusion, and cation exchange chromatography. This alternative method significantly shortened timelines and reduced resources required for bsAb generation, providing an improved process with potential benefits in large-scale bsAb preparation, as well as for HTP small-scale bsAb matrix selection. PMID:26826313

  7. An efficient process of generating bispecific antibodies via controlled Fab-arm exchange using culture supernatants.

    PubMed

    Paul, Suparna; Connor, Judy; Nesspor, Tom; Haytko, Peter; Boakye, Ken; Chiu, Mark L; Jiang, Haiyan

    2016-05-01

    Bispecific antibody generation is actively pursued for therapeutic and research antibody development. Although there are multiple strategies for generating bispecific antibodies (bsAbs); the common challenge is to develop a scalable method to prepare bsAbs with high purity and yield. The controlled Fab-arm exchange (cFAE) method combines two parental monoclonal antibodies (mAbs), each with a matched point mutation, F405L and K409R in the respective CH3 domains. The conventional process employs two steps: the purification of two parental mAbs from culture supernatants followed by cFAE. Following a reduction/oxidation reaction, the bispecific mAb is formed with greater than 95% heterodimerization efficiency. In this study, cFAE was initiated in culture supernatants expressing the two parental mAbs, thereby eliminating the need to first purify the parental mAbs. The bsAbs formed in culture supernatant was then purified using a Protein A affinity chromatography. The BsAbs generated in this manner had efficiency comparable to the conventional method using purified parental mAbs. BsAbs prepared by two different routes showed indistinguishable characteristics by SDS capillary electrophoresis, analytical size exclusion, and cation exchange chromatography. This alternative method significantly shortened timelines and reduced resources required for bsAb generation, providing an improved process with potential benefits in large-scale bsAb preparation, as well as for HTP small-scale bsAb matrix selection.

  8. Subsurface Water Oceans on Icy Satellites: Chemical Composition and Exchange Processes

    NASA Astrophysics Data System (ADS)

    Sohl, Frank; Choukroun, Mathieu; Kargel, Jeffrey; Kimura, Jun; Pappalardo, Robert; Vance, Steve; Zolotov, Mikhail

    2010-06-01

    The state of knowledge about the structure and composition of icy satellite interiors has been significantly extended by combining direct measurements from spacecraft, laboratory experiments, and theoretical modeling. The existence of potentially habitable liquid water reservoirs on icy satellites is dependent on the radiogenic heating of the rock component, additional contributions such as the dissipation of tidal energy, the efficiency of heat transfer to the surface, and the presence of substances that deplete the freezing point of liquid water. This review summarizes the chemical evolution of subsurface liquid water oceans, taking into account a number of chemical processes occuring in aqueous environments and partly related to material exchange with the deep interior. Of interest are processes occuring at the transitions from the liquid water layer to the ice layers above and below, involving the possible formation of clathrate hydrates and high-pressure ices on large icy satellites. In contrast, water-rock exchange is important for the chemical evolution of the liquid water layer if the latter is in contact with ocean floor rock on small satellites. The composition of oceanic floor deposits depends on ambient physical conditions and ocean chemistry, and their evolutions through time. In turn, physical properties of the ocean floor affect the circulation of oceanic water and related thermal effects due to tidally-induced porous flow and aqueous alteration of ocean floor rock.

  9. THERMAL ANALYSIS FOR IN-TANK ION-EXCHANGE COLUMN PROCESS

    SciTech Connect

    Lee, S; Frank02 Smith, F

    2009-01-05

    High Level Waste (HLW) at the Savannah River Site (SRS) is stored in three forms: sludge, saltcake, and supernate. A small column ion-exchange (SCIX) process is being designed to treat dissolved saltcake waste before feeding it to the saltstone facility to be made into grout. The waste is caustic with high concentrations of various sodium salts and lower concentrations of radionuclides. Two cation exchange media being considered are a granular form of crystalline silicotitanate (CST) and a spherical form of resorcinol-formaldehyde (RF) resin. CST is an inorganic material highly selective for cesium that is not elutable. Through this process, radioactive cesium from the salt solution is absorbed into ion exchange media (either CST or RF) which is packed within a flow-through column. A packed column loaded with radioactive cesium generates significant heat from radiolytic decay. If engineering designs cannot handle this thermal load, hot spots may develop locally which could degrade the performance of the ion-exchange media. Performance degradation with regard to cesium removal has been observed between 50 and 80 C for CST [1] and at 65 C for RF resin [2]. In addition, the waste supernate solution will boil around 130 C. If the columns boiled dry, the sorbent material could plug the column and lead to replacement of the entire column module. Alternatively, for organic resins such as RF there is risk of fire at elevated temperatures. The objective of the work is to compute temperature distributions across CST- and RF-packed columns immersed in waste supernate under accident scenarios involving loss of salt solution flow through the beds and, in some cases, loss of coolant system flow. For some cases, temperature distributions are determined as a function of time after the initiation of a given accident scenario and in other cases only the final steady-state temperature distributions are calculated. In general, calculations are conducted to ensure conservative and

  10. Critical velocity in phosphorus exchange processes across the sediment-water interface.

    PubMed

    Wan, Jun; Wang, Ze; Li, Zhijie; Duan, Huiling; Hezhong, Yuan

    2013-10-01

    Sediments are ultimate sinks of nutrients in lakes that record the pollution history evolutionary processes, and anthropogenic activities of a lake. However, sediments are considered as inner sources of environmental factor changes such as the variation in hydrodynamic conditions because of the nutrients they release. How does this process happen? This study investigates a typical nutrient phosphorus (P) exchange among sediment, suspended particle matter (SPM), and water. Compared with numerical and experimental studies, this study confirms that the critical velocity that occurs at a lower flow rate state exists in the range of 7 to 15 cm/sec. Critical velocity below the critical flow rate promotes the migration of particulate phosphorus (PP) to the SPM. On the other hand, critical velocity above the critical flow rate promotes the release of PP in water.

  11. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato

    2001-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  12. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato; Gula, Michael J.; Xue, Sui; Harvey, James T.

    2002-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  13. Effects Of Thermal Exchange On Material Flow During Steel Thixoextrusion Process

    NASA Astrophysics Data System (ADS)

    Eric, Becker; Guochao, Gu; Laurent, Langlois; Raphaël, Pesci; Régis, Bigot

    2011-01-01

    Semisolid processing is an innovative technology for near net-shape production of components, where the metallic alloys are processed in the semisolid state. Taking advantage of the thixotropic behavior of alloys in the semisolid state, significant progress has been made in semisolid processing. However, the consequences of such behavior on the flow during thixoforming are still not completely understood. To explore and better understand the influence of the different parameters on material flow during thixoextrusion process, thixoextrusion experiments were performed using the low carbon steel C38. The billet was partially melted at high solid fraction. Effects of various process parameters including the initial billet temperature, the temperature of die, the punch speed during process and the presence of a Ceraspray layer at the interface of tool and billet were investigated through experiments and simulation. After analyzing the results thus obtained, it was identified that the aforementioned parameters mainly affect thermal exchanges between die and part. The Ceraspray layer not only plays a lubricant role, but also acts as a thermal barrier at the interface of tool and billet. Furthermore, the thermal effects can affect the material flow which is composed of various distinct zones.

  14. Effects Of Thermal Exchange On Material Flow During Steel Thixoextrusion Process

    SciTech Connect

    Becker, Eric; Gu Guochao; Langlois, Laurent; Bigot, Regis; Pesci, Raphael

    2011-01-17

    Semisolid processing is an innovative technology for near net-shape production of components, where the metallic alloys are processed in the semisolid state. Taking advantage of the thixotropic behavior of alloys in the semisolid state, significant progress has been made in semisolid processing. However, the consequences of such behavior on the flow during thixoforming are still not completely understood. To explore and better understand the influence of the different parameters on material flow during thixoextrusion process, thixoextrusion experiments were performed using the low carbon steel C38. The billet was partially melted at high solid fraction. Effects of various process parameters including the initial billet temperature, the temperature of die, the punch speed during process and the presence of a Ceraspray layer at the interface of tool and billet were investigated through experiments and simulation. After analyzing the results thus obtained, it was identified that the aforementioned parameters mainly affect thermal exchanges between die and part. The Ceraspray layer not only plays a lubricant role, but also acts as a thermal barrier at the interface of tool and billet. Furthermore, the thermal effects can affect the material flow which is composed of various distinct zones.

  15. Numerical Modeling of Freezing and Melting Processes around a Borehole Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Shao, Haibing; Zheng, Tianyuan; Nagel, Thomas; Kolditz, Olaf

    2015-04-01

    In ground sourced heat pump (GSHP) systems, heat energy stored in the shallow subsurface is extracted through borehole heat exchangers (BHE) and then utilized for domestic heating. In cold regions, the continuous heat deficit in the vicinity of the BHE can cause freezing of the surrounding soil. Its material properties, such as permeability and heat conductivity, will then significantly change and lead to a series of coupled thermal, hydraulic, and mechanical processes. In particular, the heat exchange performance of the BHE will be altered, and the frozen soil may also induce ground lift or subsidence in the vicinity of the building. As the first step of modelling this coupled system, we followed the approach proposed by Al-Khoury et al (2010) and Diersch et al (2011), where the BHE has been fully integrated into the numerical model in a dual-continuum way. Additionally, we extended the existing heat transport module in the numerical simulator OpenGeoSys to include the freezing and melting processes, whereas the ice volume fraction in the soil is non-linearly dependent on the temperature, and the soil properties were determined based on the degree of freezing/melting. The non-linearity of the coupled model was numerically solved by a Newton scheme. The extended model has been verified by comparing numerical results against analytical solutions and also findings from other numerical codes. Moreover, we proposed and simulated a hypothetical scenario, where ice is gradually forming around a BHE in response to the continuous operation of a heat pump. The model is capable of reproducing the thermodynamic freezing process as well as the heat transport affected by it. Future work will be focused on the integration of deformation processes into the model.

  16. An Evaluation of Solution Algorithms and Numerical Approximation Methods for Modeling an Ion Exchange Process

    PubMed Central

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.

    2010-01-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward-difference-formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications. PMID:20577570

  17. Hexavalent chromium [Cr(VI)] removal by the electrochemical ion-exchange process.

    PubMed

    Dharnaik, Amit Shivputra; Ghosh, Pranab Kumar

    2014-01-01

    In the present investigation, the performance of a laboratory-scale plate and frame-type electrochemical ion-exchange (EIX) cell on removal ofhexavalent chromium from synthetic wastewater containing 5 mg/l of Cr(VI) was evaluated under varying applied voltages. Ruthenium dioxide-coated titanium plate (RuO2/Ti) was used as anode and stainless steel plates as cathode. The EIX cell was run at different hydraulic retention time (HRT). Before using in the electrochemical cell, the capacity of ion-exchange resin was evaluated through kinetic and isotherm equilibrium tests in batch mode. The batch kinetic study result showed that the equilibrium time for effective ion exchange with resin is 2 h. The isotherm equilibrium data fit well to both Freundlich and Langmuir isotherms. Maximum capacity (qm) of resin calculated from Langmuir isotherm was 71.42 mg/g. Up to 99% of chromium removal was noticed in the EIX cell containing fresh resin at applied voltages of 10 V and higher. Migration of chromium ion to anode chamber was not noticed while performing the experiment with fresh resin. As high as 50% removal of chromium was observed from the middle chamber containing exhausted resin at an applied voltage of 25 V when the influent flow rate was maintained at 45 min of HRT. The performance of the reactor was increased to 72% when the influent flow rate was decreased to maintain at 90 min of HRT. Build-up of chromium in the anode chamber took place when exhausted resin was used in the process.

  18. An evaluation of solution algorithms and numerical approximation methods for modeling an ion exchange process

    NASA Astrophysics Data System (ADS)

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.

    2010-07-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.

  19. An Evaluation of Solution Algorithms and Numerical Approximation Methods for Modeling an Ion Exchange Process.

    PubMed

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H; Miller, Cass T

    2010-07-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward-difference-formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.

  20. THERMAL PERFORMANCE ANALYSIS FOR SMALL ION-EXCHANGE CESIUM REMOVAL PROCESS

    SciTech Connect

    Lee, S.; King, W.

    2009-12-29

    The In-Riser Ion Exchange program focuses on the development of in-tank systems to decontaminate high level waste (HLW) salt solutions at the Savannah River Site (SRS) and the Hanford Site. Small Column Ion Exchange (SCIX) treatment for cesium removal is a primary in-riser technology for decontamination prior to final waste immobilization in Saltstone. Through this process, radioactive cesium from the salt solution is adsorbed onto the ion exchange media which is packed within a flow-through column. Spherical Resorcinol-Formaldehyde (RF) is being considered as the ion exchange media for the application of this technology at both sites. A packed column loaded with media containing radioactive cesium generates significant heat from radiolytic decay. Under normal operating conditions, process fluid flow through the column can provide adequate heat removal from the columns. However, in the unexpected event of loss of fluid flow or fluid drainage from the column, the design must be adequate to handle the thermal load to avoid unacceptable temperature excursions. Otherwise, hot spots may develop locally which could degrade the performance of the ion-exchange media or the temperature could rise above column safety limits. Data exists which indicates that performance degradation with regard to cesium removal occurs with RF at 65C. In addition, the waste supernate solution will boil around 130C. As a result, two temperature limits have been assumed for this analysis. An additional upset scenario was considered involving the loss of the supernate solution due to inadvertent fluid drainage through the column boundary. In this case, the column containing the loaded media could be completely dry. This event is expected to result in high temperatures that could damage the column or cause the RF sorbent material to undergo undesired physical changes. One objective of these calculations is to determine the range of temperatures that should be evaluated during testing with the RF

  1. Modeling Ion-Exchange Processing With Spherical Resins For Cesium Removal

    SciTech Connect

    Hang, T.; Nash, C. A.; Aleman, S. E.

    2012-09-19

    The spherical Resorcinol-Formaldehyde and hypothetical spherical SuperLig(r) 644 ion-exchange resins are evaluated for cesium removal from radioactive waste solutions. Modeling results show that spherical SuperLig(r) 644 reduces column cycling by 50% for high-potassium solutions. Spherical Resorcinol Formaldehyde performs equally well for the lowest-potassium wastes. Less cycling reduces nitric acid usage during resin elution and sodium addition during resin regeneration, therefore, significantly decreasing life-cycle operational costs. A model assessment of the mechanism behind ''cesium bleed'' is also conducted. When a resin bed is eluted, a relatively small amount of cesium remains within resin particles. Cesium can bleed into otherwise decontaminated product in the next loading cycle. The bleed mechanism is shown to be fully isotherm-controlled vs. mass transfer controlled. Knowledge of residual post-elution cesium level and resin isotherm can be utilized to predict rate of cesium bleed in a mostly non-loaded column. Overall, this work demonstrates the versatility of the ion-exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. This evaluation justifies further development of a spherical form of the SL644 resin.

  2. Fuel processing in integrated micro-structured heat-exchanger reactors

    NASA Astrophysics Data System (ADS)

    Kolb, G.; Schürer, J.; Tiemann, D.; Wichert, M.; Zapf, R.; Hessel, V.; Löwe, H.

    Micro-structured fuel processors are under development at IMM for different fuels such as methanol, ethanol, propane/butane (LPG), gasoline and diesel. The target application are mobile, portable and small scale stationary auxiliary power units (APU) based upon fuel cell technology. The key feature of the systems is an integrated plate heat-exchanger technology which allows for the thermal integration of several functions in a single device. Steam reforming may be coupled with catalytic combustion in separate flow paths of a heat-exchanger. Reactors and complete fuel processors are tested up to the size range of 5 kW power output of a corresponding fuel cell. On top of reactor and system prototyping and testing, catalyst coatings are under development at IMM for numerous reactions such as steam reforming of LPG, ethanol and methanol, catalytic combustion of LPG and methanol, and for CO clean-up reactions, namely water-gas shift, methanation and the preferential oxidation of carbon monoxide. These catalysts are investigated in specially developed testing reactors. In selected cases 1000 h stability testing is performed on catalyst coatings at weight hourly space velocities, which are sufficiently high to meet the demands of future fuel processing reactors.

  3. Review of exchange processes on Ganymede in view of its planetary protection categorization.

    PubMed

    Grasset, O; Bunce, E J; Coustenis, A; Dougherty, M K; Erd, C; Hussmann, H; Jaumann, R; Prieto-Ballesteros, O

    2013-10-01

    In this paper, we provide a detailed review of Ganymede's characteristics that are germane to any consideration of its planetary protection requirements. Ganymede is the largest moon in our solar system and is the subject of one of the main science objectives of the JUICE mission to the jovian system. We explore the probability of the occurrence of potentially habitable zones within Ganymede at present, including those both within the deep liquid ocean and those in shallow liquid reservoirs. We consider the possible exchange processes between the surface and any putative habitats to set some constraints on the planetary protection approach for this moon. As a conclusion, the "remote" versus "significant" chance of contamination will be discussed, according to our current understanding of this giant icy moon. Based on the different estimates we investigate here, it appears extremely unlikely that material would be exchanged downward through the upper icy layer of Ganymede and, thus, bring material into the ocean over timescales consistent with the survival of microorganisms. PMID:24143869

  4. Dynamics of the fully stripped ion-hydrogen atom charge exchange process in dense quantum plasmas

    SciTech Connect

    Zhang, Ling-yu; Wan, Jiang-feng; Zhao, Xiao-ying; Xiao, Guo-qing; Duan, Wen-shan; Qi, Xin; Yang, Lei

    2014-09-15

    The plasma screening effects of dense quantum plasmas on charge exchange processes of a fully stripped ion colliding with a hydrogen atom are studied by the classical trajectory Monte Carlo method. The inter-particle interactions are described by the exponential cosine-screened Coulomb potentials. It is found that in weak screening conditions, cross sections increase with the increase of the ionic charge Z. However, in strong screening conditions, the dependence of cross sections on the ionic charge is related to the incident particle energy. At high energies, cross sections show a linear increase with the increase of Z, whereas at low energies, cross sections for Z≥4 become approximately the same. The He{sup 2+} and C{sup 6+} impacting charge exchange cross sections in dense quantum plasmas are also compared with those in weakly coupled plasmas. The interactions are described by the static screened Coulomb potential. It is found that for both He{sup 2+} and C{sup 6+}, the oscillatory screening effects of dense quantum plasmas are almost negligible in weak screening conditions. However, in strong screening conditions, the oscillatory screening effects enhance the screening effects of dense quantum plasmas, and the enhancement becomes more and more significant with the increase of the screening parameter and the ionic charge.

  5. Proceedings of the Efficient Separations and Processing Cross-Cutting Program Annual Technical Exchange Meeting

    SciTech Connect

    1995-02-01

    This document contains summaries of technology development presented at the 1995 Efficient Separations and Processing Cross-Cutting Program (ESP) Annual Technical Exchange Meeting. The ESP is sponsored by the US Department of Energy`s Office of Environmental Management (EM), Office of Technology Development. The meeting is held annually to promote a free exchange of ideas among technology developers, potential users (for example, EM focus areas), and other interested parties within EM. During this meeting, developers of ESP-funded technologies describe the problems and needs addressed by their technologies; the technical approach, accomplishments, and resolution of issues; the strategy and schedule for commercialization; and evolving potential applications. Presenters are asked to address the following areas: Target waste management problem, waste stream, or data need; scientific background and technical approach; technical accomplishments and resolution of technical issues; schedule and strategy for commercializing and implementing the technology or acquiring needed data; potential alternate applications of the technology or data, including outside of DOE/EM. The meeting is not a program review of the individual tasks or subtasks; but instead focuses on the technical aspects and implementation of ESP-sponsored technology or data. The meeting is also attended by members of the ESP Technical Review Team, who have the opportunity at that time to review the ESP as a whole.

  6. RECENT ADVANCES IN ION EXCHANGE MATERIALS AND PROCESSES FOR POLLUTION PREVENTION

    EPA Science Inventory

    The goal of this article was to summarize the recent advances in ion exchange technology for the metal finishing industry. Even though the ion exchange technology is mature and is widely employed in the industry, new applications, approaches and ion exchange materials are emergi...

  7. Influence of nuclear exchange on nonadiabatic electron processes in H(+)+H2 collisions.

    PubMed

    Errea, L F; Illescas, Clara; Macías, A; Méndez, L; Pons, B; Rabadán, I; Riera, A

    2010-12-28

    H(+)+H(2) collisions are studied by means of a semiclassical approach that explicitly accounts for nuclear rearrangement channels in nonadiabatic electron processes. A set of classical trajectories is used to describe the nuclear motion, while the electronic degrees of freedom are treated quantum mechanically in terms of a three-state expansion of the collision wavefunction. We describe electron capture and vibrational excitation, which can also involve nuclear exchange and dissociation, in the E = 2-1000 eV impact energy range. We compare dynamical results obtained with two parametrizations of the potential energy surface of H(3)(+) ground electronic state. Total cross sections for E > 10 eV agree with previous results using a vibronic close-coupling expansion, and with experimental data for E < 10 eV. Additionally, some prototypical features of both nuclear and electron dynamics at low E are discussed.

  8. Radionuclide tracers for the fate of metals in the Savannah estuary: River-ocean exchange processes

    SciTech Connect

    Olsen, C.R.; Thein, M.; Larsen, I.L.; Byrd, J.T.; Windom, H.L.

    1989-01-01

    Plutonium-238 from the US Department of Energy's Savannah River Plant labels riverborne particles, providing a unique opportunity for examining the fate of metals in estuaries and for tracing river-ocean exchange processes. Results indicate that plutonium and lead-210 are enriched on estuarine particles and that inputs of plutonium from oceanic sources greatly exceed inputs from riverborne or drainage-basin sources as far upstream as the landward limit of seawater penetration. We suggest that these radionuclides (and other chemically reactive metals) are being scavenged from oceanic water by sorption onto particles in turbid estuarine and coastal areas. Since estuaries, bays, mangroves, and intertidal areas serve as effective traps for fine particles and associated trace substances, these results have important implications concerning the disposal of chemically reactive substances in oceanic waters. 13 refs., 1 fig., 1 tab.

  9. Heat Exchange Processes and Thermal Dynamics of a Glacier-Fed Stream

    NASA Astrophysics Data System (ADS)

    Khamis, K.; Hannah, D. M.; Brown, L. E.; Milner, A. M.

    2012-12-01

    Glacier-fed river thermal regimes vary markedly in space and time. However, knowledge is limited of fundamental processes controlling alpine stream temperature dynamics. The few studies have not sufficiently characterised above-stream micro-climate and have been limited to single melt seasons. To address the research gap, this study quantified heat exchanges at the water surface and bed of a glacier fed stream over two summers to improve understanding of factors and processes driving thermal dynamics. An automatic weather station and river gauge were set up on a stream 1.5 km from the Taillon Glacier, French Pyrénées. Hydro-meteorological observations were recorded at 15-min intervals between 16 June-2 September 2010 and 2011. Energy balance components were measured [net radiation (Q*); bed heat flux (Qbhf)] or estimated based on site-specific data [sensible heat transfer (Qh); latent heat (Qe); fluid friction (Qf)]. During 2010, snowline altitude was lower and glacier ablation occurred in late season. During 2010, the mean snowline altitude was lower and ablation of glacier ice occurred later in the season Mean water temperature was lower (-0.8°C), precipitation greater (+87mm) and daily discharge variation lower (-0.03 m3s-1) than 2011. The net heat budget was strongly positive in both summers, with the majority of energy exchanged at the air-water interface. Averaged over the seasons, Q* was the largest heat source (~80% of total flux); Qh (~13%) and Qf (~3%) were also sources. Qe displayed inter-annual variability; during 2010 (2011) it contributed 5.2% (0.03%) of the total heat budget due to windier, drier conditions that offset early season condensation gains with late season evaporative losses. Energy exchanges at the channel - river bed interface comprised <1% of the heat budget; Qbhf was a sink (source) during 2010 (2011). Daily flux totals were used to characterize sub-seasonal dynamics. Declines in net radiation receipt and total energy available to

  10. Oceanic Whitecaps and Their Role in Air-Sea Exchange Processes

    NASA Astrophysics Data System (ADS)

    Glazman, R. E.

    The book is based on the proceedings of the 1983 Whitecap Workshop, held at University College, Galway, Ireland. The 22 full-length papers and 18 abstracts of poster presentations that it contains cover a wide range of topics. The small-scale air-sea exchange processes triggered by the breaking of wind-generated gravity waves serve as the common ground from which specialized excursions are made into the fields of acoustics and optics of bubbly water, statistics and hydrodynamics of water waves, remote sensing, atmospheric electricity, and physicochemical hydrodynamics of bubbles, droplets, and water surfaces coated with organic films. The book opens with “The Life and Science of Alfred H. Woodcock” by Duncan Blanchard (State University of New York, Albany).

  11. Surface-segregated Si and Ge ultrathin films formed by Ag-induced layer exchange process

    NASA Astrophysics Data System (ADS)

    Kurosawa, Masashi; Ohta, Akio; Araidai, Masaaki; Zaima, Shigeaki

    2016-08-01

    We have developed a new method of growing Si or Ge ultrathin films on a Ag(111) surface by using a Ag-induced layer exchange (ALEX) process toward the creation of 2D honeycomb sheets of Si and Ge, known as silicene and germanene, respectively. In the present paper, we clarify ALEX features, specifically the surface segregation of Si (or Ge) atoms from the underlying substrate, focusing on the annealing temperature and time. Hard X-ray photoelectron spectroscopy analyses demonstrate that surface-segregated Si (or Ge) exists on the Ag surfaces after the epitaxial growth of the Ag layer on Si(111) [or Ge(111)] substrates; the amount of segregated Si (or Ge) can be controlled by a subsequent annealing. Also, we find that the segregation of an ultrathin Si or Ge layer proceeds at an interface between Ag and the AlO x capping layer.

  12. Electron-Nuclear Dynamics of collision processes: Charge exchange and energy loss

    NASA Astrophysics Data System (ADS)

    Cabrera-Trujillo, Remigio; Sabin, John R.; Öhrn, Yngve; Deumens, Erik

    2004-03-01

    We present the Electron-Nuclear Dynamics (END) method for the study of time-dependent scattering processes. The END is a general approach for treating time-dependent problems which includes the dynamics of electrons and nuclei simultaneously by considering the full electron-nuclear coupling in the system and thus eliminates the necessity of constructing potential-energy surfaces. The theory approximates the time dependent Schrödinger equation starting from the time dependent variational principle by deriving a Hamiltonian dynamical system for time dependent nuclear and electronic wave function parameters. The wave function is described in a coherent state manifold, which leads to a system of Hamilton's equations of motion. Emphasis is put on electron exchange, differential cross section and energy loss (stopping cross section) of collision of ions, atoms and molecules involving H, He, C, N, O, and Ne atoms. We compare our results to available experimental data.

  13. Numerical analysis of heat exchange processes for the ground source heat pump system

    NASA Astrophysics Data System (ADS)

    Saito, H.; Muto, H.; Moritani, S.; Kohgo, Y.; Hamamoto, S.; Takemura, T.; Ohnishi, J.; Komatsu, T.

    2012-12-01

    Ground source heat pump systems (GSHP) use ground or groundwater as a heat source. They can achieve much higher coefficient of performance (COP) than conventional air source heat pump systems because the temperature of the ground is much more stable than that of the air. Heat energy in the ground is then viewed as one of the renewable energy sources. GSHP has been receiving great interests among countries in North America and Western Europe, as well as some developed countries in Asia because it can potentially reduce energy consumption and greenhouse gas emission. While GSHP can inject heat from the buildings to the ground for cooling during the summer, it can pump heat stored in the ground for heating during the winter. As some physical, chemical, and biological properties of the ground and groundwater are temperature dependent, running GSHP can eventually affect groundwater quality. The main objective of this project was to develop a model that allows predicting not only ground and groundwater temperatures but also changes in physical, chemical, and biological properties of ground and groundwater with GSHP under operations. This particular study aims at simulating heat exchange and transfer processes in the ground for a vertical-loop closed GSHP system. In the closed GSHP system, an anti-freezing solution is circulated inside the closed-loop tube, called U-tube, that is buried in the ground. Heat is then transferred to the anti-freezing solution in the U-tube by a heat exchanger. In this study we used HYDRUS to predict temperature of the anti-freezing solution, as well as that of the ground. HYDRUS allows one to simulate variably-saturated water flow and solute and heat transport in porous media numerically in two- and three-dimensional domains with great flexibility in defining boundary conditions. At first changes in anti-freezing solution temperatures measured were predicted in response to Thermal Response Test (TRT) conducted at our study site. Then, heat

  14. Far-from-equilibrium processes without net thermal exchange via energy sorting

    NASA Astrophysics Data System (ADS)

    Vilar, Jose M. G.; Rubi, J. Miguel

    2012-02-01

    Many important processes at the microscale require far-from-equilibrium conditions to occur, as in the functioning of mesoscopic bioreactors, nanoscopic rotors, and nanoscale mass conveyors. Achieving such conditions, however, is typically based on energy inputs that strongly affect the thermal properties of the environment and the controllability of the system itself. Here, we present a general class of far-from-equilibrium processes that suppress the net thermal exchange with the environment by maintaining the Maxwell-Boltzmann velocity distribution intact. This new phenomenon, referred to as ghost equilibrium, results from the statistical cancellation of superheated and subcooled nonequilibrated degrees of freedom that are autonomously generated through a microscale energy sorting process. We provide general conditions to observe this phenomenon and study its implications for manipulating energy at the microscale. The results are applied explicitly to two mechanistically different cases, an ensemble of rotational dipoles and a gas of trapped particles, which encompass a great variety of common situations involving both rotational and translational degrees of freedom.

  15. Unmasking the effect of a precipitation pulse on the biological processes composing Net Ecosystem Carbon Exchange

    NASA Astrophysics Data System (ADS)

    Lopez-Ballesteros, Ana; Sanchez-Cañete, Enrique P.; Serrano-Ortiz, Penelope; Oyonarte, Cecilio; Kowalski, Andrew S.; Perez-Priego, Oscar; Domingo, Francisco

    2015-04-01

    Drylands occupy 47.2% of the global terrestrial area and are key ecosystems that significantly determine the inter-annual variability of the global carbon balance. However, it is still necessary to delve into the functional behavior of arid and semiarid ecosystems due to the complexity of drivers and interactions between underpinning processes (whether biological or abiotic) that modulate net ecosystem CO2 exchange (NEE). In this context, water inputs are crucial to biological organisms survival in arid ecosystems and frequently arrive via rain events that are commonly stochastic and unpredictable (i.e. precipitation pulses) and strongly control arid land ecosystem structure and function. The eddy covariance technique can be used to investigate the effect of precipitation pulses on NEE, but provide limited understanding of what exactly happens after a rain event. The chief reasons are that, firstly, we cannot measure separately autotrophic and heterotrophic components, and secondly, the partitioning techniques widely utilized to separate Gross Primary Production and Total Ecosystem Respiration, do not work properly in these water-limited ecosystems, resulting in biased estimations of plant and soil processes. Consequently, it is essential to combine eddy covariance measurements with other techniques to disentangle the different biological processes composing NEE that are activated by a precipitation pulse. Accordingly, the main objectives of this work were: (i) to quantify the contribution of precipitation pulse events to annual NEE using the eddy covariance technique in a semiarid steppe located in Almería (Spain), and (ii) to simulate a realistic precipitation pulse in order to understand its effect on the ecosystem, soil and plant CO2 exchanges by using a transitory-state closed canopy chamber, soil respiration chambers and continuous monitoring CO2 sensors inserted in the subsoil. Preliminary results showed, as expected, a delay between soil and plant

  16. Removal of fluorescent dissolved organic matter in biologically treated textile effluents by NDMP anion exchange process: efficiency and mechanism.

    PubMed

    Li, Wen-Tao; Xu, Zi-Xiao; Shuang, Chen-Dong; Zhou, Qing; Li, Hai-Bo; Li, Ai-Min

    2016-03-01

    The efficiency and mechanism of anion exchange resin Nanda Magnetic Polymer (NDMP) for removal of fluorescent dissolved organic matter in biologically treated textile effluents were studied. The bench-scale experiments showed that as well as activated carbon, anion exchange resin could efficiently remove both aniline-like and humic-like fluorescent components, which can be up to 40 % of dissolved organic matter. The humic-like fluorescent component HS-Em460-Ex3 was more hydrophilic than HS-Em430-Ex2 and contained fewer alkyl chains but more acid groups. As a result, HS-Em460-Ex3 was eliminated more preferentially by NDMP anion exchange. However, compared with adsorption resins, the polarity of fluorescent components had a relatively small effect on the performance of anion exchange resin. The long-term pilot-scale experiments showed that the NDMP anion exchange process could remove approximately 30 % of the chemical oxygen demand and about 90 % of color from the biologically treated textile effluents. Once the issue of waste brine from resin desorption is solved, the NDMP anion exchange process could be a promising alternative for the advanced treatment of textile effluents. PMID:26578375

  17. [Cation exchanges during the process of Cd(2+) absorption by Alfalfa in aqueous solutions].

    PubMed

    Li, Yue-Peng; Yin, Hua; Ye, Jin-Shao; Peng, Hua; Qin, Hua-Ming; Long, Yan; He, Bao-Yan; Zhang, Na; Tong, Yao; Peng, Su-Fen

    2011-11-01

    A hydroponic experiment was conducted to investigate the cation exchanges during the process of Cd2+ absorption by Alfalfa in aqueous solution. The absorption efficiency of Alfalfa plants with 0-10 mg x L(-1) Cd2+ treatments, changes of Na+, K+, Mg2+, Ca2+ and NH4(+) concentration, and the variation of pH values at different absorption time (0, 1, 2, 4, 8, 12, 24 and 72 h) were studied separately. The multiple linear regressions between Cd2+ absorption and cation variation were analyzed. The results indicated that when Cd2+ concentrations were 0.1, 1, 5, 10 mg x L(-1), the absorption efficiencies of Cd2+ by Alfalfa after 72 h were 85.86%, 52.14%, 15.97% and 7.81%. Cation exchange was involved in the removal of Cd2+ by Alfalfa in aqueous solution. Except for NH4(+), the concentrations of cationic metals Na+, K+, Mg2+ and Ca2+ in aqueous solution increased over time, which increased 11.30% - 61.72%, 21.44% - 98.73%, 24.09% - 8.90% and 37.04% - 191.96%, respectively. Kinetic studies illuminated that the release of Na+, K+, Mg2+ and Ca2+ by Alfalfa in Cd2+ solution with initial concentrations of 0, 0. 1, 1, 5, 10 mg x L(-1) best fitted pseudo-second-order equation,while the NH4(+) release fitted this model when Cd2+ concentrations were 1, 5, 10 mg x L(-1). The gradual decrease of pH during adsorption of Cd2+ by Alfalfa was observed. As the competition ion of Cd2+, H+ might affect the capacity of Alfalfa root system to absorb Cd2+. The ternary linear equation results demonstrated that the content of Cd2+ absorption by Alfalfa strongly related with the release of Ca2+, Mg2+, Na+. And this exchange mainly occurred among Cd2+ and divalent cations. PMID:22295633

  18. A novel process for key exchange avoiding man-inmiddle attack

    NASA Astrophysics Data System (ADS)

    Biswas, Barun; Basuli, Krishnendu

    2012-09-01

    For the security porpoise in the internet cryptography is one of the most important subjects nowadays. Designing a cypher for data exchange between two nodes or receiver and sender deals with one of the troubleshoot jobs. In our proposed algorithm we try to introduce a new technique in the field of cryptography. We are hopeful that this new technique will sure reduces the overhead of data or key exchange between nodes. Here we will discuss the symmetric key exchange between nodes

  19. Shelf Edge Exchange Processes, II: SEEP2-08, R/V ENDEAVOR cruise 188

    SciTech Connect

    Wilson, C.; Behrens, W.J.; Flagg, C.N.; Wallace, D.W.R.; Wilke, R.J.; Wyman, K.D.

    1989-12-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. Phase I of SEEP consisted of a series of nine cruises and a mooring array across the outer continental shelf of New England during 1983--1984 (Behrens and Flagg, 1986). Phase II focused specifically on the shelf/slope frontal region of the mid-Atlantic bight off the Delmarva Peninsula. This project consisted of a series of ten cruises, a mooring array, and a series of over-flights by NASA aircraft. Hydrographic data were collected on eight of the cruises, six of which were primarily mooring deployment or recovery cruises. The cruises were consecutively designated SEEP2-01 to SEEP2-10. Two cruises (SEEP2-04 and SEEP2-07) were dedicated to investigating benthic processes and hydrographic data were not collected.

  20. TRENTA Facility for Trade-Off Studies Between Combined Electrolysis Catalytic Exchange and Cryogenic Distillation Processes

    SciTech Connect

    Cristescu, I.; Cristescu, I.R.; Doerr, L.; Glugla, M.; Hellriegel, G.; Schaefer, P.; Welte, S.; Kveton, O.; Murdoch, D

    2005-07-15

    One of the most used methods for tritium recovery from different sources of tritiated water is based on the combination between Combined Electrolysis Catalytic Exchange (CECE) and Cryogenic Distillation (CD) processes. The development, i.e. configuration, design and performance testing of critical components, of a tritium recovery system based on the combination CECE-CD is essential for both JET and ITER. For JET, a Water Detritiation System (WDS) is not only needed to process tritiated water which has already been accumulated from operation, but also for the tritiated water which will be generated during decommissioning. For ITER, the WDS is one of the key systems to control the tritium content in the effluents streams, to recover as much tritium as possible and consequently to minimize the impact on the environment. A cryogenic distillation facility with the aim to investigate the trade-off between CECE-CD, to validate different components and mathematical modelling software is current under development at Tritium Laboratory Karlsruhe (TLK) as an extension of the existing CECE facility.

  1. Determination of the anisotropies and reversal process in exchange-bias bilayers using a rotational magnetization curve approach

    SciTech Connect

    Sui Wenbo; Zhu Jingyi; Li Jinyun; Chai Guozhi; Jiang Changjun; Fan Xiaolong; Xue Desheng

    2011-05-15

    Rotational magnetization curves of the exchange-bias bilayers were investigated based on the Stoner-Wohlfarth model, which can be grouped into three cases according to the magnetization reversal process. The unidirectional anisotropic field H{sub E} = 41.4 Oe, the uniaxial anisotropic field H{sub k} = 4.2 Oe and the accurate direction of the easy axis of our FeNi/FeMn exchange-bias bilayers were obtained by fitting their experimental rotational magnetization curves. During the rotational process the magnetization reversal of the bilayers is a coherent rotation with a critical magnetization reversal field H{sub 1} = 41.372 Oe.

  2. Information exchange between registered nurses and district nurses during the discharge planning process: cross-sectional analysis of survey data.

    PubMed

    Nordmark, Sofi; Söderberg, Siv; Skär, Lisa

    2015-01-01

    Objectives: Discharge planning is an important care process for managing transitions from the hospital to the community. It has been studied for >20 years, but few studies clarify the information exchanged between healthcare providers. This study aimed to describe nurses' experiences and perceptions of information exchange during the discharge planning process, focused on what, when and how information is exchanged between the hospital and primary healthcare. Method: A web-based census survey was used to collect data; the data were analyzed using descriptive statistics and chi-squared test. A questionnaire was distributed to 194 registered nurses (129 respondents) from a central county hospital and 67 district nurses (42 respondents) working in 13 primary healthcare centres. Results: The results show a significant difference between given and received information between the two groups. Both groups thought the information exchange worked best when all participants met at the discharge planning conference and that the electronic information system was difficult to use. Conclusion: This study shows difficulties knowing what patient-related information needs to give and not receiving the expected information. These results can be used to develop knowledge about roles, work tasks and needs to enhance the outcome of the process and the information exchanged.

  3. River temperature processes under contrasting riparian land cover: linking microclimate, heat exchange and water thermal dynamics

    NASA Astrophysics Data System (ADS)

    Hannah, D. M.; Kantola, K.; Malcolm, I.

    2012-12-01

    River temperature influences strongly growth and survival in salmonid fish, which are often the target of river management strategies. Temperature is controlled by transfers of heat and water to/ from the river system, with land and water management modifying exchanges and consequently thermal regime. In the UK, fisheries managers are promoting riparian forest planting as a climate change adaption measure to reduce water temperature extremes. However, scientific understanding lags behind management and policy needs. Specifically, there is an urgent requirement to determine planting strategies that maximise expected benefits of riparian forest in terms of reduction in maximum water temperature. Scientific knowledge is necessary to underpin conceptual and deterministic models to inform management. To address this research gap, this paper analyses high resolution (15 minute) hydrometeorological data collected over a calendar year in the western Scottish Highlands (Loch Ard) to understand the controls and processes determining river temperature dynamics under open moorland (control), semi-natural woodland and commercial forest. The research programme aims: (1) to characterise spatial and temporal variability in riparian microclimate and stream water temperature regime across forest treatments; (2) to identify the hydrological, climatological and site-specific factors affecting stream temperature; (3) to estimate the energy balance at sites representative of each forest treatment and, thus, yield physical process understanding about dominant heat exchanges driving thermal variability; and (4) to use 1-3 to predict stream temperature sensitivity under different forestry and hydroclimatological scenarios. Results indicated that inter-treatment differences in mean and maximum daily water column temperature were ordered open > semi-natural > commercial during summer, but semi-natural > commercial > open during winter. Minimum water temperature was ordered commercial > semi

  4. Novel simple process for tocopherols selective recovery from vegetable oils by adsorption and desorption with an anion-exchange resin.

    PubMed

    Hiromori, Kousuke; Shibasaki-Kitakawa, Naomi; Nakashima, Kazunori; Yonemoto, Toshikuni

    2016-03-01

    A novel and simple low-temperature process was used to recover tocopherols from a deodorizer distillate, which is a by-product of edible oil refining. The process consists of three operations: the esterification of free fatty acids with a cation-exchange resin catalyst, the adsorption of tocopherols onto an anion-exchange resin, and tocopherol desorption from the resin. No degradation of tocopherols occurred during these processes. In the tocopherol-rich fraction, no impurities such as sterols or glycerides were present. These impurities are commonly found in the product of the conventional process. This novel process improves the overall recovery ratio and the mass fraction of the product (75.9% and 51.0wt%) compared with those in the conventional process (50% and 35wt%).

  5. Design of a Carousel Process for Removing Cesium from SRS Waste Using Crystalline Silicotitanate Ion Exchanger

    SciTech Connect

    Walker, D.D.

    1999-01-15

    Designs of a three-column carousel process based on crystalline silicotitanate (CST) ion exchanger have been developed for removing radioactive 137Cs+ from Savannah River Site's (SRS) nuclear wastes. A multicomponent ion exchange equilibrium model (Zheng et al., 1997) from Texas A&M University, which is based on batch data obtained from CST powder, is used to generate cesium loading data at different cesium concentrations for various types of SRS wastes. These loading data are fit to the Langmuir equation to obtain effective single-component cesium isotherm parameters. The predictions are in reasonable agreement with batch test data obtained from CST powder, an early CST pellet batch (38B), and a later batch (IE911) using two SRS waste simulants. The ratios between experimental cesium distribution coefficients and predicted values are between 0.56 and 1.0. The variation appears to be due to inadequate equilibration time in some of the batches. Mass transfer parameters are estimated by analyzing column data of a simulated SRS waste and Melton Valley Storage Tank W29 (MVST-W29) waste. The intraparticle diffusivity estimated for the two wastes can be well correlated by means of the Stokes-Einstein equation.Simulations are performed to determine the length of the mass transfer zone for given feed compositions, Cs+ concentrations, and linear velocities. In order to ensure high column utilization during both the transient and cyclic steady state periods, the length of a single segment in the carousel process is chosen to be the mass transfer zone length after the concentration wave achieves a constant pattern. Analysis of the dimensionless groups in the differential mass balance equations reveals that the normalized mass transfer zone length is linearly proportional to the particle Peclet number. The proportionality constant is a function of the waste composition and the Cs+ concentration in the waste. The higher the effective Cs+ capacity and the higher the Cs

  6. Three layer functional model and energy exchange concept of aging process

    PubMed Central

    Mihajlovic, William

    2006-01-01

    Relying on a certain degree of abstraction, we can propose that no particular distinction exists between animate or living matter and inanimate matter. While focusing attention on some specifics, the dividing line between the two can be drawn. The most apparent distinction is in the level of structural and functional organization with the dissimilar streams of ‘energy flow’ between the observed entity and the surrounding environment. In essence, living matter is created from inanimate matter which is organized to contain internal intense energy processes and maintain lower intensity energy exchange processes with the environment. Taking internal and external energy processes into account, we contend in this paper that living matter can be referred to as matter of dissipative structure, with this structure assumed to be a common quality of all living creatures and living matter in general. Interruption of internal energy conversion processes and terminating the controlled energy exchange with the environment leads to degeneration of dissipative structure and reduction of the same to inanimate matter, (gas, liquid and/or solid inanimate substances), and ultimately what can be called ‘death.’ This concept of what we call dissipative nature can be extended from living organisms to social groups of animals, to mankind. An analogy based on the organization of matter provides a basis for a functional model of living entities. The models relies on the parallels among the three central structures of any cell (nucleus, cytoplasm and outer membrane) and the human body (central organs, body fluids along with the connective tissues, and external skin integument). This three-part structural organization may be observed almost universally in nature. It can be observed from the atomic structure to the planetary and intergalactic organizations. This similarity is corroborated by the membrane theory applied to living organisms. According to the energy nature of living matter

  7. The Award for the Development of Ion Exchange Systems for Food Processing

    NASA Astrophysics Data System (ADS)

    Yao, Eiya

    In the food industry, ion exchange resins have been used not only for water treatment, but also for the purification of foodstuff itself. Here I will introduce some topics in the development and improvement of ion exchange systems for food proccssing that I have worked on.

  8. 45 CFR 155.150 - Transition process for existing State health insurance exchanges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... REQUIREMENTS RELATING TO HEALTH CARE ACCESS EXCHANGE ESTABLISHMENT STANDARDS AND OTHER RELATED STANDARDS UNDER THE AFFORDABLE CARE ACT General Standards Related to the Establishment of an Exchange § 155.150... the Affordable Care Act, according to the Congressional Budget Office estimates for projected...

  9. 45 CFR 155.150 - Transition process for existing State health insurance exchanges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... REQUIREMENTS RELATING TO HEALTH CARE ACCESS EXCHANGE ESTABLISHMENT STANDARDS AND OTHER RELATED STANDARDS UNDER THE AFFORDABLE CARE ACT General Standards Related to the Establishment of an Exchange § 155.150... the Affordable Care Act, according to the Congressional Budget Office estimates for projected...

  10. Transport properties of proton-exchange membranes: Effect of supercritical-fluid processing and chemical functionality

    NASA Astrophysics Data System (ADS)

    Pulido Ayazo

    NafionRTM membranes commonly used in direct methanol fuel cells (DMFC), are tipically limited by high methanol permeability (also known as the cross-over limitation). These membranes have phase segregated sulfonated ionic domains in a perfluorinated backbone, which makes processing challenging and limited by phase equilibria considerations. This study used supercritical fluids (SCFs) as a processing alternative, since the gas-like mass transport properties of SCFs allow a better penetration into the membranes and the use of polar co-solvents influenced their morphology, fine-tuning the physical and transport properties in the membrane. Measurements of methanol permeability and proton conductivity were performed to the NafionRTM membranes processed with SCFs at 40ºC and 200 bar and the co-solvents as: acetone, tetrahydrofuran (THF), isopropyl alcohol, HPLC-grade water, acetic acid, cyclohexanone. The results obtained for the permeability data were of the order of 10 -8-10-9 cm2/s, two orders of magnitude lower than unprocessed Nafion. Proton conductivity results obtained using AC impedance electrochemical spectroscopy was between 0.02 and 0.09 S/cm, very similar to the unprocessed Nafion. SCF processing with ethanol as co-solvent reduced the methanol permeability by two orders of magnitude, while the proton conductivity was only reduced by 4%. XRD analysis made to the treated samples exhibited a decreasing pattern in the crystallinity, which affects the transport properties of the membrane. Also, SAXS profiles of the Nafion membranes processed were obtained with the goal of determining changes produced by the SCF processing in the hydrophilic domains of the polymer. With the goal of searching for new alternatives in proton exchange membranes (PEMs) triblock copolymer of poly(styrene-isobutylene-styrene) (SIBS) and poly(styrene-isobutylene-styrene) SEBS were studied. These sulfonated tri-block copolymers had lower methanol permeabilities, but also lower proton

  11. RHEOLOGY OF SETTLED SOLIDS IN THE SMALL COLUMN ION EXCHANGE PROCESS

    SciTech Connect

    Ferguson, C.; Prior, M.; Koopman, D.; Edwards, T.

    2011-06-20

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank as process housing. This method includes the addition of monosodium titanate (MST) to a waste tank containing salt solution and entrained sludge solids, followed by tank mixing and filtration. The filtrate is then processed through in-tank ion exchange columns containing crystalline silicotitanate (CST) media. While the process is operating, it is known that solid particles begin to settle in the tank and temperatures may reach beyond 45 C. Previous testing has shown that sludge-MST slurries that sit for extended periods at elevated temperatures can develop large shear strengths, making them difficult to resuspend and remove from the tank. The authors conducted rheological testing of mixtures containing various concentrations of sludge simulant, MST, and CST (three preparations) that were aged at different times (i.e., 0 to 13 weeks) and isothermally maintained to 30, 45, or 60 C. Two types of grinding methodologies were employed to prepare CST for this testing, herein called Savannah River National Laboratory (SRNL) and Vitreous State Laboratory (VSL) ground materials. Unground CST particles were also tested. A small number of samples were irradiated prior to 4 week settling and 60 C temperature treatment, with exposures ranging from 0 to 100 MRad. Additional tests are also being conducted that will allow the solid particles to settle at 45 C for 6, 12, and 24 months. The objectives of this task are to determine the impact of feed composition, settling time, and temperature on the shear strength, yield stress, and consistency of the slurries and to determine the impact of radiation on slurry rheology. The testing will determine the relative impact of these parameters rather than predict the shear strength, yield stress, and consistency as a function of feed and operating conditions. This

  12. Aquatic flower-inspired cell culture platform with simplified medium exchange process for facilitating cell-surface interaction studies.

    PubMed

    Hong, Hyeonjun; Park, Sung Jea; Han, Seon Jin; Lim, Jiwon; Kim, Dong Sung

    2016-02-01

    Establishing fundamentals for regulating cell behavior with engineered physical environments, such as topography and stiffness, requires a large number of cell culture experiments. However, cell culture experiments in cell-surface interaction studies are generally labor-intensive and time-consuming due to many experimental tasks, such as multiple fabrication processes in sample preparation and repetitive medium exchange in cell culture. In this work, a novel aquatic flower-inspired cell culture platform (AFIP) is presented. AFIP aims to facilitate the experiments on the cell-surface interaction studies, especially the medium exchange process. AFIP was devised to capture and dispense cell culture medium based on interactions between an elastic polymer substrate and a liquid medium. Thus, the medium exchange can be performed easily and without the need of other instruments, such as a vacuum suction and pipette. An appropriate design window of AFIP, based on scaling analysis, was identified to provide a criterion for achieving stability in medium exchange as well as various surface characteristics of the petal substrates. The developed AFIP, with physically engineered petal substrates, was also verified to exchange medium reliably and repeatedly. A closed structure capturing the medium was sustained stably during cell culture experiments. NIH3T3 proliferation results also demonstrated that AFIP can be applied to the cell-surface interaction studies as an alternative to the conventional method. PMID:26683462

  13. Reaction Engineering International and Pacific Northwest Laboratory staff exchange: Addressing computational fluid dynamics needs of the chemical process industry

    SciTech Connect

    Fort, J.A.

    1995-07-01

    Staff exchanges, such as the one described in this report, are intended to facilitate communications and collaboration among scientists and engineers at Department of Energy (DOE) laboratories, in US industry, and academia. Funding support for these exchanges is provided by the DOE, Office of Energy Research, Laboratory Technology Transfer Program. Funding levels for each exchange typically range from $20,000 to $40,000. The exchanges offer the opportunity for the laboratories to transfer technology and expertise to industry, gain a perspective to industry`s problems, and develop the basis for further cooperative efforts through Cooperative Research and Development Agreements (CRADAS) or other mechanisms. Information in this report on the staff exchange of the Pacific Northwest Laboratory (PNL) staff with Reaction Engineering International (REI) includes the significant accomplishments, significant problems, industry benefits realized, recommended follow-on work and potential benefit of that work. The objectives of this project were as follows: Work with REI to develop an understanding of the computational fluid dynamics (CFD) needs of the chemical process industry; assess the combined capabilities of the PNL and REI software analysis tools to address these needs; and establish a strategy for a future programmatically funded, joint effort to develop a new CFD tool for the chemical process industry.

  14. Wood Xylowall: New process to reduce water exchange by an intra-graft of polymer

    NASA Astrophysics Data System (ADS)

    Uyttenhove, Anne; Tilquin, Bernard

    2005-07-01

    Our research shows that poplar treated with selected monomer mixture and then irradiated at 50 kGy reduces the water exchange without adversely altering the desirable qualities of wood. Moreover, the environment is not polluted. To retard changes in moisture content and dimensions, different commercial Radcures (UCB) were tested. A comparative study on the water retention showed significant reduction between non-treated and Xylowall wood for the species: poplar. The physical and mechanical measurements (density, volumetric shrinkage, elasticity, rupture, impact bending, hardness, compression strength) on poplar and pine show that the properties of the wood are not affected negatively by Xylowall treatment with irradiation. Moreover, the process does not discharge any toxic volatile residues into the atmosphere as proven by GC-MS trace analysis of heated wood samples. The stereomicroscope by imagery reveals an impregnation of 0.5 mm on cross-section of darker-stained areas, and sometimes more due to the texture (the relative size and arrangement of the wood cells) of the wood.

  15. Modeling coupled thermal-mechanical processes of frozen soil induced by borehole heat exchanger

    NASA Astrophysics Data System (ADS)

    Shao, H.

    2015-12-01

    To utilize the shallow geothermal energy, heat pumps are often coupled with Borehole Heat Exchangers (BHE) to provide heating and cooling for buildings. In cold regions, soil freezing around the BHE is a potential problem which will dramatically influence the underground soil temperature distribution, subsequently the inlet and outlet refrigerant temperature of the BHE, and finally the efficiency of the heat pump. In this study, a numerical model has been developed to simulate the coupled temperature evolution both inside the BHE, and the propagating freezing front in the surrounding soil. The coupled model was validated against analytical solutions and experimental data. The influence of the freezing process on the overall system performance is investigated by comparing one long BHE configuration without freezing and another short one with latent heat from the frozen groundwater. It is found that when freezing happens, the coefficient of performance (COP) of the heat pump will decrease by around 0.5, leading to more electricity consumption. Furthermore, analysis of the simulation result reveals that the exploitation of latent heat through groundwater freezing is only economically attractive if electricity price is low and interest rate high, and it is not the case is most European countries.

  16. Comparison of platinum/MWCNTs Nanocatalysts Synthesis Processes for Proton Exchange Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Liu, Xuan

    Due to the growing concerns on the depletion of petroleum based energy resources and climate change; fuel cell technologies have received much attention in recent years. Proton exchange membrane fuel cell (PEMFCs) features high energy conversion efficiency and nearly zero greenhouse gas emissions, because of its combination of the hydrogen oxidation reaction (HOR) at anode side and oxygen reduction reaction (ORR) at cathode side. Synthesis of Pt nanoparticles supported on multi walled carbon nanotubes (MWCNTs) possess a highly durable electrochemical surface area (ESA) and show good power output on proton exchange membrane (PEM) fuel cell performance. Platinum on multi-walled carbon nanotubes (MWCNTs) support were synthesized by two different processes to transfer PtCl62- from aqueous to organic phase. While the first method of Pt/MWCNTs synthesis involved dodecane thiol (DDT) and octadecane thiol (ODT) as anchoring agent, the second method used ammonium lauryl sulfate (ALS) as the dispersion/anchoring agent. The particle size and distribution of platinum were examined by high-resolution transmission electron microscope (HRTEM). The TEM images showed homogenous distribution and uniform particle size of platinum deposited on the surface of MWCNTs. The single cell fuel cell performance of the Pt/MWCNTs synthesized thiols and ALS based electrode containing 0.2 (anode) and 0.4 mg (cathode) Pt.cm-2 were evaluated using Nafion-212 electrolyte with H2 and O2 gases at 80 °C and ambient pressure. The catalyst synthesis with ALS is relatively simple compared to that with thiols and also showed higher performance (power density reaches about 1070 mW.cm -2). The Electrodes with Pt/MWCNTs nanocatalysts synthesized using ALS were characterized by cyclic voltammetry (CV) for durability evaluation using humidified H2 and N2 gases at room temperature (21 °C) along with commercial Pt/C for comparison. The ESA measured by cyclic voltammetry between 0.15 and 1.2 V showed significant

  17. The Intercultural and Non-Formal Learning Processes of Children in Primary School Exchange Programmes in France and Germany

    ERIC Educational Resources Information Center

    Melin, Valérie; Wagner, Bernd

    2015-01-01

    This paper is based on educational anthropology, and presents the initial findings of a three-year international comparative study of primary school children's learning-processes during travel and cross-cultural encounters. A French-German research team investigated and here reports on primary school exchange programmes. Open coding of the…

  18. Soy protein recovery in a solvent-free process using continuous liquid-solid circulating fluidized bed ion exchanger.

    PubMed

    Prince, Andrew; Bassi, Amarjeet S; Haas, Christine; Zhu, Jesse X; Dawe, Jennifer

    2012-01-01

    Soy protein concentrates and soy protein isolates act as ingredients in bakery, meat and dairy products, baby formulas, starting materials for spun textured vegetable products, and other nutritional supplements. In this study, the effectiveness of a liquid-solid circulating fluidized bed (LSCFB) ion exchanger is demonstrated for the recovery of soluble soy proteins from full fat and defatted soy flour. Under steady-state operating conditions, about 50% of the proteins could be recovered from the feed streams entering the ion exchanger. The LSCFB was shown to be a promising system for the recovery of soy protein from both defatted and full fat soy flour solutions. As the ion exchange process captures dissolved proteins, the system may offer a less damaging form of processing compared with the acid precipitation process where soy protein aggregates form and functionality is affected. In addition, the LSCFB allows simultaneous adsorption and desorption of the proteins allowing for a continuous operation. No prefiltration of feed containing suspended particles is required as well, because fluidization is used in place of packed bed technology to improve on current ion exchange processes. PMID:22002948

  19. Interaction of Oxygen with TiN(001): N O Exchange and Oxidation Process

    SciTech Connect

    Graciani,J.; Fdez Sanz, J.; Asaki, T.; Nakamura, K.; Rodriguez, J.

    2007-01-01

    This work presents a detailed experimental and theoretical study of the oxidation of TiN(001) using a combination of synchrotron-based photoemission and density functional theory (DFT). Experimentally, the adsorption of O{sub 2} on TiN(001) was investigated at temperatures between 250 and 450 K. At the lowest temperature, there was chemisorption of oxygen (O2,gas{yields}2Oads) without significant surface oxidation. In contrast, at 450 K the amount of O{sub 2} adsorbed increased continuously, there was no evidence for an oxygen saturation coverage, a clear signal in the Ti 2p core level spectra denoted the presence of TiO{sub x} species, and desorption of both N{sub 2} and NO was detected. The DFT calculations show that the adsorption/dissociation of O{sub 2} is highly exothermic on a TiN(001) substrate and is carried out mainly by the Ti centers. A high oxygen coverage (larger than 0.5 ML) may induce some structural reconstructions of the surface. The exchange of a surface N atom by an O adatom is a highly endothermic process ({Delta}E=2.84 eV). However, the overall oxidation of the surface layer is thermodynamically favored due to the energy released by the dissociative adsorption of O{sub 2} and the formation of N{sub 2} or NO. Both experimental and theoretical results lead to conclude that a TiN+mO{sub 2}{yields}TiO{sub x}+NO reaction is an important exit channel for nitrogen in the oxidation process.

  20. SCALING SOLID RESUSPENSION AND SORPTION FOR THE SMALL COLUMN ION EXCHANGE PROCESSING TANK

    SciTech Connect

    Poirier, M.; Qureshi, Z.

    2010-12-14

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing 1.3 million gallon waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending and resuspending Monosodium Titanate (MST), Crystalline Silicotitanate (CST), and simulated sludge. In addition, SRNL will also be conducting pilot-scale tests to determine the mixing requirements for the strontium and actinide sorption. As part of this task, the results from the pilot-scale tests must be scaled up to a full-scale waste tank. This document describes the scaling approach. The pilot-scale tank is a 1/10.85 linear scale model of Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX Program (Risers B5 and B2 for two pump configurations and Risers B5, B3, and B1 for three pump configurations). MST additions are through Riser E1, the proposed MST addition riser in Tank 41H. To determine the approach to scaling the results from the pilot-scale tank to Tank 41H, the authors took the following approach. They reviewed the technical literature for methods to scale mixing with jets and suspension of solid particles with jets, and the technical literature on mass transfer from a liquid to a solid particle to develop approaches to scaling the test data. SRNL assembled a team of internal experts to review the scaling approach and to identify alternative approaches that should be considered.

  1. F- and H-Area Seepage Basins Water Treatment System Process Optimization and Alternative Chemistry Ion Exchange/Sorbent Material Screening Clearwell Overflow Study

    SciTech Connect

    Serkiz, S.M.

    2000-08-30

    This study investigated alternative ion exchange/sorbent materials and polishing chemistries designed to remove specific radionuclides not removed during the neutralization/precipitation/clarification process.

  2. RHEOLOGY OF SETTLED SOLIDS IN THE SMALL COLUMN ION EXCHANGE PROCESS

    SciTech Connect

    Poirier, M.; Ferguson, C.; Koopman, D.

    2011-01-27

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. This process adds monosodium titanate (MST) to a waste tank containing salt solution (and entrained sludge solids). While the process is operating, the solid particles will begin to settle at temperatures up to 45 C. Previous testing has shown that sludge-MST slurries that sit for extended periods (i.e., 1-61 days) at elevated temperatures (i.e., 23-80 C) can develop large shear strengths which could make them difficult to resuspend and remove from the tank. The authors are conducting rheological testing of mixtures containing various concentrations of sludge, MST, and crystalline silicotitanate (CST, ground and unground) that have been aged at different times (i.e., 0 to 13 weeks) and isothermally heated to 30, 45, or 60 C. Additional tests are being conducted that will allow the solid particles to settle at 45 C for 6, 12, and 24 months. The objectives of this task are to determine the impact of settling time and temperature on the shear strength, yield stress, and consistency of the slurries and to determine the impact of radiation on slurry rheology. The testing will determine the relative impact of these parameters rather than predict the shear strength, yield stress, and consistency as a function of feed and operating conditions. This document describes the rheology of slurries containing MST and simulated sludge that sat at elevated temperatures (i.e., up to 60 C) for up to 13 weeks. Rheology of CST-containing slurries, as well as results of the long term settling (6, 12, and 24 months) and irradiation tests (10 and 100 MRad), will be reported later. The conclusions from this analysis follow: (1) MST only slurries that sat at elevated temperatures had larger shear strength, yield stress, and consistency than MST plus sludge slurries that

  3. What can be Learned from X-ray Spectroscopy Concerning Hot Gas in Local Bubble and Charge Exchange Processes?

    NASA Technical Reports Server (NTRS)

    Snowden, Steve

    2007-01-01

    What can be learned from x-ray spectroscopy in observing hot gas in local bubble and charge exchange processes depends on spectral resolution, instrumental grasp, instrumental energy band, signal-to-nose, field of view, angular resolution and observatory location. Early attempts at x-ray spectroscopy include ROSAT; more recently, astronomers have used diffuse x-ray spectrometers, XMM Newton, sounding rocket calorimeters, and Suzaku. Future observations are expected with calorimeters on the Spectrum Roentgen Gamma mission, and the Solar Wind Charge Exchange (SWCX). The Geospheric SWCX may provide remote sensing of the solar wind and magnetosheath and remote observations of solar CMEs moving outward from the sun.

  4. Anion-exchange resin-based desulfurization process. Quarterly technical progress report, Januray 1, 1992--March 31, 1992

    SciTech Connect

    Sheth, A.C.; Strevel, S.D.; Dharmapurikar, R.

    1992-07-01

    Under DOE Grant No. FG22-90PC90309, the University of Tennessee Space Institute (UTSI) is contracted to further develop its anion-exchange, resin-based desulfurization concept to desulfurize alkali metal sulfates. From environmental as well as economic viewpoints, it is necessary to remove soluble sulfates from the wastes created by flue gas desulfurization systems. In order to do this economically, a low-cost desulfurization process for spent sorbents is necessary. UTSI`s anion-exchange resin-based desulfurization concept is believed to satisfy these requirements.

  5. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    SciTech Connect

    Smith, F; Luther Hamm, L; Sebastian Aleman, S; Johnston Michael, J

    2008-08-26

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system.

  6. Removal of uranium, arsenic, and nitrate by continuously regenerated ion exchange process

    SciTech Connect

    Chang, D.; Awad, J.; Panahi, Z.

    1996-11-01

    Groundwater is the major source of water supply for the City of Riverside (the City). Groundwater from some of the local wells contains high levels of uranium, arsenic, and nitrate. The City is evaluating treatment technologies that can remove these contaminants, in order to be prepared to select appropriate treatment technologies when groundwater treatment is required. Treatment technologies identified by the USEPA as best available technology (BAT) for uranium and arsenic removal are coagulation/filtration, lime softening, ion exchange, and reverse osmosis. Among these technologies, ion exchange is the most cost-effective and suitable for wellhead treatment applications. Ion exchange is also effective for nitrate removal. An ion exchange pilot study was conducted for the removal of uranium, arsenic and nitrate from groundwater. This paper presents a summary of the tests results, conceptual design criteria, and preliminary cost estimate for a full-scale facility.

  7. Microchannel heat exchanger for two-phase Mixed Refrigerant Joule Thomson process

    NASA Astrophysics Data System (ADS)

    Baek, Seungwhan; Lee, Jisung; Lee, Cheonkyu; Jeong, Sangkwon

    2014-01-01

    Mixed Refrigerant Joule Thomson (MR-JT) refrigerators are widely used in various kinds of cryogenic systems these days. Printed Circuit Heat Exchanger (PCHE) is one of the promising cryogenic compact recuperators for MR-JT refrigerators due to its compactness, high NTU and robustness. However, PCHE composed with microchannel bundles can cause flow mal-distribution, and it can cause the degradation of thermal performance of the system. To mitigate the flow mal-distribution problem, the cross link (or intra-layer bypass) can be adapted to parallel microchannels. Two heat exchangers are fabricated in this study; one has straight channels, and the other one has intra-layer bypass structure between channels to enhance the flow distribution. The MR-JT refrigerators are operated with these two heat exchanger and the no-load temperatures are compared. The lower no load temperature achieved with the intra-layer bypass structured heat exchanger. The results indicate that the flow mal-distribution in the microchannel heat exchanger can be mitigated with intra-layer bypass structure, and relaxation of flow mal-distribution in the heat exchanger guarantee the MR-JT refrigerator's performance.

  8. Mechanistic modeling of ion-exchange process chromatography of charge variants of monoclonal antibody products.

    PubMed

    Kumar, Vijesh; Leweke, Samuel; von Lieres, Eric; Rathore, Anurag S

    2015-12-24

    Ion-exchange chromatography (IEX) is universally accepted as the optimal method for achieving process scale separation of charge variants of a monoclonal antibody (mAb) therapeutic. These variants are closely related to the product and a baseline separation is rarely achieved. The general practice is to fractionate the eluate from the IEX column, analyze the fractions and then pool the desired fractions to obtain the targeted composition of variants. This is, however, a very cumbersome and time consuming exercise. A mechanistic model that is capable of simulating the peak profile will be a much more elegant and effective way to make a decision on the pooling strategy. This paper proposes a mechanistic model, based on the general rate model, to predict elution peak profile for separation of the main product from its variants. The proposed approach uses inverse fit of process scale chromatogram for estimation of model parameters using the initial values that are obtained from theoretical correlations. The packed bed column has been modeled along with the chromatographic system consisting of the mixer, tubing and detectors as a series of dispersed plug flow and continuous stirred tank reactors. The model uses loading ranges starting at 25% to a maximum of 70% of the loading capacity and hence is applicable to process scale separations. Langmuir model has been extended to include the effects of salt concentration and temperature on the model parameters. The extended Langmuir model that has been proposed uses one less parameter than the SMA model and this results in a significant ease of estimating the model parameters from inverse fitting. The proposed model has been validated with experimental data and has been shown to successfully predict peak profile for a range of load capacities (15-28mg/mL), gradient lengths (10-30CV), bed heights (6-20cm), and for three different resins with good accuracy (as measured by estimation of residuals). The model has been also

  9. Mechanistic modeling of ion-exchange process chromatography of charge variants of monoclonal antibody products.

    PubMed

    Kumar, Vijesh; Leweke, Samuel; von Lieres, Eric; Rathore, Anurag S

    2015-12-24

    Ion-exchange chromatography (IEX) is universally accepted as the optimal method for achieving process scale separation of charge variants of a monoclonal antibody (mAb) therapeutic. These variants are closely related to the product and a baseline separation is rarely achieved. The general practice is to fractionate the eluate from the IEX column, analyze the fractions and then pool the desired fractions to obtain the targeted composition of variants. This is, however, a very cumbersome and time consuming exercise. A mechanistic model that is capable of simulating the peak profile will be a much more elegant and effective way to make a decision on the pooling strategy. This paper proposes a mechanistic model, based on the general rate model, to predict elution peak profile for separation of the main product from its variants. The proposed approach uses inverse fit of process scale chromatogram for estimation of model parameters using the initial values that are obtained from theoretical correlations. The packed bed column has been modeled along with the chromatographic system consisting of the mixer, tubing and detectors as a series of dispersed plug flow and continuous stirred tank reactors. The model uses loading ranges starting at 25% to a maximum of 70% of the loading capacity and hence is applicable to process scale separations. Langmuir model has been extended to include the effects of salt concentration and temperature on the model parameters. The extended Langmuir model that has been proposed uses one less parameter than the SMA model and this results in a significant ease of estimating the model parameters from inverse fitting. The proposed model has been validated with experimental data and has been shown to successfully predict peak profile for a range of load capacities (15-28mg/mL), gradient lengths (10-30CV), bed heights (6-20cm), and for three different resins with good accuracy (as measured by estimation of residuals). The model has been also

  10. Inter-annual variability of exchange processes at the outer Black Sea shelf

    NASA Astrophysics Data System (ADS)

    Shapiro, Georgy; Wobus, Fred; Yuan, Dongliang; Wang, Zheng

    2014-05-01

    The advection of cold water below the surface mixed layer has a significant role in shaping the properties of the Cold Intermediate Layer (CIL) in the Black Sea, and thus the horizontal redistribution of nutrients. The minimal temperature of the CIL in the southwest deep region of the sea in summer was shown to be lower than the winter surface temperature at the same location, indicating the horizontal advective nature of CIL formation in the area (Kolesnikov, 1953). In addition to advection in the deep area of the sea, the transport of cold waters from the northwest Black Sea shelf across the shelf break in winter was shown to contribute to the formation of the CIL (Filippov, 1968; Staneva and Stanev, 1997). However less is known of the exchanges between the CIL waters and the outer shelf areas in summer, when a surface mixed layer and the underlying seasonal thermocline are formed. Ivanov et al. (1997) suggested that the cross frontal exchange within the CIL is strongly inhibited, so that CIL waters formed in the deep sea (i.e. offshore of the Rim Current) do not replenish the CIL waters onshore of the Rim Current (also known as near-bottom shelf waters, or BSW), due to strong cross frontal gradients in potential vorticity (PV). To the contrary, Shapiro et al. (2011) analysed in-situ observations over the period of 1950-2001 and showed a high correlation between the CIL temperatures in the open sea and outer shelf. However, the statistical methods alone were not able to clearly establish the relation between the cause and the consequences. In this study we use a 3D numerical model of the Black Sea (NEMO-SHELF-BLS) to quantify the exchange of CIL waters between the open sea and the outer northwest Black Sea shelf and to assess its significance for the replenishment of BSW on the outer shelf. The model has a resolution of 1/16º latitude × 1/12º longitude and 33 levels in the vertical. In order to represent near-bottom processes better, the model uses a hybrid

  11. Exchange processes from the deep interior to the surface of icy moons

    NASA Astrophysics Data System (ADS)

    Grasset, O.

    Space exploration provides outstanding images of planetary surfaces. Galileo space- craft around Jupiter, and now Cassini in the saturnian system have revealed to us the variety of icy surfaces in the solar system. While Europa, Enceladus, and maybe Titan present past or even active tectonic and volcanic activities, many other moons have been dead worlds for more than 3 billions years. Composition of ices is also complex and it is now commonly admitted that icy surfaces are never composed of pure ices. Water ice can be mixed with salts (Europa?), with hydrocarbons (Titan?) or with silicates (Callisto). The present surfaces of icy moons are the results of both internal (tectonic; volcanism; mantle composition; magnetic field; . . . ) and external processes (radiations, atmospheres, impacts, . . . ). Internal activity (past or present) is almost unknown. While the surfaces indicate clearly that an important activity existed (Ganymede, Europa, Titan, . . . ) or still exists (Enceladus, Titan?, . . . ), volcanic and tectonic processes within icy mantles are still very poorly understood. This project proposes some key studies for improving our knowledge of exchange processes within icy moons, which are: 1) Surface compositions: Interpretation of mapping spectrometer data. It addresses the interpretation of remote sensing data. These data are difficult to understand and a debate between people involved in Galileo and those who are now trying to interpret Cassini data might be fruitful. As an example, interpretation of Galileo data on Europa are still controversial. It is impossible to affirm that the "non-icy" material which does not present the classic infrared signature of pure ice is due to the presence of magnesium hydrates, sodium hydrates, magnesium sulfurs, "clays", or even altered water ice. Discussion on the subject are still needed. On Titan, the presence of the atmosphere impedes to link IR data from Cassini to the composition of the surface. 2) Past and

  12. PILOT SCALE TESTING OF MONOSODIUM TITANATE MIXING FOR THE SRS SMALL COLUMN ION EXCHANGE PROCESS - 11224

    SciTech Connect

    Poirier, M.; Restivo, M.; Williams, M.; Herman, D.; Steeper, T.

    2011-01-25

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and select actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is to determine the requirements for the pumps to suspend the MST particles so that they can contact the strontium and actinides in the liquid and be removed from the tank. The pilot-scale tank is a 1/10.85 linear scaled model of SRS Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5 and B2 for two pump configurations and Risers B5, B3, and B1 for three pump configurations). The conclusions from this work follow: (i) Neither two standard slurry pumps nor two quad volute slurry pumps will provide sufficient power to initially suspend MST in an SRS waste tank. (ii) Two Submersible Mixer Pumps (SMPs) will provide sufficient power to initially suspend MST in an SRS waste tank. However, the testing shows the required pump discharge velocity is close to the maximum discharge velocity of the pump (within 12%). (iii) Three SMPs will provide sufficient power to initially suspend MST in an SRS waste tank. The testing shows the required pump discharge velocity is 66% of the maximum discharge velocity of the pump. (iv) Three SMPs are needed to resuspend MST that has settled in a waste tank at nominal 45 C for four weeks. The testing shows the required pump discharge velocity is 77% of the maximum discharge velocity of the pump. Two SMPs are not sufficient to resuspend MST that settled under these

  13. Circulation and exchange processes over the continental shelf and slope. Final report

    SciTech Connect

    Csanady, G.T.

    1988-12-31

    The theme of the work during the past triennium has been the SEEP experiment, data interpretation and modeling related to the goals of the experiment, and was characterized by increasing cooperation with colleagues from other disciplines. The theoretical contributions dealt with shelf-slope interaction, the dynamics and climatology of currents over the continental slope, and the behavior of fate of organic particles. Observational papers discussed various exchange mechanisms at the shelf edge, with special attention to particle exchange, and the quiescence of currents over the mid continental slope which is presumably responsible for the accumulation of organic particles.

  14. Lateral Mixing Processes in an Estuary: San Francisco Bay and its Exchange With Perimeter Habitat

    NASA Astrophysics Data System (ADS)

    MacVean, L. J.; Stacey, M. T.

    2008-12-01

    Observations from the South San Francisco Bay are presented to examine lateral mixing processes in an estuary. Irregularities in the shoreline lead to lateral density gradients that are set up by tidal trapping, which disrupts the phasing of flows and scalar concentrations along the estuary's axis. In South San Francisco Bay, thousands of acres of salt ponds are being breached to the Bay's influence for the first time in decades as part of a landscape-scale salt marsh restoration project. The tides deliver salt, sediment, and nutrients to the subsided ponds, aggrading their surfaces and converting them to marsh. These newly inter-tidal ponds around the perimeter of the South San Francisco Bay constitute a highly irregular shoreline, capable of initiating steep, periodic lateral density gradients. In this study, we focus on a small cluster of salt ponds and the tidal slough to which they were breached. The exchange between the tidal slough and the ponds is representative of the larger estuary, but of a spatial scale small enough that we can conduct field experiments to examine the flows and transport of scalars in detail. We conducted two boat-mounted transecting surveys of the tidal slough in June and July of 2008, during which we collected profiles of velocity with a down-looking 1200 kHz ADCP, continuous CTD measurements of surface water temperature and salinity, and discrete CTD profiles of salinity and temperature. We have observed that water and salt are trapped in the ponds on the flood tide, and released on the ebb out of phase with the slough's primary salinity gradient. Additionally, the momentum of the ebbing flow in the channel confines the pond effluent to the near bank just down-estuary of the breach. This leads to the coincidence of two distinct water masses, and a sharp change in salinity of 3 PSU over a distance less than 10 meters. We use our data to construct detailed velocity and density fields across and along the tidal slough as the lateral

  15. Processes of Ammonia Air-Surface Exchange in a Fertilized Zea Mays Canopy

    EPA Science Inventory

    Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this advancement represents a sig...

  16. Perspectives on an Induction Process for International Exchange Teachers: A Leadership Perspective

    ERIC Educational Resources Information Center

    Siler, James Thomas

    2012-01-01

    This study traces the first year experiences of six international exchange teachers employed in three public and charter schools settings from three districts in two southeastern states. Interviews with these teachers from China, Germany and Colombia, and with their school and district leaders enabled me to produce a narrative of how international…

  17. MultiLIS Book Exchange Process: A "Shuttle" Approach to Collection Development.

    ERIC Educational Resources Information Center

    Fink, Norman A.; Boivin, Richard

    1988-01-01

    Provides an overview of Quebec's regional library system and the use of the MultiLIS software to manage the collections and resource sharing of remote libraries. The book-related operational functions of the EXCHANGE module of this integrated library system are described, and several sample screens are shown. (MES)

  18. Fractionation of sulphite spent liquor for biochemical processing using ion exchange resins.

    PubMed

    Fernandes, D L A; Silva, C M; Xavier, A M R B; Evtuguin, D V

    2012-12-31

    Sulphite spent liquor (SSL) is a side product from acidic sulphite pulping of wood, which organic counterpart is composed mainly by lignosulphonates (LS) and sugars. The last are a prominent substrate for the bioprocessing although a previous purification step is necessary to eliminate microbial inhibitors. In this study a fractionation of hardwood SSL (HSSL) has been accomplished employing ion exchange resins in order to separate sugars fraction from concomitant inhibitors: LS, acetic acid, furan derivatives, phenolics, acetic acid and excess of inorganic salts. The fractionation of HSSL has been carried out using two fixed-bed ion exchangers in series (cationic+anionic). The first cation exchange column packed with Dowex 50WX2 resin was able to eliminate free cations and partially separate sugars from high molecular weight LS and furan derivatives. The second anion exchange column packed with Amberlite IRA-96 sorbed remaining LS, phenolics and acetic acid. Overall, the series arrangement under investigation has removed 99.99% of Mg(2+), 99.0% of Ca(2+), 99.6% of LS, and 100% of acetic acid, whereas the yield of recovered sugars was at least 72% of their total amount in HSSL.

  19. Continuous process of preparation of n-butyl(meth)acrylate by esterification of (meth)acrylic acid by butanol on thermostable sulfo-cation exchanger

    SciTech Connect

    Zheleznaya, L.L.; Karakhanov, R.A.; Lunin, A.F.; Magadov, R.S.; Meshcheryakov, S.V.; Mkrtychan, V.R.; Fomin, V.A.

    1987-11-10

    The authors propose an effective thermostable sulfo-cation exchanger based on polymers with a system of conjugated bonds, sulfopolyphenylene ketone (SPP) differing from the known cation exchangers by the high thermostability (up to 250/sup 0/C), and also having the effect of the stabilization of the double bond in unsaturated monomers. The combination of inhibiting and cation exchange properties makes it also possible to use these sulfo-cation exchangers in the processes of esterification of (meth)acrylic acids by alcohols without addition of special inhibitors. The SPP catalyst was tested in esterification processes of acrylic an methacrylic acid by butanol at a pilot plant.

  20. Combination of ion exchange and partial nitritation/Anammox process for ammonium removal from mainstream municipal wastewater.

    PubMed

    Malovanyy, Andriy; Plaza, Elzbieta; Trela, Jozef; Malovanyy, Myroslav

    2014-01-01

    In this study, a new technology of nitrogen removal from mainstream municipal wastewater is proposed. It is based on ammonium removal by ion exchange and regeneration of ion exchange material with 10-30 g/L NaCl solution with further nitrogen removal from spent regenerant by partial nitritation/Anammox process. Influence of regenerant strength on performance of ion exchange and biological parts of the proposed technology was evaluated. Moreover, the technology was tested in batch mode using pretreated municipal wastewater, strong acid cation (SAC) resin and partial nitritation/Anammox biomass. It was shown that with ion exchange it is possible to remove 99.9% of ammonium from wastewater while increasing the concentration of ammonium in spent regenerant by 18 times. Up to 95% of nitrogen from spent regenerant, produced by regeneration of SAC resin with 10 g/L NaCl solution, was removed biologically by partial nitritation/Anammox biomass. Moreover, the possibilities of integration of the technology into municipal wastewater treatment technology, and the challenges and advantages are discussed.

  1. SPECIAL ANALYSIS FOR SLIT TRENCH DISPOSAL OF THE REACTOR PROCESS HEAT EXCHANGERS

    SciTech Connect

    Hamm, L.; Collard, L.; Aleman, S.; Gorensek, M.; Butcher, T.

    2012-06-18

    The Savannah River National Laboratory (SRNL), in response to a request from Solid Waste Management (SWM), conducted a Special Analysis (SA) to evaluate the performance of nineteen heat exchangers that are to be disposed in the E-Area low level waste facility Slit Trench 9 (ST 9). Although these nineteen heat exchangers were never decontaminated, the majority of the radionuclides in the heat exchanger inventory list were determined to be acceptable for burial because they are less than the 'generic' waste form inventory limits given in the 2008 Performance Assessment (PA) (WSRC, 2008). However, as generic waste, the H-3 and C-14 inventories resulted in unacceptable sum-of-fractions (SOFs). Initial scoping analyses performed by SRNL indicated that if alterations were made to certain external nozzles to mitigate various potential leak paths, acceptable SOFs could be achieved through the use of a 'Special' waste form. This SA provides the technical basis for this new 'Special' waste form and provides the inventory limits for H-3 and C-14 for these nineteen heat exchangers such that the nineteen heat exchangers can be disposed in ST 9. This 'Special' waste form is limited to these nineteen heat exchangers in ST 9 and applies for H-3 and C-14, which are designated as H-3X and C-14X, respectively. The SA follows the same methodology used in the 2008 PA and the 2008 SA except for the modeling enhancements noted below. Infiltration rates above the heat exchangers are identical to those used in the 2008 PA; however, flow through the heat exchangers is unique. Because it is unknown exactly how sealed heat exchanger openings will perform and how surface and embedded contaminants will be released, multiple base cases or scenarios were established to investigate a set of performances. Each scenario consists of flow options (based on the performance of sealed openings) and a near-field release of contaminants (based on corrosion and diffusion performance). Two disposal

  2. Safety research of multi-functional reprocessing process considering nonproliferation based on an ion-exchange method

    SciTech Connect

    Koyama, Shin-ichi; Ozawa, Masaki |; Okada, Ken; Kurosawa, Kiyoko; Suzuki, Tatsuya; Fujii, Yasuhiko

    2007-07-01

    A simplified separation process was proposed based on an ion-exchange technique. A tertiary pyridine-type ion-exchange resin was used in this process to treat the mixed oxide fuel highly irradiated in the experimental fast reactor 'JOYO'. It was demonstrated that the process is a realistic candidate for future reprocessing using hydrochloric acid and a mixed eluent solution of nitric acid and methanol. In order to develop an engineering scale concept, it is indispensable to establish the conditions for safe operation, so two types of experiments were done to obtain fundamental aspects. The corrosion experiment for structural materials in hydrochloric acid at room temperature was done using tantalum, zirconium, niobium, hastelloy and SUS316L. Results showed that tantalum, zirconium, niobium, and hastelloy had good corrosion resistance to hydrochloric acid. The second experiment looked at the thermal hazards of pyridine-type ion-exchange resin and the methanol, or nitric acid eluent system from the viewpoints of fire and explosion safety. No hazardous reactions occurred between the resin and the eluent system. Above 150 deg. C, attention should be paid to the exothermic reactions for the dried resin. (authors)

  3. The characteristic assessment of spent ion exchange resin from PUSPATI TRIGA REACTOR (RTP) for immobilization process

    SciTech Connect

    Wahida, Nurul; Yasir, Muhamad Samudi; Majid, Amran Ab; Irwan, M. N.; Wahab, Mohd Abd; Marzukee, Nik; Paulus, Wilfred; Phillip, Esther; Thanaletchumy

    2014-09-03

    In this paper, spent ion exchange resin generated from PUSPATI TRIGA reactor (RTP) in Malaysian Nuclear Agency were characterized based on the water content, radionuclide content and radionuclide leachability. The result revealed that the water content in the spent resin is 48%. Gamma spectrometry analysis indicated the presence of {sup 134}Cs, {sup 137}Cs, {sup 152}Eu, {sup 54}Mn, {sup 58}Co, {sup 60}Co and {sup 65}Zn. The leachability test shows a small concentrations (<1 Bq/l) of {sup 152}Eu and {sup 134}Cs were leached out from the spent resin while {sup 60}Co activity concentrations slightly exceeded the limit generally used for industrial wastewater i.e. 1 Bq/l. Characterization of spent ion exchange resin sampled from RTP show that this characterization is important as a basis to immobilize this radioactive waste using geopolymer technology.

  4. The characteristic assessment of spent ion exchange resin from PUSPATI TRIGA REACTOR (RTP) for immobilization process

    NASA Astrophysics Data System (ADS)

    Wahida, Nurul; Yasir, Muhamad Samudi; Majid, Amran Ab; Wahab, Mohd Abd; Marzukee, Nik; Paulus, Wilfred; Phillip, Esther; Thanaletchumy, Irwan, M. N.

    2014-09-01

    In this paper, spent ion exchange resin generated from PUSPATI TRIGA reactor (RTP) in Malaysian Nuclear Agency were characterized based on the water content, radionuclide content and radionuclide leachability. The result revealed that the water content in the spent resin is 48%. Gamma spectrometry analysis indicated the presence of 134Cs, 137Cs, 152Eu, 54Mn, 58Co, 60Co and 65Zn. The leachability test shows a small concentrations (<1 Bq/l) of 152Eu and 134Cs were leached out from the spent resin while 60Co activity concentrations slightly exceeded the limit generally used for industrial wastewater i.e. 1 Bq/l. Characterization of spent ion exchange resin sampled from RTP show that this characterization is important as a basis to immobilize this radioactive waste using geopolymer technology.

  5. Charge exchange processes in He+/Cu scattering at low energy

    NASA Astrophysics Data System (ADS)

    Khalal-Kouache, K.; Bruckner, B.; Roth, D.; Goebl, D.; Bauer, P.

    2016-09-01

    In this paper we present results on charge exchange of He+ ions at a polycrystalline Cu surface. Monte Carlo simulations were used to calculate the trajectories of projectiles scattered by an angle Θ = 136 ° . By including Auger neutralization and charge exchange in close collisions, energy spectra of the scattered ions as well as ion fraction values were calculated for primary energies in the range 0.5-5 keV and compared to experimental results. In the simulations, the Auger neutralization rate Γ and the probabilities of resonant neutralization (PRN) and reionization (PRI) are treated as free parameters. Using well accepted values from literature for these quantities very good agreement between simulations and experimental data was achieved.

  6. Dewaxing process using agitated heat exchanger to chill solvent-oil and wax slurry to wax filtration temperature

    SciTech Connect

    Broadhurst, Th.E.

    1984-04-10

    In an improved process for dewaxing waxy hydrocarbon oils, wherein said waxy oil is cooled in an indirect chilling zone to a temperature greater than the wax separation temperature whereby wax is precipitated to form a wax-oil-solvent slurry, cooling the slurry to the wax separation temperature in an indirect chilling zone thereby precipitating a further portion of wax from said waxy oil and separating said precipitated wax from the wax-oil-solvent slurry in solid-liquid separation means, the improvement comprises using as the indirect chilling zone an indirect heat exchanger means operated at a high level of agitation. Expressed in terms of Impeller Reynolds Number the agitation is on the order of about 1,000 to 1,000,000. Alternatively, the direct chilling zone is totally replaced by the high agitation indirect heat exchanger means.

  7. Dynamic NMR of Intramolecular Exchange Processes in EDTA Complexes of Sc[superscript 3+], Y[superscript 3+], and La[superscript 3+

    ERIC Educational Resources Information Center

    Ba, Yong; Han, Steven; Ni, Lily; Su, Tony; Garcia, Andres

    2006-01-01

    Dynamic NMR makes use of the effect of chemical exchanges on NMR spectra to study kinetics and thermodynamics. An advanced physical chemistry lab experiment was developed to study the intramolecular exchange processes of EDTA (the disodium salt of ethylenediaminetetraacetic acid) metal complexes. EDTA is an important chelating agent, used in…

  8. Study of the Heat-Transfer Processes of Tubular Elements of Ground Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Kusaiynov, K.; Shuyushbayeva, N. N.; Shaimerdenova, K. M.; Nurgalieva, Zh. G.; Omarov, N. N.

    2015-05-01

    In this paper, consideration is given to the efficiency of utilization of the low-potential heat of the ground. Also, the advantages and distinctive features of polyethylene tubes used in vertical tubular elements of heat pumps are described. This paper gives the results of investigation of the heat transfer of tubular elements of ground heat exchangers. The dependences of the temperature distributions in the ground in the vicinity of a tube and the change in the temperature with time in dry and moist grounds are determined.

  9. Integration of ion-exchange and nanofiltration processes for recovering Cr(III) salts from synthetic tannery wastewater.

    PubMed

    Gando-Ferreira, Licínio M; Marques, Joana C; Quina, Margarida J

    2015-01-01

    This study aims to investigate the possibility of integrating both ion-exchange (IX) and nanofiltration (NF) processes for the recovery of Cr(III) salts from a synthetic solution prepared with concentrations of Cr(III), [Formula: see text] and Cl(-) in the range of industrial effluents of tanneries. Ion exchange should be used as a pre-treatment for uptaking Cl(-) ions from the effluent, and thereafter the treated solution is fed to an NF unit to recover chromium sulphate salt for reuse in the tanning bath. The strong anionic resin Diaion PA316 was selected for evaluating chloride-sulphate ion-exchange equilibrium, with respect to mass of resin, NaCl concentration, temperature and ratio [Formula: see text]. It was observed that the separation factor, [Formula: see text], depends on the total electrolyte concentration and the ratio [Formula: see text] plays a role as well. Moreover, it was determined that the resin prefers sulphate over chloride since [Formula: see text] is less than 1. The performance of the NF process is dependent on [Formula: see text] and the rejection of Cr(III) may decrease from 90% to 70% as the ratio increases from 0.5 to 2. Regarding the integration of both IX and NF, the feed solution after treatement with the resin was fed to NF where the ratio of [Formula: see text] led to the best operating conditions for this process (90% of Cr(III) rejection and up to 77% for [Formula: see text] ions). This strategy may be considered as a sustainable approach since it permits to obtain a solution enriched in Cr(III) salt for reuse in the tanning process, thus contributing to environmental protection.

  10. Radioactive Spent Ion-Exchange Resins Conditioning by the Hot Supercompaction Process at Tihange NPP - Early Experience - 12200

    SciTech Connect

    Braet, Johan; Charpentier, David; Centner, Baudouin; Vanderperre, Serge

    2012-07-01

    Spent ion-exchange resins are considered to be problematic waste that, in many cases, requires special approaches and precautions during their conditioning to meet the acceptance criteria for disposal. In Belgium, for economical reasons, the Volume Reduction Factor is a key criterion. After Tractebel Engineering performed a technical and economical comparison of the industrially available systems, Tihange NPP decided to install a spent ion-exchange resins hot supercompaction unit with Tractebel Engineering in the role of architect-engineer. The treatment and conditioning unit processes the spent ion-exchange resins through the following steps: dewatering of the resins, drying the resins under deep vacuum, discharging the dried resins into compactable drums, super-compacting the drums to generate pellets, grouting the pellets into standard 400 litres waste drums (overpacks) licensed for final disposal in the near-surface repository in Belgium. Several developments were required to adapt the reference process and equipment to PWR spent ion-exchange bead resins and Belgian radioactive waste acceptance criteria. In order to avoid cracks on the compacted drum, and external surface contamination from resin leaks, some improvements were achieved to minimize spring-back as well as the risk of cracking the drum wall. Placing the compactable drum inside a second, slightly larger drum, guarantees clean and reproducible pellets. Currently the commissioning phase is on-going. Numerous process validation tests have been completed. An acceptance file was transmitted to the Belgian Waste Management Authority recently. This will be followed by demonstration tests necessary to obtain their final acceptance of the installation. More than 3 800 drums of mixed powdered and bead resins have been processed by the reference Hot Compaction process, achieving a Volume Reduction Factor (VRF) of 2.5. The equipment has been proven to be a reliable technology with low operation and maintenance

  11. ANIONIC EXCHANGE PROCESS FOR THE RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS

    DOEpatents

    Bailes, R.H.; Ellis, D.A.; Long, R.S.

    1958-12-16

    Uranium and vanadium can be economically purified and recovered from non- salt roast carbonate leach liquors by adsorption on a strongly basic anionic exchange resin and subsequent selective elution by one of three alternative methods. Method 1 comprises selectively eluting uranium from the resin with an ammonium sulfate solution followed by eluting vanadium from the resin with either 5 M NaCl, saturated (NH/sub 4/)/sub 2/CO/sub 3/, saturated NaHCO/sub 3/, 1 M NaOH, or saturated S0/sub 2/ solutions. Method II comprises selectively eluting vanadium from the resin with either concentrated NaCl or S0/sub 2/ solutions subsequent to pretreatment of the column with either S0/sub 2/ gas, 1 N HCl, or 0.1 N H/sub 2/8O/sub 4/ followed by eluting uranium from the resin with solutions containing 0.9 M NH/sub 4/Cl or NaCl and 0.1 Cl. Method III comprises flowing the carbonate leac solutlon through a first column of a strongly basic anlonlc exchange resin untll vanadium breakthrough occurs, so that the effluent solution is enriched ln uranium content and the vanadium is chiefly retalned by the resln, absorbing the uranlum from the enriched effluent solution on a second column of a strongly basic anionic exchange resin, pretreating the first column with either 0.1 N HCl, 0.1 H/sub 2/SO/sub 4/, C0/sub 2/ gas, or ammonium sulfate, selectively eluting the vanadlum from the column with saturated S0/sub 2/ solution, pretreatlng the second column with either 0.1 N HCl or S0/sub 2/ gas, selectively eluting residual vanadium from the column with saturated S0/sub 2/ solution, and then eluting the uranium from the column with either 0.1 N HCl and 1 N NaCl orO.l N HCl and 1 N NH/sub 4/Cl.

  12. Shelf edge exchange processes-II SEEP2-06, R/V Endeavor cruise 186. Hydrographic data report

    SciTech Connect

    Wilson, C.; Behrens, W.J.; Flagg, C.N.; Wallace, D.W.R.; Wilke, R.J.; Wyman, K.D.

    1989-12-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. Phase I of SEEP consisted of a series of nine cruises and a mooring array across the outer continental shelf of New England during 1983--1984. Phase II focused specifically on the shelf/slope frontal region of the mid-Atlantic bight off the Delmarva Peninsula. Hydrographic data were collected on eight of the six cruises.

  13. Circulation and exchange processes on the South Atlantic Bight Continental Shelf: Progress report, July 1, 1988 to June 30, 1989

    SciTech Connect

    Lee, T.N.

    1989-03-01

    The work reported here is part of the Department of Energy sponsored Southeast US Continental Shelf Program. The DOE Program is a coordinated, multi-university, interdisciplinary investigation aimed at understanding the physical, chemical and biological processes in the South Atlantic Bight (SAB: east coast continental shelf region from Cape Hatteras to Cape Canaveral). The program is coordinated by Dr. David Menzel of Skidaway Oceanographic Institute. The activities of the other Program Investigators will be discussed briefly under Program Overview. The University of Miami component of the program involves an investigation of the physical processes regulating the transport and exchange of materials in the shelf waters. The guiding scientific objective of this work is to improve the capability for prediction of the physical environment. The principal scientific task is to determine the relative importance of the forces driving shelf circulation and exchange and to measure the shelf waters' response over variable time and space scales. The influence of physical processes on chemical and biological distributions and their interactions is studied through interdisciplinary investigations, joint analysis and interpretation of data and joint publications. 103 refs., 14 figs.

  14. The organic sea surface microlayer in the upwelling region off Peru and implications for air-sea exchange processes

    NASA Astrophysics Data System (ADS)

    Engel, A.; Galgani, L.

    2015-07-01

    The sea surface microlayer (SML) is at the very surface of the ocean, linking the hydrosphere with the atmosphere, and central to a range of global biogeochemical and climate-related processes. The presence and enrichment of organic compounds in the SML have been suggested to influence air-sea gas exchange processes as well as the emission of primary organic aerosols. Among these organic compounds, primarily of plankton origin, are dissolved exopolymers, specifically polysaccharides and proteins, and gel particles, such as Transparent Exopolymer Particles (TEP) and Coomassie Stainable Particles (CSP). These organic substances often accumulate in the surface ocean when plankton productivity is high. Here, we report results obtained in December 2012 during the SOPRAN Meteor 91 cruise to the highly productive, coastal upwelling regime off Peru. Samples were collected from the SML and from ~ 20 cm below, and were analyzed for polysaccharidic and proteinaceous compounds, gel particles, total and dissolved organic carbon, bacterial and phytoplankton abundance. Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.

  15. Anion-exchange resin-based desulfurization process. Annual technical progress report, October 1, 1992--September 30, 1993

    SciTech Connect

    Sheth, A.C.; Dharmapurikar, R.; Strevel, S.D.

    1993-11-01

    Under the DOE Grant No. DE-FG22-90PC90309, the University of Tennessee Space Institute (UTSI) has been directed to further develop an anion-exchange, resin-based desulfurization concept that has been developed and tested on a limited scope for feasibility. From environmental as well as the economic viewpoints, it is necessary that the soluble sulfates of alkali metal sorbents be desulfurized (regenerated) and recycled to make regenerative flue gas desulfurization and MHD spent seed regeneration options more attractive. In order to achieve this, a low-temperature, low-cost desulfurization process to reactivate spent alkali metal sorbents is necessary. UTSI`s anion-exchange, resin-based concept uses the available technology and is believed to satisfy this requirement. In this DOE-sponsored project, UTSI, will perform the following investigations: Screening of commercially available resins; process variables study and improving resin performance; optimization of resin-regeneration step; evaluation of performance enhancers; development of Best-Process Schematic and related economics, and planning for proof-of-concept (POC) scale testing. The above activities have been grouped into five major tasks and the entire project is expected to take thirty-six months to complete.

  16. A counter-intuitive approach to calculating non-exchangeable 2H isotopic composition of hair: treating the molar exchange fraction fE as a process-related rather than compound-specific variable

    USGS Publications Warehouse

    Landwehr, J.M.; Meier-Augenstein, W.; Kemp, H.F.

    2011-01-01

    Hair is a keratinous tissue that incorporates hydrogen from material that an animal consumes but it is metabolically inert following synthesis. The stable hydrogen isotope composition of hair has been used in ecological studies to track migrations of mammals as well as for forensic and archaeological purposes to determine the provenance of human remains or the recent geographic life trajectory of living people. Measurement of the total hydrogen isotopic composition of a hair sample yields a composite value comprised of both metabolically informative, non-exchangeable hydrogen and exchangeable hydrogen, with the latter reflecting ambient or sample preparation conditions. Neither of these attributes is directly measurable, and the non-exchangeable hydrogen composition is obtained by estimation using a commonly applied mathematical expression incorporating sample measurements obtained from two distinct equilibration procedures. This commonly used approach treats the fraction of exchangeable hydrogen as a mixing ratio, with a minimal procedural fractionation factor assumed to be close or equal to 1. Instead, we propose to use full molar ratios to derive an expression for the non-exchangeable hydrogen composition explicitly as a function of both the procedural fractionation factor α and the molar hydrogen exchange fraction fE. We apply these derivations in a longitudinal study of a hair sample and demonstrate that the molar hydrogen exchange fraction fE should, like the procedural fractionation factor α, be treated as a process-dependent parameter, i.e. a reaction-specific constant. This is a counter-intuitive notion given that maximum theoretical values for the molar hydrogen exchange fraction fE can be calculated that are arguably protein-type specific and, as such, fE could be regarded as a compound-specific constant. We also make some additional suggestions for future approaches to determine the non-exchangeable hydrogen composition of hair and the use of

  17. Carbon mass-balance modeling and carbon isotope exchange processes in the Curonian Lagoon

    NASA Astrophysics Data System (ADS)

    Barisevičiūtė, Rūta; Žilius, Mindaugas; Ertürk, Ali; Petkuvienė, Jolita

    2016-04-01

    The Curonian lagoon one of the largest coastal lagoons in Europe is located in the southeastern part of the Baltic Sea and lies along the Baltic coast of Lithuania and the Kaliningrad region of Russia. It is influenced by a discharge of the Nemunas and other smaller rivers and saline water of the Baltic Sea. The narrow (width 0.4 km, deep 8-14 m) Klaipėda Strait is the only way for fresh water run-off and brackish water intrusions. This research is focused on carbon isotope fractionations related with air - water exchange, primary production and organic carbon sedimentation, mineralization and uptake from both marine and terrestrial sources.

  18. Modeling foreign exchange market activity around macroeconomic news: Hawkes-process approach

    NASA Astrophysics Data System (ADS)

    Rambaldi, Marcello; Pennesi, Paris; Lillo, Fabrizio

    2015-01-01

    We present a Hawkes-model approach to the foreign exchange market in which the high-frequency price dynamics is affected by a self-exciting mechanism and an exogenous component, generated by the pre-announced arrival of macroeconomic news. By focusing on time windows around the news announcement, we find that the model is able to capture the increase of trading activity after the news, both when the news has a sizable effect on volatility and when this effect is negligible, either because the news in not important or because the announcement is in line with the forecast by analysts. We extend the model by considering noncausal effects, due to the fact that the existence of the news (but not its content) is known by the market before the announcement.

  19. Wave packet methods for charge exchange processes in ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Baloı̈tcha, E.; Desouter-Lecomte, M.; Bacchus-Montabonel, M.-C.; Vaeck, N.

    2001-05-01

    The efficiency of different time-independent and time-dependent wave packet methods to calculate charge-exchange cross sections is discussed. The time-independent spectral projection method is based on the Chebyshev expansion of the resolvent function and represents an interesting alternative to the usual Fourier method which involves a time propagation. On the other hand, the flux operator method still requires propagation in time but uses the properties of absorbing potentials in order to calculate the flux operator matrix elements. We show the necessity of introducing the appropriate Hankel-Riccati functions when the full Hamiltonian contains a centrifugal term in 1/R2 in order to reduce the computational time. The collisional system Si4++He is studied as a test case.

  20. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    DOEpatents

    Sharp, David W.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  1. Using Process Knowledge to Manage Disposal Classification of Ion-Exchange Resin - 13566

    SciTech Connect

    Bohnsack, Jonathan N.; James, David W.

    2013-07-01

    It has been previously shown by EPRI [1] that Class B and C resins represent a small portion by volume of the overall generation of radioactively contaminated resins. In fact, if all of the resins were taken together the overall classification would meet Class A disposal requirements. Lowering the classification of the ion exchange resins as they are presented for disposal provides a path for minimizing the amount of waste stored. Currently there are commercial options for blending wastes from various generators for Class A disposal in development. The NRC may have by this time introduced changes and clarifications to the Branch Technical Position (BTP) on Concentration Averaging and Encapsulation [2] that may ultimately add more flexibility to what can be done at the plant level. The BTP has always maintained that mixtures of resins that are combined for ALARA purposes or operational efficiency can be classified on the basis of the mixture. This is a point often misinterpreted and misapplied. This paper will address options that can be exercised by the generator that can limit B and C waste generation by more rigorous tracking of generation and taking advantage of the normal mix of wastes. This can be achieved through the monitoring of reactor coolant chemistry data and coupled with our knowledge of radionuclide production mechanisms. This knowledge can be used to determine the overall accumulation of activity in ion-exchange resins and provides a 'real-time' waste classification determination of the resin and thereby provide a mechanism to reduce the production of waste that exceeds class A limits. It should be noted that this alternative approach, although rarely used in a nuclear power plant setting, is acknowledged in the original BTP on classification [3] as a viable option for determining radionuclide inventories for classification of waste. Also included is a discussion of an examination performed at the Byron plant to estimate radionuclide content in the

  2. Isotopic exchange processes in cold plasmas of H2/D2 mixtures.

    PubMed

    Jiménez-Redondo, Miguel; Carrasco, Esther; Herrero, Víctor J; Tanarro, Isabel

    2011-05-28

    Isotope exchange in low pressure cold plasmas of H(2)/D(2) mixtures has been investigated by means of mass spectrometric measurements of neutrals and ions, and kinetic model calculations. The measurements, which include also electron temperatures and densities, were performed in a stainless steel hollow cathode reactor for three discharge pressures: 1, 2 and 8 Pa, and for mixture compositions ranging from 100% H(2) to 100% D(2). The data are analyzed in the light of the model calculations, which are in good global agreement with the experiments. Isotope selective effects are found both in the surface recombination and in the gas-phase ionic chemistry. The dissociation of the fuel gas molecules is followed by wall recycling, which regenerates H(2) and D(2) and produces HD. Atomic recombination at the wall is found to proceed through an Eley-Rideal mechanism, with a preference for reaction of the adsorbed atoms with gas phase D atoms. The best fit probabilities for Eley-Rideal abstraction with H and D are: γ(ER H) = 1.5 × 10(-3), γ(ER D) = 2.0 × 10(-3). Concerning ions, at 1 Pa the diatomic species H(2)(+), D(2)(+) and HD(+), formed directly by electron impact, prevail in the distributions, and at 8 Pa, the triatomic ions H(3)(+), H(2)D(+), HD(2)(+) and D(3)(+), produced primarily in reactions of diatomic ions with molecules, dominate the plasma composition. In this higher pressure regime, the formation of the mixed ions H(2)D(+) and HD(2)(+) is favoured in comparison with that of H(3)(+) and D(3)(+), as expected on statistical grounds. The model results predict a very small preference, undetectable within the precision of the measurements, for the generation of triatomic ions with a higher degree of deuteration, which is probably a residual influence at room temperature of the marked zero point energy effects (ZPE), relevant for deuterium fractionation in interstellar space. In contrast, ZPE effects are found to be decisive for the observed distribution of

  3. Anion-exchange resin-based desulfurization process. Quarterly technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Sheth, A.C.; Dharmapurikar, R.

    1993-06-01

    Under DOE Grant No. FG22-90PC90309, the University of Tennessee Space Institute (UTSI) is contracted to further develop its anion-exchange, resin-based desulfurization concept to desulfurize alkali metal sulfates. From environmental as well as economic viewpoints, it is necessary to remove soluble sulfates from the wastes created by flue gas desulfurization systems. In order to do this economically, a low-cost desulfurization process for spent sorbents is necessary. UTSI`s anion-exchange resin-based desulfurization concept is believed to satisfy these requirements. UTSI has completed the batch mode experiments to locate the position of the CO{sub 3}{sup 2} and SO{sub 4}{sup 2} ions in the affinity chart. Also, the reviews of the ASPEN Code`s capabilities and EPRI-TAG document`s methodology are in progress for developing the Best Process Schematic and related economics. The fixed-bed experiments are also in progress to evaluate the cycle efficiency of the candidate resins. So far we have completed ten consecutive cycles of exhaustion/carbonation and regeneration for IRA-35 resin. Because of the past problems (now resolved) with the fixed-bed system, the addition of batch mode screening experiments, Christmas holidays and spring break, and the moving of UTSI`s Chemistry Laboratory to a new location, the program is about 6--8 weeks behind schedule, but well within the budget.

  4. Identification of the ligand-exchange process in the alkaline transition of horse heart cytochrome c.

    PubMed Central

    Gadsby, P M; Peterson, J; Foote, N; Greenwood, C; Thomson, A J

    1987-01-01

    Magnetic-circular-dichroism (m.c.d.) spectra over the wavelength range 300-2000 nm at room temperature and at 4.2K of horse heart cytochrome c are reported at a series of pH values between 7.8 and 11.0, encompassing the alkaline transition. The effect of glassing agents on the e.p.r. spectrum at various pH values is also reported. Comparison of these results with spectra obtained for the n-butylamine adduct of soybean leghaemoglobin support the hypothesis that lysine is the sixth ligand in the alkaline form of horse heart cytochrome c. The m.c.d. and e.p.r. spectra of horse heart cytochrome c in the presence of 1-methylimidazole have also been examined. These studies strongly suggest that histidine-18, the proximal ligand of the haem, is the ionizing group that triggers the alkaline transition. Low-temperature m.c.d. and e.p.r. spectra are also reported for Pseudomonas aeruginosa cytochrome c551. It is shown that no ligand exchange takes place at the haem in this species over the pH range 6.0-11.3. PMID:2823795

  5. RANS Simulation of Passive Scalar Residence Times and Exchange Processes in Idealized and Natural Stream Systems

    NASA Astrophysics Data System (ADS)

    Drost, Kevin; Jackson, Tracie; Haggerty, Roy; Apte, Sourabh

    2011-11-01

    Natural stream systems contain a variety of dead zones characterized by flow separation, a mixing layer, and a recirculation zone. These dead zones play an important role in stream solute transport studies. Previous published work has focused on idealized storage zone geometries studied in laboratory flumes. Using RANS simulations, this study first examines these idealized geometries to determine the appropriate scaling relationships between idealized dead zone geometries and the residence times of a passive scalar. These scaling relationships are then applied to measurements from natural systems. The field-measured geometries are located in Oak and Soap creeks near Corvallis, Oregon. Field measurements for the natural systems included: (a) survey measurements to delineate storage zone morphologies; (b) Marsh-McBirney and acoustic Doppler velocimetry measurements for model boundary conditions and computation of turbulence parameters; and (c) continuous salt injections within storage zones and electrical conductivity measurements at point locations in the main channel and storage zones to quantify exchange rates and residence times. This work is sponsored by NSF-EAR project #0943570.

  6. Molecular interactions, proton exchange, and photoinduced processes prompted by an inclusion process and a [2]pseudorotaxane formation.

    PubMed

    Mandal, Amal Kumar; Suresh, Moorthy; Kesharwani, Manoj K; Gangopadhyay, Monalisa; Agrawal, Manoj; Boricha, Vinod P; Ganguly, Bishwajit; Das, Amitava

    2013-09-20

    Appropriate design of the host and guest components allows formation of a novel [2]pseudorotaxane complex with an interrupted photoinduced electron transfer (PET)-coupled fluorescence resonance energy transfer (FRET) response. This is the first example of an inclusion complex with NO6-based azacrown ether as the host unit (H). Different guest molecules (G1, G2, G3, and G4) with varying stopper size are used for the studies. Unlike G1, G2, and G3, G4 with a relatively bulkier stopper fails to form a [2]pseudorotaxane complex. Isothermal titration microcalorimetry measurements reveal a systematic increase in the association constant for H·G1, H·G2, and H·G3 with a change in the stopper size. Thermodynamic data suggest that the formation of H·G1/H·G2/H·G3 is exclusively driven by a large positive entropic gain (TΔS = 19.69/26.80/21.81 kJ·mol(-1)), while the enthalpy change is slightly negative for H·G1/H·G3 (-2.61/-1.97 kJ·mol(-1)) and slightly positive for H·G2 (ΔH = 5.98 kJ·mol(-1)). For these three inclusion complexes, an interrupted PET-coupled FRET response is observed with varying efficiency, which is attributed to the subtle differences in acidity of the NH2(+) unit of the guest molecules and thus the proton exchange ability between the host and respective guest. This is substantiated by the results of the computational studies. PMID:23952368

  7. Extensive separations (CLEAN) processing strategy compared to TRUEX strategy and sludge wash ion exchange

    SciTech Connect

    Knutson, B.J.; Jansen, G.; Zimmerman, B.D.; Seeman, S.E.; Lauerhass, L.; Hoza, M.

    1994-08-01

    Numerous pretreatment flowsheets have been proposed for processing the radioactive wastes in Hanford`s 177 underground storage tanks. The CLEAN Option is examined along with two other flowsheet alternatives to quantify the trade-off of greater capital equipment and operating costs for aggressive separations with the reduced waste disposal costs and decreased environmental/health risks. The effect on the volume of HLW glass product and radiotoxicity of the LLW glass or grout product is predicted with current assumptions about waste characteristics and separations processes using a mass balance model. The prediction is made on three principal processing options: washing of tank wastes with removal of cesium and technetium from the supernatant, with washed solids routed directly to the glass (referred to as the Sludge Wash C processing strategy); the previous steps plus dissolution of the solids and removal of transuranic (TRU) elements, uranium, and strontium using solvent extraction processes (referred to as the Transuranic Extraction Option C (TRUEX-C) processing strategy); and an aggressive yet feasible processing strategy for separating the waste components to meet several main goals or objectives (referred to as the CLEAN Option processing strategy), such as the LLW is required to meet the US Nuclear Regulatory Commission Class A limits; concentrations of technetium, iodine, and uranium are reduced as low as reasonably achievable; and HLW will be contained within 1,000 borosilicate glass canisters that meet current Hanford Waste Vitrification Plant glass specifications.

  8. Enhanced ammonia nitrogen removal using consistent ammonium exchange of modified zeolite and biological regeneration in a sequencing batch reactor process.

    PubMed

    Wei, Yun Xia; Ye, Zheng Fang; Wang, Yao Long; Ma, Ming Guang; Li, Yan Feng

    2011-01-01

    Utilizing preferential ion exchange of the modified zeolite, the zeo-sequencing batch reactor (SBR) is recommended for a new nitrogen removal process. In this study, natural zeolite was modified by sodium chloride to enhance sorption capacity for ammoniacal nitrogen. The untreated and treated zeolite was characterized by XPS and XRD techniques. The sorption isotherm tests showed that equilibrium sorption data were better represented by the Langmuir model than by the Freundlich model. Treatment of natural zeolite by sodium chloride increased the sorption capacity for ammoniacal nitrogen removal from aqueous solutions. As a result of the continuous bioregeneration of ammonium saturated zeolite-floc in the SBR, the nitrogen removal efficiency of the zeo-SBR was relatively ideal. Scanning electron microscopy results showed that microbes were abundant in the zeo-SBR process.

  9. Influence of exchange group of modified glycidyl methacrylate polymer on phenol removal: A study by batch and continuous flow processes.

    PubMed

    Aversa, Thiago Muza; da Silva, Carla Michele Frota; da Rocha, Paulo Cristiano Silva; Lucas, Elizabete Fernandes

    2016-11-01

    Contamination of water by phenol is potentially a serious problem due to its high toxicity and its acid character. In this way some treatment process to remove or reduce the phenol concentration before contaminated water disposal on the environment is required. Currently, phenol can be removed by charcoal adsorption, but this process does not allow easy regeneration of the adsorbent. In contrast, polymeric resins are easily regenerated and can be reused in others cycles of adsorption process. In this work, the interaction of phenol with two polymeric resins was investigated, one of them containing a weakly basic anionic exchange group (GD-DEA) and the other, a strongly basic group (GD-QUAT). Both ion exchange resins were obtained through chemical modifications from a base porous resin composed of glycidyl methacrylate (GMA) and divinyl benzene (DVB). Evaluation tests with resins were carried out with 30 mg/L of phenol in water solution, at pH 6 and 10, employing two distinct processes: (i) batch, to evaluate the effect of temperature, and (ii) continuous flow, to assess the breakthrough of the resins. Batch tests revealed that the systems did not follow the model proposed by Langmuir due to the negative values obtained for the constant b and for the maximum adsorption capacity, Q0. However, satisfactory results for the constants KF and n allowed assuming that the behavior of systems followed the Freundlich model, leading to the conclusion that resin GD-DEA had the best interaction with the phenol when in a solution having pH 10 (phenoxide ions). The continuous flow tests corroborated this conclusion since the performance of GD-DEA in removing phenol was also best at pH 10, indicating that the greater availability of the electron pair in the resin with the weakly basic donor group contributed to enhance the resin's interaction with the phenoxide ions. PMID:27494606

  10. Anion-exchange resin-based desulfurization process. Annual technical progress report, October 1, 1991--September 30, 1992

    SciTech Connect

    Sheth, A.C.; Strevel, S.D.; Dharmapurikar, R.

    1992-12-31

    Under the current grant, the University of Tennessee Space Institute (UTSI) will carry out the bench scale evaluation and further development of the anion-exchange resin-based desulfurization concept to desulfurize alkali metal sulfates. This concept has been developed and patented by UTSI under US Patent No. 4,917,874. The developmental program proposed under this DOE grant includes screening of commercially available resins to select three candidate resins for further study. These three resins will undergo a series of experiments designed to test the resins` performance under different process conditions (including the use of spent MHD seed material). The best of these resins will be used in optimizing the regeneration step and in testing the effects of performance enhancers. The process schematic developed from the results will be used to estimate the related economics. During this reporting period, October 1, 1991 to September 30, 1992, analysis of batch mode screening experiments was completed to select three candidate resins for process variables study in the fixed-bed set-up. This setup was modified and the experiments were carded out to evaluate effects of major process variables. The analysis of fixed-bed experiments is going on and we have also started simple batch mode experiments to identify desirable conditions for resin regeneration step. We have also started simple process engineering type calculations to determine the trade-off between the solution concentration and the resulting evaporation/concentration load.

  11. HIDEN: A hybrid intelligent system for synthesizing highly controllable exchanger networks -- Implementation of a distributed strategy for integrating process design and control. [Hybrid Intelligent Design system for Exchanger Networks

    SciTech Connect

    Huang, Y.L. . Dept. of Chemical Engineering); Fan, L.T. . Dept. of Chemical Engineering)

    1994-05-01

    The development of computer-aided-design systems is the key step toward process design automation. The most difficult phase of this development is to endow the system with the capability to perform conceptual design, i.e., process synthesis. This is especially true when a synthesized process is expected to satisfy simultaneously economic and operational criteria. To meet these criteria, it is highly desirable that the first-principles and heuristic knowledge, which can be numerical or symbolic, structured or unstructured, be fully exploited and that the information and data, which can be precise or imprecise, certain or uncertain, be appropriately manipulated. In the present work, a hybrid intelligent design system for synthesizing exchanger networks (HIDEN) is developed by means of a knowledge-based approach, fuzzy logic, and neural networks. This system, built on an artificial intelligence workstation, fully implements the distributed strategy for integrating process design and control. It is capable of synthesizing heat exchanger networks (HEN's) and mass exchanger networks (MEN's) for the recovery of energy and material, respectively. The resulting exchanger networks are cost-effective as well as highly controllable.

  12. The Exchange of Soil Nitrite and Atmospheric HONO: a Missing Process in the Nitrogen Cycle and Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Cheng, Yafang; Su, Hang; Oswald, Robert; Behrendt, Thomas; Trebs, Ivonne; Meixner, Franz X.; Andreae, Meinrat O.; Pöschl, Ulrich

    2013-04-01

    Hydroxyl radicals (OH) are a key species in atmospheric photochemistry. In the lower atmosphere, up to ~30% of the primary OH radical production is attributed to the photolysis of nitrous acid (HONO), and field observations suggest a large missing source of HONO. The dominant sources of N(III) in soil, however, are biological nitrification and denitrification processes, which produce nitrite ions from ammonium (by nitrifying microbes) as well as from nitrate (by denitrifying microbes). We show that soil nitrite can release HONO and explain the reported strength and diurnal variation of the missing source. We also show that the soil-atmosphere exchange of N(III), though not considered in the N cycle, might result in significant amount of reactive nitrogen emission (comparable to soil NO emissions). Fertilized soils with low pH appear to be particularly strong sources of HONO and OH. Thus, agricultural activities and land-use changes may strongly influence the oxidizing capacity of the atmosphere. Because of the widespread occurrence of nitrite-producing microbes and increasing N and acid deposition, the release of HONO from soil may also be important in natural environments, including forests and boreal regions. In view of the potentially large impact on atmospheric chemistry and global environmental change, we recommend further studies of HONO release from soil nitrite and related processes in the biogeochemical cycling of N in both agricultural and natural environments. Reference: Su, H., Cheng, Y., et al., Soil Nitrite as a Source of Atmospheric HONO and OH Radicals, Science, 333, 1616-1618, 10.1126/science.1207687, 2011. Su, H., et al., The Exchange of Soil Nitrite and Atmospheric HONO: A Missing Process in the Nitrogen Cycle and Atmospheric Chemistry, NATO Science for Peace and Security Series C: Environmental Security, Springer Netherlands, 93-99, 2013.

  13. Land-atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model

    NASA Astrophysics Data System (ADS)

    Bonan, Gordon B.

    1995-02-01

    CO2 uptake during plant photosynthesis and CO2 loss during plant and microbial respiration were added to a land surface process model to simulate the diurnal and annual cycles of biosphere-atmosphere CO2 exchange. The model was coupled to a modified version of the National Center for Atmospheric Research (NCAR) Community Climate Model version 2 (CCM2), and the coupled model was run for 5 years. The geographic patterns of annual net primary production are qualitatively similar to other models. When compared by vegetation type, annual production and annual microbial respiration are consistent with other models, except for needleleaf evergreen tree vegetation, where production is too high, and semidesert vegetation, where production and microbial respiration are too low. The seasonality of the net CO2 flux agrees with other models in the southern hemisphere and the tropics. The diurnal range is large for photosynthesis and lower for plant and microbial respiration, which agrees with qualitative expectations. The simulation of the central United States is poor due to temperature and precipitation biases in the coupled model. Despite these deficiencies the current approach is a promising means to include terrestrial CO2 fluxes in a climate system model that simulates atmospheric CO2 concentrations, because it alleviates important parameterization discrepancies between standard biogeochemical models and the land surface models typically used in general circulation models, and because the model resolves the diurnal range of CO2 exchange, which can be large (15 - 45 micromol CO2 sq m/s).

  14. Air-snow exchange of nitrate: a modelling approach to investigate physicochemical processes in surface snow at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Bock, Josué; Savarino, Joël; Picard, Ghislain

    2016-10-01

    Snowpack is a multiphase (photo)chemical reactor that strongly influences the air composition in polar and snow-covered regions. Snowpack plays a special role in the nitrogen cycle, as it has been shown that nitrate undergoes numerous recycling stages (including photolysis) in the snow before being permanently buried in the ice. However, the current understanding of these physicochemical processes remains very poor. Several modelling studies have attempted to reproduce (photo)chemical reactions inside snow grains, but these have relied on strong assumptions to characterise snow reactive properties, which are not well defined. Air-snow exchange processes such as adsorption, solid-state diffusion, or co-condensation also affect snow chemical composition. Here, we present a physically based model of these processes for nitrate. Using as input a 1-year-long time series of atmospheric nitrate concentration measured at Dome C, Antarctica, our model reproduces with good agreement the nitrate measurements in the surface snow. By investigating the relative importance of the main exchange processes, this study shows that, on the one hand, the combination of bulk diffusion and co-condensation allows a good reproduction of the measurements (correlation coefficient r = 0.95), with a correct amplitude and timing of summer peak concentration of nitrate in snow. During winter, nitrate concentration in surface snow is mainly driven by thermodynamic equilibrium, whilst the peak observed in summer is explained by the kinetic process of co-condensation. On the other hand, the adsorption of nitric acid on the surface of the snow grains, constrained by an already existing parameterisation for the isotherm, fails to fit the observed variations. During winter and spring, the modelled concentration of adsorbed nitrate is respectively 2.5 and 8.3-fold higher than the measured one. A strong diurnal variation driven by the temperature cycle and a peak occurring in early spring are two other

  15. Processes for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil, and apparatuses for treating biomass-derived pyrolysis oil

    SciTech Connect

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-11-24

    Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed through the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.

  16. 22 CFR 41.57 - International cultural exchange visitors and visitors under the Irish Peace Process Cultural and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false International cultural exchange visitors and... AND NATIONALITY ACT, AS AMENDED Business and Media Visas § 41.57 International cultural exchange...) International cultural exchange visitors—(1) Requirements for classification under INA section...

  17. 45 CFR 155.315 - Verification process related to eligibility for enrollment in a QHP through the Exchange.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... eligible for enrollment in a QHP through the Exchange. (b) Validation of Social Security number. (1) For any individual who provides his or her Social Security number to the Exchange, the Exchange must transmit the Social Security number and other identifying information to HHS, which will submit it to...

  18. The MORENA Project: Shelf-ocean exchanges and transport processes along the continental margin in the European coastal upwelling region

    SciTech Connect

    Fiuza, A.F.G.; Perez, F.; Johnson, J.

    1994-12-31

    The MORENA Project (Multidisciplinary Oceanographic Research in the Eastern Boundary of the North Atlantic) is sponsored by the CEC MAST-2 Programme and has as general objective to measure, understand and model shelf-ocean exchange in a typical coastal upwelling region of the eastern boundary layer of the subtropical ocean. This is being attained through a multidisciplinary approach aimed at the quantitative understanding of the physical, chemical and biological processes involved in the transfer of matter (including salt, particulates, nutrients, organic compounds, biomass), momentum and energy across and along the shelf, the shelf break and the slope, in the Iberian region of the European Atlantic. MORENA has the following components: Observations, Modelling and Combined Analysis.

  19. Influence of nuclear exchange on nonadiabatic electron processes in H{sup +}+H{sub 2} collisions

    SciTech Connect

    Errea, L. F.; Illescas, Clara; Macias, A.; Mendez, L.; Rabadan, I.; Riera, A.; Pons, B.

    2010-12-28

    H{sup +}+H{sub 2} collisions are studied by means of a semiclassical approach that explicitly accounts for nuclear rearrangement channels in nonadiabatic electron processes. A set of classical trajectories is used to describe the nuclear motion, while the electronic degrees of freedom are treated quantum mechanically in terms of a three-state expansion of the collision wavefunction. We describe electron capture and vibrational excitation, which can also involve nuclear exchange and dissociation, in the E= 2-1000 eV impact energy range. We compare dynamical results obtained with two parametrizations of the potential energy surface of H{sub 3}{sup +} ground electronic state. Total cross sections for E > 10 eV agree with previous results using a vibronic close-coupling expansion, and with experimental data for E < 10 eV. Additionally, some prototypical features of both nuclear and electron dynamics at low E are discussed.

  20. What Can Be Learned from X-Ray Spectroscopy Concerning Hot Gas in the Local Bubble and Charge Exchange Processes?

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.

    2008-01-01

    Both solar wind charge exchange emission and diffuse thermal emission from the Local Bubble are strongly dominated in the soft X-ray band by lines from highly ionized elements. While both processes share many of the same lines, the spectra should differ significantly due to the different production mechanisms, abundances, and ionization states. Despite their distinct spectral signatures, current and past observatories have lacked the spectral resolution to adequately distinguish between the two sources. High-resolution X-ray spectroscopy instrumentation proposed for future missions has the potential to answer fundamental questions such as whether there is any hot plasma in the Local Hot Bubble, and if so, what are the abundances of the emitting plasma and whether the plasma is in equilibrium. Such instrumentation will provide dynamic information about the solar wind including data on ion species which are currently difficult to track. It will also make possible remote sensing of the solar wind.

  1. Cancellation of Glauber Gluon Exchange in the Double Drell-Yan Process

    NASA Astrophysics Data System (ADS)

    Diehl, Markus; Gaunt, Jonathan R.; Ostermeier, Daniel; Plößl, Peter; Schäfer, Andreas

    2016-06-01

    For any factorisation proof, a crucial step is a demonstration of the cancellation of so-called Glauber gluons. We summarise a recent paper in which we demonstrated this cancellation for double Drell-Yan production (the double parton scattering process in which a pair of electroweak gauge bosons is produced), both for the integrated cross section and for the cross section differential in the boson transverse momenta.

  2. A Comparison of Process-Scale Modeling and Measurements of Atmosphere-Snowpack Exchange of Nitrogen Oxides at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Murray, K. A.; Helmig, D.; Kramer, L. J.; Doskey, P. V.; Van Dam, B. A.; Seok, B.; Ganzeveld, L.

    2015-12-01

    Snowpack over glacial ice is a reservoir for reactive nitrogen gases. Previous studies indicate nitrogen oxides (NOx) are generated in snowpack interstitial air through photolysis of nitrate (NO3-). Gradients in NOx mixing ratios between snowpack interstitial air and the overlying atmosphere regulate NOx surface exchange, which affects the Arctic ozone budget and climate. To better understand the dynamics of cryosphere-atmosphere exchange of NOx in the Arctic, we use a 1-D process-scale model to evaluate measurements of NOxin and above the snowpack during March-May 2009 at Summit, Greenland. The model is based upon the processes previously presented in the snowpack chemistry and physics model, MISTRA-SNOW, which represents snow grains as spheres with surfaces uniformly coated by an aqueous phase. Modeled profiles of NO, NO2, and O3 up to ~ 2 meters deep into the snowpack for March-May 2009 have been compared to measured profiles and will be presented. During the March-May time period at Summit, low irradiances are observed during March, diurnal irradiance profiles are observed during April, and the sun never sets in May. The model results suggest a key chemical pathway for the formation of NO2 during "nighttime" that was previously unexplained. In addition, modeled 24-hour NOx fluxes are compared to measured NOx fluxes from a MET tower at Summit. Modeled fluxes of NOx in April 2009 are the same order of magnitude as the measurements; however, modeled fluxes of NOx deviate up to one order of magnitude from measurements in May 2009. A detailed analysis of the modeled/measured flux comparison will be presented.

  3. Reverse process of usual optical analysis of boson-exchange superconductors: impurity effects on s- and d-wave superconductors.

    PubMed

    Hwang, Jungseek

    2015-03-01

    We performed a reverse process of the usual optical data analysis of boson-exchange superconductors. We calculated the optical self-energy from two (MMP and MMP+peak) input model electron-boson spectral density functions using Allen's formula for one normal and two (s- and d-wave) superconducting cases. We obtained the optical constants including the optical conductivity and the dynamic dielectric function from the optical self-energy using an extended Drude model, and finally calculated the reflectance spectrum. Furthermore, to investigate impurity effects on optical quantities we added various levels of impurities (from the clean to the dirty limit) in the optical self-energy and performed the same reverse process to obtain the optical conductivity, the dielectric function, and reflectance. From these optical constants obtained from the reverse process we extracted the impurity-dependent superfluid densities for two superconducting cases using two independent methods (the Ferrel-Glover-Tinkham sum rule and the extrapolation to zero frequency of -ϵ1(ω)ω(2)); we found that a certain level of impurities is necessary to get a good agreement on results obtained by the two methods. We observed that impurities give similar effects on various optical constants of s- and d-wave superconductors; the greater the impurities the more distinct the gap feature and the lower the superfluid density. However, the s-wave superconductor gives the superconducting gap feature more clearly than the d-wave superconductor because in the d-wave superconductors the optical quantities are averaged over the anisotropic Fermi surface. Our results supply helpful information to see how characteristic features of the electron-boson spectral function and the s- and d-wave superconducting gaps appear in various optical constants including raw reflectance spectrum. Our study may help with a thorough understanding of the usual optical analysis process. Further systematic study of experimental

  4. K Basin Sludge Conditioning Process Testing Project Results from Test 4, ''Acid Digestion of Mixed-Bed Ion Exchange Resin''

    SciTech Connect

    Pool, K.H.; Delegard, C.H.; Schmidt, A.J.; Thornton, B.M.; Silvers, K.L.

    1999-04-02

    Approximately 73 m{sup 3} of heterogeneous solid material, ''sludge,'' (upper bound estimate, Packer 1997) have accumulated at the bottom of the K Basins in the 100 K Area of the Hanford Site. This sludge is a mixture of spent fuel element corrosion products, ion exchange materials (organic and inorganic), graphite-based gasket materials, iron and aluminum metal corrosion products, sand, and debris (Makenas et al. 1996, 1997). In addition, small amounts of polychlorinated biphenyls (PCBs) have been found. Ultimately, it is planned to transfer the K Basins sludge to the Hanford double shell tanks (DSTs). The Hanford Spent Nuclear Fuel (HSNF) project has conducted a number of evaluations to examine technology and processing alternatives to pretreat K Basin sludge to meet storage and disposal requirements. From these evaluations, chemical pretreatment has been selected to address criticality issues, reactivity, and the destruction or removal of PCBs before the K Basin sludge can be transferred to the DSTs. Chemical pretreatment, referred to as the K Basin sludge conditioning process, includes nitric acid dissolution of the sludge (with removal of acid insoluble solids), neutrons absorber addition, neutralization, and reprecipitation. Laboratory testing is being conducted by the Pacific Northwest National Laboratory (PNNL) to provide data necessary to develop the sludge conditioning process.

  5. Lower-stratospheric/upper-tropospheric exchange processes associated with tropical cyclones as observed by TOMS

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.

    1987-01-01

    Total ozone associated with western Atlantic and Pacific tropical cyclones at various stages of development were analyzed for the purpose of monitoring storm intensity and/or intensity changes. The analysis is based on total ozone measurements from the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS). Since ozone may be considered a passive tracer in the lower stratosphere and the ozone gradients are strongest just above the tropopause, fluctuations of total ozone are due to variations in tropopause height and/or changes in concentration within the column caused by vertical and horizontal advection. In the subtropical northern Pacific during August and September 1981, a negative correlation greater than 0.60 was found between upper-tropospheric geopotential heights near the tropopause level and total ozone. Preliminary results suggest that TOMS can be used to resolve the upper-troposphere structure in and around tropical cyclones and can provide an indication of those processes that help to intensify and maintain these storms.

  6. Multilayered composite proton exchange membrane and a process for manufacturing the same

    DOEpatents

    Santurri, Pasco R; Duvall, James H; Katona, Denise M; Mausar, Joseph T; Decker, Berryinne

    2015-05-05

    A multilayered membrane for use with fuel cells and related applications. The multilayered membrane includes a carrier film, at least one layer of an undoped conductive polymer electrolyte material applied onto the carrier film, and at least one layer of a conductive polymer electrolyte material applied onto the adjacent layer of polymer electrolyte material. Each layer of conductive polymer electrolyte material is doped with a plurality of nanoparticles. Each layer of undoped electrolyte material and doped electrolyte material may be applied in an alternating configuration, or alternatively, adjacent layers of doped conductive polymer electrolyte material is employed. The process for producing a multilayered composite membrane includes providing a carrier substrate and solution casting a layer of undoped conductive polymer electrolyte material and a layer of conductive polymer electrolyte material doped with nanoparticles in an alternating arrangement or in an arrangement where doped layers are adjacent to one another.

  7. Summary of innovative concepts for industrial process improvement: An experimental technology exchange

    SciTech Connect

    Conger, R.L.; Lee, V.E.; Buel, L.M.

    1995-08-01

    This document is a compilation of one-page technical briefs that summarize the highlights of thirty-eight innovations that were presented at the seventh Innovative Concepts Fair, held in Denver, Colorado on April 20--21, 1995. Sixteen of the innovations were funded through the Innovative Concepts Program, and twenty-two innovations represent other state or federally funded programs. The concepts in this year`s fair addressed innovations that can substantially improve industrial processes. Each tech brief describes the need for the proposed concept; the concept being proposed; and the concept`s economics and market potential, key experimental results, and future development needs. A contact block is also included with each flier.

  8. ISO 18629 PSL : A Standardized Language for Specifying and Exchanging Process Information

    SciTech Connect

    Pouchard, Line Catherine; Cutting-Decelle, A. F.; Michel, Jean-Jacques; Gruninger, Michael

    2006-01-01

    As enterprise integration increases, developers face increasingly complex problems related to interoperability. When enterprises collaborate, a common frame of reference or at least a common terminology is necessary for human-to-human, human-to-machine, and machine-to-machine communication. Ontology engineering offers a direction towards solving the inter-operability problems brought about by semantic obstacles related to the definitions of business terms and software classes. Ontology engineering is a set of tasks related to the development of ontologies for a particular domain. This paper is aimed at presenting the approach of ISO 18629, i.e., the Process Specification Language (PSL), to this problem. In the first part, the architecture of the standard is described, with the main features of the language. Then, the problems of the interoperability with PSL and the conformance to the standard are presented. The paper ends with an example showing the use of the standard for interoperability.

  9. Processing Information about Support Exchanges in Close Relationships: The Role of a Knowledge Structure.

    PubMed

    Turan, Bulent

    2016-01-01

    People develop knowledge of interpersonal interaction patterns (e.g., prototypes and schemas), which shape how they process incoming information. One such knowledge structure based on attachment theory was examined: the secure base script (the prototypic sequence of events when an attachment figure comforts a close relationship partner in distress). In two studies (N = 53 and N = 119), participants were shown animated film clips in which geometric figures depicted the secure base script and asked to describe the animations. Both studies found that many people readily recognize the secure-base script from these minimal cues quite well, suggesting that this script is not only available in the context of specific relationships (i.e., a relationship-specific knowledge): The generalized (abstract) structure of the script is also readily accessible, which would make it possible to apply it to any relationship (including new relationships). Regression analyses suggested that participants who recognized the script were more likely to (a) include more animation elements when describing the animations, (b) see a common theme in different animations, (c) create better organized stories, and (d) later recall more details of the animations. These findings suggest that access to this knowledge structure helps a person organize and remember relevant incoming information. Furthermore, in both Study 1 and Study 2, individual differences in the ready recognition of the script were associated with individual differences in having access to another related knowledge: indicators suggesting that a potential relationship partner can be trusted to be supportive and responsive at times of stress. Results of Study 2 also suggest that recognizing the script is associated with those items of an attachment measure that concern giving and receiving support. Thus, these knowledge structures may shape how people process support-relevant information in their everyday lives, potentially affecting

  10. Processing Information about Support Exchanges in Close Relationships: The Role of a Knowledge Structure

    PubMed Central

    Turan, Bulent

    2016-01-01

    People develop knowledge of interpersonal interaction patterns (e.g., prototypes and schemas), which shape how they process incoming information. One such knowledge structure based on attachment theory was examined: the secure base script (the prototypic sequence of events when an attachment figure comforts a close relationship partner in distress). In two studies (N = 53 and N = 119), participants were shown animated film clips in which geometric figures depicted the secure base script and asked to describe the animations. Both studies found that many people readily recognize the secure-base script from these minimal cues quite well, suggesting that this script is not only available in the context of specific relationships (i.e., a relationship-specific knowledge): The generalized (abstract) structure of the script is also readily accessible, which would make it possible to apply it to any relationship (including new relationships). Regression analyses suggested that participants who recognized the script were more likely to (a) include more animation elements when describing the animations, (b) see a common theme in different animations, (c) create better organized stories, and (d) later recall more details of the animations. These findings suggest that access to this knowledge structure helps a person organize and remember relevant incoming information. Furthermore, in both Study 1 and Study 2, individual differences in the ready recognition of the script were associated with individual differences in having access to another related knowledge: indicators suggesting that a potential relationship partner can be trusted to be supportive and responsive at times of stress. Results of Study 2 also suggest that recognizing the script is associated with those items of an attachment measure that concern giving and receiving support. Thus, these knowledge structures may shape how people process support-relevant information in their everyday lives, potentially affecting

  11. Processing Information about Support Exchanges in Close Relationships: The Role of a Knowledge Structure.

    PubMed

    Turan, Bulent

    2016-01-01

    People develop knowledge of interpersonal interaction patterns (e.g., prototypes and schemas), which shape how they process incoming information. One such knowledge structure based on attachment theory was examined: the secure base script (the prototypic sequence of events when an attachment figure comforts a close relationship partner in distress). In two studies (N = 53 and N = 119), participants were shown animated film clips in which geometric figures depicted the secure base script and asked to describe the animations. Both studies found that many people readily recognize the secure-base script from these minimal cues quite well, suggesting that this script is not only available in the context of specific relationships (i.e., a relationship-specific knowledge): The generalized (abstract) structure of the script is also readily accessible, which would make it possible to apply it to any relationship (including new relationships). Regression analyses suggested that participants who recognized the script were more likely to (a) include more animation elements when describing the animations, (b) see a common theme in different animations, (c) create better organized stories, and (d) later recall more details of the animations. These findings suggest that access to this knowledge structure helps a person organize and remember relevant incoming information. Furthermore, in both Study 1 and Study 2, individual differences in the ready recognition of the script were associated with individual differences in having access to another related knowledge: indicators suggesting that a potential relationship partner can be trusted to be supportive and responsive at times of stress. Results of Study 2 also suggest that recognizing the script is associated with those items of an attachment measure that concern giving and receiving support. Thus, these knowledge structures may shape how people process support-relevant information in their everyday lives, potentially affecting

  12. Boundary Layer Vertical Exchange Processes and the Mass Budget of Ozone: Observations and Model Results

    SciTech Connect

    Berkowitz, Carl M.; Fast, Jerome D.; Easter, Richard C.

    2000-06-16

    An Eulerian chemical model is used to assess the relative importance of a variety of processes associated with producing high surface ozone episodes during selected periods of the NARSTO 1995 field campaign over the northeastern United States. A comparison of the observed and predicted hourly surface ozone mixing ratios showed that the model qualitatively reproduced the observed ozone trends over the northeastern U.S. The model, however, over-predicted the surface concentrations by 10 to 15 ppb. The simulated mass budget tendency terms are compared for days with low ozone values immediately followed by days with high values. The later days showed observed and simulated ozone mixing ratios aloft to be of order twice that found on preceding days, although the associated chemical mix appeared to have relatively little potential for the subsequent generation of "new" ozone. Under conditions of shallow mixing over urban regions, simulated surface ozone production rates were negative (a net loss) throughout much of the day with convective mixing bringing newly produced ozone from aloft to the surface. It is noted that surface ozone levels appeared to be relatively insensitive to mixing layer growth rates.

  13. Engineering Analysis of Intermediate Loop and Process Heat Exchanger Requirements to Include Configuration Analysis and Materials Needs

    SciTech Connect

    T.M. Lillo; R.L. Williamson; T.R. Reed; C.B. Davis; D.M. Ginosar

    2005-09-01

    The need to locate advanced hydrogen production facilities a finite distance away from a nuclear power source necessitates the need for an intermediate heat transport loop (IHTL). This IHTL must not only efficiently transport energy over distances up to 500 meters but must also be capable of operating at high temperatures (>850oC) for many years. High temperature, long term operation raises concerns of material strength, creep resistance and general material stability (corrosion resistance). IHTL design is currently in the initial stages. Many questions remain to be answered before intelligent design can begin. The report begins to look at some of the issues surrounding the main components of an IHTL. Specifically, a stress analysis of a compact heat exchanger design under expected operating conditions is reported. Also the results of a thermal analysis performed on two ITHL pipe configurations for different heat transport fluids are presented. The configurations consist of separate hot supply and cold return legs as well as annular design in which the hot fluid is carried in an inner pipe and the cold return fluids travels in the opposite direction in the annular space around the hot pipe. The effects of insulation configurations on pipe configuration performance are also reported. Finally, a simple analysis of two different process heat exchanger designs, one a tube in shell type and the other a compact or microchannel reactor are evaluated in light of catalyst requirements. Important insights into the critical areas of research and development are gained from these analyses, guiding the direction of future areas of research.

  14. Modeling of a data exchange process in the Automatic Process Control System on the base of the universal SCADA-system

    NASA Astrophysics Data System (ADS)

    Topolskiy, D.; Topolskiy, N.; Solomin, E.; Topolskaya, I.

    2016-04-01

    In the present paper the authors discuss some ways of solving energy saving problems in mechanical engineering. In authors' opinion one of the ways of solving this problem is integrated modernization of power engineering objects of mechanical engineering companies, which should be intended for the energy supply control efficiency increase and electric energy commercial accounting improvement. The author have proposed the usage of digital current and voltage transformers for these purposes. To check the compliance of this equipment with the IEC 61850 International Standard, we have built a mathematic model of the data exchange process between measuring transformers and a universal SCADA-system. The results of modeling show that the discussed equipment corresponds to the mentioned Standard requirements and the usage of the universal SCADA-system for these purposes is preferable and economically reasonable. In modeling the authors have used the following software: MasterScada, Master OPC_DI_61850, OPNET.

  15. Review of Exchange Processes on Ganymede in View of Its Planetary Protection Categorisation

    NASA Astrophysics Data System (ADS)

    Grasset, O.; Bunce, E. J.; Coustenis, A.; Dougherty, M. K.; Erd, C.; Hussmann, H.; Jaumann, R.; Prieto-Ballesteros, O.

    2013-09-01

    The outer planet satellites are a rich and diverse set of planetary bodies, with great relevance to astrobiological studies, satisfying a number or all of the prerequisites for habitability. Some of them show evidence for organic chemistry in their atmospheres, surfaces or interiors. Many of the satellites, including the smallest, thus contain organic material. In addition, the largest satellites are believed to hide global-scale oceans within. During the earlier Galileo mission, strong evidence for the presence of an internal ocean was obtained at Europa. Since then, the evidence has accumulated for such sub-surface liquid water oceans to exist not only on Europa but also on the two other icy Galilean satellites, Ganymede, and Callisto. Our current understanding of the deep habitats has raised the question of the necessary measures regarding planetary protection procedures for future missions. Many of the science questions relate to the prospects for life and habitability in the Solar System. As a consequence, some of the future mission opportunities and their potential encounters with habitable zones raise serious questions about biological or organic forward contamination that may be caused by these missions. In the 2012 NAP report[1], it is suggested that Ganymede is of significant interest relative to the process of chemical evolution and the origin of life, but that there is only a remote chance that contamination by a spacecraft could compromise future investigations. Still, further studies were desired to assess the possibility, the timescale, and the mechanisms of transport of any organism from the surface to the liquid layer. This is the purpose of this work.

  16. SEEP II, Shelf Edge Exchange Processes-II: Chlorophyll a fluorescence, temperature, and beam attenuation measurements from moored fluorometers

    SciTech Connect

    Medeiros, W.H.; Wirick, C.D.

    1992-02-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. The first SEEP experiment (SEEP I) was across the outer continental shelf of New England during 1983--1984 and consisted of a series of nine cruises and a mooring array. The second experiment (SEEP II) focused specifically of the shelf/slope frontal region of the mid-Atlantic Bight off the Delmarva peninsula. This report presents data collected during SEEP II. The SEEP II experiment consisted of a series of ten cruises and mooring arrays as well as over-flights by NASA aircraft. The cruises were consecutively designated SEEP2-01 to SEEP2-10. Hydrographic data were collected on all cruises except SEEP2-04 and SEEP2-07 during which benthic processes were investigated. Mooring arrays were deployed during three cruises in the Spring, Summer and Winter of 1988. Brookhaven National Laboratory deployed sixteen fluorometer instrument packages on their moorings with sensors to measure: the in vivo fluorescence of phytoplankton, temperature, subsurface light, dissolved oxygen, and water transparency. Data from the fluorometer, temperature, and transmissometer sensors are reported herein.

  17. Shelf Edge Exchange Processes, II: SEEP2-08, R/V ENDEAVOR cruise 188. Hydrographic data report

    SciTech Connect

    Wilson, C.; Behrens, W.J.; Flagg, C.N.; Wallace, D.W.R.; Wilke, R.J.; Wyman, K.D.

    1989-12-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. Phase I of SEEP consisted of a series of nine cruises and a mooring array across the outer continental shelf of New England during 1983--1984 (Behrens and Flagg, 1986). Phase II focused specifically on the shelf/slope frontal region of the mid-Atlantic bight off the Delmarva Peninsula. This project consisted of a series of ten cruises, a mooring array, and a series of over-flights by NASA aircraft. Hydrographic data were collected on eight of the cruises, six of which were primarily mooring deployment or recovery cruises. The cruises were consecutively designated SEEP2-01 to SEEP2-10. Two cruises (SEEP2-04 and SEEP2-07) were dedicated to investigating benthic processes and hydrographic data were not collected.

  18. Recovery of salts from ion-exchange regeneration streams by a coupled nanofiltration-membrane distillation process.

    PubMed

    Jiříček, Tomáš; De Schepper, Wim; Lederer, Tomáš; Cauwenberg, Peter; Genné, Inge

    2015-01-01

    Ion-exchange tap water demineralization for process water preparation results in a saline regeneration wastewater (20-100 mS cm(-1)) that is increasingly problematic in view of discharge. A coupled nanofiltration-membrane distillation (NF-MD) process is evaluated for the recovery of water and sodium chloride from this wastewater. NF-MD treatment of mixed regeneration wastewater is compared to NF-MD treatment of separate anion- and cation-regenerate fractions. NF on mixed regeneration wastewater results in a higher flux (30 L m(-2) h(-1) at 7 bar) compared to NF on the separate fractions (6-9 L m(-2) h(-1) at 30 bar). NF permeate recovery is strongly limited by scaling (50% for separate and 60% for mixed, respectively). Physical signs of scaling were found during MD treatment of the NF permeates but did not result in flux decline for mixed regeneration wastewater. Final salt composition is expected to qualify as a road de-icing salt. NF-MD is an economically viable alternative compared to external disposal of wastewater for larger-scale installations (1.4 versus 2.5 euro m(-3) produced demineralized water for a 10 m3 regenerate per day plant). The cost benefits of water re-use and salt recuperation are small when compared to total treatment costs for mixed regenerate wastewater.

  19. Recovery of salts from ion-exchange regeneration streams by a coupled nanofiltration-membrane distillation process.

    PubMed

    Jiříček, Tomáš; De Schepper, Wim; Lederer, Tomáš; Cauwenberg, Peter; Genné, Inge

    2015-01-01

    Ion-exchange tap water demineralization for process water preparation results in a saline regeneration wastewater (20-100 mS cm(-1)) that is increasingly problematic in view of discharge. A coupled nanofiltration-membrane distillation (NF-MD) process is evaluated for the recovery of water and sodium chloride from this wastewater. NF-MD treatment of mixed regeneration wastewater is compared to NF-MD treatment of separate anion- and cation-regenerate fractions. NF on mixed regeneration wastewater results in a higher flux (30 L m(-2) h(-1) at 7 bar) compared to NF on the separate fractions (6-9 L m(-2) h(-1) at 30 bar). NF permeate recovery is strongly limited by scaling (50% for separate and 60% for mixed, respectively). Physical signs of scaling were found during MD treatment of the NF permeates but did not result in flux decline for mixed regeneration wastewater. Final salt composition is expected to qualify as a road de-icing salt. NF-MD is an economically viable alternative compared to external disposal of wastewater for larger-scale installations (1.4 versus 2.5 euro m(-3) produced demineralized water for a 10 m3 regenerate per day plant). The cost benefits of water re-use and salt recuperation are small when compared to total treatment costs for mixed regenerate wastewater. PMID:26177408

  20. Implications of weak Donnan potential in ion-exchange reactions. An alternate strategy for modeling sorption processes

    SciTech Connect

    Bhandari, V.M.

    1998-09-01

    Donnan potential generated during an ion-exchange process is conventionally believed to play an important role in partitioning co-ions in the resin and solution phases; most earlier studies implied near total exclusion of co-ions from the resin pores. The present work attempts to investigate implications of weak Donnan potential with specific reference to the sorption of acids on weak base resins. An alternate mathematical treatment has been proposed to describe the sorption behavior of any type of acid by assuming diffusion and sorption of single species, the composite acid molecule, in the resin pores. Fick`s law is then used to characterize the diffusion process. The proposed model is validated using data reported in the literature for the sorption of a strong monobasic acid (HCl) and also for a weak monobasic acid (HCOOH). The fit of the model is excellent, and the regressed values of the effective diffusion coefficient are shown to be reasonable and correct to the order of magnitude. The model is expected to offer a simpler and unified approach for modeling sorption behavior of different types of acids and will be more useful in problems of acid separation from mixtures.

  1. Utilization of Pt/Ru catalysts in MEA for fuel cell application by breathing process of proton exchange membrane

    NASA Astrophysics Data System (ADS)

    Yu, Kyung-Chul; Kim, Woo-Jae; Chung, Chan-Hwa

    Small direct-methanol fuel cells (DMFCs) have recently been highlighted as possible power sources for applications ranging from cellular phones and wireless digital devices to autonomous sensors and micro-electro mechanical devices. One of the key issues in commercializing miniaturized DMFCs for portable applications is to improve the electrochemical performance of the cells with a small quantity of catalysts. Up to now, the spraying or brush method has been used to fabricate a catalyst layer, which uses a slurry of nano-sized Pt or Pt/Ru catalysts. However, these methods produce a poor electrochemical interface that reduces the catalytic activity and the reproducibility of their performance tests. In this study, a unique process known as a "breathing process" was used to fabricate a catalytic electrode layer in a membrane-electrode-assembly (MEA) of DMFCs. The Pt/Ru nano-particles were loaded directly onto a proton exchange membrane using this breathing process. This process consisted of the following three steps: (1) the electrolyte membrane was fully swollen in water; (2) the swollen membrane was placed into an aprotic solvent, which induced the shrinkage of the membrane by driving the water out ("breathing out"); (3) the shrunken membrane was placed in an aqueous solution containing a suspension of Pt/Ru nano-particles. This induces the swelling of the membrane, and the suspended Pt/Ru nano-particles penetrate the membrane during this process ("breathing in"). It is possible to control the amount of catalysts loaded in the MEA by controlling the number of the cycles of such breathing processes. Compared with the fuel cell adopting the MEA fabricated by a conventional spraying method with the same amount of catalysts, the performance of this novel fuel cell was enhanced by approximately 4.5 mW cm -2 in case of the passive-type fuel cell and by 9.0 mW cm -2 in case of the active-type. This paper details the optimized process conditions along with other advanced

  2. Air-snow exchange of nitrate: a modelling approach to investigate physicochemical processes in surface snow at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Bock, Josué; Savarino, Joël; Picard, Ghislain

    2016-04-01

    Snowpack is a multiphase (photo)chemical reactor that strongly influences the air composition in polar and snow-covered regions. Snowpack plays a special role in the nitrogen cycle, as it has been shown that nitrate undergoes numerous recycling stages (including photolysis) in the snow before being permanently buried in the firn. However, the current understanding of these physicochemical processes remains very poor. Several modelling studies have attempted to reproduce (photo)chemical reactions inside snow grains, but these required strong assumptions to characterise snow reactive properties, which are not well defined. Physical processes such as adsorption, solid state diffusion and co-condensation also affect snow chemical composition. We developed a model including a physically based parameterisation of these air-snow exchange processes for nitrate. This modelling study divides into two distinct parts: firstly, surface concentration of nitrate adsorbed onto snow is calculated using existing isotherm parametrisation. Secondly, bulk concentration of nitrate in solid solution into the ice matrix is modelled. In this second approach, solid state diffusion drives the evolution of nitrate concentration inside a layered spherical snow grain. A physically-based parameterisation defining the concentration at the air-snow interface was developed to account for the the co-condensation process. The model uses as input a one-year long time series of atmospheric nitrate concentration measured at Dome C, Antarctica. The modelled nitrate concentration in surface snow is compared to field measurements. We show that on the one hand, the adsorption of nitric acid on the surface of the snow grains fails to fit the observed variations. During winter and spring, the modelled adsorbed concentration of nitrate is 2.5 and 8.3-fold higher than the measured one, respectively. A strong diurnal variation driven by the temperature cycle and a peak occurring in early spring are two other

  3. Intercalation chemistry in a LDH system: anion exchange process and staging phenomenon investigated by means of time-resolved, in situ X-ray diffraction.

    PubMed

    Taviot-Guého, Christine; Feng, Yongjun; Faour, Azzam; Leroux, Fabrice

    2010-07-14

    Using time-resolved, in situ energy-dispersive X-ray diffraction (EDXRD), the formation of interstratified LDH structures, with alternate interlayer spaces occupied by different anions, have been demonstrated during anion exchange reactions. Novel hybrid LDH nanostructures can thus be prepared, combining the physicochemical properties of two intercalated anions plus those of the LDH host. A general trend is that inorganic-inorganic anion exchange reactions occur in a one-step process while inorganic-organic exchanges may proceed via a second-stage intermediate, suggesting that staging occurs partly as a result of organic-inorganic separation. Yet, other influencing parameters must be considered such as LDH host composition, LDH affinity for different anions and LDH particle size as well as extrinsic parameters like the reaction temperature. Hence, a correlation between the occurrence of staging phenomenon and the difficulty of the exchange of the initial anion is observed, suggesting that staging is needed to overcome the energy barrier in the case of the exchange by organic anions. Notwithstanding the LiAl(2) system, staging has mainly been observed with Zn(2)Cr LDH host so far, a peculiar LDH composition with a unique Zn/Cr ratio of two and a local order of the cations within the hydroxide layers. The formation of a higher order-staged intermediate than stage two, observed during the exchange reaction of CO(3)(2-) or SO(4)(2-) anions with Zn(2)Cr-tartrate, is in favour of a Daumas-Herold model although this model implies a bending of LDH layers. The analysis of the X-ray powder diffraction pattern of Zn(2)Cr-Cl/tartrate second-stage intermediate, isolated almost as a pure phase during the exchange of Cl(-) with tartrate anions in Zn(2)Cr LDH, indicates a disorder in the stacking sequence and a relative proportion of the two kinds of interlayers slightly different from 50/50. Besides, the microstructural analysis of the XRD pattern reveals a great reduction of the

  4. High Resolution CH4 Emissions and Dissolved CH4 Measurements Elucidate Surface Gas Exchange Processes in Toolik Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Del Sontro, T.; Sollberger, S.; Kling, G. W.; Shaver, G. R.; Eugster, W.

    2013-12-01

    Approximately 14% of the Alaskan North Slope is covered in lakes of various sizes and depths. Diffusive carbon emissions (CH4 and CO2) from these lakes offset the tundra sink by ~20 %, but the offset would substantially increase if ebullitive CH4 emissions were also considered. Ultimately, arctic lake CH4 emissions are not insignificant in the global CH4 budget and their contribution is bound to increase due to impacts from climate change. Here we present high resolution CH4 emission data as measured via eddy covariance and a Los Gatos gas analyzer during the ice free period from Toolik Lake, a deep (20 m) Arctic lake located on the Alaskan North Slope, over the last few summers. Emissions are relatively low (< 25 mg CH4 m-2 d-1) with little variation over the summer. Diurnal variations regularly occur, however, with up to 3 times higher fluxes at night. Gas exchange is a relatively difficult process to estimate, but is normally done so as the product of the CH4 gradient across the air-water interface and the gas transfer velocity, k. Typically, k is determined based on the turbulence on the water side of the interface, which is most commonly approximated by wind speed; however, it has become increasingly apparent that this assumption does not remain valid across all water bodies. Dissolved CH4 profiles in Toolik revealed a subsurface peak in CH4 at the thermocline of up to 3 times as much CH4 as in the surface water. We hypothesize that convective mixing at night due to cooling surface waters brings the subsurface CH4 to the surface and causes the higher night fluxes. In addition to high resolution flux emission estimates, we also acquired high resolution data for dissolved CH4 in surface waters of Toolik Lake during the last two summers using a CH4 equilibrator system connected to a Los Gatos gas analyzer. Thus, having both the flux and the CH4 gradient across the air-water interface measured directly, we can calculate k and investigate the processes influencing

  5. Preliminary flowsheet: Ion exchange process for the separation of cesium from Hanford tank waste using Duolite{trademark} CS-100 resin

    SciTech Connect

    Eager, K.M.; Penwell, D.L.; Knutson, B.J.

    1994-12-01

    This preliminary flowsheet document describes an ion exchange process which uses Duolite{trademark} CS-100 resin to remove cesium from Hanford Tank waste. The flowsheet describes one possible equipment configuration, and contains mass balances based on that configuration with feeds of Neutralized Current Acid Waste, and Double Shell Slurry Feed. Process alternatives, unresolved issues, and development needs are discussed which relate to the process.

  6. Hydrogen and methanol exchange processes for (TMP)Rh-OCH3(CH3OH) in binary solutions of methanol and benzene.

    PubMed

    Sarkar, Sounak; Li, Shan; Wayland, Bradford B

    2011-04-18

    Tetramesityl porphinato rhodium(III) methoxide ((TMP)Rh-OCH(3)) binds with methanol in benzene to form a 1:1 methanol complex ((TMP)Rh-OCH(3)(CH(3)OH)) (1). Dynamic processes are observed to occur for the rhodium(III) methoxide methanol complex (1) that involve both hydrogen and methanol exchange. Hydrogen exchange between coordinated methanol and methoxide through methanol in solution results in an interchange of the environments for the non-equivalent porphyrin faces that contain methoxide and methanol ligands. Interchange of the environments of the coordinated methanol and methoxide sites in 1 produces interchange of the inequivalent mesityl o-CH(3) groups, but methanol ligand exchange occurs on one face of the porphyrin and the mesityl o-CH(3) groups remain inequivalent. Rate constants for dynamic processes are evaluated by full line shape analysis for the (1)H NMR of the mesityl o-CH(3) and high field methyl resonances of coordinated methanol and methoxide groups in 1. The rate constant for interchange of the inequivalent porphyrin faces is associated with hydrogen exchange between 1 and methanol in solution and is observed to increase regularly with the increase in the mole fraction of methanol. The rate constant for methanol ligand exchange between 1 and the solution varies with the solution composition and fluctuates in a manner that parallels the change in the activation energy for methanol diffusion which is a consequence of solution non-ideality from hydrogen bonded clusters.

  7. Anion-exchange resin-based desulfurization process. Quarterly technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Sheth, A.C.; Dharmapurikar, R.

    1993-09-01

    Under the current grant (No. DE-FG22-90PC90309), the University of Tennessee Space Institute (UTSI) will perform the bench scale evaluation and further development of the anion-exchange resin-based desulfurization concept to desulfurize alkali metal sulfates. The developmental program proposed under this DOE grant includes screening of commercially available resins to select three candidate resins for further study. These three resins will undergo a series of experiments designed to test the resins` performance under different process conditions (including the use of spent MHD seed material). The best of these resins will be used in optimizing the regeneration step and in testing the effects of performance enhancers. During this reporting period, April 1, 1993 to June 30, 1993, the procedure to evaluate the cycle efficiency of candidate resins in the fixed-bed mode was slightly modified to ensure complete regeneration of the exhausted resin. Using this revised procedure, ten consecutive cycles for all the three resins have been completed and the results are being analyzed.

  8. Morphology and photocatalytic property of hierarchical polyimide/ZnO fibers prepared via a direct ion-exchange process.

    PubMed

    Ding, Qianwei; Miao, Yue-E; Liu, Tianxi

    2013-06-26

    A simple and efficient method has been developed for preparing hierarchical nanostructures of polyimide (PI)/ZnO fibers by combining electrospinning and direct ion-exchange process. Poly(amic acid) (PAA) nanofibers are first prepared by electrospinning, and then, the electrospun PAA fibers are immersed into ZnCl2 solution. After a subsequent thermal treatment, imidization of PAA and formation of ZnO nanoparticles can be simultaneously achieved in one step to obtain PI/ZnO composite fibers. SEM images show that ZnO nanoparticles are densely and uniformly immobilized on the surface of electrospun PI fibers. Furthermore, the morphology of ZnO can be tuned from nanoplatelets to nanorods by changing the initial concentration of ZnCl2 solution. Photocatalytic degradation tests show an efficient degradation ability of PI/ZnO composite membranes toward organic dyes. Meanwhile, the free-standing membrane is highly flexible, easy to handle, and easy to retrieve, which enables its use in water treatment. This simple and inexpensive approach can also be applied to fabricating other hierarchically nanostructured composites.

  9. How do leader-member exchange quality and differentiation affect performance in teams? An integrated multilevel dual process model.

    PubMed

    Li, Alex Ning; Liao, Hui

    2014-09-01

    Integrating leader-member exchange (LMX) research with role engagement theory (Kahn, 1990) and role system theory (Katz & Kahn, 1978), we propose a multilevel, dual process model to understand the mechanisms through which LMX quality at the individual level and LMX differentiation at the team level simultaneously affect individual and team performance. With regard to LMX differentiation, we introduce a new configural approach focusing on the pattern of LMX differentiation to complement the traditional approach focusing on the degree of LMX differentiation. Results based on multiphase, multisource data from 375 employees of 82 teams revealed that, at the individual level, LMX quality positively contributed to customer-rated employee performance through enhancing employee role engagement. At the team level, LMX differentiation exerted negative influence on teams' financial performance through disrupting team coordination. In particular, teams with the bimodal form of LMX configuration (i.e., teams that split into 2 LMX-based subgroups with comparable size) suffered most in team performance because they experienced greatest difficulty in coordinating members' activities. Furthermore, LMX differentiation strengthened the relationship between LMX quality and role engagement, and team coordination strengthened the relationship between role engagement and employee performance. Theoretical and practical implications of the findings are discussed. PMID:25000359

  10. STRONTIUM AND ACTINIDE SORPTION BY MST AND MMST UNDER CONDITIONS REVELANT TO THE SMALL COLUMN ION-EXCHANGE PROCESS

    SciTech Connect

    Taylor-Pashow, K.; Hobbs, D.; Poirier, M.

    2011-05-06

    A series of tests were performed to examine the kinetics of Sr and actinide removal by monosodium titanate (MST) and modified monosodium titanate (mMST) under mixing conditions similar to what will be provided in the Small Column Ion Exchange (SCIX) Program. Similar removal kinetics were seen for two different mixing energies, indicating that under these conditions bulk solution transport is not the rate limiting step for Sr and actinide removal. Sr removal was found to be rapid for both MST and mMST, reaching steady-state conditions within six hours. In contrast, at least six weeks is necessary to reach steady-state conditions for Pu with MST. For mMST, steady-state conditions for Pu were achieved within two weeks. The actual contact time required for the SCIX process will depend on starting sorbate concentrations as well as the requirements for the decontaminated salt solution. During testing leaks occurred in both the MST and mMST tests and evidence of potential desorption was observed. The desorption likely occurred as a result of the change in solids to liquid phase ratio that occurred due to the loss of solution. Based on these results, Savannah River National Laboratory (SRNL) recommended additional testing to further study the effect of changing phase ratios on desorption. This testing is currently in progress and results will be documented in a separate report.

  11. Enhanced ammonia nitrogen removal using consistent biological regeneration and ammonium exchange of zeolite in modified SBR process.

    PubMed

    Jung, Jin-Young; Chung, Yun-Chul; Shin, Hang-Sik; Son, Dae-Hee

    2004-01-01

    The modified zeo-SBR is recommended for a new nitrogen removal process that has a special function of consistent ammonium exchange and bioregeneration of zeolite-floc. Three sets of sequencing batch reactors, control, zeo-SBR, and modified zeo-SBR were tested to assess nitrogen removal efficiency. The control reactor consisted of anoxic-fill, aeration-mixing, settling, and decanting/idle phases, meaning that nitrogen removal efficiency was dependent on the decanting volume in a cycle. The zeo-SBR reactor was operated in the same way as the control reactor, except for daily addition of powdered zeolite in the SBR reactor. The operating order sequences in the zeo-SBR were changed in the modified zeo-SBR. Anoxic-fill phase was followed by aeration-mixing phase in the zeo-SBR, while aeration-mixing phase was followed by anoxic-fill phase in the modified zeo-SBR to carry NH4(+)-N over to the next operational cycle and to reduce total nitrogen concentration in the effluent. In the modified zeo-SBR, nitrification and biological regeneration occurred during the initial aeration-mixing phase, while denitrification and ammonium adsorption occurred in the following anoxic-fill phase. The changed operational sequence in the modified zeo-SBR to adapt the ammonium adsorption and biological regeneration of the zeolite-floc could enhance nitrogen removal efficiency. As a result of the continuous operation, the nitrogen removal efficiencies of the control and zeo-SBR were in 68.5-70.9%, based on the 33% of decanting volume for a cycle. The zeo-SBR showed a consistent ammonium exchange and bio-regeneration in the anoxic-fill and aeration-mixing phases, respectively. Meanwhile, the effluent total nitrogen of the modified zeo-SBR showed 50-60 mg N/L through ammonium adsorption of the zeolite-floc when the influent ammonium concentration was 315 mg N/L, indicating the T-N removal efficiency was enhanced over 10% in the same HRT and SRT conditions as those of control and zeo

  12. The impact of fouling on the process performance of the thermal treatment of pig slurry using tubular heat exchangers.

    PubMed

    Cunault, C; Burton, C H; Pourcher, A M

    2013-03-15

    The aim of this study was to determine the kinetics of fouling and their influence on the performance of a thermal treatment process used for sanitisation of pig slurry. Two temperatures (55 °C and 80 °C) were investigated. One trial was carried out at 55 °C and 80 °C in which the slurry was not re-circulated and one trial at 80 °C in which 100% or 50% of the slurry was re-circulated. Fouling of the heat exchangers was assessed by on-line monitoring of the drop in pressure, changes in treatment temperature, heat transfer coefficients, heat recycling rate, and energy consumption. Similar energy consumption of around 38 kWh m(-3) of effluent was observed at the two temperatures. The operating periods prior to excessive fouling or blockage were 18 days at 55 °C and four days at 80 °C. Recycling treated manure to obtain 50% dilution of the raw feed increased the viable operating period to 14 days at 80 °C but doubled energy consumption. At 55 °C, the significant drop in the target temperature (>7 °C) with fouling severely jeopardised the process. The nature of the decline in performance suggests that the main fouling mechanisms were bio-fouling at 55 °C and organic/mineral deposits at 80 °C. Recycling treated manure enabled the operating period to be extended but increased the total cost of heating. One hundred percent recycling showed that the fouling potential of the manure was largely eliminated after one thermal treatment, suggesting a pretreatment may be advantageous. PMID:23376308

  13. A combined process of activated carbon adsorption, ion exchange resin treatment and membrane concentration for recovery of dissolved organics in pre-hydrolysis liquor of the kraft-based dissolving pulp production process.

    PubMed

    Shen, Jing; Kaur, Ishneet; Baktash, Mir Mojtaba; He, Zhibin; Ni, Yonghao

    2013-01-01

    To recover dissolved organics in pre-hydrolysis liquor (PHL) of the kraft-based dissolving pulp production process, a new combined process concept of sequential steps of activated carbon adsorption, ion exchange resin treatment, and membrane concentration, was proposed. The removal of lignin in the PHL was achieved in the activated carbon adsorption step, which also facilitates the subsequent operations, such as the membrane filtration and ion exchange resin treatment. The ion exchange resin treatment resulted in the removal/concentration of acetic acid, which opens the door for acetic acid recovery. The membrane filtration is to recover/concentrate the dissolved sugars. The combined process resulted in the production of PHL-based concentrate with relatively high concentration of hemicellulosic sugars, i.e., 22.13%.

  14. Excess titanium dioxide nanoparticles on the cell surface induce cytotoxicity by hindering ion exchange and disrupting exocytosis processes.

    PubMed

    Wang, Yanli; Yao, Chenjie; Li, Chenchen; Ding, Lin; Liu, Jian; Dong, Peng; Fang, Haiping; Lei, Zhendong; Shi, Guosheng; Wu, Minghong

    2015-08-14

    To date, considerable effort has been devoted to determine the potential toxicity of nanoparticles to cells and organisms. However, determining the mechanism of cytotoxicity induced by different types of nanoparticles remains challenging. Herein, typically low toxicity nanomaterials were used as a model to investigate the mechanism of cytotoxicity induced by low toxicity nanomaterials. We studied the effect of nano-TiO2, nano-Al2O3 and nano-SiO2 deposition films on the ion concentration on a cell-free system simulating the cell membrane. The results showed that the ion concentration of K(+), Ca(2+), Na(+), Mg(2+) and SO4(2-) decreased significantly following filtration of the prepared deposition films. More specifically, at a high nano-TiO2 concentration (200 mg L(-1)) and a long nano-TiO2 deposition time (48 h), the concentration of Na(+) decreased from 2958.01 to 2775.72, 2749.86, 2757.36, and 2719.82 mg L(-1), respectively, for the four types of nano-TiO2 studied. Likewise, the concentration of SO4(2-) decreased from 38.83 to 35.00, 35.80, 35.40, and 35.27 mg L(-1), respectively. The other two kinds of typical low toxicity nanomaterials (nano-Al2O3 and nano-SiO2) have a similar impact on the ion concentration change trend. Adsorption of ions on nanoparticles and the hydrated shell around the ions strongly hindered the ions through the nanoparticle films. The endocytosed nanoparticles could be released from the cells without inducing cytotoxicity. Hindering the ion exchange and disrupting the exocytosis process are the main factors that induce cytotoxicity in the presence of excess nano-TiO2 on the cell surface. The current findings may offer a universal principle for understanding the mechanism of cytotoxicity induced by low toxicity nanomaterials.

  15. Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system

    NASA Astrophysics Data System (ADS)

    Katul, Gabriel G.; Oren, Ram; Manzoni, Stefano; Higgins, Chad; Parlange, Marc B.

    2012-09-01

    The role of evapotranspiration (ET) in the global, continental, regional, and local water cycles is reviewed. Elevated atmospheric CO2, air temperature, vapor pressure deficit (D), turbulent transport, radiative transfer, and reduced soil moisture all impact biotic and abiotic processes controlling ET that must be extrapolated to large scales. Suggesting a blueprint to achieve this link is the main compass of this review. Leaf-scale transpiration (fe) as governed by the plant biochemical demand for CO2 is first considered. When this biochemical demand is combined with mass transfer formulations, the problem remains mathematically intractable, requiring additional assumptions. A mathematical "closure" that assumes stomatal aperture is autonomously regulated so as to maximize the leaf carbon gain while minimizing water loss is proposed, which leads to analytical expressions for leaf-scale transpiration. This formulation predicts well the effects of elevated atmospheric CO2 and increases in D on fe. The case of soil moisture stress is then considered using extensive gas exchange measurements collected in drought studies. Upscaling the fe to the canopy is then discussed at multiple time scales. The impact of limited soil water availability within the rooting zone on the upscaled ET as well as some plant strategies to cope with prolonged soil moisture stress are briefly presented. Moving further up in direction and scale, the soil-plant system is then embedded within the atmospheric boundary layer, where the influence of soil moisture on rainfall is outlined. The review concludes by discussing outstanding challenges and how to tackle them by means of novel theoretical, numerical, and experimental approaches.

  16. Excess titanium dioxide nanoparticles on the cell surface induce cytotoxicity by hindering ion exchange and disrupting exocytosis processes

    NASA Astrophysics Data System (ADS)

    Wang, Yanli; Yao, Chenjie; Li, Chenchen; Ding, Lin; Liu, Jian; Dong, Peng; Fang, Haiping; Lei, Zhendong; Shi, Guosheng; Wu, Minghong

    2015-07-01

    To date, considerable effort has been devoted to determine the potential toxicity of nanoparticles to cells and organisms. However, determining the mechanism of cytotoxicity induced by different types of nanoparticles remains challenging. Herein, typically low toxicity nanomaterials were used as a model to investigate the mechanism of cytotoxicity induced by low toxicity nanomaterials. We studied the effect of nano-TiO2, nano-Al2O3 and nano-SiO2 deposition films on the ion concentration on a cell-free system simulating the cell membrane. The results showed that the ion concentration of K+, Ca2+, Na+, Mg2+ and SO42- decreased significantly following filtration of the prepared deposition films. More specifically, at a high nano-TiO2 concentration (200 mg L-1) and a long nano-TiO2 deposition time (48 h), the concentration of Na+ decreased from 2958.01 to 2775.72, 2749.86, 2757.36, and 2719.82 mg L-1, respectively, for the four types of nano-TiO2 studied. Likewise, the concentration of SO42- decreased from 38.83 to 35.00, 35.80, 35.40, and 35.27 mg L-1, respectively. The other two kinds of typical low toxicity nanomaterials (nano-Al2O3 and nano-SiO2) have a similar impact on the ion concentration change trend. Adsorption of ions on nanoparticles and the hydrated shell around the ions strongly hindered the ions through the nanoparticle films. The endocytosed nanoparticles could be released from the cells without inducing cytotoxicity. Hindering the ion exchange and disrupting the exocytosis process are the main factors that induce cytotoxicity in the presence of excess nano-TiO2 on the cell surface. The current findings may offer a universal principle for understanding the mechanism of cytotoxicity induced by low toxicity nanomaterials.To date, considerable effort has been devoted to determine the potential toxicity of nanoparticles to cells and organisms. However, determining the mechanism of cytotoxicity induced by different types of nanoparticles remains challenging

  17. PAPER STUDY EVALUATIONS OF THE INTRODUCTION OF SMALL COLUMN ION EXCHANGE WASTE STREAMS TO THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Fox, K.; Edwards, T.; Stone, M.; Koopman, D.

    2010-06-29

    The objective of this paper study is to provide guidance on the impact of Monosodium Titanate (MST) and Crystalline Silicotitanate (CST) streams from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) flowsheet and glass waste form. A series of waste processing scenarios was evaluated, including projected compositions of Sludge Batches 8 through 17 (SB8 through SB17), MST additions, CST additions to Tank 40 or to a sludge batch preparation tank (Tank 42 or Tank 51, referred to generically as Tank 51 in this report), streams from the Salt Waste Processing Facility (SWPF), and two canister production rates. A wide array of potential glass frit compositions was used to support this assessment. The sludge and frit combinations were evaluated using the predictive models in the current DWPF Product Composition Control System (PCCS). The results were evaluated based on the number of frit compositions available for a particular sludge composition scenario. A large number of candidate frit compositions (e.g., several dozen to several hundred) is typically a good indicator of a sludge composition for which there is flexibility in forming an acceptable waste glass and meeting canister production rate commitments. The MST and CST streams will significantly increase the concentrations of certain components in glass, such as Nb{sub 2}O{sub 5}, TiO{sub 2}, and ZrO{sub 2}, to levels much higher than have been previously processed at DWPF. Therefore, several important assumptions, described in detail in the report, had to be made in performing the evaluations. The results of the paper studies, which must be applied carefully given the assumptions made concerning the impact of higher Ti, Zr, and Nb concentrations on model validity, provided several observations: (1) There was difficulty in identifying a reasonable number of candidate frits (and in some cases an inability to identify any candidate frits) when a waste loading of 40% is

  18. Capture and isotopic exchange method for water and hydrogen isotopes on zeolite catalysts up to technical scale for pre-study of processing highly tritiated water

    SciTech Connect

    Michling, R.; Braun, A.; Cristescu, I.; Dittrich, H.; Gramlich, N.; Lohr, N.; Glugla, M.; Shu, W.; Willms, S.

    2015-03-15

    Highly tritiated water (HTW) may be generated at ITER by various processes and, due to the excessive radio toxicity, the self-radiolysis and the exceedingly corrosive property of HTW, a potential hazard is associated with its storage and process. Therefore, the capture and exchange method for HTW utilizing Molecular Sieve Beds (MSB) was investigated in view of adsorption capacity, isotopic exchange performance and process parameters. For the MSB, different types of zeolite were selected. All zeolite materials were additionally coated with platinum. The following work comprised the selection of the most efficient zeolite candidate based on detailed parametric studies during the H{sub 2}/D{sub 2}O laboratory scale exchange experiments (about 25 g zeolite per bed) at the Tritium Laboratory Karlsruhe (TLK). For the zeolite, characterization analytical techniques such as Infrared Spectroscopy, Thermogravimetry and online mass spectrometry were implemented. Followed by further investigation of the selected zeolite catalyst under full technical operation, a MSB (about 22 kg zeolite) was processed with hydrogen flow rates up to 60 mol*h{sup -1} and deuterated water loads up to 1.6 kg in view of later ITER processing of arising HTW. (authors)

  19. What can be Learned from X-Ray Spectroscopy Concerning Hot Gas in the Local Bubble and Charge Exchange Processes

    NASA Technical Reports Server (NTRS)

    Snowden, Steven L.

    2007-01-01

    Solar wind charge exchange produces diffuse X-ray emission with a variable surface brightness comparable to that of the cosmic background. While the temporal variation of the charge exchange emission allows some separation of the components, there remains a great deal of uncertainty as to the zero level of both. Because the production mechanisms of the two components are considerably different, their spectra would provide critical diagnostics to the understanding of both. However, current X-ray observatories are very limited in both spectral resolution and sensitivity in the critical soft X-ray (less than 1.0 keV) energy range. Non-dispersive high-resolution spectrometers, such as the calorimeter proposed for the Spectrum Roentgen Gamma mission, will be extremely useful in distinguishing the cascade emission of charge exchange from the spectra of thermal bremsstrahlung cosmic plasmas.

  20. Wherever I may roam: Processes of self-esteem development from adolescence to emerging adulthood in the context of international student exchange.

    PubMed

    Hutteman, Roos; Nestler, Steffen; Wagner, Jenny; Egloff, Boris; Back, Mitja D

    2015-05-01

    Previous studies on self-esteem development show substantial changes as well as interindividual differences in change from adolescence to young adulthood. However, the processes underlying these developmental trajectories are still not well understood. The aim of the present study was to shed light on the macro- and microprocesses of self-esteem development. We investigated a sample of 876 German high school students (M = 16.0 years at Time 1) participating in an international exchange year. Exchange students provided 3 waves of trait self-esteem data (shortly before they departed, immediately after return, and 1 year later), as well as 9 monthly state measures of self-esteem and social inclusion during their stay abroad. In addition, a control group of high school students who stayed in Germany (N = 714) provided 2 waves of trait self-esteem data. From a macroperspective, results showed an effect of student exchange on trait self-esteem development: Exchange students showed a steeper mean-level increase and a lower rank-order stability compared with control students. Zooming in on the microprocesses underlying these developmental patterns, we found trait changes in exchange students to be mediated by state changes in self-esteem during their exchange. These fluctuations in state self-esteem were found to be predicted by feelings of social inclusion in the host country, and vice versa, providing support for both sociometer and self-broadcasting perspectives on self-esteem dynamics. In sum, our findings emphasize the importance of incorporating a microanalytical approach when investigating self-esteem development by showing that the environment triggers changes in this relatively stable personality trait through changes in states.

  1. Determination of {sup 16}O and {sup 18}O sensitivity factors and charge-exchange processes in low-energy ion scattering

    SciTech Connect

    Tellez, H.; Chater, R. J.; Fearn, S.; Symianakis, E.; Kilner, J. A.; Brongersma, H. H.

    2012-10-08

    Quantitative analysis in low-energy ion scattering (LEIS) requires an understanding of the charge-exchange processes to estimate the elemental sensitivity factors. In this work, the neutralization of He{sup +} scattered by {sup 18}O-exchanged silica at energies between 0.6 and 7 keV was studied. The process is dominated by Auger neutralization for E{sub i} < 0.8 keV. An additional mechanism starts above the reionization threshold. This collision-induced neutralization becomes the dominant mechanism for E{sub i} > 2 keV. The ion fractions P{sup +} were determined for Si and O using the characteristic velocity method to quantify the surface density. The {sup 18}O/{sup 16}O sensitivity ratio indicates an 18% higher sensitivity for the heavier O isotope.

  2. EXCHANGE PROCESSES OF VOLATILE ORGANIC COMPOUNDS ABOVE A TROPICAL RAIN FOREST: IMPLICATIONS FOR MODELING TROPOSPHERIC CHEMISTRY ABOVE DENSE VEGETATION

    EPA Science Inventory

    Measurements of bi-directional ammonia exchange over a fertilized soybean canopy are presented for an 8 week period during the summer of 2002. This modified Bowen-ratio approach was used to determine fluxes from vertical NH3 and temperature gradients in combination with eddy cova...

  3. 22 CFR 41.57 - International cultural exchange visitors and visitors under the Irish Peace Process Cultural and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Foreign Relations DEPARTMENT OF STATE VISAS VISAS: DOCUMENTATION OF NONIMMIGRANTS UNDER THE IMMIGRATION AND NATIONALITY ACT, AS AMENDED Business and Media Visas § 41.57 International cultural exchange... a petition does not establish that the alien is eligible to receive a nonimmigrant visa....

  4. An Experimental Investigation of the Process of Isotope Exchange that Takes Place when Heavy Water Is Exposed to the Atmosphere

    ERIC Educational Resources Information Center

    Deeney, F. A.; O'Leary, J. P.

    2009-01-01

    We have used the recently developed method for rapid measurement of maximum density temperature to determine the rate at which hydrogen and deuterium isotope exchange takes place when a sample of heavy water is exposed to the atmosphere. We also provide a simple explanation for the observed linear rate of transition. (Contains 2 figures.)

  5. K2CO3-promoted formation of aryl esters from primary aryl amides by the acyl-acyl exchange process.

    PubMed

    Bian, Yongjun; Qu, Xingyu

    2016-04-28

    A new acyl-acyl exchange reaction has been developed for the formation of aryl esters from primary aryl amides. The reaction could occur under mild reaction conditions with catalytic quantities of K2CO3, and could afford moderate to good yields of the desired products. PMID:27035611

  6. Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: a case study from northwestern Saudi Arabia.

    PubMed

    Zaidi, Faisal K; Nazzal, Yousef; Jafri, Muhammad Kamran; Naeem, Muhammad; Ahmed, Izrar

    2015-10-01

    Assessment of groundwater quality is of utmost significance in arid regions like Saudi Arabia where the lack of present-day recharge and high evaporation rates coupled with increasing groundwater withdrawal may restrict its usage for domestic or agricultural purposes. In the present study, groundwater samples collected from agricultural farms in Hail (15 samples), Al Jawf (15 samples), and Tabuk (30 samples) regions were analyzed for their major ion concentration. The objective of the study was to determine the groundwater facies, the main hydrochemical process governing the groundwater chemistry, the saturation index with respect to the principal mineral phases, and the suitability of the groundwater for irrigational use. The groundwater samples fall within the Ca-Cl type, mixed Ca-Mg-Cl type, and Na-Cl type. Evaporation and reverse ion exchange appear to be the major processes controlling the groundwater chemistry though reverse ion exchange process is the more dominating factor. The various ionic relationships confirmed the reverse ion exchange process where the Ca and Mg in the aquifer matrix have been replaced by Na at favorable exchange sites. This phenomenon has accounted for the dominance of Ca and Mg ions over Na ion at all the sites. The process of reverse ion exchange was further substantiated by the use of modified Piper diagram (Chadha's classification) and the chloro-alkaline indices. Evaporation as a result of extreme aridity has resulted in the groundwater being oversaturated with aragonite/calcite and dolomite as revealed by the saturation indices. The groundwater samples were classified as safe (less than 10) in terms of sodium adsorption ratio (SAR) values, good (less than 1.25) in terms of residual sodium carbonate (RSC) values, and safe to moderate (between 0 and 3) in terms of Mg hazard for irrigation purposes. Though the high salinity groundwater in the three regions coupled with low SAR values are good for the soil structure, it can have a

  7. Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: a case study from northwestern Saudi Arabia.

    PubMed

    Zaidi, Faisal K; Nazzal, Yousef; Jafri, Muhammad Kamran; Naeem, Muhammad; Ahmed, Izrar

    2015-10-01

    Assessment of groundwater quality is of utmost significance in arid regions like Saudi Arabia where the lack of present-day recharge and high evaporation rates coupled with increasing groundwater withdrawal may restrict its usage for domestic or agricultural purposes. In the present study, groundwater samples collected from agricultural farms in Hail (15 samples), Al Jawf (15 samples), and Tabuk (30 samples) regions were analyzed for their major ion concentration. The objective of the study was to determine the groundwater facies, the main hydrochemical process governing the groundwater chemistry, the saturation index with respect to the principal mineral phases, and the suitability of the groundwater for irrigational use. The groundwater samples fall within the Ca-Cl type, mixed Ca-Mg-Cl type, and Na-Cl type. Evaporation and reverse ion exchange appear to be the major processes controlling the groundwater chemistry though reverse ion exchange process is the more dominating factor. The various ionic relationships confirmed the reverse ion exchange process where the Ca and Mg in the aquifer matrix have been replaced by Na at favorable exchange sites. This phenomenon has accounted for the dominance of Ca and Mg ions over Na ion at all the sites. The process of reverse ion exchange was further substantiated by the use of modified Piper diagram (Chadha's classification) and the chloro-alkaline indices. Evaporation as a result of extreme aridity has resulted in the groundwater being oversaturated with aragonite/calcite and dolomite as revealed by the saturation indices. The groundwater samples were classified as safe (less than 10) in terms of sodium adsorption ratio (SAR) values, good (less than 1.25) in terms of residual sodium carbonate (RSC) values, and safe to moderate (between 0 and 3) in terms of Mg hazard for irrigation purposes. Though the high salinity groundwater in the three regions coupled with low SAR values are good for the soil structure, it can have a

  8. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    SciTech Connect

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-08-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission`s ``Technical Position on Waste Form`` (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity.

  9. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    SciTech Connect

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-01-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission's Technical Position on Waste Form'' (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity.

  10. Optimizing liquid waste treatment processing in PWRs: focus on modeling of the variation of ion-exchange resins selectivity coefficients

    SciTech Connect

    Gressier, Frederic; Van der Lee, Jan; Schneider, Helene; Bachet, Martin; Catalette, Hubert

    2007-07-01

    A bibliographic survey has highlighted the essential role of selectivity on resin efficiency, especially the variation of selectivity coefficients in function of the resin saturation state and the operating conditions. This phenomenon has been experimentally confirmed but is not yet implemented into an ion-exchange model specific for resins. This paper reviews the state of the art in predicting sorption capacity of ion-exchange resins. Different models accounting for ions activities inside the resin phase are available. Moreover, a comparison between the values found in the literature and our results has been done. The results of sorption experiments of cobalt chloride on a strong cationic gel type resin used in French PWRs are presented. The graph describing the variation of selectivity coefficient with respect to cobalt equivalent fraction is drawn. The parameters determined by the analysis of this graph are injected in a new physico-chemical law. Implementation of this model in the chemical speciation simulation code CHESS enables to study the overall effect of this approach for the sorption in a batch. (authors)

  11. Chemical fractionation and speciation modelling for optimization of ion-exchange processes to recover palladium from industrial wastewater.

    PubMed

    Folens, K; Van Hulle, S; Vanhaecke, F; Du Laing, G

    2016-01-01

    Palladium is used in several industrial applications and, given its high intrinsic value, intense efforts are made to recover the element. In this hydrometallurgic perspective, ion-exchange (IEX) technologies are principal means. Yet, without incorporating the chemical and physical properties of the Pd present in real, plant-specific conditions, the recovery cannot reach its technical nor economic optimum. This study characterized a relevant Pd-containing waste stream of a mirror manufacturer to provide input for a speciation model, predicting the Pd speciation as a function of pH and chloride concentration. Besides the administered neutral PdCl2 form, both positively and negatively charged [PdCln](2-n) species occur depending on the chloride concentration in solution. Purolite C100 and Relite 2AS IEX resins were selected and applied in combination with other treatment steps to optimize the Pd recovery. A combination of the cation and anion exchange resins was found successful to quantitatively recover Pd. Given the fact that Pd was also primarily associated with particles, laboratory-scale experiments focused on physical removal of the Pd-containing flow were conducted, which showed that particle-bound Pd can already be removed by physical pre-treatment prior to IEX, while the ionic fraction remains fully susceptible to the IEX mechanism. PMID:27054747

  12. Chemical fractionation and speciation modelling for optimization of ion-exchange processes to recover palladium from industrial wastewater.

    PubMed

    Folens, K; Van Hulle, S; Vanhaecke, F; Du Laing, G

    2016-01-01

    Palladium is used in several industrial applications and, given its high intrinsic value, intense efforts are made to recover the element. In this hydrometallurgic perspective, ion-exchange (IEX) technologies are principal means. Yet, without incorporating the chemical and physical properties of the Pd present in real, plant-specific conditions, the recovery cannot reach its technical nor economic optimum. This study characterized a relevant Pd-containing waste stream of a mirror manufacturer to provide input for a speciation model, predicting the Pd speciation as a function of pH and chloride concentration. Besides the administered neutral PdCl2 form, both positively and negatively charged [PdCln](2-n) species occur depending on the chloride concentration in solution. Purolite C100 and Relite 2AS IEX resins were selected and applied in combination with other treatment steps to optimize the Pd recovery. A combination of the cation and anion exchange resins was found successful to quantitatively recover Pd. Given the fact that Pd was also primarily associated with particles, laboratory-scale experiments focused on physical removal of the Pd-containing flow were conducted, which showed that particle-bound Pd can already be removed by physical pre-treatment prior to IEX, while the ionic fraction remains fully susceptible to the IEX mechanism.

  13. Exchange Processes in Shibasaki's Rare Earth Alkali Metal BINOLate Frameworks and Their Relevance in Multifunctional Asymmetric Catalysis.

    PubMed

    Robinson, Jerome R; Gu, Jun; Carroll, Patrick J; Schelter, Eric J; Walsh, Patrick J

    2015-06-10

    Shibasaki's rare earth alkali metal BINOLate (REMB) catalysts (REMB; RE = Sc, Y, La - Lu; M = Li, Na, K; B = 1,1-bi-2-naphtholate; RE/M/B = 1/3/3) are among the most successful enantioselective catalysts and have been employed in a broad range of mechanistically diverse reactions. Despite the phenomenal success of these catalysts, several fundamental questions central to their reactivity remain unresolved. Combined reactivity and spectroscopic studies were undertaken to probe the identity of the active catalyst(s) in Lewis-acid (LA) and Lewis-acid/Brønsted-base (LA/BB) catalyzed reactions. Exchange spectroscopy provided a method to obtain rates of ligand and alkali metal self-exchange in the RE/Li frameworks, demonstrating the utility of this technique for probing solution dynamics of REMB catalysts. Isolation of the first crystallographically characterized REMB complex with substrate bound enabled stoichiometric and catalytic reactivity studies, wherein we observed that substrate deprotonation by the catalyst framework was necessary to achieve selectivity. Our spectroscopic observations in LA/BB catalysis are inconsistent with previous mechanistic proposals, which considered only tris(BINOLate) species as active catalysts. These findings significantly expand our understanding of the catalyst structure in these privileged multifunctional frameworks and identify new directions for development of new catalysts. PMID:25968561

  14. Northeast utilities, Millstone station experience with Eichrom Industries` Diphonix{trademark} selective ion exchange resin in liquid radwaste processing, update, May 30, 1995

    SciTech Connect

    Peiffer, D.; Jassin, L.

    1995-11-01

    The three nuclear units at Millstone station, GE BRW (unit 1), C-E PRW (unit 2) and Westinghouse PWR (unit 3), have completed a series of bench top and side stream pilot scale tests of Eichrom`s DiphoniXTm resin, a novel gel type ion exchange resin. This testing was part of an overall optimization of their radwaste systems. The optimization also included a review of coagulants and cesium specific materials. The project has been so successful that Millstone now operates with Diphonix resin in Unit 2 and is expanding its use to Unit 1. These installations provide Millstone with an effective means of minimizing spent resin generation from their liquid radwaste systems and provide an effective means of minimizing the activity discharged into the environment. The liquid radwaste processed by these systems contains sodium, calcium, chloride and sulfate ions at concentrations approximately one billion times those of the radioactive components present. Standard mixed bed resins are exhausted by exchanging the sodium, calcium, chloride and sulfate ions. The resin`s exchange capacity is consumed by the common ions allowing the radioactive components to pass through. The result is the need to replace resin beds at a much higher frequency than desirable. Diphonix resin differs from typical cation exchange resin through its unique combination of diphosphonic acid and sulfonic acid functional groups which exhibit selectivity for Co, Zn and other transition metals over sodium and calcium (2). Samples of radwaste liquids from each Millstone unit were passed through laboratory scale columns of Diphonix resin. These tests demonstrated that Diphonix resin was capable of removing all detectable cationic Co-58, Co-60 and Zn-65. In another test, a side stream was taken from the discharge of unit I`s radwaste system carbon bed effluent and passed through a column of Diphonix resin over a period of months.

  15. Heterodimers formed through a partial anionic exchange process: scanning tunneling spectroscopy to monitor bands across the junction vis-à-vis photoinduced charge separation

    NASA Astrophysics Data System (ADS)

    Bera, Abhijit; Saha, Sudip K.; Pal, Amlan J.

    2015-10-01

    We report controlled formation of heterodimers and their charge separation properties. CdS|CdTe heterodimers were formed through an anionic exchange process of CdS nanostructures. With control over the duration of the anionic exchange process, bulk|dot, bulk|bulk, and then dot|bulk phases of the semiconductors could be observed to have formed. A mapping of density of states as derived from scanning tunneling spectroscopy (STS) brought out conduction and valence band-edges along the nanostructures and heterodimers. The CdS|CdTe heterodimers evidenced a type-II band-alignment between the semiconductors along with the formation of a depletion region at the interface. The width (of the depletion region) and the energy-offset at the interface depended on the size of the semiconductors. We report that the width that is instrumental for photoinduced charge separation in the heterodimers has a direct correlation with the performance of hybrid bulk-heterojunction solar cells based on the nanostructures in a polymer matrix.We report controlled formation of heterodimers and their charge separation properties. CdS|CdTe heterodimers were formed through an anionic exchange process of CdS nanostructures. With control over the duration of the anionic exchange process, bulk|dot, bulk|bulk, and then dot|bulk phases of the semiconductors could be observed to have formed. A mapping of density of states as derived from scanning tunneling spectroscopy (STS) brought out conduction and valence band-edges along the nanostructures and heterodimers. The CdS|CdTe heterodimers evidenced a type-II band-alignment between the semiconductors along with the formation of a depletion region at the interface. The width (of the depletion region) and the energy-offset at the interface depended on the size of the semiconductors. We report that the width that is instrumental for photoinduced charge separation in the heterodimers has a direct correlation with the performance of hybrid bulk

  16. The Na+/H+ Exchanger NHE6 Modulates Endosomal pH to Control Processing of Amyloid Precursor Protein in a Cell Culture Model of Alzheimer Disease*

    PubMed Central

    Prasad, Hari; Rao, Rajini

    2015-01-01

    Early intervention may be key to safe and effective therapies in patients with Alzheimer disease. Endosomal dysfunction is an early step in neurodegeneration. Endosomes are a major site of production of Aβ peptide from the processing of amyloid precursor protein (APP) by clipping enzymes (β- and γ-secretases). The β-secretase enzyme BACE1 requires acidic lumen pH for optimum function, and acid pH promotes Aβ aggregation. The Na+/H+ exchanger NHE6 provides a leak pathway for protons, limiting luminal acidification by proton pumps. Like APP, NHE6 expression was induced upon differentiation of SH-SY5Y neuroblastoma cells and localized to an endosomal compartment. Therefore, we investigated whether NHE6 expression altered APP localization and processing in a stably transfected cell culture model of human APP expression. We show that co-expression with NHE6 or treatment with the Na+/H+ ionophore monensin shifted APP away from the trans-Golgi network into early and recycling endosomes in HEK293 cells. NHE6 alkalinized the endosomal lumen, similar to monensin, and significantly attenuated APP processing and Aβ secretion. In contrast, Aβ production was elevated upon NHE6 knockdown. We show that NHE6 transcript and protein levels are lowered in Alzheimer brains relative to control. These findings, taken together with emerging genetic evidence linking endosomal Na+/H+ exchangers with Alzheimer disease, suggest that proton leak pathways may regulate Aβ generation and contribute to disease etiology. PMID:25561733

  17. Correlation of the antimicrobial activity of salicylaldehydes with broadening of the NMR signal of the hydroxyl proton. Possible involvement of proton exchange processes in the antimicrobial activity.

    PubMed

    Elo, Hannu; Kuure, Matti; Pelttari, Eila

    2015-03-01

    Certain substituted salicylaldehydes are potent antibacterial and antifungal agents and some of them merit consideration as potential chemotherapeutic agents against Candida infections, but their mechanism of action has remained obscure. We report here a distinct correlation between broadening of the NMR signal of the hydroxyl proton of salicylaldehydes and their activity against several types of bacteria and fungi. When proton NMR spectra of the compounds were determined using hexadeuterodimethylsulfoxide as solvent and the height of the OH proton signal was measured, using the signal of the aldehyde proton as an internal standard, it was discovered that a prerequisite of potent antimicrobial activity is that the proton signal is either unobservable or relatively very low, i.e. that it is extremely broadened. Thus, none of the congeners whose OH proton signal was high were potent antimicrobial agents. Some congeners that gave a very low OH signal were, however, essentially inactive against the microbes, indicating that although drastic broadening of the OH signal appears to be a prerequisite, also other (so far unknown) factors are needed for high antimicrobial activity. Because broadening of the hydroxyl proton signal is related to the speed of the proton exchange process(es) involving that proton, proton exchange may be involved in the mechanism of action of the compounds. Further studies are needed to analyze the relative importance of different factors (such as electronic effects, strength of the internal hydrogen bond, co-planarity of the ring and the formyl group) that determine the rates of those processes. PMID:25621992

  18. The Na+/H+ exchanger NHE6 modulates endosomal pH to control processing of amyloid precursor protein in a cell culture model of Alzheimer disease.

    PubMed

    Prasad, Hari; Rao, Rajini

    2015-02-27

    Early intervention may be key to safe and effective therapies in patients with Alzheimer disease. Endosomal dysfunction is an early step in neurodegeneration. Endosomes are a major site of production of Aβ peptide from the processing of amyloid precursor protein (APP) by clipping enzymes (β- and γ-secretases). The β-secretase enzyme BACE1 requires acidic lumen pH for optimum function, and acid pH promotes Aβ aggregation. The Na(+)/H(+) exchanger NHE6 provides a leak pathway for protons, limiting luminal acidification by proton pumps. Like APP, NHE6 expression was induced upon differentiation of SH-SY5Y neuroblastoma cells and localized to an endosomal compartment. Therefore, we investigated whether NHE6 expression altered APP localization and processing in a stably transfected cell culture model of human APP expression. We show that co-expression with NHE6 or treatment with the Na(+)/H(+) ionophore monensin shifted APP away from the trans-Golgi network into early and recycling endosomes in HEK293 cells. NHE6 alkalinized the endosomal lumen, similar to monensin, and significantly attenuated APP processing and Aβ secretion. In contrast, Aβ production was elevated upon NHE6 knockdown. We show that NHE6 transcript and protein levels are lowered in Alzheimer brains relative to control. These findings, taken together with emerging genetic evidence linking endosomal Na(+)/H(+) exchangers with Alzheimer disease, suggest that proton leak pathways may regulate Aβ generation and contribute to disease etiology.

  19. Fragment-based Quantum Mechanical/Molecular Mechanical Simulations of Thermodynamic and Kinetic Process of the Ru2+–Ru3+ Self-Exchange Electron Transfer

    PubMed Central

    Zeng, Xiancheng; Hu, Xiangqian; Yang, Weitao

    2013-01-01

    A fragment-based fractional number of electron (FNE) approach, is developed to study entire electron transfer (ET) processes from the electron donor region to the acceptor region in condensed phase. Both regions are described by the density-fragment interaction (DFI) method while FNE as an efficient ET order parameter is applied to simulate the electron transfer process. In association with the QM/MM energy expression, the DFI-FNE method is demonstrated to describe ET processes robustly with the Ru2+-Ru3+ self-exchange ET as a proof-of-concept example. This method allows for systematic calculations of redox free energies, reorganization energies, and electronic couplings, and the absolute ET rate constants within the Marcus regime. PMID:23682243

  20. Microtube strip heat exchanger

    SciTech Connect

    Doty, F.D.

    1991-10-16

    This progress report is for the September--October 1991 quarter. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.

  1. CdS and CdS/CdSe sensitized ZnO nanorod array solar cells prepared by a solution ions exchange process

    SciTech Connect

    Chen, Ling; Gong, Haibo; Zheng, Xiaopeng; Zhu, Min; Zhang, Jun; Yang, Shikuan; Cao, Bingqiang

    2013-10-15

    Graphical abstract: - Highlights: • CdS and CdS/CdSe quantum dots are assembled on ZnO nanorods by ion exchange process. • The CdS/CdSe sensitization of ZnO effectively extends the absorption spectrum. • The performance of ZnO/CdS/CdSe cell is improved by extending absorption spectrum. - Abstract: In this paper, cadmium sulfide (CdS) and cadmium sulfide/cadmium selenide (CdS/CdSe) quantum dots (QDs) are assembled onto ZnO nanorod arrays by a solution ion exchange process for QD-sensitized solar cell application. The morphology, composition and absorption properties of different photoanodes were characterized with scanning electron microscope, transmission electron microscope, energy-dispersive X-ray spectrum and Raman spectrum in detail. It is shown that conformal and uniform CdS and CdS/CdSe shells can grow on ZnO nanorod cores. Quantum dot sensitized solar cells based on ZnO/CdS and ZnO/CdS/CdSe nanocable arrays were assembled with gold counter electrode and polysulfide electrolyte solution. The CdS/CdSe sensitization of ZnO can effectively extend the absorption spectrum up to 650 nm, which has a remarkable impact on the performance of a photovoltaic device by extending the absorption spectrum. Preliminary results show one fourth improvement in solar cell efficiency.

  2. Synthesis, structure and transmetalation of N-heterocyclic carbene complex of silver. Evidence of halogen exchange during the synthetic process.

    PubMed

    Xiao, Xu-Qiong; Jin, Guo-Xin

    2009-11-14

    Deprotonation of the bis(imidazolium) salt (1,1'-dimethyl-3,3'-ethylenediimidazolium dibromide, L x 2HBr) with silver oxide in a solution mixture of CH(2)Cl(2) and CH(3)OH affords a silver carbene complex [Ag(2)L(2)]Cl(2) (1, L = 1,1'-dimethyl-3,3'-ethylenediimidazol-2-ylidene). With CH(3)OH as the only solvent for the synthesis and after recrystallization in a chlorinated solvent in ambient condition, a polymeric silver complex [(L x 2H)(Ag(2)Br(4))](n) (2) was formed. The presence of chloride in complex 1 and bromide in complex 2 indicates that a halogen exchange reaction occurred unambiguously during the synthesis and not during recrystallization. The silver-carbene complex 1 undergoes a facile reaction with [(p-cymene)RuCl(2)](2) and (p-cymene)Ru[S(2)C(2)(B(10)H(10))] to yield the binuclear complexes [(p-cymene)RuCl(2)](2)L (3) and {(p-cymene)Ru[S(2)C(2)(B(10)H(10))]}(2)L (4). The latter compound contains a carbene ligand and a 1,2-dicarba-closo-dodecaborane ligand. Molecular structures of complexes 1-4 were confirmed by X-ray single-crystal analyses.

  3. Hexicon 2: automated processing of hydrogen-deuterium exchange mass spectrometry data with improved deuteration distribution estimation.

    PubMed

    Lindner, Robert; Lou, Xinghua; Reinstein, Jochen; Shoeman, Robert L; Hamprecht, Fred A; Winkler, Andreas

    2014-06-01

    Hydrogen-deuterium exchange (HDX) experiments analyzed by mass spectrometry (MS) provide information about the dynamics and the solvent accessibility of protein backbone amide hydrogen atoms. Continuous improvement of MS instrumentation has contributed to the increasing popularity of this method; however, comprehensive automated data analysis is only beginning to mature. We present Hexicon 2, an automated pipeline for data analysis and visualization based on the previously published program Hexicon (Lou et al. 2010). Hexicon 2 employs the sensitive NITPICK peak detection algorithm of its predecessor in a divide-and-conquer strategy and adds new features, such as chromatogram alignment and improved peptide sequence assignment. The unique feature of deuteration distribution estimation was retained in Hexicon 2 and improved using an iterative deconvolution algorithm that is robust even to noisy data. In addition, Hexicon 2 provides a data browser that facilitates quality control and provides convenient access to common data visualization tasks. Analysis of a benchmark dataset demonstrates superior performance of Hexicon 2 compared with its predecessor in terms of deuteration centroid recovery and deuteration distribution estimation. Hexicon 2 greatly reduces data analysis time compared with manual analysis, whereas the increased number of peptides provides redundant coverage of the entire protein sequence. Hexicon 2 is a standalone application available free of charge under http://hx2.mpimf-heidelberg.mpg.de.

  4. Enhanced photocatalytic activity of chromium(VI) reduction and EDTA oxidization by photoelectrocatalysis combining cationic exchange membrane processes.

    PubMed

    Hsu, Hung-Te; Chen, Shiao-Shing; Tang, Yi-Fang; Hsi, Hsing-Cheng

    2013-03-15

    A novel technology of photoelectrocatalysis (PEC) combining with cationic exchange membrane (CEM) was proposed for simultaneous reduction of chromium(VI) and oxidization of EDTA. The application of CEM was used to enhance the efficiency for prevention of the re-oxidation of reduced chromium with the electron-hole pairs. In this study, effects of current density, pH, TiO2 dosage, hydraulic retention time (HRT), light intensity and EDTA/Cr(VI) molar ratio were all investigated. The results showed that the optimum conversion efficiency occurred at 4mA/cm(2) with the presence of CEM. Higher conversion efficiencies were observed at lower pH due to the electrostatic attractions between positive charged TiOH2(+), and negatively charged Cr(VI) and EDTA. The optimum TiO2 loading of 1g/L was depended mainly on the acidic pH range, especially at higher HRT and irradiation intensity. In addition, higher EDTA/Cr(VI) molar ratio enhanced the reduction efficiency of Cr(VI), indicating EDTA plays the role of hole scavenger in this system. Moreover, incomplete EDTA decomposition contributes to the occurrence of intermediates, including nitrilotriacetic acid, iminodiacetic acid, glycine, oxamic acid, lyoxylic acid, oxalic acid, acetic acid and formic acid, as identified by GC/MS. Consequently, transformation pathway was determined from these analyzed byproducts and molecular orbital package analysis.

  5. Gamma-aminobutyric acid production using immobilized glutamate decarboxylase followed by downstream processing with cation exchange chromatography.

    PubMed

    Lee, Seungwoon; Ahn, Jungoh; Kim, Yeon-Gu; Jung, Joon-Ki; Lee, Hongweon; Lee, Eun Gyo

    2013-01-15

    We have developed a gamma-aminobutyric acid (GABA) production technique using his-tag mediated immobilization of Escherichia coli-derived glutamate decarboxylase (GAD), an enzyme that catalyzes the conversion of glutamate to GABA. The GAD was obtained at 1.43 g/L from GAD-overexpressed E. coli fermentation and consisted of 59.7% monomer, 29.2% dimer and 2.3% tetramer with a 97.6% soluble form of the total GAD. The harvested GAD was immobilized to metal affinity gel with an immobilization yield of 92%. Based on an investigation of specific enzyme activity and reaction characteristics, glutamic acid (GA) was chosen over monosodium glutamate (MSG) as a substrate for immobilized GAD, resulting in conversion of 2.17 M GABA in a 1 L reactor within 100 min. The immobilized enzymes retained 58.1% of their initial activities after ten consecutive uses. By using cation exchange chromatography followed by enzymatic conversion, GABA was separated from the residual substrate and leached GAD. As a consequence, the glutamic acid was mostly removed with no detectable GAD, while 91.2% of GABA was yielded in the purification step.

  6. Decadal variability of freshwater and heat content in the subpolar North Atlantic: the role of intergyre exchange processes

    NASA Astrophysics Data System (ADS)

    Scheinert, M.; Böning, C. W.; Biastoch, A.

    2009-04-01

    Recent studies of ocean observations have advanced the hypothesis that an increased northward flow of subtropical Intermediate Water has added a large amount of salt to the eastern subpolar North Atlantic and the Nordic Seas during the the last decade. The advection of subtropical waters is not only suspected to have reversed the prominent freshening trend in the Subpolar Gyre during the 1960s to mid-1990s, but there is also some evidence for a conspicuous warming that has accompanied the salinification. Although there is some consensus about the coherence of this event with the state of the atmospheric forcing (NAO), only little is known about the physical mechanisms and its reverberation in the meridional net heat transport. Using a global ocean sea-ice model, we show here that the decadal variability of both the subpolar freshwater and heat content for the period 1960-2000 can be mostly explained by the shallow meridional exchange of heat and salt with the subtropical North Atlantic. We corroborate the theory of a time dependent northward flow of warm haline water through the West European Basin; the model experiments show these meridional fluxes in the inter-gyre regime between 45°-50° to be governed primarily by changes in the wind stress curl. Due to the leading role of local forcing effects the meridional heat transport in this latitude band is not coherent with heat transport variability further south; in contrast to the subtropical North Atlantic, there is no close linkage between the heat transport and the meridional overturning circulation (MOC).

  7. HEAT EXCHANGER

    DOEpatents

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  8. Interaction of arginine with protein during refolding process probed by amide H/D exchange mass spectrometry and isothermal titration calorimetry.

    PubMed

    Zhao, Dawei; Liu, Yongdong; Zhang, Guifeng; Zhang, Chun; Li, Xiunan; Wang, Qingqing; Shi, Hong; Su, Zhiguo

    2015-01-01

    Arginine has been widely used as low molecular weight additive to promote protein refolding by suppressing aggregate formation. However, methods to investigate the role of arginine in protein refolding are often limited on protein's global conformational properties. Here, hydrogen/deuterium exchange mass spectrometry (HDX-MS) was used to study the effects of arginine on recombinant human granulocyte colony-stimulating factor (rhG-CSF) refolding at the scale of peptide mapping. It was found that deuteration levels of rhG-CSF refolded with arginine was higher than that without arginine during the whole refolding process, but they became almost the same when the refolding reached equilibrium. This phenomenon indicated that arginine could protect some amide deuterium atoms from being exchanged with hydrogen, but the protection diminished gradually along with refolding proceeding. Enzymatic digestion revealed six particular peptides of 16-47, 72-84, 84-93, 114-124, 145-153 and 154-162 were mainly responsible for the deuteration, and all of them dominantly located in protein's α-helix domain. Furthermore, thermodynamics analysis by isothermal titration calorimetry provided direct evidence that arginine could only react with denatured and partially refolded rhG-CSF. Taking all of the results together, we suggest that arginine suppresses protein aggregation by a reversible combination. At the initial refolding stage, arginine could combine with the denatured protein mainly through hydrogen bonding. Subsequently, arginine is gradually excluded from protein with protein's native conformation recovering.

  9. Building Cohesion in Positively Connected Exchange Networks

    ERIC Educational Resources Information Center

    Schaefer, David R.; Kornienko, Olga

    2009-01-01

    This research investigates the process through which individuals build cohesive relationships in positively connected exchange relations. Positive connections exist any time exchange in one relation must precede exchange in another. Such situations arise through gatekeeping, in generalized exchange contexts, and when resources diffuse across a…

  10. 41 CFR 102-33.360 - What is the process for selling or exchanging aircraft parts for replacement?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FAA requirements. You are solely responsible for bringing the parts into compliance with 14 CFR part... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What is the process for... Property Management Federal Property Management Regulations System (Continued) FEDERAL...

  11. Production of citric acid using its extraction wastewater treated by anaerobic digestion and ion exchange in an integrated citric acid-methane fermentation process.

    PubMed

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-08-01

    In order to solve the problem of extraction wastewater pollution in citric acid industry, an integrated citric acid-methane fermentation process is proposed in this study. Extraction wastewater was treated by mesophilic anaerobic digestion and then used to make mash for the next batch of citric acid fermentation. The recycling process was done for seven batches. Citric acid production (82.4 g/L on average) decreased by 34.1 % in the recycling batches (2nd-7th) compared with the first batch. And the residual reducing sugar exceeded 40 g/L on average in the recycling batches. Pigment substances, acetic acid, ammonium, and metal ions in anaerobic digestion effluent (ADE) were considered to be the inhibitors, and their effects on the fermentation were studied. Results indicated that ammonium, Na(+) and K(+) in the ADE significantly inhibited citric acid fermentation. Therefore, the ADE was treated by acidic cation exchange resin prior to reuse to make mash for citric acid fermentation. The recycling process was performed for ten batches, and citric acid productions in the recycling batches were 126.6 g/L on average, increasing by 1.7 % compared with the first batch. This process could eliminate extraction wastewater discharge and reduce water resource consumption.

  12. A tandem laboratory scale protein purification process using Protein A affinity and anion exchange chromatography operated in a weak partitioning mode.

    PubMed

    Shamashkin, Michael; Godavarti, Ranga; Iskra, Timothy; Coffman, Jon

    2013-10-01

    A significant consequence of scaling up production of high titer monoclonal antibody (mAb) processes in existing facilities is the generation of in-process pools that exceed the capacity of storage vessels. A semi-continuous downstream process where columns and filters are linked and operated in tandem would eliminate the need for intermediate holding tanks. This study is a bench-scale demonstration of the feasibility of a tandem process for the purification of mAbs employing an affinity Protein A capture step, followed by a flow-through anion-exchange (AEX) step with the possibility of adding an in-line virus filtration step (VF). All three steps were linked sequentially and operated as one continuous process using an ÄKTA FPLC equipped with two pumps and a system of valves and bypasses that allowed the components to be engaged at different stages of the process. The AEX column was operated in a weak partitioning (WP) mode enabled by a precise in-line titration of Protein A effluent. In order to avoid complex control schemes and facilitate validation, quality and robustness were built into the system through selection of buffers based on thermodynamic and empirical models. The tandem system utilized the simplest possible combination of valves, pumps, controls, and automation, so that it could easily be implemented in a clinical or commercial production facility. Linking the purification steps in a tandem process is expected to generate savings in time and production costs and also reduce the size of quality systems due to reduced documentation requirements, microbial sampling, and elimination of hold time validation. PMID:23633385

  13. Experimental data and analysis to support the design of an ion-exchange process for the treatment of Hanford tank waste supernatant liquids

    SciTech Connect

    Kurath, D.E.; Bray, L.A.; Brooks, K.P.; Brown, G.N.; Bryan, S.A.; Carlson, C.D.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.; Kim, A.Y.

    1994-12-01

    Hanford`s 177 underground storage tanks contain a mixture of sludge, salt cake, and alkaline supernatant liquids. Disposal options for these wastes are high-level waste (HLW) glass for disposal in a repository or low-level waste (LLW) glass for onsite disposal. Systems-engineering studies show that economic and environmental considerations preclude disposal of these wastes without further treatment. Difficulties inherent in transportation and disposal of relatively large volumes of HLW make it impossible to vitrify all of the tank waste as HLW. Potential environmental impacts make direct disposal of all of the tank waste as LLW glass unacceptable. Although the pretreatment and disposal requirements are still being defined, most pretreatment scenarios include retrieval of the aqueous liquids, dissolution of the salt cakes, and washing of the sludges to remove soluble components. Most of the cesium is expected to be in the aqueous liquids, which are the focus of this report on cesium removal by ion exchange. The main objectives of the ion-exchange process are removing cesium from the bulk of the tank waste (i.e., decontamination) and concentrating the separated cesium for vitrification. Because exact requirements for removal of {sup 137}Cs have not yet been defined, a range of removal requirements will be considered. This study addresses requirements to achieve {sup 137}Cs levels in LLW glass between (1) the Nuclear Regulatory Commission (NRC) Class C (10 CFR 61) limit of 4600 Ci/m{sup 3} and (2) 1/10th of the NRC Class A limit of 1 Ci/m{sup 3} i.e., 0.1/m{sup 3}. The required degrees of separation of cesium from other waste components is a complex function involving interactions between the design of the vitrification process, waste form considerations, and other HLW stream components that are to be vitrified.

  14. The organic sea-surface microlayer in the upwelling region off the coast of Peru and potential implications for air-sea exchange processes

    NASA Astrophysics Data System (ADS)

    Engel, Anja; Galgani, Luisa

    2016-02-01

    The sea-surface microlayer (SML) is at the uppermost surface of the ocean, linking the hydrosphere with the atmosphere. The presence and enrichment of organic compounds in the SML have been suggested to influence air-sea gas exchange processes as well as the emission of primary organic aerosols. Here, we report on organic matter components collected from an approximately 50 µm thick SML and from the underlying water (ULW), ˜ 20 cm below the SML, in December 2012 during the SOPRAN METEOR 91 cruise to the highly productive, coastal upwelling regime off the coast of Peru. Samples were collected at 37 stations including coastal upwelling sites and off-shore stations with less organic matter and were analyzed for total and dissolved high molecular weight (> 1 kDa) combined carbohydrates (TCCHO, DCCHO), free amino acids (FAA), total and dissolved hydrolyzable amino acids (THAA, DHAA), transparent exopolymer particles (TEP), Coomassie stainable particles (CSPs), total and dissolved organic carbon (TOC, DOC), total and dissolved nitrogen (TN, TDN), as well as bacterial and phytoplankton abundance. Our results showed a close coupling between organic matter concentrations in the water column and in the SML for almost all components except for FAA and DHAA that showed highest enrichment in the SML on average. Accumulation of gel particles (i.e., TEP and CSP) in the SML differed spatially. While CSP abundance in the SML was not related to wind speed, TEP abundance decreased with wind speed, leading to a depletion of TEP in the SML at about 5 m s-1. Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.

  15. Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange

    DOEpatents

    Lewis, Arthur E.; Braun, Robert L.; Mallon, Richard G.; Walton, Otis R.

    1986-01-01

    A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  16. Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange

    DOEpatents

    Lewis, A.E.; Braun, R.L.; Mallon, R.G.; Walton, O.R.

    1983-09-21

    A cascading bed retorting process and apparatus are disclosed in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  17. Heat exchanger

    SciTech Connect

    Drury, C.R.

    1988-02-02

    A heat exchanger having primary and secondary conduits in heat-exchanging relationship is described comprising: at least one serpentine tube having parallel sections connected by reverse bends, the serpentine tube constituting one of the conduits; a group of open-ended tubes disposed adjacent to the parallel sections, the open-ended tubes constituting the other of the conduits, and forming a continuous mass of contacting tubes extending between and surrounding the serpentine tube sections; and means securing the mass of tubes together to form a predetermined cross-section of the entirety of the mass of open-ended tubes and tube sections.

  18. Ion-exchange reactions on clay minerals coupled with advection/dispersion processes. Application to Na+/Ca2+ exchange on vermiculite: Reactive-transport modeling, batch and stirred flow-through reactor experiments

    NASA Astrophysics Data System (ADS)

    Tertre, E.; Hubert, F.; Bruzac, S.; Pacreau, M.; Ferrage, E.; Prêt, D.

    2013-07-01

    The present study aims at testing the validity of using an Na+/Ca2+ ion-exchange model, derived from batch data to interpret experimental Ca2+-for-Na+ exchange breakthrough curves obtained on vermiculite (a common swelling clay mineral in surface environments). The ion-exchange model was constructed considering the multi-site nature of the vermiculite surface as well as the exchange of all aqueous species (Mg2+ derived from the dissolution of the solid and H+). The proposed ion-exchange model was then coupled with a transport model, and the predicted breakthrough curves were compared with the experimental ones obtained using a well stirred flow-through reactor. For a given solute residence time in the reactor (typically 50 min), our thermodynamic model based on instantaneous equilibrium was found to accurately reproduce several of the experimental breakthrough curves, depending on the Na+ and Ca2+ concentrations of the influents pumped through the reactor. However the model failed to reproduce experimental breakthrough curves obtained at high flow rates and low chemical gradient between the exchanger phase and the solution. An alternative model based on a hybrid equilibrium/kinetic approach was thus used and allowed predicting experimental data. Based on these results, we show that a simple parameter can be used to differentiate between thermodynamic and kinetic control of the exchange reaction with water flow. The results of this study are relevant for natural systems where two aquatic environments having contrasted chemistries interact. Indeed, the question regarding the attainment of a full equilibrium in such a system during the contact time of the aqueous phase with the particle/colloid remains most often open. In this context, we show that when a river (a flow of fresh water) encounters marine colloids, a systematic full equilibrium can be assumed (i.e., the absence of kinetic effects) when the residence time of the solute in 1 m3 of the system is ⩾6200 h.

  19. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 2, Industrial liquid waste processing, industrial gaseous waste processing

    SciTech Connect

    Lee, V.E.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarize the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Individual reports are indexed separately.

  20. Manitoba Exchange.

    ERIC Educational Resources Information Center

    Coss, Maurice

    Planning ideas and follow-up activities are described for a reciprocal exchange program between groups of 5th and 6th grade students in Manitoba who are "twinned" with another school in the province. Emphasis is on providing learning experiences which help students become familiar with the economic activity in the area, with the local government…

  1. Heat exchanger

    DOEpatents

    Wolowodiuk, Walter

    1976-01-06

    A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

  2. Heat exchanger

    DOEpatents

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  3. The importance of sub-mesoscale processes for the exchange of properties through the Strait of Gibraltar

    NASA Astrophysics Data System (ADS)

    Bruno, M.; Chioua, J.; Romero, J.; Vázquez, A.; Macías, D.; Dastis, C.; Ramírez-Romero, E.; Echevarria, F.; Reyes, J.; García, C. M.

    2013-09-01

    This article presents a detailed analysis of the sub-mesoscale transport processes in the Strait of Gibraltar. The interest is focussed on the Camarinal Sill region, and special attention is paid to the across-strait transport processes, the divergences and convergences in the central zone, and the small-scale circulation patterns along the northern coastal margin. The analysis is based on high-resolution (7 m) SST images acquired by an air-borne hyper-spectral scanner, and has been complemented with a rhodamine-release experiment, continuous thermo-salinograph records, acoustic Doppler current (ADCP) profiles from both moorings and vessel-mounted experiments, and numerical modelling. It is deduced from the analysis that the coupling between the upwelling processes, induced by the internal tide and the generation of large-amplitude internal waves, and the cyclonic eddies formed on the coastal margin, seems to be the mechanism that explains the chlorophyll maxima frequently found on the coastal margin of the studied area. Further, as a consequence of the small-scale patterns of circulation induced by the internal waves, the suspended substances are displaced from the coastal margins toward the central zones and later are carried by the westward current toward the convergence zones created by the internal waves, where they may be retained and accumulate. Then, in the eastward phase of the tidal current over the Camarinal Sill, these nuclei of concentrated substances (nutrients, chlorophyll, and plankton) are transported toward the Alboran Sea, where they must contribute, in part, to the primary productivity there. High-resolution (7 m) SST images acquired by an Airborne Hyper-spectral Scanner (AHS) provided by the Spanish Institute of Aerospace Techniques (INTA). Measurements made along vessel transects crossing the studied zone, of current velocity and echo-intensity profiles acquired by ADCP, and sea surface temperature, salinity and released rhodamine (see Fig. 1

  4. Shelf Edge Exchange Processes-2: Seep2-02, R/V CAPE HATTERAS cruise CH01-88

    SciTech Connect

    Wilson, C.; Behrens, W.J.; Flagg, C.N.; Wallace, D.W.R.; Wilke, R.J.; Wyman, K.D.

    1989-11-01

    The R/V CAPE HATTERAS cruise CH01-88, SEEP2-02, took place from 3--20 March, 1988 and focused primarily on biological processes in the SEEP2 area. A short term sediment trap mooring was deployed near mooring 1 and recovered during the cruise. The mooring consisted of two 0.07 sq. meter and one 0.7 sq. meter sediment traps. Two time series, approximately 48 hours each, were conducted in the area of the sediment trap mooring. The time series were designed to study primary and secondary productivity and involved sampling nutrients, dissolved oxygen, chlorophyll, zooplankton abundance and distribution, and zooplankton fecal pellet distribution. Experiments to estimate grazing rates and fecal pellet production of the dominant copepods were also done. Sediment trap and zooplankton data are not reported here. During this cruise 99 CTD casts were made measuring pressure, temperature, conductivity, dissolved oxygen, fluorescence and light transmission. Discrete samples were taken in rosette-mounted Niskin bottles and analyzed for concentration of nutrients, chlorophyll a, dissolved oxygen, and particulate organic carbon and nitrogen.

  5. Pseudo-rotation mechanism for fast olefin exchange and substitution processes at orthometalated C,N-complexes of platinum(II).

    PubMed

    Otto, Stefanus; Samuleev, Pavel V; Polyakov, Vladimir A; Ryabov, Alexander D; Elding, Lars I

    2004-11-01

    Bridge splitting in chloroform of the orthometalated chloro-bridged complex [Pt(micro-Cl)(2-Me(2)NCH(2)C(6)H(4))](2)(1), with ethene, cyclooctene, allyl alcohol and phosphine according to 1+ 2L --> 2[PtCl(2-Me(2)NCH(2)C(6)H(4))(L)], where L = C(2)H(4)(3a), C(8)H(14), (3b), CH(2)CHCH(2)OH (3c), and PPh(3)(4a and 4b) gives monomeric species with L coordinated trans or cis to aryl. With olefins the thermodynamically stable isomer with L coordinated cis to aryl is formed directly without an observable intermediate. With phosphine and pyridine, the kinetically controlled trans-product isomerizes slowly to the more stable cis-isomer. Bridge splitting by olefins is slow and first-order in 1 and L, with largely negative DeltaS(++). Substitution of ethene cis to aryl by cyclooctene and allyl alcohol to form 3b and 3c, and substitution of cot from 3b by allyl alcohol to form 3c are first order in olefin and complex, ca. six orders of magnitude faster than bridge cleavage due to a large decrease in DeltaH(++), and with largely negative DeltaS(++). Cyclooctene exchange at 3b is first-order with respect to free cyclooctene and platinum complex. All experimental data for olefin substitution and exchange are compatible with a concerted substitution/isomerization process via a turnstile twist pseudo-rotation in a short-lived labile five-coordinated intermediate, involving initial attack on the labile coordination position trans to the sigma-bonded aryl. Bridge-cleavage reactions of the analogous bridged complexes occur similarly, but are much slower because of their ground-state stabilization and steric hindrance.

  6. Heat exchanger restart evaluation

    SciTech Connect

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-03-18

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized.

  7. Heat exchanger restart evaluation

    SciTech Connect

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-02-28

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4kA was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized herein.

  8. Heat exchanger restart evaluation

    SciTech Connect

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-03-18

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summary herein.

  9. Integrated Studies of Atmosphere-Surface Exchanges and Processes at the Tiksi Hydrometeorological Observatory in the Russian Far East

    NASA Astrophysics Data System (ADS)

    Uttal, Taneil; Makshtas, Alexander; Laurila, Tuomas

    2013-04-01

    The Tiksi Hydrometeorological Observatory facility has been developed over the last 6 years through a partnership between Russian, U.S. and Finnish agencies responsible for environmental monitoring. The current facility has a clean air facility, a 20 meter tower and an upgraded weather station. Measurements are being made of LW/SW radiation, climate grade meteorological parameters, turbulent fluxes, CO2, methane, aerosols, H2O, greenhouse gases (via flask sampling), black carbon, ozone, surface temperatures and permafrost active layer temperature profiles. Tiksi is located in a boundary region at the confluence of Atlantic and Pacific influences on the Arctic atmosphere; this results in a wide variety of air masses with variable cloud, aerosol and pollutant characteristics in the vicinity of the Tiksi Hydrometeorological Observatory creating a natural laboratory to study the influence that the various source regions of Russia, Northern America, Europe and Central Asia have on regional boundary layer processes. Tiksi is on the edge of the Laptev Sea that is an area of such large ice production that it has been termed "the ice factory of the Arctic Ocean" providing much of the sea ice in the Arctic Ocean. Thus the observatory sensors are frequently influenced by the maritime as well as continental air which is already showing up in multiple data lines as having distinctive properties. An integrated picture is emerging of ozone depletion events, black carbon on snow impacts, methane and CO2 flux seasonal variability, and short-lived temperature events that can be interpreted in the context of feed-backs with the local off-shore ice conditions and on-shore active layer morphology. This presentation summaries preliminary results with an emphasis on identifying linkages being study lines that are typically conducted separately.

  10. The Dynamics of Multilateral Exchange

    NASA Astrophysics Data System (ADS)

    Hausken, Kjell; Moxnes, John F.

    The article formulates a dynamic mathematical model where arbitrarily many players produce, consume, exchange, loan, and deposit arbitrarily many goods over time to maximize utility. Consuming goods constitutes a benefit, and producing, exporting, and loaning away goods constitute a cost. Utilities are benefits minus costs, which depend on the exchange ratios and bargaining functions. Three-way exchange occurs when one player acquires, through exchange, one good from another player with the sole purpose of using this good to exchange against the desired good from a third player. Such a triple handshake is not merely a set of double handshakes since the player assigns no interest to the first good in his benefit function. Cognitive and organization costs increase dramatically for higher order exchanges. An exchange theory accounting for media of exchange follows from simple generalization of two-way exchange. The examples of r-way exchange are the triangle trade between Africa, the USA, and England in the 17th and 18th centuries, the hypothetical hypercycle involving RNAs as players and enzymes as goods, and reaction-diffusion processes. The emergence of exchange, and the role of trading agents are discussed. We simulate an example where two-way exchange gives zero production and zero utility, while three-way exchange causes considerable production and positive utility. Maximum utility for each player is reached when exchanges of the same order as the number of players in society are allowed. The article merges micro theory and macro theory within the social, natural, and physical sciences.

  11. Defects in processing and trafficking of the AE1 Cl-/HCO3- exchanger associated with inherited distal renal tubular acidosis.

    PubMed

    Shayakul, Chairat; Alper, Seth L

    2004-03-01

    Distal renal tubular acidosis (dRTA) results from impaired urinary acidification by the renal collecting duct. Acquired dRTA can be secondary to diverse pathological processes, including diabetic, ischemic, fibrosing, or immunological processes; less frequently it presents as a familial disorder with either an autosomal recessive or dominant pattern of transmission. Mutations in the SLC4A1/AE1/band 3 Cl(-)/HCO(3)(-) exchanger gene have been identified as causes for both dominant and recessive forms of dRTA. These mutations comprise a group almost entirely distinct from the SLC4A1 mutations that underlie the familial hemolytic anemia of hereditary spherocytosis. Why does one group of mutations express almost exclusively an isolated erythroid phenotype, whereas the second group of mutations expresses almost exclusively a phenotype explicable entirely by defective function of renal collecting duct type A intercalated cells? This review summarizes current research addressing this central question in the pathobiology of inherited dRTA associated with mutations in the SLC4A1 gene. Studying dRTA-associated mutant AE1 polypeptides can provide novel insights into the biology of the intercalated cell and the collecting duct as well as more generally into mechanisms by which epithelial cells generate and maintain functional polarity. PMID:15067510

  12. The effect of gold nanoparticles on exchange processes in collision complexes of triplet and singlet oxygen molecules with excited eosin molecules

    NASA Astrophysics Data System (ADS)

    Bryukhanov, V. V.; Minaev, B. M.; Tsibul'nikova, A. V.; Slezhkin, V. A.

    2015-07-01

    We have studied exchange processes in contact complexes of triplet eosin molecules with oxygen molecules in the triplet (3Σ{/g -}) and singlet (1Δ g ) states in thin polyvinylbutyral films in the presence of gold nanoparticles. Upon resonant excitation of surface plasmons in gold nanoparticles into the absorption band of eosin molecules-singlet oxygen sensitizers-we have obtained an increase in the intensity of the delayed fluorescence and an increase in the lifetime of the dye with simultaneous quenching of the luminescence of singlet oxygen. The kinetics of the delayed fluorescence of the dye as a result of singlet-triplet annihilation of triplet eosin molecules with singlet oxygen molecules has been investigated. To compare theoretical and experimental data, we have numerically simulated energy transfer processes. Rate constants of energy transfer and of singlet-triplet annihilation, as well as quenching constants of triplet states of the dye by molecular oxygen, have been calculated. Luminescence quantum yield 1Δ g of polyvinylbutyral has been estimated. We have analyzed quantum-chemically electronic mechanisms of singlet-triplet annihilation of oxygen and eosin.

  13. High Temperature Heat Exchanger Project

    SciTech Connect

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  14. Heat exchanger bypass test report

    SciTech Connect

    De Vries, M.L.

    1995-01-26

    This test report documents the results that were obtained while conducting the test procedure which bypassed the heat exchangers in the HC-21C sludge stabilization process. The test was performed on November 15, 1994 using WHC-SD-CP-TC-031, ``Heat Exchanger Bypass Test Procedure.`` The primary objective of the test procedure was to determine if the heat exchangers were contributing to condensation of moisture in the off-gas line. This condensation was observed in the rotameters. Also, a secondary objective was to determine if temperatures at the rotameters would be too high and damage them or make them inaccurate without the heat exchangers in place.

  15. A process-based model to estimate gas exchange and monoterpene emission rates in the mediterranean maquis - comparisons between modelled and measured fluxes at different scales

    NASA Astrophysics Data System (ADS)

    Vitale, M.; Matteucci, G.; Fares, S.; Davison, B.

    2009-02-01

    This paper concerns the application of a process-based model (MOCA, Modelling of Carbon Assessment) as an useful tool for estimating gas exchange, and integrating the empirical algorithms for calculation of monoterpene fluxes, in a Mediterranean maquis of central Italy (Castelporziano, Rome). Simulations were carried out for a range of hypothetical but realistic canopies of the evergreen Quercus ilex (holm oak), Arbutus unedo (strawberry tree) and Phillyrea latifolia. More, the dependence on total leaf area and leaf distribution of monoterpene fluxes at the canopy scale has been considered in the algorithms. Simulation of the gas exchange rates showed higher values for P. latifolia and A. unedo (2.39±0.30 and 3.12±0.27 gC m-2 d-1, respectively) with respect to Q. ilex (1.67±0.08 gC m-2 d-1) in the measuring campaign (May-June). Comparisons of the average Gross Primary Production (GPP) values with those measured by eddy covariance were well in accordance (7.98±0.20 and 6.00±1.46 gC m-2 d-1, respectively, in May-June), although some differences (of about 30%) were evident in a point-to-point comparison. These differences could be explained by considering the non uniformity of the measuring site where diurnal winds blown S-SW direction affecting thus calculations of CO2 and water fluxes. The introduction of some structural parameters in the algorithms for monoterpene calculation allowed to simulate monoterpene emission rates and fluxes which were in accord to those measured (6.50±2.25 vs. 9.39±4.5μg g-1DW h-1 for Q. ilex, and 0.63±0.207μg g-1DW h-1 vs. 0.98±0.30μg g-1DW h-1 for P. latifolia). Some constraints of the MOCA model are discussed, but it is demonstrated to be an useful tool to simulate physiological processes and BVOC fluxes in a very complicated plant distributions and environmental conditions, and necessitating also of a low number of input data.

  16. Determination of free sulfites (SO3-2) in dried fruits processed with sulfur dioxide by ion chromatography through anion exchange column and conductivity detection.

    PubMed

    Liao, Benjamin S; Sram, Jacqueline C; Files, Darin J

    2013-01-01

    A simple and effective anion ion chromatography (IC) method with anion exchange column and conductivity detector has been developed to determine free sulfites (SO3-2) in dried fruits processed with sulfur dioxide. No oxidation agent, such as hydrogen peroxide, is used to convert sulfites to sulfates for IC analysis. In addition, no stabilizing agent, such as formaldehyde, fructose or EDTA, is required during the sample extraction. This method uses aqueous 0.2 N NaOH as the solvent for standard preparation and sample extraction. The sulfites, either prepared from standard sodium sulfite powder or extracted from food samples, are presumed to be unbound SO3-2 in aqueous 0.2 N NaOH (pH > 13), because the bound sulfites in the sample matrix are released at pH > 10. In this study, sulfites in the standard solutions were stable at room temperature (i.e., 15-25 degrees C) for up to 12 days. The lowest standard of the linear calibration curve is set at 1.59 microg/mL SO3-2 (equivalent to 6.36 microg/g sample with no dilution) for analysis of processed dried fruits that would contain high levels (>1000 microg/g) of sulfites. As a consequence, this method typically requires significant dilution of the sample extract. Samples are prepared with a simple procedure of sample compositing, extraction with aqueous 0.2 N NaOH, centrifugation, dilution as needed, and filtration prior to IC. The sulfites in these sample extracts are stable at room temperature for up to 20 h. Using anion IC, the sulfites are eluted under isocratic conditions with 10 mM aqueous sodium carbonate solution as the mobile phase passing through an anion exchange column. The sulfites are easily separated, with an analysis run time of 18 min, regardless of the dried fruit matrix. Recoveries from samples spiked with sodium sulfites were demonstrated to be between 81 and 105% for five different fruit matrixes (apricot, golden grape, white peach, fig, and mango). Overall, this method is simple to perform and

  17. Determination of free sulfites (SO3-2) in dried fruits processed with sulfur dioxide by ion chromatography through anion exchange column and conductivity detection.

    PubMed

    Liao, Benjamin S; Sram, Jacqueline C; Files, Darin J

    2013-01-01

    A simple and effective anion ion chromatography (IC) method with anion exchange column and conductivity detector has been developed to determine free sulfites (SO3-2) in dried fruits processed with sulfur dioxide. No oxidation agent, such as hydrogen peroxide, is used to convert sulfites to sulfates for IC analysis. In addition, no stabilizing agent, such as formaldehyde, fructose or EDTA, is required during the sample extraction. This method uses aqueous 0.2 N NaOH as the solvent for standard preparation and sample extraction. The sulfites, either prepared from standard sodium sulfite powder or extracted from food samples, are presumed to be unbound SO3-2 in aqueous 0.2 N NaOH (pH > 13), because the bound sulfites in the sample matrix are released at pH > 10. In this study, sulfites in the standard solutions were stable at room temperature (i.e., 15-25 degrees C) for up to 12 days. The lowest standard of the linear calibration curve is set at 1.59 microg/mL SO3-2 (equivalent to 6.36 microg/g sample with no dilution) for analysis of processed dried fruits that would contain high levels (>1000 microg/g) of sulfites. As a consequence, this method typically requires significant dilution of the sample extract. Samples are prepared with a simple procedure of sample compositing, extraction with aqueous 0.2 N NaOH, centrifugation, dilution as needed, and filtration prior to IC. The sulfites in these sample extracts are stable at room temperature for up to 20 h. Using anion IC, the sulfites are eluted under isocratic conditions with 10 mM aqueous sodium carbonate solution as the mobile phase passing through an anion exchange column. The sulfites are easily separated, with an analysis run time of 18 min, regardless of the dried fruit matrix. Recoveries from samples spiked with sodium sulfites were demonstrated to be between 81 and 105% for five different fruit matrixes (apricot, golden grape, white peach, fig, and mango). Overall, this method is simple to perform and

  18. Process coupling and control over the response of net ecosystem CO2 exchange to climate variability and insect disturbance in subalpine forests of the Western US

    NASA Astrophysics Data System (ADS)

    Monson, R. K.; Moore, D. J.; Trahan, N. A.; Scott-Denton, L.; Burns, S. P.; Hu, J.; Bowling, D. R.

    2011-12-01

    Following ten years of studies in subalpine forest ecosystems of the Western US, we have concluded that the tight coupling between gross primary productivity (GPP) and the autotrophic component of soil respiration (Ra) drives responses of net ecosystem CO2 exchange (NEE) to climate variability and insect disturbance. This insight has been gained through long-term eddy flux observations, manipulative plot experiments, analyses of dynamics in the stable isotope compositions of CO2 and H2O, and chamber gas-exchange measurements. Using past observations from these studies, we deployed model-data assimilation techniques and forecast weather/climate modeling to estimate how the coupling between GPP and Ra is likely to affect future (Year 2100) dynamics in NEE. The amount of winter snow and its melting dynamics in the spring represents the dominant control over interannual variation in GPP. Using the SIPNET ecosystem process model, combined with knowledge about the stable isotope content of different water sources, we estimated that approximately 75% of growing season GPP is coupled to the use of snowmelt water, whereas approximately 25% is coupled to summer rain. The tight coupling between GPP and winter snow pack drives a similar tight coupling between soil respiration (Rs) and winter snow pack. Manipulation of snow pack on forest plots has shown that Rs increases with increased snow pack, and this effect disappears when trees are girdled, which stops the transfer of GPP to roots and the soil rhizosphere. Higher-than-normal winter snowpacks cause the carbon isotope ratios of soil-respired CO2 to be depleted in 13C, reflecting a signal of lower photosynthetic water-use efficiency in the GPP that is transferred to the soil rhizosphere. Large-scale forest disturbance due to catastrophic tree mortality from mountain pine beetle attack causes an initial (2-3 year) reduction in Rs, which is attributable to the loss of GPP and its effect on Ra. This near-term reduction in Rs

  19. The influence of oxidation process on exchange bias in egg-shaped FeO/Fe3O4 core/shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Leszczyński, Błażej; Hadjipanayis, George C.; El-Gendy, Ahmed A.; Załęski, Karol; Śniadecki, Zbigniew; Musiał, Andrzej; Jarek, Marcin; Jurga, Stefan; Skumiel, Andrzej

    2016-10-01

    Egg-shaped nanoparticles with a core-shell morphology were synthesized by thermal decomposition of an iron oleate complex. XRD and M(T) magnetic measurements confirmed the presence of FeO (wustite) and Fe3O4 (magnetite) phases in the nanoparticles. Oxidation of FeO to Fe3O4 was found to be the mechanism for the shell formation. As-made nanoparticles exhibited high values of exchange bias at 2 K. Oxidation led to decrease of exchange field from 2880 Oe (in as-made sample) to 330 Oe (in oxidized sample). At temperatures higher than the Néel temperature of FeO (200 K) there was no exchange bias. An interesting observation was made showing the exchange field to be higher than the coercive field at temperatures close to magnetite's Verwey transition.

  20. Disposal of bead ion exchange resin wastes

    SciTech Connect

    Gay, R.L.; Granthan, L.F.

    1985-12-17

    Bead ion exchange resin wastes are disposed of by a process which involves spray-drying a bead ion exchange resin waste in order to remove substantially all of the water present in such waste, including the water on the surface of the ion exchange resin beads and the water inside the ion exchange resin beads. The resulting dried ion exchange resin beads can then be solidified in a suitable solid matrix-forming material, such as a polymer, which solidifies to contain the dried ion exchange resin beads in a solid monolith suitable for disposal by burial or other conventional means.

  1. Pharmaceutical Applications of Ion-Exchange Resins

    ERIC Educational Resources Information Center

    Elder, David

    2005-01-01

    The historical uses of ion-exchanged resins and a summary of the basic chemical principles involved in the ion-exchanged process are discussed. Specific applications of ion-exchange are provided that include drug stabilization, pharmaceutical excipients, taste-masking agents, oral sustained-release products, topical products for local application…

  2. Thermal decomposition of [Co(en)3][Fe(CN)6]∙ 2H2O: Topotactic dehydration process, valence and spin exchange mechanism elucidation

    PubMed Central

    2013-01-01

    Background The Prussian blue analogues represent well-known and extensively studied group of coordination species which has many remarkable applications due to their ion-exchange, electron transfer or magnetic properties. Among them, Co-Fe Prussian blue analogues have been extensively studied due to the photoinduced magnetization. Surprisingly, their suitability as precursors for solid-state synthesis of magnetic nanoparticles is almost unexplored. In this paper, the mechanism of thermal decomposition of [Co(en)3][Fe(CN)6] ∙∙ 2H2O (1a) is elucidated, including the topotactic dehydration, valence and spins exchange mechanisms suggestion and the formation of a mixture of CoFe2O4-Co3O4 (3:1) as final products of thermal degradation. Results The course of thermal decomposition of 1a in air atmosphere up to 600°C was monitored by TG/DSC techniques, 57Fe Mössbauer and IR spectroscopy. As first, the topotactic dehydration of 1a to the hemihydrate [Co(en)3][Fe(CN)6] ∙∙ 1/2H2O (1b) occurred with preserving the single-crystal character as was confirmed by the X-ray diffraction analysis. The consequent thermal decomposition proceeded in further four stages including intermediates varying in valence and spin states of both transition metal ions in their structures, i.e. [FeII(en)2(μ-NC)CoIII(CN)4], FeIII(NH2CH2CH3)2(μ-NC)2CoII(CN)3] and FeIII[CoII(CN)5], which were suggested mainly from 57Fe Mössbauer, IR spectral and elemental analyses data. Thermal decomposition was completed at 400°C when superparamagnetic phases of CoFe2O4 and Co3O4 in the molar ratio of 3:1 were formed. During further temperature increase (450 and 600°C), the ongoing crystallization process gave a new ferromagnetic phase attributed to the CoFe2O4-Co3O4 nanocomposite particles. Their formation was confirmed by XRD and TEM analyses. In-field (5 K / 5 T) Mössbauer spectrum revealed canting of Fe(III) spin in almost fully inverse spinel structure of CoFe2O4. Conclusions It has been found

  3. Counterflow Regolith Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Jonscher, Peter

    2013-01-01

    A problem exists in reducing the total heating power required to extract oxygen from lunar regolith. All such processes require heating a great deal of soil, and the heat energy is wasted if it cannot be recycled from processed material back into new material. The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat exchanger with internal and external augers attached to the inner rotating tube to move the regolith. Hot regolith in the outer tube is moved in one direction by a right-hand - ed auger, and the cool regolith in the inner tube is moved in the opposite direction by a left-handed auger attached to the inside of the rotating tube. In this counterflow arrangement, a large fraction of the heat from the expended regolith is transferred to the new regolith. The spent regolith leaves the heat exchanger close to the temperature of the cold new regolith, and the new regolith is pre-heated close to the initial temperature of the spent regolith. Using the CoRHE can reduce the heating requirement of a lunar ISRU system by 80%, reducing the total power consumption by a factor of two. The unique feature of this system is that it allows for counterflow heat exchange to occur between solids, instead of liquids or gases, as is commonly done. In addition, in variants of this concept, the hydrogen reduction can be made to occur within the counterflow heat exchanger itself, enabling a simplified lunar ISRU (in situ resource utilization) system with excellent energy economy and continuous nonbatch mode operation.

  4. Aging as exchange: a preface to theory.

    PubMed

    Dowd, J J

    1975-09-01

    After a brief review of the major concepts and propositions of the social-psychological theory of exchange, a view of aging as exchange is developed. Drawing upon the previous work of Blau and Emerson, problems of aging are seen as problems of decreasing power resources. Because power resources decline with increased age, older persons become increasingly unable to enter into balanced exchange relations with other groups with whom they are in interactions. From this view, the process of disengagement is the result of a series of exchange relations in which the relative power of the aged vis-a-vis their exchange partner increasingly deteriorates. An imbalanced exchange ratio consequently results in which the aged are forced to exchange compliance--the most costly of all generalized reinforcers--for their continued sustenance. The retirement phenomenon is specified as illustrative of the aging as exchange process.

  5. Segmented heat exchanger

    DOEpatents

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  6. Fault-Tolerant Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  7. Ion Exchange and Adsorption of Inorganic Contaminants

    EPA Science Inventory

    In the first part of the chapter, the fundamentals of ion exchange and adsorption processes are explained, with the goal of demonstrating how these principles influence process design for inorganic contaminant removal. In the second part, ion exchange and adsorption processes th...

  8. Chromatography process development in the quality by design paradigm I: Establishing a high-throughput process development platform as a tool for estimating "characterization space" for an ion exchange chromatography step.

    PubMed

    Bhambure, R; Rathore, A S

    2013-01-01

    This article describes the development of a high-throughput process development (HTPD) platform for developing chromatography steps. An assessment of the platform as a tool for establishing the "characterization space" for an ion exchange chromatography step has been performed by using design of experiments. Case studies involving use of a biotech therapeutic, granulocyte colony-stimulating factor have been used to demonstrate the performance of the platform. We discuss the various challenges that arise when working at such small volumes along with the solutions that we propose to alleviate these challenges to make the HTPD data suitable for empirical modeling. Further, we have also validated the scalability of this platform by comparing the results from the HTPD platform (2 and 6 μL resin volumes) against those obtained at the traditional laboratory scale (resin volume, 0.5 mL). We find that after integration of the proposed correction factors, the HTPD platform is capable of performing the process optimization studies at 170-fold higher productivity. The platform is capable of providing semi-quantitative assessment of the effects of the various input parameters under consideration. We think that platform such as the one presented is an excellent tool for examining the "characterization space" and reducing the extensive experimentation at the traditional lab scale that is otherwise required for establishing the "design space." Thus, this platform will specifically aid in successful implementation of quality by design in biotech process development. This is especially significant in view of the constraints with respect to time and resources that the biopharma industry faces today.

  9. Educator Exchange Resource Guide.

    ERIC Educational Resources Information Center

    Garza, Cris; Rodriguez, Victor

    This resource guide was developed for teachers and administrators interested in participating in intercultural and international exchange programs or starting an exchange program. An analysis of an exchange program's critical elements discusses exchange activities; orientation sessions; duration of exchange; criteria for participation; travel,…

  10. Plate heat exchanger design theory

    NASA Astrophysics Data System (ADS)

    Shah, R. K.; Wanniarachchi, A. S.

    Plate heat exchangers are commonly used in hygienic applications as well as in chemical processing and other industrial applications. Pertinent information on plate exchangers from a designer's point of view is summarized to provide a basic insight into performance behavior of chevron plates. Basic design methods are presented and a method of coupling between heat transfer and pressure drop is introduced. A step by step design procedure for rating and sizing problems is outlined.

  11. Corrosive resistant heat exchanger

    DOEpatents

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  12. Role of ω -meson exchange in scaling of the γ p →π0p process from a Regge-type model with resonances

    NASA Astrophysics Data System (ADS)

    Kong, Kook-Jin; Choi, Tae Keun; Yu, Byung-Geel

    2016-08-01

    The scaling of photoproduction γ p →π0p is investigated in the Reggeized model with N* and Δ resonances included to describe resonance peaks up to photon energy Eγ=3 GeV . Given the t -channel exchanges ρ (770 ) +ω (780 ) +b1(1235 ) +h1(1170 ) Reggeized for the background contribution, the resonances of the Breit-Wigner form are introduced to agree with cross sections for total, differential, and beam asymmetry in the low energy region. The scaled differential cross sections s7d σ /d t are reproduced to agree with the recent JLab data, revealing the production mechanism of the big bump structure around W ≈2.2 GeV by the deep-dip pattern of the ω exchange that originates from the zeros of the trajectory αω(t ) =0 in the canonical phase, 1/2 (-1 +e-i π αω(t )) .

  13. Influence of phase transformations and heat and mass exchange on the course of the processes of pyrolysis of single high-ash-coal particles at elevated pressures

    SciTech Connect

    V.P. Patskov

    2007-03-15

    A comparative analysis of equilibrium and nonequilibrium models for calculation of the rates of phase transitions (evaporation and condensation) of pyrolysis products and the influence of convective heat and mass exchange with inert ash particles and the gas flow in pyrolysis of single particles of high-ash bituminous coals in the operation of technological units with a circulating fluidized bed under pressure is made.

  14. 21 CFR 173.20 - Ion-exchange membranes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ion-exchange membranes. 173.20 Section 173.20 Food... for Food Treatment § 173.20 Ion-exchange membranes. Ion-exchange membranes may be safely used in the processing of food under the following prescribed conditions: (a) The ion-exchange membrane is prepared...

  15. Heat exchangers: Selection, rating, and thermal design

    SciTech Connect

    Kakac, S.; Liu, H.

    1998-01-01

    This book takes a systematic approach to the subject, focusing on the selection, design, rating, and operational challenges of various types of heat exchangers. Written by well-known authors in the field of heat transfer, this book covers all the most commonly used types of heat exchangers, including condensers and evaporators. The text begins with the classification of the different types of heat exchangers and discusses methods for their sizing and rating. Single phase forced convection correlations in ducts and pressure drop and pumping power analysis are also covered. A chapter is devoted to the special problem of fouling. Thermal design methods and processes, including designs for condensers and evaporators, complete this thorough introduction to the subject. The appendix provides information on the thermophysical properties of fluids, including the new refrigerants. Every topic features worked examples to illustrate the methods and procedures presented, and additional problems are included at the end of each chapter, with examples to be used as a student design project. An instructor's manual is available, including complete solutions to selected problems in the text. The contents include: classification of heat exchangers; basic design methods of heat exchangers; forced convection correlations for single-phase side of heat exchangers; heat exchanger pressure drop and pumping power; fouling of heat exchangers; double-pipe heat exchangers; design correlations for condensers and evaporators; shell-and-tube heat exchangers; compact heat exchangers; gasketed-plate heat exchangers; and condensers and evaporators.

  16. Atlantic Telehealth Knowledge Exchange.

    PubMed

    Dwyer, Patricia; Hagerman, Valerie; Ingram, Chris-Anne; MacFarlane, Ron; McCourt, Sherry

    2004-01-01

    Atlantic Canada has some of the earliest, most comprehensive, well-established networks, and innovative applications for telehealth in the country. The region offers a range of models for telehealth, in terms of management structure, coordination, funding, equipment, utilization, and telehealth applications. Collectively, this diversity, experience, and wealth of knowledge can significantly contribute to the development of a knowledge base for excellence in telehealth services. There is no formal process in place for the sharing of information amongst the provinces. Information sharing primarily occurs informally through professional contacts and participation in telehealth organizations. A core group of organizations partnered to develop a process for knowledge exchange to occur. This type of collaborative approach is favored in Atlantic Canada, given the region's economy and available resources. The Atlantic Telehealth Knowledge Exchange (ATKE) project centred on the development of a collaborative structure, information sharing and dissemination, development of a knowledge repository and sustainability. The project is viewed as a first step in assisting telehealth stakeholders with sharing knowledge about telehealth in Atlantic Canada. Significant progress has been made throughout the project in increasing the profile of telehealth in Atlantic Canada. The research process has captured and synthesized baseline information on telehealth, and fostered collaboration amongst telehealth providers who might otherwise have never come together. It has also brought critical awareness to the discussion tables of governments and key committees regarding the value of telehealth in sustaining our health system, and has motivated decision makers to take action to integrate telehealth into e-health discussions.

  17. Cross-Shelf Exchange.

    PubMed

    Brink, K H

    2016-01-01

    Cross-shelf exchange dominates the pathways and rates by which nutrients, biota, and materials on the continental shelf are delivered and removed. This follows because cross-shelf gradients of most properties are usually far greater than those in the alongshore direction. The resulting transports are limited by Earth's rotation, which inhibits flow from crossing isobaths. Thus, cross-shelf flows are generally weak compared with alongshore flows, and this leads to interesting observational issues. Cross-shelf flows are enabled by turbulent mixing processes, nonlinear processes (such as momentum advection), and time dependence. Thus, there is a wide range of possible effects that can allow these critical transports, and different natural settings are often governed by different combinations of processes. This review discusses examples of representative transport mechanisms and explores possible observational and theoretical paths to future progress.

  18. Cross-Shelf Exchange.

    PubMed

    Brink, K H

    2016-01-01

    Cross-shelf exchange dominates the pathways and rates by which nutrients, biota, and materials on the continental shelf are delivered and removed. This follows because cross-shelf gradients of most properties are usually far greater than those in the alongshore direction. The resulting transports are limited by Earth's rotation, which inhibits flow from crossing isobaths. Thus, cross-shelf flows are generally weak compared with alongshore flows, and this leads to interesting observational issues. Cross-shelf flows are enabled by turbulent mixing processes, nonlinear processes (such as momentum advection), and time dependence. Thus, there is a wide range of possible effects that can allow these critical transports, and different natural settings are often governed by different combinations of processes. This review discusses examples of representative transport mechanisms and explores possible observational and theoretical paths to future progress. PMID:26747520

  19. Woven heat exchanger

    DOEpatents

    Piscitella, Roger R.

    1987-01-01

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  20. Woven heat exchanger

    DOEpatents

    Piscitella, Roger R.

    1987-05-05

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  1. Woven heat exchanger

    DOEpatents

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  2. Proceedings of the DOE/Advanced Heat Exchangers Program Review

    NASA Astrophysics Data System (ADS)

    1992-02-01

    Semiannual review meetings of the USDOE's Advanced Heat Exchanger Program with the objective of reviewing ongoing and recently completed project activities. Personnel from industrial contractors and National Laboratories present technical aspects of their projects. The projects deal with high temperature heat exchangers for waste heat recuperation and process heat exchange and other areas such as materials performance and heat transfer enhancement. Topics presented are high pressure heat exchangers, ceramic heat exchangers, enhanced tubes, and materials studies to include silicon carbide whiskers and alumina.

  3. Electrically Switched Cesium Ion Exchange

    SciTech Connect

    JPH Sukamto; ML Lilga; RK Orth

    1998-10-23

    This report discusses the results of work to develop Electrically Switched Ion Exchange (ESIX) for separations of ions from waste streams relevant to DOE site clean-up. ESIX combines ion exchange and electrochemistry to provide a selective, reversible method for radionuclide separation that lowers costs and minimizes secondary waste generation typically associated with conventional ion exchange. In the ESIX process, an electroactive ion exchange film is deposited onto. a high surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. As a result, the production of secondary waste is minimized, since the large volumes of solution associated with elution, wash, and regeneration cycles typical of standard ion exchange are not needed for the ESIX process. The document is presented in two parts: Part I, the Summary Report, discusses the objectives of the project, describes the ESIX concept and the approach taken, and summarizes the major results; Part II, the Technology Description, provides a technical description of the experimental procedures and in-depth discussions on modeling, case studies, and cost comparisons between ESIX and currently used technologies.

  4. Host-guest chemistry of a water-soluble pillar[5]arene: evidence for an ionic-exchange recognition process and different complexation modes.

    PubMed

    Gómez, Borja; Francisco, Vitor; Fernández-Nieto, Fernando; Garcia-Rio, Luis; Martín-Pastor, M; Paleo, M Rita; Sardina, F Javier

    2014-09-15

    The complexation of an anionic guest by a cationic water-soluble pillararene is reported. Isothermal titration calorimetry (ITC), (1)H NMR, (1)H and (19)F DOSY, and STD NMR experiments were performed to characterize the complex formed under aqueous neutral conditions. The results of ITC and (1)H NMR analyses showed the inclusion of the guest inside the cavity of the pillar[5]arene, with the binding constant and thermodynamic parameters influenced by the counter ion of the macrocycle. NMR diffusion experiments showed that although a fraction of the counter ions are expelled from the host cavity by exchange with the guest, a complex with both counter ions and the guest inside the pillararene is formed. The results also showed that at higher concentrations of guest in solution, in addition to the inclusion of one guest molecule in the cavity, the pillararene can also form an external complex with a second guest molecule.

  5. Throughfall deposition and canopy exchange processes along a vertical gradient within the canopy of beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst).

    PubMed

    Adriaenssens, Sandy; Hansen, Karin; Staelens, Jeroen; Wuyts, Karen; De Schrijver, An; Baeten, Lander; Boeckx, Pascal; Samson, Roeland; Verheyen, Kris

    2012-03-15

    To assess the impact of air pollution on forest ecosystems, the canopy is usually considered as a constant single layer in interaction with the atmosphere and incident rain, which could influence the measurement accuracy. In this study the variation of througfall deposition and derived dry deposition and canopy exchange were studied along a vertical gradient in the canopy of one European beech (Fagus sylvatica L.) tree and two Norway spruce (Picea abies (L.) Karst) trees. Throughfall and net throughfall deposition of all ions other than H(+) increased significantly with canopy depth in the middle and lower canopy of the beech tree and in the whole canopy of the spruce trees. Moreover, throughfall and net throughfall of all ions in the spruce canopy decreased with increasing distance to the trunk. Dry deposition occurred mainly in the upper canopy and was highest during the growing season for H(+), NH(4)(+), NO(3)(-) and highest during the dormant season for Na(+), Cl(-), SO(4)(2-) (beech and spruce) and K(+), Ca(2+) and Mg(2+) (spruce only). Canopy leaching of K(+), Ca(2+) and Mg(2+) was observed at all canopy levels and was higher for the beech tree compared to the spruce trees. Canopy uptake of inorganic nitrogen and H(+) occurred mainly in the upper canopy, although significant canopy uptake was found in the middle canopy as well. Canopy exchange was always higher during the growing season compared to the dormant season. This spatial and temporal variation indicates that biogeochemical deposition models would benefit from a multilayer approach for shade-tolerant tree species such as beech and spruce.

  6. 40 CFR 63.1409 - Heat exchange system provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... normal range. (5) The recirculating heat exchange system is used to cool process fluids that contain less...-through heat exchange system is used to cool process fluids that contain less than 5 percent by weight of... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Heat exchange system provisions....

  7. Indiana Health Information Exchange

    Cancer.gov

    The Indiana Health Information Exchange is comprised of various Indiana health care institutions, established to help improve patient safety and is recognized as a best practice for health information exchange.

  8. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1997-01-01

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  9. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, A.W.; Gatrone, R.C.; Alexandratos, S.; Horwitz, E.P.

    1997-04-08

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorus. The pendent groups have the formula as shown in the patent wherein R is hydrogen, a cation or mixtures thereof; and R{sup 1} is hydrogen or an C{sub 1}-C{sub 2} alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  10. Grafted methylenediphosphonate ion exchange resins

    SciTech Connect

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1998-01-27

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange-resin are also disclosed.

  11. Charge exchange in H^+ + He^+ collision

    NASA Astrophysics Data System (ADS)

    Guevara Leon, Nicolais; Sabin, John R.; Deumens, Erik; Ohrn, Yngve

    2008-05-01

    Charge exchange in H^+ + He^+ collision are investigated theoretically at projectile energies below the ionization threshold at about 100 keV/amu. The electron nuclear dynamics (END) method is used to analyze the collision processes. Total charge exchange cross sections were calculated and compared with other theoretical and experimental data.

  12. Effects of ionizing radiation on modern ion exchange materials

    SciTech Connect

    Marsh, S.F.; Pillay, K.K.S.

    1993-10-01

    We review published studies of the effects of ionizing radiation on ion exchange materials, emphasizing those published in recent years. A brief overview is followed by a more detailed examination of recent developments. Our review includes styrene/divinylbenzene copolymers with cation-exchange or anion-exchange functional groups, polyvinylpyridine anion exchangers, chelating resins, multifunctional resins, and inorganic exchangers. In general, strong-acid cation exchange resins are more resistant to radiation than are strong-base anion exchange resins, and polyvinylpyridine resins are more resistant than polystyrene resins. Cross-linkage, salt form, moisture content, and the surrounding medium all affect the radiation stability of a specific exchanger. Inorganic exchangers usually, but not always, exhibit high radiation resistance. Liquid ion exchangers, which have been used so extensively in nuclear processing applications, also are included.

  13. Charge exchange system

    DOEpatents

    Anderson, Oscar A.

    1978-01-01

    An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.

  14. Impaired posttranslational processing and trafficking of an endosomal Na+/H+ exchanger NHE6 mutant (Δ(370)WST(372)) associated with X-linked intellectual disability and autism.

    PubMed

    Ilie, Alina; Weinstein, Erica; Boucher, Annie; McKinney, R Anne; Orlowski, John

    2014-07-01

    Na(+)/H(+) exchanger NHE6/SLC9A6 is an X-linked gene that is widely expressed and especially abundant in brain, heart and skeletal muscle where it is implicated in endosomal pH homeostasis and trafficking as well as maintenance of cell polarity. Recent genetic studies have identified several mutations in the coding region of NHE6 that are linked with severe intellectual disability, autistic behavior, ataxia and other abnormalities. One such defect consists of an in-frame deletion of three amino acids ((370)Trp-Ser-Thr(372), ΔWST) that adjoin the predicted ninth transmembrane helix of the exchanger. To better understand the nature of this mutation, a NHE6ΔWST construct was generated and assessed for its effects on the biochemical and cellular properties of the transporter. In transfected fibroblastic CHO and neuroblastoma SH-SY5Y cells, immunoblot analyses showed that the mutant protein was effectively synthesized, but its subsequent oligosaccharide maturation and overall half-life were dramatically reduced compared to wild-type. These changes correlated with significant accumulation of ΔWST in the endoplasmic reticulum, with only minor sorting to the plasma membrane and negligible trafficking to recycling endosomes. The diminished accumulation in recycling endosomes was associated with a significant decrease in the rate of endocytosis of cell surface ΔWST compared to wild-type. Furthermore, while ectopic expression of wild-type NHE6 enhanced the uptake of other vesicular cargo such as transferrin along the clathrin-mediated recycling endosomal pathway, this ability was lost in the ΔWST mutant. Similarly, in transfected primary mouse hippocampal neurons, wild-type NHE6 was localized in discrete puncta throughout the soma and neurites, whereas the ΔWST mutant displayed a diffuse reticular pattern. Remarkably, the extensive dendritic arborization observed in neurons expressing wild-type NHE6 was noticeably diminished in ΔWST-transfectants. These results suggest

  15. Pharmaceutical Applications of Ion-Exchange Resins

    NASA Astrophysics Data System (ADS)

    Elder, David P.

    2005-04-01

    The historical uses of ion-exchange resins and a summary of the basic chemical principles involved in the ion-exchange process are discussed. Specific applications of ion-exchange resins are provided. The utility of these agents to stabilize drugs are evaluated. Commonly occurring chemical and physical incompatibilities are reviewed. Ion-exchange resins have found applicability as inactive pharmaceutical constituents, particularly as disintegrants (inactive tablet ingredient whose function is to rapidly disrupt the tablet matrix on contact with gastric fluid). One of the more elegant approaches to improving palatability of ionizable drugs is the use of ion-exchange resins as taste-masking agents. The selection, optimization of drug:resin ratio and particle size, together with a review of scaleup of typical manufacturing processes for taste-masked products are provided. Ion-exchange resins have been extensively utilized in oral sustained-release products. The selection, optimization of drug:resin ratio and particle size, together with a summary of commonly occurring commercial sustained-release products are discussed. Ion-exchange resins have also been used in topical products for local application to the skin, including those where drug flux is controlled by a differential electrical current (ionotophoretic delivery). General applicability of ion-exchange resins, including ophthalmic delivery, nasal delivery, use as drugs in their own right (e.g., colestyramine, formerly referred to as cholestyramine), as well as measuring gastrointestinal transit times, are discussed. Finally, pharmaceutical monographs for ion-exchange resins are reviewed.

  16. Spaceborne Microwave Remote Sensing of Seasonal Freeze-Thaw Processes in the Terrestrial High Latitudes: Relationships with Land-Atmosphere CO2 exchange

    NASA Technical Reports Server (NTRS)

    McDonald, Kyle C.; Kimball, John S.; Zhao, Maosheng; Njoku, Eni; Zimmermann, Reiner; Running, Steven W.

    2004-01-01

    Landscape transitions between seasonally frozen and thawed conditions occur each year over roughly 50 million square kilometers of Earth's Northern Hemisphere. These relatively abrupt transitions represent the closest analog to a biospheric and hydrologic on/off switch existing in nature, affecting surface meteorological conditions, ecological trace gas dynamics, energy exchange and hydrologic activity profoundly. We utilize time series satellite-borne microwave remote sensing measurements from the Special Sensor Microwave Imager (SSM/I) to examine spatial and temporal variability in seasonal freeze/thaw cycles for the pan-Arctic basin and Alaska. Regional measurements of spring thaw timing are derived using daily brightness temperature measurements from the 19 GHz, horizontally polarized channel, separately for overpasses with 6 AM and 6 PM equatorial crossing times. Spatial and temporal patterns in regional freeze/thaw dynamics show distinct differences between North America and Eurasia, and boreal forest and Arctic tundra biomes. Annual anomalies in the timing of thawing in spring also correspond closely to seasonal atmospheric CO2 concentration anomalies derived from NOAA CMDL arctic and subarctic monitoring stations. Classification differences between AM and PM overpass data average approximately 5 days for the region, though both appear to be effective surrogates for monitoring annual growing seasons at high latitudes.

  17. Spaceborne microwave remote sensing of seasonal freeze-thaw processes in theterrestrial high l atitudes : relationships with land-atmosphere CO2 exchange

    NASA Technical Reports Server (NTRS)

    McDonald, Kyle C.; Kimball, John S.; Zhao, Maosheng; Njoku, Eni; Zimmermann, Reiner; Running, Steven W.

    2004-01-01

    Landscape transitions between seasonally frozen and thawed conditions occur each year over roughly 50 million square kilometers of Earth's Northern Hemisphere. These relatively abrupt transitions represent the closest analog to a biospheric and hydrologic on/off switch existing in nature, affecting surface meteorological conditions, ecological trace gas dynamics, energy exchange and hydrologic activity profoundly. We utilize time series satellite-borne microwave remote sensing measurements from the Special Sensor Microwave Imager (SSM/I) to examine spatial and temporal variability in seasonal freeze/thaw cycles for the pan-Arctic basin and Alaska. Regional measurements of spring thaw timing are derived using daily brightness temperature measurements from the 19 GHz, horizontally polarized channel, separately for overpasses with 6 AM and 6 PM equatorial crossing times. Spatial and temporal patterns in regional freeze/thaw dynamics show distinct differences between North America and Eurasia, and boreal forest and Arctic tundra biomes. Annual anomalies in the timing of thawing in spring also correspond closely to seasonal atmospheric CO2 concentration anomalies derived from NOAA CMDL arctic and subarctic monitoring stations. Classification differences between AM and PM overpass data average approximately 5 days for the region, though both appear to be effective surrogates for monitoring annual growing seasons at high latitudes.

  18. South Atlantic interbasin exchange

    NASA Technical Reports Server (NTRS)

    Rintoul, Stephen Rich

    1991-01-01

    The exchange of mass and heat between the South Atlantic and the neighboring ocean basins was estimated using hydrographic data and inverse methods, in order to gain information on the links between the deep-water formation processes occurring within the Atlantic and the global thermohaline circulation. Results demonstrate that the global thermohaline cell associated with the formation and export of North Atlantic deep water (NADW) is closed primarily by a 'cold water path' in which deep water leaving the Atlantic ultimately returns as intermediate water entering the basin through Drake Passage. This conclusion conflicts with the suggestion by Gordon (1986) that the global thermohaline circulation associated with the formation of NADW is closed primarily by a 'warm water path', in which the export of NADW is compensated by an inflow of warm Indian Ocean thermocline water south of Africa.

  19. Lipid exchange between membranes.

    PubMed Central

    Jähnig, F

    1984-01-01

    The exchange of lipid molecules between vesicle bilayers in water and a monolayer forming at the water surface was investigated theoretically within the framework of thermodynamics. The total number of exchanged molecules was found to depend on the bilayer curvature as expressed by the vesicle radius and on the boundary condition for exchange, i.e., whether during exchange the radius or the packing density of the vesicles remains constant. The boundary condition is determined by the rate of flip-flop within the bilayer relative to the rate of exchange between bi- and monolayer. If flip-flop is fast, exchange is independent of the vesicle radius; if flip-flop is slow, exchange increases with the vesicle radius. Available experimental results agree with the detailed form of this dependence. When the theory was extended to exchange between two bilayers of different curvature, the direction of exchange was also determined by the curvatures and the boundary conditions for exchange. Due to the dependence of the boundary conditions on flip-flop and, consequently, on membrane fluidity, exchange between membranes may partially be regulated by membrane fluidity. PMID:6518251

  20. Approximate strip exchanging.

    PubMed

    Roy, Swapnoneel; Thakur, Ashok Kumar

    2008-01-01

    Genome rearrangements have been modelled by a variety of primitives such as reversals, transpositions, block moves and block interchanges. We consider such a genome rearrangement primitive Strip Exchanges. Given a permutation, the challenge is to sort it by using minimum number of strip exchanges. A strip exchanging move interchanges the positions of two chosen strips so that they merge with other strips. The strip exchange problem is to sort a permutation using minimum number of strip exchanges. We present here the first non-trivial 2-approximation algorithm to this problem. We also observe that sorting by strip-exchanges is fixed-parameter-tractable. Lastly we discuss the application of strip exchanges in a different area Optical Character Recognition (OCR) with an example.

  1. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 1, Industrial solid waste processing municipal waste reduction/recycling

    SciTech Connect

    Lee, V.E.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarizes the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  2. Use of the exergy concept for design improvement of heat exchangers and heat exchanger networks

    SciTech Connect

    Ranasinghe, J.

    1989-01-01

    The second law of thermodynamics, through the exergy concept, allows us to quantify and rationally coat the consumption of exergy (irreversibility) used to drive the heat exchange process and the effluent losses of exergy in a heat exchanger. For systems with a network of heat exchangers, the exergy concept recognizes that properly integrated heat pumps reduce the heat transfer irreversibility; this results in reduced utility consumption. Heat engines properly integrated in heat exchanger networks also recover a fraction of the thermodynamic potential destroyed during the heat transfer process and generate power at very high efficiencies. Heat exchanger design conditions are characterized and potential trade-off options discussed. A modification to the irreversibility minimization method is proposed next, and the proposed method gives more realistic guide posts for heat exchangers, compared to the corresponding guide posts obtained from present methods. This thesis also proposes a method to obtain the irreversibility cost coefficients for heat exchangers residing in complex systems. The application of the modified irreversibility method proposed here, and the thermoeconomic method, are illustrated by optimizing an emerging technology ceramic heat exchanger residing in a complex power plant. A method based on the exergy concept is developed to recognize the potential for improvement of processes with process integrated heat pumps and heat engines. Once potential processes have been identified, economically optimum load and level of integration have to be determined. The method of formulating the economic optimization problem is presented, and bounds for some design variables are finally developed.

  3. Nonsurvivable momentum exchange system

    NASA Technical Reports Server (NTRS)

    Roder, Russell (Inventor); Ahronovich, Eliezer (Inventor); Davis, III, Milton C. (Inventor)

    2007-01-01

    A demiseable momentum exchange system includes a base and a flywheel rotatably supported on the base. The flywheel includes a web portion defining a plurality of web openings and a rim portion. The momentum exchange system further includes a motor for driving the flywheel and a cover for engaging the base to substantially enclose the flywheel. The system may also include components having a melting temperature below 1500 degrees Celsius. The momentum exchange system is configured to demise on reentry.

  4. 40 CFR 63.1409 - Heat exchange system provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Heat exchange system provisions. 63... § 63.1409 Heat exchange system provisions. (a) Unless one or more of the conditions specified in... subpart shall monitor each heat exchange system used to cool process equipment in an affected...

  5. Setting Up an Exchange Operation in the Small Special Library.

    ERIC Educational Resources Information Center

    Carter, Harriet H.

    1978-01-01

    Describes the planning process and the procedures established to get the Fels Research Institute Library started in exchange activities through the ALA Duplicates Exchange Union and the MLA Exchange. Methods for evaluating the success of these programs after one year are explained. (Author/MBR)

  6. Study of the structural and magnetic properties and gallium exchange phenomenon in a Mn-Ga alloy doped by Cr during the milling and annealing process

    NASA Astrophysics Data System (ADS)

    Fariba, Nazari; Mohsen, Hakimi; Hossein, Mokhtari; Mohsen, Khajeh Aminian

    2015-05-01

    The effect of milling and annealing process on Cr doped Mn3Ga nanocrystallite has been investigated. Phase determination analysis shows that Ga turning to get out of Mn-Ga structure and tend to make bonding to Cr and form Cr3Ga4 product during milling process. Annealing of the new phases lead to decomposition of Cr3Ga4 and formation of a new Mn-Ga phase in reverse direction, in the other words diffusion of Ga atoms occurs from Cr3Ga4 to Mn phase and α-Mn and Cr3Ga4 change to Mn3Ga2 and Cr phases. The variation of coersivity, magnetization and magnetic state of different samples was explained according to the crystallite size of the present phases and grain boundary effects. It was also confirmed that formation of Mn-Cr clusters plays an important role in increase of saturation magnetization.

  7. Text Exchange System

    NASA Technical Reports Server (NTRS)

    Snyder, W. V.; Hanson, R. J.

    1986-01-01

    Text Exchange System (TES) exchanges and maintains organized textual information including source code, documentation, data, and listings. System consists of two computer programs and definition of format for information storage. Comprehensive program used to create, read, and maintain TES files. TES developed to meet three goals: First, easy and efficient exchange of programs and other textual data between similar and dissimilar computer systems via magnetic tape. Second, provide transportable management system for textual information. Third, provide common user interface, over wide variety of computing systems, for all activities associated with text exchange.

  8. Heat exchanger expert system logic

    NASA Technical Reports Server (NTRS)

    Cormier, R.

    1988-01-01

    The reduction is described of the operation and fault diagnostics of a Deep Space Network heat exchanger to a rule base by the application of propositional calculus to a set of logic statements. The value of this approach lies in the ease of converting the logic and subsequently implementing it on a computer as an expert system. The rule base was written in Process Intelligent Control software.

  9. Higher Education Exchange, 2012

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2012-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  10. Teachers' Centers Exchange Directory.

    ERIC Educational Resources Information Center

    Lance, Jeanne; Kreitzman, Ruth

    This directory has three major sections. The foreword is a brief essay describing the purpose of the Teachers' Centers Exchange, the "network" of teachers' centers, and the reasons for compiling and publishing this directory. The second section gives descriptions of 78 teachers' centers in the Exchange's network. These descriptions highlight each…

  11. Direct fired heat exchanger

    DOEpatents

    Reimann, Robert C.; Root, Richard A.

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  12. Higher Education Exchange, 2010

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2010-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  13. Higher Education Exchange, 2008

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2008-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  14. Building Relationships through Exchange

    ERIC Educational Resources Information Center

    Primavera, Angi; Hall, Ellen

    2011-01-01

    From the moment of birth, children form and develop relationships with others in their world based on exchange. Children recognize that engaging in such encounters offers them the opportunity to enter into a relationship with another individual and to nurture that relationship through the exchange of messages and gifts, items and ideas. At Boulder…

  15. Higher Education Exchange, 2004

    ERIC Educational Resources Information Center

    Brown, David W., Ed; Witte, Deborah, Ed.

    2004-01-01

    The Higher Education Exchange is part of a movement to strengthen higher education's democratic mission and foster a more democratic culture throughout American society. Working in this tradition, the Higher Education Exchange publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic…

  16. Optimization of Heat Exchangers

    SciTech Connect

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  17. Higher Education Exchange, 2005

    ERIC Educational Resources Information Center

    Brown, David W., Ed; Witte, Deborah, Ed.

    2005-01-01

    The "Higher Education Exchange" is part of a movement to strengthen higher education's democratic mission and foster a more democratic culture throughout American society. Working in this tradition, the "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic…

  18. Environmental Exchange Box

    ERIC Educational Resources Information Center

    Moseley, Christine

    2003-01-01

    In this activity, teachers in one state create and share an "exchange box" of environmental and cultural items with students of another state. The Environmental Exchange Box activity enables teachers to improve students' skills in scientific inquiry and develop attitudes and values conducive to science learning such as wonder, curiosity, and…

  19. Higher Education Exchange, 2011

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2011-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  20. Aberration corrected emittance exchange

    NASA Astrophysics Data System (ADS)

    Nanni, E. A.; Graves, W. S.

    2015-08-01

    Full exploitation of emittance exchange (EEX) requires aberration-free performance of a complex imaging system including active radio-frequency (rf) elements which can add temporal distortions. We investigate the performance of an EEX line where the exchange occurs between two dimensions with normalized emittances which differ by multiple orders of magnitude. The transverse emittance is exchanged into the longitudinal dimension using a double dogleg emittance exchange setup with a five cell rf deflector cavity. Aberration correction is performed on the four most dominant aberrations. These include temporal aberrations that are corrected with higher order magnetic optical elements located where longitudinal and transverse emittance are coupled. We demonstrate aberration-free performance of an EEX line with emittances differing by four orders of magnitude, i.e., an initial transverse emittance of 1 pm-rad is exchanged with a longitudinal emittance of 10 nm-rad.

  1. A hypothetical model of organic matter sea-to-air exchange processes based on stable carbon fractionation in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Ceburnis, D.; Masalaite, A.; Garbaras, A.; Ovadnevaite, J.; Maenhaut, W.; Claeys, M.; Sciare, J.; O'Dowd, C. D. D.; Remeikis, V.

    2015-12-01

    Marine aerosol contributes significantly to the global aerosol loading and consequently has a significant impact on both the Earth's albedo and climate. Biological productivity in the global ocean is often resulting in significant amounts of primary organic matter in the aerosol phase. The North Atlantic Ocean is among the most productive oceanic regions and is the most studied ocean on Earth. The Southern Ocean, on the other hand, has been far less studied, even though similar organic matter enrichment patterns have been observed in marine aerosol. While numerous processes can contribute to organic matter in marine aerosols, carbon isotope analysis offers the most unambiguous estimates of the contributing sources. The stable carbon isotope ratios in marine aerosol samples collected during austral summer of 2007 at Amsterdam Island (Southern Indian Ocean) were examined. The measured δ13C values in the fine (Da <2.5µm) and coarse (Da >2.5µm) particle fractions were found to be evenly distributed between -28.2‰ and -20.0‰. These values are far lower than the previously reported ones as typical of unperturbed marine aerosol (-20‰). The δ13C values in the fine and coarse particle fractions were correlated with organic matter enrichment in sea spray. It was attempted to explain the variation of the δ13C values by the competition of the "fresh" and "old" organic matter pools in sea water during transfer into the aerosol phase, thereby implicating trophic level interactions. The hypothetical model suggests that fresh organic matter readily results in organic matter enrichment in sea spray particles and likely contains fresh colloidal and nanogel particulate matter, while the old organic matter is largely dissolved and unable to significantly enrich sea spray. Air mass back trajectory analysis suggests that the most productive regions, where sea spray particles are the most enriched in organic matter, are associated with low sea-water temperatures around the

  2. Convection and interfacial mass exchange

    NASA Astrophysics Data System (ADS)

    Colinet, P.; Legros, J. C.; Dauby, P. C.; Lebon, G.; Bestehorn, M.; Stephan, P.; Tadrist, L.; Cerisier, P.; Poncelet, D.; Barremaecker, L.

    2005-10-01

    Mass-exchange through fluid interfaces is ubiquitous in many natural and industrial processes. Yet even basic phase-change processes such as evaporation of a pure liquid are not fully understood, in particular when coupled with fluid motions in the vicinity of the phase-change interface, or with microscopic physical phenomena in the vicinity of a triple line (where the interface meets a solid). Nowadays, many industries recognise that this lack of fundamental knowledge is hindering the optimisation of existing processes. Their modelling tools are too dependent on empirical correlations with a limited - and often unknown - range of applicability. In addition to the intrinsic multiscale nature of the phenomena involved in typical industrial processes linked to interfacial mass exchange, their study is highly multi-disciplinary, involving tools and techniques belonging to physical chemistry, chemical engineering, fluid dynamics, non-linear physics, non-equilibrium thermodynamics, chemistry and statistical physics. From the experimental point of view, microgravity offers a unique environment to obtain valuable data on phase-change processes, greatly reducing the influence of body forces and allowing the detailed and accurate study of interfacial dynamics. In turn, such improved understanding leads to optimisation of industrial processes and devices involving phase-change, both for space and ground applications.

  3. Energy-Exchange Project

    SciTech Connect

    Not Available

    1982-04-01

    The purpose of the study was to determine what energy savings can be achieved by coordinating the resources and requirements of two facilities, the 26th Ward Water Pollution Control Plant (WPCP) and a housing development named Starrett City with its own total energy system. It was determined that three energy exchange options were economically and technically feasible. These include: the transfer of digester gas produced at the 26th Ward to the boilers at the Starrett City's total energy plant (TEP); the transfer of hot water heated at the TEP to the 26th Ward for space and process heating; and the transfer of coal effluent waste water from the 26th Ward to the condenser cooling systems at the TEP. Technical information is presented to support the findings. The report addresses those tasks of the statement of work dedicated to data acquisition, analysis, and energy conservation strategies internal to the Starrett City TEP and the community it supplies as well as to the 26th Ward WPCP. (MCW)

  4. Electrically switched ion exchange

    SciTech Connect

    Lilga, M.A.; Schwartz, D.T.; Genders, D.

    1997-10-01

    A variety of waste types containing radioactive {sup 137}Cs are found throughout the DOE complex. These waste types include water in reactor cooling basins, radioactive high-level waste (HLW) in underground storage tanks, and groundwater. Safety and regulatory requirements and economics require the removal of radiocesium before these wastes can be permanently disposed of. Electrically Switched Ion Exchange (ESIX) is an approach for radioactive cesium separation that combines IX and electrochemistry to provide a selective, reversible, and economic separation method that also produces little or no secondary waste. In the ESIX process, an electroactive IX film is deposited electrochemically onto a high-surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. For cesium, the electroactive films under investigation are ferrocyanides, which are well known to have high selectivities for cesium in concentrated sodium solutions. When a cathode potential is applied to the film, Fe{sup +3} is reduced to the Fe{sup +2} state, and a cation must be intercalated into the film to maintain charge neutrality (i.e., Cs{sup +} is loaded). Conversely, if an anodic potential is applied, a cation must be released from the film (i.e., Cs{sup +} is unloaded). Therefore, to load the film with cesium, the film is simply reduced; to unload cesium, the film is oxidized.

  5. Four particle exchange in solid He-3

    NASA Technical Reports Server (NTRS)

    Mcmahan, A. K.

    1975-01-01

    Calculations which demonstrate a physically important four-atom exchange process in bodycentered cubic He crystal and thus an important four-spin term in the exchange Hamiltonian are discussed. A simple, mean-field analysis of this Hamiltonian appears to account for a number of the perplexing properties of bodycentered cubic He crystal. It is suggested that an understanding of other properties may require treatment of the exact four-spin term.

  6. Exploring knowledge exchange: a useful framework for practice and policy.

    PubMed

    Ward, Vicky; Smith, Simon; House, Allan; Hamer, Susan

    2012-02-01

    Knowledge translation is underpinned by a dynamic and social knowledge exchange process but there are few descriptions of how this unfolds in practice settings. This has hampered attempts to produce realistic and useful models to help policymakers and researchers understand how knowledge exchange works. This paper reports the results of research which investigated the nature of knowledge exchange. We aimed to understand whether dynamic and fluid definitions of knowledge exchange are valid and to produce a realistic, descriptive framework of knowledge exchange. Our research was informed by a realist approach. We embedded a knowledge broker within three service delivery teams across a mental health organisation in the UK, each of whom was grappling with specific challenges. The knowledge broker participated in the team's problem-solving process and collected observational fieldnotes. We also interviewed the team members. Observational and interview data were analysed quantitatively and qualitatively in order to determine and describe the nature of the knowledge exchange process in more detail. This enabled us to refine our conceptual framework of knowledge exchange. We found that knowledge exchange can be understood as a dynamic and fluid process which incorporates distinct forms of knowledge from multiple sources. Quantitative analysis illustrated that five broadly-defined components of knowledge exchange (problem, context, knowledge, activities, use) can all be in play at any one time and do not occur in a set order. Qualitative analysis revealed a number of distinct themes which better described the nature of knowledge exchange. By shedding light on the nature of knowledge exchange, our findings problematise some of the linear, technicist approaches to knowledge translation. The revised model of knowledge exchange which we propose here could therefore help to reorient thinking about knowledge exchange and act as a starting point for further exploration and

  7. Exploring knowledge exchange: a useful framework for practice and policy.

    PubMed

    Ward, Vicky; Smith, Simon; House, Allan; Hamer, Susan

    2012-02-01

    Knowledge translation is underpinned by a dynamic and social knowledge exchange process but there are few descriptions of how this unfolds in practice settings. This has hampered attempts to produce realistic and useful models to help policymakers and researchers understand how knowledge exchange works. This paper reports the results of research which investigated the nature of knowledge exchange. We aimed to understand whether dynamic and fluid definitions of knowledge exchange are valid and to produce a realistic, descriptive framework of knowledge exchange. Our research was informed by a realist approach. We embedded a knowledge broker within three service delivery teams across a mental health organisation in the UK, each of whom was grappling with specific challenges. The knowledge broker participated in the team's problem-solving process and collected observational fieldnotes. We also interviewed the team members. Observational and interview data were analysed quantitatively and qualitatively in order to determine and describe the nature of the knowledge exchange process in more detail. This enabled us to refine our conceptual framework of knowledge exchange. We found that knowledge exchange can be understood as a dynamic and fluid process which incorporates distinct forms of knowledge from multiple sources. Quantitative analysis illustrated that five broadly-defined components of knowledge exchange (problem, context, knowledge, activities, use) can all be in play at any one time and do not occur in a set order. Qualitative analysis revealed a number of distinct themes which better described the nature of knowledge exchange. By shedding light on the nature of knowledge exchange, our findings problematise some of the linear, technicist approaches to knowledge translation. The revised model of knowledge exchange which we propose here could therefore help to reorient thinking about knowledge exchange and act as a starting point for further exploration and

  8. Wound tube heat exchanger

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  9. Anion exchange membrane

    DOEpatents

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  10. Heat and mass exchanger

    DOEpatents

    Lowenstein, Andrew; Sibilia, Marc J.; Miller, Jeffrey A.; Tonon, Thomas

    2007-09-18

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  11. Active microchannel heat exchanger

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Roberts, Gary L [West Richland, WA; Call, Charles J [Pasco, WA; Wegeng, Robert S [Richland, WA; Wang, Yong [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  12. Anion exchange polymer electrolytes

    SciTech Connect

    Kim, Yu Seung; Kim, Dae Sik

    2015-06-02

    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  13. Greywater heat exchanger

    SciTech Connect

    Holmberg, D.

    1983-11-21

    A kilowatt meter and water meter were installed to monitor pregreywater usage. The design considerations, the heat exchanger construction and installation, and the monitoring of usage levels are described.

  14. Design and performance of a new continuous-flow sample-introduction system for flame infrared-emission spectrometry: Applications in process analysis, flow injection analysis, and ion-exchange high-performance liquid chromatography.

    PubMed

    Lam, C K; Zhang, Y; Busch, M A; Busch, K W

    1993-06-01

    A new sample introduction system for the analysis of continuously flowing liquid streams by flame infrared-emission (FIRE) spectrometry has been developed. The system uses a specially designed purge cell to strip dissolved CO(2) from solution into a hydrogen gas stream that serves as the fuel for a hydrogen/air flame. Vibrationally excited CO(2) molecules present in the flame are monitored with a simple infrared filter (4.4 mum) photometer. The new system can be used to introduce analytes as a continuous liquid stream (process analysis mode) or on a discrete basis by sample injection (flow injection analysis mode). The key to the success of the method is the new purge-cell design. The small internal volume of the cell minimizes problems associated with purge-cell clean-out and produces sharp, reproducible signals. Spent analytical solution is continuously drained from the cell, making cell disconnection and cleaning between samples unnecessary. Under the conditions employed in this study, samples could be analyzed at a maximum rate of approximately 60/h. The new sample introduction system was successfully tested in both a process analysis- and a flow injection analysis mode for the determination of total inorganic carbon in Waco tap water. For the first time, flame infrared-emission spectrometry was successfully extended to non-volatile organic compounds by using chemical pretreatment with peroxydisulfate in the presence of silver ion to convert the analytes into dissolved carbon dioxide, prior to purging and detection by the FIRE radiometer. A test of the peroxydisulfate/Ag(+) reaction using six organic acids and five sugars indicated that all 11 compounds were oxidized to nearly the same extent. Finally, the new sample introduction system was used in conjunction with a simple filter FIRE radiometer as a detection system in ion-exchange high-performance liquid chromatography. Ion-exchange chromatograms are shown for two aqueous mixtures, one containing six organic

  15. Microtube Strip Heat Exchanger

    SciTech Connect

    Doty, F.D.

    1990-12-27

    Doty Scientific (DSI) believes their Microtube-Strip Heat Exchanger will contribute significantly to (a) the closed Brayton cycles being pursued at MIT, NASA, and elsewhere; (b) reverse Brayton cycle cryocoolers, currently being investigated by NASA for space missions, being applied to MRI superconducting magnets; and (c) high-efficiency cryogenic gas separation schemes for CO{sub 2} removal from exhaust stacks. The goal of this current study is to show the potential for substantial progress in high-effectiveness, low-cost, gas-to-gas heat exchangers for diverse applications at temperatures from below 100 K to above 1000 K. To date, the highest effectiveness measured is about 98%, and relative pressure drops below 0.1% with a specific conductance of about 45 W/kgK are reported. During the pre-award period DSI built and tested a 3-module heat exchanger bank using 103-tube microtube strip (MTS) modules. To add to their analytical capabilities, DSI has acquired computational fluid dynamics (CFD) software. This report describes the pre-award work and the status of the ten tasks of the current project, which are: analyze flow distribution and thermal stresses within individual modules; design a heat exchanger bank of ten modules with 400 microtube per module; obtain production quality tubestrip die and AISI 304 tubestrips; obtain production quality microtubing; construct revised MTS heat exchanger; construct dies and fixtures for prototype heat exchanger; construct 100 MTS modules; assemble 8-10 prototype MTS heat exchangers; test prototype MTS heat exchanger; and verify test through independent means. 7 refs., 9 figs. 1 tab. (CK)

  16. Ion Exchange Formation via Sulfonated Bicomponent Nonwovens

    NASA Astrophysics Data System (ADS)

    Stoughton, Hannah L.

    For many years ion exchange resins were used to: remove heavy metals from water, recover materials from wastewater, and eliminate harmful gases from the air. While use of these resin beads dominates the ion exchange industry, the beads have limitations that should be considered when decisions are made to employ them. For instance, officials must balance the inherent zero sum surface area and porosity of the materials. This series of studies investigates the use of bicomponent nonwovens as a base substrate for producing high surface area ion exchange materials for the removal of heavy metal ions. Functionalized materials were produced in a two-step process: (1) PET/PE spunbond bicomponent fibers were fractured completely, producing the high surface area nonwoven to be used as the base ion exchange material, and (2) the conditions for functionalizing the PET fibers of the nonwoven webs were investigated where an epoxy containing monomer was grafted to the surface followed by sulfonation of the monomer. The functionalization reactions of the PET fibers were monitored based on: weight gain, FTIR, TOF-SIMS, and SEM. Ion exchange properties were evaluated using titration and copper ion removal capacity from test solutions. The relationship between web structure and removal efficiency of the metal ions was defined through a comparison of the bicomponent and homocomponent nonwovens for copper ion removal efficiency. The investigation revealed that utilizing the high surface area, fractured bicomponent nonwoven ion exchange materials with capacities comparable to commercially available ion exchange resins could be produced.

  17. Radial flow heat exchanger

    DOEpatents

    Valenzuela, Javier

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  18. Vacuum powered heat exchanger

    SciTech Connect

    Ruffolo, R.F.

    1986-06-24

    In an internal combustion engine including an oil lubrication system, a liquid cooling system, and an improved air intake system is described. The improved air intake system comprises: a housing including a first opening in one end, which opening is open to the atmosphere and a second opening comprising an air outlet opening in the other end open to the air intake manifold of the engine, a heat exchanger positioned in the first opening. The heat exchanger consists of a series of coils positioned in the flow path of the atmospheric air as it enters the housing, the heat exchanger being fluidly connected to either the engine lubrication system or the cooling system to provide a warm heat source for the incoming air to the housing, acceleration means positioned in the housing downstream of the heat exchanger, the acceleration means comprising a honeycomb structure positioned across the air intake flow path. The honey-comb structure includes a multitude of honey combed mini-venturi cells through which the heated air flows in an accelerated mode, a removable air filter positioned between the heat exchanger and the acceleration means and a single opening provided in the housing through which the air filter can be passed and removed, and additional openings in the housing positioned downstream of the heat exchanger and upstream of the air filter, the additional openings including removable flaps for opening and closing the openings to control the temperature of the air flowing through the housing.

  19. Heat exchange device

    SciTech Connect

    Callison, G.

    1984-01-17

    A heat exchange device is adapted to recover heat from the fire box of a wood burning stove or the like for heating ambient air in a room or other enclosed space. The heat exchange device is adapted to mount in a recess in a stove top in place of a lid which is normally supplied with the stove. The device according to the invention includes heat exchange means which extend into the fire box of the stove below the top surface thereof. The heat from the heat exchange device is transmitted into a main cavity of the device where the heat is transferred to air forced through the main cavity by a blower mounted to an outside surface of the device. Air exit means are provided on a surface opposite to the surface on which the blower is mounted to provide a passage for heated air into the room or other enclosed space to be heated. The device may also include a top mounted isolated handle for ease in handling the device such as for moving from one area to another. In a second embodiment of the device, a high temperature heat exchange glass plate is mounted on the surface of the device which is in contact with the fire box. Heat is transmitted by heat exchange plate to the main cavity of the device where the air is heated and blown into the room as above.

  20. Microscale continuous ion exchanger.

    PubMed

    Kuban, Petr; Dasgupta, Purnendu K; Morris, Kavin A

    2002-11-01

    A microscale continuous ion exchanger based on two liquid streams flowing in parallel is presented. The ion exchange reaction occurs through diffusional transfer of molecules between the ion exchanger phase and the eluent phase and is applied for conductivity suppression. Two approaches are demonstrated. In the first approach, a liquid ion exchanger (i.e. a strongly basic compound, e.g., tetraoctylammonium hydroxide, or a secondary amine, e.g., Amberlite IA-2) is dissolved in an organic solvent immiscible with the aqueous eluent. The system allows for sensitive suppressed conductivity detection of various inorganic cations. When the weakly basic secondary amine is used, conductometric detection of heavy metals is possible. In the second approach, a suspension of finely ground ion-exchange resin is used as the ion exchanger phase. In this case, the suspension need not involve an organic solvent. Theoretical models and computations are presented along with experimental results. The potential of such a system as a chip-scale post-separation suppressor/reactor is evident.

  1. Cryptographic Combinatorial Securities Exchanges

    NASA Astrophysics Data System (ADS)

    Thorpe, Christopher; Parkes, David C.

    We present a useful new mechanism that facilitates the atomic exchange of many large baskets of securities in a combinatorial exchange. Cryptography prevents information about the securities in the baskets from being exploited, enhancing trust. Our exchange offers institutions who wish to trade large positions a new alternative to existing methods of block trading: they can reduce transaction costs by taking advantage of other institutions’ available liquidity, while third party liquidity providers guarantee execution—preserving their desired portfolio composition at all times. In our exchange, institutions submit encrypted orders which are crossed, leaving a “remainder”. The exchange proves facts about the portfolio risk of this remainder to third party liquidity providers without revealing the securities in the remainder, the knowledge of which could also be exploited. The third parties learn either (depending on the setting) the portfolio risk parameters of the remainder itself, or how their own portfolio risk would change if they were to incorporate the remainder into a portfolio they submit. In one setting, these third parties submit bids on the commission, and the winner supplies necessary liquidity for the entire exchange to clear. This guaranteed clearing, coupled with external price discovery from the primary markets for the securities, sidesteps difficult combinatorial optimization problems. This latter method of proving how taking on the remainder would change risk parameters of one’s own portfolio, without revealing the remainder’s contents or its own risk parameters, is a useful protocol of independent interest.

  2. Porous Ceramic Spheres From Cation Exchange Beads

    NASA Technical Reports Server (NTRS)

    Dynys, Fred

    2005-01-01

    This document is a slide presentation that examines the use of a simple templating process to produce hollow ceramic spheres with a pore size of 1 to 10 microns. Using ion exchange process it was determined that the method produces porous ceramic spheres with a unique structure: (i.e., inner sphere surrounded by an outer sphere.)

  3. Seed exchange networks, ethnicity, and sorghum diversity

    PubMed Central

    Labeyrie, Vanesse; Thomas, Mathieu; Muthamia, Zachary K.; Leclerc, Christian

    2016-01-01

    Recent studies investigating the relationship between crop genetic diversity and human cultural diversity patterns showed that seed exchanges are embedded in farmers’ social organization. However, our understanding of the social processes involved remains limited. We investigated how farmers’ membership in three major social groups interacts in shaping sorghum seed exchange networks in a cultural contact zone on Mount Kenya. Farmers are members of residence groups at the local scale and of dialect groups clustered within larger ethnolinguistic units at a wider scale. The Chuka and Tharaka, who are allied in the same ethnolinguistic unit, coexist with the Mbeere dialect group in the study area. We assessed farmers’ homophily, propensity to exchange seeds with members of the same group, using exponential random graph models. We showed that homophily is significant within both residence and ethnolinguistic groups. At these two levels, homophily is driven by the kinship system, particularly by the combination of patrilocal residence and ethnolinguistic endogamy, because most seeds are exchanged among relatives. Indeed, residential homophily in seed exchanges results from local interactions between women and their in-law family, whereas at a higher level, ethnolinguistic homophily is driven by marriage endogamy. Seed exchanges and marriage ties are interrelated, and both are limited between the Mbeere and the other groups, although frequent between the Chuka and Tharaka. The impact of these social homophily processes on crop diversity is discussed. PMID:26699480

  4. Seed exchange networks, ethnicity, and sorghum diversity.

    PubMed

    Labeyrie, Vanesse; Thomas, Mathieu; Muthamia, Zachary K; Leclerc, Christian

    2016-01-01

    Recent studies investigating the relationship between crop genetic diversity and human cultural diversity patterns showed that seed exchanges are embedded in farmers' social organization. However, our understanding of the social processes involved remains limited. We investigated how farmers' membership in three major social groups interacts in shaping sorghum seed exchange networks in a cultural contact zone on Mount Kenya. Farmers are members of residence groups at the local scale and of dialect groups clustered within larger ethnolinguistic units at a wider scale. The Chuka and Tharaka, who are allied in the same ethnolinguistic unit, coexist with the Mbeere dialect group in the study area. We assessed farmers' homophily, propensity to exchange seeds with members of the same group, using exponential random graph models. We showed that homophily is significant within both residence and ethnolinguistic groups. At these two levels, homophily is driven by the kinship system, particularly by the combination of patrilocal residence and ethnolinguistic endogamy, because most seeds are exchanged among relatives. Indeed, residential homophily in seed exchanges results from local interactions between women and their in-law family, whereas at a higher level, ethnolinguistic homophily is driven by marriage endogamy. Seed exchanges and marriage ties are interrelated, and both are limited between the Mbeere and the other groups, although frequent between the Chuka and Tharaka. The impact of these social homophily processes on crop diversity is discussed. PMID:26699480

  5. Seed exchange networks, ethnicity, and sorghum diversity.

    PubMed

    Labeyrie, Vanesse; Thomas, Mathieu; Muthamia, Zachary K; Leclerc, Christian

    2016-01-01

    Recent studies investigating the relationship between crop genetic diversity and human cultural diversity patterns showed that seed exchanges are embedded in farmers' social organization. However, our understanding of the social processes involved remains limited. We investigated how farmers' membership in three major social groups interacts in shaping sorghum seed exchange networks in a cultural contact zone on Mount Kenya. Farmers are members of residence groups at the local scale and of dialect groups clustered within larger ethnolinguistic units at a wider scale. The Chuka and Tharaka, who are allied in the same ethnolinguistic unit, coexist with the Mbeere dialect group in the study area. We assessed farmers' homophily, propensity to exchange seeds with members of the same group, using exponential random graph models. We showed that homophily is significant within both residence and ethnolinguistic groups. At these two levels, homophily is driven by the kinship system, particularly by the combination of patrilocal residence and ethnolinguistic endogamy, because most seeds are exchanged among relatives. Indeed, residential homophily in seed exchanges results from local interactions between women and their in-law family, whereas at a higher level, ethnolinguistic homophily is driven by marriage endogamy. Seed exchanges and marriage ties are interrelated, and both are limited between the Mbeere and the other groups, although frequent between the Chuka and Tharaka. The impact of these social homophily processes on crop diversity is discussed.

  6. 8. VIEW OF GLOVE BOXES USED IN THE ANION EXCHANGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF GLOVE BOXES USED IN THE ANION EXCHANGE PROCESS. THE ANION EXCHANGE PROCESS PURIFIED AND CONCENTRATED PLUTONIUM-BEARING NITRIC ACID SOLUTIONS TO MAKE THEM ACCEPTABLE AS FEED FOR CONVERSION TO METAL. (6/20/60) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

  7. Modeling of Crystalline Silicotitanate Ion Exchange Columns

    SciTech Connect

    Walker, D.D.

    1999-03-09

    Non-elutable ion exchange is being considered as a potential replacement for the In-Tank Precipitation process for removing cesium from Savannah River Site (SRS) radioactive waste. Crystalline silicotitanate (CST) particles are the reference ion exchange medium for the process. A major factor in the construction cost of this process is the size of the ion exchange column required to meet product specifications for decontaminated waste. To validate SRS column sizing calculations, SRS subcontracted two reknowned experts in this field to perform similar calculations: Professor R. G. Anthony, Department of Chemical Engineering, Texas A&038;M University, and Professor S. W. Wang, Department of Chemical Engineering, Purdue University. The appendices of this document contain reports from the two subcontractors. Definition of the design problem came through several meetings and conference calls between the participants and SRS personnel over the past few months. This document summarizes the problem definition and results from the two reports.

  8. Downhole heat exchangers

    SciTech Connect

    Culver, G.; Lund, J.W.

    1999-09-01

    The downhole heat exchanger (DHE) eliminates the problem of disposal of geothermal fluid, since only heat is taken from the well. The exchanger consists of a system of pipes or tubes suspended in the well through which clean secondary water is pumped or allowed to circulate by natural convection. These systems offer substantial economic savings over surface heat exchangers where a single-well system is adequate (typically less than 0.8 MWt, with well depths up to about 500 ft) and may be economical under certain conditions at well depths to 1500 ft. Several designs have proven successful; but, the most popular are a simple hairpin loop or multiple loops of iron pipe (similar to the tubes in a U-tube and shell exchanger) extending to near the well bottom. An experimental design consisting of multiple small tubes with headers at each end suspended just below the water surface appears to offer economic and heating capacity advantages. The paper describes design and construction details and New Zealand`s experience with downhole heat exchangers.

  9. Dynamic Analysis of Capture Devices for Momentum Exchange with Tethers

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen

    2002-01-01

    One of the significant challenges in developing a momentum exchange / electrodynamic reboost tether system is in the analysis and design of the capture device and its effects on the overall dynamics of the system. The goal of this work is to develop appropriate tether momentum exchange models that can simulate and evaluate the requirements of such a system, and be used to create specifications on the design of a capture device. This report briefly describes dynamic model development, simulation of the momentum exchange process, evaluation of dynamic effects of errors in the momentum exchange process, and the development of guidelines in selecting dynamic properties in the design of a capture device.

  10. Microgravity condensing heat exchanger

    NASA Technical Reports Server (NTRS)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor); North, Andrew (Inventor); Weislogel, Mark M. (Inventor)

    2011-01-01

    A heat exchanger having a plurality of heat exchanging aluminum fins with hydrophilic condensing surfaces which are stacked and clamped between two cold plates. The cold plates are aligned radially along a plane extending through the axis of a cylindrical duct and hold the stacked and clamped portions of the heat exchanging fins along the axis of the cylindrical duct. The fins extend outwardly from the clamped portions along approximately radial planes. The spacing between fins is symmetric about the cold plates, and are somewhat more closely spaced as the angle they make with the cold plates approaches 90.degree.. Passageways extend through the fins between vertex spaces which provide capillary storage and communicate with passageways formed in the stacked and clamped portions of the fins, which communicate with water drains connected to a pump externally to the duct. Water with no entrained air is drawn from the capillary spaces.

  11. Modular heat exchanger

    DOEpatents

    Culver, Donald W.

    1978-01-01

    A heat exchanger for use in nuclear reactors includes a heat exchange tube bundle formed from similar modules each having a hexagonal shroud containing a large number of thermally conductive tubes which are connected with inlet and outlet headers at opposite ends of each module, the respective headers being adapted for interconnection with suitable inlet and outlet manifold means. In order to adapt the heat exchanger for operation in a high temperature and high pressure environment and to provide access to all tube ports at opposite ends of the tube bundle, a spherical tube sheet is arranged in sealed relation across the chamber with an elongated duct extending outwardly therefrom to provide manifold means for interconnection with the opposite end of the tube bundle.

  12. Ion exchange phenomena

    SciTech Connect

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  13. Microscale Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  14. Heat exchanger panel

    NASA Technical Reports Server (NTRS)

    Warburton, Robert E. (Inventor); Cuva, William J. (Inventor)

    2005-01-01

    The present invention relates to a heat exchanger panel which has broad utility in high temperature environments. The heat exchanger panel has a first panel, a second panel, and at least one fluid containment device positioned intermediate the first and second panels. At least one of the first panel and the second panel have at least one feature on an interior surface to accommodate the at least one fluid containment device. In a preferred embodiment, each of the first and second panels is formed from a high conductivity, high temperature composite material. Also, in a preferred embodiment, the first and second panels are joined together by one or more composite fasteners.

  15. TECHNICAL COMPARISON OF CANDIDATE ION EXCHANGE MEDIA FOR SMALL COLUMN ION EXCHANGE (SCIX) APPLICATIONS IN SUPPORT OF SUPPLEMENTAL LAW PRETREATMENT

    SciTech Connect

    RAMSEY AA; THORSON MR

    2010-12-28

    At-tank supplemental pretreatment including both filtration and small column ion exchange is currently under evaluation to facilitate salt waste retrieval and processing in the Hanford tank farms. Spherical resorcinol formaldehyde (sRF) resin is the baseline ion exchange resin for use in the Waste Treatment and Immobilization Plant (WTP). This document provides background and technical rationale to assist in determining whether spherical resorcinol formaldehyde (sRF) is also the appropriate ion exchange resin for supplemental LAW pretreatment processes and compares sRF with crystalline silicotitanate (CST) as potential supplemental pretreatment ion exchange media.

  16. Reliability analysis on a shell and tube heat exchanger

    NASA Astrophysics Data System (ADS)

    Lingeswara, S.; Omar, R.; Mohd Ghazi, T. I.

    2016-06-01

    A shell and tube heat exchanger reliability was done in this study using past history data from a carbon black manufacturing plant. The heat exchanger reliability study is vital in all related industries as inappropriate maintenance and operation of the heat exchanger will lead to major Process Safety Events (PSE) and loss of production. The overall heat exchanger coefficient/effectiveness (Uo) and Mean Time between Failures (MTBF) were analyzed and calculated. The Aspen and down time data was taken from a typical carbon black shell and tube heat exchanger manufacturing plant. As a result of the Uo calculated and analyzed, it was observed that the Uo declined over a period caused by severe fouling and heat exchanger limitation. This limitation also requires further burn out period which leads to loss of production. The MTBF calculated is 649.35 hours which is very low compared to the standard 6000 hours for the good operation of shell and tube heat exchanger. The guidelines on heat exchanger repair, preventive and predictive maintenance was identified and highlighted for better heat exchanger inspection and repair in the future. The fouling of heat exchanger and the production loss will be continuous if proper heat exchanger operation and repair using standard operating procedure is not followed.

  17. 78 FR 24456 - Self-Regulatory Organizations; C2 Options Exchange, Incorporated; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ... Exchange Act Release No. 68879 (February 8, 2013), 78 FR 11249 (February 15, 2013) (CBOE-2012-124) (order... guarantee or authorization will be given effect as quickly as the Exchange can process it; Give the Exchange... notice of ] revocation will become effective as soon as the Exchange is able to process the revocation....

  18. Visiting Scholar Exchange Reports.

    ERIC Educational Resources Information Center

    Rubin, Kyna, Ed.

    1986-01-01

    Provides reports of four United States scholars who visited China as part of the Visiting Scholar Exchange Program. The titles of the reports are (1) "China Journey: A Political Scientist's Look at Yan'an," (2) "The Social Consequences of Land Reclamation in Chinese Coastal Ecosystems," (3) "Anthropology Lectures in South China," and (4) "The Use…

  19. Currency Exchange Rates.

    ERIC Educational Resources Information Center

    Siler, Carl R.

    This curriculum unit of the Muncie (Indiana) Southside High School is to simulate the dynamics of foreign currency exchange rates from the perspectives of: (1) a major U.S. corporation, ABB Power T & D Company, Inc., of Muncie, Indiana, a manufacturer of large power transformers for the domestic and foreign markets; and (2) individual consumers…

  20. Technology Performance Exchange

    SciTech Connect

    2015-09-01

    To address the need for accessible, high-quality data, the Department of Energy has developed the Technology Performance Exchange (TPEx). TPEx enables technology suppliers, third-party testing laboratories, and other entities to share product performance data. These data are automatically transformed into a format that technology evaluators can easily use in their energy modeling assessments to inform procurement decisions.

  1. Higher Education Exchange, 2014

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2014-01-01

    Research shows that not only does higher education not see the public; when the public, in turn, looks at higher education, it sees mostly malaise, inefficiencies, expense, and unfulfilled promises. Yet, the contributors to this issue of the "Higher Education Exchange" tell of bright spots in higher education where experiments in working…

  2. Higher Education Exchange

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2009-01-01

    This volume begins with an essay by Noelle McAfee, a contributor who is familiar to readers of Higher Education Exchange (HEX). She reiterates Mathews' argument regarding the disconnect between higher education's sense of engagement and the public's sense of engagement, and suggests a way around the epistemological conundrum of "knowledge produced…

  3. Higher Education Exchange, 2009

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2009-01-01

    This volume begins with an essay by Noelle McAfee, a contributor who is familiar to readers of Higher Education Exchange (HEX). She reiterates Kettering's president David Mathews' argument regarding the disconnect between higher education's sense of engagement and the public's sense of engagement, and suggests a way around the epistemological…

  4. Higher Education Exchange 2006

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2006-01-01

    Contributors to this issue of the Higher Education Exchange debate the issues around knowledge production, discuss the acquisition of deliberative skills for democracy, and examine how higher education prepares, or does not prepare, students for citizenship roles. Articles include: (1) "Foreword" (Deborah Witte); (2) "Knowledge, Judgment and…

  5. Nature's Heat Exchangers.

    ERIC Educational Resources Information Center

    Barnes, George

    1991-01-01

    Discusses the heat-transfer systems of different animals. Systems include heat conduction into the ground, heat transferred by convection, heat exchange in lizards, fish and polar animals, the carotid rete system, electromagnetic radiation from animals and people, and plant and animal fiber optics. (MDH)

  6. Chimney heat exchanger

    SciTech Connect

    Whiteley, I.C.

    1981-09-01

    A heat exchanger for installation on the top of a chimney of a building includes a housing having a lower end receiving the top of the chimney and an upper end with openings permitting the escape of effluent from the chimney and a heat exchanger assembly disposed in the housing including a central chamber and a spirally arranged duct network defining an effluent spiral path between the top of the chimney and the central chamber and a fresh air spiral path between an inlet disposed at the lower end of the housing and the central chamber, the effluent and fresh air spiral paths being in heat exchange relationship such that air passing through the fresh air spiral path is heated by hot effluent gases passing upward through the chimney and the effluent spiral path for use in heating the building. A pollution trap can be disposed in the central chamber of the heat exchanger assembly for removing pollutants from the effluent, the pollution trap including a rotating cage carrying pumice stones for absorbing pollutants from the effluent with the surface of the pumice gradually ground off to reveal fresh stone as the cage rotates.

  7. Estimate exchanger vibration

    SciTech Connect

    Nieh, C.D.; Zengyan, H.

    1986-04-01

    Based on the classical beam theory, a simple method for calculating the natural frequency of unequally spanned tubes is presented. The method is suitable for various boundary conditions. Accuracy of the calculations is sufficient for practical applications. This method will help designers and operators estimate the vibration of tubular exchangers. In general, there are three reasons why a tube vibrates in cross flow: vortex shedding, fluid elasticity and turbulent buffeting. No matter which is the cause, the basic reason is that the frequency of exciting force is approximately the same as or equal to the natural frequency of the tube. To prevent the heat exchanger from vibrating, it is necessary to select correctly the shell-side fluid velocity so that the frequency of exciting force is different from the natural frequency of the tube, or to vary the natural frequency of the heat exchanger tube. So precisely determining the natural frequency of the heat exchanger, especially its foundational frequency under various supporting conditions, is of significance.

  8. Idea Exchange: Volunteerism.

    ERIC Educational Resources Information Center

    Ryan, Jamice, Ed.

    1974-01-01

    This issue of "Idea Exchange" which focuses on the volunteer in education programs includes a variety of materials related to volunteer experiences and viewpoints: (1) a handbook for volunteer coordinators which discusses the coordinator's role, the recruiting and interviewing of volunteers, and the essentials of volunteer placement and…

  9. Chemical exchange program analysis.

    SciTech Connect

    Waffelaert, Pascale

    2007-09-01

    As part of its EMS, Sandia performs an annual environmental aspects/impacts analysis. The purpose of this analysis is to identify the environmental aspects associated with Sandia's activities, products, and services and the potential environmental impacts associated with those aspects. Division and environmental programs established objectives and targets based on the environmental aspects associated with their operations. In 2007 the most significant aspect identified was Hazardous Materials (Use and Storage). The objective for Hazardous Materials (Use and Storage) was to improve chemical handling, storage, and on-site movement of hazardous materials. One of the targets supporting this objective was to develop an effective chemical exchange program, making a business case for it in FY07, and fully implementing a comprehensive chemical exchange program in FY08. A Chemical Exchange Program (CEP) team was formed to implement this target. The team consists of representatives from the Chemical Information System (CIS), Pollution Prevention (P2), the HWMF, Procurement and the Environmental Management System (EMS). The CEP Team performed benchmarking and conducted a life-cycle analysis of the current management of chemicals at SNL/NM and compared it to Chemical Exchange alternatives. Those alternatives are as follows: (1) Revive the 'Virtual' Chemical Exchange Program; (2) Re-implement a 'Physical' Chemical Exchange Program using a Chemical Information System; and (3) Transition to a Chemical Management Services System. The analysis and benchmarking study shows that the present management of chemicals at SNL/NM is significantly disjointed and a life-cycle or 'Cradle-to-Grave' approach to chemical management is needed. This approach must consider the purchasing and maintenance costs as well as the cost of ultimate disposal of the chemicals and materials. A chemical exchange is needed as a mechanism to re-apply chemicals on site. This will not only reduce the quantity of

  10. Solvent-dependent cation exchange in metal-organic frameworks.

    PubMed

    Brozek, Carl K; Bellarosa, Luca; Soejima, Tomohiro; Clark, Talia V; López, Núria; Dincă, Mircea

    2014-06-01

    We investigated which factors govern the critical steps of cation exchange in metal-organic frameworks by studying the effect of various solvents on the insertion of Ni(2+) into MOF-5 and Co(2+) into MFU-4l. After plotting the extent of cation insertion versus different solvent parameters, trends emerge that offer insight into the exchange processes for both systems. This approach establishes a method for understanding critical aspects of cation exchange in different MOFs and other materials.

  11. Composite ion exchange materials

    SciTech Connect

    Amarasinghe, S.; Zook, L.; Leddy, J.

    1994-12-31

    Composite ion exchange materials can be formed by sorbing ion exchange polymers on inert, high surface area substrates. In general, the flux of ions and molecules through these composites, as measured electrochemically, increases as the ratio of the surface area of the substrate increases relative to the volume of the ion exchanger. This suggests that fields and gradients established at the interface between the ion exchanger and substrate are important in determining the transport characteristics of the composites. Here, the authors will focus on composites formed with a cation exchange polymer, Nafion, and two different types of microbeads: polystyrene microspheres and polystyrene coated magnetic microbeads. For the polystyrene microbeads, scanning electron micrographs suggest the beads cluster in a self-similar manner, independent of the bead diameter. Flux of Ru(NH3)63+ through the composites was studied as a function of bead fraction, bead radii, and fixed surface area with mixed bead sizes. Flux was well modeled by surface diffusion along a fractal interface. Magnetic composites were formed with columns of magnetic microbeads normal to the electrode surface. Flux of Ru(NH3)63+ through these composites increased exponentially with bead fraction. For electrolyses, the difference in the molar magnetic susceptibility of the products and reactants, Dcm, tends to be non-zero. For seven redox reactions, the ratio of the flux through the magnetic composites to the flux through a Nafion film increases monotonically with {vert_bar}Dcm{vert_bar}, with enhancements as large as thirty-fold. For reversible species, the electrolysis potential through the magnetic composites is 35 mV positive of that for the Nafion films.

  12. Heat exchanger restart evaluation. Revision 1

    SciTech Connect

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-03-18

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summary herein.

  13. A corrosive resistant heat exchanger

    DOEpatents

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  14. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, G.D.; Marsh, S.F.; Bartsch, R.A.

    1997-09-23

    Anion exchange resins including at least two positively charged sites and a well-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  15. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, Gordon D.; Marsh, S. Fredric; Bartsch, Richard A.

    1997-01-01

    Anion exchange resins including at least two positively charged sites and a ell-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  16. New Trends in Magnetic Exchange Bias

    NASA Astrophysics Data System (ADS)

    Mougin, Alexandra; Mangin, Stéphane; Bobo, Jean-Francois; Loidl, Alois

    2005-05-01

    -of-plane exchange bias, depending on the field cooling direction. This is of particular interest since it allows probing of the three-dimensional spin structure of the AF layer. The interface magnetic configuration is extremely important in the perpendicular geometry, as the short-range exchange coupling competes with a long-range dipolar interaction; the induced uniaxial anisotropy must overcome the demagnetization energy to establish perpendicular anisotropy films. Those new studies are of primary importance for the magnetic media industry as perpendicular recording exhibits potential for strongly increased storage densities. 3. Parameters tuning exchange bias in polycrystalline samples and magnetic configurations: Different parameters can be used to tune the exchange bias coupling in polycrystalline samples similar to those used in devices. Particularly fascinating aspects are the questions of the appearance of exchange bias or coercivity in ferromagnet/antiferromagnet heterostructures, and its relation to magnetic configurations formed on either side of the interface. Several papers report on either growth choices or post preparation treatments that enable tuning of the exchange bias in bilayers. The additional complexity and novel features of the exchange coupled interface make the problem particularly rich. 4. Dynamics and magnetization reversal: Linear response experiments, such as ferromagnetic resonance, have been used with great success to identify interface, surface anisotropies and interlayer exchange in multilayer systems. The exchange bias structure is particularly well suited to study because interface driven changes in the spin wave frequencies in the ferromagnet can be readily related to interlayer exchange and anisotropy parameters associated with the antiferromagnet. Because the exchange bias is intimately connected with details of the magnetization process during reversal and the subsequent formation of hysteresis, considerations of time dependence and

  17. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  18. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  19. Vancouver's needle exchange program.

    PubMed

    Bardsley, J; Turvey, J; Blatherwick, J

    1990-01-01

    To stem the spread of HIV among intravenous drug users, and between them and their sexual partners and offspring, Vancouver initiated a multifaceted "ways and means" needle exchange program in March of 1989. As of the end of October, over 2,600 users have registered. The needle exchange rate has increased steadily, reaching a peak of 98% in November. Increases have also been noted in the number of regular users, and requests for referral to addition, medical, social and HIV-related services. Outreach services, especially using a van, have expanded program availability. Success in terms of clientele response is accredited primarily to the nonjudgemental, nonintrusive approach. The main problems have been the lack of addiction treatment services, financial and personnel constraints created by the large enrollment, and difficulties with Federal/Provincial funding. Funding for evaluation has been requested.

  20. Serial replica exchange.

    PubMed

    Hagen, Morten; Kim, Byungchan; Liu, Pu; Friesner, Richard A; Berne, B J

    2007-02-15

    Parallel tempering (or the replica exchange method (REM)) is a powerful method for speeding up the sampling of conformational states of systems with rough energy landscapes, like proteins, where stable conformational states can be separated by large energy barriers. The usual implementation of the REM is performed on local computer clusters (or parallel processors) where the different replicas must be run synchronously. Here, we present serial replica exchange (SREM), a method that is equivalent to the standard REM in terms of efficiency yet runs asynchronously on a distributed network of computers. A second advantage is the method's greatly enhanced fault tolerance, which enables the study of biological systems on worldwide distributed computing environments, such as Folding@Home. For proof of concept, we apply the SREM to a single alanine dipeptide molecule in explicit water. We show that the SREM reproduces the thermodynamic and structural properties determined by the REM.

  1. Serial Replica Exchange

    PubMed Central

    Hagen, Morten; Kim, Byungchan; Liu, Pu; Friesner, Richard A.; Berne, B. J.

    2009-01-01

    Parallel tempering (or the replica exchange method (REM)) is a powerful method for speeding up the sampling of conformational states of systems with rough energy landscapes, like proteins, where stable conformational states can be separated by large energy barriers. The usual implementation of the REM is performed on local computer clusters (or parallel processors) where the different replicas must be run synchronously. Here, we present serial replica exchange (SREM), a method that is equivalent to the standard REM in terms of efficiency yet runs asynchronously on a distributed network of computers. A second advantage is the method’s greatly enhanced fault tolerance, which enables the study of biological systems on worldwide distributed computing environments, such as Folding@Home.1 For proof of concept, we apply the SREM to a single alanine dipeptide molecule in explicit water. We show that the SREM reproduces the thermodynamic and structural properties determined by the REM. PMID:17249714

  2. Improved ceramic heat exchange material

    NASA Technical Reports Server (NTRS)

    Mccollister, H. L.

    1977-01-01

    Improved corrosion resistant ceramic materials that are suitable for use as regenerative heat exchangers for vehicular gas turbines is reported. Two glass-ceramic materials, C-144 and C-145, have superior durability towards sulfuric acid and sodium sulfate compared to lithium aluminosilicate (LAS) Corning heat exchange material 9455. Material C-144 is a leached LAS material whose major crystalline phase is silica keatite plus mullite, and C-145 is a LAS keatite solid solution (S.S.) material. In comparison to material 9455, material C-144 is two orders of magnitude better in dimensional stability to sulfuric acid at 300 C, and one order of magnitude better in stability to sodium sulfate at 1000 C. Material C-145 is initially two times better in stability to sulfuric acid, and about one order of magnitude better in stability to sodium sulfate. Both C-144 and C-145 have less than 300 ppm delta L/L thermal expansion from ambient to 1000 C, and good dimensional stability of less than approximately 100 ppm delta L/L after exposure to 1000 C for 100 hours. The glass-ceramic fabrication process produced a hexagonal honeycomb matrix having an 85% open frontal area, 50 micrometer wall thickness, and less than 5% porosity.

  3. Organic ion exchange resin separation methods evaluation

    SciTech Connect

    Witwer, K.S.

    1998-05-27

    This document describes testing to find effective methods to separate Organic Ion Exchange Resin (OIER) from a sludge simulant. This task supports a comprehensive strategy for treatment and processing of K-Basin sludge. The simulant to be used resembles sludge that has accumulated in the 105KE and 105KW Basins in the 1OOK area of the Hanford Site. The sludge is an accumulation of fuel element corrosion products, organic and inorganic ion exchange materials, canister gasket materials, iron and aluminum corrosion products, sand, dirt, and other minor amounts of organic matter.

  4. Thermoelectric heat exchange element

    DOEpatents

    Callas, James J.; Taher, Mahmoud A.

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  5. Heat exchange apparatus

    DOEpatents

    Degtiarenko, Pavel V.

    2003-08-12

    A heat exchange apparatus comprising a coolant conduit or heat sink having attached to its surface a first radial array of spaced-apart parallel plate fins or needles and a second radial array of spaced-apart parallel plate fins or needles thermally coupled to a body to be cooled and meshed with, but not contacting the first radial array of spaced-apart parallel plate fins or needles.

  6. Heat exchanger tube mounts

    DOEpatents

    Wolowodiuk, W.; Anelli, J.; Dawson, B.E.

    1974-01-01

    A heat exchanger in which tubes are secured to a tube sheet by internal bore welding is described. The tubes may be moved into place in preparation for welding with comparatively little trouble. A number of segmented tube support plates are provided which allow a considerable portion of each of the tubes to be moved laterally after the end thereof has been positioned in preparation for internal bore welding to the tube sheet. (auth)

  7. Hydrogen Exchange Mass Spectrometry.

    PubMed

    Mayne, Leland

    2016-01-01

    Hydrogen exchange (HX) methods can reveal much about the structure, energetics, and dynamics of proteins. The addition of mass spectrometry (MS) to an earlier fragmentation-separation HX analysis now extends HX studies to larger proteins at high structural resolution and can provide information not available before. This chapter discusses experimental aspects of HX labeling, especially with respect to the use of MS and the analysis of MS data.

  8. 40 CFR 63.1409 - Heat exchange system provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Heat exchange system provisions. 63... Standards for Hazardous Air Pollutant Emissions: Manufacture of Amino/Phenolic Resins § 63.1409 Heat... each heat exchange system used to cool process equipment in an affected source, according to...

  9. Guided Autobiography's Developmental Exchange: What's in It for Me?

    ERIC Educational Resources Information Center

    Thornton, James E.; Collins, John B.; Birren, James E.; Svensson, Cheryl

    2011-01-01

    The developmental exchange is a central feature of social development, interpersonal dynamics, situated learning, and personal transformation. It is the enabling process in Guided Autobiography (GAB) settings that promotes the achievement of personal goals and group accomplishments. Nevertheless, these exchanges are embedded in the GAB structures…

  10. 45 CFR 155.230 - General standards for Exchange notices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARE ACCESS EXCHANGE ESTABLISHMENT STANDARDS AND OTHER RELATED STANDARDS UNDER THE AFFORDABLE CARE ACT..., electronically, provided that the requirements for electronic notices in 42 CFR 435.918 are met, except that the individual market Exchange is not required to implement the process specified in 42 CFR 435.918(b)(1)...

  11. Exchange of deeply trapped and interstitial hydrogen in silicon

    SciTech Connect

    Tuttle, B.; Van de Walle, C.G.; Adams, J.B.

    1999-02-01

    Using {ital ab initio} density-functional calculations, we examine possible exchange mechanisms between an interstitial hydrogen atom and a deeply bound H at a silicon-hydrogen bond. We determine a low-energy pathway for exchange, which involves an intermediate, metastable {equivalent_to}SiH{sub 2} complex with both hydrogen atoms strongly bound to the silicon atom. The energy barrier for the exchange process is E{sub ex}{lt}0.2 eV, consistent with observations of hydrogen-deuterium exchange in a-Si:H(D) films. {copyright} {ital 1999} {ital The American Physical Society}

  12. 76 FR 45626 - Self-Regulatory Organizations; Chicago Stock Exchange, Inc.; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... executions. The Exchange further proposes to clarify that the maximum charge per side shall be computed for... 610(c) of Regulation NMS. The Exchange is making parallel changes to the Trade Processing Fees...

  13. The exchangeability of shape

    PubMed Central

    2010-01-01

    Background Landmark based geometric morphometrics (GM) allows the quantitative comparison of organismal shapes. When applied to systematics, it is able to score shape changes which often are undetectable by traditional morphological studies and even by classical morphometric approaches. It has thus become a fast and low cost candidate to identify cryptic species. Due to inherent mathematical properties, shape variables derived from one set of coordinates cannot be compared with shape variables derived from another set. Raw coordinates which produce these shape variables could be used for data exchange, however they contain measurement error. The latter may represent a significant obstacle when the objective is to distinguish very similar species. Results We show here that a single user derived dataset produces much less classification error than a multiple one. The question then becomes how to circumvent the lack of exchangeability of shape variables while preserving a single user dataset. A solution to this question could lead to the creation of a relatively fast and inexpensive systematic tool adapted for the recognition of cryptic species. Conclusions To preserve both exchangeability of shape and a single user derived dataset, our suggestion is to create a free access bank of reference images from which one can produce raw coordinates and use them for comparison with external specimens. Thus, we propose an alternative geometric descriptive system that separates 2-D data gathering and analyzes. PMID:20964872

  14. Needle exchange: how the meanings ascribed to needles impact exchange practices and policies.

    PubMed

    Strike, Carol J; Myers, Ted; Millson, Margaret

    2002-04-01

    The consistency among needle exchange practices, HIV prevention, harm reduction goals, and potential program effectiveness are analyzed. Using a modified ethnographic approach, qualitative interviews were conducted with staff (n = 59) of needle exchange programs (NEPs; n = 15). Interviews addressed operational policies; funding and challenges. An iterative, inductive analytic process was used. Differences in exchange practices are traced to differences in how workers define needles as objects of "risk" and/or "prevention." The weight accorded to each definition has implications for service delivery. Among NEPs that ascribe a "risk" meaning, workers enforce a strict one-for-one exchange, encourage clients to take fewer needles, and penalize clients. Programs that focus on the "prevention" meaning of needles work towards improving access, problem solving about proper disposal and do not penalize clients. Operational policies that restrict access to sterile equipment or discourage attendance need to be reconsidered if HIV prevention goals are to be realized. PMID:12000231

  15. Hydrogen and oxygen isotope exchange reactions between clay minerals and water

    USGS Publications Warehouse

    O'Neil, J.R.; Kharaka, Y.K.

    1976-01-01

    The extent of hydrogen and oxygen isotope exchange between clay minerals and water has been measured in the temperature range 100-350?? for bomb runs of up to almost 2 years. Hydrogen isotope exchange between water and the clays was demonstrable at 100??. Exchange rates were 3-5 times greater for montmorillonite than for kaolinite or illite and this is attributed to the presence of interlayer water in the montmorillonite structure. Negligible oxygen isotope exchange occurred at these low temperatures. The great disparity in D and O18 exchange rates observed in every experiment demonstrates that hydrogen isotope exchange occurred by a mechanism of proton exchange independent of the slower process of O18 exchange. At 350?? kaolinite reacted to form pyrophyllite and diaspore. This was accompanied by essentially complete D exchange but minor O18 exchange and implies that intact structural units in the pyrophyllite were inherited from the kaolinite precursor. ?? 1976.

  16. Social Skills as Exchange Resources.

    ERIC Educational Resources Information Center

    Sletta, Olav

    1992-01-01

    A conceptualization of social skills as resources in social exchange is offered, and a social exchange theoretical framework is applied to educational research. In a social exchange framework, the contribution of the peer group to the social exclusion of an individual would not be ignored. (SLD)

  17. Catalysis using hydrous metal oxide ion exchanges

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  18. Catalysis using hydrous metal oxide ion exchangers

    DOEpatents

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  19. Impact of watershed topography on hyporheic exchange

    NASA Astrophysics Data System (ADS)

    Caruso, Alice; Ridolfi, Luca; Boano, Fulvio

    2016-08-01

    Among the interactions between surface water bodies and aquifers, hyporheic exchange has been recognized as a key process for nutrient cycling and contaminant transport. Even though hyporheic exchange is strongly controlled by groundwater discharge, our understanding of the impact of the regional groundwater flow on hyporheic fluxes is still limited because of the complexity arising from the multi-scale nature of these interactions. In this work, we investigate the role of watershed topography on river-aquifer interactions by way of a semi-analytical model, in which the landscape topography is used to approximate the groundwater head distribution. The analysis of a case study shows how the complex topographic structure is the direct cause of a substantial spatial variability of the aquifer-river exchange. Groundwater upwelling along the river corridor is estimated and its influence on the hyporheic zone is discussed. In particular, the fragmentation of the hyporeic corridor induced by groundwater discharge at the basin scale is highlighted.

  20. Use of Cation Exchange Resins for Production of U{sub 3}O{sub 8} Suitable for the Al-U{sub 3}O{sub 8} Powder Metallurgy Process

    SciTech Connect

    Mosley, W.C.

    2001-09-17

    This report describes the production of U{sub 3}O{sub 8} powders from three types of cation exchange resins: Dowex 50W, a strong acid, sulfonate resin; AG MP-50, a macroporous form of sulfonate resin; and Bio-Rex 70, a weak acid, carboxylic resin.

  1. Solvent Extraction and Ion Exchange in Radiochemistry

    NASA Astrophysics Data System (ADS)

    Skarnemark, G.

    In 1805, Bucholz extracted uranium from a nitric acid solution into ether and back-extracted it into pure water. This is probably the first reported solvent-extraction investigation. During the following decades, the distribution of neutral compounds between aqueous phases and pure solvents was studied, e.g., by Peligot, Berthelot and Jungfleisch, and Nernst. Selective extractants for analytical purposes became available during the first decades of the twentieth century. From about 1940, extractants such as organophosphorous esters and amines were developed for use in the nuclear fuel cycle. This connection between radiochemistry and solvent-extraction chemistry made radiochemists heavily involved in the development of new solvent extraction processes, and eventually solvent extraction became a major separation technique in radiochemistry. About 160 years ago, Thompson and Way observed that soil can remove potassium and ammonium ions from an aqueous solution and release calcium ions. This is probably the first scientific report on an ion-exchange separation. The first synthesis of the type of organic ion exchangers that are used today was performed by Adams and Holmes in 1935. Since then, ion-exchange techniques have been used extensively for separations of various radionuclides in trace as well as macro amounts. During the last 4 decades, inorganic ion exchangers have also found a variety of applications. Today, solvent extraction as well as ion exchange are used extensively in the nuclear industry and for nuclear, chemical, and medical research. Some of these applications are discussed in the chapter.

  2. 1-MWE heat exchangers for OTEC. Final design report

    SciTech Connect

    Sprouse, A.M.

    1980-06-19

    The design of a 1 MWe OTEC heat exchanger is documented, including the designs of the evaporator and associated systems, condenser, instrumentation, and materials for corrosion/erosion control and fabrication processes. (LEW)

  3. High flux heat exchanger

    NASA Astrophysics Data System (ADS)

    Flynn, Edward M.; Mackowski, Michael J.

    1993-01-01

    This interim report documents the results of the first two phases of a four-phase program to develop a high flux heat exchanger for cooling future high performance aircraft electronics. Phase 1 defines future needs for high flux heat removal in advanced military electronics systems. The results are sorted by broad application categories: (1) commercial digital systems, (2) military data processors, (3) power processors, and (4) radar and optical systems. For applications expected to be fielded in five to ten years, the outlook is for steady state flux levels of 30-50 W/sq cm for digital processors and several hundred W/sq cm for power control applications. In Phase 1, a trade study was conducted on emerging cooling technologies which could remove a steady state chip heat flux of 100 W/sq cm while holding chip junction temperature to 90 C. Constraints imposed on heat exchanger design, in order to reflect operation in a fighter aircraft environment, included a practical lower limit on coolant supply temperature, the preference for a nontoxic, nonflammable, and nonfreezing coolant, the need to minimize weight and volume, and operation in an accelerating environment. The trade study recommended the Compact High Intensity Cooler (CHIC) for design, fabrication, and test in the final two phases of this program.

  4. Heat exchanger-accumulator

    DOEpatents

    Ecker, Amir L.

    1980-01-01

    What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.

  5. Heat exchanger for fuel cell power plant reformer

    DOEpatents

    Misage, Robert; Scheffler, Glenn W.; Setzer, Herbert J.; Margiott, Paul R.; Parenti, Jr., Edmund K.

    1988-01-01

    A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

  6. Novel silica-based ion exchange resin

    SciTech Connect

    Gula, M.; Harvey, J.

    1996-12-31

    Shortcomings of chelating resins have been addressed by a new class of ion exchange resins called dual mechanism bifunctional polymers (DMBPs). DMBPs use hydrophilic cation exchange ligands with rapid uptake kinetics and use chelating ligands for selectivity for one or more metals; result is a resin that quickly recognizes and removes targeted metals from waste, remediation, and process streams. Eichrom`s Diphonix {reg_sign} resin is the first DMBP to be widely released as a commercial product; it is polystyrene based. Objective of this work is to synthesize commercial quantities of a silica-based ion exchange resin with the same or better metal ion selectivity, metal uptake kinetics, and acid stability as Diphonix. Feasibility was determined, however the process needs to be optimized. Studies at Eichrom and ANL of the performance of Diphonix resin over a broad range of HNO3 and HCl conditions and inorganic salt loadings are discussed together with the proposed method of incorporating similar characteristics into a silica-based resin. The new, silica-based resin functionalized with diphosphonic acid ligands can be used in environmental restoration and waste management situations involving processing of low-level, transuranic, and high-level radioactive wastes; it can also be used for processing liquid mixed waste including wastes contaminated with organic compounds.

  7. International Cell Exchange: 1992.

    PubMed

    Lau, M; Terasaki, P I; Park, M S

    1992-01-01

    1. This is a review of 1992 typing of 40 cells for Class I antigens and 18 cultured cell lines for Class II antigens through the International Cell Exchange. Serological typings were compared with DNA typing reports for Class II specificities. Presently, 290 laboratories participate in the monthly Class I exchange. Class II results were received monthly from 166 serology laboratories and from 36 DNA laboratories. 2. In 1992, 11 of the 16 A-locus antigens attained 95% or greater average detection. Nine of the 27 B-locus antigens showed 95% or better mean agreement levels. Antigens such as B46 and B70 continued to show improvement in detection in a 5-year period. 3. We compared discrepancy rates of 7 A-locus and 8 B-locus antigens typed 3 times or more. The rates for the B-locus specificities, especially for percentages of false negatives (ie, how often the antigen assignment was missed), continued to be greater than those for the A-locus antigens. Nevertheless, the discrepancy rates of B35 and B70 decreased dramatically during the last 5 years. 4. We showed the number of laboratories with the total of false negatives and false positives. Nine laboratories achieved perfect records (0 false negatives and false positives) for all analyzed antigens in 1992. 5. Results of retyping of 3 donors over several years were shown to indicate improved antigen detection. 6. Recently recognized HLA-specificities, such as A2403 and B5102, were shown as cell variants studied in previous cell exchanges. Variants of B15, B16, and B40 families were presented, as well as several new A-locus antigens. 7. The low and high rates, in addition to the average detection levels, were indicated for a total of 27 (18 DR and 9 DQ) Class II specificities by serology and by DNA typings. Eight of the 15 DR/DRB1 specificities attained 90% or better average agreement by both serology and DNA. Three of the 9 DQ antigens achieved 90% or better average detection by both methods. 8. Confirmation by DNA

  8. (Re)integrating Simmel in Contemporary Social Exchange: The Effect of Nonpartisans on Relational Outcomes

    ERIC Educational Resources Information Center

    Collett, Jessica L.

    2011-01-01

    Despite the increased prevalence of neutral third parties in both formal and informal exchange processes, social exchange theory has yet to consider the effect of nonpartisans on important cognitive and affective outcomes of exchange. This research integrates Simmel's conceptualization of small groups and nonpartisans with contemporary theory and…

  9. 40 CFR 63.1085 - What are the general requirements for heat exchange systems?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... heat exchange systems? 63.1085 Section 63.1085 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Heat Exchange System Requirements § 63.1085 What are the...

  10. 40 CFR 63.1085 - What are the general requirements for heat exchange systems?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... heat exchange systems? 63.1085 Section 63.1085 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Heat Exchange System Requirements § 63.1085 What are the...

  11. 40 CFR 63.1085 - What are the general requirements for heat exchange systems?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... heat exchange systems? 63.1085 Section 63.1085 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Heat Exchange System Requirements § 63.1085 What are the...

  12. 40 CFR 63.1085 - What are the general requirements for heat exchange systems?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... heat exchange systems? 63.1085 Section 63.1085 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Heat Exchange System Requirements § 63.1085 What are the...

  13. 40 CFR 63.1085 - What are the general requirements for heat exchange systems?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... heat exchange systems? 63.1085 Section 63.1085 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Heat Exchange System Requirements § 63.1085 What are the...

  14. 76 FR 9841 - Self-Regulatory Organizations; BATS Exchange, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... Execution,'' to modify the description of the SLIM routing strategy offered by the Exchange. The Exchange... order routing processes, to modify the description of the SLIM routing strategy offered by the Exchange. Currently, various routing strategies are available through BATS, including the SLIM routing strategy....

  15. 78 FR 36625 - Self-Regulatory Organizations; Miami International Securities Exchange LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... Securities Exchange Act Release No. 68341 (December 3, 2012) 77 FR 73089 (December 7, 2012) (File No. 10-207..., 2013. Pursuant to Section 19(b)(1) of the Securities Exchange Act of 1934 (the ``Act'')\\1\\ and Rule 19b... processes in which the user firm ID of Attributable Order will be displayed. \\5\\ See Securities Exchange...

  16. Hybrid Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Tu, Jianping Gene; Shih, Wei

    2010-01-01

    A hybrid light-weight heat exchanger concept has been developed that uses high-conductivity carbon-carbon (C-C) composites as the heat-transfer fins and uses conventional high-temperature metals, such as Inconel, nickel, and titanium as the parting sheets to meet leakage and structural requirements. In order to maximize thermal conductivity, the majority of carbon fiber is aligned in the fin direction resulting in 300 W/m.K or higher conductivity in the fin directions. As a result of this fiber orientation, the coefficient of thermal expansion (CTE) of the C-C composite in both non-fiber directions matches well with the CTE of various high-temperature metal alloys. This allows the joining of fins and parting sheets by using high-temperature braze alloys.

  17. International Cell Exchange, 1994.

    PubMed

    Lau, M; Terasaki, P I; Park, M S

    1994-01-01

    1. We summarize typings of 40 cells for Class I antigens and 20 cultured cell lines for Class II antigens through the International Cell Exchange in 1994. Serologic Class II typings were compared with DNA typings for the same 20 cells. Two hundred eighty-one laboratories participated in the monthly Class I Serum Exchange. One hundred nineteen serology laboratories and 74 DNA laboratories reported Class II specificities on a monthly basis. 2. The average detection levels, as well as the high detection levels, were determined for 16 A-locus and 27 B-locus antigens. Mean detection rates of 95% or greater average detection were obtained for 12 A-locus and 10 B-locus antigens. Lower than 80% agreement was calculated for one A-locus antigen (A74) and 7 B-locus (B46, B48, B61, B67, B73, B75, B77) antigens. 3. We compared discrepancy rates of 10 A-locus and 7 B-locus antigens typed 3 times or more. The false-negative discrepancy rates, i.e. how often the antigen was missed, were greater for more of the B-locus specificities than for the A-locus antigens. B62, having the highest false-positive rate, tended to be overassigned. The discrepancy rates, especially the false-negative rate, for B70 were shown to decrease over a 7-year period. 4. In 1994, 8 laboratories attained records of total no misses for all analyzed antigens. Twelve laboratories had final records of only one discrepancy, and 5 laboratories had impressive perfect records (zero false negatives and false positives) for their yearly antigen reports. 5. Retyping of 12 Class I and 8 Class II reference cells showed improved detection of antigens. Results of a donor typed 4 times over 11 years demonstrated marked improvement, nearly doubling for A33, B38, and B75. Two cells first typed in 1991, then retyped in 1994, showed improved detection for Class II splits by serology and DNA typing. 6. We updated the list of sequenced Class I Exchange cells. Seven new cells were added as well as confirmatory sequence data for A

  18. Monogroove liquid heat exchanger

    NASA Technical Reports Server (NTRS)

    Brown, Richard F. (Inventor); Edelstein, Fred (Inventor)

    1990-01-01

    A liquid supply control is disclosed for a heat transfer system which transports heat by liquid-vapor phase change of a working fluid. An assembly (10) of monogroove heat pipe legs (15) can be operated automatically as either heat acquisition devices or heat discharge sources. The liquid channels (27) of the heat pipe legs (15) are connected to a reservoir (35) which is filled and drained by respective filling and draining valves (30, 32). Information from liquid level sensors (50, 51) on the reservoir (35) is combined (60) with temperature information (55) from the liquid heat exchanger (12) and temperature information (56) from the assembly vapor conduit (42) to regulate filling and draining of the reservoir (35), so that the reservoir (35) in turn serves the liquid supply/drain needs of the heat pipe legs (15), on demand, by passive capillary action (20, 28).

  19. The ratio R{sub dp} of the quasielastic nd {yields} p(nn) to the elastic np {yields} pn charge-exchange-process yields at the proton emitting angle {theta}{sub p,lab} = 0 deg. over 0.55-2.0 GeV neutron beam energy region. Experimental results

    SciTech Connect

    Sharov, V. I. Morozov, A. A.; Shindin, R. A.; Antonenko, V. G.; Borzakov, S. B.; Borzunov, Yu. T.; Chernykh, E. V.; Chumakov, V. F.; Dolgii, S. A.; Finger, M.; Finger, M.; Golovanov, L. B.; Guriev, D. K.; Janata, A.; Kirillov, A. D.; Kovalenko, A. D.; Krasnov, V. A.; Kuzmin, N. A.; Kurilkin, A. K.; Kurilkin, P. K.

    2009-06-15

    New experimental results on ratio R{sub dp} of the quasielastic charge-exchange yield at the outgoing proton angle {theta}{sub p,lab} = 0 deg. for the nd {yields} p(nn) reaction to the elastic np {yields} pn charge-exchange yield, are presented. The measurements were carried out at the Nuclotron of the Veksler and Baldin Laboratory of High Energies of the JINR (Dubna) at the neutron-beam kinetic energies of 0.55, 0.8, 1.0, 1.2, 1.4, 1.8, and 2.0 GeV. The intense neutron beam with small momentum spread was produced by breakup of deuterons which were accelerated and extracted to the experimental hall. In both reactions mentioned above the outgoing protons with the momenta p{sub p} approximately equal to the neutron-beam momentum p{sub n,beam} were detected in the directions close to the direction of incident neutrons, i.e., in the vicinity of the scattering angle {theta}{sub p,lab} = 0 deg. Measured in the same data-taking runs, the angular distributions of the charge-exchange-reaction products were corrected for the well-known instrumental effects and averaged in the vicinity of the incident-neutron-beam direction. These corrected angular distributions for every of nd {yields} p(nn) and np {yields} pn charge-exchange processes were proportional to the differential cross sections of the corresponding reactions. The data were accumulated by Delta-Sigma setup magnetic spectrometer with two sets of multiwire proportional chambers located upstream and downstream of the momentum analyzing magnet. Inelastic processes were considerably reduced by the additional detectors surrounding the hydrogen and deuterium targets. The time-of-flight system was applied to identify the detected particles. The accumulated data treatment and analysis, as well as possible sources of the systematic errors are discussed.

  20. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Yen, S. P. S.; Klein, E. (Inventor)

    1976-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, crosslinked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  1. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1980-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  2. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1977-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  3. Time and foreign exchange markets

    NASA Astrophysics Data System (ADS)

    Berardi, Luca; Serva, Maurizio

    2005-08-01

    The definition of time is still an open question when one deals with high-frequency time series. If time is simply the calendar time, prices can be modeled as continuous random processes and values resulting from transactions or given quotes are discrete samples of this underlying dynamics. On the contrary, if one takes the business time point of view, price dynamics is a discrete random process, and time is simply the ordering according to which prices are quoted in the market. In this paper, we suggest that the business time approach is perhaps a better way of modeling price dynamics than calendar time. This conclusion comes from testing probability densities and conditional variances predicted by the two models against the experimental ones. The data set we use contains the DEM/USD exchange quotes provided to us by Olsen & Associates during a period of one year from January to December 1998. In this period, 1,620,843 quotes entries in the EFX system were recorded.

  4. Physical explosion analysis in heat exchanger network design

    NASA Astrophysics Data System (ADS)

    Pasha, M.; Zaini, D.; Shariff, A. M.

    2016-06-01

    The failure of shell and tube heat exchangers is being extensively experienced by the chemical process industries. This failure can create a loss of production for long time duration. Moreover, loss of containment through heat exchanger could potentially lead to a credible event such as fire, explosion and toxic release. There is a need to analyse the possible worst case effect originated from the loss of containment of the heat exchanger at the early design stage. Physical explosion analysis during the heat exchanger network design is presented in this work. Baker and Prugh explosion models are deployed for assessing the explosion effect. Microsoft Excel integrated with process design simulator through object linking and embedded (OLE) automation for this analysis. Aspen HYSYS V (8.0) used as a simulation platform in this work. A typical heat exchanger network of steam reforming and shift conversion process was presented as a case study. It is investigated from this analysis that overpressure generated from the physical explosion of each heat exchanger can be estimated in a more precise manner by using Prugh model. The present work could potentially assist the design engineer to identify the critical heat exchanger in the network at the preliminary design stage.

  5. Translating metabolic exchange with imaging mass spectrometry

    PubMed Central

    Yang, Yu-Liang; Xu, Yuquan; Straight, Paul; Dorrestein, Pieter C.

    2009-01-01

    Metabolic exchange between an organism and the environment, including interactions with neighboring organisms, is important for processes of organismal development. Here we develop and use thin-layer agar natural product MALDI-TOF imaging mass spectrometry of intact bacterial colonies grown on top of the MALDI target plate to study an interaction between two species of bacteria and provide direct evidence that a Bacillus subtilis silences the defensive arsenal of Streptomyces coelicolor. PMID:19915536

  6. Pressurized-Flat-Interface Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Voss, F. E.; Howell, H. R.; Winkler, R. V.

    1990-01-01

    High thermal conductance obtained without leakage between loops. Heat-exchanger interface enables efficient transfer of heat between two working fluids without allowing fluids to intermingle. Interface thin, flat, and easy to integrate into thermal system. Possible application in chemical or pharmaceutical manufacturing when even trace contamination of process stream with water or other coolant ruins product. Reduces costs when highly corrosive fluids must be cooled or heated.

  7. Recovery of boric acid from ion exchangers

    DOEpatents

    Pollock, Charles W.

    1976-01-01

    The recovery of boric acid from an anion exchange resin is improved by eluting the boric acid with an aqueous solution of ammonium bicarbonate. The boric acid can be readily purified and concentrated by distilling off the water and ammonium bicarbonate. This process is especially useful for the recovery of boric acid containing a high percentage of .sup.10 B which may be found in some nuclear reactor coolant solutions.

  8. Processes affecting the stable isotope composition of calcite during precipitation on the surface of stalagmites: Laboratory experiments investigating the isotope exchange between DIC in the solution layer on top of a speleothem and the CO2 of the cave atmosphere

    NASA Astrophysics Data System (ADS)

    Dreybrodt, Wolfgang; Hansen, Maximilian; Scholz, Denis

    2016-02-01

    We present a theoretical derivation of the exchange time, τex, needed to establish isotopic equilibrium between atmospheric CO2 in a cave and HCO3- dissolved in a thin water film covering the surface of a speleothem. The result is τex = τredex · [HCO3-]/ (KH · pCO2 cave) , where τredex depends on the depth, a, of the water film and on temperature. [HCO3-] is the concentration of bicarbonate, pCO2 cave the partial pressure of CO2, and KH is Henry's constant. To test the theory we prepared stagnant or flowing thin films of a NaHCO3 solution and exposed them at 20 °C to an CO2 containing atmosphere of pCO2 500, 12,500, or 25,000 ppmV and defined isotope composition. The δ13C and δ18O values of the DIC in the solution were measured as a function of the exposure time. For stagnant films with depths between 0.06 and 0.2 cm the δ13C values exhibit an exponential approach towards isotope equilibrium with the atmospheric CO2 with exchange time, τex. The δ18O values first evolve towards isotopic equilibrium with atmospheric CO2, reach a minimum value and then drift away from the isotopic equilibrium with atmospheric CO2 approaching a steady state caused by isotopic exchange of oxygen with water. The experimental findings are in satisfactory agreement with the theoretical predictions. To further investigate isotope evolution in cave analogue conditions, a water film containing 5 mmol/L of NaHCO3 with a depth of 0.013 cm flowing down an inclined borosilicate glass plate was exposed to an atmosphere with pCO2 = 500 ppmV at a temperature of 20 °C. The δ13C and δ18O values were measured as a function of flow (exposure) time, t. The isotope compositions in the DIC of the water film decrease linear in time by δDIC (t) =δDIC (0) - (δDIC (0) -δDIC (∞)) · t /τex where δDIC (0) is the initial isotope composition of dissolved inorganic carbon (DIC) in the water film and δDIC (∞) its final value. From these data an exchange time τex of ca. 7000 s was obtained

  9. Molecular Exchange in Ordered Diblock Copolymer Micelles

    NASA Astrophysics Data System (ADS)

    Choi, Soo-Hyung; Lodge, Timothy; Bates, Frank

    2011-03-01

    Previously, molecular exchange between spherical micelles in dilute solution (1 vol% polymer) was investigated using time-resolved small-angle neutron scattering (TR-SANS). As the concentration of spherical micelles formed by the diblock copolymers increases, the micelles begin to overlap and eventually pack onto body-centered cubic (BCC) lattice. In this study, concentrated, ordered micelles (15 vol% polymers) prepared by dispersing isotopically labeled poly(styrene- b -ethylene-alt-propylene) in an isotopic squalane mixture was investigated to understand the micellar concentration dependence of the molecular exchange. Perfectly random mixing of isotopically labeled micelles on the BCC lattice was confirmed by SANS patterns where the interparticle contribution vanishes, resulting in an intensity that directly relates to the exchange kinetics. The measured molecular exchange process for the concentrated, ordered system is qualitatively consistent with the previous observations, but the rate is more than an order of magnitude slower than that for the dilute, disordered system. Infineum(IPrime), MRSEC(NSF), NIST.

  10. Circulating heat exchangers for oscillating wave engines and refrigerators

    DOEpatents

    Swift, Gregory W.; Backhaus, Scott N.

    2003-10-28

    An oscillating-wave engine or refrigerator having a regenerator or a stack in which oscillating flow of a working gas occurs in a direction defined by an axis of a trunk of the engine or refrigerator, incorporates an improved heat exchanger. First and second connections branch from the trunk at locations along the axis in selected proximity to one end of the regenerator or stack, where the trunk extends in two directions from the locations of the connections. A circulating heat exchanger loop is connected to the first and second connections. At least one fluidic diode within the circulating heat exchanger loop produces a superimposed steady flow component and oscillating flow component of the working gas within the circulating heat exchanger loop. A local process fluid is in thermal contact with an outside portion of the circulating heat exchanger loop.

  11. Reactor safety research section probability of heat exchanger leaks

    SciTech Connect

    Cramer, D.S.; Shine, E.P.; Copeland, W.J.

    1992-02-01

    Three heat exchangers (HXs) were changed out after the December 1991 leak of Process Water to the Savannah River. This leaves 6 of the original 304 stainless steel heat exchangers which will remain in K-Reactor for restart. This report discusses SRS site specific data which were used to estimate the probability of a leak within a one-year period as a function of leak rate and root cause in these six heat exchangers in conjunction with six new heat exchangers presently in service in K-Reactor. Based on several assumptions and statistical models, SRS data indicate that the total probability of a leak occurring during a one-year period in K-Reactor with 6 original (304 stainless steel) and 6 new (316-L or SEA-CURE) heat exchangers, with a leak rate greater than 20, 40 or 90 pounds/hr, is 0.013, 0.004 or 0.0005, respectively.

  12. Secondary heat exchanger design and comparison for advanced high temperature reactor

    SciTech Connect

    Sabharwall, P.; Kim, E. S.; Siahpush, A.; McKellar, M.; Patterson, M.

    2012-07-01

    Next generation nuclear reactors such as the advanced high temperature reactor (AHTR) are designed to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. This study considers two different types of heat exchangers - helical coiled heat exchanger and printed circuit heat exchanger - as possible options for the AHTR secondary heat exchangers with distributed load analysis and comparison. Comparison is provided for all different cases along with challenges and recommendations. (authors)

  13. Technology Performance Exchange (Fact Sheet)

    SciTech Connect

    Not Available

    2012-10-01

    This fact sheet, 'The Technology Performance Exchange' will be presented at the ET Summit, held at the Pasadena Convention Center on October 15-17, 2012. The Technology Performance Exchange will be a centralized, Web-based portal for finding and sharing energy performance data for commercial building technologies.

  14. The Transatlantic Orientation Exchange Project

    ERIC Educational Resources Information Center

    Gisevius, Annette; Weber, Robin A.

    2009-01-01

    The Transatlantic Orientation Exchange/Multiplikatorenschulung im transatlan-tischen Austausch is a collaboration between volunteers and staff in both the US and German AFS organizations. The goal of the project is to increase the level of intercultural learning of German and US secondary education exchange participants and their host families.…

  15. Liquid/liquid heat exchanger

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    1980-01-01

    Conceptual design for heat exchanger, utilizing two immiscible liquids with dissimilar specific gravities in direct contact, is more efficient mechanism of heat transfer than conventional heat exchangers with walls or membranes. Concept could be adapted for collection of heat from solar or geothermal sources.

  16. StarBright Learning Exchange

    ERIC Educational Resources Information Center

    Kalinowski, Michael

    2007-01-01

    This article features StarBright Learning Exchange, a program that provides a cross-cultural exchange between Australian and South African early childhood educators. The program was originated when its president, Carol Allen, and her colleague, Karen Williams, decided that they could no longer sit by and watch the unfolding social catastrophe that…

  17. Educators Exchange: A Program Evaluation.

    ERIC Educational Resources Information Center

    Armstrong, William B.

    The Educators Exchange Program (EEP) was established under a training and educational exchange agreement reached by California's San Diego Community College District (SDCCD) and the republic of Mexico. In the program, the District provided a 4-week technological training program to faculty at Centros de Capacitacion Tecnologica Industrial…

  18. EXCHANGE. Volume 9-92

    SciTech Connect

    Boltz, J.C.

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  19. Heat exchanger leakage problem location

    NASA Astrophysics Data System (ADS)

    Hejčík, Jiří; Jícha, Miroslav

    2012-04-01

    Recent compact heat exchangers are very often assembled from numerous parts joined together to separate heat transfer fluids and to form the required heat exchanger arrangement. Therefore, the leak tightness is very important property of the compact heat exchangers. Although, the compact heat exchangers have been produced for many years, there are still technological problems associated with manufacturing of the ideal connection between the individual parts, mainly encountered with special purpose heat exchangers, e.g. gas turbine recuperators. This paper describes a procedure used to identify the leakage location inside the prime surface gas turbine recuperator. For this purpose, an analytical model of the leaky gas turbine recuperator was created to assess its performance. The results obtained are compared with the experimental data which were acquired during the recuperator thermal performance analysis. The differences between these two data sets are used to indicate possible leakage areas.

  20. Digoxin elimination by exchange transfusion.

    PubMed

    Rosegger, H; Zach, M; Gleispach, H; Beitzke, A

    1977-02-21

    The report covers four cases presenting simultaneous indications for digitalisation and exchange transfusions. Intravenous administration of digoxin was followed: 1. by monitoring of the behaviour of the plasma digoxin level; 2. by determination of the total amount of glycoside eliminated by the blood exchange. Particular attention was paid to the effect of the delay between injection and exchange transfusion on the amount of digoxin eliminated. All four cases showed moderate falls in plasma levels. The amounts of digoxin eliminated by exchange transfusion were in reverse relationship to the delay between administration of digoxin and the blood exchange. At no time did the eliminated fraction exceed 5% of the total amount present in the body. PMID:837948

  1. Ion-exchange equilibrium of N-acetyl-D-neuraminic acid on a strong anionic exchanger.

    PubMed

    Wu, Jinglan; Ke, Xu; Zhang, Xudong; Zhuang, Wei; Zhou, Jingwei; Ying, Hanjie

    2015-09-15

    N-acetyl-D-neuraminic acid (Neu5Ac) is a high value-added product widely applied in the food industry. A suitable equilibrium model is required for purification of Neu5Ac based on ion-exchange chromatography. Hence, the equilibrium uptake of Neu5Ac on a strong anion exchanger, AD-1 was investigated experimentally and theoretically. The uptake of Neu5Ac by the hydroxyl form of the resin occurred primarily by a stoichiometric exchange of Neu5Ac(-) and OH(-). The experimental data showed that the selectivity coefficient for the exchange of Neu5Ac(-) with OH(-) was a non-constant quantity. Subsequently, the Saunders' model, which took into account the dissociation reactions of Neu5Ac and the condition of electroneutrality, was used to correlate the Neu5Ac sorption isotherms at various solution pHs and Neu5Ac concentrations. The model provided an excellent fit to the binary exchange data for Cl(-)/OH(-) and Neu5Ac(-)/OH(-), and an approximate prediction of equilibrium in the ternary system Cl(-)/Neu5Ac(-)/OH(-). This basic information combined with the general mass transfer model could lay the foundation for the prediction of dynamic behavior of fixed bed separation process afterwards.

  2. Modular heat exchanger

    DOEpatents

    Giardina, Angelo R. [Marple Township, Delaware County, PA

    1981-03-03

    A shell and tube heat exchanger having a plurality of individually removable tube bundle modules. A lattice of structural steel forming rectangular openings therein is placed at each end of a cylindrical shell. Longitudinal structural members are placed in the shell between corners of the rectangular openings situated on opposite ends of the shell. Intermediate support members interconnect the longitudinal supports so as to increase the longitudinal supports rigidity. Rectangular parallelpiped tube bundle moldules occupy the space defined by the longitudinal supports and end supports and each include a rectangular tube sheet situated on each end of a plurality of tubes extending therethrough, a plurality of rectangular tube supports located between the tube sheets, and a tube bundle module stiffening structure disposed about the bundle's periphery and being attached to the tube sheets and tube supports. The corners of each tube bundle module have longitudinal framework members which are mateable with and supported by the longitudinal support members. Intermediate support members constitute several lattice, each of which is situate d in a plane between the end support members. The intermediate support members constituting the several lattice extend horizontally and vertically between longitudinal supports of adjacent tube module voids. An alternative embodiment for intermediate support members constitute a series of structural plates situated at the corners of the module voids and having recesses therein for receiving the respective longitudinal support members adjacent thereto, protrusions separating the recesses, and a plurality of struts situated between protrusions of adjacent structural plates.

  3. Modular heat exchanger

    DOEpatents

    Giardina, A.R.

    1981-03-03

    A shell and tube heat exchanger is described having a plurality of individually removable tube bundle modules. A lattice of structural steel forming rectangular openings therein is placed at each end of a cylindrical shell. Longitudinal structural members are placed in the shell between corners of the rectangular openings situated on opposite ends of the shell. Intermediate support members interconnect the longitudinal supports so as to increase the longitudinal supports rigidity. Rectangular parallelepiped tube bundle modules occupy the space defined by the longitudinal supports and end supports and each include a rectangular tube sheet situated on each end of a plurality of tubes extending there through, a plurality of rectangular tube supports located between the tube sheets, and a tube bundle module stiffening structure disposed about the bundle's periphery and being attached to the tube sheets and tube supports. The corners of each tube bundle module have longitudinal framework members which are mateable with and supported by the longitudinal support members. Intermediate support members constitute several lattices, each of which is situated in a plane between the end support members. The intermediate support members constituting the several lattices extend horizontally and vertically between longitudinal supports of adjacent tube module voids. An alternative embodiment for intermediate support members constitute a series of structural plates situated at the corners of the module voids and having recesses therein for receiving the respective longitudinal support members adjacent thereto, protrusions separating the recesses, and a plurality of struts situated between protrusions of adjacent structural plates. 12 figs.

  4. The Ratio R{sub dp} of the quasielastic nd {yields} p(nn) to the elastic np {yields} pn charge-exchange-process yields at the proton emitting angle {theta}{sub p,lab} = 0 deg. over 0.55-2.0 GeV neutron-beam energy region. Comparison of the results with the model-dependent calculations

    SciTech Connect

    Sharov, V. I. Morozov, A. A.; Shindin, R. A.; Chernykh, E. V.; Nomofilov, A. A.; Strunov, L. N.

    2009-06-15

    Our new experimental results (see, e.g., Preprint JINR no. E1-2008-61 (Dubna, 2008)) on ratio R{sub dp} of the quasielastic charge-exchange yield at the proton emitting angle {theta}{sub p,lab} = 0 deg. for the nd {yields} p(nn) reaction to the elastic np {yields} pn charge-exchange yield were presented. The measurements were carried out at the Nuclotron of the Veksler and Baldin Laboratory of High Energies of the JINR (Dubna) at the neutron-beam kinetic energies of 0.55, 0.8, 1.0, 1.2, 1.4, 1.8, and 2.0 GeV. In this paper the comparison of the experimental R{sub dp} data with the obtained R{sub dp} calculations within the impulse approximation by using the invariant-amplitude sets from the GW/VPI phase-shift analysis is made. The R{sub dp} values calculated using the set of invariant amplitude data for the elastic np {yields} pn charge exchange at {theta}{sub p,CM} = 0 deg., agree with the experimental data. This confirmed the nd {yields} p(nn) process yield at {theta}{sub p,CM} = 0 deg. is caused by the contribution of the spin-dependent part of the elastic np {yields} pn charge-exchange reaction. Thus, it has been shown that the obtained experimental R{sub dp} results can be used for the Delta-Sigma experimental program to reduce the total ambiguity in the extraction of the amplitude real parts.

  5. Stakeholder engagement and knowledge exchange in environmental research.

    PubMed

    Phillipson, Jeremy; Lowe, Philip; Proctor, Amy; Ruto, Eric

    2012-03-01

    It is commonly put forward that effective uptake of research in policy or practice must be built upon a foundation of active knowledge exchange and stakeholder engagement during the research. However, what is often lacking is a systematic appreciation of the specific practices of knowledge exchange and their relative merits. The paper reports on a 2009 survey of 21 research projects within the UK Research Councils' Rural Economy and Land Use Programme regarding the involvement and perceived impact of over a thousand stakeholders in the research. The survey reveals that most stakeholders were involved as research subjects or as event participants. Large numbers were also engaged in the research process itself, including involvement in shaping the direction of research. Stakeholder engagement is perceived as bringing significant benefits to the process of knowledge production. A close relationship is found between mechanisms and approaches to knowledge exchange and the spread of benefits for researchers and stakeholders. Mutual benefits are gained from exchange of staff or where stakeholders are members of research advisory groups. Different stakeholder sectors are also associated with different patterns of engagement, which lead to contrasting impact patterns. Any efforts to alter knowledge exchange processes and outcomes must overcome these differing engagement tendencies. Overall, much greater attention should be given to early processes of knowledge exchange and stakeholder engagement within the lifetime of research projects.

  6. Cu Vacancies Boost Cation Exchange Reactions in Copper Selenide Nanocrystals

    PubMed Central

    2015-01-01

    We have investigated cation exchange reactions in copper selenide nanocrystals using two different divalent ions as guest cations (Zn2+ and Cd2+) and comparing the reactivity of close to stoichiometric (that is, Cu2Se) nanocrystals with that of nonstoichiometric (Cu2–xSe) nanocrystals, to gain insights into the mechanism of cation exchange at the nanoscale. We have found that the presence of a large density of copper vacancies significantly accelerated the exchange process at room temperature and corroborated vacancy diffusion as one of the main drivers in these reactions. Partially exchanged samples exhibited Janus-like heterostructures made of immiscible domains sharing epitaxial interfaces. No alloy or core–shell structures were observed. The role of phosphines, like tri-n-octylphosphine, in these reactions, is multifaceted: besides acting as selective solvating ligands for Cu+ ions exiting the nanoparticles during exchange, they also enable anion diffusion, by extracting an appreciable amount of selenium to the solution phase, which may further promote the exchange process. In reactions run at a higher temperature (150 °C), copper vacancies were quickly eliminated from the nanocrystals and major differences in Cu stoichiometries, as well as in reactivities, between the initial Cu2Se and Cu2–xSe samples were rapidly smoothed out. These experiments indicate that cation exchange, under the specific conditions of this work, is more efficient at room temperature than at higher temperature. PMID:26140622

  7. The heat pipe exchanger with controllable heat exchanging area

    NASA Astrophysics Data System (ADS)

    Oshiro, M.; Takasu, S.; Kurihara, M.; Taneda, K.; Nakamoto, T.; Nakayama, H.

    1984-03-01

    The heat transfer rate through the heat exchanger in an industrial boiler that burns heavy oils must be controlled so as not to decrease the exhaust gas temperature below the dew point of sulfuric acid. Two systems of heat pipe exchangers are examined: one controls the heat exchange area of the condenser section of the heat pipes and the other uses the variable conductance heat pipes. The characteristics of these two systems are described. The temperatures at various points and the gas quantity are plotted against the boiler loads. The maintainability and operational reliability of both systems are demonstrated.

  8. 76 FR 28358 - Retail Foreign Exchange Transactions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... Off-Exchange Retail Foreign Exchange Transactions and Intermediaries, 75 FR 55409 (Sept. 10, 2010... Act. Regulation of Off-Exchange Retail Foreign Exchange Transactions and Intermediaries, 75 FR 3281 (Jan. 20, 2010) (Proposed CFTC Retail Forex Rule). \\13\\ See Retail Foreign Exchange Transactions, 76...

  9. Charge exchange avalanche at the cometopause

    NASA Technical Reports Server (NTRS)

    Gombosi, Tamas I.

    1987-01-01

    A sharp transition from a solar wind proton dominated flow to a plasma population primarily consisting of relatively cold cometary heavy ions has been observed at a cometocentric distance of about 160,000 km by the VEGA and GIOTTO missions. This boundary (the cometopause) was thought to be related to charge transfer processes, but its location and thickness are inconsistent with conventionally estimated ion - neutral coupling boundaries. In this paper a two-fluid model is used to investigate the major physical processes at the cometopause. By adopting observed comet Halley parameters the model is able to reproduce the location and the thickness of this charge exchange boundary.

  10. Ion Exchange Temperature Testing with SRF Resin

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Brown, Garrett N.; Peterson, Reid A.

    2012-03-01

    Ion exchange using the Spherical Resorcinol-Formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection for use in the Pretreatment Facility of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in an at-tank deployment for removing 137Cs. Recent proposed changes to the WTP ion exchange process baseline indicate that higher temperatures (50°C) to alleviate post-filtration precipitation issues prior to reaching the ion exchange columns may be required. Therefore, it is important to understand the behavior of SRF resin performance under the conditions expected with the new equipment and process changes. This research examined the impact of elevated temperature on resin loading and resin degradation during extended solution flow using elevated temperature (45°, 50°, 55°, 60°, 65°, 75°C). Testing for extended times at elevated temperatures showed that the resin does degrade and loading capacity is reduced at and above 45°C. Above 60°C the resin appears to not load at all.

  11. Novel silica-based ion exchange resin

    SciTech Connect

    1997-11-01

    Eichrom`s highly successful Diphonixo resin resembles a conventional ion exchange resin in its use of sulfonic acid ligands on a styrene- divinylbenzene matrix. Diphonix resin exhibits rapid exchange kinetics that allow economical operation of ion exchange systems. Unlike conventional resins, Diphonix resin contains chelating ligands that are diphosphonic acid groups that recognize and remove the targeted metals and reject the more common elements such as sodium, calcium and magnesium. This latter property makes Diphonix ideal for many industrial scale applications, including those involving waste treatment. For treatment of low-level, transuranic (TRU) and high- level radioactive wastes, Diphonix`s polystyrene backbone hinders its application due to radiolytic stability of the carbon-hydrogen bonds and lack of compatibility with expected vitrification schemes. Polystyrene-based Diphonix is approximately 60% carbon- hydrogen. In response to an identified need within the Department of Energy for a resin with the positive attributes of Diphonix that also exhibits greater radiolytic stability and final waste form compatibility, Eichrom has successfully developed a new, silica-based resin version of Diphonix. Target application for this new resin is for use in environmental restoration and waste management situations involving the processing of low-level, transuranic and high-level radioactive wastes. The resin can also be used for processing liquid mixed waste (waste that contains low level radioactivity and hazardous constituents) including mixed wastes contaminated with organic compounds. Silica-based Diphonix is only 10% carbon-hydrogen, with the bulk of the matrix silica.

  12. Heat exchange assembly

    DOEpatents

    Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.

    2004-06-08

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  13. Hear Exchange Assembly

    DOEpatents

    Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.

    2003-05-27

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  14. Alcohol breath test: gas exchange issues.

    PubMed

    Hlastala, Michael P; Anderson, Joseph C

    2016-08-01

    The alcohol breath test is reviewed with a focus on gas exchange factors affecting its accuracy. The basis of the alcohol breath test is the assumption that alveolar air reaches the mouth during exhalation with no change in alcohol concentration. Recent investigations have shown that alcohol concentration is altered during its transit to the mouth. The exhaled alcohol concentration is modified by interaction with the mucosa of the pulmonary airways. Exhaled alcohol concentration is not an accurate indicator of alveolar alcohol concentration. Measuring alcohol concentration in the breath is very different process than measuring a blood level from air equilibrated with a blood sample. Airway exchange of alcohol leads to a bias against certain individuals depending on the anatomic and physiologic characteristics. Methodological modifications are proposed to improve the accuracy of the alcohol breath test to become fair to all. PMID:27197859

  15. Meson exchange and neutral weak currents

    SciTech Connect

    Beck, D.H.

    1994-04-01

    Measurements of parity-violating electron scattering asymmetries to determine weak neutral currents in nuclei will be effected by the presence of meson exchange currents. Present low momentum transfer calculations, based on a flavor independent framework, show these effects to be small. In general, however, as the momentum transfer increases to values typical of deep-inelastic scattering, fragmentation functions show a clear flavor dependence. It is suggested that a good experimental starting point for understanding the flavor dependence of meson production and exchange currents is the Q{sup 2} dependence of parity-violating asymmetry in inclusive single pion electroproduction. A CEBAF facility with doubled energy is necessary to approach momentum transfers where this process begins to scale.

  16. Effect of polyamine reagents on exchange capacity in ion exchangers

    NASA Astrophysics Data System (ADS)

    Petrova, T. I.; Dyachenko, F. V.; Bogatyreva, Yu. V.; Borodastov, A. K.; Ershova, I. S.

    2016-05-01

    Effect of compounds involved in complex reagents is described using Helamin 906H reagent as an example. The working exchange capacity of KU-2-8chs cation exchanger in hydrogen form and Amberlite IRA 900Cl anion exchanger in OH form remained almost unchanged when they were used repeatedly to purify water that contained Helamin 906H reagent; in addition, this capacity was the same upon filtration of water that did not contain this reagent. Leakage of total organic carbon was observed earlier than that of calcium ions upon filtration of the solution through the cation exchanger layer. The test results obtained in industrial conditions indicated that using H-OH filters to purify turbine condensate enables the decrease of the concentration of organic and other impurities therein.

  17. Custom, contract, and kidney exchange.

    PubMed

    Healy, Kieran; Krawiec, Kimberly D

    2012-01-01

    In this Essay, we examine a case in which the organizational and logistical demands of a novel form of organ exchange (the nonsimultaneous, extended, altruistic donor (NEAD) chain) do not map cleanly onto standard cultural schemas for either market or gift exchange, resulting in sociological ambiguity and legal uncertainty. In some ways, a NEAD chain resembles a form of generalized exchange, an ancient and widespread instance of the norm of reciprocity that can be thought of simply as the obligation to “pay it forward” rather than the obligation to reciprocate directly with the original giver. At the same time, a NEAD chain resembles a string of promises and commitments to deliver something in exchange for some valuable consideration--that is, a series of contracts. Neither of these salient "social imaginaries" of exchange--gift giving or formal contract--perfectly meets the practical demands of the NEAD system. As a result, neither contract nor generalized exchange drives the practice of NEAD chains. Rather, the majority of actual exchanges still resemble a simpler form of exchange: direct, simultaneous exchange between parties with no time delay or opportunity to back out. If NEAD chains are to reach their full promise for large-scale, nonsimultaneous organ transfer, legal uncertainties and sociological ambiguities must be finessed, both in the practices of the coordinating agencies and in the minds of NEAD-chain participants. This might happen either through the further elaboration of gift-like language and practices, or through a creative use of the cultural form and motivational vocabulary, but not necessarily the legal and institutional machinery, of contract.

  18. Heat exchanger with ceramic elements

    DOEpatents

    Corey, John A.

    1986-01-01

    An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.

  19. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  20. Heat exchanger using graphite foam

    DOEpatents

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.