Science.gov

Sample records for exchange rate dynamics

  1. Kinetic model of mass exchange with dynamic Arrhenius transition rates

    NASA Astrophysics Data System (ADS)

    Hristopulos, Dionissios T.; Muradova, Aliki

    2016-02-01

    We study a nonlinear kinetic model of mass exchange between interacting grains. The transition rates follow the Arrhenius equation with an activation energy that depends dynamically on the grain mass. We show that the activation parameter can be absorbed in the initial conditions for the grain masses, and that the total mass is conserved. We obtain numerical solutions of the coupled, nonlinear, ordinary differential equations of mass exchange for the two-grain system, and we compare them with approximate theoretical solutions in specific neighborhoods of the phase space. Using phase plane methods, we determine that the system exhibits regimes of diffusive and growth-decay (reverse diffusion) kinetics. The equilibrium states are determined by the mass equipartition and separation nullcline curves. If the transfer rates are perturbed by white noise, numerical simulations show that the system maintains the diffusive and growth-decay regimes; however, the noise can reverse the sign of equilibrium mass difference. Finally, we present theoretical analysis and numerical simulations of a system with many interacting grains. Diffusive and growth-decay regimes are established as well, but the approach to equilibrium is considerably slower. Potential applications of the mass exchange model involve coarse-graining during sintering and wealth exchange in econophysics.

  2. Investigating existence of chaos in short and long term dynamics of Moroccan exchange rates

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim

    2017-01-01

    This paper proposes a new methodology to investigate presence of chaos in exchange rate time series by combining wavelet transform and Lyapunov exponent estimation. In particular, stationary wavelet transform (SWT) is applied to exchange rate original time series for decomposition purpose. As a result, approximation and details coefficients are extracted. They are used to represent long and short term dynamics of the original exchange rate time series. Then, largest Lyapunov exponent is estimated for each type of dynamics to check for presence of chaos. Our methodology is applied to several Moroccan exchange rate time series. The empirical results show that, in general, the hypothesis of chaotic structure is accepted for currency levels but it is rejected for currency returns on both long and short dynamics. In addition, long and short dynamics exhibit different chaotic patterns in some exchange rate time series. Our approach may be useful to understand chaotic behaviour in original exchange rate time series.

  3. Nonparametric analysis of nonexponential and multidimensional kinetics. I. Quantifying rate dispersion, rate heterogeneity, and exchange dynamics

    NASA Astrophysics Data System (ADS)

    Berg, Mark A.; Kaur, Harveen

    2017-02-01

    The quantification of nonexponential (dispersed) kinetics has relied on empirical functions, which yield parameters that are neither unique nor easily related to the underlying mechanism. Multidimensional kinetics provide more information on dispersed processes, but a good approach to their analysis is even less clear than for standard, one-dimensional kinetics. This paper is the first in a series that analyzes kinetic data in one or many dimensions with a scheme that is nonparametric: it quantifies nonexponential decays without relying on a specific functional form. The quantities obtained are directly related to properties of the mechanism causing the rate dispersion. Log-moments of decays, which parallel the standard moments of distributions (mean, standard deviation, etc.), are introduced for both one- and multi-dimensional decays. Kinetic spectra are defined to visualize the data. The utility of this approach is demonstrated on a simple, but general, model of dispersed kinetics—a nonexponential homogeneous decay combined with slowly exchanging rate heterogeneity. The first log-moments give a geometric-mean relaxation time. Second log-moments quantify the magnitude of rate dispersion, the fraction of the dispersion due to heterogeneity, and the dynamics of exchange between different rate subensembles. A suitable combination of these moments isolates exchange dynamics from three-dimensional kinetics without contamination by the rate-filtering effects that were identified in a recent paper [M. A. Berg and J. R. Darvin, J. Chem. Phys. 145, 054119 (2016)].

  4. Nonparametric analysis of nonexponential and multidimensional kinetics. I. Quantifying rate dispersion, rate heterogeneity, and exchange dynamics.

    PubMed

    Berg, Mark A; Kaur, Harveen

    2017-02-07

    The quantification of nonexponential (dispersed) kinetics has relied on empirical functions, which yield parameters that are neither unique nor easily related to the underlying mechanism. Multidimensional kinetics provide more information on dispersed processes, but a good approach to their analysis is even less clear than for standard, one-dimensional kinetics. This paper is the first in a series that analyzes kinetic data in one or many dimensions with a scheme that is nonparametric: it quantifies nonexponential decays without relying on a specific functional form. The quantities obtained are directly related to properties of the mechanism causing the rate dispersion. Log-moments of decays, which parallel the standard moments of distributions (mean, standard deviation, etc.), are introduced for both one- and multi-dimensional decays. Kinetic spectra are defined to visualize the data. The utility of this approach is demonstrated on a simple, but general, model of dispersed kinetics-a nonexponential homogeneous decay combined with slowly exchanging rate heterogeneity. The first log-moments give a geometric-mean relaxation time. Second log-moments quantify the magnitude of rate dispersion, the fraction of the dispersion due to heterogeneity, and the dynamics of exchange between different rate subensembles. A suitable combination of these moments isolates exchange dynamics from three-dimensional kinetics without contamination by the rate-filtering effects that were identified in a recent paper [M. A. Berg and J. R. Darvin, J. Chem. Phys. 145, 054119 (2016)].

  5. Currency Exchange Rates.

    ERIC Educational Resources Information Center

    Siler, Carl R.

    This curriculum unit of the Muncie (Indiana) Southside High School is to simulate the dynamics of foreign currency exchange rates from the perspectives of: (1) a major U.S. corporation, ABB Power T & D Company, Inc., of Muncie, Indiana, a manufacturer of large power transformers for the domestic and foreign markets; and (2) individual…

  6. Exchange frequency in replica exchange molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sindhikara, Daniel; Meng, Yilin; Roitberg, Adrian E.

    2008-01-01

    The effect of the exchange-attempt frequency on sampling efficiency is studied in replica exchange molecular dynamics (REMD). We show that sampling efficiency increases with increasing exchange-attempt frequency. This conclusion is contrary to a commonly expressed view in REMD. Five peptides (1-21 residues long) are studied with a spectrum of exchange-attempt rates. Convergence rates are gauged by comparing ensemble properties between fixed length test REMD simulations and longer reference simulations. To show the fundamental correlation between exchange frequency and convergence time, a simple model is designed and studied, displaying the same basic behavior of much more complex systems.

  7. The long-run dynamic relationship between exchange rate and its attention index: Based on DCCA and TOP method

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Guo, Kun; Lu, Xiaolin

    2016-07-01

    The behavior information of financial market plays a more and more important role in modern economic system. The behavior information reflected in INTERNET search data has already been used in short-term prediction for exchange rate, stock market return, house price and so on. However, the long-run relationship between behavior information and financial market fluctuation has not been studied systematically. Further, most traditional statistic methods and econometric models could not catch the dynamic and non-linear relationship. An attention index of CNY/USD exchange rate is constructed based on search data from 360 search engine of China in this paper. Then the DCCA and Thermal Optimal Path methods are used to explore the long-run dynamic relationship between CNY/USD exchange rate and the corresponding attention index. The results show that the significant interdependency exists and the change of exchange rate is 1-2 days lag behind the attention index.

  8. Dynamic relationship between Japanese Yen exchange rates and market anxiety: A new perspective based on MF-DCCA

    NASA Astrophysics Data System (ADS)

    Lu, Xinsheng; Sun, Xinxin; Ge, Jintian

    2017-05-01

    This paper investigates the dynamic relationship between Japanese Yen exchange rates and market anxiety during the period from January 5, 1998 to April 18, 2016. A quantitative technique of multifractal detrended cross-correlation analysis (MF-DCCA) is used to explore the multifractal features of the cross-correlations between USD/JPY, AUD/JPY exchange rates and the market anxiety gauge VIX. The investigation shows that the causal relationship between Japanese Yen exchange rates and VIX are bidirectional in general, and the cross-correlations between the two sets of time series are multifractal. Strong evidence suggests that the cross-correlation exponents tend to exhibit different volatility patterns in response to diverse external shocks such as financial distress and widening in interest rate spread, suggesting that the cross-correlated behavior between Japanese Yen exchange rates and VIX are susceptible to economic uncertainties and risks. In addition, the performances of two market anxiety gauges, the VIX and the TED spread, are compared and the sources of multifractality are also traced. Thus, this paper contributes to the literature by shedding light on the unique driving forces of the Yen exchange rate fluctuations in the international foreign exchange market.

  9. Limitations of heterogeneous models of liquid dynamics: very slow rate exchange in the excess wing.

    PubMed

    Samanta, Subarna; Richert, Ranko

    2014-02-07

    For several molecular glass formers, the nonlinear dielectric effects (NDE's) are investigated for the so-called excess wing regime, i.e., for the relatively high frequencies between 10(2) and 10(7) times the peak loss frequency. It is found that significant nonlinear behavior persists across the entire frequency window of this study, and that its magnitude traces the temperature dependence of the activation energy. A time resolved measurement of the dielectric loss at fields up to 480 kV/cm across tens of thousands of periods reveals that it takes an unexpectedly long time for the steady state NDE to develop. For various materials and at different temperatures and frequencies, it is found that the average structural relaxation with time scale τα governs the equilibration of these fast modes that are associated with time constants τ which are up to 10(7) times shorter than τα. It is argued that true indicators of structural relaxation (such as rate exchange and aging) of these fast modes are slaved to macroscopic softening on the time scale of τα, and thus many orders of magnitude slower than the time constant of the mode itself.

  10. Uncertainty in MR tracer kinetic parameters and water exchange rates estimated from T1-weighted dynamic contrast enhanced MRI

    PubMed Central

    Zhang, Jin; Kim, Sungheon

    2014-01-01

    Purpose The aim of this study was to assess the uncertainty in estimation of MR tracer kinetic parameters and water exchange rates in T1-weighted dynamic contrast enhanced (DCE)-MRI. Methods Simulated DCE-MRI data were used to assess four kinetic models; general kinetic model with a vascular compartment (GKM2), GKM2 combined with the 3S2X model (SSM2), adiabatic approximation of the tissue homogeneity model (ATH), and ATH combined 3S2X model (ATHX). Results In GKM2 and SSM2, increase in transfer constant (Ktrans) led to underestimation of vascular volume fraction (vb), and increase in vb led to overestimation of Ktrans. Such coupling between Ktrans and vb was not observed in ATH and ATHX. The precision of estimated intracellular water lifetime (τi) was substantially improved in both SSM2 and ATHX when Ktrans > 0.3 min−1. Ktrans and vb from ATHX model had significantly smaller errors than those from ATH model (p<0.05). Conclusion The results of this study demonstrated the feasibility of measuring τi from DCE-MRI data albeit low precision. While the inclusion of the water exchange model improved the accuracy of Ktrans, vb, and the interstitial volume fraction estimation (ve), it lowered the precision of other kinetic model parameters within the conditions investigated in this study. PMID:24006341

  11. Nonadiabatic exchange dynamics during adiabatic frequency sweeps.

    PubMed

    Barbara, Thomas M

    2016-04-01

    A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.

  12. Exchange Rates and Old People.

    ERIC Educational Resources Information Center

    Dowd, James J.

    1980-01-01

    Extends earlier work on aging as a process of exchange by focusing on the issue of exchange rates and how they are negotiated. Access to power resources declines with age, placing the old person in the position of negotiating from weakness. (Author)

  13. The Dynamics of Multilateral Exchange

    NASA Astrophysics Data System (ADS)

    Hausken, Kjell; Moxnes, John F.

    The article formulates a dynamic mathematical model where arbitrarily many players produce, consume, exchange, loan, and deposit arbitrarily many goods over time to maximize utility. Consuming goods constitutes a benefit, and producing, exporting, and loaning away goods constitute a cost. Utilities are benefits minus costs, which depend on the exchange ratios and bargaining functions. Three-way exchange occurs when one player acquires, through exchange, one good from another player with the sole purpose of using this good to exchange against the desired good from a third player. Such a triple handshake is not merely a set of double handshakes since the player assigns no interest to the first good in his benefit function. Cognitive and organization costs increase dramatically for higher order exchanges. An exchange theory accounting for media of exchange follows from simple generalization of two-way exchange. The examples of r-way exchange are the triangle trade between Africa, the USA, and England in the 17th and 18th centuries, the hypothetical hypercycle involving RNAs as players and enzymes as goods, and reaction-diffusion processes. The emergence of exchange, and the role of trading agents are discussed. We simulate an example where two-way exchange gives zero production and zero utility, while three-way exchange causes considerable production and positive utility. Maximum utility for each player is reached when exchanges of the same order as the number of players in society are allowed. The article merges micro theory and macro theory within the social, natural, and physical sciences.

  14. Exchange rate rebounds after foreign exchange market interventions

    NASA Astrophysics Data System (ADS)

    Hoshikawa, Takeshi

    2017-03-01

    This study examined the rebounds in the exchange rate after foreign exchange intervention. When intervention is strongly effective, the exchange rate rebounds at next day. The effect of intervention is reduced slightly by the rebound after the intervention. The exchange rate might have been 67.12-77.47 yen to a US dollar without yen-selling/dollar-purchasing intervention of 74,691,100 million yen implemented by the Japanese government since 1991, in comparison to the actual exchange rate was 103.19 yen to the US dollar at the end of March 2014.

  15. 2 CFR 200.440 - Exchange rates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 2 Grants and Agreements 1 2014-01-01 2014-01-01 false Exchange rates. 200.440 Section 200.440 Grants and Agreements Office of Management and Budget Guidance for Grants and Agreements OFFICE OF... Exchange rates. (a) Cost increases for fluctuations in exchange rates are allowable costs subject to...

  16. Communication: Rigorous quantum dynamics of O + O{sub 2} exchange reactions on an ab initio potential energy surface substantiate the negative temperature dependence of rate coefficients

    SciTech Connect

    Li, Yaqin; Sun, Zhigang E-mail: dawesr@mst.edu; Jiang, Bin; Guo, Hua E-mail: dawesr@mst.edu; Xie, Daiqian; Dawes, Richard E-mail: dawesr@mst.edu

    2014-08-28

    The kinetics and dynamics of several O + O{sub 2} isotope exchange reactions have been investigated on a recently determined accurate global O{sub 3} potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged “reef” structure, which was present in all previous potential energy surfaces. In addition, contributions of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence.

  17. Communication: Rigorous quantum dynamics of O + O2 exchange reactions on an ab initio potential energy surface substantiate the negative temperature dependence of rate coefficients.

    PubMed

    Li, Yaqin; Sun, Zhigang; Jiang, Bin; Xie, Daiqian; Dawes, Richard; Guo, Hua

    2014-08-28

    The kinetics and dynamics of several O + O2 isotope exchange reactions have been investigated on a recently determined accurate global O3 potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged "reef" structure, which was present in all previous potential energy surfaces. In addition, contributions of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence.

  18. Communication: Rigorous quantum dynamics of O + O2 exchange reactions on an ab initio potential energy surface substantiate the negative temperature dependence of rate coefficients

    NASA Astrophysics Data System (ADS)

    Li, Yaqin; Sun, Zhigang; Jiang, Bin; Xie, Daiqian; Dawes, Richard; Guo, Hua

    2014-08-01

    The kinetics and dynamics of several O + O2 isotope exchange reactions have been investigated on a recently determined accurate global O3 potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged "reef" structure, which was present in all previous potential energy surfaces. In addition, contributions of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence.

  19. Sparseness and Roughness of Foreign Exchange Rates

    NASA Astrophysics Data System (ADS)

    Vandewalle, N.; Ausloos, M.

    An accurate multiaffine analysis of 23 foreign currency exchange rates has been performed. The roughness exponent H1 which characterizes the excursion of the exchange rate has been numerically measured. The degree of intermittency C1 has been also estimated. In the (H1,C1) phase diagram, the currency exchange rates are dispersed in a wide region around the Brownian motion value (H1=0.5,C1=0) and have a significantly intermittent component (C1≠0).

  20. Heat exchangers: Selection, rating, and thermal design

    SciTech Connect

    Kakac, S.; Liu, H.

    1998-01-01

    This book takes a systematic approach to the subject, focusing on the selection, design, rating, and operational challenges of various types of heat exchangers. Written by well-known authors in the field of heat transfer, this book covers all the most commonly used types of heat exchangers, including condensers and evaporators. The text begins with the classification of the different types of heat exchangers and discusses methods for their sizing and rating. Single phase forced convection correlations in ducts and pressure drop and pumping power analysis are also covered. A chapter is devoted to the special problem of fouling. Thermal design methods and processes, including designs for condensers and evaporators, complete this thorough introduction to the subject. The appendix provides information on the thermophysical properties of fluids, including the new refrigerants. Every topic features worked examples to illustrate the methods and procedures presented, and additional problems are included at the end of each chapter, with examples to be used as a student design project. An instructor's manual is available, including complete solutions to selected problems in the text. The contents include: classification of heat exchangers; basic design methods of heat exchangers; forced convection correlations for single-phase side of heat exchangers; heat exchanger pressure drop and pumping power; fouling of heat exchangers; double-pipe heat exchangers; design correlations for condensers and evaporators; shell-and-tube heat exchangers; compact heat exchangers; gasketed-plate heat exchangers; and condensers and evaporators.

  1. Apparent exchange rate mapping with diffusion MRI.

    PubMed

    Lasič, Samo; Nilsson, Markus; Lätt, Jimmy; Ståhlberg, Freddy; Topgaard, Daniel

    2011-08-01

    Water exchange through the cell membranes is an important feature of cells and tissues. The rate of exchange is determined by factors such as membrane lipid composition and organization, as well as the type and activity of aquaporins. A method for noninvasively estimating the rate of water exchange would be useful for characterizing pathological conditions, e.g., tumors, multiple sclerosis, and ischemic stroke, expected to be associated with a change of the membrane barrier properties. This study describes the filter exchange imaging method for determining the rate of water exchange between sites having different apparent diffusion coefficients. The method is based on the filter-exchange pulsed gradient spin-echo NMR spectroscopy experiment, which is here modified to be compatible with the constraints of clinical MR scanners. The data is analyzed using a model-free approach yielding maps of the apparent exchange rate, here being introduced in analogy with the concept of the apparent diffusion coefficient. Proof-of-principle experiments are performed on microimaging and whole-body clinical scanners using yeast suspension phantoms. The limitations and appropriate experimental conditions are examined. The results demonstrate that filter exchange imaging is a fast and reliable method for characterizing exchange, and that it has the potential to become a powerful diagnostic tool.

  2. Structure and dynamics of a detergent-solubilized membrane protein: measurement of amide hydrogen exchange rates in M13 coat protein by /sub 1/H NMR spectroscopy

    SciTech Connect

    O'Neil, J.D.J.; Sykes, B.D.

    1988-04-19

    The coat protein of bacteriophage M13 is inserted into the inner membrane of Escherichia coli where it exists as an integral membrane protein during the reproductive cycle of the phage. The protein sequence consists of a highly hydrophobic 19-residue central segment flanked by an acidic 20-residue N-terminus and a basic 11-residue C-terminus. The authors have measured backbone amide hydrogen exchange of the protein solubilized in perdeuteriated sodium dodecyl sulfate using /sup 1/H nuclear magnetic resonance (NMR) spectroscopy. Direct proton exchange-out measurements in D/sub 2/O at 24 /sup 0/C were used to follow the exchange of the slowest amides in the protein. Multiple exponential fitting of the exchange data showed that these amides exchanged in two kinetic sets with exchange rates that differed by more than 100-fold. Steady-state saturation-transfer techniques were also used to measure exchange. These methods showed that 15-20 amides in the protein are very stable at 55/sup 0/C and that bout 30 amides have exchange rates retarded by at least 10/sup 5/-fold at 24/sup 0/C. Saturation-transfer studies also showed that the pH dependence of exchange in the hydrophilic termini was unusual. Relaxation and solid-state NMR experiments have previously shown that the majority of the protein backbone is rigid on the picosecond to microsecond time scale, except for the extreme ends of the molecule which are mobile. The hydrogen exchange results, which are sensitive to a much longer time scale, suggest a stable core with a progressive increase in amplitude or frequency of motions as the ends of the protein are approached.

  3. Brazilian exchange rate complexity: Financial crisis effects

    NASA Astrophysics Data System (ADS)

    Piqueira, José Roberto C.; Mortoza, Letícia Pelluci D.

    2012-04-01

    With the financial market globalization, foreign investments became vital for the economies, mainly in emerging countries. In the last decades, Brazilian exchange rates appeared as a good indicator to measure either investors' confidence or risk aversion. Here, some events of global or national financial crisis are analyzed, trying to understand how they influenced the "dollar-real" rate evolution. The theoretical tool to be used is the López-Mancini-Calbet (LMC) complexity measure that, applied to real exchange rate data, has shown good fitness between critical events and measured patterns.

  4. Rate theory on water exchange in aqueous uranyl ion

    NASA Astrophysics Data System (ADS)

    Dang, Liem X.; Vo, Quynh N.; Nilsson, Mikael; Nguyen, Hung D.

    2017-03-01

    We report a classical rate theory approach to predict the exchange mechanism that occurs between water and aqueous uranyl ion. Using our water and ion-water polarizable force field and molecular dynamics techniques, we computed the potentials of mean force for the uranyl ion-water pair as a function of different pressures at ambient temperature. These potentials of mean force were used to calculate rate constants using transition rate theory; the transmission coefficients also were examined using the reactive flux method and Grote-Hynes approach. The computed activation volumes are positive; thus, the mechanism of this particular water-exchange is a dissociative process.

  5. World currency exchange rate cross-correlations

    NASA Astrophysics Data System (ADS)

    Droå¼dż, S.; Górski, A. Z.; Kwapień, J.

    2007-08-01

    World currency network constitutes one of the most complex structures that is associated with the contemporary civilization. On a way towards quantifying its characteristics we study the cross correlations in changes of the daily foreign exchange rates within the basket of 60 currencies in the period December 1998 May 2005. Such a dynamics turns out to predominantly involve one outstanding eigenvalue of the correlation matrix. The magnitude of this eigenvalue depends however crucially on which currency is used as a base currency for the remaining ones. Most prominent it looks from the perspective of a peripheral currency. This largest eigenvalue is seen to systematically decrease and thus the structure of correlations becomes more heterogeneous, when more significant currencies are used as reference. An extreme case in this later respect is the USD in the period considered. Besides providing further insight into subtle nature of complexity, these observations point to a formal procedure that in general can be used for practical purposes of measuring the relative currencies significance on various time horizons.

  6. Apparent exchange rate for breast cancer characterization.

    PubMed

    Lasič, Samo; Oredsson, Stina; Partridge, Savannah C; Saal, Lao H; Topgaard, Daniel; Nilsson, Markus; Bryskhe, Karin

    2016-05-01

    Although diffusion MRI has shown promise for the characterization of breast cancer, it has low specificity to malignant subtypes. Higher specificity might be achieved if the effects of cell morphology and molecular exchange across cell membranes could be disentangled. The quantification of exchange might thus allow the differentiation of different types of breast cancer cells. Based on differences in diffusion rates between the intra- and extracellular compartments, filter exchange spectroscopy/imaging (FEXSY/FEXI) provides non-invasive quantification of the apparent exchange rate (AXR) of water between the two compartments. To test the feasibility of FEXSY for the differentiation of different breast cancer cells, we performed experiments on several breast epithelial cell lines in vitro. Furthermore, we performed the first in vivo FEXI measurement of water exchange in human breast. In cell suspensions, pulsed gradient spin-echo experiments with large b values and variable pulse duration allow the characterization of the intracellular compartment, whereas FEXSY provides a quantification of AXR. These experiments are very sensitive to the physiological state of cells and can be used to establish reliable protocols for the culture and harvesting of cells. Our results suggest that different breast cancer subtypes can be distinguished on the basis of their AXR values in cell suspensions. Time-resolved measurements allow the monitoring of the physiological state of cells in suspensions over the time-scale of hours, and reveal an abrupt disintegration of the intracellular compartment. In vivo, exchange can be detected in a tumor, whereas, in normal tissue, the exchange rate is outside the range experimentally accessible for FEXI. At present, low signal-to-noise ratio and limited scan time allows the quantification of AXR only in a region of interest of relatively large tumors.

  7. Apparent exchange rate for breast cancer characterization

    PubMed Central

    Oredsson, Stina; Partridge, Savannah C.; Saal, Lao H.; Topgaard, Daniel; Nilsson, Markus; Bryskhe, Karin

    2016-01-01

    Although diffusion MRI has shown promise for the characterization of breast cancer, it has low specificity to malignant subtypes. Higher specificity might be achieved if the effects of cell morphology and molecular exchange across cell membranes could be disentangled. The quantification of exchange might thus allow the differentiation of different types of breast cancer cells. Based on differences in diffusion rates between the intra‐ and extracellular compartments, filter exchange spectroscopy/imaging (FEXSY/FEXI) provides non‐invasive quantification of the apparent exchange rate (AXR) of water between the two compartments. To test the feasibility of FEXSY for the differentiation of different breast cancer cells, we performed experiments on several breast epithelial cell lines in vitro. Furthermore, we performed the first in vivo FEXI measurement of water exchange in human breast. In cell suspensions, pulsed gradient spin‐echo experiments with large b values and variable pulse duration allow the characterization of the intracellular compartment, whereas FEXSY provides a quantification of AXR. These experiments are very sensitive to the physiological state of cells and can be used to establish reliable protocols for the culture and harvesting of cells. Our results suggest that different breast cancer subtypes can be distinguished on the basis of their AXR values in cell suspensions. Time‐resolved measurements allow the monitoring of the physiological state of cells in suspensions over the time‐scale of hours, and reveal an abrupt disintegration of the intracellular compartment. In vivo, exchange can be detected in a tumor, whereas, in normal tissue, the exchange rate is outside the range experimentally accessible for FEXI. At present, low signal‐to‐noise ratio and limited scan time allows the quantification of AXR only in a region of interest of relatively large tumors. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID

  8. A theory of exchange rate modeling

    SciTech Connect

    Alekseev, A.A.

    1995-09-01

    The article examines exchange rate modeling for two cases: (a) when the trading partners have mutual interests and (b) when the trading partners have antogonistic interests. Exchange rates in world markets are determined by supply and demand for the currency of each state, and states may control the exchange rate of their currency by changing the interest rate, the volume of credit, and product prices in both domestic and export markets. Abstracting from issues of production and technology in different countries and also ignoring various trade, institutional, and other barriers, we consider in this article only the effect of export and import prices on the exchange rate, we propose a new criterion of external trade activity: each trading partner earns a profit which is proportional to the volume of benefits enjoyed by the other partner. We consider a trading cycle that consists of four stages: (a) purchase of goods in the domestic market with the object of selling them abroad; (b) sale of the goods in foreign markets; (c) purchase of goods abroad with the object of selling them in the domestic market; (d) sale of the goods domestically.

  9. Water Exchange Rates and Molecular Mechanism around Aqueous Halide Ions

    SciTech Connect

    Annapureddy, Harsha V.; Dang, Liem X.

    2014-07-17

    Molecular dynamics simulations were performed to systematically study the water-exchange mechanism around aqueous chloride, bromide, and iodide ions. Transition state theory, Grote-Hynes theory, and the reactive flux method were employed to compute water exchange rates. We computed the pressure dependence of rate constants and the corresponding activation volumes to investigate the mechanism of the solvent exchange event. The activation volumes obtained using the transition state theory rate constants are negative for all the three anions, thus indicating an associative mechanism. Contrary to the transition state theory results, activation volumes obtained using rate constants from Grote-Hynes theory and the reactive flux method are positive, thus indicating a dissociative mechanism. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the U.S. Department of Energy (DOE) funded this work. Battelle operates Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES.

  10. Large Devaluations and the Real Exchange Rate

    ERIC Educational Resources Information Center

    Burstein, Ariel; Eichenbaum, Martin; Rebelo, Sergio

    2005-01-01

    In this paper we argue that the primary force behind the large drop in real exchange rates that occurs after large devaluations is the slow adjustment in the prices of nontradable goods and services. Our empirical analysis uses data from five large devaluation episodes: Argentina (2002), Brazil (1999), Korea (1997), Mexico (1994), and Thailand…

  11. Large Devaluations and the Real Exchange Rate

    ERIC Educational Resources Information Center

    Burstein, Ariel; Eichenbaum, Martin; Rebelo, Sergio

    2005-01-01

    In this paper we argue that the primary force behind the large drop in real exchange rates that occurs after large devaluations is the slow adjustment in the prices of nontradable goods and services. Our empirical analysis uses data from five large devaluation episodes: Argentina (2002), Brazil (1999), Korea (1997), Mexico (1994), and Thailand…

  12. Empirical Correction for Differences in Chemical Exchange Rates in Hydrogen Exchange-Mass Spectrometry Measurements.

    PubMed

    Toth, Ronald T; Mills, Brittney J; Joshi, Sangeeta B; Esfandiary, Reza; Bishop, Steven M; Middaugh, C Russell; Volkin, David B; Weis, David D

    2017-09-05

    A barrier to the use of hydrogen exchange-mass spectrometry (HX-MS) in many contexts, especially analytical characterization of various protein therapeutic candidates, is that differences in temperature, pH, ionic strength, buffering agent, or other additives can alter chemical exchange rates, making HX data gathered under differing solution conditions difficult to compare. Here, we present data demonstrating that HX chemical exchange rates can be substantially altered not only by the well-established variables of temperature and pH but also by additives including arginine, guanidine, methionine, and thiocyanate. To compensate for these additive effects, we have developed an empirical method to correct the hydrogen-exchange data for these differences. First, differences in chemical exchange rates are measured by use of an unstructured reporter peptide, YPI. An empirical chemical exchange correction factor, determined by use of the HX data from the reporter peptide, is then applied to the HX measurements obtained from a protein of interest under different solution conditions. We demonstrate that the correction is experimentally sound through simulation and in a proof-of-concept experiment using unstructured peptides under slow-exchange conditions (pD 4.5 at ambient temperature). To illustrate its utility, we applied the correction to HX-MS excipient screening data collected for a pharmaceutically relevant IgG4 mAb being characterized to determine the effects of different formulations on backbone dynamics.

  13. Solvent exchange in liquid methanol and rate theory

    NASA Astrophysics Data System (ADS)

    Dang, Liem X.; Schenter, Gregory K.

    2016-01-01

    To enhance our understanding of the solvent exchange mechanism in liquid methanol, we report a systematic study using molecular dynamics simulations. We use transition state theory, the Impey-Madden-McDonald method, the reactive flux method, and Grote-Hynes theory to compute the rate constants for this process. Solvent coupling was found to dominate, resulting in a significantly small transmission coefficient. We predict a positive activation volume for methanol exchange. The essential features of the dynamics as well as the pressure dependence are recovered from a Generalized Langevin Equation description of the dynamics. We find that the response to anharmonicity can be decomposed into two time regimes, one corresponding to short time response (<0.1 ps) and long time response (>5 ps). An effective characterization of the process is obtained from launching dynamics from the planar hypersurface corresponding to Grote-Hynes theory, resulting in improved numerical convergence of correlation functions.

  14. RMB Exchange Rate Forecast Approach Based on BP Neural Network

    NASA Astrophysics Data System (ADS)

    Ye, Sun

    RMB exchange rate system has reformed since July, 2005. This article chose RMB exchange rate data during a period from July, 2005 to September 2010 to establish BP neural network model to forecast RMB exchange rate in the future by using MATLAB software. The result showed that BP neural network is effective to forecast RMB exchange rate and also indicated that RMB exchange rate will continue to appreciate in the future.

  15. Foreign exchange rate entropy evolution during financial crises

    NASA Astrophysics Data System (ADS)

    Stosic, Darko; Stosic, Dusan; Ludermir, Teresa; de Oliveira, Wilson; Stosic, Tatijana

    2016-05-01

    This paper examines the effects of financial crises on foreign exchange (FX) markets, where entropy evolution is measured for different exchange rates, using the time-dependent block entropy method. Empirical results suggest that financial crises are associated with significant increase of exchange rate entropy, reflecting instability in FX market dynamics. In accordance with phenomenological expectations, it is found that FX markets with large liquidity and large trading volume are more inert - they recover quicker from a crisis than markets with small liquidity and small trading volume. Moreover, our numerical analysis shows that periods of economic uncertainty are preceded by periods of low entropy values, which may serve as a tool for anticipating the onset of financial crises.

  16. Marriage exchanges, seed exchanges, and the dynamics of manioc diversity

    PubMed Central

    Delêtre, Marc; McKey, Doyle B.; Hodkinson, Trevor R.

    2011-01-01

    The conservation of crop genetic resources requires understanding the different variables—cultural, social, and economic—that impinge on crop diversity. In small-scale farming systems, seed exchanges represent a key mechanism in the dynamics of crop genetic diversity, and analyzing the rules that structure social networks of seed exchange between farmer communities can help decipher patterns of crop genetic diversity. Using a combination of ethnobotanical and molecular genetic approaches, we investigated the relationships between regional patterns of manioc genetic diversity in Gabon and local networks of seed exchange. Spatially explicit Bayesian clustering methods showed that geographical discontinuities of manioc genetic diversity mirror major ethnolinguistic boundaries, with a southern matrilineal domain characterized by high levels of varietal diversity and a northern patrilineal domain characterized by low varietal diversity. Borrowing concepts from anthropology—kinship, bridewealth, and filiation—we analyzed the relationships between marriage exchanges and seed exchange networks in patrilineal and matrilineal societies. We demonstrate that, by defining marriage prohibitions, kinship systems structure social networks of exchange between farmer communities and influence the movement of seeds in metapopulations, shaping crop diversity at local and regional levels. PMID:22042843

  17. Side-chain dynamics of a detergent-solubilized membrane protein: Measurement of tryptophan and glutamine hydrogen-exchange rates in M13 coat protein by sup 1 H NMR spectroscopy

    SciTech Connect

    O'Neil, J.D.J.; Sykes, B.D. )

    1989-08-08

    M13 coat protein is a small (50 amino acids) lipid-soluble protein that becomes an integral membrane protein during the infection stage of the life cycle of the M13 phage and is therefore used as a model membrane protein. To study side-chain dynamics in the protein, the authors have measured individual hydrogen-exchange rates for a primary amide in the side chain of glutamine-15 and for the indole amine of tryptophan-26. The protein was solubilized with the use of perdeuteriated sodium dodecyl sulfate (SDS), and hydrogen-exchange rates were measured by using {sup 1}H nuclear magnetic resonance spectroscopy. The glutamine-15 syn proton exchanged at a rate identical with that in glutamine model peptides except that the pH corresponding to minimum exchange was elevated by about 1.5 pH units. The tryptophan-26 indole amine proton exchange was biphasic, suggesting that two populations of tryptophan-26 exist. It is suggested that the two populations may reflect protein dimerization or aggregation in the SDS micelles. The pH values of minimum exchange for tryptophan-26 in both environments were also elevated by 1.3-1.9 pH units. This phenomenon is reproduced when small tryptophan- and glutamine-containing hydrophobic peptides are dissolved in the presence of SDS micelles. The electrostatic nature of this phenomenon is proven by showing that the minimum pH for exchange can be reduced by dissolving the hydrophobic peptides in the positively charged detergent micelle dodecyltrimethylammonium bromide.

  18. Dynamic enhancement of the exchange bias training effect

    NASA Astrophysics Data System (ADS)

    Sahoo, S.; Polisetty, S.; Binek, Ch.; Berger, A.

    2007-03-01

    Exchange bias in coupled magnetic thin films and its accompanying training effect are fundamental interface phenomena with significant impact in spintronic applications. Both effects are well known in heterosystems of ferro- and antiferromagnetic thin films. Here, we report on the dynamic enhancement of the training effect in an exchange coupled bilayer of soft and hard ferromagnetic materials. Training is referred to as a gradual change of the bias field, which evolves upon cycling the soft layer through consecutive hysteresis loops. Its dynamic enhancement is observed with increasing sweep rate of the applied magnetic field from quasistatic to the fully dynamic range. A dynamically generalized theory based on triggered relaxation is in excellent agreement with the training data. Additionally, we evidence the remarkable universality of our theoretical approach when applying it to the dynamically altered training effect of a conventional exchange bias system involving an antiferromagnetic pinning layer.

  19. Dynamic enhancement of the exchange bias training effect

    NASA Astrophysics Data System (ADS)

    Sahoo, Sarbeswar; Berger, Andreas; Polisetty, Srinivas; Binek, Christian

    2007-03-01

    Exchange bias in coupled magnetic films and its accompanying training effect are fundamental interface phenomena which impact spintronic applications. Training is referred to as a gradual change of the bias field, which evolves upon cycling the soft layer through consecutive hysteresis loops. We report on its dynamic enhancement in exchange coupled bilayers of soft and hard ferromagnetic materials. Dynamic effects are induced with increasing sweep rate of the applied magnetic field from quasi-static to the fully dynamic range. A dynamically generalized theory based on triggered and partially truncated relaxation is in excellent agreement with the data. Remarkable universality of our theoretical approach is evidenced when applying the approach to the dynamic training effect of a conventional exchange bias system involving an antiferromagnetic pinning layer.

  20. Dynamic Response of Exchange Bias in Graphene Nanoribbons

    DTIC Science & Technology

    2012-01-01

    1 Dynamic response of exchange bias in graphene nanoribbons S. Narayana Jammalamadaka a, b* , S. S. Rao c, d, e* , J. Vanacken a , V. V...investigated in exchange-coupled potassium split graphene nanoribbons (GNRs). We find that, at low field sweep rate, the pronounced absolute training... graphene nanoribbons 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT

  1. Pion double charge exchange and hadron dynamics

    SciTech Connect

    Johnson, M.B.

    1991-01-01

    This paper will review theoretical results to show how pion double charge exchange is contributing to our understanding of hadron dynamics in nuclei. The exploitation of the nucleus as a filter is shown to be essential in facilitating the comparison between theory and experiment. 23 refs., 3 figs., 2 tabs.

  2. Solvent Exchange in Liquid Methanol and Rate Theory

    SciTech Connect

    Dang, Liem X.; Schenter, Gregory K.

    2016-01-01

    To enhance our understanding of the solvent exchange mechanism in liquid methanol, we report a systematic study of this process using molecular dynamics simulations. We use transition state theory, the Impey-Madden-McDonald method, the reactive flux method, and Grote-Hynes theory to compute the rate constants for this process. Solvent coupling was found to dominate, resulting in a significantly small transmission coefficient. We predict a positive activation volume for the methanol exchange process. The essential features of the dynamics of the system as well as the pressure dependence are recovered from a Generalized Langevin Equation description of the dynamics. We find that the dynamics and response to anharmonicity can be decomposed into two time regimes, one corresponding to short time response (< 0.1 ps) and long time response (> 5 ps). An effective characterization of the process results from launching dynamics from the planar hypersurface corresponding to Grote-Hynes theory. This results in improved numerical convergence of correlation functions. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  3. Measuring a hidden coordinate: Rate-exchange kinetics from 3D correlation functions.

    PubMed

    Berg, Mark A; Darvin, Jason R

    2016-08-07

    Nonexponential kinetics imply the existence of at least one slow variable other than the observable, that is, the system has a "hidden" coordinate. We develop a simple, but general, model that allows multidimensional correlation functions to be calculated for these systems. Homogeneous and heterogeneous mechanisms are both included, and slow exchange of the rates is allowed. This model shows that 2D and 3D correlation functions of the observable measure the distribution and kinetics of the hidden coordinate controlling the rate exchange. Both the mean exchange time and the shape of the exchange relaxation are measurable. However, complications arise because higher correlation functions are sums of multiple "pathways," each of which measures different dynamics. Only one 3D pathway involves exchange dynamics. Care must be used to extract exchange dynamics without contamination from other processes.

  4. Modeling hyporheic exchange with unsteady stream discharge and bedform dynamics

    NASA Astrophysics Data System (ADS)

    Boano, Fulvio; Revelli, Roberto; Ridolfi, Luca

    2013-07-01

    Water exchange between streams and hyporheic zones is highly dynamic, and its temporal variation is related to the hydrologic fluctuations of stream discharge and groundwater levels. Unfortunately, predictions of temporal patterns of exchange are difficult due to the many hydrodynamic and morphodynamic processes that are involved and also to their complex nonlinear interactions. Examples of these processes include the evolution of streambed morphology in response to changing streamflow as well as the feedback on surface flow induced by drag resistance due to evolving bed forms. In this work, we have employed a stochastic method to analyze the temporal dynamics of bed form-driven hyporheic exchange in a stream characterized by subcritical flow and daily discharge variations. The method is an extension of previous studies that includes current-induced alterations of bedform size and celerity and their effect on water exchange. The modeling results show that during high flows, stream water penetrates deeper and for longer times in the sediments. At the same time, the predicted rate of water exchange per unit streambed area decreases because the streambed area occupied by each bed form increases faster than the volumetric rate of stream water exchange induced by the same bed form. This reduction can be compensated by the increase in wetted area with discharge, which may provide additional streambed area for water exchange. One the main finding of the study is that the time-averaged values of exchange flux and depths are quite similar to those modeled for a steady mean discharge, while residence times are somewhat lower. Predicted temporal variations of exchange depths and times around their time-averaged values are moderate compared to steady state values.

  5. Ligand and proton exchange dynamics in recombinant human myoglobin mutants.

    PubMed

    Lambright, D G; Balasubramanian, S; Boxer, S G

    1989-05-05

    Site-specific mutants of human myoglobin have been prepared in which lysine 45 is replaced by arginine (K45R) and aspartate 60 by glutamate (D60E), in order to examine the influence of these residues and their interaction on the dynamics of the protein. These proteins were studied by a variety of methods, including one and two-dimensional proton nuclear magnetic resonance spectroscopy, exchange kinetics for the distal and proximal histidine NH protons as a function of pH in the met cyano forms, flash photolysis of the CO forms, and ligand replacement kinetics. The electronic absorption and proton nuclear magnetic resonance spectra of the CO forms of these proteins are virtually identical, indicating that the structure of the heme pocket is unaltered by these mutations. There are, however, substantial changes in the dynamics of both CO binding and proton exchange for the mutant K45R, whereas the mutant D60E exhibits behavior indistinguishable from the reference human myoglobin. K45R has a faster CO bimolecular recombination rate and slower CO off-rate relative to the reference. The kinetics for CO binding are independent of pH (6.5 to 10) as well as ionic strength (0 to 1 M-NaCl). The exchange rate for the distal histidine NH is substantially lower for K45R than the reference, whereas the proximal histidine NH exchange rate is unaltered. The exchange behavior of the human proteins is similar to that reported for a comparison of the exchange rates for myoglobins having lysine at position 45 with sperm whale myoglobin, which has arginine at this position. This indicates that the differences in exchange rates reflects largely the Lys----Arg substitution. The lack of a simple correlation for the CO kinetics with this substitution means that these are sensitive to other factors as well. Specific kinetic models, whereby substitution of arginine for lysine at position 45 can affect ligand binding dynamics, are outlined. These experiments demonstrate that a relatively

  6. Exchange of Standardized Flight Dynamics Data

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Berry, David; Flores-Amaya, Felipe; Folliard, J.; Kiehling, R.; Ogawa, M.; Pallaschke, S.

    2004-01-01

    Spacecraft operations require the knowledge of the vehicle trajectory and attitude and also that of other spacecraft or natural bodies. This knowledge is normally provided by the Flight Dynamics teams of the different space organizations and, as very often spacecraft operations involve more than one organization, this information needs to be exchanged between Agencies. This is why the Navigation Working Group within the CCSDS (Consultative Committee for Space Data Systems), has been instituted with the task of establishing standards for the exchange of Flight Dynamics data. This exchange encompasses trajectory data, attitude data, and tracking data. The Navigation Working Group includes regular members and observers representing the participating Space Agencies. Currently the group includes representatives from CNES, DLR, ESA, NASA and JAXA. This Working Group meets twice per year in order to devise standardized language, methods, and formats for the description and exchange of Navigation data. Early versions of some of these standards have been used to support mutual tracking of ESA and NASA interplanetary spacecraft, especially during the arrival of the 2003 missions to Mars. This paper provides a summary of the activities carried out by the group, briefly outlines the current and envisioned standards, describes the tests and operational activities that have been performed using the standards, and lists and discusses the lessons learned from these activities.

  7. Computer simulation of methanol exchange dynamics around cations and anions

    SciTech Connect

    Roy, Santanu; Dang, Liem X.

    2016-03-03

    In this paper, we present the first computer simulation of methanol exchange dynamics between the first and second solvation shells around different cations and anions. After water, methanol is the most frequently used solvent for ions. Methanol has different structural and dynamical properties than water, so its ion solvation process is different. To this end, we performed molecular dynamics simulations using polarizable potential models to describe methanol-methanol and ion-methanol interactions. In particular, we computed methanol exchange rates by employing the transition state theory, the Impey-Madden-McDonald method, the reactive flux approach, and the Grote-Hynes theory. We observed that methanol exchange occurs at a nanosecond time scale for Na+ and at a picosecond time scale for other ions. We also observed a trend in which, for like charges, the exchange rate is slower for smaller ions because they are more strongly bound to methanol. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  8. Statistical properties of the yuan exchange rate index

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Hua; Yu, Xiao-Wen; Suo, Yuan-Yuan

    2012-06-01

    We choice the yuan exchange rate index based on a basket of currencies as the effective exchange rate of the yuan and investigate the statistical properties of the yuan exchange rate index after China's exchange rate system reform on the 21st July 2005. After dividing the time series into two parts according to the change in the yuan exchange rate regime in July 2008, we compare the statistical properties of the yuan exchange rate index during these two periods. We find that the distribution of the two return series has the exponential form. We also perform the detrending moving average analysis (DMA) and the multifractal detrending moving average analysis (MFDMA). The two periods possess different degrees of long-range correlations, and the multifractal nature is also unveiled in these two time series. Significant difference is found in the scaling exponents τ(q) and singularity spectra f(α) of the two periods obtained from the MFDMA analysis. Besides, in order to detect the sources of multifractality, shuffling and phase randomization procedures are applied to destroy the long-range temporal correlation and fat-tailed distribution of the yuan exchange rate index respectively. We find that the fat-tailedness plays a critical role in the sources of multifractality in the first period, while the long memory is the major cause in the second period. The results suggest that the change in China's exchange rate regime in July 2008 gives rise to the different multifractal properties of the yuan exchange rate index in these two periods, and thus has an effect on the effective exchange rate of the yuan after the exchange rate reform on the 21st July 2005.

  9. China’s Exchange Rate Policy: A Double Edged Sword

    DTIC Science & Technology

    2013-12-01

    Figure 6.  Impacts of RMB Appreciation on Consumption and Production Since 2005...trading partners, China has the ability to impact the U.S. economy through its exchange rate polices. Actions that benefit certain sectors in its...understanding of how the current exchange rate policy impacts the different sectors of the economy is vital to continued growth. It appears to be

  10. The effect of exchange rates on southern pine exports

    Treesearch

    H.W. Wisdom; James E. Granskog

    2003-01-01

    Changes in exchange rates affect southern pine exports by changing the cost of southern wood in foreign markets. A strong dollar discourages exports; a weak dollar encourages exports. A simple economic export market model is developed to determine whether changes in the exchange rates in foreign markets of southern pine products have, in fact, let to significant...

  11. Intracellular guest exchange between dynamic supramolecular hosts.

    PubMed

    Swaminathan, Subramani; Fowley, Colin; McCaughan, Bridgeen; Cusido, Janet; Callan, John F; Raymo, Françisco M

    2014-06-04

    Decyl and oligo(ethylene glycol) chains were appended to the same poly(methacrylate) backbone to generate an amphiphilic polymer with a ratio between hydrophobic and hydrophilic segments of 2.5. At concentrations greater than 10 μg mL(-1) in neutral buffer, multiple copies of this particular macromolecule assemble into nanoparticles with a hydrodynamic diameter of 15 nm. In the process of assembling, these nanoparticles can capture anthracene donors and borondipyrromethene acceptors within their hydrophobic interior and permit the transfer of excitation energy with an efficiency of 95%. Energy transfer is observed also if nanocarriers containing exclusively the donors are mixed with nanoparticles preloaded separately with the acceptors in aqueous media. The two sets of supramolecular assemblies exchange their guests with fast kinetics upon mixing to co-localize complementary chromophores within the same nanostructured container and enable energy transfer. After guest exchange, the nanoparticles can cross the membrane of cervical cancer cells and bring the co-entrapped donors and acceptors within the intracellular environment. Alternatively, intracellular energy transfer is also established after sequential cell incubation with nanoparticles containing the donors first and then with nanocarriers preloaded with the acceptors or vice versa. Under these conditions, the nanoparticles exchange their cargo only after internalization and allow energy transfer exclusively within the cell interior. Thus, the dynamic character of such supramolecular containers offers the opportunity to transport independently complementary species inside cells and permit their interaction only within the intracellular space.

  12. Modeling of the Bosphorus exchange flow dynamics

    NASA Astrophysics Data System (ADS)

    Sözer, Adil; Özsoy, Emin

    2017-04-01

    The fundamental hydrodynamic behavior of the Bosphorus Strait is investigated through a numerical modeling study using alternative configurations of idealized or realistic geometry. Strait geometry and basin stratification conditions allow for hydraulic controls and are ideally suited to support the maximal-exchange regime, which determines the rate of exchange of waters originating from the adjacent Black and Mediterranean Seas for a given net transport. Steady-state hydraulic controls are demonstrated by densimetric Froude number calculations under layered flow approximations when corrections are applied to account for high velocity shears typically observed in the Bosphorus. Analyses of the model results reveal many observed features of the strait, including critical transitions at hydraulic controls and dissipation by turbulence and hydraulic jumps. It is found that the solution depends on initialization, especially with respect to the basin initial conditions. Significant differences between the controlled maximal-exchange and drowned solutions suggest that a detailed modeling implementation involving coupling with adjacent basins needs to take full account of the Bosphorus Strait in terms of the physical processes to be resolved.

  13. Modeling of the Bosphorus exchange flow dynamics

    NASA Astrophysics Data System (ADS)

    Sözer, Adil; Özsoy, Emin

    2017-01-01

    The fundamental hydrodynamic behavior of the Bosphorus Strait is investigated through a numerical modeling study using alternative configurations of idealized or realistic geometry. Strait geometry and basin stratification conditions allow for hydraulic controls and are ideally suited to support the maximal-exchange regime, which determines the rate of exchange of waters originating from the adjacent Black and Mediterranean Seas for a given net transport. Steady-state hydraulic controls are demonstrated by densimetric Froude number calculations under layered flow approximations when corrections are applied to account for high velocity shears typically observed in the Bosphorus. Analyses of the model results reveal many observed features of the strait, including critical transitions at hydraulic controls and dissipation by turbulence and hydraulic jumps. It is found that the solution depends on initialization, especially with respect to the basin initial conditions. Significant differences between the controlled maximal-exchange and drowned solutions suggest that a detailed modeling implementation involving coupling with adjacent basins needs to take full account of the Bosphorus Strait in terms of the physical processes to be resolved.

  14. Backbone dynamics of a model membrane protein: measurement of individual amide hydrogen-exchange rates in detergent-solubilized M13 coat protein using /sup 13/C NMR hydrogen/deuterium isotope shifts

    SciTech Connect

    Henry, G.D.; Weiner, J.H.; Sykes, B.D.

    1987-06-16

    Hydrogen-exchange rates have been measured for individual assigned amide protons in M13 coat protein, a 50-residue integral membrane protein, using a /sup 13/C nuclear magnetic resonance (NMR) equilibrium isotope shift technique. The locations of the more rapidly exchanging amides have been determined. In D/sub 2/O solutions, a peptide carbonyl resonance undergoes a small upfield isotope shift (0.08-0.09 ppm) from its position in H/sub 2/O solutions; in 1:1 H/sub 2/O/D/sub 2/O mixtures, the carbonyl line shape is determined by the exchange rate at the adjacent nitrogen atom. M13 coat protein was labeled biosynthetically with /sup 13/C at the peptide carbonyls of alanine, glycine, phenylalanine, proline, and lysine, and the exchange rates of 12 assigned amide protons in the hydrophilic regions were measured as a function of pH by using the isotope shift method. This equilibrium technique is sensitive to the more rapidly exchanging protons which are difficult to measure by classical exchange-out experiments. In proteins, structural factors, notably H bonding, can decrease the exchange rate of an amide proton by many orders of magnitude from that observed in the freely exposed amides of model peptides such as poly(DL-alanine). With corrections for sequence-related inductive effects, the retardation of amide exchange in sodium dodecyl sulfate solubilized coat protein has been calculated with respect to poly(DL-alanine). The most rapidly exchanging protons, which are retarded very little or not at all, are shown to occur at the N- and C-termini of the molecule. A model of the detergent-solubilized coat protein is constructed from these H-exchange data which is consistent with circular dichroism and other NMR results.

  15. Dynamic Analysis of Capture Devices for Momentum Exchange with Tethers

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen

    2002-01-01

    One of the significant challenges in developing a momentum exchange / electrodynamic reboost tether system is in the analysis and design of the capture device and its effects on the overall dynamics of the system. The goal of this work is to develop appropriate tether momentum exchange models that can simulate and evaluate the requirements of such a system, and be used to create specifications on the design of a capture device. This report briefly describes dynamic model development, simulation of the momentum exchange process, evaluation of dynamic effects of errors in the momentum exchange process, and the development of guidelines in selecting dynamic properties in the design of a capture device.

  16. Rate of oxygen isotope exchange between selenate and water.

    PubMed

    Kaneko, Masanori; Poulson, Simon R

    2012-04-17

    The rate of oxygen isotope exchange between selenate and water was investigated at conditions of 10 to 80 °C and pH -0.6 to 4.4. Oxygen isotope exchange proceeds as a first-order reaction, and the exchange rate is strongly affected by reaction temperature and pH, with increased rates of isotope exchange at higher temperature and lower pH. Selenate speciation (HSeO(4)(-) vs SeO(4)(2-)) also has a significant effect on the rate of isotope exchange. The half-life for isotope exchange at example natural conditions (25 °C and pH 7) is estimated to be significantly in excess of 10(6) years. The very slow rate of oxygen isotope exchange between selenate and water under most environmental conditions demonstrates that selenate-δ(18)O signatures produced by biogeochemical processes will be preserved and hence that it will be possible to use the value of selenate-δ(18)O to investigate the biogeochemical behavior of selenate, in an analogous fashion to the use of sulfate-δ(18)O to study the biogeochemical behavior of sulfate.

  17. Noninvasive detection of gas exchange rate by near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Guodong; Mao, Zongzhen; Wang, Bangde

    2008-12-01

    In order to study the relationship among the oxygen concentration in skeletal muscle tissues and the heart rate (HR), oxygen uptake (VO2), respiratory exchange ratio (RER) during incremental running exercises on a treadmill, a near-infrared spectroscopy muscle oxygen monitor system is employed to measure the relative change in muscle oxygenation, with the heart rate, oxygen uptake, production of carbon dioxide (VCO2) and respiratory exchange ratio are recorded synchronously. The results indicate parameters mentioned above present regular changes during the incremental exercise. High correlations are discovered between relative change of oxy-hemoglobin concentration and heart rate, oxygen uptake, respiratory exchange ratio at the significance level (P=0.01). This research might introduce a new measurement technology and/or a novel biological monitoring parameter to the evaluation of physical function status, control the training intensity, estimation of the effectiveness of exercise. Keywords: near-infrared spectroscopy; muscle oxygen concentration; heart rate; oxygen uptake; respiratory exchange ratio.

  18. Statistical Analysis of the Exchange Rate of Bitcoin

    PubMed Central

    Chu, Jeffrey; Nadarajah, Saralees; Chan, Stephen

    2015-01-01

    Bitcoin, the first electronic payment system, is becoming a popular currency. We provide a statistical analysis of the log-returns of the exchange rate of Bitcoin versus the United States Dollar. Fifteen of the most popular parametric distributions in finance are fitted to the log-returns. The generalized hyperbolic distribution is shown to give the best fit. Predictions are given for future values of the exchange rate. PMID:26222702

  19. Kinetic isotope effects for fast deuterium and proton exchange rates

    PubMed Central

    Mammoli, Daniele; Kadeřávek, Pavel; Pelupessy, Philippe; Bodenhausen, Geoffrey

    2016-01-01

    By monitoring the effect of deuterium decoupling on the decay of transverse 15N magnetization in D–15N spin pairs during multiple-refocusing echo sequences, we have determined fast D–D exchange rates k D and compared them with fast H–H exchange rates k H in tryptophan to determine the kinetic isotope effect as a function of pH and temperature. PMID:27009684

  20. Kinetic isotope effects for fast deuterium and proton exchange rates.

    PubMed

    Canet, Estel; Mammoli, Daniele; Kadeřávek, Pavel; Pelupessy, Philippe; Bodenhausen, Geoffrey

    2016-04-21

    By monitoring the effect of deuterium decoupling on the decay of transverse (15)N magnetization in D-(15)N spin pairs during multiple-refocusing echo sequences, we have determined fast D-D exchange rates kD and compared them with fast H-H exchange rates kH in tryptophan to determine the kinetic isotope effect as a function of pH and temperature.

  1. Statistical Analysis of the Exchange Rate of Bitcoin.

    PubMed

    Chu, Jeffrey; Nadarajah, Saralees; Chan, Stephen

    2015-01-01

    Bitcoin, the first electronic payment system, is becoming a popular currency. We provide a statistical analysis of the log-returns of the exchange rate of Bitcoin versus the United States Dollar. Fifteen of the most popular parametric distributions in finance are fitted to the log-returns. The generalized hyperbolic distribution is shown to give the best fit. Predictions are given for future values of the exchange rate.

  2. Exchange Rate Volatility and Trade Equation in Indonesia

    NASA Astrophysics Data System (ADS)

    Pasasa, Linus; Fechter, Nadine; Bustaman, Yosman

    2010-12-01

    This paper examines the characteristics of short-term and long-term fluctuations/volatility of Indonesia exchange rate and investigates whether this volatility has affected Indonesia's exports flows. In particular the paper investigates the impact of exchange rate volatility on aggregate Indonesia exports flows to the United State and also on imports. The Augmented Dickey-Fuller Test was employed on quarterly data for the period January 2000 to December 2008 to test for stationarity on the variables of interest. Estimates of the long-term influence of exchange rate volatility on the trade flows are obtained using the Johansen Cointegration Test. The results suggest that a significant long-term relationship linking exchange rate volatility and the trade volume between Indonesia and the United States exists. A negative long-term relationship between exchange rate fluctuations and the export volume sent from Indonesia to the US is obtained. On the other hand, exchange rate volatility exerts a positive long-term effect upon the import volume.

  3. 14 CFR 65.43 - Rating privileges and exchange.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (CONTINUED) AIRMEN CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Air Traffic Control Tower Operators... any time after that date exchange his rating for a facility rating at the same air traffic control... a junior rating on August 31, 1970, may not control air traffic, at any operating position at the...

  4. 14 CFR 65.43 - Rating privileges and exchange.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (CONTINUED) AIRMEN CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Air Traffic Control Tower Operators... any time after that date exchange his rating for a facility rating at the same air traffic control... a junior rating on August 31, 1970, may not control air traffic, at any operating position at the...

  5. 14 CFR 65.43 - Rating privileges and exchange.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (CONTINUED) AIRMEN CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Air Traffic Control Tower Operators... any time after that date exchange his rating for a facility rating at the same air traffic control... a junior rating on August 31, 1970, may not control air traffic, at any operating position at the...

  6. 14 CFR 65.43 - Rating privileges and exchange.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (CONTINUED) AIRMEN CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Air Traffic Control Tower Operators... any time after that date exchange his rating for a facility rating at the same air traffic control... a junior rating on August 31, 1970, may not control air traffic, at any operating position at the...

  7. Analysis of proton exchange kinetics with time-dependent exchange rate.

    PubMed

    Rutkowska-Wlodarczyk, Izabela; Kierdaszuk, Borys; Wlodarczyk, Jakub

    2010-04-01

    Mass spectrometry is used to probe the kinetics of hydrogen-deuterium exchange in lysozyme in pH 5, 6 and 7.4. An analysis based on a Verhulst growth model is proposed and effectively applied to the kinetics of the hydrogen exchange. The data are described by a power-like function which is based on a time-dependence of the exchange rate. Experimental data ranging over many time scales is considered and accurate fits of a power-like function are obtained. Results of fittings show correlation between faster hydrogen-deuterium exchange and increase of pH. Furthermore a model is presented that discriminates between easily exchangeable hydrogens (located in close proximity to the protein surface) and those protected from the exchange (located in the protein interior). A possible interpretation of the model and its biological significance are discussed.

  8. A Unified Approach to Dynamic Matching and Barter Exchange

    DTIC Science & Technology

    2016-09-01

    barter exchange, market design, dynamic matching markets , kidney exchange, combinatorial optimization To my parents, for their unwavering support in...addresses the design, analysis, and real-world fielding of dynamic matching markets and barter exchanges. We present new mathematical models for static... markets , and develop provably optimal market clearing algo- rithms for models of these markets that can be deployed in practice. We show that taking a

  9. Modeling inflation rates and exchange rates in Ghana: application of multivariate GARCH models.

    PubMed

    Nortey, Ezekiel Nn; Ngoh, Delali D; Doku-Amponsah, Kwabena; Ofori-Boateng, Kenneth

    2015-01-01

    This paper was aimed at investigating the volatility and conditional relationship among inflation rates, exchange rates and interest rates as well as to construct a model using multivariate GARCH DCC and BEKK models using Ghana data from January 1990 to December 2013. The study revealed that the cumulative depreciation of the cedi to the US dollar from 1990 to 2013 is 7,010.2% and the yearly weighted depreciation of the cedi to the US dollar for the period is 20.4%. There was evidence that, the fact that inflation rate was stable, does not mean that exchange rates and interest rates are expected to be stable. Rather, when the cedi performs well on the forex, inflation rates and interest rates react positively and become stable in the long run. The BEKK model is robust to modelling and forecasting volatility of inflation rates, exchange rates and interest rates. The DCC model is robust to model the conditional and unconditional correlation among inflation rates, exchange rates and interest rates. The BEKK model, which forecasted high exchange rate volatility for the year 2014, is very robust for modelling the exchange rates in Ghana. The mean equation of the DCC model is also robust to forecast inflation rates in Ghana.

  10. Football and exchange rates: empirical support for behavioral economics.

    PubMed

    Eker, Gulin; Berument, Hakan; Dogan, Burak

    2007-10-01

    Recently, economic theory has been expanded to incorporate emotions, which have been assumed to play an important role in financial decisions. The present study illustrates this by showing a connection between the sports performance of popular national football teams (Besiktas, Fenerbahce, and Galatasaray) and performance of the Turkish economy. Specifically, a significant positive association was found between the success of three major professional Turkish football teams and the exchange rate of the Turkish lira against the U.S. dollar. The effect of the football success of several Turkish football teams on the exchange rate of the Turkish lira was examined using the simultaneous multiple regression model with predictor measures of wins, losses, and ties for different combinations of teams to predict the depreciation rate of the Turkish lira between the years 1987 and 2003. Wins by Turkish football teams against foreign (non-Turkish) rivals increased with exchange rate depreciation of the Turkish lira against the U.S. dollar.

  11. A Role Play on Export Decisions and the Exchange Rate.

    ERIC Educational Resources Information Center

    Cotterell, Ann

    1987-01-01

    Explains that the goal of this exercise is to encourage an understanding of the effects of exchange rate changes and the use of forward rates. Provides a role play that involves students working in groups to decide whether to export a consignment of golf trollies to Italy and shortbread to Canada. (BSR)

  12. Residue-specific NH exchange rates studied by NMR diffusion experiments

    NASA Astrophysics Data System (ADS)

    Brand, Torsten; Cabrita, Eurico J.; Morris, Gareth A.; Günther, Robert; Hofmann, Hans-Jörg; Berger, Stefan

    2007-07-01

    We present a novel approach to the investigation of rapid (>2 s -1) NH exchange rates in proteins, based on residue-specific diffusion measurements. 1H, 15N-DOSY-HSQC spectra are recorded in order to observe resolved amide proton signals for most residues of the protein. Human ubiquitin was used to demonstrate the proposed method. Exchange rates are derived directly from the decay data of the diffusion experiment by applying a model deduced from the assumption of a two-site exchange with water and the "pure" diffusion coefficients of water and protein. The "pure" diffusion coefficient of the protein is determined in an experiment with selective excitation of the amide protons in order to suppress the influence of magnetization transfer from water to amide protons on the decay data. For rapidly exchanging residues a comparison of our results with the exchange rates obtained in a MEXICO experiment showed good agreement. Molecular dynamics (MD) and quantum mechanical calculations were performed to find molecular parameters correlating with the exchangeability of the NH protons. The RMS fluctuations of the amide protons, obtained from the MD simulations, together with the NH coupling constants provide a bilinear model which shows a good correlation with the experimental NH exchange rates.

  13. The performance of one belt and one road exchange rate: Based on improved singular spectrum analysis

    NASA Astrophysics Data System (ADS)

    Lai, Lin; Guo, Kun

    2017-10-01

    ;One Belt and One Road; strategy in China is on push of foreign trade openness at northwest, southwest and northeast, absorption of the excess capacity and new support for economic increase. However, the fluctuation in RMB exchange rate with the countries along the road is unstable so related Chinese enterprises will face high risk of exchange rate. Precise explanation or prediction for exchange rate has been the challengeable hop point in the international finance. This paper decomposed the One Belt One Road Exchange Rate Index (OBORR) and the RMB Effective Exchange Rate Index (CNYX) into trend term, market fluctuation term and noise term using improved singular spectrum analysis (SSA). It turns out that the increasing velocity of OBORR is greater than that of CNYX in the long term, and there is dynamic lead-lag structure in the medium term. In the short term, the fluctuation range and frequency of OBORR are greater than those of CNYX, which means there will be more exchange rate risks in One Belt and One Road countries.

  14. Extensions to the Dynamic Aerospace Vehicle Exchange Markup Language

    NASA Technical Reports Server (NTRS)

    Brian, Geoffrey J.; Jackson, E. Bruce

    2011-01-01

    The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) is a syntactical language for exchanging flight vehicle dynamic model data. It provides a framework for encoding entire flight vehicle dynamic model data packages for exchange and/or long-term archiving. Version 2.0.1 of DAVE-ML provides much of the functionality envisioned for exchanging aerospace vehicle data; however, it is limited in only supporting scalar time-independent data. Additional functionality is required to support vector and matrix data, abstracting sub-system models, detailing dynamics system models (both discrete and continuous), and defining a dynamic data format (such as time sequenced data) for validation of dynamics system models and vehicle simulation packages. Extensions to DAVE-ML have been proposed to manage data as vectors and n-dimensional matrices, and record dynamic data in a compatible form. These capabilities will improve the clarity of data being exchanged, simplify the naming of parameters, and permit static and dynamic data to be stored using a common syntax within a single file; thereby enhancing the framework provided by DAVE-ML for exchanging entire flight vehicle dynamic simulation models.

  15. Extreme-value dependence: An application to exchange rate markets

    NASA Astrophysics Data System (ADS)

    Fernandez, Viviana

    2007-04-01

    Extreme value theory (EVT) focuses on modeling the tail behavior of a loss distribution using only extreme values rather than the whole data set. For a sample of 10 countries with dirty/free float regimes, we investigate whether paired currencies exhibit a pattern of asymptotic dependence. That is, whether an extremely large appreciation or depreciation in the nominal exchange rate of one country might transmit to another. In general, after controlling for volatility clustering and inertia in returns, we do not find evidence of extreme-value dependence between paired exchange rates. However, for asymptotic-independent paired returns, we find that tail dependency of exchange rates is stronger under large appreciations than under large depreciations.

  16. Modeling and predicting historical volatility in exchange rate markets

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim

    2017-04-01

    Volatility modeling and forecasting of currency exchange rate is an important task in several business risk management tasks; including treasury risk management, derivatives pricing, and portfolio risk evaluation. The purpose of this study is to present a simple and effective approach for predicting historical volatility of currency exchange rate. The approach is based on a limited set of technical indicators as inputs to the artificial neural networks (ANN). To show the effectiveness of the proposed approach, it was applied to forecast US/Canada and US/Euro exchange rates volatilities. The forecasting results show that our simple approach outperformed the conventional GARCH and EGARCH with different distribution assumptions, and also the hybrid GARCH and EGARCH with ANN in terms of mean absolute error, mean of squared errors, and Theil's inequality coefficient. Because of the simplicity and effectiveness of the approach, it is promising for US currency volatility prediction tasks.

  17. The American Foreign Exchange Option in Time-Dependent One-Dimensional Diffusion Model for Exchange Rate

    SciTech Connect

    Rehman, Nasir Shashiashvili, Malkhaz

    2009-06-15

    The classical Garman-Kohlhagen model for the currency exchange assumes that the domestic and foreign currency risk-free interest rates are constant and the exchange rate follows a log-normal diffusion process.In this paper we consider the general case, when exchange rate evolves according to arbitrary one-dimensional diffusion process with local volatility that is the function of time and the current exchange rate and where the domestic and foreign currency risk-free interest rates may be arbitrary continuous functions of time. First non-trivial problem we encounter in time-dependent case is the continuity in time argument of the value function of the American put option and the regularity properties of the optimal exercise boundary. We establish these properties based on systematic use of the monotonicity in volatility for the value functions of the American as well as European options with convex payoffs together with the Dynamic Programming Principle and we obtain certain type of comparison result for the value functions and corresponding exercise boundaries for the American puts with different strikes, maturities and volatilities.Starting from the latter fact that the optimal exercise boundary curve is left continuous with right-hand limits we give a mathematically rigorous and transparent derivation of the significant early exercise premium representation for the value function of the American foreign exchange put option as the sum of the European put option value function and the early exercise premium.The proof essentially relies on the particular property of the stochastic integral with respect to arbitrary continuous semimartingale over the predictable subsets of its zeros. We derive from the latter the nonlinear integral equation for the optimal exercise boundary which can be studied by numerical methods.

  18. Longitudinal exchange: an alternative strategy towards quantification of dynamics parameters in ZZ exchange spectroscopy.

    PubMed

    Kloiber, Karin; Spitzer, Romana; Grutsch, Sarina; Kreutz, Christoph; Tollinger, Martin

    2011-09-01

    Longitudinal exchange experiments facilitate the quantification of the rates of interconversion between the exchanging species, along with their longitudinal relaxation rates, by analyzing the time-dependence of direct correlation and exchange cross peaks. Here we present a simple and robust alternative to this strategy, which is based on the combination of two complementary experiments, one with and one without resolving exchange cross peaks. We show that by combining the two data sets systematic errors that are caused by differential line-broadening of the exchanging species are avoided and reliable quantification of kinetic and relaxation parameters in the presence of additional conformational exchange on the ms-μs time scale is possible. The strategy is applied to a bistable DNA oligomer that displays different line-broadening in the two exchanging species.

  19. Ion momentum and energy transfer rates for charge exchange collisions

    NASA Technical Reports Server (NTRS)

    Horwitz, J.; Banks, P. M.

    1973-01-01

    The rates of momentum and energy transfer have been obtained for charge exchange collisions between ion and neutral gases having arbitrary Maxwellian temperatures and bulk transport velocities. The results are directly applicable to the F-region of the ionosphere where 0+ - 0 charge is the dominant mechanism affecting ion momentum and energy transfer.

  20. Introducing False EUR and False EUR exchange rates

    NASA Astrophysics Data System (ADS)

    Ausloos, M.; Ivanova, K.

    2000-10-01

    The Euro ( EUR) is a new currency introduced by the European Community. Its exchange rate is very puzzling. We have invented a false Euro ( FEUR) dating back to 1993 and have derived the exchange rates of the FEUR with respect to currencies not belonging to the EUR, i.e., DKK, CHF, JPY and USD. This allows us to search for correlations between the fluctuations preexisting to the introduction of EUR and present ones in such financial data. The detrended fluctuation analysis ( DFA) statistical method is used. This leads to assume a power-law behavior, i.e., a scaling hypothesis, through an exponent α. The latter has demonstrated its usefulness for the investigations of long-range power-law correlations in several types of financial sequences. Our findings show that the α exponent interestingly characterizes fractional Brownian motion of the currency exchange rates between EUR and DKK over a 25 day interval, and usual Brownian motion otherwise and for the three other investigated exchange rates. We can devise an investment strategy based on the localα technique and obtain appreciable gains for the time being.

  1. 14 CFR 65.43 - Rating privileges and exchange.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (CONTINUED) AIRMEN CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Air Traffic Control Tower Operators... tower. However, if he does not do so before August 31, 1971, he may not thereafter exercise the privileges of his senior rating at the control tower concerned until he makes the exchange. (b) The holder...

  2. Height-resolved energy exchange rates in the ionosphere

    NASA Astrophysics Data System (ADS)

    Cai, L.; Aikio, A.; Nygren, T.; Kuula, R.

    2012-04-01

    The electromagnetic energy exchange between the high-latitude ionosphere and magnetosphere can be described in terms of electromagnetic energy exchange rate qEM, which is a sum of ion-neutral frictional heating rate qJ (sometimes called Joule heating) and work done on neutrals qm. We have examined the height-resolved energy exchange rates in the ionosphere by using a one-month database obtained by EISCAT incoherent scatter radar measurements in Tromso. The CP2 scan mode of the EISCAT radar makes it possible to deduce conductivities, electric fields and neutral winds in the E region and hence estimate the different energy exchange rates. We will show characteristic examples for different situations, like a quiet ionosphere dominated by altitude-dependent neutral wind structures (probably caused by atmospheric gravity waves), or active conditions dominated by strong electric fields and intense electromagnetic energy input into the ionosphere. In general, the ion-neutral frictional heating altitude profiles are affected by vertical structuring in horizontal winds. Also, the ionosphere can be at some altitudes a sink of EM energy and at other altitudes a source of EM energy. On rare occasions, the net effect of the ionosphere is to act as an EM dynamo (source of energy).

  3. SirX: a selective inversion recovery experiment on X-nuclei for the determination of the exchange rate of slow chemical exchanges between two sites.

    PubMed

    Xie, Xiulan; Bönisch, Friedrich

    2015-10-01

    Nuclear magnetic resonance spectroscopy has proven to be powerful for the study of dynamic processes. A new pulse sequence, SirX, is designed to provide boundary conditions that simplify the McConnell equations. Both an initial rate approximation and a whole curve fitting to the time course of magnetization can be used to calculate the exchange rate. These methods were used to study the exchange kinetics of N,N-dimethylacetamide. As compared with the well-established exchange spectroscopy suitable to studies of slow exchange, SirX has the advantage of being less time consuming and capable of providing more reliable kinetic data. Furthermore, by setting the observation on X-nuclei with larger chemical shift dispersion as compared with an observation on (1)H resonance, SirX extends the upper limit of a reliable determination of exchange rates.

  4. Does implied volatility of currency futures option imply volatility of exchange rates?

    NASA Astrophysics Data System (ADS)

    Wang, Alan T.

    2007-02-01

    By investigating currency futures options, this paper provides an alternative economic implication for the result reported by Stein [Overreactions in the options market, Journal of Finance 44 (1989) 1011-1023] that long-maturity options tend to overreact to changes in the implied volatility of short-maturity options. When a GARCH process is assumed for exchange rates, a continuous-time relationship is developed. We provide evidence that implied volatilities may not be the simple average of future expected volatilities. By comparing the term-structure relationship of implied volatilities with the process of the underlying exchange rates, we find that long-maturity options are more consistent with the exchange rates process. In sum, short-maturity options overreact to the dynamics of underlying assets rather than long-maturity options overreacting to short-maturity options.

  5. Complex dynamical behaviors of daily data series in stock exchange

    NASA Astrophysics Data System (ADS)

    Wang, Hongchun; Chen, Guanrong; Lü, Jinhu

    2004-12-01

    It is well known that many economic data series show chaotic behaviors. In this Letter, we further investigate the complex dynamical behaviors of the daily data series, including opening quotation, closing quotation, maximum price, minimum price, and total exchange quantum, in Shenzhen stock exchange and Shanghai stock exchange, which are two representative stock exchanges in mainland China. The maximum Lyapunov exponents, correlation dimensions, and frequency spectra are calculated for these time series. Our results indicate that some daily data series of stock exchanges display low-dimensional chaotic behaviors, and some other daily data series do not show any chaotic behavior. Moreover, we introduce a weighted one-rank local-region approach for predicting short-term daily data series of stock exchange.

  6. Hybrid empirical mode decomposition- ARIMA for forecasting exchange rates

    NASA Astrophysics Data System (ADS)

    Abadan, Siti Sarah; Shabri, Ani; Ismail, Shuhaida

    2015-02-01

    This paper studied the forecasting of monthly Malaysian Ringgit (MYR)/ United State Dollar (USD) exchange rates using the hybrid of two methods which are the empirical model decomposition (EMD) and the autoregressive integrated moving average (ARIMA). MYR is pegged to USD during the Asian financial crisis causing the exchange rates are fixed to 3.800 from 2nd of September 1998 until 21st of July 2005. Thus, the chosen data in this paper is the post-July 2005 data, starting from August 2005 to July 2010. The comparative study using root mean square error (RMSE) and mean absolute error (MAE) showed that the EMD-ARIMA outperformed the single-ARIMA and the random walk benchmark model.

  7. Dynamic tube/support interaction in heat exchanger tubes

    SciTech Connect

    Chen, S.S.

    1991-01-01

    The supports for heat exchanger tubes are usually plates with drilled holes; other types of supports also have been used. To facilitate manufacture and to allow for thermal expansion of the tubes, small clearances are used between tubes and tube supports. The dynamics of tube/support interaction in heat exchangers is fairly complicated. Understanding tube dynamics and its effects is important for heat exchangers. This paper summarizes the current state of the art on this subject and to identify future research needs. Specifically, the following topics are discussed: dynamics of loosely supported tubes, tube/support gap dynamics, tube response in flow, tube damage and wear, design considerations, and future research needs. 55 refs., 1 fig.

  8. Oxygen-isotope exchange rates for three isostructural polyoxometalate ions.

    PubMed

    Villa, Eric M; Ohlin, C André; Casey, William H

    2010-04-14

    We compare oxygen-isotope exchange rates for all structural oxygens in three polyoxoniobate ions that differ by systematic metal substitutions of Ti(IV) --> Nb(V). The [H(x)Nb(10)O(28)]((6-x)-), [H(x)TiNb(9)O(28)]((7-x)-), and [H(x)Ti(2)Nb(8)O(28)]((8-x)-) ions are all isostructural yet have different Brønsted properties. Rates for sites within a particular molecule in the series differ by at least approximately 10(4), but the relative reactivities of the oxygen sites rank in nearly the same relative order for all ions in the series. Within a single ion, most structural oxygens exhibit rates of isotopic exchange that vary similarly with pH, indicating that each structure responds as a whole to changes in pH. Across the series of molecules, however, the pH dependencies for isotope exchanges and dissociation are distinctly different, reflecting different contributions from proton- or base-enhanced pathways. The proton-enhanced pathway for isotope exchange dominates at most pH conditions for the [H(x)Ti(2)Nb(8)O(28)]((8-x)-) ion, but the base-enhanced pathways are increasingly important for the [H(x)TiNb(9)O(28)]((7-x)-) and [H(x)Nb(10)O(28)]((6-x)-) structures at higher pH. The local effect of Ti(IV) substitution could be assessed by comparing rates for structurally similar oxygens on each side of the [H(x)TiNb(9)O(28)]((7-x)-) ion and is surprisingly small. Interestingly, these nanometer-size structures seem to manifest the same general averaged amphoteric chemistry that is familiar for other reactions affecting oxides in water, including interface dissolution by proton- and hydroxyl-enhanced pathways.

  9. Forecasting Foreign Currency Exchange Rates for Air Force Budgeting

    DTIC Science & Technology

    2015-03-26

    actual exchange rate. The statistics based approach focuses mainly on variance and the measure of the margin of error between projected and actual...from the procedures used to collect the data as well as measurement error from the instruments (for foreign currency an example of measurement error ...If using more than one method, the analyst should compare the results of each method to measure the error between each method. Different scales

  10. Selection, Evaluation, And Rating of Compact Heat exchangers

    SciTech Connect

    Carlson, Matt

    2014-10-07

    SEARCH determines and optimizes the design of a compact heat exchanger for specified process conditions. The user specifies process boundary conditions including the fluid state and flow rate and SEARCH will determine the optimum flow arrangement, channel geometry, and mechanical design for the unit. Fluids are modeled using NUST Refprop or tabulated values. A variety of thermal-hydraulic correlations are available including user-defined equations to accurately capture the heat transfer and pressure drop behavior of the process flows.

  11. Dynamics of water and salt exchange at Maryland Coastal Bays

    NASA Astrophysics Data System (ADS)

    Kang, Xinyi; Xia, Meng; Pitula, Joseph S.; Chigbu, Paulinus

    2017-04-01

    The exchange processes between the Maryland Coastal Bays system (MCBs) and their adjacent coastal ocean were simulated using a three-dimensional unstructured-grid based hydrodynamic model, which was validated by observed data including water level, current velocity and salinity. Idealized experiments were then carried out to investigate the impact of wind forcing on water exchange and salt flux. Through these experiments, the exchanges between the MCBs and coastal ocean were investigated at two inlets (Ocean City Inlet and Chincoteague Inlet). Given that winds and tides are two key external forces known to impact estuarine dynamics, the effect of each individual force on the exchange processes was studied to evaluate the corresponding influence on the inlet dynamics. It was found that wind forcing significantly impacts the inlet dynamics: the effect of wind directions on exchange processes under strong wind speeds is substantial; for example, northwesterly winds push flux to the southern part of the bays, while southwesterly winds pile up flux towards northern Chincoteague Bay. The effect of wind forcing on the exchange dynamics becomes stronger with the augmentation of its speed. Meanwhile, tidal forcing is the major driver of exchange dynamics at weak wind speeds (e.g., 3 m/s), and its effect on exchange process gradually weakens with stronger wind speeds (e.g., 7 m/s, 15 m/s). In addition, sensitivity tests elucidated that closing either inlet results in a significant impact on the water elevation, current velocity and salinity nearby the relevant cut-off inlet areas.

  12. 26 CFR 1.989(b)-1 - Definition of weighted average exchange rate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 10 2013-04-01 2013-04-01 false Definition of weighted average exchange rate. 1... of weighted average exchange rate. For purposes of section 989(b)(3) and (4), the term “weighted average exchange rate” means the simple average of the daily exchange rates (determined by reference to...

  13. 26 CFR 1.989(b)-1 - Definition of weighted average exchange rate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 10 2011-04-01 2011-04-01 false Definition of weighted average exchange rate. 1... of weighted average exchange rate. For purposes of section 989(b)(3) and (4), the term “weighted average exchange rate” means the simple average of the daily exchange rates (determined by reference to...

  14. 26 CFR 1.989(b)-1 - Definition of weighted average exchange rate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 10 2010-04-01 2010-04-01 false Definition of weighted average exchange rate. 1... average exchange rate. For purposes of section 989(b)(3) and (4), the term “weighted average exchange rate” means the simple average of the daily exchange rates (determined by reference to a qualified source...

  15. 26 CFR 1.989(b)-1 - Definition of weighted average exchange rate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 10 2012-04-01 2012-04-01 false Definition of weighted average exchange rate. 1... of weighted average exchange rate. For purposes of section 989(b)(3) and (4), the term “weighted average exchange rate” means the simple average of the daily exchange rates (determined by reference to...

  16. 26 CFR 1.989(b)-1 - Definition of weighted average exchange rate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 10 2014-04-01 2013-04-01 true Definition of weighted average exchange rate. 1... of weighted average exchange rate. For purposes of section 989(b)(3) and (4), the term “weighted average exchange rate” means the simple average of the daily exchange rates (determined by reference to...

  17. Solvent Exchange Leading to Nanobubble Nucleation: A Molecular Dynamics Study

    PubMed Central

    2017-01-01

    The solvent exchange procedure has become the most-used protocol to produce surface nanobubbles, while the molecular mechanisms behind the solvent exchange are far from being fully understood. In this paper, we build a simple model and use molecular dynamics simulations to investigate the dynamic characteristics of solvent exchange for producing nanobubbles. We find that at the first stage of solvent exchange, there exists an interface between interchanging solvents of different gas solubility. This interface moves toward the substrate gradually as the exchange process proceeds. Our simulations reveal directed diffusion of gas molecules against the gas concentration gradient, driven by the solubility gradient of the liquid composition across the moving solvent–solvent interface. It is this directed diffusion that causes gas retention and produces a local gas oversaturation much higher near the substrate than far from it. At the second stage of solvent exchange, the high local gas oversaturation leads to bubble nucleation either on the solid surface or in the bulk solution, which is found to depend on the substrate hydrophobicity and the degree of local gas oversaturation. Our findings suggest that solvent exchange could be developed into a standard procedure to produce oversaturation and used to a variety of nucleation applications other than generating nanobubbles. PMID:28742364

  18. Solvent Exchange Leading to Nanobubble Nucleation: A Molecular Dynamics Study.

    PubMed

    Xiao, Qianxiang; Liu, Yawei; Guo, Zhenjiang; Liu, Zhiping; Lohse, Detlef; Zhang, Xianren

    2017-08-15

    The solvent exchange procedure has become the most-used protocol to produce surface nanobubbles, while the molecular mechanisms behind the solvent exchange are far from being fully understood. In this paper, we build a simple model and use molecular dynamics simulations to investigate the dynamic characteristics of solvent exchange for producing nanobubbles. We find that at the first stage of solvent exchange, there exists an interface between interchanging solvents of different gas solubility. This interface moves toward the substrate gradually as the exchange process proceeds. Our simulations reveal directed diffusion of gas molecules against the gas concentration gradient, driven by the solubility gradient of the liquid composition across the moving solvent-solvent interface. It is this directed diffusion that causes gas retention and produces a local gas oversaturation much higher near the substrate than far from it. At the second stage of solvent exchange, the high local gas oversaturation leads to bubble nucleation either on the solid surface or in the bulk solution, which is found to depend on the substrate hydrophobicity and the degree of local gas oversaturation. Our findings suggest that solvent exchange could be developed into a standard procedure to produce oversaturation and used to a variety of nucleation applications other than generating nanobubbles.

  19. Phase transitions and relaxation dynamics of Ising models exchanging particles

    NASA Astrophysics Data System (ADS)

    Goh, Segun; Fortin, Jean-Yves; Choi, M. Y.

    2017-01-01

    A variety of systems in nature and in society are open and subject to exchanging their constituents with other systems (e.g., environments). For instance, in biological systems, cells collect necessary energy and material by exchange of molecules or ions. Similarly, countries, cities or research institutes evolve as their constituents move in or out. To probe the corresponding particle exchange dynamics in such systems, we consider two Ising models exchanging particles and establish a master equation describing the equilibrium phases as well as the non-equilibrium dynamics of the system. It is found that an additional stable phase emerges as a consequence of the particle exchange process. Furthermore, we formulate the Ginzburg-Landau theory which allows to probe correlation effects. Accordingly, critical slowing down is manifested and the associated dynamic exponent is computed in the linear relaxation regime. In particular, this approach is relevant for investigating the grand canonical description of the system plus environment, with particle exchange and state transitions taken into account explicitly.

  20. Oil Prices and Interest Rates: Do They Determine the Exchange Rate?

    ERIC Educational Resources Information Center

    Law, I. A.; Old, J. L.

    1986-01-01

    Argues that the relationship between the British pound sterling, interest rates, and oil prices has been overemphasized by economic commentators because they ignored a basic economic theory about the determination of the exchange rate. Provides an example and suggestions for follow up instruction. (Author/JDH)

  1. Evidence for gene-specific rather than transcription rate-dependent histone H3 exchange in yeast coding regions.

    PubMed

    Gat-Viks, Irit; Vingron, Martin

    2009-02-01

    In eukaryotic organisms, histones are dynamically exchanged independently of DNA replication. Recent reports show that different coding regions differ in their amount of replication-independent histone H3 exchange. The current paradigm is that this histone exchange variability among coding regions is a consequence of transcription rate. Here we put forward the idea that this variability might be also modulated in a gene-specific manner independently of transcription rate. To that end, we study transcription rate-independent replication-independent coding region histone H3 exchange. We term such events relative exchange. Our genome-wide analysis shows conclusively that in yeast, relative exchange is a novel consistent feature of coding regions. Outside of replication, each coding region has a characteristic pattern of histone H3 exchange that is either higher or lower than what was expected by its RNAPII transcription rate alone. Histone H3 exchange in coding regions might be a way to add or remove certain histone modifications that are important for transcription elongation. Therefore, our results that gene-specific coding region histone H3 exchange is decoupled from transcription rate might hint at a new epigenetic mechanism of transcription regulation.

  2. Oxygen ionization rates at Mars and Venus - Relative contributions of impact ionization and charge exchange

    NASA Technical Reports Server (NTRS)

    Zhang, M. H. G.; Luhmann, J. G.; Nagy, A. F.; Spreiter, J. R.; Stahara, S. S.

    1993-01-01

    Oxygen ion production rates above the ionopauses of Venus and Mars are calculated for photoionization, charge exchange, and solar wind electron impact ionization processes. The latter two require the use of the Spreiter and Stahara (1980) gas dynamic model to estimate magnetosheath velocities, densities, and temperatures. The results indicate that impact ionization is the dominant mechanism for the production of O(+) ions at both Venus and Mars. This finding might explain both the high ion escape rates measured by Phobos 2 and the greater mass loading rate inferred for Venus from the bow shock positions.

  3. Time-series analysis of foreign exchange rates using time-dependent pattern entropy

    NASA Astrophysics Data System (ADS)

    Ishizaki, Ryuji; Inoue, Masayoshi

    2013-08-01

    Time-dependent pattern entropy is a method that reduces variations to binary symbolic dynamics and considers the pattern of symbols in a sliding temporal window. We use this method to analyze the instability of daily variations in foreign exchange rates, in particular, the dollar-yen rate. The time-dependent pattern entropy of the dollar-yen rate was found to be high in the following periods: before and after the turning points of the yen from strong to weak or from weak to strong, and the period after the Lehman shock.

  4. Investigation of Chemical Exchange at Intermediate Exchange Rates using a Combination of Chemical Exchange Saturation Transfer (CEST) and Spin-Locking methods (CESTrho)

    PubMed Central

    Kogan, Feliks; Singh, Anup; Cai, Keija; Haris, Mohammad; Hariharan, Hari; Reddy, Ravinder

    2011-01-01

    Proton exchange imaging is important as it allows for visualization and quantification of the distribution of specific metabolites with conventional MRI. Current exchange mediated MRI methods suffer from poor contrast as well as confounding factors that influence exchange rates. In this study we developed a new method to measure proton exchange which combines chemical exchange saturation transfer (CEST) and T1ρ magnetization preparation methods (CESTrho). We demonstrated that this new CESTrho sequence can detect proton exchange in the slow to intermediate exchange regimes. It has a linear dependence on proton concentration which allows it to be used to quantitatively measure changes in metabolite concentration. Additionally, the magnetization scheme of this new method can be customized to make it insensitive to changes in exchange rate while retaining its dependency on solute concentration. Finally, we showed the feasibility of using CESTrho in vivo. This sequence is able to detect proton exchange at intermediate exchange rates and is unaffected by the confounding factors that influence proton exchange rates thus making it ideal for the measurement of metabolites with exchangeable protons in this exchange regime. PMID:22009759

  5. Investigation of chemical exchange at intermediate exchange rates using a combination of chemical exchange saturation transfer (CEST) and spin-locking methods (CESTrho).

    PubMed

    Kogan, Feliks; Singh, Anup; Cai, Keija; Haris, Mohammad; Hariharan, Hari; Reddy, Ravinder

    2012-07-01

    Proton exchange imaging is important as it allows for visualization and quantification of the distribution of specific metabolites with conventional MRI. Current exchange mediated MRI methods suffer from poor contrast as well as confounding factors that influence exchange rates. In this study we developed a new method to measure proton exchange which combines chemical exchange saturation transfer and T(1)(ρ) magnetization preparation methods (CESTrho). We demonstrated that this new CESTrho sequence can detect proton exchange in the slow to intermediate exchange regimes. It has a linear dependence on proton concentration which allows it to be used to quantitatively measure changes in metabolite concentration. Additionally, the magnetization scheme of this new method can be customized to make it insensitive to changes in exchange rate while retaining its dependency on solute concentration. Finally, we showed the feasibility of using CESTrho in vivo. This sequence is able to detect proton exchange at intermediate exchange rates and is unaffected by the confounding factors that influence proton exchange rates thus making it ideal for the measurement of metabolites with exchangeable protons in this exchange regime.

  6. The groundwater exchange rate of the southern Baltic coastal lowland

    NASA Astrophysics Data System (ADS)

    Burzyński, K.; Sadurski, A.

    1990-11-01

    The groundwater of the southern Baltic lowlands usually occurs in particular hydrogeological conditions. The lowland is mostly covered by peats several metres in thickness. Peatbog water is isolated from deeper aquifers and has different chemical composition. Salty, relic groundwater of marine origin from the Atlantic period of the Holocene (Littorina transgression) may have survived in the deeper coastal aquifers in places of sluggish flow. The results of mathematical modelling of groundwater circulation show that the flow rate and local directions of groundwater change during the year, depending on the rate of groundwater recharge by precipitation. We present here an unsteady flow model, which makes it possible to predict the water table fluctuations during a year at any point of the area studied. The calculation of the groundwater exchange rate did not confirm the presence of any places of very sluggish groundwater flow, where salty, young relic water might have survived.

  7. Air exchange rates in new energy-efficient manufactured housing

    SciTech Connect

    Hadley, D.; Bailey, S.

    1990-10-01

    During the 1989--1990 heating season, Pacific Northwest Laboratory, for the Bonneville Power Administration, measured the ventilation characteristics of 139 newly constructed energy-efficient manufactured homes and a control sample of 35 newer manufactured homes. A standard door fan pressurization technique was used to estimate shell leakiness, and a passive perfluorocarbon tracer technique was used to estimate overall air exchange rates. A measurement of the designated whole-house exhaust system flow rate was taken as well as an occupant and structure survey. The energy-efficient manufactured homes have very low air exchange rates, significantly lower than either existing manufactured homes or site-built homes. The standard deviation of the effective leakage area for this sample of homes is small (25% to 30% of the mean), indicating that the leakiness of manufactured housing stock can be confidently characterized by the mean value. There is some indication of increased ventilation due to the energy-efficient whole-house ventilation specification, but not directly related to the operation of the whole-house system. The mechanical systems as installed and operated do not provide the intended ventilation; consequently indoor air quality could possibly be adversely impacted and moisture/condensation in the living space is a potential problem. 6 refs., 6 figs., 5 tabs.

  8. Glucans monomer-exchange dynamics as an open chemical network

    SciTech Connect

    Rao, Riccardo Esposito, Massimiliano; Lacoste, David

    2015-12-28

    We describe the oligosaccharides-exchange dynamics performed by the so-called D-enzymes on polysaccharides. To mimic physiological conditions, we treat this process as an open chemical network by assuming some of the polymer concentrations fixed (chemostatting). We show that three different long-time behaviors may ensue: equilibrium states, nonequilibrium steady states, and continuous growth states. We dynamically and thermodynamically characterize these states and emphasize the crucial role of conservation laws in identifying the chemostatting conditions inducing them.

  9. Ab initio dynamical exchange interactions in frustrated antiferromagnets

    NASA Astrophysics Data System (ADS)

    Simoni, Jacopo; Stamenova, Maria; Sanvito, Stefano

    2017-08-01

    The ultrafast response to an optical pulse excitation of the spin-spin exchange interaction in transition metal antiferromagnets is studied within the framework of the time-dependent spin-density functional theory. We propose a formulation for the full dynamical exchange interaction, which is nonlocal in space, and it is derived starting from ab initio arguments. Then, we investigate the effect of the laser pulse on the onset of the dynamical process. It is found that we can distinguish two types of excitations, both activated immediately after the action of the laser pulse. While the first one can be associated to a Stoner-like excitation and involves the transfer of spin from one site to another, the second one is related to the ultrafast modification of a Heisenberg-like exchange interaction and can trigger the formation of spin waves in the first few hundred femtoseconds of the time evolution.

  10. 12 CFR Appendix A to Subpart A of... - Minimum Capital Components for Interest Rate and Foreign Exchange Rate Contracts

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 9 2012-01-01 2012-01-01 false Minimum Capital Components for Interest Rate... Components for Interest Rate and Foreign Exchange Rate Contracts 1. The minimum capital components for interest rate and foreign exchange rate contracts are computed on the basis of the credit equivalent...

  11. The Dynamics of Social Interaction in Telecollaborative Tandem Exchanges

    ERIC Educational Resources Information Center

    Janssen Sanchez, Brianna

    2015-01-01

    Using both quantitative and qualitative methods of inquiry, this dissertation study undertakes an exploration of the dynamics of the social interaction in discourse co-constructed by pairs of college students in telecollaborative tandem exchanges. Two groups of participants, Mexican learners of English as a foreign language and American learners…

  12. Combined Steady-State and Dynamic Heat Exchanger Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  13. The Dynamics of Social Interaction in Telecollaborative Tandem Exchanges

    ERIC Educational Resources Information Center

    Janssen Sanchez, Brianna

    2015-01-01

    Using both quantitative and qualitative methods of inquiry, this dissertation study undertakes an exploration of the dynamics of the social interaction in discourse co-constructed by pairs of college students in telecollaborative tandem exchanges. Two groups of participants, Mexican learners of English as a foreign language and American learners…

  14. Dithioacetal Exchange: A New Reversible Reaction for Dynamic Combinatorial Chemistry.

    PubMed

    Orrillo, A Gastón; Escalante, Andrea M; Furlan, Ricardo L E

    2016-05-10

    Reversibility of dithioacetal bond formation is reported under acidic mild conditions. Its utility for dynamic combinatorial chemistry was explored by combining it with orthogonal disulfide exchange. In such a setup, thiols are positioned at the intersection of both chemistries, constituting a connecting node between temporally separated networks.

  15. Combined Steady-State and Dynamic Heat Exchanger Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  16. Air exchange rates from atmospheric CO2 daily cycle

    PubMed Central

    Carrilho, João Dias; Mateus, Mário; Batterman, Stuart; da Silva, Manuel Gameiro

    2015-01-01

    We propose a new approach for measuring ventilation air exchange rates (AERs). The method belongs to the class of tracer gas techniques, but is formulated in the light of systems theory and signal processing. Unlike conventional CO2 based methods that assume the outdoor ambient CO2 concentration is constant, the proposed method recognizes that photosynthesis and respiration cycle of plants and processes associated with fuel combustion produce daily, quasi-periodic, variations in the ambient CO2 concentrations. These daily variations, which are within the detection range of existing monitoring equipment, are utilized for estimating ventilation rates without the need of a source of CO2 in the building. Using a naturally-ventilated residential apartment, AERs obtained using the new method compared favorably (within 10%) to those obtained using the conventional CO2 decay fitting technique. The new method has the advantages that no tracer gas injection is needed, and high time resolution results are obtained. PMID:26236090

  17. Air exchange rates from atmospheric CO2 daily cycle.

    PubMed

    Carrilho, João Dias; Mateus, Mário; Batterman, Stuart; da Silva, Manuel Gameiro

    2015-04-01

    We propose a new approach for measuring ventilation air exchange rates (AERs). The method belongs to the class of tracer gas techniques, but is formulated in the light of systems theory and signal processing. Unlike conventional CO2 based methods that assume the outdoor ambient CO2 concentration is constant, the proposed method recognizes that photosynthesis and respiration cycle of plants and processes associated with fuel combustion produce daily, quasi-periodic, variations in the ambient CO2 concentrations. These daily variations, which are within the detection range of existing monitoring equipment, are utilized for estimating ventilation rates without the need of a source of CO2 in the building. Using a naturally-ventilated residential apartment, AERs obtained using the new method compared favorably (within 10%) to those obtained using the conventional CO2 decay fitting technique. The new method has the advantages that no tracer gas injection is needed, and high time resolution results are obtained.

  18. 76 FR 6128 - Energy Exchange International, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ...-000] Energy Exchange International, LLC; Supplemental Notice That Initial Market-Based Rate Filing... the above-referenced proceeding Energy Exchange International, LLC's application for market-based rate...

  19. Glycan OH Exchange Rate Determination in Aqueous Solution: Seeking Evidence for Transient Hydrogen Bonds.

    PubMed

    Battistel, Marcos D; Azurmendi, Hugo F; Freedberg, Darón I

    2017-02-02

    Hydrogen bonds (Hbonds) are important stabilizing forces in biomolecules. However, for glycans in aqueous solution, direct NMR detection of Hbonds is elusive because of their transient nature. Here, we present Isotope-based Natural-abundance TOtal correlation eXchange SpectroscopY (INTOXSY), a new (1)H-(13)C heteronuclear single quantum coherence-total correlation spectroscopy based method, to extract OH groups' exchange rate constants (kex) for molecules in natural (13)C abundance and show that OH Hbonds can be inferred from "slower" H/D kex. We evaluate kex measured with INTOXSY in light of those extracted with line-shape analysis. Subsequently, we use a set of common glycans to establish a kex reference basis set and to infer the existence of transient Hbonds involving OH donor groups. Then, we report kex values for a series of mono- and disaccharides, as well as for oligosaccharides sialyl Lewis X and β-cyclodextrin, and compare the results with those from the reference set to extract Hbond information. Finally, we utilize NMR experimental data in conjunction with molecular dynamics simulations to establish donor and acceptor Hbond pairs. Our exchange rate measurements indicate that OH/OD exchange rates, kHD, values <10 s(-1) are consistent with transient Hbond OH groups and potential acceptor groups can be uncovered through MD simulations.

  20. Particle loading rates for HVAC filters, heat exchangers, and ducts.

    PubMed

    Waring, M S; Siegel, J A

    2008-06-01

    The rate at which airborne particulate matter deposits onto heating, ventilation, and air-conditioning (HVAC) components is important from both indoor air quality (IAQ) and energy perspectives. This modeling study predicts size-resolved particle mass loading rates for residential and commercial filters, heat exchangers (i.e. coils), and supply and return ducts. A parametric analysis evaluated the impact of different outdoor particle distributions, indoor emission sources, HVAC airflows, filtration efficiencies, coils, and duct system complexities. The median predicted residential and commercial loading rates were 2.97 and 130 g/m(2) month for the filter loading rates, 0.756 and 4.35 g/m(2) month for the coil loading rates, 0.0051 and 1.00 g/month for the supply duct loading rates, and 0.262 g/month for the commercial return duct loading rates. Loading rates are more dependent on outdoor particle distributions, indoor sources, HVAC operation strategy, and filtration than other considered parameters. The results presented herein, once validated, can be used to estimate filter changing and coil cleaning schedules, energy implications of filter and coil loading, and IAQ impacts associated with deposited particles. The results in this paper suggest important factors that lead to particle deposition on HVAC components in residential and commercial buildings. This knowledge informs the development and comparison of control strategies to limit particle deposition. The predicted mass loading rates allow for the assessment of pressure drop and indoor air quality consequences that result from particle mass loading onto HVAC system components.

  1. Self-similar characteristics of the currency exchange rate in an economy in transition

    NASA Astrophysics Data System (ADS)

    Scarlat, E. I.; Stan, Cristina; Cristescu, C. P.

    2007-06-01

    In this paper, we present an analysis of the self-similar characteristics of the temporal series describing the daily exchange rate of the Romanian currency unit “Leu” (ROL) with respect to the US Dollar (USD). The relevance of this investigation consists in the exchange rate being a proper indicator for the dynamics of an economy in transition from a command-type structure towards an open market one. The time series is exhibiting self-similar cells of dimensions obeying a definite power law scaling rule that is related to different categories of economic agents. By using a crossing-type analysis based on the Hurst exponent and the frequency spectrum, five categories were detected. A simple model based on active filters with prevailing feedforward loops working close to the unstable regime, each one describing an economic agent under the stress of a hostile economic environment, is proposed for the dynamics of the fragmentation-defragmentation process. The model qualitatively reproduces the self-similarity characteristics of the currency exchange rate of an economy in transition, subjected to deep structural changes. We observe that the “in-phase evolution” of the economic agents causes the statistical self-similarity to resemble a theoretical self-similarity.

  2. Diffusive and Arrestedlike Dynamics in Currency Exchange Markets

    NASA Astrophysics Data System (ADS)

    Clara-Rahola, J.; Puertas, A. M.; Sánchez-Granero, M. A.; Trinidad-Segovia, J. E.; de las Nieves, F. J.

    2017-02-01

    This work studies the symmetry between colloidal dynamics and the dynamics of the Euro-U.S. dollar currency exchange market (EURUSD). We consider the EURUSD price in the time range between 2001 and 2015, where we find significant qualitative symmetry between fluctuation distributions from this market and the ones belonging to colloidal particles in supercooled or arrested states. In particular, we find that models used for arrested physical systems are suitable for describing the EURUSD fluctuation distributions. Whereas the corresponding mean-squared price displacement (MSPD) to the EURUSD is diffusive for all years, when focusing in selected time frames within a day, we find a two-step MSPD when the New York Stock Exchange market closes, comparable to the dynamics in supercooled systems. This is corroborated by looking at the price correlation functions and non-Gaussian parameters and can be described by the theoretical model. We discuss the origin and implications of this analogy.

  3. Diffusive and Arrestedlike Dynamics in Currency Exchange Markets.

    PubMed

    Clara-Rahola, J; Puertas, A M; Sánchez-Granero, M A; Trinidad-Segovia, J E; de Las Nieves, F J

    2017-02-10

    This work studies the symmetry between colloidal dynamics and the dynamics of the Euro-U.S. dollar currency exchange market (EURUSD). We consider the EURUSD price in the time range between 2001 and 2015, where we find significant qualitative symmetry between fluctuation distributions from this market and the ones belonging to colloidal particles in supercooled or arrested states. In particular, we find that models used for arrested physical systems are suitable for describing the EURUSD fluctuation distributions. Whereas the corresponding mean-squared price displacement (MSPD) to the EURUSD is diffusive for all years, when focusing in selected time frames within a day, we find a two-step MSPD when the New York Stock Exchange market closes, comparable to the dynamics in supercooled systems. This is corroborated by looking at the price correlation functions and non-Gaussian parameters and can be described by the theoretical model. We discuss the origin and implications of this analogy.

  4. Flight Dynamic Model Exchange using XML

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Hildreth, Bruce L.

    2002-01-01

    The AIAA Modeling and Simulation Technical Committee has worked for several years to develop a standard by which the information needed to develop physics-based models of aircraft can be specified. The purpose of this standard is to provide a well-defined set of information, definitions, data tables and axis systems so that cooperating organizations can transfer a model from one simulation facility to another with maximum efficiency. This paper proposes using an application of the eXtensible Markup Language (XML) to implement the AIAA simulation standard. The motivation and justification for using a standard such as XML is discussed. Necessary data elements to be supported are outlined. An example of an aerodynamic model as an XML file is given. This example includes definition of independent and dependent variables for function tables, definition of key variables used to define the model, and axis systems used. The final steps necessary for implementation of the standard are presented. Software to take an XML-defined model and import/export it to/from a given simulation facility is discussed, but not demonstrated. That would be the next step in final implementation of standards for physics-based aircraft dynamic models.

  5. Effects of exchange rate volatility on export volume and prices of forest products

    Treesearch

    Sijia Zhang; Joseph Buongiorno

    2010-01-01

    The relative value of currencies varies considerably over time. These fluctuations bring uncertainty to international traders. As a result, the volatility in exchange rate movements may influence the volume and the price of traded commodities. The volatility of exchange rates was measured by the variance of residuals in a GARCH(1,1) model of the exchange rate. We...

  6. Dependence and risk assessment for oil prices and exchange rate portfolios: A wavelet based approach

    NASA Astrophysics Data System (ADS)

    Aloui, Chaker; Jammazi, Rania

    2015-10-01

    In this article, we propose a wavelet-based approach to accommodate the stylized facts and complex structure of financial data, caused by frequent and abrupt changes of markets and noises. Specifically, we show how the combination of both continuous and discrete wavelet transforms with traditional financial models helps improve portfolio's market risk assessment. In the empirical stage, three wavelet-based models (wavelet-EGARCH with dynamic conditional correlations, wavelet-copula, and wavelet-extreme value) are considered and applied to crude oil price and US dollar exchange rate data. Our findings show that the wavelet-based approach provides an effective and powerful tool for detecting extreme moments and improving the accuracy of VaR and Expected Shortfall estimates of oil-exchange rate portfolios after noise is removed from the original data.

  7. Inhomogeneous scaling behaviors in Malaysian foreign currency exchange rates

    NASA Astrophysics Data System (ADS)

    Muniandy, S. V.; Lim, S. C.; Murugan, R.

    2001-12-01

    In this paper, we investigate the fractal scaling behaviors of foreign currency exchange rates with respect to Malaysian currency, Ringgit Malaysia. These time series are examined piecewise before and after the currency control imposed in 1st September 1998 using the monofractal model based on fractional Brownian motion. The global Hurst exponents are determined using the R/ S analysis, the detrended fluctuation analysis and the method of second moment using the correlation coefficients. The limitation of these monofractal analyses is discussed. The usual multifractal analysis reveals that there exists a wide range of Hurst exponents in each of the time series. A new method of modelling the multifractal time series based on multifractional Brownian motion with time-varying Hurst exponents is studied.

  8. Effects of health information exchange adoption on ambulatory testing rates

    PubMed Central

    Ross, Stephen E; Radcliff, Tiffany A; LeBlanc, William G; Dickinson, L Miriam; Libby, Anne M; Nease, Donald E

    2013-01-01

    Objective To determine the effects of the adoption of ambulatory electronic health information exchange (HIE) on rates of laboratory and radiology testing and allowable charges. Design Claims data from the dominant health plan in Mesa County, Colorado, from 1 April 2005 to 31 December 2010 were matched to HIE adoption data on the provider level. Using mixed effects regression models with the quarter as the unit of analysis, the effect of HIE adoption on testing rates and associated charges was assessed. Results Claims submitted by 306 providers in 69 practices for 34 818 patients were analyzed. The rate of testing per provider was expressed as tests per 1000 patients per quarter. For primary care providers, the rate of laboratory testing increased over the time span (baseline 1041 tests/1000 patients/quarter, increasing by 13.9 each quarter) and shifted downward with HIE adoption (downward shift of 83, p<0.01). A similar effect was found for specialist providers (baseline 718 tests/1000 patients/quarter, increasing by 19.1 each quarter, with HIE adoption associated with a downward shift of 119, p<0.01). Even so, imputed charges for laboratory tests did not shift downward significantly in either provider group, possibly due to the skewed nature of these data. For radiology testing, HIE adoption was not associated with significant changes in rates or imputed charges in either provider group. Conclusions Ambulatory HIE adoption is unlikely to produce significant direct savings through reductions in rates of testing. The economic benefits of HIE may reside instead in other downstream outcomes of better informed, higher quality care. PMID:23698257

  9. Computational Studies of Water-Exchange Rates around Aqueous Mg2+ and Be2+

    SciTech Connect

    Dang, Liem X.

    2014-12-18

    The water-exchange mechanisms occurring around aqueous divalent Mg2+ and Be2+ ions were studied using molecular dynamics simulations and rate theory methods. Properties associated with the water-exchange process, such as ion-water potentials of mean force, time-dependent transmission coefficients, and rate constants, were examined along with transition rate theory and the reactive flux method, which includes the role of solvent friction. The effects of pressure on water-exchange rates and activation volumes also were studied. The simulated activation volume values and mechanism were different for Mg2+ and Be2+ because of the nature of their solvation shells. We found the agreement with experiments was improved up on solvent effects were taken into account. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the U.S. Department of Energy (DOE) funded this work. Battelle operates Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES.

  10. Why the long hours? Job demands and social exchange dynamics.

    PubMed

    Genin, Emilie; Haines, Victor Y; Pelletier, David; Rousseau, Vincent; Marchand, Alain

    2016-11-22

    This study investigates the determinants of long working hours from the perspectives of the demand-control model [Karasek, 1979] and social exchange theory [Blau, 1964; Goulder, 1960]. These two theoretical perspectives are tested to understand why individuals work longer (or shorter) hours. The hypotheses are tested with a representative sample of 1,604 employed Canadians. In line with Karasek's model, the results support that high job demands are positively associated with longer work hours. The social exchange perspective would predict a positive association between skill discretion and work hours. This hypothesis was supported for individuals with a higher education degree. Finally, the results support a positive association between active jobs and longer work hours. Our research suggests that job demands and social exchange dynamics need to be considered together in the explanation of longer (or shorter) work hours.

  11. Effect of experimental wood addition on hyporheic exchange and thermal dynamics in a losing meadow stream

    NASA Astrophysics Data System (ADS)

    Sawyer, Audrey H.; Cardenas, M. Bayani

    2012-10-01

    Stream restoration structures such as large wood can enhance shallow river-groundwater exchange, or hyporheic exchange, and alter temperature dynamics in restored reaches. We added and then removed channel-spanning logs in a second-order mountain meadow stream to test short-term impacts on hyporheic exchange, streambed temperatures, and surface water temperatures. Based on vertical seepage measurements and numerical simulations of hyporheic fluid and heat flow, large wood addition increased hyporheic exchange and altered streambed temperatures. In this losing stream, meter-scale hyporheic exchange cells formed beneath large wood. Upwelling pore water downstream of logs stabilized diel temperature cycles across <8% of the streambed, creating localized but potentially valuable thermal refuge. Exchange rates were <0.1% of channel discharge—too small to impact the range of diel temperature signals in surface water. However, the lag between downstream and upstream diel temperature signals was slightly greater with large wood, which may indicate that surface storage zones rather than hyporheic storage zones increased thermal retardation. Losing conditions limited the spatial extent and rates of hyporheic exchange near large wood. Impacts of large wood reintroduction on hyporheic exchange depend on ambient groundwater discharge or recharge, streambed permeability, channel Froude number, large wood blockage ratio, and large wood spacing. In many streams, large wood reintroduction may increase hyporheic habitat volume and complexity but may not increase exchange rates enough to alter surface water temperature or chemistry. Surface storage zones such as eddies and pools can still influence heat and solute retention in the channel.

  12. NASA data exchange standards for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Blake, Matthew

    1993-01-01

    This paper covers the following topics in viewgraph format: purpose of data exchange standards; data exchange in engineering analysis/CFD; geometry data exchange through existing product data exchange standards, NASA Data Exchange Committee, and NASA-IGES (Initial Graphics Exchange Specification); CFD grid and solution data exchange; and data exchange for multi-disciplinary engineering.

  13. Australian Universities' Strategic Goals of Student Exchange and Participation Rates in Outbound Exchange Programmes

    ERIC Educational Resources Information Center

    Daly, Amanda; Barker, Michelle

    2010-01-01

    International student exchange programmes are acknowledged as one aspect of a broader suite of internationalisation strategies aimed at enhancing students' intercultural understanding and competence. The decision to participate in an exchange programme is dependent on both individual and contextual factors such as student exchange policies and…

  14. Australian Universities' Strategic Goals of Student Exchange and Participation Rates in Outbound Exchange Programmes

    ERIC Educational Resources Information Center

    Daly, Amanda; Barker, Michelle

    2010-01-01

    International student exchange programmes are acknowledged as one aspect of a broader suite of internationalisation strategies aimed at enhancing students' intercultural understanding and competence. The decision to participate in an exchange programme is dependent on both individual and contextual factors such as student exchange policies and…

  15. Understanding the rates and molecular mechanism of water-exchange around aqueous ions using molecular simulations.

    PubMed

    Annapureddy, Harsha V R; Dang, Liem X

    2014-07-31

    Solvation processes occurring around aqueous ions are of fundamental importance in physics, chemistry, and biology. Over the past few decades, several experimental and theoretical studies were devoted to understanding ion solvation and the processes involved in it. In this article, we present a summary of our recent efforts that, through computer simulations, focused on providing a comprehensive understanding of solvent-exchange processes around aqueous ions. To accomplish these activities, we have looked at the mechanistic properties associated with the water-exchange process, such as potentials of mean force, time-dependent transmission coefficients, and the corresponding rate constants using transition state theory, the reactive flux method, and Grote-Hynes treatments of the dynamic response of the solvent.

  16. Correlation structures in short-term variabilities of stock indices and exchange rates

    NASA Astrophysics Data System (ADS)

    Nakamura, Tomomichi; Small, Michael

    2007-09-01

    Financial data usually show irregular fluctuations and some trends. We investigate whether there are correlation structures in short-term variabilities (irregular fluctuations) among financial data from the viewpoint of deterministic dynamical systems. Our method is based on the small-shuffle surrogate method. The data we use are daily closing price of Standard & Poor's 500 and the volume, and daily foreign exchange rates, Euro/US Dollar (USD), British Pound/USD and Japanese Yen/USD. We found that these data are not independent.

  17. Sampling of Protein Folding Transitions: Multicanonical Versus Replica Exchange Molecular Dynamics

    PubMed Central

    2013-01-01

    We compare the efficiency of multicanonical and replica exchange molecular dynamics for the sampling of folding/unfolding events in simulations of proteins with end-to-end β-sheet. In Go-model simulations of the 75-residue MNK6, we observe improvement factors of 30 in the number of folding/unfolding events of multicanonical molecular dynamics over replica exchange molecular dynamics. As an application, we use this enhanced sampling to study the folding landscape of the 36-residue DS119 with an all-atom physical force field and implicit solvent. Here, we find that the rate-limiting step is the formation of the central helix that then provides a scaffold for the parallel β-sheet formed by the two chain ends. PMID:24198735

  18. Probabilistic estimation of residential air exchange rates for ...

    EPA Pesticide Factsheets

    Residential air exchange rates (AERs) are a key determinant in the infiltration of ambient air pollution indoors. Population-based human exposure models using probabilistic approaches to estimate personal exposure to air pollutants have relied on input distributions from AER measurements. An algorithm for probabilistically estimating AER was developed based on the Lawrence Berkley National Laboratory Infiltration model utilizing housing characteristics and meteorological data with adjustment for window opening behavior. The algorithm was evaluated by comparing modeled and measured AERs in four US cities (Los Angeles, CA; Detroit, MI; Elizabeth, NJ; and Houston, TX) inputting study-specific data. The impact on the modeled AER of using publically available housing data representative of the region for each city was also assessed. Finally, modeled AER based on region-specific inputs was compared with those estimated using literature-based distributions. While modeled AERs were similar in magnitude to the measured AER they were consistently lower for all cities except Houston. AERs estimated using region-specific inputs were lower than those using study-specific inputs due to differences in window opening probabilities. The algorithm produced more spatially and temporally variable AERs compared with literature-based distributions reflecting within- and between-city differences, helping reduce error in estimates of air pollutant exposure. Published in the Journal of

  19. Probabilistic estimation of residential air exchange rates for ...

    EPA Pesticide Factsheets

    Residential air exchange rates (AERs) are a key determinant in the infiltration of ambient air pollution indoors. Population-based human exposure models using probabilistic approaches to estimate personal exposure to air pollutants have relied on input distributions from AER measurements. An algorithm for probabilistically estimating AER was developed based on the Lawrence Berkley National Laboratory Infiltration model utilizing housing characteristics and meteorological data with adjustment for window opening behavior. The algorithm was evaluated by comparing modeled and measured AERs in four US cities (Los Angeles, CA; Detroit, MI; Elizabeth, NJ; and Houston, TX) inputting study-specific data. The impact on the modeled AER of using publically available housing data representative of the region for each city was also assessed. Finally, modeled AER based on region-specific inputs was compared with those estimated using literature-based distributions. While modeled AERs were similar in magnitude to the measured AER they were consistently lower for all cities except Houston. AERs estimated using region-specific inputs were lower than those using study-specific inputs due to differences in window opening probabilities. The algorithm produced more spatially and temporally variable AERs compared with literature-based distributions reflecting within- and between-city differences, helping reduce error in estimates of air pollutant exposure. Published in the Journal of

  20. Multifractality and value-at-risk forecasting of exchange rates

    NASA Astrophysics Data System (ADS)

    Batten, Jonathan A.; Kinateder, Harald; Wagner, Niklas

    2014-05-01

    This paper addresses market risk prediction for high frequency foreign exchange rates under nonlinear risk scaling behaviour. We use a modified version of the multifractal model of asset returns (MMAR) where trading time is represented by the series of volume ticks. Our dataset consists of 138,418 5-min round-the-clock observations of EUR/USD spot quotes and trading ticks during the period January 5, 2006 to December 31, 2007. Considering fat-tails, long-range dependence as well as scale inconsistency with the MMAR, we derive out-of-sample value-at-risk (VaR) forecasts and compare our approach to historical simulation as well as a benchmark GARCH(1,1) location-scale VaR model. Our findings underline that the multifractal properties in EUR/USD returns in fact have notable risk management implications. The MMAR approach is a parsimonious model which produces admissible VaR forecasts at the 12-h forecast horizon. For the daily horizon, the MMAR outperforms both alternatives based on conditional as well as unconditional coverage statistics.

  1. G-register exchange dynamics in guanine quadruplexes

    PubMed Central

    Harkness, Robert W.; Mittermaier, Anthony K.

    2016-01-01

    G-quadruplexes (GQs) are 4-stranded DNA structures formed by tracts of stacked, Hoogsteen-hydrogen bonded guanosines. GQs are found in gene promoters and telomeres where they regulate gene transcription and telomere elongation. Though GQ structures are well-characterized, many aspects of their conformational dynamics are poorly understood. For example, when there are surplus guanosines in some of the tracts, they can slide with respect to one another, a process we term G-register (GR) exchange. These motions could in principle entropically stabilize the folded state, crucially benefitting GQs as their stabilities are closely tied to biological function. We have developed a method for characterizing GR exchange where each isomer in the wild-type conformational ensemble is trapped by mutation and thermal denaturation data for the set of trapped mutants and wild-type are analyzed simultaneously. This yields GR isomer populations as a function of temperature, quantifies conformational entropy and sheds light on correlated sliding motions of the G-tracts. We measured entropic stabilizations from GR exchange up to 14.3 ± 1.6 J mol−1 K−1, with melting temperature increases up to 7.3 ± 1.6°C. Furthermore, bioinformatic analysis suggests a majority of putative human GQ sequences are capable of GR exchange, pointing to the generality of this phenomenon. PMID:27060139

  2. Correlation between calculated local stability and hydrogen exchange rates in proteins.

    PubMed

    Rashin, A A

    1987-11-20

    The attempt is made to find new correlations between local structural characteristics of proteins and the hydrogen exchange rates of their individual main-chain amides, and to relate such correlations to possible mechanisms of hydrogen exchange. It is found that in bovine pancreatic trypsin inhibitor (BPTI) the surface area buried by a particular residue and its neighbors correlates with the exchange rate of the main-chain amide of that residue. As the area buried by a particular fragment can be associated with the stabilization of the protein structure by this fragment, the correlation suggests a role for the energetics of the local unfolding in the mechanism of hydrogen exchange. Calculations based on the assumption that the exchange mechanism involves local unfolding lead to quantitative agreement between the calculated and experimentally measured exchange rates for 80% of the amides of BPTI that are buried or hydrogen bonded to the main-chain or to internal water molecules. The same degree of correlation is found between the calculated exchange rates and partial exchange data for ribonuclease S, hen lysozyme and cytochrome c. A similarly strong correlation is found between calculated exchange rates and the exchange rates of ribonuclease A determined by neutron diffraction in the crystal. The criteria of correlation are, however, less stringent in this case because of the experimental errors, which are larger than for solution data. It is suggested that the observed correlation be used for predictions of hydrogen exchange rates in proteins.

  3. DYNACLIPS (DYNAmic CLIPS): A dynamic knowledge exchange tool for intelligent agents

    NASA Technical Reports Server (NTRS)

    Cengeloglu, Yilmaz; Khajenoori, Soheil; Linton, Darrell

    1994-01-01

    In a dynamic environment, intelligent agents must be responsive to unanticipated conditions. When such conditions occur, an intelligent agent may have to stop a previously planned and scheduled course of actions and replan, reschedule, start new activities and initiate a new problem solving process to successfully respond to the new conditions. Problems occur when an intelligent agent does not have enough knowledge to properly respond to the new situation. DYNACLIPS is an implementation of a framework for dynamic knowledge exchange among intelligent agents. Each intelligent agent is a CLIPS shell and runs a separate process under SunOS operating system. Intelligent agents can exchange facts, rules, and CLIPS commands at run time. Knowledge exchange among intelligent agents at run times does not effect execution of either sender and receiver intelligent agent. Intelligent agents can keep the knowledge temporarily or permanently. In other words, knowledge exchange among intelligent agents would allow for a form of learning to be accomplished.

  4. Ultrasensitive anion detection by NMR spectroscopy: a supramolecular strategy based on modulation of chemical exchange rate.

    PubMed

    Perruchoud, Loïse H; Hadzovic, Alen; Zhang, Xiao-An

    2015-06-08

    NMR spectroscopy is a powerful tool for monitoring molecular interactions and is widely used to characterize supramolecular systems at the atomic level. NMR is limited for sensing purposes, however, due to low sensitivity. Dynamic processes such as conformational changes or binding events can induce drastic effects on NMR spectra in response to variations in chemical exchange (CE) rate, which can lead to new strategies in the design of supramolecular sensors through the control and monitoring of CE rate. Here, we present an indirect NMR anion sensing technique in which increased CE rate, due to anion-induced conformational flexibility of a relatively rigid structure of a novel sensor, allows ultrasensitive anion detection as low as 120 nM.

  5. Water exchange dynamics around H₃O⁺ and OH⁻ ions

    SciTech Connect

    Roy, Santanu; Dang, Liem X.

    2015-05-01

    Proton transfer in water and other solvents is a complicated process and an active research area. Conformational changes of water hydrating a proton can have a significant influence on proton dynamics. A hydrated proton leads to H₃O⁺ that forms three hydrogen bonds with neighboring water molecules. In this letter, we report the first computer simulation of the dynamics of water exchanging between the first and second solvation shells of H₃O⁺. Employing different rate theories for chemical reactions such as the transition state theory, the Grote-Hynes theory, the reactive flux method, and the Impey-Madden-McDonald method, we calculate the solvent exchange rates from molecular dynamics simulations that account for explicit polarization effects. In addition, we also study water exchanges around OH⁻ and find that the corresponding time scale (~50 picoseconds [ps]) is much smaller than that for H₃O⁺ (~100 ps). Results from all the rate theories are computed and compared. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  6. Rate of Asparagine Deamidation in a Monoclonal Antibody Correlating with Hydrogen Exchange Rate at Adjacent Downstream Residues.

    PubMed

    Phillips, Jonathan J; Buchanan, Andrew; Andrews, John; Chodorge, Matthieu; Sridharan, Sudharsan; Mitchell, Laura; Burmeister, Nicole; Kippen, Alistair D; Vaughan, Tristan J; Higazi, Daniel R; Lowe, David

    2017-02-21

    Antibodies are an important class of drugs, comprising more than half of all new FDA approvals. Therapeutic antibodies must be chemically stable both in storage and in vivo, following administration to patients. Deamidation is a major degradation pathway for all natural and therapeutic proteins circulating in blood. Here, the linkage between deamidation propensity and structural dynamics is investigated by examining two antibodies with differing specificities. While both antibodies share a canonical asparagine-glycine (NG) motif in a structural loop, this is prone to deamidation in one of the antibodies but not the other. We found that the hydrogen-exchange rate at the adjacent two amides, often the autocatalytic nucleophiles in deamidation, correlated with the rate of degradation. This previously unreported observation was confirmed upon mutation to stabilize the deamidation lability via a generally applicable orthogonal engineering strategy presented here. We anticipate that the structural insight into chemical degradation in full-length monoclonal antibodies and the high-resolution hydrogen-exchange methodology used will have broad application across biochemical study and drug discovery and development.

  7. Dynamic communities in multichannel data: An application to the foreign exchange market during the 2007-2008 credit crisis

    NASA Astrophysics Data System (ADS)

    Fenn, Daniel J.; Porter, Mason A.; McDonald, Mark; Williams, Stacy; Johnson, Neil F.; Jones, Nick S.

    2009-09-01

    We study the cluster dynamics of multichannel (multivariate) time series by representing their correlations as time-dependent networks and investigating the evolution of network communities. We employ a node-centric approach that allows us to track the effects of the community evolution on the functional roles of individual nodes without having to track entire communities. As an example, we consider a foreign exchange market network in which each node represents an exchange rate and each edge represents a time-dependent correlation between the rates. We study the period 2005-2008, which includes the recent credit and liquidity crisis. Using community detection, we find that exchange rates that are strongly attached to their community are persistently grouped with the same set of rates, whereas exchange rates that are important for the transfer of information tend to be positioned on the edges of communities. Our analysis successfully uncovers major trading changes that occurred in the market during the credit crisis.

  8. Dynamic communities in multichannel data: an application to the foreign exchange market during the 2007-2008 credit crisis.

    PubMed

    Fenn, Daniel J; Porter, Mason A; McDonald, Mark; Williams, Stacy; Johnson, Neil F; Jones, Nick S

    2009-09-01

    We study the cluster dynamics of multichannel (multivariate) time series by representing their correlations as time-dependent networks and investigating the evolution of network communities. We employ a node-centric approach that allows us to track the effects of the community evolution on the functional roles of individual nodes without having to track entire communities. As an example, we consider a foreign exchange market network in which each node represents an exchange rate and each edge represents a time-dependent correlation between the rates. We study the period 2005-2008, which includes the recent credit and liquidity crisis. Using community detection, we find that exchange rates that are strongly attached to their community are persistently grouped with the same set of rates, whereas exchange rates that are important for the transfer of information tend to be positioned on the edges of communities. Our analysis successfully uncovers major trading changes that occurred in the market during the credit crisis.

  9. Design and simulation of heat exchangers using Aspen HYSYS, and Aspen exchanger design and rating for paddy drying application

    NASA Astrophysics Data System (ADS)

    Janaun, J.; Kamin, N. H.; Wong, K. H.; Tham, H. J.; Kong, V. V.; Farajpourlar, M.

    2016-06-01

    Air heating unit is one of the most important parts in paddy drying to ensure the efficiency of a drying process. In addition, an optimized air heating unit does not only promise a good paddy quality, but also save more for the operating cost. This study determined the suitable and best specifications heating unit to heat air for paddy drying in the LAMB dryer. In this study, Aspen HYSYS v7.3 was used to obtain the minimum flow rate of hot water needed. The resulting data obtained from Aspen HYSYS v7.3 were used in Aspen Exchanger Design and Rating (EDR) to generate heat exchanger design and costs. The designs include shell and tubes and plate heat exchanger. The heat exchanger was designed in order to produce various drying temperatures of 40, 50, 60 and 70°C of air with different flow rate, 300, 2500 and 5000 LPM. The optimum condition for the heat exchanger were found to be plate heat exchanger with 0.6 mm plate thickness, 198.75 mm plate width, 554.8 mm plate length and 11 numbers of plates operating at 5000 LPM air flow rate.

  10. Quantitative chemical exchange saturation transfer with hyperpolarized nuclei (qHyper-CEST): Sensing xenon-host exchange dynamics and binding affinities by NMR

    SciTech Connect

    Kunth, M. Witte, C.; Schröder, L.

    2014-11-21

    The reversible binding of xenon to host molecules has found numerous applications in nuclear magnetic resonance studies. Quantitative characterization of the Xe exchange dynamics is important to understand and optimize the physico-chemical behavior of such Xe hosts, but is often challenging to achieve at low host concentrations. We have investigated a sensitive quantification technique based on chemical exchange saturation transfer with hyperpolarized nuclei, qHyper-CEST. Using simulated signals we demonstrated that qHyper-CEST yielded accurate and precise results and was robust in the presence of large amounts of noise (10%). This is of particular importance for samples with completely unknown exchange rates. Using these findings we experimentally determined the following exchange parameters for the Xe host cryptophane-A monoacid in dimethyl sulfoxide in one type of experiment: the ratio of bound and free Xe, the Xe exchange rate, the resonance frequencies of free and bound Xe, the Xe host occupancy, and the Xe binding constant. Taken together, qHyper-CEST facilitates sensitive quantification of the Xe exchange dynamics and binding to hydrophobic cavities and has the potential to analyze many different host systems or binding sites. This makes qHyper-CEST an indispensable tool for the efficient design of highly specific biosensors.

  11. Dynamics of Chain Exchange in Block Copolymer Micelles

    NASA Astrophysics Data System (ADS)

    Lodge, Timothy

    Block copolymer micelles are rarely at equilibrium. The primary reason is the large number of repeat units in the insoluble block, Ncore, which makes the thermodynamic penalty for extracting a single chain (``unimer exchange'') substantial. As a consequence, the critical micelle concentration (CMC) is rarely accessed experimentally; however, in the proximity of a critical micelle temperature (CMT), equilibration is possible. We have been using time-resolved small angle neutron scattering (TR-SANS) to obtain a detailed picture of the mechanisms and time scales for chain exchange, at or near equilibrium. Our model system is poly(styrene)-block-poly(ethylene-alt-propylene)) (PS-PEP), in the PEP-selective solvent squalane (C30H62) . Equivalent micelles with either normal (hPS) or perdeuterated (dPS) cores are initially mixed in a blend of isotopically substituted squalane, designed to contrast-match a 50:50 hPS:dPS core. Samples are then annealed at a target temperature, and chain exchange is revealed quantitatively by the temporal decay in scattered intensity. The rate of exchange as function of concentration, temperature, Ncore, Ncorona, and chain architecture (diblock versus triblock) will be discussed.

  12. Examining the reaction of monetary policy to exchange rate changes: A nonlinear ARDL approach

    NASA Astrophysics Data System (ADS)

    Manogaran, Lavaneesvari; Sek, Siok Kun

    2017-04-01

    Previous studies showed the exchange rate changes can have significant impacts on macroeconomic performance. Over fluctuation of exchange rate may lead to economic instability. Hence, monetary policy rule tends to react to exchange rate changes. Especially, in emerging economies where the policy-maker tends to limit the exchange rate movement through interventions. In this study, we seek to investigate how the monetary policy rule reacts to exchange rate changes. The nonlinear autoregressive distributed lag (NARDL) model is applied to capture the asymmetric effect of exchange rate changes on monetary policy reaction function (interest rate). We focus the study in ASEAN5 countries (Indonesia, Malaysia, Philippines, Thailand and Singapore). The results indicated the existence of asymmetric effect of exchange rates changes on the monetary reaction function for all ASEAN5 countries in the long-run. Where, in majority of the cases the monetary policy is reacting to the appreciation and depreciation of exchange rate by raising the policy rate. This affirms the intervention of policymakers with the `fear of floating' behavior.

  13. Dynamic Line Rating: Research and Policy Evaluation

    SciTech Connect

    Jake P. Gentle; Kurt S. Myers; Michael R. West

    2014-07-01

    Dynamic Line Rating (DLR) is a smart grid technology that allows the rating of electrical conductors to be increased based on local weather conditions. Overhead lines are conventionally given a conservative rating based on worst case scenarios. We demonstrate that observing the conditions in real time leads to additional capacity and safer operation. This paper provides a report of a pioneering scheme in the United States of America in which DLR has been applied. Thereby, we demonstrate that observing the local weather conditions in real time leads to additional capacity and safer operation. Secondly, we discuss limitations involved. In doing so, we arrive at novel insights which will inform and improve future DLR projects. Third, we provide a policy background and discussion to clarify the technology’s potential and identifies barriers to the imminent adoption of dynamic line rating systems. We provide suggestions for regulatory bodies about possible improvements in policy to encourage adoption of this beneficial technology.

  14. Hydrogen exchange dynamics of the P22 virion determined by time-resolved Raman spectroscopy. Effects of chromosome packaging on the kinetics of nucleotide exchanges.

    PubMed

    Reilly, K E; Thomas, G J

    1994-08-05

    We describe the application of laser Raman spectroscopy to probe hydrogen isotope exchange dynamics of nucleic acid and protein constituents in a double-stranded DNA virus, the icosahedral bacteriophage P22. The Raman dynamic method employs a dialysis flow cell to control D2O efflux into an H2O solution of the virus sample while the rates of deuterium exchange of protons in the viral nucleic acid and protein molecules are measured spectrophotometrically in real time. The method provides structural and kinetic information about three different and distinct classes of exchangeable protons of the native virion: (1) labile imino (NH) and amino (NH2) protons of the bases which participate in Watson-Crick hydrogen bonding in the packaged genome; (2) pseudolabile purinic (8CH) protons that line the major groove of packaged P22 DNA; and (3) main-chain amide (NH) protons of viral subunits comprising the shell that encapsidates the DNA. The results obtained on P22 demonstrate that interchange of aqueous solvent with the virion interior is rapid and complete. We find that while labile protons of packaged DNA exchange rapidly, most amide protons in capsid subunits are resistant to solvent-catalyzed exchange. Further, stereospecific retardation of exchange is observed for major-groove protons of the packaged P22 genome. The quantitative measurements can be summarized and interpreted as follows. (1) Imino and amino protons of all bases in packaged P22 DNA exchange more rapidly (approximately 2-fold faster) than the corresponding protons in unpackaged P22 DNA. Remarkably, packaging actually accelerates labile imino and amino hydrogen exchanges of the viral DNA, an effect which can be attributed to selective stabilization in the packaged chromosome of a base-pair open state (breathing model). (2) Conversely, purine 8CH exchange rates in packaged P22 DNA are significantly retarded in comparison to those of unpackaged P22 DNA. The observed 8CH exchange retardation effects are

  15. Particle creation rate for dynamical black holes

    NASA Astrophysics Data System (ADS)

    Firouzjaee, Javad T.; Ellis, George F. R.

    2016-11-01

    We present the particle creation probability rate around a general black hole as an outcome of quantum fluctuations. Using the uncertainty principle for these fluctuation, we derive a new ultraviolet frequency cutoff for the radiation spectrum of a dynamical black hole. Using this frequency cutoff, we define the probability creation rate function for such black holes. We consider a dynamical Vaidya model and calculate the probability creation rate for this case when its horizon is in a slowly evolving phase. Our results show that one can expect the usual Hawking radiation emission process in the case of a dynamical black hole when it has a slowly evolving horizon. Moreover, calculating the probability rate for a dynamical black hole gives a measure of when Hawking radiation can be killed off by an incoming flux of matter or radiation. Our result strictly suggests that we have to revise the Hawking radiation expectation for primordial black holes that have grown substantially since they were created in the early universe. We also infer that this frequency cut off can be a parameter that shows the primordial black hole growth at the emission moment.

  16. Dynamic pupillary exchange engages brain regions encoding social salience.

    PubMed

    Harrison, Neil A; Gray, Marcus A; Critchley, Hugo D

    2009-01-01

    Covert exchange of autonomic responses may shape social affective behavior, as observed in mirroring of pupillary responses during sadness processing. We examined how, independent of facial emotional expression, dynamic coherence between one's own and another's pupil size modulates regional brain activity. Fourteen subjects viewed pairs of eye stimuli while undergoing fMRI. Using continuous pupillometry biofeedback, the size of the observed pupils was varied, correlating positively or negatively with changes in participants' own pupils. Viewing both static and dynamic stimuli activated right fusiform gyrus. Observing dynamically changing pupils activated STS and amygdala, regions engaged by non-static and salient facial features. Discordance between observed and observer's pupillary changes enhanced activity within bilateral anterior insula, left amygdala and anterior cingulate. In contrast, processing positively correlated pupils enhanced activity within left frontal operculum. Our findings suggest pupillary signals are monitored continuously during social interactions and that incongruent changes activate brain regions involved in tracking motivational salience and attentionally meaningful information. Naturalistically, dynamic coherence in pupillary change follows fluctuations in ambient light. Correspondingly, in social contexts discordant pupil response is likely to reflect divergence of dispositional state. Our data provide empirical evidence for an autonomically mediated extension of forward models of motor control into social interaction.

  17. Preserving the Boltzmann ensemble in replica-exchange molecular dynamics.

    PubMed

    Cooke, Ben; Schmidler, Scott C

    2008-10-28

    We consider the convergence behavior of replica-exchange molecular dynamics (REMD) [Sugita and Okamoto, Chem. Phys. Lett. 314, 141 (1999)] based on properties of the numerical integrators in the underlying isothermal molecular dynamics (MD) simulations. We show that a variety of deterministic algorithms favored by molecular dynamics practitioners for constant-temperature simulation of biomolecules fail either to be measure invariant or irreducible, and are therefore not ergodic. We then show that REMD using these algorithms also fails to be ergodic. As a result, the entire configuration space may not be explored even in an infinitely long simulation, and the simulation may not converge to the desired equilibrium Boltzmann ensemble. Moreover, our analysis shows that for initial configurations with unfavorable energy, it may be impossible for the system to reach a region surrounding the minimum energy configuration. We demonstrate these failures of REMD algorithms for three small systems: a Gaussian distribution (simple harmonic oscillator dynamics), a bimodal mixture of Gaussians distribution, and the alanine dipeptide. Examination of the resulting phase plots and equilibrium configuration densities indicates significant errors in the ensemble generated by REMD simulation. We describe a simple modification to address these failures based on a stochastic hybrid Monte Carlo correction, and prove that this is ergodic.

  18. Driven Nonlinear Dynamics of Two Coupled Exchange-Only Qubits

    NASA Astrophysics Data System (ADS)

    Pal, Arijeet; Rashba, Emmanuel I.; Halperin, Bertrand I.

    2014-01-01

    Inspired by the creation of a fast exchange-only qubit [Medford et al., Phys. Rev. Lett. 111, 050501 (2013)], we develop a theory describing the nonlinear dynamics of two such qubits that are capacitively coupled, when one of them is driven resonantly at a frequency equal to its level splitting. We include conditions of strong driving, where the Rabi frequency is a significant fraction of the level splitting, and we consider situations where the splitting for the second qubit may be the same as or different than the first. We demonstrate that coupling between qubits can be detected by reading the response of the second qubit, even when the coupling between them is only of about 1% of their level splittings, and we calculate entanglement between qubits. Patterns of nonlinear dynamics of coupled qubits and their entanglement are strongly dependent on the geometry of the system, and the specific mechanism of interqubit coupling deeply influences dynamics of both qubits. In particular, we describe the development of irregular dynamics in a two-qubit system, explore approaches for inhibiting it, and demonstrate the existence of an optimal range of coupling strength maintaining stability during the operational time.

  19. The effect of an exchanger phase, carbon dioxide, and mineralogy on the rate of geochemical weathering

    SciTech Connect

    Amrhein, C.

    1984-01-01

    The dissolution (weathering) of soil minerals can have an appreciable effect on soil water chemistry. The rate at which mineral dissolution in water approaches equilibrium is dependent upon the type of minerals present, the surface area/solution volume ratio, the ionic composition of the solution, the nature of the exchanger phase of the soil, the temperature and the local partial pressure of carbon dioxide. Geochemical weathering has an important effect on the processes relating to sodic soil reclamation, nutrient availability, soil genesis, management of overburden materials from mining activities, and salt loading to surface and ground waters. Research was conducted to determine, quantitatively, the effects of CO{sub 2} and exchanger phase composition on the kinetics of calcium mineral dissolution. It was found that the presence of exchangeable sodium greatly increased the initial rate of mineral dissolution by acting to keep the soil solution low in Ca{sup 2+} ions. The kinetics of calcite dissolution were controlled by the gas transfer reaction, CO{sub 2}(gas) {yields} CO{sub 2}(ag), at CO{sub 2} levels below .03 atmospheres. A mechanistic kinetic model was proposed that included the CO{sub 2} reaction kinetics and an adsorption/hydration reaction with the calcite surface. In general, mineral weathering was found to rarely obey a diffusion controlled model and was better described by mechanistic kinetics invoking elementary chemical reactions. In addition, it was found that the weathering rate of anorthite (a calcium silicate) was too slow to contribute significant amounts of Ca{sup 2+} ions to the soil solution and the phenomenon of calcite supersaturation commonly found in soil solutions is attributed to carbon dioxide dynamics.

  20. Predicting Offender-Generated Exchange Rates: Implications for a Theory of Sentence Severity

    ERIC Educational Resources Information Center

    May, David C.; Wood, Peter B.; Mooney, Jennifer L.; Minor, Kevin I.

    2005-01-01

    We solicited offender-generated exchange rates between prison and several noncustodial sanctions from a sample of 588 offenders currently serving community-based punishments. We then regressed these exchange rates on demographic, attitudinal, and correctional experience indicators. Males, Blacks, older offenders, offenders with prison experience,…

  1. Short- and long-run exchange rate effects on forest product trade: evidence from panel data

    Treesearch

    Torjus F. Bolksejo; Joseph Buongiorno

    2006-01-01

    Impacts of exchange rates on international forest products trade are widely debated, but the empirical evidence regarding this issue is still inconclusive. Here, we report findings of the impacts of the exchange rates on the main forest product imports and exports of the US, from January 1989 to November 2004. Export data consisted of monthly series of the main...

  2. Review of Air Exchange Rate Models for Air Pollution Exposure Assessments

    EPA Science Inventory

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings, where people spend their time. The AER, which is rate the exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pol...

  3. Air-water Gas Exchange Rates on a Large Impounded River Measured Using Floating Domes (Poster)

    EPA Science Inventory

    Mass balance models of dissolved gases in rivers typically serve as the basis for whole-system estimates of greenhouse gas emission rates. An important component of these models is the exchange of dissolved gases between air and water. Controls on gas exchange rates (K) have be...

  4. Review of Air Exchange Rate Models for Air Pollution Exposure Assessments

    EPA Science Inventory

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings, where people spend their time. The AER, which is rate the exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pol...

  5. Air-water Gas Exchange Rates on a Large Impounded River Measured Using Floating Domes (Poster)

    EPA Science Inventory

    Mass balance models of dissolved gases in rivers typically serve as the basis for whole-system estimates of greenhouse gas emission rates. An important component of these models is the exchange of dissolved gases between air and water. Controls on gas exchange rates (K) have be...

  6. Theoretical rate constants of super-exchange hole transfer and thermally induced hopping in DNA.

    PubMed

    Shimazaki, Tomomi; Asai, Yoshihiro; Yamashita, Koichi

    2005-01-27

    Recently, the electronic properties of DNA have been extensively studied, because its conductivity is important not only to the study of fundamental biological problems, but also in the development of molecular-sized electronics and biosensors. We have studied theoretically the reorganization energies, the activation energies, the electronic coupling matrix elements, and the rate constants of hole transfer in B-form double-helix DNA in water. To accommodate the effects of DNA nuclear motions, a subset of reaction coordinates for hole transfer was extracted from classical molecular dynamics (MD) trajectories of DNA in water and then used for ab initio quantum chemical calculations of electron coupling constants based on the generalized Mulliken-Hush model. A molecular mechanics (MM) method was used to determine the nuclear Franck-Condon factor. The rate constants for two types of mechanisms of hole transfer-the thermally induced hopping (TIH) and the super-exchange mechanisms-were determined based on Marcus theory. We found that the calculated matrix elements are strongly dependent on the conformations of the nucleobase pairs of hole-transferable DNA and extend over a wide range of values for the "rise" base-step parameter but cluster around a particular value for the "twist" parameter. The calculated activation energies are in good agreement with experimental results. Whereas the rate constant for the TIH mechanism is not dependent on the number of A-T nucleobase pairs that act as a bridge, the rate constant for the super-exchange process rapidly decreases when the length of the bridge increases. These characteristic trends in the calculated rate constants effectively reproduce those in the experimental data of Giese et al. [Nature 2001, 412, 318]. The calculated rate constants were also compared with the experimental results of Lewis et al. [Nature 2000, 406, 51].

  7. The Importance of Water Exchange Rates in the Design of Responsive Agents for MRI

    PubMed Central

    Sherry, A. Dean; Wu, Yunkou

    2013-01-01

    The rate of water exchange in lanthanide complexes is often overlooked as an important parameter in the design of responsive MR imaging agents. Most often, the number of inner-sphere water coordination sites or the rotational mobility of the complex are considered as the central theme while water exchange is either assumed to be “fast enough” or entirely ignored. On the other hand, relaxation and shift theories predict that water exchange rates may indeed be the key parameter one should consider in any new molecular design. In this short review, the impact of water exchange rates on three classes of lanthanide-based MRI contrast agents, T1-based relaxation agents, T2 exchange line-broadening agents and chemical exchange saturation transfer (CEST) agents, is illustrated and discussed. PMID:23333571

  8. Heterogeneous effects of oil shocks on exchange rates: evidence from a quantile regression approach.

    PubMed

    Su, Xianfang; Zhu, Huiming; You, Wanhai; Ren, Yinghua

    2016-01-01

    The determinants of exchange rates have attracted considerable attention among researchers over the past several decades. Most studies, however, ignore the possibility that the impact of oil shocks on exchange rates could vary across the exchange rate returns distribution. We employ a quantile regression approach to address this issue. Our results indicate that the effect of oil shocks on exchange rates is heterogeneous across quantiles. A large US depreciation or appreciation tends to heighten the effects of oil shocks on exchange rate returns. Positive oil demand shocks lead to appreciation pressures in oil-exporting countries and this result is robust across lower and upper return distributions. These results offer rich and useful information for investors and decision-makers.

  9. NMR Analysis of Amide Hydrogen Exchange Rates in a Pentapeptide-Repeat Protein from A. thaliana.

    PubMed

    Xu, Shenyuan; Ni, Shuisong; Kennedy, Michael A

    2017-05-23

    At2g44920 from Arabidopsis thaliana is a pentapeptide-repeat protein (PRP) composed of 25 repeats capped by N- and C-terminal α-helices. PRP structures are dominated by four-sided right-handed β-helices typically consisting of mixtures of type II and type IV β-turns. PRPs adopt repeated five-residue (Rfr) folds with an Rfr consensus sequence (STAV)(D/N)(L/F)(S/T/R)(X). Unlike other PRPs, At2g44920 consists exclusively of type II β-turns. At2g44920 is predicted to be located in the thylakoid lumen although its biochemical function remains unknown. Given its unusual structure, we investigated the biophysical properties of At2g44920 as a representative of the β-helix family to determine if it had exceptional global stability, backbone dynamics, or amide hydrogen exchange rates. Circular dichroism measurements yielded a melting point of 62.8°C, indicating unexceptional global thermal stability. Nuclear spin relaxation measurements indicated that the Rfr-fold core was rigid with order parameters ranging from 0.7 to 0.9. At2g44920 exhibited a striking range of amide hydrogen exchange rates spanning 10 orders of magnitude, with lifetimes ranging from minutes to several months. A weak correlation was found among hydrogen exchange rates, hydrogen bonding energies, and amino acid solvent-accessible areas. Analysis of contributions from fast (approximately picosecond to nanosecond) backbone dynamics to amide hydrogen exchange rates revealed that the average order parameter of amides undergoing fast exchange was significantly smaller compared to those undergoing slow exchange. Importantly, the activation energies for amide hydrogen exchange were found to be generally higher for the slowest exchanging amides in the central Rfr coil and decreased toward the terminal coils. This could be explained by assuming that the concerted motions of two preceding or following coils required for hydrogen bond disruption and amide hydrogen exchange have a higher activation energy

  10. Understanding the Rates and Molecular Mechanism of Water-Exchange around Aqueous Ions Using Molecular Simulations

    SciTech Connect

    Annapureddy, Harsha V.; Dang, Liem X.

    2014-07-31

    Solvation processes occurring around aqueous ions are of fundamental importance in physics, chemistry, and biology. Over the past few decades, several experimental and theoretical studies were devoted to understanding ion solvation and the processes involved in it. In this article, we present a summary of our recent efforts that, through computer simulations, focused on providing a comprehensive understanding of solvent-exchange processes around aqueous ions. To accomplish these activities, we have looked at the mechanistic properties associated with the water-exchange process, such as potentials of mean force, time-dependent transmission coefficients, and the corresponding rate constants using transition rate theory, the reactive flux method, and Grote-Hynes treatments of the dynamic response of the solvent. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the U.S. Department of Energy (DOE) funded this work. Battelle operates Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES.

  11. East Asia’s Foreign Exchange Rate Policies

    DTIC Science & Technology

    2009-07-16

    At the other extreme, Japan, the Philippines, and South Korea have usually allowed their currencies to float freely in foreign exchange ( forex ...China, Indonesia, Malaysia, Singapore, Taiwan, Thailand, and Vietnam allow their currency to adjust in value in forex markets so long as the...There were also reports that Korea sold more dollars for won in early April 2008.7 At the time, some forex analysts claimed that the new South Korean

  12. Wealth distribution of simple exchange models coupled with extremal dynamics

    NASA Astrophysics Data System (ADS)

    Bagatella-Flores, N.; Rodríguez-Achach, M.; Coronel-Brizio, H. F.; Hernández-Montoya, A. R.

    2015-01-01

    Punctuated Equilibrium (PE) states that after long periods of evolutionary quiescence, species evolution can take place in short time intervals, where sudden differentiation makes new species emerge and some species extinct. In this paper, we introduce and study the effect of punctuated equilibrium on two different asset exchange models: the yard sale model (YS, winner gets a random fraction of a poorer player's wealth) and the theft and fraud model (TF, winner gets a random fraction of the loser's wealth). The resulting wealth distribution is characterized using the Gini index. In order to do this, we consider PE as a perturbation with probability ρ of being applied. We compare the resulting values of the Gini index at different increasing values of ρ in both models. We found that in the case of the TF model, the Gini index reduces as the perturbation ρ increases, not showing dependence with the agents number. While for YS we observe a phase transition which happens around ρc = 0.79. For perturbations ρ <ρc the Gini index reaches the value of one as time increases (an extreme wealth condensation state), whereas for perturbations greater than or equal to ρc the Gini index becomes different to one, avoiding the system reaches this extreme state. We show that both simple exchange models coupled with PE dynamics give more realistic results. In particular for YS, we observe a power low decay of wealth distribution.

  13. Dynamic Group Diffie-Hellman Key Exchange under standard assumptions

    SciTech Connect

    Bresson, Emmanuel; Chevassut, Olivier; Pointcheval, David

    2002-02-14

    Authenticated Diffie-Hellman key exchange allows two principals communicating over a public network, and each holding public-private keys, to agree on a shared secret value. In this paper we study the natural extension of this cryptographic problem to a group of principals. We begin from existing formal security models and refine them to incorporate major missing details (e.g., strong-corruption and concurrent sessions). Within this model we define the execution of a protocol for authenticated dynamic group Diffie-Hellman and show that it is provably secure under the decisional Diffie-Hellman assumption. Our security result holds in the standard model and thus provides better security guarantees than previously published results in the random oracle model.

  14. Energy exchange dynamics across L-H transitions in NSTX

    NASA Astrophysics Data System (ADS)

    Diallo, A.; Banerjee, S.; Zweben, S. J.; Stoltzfus-Dueck, T.

    2017-06-01

    We studied the energy exchange dynamics across the low-to-high-confinement (L-H) transition in NSTX discharges using the gas-puff imaging (GPI) diagnostic. The investigation focused on the energy exchange between flows and turbulence to help clarify the mechanism of the L-H transition. We applied this study to three types of heating schemes, including a total of 17 shots from the NSTX 2010 campaign run. Results show that the edge fluctuation characteristics (fluctuation levels, radial and poloidal correlation lengths) measured using GPI do not vary just prior to the H-mode transition, but change after the transition. Using a velocimetry approach (orthogonal-dynamics programming), velocity fields of a 24× 30 cm GPI view during the L-H transition were obtained with good spatial (˜1 cm) and temporal (˜2.5 μs) resolutions. Analysis using these velocity fields shows that the production term is systematically negative just prior to the L-H transition, indicating a transfer from mean flows to turbulence, which is inconsistent with the predator-prey paradigm. Moreover, the inferred absolute value of the production term is two orders of magnitude too small to explain the observed rapid L-H transition. These discrepancies are further reinforced by consideration of the ratio between the kinetic energy in the mean flow to the thermal free energy, which is estimated to be much less than 1, suggesting again that the turbulence depletion mechanism may not play an important role in the transition to the H-mode. Although the Reynolds work therefore appears to be too small to directly deplete the turbulent free energy reservoir, order-of-magnitude analysis shows that the Reynolds stress may still make a non-negligible contribution to the observed poloidal flows.

  15. Energy exchange dynamics across L–H transitions in NSTX

    DOE PAGES

    Diallo, A.; Banerjee, S.; Zweben, S. J.; ...

    2017-05-10

    Here, we studied the energy exchange dynamics across the low-to-high-confinement (L–H) transition in NSTX discharges using the gas-puff imaging (GPI) diagnostic. The investigation focused on the energy exchange between flows and turbulence to help clarify the mechanism of the L–H transition. We applied this study to three types of heating schemes, including a total of 17 shots from the NSTX 2010 campaign run. Results show that the edge fluctuation characteristics (fluctuation levels, radial and poloidal correlation lengths) measured using GPI do not vary just prior to the H-mode transition, but change after the transition. Using a velocimetry approach (orthogonal-dynamics programming), velocity fields of amore » $$24\\times 30$$ cm GPI view during the L–H transition were obtained with good spatial (~1 cm) and temporal (~2.5 μs) resolutions. Analysis using these velocity fields shows that the production term is systematically negative just prior to the L–H transition, indicating a transfer from mean flows to turbulence, which is inconsistent with the predator–prey paradigm. Moreover, the inferred absolute value of the production term is two orders of magnitude too small to explain the observed rapid L–H transition. These discrepancies are further reinforced by consideration of the ratio between the kinetic energy in the mean flow to the thermal free energy, which is estimated to be much less than 1, suggesting again that the turbulence depletion mechanism may not play an important role in the transition to the H-mode. Although the Reynolds work therefore appears to be too small to directly deplete the turbulent free energy reservoir, order-of-magnitude analysis shows that the Reynolds stress may still make a non-negligible contribution to the observed poloidal flows.« less

  16. A study on the influence of fast amide exchange on the accuracy of (15)N relaxation rate constants.

    PubMed

    Jurt, Simon; Zerbe, Oliver

    2012-12-01

    (15)N relaxation rates of amide moieties provide insight both into global as well as local backbone dynamics of peptides and proteins. As the differences in the relaxation rates in general are small, their accurate determination is of prime importance. One potential source of error is fast amide exchange. It is well known that in its presence the effects of saturation transfer and H/D exchange may result in erroneous apparent relaxation rates R (1) and R (2). Here, the extent of these errors is rigorously examined. Theoretical considerations reveal that even when saturation effects are absent, H/D exchange will easily result in significant deviations from the true values. In particular overestimations of up to 10 % in R (1) and up to 5 % in R (2) are observed. An alternative scheme for fitting the relaxation data to the corresponding exponentials is presented that in the best cases not only delivers more accurate relaxation rates but also allows extracting estimates for the exchange rates. The theoretical computations were tested and verified for the case of ubiquitin.

  17. Investigating the asymmetric relationship between inflation-output growth exchange rate changes

    NASA Astrophysics Data System (ADS)

    Chu, Jenq Fei; Sek, Siok Kun

    2017-08-01

    The relationship between inflation-output growth or output variation has long been studied. In this study, we extend the investigation under two exchange rate flexibility/regime in four Asian countries (Indonesia, Korea, Philippines and Thailand) that have experienced drastic exchange rate regime changes aftermath the financial crisis of 1997. These countries have switched from fixed/rigid exchange rate regime to flexible exchange rate and inflation targeting (IT) regime after the crisis. Our main objective is to compare the inflation-output trade-off relationship in the pre-IT and post-IT periods as a tool to evaluate the efficiency of monetary policy. A nonlinear autoregressive distributed lags (NARDL) model is applied to capture the asymmetric effects of exchange rate changes (increases and decreases). The data ranging from 1981M1 onwards till 2016M3. Our results show that exchange rate has asymmetric effect on inflation both short-run and long-run with larger impact in the post-IT period under flexible regime. Depreciation of exchange rate has leads to higher inflation. Furthermore, we find evidences on the relationship between inflation and growth in both short-run and long-run, but the trade-off only detected in the short run both in the pre- and post-IT periods.

  18. Redox-dependent dynamics of putidaredoxin characterized by amide proton exchange.

    PubMed Central

    Lyons, T. A.; Ratnaswamy, G.; Pochapsky, T. C.

    1996-01-01

    Multidimensional NMR methods were used to obtain 1H-15N correlations and 15N resonance assignments for amide and side-chain nitrogens of oxidized and reduced putidaredoxin (Pdx), the Fe2S2 ferredoxin, which acts as the physiological reductant of cytochrome P-450cam (CYP101). A model for the solution structure of oxidized Pdx has been determined recently using NMR methods (Pochapsky TC, Ye XM, Ratnaswamy G, Lyons TA, 1994, Biochemistry 33:6424-6432) and redox-dependent 1H NMR spectral features have been described (Pochapsky TC, Ratnaswamy G, Patera A, 1994, Biochemistry 33:6433-6441). 15N assignments were made with NOESY-(1H/15N) HMQC and TOCSY-(1H/15N) HSQC spectra obtained using samples of Pdx uniformly labeled with 15N. Local dynamics in both oxidation states of Pdx were then characterized by comparison of residue-specific amide proton exchange rates, which were measured by a combination of saturation transfer and H2O/D2O exchange methods at pH 6.4 and 7.4 (uncorrected for isotope effects). In general, where exchange rates for a given site exhibit significant oxidation-state dependence, the oxidized protein exchanges more rapidly than the reduced protein. The largest dependence of exchange rate upon oxidation state is found for residues near the metal center and in a region of compact structure that includes the loop-turn Val 74-Ser 82 and the C-terminal residues (Pro 102-Trp 106). The significance of these findings is discussed in light of the considerable dependence of the binding interaction between Pdx and CYP101 upon the oxidation state of Pdx. PMID:8845752

  19. FtsZ Filament Dynamics at Steady State: Subunit Exchange with and without Nucleotide Hydrolysis†

    PubMed Central

    Chen, Yaodong; Erickson, Harold P.

    2009-01-01

    We have measured three aspects of FtsZ filament dynamics at steady state: rates of GTP hydrolysis, subunit exchange between protofilaments, and disassembly induced by dilution or excess GDP. All three reactions were slowed with an increase in the potassium concentration from 100 to 500 mM, via replacement of potassium with rubidium, or with an increase in the magnesium concentration from 5 to 20 mM. Electron microscopy showed that the polymers assembled under the conditions of fastest assembly were predominantly short, one-stranded protofilaments, whereas under conditions of slower dynamics, the protofilaments tended to associate into long, thin bundles. We suggest that exchange of subunits between protofilaments at steady state involves two separate mechanisms: (1) fragmentation or dissociation of subunits from protofilament ends following GTP hydrolysis and (2) reversible association and dissociation of subunits from protofilament ends independent of hydrolysis. Exchange of nucleotides on these recycling subunits could give the appearance of exchange directly into the polymer. Several of our observations suggest that exchange of nucleotide can take place on these recycling subunits, but not directly into the FtsZ polymer. Annealing of protofilaments was demonstrated for the L68W mutant in EDTA buffer but not in Mg buffer, where rapid cycling of subunits may obscure the effect of annealing. We also reinvestigated the nucleotide composition of FtsZ polymers at steady state. We found that the GDP:GTP ratio was 50:50 for concentrations of GTP > 100 μM, significantly higher than the 20:80 ratio previously reported at 20 μM GTP. PMID:19527070

  20. Use of H/D isotope effects to gather information about hydrogen bonding and hydrogen exchange rates.

    PubMed

    Takeda, Mitsuhiro; Miyanoiri, Yohei; Terauchi, Tsutomu; Yang, Chun-Jiun; Kainosho, Masatsune

    2014-04-01

    Polar side-chains in proteins play important roles in forming and maintaining three-dimensional structures, and thus participate in various biological functions. Until recently, most protein NMR studies have focused on the non-exchangeable protons of amino acid residues. The exchangeable protons attached to polar groups, such as hydroxyl (OH), sulfhydryl (SH), and amino (NH2) groups, have mostly been ignored, because in many cases these hydrogen atoms exchange too quickly with water protons, making NMR observations impractical. However, in certain environments, such as deep within the hydrophobic interior of a protein, or in a strong hydrogen bond to other polar groups or interacting ligands, the protons attached to polar groups may exhibit slow hydrogen exchange rates and thus become NMR accessible. To explore the structural and biological implications of the interactions involving polar side-chains, we have developed versatile NMR methods to detect such cases by observing the line shapes of (13)C NMR signals near the polar groups, which are affected by deuterium-proton isotope shifts in a mixture of H2O and D2O. These methods allow the detection of polar side-chains with slow hydrogen-deuterium exchange rates, and therefore provide opportunities to retrieve information about the polar side-chains, which might otherwise be overlooked by conventional NMR experiments. Future prospects of applications using deuterium-proton isotope shifts to retrieve missing structural and dynamic information of proteins are discussed.

  1. Proton Exchange Rates Measured by Saturation Transfer Using Delayed Randomization of the Solvent Magnetization

    NASA Astrophysics Data System (ADS)

    Leijon, Mikael

    1996-08-01

    The spin-lock saturation transfer experiment introduced by B. Adams and L. Lerner (J. Magn. Reson.96, 604-607, 1992) is analyzed in terms of the Bloch equations. It is shown that theT1ρrelaxation of the solvent is introduced in the decay of the exchangeable protons under conditions of relatively rapid exchange. An alternative experiment is suggested that randomizes the solvent magnetization with a pulsed field gradient before the observe pulse. This gives a single exponential intensity decay for the exchanging protons at all exchange rates. In addition, efficient water suppression and an even excitation profile are obtained.

  2. Hydrogen exchange-mass spectrometry measures stapled peptide conformational dynamics and predicts pharmacokinetic properties.

    PubMed

    Shi, Xiangguo Eric; Wales, Thomas E; Elkin, Carl; Kawahata, Noriyuki; Engen, John R; Annis, D Allen

    2013-12-03

    Peptide drugs have traditionally suffered from poor pharmacokinetic properties due to their conformational flexibility and the interaction of proteases with backbone amide bonds. "Stapled Peptides" are cyclized using an all-hydrocarbon cross-linking strategy to reinforce their α-helical conformation, yielding improved protease resistance and drug-like properties. Here we demonstrate that hydrogen exchange-mass spectrometry (HX-MS) effectively probes the conformational dynamics of Stapled Peptides derived from the survivin-borealin protein-protein interface and predicts their susceptibility to proteolytic degradation. In Stapled Peptides, amide exchange was reduced by over five orders-of-magnitude versus the native peptide sequence depending on staple placement. Furthermore, deuteration kinetics correlated directly with rates of proteolysis to reveal the optimal staple placement for improved drug properties.

  3. PEE-PEO block copolymer exchange rate between micelles is detergent and temperature activated

    NASA Astrophysics Data System (ADS)

    Schantz, Allen; Saboe, Patrick; Lee, Hee-Young; Sines, Ian; Butler, Paul; Bishop, Kyle; Maranas, Janna; Kumar, Manish

    We examine the kinetics of polymer chain exchange between polymer/detergent micelles, a system relevant to the synthesis of protein-containing biomimetic membranes. Although chain exchange between polymer aggregates in water is too slow to observe, adding detergent allows us to determine chain exchange rates using time-resolved small-angle neutron scattering (TR-SANS). We examine a membrane-protein-relevant, vesicle-forming ultra-short polymer, Poly(ethyl ethylene)20-Poly(ethylene oxide)18 (PEE20-PEO18). PEE20-PEO18 is solubilized in mixed micelles with the membrane-protein-compatible non-ionic detergent octyl- β -D-glucoside (OG). We show that OG activates block copolymer exchange, and obtain rate constants at two detergent concentrations above the CMC (critical micellar concentration) of OG. We find that chain exchange increases two orders of magnitude when temperature increases from 308 to 338 K, and that even a 1 mg/mL increase in OG concentration leads to a noticeable increase in exchange rate. We also calculate the activation energy for chain exchange and find that it is much higher than for lipid exchange. These findings explain the need for high detergent concentration and/or temperature to synthesize densely packed polymer/protein membranes.

  4. Automatable Measurement of Gas Exchange Rate in Streams: Oxygen-Carbon Method

    NASA Astrophysics Data System (ADS)

    Pennington, R.; Haggerty, R.; Argerich, A.; Wondzell, S. M.

    2015-12-01

    Gas exchange rates between streams and the atmosphere are critically important to measurement of in-stream ecologic processes, as well as fate and transport of hazardous pollutants such as mercury and PCBs. Methods to estimate gas exchange rates include empirical relations to hydraulics, and direct injection of a tracer gas such as propane or SF6. Empirical relations are inconsistent and inaccurate, particularly for lower order, high-roughness streams. Gas injections are labor-intensive, and measured gas exchange rates are difficult to extrapolate in time since they change with discharge and stream geometry. We propose a novel method for calculation of gas exchange rates utilizing O2, pCO2, pH, and temperature data. Measurements, which can be automated using data loggers and probes, are made on the upstream and downstream end of the study reach. Gas exchange rates are then calculated from a solution to the transport equations for oxygen and dissolved inorganic carbon. Field tests in steep, low order, high roughness streams of the HJ Andrews Experimental Forest indicate the method to be viable along stream reaches with high downstream gas concentration gradients and high rates of gas transfer velocity. Automated and continuous collection of oxygen and carbonate chemistry data is increasingly common, thus the method may be used to estimate gas exchange rates through time, and is well suited for interactivity with databases.

  5. Gas exchange rates for three closed-basin lakes

    SciTech Connect

    Peng, T.H.; Broecker, W.

    1980-09-01

    Long term monitoring of the /sup 14/C:/sup 12/C ratio in three closed-basin lakes in the western United States has resulted in reliable estimates of the mean CO/sub 2/ invasion rates. When normalized to sea level pressure the results are 6 mol m/sup -/2 yr/sup -/1 for Pyramid Lake, 17 for Walker Lake, and 38 for Mono Lake. Except for Mono Lake, these bomb /sup 14/C-derived invasion rates are consistent with those derived from the distribution of natural radiocarbon. The big difference in the invasion rates estimated for Mono Lake by the two methods is attributed to the influx of /sup 14/C-free spring waters to the lake. Possible causes for the difference in CO/sub 2/ invasion rates among the three lakes are wind velocity, salinity, and pH.

  6. 12 CFR Appendix A to Subpart A of... - Minimum Capital Components for Interest Rate and Foreign Exchange Rate Contracts

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 10 2014-01-01 2014-01-01 false Minimum Capital Components for Interest Rate and Foreign Exchange Rate Contracts A Appendix A to Subpart A of Part 1750 Banks and Banking OFFICE OF FEDERAL HOUSING ENTERPRISE OVERSIGHT, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT SAFETY AND SOUNDNESS CAPITAL Minimum Capital Pt. 1750, Subpt. A,...

  7. 12 CFR Appendix A to Subpart A of... - Minimum Capital Components for Interest Rate and Foreign Exchange Rate Contracts

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 7 2011-01-01 2011-01-01 false Minimum Capital Components for Interest Rate and Foreign Exchange Rate Contracts A Appendix A to Subpart A of Part 1750 Banks and Banking OFFICE OF FEDERAL HOUSING ENTERPRISE OVERSIGHT, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT SAFETY AND SOUNDNESS CAPITAL Minimum Capital Pt. 1750, Subpt. A,...

  8. 12 CFR Appendix A to Subpart A of... - Minimum Capital Components for Interest Rate and Foreign Exchange Rate Contracts

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 9 2013-01-01 2013-01-01 false Minimum Capital Components for Interest Rate and Foreign Exchange Rate Contracts A Appendix A to Subpart A of Part 1750 Banks and Banking OFFICE OF FEDERAL HOUSING ENTERPRISE OVERSIGHT, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT SAFETY AND SOUNDNESS CAPITAL Minimum Capital Pt. 1750, Subpt. A,...

  9. Empirical Study of Relations between Stock Returns and Exchange Rate Fluctuations in China

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Bao; Wang, Deng-Ling; Cheng, Ting-Ting

    The existing theories tell us that there exist interaction relations between stock prices and exchange rates. However, empirical research results don’t always support these theories. This paper uses quantile regression techniques to check whether the above theories hold in Chinese markets. We first eliminate the impact of the calendar effect and the time trends on stock market returns and exchange rate fluctuations using Gallant, Rossi, and Tachen’s method (1992) by combination with stepwise regression method, and then do quantile regression analysis according to the adjusted data. The empirical results are summarized as follows: the influences of exchange rate fluctuations to stock returns are negative at most quantiles of stock returns; the opposite influences are not significant at most quantiles of exchange rate fluctuations. Some explanations according to these results are given.

  10. The evolutionary synchronization of the exchange rate system in ASEAN+6

    NASA Astrophysics Data System (ADS)

    Feng, Xiaobing; Hu, Haibo; Wang, Xiaofan

    2010-12-01

    Although there are extensive researches on the behavior of the world currency network, the complexity of the Asian regional currency system is not well understood regardless of its importance. Using daily exchange rates this paper examines exchange rate co-movements in the region before and after the China exchange rate reform. It was found that the correlation between Asian currencies and the US Dollar, the previous regional key currency has become weaker and intra-Asia interactions have increased. Cross sample entropy and cross entropy approaches are also applied to examine the synchrony behavior among the Asian currencies. The study also shows that the Asian exchange rate markets featured are neither stochastic nor efficient. These findings may shed some light on the in-depth understanding of collective behaviors in a regional currency network; they will also lay a theoretical foundation for further policy formulation in Asian currency integration.

  11. Mixed Multifractal Analysis of Crude Oil, Gold and Exchange Rate Series

    NASA Astrophysics Data System (ADS)

    Dai, Meifeng; Shao, Shuxiang; Gao, Jianyu; Sun, Yu; Su, Weiyi

    2016-11-01

    The multifractal analysis of one time series, e.g. crude oil, gold and exchange rate series, is often referred. In this paper, we apply the classical multifractal and mixed multifractal spectrum to study multifractal properties of crude oil, gold and exchange rate series and their inner relationships. The obtained results show that in general, the fractal dimension of gold and crude oil is larger than that of exchange rate (RMB against the US dollar), reflecting a fact that the price series in gold and crude oil are more heterogeneous. Their mixed multifractal spectra have a drift and the plot is not symmetric, so there is a low level of mixed multifractal between each pair of crude oil, gold and exchange rate series.

  12. Trade balance instability and the optimal exchange rate regime: The case of OPEC countries

    SciTech Connect

    Aljerrah, M.A.

    1993-01-01

    The OPEC members have experienced wide fluctuations in their trade balances. This can be attributed to several factors: (1) heavy dependence of national income and export earnings on a single primary export-oil; (2) instability of price and world demand for oil; and (3) the exchange rate regime practiced in recent years. An exchange rate policy can be used to minimize the fluctuations in trade balance, given the changes in exchange rates of major international currencies. The purpose of this study is two fold; first, examine the effects of fluctuations in trade balance on the OPEC economies, and second, propose appropriate exchange rate regime for selected OPEC members. The study is divided into two parts. The first part demonstrates the impact of trade balance changes on national income and other macroeconomic variables using a Keynesian framework. The second part involves using conventional trade models to search for the appropriate exchange rate regime to minimize the fluctuations in trade balance of each selective country. The study's findings are: first, fluctuations in trade balances had negative effects on the economics of Algeria, Kuwait, Libya, Saudi Arabia, and the United Arab Emirates. Second, the current exchange rate regime of no sample country is optimal in minimizing trade balance fluctuations. Third, in contrast to expectations, U.S. dollar peg did not stabilize the trade balance of any OPEC member. Finally, the results show that the sample OPEC economies could have enjoyed faster - though with different degree - economic growth if they had pegged their currencies to the derived optimal exchange rate regime. These optimal exchange rate regimes are: the SDR for Algeria and the United Arab Emirates, the purchasing power parity for Libya and Saudi Arabia, and the real Yen for Kuwait.

  13. Forecasting of magnitude and duration of currency crises based on the analysis of distortions of fractal scaling in exchange rate fluctuations

    NASA Astrophysics Data System (ADS)

    Uritskaya, Olga Y.

    2005-05-01

    Results of fractal stability analysis of daily exchange rate fluctuations of more than 30 floating currencies for a 10-year period are presented. It is shown for the first time that small- and large-scale dynamical instabilities of national monetary systems correlate with deviations of the detrended fluctuation analysis (DFA) exponent from the value 1.5 predicted by the efficient market hypothesis. The observed dependence is used for classification of long-term stability of floating exchange rates as well as for revealing various forms of distortion of stable currency dynamics prior to large-scale crises. A normal range of DFA exponents consistent with crisis-free long-term exchange rate fluctuations is determined, and several typical scenarios of unstable currency dynamics with DFA exponents fluctuating beyond the normal range are identified. It is shown that monetary crashes are usually preceded by prolonged periods of abnormal (decreased or increased) DFA exponent, with the after-crash exponent tending to the value 1.5 indicating a more reliable exchange rate dynamics. Statistically significant regression relations (R=0.99, p<0.01) between duration and magnitude of currency crises and the degree of distortion of monofractal patterns of exchange rate dynamics are found. It is demonstrated that the parameters of these relations characterizing small- and large-scale crises are nearly equal, which implies a common instability mechanism underlying these events. The obtained dependences have been used as a basic ingredient of a forecasting technique which provided correct in-sample predictions of monetary crisis magnitude and duration over various time scales. The developed technique can be recommended for real-time monitoring of dynamical stability of floating exchange rate systems and creating advanced early-warning-system models for currency crisis prevention.

  14. Rate theory of solvent exchange and kinetics of Li(+) - BF4 (-)/PF6 (-) ion pairs in acetonitrile.

    PubMed

    Dang, Liem X; Chang, Tsun-Mei

    2016-09-07

    In this paper, we describe our efforts to apply rate theories in studies of solvent exchange around Li(+) and the kinetics of ion pairings in lithium-ion batteries (LIBs). We report one of the first computer simulations of the exchange dynamics around solvated Li(+) in acetonitrile (ACN), which is a common solvent used in LIBs. We also provide details of the ion-pairing kinetics of Li(+)-[BF4] and Li(+)-[PF6] in ACN. Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ACN exchange process between the first and second solvation shells around Li(+). We calculate exchange rates using transition state theory and weighted them with the transmission coefficients determined by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found the relaxation times changed from 180 ps to 4600 ps and from 30 ps to 280 ps for Li(+)-[BF4] and Li(+)-[PF6] ion pairs, respectively. These results confirm that the solvent response to the kinetics of ion pairing is significant. Our results also show that, in addition to affecting the free energy of solvation into ACN, the anion type also should significantly influence the kinetics of ion pairing. These results will increase our understanding of the thermodynamic and kinetic properties of LIB systems.

  15. Rate theory of solvent exchange and kinetics of Li+ - BF4-/PF6- ion pairs in acetonitrile

    NASA Astrophysics Data System (ADS)

    Dang, Liem X.; Chang, Tsun-Mei

    2016-09-01

    In this paper, we describe our efforts to apply rate theories in studies of solvent exchange around Li+ and the kinetics of ion pairings in lithium-ion batteries (LIBs). We report one of the first computer simulations of the exchange dynamics around solvated Li+ in acetonitrile (ACN), which is a common solvent used in LIBs. We also provide details of the ion-pairing kinetics of Li+-[BF4] and Li+-[PF6] in ACN. Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ACN exchange process between the first and second solvation shells around Li+. We calculate exchange rates using transition state theory and weighted them with the transmission coefficients determined by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found the relaxation times changed from 180 ps to 4600 ps and from 30 ps to 280 ps for Li+-[BF4] and Li+-[PF6] ion pairs, respectively. These results confirm that the solvent response to the kinetics of ion pairing is significant. Our results also show that, in addition to affecting the free energy of solvation into ACN, the anion type also should significantly influence the kinetics of ion pairing. These results will increase our understanding of the thermodynamic and kinetic properties of LIB systems.

  16. TIME-VARYING DYNAMICAL STAR FORMATION RATE

    SciTech Connect

    Lee, Eve J.; Chang, Philip; Murray, Norman

    2015-02-10

    We present numerical evidence of dynamic star formation in which the accreted stellar mass grows superlinearly with time, roughly as t {sup 2}. We perform simulations of star formation in self-gravitating hydrodynamic and magnetohydrodynamic turbulence that is continuously driven. By turning the self-gravity of the gas in the simulations on or off, we demonstrate that self-gravity is the dominant physical effect setting the mass accretion rate at early times before feedback effects take over, contrary to theories of turbulence-regulated star formation. We find that gravitational collapse steepens the density profile around stars, generating the power-law tail on what is otherwise a lognormal density probability distribution function. Furthermore, we find turbulent velocity profiles to flatten inside collapsing regions, altering the size-line width relation. This local flattening reflects enhancements of turbulent velocity on small scales, as verified by changes to the velocity power spectra. Our results indicate that gas self-gravity dynamically alters both density and velocity structures in clouds, giving rise to a time-varying star formation rate. We find that a substantial fraction of the gas that forms stars arrives via low-density flows, as opposed to accreting through high-density filaments.

  17. Stationarity test with a direct test for heteroskedasticity in exchange rate forecasting models

    NASA Astrophysics Data System (ADS)

    Khin, Aye Aye; Chau, Wong Hong; Seong, Lim Chee; Bin, Raymond Ling Leh; Teng, Kevin Low Lock

    2017-05-01

    Global economic has been decreasing in the recent years, manifested by the greater exchange rates volatility on international commodity market. This study attempts to analyze some prominent exchange rate forecasting models on Malaysian commodity trading: univariate ARIMA, ARCH and GARCH models in conjunction with stationarity test on residual diagnosis direct testing of heteroskedasticity. All forecasting models utilized the monthly data from 1990 to 2015. Given a total of 312 observations, the data used to forecast both short-term and long-term exchange rate. The forecasting power statistics suggested that the forecasting performance of ARIMA (1, 1, 1) model is more efficient than the ARCH (1) and GARCH (1, 1) models. For ex-post forecast, exchange rate was increased from RM 3.50 per USD in January 2015 to RM 4.47 per USD in December 2015 based on the baseline data. For short-term ex-ante forecast, the analysis results indicate a decrease in exchange rate on 2016 June (RM 4.27 per USD) as compared with 2015 December. A more appropriate forecasting method of exchange rate is vital to aid the decision-making process and planning on the sustainable commodities' production in the world economy.

  18. Oil price and exchange rate co-movements in Asian countries: Detrended cross-correlation approach

    NASA Astrophysics Data System (ADS)

    Hussain, Muntazir; Zebende, Gilney Figueira; Bashir, Usman; Donghong, Ding

    2017-01-01

    Most empirical literature investigates the relation between oil prices and exchange rate through different models. These models measure this relationship on two time scales (long and short terms), and often fail to observe the co-movement of these variables at different time scales. We apply a detrended cross-correlation approach (DCCA) to investigate the co-movements of the oil price and exchange rate in 12 Asian countries. This model determines the co-movements of oil price and exchange rate at different time scale. The exchange rate and oil price time series indicate unit root problem. Their correlation and cross-correlation are very difficult to measure. The result becomes spurious when periodic trend or unit root problem occurs in these time series. This approach measures the possible cross-correlation at different time scale and controlling the unit root problem. Our empirical results support the co-movements of oil prices and exchange rate. Our results support a weak negative cross-correlation between oil price and exchange rate for most Asian countries included in our sample. The results have important monetary, fiscal, inflationary, and trade policy implications for these countries.

  19. Gas exchange rates of potato stands for bioregenerative life support

    NASA Astrophysics Data System (ADS)

    Wheeler, Raymond M.; Stutte, Gary W.; Mackowiak, Cheryl L.; Yorio, Neil C.; Sager, John C.; Knott, William M.

    Plants can provide a means for removing carbon dioxide (CO2) while generating oxygen (O2) and clean water for life support systems in space. To study this, 20 m2 stands of potato (Solanum tuberosum L.) plants were grown in a large (113 m3 vol.), atmospherically closed chamber. Photosynthetic uptake of CO2 by the stands was detected about 10 DAP (days after planting), after which photosynthetic rates rose rapidly as stand ground cover and total light interception increased. Photosynthetic rates peaked ca. 50 DAP near 45 μmol CO2 m-2 s-1 under 865 μmol m-2 s-1 PPF (average photosynthetic photon flux), and near 35 μmol CO2 m-2 s-1 under 655 μmol m-2 s-1 PPF. Short term changes in PPF caused a linear response in stand photosynthetic rates up to 1100 μmol m-2 s-1 PPF, with a light compensation point of 185 μmol m-2 s-1 PPF. Comparisons of stand photosynthetic rates at different CO2 concentrations showed a classic C3 response, with saturation occurring near 1200 μmol mol-1 CO2 and compensation near 100 μmol mol-1 CO2. In one study, the photoperiod was changed from 12 h light/12 h dark to continuous light at 58 DAP. This caused a decrease in net photosynthetic rates within 48 h and eventual damage (scorching) of upper canopy leaves, suggesting the abrupt change stressed the plants and/or caused feedback effects on photosynthesis. Dark period (night) respiration rates increased during early growth as standing biomass increased and peaked near 9 μmol CO2 m-2 s-1 ca. 50 DAP, after which rates declined gradually with age. Stand transpiration showed a rapid rise with canopy ground cover and peaked ca. 50 DAP near 8.9 L m-2 d-1 under 860 μmol m-2 s-1 PPF and near 6.3 L m-2 d-1 under 650 μmol m-2 s-1 PPF. Based on the best photosynthetic rates from these studies, approximately 25 m2 of potato plants under continuous cultivation would be required to support the CO2 removal and O2 requirements for one person.

  20. Multi-Agent Market Modeling of Foreign Exchange Rates

    NASA Astrophysics Data System (ADS)

    Zimmermann, Georg; Neuneier, Ralph; Grothmann, Ralph

    A market mechanism is basically driven by a superposition of decisions of many agents optimizing their profit. The oeconomic price dynamic is a consequence of the cumulated excess demand/supply created on this micro level. The behavior analysis of a small number of agents is well understood through the game theory. In case of a large number of agents one may use the limiting case that an individual agent does not have an influence on the market, which allows the aggregation of agents by statistic methods. In contrast to this restriction, we can omit the assumption of an atomic market structure, if we model the market through a multi-agent approach. The contribution of the mathematical theory of neural networks to the market price formation is mostly seen on the econometric side: neural networks allow the fitting of high dimensional nonlinear dynamic models. Furthermore, in our opinion, there is a close relationship between economics and the modeling ability of neural networks because a neuron can be interpreted as a simple model of decision making. With this in mind, a neural network models the interaction of many decisions and, hence, can be interpreted as the price formation mechanism of a market.

  1. Exchange dynamics of nitric oxide in the human nose.

    PubMed

    Chambers, D C; Carpenter, D A; Ayres, J G

    2001-11-01

    Nasal nitric oxide (NO) exchange dynamics are poorly understood but potentially are of importance, inasmuch as they may provide insight into the NO-related physiology of the bronchial tree. In healthy human volunteers, NO output was assessed by isolating the nasal cavity through elevation of the soft palate and application of tight-fitting nasal olives. Mean NO output was 334 nl/min and was a positive function of gas flow. With the use of a mathematical model and the introduction of nonzero concentrations of NO, the diffusing capacity for NO in the nose (DNO) and the mucosal NO concentration (Cw) were determined. DNO ranged from 0.52 to 2.98 x 10(-3) nl x s(-1) x ppb(-1) and Cw from 1,236 to 8,947 ppb. Cw declined with increasing gas flow, while DNO was constant. NO output declined with luminal hypoxia, particularly at oxygen tensions <10%. Measurement of nasal DNO and Cw is easy using this method, and the range of intersubject values of Cw raises the possibility of interindividual differences in NO-dependent nasal physiology.

  2. Dynamical exchange-correlation potentials beyond the local density approximation

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Vignale, Giovanni

    2006-03-01

    Approximations for the static exchange-correlation (xc) potential of density functional theory (DFT) have reached a high level of sophistication. By contrast, time-dependent xc potentials are still being treated in a local (although velocity-dependent) approximation [G. Vignale, C. A. Ullrich and S. Conti, PRL 79, 4879 (1997)]. Unfortunately, one of the assumptions upon which the dynamical local approximation is based appears to break down in the important case of d.c. transport. Here we propose a new approximation scheme, which should allow a more accurate treatment of molecular transport problems. As a first step, we separate the exact adiabatic xc potential, which has the same form as in the static theory and can be treated by a generalized gradient approximation (GGA) or a meta-GGA. In the second step, we express the high-frequency limit of the xc stress tensor (whose divergence gives the xc force density) in terms of the exact static xc energy functional. Finally, we develop a perturbative scheme for the calculation of the frequency dependence of the xc stress tensor in terms of the ground-state Kohn-Sham orbitals and eigenvalues.

  3. Three dimensional dynamics of a flexible Motorised Momentum Exchange Tether

    NASA Astrophysics Data System (ADS)

    Ismail, N. A.; Cartmell, M. P.

    2016-03-01

    This paper presents a new flexural model for the three dimensional dynamics of the Motorised Momentum Exchange Tether (MMET) concept. This study has uncovered the relationships between planar and nonplanar motions, and the effect of the coupling between these two parameters on pragmatic circular and elliptical orbits. The tether sub-spans are modelled as stiffened strings governed by partial differential equations of motion, with specific boundary conditions. The tether sub-spans are flexible and elastic, thereby allowing three dimensional displacements. The boundary conditions lead to a specific frequency equation and the eigenvalues from this provide the natural frequencies of the orbiting flexible motorised tether when static, accelerating in monotonic spin, and at terminal angular velocity. A rotation transformation matrix has been utilised to get the position vectors of the system's components in an assumed inertial frame. Spatio-temporal coordinates are transformed to modal coordinates before applying Lagrange's equations, and pre-selected linear modes are included to generate the equations of motion. The equations of motion contain inertial nonlinearities which are essentially of cubic order, and these show the potential for intricate intermodal coupling effects. A simulation of planar and non-planar motions has been undertaken and the differences in the modal responses, for both motions, and between the rigid body and flexible models are highlighted and discussed.

  4. Experimental studies of alunite: II. Rates of alunite-water alkali and isotope exchange

    USGS Publications Warehouse

    Stoffregen, R.E.; Rye, R.O.; Wasserman, M.D.

    1994-01-01

    Rates of alkali exchange between alunite and water have been measured in hydrothermal experiments of 1 hour to 259 days duration at 150 to 400??C. Examination of run products by scanning electron microscope indicates that the reaction takes place by dissolution-reprecipitation. This exchange is modeled with an empirical rate equation which assumes a linear decrease in mineral surface area with percent exchange (f) and a linear dependence of the rate on the square root of the affinity for the alkali exchange reaction. This equation provides a good fit of the experimental data for f = 17% to 90% and yields log rate constants which range from -6.25 moles alkali m-2s-1 at 400??C to - 11.7 moles alkali m-2s-1 at 200??C. The variation in these rates with temperature is given by the equation log k* = -8.17(1000/T(K)) + 5.54 (r2 = 0.987) which yields an activation energy of 37.4 ?? 1.5 kcal/mol. For comparison, data from O'Neil and Taylor (1967) and Merigoux (1968) modeled with a pseudo-second-order rate expression give an activation energy of 36.1 ?? 2.9 kcal/mol for alkali-feldspar water Na-K exchange. In the absence of coupled alkali exchange, oxygen isotope exchange between alunite and water also occurs by dissolution-reprecipitation but rates are one to three orders of magnitude lower than those for alkali exchange. In fine-grained alunites, significant D-H exchange occurs by hydrogen diffusion at temperatures as low as 100??C. Computed hydrogen diffusion coefficients range from -15.7 to -17.3 cm2s-1 and suggest that the activation energy for hydrogen diffusion may be as low as 6 kcal/mol. These experiments indicate that rates of alkali exchange in the relatively coarse-grained alunites typical of hydrothermal ore deposits are insignificant, and support the reliability of K-Ar age data from such samples. However, the fine-grained alunites typical of low temperature settings may be susceptible to limited alkali exchange at surficial conditions which could cause

  5. A trace gas technique for measuring clothing microclimate air exchange rates

    PubMed Central

    Crockford, G. W.; Crowder, M.; Prestidge, S. P.

    1972-01-01

    Crockford, G. W., Crowder, M., and Prestidge, S. P. (1972).Brit. J. industr. Med.,29, 378-386. A trace gas technique for measuring clothing microclimate air exchange rates. The rate at which clothing microclimate air is exchanged for ambient air influences the sensible and insensible heat loss from the microclimate. Factors which influence this air exchange are clothing permeability, wind speed, body movements, clothing design, and fabric properties. The influence of the first four factors has been studied using a trace gas technique for measuring the rate at which microclimate air is exchanged for ambient air. The trace gas technique and the mathematical model describing the loss of the trace gas from the microclimate are described. The technique is shown to have a high resolving power, enabling small changes in the four factors studied to be identified, and as the method is also very quick detailed studies of garment design can be made. Images PMID:4636659

  6. Multifractal analysis of managed and independent float exchange rates

    NASA Astrophysics Data System (ADS)

    Stošić, Darko; Stošić, Dusan; Stošić, Tatijana; Stanley, H. Eugene

    2015-06-01

    We investigate multifractal properties of daily price changes in currency rates using the multifractal detrended fluctuation analysis (MF-DFA). We analyze managed and independent floating currency rates in eight countries, and determine the changes in multifractal spectrum when transitioning between the two regimes. We find that after the transition from managed to independent float regime the changes in multifractal spectrum (position of maximum and width) indicate an increase in market efficiency. The observed changes are more pronounced for developed countries that have a well established trading market. After shuffling the series, we find that the multifractality is due to both probability density function and long term correlations for managed float regime, while for independent float regime multifractality is in most cases caused by broad probability density function.

  7. High infection control rate and function after routine one-stage exchange for chronically infected TKA.

    PubMed

    Jenny, Jean-Yves; Barbe, Bruno; Gaudias, Jeannot; Boeri, Cyril; Argenson, Jean-Noël

    2013-01-01

    Many surgeons consider two-stage exchange the gold standard for treating chronic infection after TKA. One-stage exchange is an alternative for infection control and might provide better knee function, but the rates of infection control and levels of function are unclear. We asked whether a one-stage exchange protocol would lead to infection control rates and knee function similar to those after two-stage exchange. We followed all 47 patients with chronically infected TKAs treated with one-stage exchange between July 2004 and February 2007. We monitored for recurrence of infection and obtained Knee Society Scores. We followed patients a minimum of 3 years or until death or infection recurrence. Three of the 47 patients (6%) experienced a persistence or recurrence of the index infection with the same pathogen isolated. Three patients (6%) had control of the index infection but between 6 and 17 months experienced an infection with another pathogen. The 3-year survival rates were 87% for being free of any infection and 91% for being healed of the index infection. Twenty-five of the 45 patients (56%) had a Knee Society Score of more than 150 points. While routine one-stage exchange was not associated with a higher rate of infection recurrence failure, knee function was not improved compared to that of historical patients having two-stage exchange. One stage-exchange may be a reasonable alternative in chronically infected TKA as a more convenient approach for patients without the risks of two operations and hospitalizations and for reducing costs. The ideal one stage-exchange candidate should be identified in future studies.

  8. Temporal Dynamics of Social Exchange and the Development of Solidarity: "Testing the Waters" versus "Taking a Leap of Faith"

    ERIC Educational Resources Information Center

    Kuwabara, Ko; Sheldon, Oliver

    2012-01-01

    In their concerted efforts to unpack the microprocesses that transform repeated exchanges into an exchange relation, exchange theorists have paid little attention to how actors perceive changes and dynamics in exchanges over time. We help fill this gap by studying how temporal patterns of exchange affect the development of cohesion. Some exchange…

  9. Temporal Dynamics of Social Exchange and the Development of Solidarity: "Testing the Waters" versus "Taking a Leap of Faith"

    ERIC Educational Resources Information Center

    Kuwabara, Ko; Sheldon, Oliver

    2012-01-01

    In their concerted efforts to unpack the microprocesses that transform repeated exchanges into an exchange relation, exchange theorists have paid little attention to how actors perceive changes and dynamics in exchanges over time. We help fill this gap by studying how temporal patterns of exchange affect the development of cohesion. Some exchange…

  10. Dynamics of the hydrogen exchange reaction using the photoloc technique

    NASA Astrophysics Data System (ADS)

    Fernandez-Alonso, Felix

    2000-08-01

    The dynamics of the H + D2 exchange reaction has been studied experimentally using laser, velocity- sensitive time-of-flight (TOF) methods. Chemical reaction is initiated by laser photolysis of a suitable HX precursor resulting in a collision energy spread of 50 MeV. HD(v ', J') products are detected via (2+1) resonance-enhanced multiphoton ionization (REMPI) inside a Wiley-McLaren time-of-flight spectrometer. Integral cross section measurements are performed by measuring the total ion yield into different product rovibrational states. In addition, core extraction of the ion packet prior to detection allows an unambiguous inversion of the laboratory product velocity distribution into a corresponding center-of-mass differential cross section with an angular resolution ranging from 3° for backward to 15° for forward scattering. The measured rotational distributions for the HD(v' = 1, 2, J) vibrational manifolds at collision energies ca. 1.6 eV agree closely with quasiclassical trajectory calculations. These distributions are colder than the ``prior'' limit indicating that other constraints besides energy conservation are dictating energy disposal into the rotational degree of Freedom of the diatomic product. Further insight into the dynamics of this reaction is given by the differential cross section measurements into particular HD(v' = 1, J') and HD(v' = 2, J') quantum states. In each vibrational manifold, the product angular distributions are completely back ward scattered for low- J' states, and they shift toward side scattering as the rotational excitation of the product increases. Experimental data at a lower angular resolution for HD(v' = 3, J' ) also show a similar trend in the angular distributions. The differential cross section data can be qualitatively explained by invoking a line- of-centers with nearly elastic specular scattering model which links the most probable scattering angle for a given HD(v', J') product state with initial impact parameter

  11. Carbon dioxide exchange rates from short- and long-hydroperiod Everglades freshwater marsh

    Treesearch

    K. L. Jimenez; G. Starr; C. L. Staudhammer; J. L. Schedlbauer; H. W. Loescher; Sparkle L Malone; S. F. Oberbauer

    2012-01-01

    Everglades freshwater marshes were once carbon sinks, but human-driven hydrologic changes have led to uncertainty about the current state of their carbon dynamics. To investigate the effect of hydrology on CO2 exchange, we used eddy covariance measurements for 2 years (2008-2009) in marl (short-hydroperiod) and peat (long-hydroperiod) wetlands in Everglades National...

  12. Improving dynamic performance of proton-exchange membrane fuel cell system using time delay control

    NASA Astrophysics Data System (ADS)

    Kim, Young-Bae

    Transient behaviour is a key parameter for the vehicular application of proton-exchange membrane (PEM) fuel cell. The goal of this presentation is to construct better control technology to increase the dynamic performance of a PEM fuel cell. The PEM fuel cell model comprises a compressor, an injection pump, a humidifier, a cooler, inlet and outlet manifolds, and a membrane-electrode assembly. The model includes the dynamic states of current, voltage, relative humidity, stoichiometry of air and hydrogen, cathode and anode pressures, cathode and anode mass flow rates, and power. Anode recirculation is also included with the injection pump, as well as anode purging, for preventing anode flooding. A steady-state, isothermal analytical fuel cell model is constructed to analyze the mass transfer and water transportation in the membrane. In order to prevent the starvation of air and flooding in a PEM fuel cell, time delay control is suggested to regulate the optimum stoichiometry of oxygen and hydrogen, even when there are dynamical fluctuations of the required PEM fuel cell power. To prove the dynamical performance improvement of the present method, feed-forward control and Linear Quadratic Gaussian (LQG) control with a state estimator are compared. Matlab/Simulink simulation is performed to validate the proposed methodology to increase the dynamic performance of a PEM fuel cell system.

  13. Chaoticity in the time evolution of foreign currency exchange rates in Turkey

    NASA Astrophysics Data System (ADS)

    Cakar, O.; Aybar, O. O.; Hacinliyan, A. S.; Kusbeyzi, I.

    Tools from chaos theory that have found recent use in analysing financial markets have been applied to the US Dollar and Euro buying and selling rates against the Turkish currency. The reason for choosing the foreign exchange rate in this analysis is the fact that foreign currency is an indicator of not only the globalization of economy but also savings and investment. In order to test the globality assumption and to ascertain the degree of involvement of local conditions in Turkey, the Euro and US dollar exchange rates have been subjected to the same analysis.

  14. Rapid Analysis of Protein Structure and Dynamics by Hydrogen/Deuterium Exchange Mass Spectrometry

    PubMed Central

    Hamuro, Yoshitomo; Coales, Stephen J.; Southern, Mark R.; Nemeth-Cawley, Jennifer F.; Stranz, David D.; Griffin, Patrick R.

    2003-01-01

    An automated approach for the rapid analysis of protein structure has been developed and used to study acid-induced conformational changes in human growth hormone. The labeling approach involves hydrogen/deuterium exchange (H/D-Ex) of protein backbone amide hydrogens with rapid and sensitive detection by mass spectrometry (MS). Briefly, the protein is incubated for defined intervals in a deuterated environment. After rapid quenching of the exchange reaction, the partially deuterated protein is enzymatically digested and the resulting peptide fragments are analyzed by liquid chromatography mass spectrometry (LC-MS). The deuterium buildup curve measured for each fragment yields an average amide exchange rate that reflects the environment of the peptide in the intact protein. Additional analyses allow mapping of the free energy of folding on localized segments along the protein sequence affording unique dynamic and structural information. While amide H/D-Ex coupled with MS is recognized as a powerful technique for studying protein structure and protein–ligand interactions, it has remained a labor-intensive task. The improvements in the amide H/D-Ex methodology described here include solid phase proteolysis, automated liquid handling and sample preparation, and integrated data reduction software that together improve sequence coverage and resolution, while achieving a sample throughput nearly 10-fold higher than the commonly used manual methods. PMID:13678147

  15. Heart rate dynamics in a marsupial hibernator.

    PubMed

    Swoap, Steven J; Körtner, Gerhard; Geiser, Fritz

    2017-08-15

    The eastern pygmy possum (Cercartetus nanus) is a small marsupial that can express spontaneous short bouts of torpor, as well as multi-day bouts of deep hibernation. To examine heart rate (fH) control at various stages of torpor in a marsupial hibernator, and to see whether fH variability differs from that of deep placental hibernators, we used radiotelemetry to measure ECG and body temperature (Tb) while measuring the rate of O2 consumption and ventilation. fH and O2 consumption rate during euthermia were at a minimum (321±34 beats min(-1), 0.705±0.048 ml O2 g(-1) h(-1)) at an ambient temperature (Ta) of 31°C. fH had an inverse linear relationship with Ta to a maximum of 630±19 beats min(-1) at a Ta of 20°C. During entry into torpor at a Ta of 20°C, fH slowed primarily as a result of episodic periods of cardiac activity where electrical activity of the heart occurred in groups of 3 or 4 heart beats. When Tb was stable at 24°C in these torpor bouts, the episodic nature of fH had disappeared (i.e. no asystoles) with a rate of 34±3 beats min(-1) For multi-day bouts of deep torpor, Ta was lowered to 6.6±0.8°C. During these deep bouts of torpor, Tb reached a minimum of 8.0±1.0°C, with a minimum fH of 8 beats min(-1) and a minimum O2 consumption rate of 0.029±0.07 ml O2 g(-1) h(-1) Shivering bouts occurred in deep torpor about every 8 min, during which ventilation occurred, and fH was elevated to 40 beats min(-1) The duration of the QRS complex increased from 12 ms during euthermia to 69 ms at a Tb of 8°C. These findings demonstrate the dynamic functioning range of fH to be about 600 beats min(-1) (∼80-fold), one of the largest known ranges in mammals. Our study shows that despite a separation of ∼160 million years, the control and function of the cardiac system seems indistinguishable in marsupial and placental hibernating mammals. © 2017. Published by The Company of Biologists Ltd.

  16. The study of RMB exchange rate complex networks based on fluctuation mode

    NASA Astrophysics Data System (ADS)

    Yao, Can-Zhong; Lin, Ji-Nan; Zheng, Xu-Zhou; Liu, Xiao-Feng

    2015-10-01

    In the paper, we research on the characteristics of RMB exchange rate time series fluctuation with methods of symbolization and coarse gaining. First, based on fluctuation features of RMB exchange rate, we define the first type of fluctuation mode as one specific foreign currency against RMB in four days' fluctuating situations, and the second type as four different foreign currencies against RMB in one day's fluctuating situation. With the transforming method, we construct the unique-currency and multi-currency complex networks. Further, through analyzing the topological features including out-degree, betweenness centrality and clustering coefficient of fluctuation-mode complex networks, we find that the out-degree distribution of both types of fluctuation mode basically follows power-law distributions with exponents between 1 and 2. The further analysis reveals that the out-degree and the clustering coefficient generally obey the approximated negative correlation. With this result, we confirm previous observations showing that the RMB exchange rate exhibits a characteristic of long-range memory. Finally, we analyze the most probable transmission route of fluctuation modes, and provide probability prediction matrix. The transmission route for RMB exchange rate fluctuation modes exhibits the characteristics of partially closed loop, repeat and reversibility, which lays a solid foundation for predicting RMB exchange rate fluctuation patterns with large volume of data.

  17. Cross-correlations between RMB exchange rate and international commodity markets

    NASA Astrophysics Data System (ADS)

    Lu, Xinsheng; Li, Jianfeng; Zhou, Ying; Qian, Yubo

    2017-11-01

    This paper employs multifractal detrended analysis (MF-DFA) and multifractal detrended cross-correlation analysis (MF-DCCA) to study cross-correlation behaviors between China's RMB exchange rate market and four international commodity markets, using a comprehensive set of data covering the period from 22 July 2005 to 15 March 2016. Our empirical results from MF-DFA indicate that the RMB exchange rate is the most inefficient among the 4 selected markets. The results from quantitative analysis have testified the existence of cross-correlations and the result from MF-DCCA have further confirmed a strong multifractal behavior between RMB exchange rate and international commodity markets. We also demonstrate that the recent financial crisis has significant impact on the cross-correlated behavior. Through the rolling window analysis, we find that the RMB exchange rates and international commodity prices are anti-persistent cross-correlated. The main sources of multifractality in the cross-correlations are long-range correlations between RMB exchange rate and the aggregate commodity, energy and metals index.

  18. Effects of flow rate and temperature on cyclic gas exchange in tsetse flies (Diptera, Glossinidae).

    PubMed

    Terblanche, John S; Chown, Steven L

    2010-05-01

    Air flow rates may confound the investigation and classification of insect gas exchange patterns. Here we report the effects of flow rates (50, 100, 200, 400 ml min(-1)) on gas exchange patterns in wild-caught Glossina morsitans morsitans from Zambia. At rest, G. m. morsitans generally showed continuous or cyclic gas exchange (CGE) but no evidence of discontinuous gas exchange (DGE). Flow rates had little influence on the ability to detect CGE in tsetse, at least in the present experimental setup and under these laboratory conditions. Importantly, faster flow rates resulted in similar gas exchange patterns to those identified at lower flower rates suggesting that G. m. morsitans did not show DGE which had been incorrectly identified as CGE at lower flow rates. While CGE cycle frequency was significantly different among the four flow rates (p<0.05), the direction of effects was inconsistent. Indeed, inter-individual variation in CGE cycle frequency exceeded flow rate treatment variation. Using a laboratory colony of closely related, similar-sized G. morsitans centralis we subsequently investigated the effects of temperature, gender and feeding status on CGE pattern variation since these factors can influence insect metabolic rates. At 100 ml min(-1) CGE was typical of G. m. centralis at rest, although it was significantly more common in females than in males (57% vs. 43% of 14 individuals tested per gender). In either sex, temperature (20, 24, 28 and 32 degrees C) had little influence on the number of individuals showing CGE. However, increases in metabolic rate with temperature were modulated largely by increases in burst volume and cycle frequency. This is unusual among insects showing CGE or DGE patterns because increases in metabolic rate are usually modulated by increases in frequency, but either no change or a decline in burst volume.

  19. EXCHANGE

    SciTech Connect

    Boltz, J.C.

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  20. Imaging Local Diffusive Dynamics Using Diffusion Exchange Spectroscopy MRI

    NASA Astrophysics Data System (ADS)

    Benjamini, Dan; Komlosh, Michal E.; Basser, Peter J.

    2017-04-01

    The movement of water between microenvironments presents a central challenge in the physics of soft matter and porous media. Diffusion exchange spectroscopy (DEXSY) is a powerful 2D nuclear magnetic resonance method for measuring such exchange, yet it is rarely used because of its long scan time requirements. Moreover, it has never been combined with magnetic resonance imaging (MRI). Using probability theory, we vastly reduce the required data, making DEXSY MRI feasible for the first time. Experiments are performed on a composite nerve tissue phantom with restricted and free water-exchanging compartments.

  1. Dynamic Exchange of Myosin VI on Endocytic Structures*

    PubMed Central

    Bond, Lisa M.; Arden, Susan D.; Kendrick-Jones, John; Buss, Folma; Sellers, James R.

    2012-01-01

    The actin-based molecular motor myosin VI functions in the endocytic uptake pathway, both during the early stages of clathrin-mediated uptake and in later transport to/from early endosomes. This study uses fluorescence recovery after photobleaching (FRAP) to examine the turnover rate of myosin VI during endocytosis. The results demonstrate that myosin VI turns over dynamically on endocytic structures with a characteristic half-life common to both the large insert isoform of myosin VI on clathrin-coated structures and the no-insert isoform on early endosomes. This half-life is shared by the myosin VI-binding partner Dab2 and is identical for full-length myosin VI and the cargo-binding tail region. The 4-fold slower half-life of an artificially dimerized construct of myosin VI on clathrin-coated structures suggests that wild type myosin VI does not function as a stable dimer, but either as a monomer or in a monomer/dimer equilibrium. Taken together, these FRAP results offer insight into both the basic turnover dynamics and the monomer/dimer nature of myosin VI. PMID:22992744

  2. Characterization of atmosphere-water exchange processes of CO 2 in estuaries using dynamic simulation

    NASA Astrophysics Data System (ADS)

    García-Luque, E.; Forja, J. M.; Gómez-Parra, A.

    2005-12-01

    CO 2 is one of the so-called "greenhouse effect" gases; therefore, its rates of water-atmosphere exchange are very relevant for studies of climate change. Coastal zones (which include estuarine systems) are of special interest in relation to the global carbon cycle. Thus, an estuary simulator, which operates in a dynamic mixing regime, is specifically applied in an initial study of the estuarine dynamic of inorganic carbon, focusing basically on the influence of salinity and pH on the water-atmosphere fluxes of CO 2 in these zones. The simulation has been performed under two assumptions: (i) considering that the system is subjected to a stationary gradient of salinity and (ii) taking into account the effect of the tides, owing to the daily oscillations introduced by this phenomenon in the process of CO 2 transfer between the water and the atmosphere. After analysing the results, it has been observed that a potential source of error exists when choosing the coefficients of gas exchange ( k) for CO 2 studies. Nevertheless, the evolution of CO 2 fluxes along the salinity and pH gradients achieved shows the same trends with those observed in a wide variety of real estuaries described in the related literature.

  3. Imino proton exchange rates imply an induced-fit binding mechanism for the VEGF165-targeting aptamer, Macugen

    PubMed Central

    Lee, Joon-Hwa; Jucker, Fiona; Pardi, Arthur

    2008-01-01

    The 2′-fluoro/2′-O-methyl modified RNA aptamer Macugen is a potent inhibitor of the angiogenic regulatory protein, VEGF165. Macugen binds with high affinity to the heparin-binding domain (HBD) of VEGF165. Hydrogen exchange rates of the imino protons were measured for free Macugen and Macugen bound to the HBD or full-length VEGF to better understand the mechanism for high affinity binding. The results here show that the internal loop and hairpin loop of Macugen are highly dynamic in the free state and are greatly stabilized and/or protected from solvent upon protein binding. PMID:18485899

  4. Generator exchange is associated with an increased rate of Sprint Fidelis lead failure.

    PubMed

    Lovelock, Joshua D; Patel, Ayesha; Mengistu, Andenet; Hoskins, Michael; El-Chami, Mikhael; Lloyd, Michael S; Leon, Angel; DeLurgio, David; Langberg, Jonathan J

    2012-10-01

    The Medtronic Sprint Fidelis defibrillator lead is at an increased risk for failure and was recalled in October 2007. Approximately 268,000 leads were implanted, and more than 100,000 patients still have active Fidelis leads. A number of studies have examined the rate and clinical predictors of lead failure, but none has addressed the effect of an implantable cardioverter-defibrillator generator exchange on subsequent lead failure. Although the manufacturer asserts that "Sprint Fidelis performance after device change-out is similar to lead performance without device change-out," published data are lacking. To assess the effect of implantable cardioverter-defibrillator generator exchange on the rate of Fidelis lead failure. A chart review was conducted in patients who underwent implantation of a Fidelis lead. Patients with a functioning Fidelis lead at generator exchange were compared with controls with leads implanted for a comparable amount of time not undergoing ICD replacement. A total of 1366 patients received a Fidelis lead prior to the recall, of which 479 were still actively followed. Seventy-two patients with a functioning lead underwent generator exchange without lead replacement. Following generator replacement, 15 leads failed. Sixty percent of the Fidelis leads failed within 3 months. Generator exchange increased the rate of lead failure compared with matched controls (20.8% vs 2.54%; P < .001). Generator exchange is associated with a higher than expected rate of Fidelis lead failure, often within 3 months. The risk-benefit ratio of Fidelis lead replacement at the time of generator exchange may be greater than appreciated. Copyright © 2012 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  5. Mass spectrometric measurement of protein amide hydrogen exchange rates of apo- and holo-myoglobin.

    PubMed Central

    Johnson, R. S.; Walsh, K. A.

    1994-01-01

    Measurement of backbone amide hydrogen exchange rates can provide detailed information concerning protein structure, dynamics, and interactions. Although nuclear magnetic resonance is typically used to provide these data, its use is restricted to lower molecular weight proteins that are soluble at millimolar concentrations. Not subject to these limitations is a mass spectrometric approach for measuring deuterium incorporation into proteins that are subsequently proteolyzed by pepsin; the resulting peptide masses are measured using a flowing-fast atom bombardment ionization source (Zhang Z, Smith DL, 1993, Protein Sci 2:522-531). In the current study, amide deuterium incorporation for intact apo- and holo-myoglobin was measured using liquid chromatography coupled directly to an electrospray ionization (LC/MS) source. Electrospray ionization provided a more complete coverage of the protein sequence and permitted the measurement of deuterium incorporation into intact proteins. Tandem mass spectrometry was used to rapidly identify the peptic peptides. It was found that within 30 s, the amides in apo-myoglobin were 47% deuterated, whereas holo-myoglobin was 12% deuterated. Peptic digestion and LC/MS demonstrated that regions represented by peptic peptides encompassing positions 1-7, 12-29, and 110-134 were not significantly altered by removal of the heme. Likewise, destabilized regions were identified within positions 33-106 and 138-153. PMID:7756994

  6. Optimal experimental design for filter exchange imaging: Apparent exchange rate measurements in the healthy brain and in intracranial tumors

    PubMed Central

    Szczepankiewicz, Filip; van Westen, Danielle; Englund, Elisabet; C Sundgren, Pia; Lätt, Jimmy; Ståhlberg, Freddy; Nilsson, Markus

    2016-01-01

    Purpose Filter exchange imaging (FEXI) is sensitive to the rate of diffusional water exchange, which depends, eg, on the cell membrane permeability. The aim was to optimize and analyze the ability of FEXI to infer differences in the apparent exchange rate (AXR) in the brain between two populations. Methods A FEXI protocol was optimized for minimal measurement variance in the AXR. The AXR variance was investigated by test‐retest acquisitions in six brain regions in 18 healthy volunteers. Preoperative FEXI data and postoperative microphotos were obtained in six meningiomas and five astrocytomas. Results Protocol optimization reduced the coefficient of variation of AXR by approximately 40%. Test‐retest AXR values were heterogeneous across normal brain regions, from 0.3 ± 0.2 s−1 in the corpus callosum to 1.8 ± 0.3 s−1 in the frontal white matter. According to analysis of statistical power, in all brain regions except one, group differences of 0.3–0.5 s−1 in the AXR can be inferred using 5 to 10 subjects per group. An AXR difference of this magnitude was observed between meningiomas (0.6 ± 0.1 s−1) and astrocytomas (1.0 ± 0.3 s−1). Conclusions With the optimized protocol, FEXI has the ability to infer relevant differences in the AXR between two populations for small group sizes. Magn Reson Med 77:1104–1114, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. PMID:26968557

  7. Effects of respiratory rate and tidal volume on gas exchange in total liquid ventilation.

    PubMed

    Bull, Joseph L; Tredici, Stefano; Fujioka, Hideki; Komori, Eisaku; Grotberg, James B; Hirschl, Ronald B

    2009-01-01

    Using a rabbit model of total liquid ventilation (TLV), and in a corresponding theoretical model, we compared nine tidal volume-respiratory rate combinations to identify a ventilator strategy to maximize gas exchange, while avoiding choked flow, during TLV. Nine different ventilation strategies were tested in each animal (n = 12): low [LR = 2.5 breath/min (bpm)], medium (MR = 5 bpm), or high (HR = 7.5 bpm) respiratory rates were combined with a low (LV = 10 ml/kg), medium (MV = 15 ml/kg), or high (HV = 20 ml/kg) tidal volumes. Blood gases and partial pressures, perfluorocarbon gas content, and airway pressures were measured for each combination. Choked flow occurred in all high respiratory rate-high volume animals, 71% of high respiratory rate-medium volume (HRMV) animals, and 50% of medium respiratory rate-high volume (MRHV) animals but in no other combinations. Medium respiratory rate-medium volume (MRMV) resulted in the highest gas exchange of the combinations that did not induce choke. The HRMV and MRHV animals that did not choke had similar or higher gas exchange than MRMV. The theory predicted this behavior, along with spatial and temporal variations in alveolar gas partial pressures. Of the combinations that did not induce choked flow, MRMV provided the highest gas exchange. Alveolar gas transport is diffusion dominated and rapid during gas ventilation but is convection dominated and slow during TLV. Consequently, the usual alveolar gas equation is not applicable for TLV.

  8. Dynamics of radiocesium exchange and interstratification in anhydrous clay interlayers: Bridging the atom and single crystal scales

    NASA Astrophysics Data System (ADS)

    Lammers, L. N.; Pestana, L. R.; Schaettle, K. B.; Head-Gordon, T.

    2016-12-01

    High structural charge clay minerals govern the transport and retention of radiocesium in soils and clay-rich geologic repositories. Cation exchange capacities in these phases are typically assumed to be limited to fast-exchanging basal and high-affinity edge sites, while ions in anhydrous interlayers, usually K+, are considered non-exchangeable. However, recent high resolution imaging and spectroscopic studies have demonstrated that Cs ions can in fact exchange with interlayer K without the formation of a hydrated intermediate.1,2 These exchange reactions result in sharp exchange fronts wherein K+ ions are completely replaced by Cs+ at the exchange interface, and the rate of exchange varies from layer to layer, resulting in the formation of interstratified structures (i.e., randomly alternating layers of exchanged and pristine interlayers). Currently, this process cannot be explained by any known exchange mechanism, and consequently, no kinetic expressions are available to account for this phenomenon in models of subsurface radiocesium fate and transport. We present a mesoscale model for direct exchange in anhydrous clay interlayers that is based on the kinetics of single ion migration events. Single atom migration kinetics derived from density functional theory (DFT) calculations are used as inputs to kinetic Monte Carlo (kMC) simulations, which capture the collective dynamics of the exchange process over length- and timescales relevant for implementation in reactive transport models. Potential energy surfaces derived from DFT demonstrate that exchange of Cs+ for K+ in anhydrous interlayers lowers the energy barrier to K ion migration by 145 kJ/mol, leading to a positive feedback mechanism that generates atomically sharp exchange fronts. Our work demonstrates the application of "coarse-graining" techniques to develop models for processes with characteristic length- and timescales not accessible by direct atomistic simulation. 1 Okumura T. et al. (2014) Direct

  9. pH and urea dependence of amide hydrogen-deuterium exchange rates in the beta-trefoil protein hisactophilin.

    PubMed

    Houliston, R Scott; Liu, Chengsong; Singh, Laila M R; Meiering, Elizabeth M

    2002-01-29

    Amide hydrogen/deuterium exchange rates were measured as a function of pH and urea for 37 slowly exchanging amides in the beta-trefoil protein hisactophilin. The rank order of exchange rates is generally maintained under different solution conditions, and trends in the pH and urea dependence of exchange rates are correlated with the rank order of exchange rates. The observed trends are consistent with the expected behavior for exchange of different amides via global and/or local unfolding. Analysis of the pH dependence of exchange in terms of rate constants for structural opening and closing reveals a wide range of rates in different parts of the hisactophilin structure. The slowest exchanging amides have the slowest opening and closing rates. Many of the slowest exchanging amides are located in trefoil 2, but there are also some slow exchanging amides in trefoils 1 and 3. Slow exchangers tend to be near the interface between the beta-barrel and the beta-hairpin triplet portions of this single-domain structure. The pattern of exchange behaviour in hisactophilin is similar to that observed previously in interleukin-1 beta, indicating that exchange properties may be conserved among beta-trefoil proteins. Comparisons of opening and closing rates in hisactophilin with rates obtained for other proteins reveal clear trends for opening rates; however, trends in closing rates are less apparent, perhaps due to inaccuracies in the values used for intrinsic exchange rates in the data fitting. On the basis of the pH and urea dependence of exchange rates and optical measurements of stability and folding, EX2 is the main exchange mechanism in hisactophilin, but there is also evidence for varying levels of EX1 exchange at low and high pH and high urea concentrations. Equilibrium intermediates in which subglobal portions of structure are cooperatively disrupted are not apparent from analysis of the urea dependence of exchange rates. There is, however, a strong correlation between

  10. Self-other rating agreement and leader-member exchange (LMX): a quasi-replication.

    PubMed

    Barbuto, John E; Wilmot, Michael P; Singh, Matthew; Story, Joana S P

    2012-04-01

    Data from a sample of 83 elected community leaders and 391 direct-report staff (resulting in 333 useable leader-member dyads) were reanalyzed to test relations between self-other rating agreement of servant leadership and member-reported leader-member exchange (LMX). Polynomial regression analysis indicated that the self-other rating agreement model was not statistically significant. Instead, all of the variance in member-reported LMX was accounted for by the others' ratings component alone.

  11. Essays in applied macroeconomics: Asymmetric price adjustment, exchange rate and treatment effect

    NASA Astrophysics Data System (ADS)

    Gu, Jingping

    This dissertation consists of three essays. Chapter II examines the possible asymmetric response of gasoline prices to crude oil price changes using an error correction model with GARCH errors. Recent papers have looked at this issue. Some of these papers estimate a form of error correction model, but none of them accounts for autoregressive heteroskedasticity in estimation and testing for asymmetry and none of them takes the response of crude oil price into consideration. We find that time-varying volatility of gasoline price disturbances is an important feature of the data, and when we allow for asymmetric GARCH errors and investigate the system wide impulse response function, we find evidence of asymmetric adjustment to crude oil price changes in weekly retail gasoline prices. Chapter III discusses the relationship between fiscal deficit and exchange rate. Economic theory predicts that fiscal deficits can significantly affect real exchange rate movements, but existing empirical evidence reports only a weak impact of fiscal deficits on exchange rates. Based on US dollar-based real exchange rates in G5 countries and a flexible varying coefficient model, we show that the previously documented weak relationship between fiscal deficits and exchange rates may be the result of additive specifications, and that the relationship is stronger if we allow fiscal deficits to impact real exchange rates non-additively as well as nonlinearly. We find that the speed of exchange rate adjustment toward equilibrium depends on the state of the fiscal deficit; a fiscal contraction in the US can lead to less persistence in the deviation of exchange rates from fundamentals, and faster mean reversion to the equilibrium. Chapter IV proposes a kernel method to deal with the nonparametric regression model with only discrete covariates as regressors. This new approach is based on recently developed least squares cross-validation kernel smoothing method. It can not only automatically smooth

  12. Exchange rate regimes, saving glut and the Feldstein Horioka puzzle: The East Asian experience

    NASA Astrophysics Data System (ADS)

    Kaya-Bahçe, Seçil; Özmen, Erdal

    2008-04-01

    This paper investigates whether the recent experience of the emerging East Asian countries with current account surpluses is consistent with the “saving glut” hypothesis and the Feldstein and Horioka puzzle. The evidence suggests that the saving retention coefficients declined substantially in most of the countries after an endogenous break date coinciding with a major exchange rate regime change with the 1997-1998 crisis. Exchange rate flexibility appears to be enhancing financial integration. The results are consistent with an “investment slump” explanation rather than the “saving glut” postulation.

  13. Probing exchange kinetics and atomic resolution dynamics in high-molecular-weight complexes using dark-state exchange saturation transfer NMR spectroscopy.

    PubMed

    Fawzi, Nicolas L; Ying, Jinfa; Torchia, Dennis A; Clore, G Marius

    2012-07-19

    We present the protocol for the measurement and analysis of dark-state exchange saturation transfer (DEST), a novel solution NMR method for characterizing, at atomic resolution, the interaction between an NMR-'visible' free species and an NMR-'invisible' species transiently bound to a very high-molecular-weight (>1 MDa) macromolecular entity. The reduced rate of reorientational motion in the bound state that precludes characterization by traditional NMR methods permits the observation of DEST. (15)N-DEST profiles are measured on a sample comprising the dark state in exchange with an NMR-visible species; in addition, the difference (ΔR(2)) in (15)N transverse relaxation rates between this sample and a control sample comprising only the NMR-visible species is also obtained. The (15)N-DEST and ΔR(2) data for all residues are then fitted simultaneously to the McConnell equations for various exchange models describing the residue-specific dynamics in the bound state(s) and the interconversion rate constants. Although the length of the experiments depends strongly on sample conditions, approximately 1 week of NMR spectrometer time was sufficient for full characterization of samples of amyloid-β (Aβ) at concentrations of ~100 μM.

  14. Solution dynamics of the trp repressor: a study of amide proton exchange by T1 relaxation.

    PubMed

    Gryk, M R; Finucane, M D; Zheng, Z; Jardetzky, O

    1995-03-10

    The amide proton exchange rates of Escherichia coli trp repressor have been measured through their effects on the longitudinal relaxation rates of the amide protons. Three types of exchange regimes have been observed: (1) slow exchange (on a minute/hour time-scale), measurable by isotope exchange, but not by relaxation techniques in the core of the molecule; (2) relatively rapid exchange, with the rates on a T1 relaxation time-scale (seconds) in the DNA-binding region and (3) very fast exchange at the N and C termini. The results have been analyzed in terms of the two-site exchange model originally proposed by Linderstrøm-Lang, and of a three-site extension of the model. The values of the intrinsic exchange rates calculated using the two-state model agree with the values expected from the studies of Englander and co-workers for the very fast case of the chain terminals, but disagree with the literature values by two orders of magnitude in the intermediate case found in the DNA-binding region. The implication of these findings is that the "open" state of the two-state model in the DNA-binding region is not completely open and has an intrinsic exchange rate different from that of a random coil peptide. Alternatively, if the literature values of the intrinsic exchange rates are assumed to apply to the open states in all parts of the repressor molecule, two "closed" helical states have to be postulated, in slow exchange with each other, with only one of them in rapid exchange with the open state and hence with the solvent. Kinetically, the two models are indistinguishable.

  15. Exciton dynamics in cation-exchanged CdSe/PbSe nanorods: The role of defects

    NASA Astrophysics Data System (ADS)

    Lee, Sooho; Wang, Yimeng; Liu, Yawei; Lee, Dongkyu; Lee, Kangha; Lee, Doh C.; Lian, Tianquan

    2017-09-01

    Cation exchange occurs via defect initiated solid-state diffusion, a process that can lead to defect formations. The effect of such inherent defect formation on carrier dynamics of cation-exchanged heterostructures remains poorly understood. Herein, we report exciton dynamics in type II CdSe/PbSe heterostructure nanorods formed via cation exchange. The majority of electrons in CdSe domains decays in 5 ps due to ultrafast carrier trapping. The defect generated by cation exchange can be healed by annealing the as-synthesized CdSe/PbSe heterostructure nanorods. This study suggests a strategy for improving properties of heteronanostructures prepared by cation exchange for applications in photovoltaics and photocatalysis.

  16. Novel dynamic flux chamber for measuring air-surface exchange of Hg(o) from soils.

    PubMed

    Lin, Che-Jen; Zhu, Wei; Li, Xianchang; Feng, Xinbin; Sommar, Jonas; Shang, Lihai

    2012-08-21

    Quantifying the air-surface exchange of Hg(o) from soils is critical to understanding the cycling of mercury in different environmental compartments. Dynamic flux chambers (DFCs) have been widely employed for Hg(o) flux measurement over soils. However, DFCs of different sizes, shapes, and sampling flow rates yield distinct measured fluxes for a soil substrate under identical environmental conditions. In this study, we performed an integrated modeling, laboratory and field study to design a DFC capable of producing a steady and uniform air flow over a flat surface. The new DFC was fabricated using polycarbonate sheets. The internal velocity field was experimentally verified against model predictions using both theoretical and computational fluid dynamics techniques, suggesting fully developed flow with velocity profiles in excellent agreement with model results. Laboratory flux measurements demonstrated that the new design improves data reproducibility as compared to a conventional DFC, and reproduces the model-predicted flux trend with increasing sampling flow. A mathematical relationship between the sampling flow rate and surface friction velocity, a variable commonly parametrized in atmospheric models, was developed for field application. For the first time, the internal shear property of a DFC can be precisely controlled using the sampling flow rate, and the flux under atmospheric condition can be inferred from the measured flux and surface shear property. The demonstrated methodology potentially bridges the gap in measured fluxes obtained by the DFC method and the micrometeorological methods.

  17. Care Transitions in Long-term Care and Acute Care: Health Information Exchange and Readmission Rates.

    PubMed

    Yeaman, Brian; Ko, Kelly J; Alvarez del Castillo, Rodolfo

    2015-09-30

    Care transitions between settings are a well-known cause of medical errors. A key component of transition is information exchange, especially in long-term care (LTC). However, LTC is behind other settings in adoption of health information technologies (HIT). In this article, we provide some brief background information about care transitions in LTC and concerns related to technology. We describe a pilot project using HIT and secure messaging in LTC to facilitate electronic information exchange during care transitions. Five LTC facilities were included, all located within Oklahoma and serviced by the same regional health system. The study duration was 20 months. Both inpatient readmission and return emergency department (ED) visit rates were lower than baseline following implementation. We provide discussion of positive outcomes, lessons learned, and limitations. Finally, we offer implications for practice and research for implementation of HIT and information exchange across care settings that may contribute to reduction in readmission rates in acute care and ED settings.

  18. Energy exchange rates between the ionosphere-thermosphere system and the magnetosphere at high latitudes

    NASA Astrophysics Data System (ADS)

    Aikio, A.; Cai, L.; Nygren, T.; Kuula, R.

    2012-04-01

    The magnetosphere and the ionosphere-thermosphere system exchange energy in the form of electromagnetic energy flux, accompanied by electric fields and field-aligned currents, as well as in the form of precipitating particle fluxes. In this study, we examine the first form of energy exchange by using a one-month database obtained by the EISCAT incoherent scatter radar measurements in Tromso. The electromagnetic energy exchange rate can be further divided into ion-neutral frictional heating rate (sometimes called Joule heating) and work done on neutrals. The ion-neutral frictional heating rate depends on Pedersen conductivity and on ionospheric electric fields, measured in the frame of reference moving with the neutrals. The role of neutral winds has been an open question, since it is difficult to measure them. The CP2 scan mode of the EISCAT radar makes it possible to deduce neutral winds in the E region and hence to estimate the role of neutral air motion (e.g. tidal winds and atmospheric gravity waves) in the energy exchange rates. In this talk, we will present the magnetic local time (MLT) dependence of height-integrated quantities: electromagnetic energy exchange rates (QEM), ion-neutral frictional heating rate (QJ) and work done on neutrals (Qm) for different magnetic activity levels categorized by the Kp index. We will show that the role of winds is different in different MLT sectors (e.g. dusk vs. dawn) and at different activity levels. We will also show that on rare occasions the ionosphere can act as a dynamo generating electromagnetic energy that may propagate to the magnetosphere.

  19. Fast proton exchange in histidine: measurement of rate constants through indirect detection by NMR spectroscopy.

    PubMed

    Sehgal, Akansha Ashvani; Duma, Luminita; Bodenhausen, Geoffrey; Pelupessy, Philippe

    2014-05-19

    Owing to its imidazole side chain, histidine participates in various processes such as enzyme catalysis, pH regulation, metal binding, and phosphorylation. The determination of exchange rates of labile protons for such a system is important for understanding its functions. However, these rates are too fast to be measured directly in an aqueous solution by using NMR spectroscopy. We have obtained the exchange rates of the NH3(+) amino protons and the labile NH(ε2) and NH(δ1) protons of the imidazole ring by indirect detection through nitrogen-15 as a function of temperature (272 KExchange rates up to 8.5×10(4) s(-1) could be determined (i.e., lifetimes as short as 12 μs). The three chemical shifts δH(i) of the invisible exchanging protons H(i) and the three one-bond scalar coupling constants (1)J(N,H(i)) could also be determined accurately.

  20. A Classroom Experiment on Exchange Rate Determination with Purchasing Power Parity

    ERIC Educational Resources Information Center

    Mitchell, David T.; Rebelein, Robert P.; Schneider, Patricia H.; Simpson, Nicole B.; Fisher, Eric

    2009-01-01

    The authors developed a classroom experiment on exchange rate determination appropriate for undergraduate courses in macroeconomics and international economics. In the experiment, students represent citizens from different countries and need to obtain currency to purchase goods. By participating in an auction to buy currency, students gain a…

  1. Probabilistic estimation of residential air exchange rates for population-based human exposure modeling

    EPA Science Inventory

    Residential air exchange rates (AERs) are a key determinant in the infiltration of ambient air pollution indoors. Population-based human exposure models using probabilistic approaches to estimate personal exposure to air pollutants have relied on input distributions from AER meas...

  2. Patient selection does not improve the success rate of infected TKA one stage exchange.

    PubMed

    Jenny, Jean-Yves; Barbe, Bruno; Cazenave, Alain; Roche, Olivier; Massin, Philippe

    2016-12-01

    One stage exchange of a chronically infected total knee arthroplasty (TKA) is recommended in selected cases only. However, there is little evidence regarding the usefulness of selection criteria. The goal of this retrospective study was to compare the results of two concomitant cohorts of patients with chronically infected TKA: one treated with a routine one-stage exchange (study group) and one treated with one-stage exchange in selected cases only (control group). The hypoyhesis tested was that the failure rate and repeat surgery rate were higher in the study group than in the control group. One hundred and thirty one cases were selected: 54 in the study group and 77 in the control group. There were 63 men and 68 women with a mean age of 70years. All patients were followed up for a minimal period of time of two years or until death or recurrence of infection. Twenty five cases had a recurrence of infection: 9/54 in the study group and 16/77 in the control group (NS). The survival rate for being free of infection after four years was 85% in the study group and 78% in the control group (NS). The repeat surgery rate was significantly higher in the control group. The tested hypothesis was rejected. When one stage exchange is considered, patient selection does not improve outcome. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Probabilistic estimation of residential air exchange rates for population-based human exposure modeling

    EPA Science Inventory

    Residential air exchange rates (AERs) are a key determinant in the infiltration of ambient air pollution indoors. Population-based human exposure models using probabilistic approaches to estimate personal exposure to air pollutants have relied on input distributions from AER meas...

  4. Improving NO(x) cap-and-trade system with adjoint-based emission exchange rates.

    PubMed

    Mesbah, S Morteza; Hakami, Amir; Schott, Stephan

    2012-11-06

    Cap-and-trade programs have proven to be effective instruments for achieving environmental goals while incurring minimum cost. The nature of the pollutant, however, affects the design of these programs. NO(x), an ozone precursor, is a nonuniformly mixed pollutant with a short atmospheric lifetime. NO(x) cap-and-trade programs in the U.S. are successful in reducing total NO(x) emissions but may result in suboptimal environmental performance because location-specific ozone formation potentials are neglected. In this paper, the current NO(x) cap-and-trade system is contrasted to a hypothetical NO(x) trading policy with sensitivity-based exchange rates. Location-specific exchange rates, calculated through adjoint sensitivity analysis, are combined with constrained optimization for prediction of NO(x) emissions trading behavior and post-trade ozone concentrations. The current and proposed policies are examined in a case study for 218 coal-fired power plants that participated in the NO(x) Budget Trading Program in 2007. We find that better environmental performance at negligibly higher system-wide abatement cost can be achieved through inclusion of emission exchange rates. Exposure-based exchange rates result in better environmental performance than those based on concentrations.

  5. A Classroom Experiment on Exchange Rate Determination with Purchasing Power Parity

    ERIC Educational Resources Information Center

    Mitchell, David T.; Rebelein, Robert P.; Schneider, Patricia H.; Simpson, Nicole B.; Fisher, Eric

    2009-01-01

    The authors developed a classroom experiment on exchange rate determination appropriate for undergraduate courses in macroeconomics and international economics. In the experiment, students represent citizens from different countries and need to obtain currency to purchase goods. By participating in an auction to buy currency, students gain a…

  6. Impact of precipitation dynamics on net ecosystem exchange

    USDA-ARS?s Scientific Manuscript database

    Net ecosystem carbon dioxide (CO2) exchange (NEE) was measured on shortgrass steppe (SGS) vegetation at the USDA Central Plains Experimental Range in northeastern Colorado from 2001-2003. Large year-to-year differences were observed in annual NEE, with > 95% of the net carbon uptake occurring during...

  7. Nuclear magnetic resonance spectra for l > 1 spins in dynamically heterogeneous systems with chemical exchange among environments.

    PubMed

    Zhang, H; Bryant, R G

    1995-06-01

    Nuclear magnetic resonance spectra for nuclei with spin l > 1 are considered in cases in which the observed nucleus may sample a rotationally immobilized and an isotropic environment that are coupled by a chemical exchange process. Spectra are simulated for the central (1/2, -1/2) transition for a 3/2 nucleus as a function of the concentrations of the two environments and as a function of the exchange rate between them. It is shown that a crucial feature determining the shape of the observable spectra is the spatial extent or the local order in the immobilized phase. In the case for which all rotationally immobilized sites sampled by the exchanging nucleus are identically oriented but where there is a distribution of these microdomain orientations with respect to the magnetic field direction, a powder pattern for the central transition is observed that carries whatever dynamic information may be derived from it. In the fast exchange limit, the width of the powder pattern scales inversely with the concentration of the isotropic environment as usual. In the intermediate exchange regimes, a complex line shape results that may mask the anisotropic character of the spectrum. In the slow exchange limit, superposition of the spectral contributions results; however, if the isotropic environment concentration is significantly larger than the anisotropic environment concentration, the anisotropic contribution is very difficult to detect because of the dynamic range problem and the possibly large difference in the effective line widths. In the case for which the exchanging nucleus samples a considerable distribution of rotationally immobilized site orientations, the anisotropic character of the spectrum is lost and a super-Lorentzian line shape results. These effects are demonstrated experimentally by 35Cl nuclear magnetic resonance spectra obtained on a lamellar liquid crystal that is modified with the addition of a thiolmercurate to provide a site of large quadrupole

  8. Twin plane decoration of silver nanorods with palladium by galvanic exchange at a controlled rate.

    PubMed

    Sławiński, Grzegorz W; Ivanova, Olga S; Zamborini, Francis P

    2011-11-01

    Here we describe the galvanic exchange of surface-grown Ag nanorods (NRs) and nanowires (NWs) with PdCl(4)(2-) as a function of the PdCl(4)(2-) concentration. The morphology of the resulting AgPd alloy nanostructures depends on the galvanic exchange rate, which increases with increasing PdCl(4)(2-) concentration over a specific concentration range. When the concentration of PdCl(4)(2-) exceeds 7.5 × 10(-5) M (or ratio of moles of PdCl(4)(2-) in solution to moles of Ag on the surface > 542), rapid galvanic exchange results in Pd deposition over the entire Ag nanostructure in the early stages of exchange. When the concentration of PdCl(4)(2-) is in the range of 1.0 × 10(-5) to 5.0 × 10(-5) M (moles of PdCl(4)(2-) in solution to moles of Ag on the surface = 13-54), Pd deposition occurs preferentially at high energy twin plane defects in the form of well-spaced nanoparticles during the early stages of exchange. In later stages, the Pd deposits grow and coalescence into a rough shell, and etching of the Ag leads to a presumably hollow nanostructure. Composition analysis by linear sweep voltammetry as a function of time shows that the galvanic exchange rate is much slower than the diffusion-limited rate and, when correlated with UV-vis spectroscopy, shows that less than 10% Pd in the nanostructure completely dampens the Ag-localized surface plasmon band.

  9. A macro-physics model of depreciation rate in economic exchange

    NASA Astrophysics Data System (ADS)

    Marmont Lobo, Rui F.; de Sousa, Miguel Rocha

    2014-02-01

    This article aims at a new approach for a known fundamental result: barter or trade increases economic value. It successfully bridges the gap between the theory of value and the exchange process attached to the transition from endowments to the equilibrium in the core and contract curve. First, we summarise the theory of value; in Section 2, we present the Edgeworth (1881) box and an axiomatic approach and in Section 3, we apply our pure exchange model. Finally (in Section 4), using our open econo-physics pure barter (EPB) model, we derive an improvement in value, which means that pure barter leads to a decline in depreciation rate.

  10. Dynamic Patterns, Parameters, and Climatic Response of CO2 Exchange of Agricultural Crops: Monocotyledons VS. Dicotyledons

    NASA Astrophysics Data System (ADS)

    Gilmanov, T. G.; Wylie, B. K.; Howard, D. M.

    2012-12-01

    Net CO2 exchange data from long-term flux tower measurements in monocotyledonous (wheat, maize) and dicotyledonous (soybeans, alfalfa, peas, peanuts) crops were partitioned into photosynthesis (P) and respiration (R) using the light-soil temperature-VPD response method. Analysis of the resulting time series of P and R revealed patterns of temporal and phenological dynamics in these plant groups. We established differences in ranges and dynamic patterns of P and R as well as CO2 exchange parameters (quantum yield, photosynthetic capacity, respiration rate, light-use efficiency, curvature of the VPD response). Weekly P and R data combined with remotely sensed 7-day eMODIS NDVI allow identification of the quasi-linear relationships between P, R, and NDVI, as well as estimation of parameters of NDVI response (start of the growing season, duration of the linearity period, slope of NDVI response). While the linear-like patterns occur early in the season, later the flux response to NDVI becomes less pronounced, and for the whole season the flux-NDVI relationship assumes a hysteresis-like pattern. Introduction of VPD and soil moisture limitation as well as phenological controls (growing degree days) leads to more flexible models for P and R in relation to NDVI and on-site drivers. These models allow mapping of the cropland CO2 exchange at regional and larger scales (e.g., the Great Plains). Significant relationships of the crop GPP to the seasonally integrated NDVI were also established, providing an opportunity for mapping of crop productivity using geographically distributed historic NDVI data. On the other hand, long time series (6 to 12 years and longer) of weekly P and R data lead to models of annual photosynthesis and respiration in response to climatic factors that may be used for prognostic purposes. We developed a model of maize GPP on the Great Plains in relation to the sum of temperatures above 5 °C and the hydrologic year precipitation. The model describes 75

  11. A kinetic assay of mitochondrial ADP-ATP exchange rate in permeabilized cells.

    PubMed

    Kawamata, Hibiki; Starkov, Anatoly A; Manfredi, Giovanni; Chinopoulos, Christos

    2010-12-01

    We previously described a method to measure ADP-ATP exchange rates in isolated mitochondria by recording the changes in free extramitochondrial [Mg(2+)] reported by an Mg(2+)-sensitive fluorescent indicator, exploiting the differential affinity of ADP and ATP to Mg(2+). In the current article, we describe a modification of this method suited for following ADP-ATP exchange rates in environments with competing reactions that interconvert adenine nucleotides such as in permeabilized cells that harbor phosphorylases and kinases, ion pumps exhibiting substantial ATPase activity, and myosin ATPase activity. Here we report that the addition of BeF(3)(-) and sodium orthovanadate (Na(3)VO(4)) to medium containing digitonin-permeabilized cells inhibits all ADP-ATP-using reactions except the adenine nucleotide translocase (ANT)-mediated mitochondrial ADP-ATP exchange. An advantage of this assay is that mitochondria that may have been also permeabilized by digitonin do not contribute to ATP consumption by the exposed F(1)F(o)-ATPase due to its sensitivity to BeF(3)(-) and Na(3)VO(4). With this assay, ADP-ATP exchange rate mediated by the ANT in permeabilized cells is measured for the entire range of mitochondrial membrane potential titrated by stepwise additions of an uncoupler and expressed as a function of citrate synthase activity per total amount of protein.

  12. A Kinetic Assay of Mitochondrial ATP-ADP Exchange Rate in Permeabilized Cells

    PubMed Central

    Kawamata, Hibiki; Starkov, Anatoly A; Manfredi, Giovanni; Chinopoulos, Christos

    2010-01-01

    We have previously described a method to measure ADP-ATP exchange rates in isolated mitochondria by recording the changes in free extramitochondrial [Mg2+] reported by a Mg2+-sensitive fluorescent indicator, exploiting the differential affinity of ADP and ATP to Mg2+. In this manuscript we describe a modification of this method suited for following ADP-ATP exchange rates in environments with competing reactions that interconvert adenine nucleotides, such as in permeabilized cells that harbor phosphorylases and kinases, ion pumps exhibiting substantial ATPase activity and myosin ATPase activity. Here we report that addition of BeF3− and Na3VO4 to media containing digitonin-permeabilized cells inhibit all ATP-ADP utilizing reactions, except the ANT-mediated mitochondrial ATP-ADP exchange. An advantage of this assay is that mitochondria that may have been also permeabilized by digitonin do not contribute to ATP consumption by the exposed F1Fo-ATPase, due to its sensitivity to BeF3− and Na3VO4. With this assay, ADP-ATP exchange rate mediated by the ANT in permeabilized cells is measured for the entire range of mitochondrial membrane potential titrated by stepwise additions of an uncoupler, and expressed as a function of citrate synthase activity per total amount of protein. PMID:20691655

  13. HTO washout model: on the relationship between exchange rate and washout coefficient

    SciTech Connect

    Golubev, A.; Balashov, Y.; Mavrin, S.; Golubeva, V.; Galeriu, D.

    2015-03-15

    Washout coefficient Λ is widely used as a parameter in washout models. These models describes overall HTO washout with rain by a first-order kinetic equation, while washout coefficient Λ depends on the type of rain event and rain intensity and empirical parameters a, b. The washout coefficient is a macroscopic parameter and we have considered in this paper its relationship with a microscopic rate K of HTO isotopic exchange in atmospheric humidity and drops of rainwater. We have shown that the empirical parameters a, b can be represented through the rain event characteristics using the relationships of molecular impact rate, rain intensity and specific rain water content while washout coefficient Λ can be represented through the exchange rate K, rain intensity, raindrop diameter and terminal raindrop velocity.

  14. A Novel Kinetic Assay of Mitochondrial ATP-ADP Exchange Rate Mediated by the ANT

    PubMed Central

    Chinopoulos, Christos; Vajda, Szilvia; Csanády, László; Mándi, Miklós; Mathe, Katalin; Adam-Vizi, Vera

    2009-01-01

    A novel method exploiting the differential affinity of ADP and ATP to Mg2+ was developed to measure mitochondrial ADP-ATP exchange rate. The rate of ATP appearing in the medium after addition of ADP to energized mitochondria, is calculated from the measured rate of change in free extramitochondrial [Mg2+] reported by the membrane-impermeable 5K+ salt of the Mg2+-sensitive fluorescent indicator, Magnesium Green, using standard binding equations. The assay is designed such that the adenine nucleotide translocase (ANT) is the sole mediator of changes in [Mg2+] in the extramitochondrial volume, as a result of ADP-ATP exchange. We also provide data on the dependence of ATP efflux rate within the 6.8–7.8 matrix pH range as a function of membrane potential. Finally, by comparing the ATP-ADP steady-state exchange rate to the amount of the ANT in rat brain synaptic, brain nonsynaptic, heart and liver mitochondria, we provide molecular turnover numbers for the known ANT isotypes. PMID:19289073

  15. Quantifying hyporheic exchange dynamics in a highly regulated large river reach

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Bao, J.; Huang, M.; Hou, Z.; Arntzen, E.; Mackley, R.; Harding, S.; Crump, A.; Xu, Y.; Song, X.; Chen, X.; Stegen, J.; Hammond, G. E.; Thorne, P. D.; Zachara, J. M.

    2016-12-01

    Hyporheic exchange is an important mechanism taking place in riverbanks and riverbed sediments, where the river water and shallow groundwater mix and interact with each other. The direction and magnitude of hyporheic flux that penetrates the river bed and residence time of river water in the hyporheic zone are critical for biogeochemical processes such as carbon and nitrogen cycling, and biodegradation of organic contaminants. Hyporheic flux can be quantified using many direct and indirect measurements as well as analytical and numerical modeling tools. However, in a relatively large river, these methods can be limited by the accessibility, spatial constraints, complexity of geomorphologic features and subsurface properties, and computational power. In rivers regulated by hydroelectric dams, quantifying hyporheic fluxes becomes more challenging due to frequent hydropeaking events created by dam operations. In this study, we developed and validated methods that combined field measurements and numerical modeling for estimating hyporheic fluxes across the river bed in a 7-km long reach of the highly regulated Columbia River. The reach has a minimum width of about 800 meters and variations in river stage within a day could be up to two meters due to the upstream dam operations. In shallow water along the shoreline, vertical thermal profiles measured by self-recording thermistors were combined with time series of hydraulic gradient derived from river stage and water level at in-land wells to estimate the hyporheic flux rate. For the deep section, a high resolution computational fluid dynamics (CFD) modeling framework was developed to characterize the spatial distribution of flux rates at the river bed and the residence time of hyporheic flow at different river flow conditions. Our modeling results show that the rates of hyporheic exchange and residence time are controlled by (1) hydrostatic pressure induced by river stage fluctuations, and (2) hydrodynamic drivers

  16. Water-air and soil-air exchange rate of total gaseous mercury measured at background sites

    NASA Astrophysics Data System (ADS)

    Poissant, Laurier; Casimir, Alain

    In order to evaluate and understand the processes of water-air and soil-air exchanges involved at background sites, an intensive field measurement campaign has been achieved during the summer of 1995 using high-time resolution techniques (10 min) at two sites (land and water) in southern Québec (Canada). Mercury flux was measured using a dynamic flux chamber technique coupled with an automatic mercury vapour-phase analyser (namely, Tekran®). The flux chamber shows that the rural grassy site acted primarily as a source of atmospheric mercury, its flux mimicked the solar radiation, with a maximum daytime value of ˜ 8.3 ng m -2 h -1 of TGM. The water surface location (St. Lawrence River site located about 3 km from the land site) shows deposition and evasion fluxes almost in the same order of magnitude (-0.5 vs 1.0 ng m -2 h -1).The latter is influenced to some extent by solar radiation but primarily by the formation of a layer of stable air over the water surface in which some redox reactions might promote evasion processes over the water surface. This process does not appear over the soil surface. As a whole, soil-air exchange rate is about 6-8 fold greater than the water-air exchange.

  17. A comprehensive molecular dynamics approach to protein retention modeling in ion exchange chromatography.

    PubMed

    Lang, Katharina M H; Kittelmann, Jörg; Dürr, Cathrin; Osberghaus, Anna; Hubbuch, Jürgen

    2015-02-13

    In downstream processing, the underlying adsorption mechanism of biomolecules to adsorbent material are still subject of extensive research. One approach to more mechanistic understanding is simulating this adsorption process and hereby the possibility to identify the parameters with strongest impact. So far this method was applied with all-atom molecular dynamics simulations of two model proteins on one cation exchanger. In this work we developed a molecular dynamics tool to simulate protein-adsorber interaction for various proteins on an anion exchanger and ran gradient elution experiments to relate the simulation results to experimental data. We were able to show that simulation results yield similar results as experimental data regarding retention behavior as well as binding orientation. We could identify arginines in case of cation exchangers and aspartic acids in case of anion exchangers as major contributors to binding.

  18. Water and ions in clays: Unraveling the interlayer/micropore exchange using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Rotenberg, Benjamin; Marry, Virginie; Vuilleumier, Rodolphe; Malikova, Natalie; Simon, Christian; Turq, Pierre

    2007-11-01

    We present the first microscopic description of the exchange of water and ions between clay interlayers and microporosity. A force field based on ab-initio calculations is developed and used in classical molecular dynamics simulations. The latter allow to compute the potential of mean force for the interlayer/micropore exchange for water, Na + and Cs + cations and Cl - anions. For the simulated water content (water bilayer, with interlayer spacing 15.4 Å) and salt concentration in the micropore (0.52 mol dm -3) the exchange is found to be almost not activated for water and cations, whereas the entrance of an anion into the interlayer is strongly unfavorable ( ΔF˜9kT). Calculations of the diffusion tensor in the interlayer and in the micropore complete the study of the exchange dynamics.

  19. Simulations of the water exchange dynamics of lanthanide ions in 1-ethyl-3-methylimidazolium ethyl sulfate ([EMIm][EtSO4]) and water.

    PubMed

    Tu, Yi-Jung; Allen, Matthew J; Cisneros, G Andrés

    2016-11-09

    The dynamics of ligand exchange on lanthanide ions is important for catalysis and organic reactions. Recent (17)O-NMR experiments have shown that water-exchange rates of lanthanide ions in water/1-ethyl-3-methylimidazolium ethyl sulfate (water/[EMIm][EtSO4]) increase as a function of increasing charge density. The trend of water-exchange rates in this solvent is opposite to that observed in water. Since the lanthanide ions and ionic liquids investigated in that work were highly charged, an advanced polarizable potential is desirable for accurate simulations. To this end, we have developed atomic multipole optimized energetics for biomolecular applications (AMOEBA) parameters for all lanthanides and [EMIm][EtSO4], and molecular dynamics simulations with the optimized parameters have been carried out to provide possible explanations for these observed behaviors from the experiments. In water, the association of a water molecule with the first hydration shell can lead to water exchange. Smaller lanthanide ions exhibit slower water-exchange rates than larger ones because they form smaller aqua complexes, preventing the binding of incoming water molecules from the outer hydration shells. By contrast, smaller lanthanide ions undergo faster water exchange in water/[EMIm][EtSO4] because the dissociation of a water molecule is a key step for water-exchange events in this solvent. The first shell [EtSO4](-) anions bind closer to the smaller lanthanide ions, resulting in more steric crowding effects on the surrounding water and facilitating the release of water molecules.

  20. Micrometeorological Measurements of Air-Surface Exchange Rates of PBTs in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Tobias, D. E.; Perlinger, J. A.; Morrow, P.

    2002-12-01

    The fate of persistent bioaccumulative toxic chemicals (PBTs) in the environment is controlled by their exchange with various aquatic and terrestrial surfaces. Many of the PBTs are semivolatile and present in the atmosphere almost entirely in the vapor phase. The rate of exchange of these vapor phase chemicals can be predicted from physicochemical properties of the chemical and the surface and the meteorological conditions during the exchange. However, field studies of the uptake of the PBTs are extremely limited or nonexistent making it difficult to evaluate the modeled transfer velocities. This presentation describes a novel method to directly measure air-surface exchange rates of PBTs above aquatic and terrestrial surfaces by the micrometeorological technique known as the modified Bowen ratio approach. Simultaneous measurements of the air temperature, water vapor content, windspeed, and the chemical species concentration at two heights above the surface are required to derive the transfer velocity of the chemical. Advanced techniques that minimize the number of sample preparation steps are required to make the two concentration measurements with adequate relative accuracy. To accomplish this task, ambient air is sampled with a multicapillary column and the analytes are directly desorbed into a high-resolution gas chromatograph for quantitation. This presentation will summarize preliminary measurements made in the near-shore region of Upper Michigan's Keweenaw Peninsula on Lake Superior during the summer of 2001 and 2002.

  1. Comparison of circuit patency and exchange rates between 2 different continuous renal replacement therapy machines.

    PubMed

    Razavi, Seyed Amirhossein; Still, Mary D; White, Sharon J; Buchman, Timothy G; Connor, Michael J

    2014-04-01

    Continuous renal replacement therapy (CRRT) is an important tool in the care of critically ill patients. However, the impact of a specific CRRT machine type on the successful delivery of CRRT is unclear. The purpose of this study was to evaluate the effectiveness of CRRT delivery with an intensive care unit (ICU) bedside nurse delivery model for CRRT while comparing circuit patency and circuit exchange rates in 2 Food and Drug Administration-approved CRRT devices. This article presents the data comparing circuit exchange rates for 2 different CRRT machines. A group of ICU nurses were selected to undergo expanded training in CRRT operation and empowered to deliver all aspects of CRRT. The ICU nurses then provided all aspects of CRRT on 2 Food and Drug Administration-approved CRRT devices for 6 months. Each device was used exclusively in the designated ICU for a 2-week run-in period followed by 3-month data collection period. The primary end point for the study was the differences in average number of filter exchanges per day during each CRRT event. A total of 45 unique patients who underwent 64 separate CRRT treatment periods were included. Four CRRT events were excluded (see text for details). Twenty-eight CRRT events occurred in the NxStage System One arm (NxStage Medical, Lawrence, Mass) and 32 events in the Gambro Prismaflex arm (Gambro Renal Products, Boulder, Colo). Average (SD) filter exchanges per day was 0.443 (0.60) for the NxStage System One machine and 0.553 (0.65) for Gambro Prismaflex machine (P = .09). There was no demonstrable difference in circuit patency as defined by the rate of filter exchanges per day of CRRT therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Dynamics of Catalytic Resolution of 2-Lithio-N-Boc-piperidine by Ligand Exchange

    PubMed Central

    Beng, Timothy K.; Tyree, William S.; Parker, Trent; Su, Chicheung; Williard, Paul G.

    2012-01-01

    The dynamics of the racemization, catalytic and stoichiometric dynamic resolution of 2-lithio-N-Boc-piperidine, 7, have been investigated. The kinetic order in TMEDA, for both racemization and resolution of the title compound, and the kinetic order in resolving ligands, have been determined. The catalytic dynamic resolution is 0.5-order in chiral ligand 8, 0.265 order in chiral ligand 10, and second order in TMEDA. The X-ray crystal structure of ligand 10 shows it to be an octamer. Dynamic NMR studies of the resolution process were obtained. Some of the requirements for a successful catalytic dynamic resolution by ligand exchange have been identified. PMID:22967289

  3. Self-other rating agreement and leader-member exchange (LMX).

    PubMed

    Barbuto, John E; Wilmot, Michael P; Story, Joana S

    2011-12-01

    Data from a sample of 83 elected community leaders and 391 direct-report staffers (resulting in 306 useable leader-member dyads) were used to test relations between self-other rating agreement of leadership and member-reported leader-member exchange (LMX). Results of polynomial regression analysis indicated that the self-other rating agreement model was not significantly related to member-reported LMX. Instead, virtually all of the variance in member-reported LMX was accounted for by others' ratings.

  4. Dynamic Characteristics of Ventilatory and Gas Exchange during Sinusoidal Walking in Humans

    PubMed Central

    Fukuoka, Yoshiyuki; Iihoshi, Masaaki; Nazunin, Juhelee Tuba; Abe, Daijiro; Fukuba, Yoshiyuki

    2017-01-01

    Our present study investigated whether the ventilatory and gas exchange responses show different dynamics in response to sinusoidal change in cycle work rate or walking speed even if the metabolic demand was equivalent in both types of exercise. Locomotive parameters (stride length and step frequency), breath-by-breath ventilation (V̇E) and gas exchange (CO2 output (V̇CO2) and O2 uptake (V̇O2)) responses were measured in 10 healthy young participants. The speed of the treadmill was sinusoidally changed between 3 km·h-1 and 6 km·h-1 with various periods (from 10 to 1 min). The amplitude of locomotive parameters against sinusoidal variation showed a constant gain with a small phase shift, being independent of the oscillation periods. In marked contrast, when the periods of the speed oscillations were shortened, the amplitude of V̇E decreased sharply whereas the phase shift of V̇E increased. In comparing walking and cycling at the equivalent metabolic demand, the amplitude of V̇E during sinusoidal walking (SW) was significantly greater than that during sinusoidal cycling (SC), and the phase shift became smaller. The steeper slope of linear regression for the V̇E amplitude ratio to V̇CO2 amplitude ratio was observed during SW than SC. These findings suggested that the greater amplitude and smaller phase shift of ventilatory dynamics were not equivalent between SW and SC even if the metabolic demand was equivalent between both exercises. Such phenomenon would be derived from central command in proportion to locomotor muscle recruitment (feedforward) and muscle afferent feedback. PMID:28076413

  5. Experimental Investigation of Heat transfer rate of Nano fluids using a Shell and Tube Heat exchanger

    NASA Astrophysics Data System (ADS)

    SIVA ESWARA RAO, M.; SREERAMULU, DOWLURU; ASIRI NAIDU, D.

    2016-09-01

    Nano fluids are used for increasing thermal properties in heat transfer equipment like heat exchangers, radiators etc. This paper investigates the heat transfer rate of Nano fluids using a shell and tube heat exchanger in single and multi tubes under turbulent flow condition by a forced convection mode. Alumina Nanoparticles are prepared by using Sol-Gel method. Heat transfer rate increases with decreasing particle size. In this experiment Alumina Nano particles of about 22 nm diameter used. Alumina Nano fluids are prepared with different concentrations of Alumina particles (0.13%, 0.27%, 0.4%, and 0.53%) with water as a base fluid using ultra-sonicator. Experiment have been conducted on shell and tube heat exchanger for the above concentrations on parallel and counter flow conditions by keeping constant inlet temperatures and mass flow rate. The result shows that the heat transfer rate is good compared to conventional fluids. The properties of Nano fluids and non-dimensional numbers have been calculated.

  6. Coupled acoustic-gravity field for dynamic evaluation of ion exchange with a single resin bead.

    PubMed

    Kanazaki, Takahiro; Hirawa, Shungo; Harada, Makoto; Okada, Tetsuo

    2010-06-01

    A coupled acoustic-gravity field is efficient for entrapping a particle at the position determined by its acoustic properties rather than its size. This field has been applied to the dynamic observation of ion-exchange reactions occurring in a single resin bead. The replacement of counterions in an ion-exchange resin induces changes in its acoustic properties, such as density and compressibility. Therefore, we can visually trace the advancement of an ion-exchange reaction as a time change in the levitation position of a resin bead entrapped in the field. Cation-exchange reactions occurring in resin beads with diameters of 40-120 microm are typically completed within 100-200 s. Ion-exchange equilibrium or kinetics is often evaluated with off-line chemical analyses, which require a batch amount of ion exchangers. Measurements with a single resin particle allow us to evaluate ion-exchange dynamics and kinetics of ions including those that are difficult to measure by usual off-line analyses. The diffusion properties of ions in resins have been successfully evaluated from the time change in the levitation positions of resin beads.

  7. Respiratory dynamics of discontinuous gas exchange in the tracheal system of the desert locust, Schistocerca gregaria.

    PubMed

    Groenewald, Berlizé; Hetz, Stefan K; Chown, Steven L; Terblanche, John S

    2012-07-01

    Gas exchange dynamics in insects is of fundamental importance to understanding evolved variation in breathing patterns, such as discontinuous gas exchange cycles (DGCs). Most insects do not rely solely on diffusion for the exchange of respiratory gases but may also make use of respiratory movements (active ventilation) to supplement gas exchange at rest. However, their temporal dynamics have not been widely investigated. Here, intratracheal pressure, V(CO2) and body movements of the desert locust Schistocerca gregaria were measured simultaneously during the DGC and revealed several important aspects of gas exchange dynamics. First, S. gregaria employs two different ventilatory strategies, one involving dorso-ventral contractions and the other longitudinal telescoping movements. Second, although a true spiracular closed (C)-phase of the DGC could be identified by means of subatmospheric intratracheal pressure recordings, some CO(2) continued to be released. Third, strong pumping actions do not necessarily lead to CO(2) release and could be used to ensure mixing of gases in the closed tracheal system, or enhance water vapour reabsorption into the haemolymph from fluid-filled tracheole tips by increasing the hydrostatic pressure or forcing fluid into the haemocoel. Finally, this work showed that the C-phase of the DGC can occur at any pressure. These results provide further insights into the mechanistic basis of insect gas exchange.

  8. Ultrafast 2D-IR and simulation investigations of preferential solvation and cosolvent exchange dynamics.

    PubMed

    Dunbar, Josef A; Arthur, Evan J; White, Aaron M; Kubarych, Kevin J

    2015-05-21

    Using a derivative of the vitamin biotin labeled with a transition-metal carbonyl vibrational probe in a series of aqueous N,N-dimethylformamide (DMF) solutions, we observe a striking slowdown in spectral diffusion dynamics with decreased DMF concentration. Equilibrium solvation dynamics, measured with the rapidly acquired spectral diffusion (RASD) technique, a variant of heterodyne-detected photon-echo peak shift experiments, range from 1 ps in neat DMF to ∼3 ps in 0.07 mole fraction DMF/water solution. Molecular dynamics simulations of the biotin-metal carbonyl solute in explicit aqueous DMF solutions show marked preferential solvation by DMF, which becomes more pronounced at lower DMF concentrations. The simulations and the experimental data are consistent with an interpretation where the slowdown in spectral diffusion is due to solvent exchange involving distinct cosolvent species. A simple two-component model reproduces the observed spectral dynamics as well as the DMF concentration dependence, enabling the extraction of the solvent exchange time scale of 8 ps. This time scale corresponds to the diffusive motion of a few Å, consistent with a solvent-exchange mechanism. Unlike most previous studies of solvation dynamics in binary mixtures of polar solvents, our work highlights the ability of vibrational probes to sense solvent exchange as a new, slow component in the spectral diffusion dynamics.

  9. Dynamical exchange-correlation potentials for the electron liquid

    NASA Astrophysics Data System (ADS)

    Qian, Zhixin; Vignale, Giovanni

    2002-03-01

    The imaginary parts of the exchange-correlation kernels f_xc^L,T(q=0, ω) in the linear density-density and transverse current-current response functions of a homogeneous electron liquid are calculated exactly at low frequency, to leading order in the Coulomb interaction. Combining these new results with the previously known high-frequency behaviors of Im f_xc^L,T(q=0, ω) and with the compressibility and the third frequency moment sum rules, we construct simple interpolation for Im f_xc^L,T(q=0, ω) in 3- and 2- dimensions. A novel feature of our interpolation formulas is that they explicitly take into account the two-plasmon component of the excitation spectrum: our longitudinal spectrum Im f_xc^L(q=0, ω) is thus intermediate between the Gross-Kohn interpolation, which ignores the two-plasmon contribution, and a recent approximate calculation by Nifosi, Conti, and Tosi, which probably overestimates it. Numerical results for both the real and imaginary parts of the exchange-correlation kernels at typical electron densities are presented, and compared with those obtained from previous approximations.

  10. Cluster fusion-fission dynamics in the Singapore stock exchange

    NASA Astrophysics Data System (ADS)

    Teh, Boon Kin; Cheong, Siew Ann

    2015-10-01

    In this paper, we investigate how the cross-correlations between stocks in the Singapore stock exchange (SGX) evolve over 2008 and 2009 within overlapping one-month time windows. In particular, we examine how these cross-correlations change before, during, and after the Sep-Oct 2008 Lehman Brothers Crisis. To do this, we extend the complete-linkage hierarchical clustering algorithm, to obtain robust clusters of stocks with stronger intracluster correlations, and weaker intercluster correlations. After we identify the robust clusters in all time windows, we visualize how these change in the form of a fusion-fission diagram. Such a diagram depicts graphically how the cluster sizes evolve, the exchange of stocks between clusters, as well as how strongly the clusters mix. From the fusion-fission diagram, we see a giant cluster growing and disintegrating in the SGX, up till the Lehman Brothers Crisis in September 2008 and the market crashes of October 2008. After the Lehman Brothers Crisis, clusters in the SGX remain small for few months before giant clusters emerge once again. In the aftermath of the crisis, we also find strong mixing of component stocks between clusters. As a result, the correlation between initially strongly-correlated pairs of stocks decay exponentially with average life time of about a month. These observations impact strongly how portfolios and trading strategies should be formulated.

  11. Reversible Control of Nanoparticle Functionalization and Physicochemical Properties by Dynamic Covalent Exchange.

    PubMed

    Della Sala, Flavio; Kay, Euan R

    2015-03-27

    Existing methods for the covalent functionalization of nanoparticles rely on kinetically controlled reactions, and largely lack the sophistication of the preeminent oligonucleotide-based noncovalent strategies. Here we report the application of dynamic covalent chemistry for the reversible modification of nanoparticle (NP) surface functionality, combining the benefits of non-biomolecular covalent chemistry with the favorable features of equilibrium processes. A homogeneous monolayer of nanoparticle-bound hydrazones can undergo quantitative dynamic covalent exchange. The pseudomolecular nature of the NP system allows for the in situ characterization of surface-bound species, and real-time tracking of the exchange reactions. Furthermore, dynamic covalent exchange offers a simple approach for reversibly switching-and subtly tuning-NP properties such as solvophilicity.

  12. R&D on Resistive Heat Exchangers for HTS High Rated Current Leads

    NASA Astrophysics Data System (ADS)

    Bi, Yanfang

    2011-12-01

    The HTS current leads of superconducting magnets for large scale fusion devices and high energy particle colliders can reduce the power consumption for cooling by 2/3 compared with conventional leads. The resistive sections of high-rated current leads are usually made of a heat exchanger cooled by gas flow. The supply of the cooling mass flow incurs more than 90% of the cooling cost for the HTS leads. The mass flow rate requirement depends not only on the length and material of the resistive heat exchanger, but also on the heat transfer coefficient and HEX surface, the joint resistance at the cold end and its cooling approach. The design and operation of a sheet-stack HEX with a larger specific surface and a much smaller hydraulic diameter are presented in the paper. The test results of an HTS lead optimized for 8 kA show that a 98.4% efficiency can be achieved.

  13. Historical changes in US dollar exchange rate and real value of oil

    SciTech Connect

    DeMis, W.D.

    1996-12-31

    Oil prices relative to world currencies are now at unprecedented lows, as shown by a price analysis that incorporates the effect of US dollar exchange rates on the value of oil. A commodity-based analysis corroborates this exchange-rate analysis. The value of oil today on world markets is even below its 1969 level (the nadir of the previous oil bust). The inflation-corrected price of oil (using the producer price index) in the US has increased 130% since 1969. However, the US dollar has lost over 40% of its value relative to G-7 currencies since abandonment of the Bretton Woods agreement in 1971. Therefore, the real value of oil an international markets is 20% below its 1969 level. Since 1988 alone, the dollar has lost 16% relative to the G-7 currencies. Oil producing countries are taking extreme revenue cuts caused by the eroding US dollar.

  14. Historical changes in US dollar exchange rate and real value of oil

    SciTech Connect

    DeMis, W.D. )

    1996-01-01

    Oil prices relative to world currencies are now at unprecedented lows, as shown by a price analysis that incorporates the effect of US dollar exchange rates on the value of oil. A commodity-based analysis corroborates this exchange-rate analysis. The value of oil today on world markets is even below its 1969 level (the nadir of the previous oil bust). The inflation-corrected price of oil (using the producer price index) in the US has increased 130% since 1969. However, the US dollar has lost over 40% of its value relative to G-7 currencies since abandonment of the Bretton Woods agreement in 1971. Therefore, the real value of oil an international markets is 20% below its 1969 level. Since 1988 alone, the dollar has lost 16% relative to the G-7 currencies. Oil producing countries are taking extreme revenue cuts caused by the eroding US dollar.

  15. Effects of oil prices and exchange rates on world oil consumption

    SciTech Connect

    Brown, S.P.A.; Phillips, K.R.

    1984-07-01

    From 1980 to 1983, oil consumption in most industrial countries declined, even though the real dollar price of oil fell and world economic activity increased. A common explanation for this decline is that consumers continued to adjust to the sharp oil price increase occurring in 1979. A more-complete analysis reveals that exchange-rate movements have also reduced oil consumption. Because world oil prices are denominated in US dollars, movements in exchange rates can alter the price of oil faced by countries other than the United States. In fact, increases in the value of the dollar raised the effective price of oil for some major industrial countries to levels that were higher in 1983 than in 1980. 1 figure, 5 tables.

  16. Cooperation between bound waters and hydroxyls in controlling isotope-exchange rates

    NASA Astrophysics Data System (ADS)

    Panasci, Adele F.; McAlpin, J. Gregory; Ohlin, C. André; Christensen, Shauna; Fettinger, James C.; Britt, R. David; Rustad, James R.; Casey, William H.

    2012-02-01

    Mineral oxides differ from aqueous ions in that the bound water molecules are usually attached to different metal centers, or vicinal, and thus separated from one another. In contrast, for most monomeric ions used to establish kinetic reactivity trends, such as octahedral aquo ions (e.g., Al(H 2O) 63+), the bound waters are closely packed, or geminal. Because of this structural difference, the existing literature about ligand substitution in monomer ions may be a poor guide to the reactions of geochemical interest. To understand how coordination of the reactive functional groups might affect the rates of simple water-exchange reactions, we synthesized two structurally similar Rh(III) complexes, [Rh(phen) 2(H 2O) 2] 3+ [ 1] and [Rh(phen) 2(H 2O)Cl] 2+ [ 2] where (phen) = 1,10-phenanthroline. Complex [ 1] has two adjacent, geminal, bound waters in the inner-coordination sphere and [ 2] has a single bound water adjacent to a bound chloride ion. We employed Rh(III) as a trivalent metal rather than a more geochemically relevant metal like Fe(III) or Al(III) to slow the rate of reaction, which makes possible measurement of the rates of isotopic substitution by simple mass spectrometry. We prepared isotopically pure versions of the molecules, dissolved them into isotopically dissimilar water, and measured the rates of exchange from the extents of 18O and 16O exchange at the bound waters. The pH dependency of rates differ enormously between the two complexes. Pseudo-first-order rate coefficients at 298 K for water exchanges from the fully protonated molecules are close: k0298 = 5 × 10 -8(±0.5 × 10 -8) s -1 for [ 1] and k0298 = 2.5 × 10 -9(±1 × 10 -9) for [ 2]. Enthalpy and entropy activation parameters (Δ H‡ and Δ S‡) were measured to be 119(±3) kJ mol -1, and 14(±1) J mol -1 K -1, respectively for [ 1]. The corresponding parameters for the mono-aquo complex, [ 2], are 132(±3) kJ mol -1 and 41.5(±2) J mol -1 K -1. Rates increase by many orders of magnitude

  17. Thermodynamic and kinetic stability of the Josephin Domain closed arrangement: evidences from replica exchange molecular dynamics.

    PubMed

    Grasso, Gianvito; Tuszynski, Jack A; Morbiducci, Umberto; Licandro, Ginevra; Danani, Andrea; Deriu, Marco A

    2017-01-19

    Molecular phenomena driving pathological aggregation in neurodegenerative diseases are not completely understood yet. Peculiar is the case of Spinocerebellar Ataxia 3 (SCA3) where the conformational properties of the AT-3 N-terminal region, also called Josephin Domain (JD), play a key role in the first step of aggregation, having the JD an amyloidogenic propensity itself. For this reason, unraveling the intimate relationship between JD structural features and aggregation tendency may lead to a step forward in understanding the pathology and rationally design a cure. In this connection, computational modeling has demonstrated to be helpful in exploring the protein molecular dynamics and mechanism of action. Conformational dynamics of the JD is here finely investigated by replica exchange molecular dynamics simulations able to sample the microsecond time scale and to provide both a thermodynamic and kinetic description of the protein conformational changes. Accessible structural conformations of the JD have been identified in: open, intermediate and closed like arrangement. Data indicated the closed JD arrangement as the most likely protein arrangement. The protein transition from closed toward intermediate/open states was characterized by a rate constant higher than 700 ns. This result also explains the inability of classical molecular dynamics to explore transitions from closed to open JD configuration on a time scale of hundreds of nanoseconds. This work provides the first kinetic estimation of the JD transition pathway from open-like to closed-like arrangement and vice-versa, indicating the closed-like arrangement as the most likely configuration for a JD in water environment. More widely, the importance of our results is also underscored considering that the ability to provide a kinetic description of the protein conformational changes is a scientific challenge for both experimental and theoretical approaches to date. This article was reviewed by Oliviero

  18. Selection, Evaluation, and Rating of Compact Heat Exchangers v. 1.006

    SciTech Connect

    Carlson, Matthew D.

    2016-11-09

    SEARCH determines and optimizes the design of a compact heat exchanger for specified process conditions. The user specifies process boundary conditions including the fluid state and flow rate and SEARCH will determine the optimum flow arrangement, channel geometry, and mechanical design for the unit. Fluids are modeled using NIST Refprop or tabulated values. A variety of thermal-hydraulic correlations are available including user-defined equations to accurately capture the heat transfer and pressure drop behavior of the process flows.

  19. Charge Exchange and Ablation Rates of a Titanium Wire Plasma Corona

    SciTech Connect

    Terry, Robert E.

    2009-01-21

    Wire ablation rates are important features in any examination of precursors or transparent mode implosions of wire arrays. When ion temperatures in a Ti wire plasma corona exceed a few eV, the process of resonant charge exchange competes with elastic scattering. Ions pushed into the corona from an anode bias wire array can be expected to drive a fast neutral wind into the surrounding volume, while a cathode bias wire array would not show the strong neutral wind.

  20. Dynamics of the force exchanged between membrane inclusions.

    PubMed

    Fournier, Jean-Baptiste

    2014-03-28

    We study the dynamical response of a fluid membrane to the sudden conformation change of active inclusions linearly coupled to the membrane curvature. The mutual force between two inclusions triggered simultaneously is shown to exhibit a transient maximum much larger than the equilibrium force. Even in the presence of tension, this dynamical interaction is long range over distances much larger than the correlation length. We derive the scaling laws describing these phenomena analytically, and we stress the importance of the damping due to intermonolayer friction.

  1. Replica exchange simulations of the three-dimensional Ising spin glass: static and dynamic properties

    NASA Astrophysics Data System (ADS)

    Yucesoy, Burcu; Machta, Jonathan; Katzgraber, Helmut G.

    2012-02-01

    We present the results of a large-scale numerical study of the equilibrium three-dimensional Ising spin glass with Gaussian disorder. Using replica exchange (parallel tempering) Monte Carlo, we measure various static, as well as dynamical quantities, such as the autocorrelation times and round-trip times for the replica exchange Monte Carlo method. The correlation between static and dynamic observables for 5000 disorder realizations (N <=10^3 spins) down to very low temperatures (T 0.2Tc) is examined. Our results show that autocorrelation times are directly correlated with the roughness of the free energy landscape. We also discuss the size dependence of several static quantities.

  2. Implementation of Dynamic Extensible Adaptive Locally Exchangeable Measures (IDEALEM) v 0.1

    SciTech Connect

    Sim, Alex; Lee, Dongeun; Wu, K. John

    2016-03-04

    Handling large streaming data is essential for various applications such as network traffic analysis, social networks, energy cost trends, and environment modeling. However, it is in general intractable to store, compute, search, and retrieve large streaming data. This software addresses a fundamental issue, which is to reduce the size of large streaming data and still obtain accurate statistical analysis. As an example, when a high-speed network such as 100 Gbps network is monitored, the collected measurement data rapidly grows so that polynomial time algorithms (e.g., Gaussian processes) become intractable. One possible solution to reduce the storage of vast amounts of measured data is to store a random sample, such as one out of 1000 network packets. However, such static sampling methods (linear sampling) have drawbacks: (1) it is not scalable for high-rate streaming data, and (2) there is no guarantee of reflecting the underlying distribution. In this software, we implemented a dynamic sampling algorithm, based on the recent technology from the relational dynamic bayesian online locally exchangeable measures, that reduces the storage of data records in a large scale, and still provides accurate analysis of large streaming data. The software can be used for both online and offline data records.

  3. Strategies for Optimizing Water-Exchange Rates of Lanthanide-Based Contrast Agents for Magnetic Resonance Imaging

    PubMed Central

    Siriwardena-Mahanama, Buddhima N.; Allen, Matthew J.

    2013-01-01

    This review describes recent advances in strategies for tuning the water-exchange rates of contrast agents for magnetic resonance imaging (MRI). Water-exchange rates play a critical role in determining the efficiency of contrast agents; consequently, optimization of water-exchange rates, among other parameters, is necessary to achieve high efficiencies. This need has resulted in extensive research efforts to modulate water-exchange rates by chemically altering the coordination environments of the metal complexes that function as contrast agents. The focus of this review is coordination-chemistry-based strategies used to tune the water-exchange rates of lanthanide(III)-based contrast agents for MRI. Emphasis will be given to results published in the 21st century, as well as implications of these strategies on the design of contrast agents. PMID:23921796

  4. Jealousy and Trust: Unexplored Dimensions of Social Exchange Dynamics.

    ERIC Educational Resources Information Center

    McDonald, Gerald W.; Osmond, Marie Withers

    Little effort has been made to systematically assess the determinants and consequences of marital jealousy which affect marital, familial and extra-familial expectations, interactions and behavior. A preliminary attempt to rectify this omission provides a conceptual/theoretical perspective on jealousy dynamics in marriage. Marital jealousy, a…

  5. Jealousy and Trust: Unexplored Dimensions of Social Exchange Dynamics.

    ERIC Educational Resources Information Center

    McDonald, Gerald W.; Osmond, Marie Withers

    Little effort has been made to systematically assess the determinants and consequences of marital jealousy which affect marital, familial and extra-familial expectations, interactions and behavior. A preliminary attempt to rectify this omission provides a conceptual/theoretical perspective on jealousy dynamics in marriage. Marital jealousy, a…

  6. Dynamics of metal-humate complexation equilibria as revealed by isotope exchange studies - a matter of concentration and time

    NASA Astrophysics Data System (ADS)

    Lippold, Holger; Eidner, Sascha; Kumke, Michael U.; Lippmann-Pipke, Johanna

    2017-01-01

    Complexation with dissolved humic matter can be crucial in controlling the mobility of toxic or radioactive contaminant metals. For speciation and transport modelling, a dynamic equilibrium process is commonly assumed, where association and dissociation run permanently. This is, however, questionable in view of reported observations of a growing resistance to dissociation over time. In this study, the isotope exchange principle was employed to gain direct insight into the dynamics of the complexation equilibrium, including kinetic inertisation phenomena. Terbium(III), an analogue of trivalent actinides, was used as a representative of higher-valent metals. Isotherms of binding to (flocculated) humic acid, determined by means of 160Tb as a radiotracer, were found to be identical regardless of whether the radioisotope was introduced together with the bulk of stable 159Tb or subsequently after pre-equilibration for up to 3 months. Consequently, there is a permanent exchange of free and humic-bound Tb since all available binding sites are occupied in the plateau region of the isotherm. The existence of a dynamic equilibrium was thus evidenced. There was no indication of an inertisation under these experimental conditions. If the small amount of 160Tb was introduced prior to saturation with 159Tb, the expected partial desorption of 160Tb occurred at much lower rates than observed for the equilibration process in the reverse procedure. In addition, the rates decreased with time of pre-equilibration. Inertisation phenomena are thus confined to the stronger sites of humic molecules (occupied at low metal concentrations). Analysing the time-dependent course of isotope exchange according to first-order kinetics indicated that up to 3 years are needed to attain equilibrium. Since, however, metal-humic interaction remains reversible, exchange of metals between humic carriers and mineral surfaces cannot be neglected on the long time scale to be considered in predictive

  7. Quantum dynamics of {sup 16}O + {sup 36}O{sub 2} and {sup 18}O + {sup 32}O{sub 2} exchange reactions

    SciTech Connect

    Rajagopala Rao, T.; Mahapatra, S.; Guillon, G.; Honvault, P.

    2015-05-07

    We present quantum dynamical investigations of {sup 16}O + {sup 36}O{sub 2} and {sup 18}O + {sup 32}O{sub 2} exchange reactions using a time-independent quantum mechanical method and an accurate global potential energy surface of ozone [Dawes et al., J. Chem. Phys. 135, 081102 (2011)]. Initial state-selected integral cross sections, rate constants, and Boltzmann averaged thermal rate constants are obtained and compared with earlier experimental and theoretical results. The computed thermal rate constants for the oxygen exchange reactions exhibit a negative temperature dependence, as found experimentally. They are in better agreement with the experiments than the previous studies on the same reactions.

  8. Zonal rate model for stacked membrane chromatography part II: characterizing ion-exchange membrane chromatography under protein retention conditions.

    PubMed

    Francis, Patrick; von Lieres, Eric; Haynes, Charles

    2012-03-01

    The Zonal Rate Model (ZRM) has previously been shown to accurately account for contributions to elution band broadening, including external flow nonidealities and radial concentration gradients, in ion-exchange membrane (IEXM) chromatography systems operated under nonbinding conditions. Here, we extend the ZRM to analyze and model the behavior of retained proteins by introducing terms for intra-column mass transfer resistances and intrinsic binding kinetics. Breakthrough curve (BTC) data from a scaled-down anion-exchange membrane chromatography module using ovalbumin as a model protein were collected at flow rates ranging from 1.5 to 20 mL min(-1). Through its careful accounting of transport nonidealities within and external to the membrane stack, the ZRM is shown to provide a useful framework for characterizing putative protein binding mechanisms and models, for predicting BTCs and complex elution behavior, including the common observation that the dynamic binding capacity can increase with linear velocity in IEXM systems, and for simulating and scaling separations using IEXM chromatography. Global fitting of model parameters is used to evaluate the performance of the Langmuir, bi-Langmuir, steric mass action (SMA), and spreading-type protein binding models in either correlating or fundamentally describing BTC data. When combined with the ZRM, the bi-Langmuir, and SMA models match the chromatography data, but require physically unrealistic regressed model parameters to do so. In contrast, for this system a spreading-type model is shown to accurately predict column performance while also providing a realistic fundamental explanation for observed trends, including an observed increase in dynamic binding capacity with flow rate.

  9. Dynamic nonlinear vago-sympathetic interaction in regulating heart rate.

    PubMed

    Sunagawa, K; Kawada, T; Nakahara, T

    1998-01-01

    Although the characteristics of the static interactions between the sympathetic and parasympathetic nervous systems in regulating heart rate have been well established, how the dynamic interaction modulates the heart rate response remains unknown. Thus, we investigated the dynamic interaction by estimating the transfer function from nerve stimulation to heart rate, using band-limited Gaussian white noise, in anesthetized rabbits. Concomitant tonic vagal stimulation at 5 and 10 Hz increased the gain of the transfer function relating dynamic sympathetic stimulation to heart rate by 55.0%+/-40.1% and 80.7%+/-50.5%, respectively (P < 0.05). Concomitant tonic sympathetic stimulation at 5 and 10 Hz increased the gain of the transfer function relating dynamic vagal stimulation to heart rate by 18.2%+/-17.9% and 24.1%+/-18.0%, respectively (P < 0.05). Such bidirectional augmentation was also observed during simultaneous dynamic stimulation of the sympathetic and vagal nerves independent of their stimulation patterns. Because of these characteristics, changes in sympathetic or vagal tone alone can alter the dynamic heart rate response to stimulation of the other nerve. We explained this phenomenon by assuming a sigmoidal static relationship between autonomic nerve activity and heart rate. To confirm this assumption, we identified the static and dynamic characteristics of heart rate regulation by a neural network analysis, using large-amplitude Gaussian white noise input. To examine the mechanism involved in the bidirectional augmentation, we increased cytosolic adenosine 3',5'-cyclic monophosphate (cAMP) at the postjunctional effector site by applying pharmacological interventions. The cAMP accumulation increased the gain of the transfer function relating dynamic vagal stimulation to heart rate. Thus, accumulation of cAMP contributes, at least in part, to the sympathetic augmentation of the dynamic vagal control of heart rate.

  10. Quantitative chemical exchange saturation transfer (qCEST) MRI--RF spillover effect-corrected omega plot for simultaneous determination of labile proton fraction ratio and exchange rate.

    PubMed

    Sun, Phillip Zhe; Wang, Yu; Dai, ZhuoZhi; Xiao, Gang; Wu, Renhua

    2014-01-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute proteins and peptides as well as microenvironmental properties. However, the complexity of the CEST MRI effect, which varies with the labile proton content, exchange rate and experimental conditions, underscores the need for developing quantitative CEST (qCEST) analysis. Towards this goal, it has been shown that omega plot is capable of quantifying paramagnetic CEST MRI. However, the use of the omega plot is somewhat limited for diamagnetic CEST (DIACEST) MRI because it is more susceptible to direct radio frequency (RF) saturation (spillover) owing to the relatively small chemical shift. Recently, it has been found that, for dilute DIACEST agents that undergo slow to intermediate chemical exchange, the spillover effect varies little with the labile proton ratio and exchange rate. Therefore, we postulated that the omega plot analysis can be improved if RF spillover effect could be estimated and taken into account. Specifically, simulation showed that both labile proton ratio and exchange rate derived using the spillover effect-corrected omega plot were in good agreement with simulated values. In addition, the modified omega plot was confirmed experimentally, and we showed that the derived labile proton ratio increased linearly with creatine concentration (p < 0.01), with little difference in their exchange rate (p = 0.32). In summary, our study extends the conventional omega plot for quantitative analysis of DIACEST MRI.

  11. Evaluation and comparison of diffusion MR methods for measuring apparent transcytolemmal water exchange rate constant

    NASA Astrophysics Data System (ADS)

    Tian, Xin; Li, Hua; Jiang, Xiaoyu; Xie, Jingping; Gore, John C.; Xu, Junzhong

    2017-02-01

    Two diffusion-based approaches, CG (constant gradient) and FEXI (filtered exchange imaging) methods, have been previously proposed for measuring transcytolemmal water exchange rate constant kin, but their accuracy and feasibility have not been comprehensively evaluated and compared. In this work, both computer simulations and cell experiments in vitro were performed to evaluate these two methods. Simulations were done with different cell diameters (5, 10, 20 μm), a broad range of kin values (0.02-30 s-1) and different SNR's, and simulated kin's were directly compared with the ground truth values. Human leukemia K562 cells were cultured and treated with saponin to selectively change cell transmembrane permeability. The agreement between measured kin's of both methods was also evaluated. The results suggest that, without noise, the CG method provides reasonably accurate estimation of kin especially when it is smaller than 10 s-1, which is in the typical physiological range of many biological tissues. However, although the FEXI method overestimates kin even with corrections for the effects of extracellular water fraction, it provides reasonable estimates with practical SNR's and more importantly, the fitted apparent exchange rate AXR showed approximately linear dependence on the ground truth kin. In conclusion, either CG or FEXI method provides a sensitive means to characterize the variations in transcytolemmal water exchange rate constant kin, although the accuracy and specificity is usually compromised. The non-imaging CG method provides more accurate estimation of kin, but limited to large volume-of-interest. Although the accuracy of FEXI is compromised with extracellular volume fraction, it is capable of spatially mapping kin in practice.

  12. Evaluation and comparison of diffusion MR methods for measuring apparent transcytolemmal water exchange rate constant.

    PubMed

    Tian, Xin; Li, Hua; Jiang, Xiaoyu; Xie, Jingping; Gore, John C; Xu, Junzhong

    2017-02-01

    Two diffusion-based approaches, CG (constant gradient) and FEXI (filtered exchange imaging) methods, have been previously proposed for measuring transcytolemmal water exchange rate constant kin, but their accuracy and feasibility have not been comprehensively evaluated and compared. In this work, both computer simulations and cell experiments in vitro were performed to evaluate these two methods. Simulations were done with different cell diameters (5, 10, 20μm), a broad range of kin values (0.02-30s(-1)) and different SNR's, and simulated kin's were directly compared with the ground truth values. Human leukemia K562 cells were cultured and treated with saponin to selectively change cell transmembrane permeability. The agreement between measured kin's of both methods was also evaluated. The results suggest that, without noise, the CG method provides reasonably accurate estimation of kin especially when it is smaller than 10s(-1), which is in the typical physiological range of many biological tissues. However, although the FEXI method overestimates kin even with corrections for the effects of extracellular water fraction, it provides reasonable estimates with practical SNR's and more importantly, the fitted apparent exchange rate AXR showed approximately linear dependence on the ground truth kin. In conclusion, either CG or FEXI method provides a sensitive means to characterize the variations in transcytolemmal water exchange rate constant kin, although the accuracy and specificity is usually compromised. The non-imaging CG method provides more accurate estimation of kin, but limited to large volume-of-interest. Although the accuracy of FEXI is compromised with extracellular volume fraction, it is capable of spatially mapping kin in practice.

  13. Interactions between heart rate variability and pulmonary gas exchange efficiency in humans.

    PubMed

    Sin, Peter Y W; Webber, Matthew R; Galletly, Duncan C; Ainslie, Philip N; Brown, Stephen J; Willie, Chris K; Sasse, Alexander; Larsen, Peter D; Tzeng, Yu-Chieh

    2010-07-01

    The respiratory component of heart rate variability (respiratory sinus arrhythmia, RSA) has been associated with improved pulmonary gas exchange efficiency in humans via the apparent clustering and scattering of heart beats in time with the inspiratory and expiratory phases of alveolar ventilation, respectively. However, since human RSA causes only marginal redistribution of heart beats to inspiration, we tested the hypothesis that any association between RSA amplitude and pulmonary gas exchange efficiency may be indirect. In 11 patients with fixed-rate cardiac pacemakers and 10 healthy control subjects, we recorded R-R intervals, respiratory flow, end-tidal gas tension and the ventilatory equivalents for carbon dioxide and oxygen during 'fast' (0.25 Hz) and 'slow' paced breathing (0.10 Hz). Mean heart rate, mean arterial blood pressure, mean arterial pressure fluctuations, tidal volume, end-tidal CO(2), and were similar between pacemaker and control groups in both the fast and slow breathing conditions. Although pacemaker patients had no RSA and slow breathing was associated with a 2.5-fold RSA amplitude increase in control subjects (39 +/- 21 versus 97 +/- 45 ms, P < 0.001), comparable (main effect for breathing frequency, F(1,19) = 76.54, P < 0.001) and reductions (main effect for breathing frequency, F(1,19) = 23.90, P < 0.001) were observed for both cohorts during slow breathing. In addition, the degree of (r = 0.36, P = 0.32) and reductions (r = 0.29, P = 0.43) from fast to slow breathing were not correlated to the degree of associated RSA amplitude enhancements in control subjects. These findings suggest that the association between RSA amplitude and pulmonary gas exchange efficiency during variable-frequency paced breathing observed in prior human work is not contingent on RSA being present. Therefore, whether RSA serves an intrinsic physiological function in optimizing pulmonary gas exchange efficiency in humans requires further experimental validation.

  14. Nonequilibrium thermodynamics formalism for Marcus theory of heterogeneous and self-exchange electron-transfer rate constants.

    PubMed

    Sethi, Richa; Sangaranarayanan, M V

    2008-05-08

    The cross-exchange electron-transfer rate constant expression of Marcus is derived from the Flux-force formalism of non-equilibrium thermodynamics. The relationship governing the Onsager's phenomenological coefficients for cross-exchange and self-exchange electron-transfer processes is deduced. Onsager's phenomenological coefficient pertaining to the Butler-Volmer equation is derived and estimated from the experimental exchange current densities. The correlation between the heterogeneous and the homogeneous electron-transfer rate constants derived by Marcus is analyzed in terms of the corresponding phenomenological coefficients.

  15. Analyzing energy-water exchange dynamics in the Thar desert

    NASA Astrophysics Data System (ADS)

    Raja, P.; Singh, Nilendu; Srinivas, C. V.; Singhal, Mohit; Chauhan, Pankaj; Singh, Maharaj; Sinha, N. K.

    2017-07-01

    Regions of strong land-atmosphere coupling will be more susceptible to the hydrological impacts in the intensifying hydrological cycle. In this study, micrometeorological experiments were performed to examine the land-atmosphere coupling strength over a heat low region (Thar desert, NW India), known to influence the Indian summer monsoon (ISM). Within the vortex of Thar desert heat low, energy-water exchange and coupling behavior were studied for 4 consecutive years (2011-2014) based on sub-hourly measurements of radiative-convective flux, state parameters and sub-surface thermal profiles using lead-lag analysis between various E-W balance components. Results indicated a strong (0.11-0.35) but variable monsoon season (July-September) land-atmosphere coupling events. Coupling strength declined with time, becomes negative beyond 10-day lag. Evapotranspiration (LE) influences rainfall at the monthly time-scale (20-40 days). Highly correlated monthly rainfall and LE anomalies (r = 0.55, P < 0.001) suggested a large precipitation memory linked to the local land surface state. Sensible heating (SH) during March and April are more strongly (r = 0.6-0.7) correlated to ISM rainfall than heating during May or June (r = 0.16-0.36). Analyses show strong and weak couplings among net radiation (Rn)-vapour pressure deficit (VPD), LE-VPD and Rn-LE switching between energy-limited to water-limited conditions. Consistently, +ve and -ve residual energy [(dE) = (Rn - G) - (SH + LE)] were associated with regional wet and dry spells respectively with a lead of 10-40 days. Dew deposition (18.8-37.9 mm) was found an important component in the annual surface water balance. Strong association of variation of LE and rainfall was found during monsoon at local-scale and with regional-scale LE (MERRA 2D) but with a lag which was more prominent at local-scale than at regional-scale. Higher pre-monsoon LE at local-scale as compared to low and monotonous variation in regional-scale LE led to

  16. Energy Exchange Dynamics across L-H transitions in NSTX

    NASA Astrophysics Data System (ADS)

    Diallo, A.; Banerjee, S.; Zweben, S.; Stoltzfus-Dueck, T.

    2016-10-01

    This work is motivated by the need to test L-H transition paradigms (e.g., predator-prey, and ExB flow suppression) and explore possible new L-H transition dynamics. We present analysis of the L-H transition on three sets (NBI, RF, and Ohmic) of NSTX discharges using the gas-puff-imaging diagnostics for high temporal and spatial resolutions. The analysis studies the edge velocities and energy dynamics across the L-H transition using an implementation of the orthogonal decomposition programming for high temporal resolution velocity fields. In the database NSTX discharges, the production term (computed 1 cm inside the separatrix) is negative, pointing to transfer from the DC flows to the fluctuations, even immediately before the L-H transition. This suggests that depletion of turbulent fluctuation energy via transfer to the mean flow may not play a key role in the L-H transition. The thermal free energy is consistently much larger than the kinetic energy produced by the mean poloidal flow across the L-H transitions. These observations are inconsistent with the predator-prey model. The paper will describe the analysis including error estimations. Furthermore, analysis of the radial correlation dynamics across the L-H transition will be discussed. Work supported by U.S. DoE contract #DE-AC02-09CH11466.

  17. Influence of a wick lining on the evaporation rate of lithium from a charge exchange canal

    NASA Astrophysics Data System (ADS)

    Thampi, N. S.; Berger, S.; Dworschak, F.

    1992-02-01

    A wick lining is used with a lithium charge exchange canal for reducing the consumption of lithium. The wick helps to condense the lithium vapour more effectively and to make it flow back to the main oven. For its efficient functioning, the temperature gradient along the wick has to be properly maintained. The present studies were carried out to assess the extent of reduction in lithium loss when using the wick and to determine the optimum temperature settings. The evaporation rate of lithium vapour from a charge exchange canal (General Ionex Model-712) has been investigated in the temperature range from 470 to 575° C. The measurements were carried out with and without a stainless steel wire mesh wick lining, inside the canal. A quartz crystal oscillator type rate meter was used for monitoring the evaporation rate. The results indicate that, when the wick lining is inserted, the reduction in evaporation rate of lithium is only 20%. This differs much from the result of Greenway [Report 85/11, Oxford University, Nuclear Physics Laboratory (1985)] who reported a reduction by a factor of 8. The evaporation rate is also found to depend on the canal end heater temperature, maintained high enough to keep the condensing vapour in liquid state. The optimum temperature settings for the end heaters have been found to be 300 ° C. The experimental arrangements and results are presented in this paper.

  18. Time Dependency of Psychotherapeutic Exchanges: The Contribution of the Theory of Dynamic Systems in Analyzing Process

    PubMed Central

    Salvatore, Sergio; Tschacher, Wolfgang

    2012-01-01

    This paper provides a general framework for the use of Theory of Dynamic Systems (TDS) in the field of psychotherapy research. Psychotherapy is inherently dynamic, namely a function of time. Consequently, the improvement of construct validity and clinical relevance of psychotherapy process research require the development of models of investigation allowing dynamic mappings of clinical exchange. Thus, TDS becomes a significant theoretical and methodological reference. The paper focuses two topics. First, the main concepts of TDS are briefly introduced together with a basic typology of approaches developed within this domain. Second, we propose a repertoire of investigation strategies that can be used to capture the dynamic nature of clinical exchange. In this way we intend to highlight the feasibility and utility of strategies of analysis informed by TDS. PMID:22848205

  19. Probing dynamics and mechanism of exchange process of quaternary ammonium dimeric surfactants, 14-s-14, in the presence of conventional surfactants.

    PubMed

    Liu, Jun; Jiang, Yan; Chen, Hong; Mao, Shi Zhen; Du, You Ru; Liu, Mai Li

    2012-12-27

    In this Article, we investigated effects of different types of conventional surfactants on exchange dynamics of quaternary ammonium dimeric surfactants, with chemical formula C(14)H(29)N(+)(CH(3))(2)- (CH(2))(s)-N(+)(CH(3))(2)C(14)H(29)·2Br(-), or 14-s-14 for short. Two nonionic surfactants, TritonX-100 (TX-100) and polyethylene glycol (23) laurylether (Brij-35), and one cationic surfactant, n-tetradecyltrimethyl ammonium bromide (TTAB), and one ionic surfactant, sodium dodecyl sulfate (SDS) were chosen as typical conventional surfactants. Exchange rates of 14-s-14 (s = 2, 3, and 4) between the micelle form and monomer in solution were detected by two NMR methods: one-dimensional (1D) line shape analysis and two-dimensional (2D) exchange spectroscopy (EXSY). Results show that the nonionic surfactants (TX-100 and Brij-35), the cationic surfactant (TTAB), and the ionic surfactant (SDS) respectively accelerated, barely influenced, and slowed the exchange rate of 14-s-14. The effect mechanism was investigated by the self-diffusion experiment, relaxation time measurements (T(2)/T(1)), the fluorescence experiment (I(1)/I(3)) and observed chemical shift variations. Results reveal that, nonionic conventional surfactants (TX-100 and Brij-35) loosened the molecule arrangement and decreased hydrophobic interactions in the micelle, and thus accelerated the exchange rate of 14-s-14. The cationic conventional surfactant (TTAB) barely changed the molecule arrangement and thus barely influenced the exchange rate of 14-s-14. The ionic conventional surfactant (SDS) introduced the electrostatic attraction effect, tightened the molecule arrangement, and increased hydrophobic interactions in the micelle, and thus slowed down the exchange rate of 14-s-14. Additionally, the two-step exchange mechanism of 14-s-14 in the mixed solution was revealed through interesting variation tendencies of exchange rates of 14-s-14.

  20. Oral pseudoephedrine decreases the rate of transmucosal nitrous oxide exchange for the middle ear.

    PubMed

    Teixeira, Miriam S; Alper, Cuneyt M; Martin, Brian S; Doyle, Brendan M Cullen; Doyle, William J

    2015-09-01

    Determine if oral treatment with a vasoconstrictor decreases the blood to middle ear exchange rate of the perfusion-limited gas, nitrous oxide (N2O). Randomized, double-blind, crossover study. Ten adult subjects with and 10 without past middle ear disease completed paired experimental sessions, identical except for oral treatment with either pseudoephedrine hydrochloride or lactose placebo. At each session, subjects were fitted with a nonrebreathing mask and breathed room air for 20 minutes (acclimation period), 50% N2O:50% O2 for 20 minutes (experimental period), and 100% O2 for 10 minutes (recovery period). Throughout, heart rate, blood pressure, and O2 saturation were monitored, and bilateral middle ear pressures were recorded by tympanometry every minute. The primary outcome was the slope of the middle ear pressure-time function for the experimental period, which estimates the volume N2O exchange rate. Using repeated measures analysis of variance, the effects of group (disease history), treatment (active vs. placebo), and period (1 vs. 2) on the recorded vital signs, and of group, treatment, and ear (left/right) on the middle ear pressure-time slope were evaluated for statistical significance. Statistically significant effects of period on O2 saturation (period 2 > period 1) and of treatment on heart rate (active > placebo) were documented. Only treatment was statistically significant for the middle ear pressure-time slope, with a shallower slope characterizing the active treatment session. The volume exchange rate across the middle ear mucosa of perfusion-limited gases can be modulated pharmacologically. Theoretically, similar drugs can be used to reduce the requisite eustachian tube opening efficiency for adequate middle ear pressure regulation. 1b. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  1. Repeatability of standard metabolic rate and gas exchange characteristics in a highly variable cockroach, Perisphaeria sp.

    PubMed

    Marais, Elrike; Chown, Steven L

    2003-12-01

    For natural selection to take place several conditions must be met, including consistent variation among individuals. Although this assumption is increasingly being explored in vertebrates, it has rarely been investigated for insect physiological traits, although variation in these traits is usually assumed to be adaptive. We investigated repeatability (r) of metabolic rate and gas exchange characteristics in a highly variable Perisphaeria cockroach species. Although this species shows four distinct gas exchange patterns at rest, metabolic rate (r=0.51) and the bulk of the gas exchange characteristics (r=0.08-0.91, median=0.42) showed high and significant repeatabilities. Repeatabilities were generally lower in those cases where the effects of body size were removed prior to estimation of r. However, we argue that because selection is likely to act on the trait of an animal of a given size, rather than on the residual variation of that trait once size has been accounted for, size correction is inappropriate. Our results provide support for consistency of variation among individuals, which is one of the prerequisites of natural selection that is infrequently tested in insects.

  2. NASA geometry data exchange specification for computational fluid dynamics (NASA IGES)

    NASA Technical Reports Server (NTRS)

    Blake, Matthew W.; Kerr, Patricia A.; Thorp, Scott A.; Jou, Jin J.

    1994-01-01

    This document specifies a subset of an existing product data exchange specification that is widely used in industry and government. The existing document is called the Initial Graphics Exchange Specification. This document, a subset of IGES, is intended for engineers analyzing product performance using tools such as computational fluid dynamics (CFD) software. This document specifies how to define mathematically and exchange the geometric model of an object. The geometry is represented utilizing nonuniform rational B-splines (NURBS) curves and surfaces. Only surface models are represented; no solid model representation is included. This specification does not include most of the other types of product information available in IGES (e.g., no material properties or surface finish properties) and does not provide all the specific file format details of IGES. The data exchange protocol specified in this document is fully conforming to the American National Standard (ANSI) IGES 5.2.

  3. The dynamics of sorption of sulfuric acid by weakly basic polyacrylic anion exchangers

    NASA Astrophysics Data System (ADS)

    Mamchenko, A. V.; Kushnir, T. V.

    2009-05-01

    The nonequilibrium dynamics of sorption of sulfuric acid by free base forms of Amberlite IRA-67 and Lewatite VP.OC.1072 weakly basic anion exchangers is studied. It is established that, in hydrodynamic regimes of filtration, which are typical of OH filters of the first stage of water-desalting plants, the limiting stage of sorption kinetics is inside diffusion. It is concluded that the process is correctly described by an asymptotic solution to the inside-diffusion model of sorption dynamics.

  4. Thixoforming of Steel: New Tools Conception to Analyse Thermal Exchanges and Strain Rate Effects

    SciTech Connect

    Cezard, P.; Bigot, R.; Becker, E.; Mathieu, S.; Pierret, J. C.; Rassili, A.

    2007-04-07

    Through different papers, authors shown that the influence of thermal exchanges was a first order parameter on the semi-solid steel behaviour, and certainly for every semi-solid metallic materials. These thermal exchanges hide other parameters effect like, for example, the strain rate influence. This paper tries to determine the influence of these two parameters by using a new extrusion device on a hydraulic press. This new tools conception annihilated the influence of the decrease of the punch speed before stopping and permitted to have a constant speed during the experiment. This work also deals with the homogeneous flow during thixoforming of steel and shows the importance to couple initial temperature of the slug with punch speed. This paper presents different conditions which permitted to have a homogeneous flow by keeping a low load.

  5. Exchange anisotropy and the dynamic phase transition in thin ferromagnetic Heisenberg films.

    PubMed

    Jang, Hyunbum; Grimson, Malcolm J; Hall, Carol K

    2003-10-01

    Monte Carlo simulations have been performed to investigate the dependence of the dynamic phase behavior on the bilinear exchange anisotropy of a classical Heisenberg spin system. The system under consideration is a planar thin ferromagnetic film with competing surface fields subject to a pulsed oscillatory external field. The results show that the films exhibit a single discontinuous dynamic phase transition (DPT) as a function of the anisotropy of the bilinear exchange interaction in the Hamiltonian. Furthermore, there is no evidence of stochastic resonance associated with the DPT. These results are in marked contrast to the continuous DPT observed in the same system as a function of temperature and applied field strength for a fixed bilinear exchange anisotropy.

  6. Dynamic Cyclic Thiodepsipeptide Libraries from Thiol-Thioester Exchange

    DTIC Science & Technology

    2010-04-01

    use in a variety of dynamic combinatorial chemistry assays. The kinetic determinants of macrocycle formation and the role of amino acid structure on...were then made in AA1, AA3, and AA4 (Table 1); by design, AA2-AA3-AA4 forms the macrocycle, and AA1 remains exocyclic. Charged amino acids (Lys, Arg...was initially included in AA3 as a turn residue that favors macrocycles. 9 Various amino acids were incorporated into AA4 to study their effect on

  7. Theoretical investigation on the mechanism and dynamics of oxo exchange of neptunyl(VI) hydroxide in aqueous solution.

    PubMed

    Yang, Xia; Chai, Zhifang; Wang, Dongqi

    2015-03-21

    Four types of reaction mechanisms for the oxo ligand exchange of monomeric and dimeric neptunyl(VI) hydroxide in aqueous solution were explored computationally using density functional theory (DFT) and ab initio classical molecular dynamics. The obtained results were compared with previous studies on the oxo exchange of uranyl hydroxide, as well as with experiments. It is found that the stable T-shaped [NpO3(OH)3](3-) intermediate is a key species for oxo exchange in the proton transfer in mononuclear Path I and binuclear Path IV, similar to the case of uranyl(VI) hydroxide. Path I is thought to be the preferred oxo exchange mechanism for neptunyl(VI) hydroxide in our calculations, due to the lower activation energy (22.7 and 13.1 kcal mol(-1) for ΔG(‡) and ΔH(‡), respectively) of the overall reaction. Path II via a cis-neptunyl structure assisted by a water molecule might be a competitive channel against Path I with a mononuclear mechanism, owing to a rapid dynamical process occurring in Path II. In Path IV with the binuclear mechanism, oxo exchange is accomplished via the interaction between [NpO2(OH)4](2-) and T-shaped [NpO3(OH)3](3-) with a low activation energy for the rate-determining step, however, the overall energy required to fulfill the reaction is slightly higher than that in mononuclear Path I, suggesting a possible binuclear process in the higher energy region. The chemical bonding evolution along the reaction pathways was discussed by using topological methodologies of the electron localization function (ELF).

  8. Riparian hydraulic gradient and stream-groundwater exchange dynamics in steep headwater valleys

    Treesearch

    T.J. Voltz; M.N. Gooseff; A.S. Ward; K. Singha; M. Fitzgerald; T. Wagener

    2013-01-01

    Patterns of riparian hydraulic gradients and stream-groundwater exchange in headwater catchments provide the hydrologic context for important ecological processes. Although the controls are relatively well understood, their dynamics during periods of hydrologic change is not. We investigate riparian hydraulic gradients over three different time scales in two steep,...

  9. Dynamic diversity of synthetic supramolecular polymers in water as revealed by hydrogen/deuterium exchange

    NASA Astrophysics Data System (ADS)

    Lou, Xianwen; Lafleur, René P. M.; Leenders, Christianus M. A.; Schoenmakers, Sandra M. C.; Matsumoto, Nicholas M.; Baker, Matthew B.; van Dongen, Joost L. J.; Palmans, Anja R. A.; Meijer, E. W.

    2017-05-01

    Numerous self-assembling molecules have been synthesized aiming at mimicking both the structural and dynamic properties found in living systems. Here we show the application of hydrogen/deuterium exchange (HDX) mass spectrometry (MS) to unravel the nanoscale organization and the structural dynamics of synthetic supramolecular polymers in water. We select benzene-1,3,5-tricarboxamide (BTA) derivatives that self-assemble in H2O to illustrate the strength of this technique for supramolecular polymers. The BTA structure has six exchangeable hydrogen atoms and we follow their exchange as a function of time after diluting the H2O solution with a 100-fold excess of D2O. The kinetic H/D exchange profiles reveal that these supramolecular polymers in water are dynamically diverse; a notion that has previously not been observed using other techniques. In addition, we report that small changes in the molecular structure can be used to control the dynamics of synthetic supramolecular polymers in water.

  10. Dynamic diversity of synthetic supramolecular polymers in water as revealed by hydrogen/deuterium exchange.

    PubMed

    Lou, Xianwen; Lafleur, René P M; Leenders, Christianus M A; Schoenmakers, Sandra M C; Matsumoto, Nicholas M; Baker, Matthew B; van Dongen, Joost L J; Palmans, Anja R A; Meijer, E W

    2017-05-15

    Numerous self-assembling molecules have been synthesized aiming at mimicking both the structural and dynamic properties found in living systems. Here we show the application of hydrogen/deuterium exchange (HDX) mass spectrometry (MS) to unravel the nanoscale organization and the structural dynamics of synthetic supramolecular polymers in water. We select benzene-1,3,5-tricarboxamide (BTA) derivatives that self-assemble in H2O to illustrate the strength of this technique for supramolecular polymers. The BTA structure has six exchangeable hydrogen atoms and we follow their exchange as a function of time after diluting the H2O solution with a 100-fold excess of D2O. The kinetic H/D exchange profiles reveal that these supramolecular polymers in water are dynamically diverse; a notion that has previously not been observed using other techniques. In addition, we report that small changes in the molecular structure can be used to control the dynamics of synthetic supramolecular polymers in water.

  11. The rate of N-WASP exchange limits the extent of ARP2/3-complex-dependent actin-based motility.

    PubMed

    Weisswange, Ina; Newsome, Timothy P; Schleich, Sibylle; Way, Michael

    2009-03-05

    Understanding cell motility will require detailed knowledge not only of the localization of signalling networks regulating actin polymerization, but also of their dynamics. Unfortunately, many signalling networks are not amenable to such analysis, as they are frequently transient and dispersed. By contrast, the signalling pathways used by pathogens undergoing actin-based motility are highly localized and operate in a constitutive fashion. Taking advantage of this, we have analysed the dynamics of neuronal Wiskott-Aldrich syndrome protein (N-WASP), WASP-interacting protein (WIP), GRB2 and NCK, which are required to stimulate actin-related protein (ARP)2/3-complex-dependent actin-based motility of vaccinia virus, using fluorescence recovery after photobleaching. Here we show that all four proteins are rapidly exchanging, albeit at different rates, and that the turnover of N-WASP depends on its ability to stimulate ARP2/3-complex-mediated actin polymerization. Conversely, disruption of the interaction of N-WASP with GRB2 and/or the barbed ends of actin filaments increases its exchange rate and results in a faster rate of virus movement. We suggest that the exchange rate of N-WASP controls the rate of ARP2/3-complex-dependent actin-based motility by regulating the extent of actin polymerization by antagonizing filament capping.

  12. Effects of the anion salt nature on the rate constants of the aqueous proton exchange reactions.

    PubMed

    Paredes, Jose M; Garzon, Andres; Crovetto, Luis; Orte, Angel; Lopez, Sergio G; Alvarez-Pez, Jose M

    2012-04-28

    The proton-transfer ground-state rate constants of the xanthenic dye 9-[1-(2-methyl-4-methoxyphenyl)]-6-hydroxy-3H-xanthen-3-one (TG-II), recovered by Fluorescence Lifetime Correlation Spectroscopy (FLCS), have proven to be useful to quantitatively reflect specific cation effects in aqueous solutions (J. M. Paredes, L. Crovetto, A. Orte, J. M. Alvarez-Pez and E. M. Talavera, Phys. Chem. Chem. Phys., 2011, 13, 1685-1694). Since these phenomena are more sensitive to anions than to cations, in this paper we have accounted for the influence of salts with the sodium cation in common, and the anion classified according to the empirical Hofmeister series, on the proton transfer rate constants of TG-II. We demonstrate that the presence of ions accelerates the rate of the ground-state proton-exchange reaction in the same order than ions that affect ion solvation in water. The combination of FLCS with a fluorophore undergoing proton transfer reactions in the ground state, along with the desirable feature of a pseudo-dark state when the dye is protonated, allows one unique direct determination of kinetic rate constants of the proton exchange chemical reaction.

  13. Modified perfluorocarbon tracer method for measuring effective multizone air exchange rates.

    PubMed

    Shinohara, Naohide; Kataoka, Toshiyuki; Takamine, Koichi; Butsugan, Michio; Nishijima, Hirokazu; Gamo, Masashi

    2010-09-01

    A modified procedure was developed for the measurement of the effective air exchange rate, which represents the relationship between the pollutants emitted from indoor sources and the residents' level of exposure, by placing the dosers of tracer gas at locations that resemble indoor emission sources. To measure the 24-h-average effective air exchange rates in future surveys based on this procedure, a low-cost, easy-to-use perfluorocarbon tracer (PFT) doser with a stable dosing rate was developed by using double glass vials, a needle, a polyethylene-sintered filter, and a diffusion tube. Carbon molecular sieve cartridges and carbon disulfide (CS₂) were used for passive sampling and extraction of the tracer gas, respectively. Recovery efficiencies, sampling rates, and lower detection limits for 24-h sampling of hexafluorobenzene, octafluorotoluene, and perfluoroallylbenzene were 40% ± 3%, 72% ± 5%, and 84% ± 6%; 10.5 ± 1.1, 14.4 ± 1.4, and 12.2 ± 0.49 mL min⁻¹; and 0.20, 0.17, and 0.26 μg m⁻³, respectively.

  14. Effect of Taiwan mutation (D7H) on structures of amyloid-β peptides: replica exchange molecular dynamics study.

    PubMed

    Truong, Phan Minh; Viet, Man Hoang; Nguyen, Phuong H; Hu, Chin-Kun; Li, Mai Suan

    2014-07-31

    Recent experiments have shown that the Taiwan mutation (D7H) slows the fibril formation of amyloid peptides Aβ40 and Aβ42. Motivated by this finding, we have studied the influence of D7H mutation on structures of Aβ peptide monomers using the replica exchange molecular dynamics simulations with OPLS force field and implicit water model. Our study reveals that the mechanism behind modulation of aggregation rates is associated with decrease of β-content and dynamics of the salt bridge D23-K28. Estimating the bending free energy of this salt bridge, we have found that, in agreement with the experiments, the fibril formation rate of both peptides Aβ40 and Aβ42 is reduced about two times by mutation.

  15. The Effects of Heat Exchange and Thermal Advection on the Rate of Change of Temperature at Ocean Weather Station NOVEMBER.

    DTIC Science & Technology

    The effects of heat exchange across the sea surface and heat advection on the observed rate of change of temperature were examined using a physical...NOVEMBER during 1954 through 1970 were used. A three-dimensional plot of the annual variations of the monthly means of observed rate of change of...temperature produced three distinct trends. Heat exchange primarily contributed to the modification of the observed rate of change of temperature during the

  16. Reduction of Large Dynamical Systems by Minimization of Evolution Rate

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.

    1999-01-01

    Reduction of a large system of equations to a lower-dimensional system of similar dynamics is investigated. For dynamical systems with disparate timescales, a criterion for determining redundant dimensions and a general reduction method based on the minimization of evolution rate are proposed.

  17. Dynamic Models of Learning That Characterize Parent-Child Exchanges Predict Vocabulary Growth

    ERIC Educational Resources Information Center

    Ober, David R.; Beekman, John A.

    2016-01-01

    Cumulative vocabulary models for infants and toddlers were developed from models of learning that predict trajectories associated with low, average, and high vocabulary growth rates (14 to 46 months). It was hypothesized that models derived from rates of learning mirror the type of exchanges provided to infants and toddlers by parents and…

  18. The effect of water exchange on bacterioplankton depletion and inorganic nutrient dynamics in coral reef cavities

    NASA Astrophysics Data System (ADS)

    van Duyl, F. C.; Scheffers, S. R.; Thomas, F. I. M.; Driscoll, M.

    2006-03-01

    We studied the effect of water exchange on the depletion (or accumulation) of bacterioplankton, dissolved organic matter and inorganic nutrients in small open framework cavities (50-70 l) at 15 m depth on the coral reef along Curaçao, Netherlands Antilles. The bacterioplankton removal rate in cavities increased with increasing water exchange rates up to a threshold of 0.0045 s-1, reaching values of 50-100 mg C m-2 total interior cavity surface area (CSA) per day. Beyond the threshold, bacterioplankton removal dropped. The cryptic community is apparently adapted to the average water exchange in these cavities (0.0041 s-1). Dissolved inorganic nitrogen (DIN), nitrate + nitrite (NO x ) in particular, accumulated in cavity water and the accumulation decreased with increasing water exchange. Net NO x effluxes exceeded net DIN effluxes from cavities (average efflux rate of 1.9 mmol NO x vs. 0.8 mmol DIN m-2 interior CSA per day). The difference is ascribed to net ammonium losses (NH4) in cavities at reef concentrations >0.025 μM NH4, possibly due to enhanced nitrification. Dissolved inorganic phosphate accumulated in cavities, but was not related to water exchange. The cryptic biota in cavities depend on water exchange for optimization of consumption of bacterioplankton and removal of inorganic nitrogen. Coral cavities are an evident sink of bacterioplankton and a source of NO x and PO{4/3-}.

  19. Assessment of anxiety using heart rate nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Thayer, Julian F.; Friedman, Bruce H.

    1993-11-01

    Various anxiety states have been linked with disorders of the autonomic nervous system. These autonomic disorders may be revealed by analysis of physiological time series such as the heart rate interbeat interval series. The present paper reports a general model of biological system functioning and related assessment indices based on recent nonlinear dynamical systems approaches. In particular, two experimental studies are reported which suggest the utility of heart rate nonlinear dynamics in the assessment of anxiety.

  20. Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes

    USGS Publications Warehouse

    McGuire, A.D.; Wirth, C.; Apps, M.; Beringer, J.; Clein, J.; Epstein, H.; Kicklighter, D.W.; Bhatti, J.; Chapin, F. S.; De Groot, B.; Efremov, D.; Eugster, W.; Fukuda, M.; Gower, T.; Hinzman, L.; Huntley, B.; Jia, G.J.; Kasischke, E.; Melillo, J.; Romanovsky, V.; Shvidenko, A.; Vaganov, E.; Walker, D.

    2002-01-01

    The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.

  1. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    PubMed Central

    Swisher, Christine Leon; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-01-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate–lactate, pyruvate–alanine, and pyruvate–hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines. PMID:26117655

  2. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    NASA Astrophysics Data System (ADS)

    Leon Swisher, Christine; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-08-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate-lactate, pyruvate-alanine, and pyruvate-hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines.

  3. Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate.

    PubMed

    Morel, Alexandre; Zuo, Kuichang; Xia, Xue; Wei, Jincheng; Luo, Xi; Liang, Peng; Huang, Xia

    2012-08-01

    A novel configuration of microbial desalination cell (MDC) packed with ion-exchange resin (R-MDC) was proposed to enhance water desalination rate. Compared with classic MDC (C-MDC), an obvious increase in desalination rate (DR) was obtained by R-MDC. With relatively low concentration (10-2 g/L NaCl) influents, the DR values of R-MDC were about 1.5-8 times those of C-MDC. Ion-exchange resins packed in the desalination chamber worked as conductor and thus counteracted the increase in ohmic resistance during treatment of low concentration salt water. Ohmic resistances of R-MDC stabilized at 3.0-4.7 Ω. By contrast, the ohmic resistances of C-MDC ranged from 5.5 to 12.7 Ω, which were 55-272% higher than those of R-MDC. Remarkable improvement in desalination rate helped improve charge efficiency for desalination in R-MDC. The results first showed the potential of R-MDC in the desalination of water with low salinity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The CH + CO reaction: Rate coefficient for carbon atom exchange at 294 K

    SciTech Connect

    Anderson, S.M.; McCurdy, K.E.; Kolb, C.E. )

    1989-02-09

    A fast-flow reactor equipped with isotope-specific laser-excited fluorescence detection of CH radicals has been used to study carbon atom exchange in the reaction between CH and CO at 294 K and 2 Torr of total pressure. The rate coefficient for exchange, k{sub 3} = (2.1 {times} 0.3) {times} 10{sup {minus}12} cm{sup 3} s{sup {minus}1}, is about an order of magnitude larger than the bimolecular rate for the addition reaction, k{sub 2} = (2.7 {plus minus} 0.4) {times} 10{sup {minus}13}. High-pressure limiting bimolecular and low-pressure termolecular recombination rate coefficients of 1.1 {times} 10{sup {minus}10} cm{sup 3} s{sup {minus}1} and 4.9 {times} 10{sup {minus}30} cm{sup 6} s{sup {minus}1} are derived. The results are discussed in the context of previous work on the title reaction and on the chemistry of singlet CH{sub 2}.

  5. Direct Observation of Nanosecond Water Exchange Dynamics at a Protein Metal Site

    PubMed Central

    Stachura, Monika; Chakraborty, Saumen; Gottberg, Alexander; Ruckthong, Leela; Pecoraro, Vincent L.; Hemmingsen, Lars

    2017-01-01

    Nanosecond ligand exchange dynamics at metal sites within proteins is essential in catalysis, metal ion transport, and regulatory metallobiochemistry. Herein we present direct observation of the exchange dynamics of water at a Cd2+ binding site within two de novo designed metalloprotein constructs using 111mCd perturbed angular correlation (PAC) of γ-rays and 113Cd NMR spectroscopy. The residence time of the Cd2+-bound water molecule is tens of nanoseconds at 20 °C in both proteins. This constitutes the first direct experimental observation of the residence time of Cd2+ coordinated water in any system, including the simple aqua ion. A Leu to Ala amino acid substitution ~10 Å from the Cd2+ site affects both the equilibrium constant and the residence time of water, while, surprisingly, the metal site structure, as probed by PAC spectroscopy, remains essentially unaltered. This implies that remote mutations may affect metal site dynamics, even when structure is conserved. PMID:27973778

  6. Dynamic metabolic exchange governs a marine algal-bacterial interaction

    PubMed Central

    Segev, Einat; Wyche, Thomas P; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera; Barteneva, Natasha; Paulson, Joseph N; Chai, Liraz; Clardy, Jon; Kolter, Roberto

    2016-01-01

    Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens, a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale. DOI: http://dx.doi.org/10.7554/eLife.17473.001 PMID:27855786

  7. Dynamic metabolic exchange governs a marine algal-bacterial interaction.

    PubMed

    Segev, Einat; Wyche, Thomas P; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera; Barteneva, Natasha; Paulson, Joseph N; Chai, Liraz; Clardy, Jon; Kolter, Roberto

    2016-11-18

    Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens, a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale.

  8. The data of GDP and exchange rate used in the Balassa-Samuelson hypothesis.

    PubMed

    Wang, Weiguo; Xue, Jing; Du, Chonghua

    2016-12-01

    This article introduces the data of the log real GDP per capita ratio and the log real exchange rate which are used to revisit the Balassa-Samuelson Hypothesis. We acquired the data from IMF and World Bank database, and provide the name and source of the data. All data are openly accessible. Besides, we describe the value of data as well as the method to process the data which can also be found in "The Balassa-Samuelson Hypothesis in the developed and developing countries revisited" (Weiguo Wang, Jing Xue, Chonghua Du, 2016) [1].

  9. On Value at Risk for Foreign Exchange Rates --- the Copula Approach

    NASA Astrophysics Data System (ADS)

    Jaworski, P.

    2006-11-01

    The aim of this paper is to determine the Value at Risk (VaR) of the portfolio consisting of long positions in foreign currencies on an emerging market. Basing on empirical data we restrict ourselves to the case when the tail parts of distributions of logarithmic returns of these assets follow the power laws and the lower tail of associated copula C follows the power law of degree 1. We will illustrate the practical usefulness of this approach by the analysis of the exchange rates of EUR and CHF at the Polish forex market.

  10. Influence of flow rate and heating power in effective thermal conductivity applied in borehole heat exchangers

    NASA Astrophysics Data System (ADS)

    Śliwa, T.; Sapińska-Śliwa, A.; Wiśniowski, R.; Piechówka, Z.; Krzemień, M.; Pycha, D.; Jaszczur, M.

    2016-09-01

    In borehole heat exchanging systems one of the most important parameters necessary to estimate its efficiency is the effective thermal conductivity. One of the methods for determining it is thermal response test. Such a test may be performed with respect to various parameters. The most important ones include flow rate and heating power. The article summarizes the results of TRT research in Palecznica village, Poland which was performed in boreholes located there in the already operating installation. It presents the established methodology. Also, there is an attempt to determine the relation between the mentioned parameters and the effective thermal conductivity. The research indicates the dependence of the conductivity with the test parameters.

  11. Analysis of the radiative budget of the Venusian atmosphere based on infrared Net Exchange Rate formalism

    NASA Astrophysics Data System (ADS)

    Lebonnois, Sébastien; Eymet, Vincent; Lee, Christopher; Vatant d'Ollone, Jan

    2015-06-01

    A detailed one-dimensional analysis of the energy balance in Venus atmosphere is proposed in this work, based on the Net Exchange Rate formalism that allows the identification in each altitude region of the dominant energy exchanges controlling the temperature. Well-known parameters that control the temperature profile are the solar flux deposition and the cloud particle distribution. Balance between solar heating and infrared energy exchanges is analyzed for each region: upper atmosphere (from cloud top to 100 km), upper cloud, middle cloud, cloud base, and deep atmosphere (cloud base to surface). The energy accumulated below the clouds is transferred to the cloud base through infrared windows, mostly at 3-4 μm and 5-7 μm. The continuum opacity in these spectral regions is not well known for the hot temperatures and large pressures of Venus's deep atmosphere but strongly affects the temperature profile from cloud base to surface. From cloud base, upward transport of energy goes through convection and short-range radiative exchanges up to the middle cloud where the atmosphere is thin enough in the 20-30 μm window to cool directly to space. Total opacity in this spectral window between the 15 μm CO2 band and the CO2 collision-induced absorption has a strong impact on the temperature in the cloud convective layer. Improving our knowledge of the gas opacities in these different windows through new laboratory measurements or ab initio computations, as well as improving the constraints on cloud opacities would help to separate gas and cloud contributions and secure a better understanding of Venus's atmosphere energy balance.

  12. Competition between abstraction and exchange channels in H + HCN reaction: Full-dimensional quantum dynamics

    SciTech Connect

    Jiang, Bin; Guo, Hua

    2013-12-14

    Dynamics of the title reaction is investigated on an ab initio based potential energy surface using a full-dimensional quantum wave packet method within the centrifugal sudden approximation. It is shown that the reaction between H and HCN leads to both the hydrogen exchange and hydrogen abstraction channels. The exchange channel has a lower threshold and larger cross section than the abstraction channel. It also has more oscillations due apparently to quantum resonances. Both channels are affected by long-lived resonances supported by potential wells. Comparison with experimental cross sections indicates underestimation of the abstraction barrier height.

  13. Tungsten polyoxometalate molecules as active nodes for dynamic carrier exchange in hybrid molecular/semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Balliou, A.; Douvas, A. M.; Normand, P.; Tsikritzis, D.; Kennou, S.; Argitis, P.; Glezos, N.

    2014-10-01

    In this work we study the utilization of molecular transition metal oxides known as polyoxometalates (POMs), in particular the Keggin structure anions of the formula PW12O403-, as active nodes for potential switching and/or fast writing memory applications. The active molecules are being integrated in hybrid Metal-Insulator/POM molecules-Semiconductor capacitors, which serve as prototypes allowing investigation of critical performance characteristics towards the design of more sophisticated devices. The charging ability as well as the electronic structure of the molecular layer is probed by means of electrical characterization, namely, capacitance-voltage and current-voltage measurements, as well as transient capacitance measurements, C (t), under step voltage polarization. It is argued that the transient current peaks observed are manifestations of dynamic carrier exchange between the gate electrode and specific molecular levels, while the transient C (t) curves under conditions of molecular charging can supply information for the rate of change of the charge that is being trapped and de-trapped within the molecular layer. Structural characterization via surface and cross sectional scanning electron microscopy as well as atomic force microscopy, spectroscopic ellipsometry, UV and Fourier-transform IR spectroscopies, UPS, and XPS contribute to the extraction of accurate electronic structure characteristics and open the path for the design of new devices with on-demand tuning of their interfacial properties via the controlled preparation of the POM layer.

  14. Tungsten polyoxometalate molecules as active nodes for dynamic carrier exchange in hybrid molecular/semiconductor capacitors

    SciTech Connect

    Balliou, A.; Douvas, A. M.; Normand, P.; Argitis, P.; Glezos, N.; Tsikritzis, D.; Kennou, S.

    2014-10-14

    In this work we study the utilization of molecular transition metal oxides known as polyoxometalates (POMs), in particular the Keggin structure anions of the formula PW₁₂O₄₀³⁻, as active nodes for potential switching and/or fast writing memory applications. The active molecules are being integrated in hybrid Metal-Insulator/POM molecules-Semiconductor capacitors, which serve as prototypes allowing investigation of critical performance characteristics towards the design of more sophisticated devices. The charging ability as well as the electronic structure of the molecular layer is probed by means of electrical characterization, namely, capacitance-voltage and current-voltage measurements, as well as transient capacitance measurements, C (t), under step voltage polarization. It is argued that the transient current peaks observed are manifestations of dynamic carrier exchange between the gate electrode and specific molecular levels, while the transient C (t) curves under conditions of molecular charging can supply information for the rate of change of the charge that is being trapped and de-trapped within the molecular layer. Structural characterization via surface and cross sectional scanning electron microscopy as well as atomic force microscopy, spectroscopic ellipsometry, UV and Fourier-transform IR spectroscopies, UPS, and XPS contribute to the extraction of accurate electronic structure characteristics and open the path for the design of new devices with on-demand tuning of their interfacial properties via the controlled preparation of the POM layer.

  15. Maximizing T2-exchange in Dy3+DOTA-(amide)X chelates: Fine-tuning the water molecule exchange rate for enhanced T2 contrast in MRI

    PubMed Central

    Soesbe, Todd C.; Ratnakar, S. James; Milne, Mark; Zhang, Shanrong; Do, Quyen N.; Kovacs, Zoltan; Sherry, A. Dean

    2014-01-01

    Purpose The water molecule exchange rates in a series of DyDOTA-(amide)X chelates were fine-tuned to maximize the effects of T2-exchange line broadening and improve T2 contrast. Methods Four DyDOTA-(amide)X chelates having a variable number of glycinate side-arms were prepared and characterized as T2-exchange agents. The non-exchanging DyTETA chelate was also used to measure the bulk water T2 reduction due solely to T2*. The total transverse relaxivity (r2tot) at 22, 37, and 52 °C for each chelate was measured in vitro at 9.4 T (400 MHz) by fitting plots of total T2−1 versus concentration. The water molecule exchange rates for each complex were measured by fitting 17O line-width versus temperature data taken at 9.4 T (54.3 MHz). Results The measured transverse relaxivities due to water molecule exchange (r2ex) and bound water lifetimes (τM) were in excellent agreement with Swift-Connick theory, with DyDOTA-(gly)3 giving the largest r2ex = 11.8 s−1 mM−1 at 37 °C. Conclusion By fine-tuning the water molecule exchange rate at 37 °C, the transverse relaxivity has been increased by 2 to 30 times compared to previously studied Dy3+-based chelates. Polymerization or dendrimerization of the optimal chelate could yield a highly sensitive, molecule-sized T2 contrast agent for improved molecular imaging applications. PMID:24390729

  16. Rate-dependent extensional "dynamic ligaments" using shear thickening fluids

    NASA Astrophysics Data System (ADS)

    Nenno, Paul T.; Wetzel, Eric D.

    2014-04-01

    A novel "dynamic ligament" smart material that exhibits a strongly rate-dependent response in extension is developed and characterized. The devices, based on elastomeric polymers and shear thickening fluids, exhibit low resistance to extension at rates below 10 mm/s, but when stretched at 100 mm/s or higher resist with up to 7 × higher force. A link between the shear thickening fluid's rheology and the dynamic ligament's tensile performance is presented to explain the rate-dependent response. Future recommendations for improving device performance are presented, along with a host of different potential application areas including safety equipment, adaptive braces, sporting goods, and military equipment.

  17. An analytical model for estimating water exchange rate in white matter using diffusion MRI.

    PubMed

    Davoodi-Bojd, Esmaeil; Chopp, Michael; Soltanian-Zadeh, Hamid; Wang, Shiyang; Ding, Guangliang; Jiang, Quan

    2014-01-01

    Substantial effort is being expended on using micro-structural modeling of the white matter, with the goal of relating diffusion weighted magnetic resonance imaging (DWMRI) to the underlying structure of the tissue, such as axonal density. However, one of the important parameters affecting diffusion is the water exchange rate between the intra- and extra-axonal space, which has not been fully investigated and is a crucial marker of brain injury such as multiple sclerosis (MS), stroke, and traumatic brain injury (TBI). To our knowledge, there is no diffusion analytical model which includes the Water eXchange Rate (WXR) without the requirement of short gradient pulse (SGP) approximation. We therefore propose a new analytical model by deriving the diffusion signal for a permeable cylinder, assuming a clinically feasible pulse gradient spin echo (PGSE) sequence. Simulations based on Markov Random Walk confirm that the exchange parameter included in our model has a linear correlation (R2>0.88) with the actual WXR. Moreover, increasing WXR causes the estimated values of diameter and volume fraction of the cylinders to increase and decrease, respectively, which is consistent with our findings from histology measurements in tissues near TBI regions. This model was also applied to the diffusion signal acquired from ex vivo brains of 14 male (10 TBI and 4 normal) rats using hybrid diffusion imaging. The estimated values of axon diameter and axonal volume fraction are in agreement with their corresponding histological measurements in normal brains, with 0.96 intra-class correlation coefficient value resulting from consistency analysis. Moreover, a significant increase (p = 0.001) in WXR and diameter and decrease in axonal volume fraction in the TBI boundary were detected in the TBI rats compared with the normal rats.

  18. Tunneled dialysis catheter exchange with fibrin sheath disruption is not associated with increased rate of bacteremia.

    PubMed

    Valliant, Amanda M; Chaudhry, Muhammad K; Yevzlin, Alexander S; Astor, Brad; Chan, Micah R

    2015-01-01

    Tunneled dialysis catheters are the most common form of vascular access among incident dialysis patients in the United States. Fibrin sheath formation is a frequent cause of late catheter dysfunction requiring an exchange procedure with balloon disruption of the fibrin sheath. It is unknown whether fibrin sheath disruption is associated with increased incidence of bacteremia or catheter failure. We reviewed all tunneled dialysis catheter exchange procedures at the University of Wisconsin between January 2008 and December 2011. The primary outcome was incidence of bacteremia, defined as positive blood cultures within 2 weeks of the procedure. Catheter failure, requiring intervention or replacement, was examined as a secondary outcome. Baseline characteristics examined included diabetic status, gender, race and age. A total of 163 procedures were reviewed; 67 (41.1%) had fibrin sheath disruption and 96 did not. Bacteremia occurred in 4.5% (3/67) of those with and 3.1% (3/97) of those without fibrin sheath disruption (p=0.65). Fibrin sheath disruption was not significantly associated with the risk of catheter failure (adjusted hazard ratio [aHR]=1.34; 95% confidence interval [CI]: 0.87-2.10; p=0.18). Diabetes was associated with greater risk of catheter failure (aHR=1.88; 95% CI: 1.19-2.95; p=0.006), whereas higher age was associated with a lower risk of catheter failure (aHR per 10 years=0.83; 95% CI: 0.72-0.96; p=0.01). This study demonstrates that there is no significant increase in bacteremia and subsequent catheter dysfunction rates after fibrin sheath disruption compared to simple over the wire exchange. These results are encouraging given the large numbers of patients utilizing tunneled catheters for initial hemodialysis access and the known rates of fibrin sheath formation leading to catheter failure.

  19. Kinetics of intramolecular chemical exchange by initial growth rates of spin saturation transfer difference experiments (SSTD NMR).

    PubMed

    Quirós, M Teresa; Angulo, Jesús; Muñoz, María Paz

    2015-06-25

    We report here the Initial Growth Rates SSTD NMR method, as a new powerful tool to obtain the kinetic parameters of intramolecular chemical exchange in challenging small organic and organometallic molecules.

  20. A review of air exchange rate models for air pollution exposure assessments.

    PubMed

    Breen, Michael S; Schultz, Bradley D; Sohn, Michael D; Long, Thomas; Langstaff, John; Williams, Ronald; Isaacs, Kristin; Meng, Qing Yu; Stallings, Casson; Smith, Luther

    2014-11-01

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings where people spend their time. The AER, which is the rate of exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pollutants and for removal of indoor-emitted air pollutants. This paper presents an overview and critical analysis of the scientific literature on empirical and physically based AER models for residential and commercial buildings; the models highlighted here are feasible for exposure assessments as extensive inputs are not required. Models are included for the three types of airflows that can occur across building envelopes: leakage, natural ventilation, and mechanical ventilation. Guidance is provided to select the preferable AER model based on available data, desired temporal resolution, types of airflows, and types of buildings included in the exposure assessment. For exposure assessments with some limited building leakage or AER measurements, strategies are described to reduce AER model uncertainty. This review will facilitate the selection of AER models in support of air pollution exposure assessments.

  1. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios

    PubMed Central

    Shen, Rui; Suuberg, Eric M.

    2016-01-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures. PMID:28090133

  2. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.

    PubMed

    Shen, Rui; Suuberg, Eric M

    2016-02-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

  3. Long range dependence in the high frequency USD/INR exchange rate

    NASA Astrophysics Data System (ADS)

    Kumar, Dilip

    2014-02-01

    Using high frequency data, this paper examines the long memory property in the unconditional and conditional volatility of the USD/INR exchange rate at different time scales using the Local Whittle (LW), the Exact Local Whittle (ELW) and the FIAPARCH models. Results indicate that the long memory property remains quite stable across different time scales for both unconditional and conditional volatility measures. Results from the non-overlapping moving window approach indicate that the extreme events (such as the subprime crisis and the European debt crisis) resulted in highly persistent behavior of the USD/INR exchange rate and thus lead to market inefficiency. This paper also examines the long memory property in the realized volatility based on different time scale data. Results indicate that the realized volatility measures based on different scales of the high frequency data exhibit a consistent and stable long memory property. However, the realized volatility measures based on daily data exhibit lower degree of long-range dependence. This study has implications for traders and investors (with different trading horizons) and can be helpful in predicting expected future volatility and in designing and implementing trading strategies at different time scales.

  4. Dynamics of catalytic resolution of 2-lithio-N-Boc-piperidine by ligand exchange.

    PubMed

    Beng, Timothy K; Tyree, William S; Parker, Trent; Su, Chicheung; Williard, Paul G; Gawley, Robert E

    2012-10-10

    The dynamics of the racemization and catalytic and stoichiometric dynamic resolution of 2-lithio-N-Boc-piperidine (7) have been investigated. The kinetic order in tetramethylethylenediamine (TMEDA) for both racemization and resolution of the title compound and the kinetic orders in two resolving ligands have been determined. The catalytic dynamic resolution is second order in TMEDA and 0.5 and 0.265 order in chiral ligands 8 and 10, respectively. The X-ray crystal structure of ligand 10 shows it to be an octamer. Dynamic NMR studies of the resolution process were carried out. Some of the requirements for a successful catalytic dynamic resolution by ligand exchange have been identified.

  5. Hyporheic exchange in mountain rivers II: Effects of channel morphology on mechanics, scales, and rates of exchange

    Treesearch

    John M. Buffington; Daniele Tonina

    2009-01-01

    We propose that the mechanisms driving hyporheic exchange vary systematically with different channel morphologies and associated fluvial processes that occur in mountain basins, providing a framework for examining physical controls on hyporheic environments and their spatial variation across the landscape. Furthermore, the spatial distribution of hyporheic environments...

  6. Impact of nucleon-nucleon bremsstrahlung rates beyond one-pion exchange

    NASA Astrophysics Data System (ADS)

    Bartl, A.; Bollig, R.; Janka, H.-T.; Schwenk, A.

    2016-10-01

    Neutrino-pair production and annihilation through nucleon-nucleon bremsstrahlung is included in current supernova simulations by rates that are based on the one-pion-exchange approximation. Here we explore the consequences of bremsstrahlung rates based on modern nuclear interactions for proto-neutron star cooling and the corresponding neutrino emission. We find that despite a reduction of the bremsstrahlung emission by a factor of 2-5 in the neutrinospheric region, models with the improved treatment exhibit only ≲5 % changes of the neutrino luminosities and an increase of ≲0.7 MeV of the average energies of the radiated neutrino spectra, with the largest effects for the antineutrinos of all flavors and at late times. Overall, the proto-neutron star cooling evolution is slowed down modestly by ≲0.5 - 1 s .

  7. Methane exchange at the peatland forest floor - automatic chamber system exposes the dynamics of small fluxes

    NASA Astrophysics Data System (ADS)

    Korkiakoski, Mika; Tuovinen, Juha-Pekka; Aurela, Mika; Koskinen, Markku; Minkkinen, Kari; Ojanen, Paavo; Penttilä, Timo; Rainne, Juuso; Laurila, Tuomas; Lohila, Annalea

    2017-04-01

    We measured methane (CH4) exchange rates with automatic chambers at the forest floor of a nutrient-rich drained peatland in 2011-2013. The fen, located in southern Finland, was drained for forestry in 1969 and the tree stand is now a mixture of Scots pine, Norway spruce, and pubescent birch. Our measurement system consisted of six transparent chambers and stainless steel frames, positioned on a number of different field and moss layer compositions. Gas concentrations were measured with an online cavity ring-down spectroscopy gas analyzer. Fluxes were calculated with both linear and exponential regression. The use of linear regression resulted in systematically smaller CH4 fluxes by 10-45 % as compared to exponential regression. However, the use of exponential regression with small fluxes ( < 2.5 µg CH4 m-2 h-1) typically resulted in anomalously large absolute fluxes and high hour-to-hour deviations. Therefore, we recommend that fluxes are initially calculated with linear regression to determine the threshold for low fluxes and that higher fluxes are then recalculated using exponential regression. The exponential flux was clearly affected by the length of the fitting period when this period was < 190 s, but stabilized with longer periods. Thus, we also recommend the use of a fitting period of several minutes to stabilize the results and decrease the flux detection limit. There were clear seasonal dynamics in the CH4 flux: the forest floor acted as a CH4 sink particularly from early summer until the end of the year, while in late winter the flux was very small and fluctuated around zero. However, the magnitude of fluxes was relatively small throughout the year, ranging mainly from -130 to +100 µg CH4 m-2 h-1. CH4 emission peaks were observed occasionally, mostly in summer during heavy rainfall events. Diurnal variation, showing a lower CH4 uptake rate during the daytime, was observed in all of the chambers, mainly in the summer and late spring, particularly

  8. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange.

    PubMed

    van der Neut Kolfschoten, Marijn; Schuurman, Janine; Losen, Mario; Bleeker, Wim K; Martínez-Martínez, Pilar; Vermeulen, Ellen; den Bleker, Tamara H; Wiegman, Luus; Vink, Tom; Aarden, Lucien A; De Baets, Marc H; van de Winkel, Jan G J; Aalberse, Rob C; Parren, Paul W H I

    2007-09-14

    Antibodies play a central role in immunity by forming an interface with the innate immune system and, typically, mediate proinflammatory activity. We describe a novel posttranslational modification that leads to anti-inflammatory activity of antibodies of immunoglobulin G, isotype 4 (IgG4). IgG4 antibodies are dynamic molecules that exchange Fab arms by swapping a heavy chain and attached light chain (half-molecule) with a heavy-light chain pair from another molecule, which results in bispecific antibodies. Mutagenesis studies revealed that the third constant domain is critical for this activity. The impact of IgG4 Fab arm exchange was confirmed in vivo in a rhesus monkey model with experimental autoimmune myasthenia gravis. IgG4 Fab arm exchange is suggested to be an important biological mechanism that provides the basis for the anti-inflammatory activity attributed to IgG4 antibodies.

  9. Upper limit on the rate constant for isotope exchange between molecular oxygen and ozone at 298 K

    NASA Technical Reports Server (NTRS)

    Anderson, S. M.; Morton, J.; Mauersberger, K.

    1987-01-01

    The gas phase bimolecular isotope exchange reaction between molecular oxygen and ozone has been investigated directly for the first time. Its rate coefficient is found to be less than 2 x 10 to the -25th cu cm/sec at 298 K, over six orders of magnitude below recent estimates. Much faster exchange was observed over condensed ozone at 77 K, suggesting isotopic scrambling is catalyzed under these conditions. The low rate coefficient implies that homogeneous exchange between ground state oxygen and ozone molecules cannot play a significant role in heavy ozone chemistry.

  10. Transfer Rate Edited experiment for the selective detection of Chemical Exchange via Saturation Transfer (TRE-CEST)

    NASA Astrophysics Data System (ADS)

    Friedman, Joshua I.; Xia, Ding; Regatte, Ravinder R.; Jerschow, Alexej

    2015-07-01

    Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange provided by CEST are of particular interest to biomedical imaging communities where variations in chemical exchange can be related to subtle variations in biomarker concentration, temperature and pH within tissues using MRI. Despite their name, however, traditional CEST methods are not truly selective for chemical exchange and instead detect all forms of magnetization transfer including through-space NOE. This ambiguity crowds CEST spectra and greatly complicates subsequent data analysis. We have developed a Transfer Rate Edited CEST experiment (TRE-CEST) that uses two different types of solute labeling in order to selectively amplify signals of rapidly exchanging proton species while simultaneously suppressing 'slower' NOE-dominated magnetization transfer processes. This approach is demonstrated in the context of both NMR and MRI, where it is used to detect the labile amide protons of proteins undergoing chemical exchange (at rates ⩾ 30 s-1) while simultaneously eliminating signals originating from slower (∼5 s-1) NOE-mediated magnetization transfer processes. TRE-CEST greatly expands the utility of CEST experiments in complex systems, and in-vivo, in particular, where it is expected to improve the quantification of chemical exchange and magnetization transfer rates while enabling new forms of imaging contrast.

  11. Hydrogen/deuterium exchange-mass spectrometry: a powerful tool for probing protein structure, dynamics and interactions.

    PubMed

    Tsutsui, Yuko; Wintrode, Patrick L

    2007-01-01

    Knowledge of the structure and dynamics of proteins and protein assemblies is critical both for understanding the molecular basis of physiological and patho-physiological processes and for guiding drug design. While X-ray crystallography and nuclear magnetic resonance spectroscopy are both excellent techniques for this purpose, both suffer from limitations, including the requirement for high quality crystals and large amounts of material. Recently, hydrogen/deuterium exchange measured using mass spectrometry (HXMS) has emerged as a powerful new tool for the study of protein structure, dynamics and interactions in solution. HXMS exploits the fact that backbone amide hydrogens can exchange with deuterium when a protein is incubated in D(2)O, and that the rate of the exchange process is highly dependent on the local structural environment. Several features of HXMS make it an especially attractive approach, including small sample requirements and the ability to study extremely large protein assemblies that are not amenable to other techniques. Here, we provide an overview of HXMS and describe several recent applications to problems of medical interest. After reviewing the molecular basis of the H/D exchange process, the different steps of the HXMS experiment--labeling, rapid proteolysis, fragment separation and mass measurement--are described, followed by a discussion of data analysis methods. Finally, we describe recent results on the application of HXMS to 1) mapping drug/inhibitor binding sites and detecting drug induced conformational changes, 2) studying viral capsid structure and assembly, and 3) characterizing the structure of pathological protein conformations, specifically amyloid fibrils.

  12. Measurements of soil and canopy exchange rates in the Amazon rain forest using sup 222 Rn

    SciTech Connect

    Trumbore, S.E. Lamont-Doherty Geological Observatory, Palisades, NY ); Keller, M. ); Wofsy, S.C. ); Da Costa, J.M. )

    1990-09-20

    Measurements of the emission of {sup 222}Rn from Amazon forest soils, and profiles of {sup 222}Rn in air were used to study the ventilation of the soil atmosphere and the nocturnal forest canopy. The emission of {sup 222}Rn from the yellow clay soils dominant in the study area averaged 0.38 {plus minus} 0.07 atom cm{sup {minus}2} s{sup {minus}1}. Nearby sand soils had similar fluxes, averaging 0.30 {plus minus} 0.07 atom cm{sup {minus}2} s{sup {minus}1}. The effective diffusivity in the clay soil (0.008 {plus minus} 0.004 cm{sup 2} s{sup {minus}1}), was lower than that for the sand soil (0.033 {plus minus} 0.030 cm{sup 2} s{sup {minus}1}). Profiles of {sup 222}Rn and CO{sub 2} in air showed steepest concentration gradients in the layer between 0 and 3 m above the soil surface. Aerodynamic resistances calculated for this layer from {sup 222}Rn and CO{sub 2} varied from 1.6 to 18 s cm{sup {minus}1}, with greater resistance during the afternoon than at night. Time averaged profiles of {sup 222}Rn in the forest canopy measured during the evening and night were combined with the soil flux measurements to compute the resistance of the subcanopy to exchange with overlying air. The integrated nocturnal rate of gas exchange between the canopy layer (0 to 41 m) and overlying atmosphere based on {sup 222}Rn averaged 0.33 {plus minus} 0.15 cm s{sup {minus}1}. An independent estimate of gas exchange, based on 13 nights of CO{sub 2} profiles, averaged 0.21 {plus minus} 0.40 cm s{sup {minus}1}. These exchange rates correspond to flushing times for the 41 m canopy layer of 3.4 and 5.5 hours, respectively. Comparison of {sup 222}Rn and CO{sub 2} profiles show that the nocturnal production of CO{sub 2} by above-ground vegetation was about 20% of the soil emission source, consistent with data from eddy-correlation experiments.

  13. Removal Dynamics of Immunoglobulin and Fibrinogen by Conventional Plasma Exchange, Selective Plasma Exchange, and a Combination of the Two.

    PubMed

    Miyamoto, Satoko; Ohkubo, Atsushi; Seshima, Hiroshi; Maeda, Takuma; Itagaki, Ayako; Kurashima, Naoki; Iimori, Soichiro; Naito, Shotaro; Sohara, Eisei; Rai, Tatemitsu; Uchida, Shinichi; Okado, Tomokazu

    2016-08-01

    While plasma exchange (PE) can eliminate plasma proteins, including all immunoglobulin (Ig) and coagulation factors, selective plasma exchange (SePE) can retain fibrinogen (Fbg). Here, we investigated the removal dynamics of Ig and Fbg in 53 patients with immunological disorders by PE, SePE, and a combination of the two. When the mean processed plasma volume (PPV) was 0.9 plasma volume (PV), the mean percent reductions of Ig and Fbg by PE were both approximately 62%-65%. When the mean PPV was 1.1 PV, the mean percent reductions by SePE were 53.1% for IgG, 30.1% for IgA, 3.6% for IgM, and 19.0% for Fbg, respectively. In the three plasmapheresis sessions performed on alternate days, we classified treatments into three categories: PE group (PE-PE-PE, N = 2), SePE group (SePE-SePE-SePE, N = 14), and PE/SePE group (PE-SePE-SePE, N = 4). The mean percent reductions of IgG, IgA, IgM, and Fbg were 82.0%, 80.4%, 87.3%, and 80.9%, respectively, for the PE group; 76.4%, 57.7%, 43.3%, and 35.9%, respectively, for the PE/SePE group; and 75.4%, 50.6%, 3.2%, and 29.3%, respectively, for the SePE group. Plasmapheresis modalities can be combined according to clinical conditions, for instance, to achieve both the unspecific removal of pathogens by PE and retention of coagulation factors, such as Fbg, by SePE.

  14. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden-Popper phases?

    PubMed

    Tomkiewicz, Alex C; Tamimi, Mazin A; Huq, Ashfia; McIntosh, Steven

    2015-01-01

    The possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of three Ruddlesden-Popper phases, general form A(n-1)A(2)'B(n)O(3n+1), A(n-1)A(2)'B(n)X(3n+1); LaSrCo(0.5)Fe(0.5)O(4-δ) (n = 1), La(0.3)Sr(2.7)CoFeO(7-δ) (n = 2) and LaSr3Co(1.5)Fe(1.5)O(10-δ) (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. This is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. We conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.

  15. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden–Popper phases?

    DOE PAGES

    Tomkiewicz, Alex C.; Tamimi, Mazin A.; Huq, Ashfia; ...

    2015-03-02

    There is a possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides; it is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of threemore » Ruddlesden-Popper phases, general form An-1A2'BnO3n+1, An-1A2'BnX3n+1; LaSrCo0.5Fe0.5O4-δ (n = 1), La0.3Sr2.7CoFeO7-δ (n = 2) and LaSr3Co1.5Fe1.5O10-δ (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. Furthermore this is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. This paper conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.« less

  16. Exact-exchange time-dependent density-functional theory for static and dynamic polarizabilities

    SciTech Connect

    Hirata, So; Ivanov, Stanislav; Bartlett, Rodney J.; Grabowski, Ireneusz

    2005-03-01

    Time-dependent density-functional theory (TDDFT) employing the exact-exchange functional has been formulated on the basis of the optimized-effective-potential (OEP) method of Talman and Shadwick for second-order molecular properties and implemented into a Gaussian-basis-set, trial-vector algorithm. The only approximation involved, apart from the lack of correlation effects and the use of Gaussian-type basis functions, was the consistent use of the adiabatic approximation in the exchange kernel and in the linear response function. The static and dynamic polarizabilities and their anisotropy predicted by the TDDFT with exact exchange (TDOEP) agree accurately with the corresponding values from time-dependent Hartree-Fock theory, the exact-exchange counterpart in the wave function theory. The TDOEP is free from the nonphysical asymptotic decay of the exchange potential of most conventional density functionals or from any other manifestations of the incomplete cancellation of the self-interaction energy. The systematic overestimation of the absolute values and dispersion of polarizabilities that plagues most conventional TDDFT cannot be seen in the TDOEP.

  17. Amide proton exchange rates of a bound pepsin inhibitor determined by isotope-edited proton NMR experiments

    SciTech Connect

    Fesik, S.W.; Luly, J.R.; Stein, H.H.; BaMaung, N.

    1987-09-30

    From a series of isotope-edited proton NMR spectra, amide proton exchange rates were measured at 20 C, 30 C, and 40/sup 0/C for a tightly bound /sup 15/N-labeled tripeptide inhibitor of porcine pepsin (IC50 = 1.7 X 10(-) M). Markedly different NH exchange rates were observed for the three amide protons of the bound inhibitor. The P1 NH exchanged much more slowly than the P2 NH and P3 NH. These results are discussed in terms of the relative solvent accessibility in the active site and the role of the NH protons of the inhibitor for hydrogen bonding to the enzyme. In this study a useful approach is demonstrated for obtaining NH exchange rates on ligands bound to biomacromolecules, the knowledge of which could be of potential utility in the design of therapeutically useful nonpeptide enzyme inhibitors from peptide leads.

  18. Ion exchange in alginate gels--dynamic behaviour revealed by electron paramagnetic resonance.

    PubMed

    Ionita, Gabriela; Ariciu, Ana Maria; Smith, David K; Chechik, Victor

    2015-12-14

    The formation of alginate gel from low molecular weight alginate and very low molecular weight alginate in the presence of divalent cations was investigated using Electron Paramagnetic Resonance (EPR) spectroscopy. The transition from sol to gel in the presence of divalent cations was monitored by the changes in the dynamics of spin labelled alginate. The immobilisation of the spin labelled alginate in the gel reflects the strength of interaction between the cation and alginate chain. Diffusion experiments showed that both the cation and alginate polyanion in the gel fibres can exchange with molecules in solution. In particular, we showed that dissolved alginate polyanions can replace alginates in the gel fibres, which can hence diffuse through the bulk of the gel. This illustrates the surprisingly highly dynamic nature of these gels and opens up the possibility of preparing multicomponent alginate gels via polyanion exchange process.

  19. Heat transfer enhancement by dynamic corrugated heat exchanger wall: Numerical study

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Schmidmayer, K.; Topin, F.; Miscevic, M.

    2016-09-01

    A new concept of heat exchanger at sub-millimeter scale is proposed for applications in cooling on-board electronics devices, in which the quality of the exchanges between fluid and wall is very critical. In the proposed system, the upper wall of the channel is deformed dynamically to obtain a sinusoidal wave on this surface. The lower wall is exposed to constant heat flux simulating the imprint of an electronic component. A systematic 3-D numerical study in transient regime on the different deformation parameters allowed obtaining both the pumping characteristics and the heat transfer characteristics of the system. It was observed that the dynamic deformation of the wall induces a significant pumping effect. The intensification of the heat transfer is very important even for highly degraded waveforms, although the pumping efficiency is reduced in this case.

  20. Provably authenticated group Diffie-Hellman key exchange - The dynamic case (Extended abstract)

    SciTech Connect

    Bresson, Emmanuel; Chevassut, Olivier; Pointcheval, David

    2001-09-20

    Dynamic group Diffie-Hellman protocols for Authenticated Key Exchange(AKE) are designed to work in scenario in which the group membership is not known in advance but where parties may join and may also leave the multicast group at any given time. While several schemes have been proposed to deal with this scenario no formal treatment for this cryptographic problem has ever been suggested. In this paper, we define a security model for this problem and use it to precisely define Authenticated Key Exchange (AKE) with ''implicit'' authentication as the fundamental goal, and the entity-authentication goal as well. We then define in this model the execution of a protocol modified from a dynamic group Diffie-Hellman scheme offered in the literature and prove its security.

  1. Influence of a Gas Exchange Correction Procedure on Resting Metabolic Rate and Respiratory Quotient in Humans.

    PubMed

    Galgani, Jose E; Castro-Sepulveda, Mauricio A

    2017-09-19

    The aim of this study was to determine the influence of a gas exchange correction protocol on resting metabolic rate (RMR) and respiratory quotient (RQ), assessed by a Vmax Encore 29n metabolic cart (SensorMedics Co., Yorba Linda, California) in overnight fasted and fed humans, and to assess the predictive power of body size for corrected and uncorrected RMR. Healthy participants (23 M/29 F; 34 ± 9 years old; 26.3 ± 3.7 kg/m(2) ) ingested two 3-hour-apart glucose loads (75 g). Indirect calorimetry was conducted before and hourly over a 6-hour period. Immediately after indirect calorimetry assessment, gas exchange was simulated through high-precision mass-flow regulators, which permitted the correction of RMR and RQ values. Uncorrected and corrected RMR and RQ were directly related at each time over the 6-hour period. However, uncorrected versus corrected RMR was 6.9% ± 0.5% higher (128 ± 7 kcal/d; P < 0.0001), while RQ was 14.0 ± 0.4% lower (-0.114 ± 0.003; P < 0.0001) when compared throughout the whole period. Body weight, sex, and age explained a larger fraction of the variance when corrected RMR was considered (adjusted R(2)  = 0.71; P < 0.0001) versus uncorrected RMR (adjusted R(2)  = 0.59; P < 0.0001). Applying a protocol to correct gas exchange in humans over a 6-hour period is feasible and provides information of improved accuracy. © 2017 The Obesity Society.

  2. Metabolic analyzer. [for measuring metabolic rate and breathing dynamics of human beings

    NASA Technical Reports Server (NTRS)

    Rummel, J. A.; Perry, C. L. (Inventor)

    1974-01-01

    An apparatus is described for the measurement of metabolic rate and breathing dynamics in which inhaled and exhaled breath are sensed by sealed, piston-displacement type spirometers. These spirometers electrically measure the volume of inhaled and exhaled breath. A mass spectrometer analyzes simultaneously for oxygen, carbon dioxide, nitrogen and water vapor. Computation circuits are responsive to the outputs of the spirometers, mass spectrometer, temperature, pressure and timing signals and compute oxygen consumption, carbon dioxide production, minute volume and respiratory exchange ratio. A selective indicator provides for read-out of these data at predetermined cyclic intervals.

  3. MuSTAR MD: multi-scale sampling using temperature accelerated and replica exchange molecular dynamics.

    PubMed

    Yamamori, Yu; Kitao, Akio

    2013-10-14

    A new and efficient conformational sampling method, MuSTAR MD (Multi-scale Sampling using Temperature Accelerated and Replica exchange Molecular Dynamics), is proposed to calculate the free energy landscape on a space spanned by a set of collective variables. This method is an extension of temperature accelerated molecular dynamics and can also be considered as a variation of replica-exchange umbrella sampling. In the MuSTAR MD, each replica contains an all-atom fine-grained model, at least one coarse-grained model, and a model defined by the collective variables that interacts with the other models in the same replica through coupling energy terms. The coarse-grained model is introduced to drive efficient sampling of large conformational space and the fine-grained model can serve to conduct more accurate conformational sampling. The collective variable model serves not only to mediate the coarse- and fine-grained models, but also to enhance sampling efficiency by temperature acceleration. We have applied this method to Ala-dipeptide and examined the sampling efficiency of MuSTAR MD in the free energy landscape calculation compared to that for replica exchange molecular dynamics, replica exchange umbrella sampling, temperature accelerated molecular dynamics, and conventional MD. The results clearly indicate the advantage of sampling a relatively high energy conformational space, which is not sufficiently sampled with other methods. This feature is important in the investigation of transition pathways that go across energy barriers. MuSTAR MD was also applied to Met-enkephalin as a test case in which two Gō-like models were employed as the coarse-grained model.

  4. Transfer Rate Edited experiment for the selective detection of Chemical Exchange via Saturation Transfer (TRE-CEST).

    PubMed

    Friedman, Joshua I; Xia, Ding; Regatte, Ravinder R; Jerschow, Alexej

    2015-07-01

    Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange provided by CEST are of particular interest to biomedical imaging communities where variations in chemical exchange can be related to subtle variations in biomarker concentration, temperature and pH within tissues using MRI. Despite their name, however, traditional CEST methods are not truly selective for chemical exchange and instead detect all forms of magnetization transfer including through-space NOE. This ambiguity crowds CEST spectra and greatly complicates subsequent data analysis. We have developed a Transfer Rate Edited CEST experiment (TRE-CEST) that uses two different types of solute labeling in order to selectively amplify signals of rapidly exchanging proton species while simultaneously suppressing 'slower' NOE-dominated magnetization transfer processes. This approach is demonstrated in the context of both NMR and MRI, where it is used to detect the labile amide protons of proteins undergoing chemical exchange (at rates⩾30s(-1)) while simultaneously eliminating signals originating from slower (∼5s(-1)) NOE-mediated magnetization transfer processes. TRE-CEST greatly expands the utility of CEST experiments in complex systems, and in-vivo, in particular, where it is expected to improve the quantification of chemical exchange and magnetization transfer rates while enabling new forms of imaging contrast.

  5. Improved measurement of labile proton concentration-weighted chemical exchange rate (kws) with experimental factor-compensated and T1-normalized quantitative chemical exchange saturation transfer (CEST) MRI

    PubMed Central

    Wu, Renhua; Liu, Charng-Ming; Liu, Philip K; Sun, Phillip Zhe

    2012-01-01

    Chemical exchange saturation transfer (CEST) MRI enables measurement of dilute CEST agents and microenvironment properties such as pH and temperature, holding great promise for in vivo applications. However, because of confounding concomitant RF irradiation and relaxation effects, the CEST-weighted MRI contrast may not fully characterize the underlying CEST phenomenon. We postulated that the accuracy of quantitative CEST MRI could be improved if the experimental factors (labeling efficiency and RF spillover effect) were estimated and taken into account. Specifically, the experimental factor was evaluated as a function of exchange rate and CEST agent concentration ratio, which remained relatively constant for intermediate RF irradiation power levels. Hence, the experimental factors can be calculated based on the reasonably estimated exchange rate and labile proton concentration ratio, which significantly improved quantification. The simulation was confirmed with Creatine phantoms of serially varied concentration titrated to the same pH, whose reverse exchange rate (kws) was found to be linearly correlated with the concentration. In summary, the proposed solution provides simplified yet reasonably accurate quantification of the underlying CEST system, which may help guide the ongoing development of quantitative CEST MRI. PMID:22649044

  6. Model for complex heart rate dynamics in health and diseases

    NASA Astrophysics Data System (ADS)

    Kotani, Kiyoshi; Struzik, Zbigniew R.; Takamasu, Kiyoshi; Stanley, H. Eugene; Yamamoto, Yoshiharu

    2005-10-01

    A physiologically motivated, dynamical model of cardiovascular autonomic regulation is shown to be capable of generating long-range correlated and multifractal heart rate. Virtual disease simulations are carried out systematically to account for the disease-induced relative dysfunction of the parasympathetic and the sympathetic branches of the autonomic control. Statistical agreement of the simulation results with those of real life data is reached, suggesting the possible use of the model as a state-of-the-art basis for further understanding of the physiological correlates of complex heart rate dynamics.

  7. Collective firm bankruptcies and phase transition in rating dynamics

    NASA Astrophysics Data System (ADS)

    Sieczka, P.; Hołyst, J. A.

    2009-10-01

    We present a simple model of firm rating evolution. We consider two sources of defaults: individual dynamics of economic development and Potts-like interactions between firms. We show that such a defined model leads to phase transition, which results in collective defaults. The existence of the collective phase depends on the mean interaction strength. For small interaction strength parameters, there are many independent bankruptcies of individual companies. For large parameters, there are giant collective defaults of firm clusters. In the case when the individual firm dynamics favors dumping of rating changes, there is an optimal strength of the firm's interactions from the systemic risk point of view. in here

  8. Infinite swapping replica exchange molecular dynamics leads to a simple simulation patch using mixture potentials.

    PubMed

    Lu, Jianfeng; Vanden-Eijnden, Eric

    2013-02-28

    Replica exchange molecular dynamics (REMD) becomes more efficient as the frequency of swap between the temperatures is increased. Recently Plattner et al. [J. Chem. Phys. 135, 134111 (2011)] proposed a method to implement infinite swapping REMD in practice. Here we introduce a natural modification of this method that involves molecular dynamics simulations over a mixture potential. This modification is both simple to implement in practice and provides a better, energy based understanding of how to choose the temperatures in REMD to optimize efficiency. It also has implications for generalizations of REMD in which the swaps involve other parameters than the temperature.

  9. Dynamics of leaf gas exchange, chlorophyll fluorescence and stem diameter changes during freezing and thawing of Scots pine seedlings.

    PubMed

    Lindfors, Lauri; Hölttä, Teemu; Lintunen, Anna; Porcar-Castell, Albert; Nikinmaa, Eero; Juurola, Eija

    2015-12-01

    Boreal trees experience repeated freeze-thaw cycles annually. While freezing has been extensively studied in trees, the dynamic responses occurring during the freezing and thawing remain poorly understood. At freezing and thawing, rapid changes take place in the water relations of living cells in needles and in stem. While freezing is mostly limited to extracellular spaces, living cells dehydrate, shrink and their osmotic concentration increases. We studied how the freezing-thawing dynamics reflected on leaf gas exchange, chlorophyll fluorescence and xylem and living bark diameter changes of Scots pine (Pinus sylvestris L.) saplings in controlled experiments. Photosynthetic rate quickly declined following ice nucleation and extracellular freezing in xylem and needles, almost parallel to a rapid shrinking of xylem diameter, while that of living bark followed with a slightly longer delay. While xylem and living bark diameters responded well to decreasing temperature and water potential of ice, the relationship was less consistent in the case of increasing temperature. Xylem showed strong temporal swelling at thawing suggesting water movement from bark. After thawing xylem diameter recovered to a pre-freezing level but living bark remained shrunk. We found that freezing affected photosynthesis at multiple levels. The distinct dynamics of photosynthetic rate and stomatal conductance reveals that the decreased photosynthetic rate reflects impaired dark reactions rather than stomatal closure. Freezing also inhibited the capacity of the light reactions to dissipate excess energy as heat, via non-photochemical quenching, whereas photochemical quenching of excitation energy decreased gradually with temperature in agreement with the gas exchange data. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Amide proton exchange rates of oxidized and reduced Saccharomyces cerevisiae iso-1-cytochrome c.

    PubMed Central

    Marmorino, J. L.; Auld, D. S.; Betz, S. F.; Doyle, D. F.; Young, G. B.; Pielak, G. J.

    1993-01-01

    Proton NMR spectroscopy was used to determine the rate constant, kobs, for exchange of labile protons in both oxidized (Fe(III)) and reduced (Fe(II)) iso-1-cytochrome c. We find that slowly exchanging backbone amide protons tend to lack solvent-accessible surface area, possess backbone hydrogen bonds, and are present in regions of regular secondary structure as well as in omega-loops. Furthermore, there is no correlation between kobs and the distance from a backbone amide nitrogen to the nearest solvent-accessible atom. These observations are consistent with the local unfolding model. Comparisons of the free energy change for denaturation, delta Gd, at 298 K to the free energy change for local unfolding, delta Gop, at 298 K for the oxidized protein suggest that certain conformations possessing higher free energy than the denatured state are detected at equilibrium. Reduction of the protein results in a general increase in delta Gop. Comparisons of delta Gd to delta Gop for the reduced protein show that the most open states of the reduced protein possess more structure than its chemically denatured form. This persistent structure in high-energy conformations of the reduced form appears to involve the axially coordinated heme. PMID:8268806

  11. Charge-exchange reactions and electron-capture rates for presupernova stellar evolution

    NASA Astrophysics Data System (ADS)

    Zegers, Remco

    2015-04-01

    Weak reaction rates such as electron captures and beta decays play major roles in a variety of astrophysical phenomena, such as core-collapse and thermonuclear supernovae and accreting neutron stars. Consequently, the use of accurate weak reaction rates in astrophysical simulations to understand these phenomena is important. Unfortunately, the number of relevant nuclei is typically very large, and, except for a few special cases, it is impossible to rely on experimental results only: theoretical models must be used to estimate the weak reaction rates. These models can then be benchmarked and improved on the basis of a limited number of experimental data. The most important nuclear structure input that is required for calculating weak reaction rates are Gamow-Teller transition strengths. Although these can be extracted from beta and electron-capture decay data, the energy window accessible by such experiments is limited, if accessible at all. However, at the high temperatures and densities that occur in massive stars prior to the cataclysmic demise, transitions to final states at high excitation energies are important. In addition, to properly test theory, full Gamow-Teller transition strength distributions are very valuable. Fortunately, nature is kind: charge-exchange experiments at intermediate energies can provide the relevant strength distributions over a wide energy window and a variety of charge-exchange probes, such as (p,n), (n,p), (d,2 He) and (t,3 He) have been used to extract strengths of relevance for astrophysics (and for other purposes). This presentation will focus on efforts to validate electron capture rates calculated based on nuclear structure models for nuclei with masses ranging from A ~ 40-65, and on studies aimed at testing astrophysical sensitivities to uncertainties/deviations in the theoretical rates. These efforts include experiments with unstable isotopes, and special gamma-ray coincidence techniques to localize very weak, but

  12. Growth-rate-dependent dynamics of a bacterial genetic oscillator

    NASA Astrophysics Data System (ADS)

    Osella, Matteo; Lagomarsino, Marco Cosentino

    2013-01-01

    Gene networks exhibiting oscillatory dynamics are widespread in biology. The minimal regulatory designs giving rise to oscillations have been implemented synthetically and studied by mathematical modeling. However, most of the available analyses generally neglect the coupling of regulatory circuits with the cellular “chassis” in which the circuits are embedded. For example, the intracellular macromolecular composition of fast-growing bacteria changes with growth rate. As a consequence, important parameters of gene expression, such as ribosome concentration or cell volume, are growth-rate dependent, ultimately coupling the dynamics of genetic circuits with cell physiology. This work addresses the effects of growth rate on the dynamics of a paradigmatic example of genetic oscillator, the repressilator. Making use of empirical growth-rate dependencies of parameters in bacteria, we show that the repressilator dynamics can switch between oscillations and convergence to a fixed point depending on the cellular state of growth, and thus on the nutrients it is fed. The physical support of the circuit (type of plasmid or gene positions on the chromosome) also plays an important role in determining the oscillation stability and the growth-rate dependence of period and amplitude. This analysis has potential application in the field of synthetic biology, and suggests that the coupling between endogenous genetic oscillators and cell physiology can have substantial consequences for their functionality.

  13. Exchange interaction-driven dynamic nuclear polarization in Mn-doped InGaAs/GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Krebs, O.; Baudin, E.; Lemaître, A.

    2016-11-01

    We investigated optical spin orientation and dynamic nuclear polarization (DNP) in individual self-assembled InGaAs/GaAs quantum dots (QDs) doped by a single Mn atom, a magnetic impurity providing a neutral acceptor A0 with an effective spin J =1 . We find that the spin of an electron photocreated in such a quantum dot can be efficiently oriented by a quasiresonant circularly polarized excitation. For the electron spin levels which are made quasidegenerate by a magnetic field compensating the exchange interaction Δe with A0, there is however a full depolarization due the anisotropic part of the exchange. Still, in most studied QDs, the spin polarized photoelectrons give rise to a pronounced DNP which grows with a longitudinal magnetic field until a critical field where it abruptly vanishes. For some QDs, several replica of such DNP sequence are observed at different magnetic fields. This striking behavior is qualitatively discussed as a consequence of different exchange interactions experienced by the electron, driving the DNP rate via the energy cost of electron-nucleus spin flip-flops.

  14. Effects of flooding on ion exchange rates in an Upper Mississippi River floodplain forest impacted by herbivory, invasion, and restoration

    USGS Publications Warehouse

    Kreiling, Rebecca; DeJager, Nathan R.; Whitney Swanson,; Eric A. Strauss,; Meredith Thomsen,

    2015-01-01

    We examined effects of flooding on supply rates of 14 nutrients in floodplain areas invaded by Phalaris arundinacea (reed canarygrass), areas restored to young successional forests (browsed by white-tailed deer and unbrowsed), and remnant mature forests in the Upper Mississippi River floodplain. Plant Root Simulator ion-exchange probes were deployed for four separate 28-day periods. The first deployment occurred during flooded conditions, while the three subsequent deployments were conducted during progressively drier periods. Time after flooding corresponded with increases in NO3 −-N, K+ and Zn+2, decreases in H2PO4 −-P, Fe+3, Mn+2, and B(OH)4-B, a decrease followed by an increase in NH4 +-N, Ca+2, Mg+2 and Al+3, and an increase followed by a decrease for SO4 −2-S. Plant community type had weak to no effects on nutrient supply rates compared to the stronger effects of flooding duration. Our results suggest that seasonal dynamics in floodplain nutrient availability are similarly driven by flood pulses in different community types. However, reed canarygrass invasion has potential to increase availability of some nutrients, while restoration of forest cover may promote recovery of nutrient availability to that observed in reference mature forests.

  15. Criticality and Universality in Healthy Heart Rate Dynamics

    NASA Astrophysics Data System (ADS)

    Struzik, Zbigniew R.; Kiyono, Ken; Hayano, Junichiro; Sakata, Seiichiro; Kwak, Shin; Yamamoto, Yoshiharu

    2005-08-01

    Methodologies originally developed in the field of statistical physics of complex phenomena have been proven to provide new insights into the modeling, description and understanding of the human heart rate regulatory system. Recent studies have shown the heart rate control system to maintain universality properties characteristic of physical systems exhibiting far-from-equilibrium, critical state-like dynamics. Simultaneously, heart rate regulation has been shown to display correlation properties of antagonist dynamics involving antagonist actors, pertinent to some far-from-equilibrium systems. We discuss the range of validity and breakdown scenarios of the universal properties in heart rate regulation leading to the diagnostic capability and also to new challenges for both analysis methods and up-to-date simulation models.

  16. The evolutionary rate dynamically tracks changes in HIV-1 epidemics

    SciTech Connect

    Maljkovic-berry, Irina; Athreya, Gayathri; Daniels, Marcus; Bruno, William; Korber, Bette; Kuiken, Carla; Ribeiro, Ruy M

    2009-01-01

    Large-sequence datasets provide an opportunity to investigate the dynamics of pathogen epidemics. Thus, a fast method to estimate the evolutionary rate from large and numerous phylogenetic trees becomes necessary. Based on minimizing tip height variances, we optimize the root in a given phylogenetic tree to estimate the most homogenous evolutionary rate between samples from at least two different time points. Simulations showed that the method had no bias in the estimation of evolutionary rates and that it was robust to tree rooting and topological errors. We show that the evolutionary rates of HIV-1 subtype B and C epidemics have changed over time, with the rate of evolution inversely correlated to the rate of virus spread. For subtype B, the evolutionary rate slowed down and tracked the start of the HAART era in 1996. Subtype C in Ethiopia showed an increase in the evolutionary rate when the prevalence increase markedly slowed down in 1995. Thus, we show that the evolutionary rate of HIV-1 on the population level dynamically tracks epidemic events.

  17. Experience with dynamic reinforcement rates decreases resistance to extinction.

    PubMed

    Craig, Andrew R; Shahan, Timothy A

    2016-03-01

    The ability of organisms to detect reinforcer-rate changes in choice preparations is positively related to two factors: the magnitude of the change in rate and the frequency with which rates change. Gallistel (2012) suggested similar rate-detection processes are responsible for decreases in responding during operant extinction. Although effects of magnitude of change in reinforcer rate on resistance to extinction are well known (e.g., the partial-reinforcement-extinction effect), effects of frequency of changes in rate prior to extinction are unknown. Thus, the present experiments examined whether frequency of changes in baseline reinforcer rates impacts resistance to extinction. Pigeons pecked keys for variable-interval food under conditions where reinforcer rates were stable and where they changed within and between sessions. Overall reinforcer rates between conditions were controlled. In Experiment 1, resistance to extinction was lower following exposure to dynamic reinforcement schedules than to static schedules. Experiment 2 showed that resistance to presession feeding, a disruptor that should not involve change-detection processes, was unaffected by baseline-schedule dynamics. These findings are consistent with the suggestion that change detection contributes to extinction. We discuss implications of change-detection processes for extinction of simple and discriminated operant behavior and relate these processes to the behavioral-momentum based approach to understanding extinction.

  18. Two-component mixture model: Application to palm oil and exchange rate

    NASA Astrophysics Data System (ADS)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad

    2014-12-01

    Palm oil is a seed crop which is widely adopt for food and non-food products such as cookie, vegetable oil, cosmetics, household products and others. Palm oil is majority growth in Malaysia and Indonesia. However, the demand for palm oil is getting growth and rapidly running out over the years. This phenomenal cause illegal logging of trees and destroy the natural habitat. Hence, the present paper investigates the relationship between exchange rate and palm oil price in Malaysia by using Maximum Likelihood Estimation via Newton-Raphson algorithm to fit a two components mixture model. Besides, this paper proposes a mixture of normal distribution to accommodate with asymmetry characteristics and platykurtic time series data.

  19. Multifractal detrended cross-correlation analysis on gold, crude oil and foreign exchange rate time series

    NASA Astrophysics Data System (ADS)

    Pal, Mayukha; Madhusudana Rao, P.; Manimaran, P.

    2014-12-01

    We apply the recently developed multifractal detrended cross-correlation analysis method to investigate the cross-correlation behavior and fractal nature between two non-stationary time series. We analyze the daily return price of gold, West Texas Intermediate and Brent crude oil, foreign exchange rate data, over a period of 18 years. The cross correlation has been measured from the Hurst scaling exponents and the singularity spectrum quantitatively. From the results, the existence of multifractal cross-correlation between all of these time series is found. We also found that the cross correlation between gold and oil prices possess uncorrelated behavior and the remaining bivariate time series possess persistent behavior. It was observed for five bivariate series that the cross-correlation exponents are less than the calculated average generalized Hurst exponents (GHE) for q<0 and greater than GHE when q>0 and for one bivariate series the cross-correlation exponent is greater than GHE for all q values.

  20. Corrections to charge exchange spectroscopic measurements in TFTR due to energy-dependent excitation rates

    SciTech Connect

    Howell, R.B.; Fonck, R.J.; Knize, R.J.; Jaehnig, K.P.

    1988-08-01

    The use of charge exchange spectrocopy to determine plasma rotation speeds and ion temperature is complicated by the energy dependence of the excitation cross sections. The Doppler-broadened spectral line shape is distorted by the relative velocity between the neutral hydrogen atoms of the injected beam and impurity ions. The asymmetric nature of the energy dependence of this cross section causes a non-motional shift of the line center and a non-thermal change in the line width. These effects vary with the angles between the beam direction, rotation velocity direction, and direction of the viewing sightline. When viewing two neutral beams at different angles on TFTR, the two measurements of v/sub phi/(r) show discrepancies about 20 to 30% with each other. The calculation of the spectral intensity profiles, using the excitation rates available, overcorrects these discrepancies and indicates the need for better excitation coefficients. 10 refs., 5 figs.

  1. A molecular dynamics study of bond exchange reactions in covalent adaptable networks.

    PubMed

    Yang, Hua; Yu, Kai; Mu, Xiaoming; Shi, Xinghua; Wei, Yujie; Guo, Yafang; Qi, H Jerry

    2015-08-21

    Covalent adaptable networks are polymers that can alter the arrangement of network connections by bond exchange reactions where an active unit attaches to an existing bond then kicks off its pre-existing peer to form a new bond. When the polymer is stretched, bond exchange reactions lead to stress relaxation and plastic deformation, or the so-called reforming. In addition, two pieces of polymers can be rejoined together without introducing additional monomers or chemicals on the interface, enabling welding and reprocessing. Although covalent adaptable networks have been researched extensively in the past, knowledge about the macromolecular level network alternations is limited. In this study, molecular dynamics simulations are used to investigate the macromolecular details of bond exchange reactions in a recently reported epoxy system. An algorithm for bond exchange reactions is first developed and applied to study a crosslinking network formed by epoxy resin DGEBA with the crosslinking agent tricarballylic acid. The trace of the active units is tracked to show the migration of these units within the network. Network properties, such as the distance between two neighboring crosslink sites, the chain angle, and the initial modulus, are examined after each iteration of the bond exchange reactions to provide detailed information about how material behaviors and macromolecular structure evolve. Stress relaxation simulations are also conducted. It is found that even though bond exchange reactions change the macroscopic shape of the network, microscopic network characteristic features, such as the distance between two neighboring crosslink sites and the chain angle, relax back to the unstretched isotropic state. Comparison with a recent scaling theory also shows good agreement.

  2. Structural Insights into Fibrinogen Dynamics Using Amide Hydrogen/Deuterium Exchange Mass Spectrometry

    PubMed Central

    Marsh, James J.; Guan, Henry S.; Li, Sheng; Chiles, Peter G.; Tran, Danny; Morris, Timothy A.

    2013-01-01

    We determined the amide hydrogen/deuterium exchange profile of native human fibrinogen under physiologic conditions. After optimization of the quench and proteolysis conditions, more than 1,200 peptides were identified by mass spectrometry, spanning more than 90% of the constituent Aα, Bβ, and γ chain amino acid sequences. The compact central and distal globular regions of fibrinogen were well protected from deuterium exchange, with the exception of the unfolded amino-terminal segments of the Aα and Bβ chains extending from the central region, and the short γ chain “tail” extending from each distal globular region. The triple-helical coiled-coil regions, which bridge the central region to each distal region, were also well protected with the exception of a moderately fast-exchanging area in the middle of each coiled coil adjacent to the γ chain carbohydrate attachment site. These dynamic regions appear to provide flexibility to the fibrinogen molecule. The γ chain “out loop” contained within each coiled-coil also exchanged rapidly. The αC domain (Aα 392–610) exchanged rapidly, with the exception of a short segment sandwiched between a conserved disulfide linkage in the N-terminal αC subdomain. This latter finding is consistent with a mostly disordered structure for the αC domain in native fibrinogen. Analysis of the dysfibrinogen Bβ 235 Pro/Leu, which exhibits abnormal fibrin structure, revealed enhanced deuterium exchange surrounding the Pro/Leu substitution site as well as in the vicinity of the high affinity calcium binding site and the A knob polymerization pocket within the γC domain. The implication of these changes with respect to fibrin structure is discussed. PMID:23875785

  3. Comparison of pitch rate history effects on dynamic stall

    NASA Technical Reports Server (NTRS)

    Chandrasekhara, M. S.; Carr, Lawrence W.; Ahmed, S.

    1992-01-01

    Dynamic stall of an airfoil is a classic case of forced unsteady separated flow. Flow separation is brought about by large incidences introduced by the large amplitude unsteady pitching motion of an airfoil. One of the parameters that affects the dynamic stall process is the history of the unsteady motion. In addition, the problem is complicated by the effects of compressibility that rapidly appear over the airfoil even at low Mach numbers at moderately high angles of attack. Consequently, it is of interest to know the effects of pitch rate history on the dynamic stall process. This abstract compares the results of a flow visualization study of the problem with two different pitch rate histories, namely, oscillating airfoil motion and a linear change in the angle of attack due to a transient pitching motion.

  4. Asymmetric acceleration/deceleration dynamics in heart rate variability

    NASA Astrophysics Data System (ADS)

    Alvarez-Ramirez, J.; Echeverria, J. C.; Meraz, M.; Rodriguez, E.

    2017-08-01

    The heart rate variability (HRV) is an important physiological signal used either to assess the risk of cardiac death or to model the cardiovascular regulatory dynamics. Asymmetries in HRV data have been observed using 2D Poincare plots, which have been linked to a non-equilibrium operation of the cardiac autonomic system. This work further explores the presence of asymmetries but in the serial correlations of the dynamics of HRV data. To this end, detrended fluctuation analysis (DFA) was used to estimate the Hurst exponent both when the heart rate is accelerating and when it is decelerating. The analysis is conducted using data collected from subjects under normal sinus rhythm (NSR), congestive heart failure (CHF) and atrial fibrillation (AF) . For the NSR cases, it was found that correlations are stronger (p < 0 . 05) when the heart rate is accelerating than when it is decelerating over different scales in the range 20-40 beats. In contrast, the opposite behavior was detected for the CHF and AF patients. Possible links between asymmetric correlations in the dynamics and the mechanisms controlling the operation of the heart rate are discussed, as well as their implications for modeling the cardiovascular regulatory dynamics.

  5. Simultaneous determination of labile proton concentration and exchange rate utilizing optimal RF power: Radio frequency power (RFP) dependence of chemical exchange saturation transfer (CEST) MRI.

    PubMed

    Sun, Phillip Zhe

    2010-02-01

    Chemical exchange saturation transfer (CEST) MRI is increasingly used to probe mobile proteins and microenvironment properties, and shows great promise for tumor and stroke diagnosis. However, CEST MRI contrast mechanism is complex, depending not only on the CEST agent concentration, exchange and relaxation properties, but also varying with experimental conditions such as magnetic field strength and RF power. Hence, it remains somewhat difficult to quantify apparent CEST MRI contrast for properties such as pH, temperature and protein content. In particular, CEST MRI is susceptible to RF spillover effects in that RF irradiation may directly saturate the bulk water MR signal, leading to an optimal RF power at which the CEST contrast is maximal. Whereas RF spillover is generally considered an adverse effect, it is noted here that the optimal RF power strongly varies with exchange rate, although with negligible dependence on labile proton concentration. An empirical solution suggested that optimal RF power may serve as a sensitive parameter for simultaneously determining the labile proton content and exchange rate, hence, allowing improved characterization of the CEST system. The empirical solution was confirmed by numerical simulation, and experimental validation is needed to further evaluate the proposed technique. Copyright 2009 Elsevier Inc. All rights reserved.

  6. Digestive state influences the heart rate hysteresis and rates of heat exchange in the varanid lizard Varanus rosenbergi.

    PubMed

    Clark, T D; Butler, P J; Frappell, P B

    2005-06-01

    To maximize the period where body temperature (Tb) exceeds ambient temperature (Ta), many reptiles have been reported to regulate heart rate (fH) and peripheral blood flow so that the rate of heat gain in a warming environment occurs more rapidly than the rate of heat loss in a cooling environment. It may be hypothesized that the rate of cooling, particularly at relatively cool Tbs, would be further reduced during postprandial periods when specific dynamic action (SDA) increases endogenous heat production (i.e. the heat increment of feeding). Furthermore, it may also be hypothesized that the increased perfusion of the gastrointestinal organs that occurs during digestion may limit peripheral blood flow and thus compromise the rate of heating. Finally, if the changes in fh are solely for the purpose of thermoregulation, there should be no associated changes in energy demand and, consequently, no hysteresis in the rate of oxygen consumption (V(O2)). To test these hypotheses, seven individual Varanus rosenbergi were heated and cooled between 19 degrees C and 35 degrees C following at least 8 days fasting and then approximately 25 h after consumption of a meal (mean 10% of fasted body mass). For a given Tb between the range of 19-35 degrees C, fh of fasting lizards was higher during heating than during cooling. Postprandial lizards also displayed a hysteresis in fh, although the magnitude was reduced in comparison with that of fasting lizards as a result of a higher fh during cooling in postprandial animals. Both for fasting and postprandial lizards, there was no hysteresis in V(O2) at any Tb throughout the range although, as a result of SDA, postprandial animals displayed a significantly higher V(O2) than fasting animals both during heating and during cooling at Tbs above 24 degrees C. The values of fh during heating at a given Tb were the same for fasting and postprandial animals, which, in combination with a slower rate of heating in postprandial animals, suggests

  7. Bronchodilator effect on ventilatory, pulmonary gas exchange, and heart rate kinetics during high-intensity exercise in COPD.

    PubMed

    Laveneziana, Pierantonio; Palange, Paolo; Ora, Josuel; Martolini, Dario; O'Donnell, Denis E

    2009-12-01

    Respiratory mechanical abnormalities in patients with chronic obstructive pulmonary disease (COPD) may impair cardiodynamic responses and convective oxygen delivery during exercise, resulting in slower ventilatory, pulmonary gas exchange (PGE), and heart rate (HR) kinetics compared with normal. We reasoned that bronchodilators and the attendant reduction of operating lung volumes should accelerate ventilatory, PGE, and HR kinetics in the transition from rest to high-intensity exercise. Twelve clinically stable COPD patients undertook constant-work rate cycle testing at 75% of each individual's maximum work capacity after receiving either combined nebulized bronchodilators (BD) or placebo (PL), randomly. Mean response time (MRT) and amplitude of slow component for oxygen uptake (V'O(2)), carbon dioxide production (V'CO(2)), ventilation (V'(E)), and HR together with operating dynamic end-expiratory lung volume (EELV) were measured. Resting and exercise EELV decreased significantly by 0.38 L after BD compared with PL. After BD, V'O(2), V'CO(2), V'(E), and HR MRT accelerated (p < 0.05) by an average of 12, 22, 27, and 22 s, respectively (i.e., 15, 18, 22 and 27%, respectively). The slow component for V'O(2) declined by an average of 55 ml/min compared with PL. Speeded MRT for V'O(2) correlated with indices of reduced lung hyperinflation, such as resting EELV (r = -0.64, p = 0.025) and EELV at isotime (r = -0.77, p = 0.0032). The results confirm an important interaction between abnormal dynamic respiratory mechanics and indices of cardio-circulatory function in the rest-to-exercise transition in COPD patients.

  8. The plastoquinol-plastoquinone exchange mechanism in photosystem II: insight from molecular dynamics simulations.

    PubMed

    Zobnina, Veranika; Lambreva, Maya D; Rea, Giuseppina; Campi, Gaetano; Antonacci, Amina; Scognamiglio, Viviana; Giardi, Maria Teresa; Polticelli, Fabio

    2017-01-01

    In the photosystem II (PSII) of oxygenic photosynthetic organisms, the reaction center (RC) core mediates the light-induced electron transfer leading to water splitting and production of reduced plastoquinone molecules. The reduction of plastoquinone to plastoquinol lowers PSII affinity for the latter and leads to its release. However, little is known about the role of protein dynamics in this process. Here, molecular dynamics simulations of the complete PSII complex embedded in a lipid bilayer have been used to investigate the plastoquinol release mechanism. A distinct dynamic behavior of PSII in the presence of plastoquinol is observed which, coupled to changes in charge distribution and electrostatic interactions, causes disruption of the interactions seen in the PSII-plastoquinone complex and leads to the "squeezing out" of plastoquinol from the binding pocket. Displacement of plastoquinol closes the second water channel, recently described in a 2.9 Å resolution PSII structure (Guskov et al. in Nat Struct Mol Biol 16:334-342, 2009), allowing to rule out the proposed "alternating" mechanism of plastoquinol-plastoquinone exchange, while giving support to the "single-channel" one. The performed simulations indicated a pivotal role of D1-Ser264 in modulating the dynamics of the plastoquinone binding pocket and plastoquinol-plastoquinone exchange via its interaction with D1-His252 residue. The effects of the disruption of this hydrogen bond network on the PSII redox reactions were experimentally assessed in the D1 site-directed mutant Ser264Lys.

  9. On the accuracy of instantaneous gas exchange rates, energy expenditure, and respiratory quotient calculations obtained in indirect whole room calorimeter

    USDA-ARS?s Scientific Manuscript database

    This paper analyzes the accuracy of metabolic rate calculations performed in the whole room indirect calorimeter using the molar balance equations. The equations are treated from the point of view of cause-effect relationship where the gaseous exchange rates representing the unknown causes need to b...

  10. The Optimum Plate to Plate Spacing for Maximum Heat Transfer Rate from a Flat Plate Type Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Ambarita, Himsar; Kishinami, Koki; Daimaruya, Mashashi; Tokura, Ikuo; Kawai, Hideki; Suzuki, Jun; Kobiyama, Mashayosi; Ginting, Armansyah

    The present paper is a study on the optimum plate to plate spacing for maximum heat transfer rate from a flat plate type heat exchanger. The heat exchanger consists of a number of parallel flat plates. The working fluids are flowed at the same operational conditions, either fixed pressure head or fixed fan power input. Parallel and counter flow directions of the working fluids were considered. While the volume of the heat exchanger is kept constant, plate number was varied. Hence, the spacing between plates as well as heat transfer rate will vary and there exists a maximum heat transfer rate. The objective of this paper is to seek the optimum plate to plate spacing for maximum heat transfer rate. In order to solve the problem, analytical and numerical solutions have been carried out. In the analytical solution, the correlations of the optimum plate to plate spacing as a function of the non-dimensional parameters were developed. Furthermore, the numerical simulation is carried out to evaluate the correlations. The results show that the optimum plate to plate spacing for a counter flow heat exchanger is smaller than parallel flow ones. On the other hand, the maximum heat transfer rate for a counter flow heat exchanger is bigger than parallel flow ones.

  11. Spin dynamics of polarization inversion spin exchange at the magic angle in multiple spin systems.

    PubMed

    Gan, Z

    2000-03-01

    Polarization inversion spin exchange at the magic angle (PISEMA) [J. Magn. Reson. A 109, 270 (1994)] is an important experiment in NMR structural characterization of membrane proteins in oriented lipid bilayers. This paper presents a theoretical and experimental study of the spin dynamics in PISEMA to investigate the line-narrowing mechanism. The study focuses on the effect of neighboring protons on the spin exchange of a strongly coupled spin pair. The spin exchange is solved analytically for simple spin systems and is numerically simulated for many-spin systems. The results show that the dipolar couplings from the neighboring protons of a strongly coupled spin pair perturb the spin exchange only in the second order, therefore it has little contribution to the linewidth of PISEMA spectra in comparison to the separated-local-field spectra. The effects from proton resonance offset and the mismatch of the Hartmann-Hahn condition are also discussed along with experimental results using model single-crystal samples.

  12. General Formalism of Mass Scaling Approach for Replica-Exchange Molecular Dynamics and its Application

    NASA Astrophysics Data System (ADS)

    Nagai, Tetsuro

    2017-01-01

    Replica-exchange molecular dynamics (REMD) has demonstrated its efficiency by combining trajectories of a wide range of temperatures. As an extension of the method, the author formalizes the mass-manipulating replica-exchange molecular dynamics (MMREMD) method that allows for arbitrary mass scaling with respect to temperature and individual particles. The formalism enables the versatile application of mass-scaling approaches to the REMD method. The key change introduced in the novel formalism is the generalized rules for the velocity and momentum scaling after accepted replica-exchange attempts. As an application of this general formalism, the refinement of the viscosity-REMD (V-REMD) method [P. H. Nguyen, J. Chem. Phys. 132, 144109 (2010)] is presented. Numerical results are provided using a pilot system, demonstrating easier and more optimized applicability of the new version of V-REMD as well as the importance of adherence to the generalized velocity scaling rules. With the new formalism, more sound and efficient simulations will be performed.

  13. Folding of SAM-II riboswitch explored by replica-exchange molecular dynamics simulation.

    PubMed

    Xue, Xu; Yongjun, Wang; Zhihong, Li

    2015-01-21

    Riboswitches are cis-acting RNA fragments that function via a conformational transition mechanism when a specific target molecule binds to its binding pocket, representing an inviting new class of biomolecular target for the development of antibiotics. To understand the folding mechanism of SAM-II riboswitch, occurring predominantly in proteobacteria, a 100ns replica-exchange molecular dynamics simulation in explicit solvent is performed. Our results show that this RNA pseudoknot has multiple folding pathways, and various intermediate structures. The resultant riboswitch conformational transition map is well consistent with the recent fluorescence measurement, which confirms the dynamical properties of this pseudoknot. Moreover, a novel transition pathway is predicted. The global folding dynamics is mainly coupled with the helix rather than the loop region. The potential folding pathways of the riboswitch presented here should lead to a deeper understanding of the folding mechanism of the riboswitch, as well as the conformational change of RNA pseudoknot.

  14. Electron-Nuclear Dynamics of collision processes: Charge exchange and energy loss

    NASA Astrophysics Data System (ADS)

    Cabrera-Trujillo, Remigio; Sabin, John R.; Öhrn, Yngve; Deumens, Erik

    2004-03-01

    We present the Electron-Nuclear Dynamics (END) method for the study of time-dependent scattering processes. The END is a general approach for treating time-dependent problems which includes the dynamics of electrons and nuclei simultaneously by considering the full electron-nuclear coupling in the system and thus eliminates the necessity of constructing potential-energy surfaces. The theory approximates the time dependent Schrödinger equation starting from the time dependent variational principle by deriving a Hamiltonian dynamical system for time dependent nuclear and electronic wave function parameters. The wave function is described in a coherent state manifold, which leads to a system of Hamilton's equations of motion. Emphasis is put on electron exchange, differential cross section and energy loss (stopping cross section) of collision of ions, atoms and molecules involving H, He, C, N, O, and Ne atoms. We compare our results to available experimental data.

  15. Dynamics of nitrate limitation on gaseous nitrogen exchanges from pristine peatlands

    NASA Astrophysics Data System (ADS)

    Roobroeck, D.; Brüggemann, N.; Butterbach-Bahl, K.; Boeckx, P.

    2009-04-01

    The cycling of gaseous nitrogen species in peatland ecosystems and the functioning of driving forces on microbial denitrification rates are poorly accounted. Physico-chemical soil conditions and biotic interactions1 control the availability of nitrate for respiratory denitrification resulting in high spatial variability of gaseous nitrogen exchange rates in nutrient poor peat soils and complicating impact assessment of eutrophication. The responses of nitrous oxide (N2O) and dinitrogen (N2) fluxes to nitrate addition were compared between distinct contrasts in plant growth at a pristine, hummocky peatland. Allowing to determine the dynamics of nitrate limitation on gaseous nitrogen exchanges in accordance to covariance in soil anaerobiosis and resource competition. Two quantification techniques were applied parallel to soil core incubations in order to determine N2O and N2 fluxes. Helium atmosphere incubation was used for direct quantification of net N2O and N2 fluxes. Reducing the background N2 concentration in the soil atmosphere to approx. 20 ppm enabled highly sensitive measurement of N2 fluxes. On the other hand a 15N-N2O tracer technique was explored as a tool to demonstrate and quantify gross consumption rates of atmospheric N2O to N2 and recycling of gaseous N-losses by microbial fixation. The headspace N2O pool was increased with 0.03 ppm 15•15N-N2O rendering an enrichment of ± 9.8 atom% 15•15N-N2O. Triplicate soil core samples were taken from two contrasting soil habitat in a hummocky, Carex dominated fen located in the Biebrza National Park, NE Poland (53 °07′N; 23 °10′E). The hummocks had a gravimetric soil water content of 76.6 ± 2.2% and high root abundance, dissimilar to 83.4 ± 1.0% and little root prevalence in the hollows. Singular nitrate addition, comparable to the atmospheric NOY -deposition, was applied two days in advance of flux measurement. Actual net gaseous nitrogen fluxes and responses to nitrate addition were apparently

  16. Influence of magnesium sulfate on HCO3/Cl transmembrane exchange rate in human erythrocytes.

    PubMed

    Chernyshova, Ekaterina S; Zaikina, Yulia S; Tsvetovskaya, Galina A; Strokotov, Dmitry I; Yurkin, Maxim A; Serebrennikova, Elena S; Volkov, Leonid; Maltsev, Valeri P; Chernyshev, Andrei V

    2016-03-21

    Magnesium sulfate (MgSO4) is widely used in medicine but molecular mechanisms of its protection through influence on erythrocytes are not fully understood and are considerably controversial. Using scanning flow cytometry, in this work for the first time we observed experimentally (both in situ and in vitro) a significant increase of HCO3(-)/Cl(-) transmembrane exchange rate of human erythrocytes in the presence of MgSO4 in blood. For a quantitative analysis of the obtained experimental data, we introduced and verified a molecular kinetic model, which describes activation of major anion exchanger Band 3 (or AE1) by its complexation with free intracellular Mg(2+) (taking into account Mg(2+) membrane transport and intracellular buffering). Fitting the model to our in vitro experimental data, we observed a good correspondence between theoretical and experimental kinetic curves that allowed us to evaluate the model parameters and to estimate for the first time the association constant of Mg(2+) with Band 3 as KB~0.07mM, which is in agreement with known values of the apparent Mg(2+) dissociation constant (from 0.01 to 0.1mM) that reflects experiments on enrichment of Mg(2+) at the inner erythrocyte membrane (Gunther, 2007). Results of this work partly clarify the molecular mechanisms of MgSO4 action in human erythrocytes. The method developed allows one to estimate quantitatively a perspective of MgSO4 treatment for a patient. It should be particularly helpful in prenatal medicine for early detection of pathologies associated with the risk of fetal hypoxia.

  17. Rates of diffusion in dynamical systems with random jumps

    NASA Astrophysics Data System (ADS)

    Kobre, Elisha J.

    2005-12-01

    This dissertation explores the diffusion properties of a large class of measures under a dynamical system on bigcup i=0infinity S1i with randomly occurring jumps that behave according to a particular probability distribution. The drift rate for the center of mass of the system is then defined and is shown to be well defined Lebesgue almost everywhere. Properties of the drift rate are then explored. In particular the drift rate is shown to be continuous as a function of the probability "jump" distribution and, in a special case, it is shown that the drift rate increases with the probability of jumping. Finally, a central limit theorem for fluctuations about the drift rate is proved. The results are obtained by modeling the system as a random map on a compact space, and using the ergodic properties of the random map.

  18. A high rate of telomeric sister chromatid exchange occurs in chronic lymphocytic leukaemia B-cells.

    PubMed

    Medves, Sandrine; Auchter, Morgan; Chambeau, Laetitia; Gazzo, Sophie; Poncet, Delphine; Grangier, Blandine; Verney, Aurélie; Moussay, Etienne; Ammerlaan, Wim; Brisou, Gabriel; Morjani, Hamid; Géli, Vincent; Palissot, Valérie; Berchem, Guy; Salles, Gilles; Wenner, Thomas

    2016-07-01

    Cancer cells protect their telomere ends from erosion through reactivation of telomerase or by using the Alternative Lengthening of Telomere (ALT) mechanism that depends on homologous recombination. Chronic lymphocytic leukaemia (CLL) B cells are characterized by almost no telomerase activity, shelterin deregulation and telomere fusions. To characterize telomeric maintenance mechanisms in B-CLL patients, we measured their telomere length, telomerase expression and the main hallmarks of the ALT activity i.e. C-circle concentration, an extra-chromosomal telomere repeat (ECTR), and the level of telomeric sister chromatid exchange (T-SCE) rate. Patients showed relative homogenous telomere length although almost no TERT transcript and nearly no C-circle were evidenced. Nevertheless, compared with normal B cells, B-CLL cells showed an increase in T-SCE rate that was correlated with a strong down-regulation of the topoisomerase III alpha (TOP3A) expression, involved in the dissolution of Holliday Junctions (HJ), together with an increased expression of SLX1A, SLX4, MUS81 and GEN1, involved in the resolution of HJ. Altogether, our results suggest that the telomere maintenance mechanism of B-CLL cells do not preferentially use telomerase or ALT. Rather, the rupture of the dissolvasome/resolvasome balance may increase telomere shuffling that could homogenize telomere length, slowing telomere erosion in this disease.

  19. Can Heart Rate Variability be used to Estimate Gas Exchange Threshold in Obese Adolescents?

    PubMed

    Vasconcellos, F; Seabra, A; Montenegro, R; Cunha, F; Bouskela, E; Farinatti, P

    2015-07-01

    This study investigated the agreement and reliability of oxygen uptake (V̇O2), V̇O2 reserve (V̇O2 R), heart rate (HR) and power output at intensities corresponding to the gas exchange threshold (GET) and heart rate variability threshold (HRVT) during maximal cardiopulmonary exercise testing (CPET) in obese and eutrophic adolescents. A further aim was to establish whether the HRVT was able to detect changes in cardio-respiratory fitness in obese adolescents after 3 months of recreational soccer practice. First, 25 obese and 10 eutrophic adolescents (ages 12-17) visited the laboratory twice to perform cycling CPET to test the reliability of CPET outcomes at GET and HRVT. Furthermore, the level of agreement between GET and HRVT was determined for a subgroup of 10 obese adolescents after performing a 3-month recreational soccer program. No significant difference was found for V̇O2, %V̇O2 R, HR and power output at the GET and HRVT (P>0.05), which were equally able to detect improvements in aerobic fitness after the soccer intervention. Correlations between GET and HRVT for V̇O2 and %V̇O2 R ranged from 0.89 to 0.95 (P<0.001) and test-retest reliability ranged from 0.59 to 0.82 (P<0.006). Overall, HRVT seems to be a reliable alternative for prescribing aerobic exercise intensity in obese adolescents.

  20. Transported substrate determines exchange rate in the multidrug resistance transporter EmrE.

    PubMed

    Morrison, Emma A; Henzler-Wildman, Katherine A

    2014-03-07

    EmrE, a small multidrug resistance transporter, serves as an ideal model to study coupling between multidrug recognition and protein function. EmrE has a single small binding pocket that must accommodate the full range of diverse substrates recognized by this transporter. We have studied a series of tetrahedral compounds, as well as several planar substrates, to examine multidrug recognition and transport by EmrE. Here we show that even within this limited series, the rate of interconversion between the inward- and outward-facing states of EmrE varies over 3 orders of magnitude. Thus, the identity of the bound substrate controls the rate of this critical step in the transport process. The binding affinity also varies over a similar range and is correlated with substrate hydrophobicity within the tetrahedral substrate series. Substrate identity influences both the ground-state and transition-state energies for the conformational exchange process, highlighting the coupling between substrate binding and transport required for alternating access antiport.

  1. Transported Substrate Determines Exchange Rate in the Multidrug Resistance Transporter EmrE*

    PubMed Central

    Morrison, Emma A.; Henzler-Wildman, Katherine A.

    2014-01-01

    EmrE, a small multidrug resistance transporter, serves as an ideal model to study coupling between multidrug recognition and protein function. EmrE has a single small binding pocket that must accommodate the full range of diverse substrates recognized by this transporter. We have studied a series of tetrahedral compounds, as well as several planar substrates, to examine multidrug recognition and transport by EmrE. Here we show that even within this limited series, the rate of interconversion between the inward- and outward-facing states of EmrE varies over 3 orders of magnitude. Thus, the identity of the bound substrate controls the rate of this critical step in the transport process. The binding affinity also varies over a similar range and is correlated with substrate hydrophobicity within the tetrahedral substrate series. Substrate identity influences both the ground-state and transition-state energies for the conformational exchange process, highlighting the coupling between substrate binding and transport required for alternating access antiport. PMID:24448799

  2. A Predictive Model for Vehicle Air Exchange Rates based on a Large, Representative Sample

    PubMed Central

    Fruin, Scott A.; Hudda, Neelakshi; Sioutas, Constantinos; Delfino, Ralph J.

    2014-01-01

    The in-vehicle microenvironment is an important route of exposure to traffic-related pollutants, particularly ultrafine particles. However, significant particle losses can occur under conditions of low air exchange rate (AER) when windows are closed and air is recirculating. AERs are lower for newer vehicles and at lower speeds. Despite the importance of AER in affecting in-vehicle particle exposures, few studies have characterized AER and all have tested only a small number of cars. One reason for this is the difficulty in measuring AER with tracer gases such as SF6 the most common method. We developed a simplified yet accurate method for determining AER using the occupants’ own production of CO2 a convenient compound to measure. By measuring initial CO2 build-up rates and equilibrium values of CO2 at fixed speeds, AER was calculated for 59 vehicles representative of California’s fleet. AER measurements correlated and agreed well with the largest other study conducted (R2=0.83). Multi-variable models captured 70% of the variability in observed AER using only age, mileage, manufacturer and speed. These results will be useful to exposure and epidemiological studies since all model variable values are easily obtainable through questionnaire. PMID:21428392

  3. Predictive model for vehicle air exchange rates based on a large, representative sample.

    PubMed

    Fruin, Scott A; Hudda, Neelakshi; Sioutas, Constantinos; Delfino, Ralph J

    2011-04-15

    The in-vehicle microenvironment is an important route of exposure to traffic-related pollutants, particularly ultrafine particles. However, significant particle losses can occur under conditions of low air exchange rate (AER) when windows are closed and air is recirculating. AERs are lower for newer vehicles and at lower speeds. Despite the importance of AER in affecting in-vehicle particle exposures, few studies have characterized AER and all have tested only a small number of cars. One reason for this is the difficulty in measuring AER with tracer gases such as SF(6), the most common method. We developed a simplified yet accurate method for determining AER using the occupants' own production of CO(2), a convenient compound to measure. By measuring initial CO(2) build-up rates and equilibrium values of CO(2) at fixed speeds, AER was calculated for 59 vehicles representative of California's fleet. AER measurements correlated and agreed well with the largest other study conducted (R(2) = 0.83). Multivariable models captured 70% of the variability in observed AER using only age, mileage, manufacturer, and speed. These results will be useful to exposure and epidemiological studies since all model variable values are easily obtainable through questionnaire.

  4. Dynamic energy release rate in couple-stress elasticity

    NASA Astrophysics Data System (ADS)

    Morini, L.; Piccolroaz, A.; Mishuris, G.

    2013-07-01

    This paper is concerned with energy release rate for dynamic steady state crack problems in elastic materials with microstructures. A Mode III semi-infinite crack subject to loading applied on the crack surfaces is considered. The micropolar behaviour of the material is described by the theory of couple-stress elasticity developed by Koiter. A general expression for the dynamic J-integral including both traslational and micro-rotational inertial contributions is derived, and the conservation of this integral on a path surrounding the crack tip is demonstrated.

  5. Simulating the frontal instability of lock-exchange density currents with dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Li, Yanggui; Geng, Xingguo; Wang, Heping; Zhuang, Xin; Ouyang, Jie

    2016-06-01

    The frontal instability of lock-exchange density currents is numerically investigated using dissipative particle dynamics (DPD) at the mesoscopic particle level. For modeling two-phase flow, the “color” repulsion model is adopted to describe binary fluids according to Rothman-Keller method. The present DPD simulation can reproduce the flow phenomena of lock-exchange density currents, including the lobe-and-cleft instability that appears at the head, as well as the formation of coherent billow structures at the interface behind the head due to the growth of Kelvin-Helmholtz instability. Furthermore, through the DPD simulation, some small-scale characteristics can be observed, which are difficult to be captured in macroscopic simulation and experiment.

  6. Ion exchange chromatography of monoclonal antibodies: effect of resin ligand density on dynamic binding capacity.

    PubMed

    Hardin, Ann Marie; Harinarayan, Chithkala; Malmquist, Gunnar; Axén, Andreas; van Reis, Robert

    2009-05-15

    Dynamic binding capacity (DBC) of a monoclonal antibody on agarose based strong cation exchange resins is determined as a function of resin ligand density, apparent pore size of the base matrix, and protein charge. The maximum DBC is found to be unaffected by resin ligand density, apparent pore size, or protein charge within the tested range. The critical conductivity (conductivity at maximum DBC) is seen to vary with ligand density. It is hypothesized that the maximum DBC is determined by the effective size of the proteins and the proximity to which they can approach one another. Once a certain minimum resin ligand density is supplied, additional ligand is not beneficial in terms of resin capacity. Additional ligand can provide flexibility in designing ion exchange resins for a particular application as the critical conductivity could be matched to the feedstock conductivity and it may also affect the selectivity.

  7. High-resolution determination of 147Pm in urine using dynamic ion-exchange chromatography.

    PubMed

    Elchuk, S; Lucy, C A; Burns, K I

    1992-10-15

    A procedure has been developed for measuring 147Pm in bioassay samples, based on the separation and preconcentration of 147Pm from the urine matrix by adsorption onto a conventional cation-exchange column with final separation and purification by HPLC using dynamic ion-exchange chromatography. The concentration of 147Pm is determined by collecting the appropriate HPLC fraction and measuring the 147Pm by liquid scintillation counting. The limit of detection is 0.1 Bq (3 fg) 147Pm based on a 500-mL sample of urine and a counting time of 30 min with a background of 100 cpm. Ten samples can be processed in 1.5-2 days.

  8. Orientational ordering and dynamics of the hydrate and exchangeable hydrogen atoms in crystalline crambin.

    PubMed

    Usha, M G; Wittebort, R J

    1989-08-20

    Deuterium nuclear magnetic resonance studies of crambin crystals grown from deuterated solvent (2H2O/CH3CH2O2H or H2O/C2H3CH2OH) are reported. The extent to which the hydrate and exchangeable hydrogen atoms are dynamically disordered are then determined from the size of the residual deuterium quadrupole couplings, qcc. Rapid molecular reorientation (tau c-1 greater than 10(5) s-1) reduces the magnitude of the quadrupole coupling from its static value (216 kHz for solid water). We find that the room temperature spectrum of crambin is dominated by two features: a sharp line with very small residual quadrupolar coupling less than 3 kHz, and a broad pattern with a quadrupolar coupling in the range 185 to 195 kHz. The former is indicative of very nearly isotropically reorienting deuterons, whereas the latter is somewhat narrower than that observed for the amide deuterons of poly-gamma-benzyl-L-glutamate and thus indicative of deuterons that are almost but not completely stationary. By considering the nuclear magnetic resonance spectrum intensities along with the amino acid sequence, X-ray structure and the manner in which quadrupole couplings are reduced by dynamics, we conclude that the nuclear magnetic resonance signal from most of the water molecules of hydration are contained in the sharp line, i.e. reorient nearly isotropically in the crystalline protein. Unlike bulk water, which freezes abruptly in the manner of a phase transition, the water of hydration in crambin has a broad freezing range from 180 to 250K, as evidenced by the decreasing intensity of the sharp line that disappears at 180K. At temperatures between 150 and 200K, a typical hydrate molecule reorients at a rate comparable to the quadrupole coupling, 10(4) s-1 to 10(5) s-1, a process that occurs in hexagonal ice in the range of 240 to 270K. At 140K, the hydrate is stationary, tau c-1 less than 10(3) s-1. Studies of the protein crystallized from solvent deuterated only at the non-exchangeable methyl

  9. Ion-exchange of monovalent and bivalent cations with NaA zeolite membranes : a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Murad, S.; Jia, W.; Krishnamurthy, M.

    2004-01-01

    Molecular simulations using the method of molecular dynamics have been carried out to study the dynamics and energetics of ion exchanges between monovalent and bivalent cations in supercritical and subcritical (liquid) electrolyte solutions (here Li+, and Ca++ in aqueous solutions of LiCl and CaCl2) and an ion exchange membrane (NaA zeolite) using direct simulations of up to a nanosecond or more. NaA zeolites are widely used in many commercial ion-exchange processes including detergents. Results show that with appropriate driving forces, such ion exchange processes can be clearly witnessed and investigated using molecular simulations at these timescales, especially for supercritical solutions. An attempt is made to understand the phenomenon of ion exchange at the molecular level. Results have shown that the ion-exchange process is primarily energetically driven and entropic forces do not appear to be playing a significant role in the exchanges observed. For supercritical LiCl solutions, small differences were found between the energy of the Li+ inside and outside the membrane. In contrast, for Na+ there was a considerable energetic advantage in being outside the membrane, making the overall exchange process energetically favourable. In subcritical (liquid) LiCl solutions an exchange was found to be more favourable energetically than supercritical solutions. For Ca++ similar trends were observed, except the differences in the energies were much larger (compared to the corresponding Li+ exchanges), making them more energetically efficient, as has also been observed experimentally. In addition to clarifying the molecular basis for these exchanges, simulations can also potentially be very useful to determine the behaviour (e.g. state dependence, etc.) of hydrodynamic parameters commonly used to characterize ion-exchange processes at a fundamental molecular level, and to determine if the hydrodynamic equations used for ion-exchange processes are applicable to nano

  10. Dynamics and energetics of the mammalian phosphatidylinositol transfer protein phospholipid exchange cycle.

    PubMed

    Grabon, Aby; Orłowski, Adam; Tripathi, Ashutosh; Vuorio, Joni; Javanainen, Matti; Róg, Tomasz; Lönnfors, Max; McDermott, Mark I; Siebert, Garland; Somerharju, Pentti; Vattulainen, Ilpo; Bankaitis, Vytas A

    2017-09-01

    Phosphatidylinositol-transfer proteins (PITPs) regulate phosphoinositide signaling in eukaryotic cells. The defining feature of PITPs is their ability to exchange phosphatidylinositol (PtdIns) molecules between membranes, and this property is central to PITP-mediated regulation of lipid signaling. However, the details of the PITP-mediated lipid exchange cycle remain entirely obscure. Here, all-atom molecular dynamics simulations of the mammalian StART-like PtdIns/phosphatidylcholine (PtdCho) transfer protein PITPα, both on membrane bilayers and in solvated systems, informed downstream biochemical analyses that tested key aspects of the hypotheses generated by the molecular dynamics simulations. These studies provided five key insights into the PITPα lipid exchange cycle: (i) interaction of PITPα with the membrane is spontaneous and mediated by four specific protein substructures; (ii) the ability of PITPα to initiate closure around the PtdCho ligand is accompanied by loss of flexibility of two helix/loop regions, as well as of the C-terminal helix; (iii) the energy barrier of phospholipid extraction from the membrane is lowered by a network of hydrogen bonds between the lipid molecule and PITPα; (iv) the trajectory of PtdIns or PtdCho into and through the lipid-binding pocket is chaperoned by sets of PITPα residues conserved throughout the StART-like PITP family; and (v) conformational transitions in the C-terminal helix have specific functional involvements in PtdIns transfer activity. Taken together, these findings provide the first mechanistic description of key aspects of the PITPα PtdIns/PtdCho exchange cycle and offer a rationale for the high conservation of particular sets of residues across evolutionarily distant members of the metazoan StART-like PITP family. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Probing protein dynamics and function under native and mildly denaturing conditions with hydrogen exchange and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kaltashov, Igor A.

    2005-02-01

    A combination of hydrogen exchange and mass spectrometry emerged in recent years as a powerful experimental tool capable of probing both structural and dynamic features of proteins. Although its concept is very simple, the interpretation of experimental data is not always straightforward, as a combination of chemical reactions (isotope exchange) and dynamic processes within protein molecules give rise to convoluted exchange patterns. This paper provides a historical background of this technique, candid assessment of its current state and limitations and a discussion of promising recent developments that can result in tremendous improvements and a dramatic expansion of the scope of its applications.

  12. Central metal ion exchange in a coordination polymer based on lanthanide ions and di(2-ethylhexyl)phosphoric acid: exchange rate and tunable affinity.

    PubMed

    Tasaki-Handa, Yuiko; Abe, Yukie; Ooi, Kenta; Tanaka, Mikiya; Wakisaka, Akihiro

    2014-01-01

    In this paper the exchange of lanthanide(III) ions (Ln(3+)) between a solution and a coordination polymer (CP) of di(2-ethylhexyl)phosphoric acid (Hdehp), [Ln(dehp)3], is studied. Kinetic and selectivity studies suggest that a polymeric network of [Ln(dehp)3] has different characteristics than the corresponding monomeric complex. The reaction rate is remarkably slow and requires over 600 h to reach in nearly equilibrium, and this can be explained by the polymeric crystalline structure and high valency of Ln(3+). The affinity of the exchange reaction reaches a maximum with the Ln(3+) possessing an ionic radius 7% smaller than that of the central Ln(3+), therefore, the affinity of the [Ln(dehp)3] is tunable based on the choice of the central metal ion. Such unique affinity, which differs from the monomeric complex, can be explained by two factors: the coordination preference and steric strain caused by the polymeric structure. The latter likely becomes predominant for Ln(3+) exchange when the ionic radius of the ion in solution is smaller than the original Ln(3+) by more than 7%. Structural studies suggest that the incoming Ln(3+) forms a new phase though an exchange reaction, and this could plausibly cause the structural strain. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Homeochaos: dynamics stability of a symbiotic network with population dynamics and evolving mutation rates

    NASA Astrophysics Data System (ADS)

    Kaneko, Kunihiko; Ikegami, Takashi

    1992-06-01

    Evolution of mutation rates is studied, in a population model with mutation of species coded by bit sequences and mutation rates. Even without interaction among species, the mutation rate is initially enhanced to search for fitted species and then is lowered towards zero. This enhancement opens a possibility of automatic simulated annealing. With the interaction among species (hosts versus parasites), high mutation rates are sustained. The rates go up with the interaction strength abruptly if the fitness landscape is rugged. A large cluster of species, connected by mutation, is formed by a sustained high mutation rate. With the formation of this symbiotic network resolved is the paradox of mutation rates; paradox on the stability of a rule to change itself. Population dynamics of each species shows high-dimensional chaos with small positive Lyapunov exponents. Stability of our symbiotic network is dynamically sustained through this weak high-dimensional chaos, termed “homeochaos”.

  14. Electron-Nuclear Dynamics of atomic and molecular collisions: Charge exchange and energy loss

    NASA Astrophysics Data System (ADS)

    Cabrera-Trujillo, Remigio; Sabin, John R.; Ohrn, Yngve; Deumens, Erik

    2004-05-01

    Processes like electron exchange (capture and loss), bond breaking, and chemical reactions are difficult to visualize and treat in a time-independent approach. In this work, we present the Electron-Nuclear Dynamics (END) method for the study of time-dependent scattering processes. The END is a general approach for treating time-dependent problems which includes the dynamics of electrons and nuclei simultaneously by considering the full electron-nuclear coupling in the system and thus eliminates the necessity of constructing potential-energy surfaces. The theory approximates the time dependent Schrödinger equation starting from the time dependent variational principle (TDVP) by deriving a Hamiltonian dynamical system for time dependent nuclear and electronic wave function parameters. The wave function is described in a coherent state manifold, which leads to a system of Hamilton's equations of motion. The resulting system of coupled, first order, ordinary differential equations approximates the Schrödinger equation. A detailed analysis of the END equations is given for the case of a single-determinantal state for the electrons and a classical treatment of the nuclei. Emphasis is put on electron exchange, differential cross section and energy loss (stopping cross section) of collision of ions, atoms and molecules involving H, He, C, N, O, and Ne atoms. We compare our results to available experimental data.

  15. Capillary electrochromatography using a strong cation-exchange column with a dynamically modified cationic surfactant

    PubMed

    Ye; Zou; Liu; Ni; Zhang

    2000-02-01

    A novel mode of capillary electrochromatography (CEC), called dynamically modified strong cation-exchange CEC (DMSCX-CEC), is described in this paper. A column packed with a strong cation-exchange (SCX) packing material was dynamically modified with a long-chain quaternary ammonium salt, cetyltrimethylammonium bromide (CTAB), which was added to the mobile phase. CTAB ions were adsorbed onto the surface of the SCX packing material, and the resulting hydrophobic layer on this packing was used as the stationary phase. Using the dynamically modified SCX column, neutral solutes were separated with the CEC mode. The highest number of theoretical plates obtained was about 190,000/m, and the relative standard deviations (RSD's) for migration times and capacity factors of alkylbenzenes were less than 1.0% and 2.0% for five consecutive runs, respectively. The effects of CTAB and methanol concentrations and the pH value of the mobile phase on the electroosmotic flow and the separation mechanism were investigated. Excellent simultaneous separation of the basic and neutral solutes in DMSCX-CEC with a high-pH mobile phase was obtained. A mixture containing the acidic, basic, and neutral compounds was well separated in this mode with a low-pH mobile phase; however, peak tailing for basic compounds was observed in this mobile phase.

  16. Simulation of ceramics fracture due to high rate dynamic impact

    NASA Astrophysics Data System (ADS)

    Kazarinov, N. A.; Bratov, V. A.; Petrov, Y. V.

    2015-11-01

    In this paper dynamic fracture process due to high-speed impact of steel plunger into ceramic sample is simulated. The developed numerical model is based on finite element method and a concept of incubation time criterion, which is proven applicable in order to predict brittle fracture under high-rate deformation. Simulations were performed for ZrO2(Y2O3) ceramic plates. To characterize fracture process quantitatively fracture surface area parameter is introduced and controlled. This parameter gives the area of new surface created during dynamic fracture of a sample and is essentially connected to energetic peculiarities of fracture process. Multiple simulations with various parameters made it possible to explore dependencies of fracture area on plunger velocity and material properties. Energy required to create unit of fracture area at fracture initiation (dynamic analogue of Griffith surface energy) was evaluated and was found to be an order of magnitude higher as comparing to its static value.

  17. Influence of exercise modality on agreement between gas exchange and heart rate variability thresholds.

    PubMed

    Cunha, F A; Montenegro, R A; Midgley, A W; Vasconcellos, F; Soares, P P; Farinatti, P

    2014-08-01

    The main purpose of this study was to investigate the level of agreement between the gas exchange threshold (GET) and heart rate variability threshold (HRVT) during maximal cardiopulmonary exercise testing (CPET) using three different exercise modalities. A further aim was to establish whether there was a 1:1 relationship between the percentage heart rate reserve (%HRR) and percentage oxygen uptake reserve (%VO2 R) at intensities corresponding to GET and HRVT. Sixteen apparently healthy men 17 to 28 years of age performed three maximal CPETs (cycling, walking, and running). Mean heart rate and VO2 at GET and HRVT were 16 bpm (P<0.001) and 5.2 mL · kg(-1) · min(-1) (P=0.001) higher in running than cycling, but no significant differences were observed between running and walking, or cycling and walking (P>0.05). There was a strong relationship between GET and HRVT, with R2 ranging from 0.69 to 0.90. A 1:1 relationship between %HRR and % VO2 R was not observed at GET and HRVT. The %HRR was higher during cycling (GET mean difference=7%; HRVT mean difference=11%; both P<0.001), walking (GET mean difference=13%; HRVT mean difference=13%; both P<0.001), or running (GET mean difference=11%; HRVT mean difference=10%; both P<0.001). Therefore, using HRVT to prescribe aerobic exercise intensity appears to be valid. However, to assume a 1:1 relationship between %HRR and % VO2 R at HRVT would probably result in overestimation of the energy expenditure during the bout of exercise.

  18. Influence of exercise modality on agreement between gas exchange and heart rate variability thresholds

    PubMed Central

    Cunha, F.A.; Montenegro, R.A.; Midgley, A.W.; Vasconcellos, F.; Soares, P.P.; Farinatti, P.

    2014-01-01

    The main purpose of this study was to investigate the level of agreement between the gas exchange threshold (GET) and heart rate variability threshold (HRVT) during maximal cardiopulmonary exercise testing (CPET) using three different exercise modalities. A further aim was to establish whether there was a 1:1 relationship between the percentage heart rate reserve (%HRR) and percentage oxygen uptake reserve (%V˙O2 R) at intensities corresponding to GET and HRVT. Sixteen apparently healthy men 17 to 28 years of age performed three maximal CPETs (cycling, walking, and running). Mean heart rate and V˙O2 at GET and HRVT were 16 bpm (P<0.001) and 5.2 mL·kg-1·min-1 (P=0.001) higher in running than cycling, but no significant differences were observed between running and walking, or cycling and walking (P>0.05). There was a strong relationship between GET and HRVT, with R2 ranging from 0.69 to 0.90. A 1:1 relationship between %HRR and %V˙O2 R was not observed at GET and HRVT. The %HRR was higher during cycling (GET mean difference=7%; HRVT mean difference=11%; both P<0.001), walking (GET mean difference=13%; HRVT mean difference=13%; both P<0.001), or running (GET mean difference=11%; HRVT mean difference=10%; both P<0.001). Therefore, using HRVT to prescribe aerobic exercise intensity appears to be valid. However, to assume a 1:1 relationship between %HRR and %V˙O2 R at HRVT would probably result in overestimation of the energy expenditure during the bout of exercise. PMID:25003546

  19. Assembly and exchange of intermediate filament proteins of neurons: neurofilaments are dynamic structures

    PubMed Central

    1989-01-01

    We have explored the dynamics of intermediate filament assembly and subunit exchange using fluorescently labeled neurofilament proteins and a fluorescence resonance energy transfer assay. Neurofilaments (NFs) are assembled from three highly phosphorylated proteins with molecular masses of 180 (NF-H), 130 (NF-M), and 66 kD (NF-L) of which NF-L forms the structural core. The core component, NF-L, was stoichiometrically labeled at cysteine 321 with fluorescein, coumarin, or biotin-maleimide to produce assembly-competent fluorescent or biotinylated derivatives, respectively. Using coumarin-labeled NF-L as fluorescence donor and fluorescein-labeled NF-L as the fluorescence acceptor, assembly of NF filaments was induced by rapidly raising the NaCl concentration to 170 mM, and the kinetics was followed by the decrease in the donor fluorescence. Assembly of NF-L subunits into filaments does not require nucleotide binding or hydrolysis but is strongly dependent on ionic strength, pH, and temperature. The critical concentration of NF-L, that concentration that remains unassembled at equilibrium with fully formed filaments, is 38 micrograms/ml or 0.6 microM. Under physiological salt conditions NF-L filaments also undergo extensive subunit exchange. Kinetic analysis and evaluation of several possible mechanisms indicate that subunit exchange is preceded by dissociation of subunits from the filament and generation of a kinetically active pool of soluble subunits. Given the concentration of NF-L found in nerve cells and the possibility of regulating this pool, these results provide the first information that intermediate filaments are dynamic structures and that NF-L within the NF complex is in dynamic equilibrium with a small but kinetically active pool of unassembled NF-L units. PMID:2925792

  20. Exchange bias in (FeNi/IrMn)n multilayer films evaluated by static and dynamic techniques

    NASA Astrophysics Data System (ADS)

    Khanal, Shankar; Diaconu, Andrei; Vargas, Jose M.; Lenormand, Denny R.; Garcia, Carlos; Ross, C. A.; Spinu, Leonard

    2014-06-01

    Exchange bias properties of [FeNi/IrMn]n multilayer films with variable thickness of the ferromagnetic layers and different repetitions n were determined by using static and dynamic measurement techniques. The static magnetic properties were revealed through magnetometry measurements at room temperature following major hysteresis loops and first-order reversal curves protocols. Room temperature x-band ferromagnetic resonance (FMR) and vector network analyser (VNA)-FMR experiments were used to determine dynamically the exchange anisotropy in the FeNi/IrMn multilayers. From the static measurements the exchange anisotropy was determined while dynamic measurements allowed the determination of additional parameters including anisotropy field, saturation magnetization and rotatable anisotropy. The differences between the values of the exchange biased obtained from each technique are discussed.

  1. Optimal mutation rates in dynamic environments: The eigen model

    NASA Astrophysics Data System (ADS)

    Ancliff, Mark; Park, Jeong-Man

    2011-03-01

    We consider the Eigen quasispecies model with a dynamic environment. For an environment with sharp-peak fitness in which the most-fit sequence moves by k spin-flips each period T we find an asymptotic stationary state in which the quasispecies population changes regularly according to the regular environmental change. From this stationary state we estimate the maximum and the minimum mutation rates for a quasispecies to survive under the changing environment and calculate the optimum mutation rate that maximizes the population growth. Interestingly we find that the optimum mutation rate in the Eigen model is lower than that in the Crow-Kimura model, and at their optimum mutation rates the corresponding mean fitness in the Eigen model is lower than that in the Crow-Kimura model, suggesting that the mutation process which occurs in parallel to the replication process as in the Crow-Kimura model gives an adaptive advantage under changing environment.

  2. Optimal mutation rates in dynamic environments: The Eigen model

    NASA Astrophysics Data System (ADS)

    Ancliff, Mark; Park, Jeong-Man

    2010-08-01

    We consider the Eigen quasispecies model with a dynamic environment. For an environment with sharp-peak fitness in which the most-fit sequence moves by k spin-flips each period T we find an asymptotic stationary state in which the quasispecies population changes regularly according to the regular environmental change. From this stationary state we estimate the maximum and the minimum mutation rates for a quasispecies to survive under the changing environment and calculate the optimum mutation rate that maximizes the population growth. Interestingly we find that the optimum mutation rate in the Eigen model is lower than that in the Crow-Kimura model, and at their optimum mutation rates the corresponding mean fitness in the eigenmodel is lower than that in the Crow-Kimura model, suggesting that the mutation process which occurs in parallel to the replication process as in the Crow-Kimura model gives an adaptive advantage under changing environment.

  3. New model describing the dynamical behaviour of penetration rates

    NASA Astrophysics Data System (ADS)

    Tashiro, Tohru; Minagawa, Hiroe; Chiba, Michiko

    2013-02-01

    We propose a hierarchical logistic equation as a model to describe the dynamical behaviour of a penetration rate of a prevalent stuff. In this model, a memory, how many people who already possess it a person who does not process it yet met, is considered, which does not exist in the logistic model. As an application, we apply this model to iPod sales data, and find that this model can approximate the data much better than the logistic equation.

  4. Real-time observation of cation exchange kinetics and dynamics at the muscovite-water interface

    NASA Astrophysics Data System (ADS)

    Lee, Sang Soo; Fenter, Paul; Nagy, Kathryn L.; Sturchio, Neil C.

    2017-06-01

    Ion exchange at charged solid-liquid interfaces is central to a broad range of chemical and transport phenomena. Real-time observations of adsorption/desorption at the molecular-scale elucidate exchange reaction pathways. Here we report temporal variation in the distribution of Rb+ species at the muscovite (001)-water interface during exchange with Na+. Time-resolved resonant anomalous X-ray reflectivity measurements at 25 °C reveal that Rb+ desorption occurs over several tens of seconds during which thermodynamically stable inner-sphere Rb+ slowly transforms to a less stable outer-sphere Rb+. In contrast, Rb+ adsorption is about twice as fast, proceeding from Rb+ in the bulk solution to the stable inner-sphere species. The Arrhenius plot of the adsorption/desorption rate constants measured from 9 to 55 °C shows that the pre-exponential factor for desorption is significantly smaller than that for adsorption, indicating that this reduced attempt frequency of cation detachment largely explains the slow cation exchange processes at the interface.

  5. Real-time observation of cation exchange kinetics and dynamics at the muscovite-water interface

    DOE PAGES

    Lee, Sang Soo; Fenter, Paul; Nagy, Kathryn L.; ...

    2017-06-09

    Here, ion exchange at charged solid–liquid interfaces is central to a broad range of chemical and transport phenomena. Real-time observations of adsorption/desorption at the molecular-scale elucidate exchange reaction pathways. Here, we report temporal variation in the distribution of Rb+ species at the muscovite (001)–water interface during exchange with Na+. Time-resolved resonant anomalous X-ray reflectivity measurements reveal that Rb+ desorption occurs over several tens of seconds during which thermodynamically stable inner-sphere Rb+ slowly transforms to less stable outer-sphere Rb+ at 25°C. In contrast, Rb+ adsorption is about twice as fast, proceeding quickly from Rb+ in the bulk solution to the stablemore » inner-sphere species. The Arrhenius plot of the adsorption/desorption rate constants measured from 9 to 55°C shows that the pre-exponential factor for desorption is significantly smaller than for adsorption, indicating that this reduced attempt frequency of cation detachment largely explains the slow cation exchange processes at the interface.« less

  6. Dynamic XML-based exchange of relational data: application to the Human Brain Project.

    PubMed

    Tang, Zhengming; Kadiyska, Yana; Li, Hao; Suciu, Dan; Brinkley, James F

    2003-01-01

    This paper discusses an approach to exporting relational data in XML format for data exchange over the web. We describe the first real-world application of SilkRoute, a middleware program that dynamically converts existing relational data to a user-defined XML DTD. The application, called XBrain, wraps SilkRoute in a Java Server Pages framework, thus permitting a web-based XQuery interface to a legacy relational database. The application is demonstrated as a query interface to the University of Washington Brain Project's Language Map Experiment Management System, which is used to manage data about language organization in the brain.

  7. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden–Popper phases?

    SciTech Connect

    Tomkiewicz, Alex C.; Tamimi, Mazin A.; Huq, Ashfia; McIntosh, Steven

    2015-03-02

    There is a possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides; it is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of three Ruddlesden-Popper phases, general form An-1A2'BnO3n+1, An-1A2'BnX3n+1; LaSrCo0.5Fe0.5O4-δ (n = 1), La0.3Sr2.7CoFeO7-δ (n = 2) and LaSr3Co1.5Fe1.5O10-δ (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. Furthermore this is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. This paper conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.

  8. Plasma extraction rate and collection efficiency during therapeutic plasma exchange with Spectra Optia in comparison with Haemonetics MCS+.

    PubMed

    Lambert, Catherine; Gericke, Marion; Smith, Richard; Hermans, Cedric

    2011-01-01

    For therapeutic plasma exchange (TPE), continuous and intermittent flow separators are known to be efficient. This study was undertaken to compare the performances of the Spectra Optia, a continuous flow centrifugal apheresis system recently developed by CaridianBCT, with the Haemonetics Multicomponents System (MCS)+ apheresis system based on intermittent flow centrifugation. The primary objective of the study was to compare the time required to exchange one total plasma volume with both separators. The secondary objectives were to determine the plasma exchange efficiency, the plasma extraction rate, the percentage of target exchange volume achieved, and the loss of cellular components. The study involved prospectively paired comparison of 16 TPE on each device performed in patients with chronic diseases treated with TPE. The time required to exchange 1 total plasma volume was 182 ± 36 minutes for MCS+ procedures and 100 ± 20 minutes for the Spectra Optia procedures (P < 0.05, all results presented as mean ± standard deviation). A significantly higher plasma extraction rate was achieved (30.2 ± 4.3 vs 16.8 ± 3.4 mL/min, respectively, P < 0.05), and the plasma exchange efficiency was slightly better with the Spectra Optia compared with the MCS+ procedures (83.4 ± 7.0 vs 80.0 ± 8.5%, P < 0.05). The platelet loss was significantly lower with the Spectra Optia compared with the MCS+ procedures (1.6 ± 2.3 vs 7.5 ± 4.2%, respectively, P < 0.05), whereas the red blood cells loss was comparable. In conclusion, the Spectra Optia has significantly higher extraction rate and exchange efficiency than the MCS+ allowing to remove the same amount of plasma in less time, by processing less blood. It also removes significantly less platelets than the MCS+ separator.

  9. THE EFFECT OF SALINITY ON RATES OF ELEMENTAL MERCURY AIR/WATER EXCHANGE

    EPA Science Inventory

    The U.S. EPA laboratory in Athens, Georgia i spursuing the goal of developing a model for describing toxicant vapor phase air/water exchange under all relevant environmental conditions. To date, the two-layer exchange model (suitable for low wind speed conditions) has been modif...

  10. THE EFFECT OF SALINITY ON RATES OF ELEMENTAL MERCURY AIR/WATER EXCHANGE

    EPA Science Inventory

    The U.S. EPA laboratory in Athens, Georgia i spursuing the goal of developing a model for describing toxicant vapor phase air/water exchange under all relevant environmental conditions. To date, the two-layer exchange model (suitable for low wind speed conditions) has been modif...

  11. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network

    PubMed Central

    Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process. PMID:26977450

  12. Predicting residential air exchange rates from questionnaires and meteorology: model evaluation in central North Carolina.

    PubMed

    Breen, Michael S; Breen, Miyuki; Williams, Ronald W; Schultz, Bradley D

    2010-12-15

    A critical aspect of air pollution exposure models is the estimation of the air exchange rate (AER) of individual homes, where people spend most of their time. The AER, which is the airflow into and out of a building, is a primary mechanism for entry of outdoor air pollutants and removal of indoor source emissions. The mechanistic Lawrence Berkeley Laboratory (LBL) AER model was linked to a leakage area model to predict AER from questionnaires and meteorology. The LBL model was also extended to include natural ventilation (LBLX). Using literature-reported parameter values, AER predictions from LBL and LBLX models were compared to data from 642 daily AER measurements across 31 detached homes in central North Carolina, with corresponding questionnaires and meteorological observations. Data was collected on seven consecutive days during each of four consecutive seasons. For the individual model-predicted and measured AER, the median absolute difference was 43% (0.17 h(-1)) and 40% (0.17 h(-1)) for the LBL and LBLX models, respectively. Additionally, a literature-reported empirical scale factor (SF) AER model was evaluated, which showed a median absolute difference of 50% (0.25 h(-1)). The capability of the LBL, LBLX, and SF models could help reduce the AER uncertainty in air pollution exposure models used to develop exposure metrics for health studies.

  13. Measuring and modeling air exchange rates inside taxi cabs in Los Angeles, California

    NASA Astrophysics Data System (ADS)

    Shu, Shi; Yu, Nu; Wang, Yueyan; Zhu, Yifang

    2015-12-01

    Air exchange rates (AERs) have a direct impact on traffic-related air pollutant (TRAP) levels inside vehicles. Taxi drivers are occupationally exposed to TRAP on a daily basis, yet there is limited measurement of AERs in taxi cabs. To fill this gap, AERs were quantified in 22 representative Los Angeles taxi cabs including 10 Prius, 5 Crown Victoria, 3 Camry, 3 Caravan, and 1 Uplander under realistic driving (RD) conditions. To further study the impacts of window position and ventilation settings on taxi AERs, additional tests were conducted on 14 taxis with windows closed (WC) and on the other 8 taxis with not only windows closed but also medium fan speed (WC-MFS) under outdoor air mode. Under RD conditions, the AERs in all 22 cabs had a mean of 63 h-1 with a median of 38 h-1. Similar AERs were observed under WC condition when compared to those measured under RD condition. Under WC-MFS condition, AERs were significantly increased in all taxi cabs, when compared with those measured under RD condition. A General Estimating Equation (GEE) model was developed and the modeling results showed that vehicle model was a significant factor in determining the AERs in taxi cabs under RD condition. Driving speed and car age were positively associated with AERs but not statistically significant. Overall, AERs measured in taxi cabs were much higher than typical AERs people usually encounter in indoor environments such as homes, offices, and even regular passenger vehicles.

  14. Air exchange rates and migration of VOCs in basements and residences

    PubMed Central

    Du, Liuliu; Batterman, Stuart; Godwin, Christopher; Rowe, Zachary; Chin, Jo-Yu

    2015-01-01

    Basements can influence indoor air quality by affecting air exchange rates (AERs) and by the presence of emission sources of volatile organic compounds (VOCs) and other pollutants. We characterized VOC levels, AERs and interzonal flows between basements and occupied spaces in 74 residences in Detroit, Michigan. Flows were measured using a steady-state multi-tracer system, and 7-day VOC measurements were collected using passive samplers in both living areas and basements. A walkthrough survey/inspection was conducted in each residence. AERs in residences and basements averaged 0.51 and 1.52 h−1, respectively, and had strong and opposite seasonal trends, e.g., AERs were highest in residences during the summer, and highest in basements during the winter. Air flows from basements to occupied spaces also varied seasonally. VOC concentration distributions were right-skewed, e.g., 90th percentile benzene, toluene, naphthalene and limonene concentrations were 4.0, 19.1, 20.3 and 51.0 μg m−3, respectively; maximum concentrations were 54, 888, 1117 and 134 μg m−3. Identified VOC sources in basements included solvents, household cleaners, air fresheners, smoking, and gasoline-powered equipment. The number and type of potential VOC sources found in basements are significant and problematic, and may warrant advisories regarding the storage and use of potentially strong VOCs sources in basements. PMID:25601281

  15. Measurement of air exchange rates in different indoor environments using continuous CO2 sensors.

    PubMed

    You, Yan; Niu, Can; Zhou, Jian; Liu, Yating; Bai, Zhipeng; Zhang, Jiefeng; He, Fei; Zhang, Nan

    2012-01-01

    A new air exchange rate (AER) monitoring method using continuous CO2 sensors was developed and validated through both laboratory experiments and field studies. Controlled laboratory simulation tests were conducted in a 1-m3 environmental chamber at different AERs (0.1-10.0 hr(-1)). AERs were determined using the decay method based on box model assumptions. Field tests were conducted in classrooms, dormitories, meeting rooms and apartments during 2-5 weekdays using CO2 sensors coupled with data loggers. Indoor temperature, relative humidity (RH), and CO2 concentrations were continuously monitored while outdoor parameters combined with on-site climate conditions were recorded. Statistical results indicated that good laboratory performance was achieved: duplicate precision was within 10%, and the measured AERs were 90%-120% of the real AERs. Average AERs were 1.22, 1.37, 1.10, 1.91 and 0.73 hr(-1) in dormitories, air-conditioned classrooms, classrooms with an air circulation cooling system, reading rooms, and meeting rooms, respectively. In an elderly particulate matter exposure study, all the homes had AER values ranging from 0.29 to 3.46 hr(-1) in fall, and 0.12 to 1.39 hr(-1) in winter with a median AER of 1.15.

  16. Efficacy of a heat and moisture exchanger in inhalation anesthesia at two different flow rates.

    PubMed

    Yamashita, Koichi; Yokoyama, Takeshi; Abe, Hidehiro; Nishiyama, Tomoki; Manabe, Masanobu

    2007-01-01

    In general anesthesia with endotracheal intubation, a circle system with a heat and moisture exchanger (HME) and a low total flow is often used to prevent hypothermia and to maintain inspired gas humidity. The purpose of the present study was to compare the inspired gas humidity and body temperature, in general anesthesia with or without an HME at two different total flow rates. Eighty patients (American Society of Anesthesiologists [ASA] I or II) scheduled to undergo either orthopedic or head and neck surgery were studied. They were divided into four groups, of 20 patients each: total flow of 2 lxmin(-1) with (group HME2L) or without (group 2L) HME, and a total flow of 4 lxmin(-1) with (group HME4L) or without (group 4L) HME. The relative and absolute humidity and pharyngeal and inspired gas temperatures were measured for 2 h after endotracheal intubation. The relative humidity was not significantly different among groups 2L, HME2L, and HME4L. Group 4L had significantly lower absolute humidity than group 2L. The pharyngeal temperature did not decrease significantly for 2 h in any of the groups. During general anesthesia with a total flow of 2 lxmin(-1) in 2 h, HME might not be necessary, while with a total flow of 4 lxmin(-1), HME could be useful to maintain inspired gas humidity.

  17. Expression of anion exchanger 3 influences respiratory rate in awake and isoflurane anesthetized mice.

    PubMed

    Meier, S; Hübner, C A; Groeben, H; Peters, J; Bingmann, D; Wiemann, M

    2007-11-01

    The anion exchanger 3 (AE3) is involved in neuronal pH regulation of which may include chemosensitive neurons. Here we examined the effect of AE3 expression on respiratory rate (RR) in vivo. AE3 knockout (KO, n=5) and wild type (WT, n=6) mice were subjected to body plethysmography, both while awake and during isoflurane anesthesia. RR was significantly lower in awake AE3 KO (162+/-7SE min(-1)) than in WT mice (212+/-20 min(-1), P=0.036). The same was found during isoflurane anesthesia at 0.5 MAC (KO: 123+/-9 min(-1), WT: 168+/-15 min(-1), P=0.026) and 1.0 MAC (KO: 51+/-6 min(-1), WT: 94+/-6 min(-1), P=0.001). Hypercapnia (5% CO2) increased RR in awake and decreased RR in nesthetized (1.0 MAC) mice, whereby relative changes were larger in AE3 KO mice. Recovery from isoflurane anesthesia in respect to RR regaining baseline values was more pronounced in AE3 KO. Results show that AE3 expression profoundly influences control of breathing in mice.

  18. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network.

    PubMed

    Falat, Lukas; Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.

  19. Predicting Residential Air Exchange Rates from Questionnaires and Meteorology: Model Evaluation in Central North Carolina

    PubMed Central

    2010-01-01

    A critical aspect of air pollution exposure models is the estimation of the air exchange rate (AER) of individual homes, where people spend most of their time. The AER, which is the airflow into and out of a building, is a primary mechanism for entry of outdoor air pollutants and removal of indoor source emissions. The mechanistic Lawrence Berkeley Laboratory (LBL) AER model was linked to a leakage area model to predict AER from questionnaires and meteorology. The LBL model was also extended to include natural ventilation (LBLX). Using literature-reported parameter values, AER predictions from LBL and LBLX models were compared to data from 642 daily AER measurements across 31 detached homes in central North Carolina, with corresponding questionnaires and meteorological observations. Data was collected on seven consecutive days during each of four consecutive seasons. For the individual model-predicted and measured AER, the median absolute difference was 43% (0.17 h−1) and 40% (0.17 h−1) for the LBL and LBLX models, respectively. Additionally, a literature-reported empirical scale factor (SF) AER model was evaluated, which showed a median absolute difference of 50% (0.25 h−1). The capability of the LBL, LBLX, and SF models could help reduce the AER uncertainty in air pollution exposure models used to develop exposure metrics for health studies. PMID:21069949

  20. A system dynamics evaluation model: implementation of health information exchange for public health reporting.

    PubMed

    Merrill, Jacqueline A; Deegan, Michael; Wilson, Rosalind V; Kaushal, Rainu; Fredericks, Kimberly

    2013-06-01

    To evaluate the complex dynamics involved in implementing electronic health information exchange (HIE) for public health reporting at a state health department, and to identify policy implications to inform similar implementations. Qualitative data were collected over 8 months from seven experts at New York State Department of Health who implemented web services and protocols for querying, receipt, and validation of electronic data supplied by regional health information organizations. Extensive project documentation was also collected. During group meetings experts described the implementation process and created reference modes and causal diagrams that the evaluation team used to build a preliminary model. System dynamics modeling techniques were applied iteratively to build causal loop diagrams representing the implementation. The diagrams were validated iteratively by individual experts followed by group review online, and through confirmatory review of documents and artifacts. Three casual loop diagrams captured well-recognized system dynamics: Sliding Goals, Project Rework, and Maturity of Resources. The findings were associated with specific policies that address funding, leadership, ensuring expertise, planning for rework, communication, and timeline management. This evaluation illustrates the value of a qualitative approach to system dynamics modeling. As a tool for strategic thinking on complicated and intense processes, qualitative models can be produced with fewer resources than a full simulation, yet still provide insights that are timely and relevant. System dynamics techniques clarified endogenous and exogenous factors at play in a highly complex technology implementation, which may inform other states engaged in implementing HIE supported by federal Health Information Technology for Economic and Clinical Health (HITECH) legislation.

  1. Determinants of Protein Elution Rates from Preparative Ion-Exchange Adsorbents

    PubMed Central

    Angelo, James M.; Lenhoff, Abraham M.

    2016-01-01

    The rate processes involved in elution in preparative chromatography can affect both peak resolution and hence selectivity as well as practical factors such as facility fit. These processes depend on the physical structure of the adsorbent particles, the amount of bound solute, the solution conditions for operation or some combination of these factors. Ion-exchange adsorbents modified with covalently attached or grafted polymer layers have become widely used in preparative chromatography. Their often easily accessible microstructures offer substantial binding capacities for biomolecules, but elution has sometimes been observed to be undesirably slow. In order to determine which physicochemical phenomena control elution behavior, commercially available cellulosic, dextran-grafted and unmodified agarose materials were characterized here by their uptake and elution profiles at various conditions, including different degrees of loading. Elution data were analyzed under the assumption of purely diffusion-limited control, including the role of pore structure properties such as porosity and tortuosity. In general, effective elution rates decreased with the reduction of accessible pore volume, but differences among different proteins indicated the roles of additional factors. Additional measurements and analysis, including the use of confocal laser scanning microscopy to observe elution within single chromatographic particles, indicated the importance of protein association within the particle during elution. The use of protein stabilizing agents was explored in systems presenting atypical elution behavior, and L-arginine and disaccharide excipients were shown to alleviate the effects for one protein, lysozyme, in the presence of sodium chloride. Incorporation of these excipients into eluent buffer gave rise to faster elution and significantly lower pool volumes in elution from polymer-modified adsorbents. PMID:26948763

  2. Determinants of protein elution rates from preparative ion-exchange adsorbents.

    PubMed

    Angelo, James M; Lenhoff, Abraham M

    2016-04-01

    The rate processes involved in elution in preparative chromatography can affect both peak resolution and hence selectivity as well as practical factors such as facility fit. These processes depend on the physical structure of the adsorbent particles, the amount of bound solute, the solution conditions for operation or some combination of these factors. Ion-exchange adsorbents modified with covalently attached or grafted polymer layers have become widely used in preparative chromatography. Their often easily accessible microstructures offer substantial binding capacities for biomolecules, but elution has sometimes been observed to be undesirably slow. In order to determine which physicochemical phenomena control elution behavior, commercially available cellulosic, dextran-grafted and unmodified agarose materials were characterized here by their elution profiles at various conditions, including different degrees of loading. Elution data were analyzed under the assumption of purely diffusion-limited control, including the role of pore structure properties such as porosity and tortuosity. In general, effective elution rates decreased with the reduction of accessible pore volume, but differences among different proteins indicated the roles of additional factors. Additional measurements and analysis, including the use of confocal laser scanning microscopy to observe elution within single chromatographic particles, indicated the importance of protein association within the particle during elution. The use of protein stabilizing agents was explored in systems presenting atypical elution behavior, and l-arginine and disaccharide excipients were shown to alleviate the effects for one protein, lysozyme, in the presence of sodium chloride. Incorporation of these excipients into eluent buffer gave rise to faster elution and significantly lower pool volumes in elution from polymer-modified adsorbents.

  3. A Model for Dynamic Simulation and Analysis of Tether Momentum Exchange

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen; Johnson, David; Sorensen, Kirk; Welzyn, Ken; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Momentum-exchange/electrodynamic reboost (MXER) tether systems may enable high-energy missions to the Moon, Mars, and beyond by serving as an 'upper stage in space'. Existing rockets that use an MXER tether station could double their capability to launch communications satellites and help improve US competitiveness. A MXER tether station would boost spacecraft from low Earth orbit to a high-energy orbit quickly, like a high-thrust rocket. Then, using the same principles that make an electric motor work, it would slowly rebuild its orbital momentum by pushing against the Earth's magnetic field-without using any propellant. One of the significant challenges in developing a momentum-exchange/electrodynamic reboost tether systems is in the analysis and design of the capture mechanism and its effects on the overall dynamics of the system. This paper will present a model for a momentum-exchange tether system that can simulate and evaluate the performance and requirements of such a system.

  4. Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization

    PubMed Central

    Barnes, Alexander B.; Mak-Jurkauskas, Melody L.; Matsuki, Yoh; Bajaj, Vikram S.; van der Wel, Patrick C. A.; DeRocher, Ronald; Bryant, Jeffrey; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Lugtenburg, Johan; Herzfeld, Judith; Griffin, Robert G.

    2009-01-01

    We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here — which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole — circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100 K which shows 30 Hz linewidths. PMID:19356957

  5. Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization.

    PubMed

    Barnes, Alexander B; Mak-Jurkauskas, Melody L; Matsuki, Yoh; Bajaj, Vikram S; van der Wel, Patrick C A; Derocher, Ronald; Bryant, Jeffrey; Sirigiri, Jagadishwar R; Temkin, Richard J; Lugtenburg, Johan; Herzfeld, Judith; Griffin, Robert G

    2009-06-01

    We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here-which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole-circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100K which shows 30 Hz linewidths.

  6. Redox dynamics in the Chesapeake Bay: The effect on sediment/water uranium exchange

    SciTech Connect

    Shaw, T.J.; Sholkovitz, E.R.; Klinkhammer, G. )

    1994-07-01

    The effect of seasonal variations in productivity and redox dynamics on the sediment/water exchange of uranium was investigated on a twelve cruise time series in the Chesapeake Bay. The deep waters of the bay undergo seasonal anoxia in response to high primary productivity and water column stratification from late spring to early fall. Dissolved oxygen was used to monitor sediment redox conditions. Dissolved [sup 238]U was measured in the water column and sediment porewaters to monitor water column/sediment exchange. Uranium incorporation in bay sediments results from two distinct processes: productivity-dependent scavenging from the water column and redox-dependent cycling of uranium between sediments and bottomwater. Uranium is removed from surface waters of the bay by scavenging with biodetritus during periods of high primary productivity. Bottomwater and sediment redox conditions determine whether this particle-bound uranium is buried or released to overlying water. Particulate uranium is released to bottomwaters and porewaters during the degradation of biodetritus and oxidation of authigenic uranium. Low oxygen in bottomwaters in the summer results in minimal exchange of uranium between the sediments and bottomwater, due to the stability of reduced U(IV). High bottomwater oxygen concentrations associated with bay turnover in the fall results in release of authigenic uranium by oxidation to the soluble (VI) form. Enrichment of uranium in fall bottomwater suggests that authigenic uranium is very labile when exposed to oxic environmental conditions. This process is enhanced by physical mixing when anoxic sediments are resuspended into the oxic bottomwaters.

  7. σ and κ mesons as broad dynamical resonances in one-meson-exchange model

    NASA Astrophysics Data System (ADS)

    Hong Xiem, Ngo Thi; Shinmura, Shoji

    2014-09-01

    The existences of broad scalar σ (600) and κ (700) mesons have been discussed intensively in the experimental and theoretical studies on ππ and πK scatterings. By using chiral perturbation model, J. Oller, A. Gómez and J. R. Peláez confirmed the existence of these mesons as dynamical resonances. In meson-exchange models, their existence has not been established yet. In this talk, using the quasi-potential of meson-exchange model and Lippmann-Schwinger equation, we determine the T and S-matrices, from which we could find the positions of poles in physical amplitudes in the complex E-plane. With the full treatment of meson-meson interactions (ππ - πK - πη - ηη and πK - ηK) , for the first time, the existence of the scalar σ (600) and κ (700) mesons are confirmed in one-meson-exchange model. There are two kinds of form factors in our model: the monopole and the Gaussian. Our recent results show that the poles σ and κ appear at around 410 - i 540 MeV and 650 - i 20 MeV for monopole form factors, respectively. For Gaussian form factors, the poles σ and κ, respectively, are at 360 - i 510 MeV and 649 - i 190 MeV.

  8. Search for Length Dependent Stable Structures of Polyglutamaine Proteins with Replica Exchange Molecular Dynamic

    NASA Astrophysics Data System (ADS)

    Kluber, Alexander; Hayre, Robert; Cox, Daniel

    2012-02-01

    Motivated by the need to find beta-structure aggregation nuclei for the polyQ diseases such as Huntington's, we have undertaken a search for length dependent structure in model polyglutamine proteins. We use the Onufriev-Bashford-Case (OBC) generalized Born implicit solvent GPU based AMBER11 molecular dynamics with the parm96 force field coupled with a replica exchange method to characterize monomeric strands of polyglutamine as a function of chain length and temperature. This force field and solvation method has been shown among other methods to accurately reproduce folded metastability in certain small peptides, and to yield accurately de novo folded structures in a millisecond time-scale protein. Using GPU molecular dynamics we can sample out into the microsecond range. Additionally, explicit solvent runs will be used to verify results from the implicit solvent runs. We will assess order using measures of secondary structure and hydrogen bond content.

  9. Dynamic characteristics of heat exchanger tubes vibrating in a tube support plate inactive mode

    SciTech Connect

    Jendrzejczyk, J.A.

    1984-06-01

    Tubes in shell-and-tube heat exchangers, including nuclear plant steam generators, derive their support from longitudinally positioned tube support plates (TSPs). Typically there is a clearance between the tube and TSP hole. Depending on design and fabrication tolerances, the tube may or may not contract all of the TSPs. Noncontact results in an inactive TSP which can lead to detrimental flow induced tube vibrations under certain conditions dependent on the resulting tube-TSP interaction dynamics and the fluid excitation forces. The purpose of this study is to investigate the tube-TSP interaction dynamics. Results of an experimental study of damping and natural frequency as functions of tube-TSP diametral clearance and TSP thickness are reported. Calculated values of damping ratio and frequency of a tube vibrating within an inactive TSP are also presented together with a comparison of calculated and experimental quantities.

  10. Dynamic characteristics of heat exchanger tubes vibrating in a tube support plate inactive mode

    SciTech Connect

    Jendrzejczyk, J.A.

    1985-01-01

    Tubes in shell-and-tube heat exchangers, including nuclear plant steam generators, derive their support from longitudinally positioned tube support plates (TSPs). Typically there is a clearance between the tube and TSP hole. Depending on design and fabrication tolerances, the tube may or may not contact all of the TSPs. Noncontact results in an inactive TSP which can lead to detrimental flow induced tube vibrations under certain conditions dependent on the resulting tube-TSP interaction dynamics and the fluid excitation forces. The purpose of this study is to investigate the tube-TSP interaction dynamics. Results of an experimental study of damping and natural frequency as functions of tube-TSP diametral clearance and TSP thickness are reported. Calculated values of damping ratio and frequency of a tube vibrating within an inactive TSP are also presented together with a comparison of calculated and experimetnal quantities.

  11. Dynamics of Exchange at Gas-Zeolite Interfaces 1: Pure Component n-Butane and Isobutane

    SciTech Connect

    CHANDROSS,MICHAEL E.; WEBB III,EDMUND B.; GREST,GARY S.; MARTIN,MARCUS G.; THOMPSON,AIDAN P.; ROTH,M.W.

    2000-07-13

    The authors present the results of molecular dynamics simulations of n-butane and isobutane in silicalite. They begin with a comparison of the bulk adsorption and diffusion properties for two different parameterizations of the interaction potential between the hydrocarbon species, both of which have been shown to reproduce experimental gas-liquid coexistence curves. They examine diffusion as a function of the loading of the zeolite, as well as the temperature dependence of the diffusion constant at loading and for infinite dilution. They continue with simulations in which interfaces are formed between single component gases and the zeolite. After reaching equilibrium, they examine the dynamics of exchange between the bulk gas and the zeolite. Finally, they calculate the permeability of the zeolite for n-butane and isobutane as a function of pressure. Their simulations are performed for a number of different gas temperatures and pressures, covering a wide range of state points.

  12. Combining coarse-grained protein models with replica-exchange all-atom molecular dynamics.

    PubMed

    Wabik, Jacek; Kmiecik, Sebastian; Gront, Dominik; Kouza, Maksim; Koliński, Andrzej

    2013-05-10

    We describe a combination of all-atom simulations with CABS, a well-established coarse-grained protein modeling tool, into a single multiscale protocol. The simulation method has been tested on the C-terminal beta hairpin of protein G, a model system of protein folding. After reconstructing atomistic details, conformations derived from the CABS simulation were subjected to replica-exchange molecular dynamics simulations with OPLS-AA and AMBER99sb force fields in explicit solvent. Such a combination accelerates system convergence several times in comparison with all-atom simulations starting from the extended chain conformation, demonstrated by the analysis of melting curves, the number of native-like conformations as a function of time and secondary structure propagation. The results strongly suggest that the proposed multiscale method could be an efficient and accurate tool for high-resolution studies of protein folding dynamics in larger systems.

  13. Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery

    NASA Astrophysics Data System (ADS)

    Lee, Kyung-Koo; Park, Kwanghee; Lee, Hochan; Noh, Yohan; Kossowska, Dorota; Kwak, Kyungwon; Cho, Minhaeng

    2017-03-01

    Lithium cation is the charge carrier in lithium-ion battery. Electrolyte solution in lithium-ion battery is usually based on mixed solvents consisting of polar carbonates with different aliphatic chains. Despite various experimental evidences indicating that lithium ion forms a rigid and stable solvation sheath through electrostatic interactions with polar carbonates, both the lithium solvation structure and more importantly fluctuation dynamics and functional role of carbonate solvent molecules have not been fully elucidated yet with femtosecond vibrational spectroscopic methods. Here we investigate the ultrafast carbonate solvent exchange dynamics around lithium ions in electrolyte solutions with coherent two-dimensional infrared spectroscopy and find that the time constants of the formation and dissociation of lithium-ion...carbonate complex in solvation sheaths are on a picosecond timescale. We anticipate that such ultrafast microscopic fluxional processes in lithium-solvent complexes could provide an important clue to understanding macroscopic mobility of lithium cation in lithium-ion battery on a molecular level.

  14. Influence of Fock exchange in combined many-body perturbation and dynamical mean field theory

    NASA Astrophysics Data System (ADS)

    Ayral, Thomas; Biermann, Silke; Werner, Philipp; Boehnke, Lewin

    2017-06-01

    In electronic systems with long-range Coulomb interaction, the nonlocal Fock-exchange term has a band-widening effect. While this effect is included in combined many-body perturbation theory and dynamical mean field theory (DMFT) schemes, it is not taken into account in standard extended DMFT (EDMFT) calculations. Here, we include this instantaneous term in both approaches and investigate its effect on the phase diagram and dynamically screened interaction. We show that the largest deviations between previously presented EDMFT and G W +EDMFT results originate from the nonlocal Fock term, and that the quantitative differences are especially large in the strong-coupling limit. Furthermore, we show that the charge-ordering phase diagram obtained in G W +EDMFT methods for moderate interaction values is very similar to the one predicted by dual-boson methods that include the fermion-boson or four-point vertex.

  15. El Niño Southern Oscillation (ENSO) enhances CO2 exchange rates in freshwater Marsh ecosystems in the Florida everglades.

    PubMed

    Malone, Sparkle L; Staudhammer, Christina L; Oberbauer, Steven F; Olivas, Paulo; Ryan, Michael G; Schedlbauer, Jessica L; Loescher, Henry W; Starr, Gregory

    2014-01-01

    This research examines the relationships between El Niño Southern Oscillation (ENSO), water level, precipitation patterns and carbon dioxide (CO2) exchange rates in the freshwater wetland ecosystems of the Florida Everglades. Data was obtained over a 5-year study period (2009-2013) from two freshwater marsh sites located in Everglades National Park that differ in hydrology. At the short-hydroperiod site (Taylor Slough; TS) and the long-hydroperiod site (Shark River Slough; SRS) fluctuations in precipitation patterns occurred with changes in ENSO phase, suggesting that extreme ENSO phases alter Everglades hydrology which is known to have a substantial influence on ecosystem carbon dynamics. Variations in both ENSO phase and annual net CO2 exchange rates co-occurred with changes in wet and dry season length and intensity. Combined with site-specific seasonality in CO2 exchanges rates, El Niño and La Niña phases magnified season intensity and CO2 exchange rates at both sites. At TS, net CO2 uptake rates were higher in the dry season, whereas SRS had greater rates of carbon sequestration during the wet season. As La Niña phases were concurrent with drought years and extended dry seasons, TS became a greater sink for CO2 on an annual basis (-11 to -110 g CO2 m-2 yr-1) compared to El Niño and neutral years (-5 to -43.5 g CO2 m-2 yr-1). SRS was a small source for CO2 annually (1.81 to 80 g CO2 m-2 yr-1) except in one exceptionally wet year that was associated with an El Niño phase (-16 g CO2 m-2 yr-1). Considering that future climate predictions suggest a higher frequency and intensity in El Niño and La Niña phases, these results indicate that changes in extreme ENSO phases will significantly alter CO2 dynamics in the Florida Everglades.

  16. El Niño Southern Oscillation (ENSO) Enhances CO2 Exchange Rates in Freshwater Marsh Ecosystems in the Florida Everglades

    PubMed Central

    Malone, Sparkle L.; Staudhammer, Christina L.; Oberbauer, Steven F.; Olivas, Paulo; Ryan, Michael G.; Schedlbauer, Jessica L.; Loescher, Henry W.; Starr, Gregory

    2014-01-01

    This research examines the relationships between El Niño Southern Oscillation (ENSO), water level, precipitation patterns and carbon dioxide (CO2) exchange rates in the freshwater wetland ecosystems of the Florida Everglades. Data was obtained over a 5-year study period (2009–2013) from two freshwater marsh sites located in Everglades National Park that differ in hydrology. At the short-hydroperiod site (Taylor Slough; TS) and the long-hydroperiod site (Shark River Slough; SRS) fluctuations in precipitation patterns occurred with changes in ENSO phase, suggesting that extreme ENSO phases alter Everglades hydrology which is known to have a substantial influence on ecosystem carbon dynamics. Variations in both ENSO phase and annual net CO2 exchange rates co-occurred with changes in wet and dry season length and intensity. Combined with site-specific seasonality in CO2 exchanges rates, El Niño and La Niña phases magnified season intensity and CO2 exchange rates at both sites. At TS, net CO2 uptake rates were higher in the dry season, whereas SRS had greater rates of carbon sequestration during the wet season. As La Niña phases were concurrent with drought years and extended dry seasons, TS became a greater sink for CO2 on an annual basis (−11 to −110 g CO2 m−2 yr−1) compared to El Niño and neutral years (−5 to −43.5 g CO2 m−2 yr−1). SRS was a small source for CO2 annually (1.81 to 80 g CO2 m−2 yr−1) except in one exceptionally wet year that was associated with an El Niño phase (−16 g CO2 m−2 yr−1). Considering that future climate predictions suggest a higher frequency and intensity in El Niño and La Niña phases, these results indicate that changes in extreme ENSO phases will significantly alter CO2 dynamics in the Florida Everglades. PMID:25521299

  17. Modeling the dynamic operation of a small fin plate heat exchanger - parametric analysis

    NASA Astrophysics Data System (ADS)

    Motyliński, Konrad; Kupecki, Jakub

    2015-09-01

    Given its high efficiency, low emissions and multiple fuelling options, the solid oxide fuel cells (SOFC) offer a promising alternative for stationary power generators, especially while engaged in micro-combined heat and power (μ-CHP) units. Despite the fact that the fuel cells are a key component in such power systems, other auxiliaries of the system can play a critical role and therefore require a significant attention. Since SOFC uses a ceramic material as an electrolyte, the high operating temperature (typically of the order of 700-900 °C) is required to achieve sufficient performance. For that reason both the fuel and the oxidant have to be preheated before entering the SOFC stack. Hot gases exiting the fuel cell stack transport substantial amount of energy which has to be partly recovered for preheating streams entering the stack and for heating purposes. Effective thermal integration of the μ-CHP can be achieved only when proper technical measures are used. The ability of efficiently preheating the streams of oxidant and fuel relies on heat exchangers which are present in all possible configurations of power system with solid oxide fuel cells. In this work a compact, fin plate heat exchanger operating in the high temperature regime was under consideration. Dynamic model was proposed for investigation of its performance under the transitional states of the fuel cell system. Heat exchanger was simulated using commercial modeling software. The model includes key geometrical and functional parameters. The working conditions of the power unit with SOFC vary due to the several factors, such as load changes, heating and cooling procedures of the stack and others. These issues affect parameters of the incoming streams to the heat exchanger. The mathematical model of the heat exchanger is based on a set of equations which are simultaneously solved in the iterative process. It enables to define conditions in the outlets of both the hot and the cold sides

  18. Maximum, minimum, and optimal mutation rates in dynamic environments

    NASA Astrophysics Data System (ADS)

    Ancliff, Mark; Park, Jeong-Man

    2009-12-01

    We analyze the dynamics of the parallel mutation-selection quasispecies model with a changing environment. For an environment with the sharp-peak fitness function in which the most fit sequence changes by k spin flips every period T , we find analytical expressions for the minimum and maximum mutation rates for which a quasispecies can survive, valid in the limit of large sequence size. We find an asymptotic solution in which the quasispecies population changes periodically according to the periodic environmental change. In this state we compute the mutation rate that gives the optimal mean fitness over a period. We find that the optimal mutation rate per genome, k/T , is independent of genome size, a relationship which is observed across broad groups of real organisms.

  19. Stochastic heart-rate model can reveal pathologic cardiac dynamics

    NASA Astrophysics Data System (ADS)

    Kuusela, Tom

    2004-03-01

    A simple one-dimensional Langevin-type stochastic difference equation can simulate the heart-rate fluctuations in a time scale from minutes to hours. The model consists of a deterministic nonlinear part and a stochastic part typical of Gaussian noise, and both parts can be directly determined from measured heart-rate data. Data from healthy subjects typically exhibit the deterministic part with two or more stable fixed points. Studies of 15 congestive heart-failure subjects reveal that the deterministic part of pathologic heart dynamics has no clear stable fixed points. Direct simulations of the stochastic model for normal and pathologic cases can produce statistical parameters similar to those of real subjects. Results directly indicate that pathologic situations simplify the heart-rate control system.

  20. Temperature dependence of the rate coefficient for charge exchange of metastable O/+//2D/ with N2. [in atmosphere

    NASA Technical Reports Server (NTRS)

    Torr, M. R.; Torr, D. G.

    1980-01-01

    Using a data base of aeronomical parameters measured on board the Atmosphere Explorer-C satellite, temperature dependence of the reaction rate coefficient is deduced for the charge exchange of O(+)(2D) with N2. The results indicate the Explorer values determined over the temperature range from 700 to 1900 K are not in conflict with laboratory measurements made at higher temperatures.

  1. Feedbacks between Exchange-Rate Movements and Domestic Inflation: Vicious and Not So Virtuous Cycles, Old and New.

    ERIC Educational Resources Information Center

    Spaventa, Luigi

    1983-01-01

    Theories and models dealing with the vicious cycle between exchange rates and domestic inflation and the way in which this relationship has influenced the economic policies of European nations are reviewed. Attempts of European nations to avoid the cycle of depreciation and inflation are covered. New theories may be necessary. (IS)

  2. On the accuracy of instantaneous gas exchange rates, energy expenditure, and respiratory quotient calculations obtained in indirect whole room calorimetry

    USDA-ARS?s Scientific Manuscript database

    The molar balance equations of indirect calorimetry are treated from the point of view of cause-effect relationship where the gaseous exchange rates representing the unknown causes heed to be inferred from a known noisy effect – gaseous concentrations. Two methods of such inversion are analyzed. Th...

  3. The impact of water exchange rate on the health and performance of rainbow trout Oncorhynchus mykiss in recirculation aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    Fish mortality in recirculating aquaculture systems (RAS) has been observed by the authors to increase when RAS are managed at low makeup water exchange rates with relatively high feed loading. The precise etiology of this elevated mortality was unknown, all typical water quality parameters were wit...

  4. El Nino Southern Oscillation (ENSO) enhances CO2 exchange rates in freshwater marsh ecosystems in the Florida Everglades

    Treesearch

    Sparkle L. Malone; Christina L. Staudhammer; Steven F. Oberbauer; Paulo Olivas; Michael G. Ryan; Jessica L. Schedlbauer; Henry W. Loescher; Gregory Starr

    2014-01-01

    This research examines the relationships between El Nino Southern Oscillation (ENSO), water level, precipitation patterns and carbon dioxide (CO2) exchange rates in the freshwater wetland ecosystems of the Florida Everglades. Data was obtained over a 5-year study period (2009–2013) from two freshwater marsh sites located in Everglades National Park that differ...

  5. Development and Evaluation of a New Air Exchange Rate Algorithm for the Stochastic Human Exposure and Dose Simulation Model

    EPA Science Inventory

    between-home and between-city variability in residential pollutant infiltration. This is likely a result of differences in home ventilation, or air exchange rates (AER). The Stochastic Human Exposure and Dose Simulation (SHEDS) model is a population exposure model that uses a pro...

  6. Development and Evaluation of a New Air Exchange Rate Algorithm for the Stochastic Human Exposure and Dose Simulation Model

    EPA Science Inventory

    between-home and between-city variability in residential pollutant infiltration. This is likely a result of differences in home ventilation, or air exchange rates (AER). The Stochastic Human Exposure and Dose Simulation (SHEDS) model is a population exposure model that uses a pro...

  7. Characterization of exchange rate regimes based on scaling and correlation properties of volatility for ASEAN-5 countries

    NASA Astrophysics Data System (ADS)

    Muniandy, Sithi V.; Uning, Rosemary

    2006-11-01

    Foreign currency exchange rate policies of ASEAN member countries have undergone tremendous changes following the 1997 Asian financial crisis. In this paper, we study the fractal and long-memory characteristics in the volatility of five ASEAN founding members’ exchange rates with respect to US dollar. The impact of exchange rate policies implemented by the ASEAN-5 countries on the currency fluctuations during pre-, mid- and post-crisis are briefly discussed. The time series considered are daily price returns, absolute returns and aggregated absolute returns, each partitioned into three segments based on the crisis regimes. These time series are then modeled using fractional Gaussian noise, fractionally integrated ARFIMA (0,d,0) and generalized Cauchy process. The first two stationary models provide the description of long-range dependence through Hurst and fractional differencing parameter, respectively. Meanwhile, the generalized Cauchy process offers independent estimation of fractal dimension and long memory exponent. In comparison, among the three models we found that the generalized Cauchy process showed greater sensitivity to transition of exchange rate regimes that were implemented by ASEAN-5 countries.

  8. A canonical replica exchange molecular dynamics implementation with normal pressure in each replica

    NASA Astrophysics Data System (ADS)

    Peter, Emanuel K.; Pivkin, Igor V.; Shea, Joan-Emma

    2016-07-01

    In this paper, we present a new canonical replica exchange molecular dynamics (REMD) simulation method with normal pressure for all replicas (REMD-NV(p) T). This method is suitable for systems for which conventional constant NPT-setups are difficult to implement. In this implementation, each replica has an individual volume, with normal pressure maintained for each replica in the simulation. We derive a novel exchange term and validate this method on the structural properties of SPC/E water and dialanine (Ala2) in the bulk and in the presence of a graphene layer. Compared to conventional constant NPT-REMD and NVT-REMD simulations, we find that the structural properties of our new method are in good agreement with simulations in the NPT-ensemble at all temperatures. The structural properties of the systems considered are affected by high pressures at elevated temperatures in the constant NVT-ensemble, an effect that our method corrects for. Unprojected distributions reveal that essential motions of the peptide are affected by the presence of the barostat in the NPT implementation but that the dynamical eigenmodes of the NV(p)T method are in close quantitative agreement with the NVT-ensemble.

  9. Considerably Unfolded Transthyretin Monomers Preceed and Exchange with Dynamically Structured Amyloid Protofibrils

    PubMed Central

    Groenning, Minna; Campos, Raul I.; Hirschberg, Daniel; Hammarström, Per; Vestergaard, Bente

    2015-01-01

    Despite numerous studies, a detailed description of the transthyretin (TTR) self-assembly mechanism and fibril structure in TTR amyloidoses remains unresolved. Here, using a combination of primarily small -angle X-ray scattering (SAXS) and hydrogen exchange mass spectrometry (HXMS) analysis, we describe an unexpectedly dynamic TTR protofibril structure which exchanges protomers with highly unfolded monomers in solution. The protofibrils only grow to an approximate final size of 2,900 kDa and a length of 70 nm and a comparative HXMS analysis of native and aggregated samples revealed a much higher average solvent exposure of TTR upon fibrillation. With SAXS, we reveal the continuous presence of a considerably unfolded TTR monomer throughout the fibrillation process, and show that a considerable fraction of the fibrillating protein remains in solution even at a late maturation state. Together, these data reveal that the fibrillar state interchanges with the solution state. Accordingly, we suggest that TTR fibrillation proceeds via addition of considerably unfolded monomers, and the continuous presence of amyloidogenic structures near the protofibril surface offers a plausible explanation for secondary nucleation. We argue that the presence of such dynamic structural equilibria must impact future therapeutic development strategies. PMID:26108284

  10. Dynamics of suspended sediment exchange and transport in a degraded mangrove creek in Kenya.

    PubMed

    Kitheka, Johnson U; Ongwenyi, George S; Mavuti, Kenneth M

    2002-12-01

    This study focuses on sediment exchange dynamics in Mwache Creek, a shallow tidal mangrove wetland in Kenya. The surface area of the creek is 17 km2 at high water spring. The creek experiences semidiurnal tides with tidal ranges of 3.2 m and 1.4 m during spring and neap tides, respectively. The creek is ebb dominant in the frontwater zone main channel and is flood dominant in the backwater zone main channel. During rainy season, the creek receives freshwater and terrigenous sediments from the seasonal Mwache River. Heavy supply of terrigenous sediments during the El Niño of 1997-1998 led to the huge deposition of sediments (10(60 tonnes) in the wetland that caused massive destruction of the mangrove forest in the upper region. In this study, sea level, tidal discharges, tidal current velocities, salinity, total suspended sediment concentrations (TSSC) and particulate organic sediment concentrations (POSC) measured in stations established within the main channel and also within the mangrove forests, were used to determine the dynamics of sediment exchange between the frontwater and backwater zones of the main channel including also the exchange with mangrove forests. The results showed that during wet seasons, the high suspended sediment concentration associated with river discharge and tidal resuspension of fine channel-bed sediment accounts for the inflow of highly turbid water into the degraded mangrove forest. Despite the degradation of the mangrove forest, sediment outflow from the mangrove forest was considerably less than the inflow. This caused a net trapping of sediment in the wetland. The net import of the sediment dominated in spring tide during both wet and dry season and during neap tide in the wet season. However, as compared to heavily vegetated mangrove wetlands, the generally degraded Mwache Creek mangrove wetland sediment trapping efficiency is low as the average is about 30% for the highly degraded backwater zone mangrove forest and 65% in the

  11. Dynamic behaviour of birch and sequoia at high strain rates

    NASA Astrophysics Data System (ADS)

    Anatoly, Bragov; Andrey, Lomunov; Ivan, Sergeichev; Gray, George, III

    2005-07-01

    The paper presents results of experimental analysis for structural woods, i.e. birch and sequoia at high strain rates. Monotonic and cyclic compression testing at room temperature of these materials was performed by experimental Kolsky method, using the 20-mm diameter split Hopkinson pressure bar (SHPB). The cut out specimens were loaded along and across fibers of woods, as well as, in others angles of cutting out from wooden materials. There were obtained dynamic deformation diagrams in various above conditions for these materials. Directions of specimens' cutting out, as well as, confined conditions effect on mechanical dynamic properties of the woods tested. Loading and unloading branches of stress-strain diagrams obtained are nonlinear and strain rates sensitive. Post-failure behavior of woods' specimens tested results from various forms of their fracture, such cracking and spalling. Experimental stress-strain curves showed significant influence of cutting out angles of specimens on fracture stresses' values. Dynamic deformation diagrams at cyclic loading, obtained by original modification of SPHB, are also presented for tested materials. Alongside with the SHPB tests, plane-wave experiments were conducted and the shock adiabates for the wood samples were obtained.

  12. Effects of sucrose and benzyl alcohol on GCSF conformational dynamics revealed by hydrogen deuterium exchange mass spectrometry.

    PubMed

    Zhang, Jun; Banks, Douglas D; He, Feng; Treuheit, Michael J; Becker, Gerald W

    2015-05-01

    Protein stability, one of the major concerns for therapeutic protein development, can be optimized during process development by evaluating multiple formulation conditions. This can be a costly and lengthy procedure where different excipients and storage conditions are tested for their impact on protein stability. A better understanding of the effects of different formulation conditions at the molecular level will provide information on the local interactions within the protein leading to a more rational design of stable and efficacious formulations. In this study, we examined the roles of the excipients, sucrose and benzyl alcohol, on the conformational dynamics of recombinant human granulocyte colony stimulating factor using hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS). Under physiological pH and temperature, sucrose globally protects the whole molecule from deuterium uptake, whereas benzyl alcohol induces increased deuterium uptake of the regions within the α-helical bundle, with even larger extent. The HDX experiments described were incorporated a set of internal peptides (Zhang et al., 2012. Anal Chem 84:4942-4949) to monitor the differences in intrinsic exchange rates in different formulations. In addition, we discussed the feasibility of implementing HDX-MS with these peptide probes in protein formulation development. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Dynamic Behaviour of Birch and Sequoia at High Strain Rates

    NASA Astrophysics Data System (ADS)

    Bragov, A. M.; Lomunov, A. K.; Sergeichev, I. V.; Gray, G. T.

    2006-07-01

    This paper presents results of the dynamic mechanical response of for two structural woods, i.e. birch and sequoia. Monotonic and cyclic compression testing at room temperature of these materials was performed using a modified Kolsky method; a 20-mm diameter split-Hopkinson pressure bar (SHPB). The birch and sequoia specimens were loaded parallel and orthogonal to the grain of the wood, as well as, at other angles relative to the wood grain. The dynamic mechanical behavior of the two woods was measured as a function of loading orientation under a uniaxial stress state as well as under circumferential confinement using a collar surrounding the sample to quantify the effect of lateral confinement on mechanical behavior. The loading and unloading responses of both woods were found to exhibit nonlinear behavior and a strong dependency on the strain rate of loading. The dynamic stress-strain responses of the birch and sequoia showed a strong influence of grain orientation of the flow stress and fracture behavior. Examination of the damage evolution and fracture responses of the birch and sequoia displayed a strong dependence on grain orientation. Cyclic dynamic loading data, obtained using a modification of the original SHPB testing method, is also presented for the two structural woods studied. In addition to the SHPB tests, plane-wave Shockwave loading experiments were conducted and the shock adiabates for birch was obtained.

  14. Rowing Crew Coordination Dynamics at Increasing Stroke Rates

    PubMed Central

    2015-01-01

    In rowing, perfect synchronisation is important for optimal performance of a crew. Remarkably, a recent study on ergometers demonstrated that antiphase crew coordination might be mechanically more efficient by reducing the power lost to within-cycle velocity fluctuations of the boat. However, coupled oscillator dynamics predict the stability of the coordination to decrease with increasing stroke rate, which in case of antiphase may eventually yield breakdowns to in-phase. Therefore, this study examined the effects of increasing stroke rate on in- and antiphase crew coordination in rowing dyads. Eleven experienced dyads rowed on two mechanically coupled ergometers on slides, which allowed the ergometer system to move back and forth as one ‘boat’. The dyads performed a ramp trial in both in- and antiphase pattern, in which stroke rates gradually increased from 30 strokes per minute (spm) to as fast as possible in steps of 2 spm. Kinematics of rowers, handles and ergometers were captured. Two dyads showed a breakdown of antiphase into in-phase coordination at the first stroke rate of the ramp trial. The other nine dyads reached between 34–42 spm in antiphase but achieved higher rates in in-phase. As expected, the coordinative accuracy in antiphase was worse than in in-phase crew coordination, while, somewhat surprisingly, the coordinative variability did not differ between the patterns. Whereas crew coordination did not substantially deteriorate with increasing stroke rate, stroke rate did affect the velocity fluctuations of the ergometers: fluctuations were clearly larger in the in-phase pattern than in the antiphase pattern, and this difference significantly increased with stroke rate. Together, these results suggest that although antiphase rowing is less stable (i.e., less resistant to perturbation), potential on-water benefits of antiphase over in-phase rowing may actually increase with stroke rate. PMID:26185987

  15. Structural dynamics of soluble chloride intracellular channel protein CLIC1 examined by amide hydrogen-deuterium exchange mass spectrometry.

    PubMed

    Stoychev, Stoyan H; Nathaniel, Christos; Fanucchi, Sylvia; Brock, Melissa; Li, Sheng; Asmus, Kyle; Woods, Virgil L; Dirr, Heini W

    2009-09-08

    Chloride intracellular channel protein 1 (CLIC1) functions as an anion channel in plasma and nuclear membranes when its soluble monomeric form converts to an integral-membrane form. The transmembrane region of CLIC1 is located in its thioredoxin-like domain 1, but the mechanism whereby the protein converts to its membrane conformation has yet to be determined. Since channel formation in membranes is enhanced at low pH (5 to 5.5), a condition that is found at the surface of membranes, the structural dynamics of soluble CLIC1 was studied at pH 7 and at pH 5.5 in the absence of membranes by amide hydrogen-deuterium exchange mass spectrometry (DXMS). Rapid hydrogen exchange data indicate that CLIC1 displays a similar core structure at these pH values. Domain 1 is less stable than the all-helical domain 2, and, while the structure of domain 1 remains intact, its conformational flexibility is further increased in an acidic environment (pH 5.5). In the absence of membrane, an acidic environment appears to prime the solution structure of CLIC1 by destabilizing domain 1 in order to lower the activation energy barrier for its conversion to the membrane-insertion conformation. The significantly enhanced H/D-exchange rates at pH 5.5 displayed by two segments (peptides 11-31 and 68-82) could be due to the protonation of acidic residues in salt bridges. One of these segments (peptide 11-31) includes part of the transmembrane region which, in the solution structure, consists of helix alpha1. This helix is intrinsically stable and is most likely retained in the membrane conformation. Strand beta2, another element of the transmembrane region, displays a propensity to form a helical structure and has putative N- and C-capping motifs, suggesting that it too most likely forms a helix in a lipid bilayer.

  16. Material deformation dynamics at ultrahigh pressures and strain rates

    NASA Astrophysics Data System (ADS)

    Remington, B. A.; Park, H. S.; Maddox, B. R.; May, M. J.; Pollaine, S. M.; Prisbrey, S. T.; Rudd, R. E.; Hawreliak, J. A.; Perry, T. S.; Comley, A. J.; Wark, J. S.; Meyers, M. A.

    2010-11-01

    Solid-state dynamics experiments at extreme pressures, up to 10 Mbar, and strain rates (1.e6 -1.e8 1/s) are being developed for the NIF laser. The experimental methods are being developed on the Omega laser facility. VISAR measurements establish the ramped, high-pressure conditions. Recovery experiments offer a look at the residual microstructure. Dynamic diffraction measurements allow phase, shear stress (strength), and possibly twin volume fraction and dislocation density to be inferred. Constitutive models for material strength at these conditions by comparing 2D simulations with experiments measuring the Rayleigh-Taylor instability evolution in solid-state samples of vanadium and tantalum. The material deformation likely falls into the phonon drag regime. We estimate of the (microscopic) phonon drag coefficient, by relating to the (macroscopic) effective lattice viscosity.

  17. Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay

    USGS Publications Warehouse

    Hartman, Blayne; Hammond, Douglas E.

    1984-01-01

    Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.

  18. Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate.

    PubMed

    Frankel, Mika; Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind; Madsen, Anne Mette

    2012-12-01

    Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m(3)) and were lowest in winter (median, 26 CFU/m(3)). Indoor bacteria peaked in spring (median, 2,165 CFU/m(3)) and were lowest in summer (median, 240 CFU/m(3)). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates.

  19. Seasonal Variations of Indoor Microbial Exposures and Their Relation to Temperature, Relative Humidity, and Air Exchange Rate

    PubMed Central

    Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind

    2012-01-01

    Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m3) and were lowest in winter (median, 26 CFU/m3). Indoor bacteria peaked in spring (median, 2,165 CFU/m3) and were lowest in summer (median, 240 CFU/m3). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates. PMID:23001651

  20. Authentic Assessment in the Geometry Classroom: Calculating the Classroom Air-Exchange Rate.

    ERIC Educational Resources Information Center

    Erich, David J.

    2002-01-01

    Introduces a room air-exchange activity designed to assess student understanding of the concept of volume. Lists materials for the activity and its procedures. Includes the lesson plan and a student worksheet. (KHR)

  1. Authentic Assessment in the Geometry Classroom: Calculating the Classroom Air-Exchange Rate.

    ERIC Educational Resources Information Center

    Erich, David J.

    2002-01-01

    Introduces a room air-exchange activity designed to assess student understanding of the concept of volume. Lists materials for the activity and its procedures. Includes the lesson plan and a student worksheet. (KHR)

  2. Regional trends in soil acidification and exchangeable metal concentrations in relation to acid deposition rates.

    PubMed

    Stevens, Carly J; Dise, Nancy B; Gowing, David J

    2009-01-01

    The deposition of high levels of reactive nitrogen (N) and sulphur (S), or the legacy of that deposition, remain among the world's most important environmental problems. Although regional impacts of acid deposition in aquatic ecosystems have been well documented, quantitative evidence of wide-scale impacts on terrestrial ecosystems is not common. In this study we analysed surface and subsoil chemistry of 68 acid grassland sites across the UK along a gradient of acid deposition, and statistically related the concentrations of exchangeable soil metals (1 M KCl extraction) to a range of potential drivers. The deposition of N, S or acid deposition was the primary correlate for 8 of 13 exchangeable metals measured in the topsoil and 5 of 14 exchangeable metals in the subsoil. In particular, exchangeable aluminium and lead both show increased levels above a soil pH threshold of about 4.5, strongly related to the deposition flux of acid compounds.

  3. Turning Rate Dynamics of Zebrafish Exposed to Ethanol

    NASA Astrophysics Data System (ADS)

    Mwaffo, Violet; Porfiri, Maurizio

    2015-06-01

    Zebrafish is emerging as a species of choice in alcohol-related pharmacological studies. In these studies, zebrafish are often exposed to acute ethanol treatments and their activity scored during behavioral assays. Computational modeling of zebrafish behavior is expected to positively impact these efforts by offering a predictive toolbox to plan hypothesis-driven studies, reduce the number of subjects, perform pilot trials, and refine behavioral screening. In this work, we demonstrate the use of the recently proposed jump persistent turning walker to model the turning rate dynamics of zebrafish exposed to acute ethanol administration. This modeling framework is based on a stochastic mean reverting jump process to capture the sudden and large changes in orientation of swimming zebrafish. The model is calibrated on an available experimental dataset of 40 subjects, tested at different ethanol concentrations. We demonstrate that model parameters are modulated by ethanol administration, whereby both the relaxation rate and jump frequency of the turning rate dynamics are influenced by ethanol concentration. This effort offers a first evidence for the possibility of complementing zebrafish pharmacological research with computational modeling of animal behavior.

  4. Determination of mu-oxo exchange rates in di-mu-oxo dimanganese complexes by electrospray ionization mass spectrometry.

    PubMed

    Tagore, Ranitendranath; Chen, Hongyu; Crabtree, Robert H; Brudvig, Gary W

    2006-07-26

    A time-resolved mass spectrometric technique has been used for the determination of rates of exchange of mu-O atoms with water for the complexes [(mes-terpy)2Mn2(III/IV)(mu-O)2(H2O)2](NO3)3 (1, mes-terpy = 4'-mesityl-2,2':6',2' '-terpyridine), [(bpy)4Mn2(III/IV)(mu-O)2](ClO4)3 (2, bpy = 2,2'-bipyridine), [(phen)4Mn2(III/IV)(mu-O)2](ClO4)3 (3, phen = 1,10-phenanthroline), [(bpea)2Mn2(III/IV)(mu-O)2(mu-OAc)](ClO4)2 (4, bpea = bis(2-pyridyl)ethylamine), [(bpea)2Mn2(IV/IV)(mu-O)2(mu-OAc)](ClO4)3 (4ox), [(terpy)4Mn4(IV/IV/IV/IV)(mu-O)5(H2O)2](ClO4)6 (5, terpy = 2,2':6',2''-terpyridine), and [(tacn)4Mn4(IV/IV/IV/IV)(mu-O)6]Br(3.5)(OH)0.5.6H2O (6, tacn = 1,4,7-triazacyclononane). The rate of exchange of mu-OAc bridges with free acetate in solution has been measured for complexes 4 and 4ox. These are the first measurements of rates of ligand exchange on biologically relevant high-valent Mn complexes. The data analysis method developed here is of general utility in the quantitation of isotope exchange processes by mass spectrometry. We find that the presence of labile coordination sites on Mn increases mu-O exchange rates, and that all-Mn(IV) states are more inert toward exchange than mixed Mn(III)-Mn(IV) states. The rates of mu-O exchange obtained in this work for a di-mu-oxo Mn2(III/IV) dimer with labile coordination sites are compared with the oxygen isotope incorporation rates from substrate water to evolved dioxygen measured in different S states of the oxygen evolving complex (OEC) of photosystem II (PSII). On the basis of this comparison, we propose that both substrate waters are not bound as mu-O bridges between Mn atoms in the S2 and S3 states of the OEC.

  5. Hepatitis B virus direct repeat sequence: imino proton exchange rates and distance and torsion angle restraints from NMR.

    PubMed

    Bishop, K D; Blocker, F J; Egan, W; James, T L

    1994-01-18

    Structural features of a trisdecamer duplex, [d(GGCAGAGGTGAAA).d(TTTCACCTCTGCC)], in solution are being investigated by proton one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy. This DNA sequence is comprised of the 11-base-pair direct repeat sequence found in the hepatitis B viral genome with an additional base pair from the genome included on each end to minimize end effects on the 11-bp sequence of interest. The direct repeat sequence occurs twice in the viral genome; both are essential for initiation of DNA synthesis. The critical nature of this sequence suggests it may be a target to control replication of the virus. Elucidation of the structure of the direct repeat sequence could prove to be beneficial in targeting efforts. Structural determination via restrained molecular dynamics requires experimentally derived distance restraints. The ability to determine solution structures of biomolecules by NMR spectroscopy is limited by the quality and quantity of distance and torsion angle restraints that can be extracted from the NMR data. Techniques used to establish these restraints are constantly evolving and improving. Modifications in procedure are applied to the trisdecamer duplex to yield improvements in the determination of sugar conformations from COSY data and a substantial increase in the number of distance restraints typically garnered from 2D NOE intensity data. This increase in the number of distance restraints normally obtained from 2D NOE intensities was accomplished by utilizing a new version of the iterative complete relaxation matrix program MARDIGRAS with intensities extracted from a 2D NOE data set acquired in 90% H2O. The exchange rate of the imino and amino protons with the solvent water protons can now be included in the relaxation matrix calculations, thereby providing more accurate distances when utilizing the 2D NOE cross-peaks involving at least one exchangeable proton. In this lab, analysis of two-quantum-filtered correlation

  6. Momentum-dependent susceptibilities and magnetic exchange in bcc iron from supercell dynamical mean-field theory calculations

    NASA Astrophysics Data System (ADS)

    Belozerov, A. S.; Katanin, A. A.; Anisimov, V. I.

    2017-08-01

    We analyze the momentum and temperature dependences of the magnetic susceptibilities and magnetic exchange interaction in paramagnetic bcc iron by a combination of density functional theory and dynamical mean-field theory (DFT+DMFT). By considering a general derivation of the orbital-resolved effective model for spin degrees of freedom for Hund's metals, we relate momentum-dependent susceptibilities in the paramagnetic phase to the magnetic exchange. We then calculate nonuniform orbital-resolved susceptibilities at high-symmetry wave vectors by constructing appropriate supercells in the DMFT approach. Extracting the irreducible parts of susceptibilities with respect to Hund's exchange interaction, we determine the corresponding orbital-resolved exchange interactions, which are then interpolated to the whole Brillouin zone. Using the spherical model we estimate the temperature dependence of the resulting exchange between local moments.

  7. Circulating protein synthesis rates reveal skeletal muscle proteome dynamics

    PubMed Central

    Shankaran, Mahalakshmi; King, Chelsea L.; Angel, Thomas E.; Holmes, William E.; Li, Kelvin W.; Colangelo, Marc; Price, John C.; Turner, Scott M.; Bell, Christopher; Hamilton, Karyn L.; Miller, Benjamin F.; Hellerstein, Marc K.

    2015-01-01

    Here, we have described and validated a strategy for monitoring skeletal muscle protein synthesis rates in rodents and humans over days or weeks from blood samples. We based this approach on label incorporation into proteins that are synthesized specifically in skeletal muscle and escape into the circulation. Heavy water labeling combined with sensitive tandem mass spectrometric analysis allowed integrated synthesis rates of proteins in muscle tissue across the proteome to be measured over several weeks. Fractional synthesis rate (FSR) of plasma creatine kinase M-type (CK-M) and carbonic anhydrase 3 (CA-3) in the blood, more than 90% of which is derived from skeletal muscle, correlated closely with FSR of CK-M, CA-3, and other proteins of various ontologies in skeletal muscle tissue in both rodents and humans. Protein synthesis rates across the muscle proteome generally changed in a coordinate manner in response to a sprint interval exercise training regimen in humans and to denervation or clenbuterol treatment in rodents. FSR of plasma CK-M and CA-3 revealed changes and interindividual differences in muscle tissue proteome dynamics. In human subjects, sprint interval training primarily stimulated synthesis of structural and glycolytic proteins. Together, our results indicate that this approach provides a virtual biopsy, sensitively revealing individualized changes in proteome-wide synthesis rates in skeletal muscle without a muscle biopsy. Accordingly, this approach has potential applications for the diagnosis, management, and treatment of muscle disorders. PMID:26657858

  8. Src Kinase Determines the Dynamic Exchange of the Docking Protein NEDD9 (Neural Precursor Cell Expressed Developmentally Down-regulated Gene 9) at Focal Adhesions*

    PubMed Central

    Bradbury, Peta; Bach, Cuc T.; Paul, Andre; O'Neill, Geraldine M.

    2014-01-01

    Dynamic exchange of molecules between the cytoplasm and integrin-based focal adhesions provides a rapid response system for modulating cell adhesion. Increased residency time of molecules that regulate adhesion turnover contributes to adhesion stability, ultimately determining migration speed across two-dimensional surfaces. In the present study we test the role of Src kinase in regulating dynamic exchange of the focal adhesion protein NEDD9/HEF1/Cas-L. Using either chemical inhibition or fibroblasts genetically null for Src together with fluorescence recovery after photobleaching (FRAP), we find that Src significantly reduces NEDD9 exchange at focal adhesions. Analysis of NEDD9 mutant constructs with the two major Src-interacting domains disabled revealed the greatest effects were due to the NEDD9 SH2 binding domain. This correlated with a significant change in two-dimensional migratory speed. Given the emerging role of NEDD9 as a regulator of focal adhesion stability, the time of NEDD9 association at the focal adhesions is key in modulating rates of migration and invasion. Our study suggests that Src kinase activity determines NEDD9 exchange at focal adhesions and may similarly modulate other focal adhesion-targeted Src substrates to regulate cell migration. PMID:25059660

  9. Population rate dynamics and multineuron firing patterns in sensory cortex

    PubMed Central

    Okun, Michael; Yger, Pierre; Marguet, Stephan; Gerard-Mercier, Florian; Benucci, Andrea; Katzner, Steffen; Busse, Laura; Carandini, Matteo; Harris, Kenneth D.

    2012-01-01

    Cortical circuits encode sensory stimuli through the firing of neuronal ensembles, and also produce spontaneous population patterns in the absence of sensory drive. This population activity is often characterized experimentally by the distribution of multineuron “words” (binary firing vectors), and a match between spontaneous and evoked word distributions has been suggested to reflect learning of a probabilistic model of the sensory world. We analyzed multineuron word distributions in sensory cortex of anesthetized rats and cats, and found that they are dominated by fluctuations in population firing rate rather than precise interactions between individual units. Furthermore, cortical word distributions change when brain state shifts, and similar behavior is seen in simulated networks with fixed, random connectivity. Our results suggest that similarity or dissimilarity in multineuron word distributions could primarily reflect similarity or dissimilarity in population firing rate dynamics, and not necessarily the precise interactions between neurons that would indicate learning of sensory features. PMID:23197704

  10. Superior bit error rate and jitter due to improved switching field distribution in exchange spring magnetic recording media.

    PubMed

    Suess, D; Fuger, M; Abert, C; Bruckner, F; Vogler, C

    2016-06-01

    We report two effects that lead to a significant reduction of the switching field distribution in exchange spring media. The first effect relies on a subtle mechanism of the interplay between exchange coupling between soft and hard layers and anisotropy that allows significant reduction of the switching field distribution in exchange spring media. This effect reduces the switching field distribution by about 30% compared to single-phase media. A second effect is that due to the improved thermal stability of exchange spring media over single-phase media, the jitter due to thermal fluctuation is significantly smaller for exchange spring media than for single-phase media. The influence of this overall improved switching field distribution on the transition jitter in granular recording and the bit error rate in bit-patterned magnetic recording is discussed. The transition jitter in granular recording for a distribution of Khard values of 3% in the hard layer, taking into account thermal fluctuations during recording, is estimated to be a = 0.78 nm, which is similar to the best reported calculated jitter in optimized heat-assisted recording media.

  11. Superior bit error rate and jitter due to improved switching field distribution in exchange spring magnetic recording media

    PubMed Central

    Suess, D.; Fuger, M.; Abert, C.; Bruckner, F.; Vogler, C.

    2016-01-01

    We report two effects that lead to a significant reduction of the switching field distribution in exchange spring media. The first effect relies on a subtle mechanism of the interplay between exchange coupling between soft and hard layers and anisotropy that allows significant reduction of the switching field distribution in exchange spring media. This effect reduces the switching field distribution by about 30% compared to single-phase media. A second effect is that due to the improved thermal stability of exchange spring media over single-phase media, the jitter due to thermal fluctuation is significantly smaller for exchange spring media than for single-phase media. The influence of this overall improved switching field distribution on the transition jitter in granular recording and the bit error rate in bit-patterned magnetic recording is discussed. The transition jitter in granular recording for a distribution of Khard values of 3% in the hard layer, taking into account thermal fluctuations during recording, is estimated to be a = 0.78 nm, which is similar to the best reported calculated jitter in optimized heat-assisted recording media. PMID:27245287

  12. Numerical studies on sizing/ rating of plate fin heat exchangers for a modified Claude cycle based helium liquefier/ refrigerator

    NASA Astrophysics Data System (ADS)

    Goyal, M.; Chakravarty, A.; Atrey, M. D.

    2017-02-01

    Performance of modern helium refrigeration/ liquefaction systems depends significantly on the effectiveness of heat exchangers. Generally, compact plate fin heat exchangers (PFHE) having very high effectiveness (>0.95) are used in such systems. Apart from basic fluid film resistances, various secondary parameters influence the sizing/ rating of these heat exchangers. In the present paper, sizing calculations are performed, using in-house developed numerical models/ codes, for a set of high effectiveness PFHE for a modified Claude cycle based helium liquefier/ refrigerator operating in the refrigeration mode without liquid nitrogen (LN2) pre-cooling. The combined effects of secondary parameters like axial heat conduction through the heat exchanger metal matrix, parasitic heat in-leak from surroundings and variation in the fluid/ metal properties are taken care of in the sizing calculation. Numerical studies are carried out to predict the off-design performance of the PFHEs in the refrigeration mode with LN2 pre-cooling. Iterative process cycle calculations are also carried out to obtain the inlet/ exit state points of the heat exchangers.

  13. Dynamic Instability Leading to Increased Interchange Reconnection Rates

    NASA Astrophysics Data System (ADS)

    Edmondson, J. K.; Antiochos, S. K.; Zurbuchen, T. H.

    2008-12-01

    Interchange reconnection is widely believed to play an important role in coronal magnetic field dynamics. In this investigation we investigate the 3D dynamics of interchange reconnection by extending the concept of a magnetic null-point to a null-volume, the so-called "acute-cusp field" configuration. The acute-cusp field geometry is characterized by high-beta plasma confined with favorable curvature, surrounded by a low-beta environment. First, we construct an initial translationally-symmetric potential field configuration. This configuration contains the required topological characteristics of four separate flux systems in the perpendicular plane. We then drive the system by a slow, incompressible, uniform flow at the boundary. The resulting evolution is calculated by solving numerically the MHD equations in full 3D Cartesian coordinates using the Adaptively Refined MHD Solver developed at the U.S. Naval Research Laboratory. Field shearing along the topological boundaries changes the shape of the acute-cusp field surface separating the high and low plasma beta regions. An extended, 2D current sheet is generated by the photospheric driving. We discuss the effect of 3D perturbations on the current sheet dynamics and on the rate of the resulting interchange reconnection. Finally, we discuss the implications of our simulations for coronal observations. This work has been supported, in part, by the NASA HTP and SR&T programs.

  14. Influence of aeration rate on nitrogen dynamics during composting.

    PubMed

    de Guardia, A; Petiot, C; Rogeau, D; Druilhe, C

    2008-01-01

    The paper aimed to study the influence of aeration rate on nitrogen dynamics during composting of wastewater sludge with wood chips. Wastewater sludge was sampled at a pig slaughterhouse 24h before each composting experiment, and mixtures were made at the same mass ratio. Six composting experiments were performed in a lab reactor (300 L) under forced aeration. Aeration flow was constant throughout the experiment and aeration rates applied ranged between 1.69 and 16.63 L/h/kg DM of mixture. Material temperature and oxygen consumption were monitored continuously. Nitrogen losses in leachates as organic and total ammoniacal nitrogen, nitrite and nitrate, and losses in exhaust gases as ammonia were measured daily. Concentrations of total carbon and nitrogen i.e., organic nitrogen, total ammoniacal nitrogen, and nitrite and nitrate were measured in the initial substrates and in the composted materials. The results showed that organic nitrogen, which was released as NH4+/NH3 by ammonification, was closely correlated to the ratio of carbon removed from the material to TC/N(org) of the initial substrates. The increase of aeration was responsible for the increase in ammonia emissions and for the decrease in nitrogen losses through leaching. At high aeration rates, losses of nitrogen in leachates and as ammonia in exhaust gases accounted for 90-99% of the nitrogen removed from the material. At low aeration rates, those accounted for 47-85% of the nitrogen removed from the material. The highest concentrations of total ammoniacal nitrogen in composts occurred at the lowest aeration rate. Due to the correlation of ammonification with biodegradation and to the measurements of losses in leachates and in exhaust gases, the pool NH4+/NH3 in the composting material was calculated as a function of time. The nitrification rate was found to be proportional to the mean content of NH4+/NH3 in the material, i.e., initial NH4+/NH3 plus NH4+/NH3 released by ammonification minus losses in

  15. Recent advancements on modelling the exchange flow dynamics through the Turkish Strait System

    NASA Astrophysics Data System (ADS)

    Sannino, Gianmaria; Sözer, Adil; Özsoy, Emin

    2014-05-01

    The system composed by the two narrow Straits, Dardanelles and Bosphorus, and the Marmara Sea is known as the Turkish Straits System (TSS). The scientific questions on the role of the TSS in coupling the adjacent basins of the Mediterranean and Black Seas with highly contrasting properties, in a region of high climatic variability and materials transport depending critically on the cycle of water can only be answered by model predictions of the processes that determine the integral properties of the coupled sub-systems. This can only be achieved if the entire TSS is modeled as a finely resolved integral system that appropriately accounts for the high contrasts in seawater properties, steep topography, hydraulic controls, fine and meso-scale turbulence, nonlinear and non-hydrostatic effects, thermodynamic states and an active free-surface in the fullest extent, based on well represented fluid dynamical principles. In this study the MITgcm is used at very high resolution to study this extreme environment that needs to be represented as a whole and with the full details of its highly contrasting properties. The model domain chosen extends over the entire TSS, including also part of the north-east Aegean Sea at south, and the Black Sea at north of the domain. A non-uniform curvilinear orthogonal grid covers the domain at variable resolution: from less than 50 m in the two Straits up to about 1 Km in the Marmara Sea. To adequately resolve the complex hydraulic dynamics of the TSS, the model grid is made by 100 vertical z-levels. The model is initialized with three different water masses filling the western part of the domain, the Marmara Sea and the eastern side of the domain respectively, with vertical profiles selected from CTD casts obtained during the cruise of the R/V BİLİM of the Institute of Marine Sciences in June-July 2013. With the initial condition specified as lock-exchanges at the two straits, the model is left free to adjust to the expected two

  16. Detrended cross-correlation analysis on RMB exchange rate and Hang Seng China Enterprises Index

    NASA Astrophysics Data System (ADS)

    Ruan, Qingsong; Yang, Bingchan; Ma, Guofeng

    2017-02-01

    In this paper, we investigate the cross-correlations between the Hang Seng China Enterprises Index and RMB exchange markets on the basis of a cross-correlation statistic test and multifractal detrended cross-correlation analysis (MF-DCCA). MF-DCCA has, at best, serious limitations for most of the signals describing complex natural processes and often indicates multifractal cross-correlations when there are none. In order to prevent these false multifractal cross-correlations, we apply MFCCA to verify the cross-correlations. Qualitatively, we find that the return series of the Hang Seng China Enterprises Index and RMB exchange markets were, overall, significantly cross-correlated based on the statistical analysis. Quantitatively, we find that the cross-correlations between the stock index and RMB exchange markets were strongly multifractal, and the multifractal degree of the onshore RMB exchange markets was somewhat larger than the offshore RMB exchange markets. Moreover, we use the absolute return series to investigate and confirm the fact of multifractality. The results from the rolling windows show that the short-term cross-correlations between volatility series remain high.

  17. Recombination-Induced Tag Exchange (RITE) Cassette Series to Monitor Protein Dynamics in Saccharomyces cerevisiae

    PubMed Central

    Terweij, Marit; van Welsem, Tibor; van Deventer, Sjoerd; Verzijlbergen, Kitty F.; Menendez-Benito, Victoria; Ontoso, David; San-Segundo, Pedro; Neefjes, Jacques; van Leeuwen, Fred

    2013-01-01

    Proteins are not static entities. They are highly mobile, and their steady-state levels are achieved by a balance between ongoing synthesis and degradation. The dynamic properties of a protein can have important consequences for its function. For example, when a protein is degraded and replaced by a newly synthesized one, posttranslational modifications are lost and need to be reincorporated in the new molecules. Protein stability and mobility are also relevant for the duplication of macromolecular structures or organelles, which involves coordination of protein inheritance with the synthesis and assembly of newly synthesized proteins. To measure protein dynamics, we recently developed a genetic pulse-chase assay called recombination-induced tag exchange (RITE). RITE has been successfully used in Saccharomyces cerevisiae to measure turnover and inheritance of histone proteins, to study changes in posttranslational modifications on aging proteins, and to visualize the spatiotemporal inheritance of protein complexes and organelles in dividing cells. Here we describe a series of successful RITE cassettes that are designed for biochemical analyses, genomics studies, as well as single cell fluorescence applications. Importantly, the genetic nature and the stability of the tag switch offer the unique possibility to combine RITE with high-throughput screening for protein dynamics mutants and mechanisms. The RITE cassettes are widely applicable, modular by design, and can therefore be easily adapted for use in other cell types or organisms. PMID:23708297

  18. Assessing the Dynamics of Bittorrent Swarms Topologies Using the Peer Exchange Protocol

    NASA Astrophysics Data System (ADS)

    Fauzie, Mohamad Dikshie; Thamrin, Achmad Husni; van Meter, Rodney; Murai, Jun

    Bittorrent is one of the most popular and successful applications in the current Internet. However, we still have little knowledge about the topology of real Bittorrent swarms, how dynamic the topology is, and how it affects overall behavior. This paper describes an experimental study of the overlay topologies of real-world Bittorrent networks, focusing on the activity of the nodes of its P2P topology and especially their dynamic relationships. Peer Exchange Protocol (PEX) messages are analyzed to infer topologies and their properties, capturing the variations of their behavior. Our measurements, verified using the Kolmogorov-Smirnov goodness of fit test and the likelihood ratio test and confirmed via simulation, show that a power-law with exponential cutoff is a more plausible model than a pure power-law distribution. We also found that the average clustering coefficient is very low, supporting this observation. Bittorrent swarms are far more dynamic than has been recognized previously, potentially impacting attempts to optimize the performance of the system as well as the accuracy of simulations and analyses.

  19. Robust Biased Brownian Dynamics for Rate Constant Calculation

    PubMed Central

    Zou, Gang; Skeel, Robert D.

    2003-01-01

    A reaction probability is required to calculate the rate constant of a diffusion-dominated reaction. Due to the complicated geometry and potentially high dimension of the reaction probability problem, it is usually solved by a Brownian dynamics simulation, also known as a random walk or path integral method, instead of solving the equivalent partial differential equation by a discretization method. Building on earlier work, this article completes the development of a robust importance sampling algorithm for Brownian dynamics—i.e., biased Brownian dynamics with weight control—to overcome the high energy and entropy barriers in biomolecular association reactions. The biased Brownian dynamics steers sampling by a bias force, and the weight control algorithm controls sampling by a target weight. This algorithm is optimal if the bias force and the target weight are constructed from the solution of the reaction probability problem. In reality, an approximate reaction probability has to be used to construct the bias force and the target weight. Thus, the performance of the algorithm depends on the quality of the approximation. Given here is a method to calculate a good approximation, which is based on the selection of a reaction coordinate and the variational formulation of the reaction probability problem. The numerically approximated reaction probability is shown by computer experiments to give a factor-of-two speedup over the use of a purely heuristic approximation. Also, the fully developed method is compared to unbiased Brownian dynamics. The tests for human superoxide dismutase, Escherichia coli superoxide dismutase, and antisweetener antibody NC6.8, show speedups of 17, 35, and 39, respectively. The test for reactions between two model proteins with orientations shows speedups of 2578 for one set of configurations and 3341 for another set of configurations. PMID:14507681

  20. Pulse Generator Exchange Does Not Accelerate the Rate of Electrical Failure in a Recalled Small Caliber ICD Lead.

    PubMed

    Lovelock, Joshua D; Premkumar, Ajay; Levy, Mathew R; Mengistu, Andenet; Hoskins, Michael H; El-Chami, Mikhael F; Lloyd, Michael S; Leon, Angel R; Langberg, Jonathan J; Delurgio, David B

    2015-12-01

    St. Jude Riata/Riata ST defibrillator leads (St. Jude Medical, Sylmar, CA, USA) were recalled by the Food and Drug Administration in 2011 for an increased rate of failure. More than 227,000 leads were implanted and at least 79,000 patients still have active Riata leads. Studies have examined clinical predictors of lead failure in Riata leads, but none have addressed the effect of implantable cardioverter defibrillator (ICD) generator exchange on lead failure. The purpose of this study is to assess the effect of ICD generator exchange on the rate of electrical failure in the Riata lead at 1 year. A retrospective chart review was conducted in patients who underwent implantation of a Riata/Riata ST lead at one center. Patients with a functioning Riata lead (with/without externalized conductor) at the time of ICD exchange were compared to controls with Riata leads implanted for a comparable amount of time who did not undergo generator replacement. Riata leads were implanted in 1,042 patients prior to the recall and 153 of these patients underwent generator exchange without lead replacement. Conductor externalization was noted in 21.5% of Riata leads in the ICD exchange cohort, which was not different from the control group (19.2%; P = 0.32). Two leads failed in the first year after generator replacement (1.5%) which did not significantly differ from the control group (2.0%; P = 0.57). At change-out, 54% received a commanded shock (18.6 ± 0.9 J) that did not result in any change in the high-voltage lead impedance (46.1 ± 1.1 ohms). Conductor externalization was seen frequently in our cohort of patients. ICD generator exchange did not accelerate the rate of Riata lead failure at 1 year. Although both the control and the change-out cohorts failed at a rate much greater than nonrecalled leads, generator exchange did not appear to add to the problem. ©2015 Wiley Periodicals, Inc.