Macroscopic and microscopic components of exchange-correlation interactions
NASA Astrophysics Data System (ADS)
Sottile, F.; Karlsson, K.; Reining, L.; Aryasetiawan, F.
2003-11-01
We consider two commonly used approaches for the ab initio calculation of optical-absorption spectra, namely, many-body perturbation theory based on Green’s functions and time-dependent density-functional theory (TDDFT). The former leads to the two-particle Bethe-Salpeter equation that contains a screened electron-hole interaction. We approximate this interaction in various ways, and discuss in particular the results obtained for a local contact potential. This, in fact, allows us to straightforwardly make the link to the TDDFT approach, and to discuss the exchange-correlation kernel fxc that corresponds to the contact exciton. Our main results, illustrated in the examples of bulk silicon, GaAs, argon, and LiF, are the following. (i) The simple contact exciton model, used on top of an ab initio calculated band structure, yields reasonable absorption spectra. (ii) Qualitatively extremely different fxc can be derived approximatively from the same Bethe-Salpeter equation. These kernels can however yield very similar spectra. (iii) A static fxc, both with or without a long-range component, can create transitions in the quasiparticle gap. To the best of our knowledge, this is the first time that TDDFT has been shown to be able to reproduce bound excitons.
NASA Astrophysics Data System (ADS)
Gritsenko, O. V.; van Gisbergen, S. J. A.; Görling, A.; Baerends, E. J.
2000-11-01
Time-dependent density functional theory (TDDFT) is applied for calculation of the excitation energies of the dissociating H2 molecule. The standard TDDFT method of adiabatic local density approximation (ALDA) totally fails to reproduce the potential curve for the lowest excited singlet 1Σu+ state of H2. Analysis of the eigenvalue problem for the excitation energies as well as direct derivation of the exchange-correlation (xc) kernel fxc(r,r',ω) shows that ALDA fails due to breakdown of its simple spatially local approximation for the kernel. The analysis indicates a complex structure of the function fxc(r,r',ω), which is revealed in a different behavior of the various matrix elements K1c,1cxc (between the highest occupied Kohn-Sham molecular orbital ψ1 and virtual MOs ψc) as a function of the bond distance R(H-H). The effect of nonlocality of fxc(r,r') is modeled by using different expressions for the corresponding matrix elements of different orbitals. Asymptotically corrected ALDA (ALDA-AC) expressions for the matrix elements K12,12xc(στ) are proposed, while for other matrix elements the standard ALDA expressions are retained. This approach provides substantial improvement over the standard ALDA. In particular, the ALDA-AC curve for the lowest singlet excitation qualitatively reproduces the shape of the exact curve. It displays a minimum and approaches a relatively large positive energy at large R(H-H). ALDA-AC also produces a substantial improvement for the calculated lowest triplet excitation, which is known to suffer from the triplet instability problem of the restricted KS ground state. Failure of the ALDA for the excitation energies is related to the failure of the local density as well as generalized gradient approximations to reproduce correctly the polarizability of dissociating H2. The expression for the response function χ is derived to show the origin of the field-counteracting term in the xc potential, which is lacking in the local density and generalized gradient approximations and which is required to obtain a correct polarizability.
Hafeman, Danella; Bebko, Genna; Bertocci, Michele A; Fournier, Jay C; Chase, Henry W; Bonar, Lisa; Perlman, Susan B; Travis, Michael; Gill, Mary Kay; Diwadkar, Vaibhav A; Sunshine, Jeffrey L; Holland, Scott K; Kowatch, Robert A; Birmaher, Boris; Axelson, David; Horwitz, Sarah M; Arnold, L Eugene; Fristad, Mary A; Frazier, Thomas W; Youngstrom, Eric A; Findling, Robert L; Phillips, Mary L
2017-01-15
Both bipolar spectrum disorders (BPSD) and attention deficit hyperactivity disorder (ADHD) present with emotion-regulation deficits, but require different clinical management. We examined how the neurobiological underpinnings of emotion regulation might differentiate youth with BPSD versus ADHD (and healthy controls, HCs), specifically assessing functional connectivity (FxC) of amygdala-prefrontal circuitry during an implicit emotion processing task. We scanned a subset of the Longitudinal Assessment of Manic Symptoms (LAMS) sample, a clinically recruited cohort with elevated behavioral and emotional dysregulation, and age/sex-ratio matched HCs. Our sample consisted of 22 youth with BPSD, 30 youth with ADHD/no BPSD, and 26 HCs. We used generalized psychophysiological interaction (gPPI) to calculate group differences to emerging emotional faces vs. morphing shapes in FxC between bilateral amygdala and ventral prefrontal cortex/anterior cingulate cortex. FxC between amygdala and left ventrolateral prefrontal cortex (VLPFC) in response to emotions vs. shapes differed by group (p=.05): while BPSD showed positive FxC (emotions>shapes), HC and ADHD showed inverse FxC (emotions
Spin-resolved correlations in the warm-dense homogeneous electron gas
NASA Astrophysics Data System (ADS)
Arora, Priya; Kumar, Krishan; Moudgil, R. K.
2017-04-01
We have studied spin-resolved correlations in the warm-dense homogeneous electron gas by determining the linear density and spin-density response functions, within the dynamical self-consistent mean-field theory of Singwi et al. The calculated spin-resolved pair-correlation function gσσ'(r) is compared with the recent restricted path-integral Monte Carlo (RPIMC) simulations due to Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)], while interaction energy Eint and exchange-correlation free energy Fxc with the RPIMC and very recent ab initio quantum Monte Carlo (QMC) simulations by Dornheim et al. [Phys. Rev. Lett. 117, 156403 (2016)]. g↑↓(r) is found to be in good agreement with the RPIMC data, while a mismatch is seen in g↑↑(r) at small r where it becomes somewhat negative. As an interesting result, it is deduced that a non-monotonic T-dependence of g(0) is driven primarily by g↑↓(0). Our results of Eint and Fxc exhibit an excellent agreement with the QMC study due to Dornheim et al., which deals with the finite-size correction quite accurately. We observe, however, a visible deviation of Eint from the RPIMC data for high densities ( 8% at rs = 1). Further, we have extended our study to the fully spin-polarized phase. Again, with the exception of high density region, we find a good agreement of Eint with the RPIMC data. This points to the need of settling the problem of finite-size correction in the spin-polarized phase also. Interestingly, we also find that the thermal effects tend to oppose spatial localization as well as spin polarization of electrons. Supplementary material in the form of one zip file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-70532-y
Lu, Deyu
2016-08-05
A systematic route to go beyond the exact exchange plus random phase approximation (RPA) is to include a physical exchange-correlation kernel in the adiabatic-connection fluctuation-dissipation theorem. Previously, [D. Lu, J. Chem. Phys. 140, 18A520 (2014)], we found that non-local kernels with a screening length depending on the local Wigner-Seitz radius, r s(r), suffer an error associated with a spurious long-range repulsion in van der Waals bounded systems, which deteriorates the binding energy curve as compared to RPA. Here, we analyze the source of the error and propose to replace r s(r) by a global, average r s in the kernel.more » Exemplary studies with the Corradini, del Sole, Onida, and Palummo kernel show that while this change does not affect the already outstanding performance in crystalline solids, using an average r s significantly reduces the spurious long-range tail in the exchange-correlation kernel in van der Waals bounded systems. Finally, when this method is combined with further corrections using local dielectric response theory, the binding energy of the Kr dimer is improved three times as compared to RPA.« less
Active Control Technique Evaluation for Spacecraft (ACES)
1988-06-16
spare Voyager Astromast built by ASTRO Research, Inc. It was supplied to MSFC by the Jet Propulsion Laboratory (JPL). The Astromast is extremely...assuming full controlled state availability, is u = - FXc . The control law designed via the modified control weighting matrix deserves comment...minimizes J has the form u(k) = - FXc (k) and can be found via standard software for solving the discrete algebraic Riccati
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Deyu
A systematic route to go beyond the exact exchange plus random phase approximation (RPA) is to include a physical exchange-correlation kernel in the adiabatic-connection fluctuation-dissipation theorem. Previously, [D. Lu, J. Chem. Phys. 140, 18A520 (2014)], we found that non-local kernels with a screening length depending on the local Wigner-Seitz radius, r s(r), suffer an error associated with a spurious long-range repulsion in van der Waals bounded systems, which deteriorates the binding energy curve as compared to RPA. Here, we analyze the source of the error and propose to replace r s(r) by a global, average r s in the kernel.more » Exemplary studies with the Corradini, del Sole, Onida, and Palummo kernel show that while this change does not affect the already outstanding performance in crystalline solids, using an average r s significantly reduces the spurious long-range tail in the exchange-correlation kernel in van der Waals bounded systems. Finally, when this method is combined with further corrections using local dielectric response theory, the binding energy of the Kr dimer is improved three times as compared to RPA.« less
NASA Astrophysics Data System (ADS)
Bates, Jefferson; Laricchia, Savio; Ruzsinszky, Adrienn
The Random Phase Approximation (RPA) is quickly becoming a standard method beyond semi-local Density Functional Theory that naturally incorporates weak interactions and eliminates self-interaction error. RPA is not perfect, however, and suffers from self-correlation error as well as an incorrect description of short-ranged correlation typically leading to underbinding. To improve upon RPA we introduce a short-ranged, exchange-like kernel that is one-electron self-correlation free for one and two electron systems in the high-density limit. By tuning the one free parameter in our model to recover an exact limit of the homogeneous electron gas correlation energy we obtain a non-local, energy-optimized kernel that reduces the errors of RPA for both homogeneous and inhomogeneous solids. To reduce the computational cost of the standard kernel-corrected RPA, we also implement RPA renormalized perturbation theory for extended systems, and demonstrate its capability to describe the dominant correlation effects with a low-order expansion in both metallic and non-metallic systems. Furthermore we stress that for norm-conserving implementations the accuracy of RPA and beyond RPA structural properties compared to experiment is inherently limited by the choice of pseudopotential. Current affiliation: King's College London.
Convergence behavior of the random phase approximation renormalized correlation energy
NASA Astrophysics Data System (ADS)
Bates, Jefferson E.; Sensenig, Jonathon; Ruzsinszky, Adrienn
2017-05-01
Based on the random phase approximation (RPA), RPA renormalization [J. E. Bates and F. Furche, J. Chem. Phys. 139, 171103 (2013), 10.1063/1.4827254] is a robust many-body perturbation theory that works for molecules and materials because it does not diverge as the Kohn-Sham gap approaches zero. Additionally, RPA renormalization enables the simultaneous calculation of RPA and beyond-RPA correlation energies since the total correlation energy is the sum of a series of independent contributions. The first-order approximation (RPAr1) yields the dominant beyond-RPA contribution to the correlation energy for a given exchange-correlation kernel, but systematically underestimates the total beyond-RPA correction. For both the homogeneous electron gas model and real systems, we demonstrate numerically that RPA renormalization beyond first order converges monotonically to the infinite-order beyond-RPA correlation energy for several model exchange-correlation kernels and that the rate of convergence is principally determined by the choice of the kernel and spin polarization of the ground state. The monotonic convergence is rationalized from an analysis of the RPA renormalized correlation energy corrections, assuming the exchange-correlation kernel and response functions satisfy some reasonable conditions. For spin-unpolarized atoms, molecules, and bulk solids, we find that RPA renormalization is typically converged to 1 meV error or less by fourth order regardless of the band gap or dimensionality. Most spin-polarized systems converge at a slightly slower rate, with errors on the order of 10 meV at fourth order and typically requiring up to sixth order to reach 1 meV error or less. Slowest to converge, however, open-shell atoms present the most challenging case and require many higher orders to converge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron
We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.
Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron
2016-06-08
We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.
Hesselmann, Andreas; Görling, Andreas
2011-01-21
A recently introduced time-dependent exact-exchange (TDEXX) method, i.e., a response method based on time-dependent density-functional theory that treats the frequency-dependent exchange kernel exactly, is reformulated. In the reformulated version of the TDEXX method electronic excitation energies can be calculated by solving a linear generalized eigenvalue problem while in the original version of the TDEXX method a laborious frequency iteration is required in the calculation of each excitation energy. The lowest eigenvalues of the new TDEXX eigenvalue equation corresponding to the lowest excitation energies can be efficiently obtained by, e.g., a version of the Davidson algorithm appropriate for generalized eigenvalue problems. Alternatively, with the help of a series expansion of the new TDEXX eigenvalue equation, standard eigensolvers for large regular eigenvalue problems, e.g., the standard Davidson algorithm, can be used to efficiently calculate the lowest excitation energies. With the help of the series expansion as well, the relation between the TDEXX method and time-dependent Hartree-Fock is analyzed. Several ways to take into account correlation in addition to the exact treatment of exchange in the TDEXX method are discussed, e.g., a scaling of the Kohn-Sham eigenvalues, the inclusion of (semi)local approximate correlation potentials, or hybrids of the exact-exchange kernel with kernels within the adiabatic local density approximation. The lowest lying excitations of the molecules ethylene, acetaldehyde, and pyridine are considered as examples.
Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webster, R., E-mail: ross.webster07@imperial.ac.uk; Harrison, N. M.; Bernasconi, L.
2015-06-07
We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features ofmore » the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green’s function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional c{sub HF} and show that there exists one value of c{sub HF} (∼0.32) that reproduces at least semi-quantitatively the optical gap of this material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick, Christopher E., E-mail: chripa@fysik.dtu.dk; Thygesen, Kristian S., E-mail: thygesen@fysik.dtu.dk
2015-09-14
We present calculations of the correlation energies of crystalline solids and isolated systems within the adiabatic-connection fluctuation-dissipation formulation of density-functional theory. We perform a quantitative comparison of a set of model exchange-correlation kernels originally derived for the homogeneous electron gas (HEG), including the recently introduced renormalized adiabatic local-density approximation (rALDA) and also kernels which (a) satisfy known exact limits of the HEG, (b) carry a frequency dependence, or (c) display a 1/k{sup 2} divergence for small wavevectors. After generalizing the kernels to inhomogeneous systems through a reciprocal-space averaging procedure, we calculate the lattice constants and bulk moduli of a testmore » set of 10 solids consisting of tetrahedrally bonded semiconductors (C, Si, SiC), ionic compounds (MgO, LiCl, LiF), and metals (Al, Na, Cu, Pd). We also consider the atomization energy of the H{sub 2} molecule. We compare the results calculated with different kernels to those obtained from the random-phase approximation (RPA) and to experimental measurements. We demonstrate that the model kernels correct the RPA’s tendency to overestimate the magnitude of the correlation energy whilst maintaining a high-accuracy description of structural properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bleiziffer, Patrick, E-mail: patrick.bleiziffer@fau.de; Krug, Marcel; Görling, Andreas
A self-consistent Kohn-Sham method based on the adiabatic-connection fluctuation-dissipation (ACFD) theorem, employing the frequency-dependent exact exchange kernel f{sub x} is presented. The resulting SC-exact-exchange-only (EXX)-ACFD method leads to even more accurate correlation potentials than those obtained within the direct random phase approximation (dRPA). In contrast to dRPA methods, not only the Coulomb kernel but also the exact exchange kernel f{sub x} is taken into account in the EXX-ACFD correlation which results in a method that, unlike dRPA methods, is free of self-correlations, i.e., a method that treats exactly all one-electron systems, like, e.g., the hydrogen atom. The self-consistent evaluation ofmore » EXX-ACFD total energies improves the accuracy compared to EXX-ACFD total energies evaluated non-self-consistently with EXX or dRPA orbitals and eigenvalues. Reaction energies of a set of small molecules, for which highly accurate experimental reference data are available, are calculated and compared to quantum chemistry methods like Møller-Plesset perturbation theory of second order (MP2) or coupled cluster methods [CCSD, coupled cluster singles, doubles, and perturbative triples (CCSD(T))]. Moreover, we compare our methods to other ACFD variants like dRPA combined with perturbative corrections such as the second order screened exchange corrections or a renormalized singles correction. Similarly, the performance of our EXX-ACFD methods is investigated for the non-covalently bonded dimers of the S22 reference set and for potential energy curves of noble gas, water, and benzene dimers. The computational effort of the SC-EXX-ACFD method exhibits the same scaling of N{sup 5} with respect to the system size N as the non-self-consistent evaluation of only the EXX-ACFD correlation energy; however, the prefactor increases significantly. Reaction energies from the SC-EXX-ACFD method deviate quite little from EXX-ACFD energies obtained non-self-consistently with dRPA orbitals and eigenvalues, and the deviation reduces even further if the Coulomb kernel is scaled by a factor of 0.75 in the dRPA to reduce self-correlations in the dRPA correlation potential. For larger systems, such a non-self-consistent EXX-ACFD method is a competitive alternative to high-level wave-function-based methods, yielding higher accuracy than MP2 and CCSD methods while exhibiting a better scaling of the computational effort than CCSD or CCSD(T) methods. Moreover, EXX-ACFD methods were shown to be applicable in situation characterized by static correlation.« less
Bayne, Michael G; Scher, Jeremy A; Ellis, Benjamin H; Chakraborty, Arindam
2018-05-21
Electron-hole or quasiparticle representation plays a central role in describing electronic excitations in many-electron systems. For charge-neutral excitation, the electron-hole interaction kernel is the quantity of interest for calculating important excitation properties such as optical gap, optical spectra, electron-hole recombination and electron-hole binding energies. The electron-hole interaction kernel can be formally derived from the density-density correlation function using both Green's function and TDDFT formalism. The accurate determination of the electron-hole interaction kernel remains a significant challenge for precise calculations of optical properties in the GW+BSE formalism. From the TDDFT perspective, the electron-hole interaction kernel has been viewed as a path to systematic development of frequency-dependent exchange-correlation functionals. Traditional approaches, such as MBPT formalism, use unoccupied states (which are defined with respect to Fermi vacuum) to construct the electron-hole interaction kernel. However, the inclusion of unoccupied states has long been recognized as the leading computational bottleneck that limits the application of this approach for larger finite systems. In this work, an alternative derivation that avoids using unoccupied states to construct the electron-hole interaction kernel is presented. The central idea of this approach is to use explicitly correlated geminal functions for treating electron-electron correlation for both ground and excited state wave functions. Using this ansatz, it is derived using both diagrammatic and algebraic techniques that the electron-hole interaction kernel can be expressed only in terms of linked closed-loop diagrams. It is proved that the cancellation of unlinked diagrams is a consequence of linked-cluster theorem in real-space representation. The electron-hole interaction kernel derived in this work was used to calculate excitation energies in many-electron systems and results were found to be in good agreement with the EOM-CCSD and GW+BSE methods. The numerical results highlight the effectiveness of the developed method for overcoming the computational barrier of accurately determining the electron-hole interaction kernel to applications of large finite systems such as quantum dots and nanorods.
Bleiziffer, Patrick; Schmidtel, Daniel; Görling, Andreas
2014-11-28
The occurrence of instabilities, in particular singlet-triplet and singlet-singlet instabilities, in the exact-exchange (EXX) Kohn-Sham method is investigated. Hessian matrices of the EXX electronic energy with respect to the expansion coefficients of the EXX effective Kohn-Sham potential in an auxiliary basis set are derived. The eigenvalues of these Hessian matrices determine whether or not instabilities are present. Similar as in the corresponding Hartree-Fock case instabilities in the EXX method are related to symmetry breaking of the Hamiltonian operator for the EXX orbitals. In the EXX methods symmetry breaking can easily be visualized by displaying the local multiplicative exchange potential. Examples (N2, O2, and the polyyne C10H2) for instabilities and symmetry breaking are discussed. The relation of the stability conditions for EXX methods to approaches calculating the Kohn-Sham correlation energy via the adiabatic-connection fluctuation-dissipation (ACFD) theorem is discussed. The existence or nonexistence of singlet-singlet instabilities in an EXX calculation is shown to indicate whether or not the frequency-integration in the evaluation of the correlation energy is singular in the EXX-ACFD method. This method calculates the Kohn-Sham correlation energy through the ACFD theorem theorem employing besides the Coulomb kernel also the full frequency-dependent exchange kernel and yields highly accurate electronic energies. For the case of singular frequency-integrands in the EXX-ACFD method a regularization is suggested. Finally, we present examples of molecular systems for which the self-consistent field procedure of the EXX as well as the Hartree-Fock method can converge to more than one local minimum depending on the initial conditions.
Mathematical theory of exchange-driven growth
NASA Astrophysics Data System (ADS)
Esenturk, Emre
2018-07-01
Exchange-driven growth is a process in which pairs of clusters interact by exchanging single unit of mass at a time. The rate of exchange is given by an interaction kernel which depends on the masses of the two interacting clusters. In this paper we establish the fundamental mathematical properties of the mean field rate equations of this process for the first time. We find two different classes of behavior depending on whether is symmetric or not. For the non-symmetric case, we prove global existence and uniqueness of solutions for kernels satisfying . This result is optimal in the sense that we show for a large class of initial conditions and kernels satisfying the solutions cannot exist. On the other hand, for symmetric kernels, we prove global existence of solutions for ( while existence is lost for ( In the intermediate regime we can only show local existence. We conjecture that the intermediate regime exhibits finite-time gelation in accordance with the heuristic results obtained for particular kernels.
EMP Design Guidelines for Naval Ship Systems
1975-08-22
le xc Ci .ube irret i Type FXC it LA 38 Beads 4 * 1 svj- I * 1 1 \\ Measured 3( )0 Beads V i i V 30 Bead 1 s...ATTN: R. W. Rostrom RCA Corporation Government & Commercial Systems Astro Electronics Division P. 0. Box 800 Princeton, New Jersey 08540 ATTN
Modelling and Analysis Capabilities for Lightweight Masts
2001-02-01
manufactured by Astro Aerospace Corporation in Carpinteria, California for NASA’s Johnson Space Center in Houston. The mast structure was a 750 mm...step iii. Design Parameters • Design variables Moduli: E11, E22, E33, G12, G23, G13, , ជ, Strengths: FXT, FXC , FYT, FYC, FZT, FZC, FXY
1952-03-01
to which astro - nomical latitudes and longitudes are referred. Moreover, the direction in space of the axis has a physical reality and maV be used for...product, or mixed product, or box product of three vectors i, U, E is the scalar V -i Bi~ F- iXiU.E - ’Exg . B - FXc i a- =1. .X F- F.x = .cx5 (EI-1) Z
Heßelmann, Andreas
2015-04-14
Molecular excitation energies have been calculated with time-dependent density-functional theory (TDDFT) using random-phase approximation Hessians augmented with exact exchange contributions in various orders. It has been observed that this approach yields fairly accurate local valence excitations if combined with accurate asymptotically corrected exchange-correlation potentials used in the ground-state Kohn-Sham calculations. The inclusion of long-range particle-particle with hole-hole interactions in the kernel leads to errors of 0.14 eV only for the lowest excitations of a selection of three alkene, three carbonyl, and five azabenzene molecules, thus surpassing the accuracy of a number of common TDDFT and even some wave function correlation methods. In the case of long-range charge-transfer excitations, the method typically underestimates accurate reference excitation energies by 8% on average, which is better than with standard hybrid-GGA functionals but worse compared to range-separated functional approximations.
NASA Astrophysics Data System (ADS)
Nepal, Niraj K.; Ruzsinszky, Adrienn; Bates, Jefferson E.
2018-03-01
The ground state structural and energetic properties for rocksalt and cesium chloride phases of the cesium halides were explored using the random phase approximation (RPA) and beyond-RPA methods to benchmark the nonempirical SCAN meta-GGA and its empirical dispersion corrections. The importance of nonadditivity and higher-order multipole moments of dispersion in these systems is discussed. RPA generally predicts the equilibrium volume for these halides within 2.4% of the experimental value, while beyond-RPA methods utilizing the renormalized adiabatic LDA (rALDA) exchange-correlation kernel are typically within 1.8%. The zero-point vibrational energy is small and shows that the stability of these halides is purely due to electronic correlation effects. The rAPBE kernel as a correction to RPA overestimates the equilibrium volume and could not predict the correct phase ordering in the case of cesium chloride, while the rALDA kernel consistently predicted results in agreement with the experiment for all of the halides. However, due to its reasonable accuracy with lower computational cost, SCAN+rVV10 proved to be a good alternative to the RPA-like methods for describing the properties of these ionic solids.
NASA Astrophysics Data System (ADS)
Badalyan, S. M.; Kim, C. S.; Vignale, G.; Senatore, G.
2007-03-01
We investigate the effect of exchange and correlation (XC) on the plasmon spectrum and the Coulomb drag between spatially separated low-density two-dimensional electron layers. We adopt a different approach, which employs dynamic XC kernels in the calculation of the bilayer plasmon spectra and of the plasmon-mediated drag, and static many-body local field factors in the calculation of the particle-hole contribution to the drag. The spectrum of bilayer plasmons and the drag resistivity are calculated in a broad range of temperatures taking into account both intra- and interlayer correlation effects. We observe that both plasmon modes are strongly affected by XC corrections. After the inclusion of the complex dynamic XC kernels, a decrease of the electron density induces shifts of the plasmon branches in opposite directions. This is in stark contrast with the tendency observed within random phase approximation that both optical and acoustical plasmons move away from the boundary of the particle-hole continuum with a decrease in the electron density. We find that the introduction of XC corrections results in a significant enhancement of the transresistivity and qualitative changes in its temperature dependence. In particular, the large high-temperature plasmon peak that is present in the random phase approximation is found to disappear when the XC corrections are included. Our numerical results at low temperatures are in good agreement with the results of recent experiments by Kellogg [Solid State Commun. 123, 515 (2002)].
NASA Astrophysics Data System (ADS)
Hellgren, Maria; Gross, E. K. U.
2013-11-01
We present a detailed study of the exact-exchange (EXX) kernel of time-dependent density-functional theory with an emphasis on its discontinuity at integer particle numbers. It was recently found that this exact property leads to sharp peaks and step features in the kernel that diverge in the dissociation limit of diatomic systems [Hellgren and Gross, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.85.022514 85, 022514 (2012)]. To further analyze the discontinuity of the kernel, we here make use of two different approximations to the EXX kernel: the Petersilka Gossmann Gross (PGG) approximation and a common energy denominator approximation (CEDA). It is demonstrated that whereas the PGG approximation neglects the discontinuity, the CEDA includes it explicitly. By studying model molecular systems it is shown that the so-called field-counteracting effect in the density-functional description of molecular chains can be viewed in terms of the discontinuity of the static kernel. The role of the frequency dependence is also investigated, highlighting its importance for long-range charge-transfer excitations as well as inner-shell excitations.
Kernel-Correlated Levy Field Driven Forward Rate and Application to Derivative Pricing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bo Lijun; Wang Yongjin; Yang Xuewei, E-mail: xwyangnk@yahoo.com.cn
2013-08-01
We propose a term structure of forward rates driven by a kernel-correlated Levy random field under the HJM framework. The kernel-correlated Levy random field is composed of a kernel-correlated Gaussian random field and a centered Poisson random measure. We shall give a criterion to preclude arbitrage under the risk-neutral pricing measure. As applications, an interest rate derivative with general payoff functional is priced under this pricing measure.
Kernel-aligned multi-view canonical correlation analysis for image recognition
NASA Astrophysics Data System (ADS)
Su, Shuzhi; Ge, Hongwei; Yuan, Yun-Hao
2016-09-01
Existing kernel-based correlation analysis methods mainly adopt a single kernel in each view. However, only a single kernel is usually insufficient to characterize nonlinear distribution information of a view. To solve the problem, we transform each original feature vector into a 2-dimensional feature matrix by means of kernel alignment, and then propose a novel kernel-aligned multi-view canonical correlation analysis (KAMCCA) method on the basis of the feature matrices. Our proposed method can simultaneously employ multiple kernels to better capture the nonlinear distribution information of each view, so that correlation features learned by KAMCCA can have well discriminating power in real-world image recognition. Extensive experiments are designed on five real-world image datasets, including NIR face images, thermal face images, visible face images, handwritten digit images, and object images. Promising experimental results on the datasets have manifested the effectiveness of our proposed method.
Efficient calculation of beyond RPA correlation energies in the dielectric matrix formalism
NASA Astrophysics Data System (ADS)
Beuerle, Matthias; Graf, Daniel; Schurkus, Henry F.; Ochsenfeld, Christian
2018-05-01
We present efficient methods to calculate beyond random phase approximation (RPA) correlation energies for molecular systems with up to 500 atoms. To reduce the computational cost, we employ the resolution-of-the-identity and a double-Laplace transform of the non-interacting polarization propagator in conjunction with an atomic orbital formalism. Further improvements are achieved using integral screening and the introduction of Cholesky decomposed densities. Our methods are applicable to the dielectric matrix formalism of RPA including second-order screened exchange (RPA-SOSEX), the RPA electron-hole time-dependent Hartree-Fock (RPA-eh-TDHF) approximation, and RPA renormalized perturbation theory using an approximate exchange kernel (RPA-AXK). We give an application of our methodology by presenting RPA-SOSEX benchmark results for the L7 test set of large, dispersion dominated molecules, yielding a mean absolute error below 1 kcal/mol. The present work enables calculating beyond RPA correlation energies for significantly larger molecules than possible to date, thereby extending the applicability of these methods to a wider range of chemical systems.
Influence of wheat kernel physical properties on the pulverizing process.
Dziki, Dariusz; Cacak-Pietrzak, Grażyna; Miś, Antoni; Jończyk, Krzysztof; Gawlik-Dziki, Urszula
2014-10-01
The physical properties of wheat kernel were determined and related to pulverizing performance by correlation analysis. Nineteen samples of wheat cultivars about similar level of protein content (11.2-12.8 % w.b.) and obtained from organic farming system were used for analysis. The kernel (moisture content 10 % w.b.) was pulverized by using the laboratory hammer mill equipped with round holes 1.0 mm screen. The specific grinding energy ranged from 120 kJkg(-1) to 159 kJkg(-1). On the basis of data obtained many of significant correlations (p < 0.05) were found between wheat kernel physical properties and pulverizing process of wheat kernel, especially wheat kernel hardness index (obtained on the basis of Single Kernel Characterization System) and vitreousness significantly and positively correlated with the grinding energy indices and the mass fraction of coarse particles (> 0.5 mm). Among the kernel mechanical properties determined on the basis of uniaxial compression test only the rapture force was correlated with the impact grinding results. The results showed also positive and significant relationships between kernel ash content and grinding energy requirements. On the basis of wheat physical properties the multiple linear regression was proposed for predicting the average particle size of pulverized kernel.
NASA Astrophysics Data System (ADS)
Panholzer, Martin; Gatti, Matteo; Reining, Lucia
2018-04-01
The charge-density response of extended materials is usually dominated by the collective oscillation of electrons, the plasmons. Beyond this feature, however, intriguing many-body effects are observed. They cannot be described by one of the most widely used approaches for the calculation of dielectric functions, which is time-dependent density functional theory (TDDFT) in the adiabatic local density approximation (ALDA). Here, we propose an approximation to the TDDFT exchange-correlation kernel which is nonadiabatic and nonlocal. It is extracted from correlated calculations in the homogeneous electron gas, where we have tabulated it for a wide range of wave vectors and frequencies. A simple mean density approximation allows one to use it in inhomogeneous materials where the density varies on a scale of 1.6 rs or faster. This kernel contains effects that are completely absent in the ALDA; in particular, it correctly describes the double plasmon in the dynamic structure factor of sodium, and it shows the characteristic low-energy peak that appears in systems with low electronic density. It also leads to an overall quantitative improvement of spectra.
Panholzer, Martin; Gatti, Matteo; Reining, Lucia
2018-04-20
The charge-density response of extended materials is usually dominated by the collective oscillation of electrons, the plasmons. Beyond this feature, however, intriguing many-body effects are observed. They cannot be described by one of the most widely used approaches for the calculation of dielectric functions, which is time-dependent density functional theory (TDDFT) in the adiabatic local density approximation (ALDA). Here, we propose an approximation to the TDDFT exchange-correlation kernel which is nonadiabatic and nonlocal. It is extracted from correlated calculations in the homogeneous electron gas, where we have tabulated it for a wide range of wave vectors and frequencies. A simple mean density approximation allows one to use it in inhomogeneous materials where the density varies on a scale of 1.6 r_{s} or faster. This kernel contains effects that are completely absent in the ALDA; in particular, it correctly describes the double plasmon in the dynamic structure factor of sodium, and it shows the characteristic low-energy peak that appears in systems with low electronic density. It also leads to an overall quantitative improvement of spectra.
Structured Kernel Dictionary Learning with Correlation Constraint for Object Recognition.
Wang, Zhengjue; Wang, Yinghua; Liu, Hongwei; Zhang, Hao
2017-06-21
In this paper, we propose a new discriminative non-linear dictionary learning approach, called correlation constrained structured kernel KSVD, for object recognition. The objective function for dictionary learning contains a reconstructive term and a discriminative term. In the reconstructive term, signals are implicitly non-linearly mapped into a space, where a structured kernel dictionary, each sub-dictionary of which lies in the span of the mapped signals from the corresponding class, is established. In the discriminative term, by analyzing the classification mechanism, the correlation constraint is proposed in kernel form, constraining the correlations between different discriminative codes, and restricting the coefficient vectors to be transformed into a feature space, where the features are highly correlated inner-class and nearly independent between-classes. The objective function is optimized by the proposed structured kernel KSVD. During the classification stage, the specific form of the discriminative feature is needless to be known, while the inner product of the discriminative feature with kernel matrix embedded is available, and is suitable for a linear SVM classifier. Experimental results demonstrate that the proposed approach outperforms many state-of-the-art dictionary learning approaches for face, scene and synthetic aperture radar (SAR) vehicle target recognition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, II, Barry; Schrader, Robert L.; Kowalski, Karol
The longest-wavelength π-to-π* electronic excitations of rhodamine-like dyes (RDs) with different group16 heteroatoms (O, S, Se, Te) have been investigated. Time-dependent Kohn–Sham theory (TDKST) calculations were compared with coupled-cluster (CC) and equations-of-motion (EOM) CC results for π-to-π* singlet and triplet excitations. The RDs exhibit characteristics in the TDKST calculations that are very similar to previously investigated cyanine dyes, in the sense that the singlet energies obtained with nonhybrid functionals are too high compared with the CC results at the SD(T) level. The errors became increasingly larger for functionals with increasing amounts of exact exchange. TDKST with all tested functionals ledmore » to severe underestimations of the corresponding triplet excitations and overestimations of the singlet--triplet gaps. Long-range-corrected range-separated exchange and "optimal tuning" of the range separation parameter did not significantly improve the TDKST results. A detailed analysis suggests that the problem is differential electron correlation between the ground and excited states, which is not treated sufficiently by the relatively small integrals over the exchange-correlation response kernel that enters the excitation energy expression. As a result, numerical criteria are suggested that may help identify "cyanine-like" problems in TDKST calculations of excitation spectra.« less
Romero, Pascual; Navarro, Josefa Maria; García, Francisco; Botía Ordaz, Pablo
2004-03-01
We investigated the effects of regulated deficit irrigation (RDI) during the pre-harvest period (kernel-filling stage) on water relations, leaf development and crop yield in mature almond (Prunus dulcis (Mill.) D.A. Webb cv. Cartagenera) trees during a 2-year field experiment. Trees were either irrigated at full-crop evapotranspiration (ETc=100%) (well-irrigated control treatment) or subjected to an RDI treatment that consisted of full irrigation for the full season, except from early June to early August (kernel-filling stage), when 20% ETc was applied. The severity of water stress was characterized by measurements of soil water content, predawn leaf water potential (Psipd) and relative water content (RWC). Stomatal conductance (gs), net CO2 assimilation rate (A), transpiration rate (E), leaf abscission, leaf expansion rate and crop yield were also measured. In both years, Psipd and RWC of well-irrigated trees were maintained above -1.0 MPa and 92%, respectively, whereas the corresponding values for trees in the RDI treatment were -2.37 MPa and 82%. Long-term water stress led to a progressive decline in gs, A and E, with significant reductions after 21 days in the RDI treatment. At the time of maximum stress (48 days after commencement of RDI), A, gs and E were 64, 67 and 56% lower than control values, respectively. High correlations between A, E and gs were observed. Plant water status recovered within 15 days after the resumption of irrigation and was associated with recovery of soil water content. A relatively rapid and complete recovery of A and gs was also observed, although the recovery was slower than for Psipd and RWC. Severe water stress during the kernel-filling stage resulted in premature defoliation (caused by increased leaf abscission) and a reduction in leaf growth rate, which decreased tree leaf area. Although kernel yield was correlated with leaf water potential, RDI caused a nonsignificant 7% reduction in kernel yield and had no effect on kernel size. The RDI treatment also improved water-use efficiency because about 30% less irrigation water was applied in the RDI treatment than in the control treatment. We conclude that high-cropping almonds can be successfully grown in semiarid regions in an RDI regime provided that Psipd is maintained above a threshold value of -2 MPa.
Moore, S M; Stalder, K J; Beitz, D C; Stahl, C H; Fithian, W A; Bregendahl, K
2008-04-01
A study was conducted to determine the influence on broiler chicken growth and laying hen performance of chemical and physical traits of corn kernels from different hybrids. A total of 720 male 1-d-old Ross-308 broiler chicks were allotted to floor pens in 2 replicated experiments with a randomized complete block design. A total of 240 fifty-two-week-old Hy-Line W-36 laying hens were allotted to cages in a randomized complete block design. Corn-soybean meal diets were formulated for 3 broiler growth phases and one 14-wk-long laying hen phase to be marginally deficient in Lys and TSAA to allow for the detection of differences or correlations attributable to corn kernel chemical or physical traits. The broiler chicken diets were also marginally deficient in Ca and nonphytate P. Within a phase, corn- and soybean-based diets containing equal amounts of 1 of 6 different corn hybrids were formulated. The corn hybrids were selected to vary widely in chemical and physical traits. Feed consumption and BW were recorded for broiler chickens every 2 wk from 0 to 6 wk of age. Egg production was recorded daily, and feed consumption and egg weights were recorded weekly for laying hens between 53 and 67 wk of age. Physical and chemical composition of kernels was correlated with performance measures by multivariate ANOVA. Chemical and physical kernel traits were weakly correlated with performance in broiler chickens from 0 to 2 wk of age (P<0.05, | r |<0.42). However, from 4 to 6 wk of age and 0 to 6 wk of age, only kernel chemical traits were correlated with broiler chicken performance (P<0.05, | r |<0.29). From 53 to 67 wk of age, correlations were observed between both kernel physical and chemical traits and laying hen performance (P<0.05, | r |<0.34). In both experiments, the correlations of performance measures with individual kernel chemical and physical traits for any single kernel trait were not large enough to base corn hybrid selection on for feeding poultry.
Yao, H; Hruska, Z; Kincaid, R; Brown, R; Cleveland, T; Bhatnagar, D
2010-05-01
The objective of this study was to examine the relationship between fluorescence emissions of corn kernels inoculated with Aspergillus flavus and aflatoxin contamination levels within the kernels. Aflatoxin contamination in corn has been a long-standing problem plaguing the grain industry with potentially devastating consequences to corn growers. In this study, aflatoxin-contaminated corn kernels were produced through artificial inoculation of corn ears in the field with toxigenic A. flavus spores. The kernel fluorescence emission data were taken with a fluorescence hyperspectral imaging system when corn kernels were excited with ultraviolet light. Raw fluorescence image data were preprocessed and regions of interest in each image were created for all kernels. The regions of interest were used to extract spectral signatures and statistical information. The aflatoxin contamination level of single corn kernels was then chemically measured using affinity column chromatography. A fluorescence peak shift phenomenon was noted among different groups of kernels with different aflatoxin contamination levels. The fluorescence peak shift was found to move more toward the longer wavelength in the blue region for the highly contaminated kernels and toward the shorter wavelengths for the clean kernels. Highly contaminated kernels were also found to have a lower fluorescence peak magnitude compared with the less contaminated kernels. It was also noted that a general negative correlation exists between measured aflatoxin and the fluorescence image bands in the blue and green regions. The correlation coefficients of determination, r(2), was 0.72 for the multiple linear regression model. The multivariate analysis of variance found that the fluorescence means of four aflatoxin groups, <1, 1-20, 20-100, and >or=100 ng g(-1) (parts per billion), were significantly different from each other at the 0.01 level of alpha. Classification accuracy under a two-class schema ranged from 0.84 to 0.91 when a threshold of either 20 or 100 ng g(-1) was used. Overall, the results indicate that fluorescence hyperspectral imaging may be applicable in estimating aflatoxin content in individual corn kernels.
Broken rice kernels and the kinetics of rice hydration and texture during cooking.
Saleh, Mohammed; Meullenet, Jean-Francois
2013-05-01
During rice milling and processing, broken kernels are inevitably present, although to date it has been unclear as to how the presence of broken kernels affects rice hydration and cooked rice texture. Therefore, this work intended to study the effect of broken kernels in a rice sample on rice hydration and texture during cooking. Two medium-grain and two long-grain rice cultivars were harvested, dried and milled, and the broken kernels were separated from unbroken kernels. Broken rice kernels were subsequently combined with unbroken rice kernels forming treatments of 0, 40, 150, 350 or 1000 g kg(-1) broken kernels ratio. Rice samples were then cooked and the moisture content of the cooked rice, the moisture uptake rate, and rice hardness and stickiness were measured. As the amount of broken rice kernels increased, rice sample texture became increasingly softer (P < 0.05) but the unbroken kernels became significantly harder. Moisture content and moisture uptake rate were positively correlated, and cooked rice hardness was negatively correlated to the percentage of broken kernels in rice samples. Differences in the proportions of broken rice in a milled rice sample play a major role in determining the texture properties of cooked rice. Variations in the moisture migration kinetics between broken and unbroken kernels caused faster hydration of the cores of broken rice kernels, with greater starch leach-out during cooking affecting the texture of the cooked rice. The texture of cooked rice can be controlled, to some extent, by varying the proportion of broken kernels in milled rice. © 2012 Society of Chemical Industry.
Moore, II, Barry; Schrader, Robert L.; Kowalski, Karol; ...
2017-05-02
The longest-wavelength π-to-π* electronic excitations of rhodamine-like dyes (RDs) with different group16 heteroatoms (O, S, Se, Te) have been investigated. Time-dependent Kohn–Sham theory (TDKST) calculations were compared with coupled-cluster (CC) and equations-of-motion (EOM) CC results for π-to-π* singlet and triplet excitations. The RDs exhibit characteristics in the TDKST calculations that are very similar to previously investigated cyanine dyes, in the sense that the singlet energies obtained with nonhybrid functionals are too high compared with the CC results at the SD(T) level. The errors became increasingly larger for functionals with increasing amounts of exact exchange. TDKST with all tested functionals ledmore » to severe underestimations of the corresponding triplet excitations and overestimations of the singlet--triplet gaps. Long-range-corrected range-separated exchange and "optimal tuning" of the range separation parameter did not significantly improve the TDKST results. A detailed analysis suggests that the problem is differential electron correlation between the ground and excited states, which is not treated sufficiently by the relatively small integrals over the exchange-correlation response kernel that enters the excitation energy expression. As a result, numerical criteria are suggested that may help identify "cyanine-like" problems in TDKST calculations of excitation spectra.« less
Von Känel, R; Vökt, F; Biasiutti, F Demarmels; Stauber, S; Wuillemin, W A; Lukas, P S
2012-08-01
Psychological distress might affect the international normalized ratio (INR), but effects might vary depending on oral anticoagulant (OAC) therapy. To investigate the association of psychological distress with INR and clotting factors of the extrinsic pathway in patients with and without OAC therapy. We studied 190 patients with a previous venous thromboembolism (VTE); 148 had discontinued OAC therapy and 42 had ongoing OAC therapy. To assess psychological distress, all patients completed validated questionnaires to measure symptoms of depression, anxiety, worrying, anger and hostility. INR, fibrinogen, factor (F)II:C, FV:C, FVII:C and FX:C were measured as part of outpatient thrombophilia work-up. In VTE patients without OAC therapy, the odds of a reduced INR (< 1.00) were significantly increased from 1.5 to 1.8 times for an increase of 1 standard deviation (SD) in symptoms of depression, anxiety, worrying and anger, respectively, after adjusting for gender, age, body mass index, socioeconomic status, hematocrit and C-reactive protein. Worrying, anger and hostility also showed significant direct associations with FVII:C. In patients with OAC therapy, INR was unrelated to a negative affect; however, lower FVII:C related to anxiety and worrying as well as lower FX:C related to anger and hostility were observed in patients with OAC therapy compared with those without OAC therapy. Psychological distress was associated with a reduced INR in VTE patients without OAC therapy. The direction of the association between psychological distress and activity in some clotting factors of the extrinsic coagulation pathway might differ depending on whether VTE patients are under OAC therapy or not. © 2012 International Society on Thrombosis and Haemostasis.
Cai, Jia; Tang, Yi
2018-02-01
Canonical correlation analysis (CCA) is a powerful statistical tool for detecting the linear relationship between two sets of multivariate variables. Kernel generalization of it, namely, kernel CCA is proposed to describe nonlinear relationship between two variables. Although kernel CCA can achieve dimensionality reduction results for high-dimensional data feature selection problem, it also yields the so called over-fitting phenomenon. In this paper, we consider a new kernel CCA algorithm via randomized Kaczmarz method. The main contributions of the paper are: (1) A new kernel CCA algorithm is developed, (2) theoretical convergence of the proposed algorithm is addressed by means of scaled condition number, (3) a lower bound which addresses the minimum number of iterations is presented. We test on both synthetic dataset and several real-world datasets in cross-language document retrieval and content-based image retrieval to demonstrate the effectiveness of the proposed algorithm. Numerical results imply the performance and efficiency of the new algorithm, which is competitive with several state-of-the-art kernel CCA methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
1990-11-01
NY X X x x x X Lockheed. CA X Lockheed, GA X ’ x MCO, TX X X X X TxX Martin Marietta. LA X X X x x x MDDonnell Douglas Astro , CA x GcDonel1 Douglas...LI 4%.0000-00 L -ft L0 v I0U UV~o W N fp F.I w0 !; g 2 CL. cO .01 w C fxC T3 00 6 .- t-63 a wwWWW WWW6WWWIOW6WWWww rnrnrnrnrnrnmn4 Z NNNMW W.rN
Field incidence of mycotoxins in commercial popcorn and potential environmental influences.
Dowd, Patrick F; Johnson, Eric T
2010-02-01
Popcorn ear damage by insects and mycotoxin levels in kernels were monitored in several commercial popcorn fields in central Illinois over a 4-year period. Aflatoxin was rare, but fumonisin and deoxynivalenol (DON) were commonly encountered each year, and occurred at mean levels in fields up to 1.7 mg/kg (sample max. 2.77 mg/kg) and 1.9 mg/kg (sample max. 2.66 mg/kg), respectively. Neither fumonisin nor DON levels were significantly correlated with the percent of ears with visibly moldy insect-damaged kernels. Significant correlations were noted for the percent of ears with early caterpillar damage and both fumonisin and DON levels overall for some years and at specific sites in other years. Fumonisin levels were generally more highly correlated with insect damage than DON levels. Insect damaged kernels had 100- to 500-fold or greater levels of fumonisin compared to noninsect-damaged kernels, while DON levels were closer to 10- to 30-fold higher in insect damaged versus nondamaged kernels. A high percentage of DON-contaminated kernels were not insect damaged in 2007 and 2008. In some cases, differing mycotoxin levels for the same hybrid and same year planted at different locations appeared to be due to the prior crop. Higher DON levels in 2008 than other years were most likely associated with higher levels of rainfall and cooler temperatures than average during ear fill. While kernel sorters are reported to remove mycotoxin-contaminated popcorn kernels to acceptible levels, consideration of environmental factors that promote mycotoxins in popcorn should result in more effective control measures in the field.
Correlated Topic Vector for Scene Classification.
Wei, Pengxu; Qin, Fei; Wan, Fang; Zhu, Yi; Jiao, Jianbin; Ye, Qixiang
2017-07-01
Scene images usually involve semantic correlations, particularly when considering large-scale image data sets. This paper proposes a novel generative image representation, correlated topic vector, to model such semantic correlations. Oriented from the correlated topic model, correlated topic vector intends to naturally utilize the correlations among topics, which are seldom considered in the conventional feature encoding, e.g., Fisher vector, but do exist in scene images. It is expected that the involvement of correlations can increase the discriminative capability of the learned generative model and consequently improve the recognition accuracy. Incorporated with the Fisher kernel method, correlated topic vector inherits the advantages of Fisher vector. The contributions to the topics of visual words have been further employed by incorporating the Fisher kernel framework to indicate the differences among scenes. Combined with the deep convolutional neural network (CNN) features and Gibbs sampling solution, correlated topic vector shows great potential when processing large-scale and complex scene image data sets. Experiments on two scene image data sets demonstrate that correlated topic vector improves significantly the deep CNN features, and outperforms existing Fisher kernel-based features.
Zhang, H M; Hui, G Q; Luo, Q; Sun, Y; Liu, X H
2014-01-21
Maize (Zea mays L.) is one of the most important crops in the world. In this study, 13 agronomic traits of a recombinant inbred line population that was derived from the cross between Mo17 and Huangzao4 were investigated in maize: ear diameter, ear length, ear axis diameter, ear weight, plant height, ear height, days to pollen shed (DPS), days to silking (DS), the interval between DPS and DS, 100-kernel weight, kernel test weight, ear kernel weight, and kernel rate. Furthermore, the descriptive statistics and correlation analysis of the 13 traits were performed using the SPSS 11.5 software. The results providing the phenotypic data here are needed for the quantitative trait locus mapping of these agronomic traits.
Time-frequency distributions for propulsion-system diagnostics
NASA Astrophysics Data System (ADS)
Griffin, Michael E.; Tulpule, Sharayu
1991-12-01
The Wigner distribution and its smoothed versions, i.e., Choi-Williams and Gaussian kernels, are evaluated for propulsion system diagnostics. The approach is intended for off-line kernel design by using the ambiguity domain to select the appropriate Gaussian kernel. The features produced by the Wigner distribution and its smoothed versions correlate remarkably well with documented failure indications. The selection of the kernel on the other hand is very subjective for our unstructured data.
Tricoli, Ugo; Macdonald, Callum M; Durduran, Turgut; Da Silva, Anabela; Markel, Vadim A
2018-02-01
Diffuse correlation tomography (DCT) uses the electric-field temporal autocorrelation function to measure the mean-square displacement of light-scattering particles in a turbid medium over a given exposure time. The movement of blood particles is here estimated through a Brownian-motion-like model in contrast to ordered motion as in blood flow. The sensitivity kernel relating the measurable field correlation function to the mean-square displacement of the particles can be derived by applying a perturbative analysis to the correlation transport equation (CTE). We derive an analytical expression for the CTE sensitivity kernel in terms of the Green's function of the radiative transport equation, which describes the propagation of the intensity. We then evaluate the kernel numerically. The simulations demonstrate that, in the transport regime, the sensitivity kernel provides sharper spatial information about the medium as compared with the correlation diffusion approximation. Also, the use of the CTE allows one to explore some additional degrees of freedom in the data such as the collimation direction of sources and detectors. Our results can be used to improve the spatial resolution of DCT, in particular, with applications to blood flow imaging in regions where the Brownian motion is dominant.
NASA Astrophysics Data System (ADS)
Tricoli, Ugo; Macdonald, Callum M.; Durduran, Turgut; Da Silva, Anabela; Markel, Vadim A.
2018-02-01
Diffuse correlation tomography (DCT) uses the electric-field temporal autocorrelation function to measure the mean-square displacement of light-scattering particles in a turbid medium over a given exposure time. The movement of blood particles is here estimated through a Brownian-motion-like model in contrast to ordered motion as in blood flow. The sensitivity kernel relating the measurable field correlation function to the mean-square displacement of the particles can be derived by applying a perturbative analysis to the correlation transport equation (CTE). We derive an analytical expression for the CTE sensitivity kernel in terms of the Green's function of the radiative transport equation, which describes the propagation of the intensity. We then evaluate the kernel numerically. The simulations demonstrate that, in the transport regime, the sensitivity kernel provides sharper spatial information about the medium as compared with the correlation diffusion approximation. Also, the use of the CTE allows one to explore some additional degrees of freedom in the data such as the collimation direction of sources and detectors. Our results can be used to improve the spatial resolution of DCT, in particular, with applications to blood flow imaging in regions where the Brownian motion is dominant.
Korekar, Girish; Stobdan, Tsering; Arora, Richa; Yadav, Ashish; Singh, Shashi Bala
2011-11-01
Fourteen apricot genotypes grown under similar cultural practices in Trans-Himalayan Ladakh region were studied to find out the influence of genotype on antioxidant capacity and total phenolic content (TPC) of apricot kernel. The kernels were found to be rich in TPC ranging from 92.2 to 162.1 mg gallic acid equivalent/100 g. The free radical-scavenging activity in terms of inhibitory concentration (IC(50)) ranged from 43.8 to 123.4 mg/ml and ferric reducing antioxidant potential (FRAP) from 154.1 to 243.6 FeSO(4).7H(2)O μg/ml. A variation of 1-1.7 fold in total phenolic content, 1-2.8 fold in IC(50) by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and 1-1.6 fold in ferric reducing antioxidant potential among the examined kernels underlines the important role played by genetic background for determining the phenolic content and antioxidant potential of apricot kernel. A positive significant correlation between TPC and FRAP (r=0.671) was found. No significant correlation was found between TPC and IC(50); FRAP and IC(50); TPC and physical properties of kernel. Principal component analysis demonstrated that genotypic effect is more pronounced towards TPC and total antioxidant capacity (TAC) content in apricot kernel while the contribution of seed and kernel physical properties are not highly significant.
de la Rosa, Laura A; Alvarez-Parrilla, Emilio; Shahidi, Fereidoon
2011-01-12
The phenolic composition and antioxidant activity of pecan kernels and shells cultivated in three regions of the state of Chihuahua, Mexico, were analyzed. High concentrations of total extractable phenolics, flavonoids, and proanthocyanidins were found in kernels, and 5-20-fold higher concentrations were found in shells. Their concentrations were significantly affected by the growing region. Antioxidant activity was evaluated by ORAC, DPPH•, HO•, and ABTS•-- scavenging (TAC) methods. Antioxidant activity was strongly correlated with the concentrations of phenolic compounds. A strong correlation existed among the results obtained using these four methods. Five individual phenolic compounds were positively identified and quantified in kernels: ellagic, gallic, protocatechuic, and p-hydroxybenzoic acids and catechin. Only ellagic and gallic acids could be identified in shells. Seven phenolic compounds were tentatively identified in kernels by means of MS and UV spectral comparison, namely, protocatechuic aldehyde, (epi)gallocatechin, one gallic acid-glucose conjugate, three ellagic acid derivatives, and valoneic acid dilactone.
NASA Astrophysics Data System (ADS)
Song, Mei-Xia; Lin, Zhen-Quan; Li, Xiao-Dong; Ke, Jian-Hong
2010-06-01
We propose an aggregation evolution model of two-species (A- and B-species) aggregates to study the prevalent aggregation phenomena in social and economic systems. In this model, A- and B-species aggregates perform self-exchange-driven growths with the exchange rate kernels K (k,l) = Kkl and L(k,l) = Lkl, respectively, and the two species aggregates perform self-birth processes with the rate kernels J1(k) = J1k and J2(k) = J2k, and meanwhile the interaction between the aggregates of different species A and B causes a lose-lose scheme with the rate kernel H(k,l) = Hkl. Based on the mean-field theory, we investigated the evolution behaviors of the two species aggregates to study the competitions among above three aggregate evolution schemes on the distinct initial monomer concentrations A0 and B0 of the two species. The results show that the evolution behaviors of A- and B-species are crucially dominated by the competition between the two self-birth processes, and the initial monomer concentrations A0 and B0 play important roles, while the lose-lose scheme play important roles in some special cases.
Determination of aflatoxin risk components for in-shell Brazil nuts.
Vargas, E A; dos Santos, E A; Whitaker, T B; Slate, A B
2011-09-01
A study was conducted on the risk from aflatoxins associated with the kernels and shells of Brazil nuts. Samples were collected from processing plants in Amazonia, Brazil. A total of 54 test samples (40 kg) were taken from 13 in-shell Brazil nut lots ready for market. Each in-shell sample was shelled and the kernels and shells were sorted in five fractions: good kernels, rotten kernels, good shells with kernel residue, good shells without kernel residue, and rotten shells, and analysed for aflatoxins. The kernel:shell ratio mass (w/w) was 50.2/49.8%. The Brazil nut shell was found to be contaminated with aflatoxin. Rotten nuts were found to be a high-risk fraction for aflatoxin in in-shell Brazil nut lots. Rotten nuts contributed only 4.2% of the sample mass (kg), but contributed 76.6% of the total aflatoxin mass (µg) in the in-shell test sample. The highest correlations were found between the aflatoxin concentration in in-shell Brazil nuts samples and the aflatoxin concentration in all defective fractions (R(2)=0.97). The aflatoxin mass of all defective fractions (R(2)=0.90) as well as that of the rotten nut (R(2)=0.88) were also strongly correlated with the aflatoxin concentration of the in-shell test samples. Process factors of 0.17, 0.16 and 0.24 were respectively calculated to estimate the aflatoxin concentration in the good kernels (edible) and good nuts by measuring the aflatoxin concentration in the in-shell test sample and in all kernels, respectively. © 2011 Taylor & Francis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D; Danielewicz, P
2002-03-15
This is the manual for a collection of programs that can be used to invert angled-averaged (i.e. one dimensional) two-particle correlation functions. This package consists of several programs that generate kernel matrices (basically the relative wavefunction of the pair, squared), programs that generate test correlation functions from test sources of various types and the program that actually inverts the data using the kernel matrix.
Pearson correlation estimation for irregularly sampled time series
NASA Astrophysics Data System (ADS)
Rehfeld, K.; Marwan, N.; Heitzig, J.; Kurths, J.
2012-04-01
Many applications in the geosciences call for the joint and objective analysis of irregular time series. For automated processing, robust measures of linear and nonlinear association are needed. Up to now, the standard approach would have been to reconstruct the time series on a regular grid, using linear or spline interpolation. Interpolation, however, comes with systematic side-effects, as it increases the auto-correlation in the time series. We have searched for the best method to estimate Pearson correlation for irregular time series, i.e. the one with the lowest estimation bias and variance. We adapted a kernel-based approach, using Gaussian weights. Pearson correlation is calculated, in principle, as a mean over products of previously centralized observations. In the regularly sampled case, observations in both time series were observed at the same time and thus the allocation of measurement values into pairs of products is straightforward. In the irregularly sampled case, however, measurements were not necessarily observed at the same time. Now, the key idea of the kernel-based method is to calculate weighted means of products, with the weight depending on the time separation between the observations. If the lagged correlation function is desired, the weights depend on the absolute difference between observation time separation and the estimation lag. To assess the applicability of the approach we used extensive simulations to determine the extent of interpolation side-effects with increasing irregularity of time series. We compared different approaches, based on (linear) interpolation, the Lomb-Scargle Fourier Transform, the sinc kernel and the Gaussian kernel. We investigated the role of kernel bandwidth and signal-to-noise ratio in the simulations. We found that the Gaussian kernel approach offers significant advantages and low Root-Mean Square Errors for regular, slightly irregular and very irregular time series. We therefore conclude that it is a good (linear) similarity measure that is appropriate for irregular time series with skewed inter-sampling time distributions.
Hadamard Kernel SVM with applications for breast cancer outcome predictions.
Jiang, Hao; Ching, Wai-Ki; Cheung, Wai-Shun; Hou, Wenpin; Yin, Hong
2017-12-21
Breast cancer is one of the leading causes of deaths for women. It is of great necessity to develop effective methods for breast cancer detection and diagnosis. Recent studies have focused on gene-based signatures for outcome predictions. Kernel SVM for its discriminative power in dealing with small sample pattern recognition problems has attracted a lot attention. But how to select or construct an appropriate kernel for a specified problem still needs further investigation. Here we propose a novel kernel (Hadamard Kernel) in conjunction with Support Vector Machines (SVMs) to address the problem of breast cancer outcome prediction using gene expression data. Hadamard Kernel outperform the classical kernels and correlation kernel in terms of Area under the ROC Curve (AUC) values where a number of real-world data sets are adopted to test the performance of different methods. Hadamard Kernel SVM is effective for breast cancer predictions, either in terms of prognosis or diagnosis. It may benefit patients by guiding therapeutic options. Apart from that, it would be a valuable addition to the current SVM kernel families. We hope it will contribute to the wider biology and related communities.
Noise kernels of stochastic gravity in conformally-flat spacetimes
NASA Astrophysics Data System (ADS)
Cho, H. T.; Hu, B. L.
2015-03-01
The central object in the theory of semiclassical stochastic gravity is the noise kernel, which is the symmetric two point correlation function of the stress-energy tensor. Using the corresponding Wightman functions in Minkowski, Einstein and open Einstein spaces, we construct the noise kernels of a conformally coupled scalar field in these spacetimes. From them we show that the noise kernels in conformally-flat spacetimes, including the Friedmann-Robertson-Walker universes, can be obtained in closed analytic forms by using a combination of conformal and coordinate transformations.
Two-dimensional correlation spectroscopy — Biannual survey 2007-2009
NASA Astrophysics Data System (ADS)
Noda, Isao
2010-06-01
The publication activities in the field of 2D correlation spectroscopy are surveyed with the emphasis on papers published during the last two years. Pertinent review articles and conference proceedings are discussed first, followed by the examination of noteworthy developments in the theory and applications of 2D correlation spectroscopy. Specific topics of interest include Pareto scaling, analysis of randomly sampled spectra, 2D analysis of data obtained under multiple perturbations, evolution of 2D spectra along additional variables, comparison and quantitative analysis of multiple 2D spectra, orthogonal sample design to eliminate interfering cross peaks, quadrature orthogonal signal correction and other data transformation techniques, data pretreatment methods, moving window analysis, extension of kernel and global phase angle analysis, covariance and correlation coefficient mapping, variant forms of sample-sample correlation, and different display methods. Various static and dynamic perturbation methods used in 2D correlation spectroscopy, e.g., temperature, composition, chemical reactions, H/D exchange, physical phenomena like sorption, diffusion and phase transitions, optical and biological processes, are reviewed. Analytical probes used in 2D correlation spectroscopy include IR, Raman, NIR, NMR, X-ray, mass spectrometry, chromatography, and others. Application areas of 2D correlation spectroscopy are diverse, encompassing synthetic and natural polymers, liquid crystals, proteins and peptides, biomaterials, pharmaceuticals, food and agricultural products, solutions, colloids, surfaces, and the like.
Heavy and Heavy-Light Mesons in the Covariant Spectator Theory
NASA Astrophysics Data System (ADS)
Stadler, Alfred; Leitão, Sofia; Peña, M. T.; Biernat, Elmar P.
2018-05-01
The masses and vertex functions of heavy and heavy-light mesons, described as quark-antiquark bound states, are calculated with the Covariant Spectator Theory (CST). We use a kernel with an adjustable mixture of Lorentz scalar, pseudoscalar, and vector linear confining interaction, together with a one-gluon-exchange kernel. A series of fits to the heavy and heavy-light meson spectrum were calculated, and we discuss what conclusions can be drawn from it, especially about the Lorentz structure of the kernel. We also apply the Brodsky-Huang-Lepage prescription to express the CST wave functions for heavy quarkonia in terms of light-front variables. They agree remarkably well with light-front wave functions obtained in the Hamiltonian basis light-front quantization approach, even in excited states.
Recent advancement in the field of two-dimensional correlation spectroscopy
NASA Astrophysics Data System (ADS)
Noda, Isao
2008-07-01
The recent advancement in the field of 2D correlation spectroscopy is reviewed with the emphasis on a number of papers published during the last two years. Topics covered by this comprehensive review include books, review articles, and noteworthy developments in the theory and applications of 2D correlation spectroscopy. New 2D correlation techniques are discussed, such as kernel analysis and augmented 2D correlation, model-based correlation, moving window analysis, global phase angle, covariance and correlation coefficient mapping, sample-sample correlation, hybrid and hetero correlation, pretreatment and transformation of data, and 2D correlation combined with other chemometrics techniques. Perturbation methods of both static (e.g., temperature, composition, pressure and stress, spatial distribution and orientation) and dynamic types (e.g., rheo-optical and acoustic, chemical reactions and kinetics, H/D exchange, sorption and diffusion) currently in use are examined. Analytical techniques most commonly employed in 2D correlation spectroscopy are IR, Raman, and NIR, but the growing use of other probes is also noted, including fluorescence, emission, Raman optical activity and vibrational circular dichroism, X-ray absorption and scattering, NMR, mass spectrometry, and even chromatography. The field of applications for 2D correlation spectroscopy is very diverse, encompassing synthetic polymers, liquid crystals, Langmuir-Blodgett films, proteins and peptides, natural polymers and biomaterials, pharmaceuticals, food and agricultural products, water, solutions, inorganic, organic, hybrid or composite materials, and many more.
Xie, Lihua; Yu, Yongtao; Mao, Jihua; Liu, Haiying; Hu, Jian Guang; Li, Tong; Guo, Xinbo; Liu, Rui Hai
2017-01-01
Sweet corn kernels were used in this research to study the dynamics of vitamin E, by evaluatingthe expression levels of genes involved in vitamin E synthesis, the accumulation of vitamin E, and the antioxidant activity during the different stage of kernel development. Results showed that expression levels of ZmHPT and ZmTC genes increased, whereas ZmTMT gene dramatically decreased during kernel development. The contents of all the types of vitamin E in sweet corn had a significant upward increase during kernel development, and reached the highest level at 30 days after pollination (DAP). Amongst the eight isomers of vitamin E, the content of γ-tocotrienol was the highest, and increased by 14.9 folds, followed by α-tocopherolwith an increase of 22 folds, and thecontents of isomers γ-tocopherol, α-tocotrienol, δ-tocopherol,δ-tocotrienol, and β-tocopherol were also followed during kernel development. The antioxidant activity of sweet corn during kernel development was increased, and was up to 101.8 ± 22.3 μmol of α-tocopherol equivlent/100 g in fresh weight (FW) at 30 DAP. There was a positive correlation between vitamin E contents and antioxidant activity in sweet corn during the kernel development, and a negative correlation between the expressions of ZmTMT gene and vitamin E contents. These results revealed the relations amongst the content of vitamin E isomers and the gene expression, vitamin E accumulation, and antioxidant activity. The study can provide a harvesting strategy for vitamin E bio-fortification in sweet corn. PMID:29261149
Xie, Lihua; Yu, Yongtao; Mao, Jihua; Liu, Haiying; Hu, Jian Guang; Li, Tong; Guo, Xinbo; Liu, Rui Hai
2017-12-20
Sweet corn kernels were used in this research to study the dynamics of vitamin E, by evaluatingthe expression levels of genes involved in vitamin E synthesis, the accumulation of vitamin E, and the antioxidant activity during the different stage of kernel development. Results showed that expression levels of Zm HPT and Zm TC genes increased, whereas Zm TMT gene dramatically decreased during kernel development. The contents of all the types of vitamin E in sweet corn had a significant upward increase during kernel development, and reached the highest level at 30 days after pollination (DAP). Amongst the eight isomers of vitamin E, the content of γ-tocotrienol was the highest, and increased by 14.9 folds, followed by α-tocopherolwith an increase of 22 folds, and thecontents of isomers γ-tocopherol, α-tocotrienol, δ-tocopherol,δ-tocotrienol, and β-tocopherol were also followed during kernel development. The antioxidant activity of sweet corn during kernel development was increased, and was up to 101.8 ± 22.3 μmol of α-tocopherol equivlent/100 g in fresh weight (FW) at 30 DAP. There was a positive correlation between vitamin E contents and antioxidant activity in sweet corn during the kernel development, and a negative correlation between the expressions of Zm TMT gene and vitamin E contents. These results revealed the relations amongst the content of vitamin E isomers and the gene expression, vitamin E accumulation, and antioxidant activity. The study can provide a harvesting strategy for vitamin E bio-fortification in sweet corn.
Wong, Stephen; Hargreaves, Eric L; Baltuch, Gordon H; Jaggi, Jurg L; Danish, Shabbar F
2012-01-01
Microelectrode recording (MER) is necessary for precision localization of target structures such as the subthalamic nucleus during deep brain stimulation (DBS) surgery. Attempts to automate this process have produced quantitative temporal trends (feature activity vs. time) extracted from mobile MER data. Our goal was to evaluate computational methods of generating spatial profiles (feature activity vs. depth) from temporal trends that would decouple automated MER localization from the clinical procedure and enhance functional localization in DBS surgery. We evaluated two methods of interpolation (standard vs. kernel) that generated spatial profiles from temporal trends. We compared interpolated spatial profiles to true spatial profiles that were calculated with depth windows, using correlation coefficient analysis. Excellent approximation of true spatial profiles is achieved by interpolation. Kernel-interpolated spatial profiles produced superior correlation coefficient values at optimal kernel widths (r = 0.932-0.940) compared to standard interpolation (r = 0.891). The choice of kernel function and kernel width resulted in trade-offs in smoothing and resolution. Interpolation of feature activity to create spatial profiles from temporal trends is accurate and can standardize and facilitate MER functional localization of subcortical structures. The methods are computationally efficient, enhancing localization without imposing additional constraints on the MER clinical procedure during DBS surgery. Copyright © 2012 S. Karger AG, Basel.
Ledbetter, C A
2008-09-01
Researchers are currently developing new value-added uses for almond shells, an abundant agricultural by-product. Almond varieties are distinguished by processors as being either hard or soft shelled, but these two broad classes of almond also exhibit varietal diversity in shell morphology and physical characters. By defining more precisely the physical and chemical characteristics of almond shells from different varieties, researchers will better understand which specific shell types are best suited for specific industrial processes. Eight diverse almond accessions were evaluated in two consecutive harvest seasons for nut and kernel weight, kernel percentage and shell cracking strength. Shell bulk density was evaluated in a separate year. Harvest year by almond accession interactions were highly significant (p0.01) for each of the analyzed variables. Significant (p0.01) correlations were noted for average nut weight with kernel weight, kernel percentage and shell cracking strength. A significant (p0.01) negative correlation for shell cracking strength with kernel percentage was noted. In some cases shell cracking strength was independent of the kernel percentage which suggests that either variety compositional differences or shell morphology affect the shell cracking strength. The varietal characterization of almond shell materials will assist in determining the best value-added uses for this abundant agricultural by-product.
Zhao, Lijuan; Sun, Youping; Hernandez-Viezcas, Jose A; Hong, Jie; Majumdar, Sanghamitra; Niu, Genhua; Duarte-Gardea, Maria; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L
2015-03-03
Information about changes in physiological and agronomic parameters through the life cycle of plants exposed to engineered nanoparticles (NPs) is scarce. In this study, corn (Zea mays) plants were cultivated to full maturity in soil amended with either nCeO2 or nZnO at 0, 400, and 800 mg/kg. Gas exchange was monitored every 10 days, and at harvest, bioaccumulation of Ce and Zn in tissues was determined by ICP-OES/MS. The effects of NPs exposure on nutrient concentration and distribution in ears were also evaluated by ICP-OES and μ-XRF. Results showed that nCeO2 at both concentrations did not impact gas exchange in leaves at any growth stage, while nZnO at 800 mg/kg reduced net photosynthesis by 12%, stomatal conductance by 15%, and relative chlorophyll content by 10% at day 20. Yield was reduced by 38% with nCeO2 and by 49% with nZnO. Importantly, μ-XRF mapping showed that nCeO2 changed the allocation of calcium in kernels, compared to controls. In nCeO2 treated plants, Cu, K, Mn, and Zn were mainly localized at the insertion of kernels into cobs, but Ca and Fe were distributed in other parts of the kernels. Results showed that nCeO2 and nZnO reduced corn yield and altered quality of corn.
Zalay, Osbert C; Serletis, Demitre; Carlen, Peter L; Bardakjian, Berj L
2010-06-01
Most forms of epilepsy are marked by seizure episodes that arise spontaneously. The low-magnesium/high-potassium (low-Mg(2+)/high-K(+)) experimental model of epilepsy is an acute model that produces spontaneous, recurring seizure-like events (SLEs). To elucidate the nature of spontaneous seizure transitions and their relationship to neuronal excitability, whole-cell recordings from the intact hippocampus were undertaken in vitro, and the response of hippocampal CA3 neurons to Gaussian white noise injection was obtained before and after treatment with various concentrations of low-Mg(2+)/high-K(+) solution. A second-order Volterra kernel model was estimated for each of the input-output response pairs. The spectral energy of the responses was also computed, providing a quantitative measure of neuronal excitability. Changes in duration and amplitude of the first-order kernel correlated positively with the spectral energy increase following treatment with low-Mg(2+)/high-K(+) solution, suggesting that variations in neuronal excitability are coded by the system kernels, in part by differences to the profile of the first-order kernel. In particular, kernel duration was more sensitive than amplitude to changes in spectral energy, and correlated more strongly with kernel area. An oscillator network model of the hippocampal CA3 was constructed to investigate the relationship of kernel duration to network excitability, and the model was able to generate spontaneous, recurrent SLEs by increasing the duration of a mode function analogous to the first-order kernel. Results from the model indicated that disruption to the dynamic balance of feedback was responsible for seizure-like transitions and the observed intermittency of SLEs. A physiological candidate for feedback imbalance consistent with the network model is the destabilizing interaction of extracellular potassium and paroxysmal neuronal activation. Altogether, these results (1) validate a mathematical model for epileptiform activity in the hippocampus by quantifying and subsequently correlating its behavior with an experimental, in vitro model of epilepsy; (2) elucidate a possible mechanism for epileptogenesis; and (3) pave the way for control studies in epilepsy utilizing the herein proposed experimental and mathematical setup.
NASA Astrophysics Data System (ADS)
Zalay, Osbert C.; Serletis, Demitre; Carlen, Peter L.; Bardakjian, Berj L.
2010-06-01
Most forms of epilepsy are marked by seizure episodes that arise spontaneously. The low-magnesium/high-potassium (low-Mg2+/high-K+) experimental model of epilepsy is an acute model that produces spontaneous, recurring seizure-like events (SLEs). To elucidate the nature of spontaneous seizure transitions and their relationship to neuronal excitability, whole-cell recordings from the intact hippocampus were undertaken in vitro, and the response of hippocampal CA3 neurons to Gaussian white noise injection was obtained before and after treatment with various concentrations of low-Mg2+/high-K+ solution. A second-order Volterra kernel model was estimated for each of the input-output response pairs. The spectral energy of the responses was also computed, providing a quantitative measure of neuronal excitability. Changes in duration and amplitude of the first-order kernel correlated positively with the spectral energy increase following treatment with low-Mg2+/high-K+ solution, suggesting that variations in neuronal excitability are coded by the system kernels, in part by differences to the profile of the first-order kernel. In particular, kernel duration was more sensitive than amplitude to changes in spectral energy, and correlated more strongly with kernel area. An oscillator network model of the hippocampal CA3 was constructed to investigate the relationship of kernel duration to network excitability, and the model was able to generate spontaneous, recurrent SLEs by increasing the duration of a mode function analogous to the first-order kernel. Results from the model indicated that disruption to the dynamic balance of feedback was responsible for seizure-like transitions and the observed intermittency of SLEs. A physiological candidate for feedback imbalance consistent with the network model is the destabilizing interaction of extracellular potassium and paroxysmal neuronal activation. Altogether, these results (1) validate a mathematical model for epileptiform activity in the hippocampus by quantifying and subsequently correlating its behavior with an experimental, in vitro model of epilepsy; (2) elucidate a possible mechanism for epileptogenesis; and (3) pave the way for control studies in epilepsy utilizing the herein proposed experimental and mathematical setup.
Gaussian processes with optimal kernel construction for neuro-degenerative clinical onset prediction
NASA Astrophysics Data System (ADS)
Canas, Liane S.; Yvernault, Benjamin; Cash, David M.; Molteni, Erika; Veale, Tom; Benzinger, Tammie; Ourselin, Sébastien; Mead, Simon; Modat, Marc
2018-02-01
Gaussian Processes (GP) are a powerful tool to capture the complex time-variations of a dataset. In the context of medical imaging analysis, they allow a robust modelling even in case of highly uncertain or incomplete datasets. Predictions from GP are dependent of the covariance kernel function selected to explain the data variance. To overcome this limitation, we propose a framework to identify the optimal covariance kernel function to model the data.The optimal kernel is defined as a composition of base kernel functions used to identify correlation patterns between data points. Our approach includes a modified version of the Compositional Kernel Learning (CKL) algorithm, in which we score the kernel families using a new energy function that depends both the Bayesian Information Criterion (BIC) and the explained variance score. We applied the proposed framework to model the progression of neurodegenerative diseases over time, in particular the progression of autosomal dominantly-inherited Alzheimer's disease, and use it to predict the time to clinical onset of subjects carrying genetic mutation.
NASA Astrophysics Data System (ADS)
Wu, Jun; Gygi, François
2012-06-01
We present a simplified implementation of the non-local van der Waals correlation functional introduced by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)] and reformulated by Román-Pérez et al. [Phys. Rev. Lett. 103, 096102 (2009)]. The proposed numerical approach removes the logarithmic singularity of the kernel function. Complete expressions of the self-consistent correlation potential and of the stress tensor are given. Combined with various choices of exchange functionals, five versions of van der Waals density functionals are implemented. Applications to the computation of the interaction energy of the benzene-water complex and to the computation of the equilibrium cell parameters of the benzene crystal are presented. As an example of crystal structure calculation involving a mixture of hydrogen bonding and dispersion interactions, we compute the equilibrium structure of two polymorphs of aspirin (2-acetoxybenzoic acid, C9H8O4) in the P21/c monoclinic structure.
Kernel Tuning and Nonuniform Influence on Optical and Electrochemical Gaps of Bimetal Nanoclusters.
He, Lizhong; Yuan, Jinyun; Xia, Nan; Liao, Lingwen; Liu, Xu; Gan, Zibao; Wang, Chengming; Yang, Jinlong; Wu, Zhikun
2018-03-14
Fine tuning nanoparticles with atomic precision is exciting and challenging and is critical for tuning the properties, understanding the structure-property correlation and determining the practical applications of nanoparticles. Some ultrasmall thiolated metal nanoparticles (metal nanoclusters) have been shown to be precisely doped, and even the protecting staple metal atom could be precisely reduced. However, the precise addition or reduction of the kernel atom while the other metal atoms in the nanocluster remain the same has not been successful until now, to the best of our knowledge. Here, by carefully selecting the protecting ligand with adequate steric hindrance, we synthesized a novel nanocluster in which the kernel can be regarded as that formed by the addition of two silver atoms to both ends of the Pt@Ag 12 icosohedral kernel of the Ag 24 Pt(SR) 18 (SR: thiolate) nanocluster, as revealed by single crystal X-ray crystallography. Interestingly, compared with the previously reported Ag 24 Pt(SR) 18 nanocluster, the as-obtained novel bimetal nanocluster exhibits a similar absorption but a different electrochemical gap. One possible explanation for this result is that the kernel tuning does not essentially change the electronic structure, but obviously influences the charge on the Pt@Ag 12 kernel, as demonstrated by natural population analysis, thus possibly resulting in the large electrochemical gap difference between the two nanoclusters. This work not only provides a novel strategy to tune metal nanoclusters but also reveals that the kernel change does not necessarily alter the optical and electrochemical gaps in a uniform manner, which has important implications for the structure-property correlation of nanoparticles.
NASA Astrophysics Data System (ADS)
Chen, Dan; Lin, Zhen-Quan; Sun, Yun-Fei; Ke, Jian-Hong
2009-12-01
We propose two irreversible aggregation growth models of aggregates of two distinct species (A and B) to study the interactions between virus aggregates and medicine efficacy aggregates in the virus-medicine cooperative evolution system. The A-species aggregates evolve driven by self monomer birth and B-species aggregate-catalyzed monomer death in model I and by self birth, catalyzed death, and self monomer exchange reactions in model II, while the catalyst B-species aggregates are assumed to be injected into the system sustainedly or at a periodic time-dependent rate. The kinetic behaviors of the A-species aggregates are investigated by the rate equation approach based on the mean-field theory with the self birth rate kernel IA(k) = Ik, catalyzed death rate kernel JAB(k) = Jk and self exchange rate kernel KA (k, l) = Kkl. The kinetic behaviors of the A-species aggregates are mainly dominated by the competition between the two effects of the self birth (with the effective rate I) and the catalyzed death (with the effective rate JB0), while the effects of the self exchanges of the A-species aggregates which appear in an effective rate KA0 play important roles in the cases of I > JB0 and I = JB0. The evolution behaviors of the total mass MA1(t) and the total aggregate number MA0 (t) are obtained, and the aggregate size distribution αk (t) of species A is found to approach a generalized scaling form in the case of I >= JB0 and a special modified scaling form in the case of I < JB0. The periodical evolution of the B-monomers concentration plays an exponential form of the periodic modulation.
An Agent-Based Modeling Framework and Application for the Generic Nuclear Fuel Cycle
NASA Astrophysics Data System (ADS)
Gidden, Matthew J.
Key components of a novel methodology and implementation of an agent-based, dynamic nuclear fuel cycle simulator, Cyclus , are presented. The nuclear fuel cycle is a complex, physics-dependent supply chain. To date, existing dynamic simulators have not treated constrained fuel supply, time-dependent, isotopic-quality based demand, or fuel fungibility particularly well. Utilizing an agent-based methodology that incorporates sophisticated graph theory and operations research techniques can overcome these deficiencies. This work describes a simulation kernel and agents that interact with it, highlighting the Dynamic Resource Exchange (DRE), the supply-demand framework at the heart of the kernel. The key agent-DRE interaction mechanisms are described, which enable complex entity interaction through the use of physics and socio-economic models. The translation of an exchange instance to a variant of the Multicommodity Transportation Problem, which can be solved feasibly or optimally, follows. An extensive investigation of solution performance and fidelity is then presented. Finally, recommendations for future users of Cyclus and the DRE are provided.
A Kernel-based Lagrangian method for imperfectly-mixed chemical reactions
NASA Astrophysics Data System (ADS)
Schmidt, Michael J.; Pankavich, Stephen; Benson, David A.
2017-05-01
Current Lagrangian (particle-tracking) algorithms used to simulate diffusion-reaction equations must employ a certain number of particles to properly emulate the system dynamics-particularly for imperfectly-mixed systems. The number of particles is tied to the statistics of the initial concentration fields of the system at hand. Systems with shorter-range correlation and/or smaller concentration variance require more particles, potentially limiting the computational feasibility of the method. For the well-known problem of bimolecular reaction, we show that using kernel-based, rather than Dirac delta, particles can significantly reduce the required number of particles. We derive the fixed width of a Gaussian kernel for a given reduced number of particles that analytically eliminates the error between kernel and Dirac solutions at any specified time. We also show how to solve for the fixed kernel size by minimizing the squared differences between solutions over any given time interval. Numerical results show that the width of the kernel should be kept below about 12% of the domain size, and that the analytic equations used to derive kernel width suffer significantly from the neglect of higher-order moments. The simulations with a kernel width given by least squares minimization perform better than those made to match at one specific time. A heuristic time-variable kernel size, based on the previous results, performs on par with the least squares fixed kernel size.
Nakarmi, Ukash; Wang, Yanhua; Lyu, Jingyuan; Liang, Dong; Ying, Leslie
2017-11-01
While many low rank and sparsity-based approaches have been developed for accelerated dynamic magnetic resonance imaging (dMRI), they all use low rankness or sparsity in input space, overlooking the intrinsic nonlinear correlation in most dMRI data. In this paper, we propose a kernel-based framework to allow nonlinear manifold models in reconstruction from sub-Nyquist data. Within this framework, many existing algorithms can be extended to kernel framework with nonlinear models. In particular, we have developed a novel algorithm with a kernel-based low-rank model generalizing the conventional low rank formulation. The algorithm consists of manifold learning using kernel, low rank enforcement in feature space, and preimaging with data consistency. Extensive simulation and experiment results show that the proposed method surpasses the conventional low-rank-modeled approaches for dMRI.
Fourier's law of heat conduction: quantum mechanical master equation analysis.
Wu, Lian-Ao; Segal, Dvira
2008-06-01
We derive the macroscopic Fourier's Law of heat conduction from the exact gain-loss time convolutionless quantum master equation under three assumptions for the interaction kernel. To second order in the interaction, we show that the first two assumptions are natural results of the long time limit. The third assumption can be satisfied by a family of interactions consisting of an exchange effect. The pure exchange model directly leads to energy diffusion in a weakly coupled spin- 12 chain.
Mallikarjuna, Mallana Gowdra; Thirunavukkarasu, Nepolean; Hossain, Firoz; Bhat, Jayant S.; Jha, Shailendra K.; Rathore, Abhishek; Agrawal, Pawan Kumar; Pattanayak, Arunava; Reddy, Sokka S.; Gularia, Satish Kumar; Singh, Anju Mahendru; Manjaiah, Kanchikeri Math; Gupta, Hari Shanker
2015-01-01
Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS) revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg–1; zinc: 5.41 to 30.85 mg kg–1; manganese: 3.30 to17.73 mg kg–1; copper: 0.53 to 5.48 mg kg–1) and grain yield (826.6 to 5413 kg ha–1). Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p < 0.05) and across locations (r = 0.44, p < 0.01). Variance components of the additive main effects and multiplicative interactions (AMMI) model showed significant genotype and genotype × environment interaction for kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%), manganese (41.34%) and copper (41.12%), and environment main effects for both kernel zinc (40.5%) and grain yield (37.0%). Genotype main effect plus genotype-by-environment interaction (GGE) biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV) as the better representative of the AMMI stability parameters. Dynamic stability parameter GGE distance (GGED) showed strong and positive correlation with both mean kernel concentrations and grain yield. Inbreds (CM-501, SKV-775, HUZM-185) identified from the present investigation will be useful in developing micronutrient-rich as well as stable maize hybrids without compromising grain yield. PMID:26406470
Mallikarjuna, Mallana Gowdra; Thirunavukkarasu, Nepolean; Hossain, Firoz; Bhat, Jayant S; Jha, Shailendra K; Rathore, Abhishek; Agrawal, Pawan Kumar; Pattanayak, Arunava; Reddy, Sokka S; Gularia, Satish Kumar; Singh, Anju Mahendru; Manjaiah, Kanchikeri Math; Gupta, Hari Shanker
2015-01-01
Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS) revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg(-1); zinc: 5.41 to 30.85 mg kg(-1); manganese: 3.30 to 17.73 mg kg(-1); copper: 0.53 to 5.48 mg kg(-1)) and grain yield (826.6 to 5413 kg ha(-1)). Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p < 0.05) and across locations (r = 0.44, p < 0.01). Variance components of the additive main effects and multiplicative interactions (AMMI) model showed significant genotype and genotype × environment interaction for kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%), manganese (41.34%) and copper (41.12%), and environment main effects for both kernel zinc (40.5%) and grain yield (37.0%). Genotype main effect plus genotype-by-environment interaction (GGE) biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV) as the better representative of the AMMI stability parameters. Dynamic stability parameter GGE distance (GGED) showed strong and positive correlation with both mean kernel concentrations and grain yield. Inbreds (CM-501, SKV-775, HUZM-185) identified from the present investigation will be useful in developing micronutrient-rich as well as stable maize hybrids without compromising grain yield.
Mutually catalyzed birth of population and assets in exchange-driven growth
NASA Astrophysics Data System (ADS)
Lin, Zhenquan; Ke, Jianhong; Ye, Gaoxiang
2006-10-01
We propose an exchange-driven aggregation growth model of population and assets with mutually catalyzed birth to study the interaction between the population and assets in their exchange-driven processes. In this model, monomer (or equivalently, individual) exchange occurs between any pair of aggregates of the same species (population or assets). The rate kernels of the exchanges of population and assets are K(k,l)=Kkl and L(k,l)=Lkl , respectively, at which one monomer migrates from an aggregate of size k to another of size l . Meanwhile, an aggregate of one species can yield a new monomer by the catalysis of an arbitrary aggregate of the other species. The rate kernel of asset-catalyzed population birth is I(k,l)=Iklμ [and that of population-catalyzed asset birth is J(k,l)=Jklν ], at which an aggregate of size k gains a monomer birth when it meets a catalyst aggregate of size l . The kinetic behaviors of the population and asset aggregates are solved based on the rate equations. The evolution of the aggregate size distributions of population and assets is found to fall into one of three categories for different parameters μ and ν : (i) population (asset) aggregates evolve according to the conventional scaling form in the case of μ⩽0 (ν⩽0) , (ii) population (asset) aggregates evolve according to a modified scaling form in the case of ν=0 and μ>0 ( μ=0 and ν>0 ), and (iii) both population and asset aggregates undergo gelation transitions at a finite time in the case of μ=ν>0 .
Liao, Lingwen; Zhuang, Shengli; Wang, Pu; Xu, Yanan; Yan, Nan; Dong, Hongwei; Wang, Chengming; Zhao, Yan; Xia, Nan; Li, Jin; Deng, Haiteng; Pei, Yong; Tian, Shi-Kai; Wu, Zhikun
2017-10-02
Although face-centered cubic (fcc), body-centered cubic (bcc), hexagonal close-packed (hcp), and other structured gold nanoclusters have been reported, it was unclear whether gold nanoclusters with mix-packed (fcc and non-fcc) kernels exist, and the correlation between kernel packing and the properties of gold nanoclusters is unknown. A Au 49 (2,4-DMBT) 27 nanocluster with a shell electron count of 22 has now been been synthesized and structurally resolved by single-crystal X-ray crystallography, which revealed that Au 49 (2,4-DMBT) 27 contains a unique Au 34 kernel consisting of one quasi-fcc-structured Au 21 and one non-fcc-structured Au 13 unit (where 2,4-DMBTH=2,4-dimethylbenzenethiol). Further experiments revealed that the kernel packing greatly influences the electrochemical gap (EG) and the fcc structure has a larger EG than the investigated non-fcc structure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
An alternative covariance estimator to investigate genetic heterogeneity in populations.
Heslot, Nicolas; Jannink, Jean-Luc
2015-11-26
For genomic prediction and genome-wide association studies (GWAS) using mixed models, covariance between individuals is estimated using molecular markers. Based on the properties of mixed models, using available molecular data for prediction is optimal if this covariance is known. Under this assumption, adding individuals to the analysis should never be detrimental. However, some empirical studies showed that increasing training population size decreased prediction accuracy. Recently, results from theoretical models indicated that even if marker density is high and the genetic architecture of traits is controlled by many loci with small additive effects, the covariance between individuals, which depends on relationships at causal loci, is not always well estimated by the whole-genome kinship. We propose an alternative covariance estimator named K-kernel, to account for potential genetic heterogeneity between populations that is characterized by a lack of genetic correlation, and to limit the information flow between a priori unknown populations in a trait-specific manner. This is similar to a multi-trait model and parameters are estimated by REML and, in extreme cases, it can allow for an independent genetic architecture between populations. As such, K-kernel is useful to study the problem of the design of training populations. K-kernel was compared to other covariance estimators or kernels to examine its fit to the data, cross-validated accuracy and suitability for GWAS on several datasets. It provides a significantly better fit to the data than the genomic best linear unbiased prediction model and, in some cases it performs better than other kernels such as the Gaussian kernel, as shown by an empirical null distribution. In GWAS simulations, alternative kernels control type I errors as well as or better than the classical whole-genome kinship and increase statistical power. No or small gains were observed in cross-validated prediction accuracy. This alternative covariance estimator can be used to gain insight into trait-specific genetic heterogeneity by identifying relevant sub-populations that lack genetic correlation between them. Genetic correlation can be 0 between identified sub-populations by performing automatic selection of relevant sets of individuals to be included in the training population. It may also increase statistical power in GWAS.
NASA Astrophysics Data System (ADS)
Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein
2017-11-01
We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness.
Kandianis, Catherine B.; Michenfelder, Abigail S.; Simmons, Susan J.; Grusak, Michael A.; Stapleton, Ann E.
2013-01-01
The improvement of grain nutrient profiles for essential minerals and vitamins through breeding strategies is a target important for agricultural regions where nutrient poor crops like maize contribute a large proportion of the daily caloric intake. Kernel iron concentration in maize exhibits a broad range. However, the magnitude of genotype by environment (GxE) effects on this trait reduces the efficacy and predictability of selection programs, particularly when challenged with abiotic stress such as water and nitrogen limitations. Selection has also been limited by an inverse correlation between kernel iron concentration and the yield component of kernel size in target environments. Using 25 maize inbred lines for which extensive genome sequence data is publicly available, we evaluated the response of kernel iron density and kernel mass to water and nitrogen limitation in a managed field stress experiment using a factorial design. To further understand GxE interactions we used partition analysis to characterize response of kernel iron and weight to abiotic stressors among all genotypes, and observed two patterns: one characterized by higher kernel iron concentrations in control over stress conditions, and another with higher kernel iron concentration under drought and combined stress conditions. Breeding efforts for this nutritional trait could exploit these complementary responses through combinations of favorable allelic variation from these already well-characterized genetic stocks. PMID:24363659
Genomic Prediction of Genotype × Environment Interaction Kernel Regression Models.
Cuevas, Jaime; Crossa, José; Soberanis, Víctor; Pérez-Elizalde, Sergio; Pérez-Rodríguez, Paulino; Campos, Gustavo de Los; Montesinos-López, O A; Burgueño, Juan
2016-11-01
In genomic selection (GS), genotype × environment interaction (G × E) can be modeled by a marker × environment interaction (M × E). The G × E may be modeled through a linear kernel or a nonlinear (Gaussian) kernel. In this study, we propose using two nonlinear Gaussian kernels: the reproducing kernel Hilbert space with kernel averaging (RKHS KA) and the Gaussian kernel with the bandwidth estimated through an empirical Bayesian method (RKHS EB). We performed single-environment analyses and extended to account for G × E interaction (GBLUP-G × E, RKHS KA-G × E and RKHS EB-G × E) in wheat ( L.) and maize ( L.) data sets. For single-environment analyses of wheat and maize data sets, RKHS EB and RKHS KA had higher prediction accuracy than GBLUP for all environments. For the wheat data, the RKHS KA-G × E and RKHS EB-G × E models did show up to 60 to 68% superiority over the corresponding single environment for pairs of environments with positive correlations. For the wheat data set, the models with Gaussian kernels had accuracies up to 17% higher than that of GBLUP-G × E. For the maize data set, the prediction accuracy of RKHS EB-G × E and RKHS KA-G × E was, on average, 5 to 6% higher than that of GBLUP-G × E. The superiority of the Gaussian kernel models over the linear kernel is due to more flexible kernels that accounts for small, more complex marker main effects and marker-specific interaction effects. Copyright © 2016 Crop Science Society of America.
Mapping QTLs controlling kernel dimensions in a wheat inter-varietal RIL mapping population.
Cheng, Ruiru; Kong, Zhongxin; Zhang, Liwei; Xie, Quan; Jia, Haiyan; Yu, Dong; Huang, Yulong; Ma, Zhengqiang
2017-07-01
Seven kernel dimension QTLs were identified in wheat, and kernel thickness was found to be the most important dimension for grain weight improvement. Kernel morphology and weight of wheat (Triticum aestivum L.) affect both yield and quality; however, the genetic basis of these traits and their interactions has not been fully understood. In this study, to investigate the genetic factors affecting kernel morphology and the association of kernel morphology traits with kernel weight, kernel length (KL), width (KW) and thickness (KT) were evaluated, together with hundred-grain weight (HGW), in a recombinant inbred line population derived from Nanda2419 × Wangshuibai, with data from five trials (two different locations over 3 years). The results showed that HGW was more closely correlated with KT and KW than with KL. A whole genome scan revealed four QTLs for KL, one for KW and two for KT, distributed on five different chromosomes. Of them, QKl.nau-2D for KL, and QKt.nau-4B and QKt.nau-5A for KT were newly identified major QTLs for the respective traits, explaining up to 32.6 and 41.5% of the phenotypic variations, respectively. Increase of KW and KT and reduction of KL/KT and KW/KT ratios always resulted in significant higher grain weight. Lines combining the Nanda 2419 alleles of the 4B and 5A intervals had wider, thicker, rounder kernels and a 14% higher grain weight in the genotype-based analysis. A strong, negative linear relationship of the KW/KT ratio with grain weight was observed. It thus appears that kernel thickness is the most important kernel dimension factor in wheat improvement for higher yield. Mapping and marker identification of the kernel dimension-related QTLs definitely help realize the breeding goals.
Liu, Wei; Wang, Zhen-Zhong; Qing, Jian-Ping; Li, Hong-Juan; Xiao, Wei
2014-01-01
Background: Peach kernels which contain kinds of fatty acids play an important role in the regulation of a variety of physiological and biological functions. Objective: To establish an innovative and rapid diffuse reflectance near-infrared spectroscopy (DR-NIR) analysis method along with chemometric techniques for the qualitative and quantitative determination of a peach kernel. Materials and Methods: Peach kernel samples from nine different origins were analyzed with high-performance liquid chromatography (HPLC) as a reference method. DR-NIR is in the spectral range 1100-2300 nm. Principal component analysis (PCA) and partial least squares regression (PLSR) algorithm were applied to obtain prediction models, The Savitzky-Golay derivative and first derivative were adopted for the spectral pre-processing, PCA was applied to classify the varieties of those samples. For the quantitative calibration, the models of linoleic and oleinic acids were established with the PLSR algorithm and the optimal principal component (PC) numbers were selected with leave-one-out (LOO) cross-validation. The established models were evaluated with the root mean square error of deviation (RMSED) and corresponding correlation coefficients (R2). Results: The PCA results of DR-NIR spectra yield clear classification of the two varieties of peach kernel. PLSR had a better predictive ability. The correlation coefficients of the two calibration models were above 0.99, and the RMSED of linoleic and oleinic acids were 1.266% and 1.412%, respectively. Conclusion: The DR-NIR combined with PCA and PLSR algorithm could be used efficiently to identify and quantify peach kernels and also help to solve variety problem. PMID:25422544
Kebede, Aida Z; Woldemariam, Tsegaye; Reid, Lana M; Harris, Linda J
2016-01-01
Unique and co-localized chromosomal regions affecting Gibberella ear rot disease resistance and correlated agronomic traits were identified in maize. Dissecting the mechanisms underlying resistance to Gibberella ear rot (GER) disease in maize provides insight towards more informed breeding. To this goal, we evaluated 410 recombinant inbred lines (RIL) for GER resistance over three testing years using silk channel and kernel inoculation techniques. RILs were also evaluated for agronomic traits like days to silking, husk cover, and kernel drydown rate. The RILs showed significant genotypic differences for all traits with above average to high heritability estimates. Significant (P < 0.01) but weak genotypic correlations were observed between disease severity and agronomic traits, indicating the involvement of agronomic traits in disease resistance. Common QTLs were detected for GER resistance and kernel drydown rate, suggesting the existence of pleiotropic genes that could be exploited to improve both traits at the same time. The QTLs identified for silk and kernel resistance shared some common regions on chromosomes 1, 2, and 8 and also had some regions specific to each tissue on chromosomes 9 and 10. Thus, effective GER resistance breeding could be achieved by considering screening methods that allow exploitation of tissue-specific disease resistance mechanisms and include kernel drydown rate either in an index or as indirect selection criterion.
Essays in applied macroeconomics: Asymmetric price adjustment, exchange rate and treatment effect
NASA Astrophysics Data System (ADS)
Gu, Jingping
This dissertation consists of three essays. Chapter II examines the possible asymmetric response of gasoline prices to crude oil price changes using an error correction model with GARCH errors. Recent papers have looked at this issue. Some of these papers estimate a form of error correction model, but none of them accounts for autoregressive heteroskedasticity in estimation and testing for asymmetry and none of them takes the response of crude oil price into consideration. We find that time-varying volatility of gasoline price disturbances is an important feature of the data, and when we allow for asymmetric GARCH errors and investigate the system wide impulse response function, we find evidence of asymmetric adjustment to crude oil price changes in weekly retail gasoline prices. Chapter III discusses the relationship between fiscal deficit and exchange rate. Economic theory predicts that fiscal deficits can significantly affect real exchange rate movements, but existing empirical evidence reports only a weak impact of fiscal deficits on exchange rates. Based on US dollar-based real exchange rates in G5 countries and a flexible varying coefficient model, we show that the previously documented weak relationship between fiscal deficits and exchange rates may be the result of additive specifications, and that the relationship is stronger if we allow fiscal deficits to impact real exchange rates non-additively as well as nonlinearly. We find that the speed of exchange rate adjustment toward equilibrium depends on the state of the fiscal deficit; a fiscal contraction in the US can lead to less persistence in the deviation of exchange rates from fundamentals, and faster mean reversion to the equilibrium. Chapter IV proposes a kernel method to deal with the nonparametric regression model with only discrete covariates as regressors. This new approach is based on recently developed least squares cross-validation kernel smoothing method. It can not only automatically smooth the irrelevant variables out of the nonparametric regression model, but also avoid the problem of loss of efficiency related to the traditional nonparametric frequency-based method and the problem of misspecification based on parametric model.
Debebe, Abel; Singh, Harijat; Tefera, Hailu
2014-01-01
This experiment was conducted at Debre Zeit and Akaki during 2004-2005 cropping season on F2-derived F4 bulk families of three crosses, viz, DZ-01-974 x DZ-01-2786, DZ-01-974 x DZ-Cr-37 and Alba x Kaye Murri. To estimate the correlations and path coefficients between yield and yield components, 63 F4 families were taken randomly from each of the three crosses. The 189 F4 families, five parents and two checks were space planted following in 14 x 14 simple lattice design. Study of associations among traits indicated that yield was positively associated with shoot biomass, harvest index, lodging index and panicle kernel weight at phenotypic level at Debre Zeit. At Akaki, yield had significant positive correlation with shoot biomass, harvest index, plant height, panicle length and panicle weight. At genotypic level, grain yield per plot exhibited positive association with harvest index, shoot biomass, lodging index and panicle kernel weight at Debre Zeit. By contrast, days to heading, days to maturity, plant height and panicle length showed negative association with yield. At Akaki, kernel yield per plot was positively correlated at genotypic level with all the traits considered where lodging index had the highest correlation followed by shoot biomass, panicle kernel weight and harvest index. Path coefficient analysis at both phenotypic and genotypic levels for both the locations suggested those shoot biomass and harvest indexes are the two important yield determining traits. These two traits might be useful in indirect selection for yield improvement in the material generated from the three crosses under consideration.
A comparison of skyshine computational methods.
Hertel, Nolan E; Sweezy, Jeremy E; Shultis, J Kenneth; Warkentin, J Karl; Rose, Zachary J
2005-01-01
A variety of methods employing radiation transport and point-kernel codes have been used to model two skyshine problems. The first problem is a 1 MeV point source of photons on the surface of the earth inside a 2 m tall and 1 m radius silo having black walls. The skyshine radiation downfield from the point source was estimated with and without a 30-cm-thick concrete lid on the silo. The second benchmark problem is to estimate the skyshine radiation downfield from 12 cylindrical canisters emplaced in a low-level radioactive waste trench. The canisters are filled with ion-exchange resin with a representative radionuclide loading, largely 60Co, 134Cs and 137Cs. The solution methods include use of the MCNP code to solve the problem by directly employing variance reduction techniques, the single-scatter point kernel code GGG-GP, the QADMOD-GP point kernel code, the COHORT Monte Carlo code, the NAC International version of the SKYSHINE-III code, the KSU hybrid method and the associated KSU skyshine codes.
Grey Language Hesitant Fuzzy Group Decision Making Method Based on Kernel and Grey Scale
Diao, Yuzhu; Hu, Aqin
2018-01-01
Based on grey language multi-attribute group decision making, a kernel and grey scale scoring function is put forward according to the definition of grey language and the meaning of the kernel and grey scale. The function introduces grey scale into the decision-making method to avoid information distortion. This method is applied to the grey language hesitant fuzzy group decision making, and the grey correlation degree is used to sort the schemes. The effectiveness and practicability of the decision-making method are further verified by the industry chain sustainable development ability evaluation example of a circular economy. Moreover, its simplicity and feasibility are verified by comparing it with the traditional grey language decision-making method and the grey language hesitant fuzzy weighted arithmetic averaging (GLHWAA) operator integration method after determining the index weight based on the grey correlation. PMID:29498699
Grey Language Hesitant Fuzzy Group Decision Making Method Based on Kernel and Grey Scale.
Li, Qingsheng; Diao, Yuzhu; Gong, Zaiwu; Hu, Aqin
2018-03-02
Based on grey language multi-attribute group decision making, a kernel and grey scale scoring function is put forward according to the definition of grey language and the meaning of the kernel and grey scale. The function introduces grey scale into the decision-making method to avoid information distortion. This method is applied to the grey language hesitant fuzzy group decision making, and the grey correlation degree is used to sort the schemes. The effectiveness and practicability of the decision-making method are further verified by the industry chain sustainable development ability evaluation example of a circular economy. Moreover, its simplicity and feasibility are verified by comparing it with the traditional grey language decision-making method and the grey language hesitant fuzzy weighted arithmetic averaging (GLHWAA) operator integration method after determining the index weight based on the grey correlation.
NASA Astrophysics Data System (ADS)
Sun, Yun-Fei; Chen, Dan; Lin, Zhen-Quan; Ke, Jian-Hong
2009-06-01
We propose a solvable aggregation model to mimic the evolution of population A, asset B, and the quantifiable resource C in a society. In this system, the population and asset aggregates themselves grow through self-exchanges with the rate kernels K1(k, j) = K1kj and K2(k, j) = K2kj, respectively. The actions of the population and asset aggregations on the aggregation evolution of resource aggregates are described by the population-catalyzed monomer death of resource aggregates and asset-catalyzed monomer birth of resource aggregates with the rate kernels J1(k, j) = J1k and J2(k, j) = J2k, respectively. Meanwhile, the asset and resource aggregates conjunctly catalyze the monomer birth of population aggregates with the rate kernel I1(k, i, j) = I1kiμjη, and population and resource aggregates conjunctly catalyze the monomer birth of asset aggregates with the rate kernel I2(k, i, j) = I2kivjη. The kinetic behaviors of species A, B, and C are investigated by means of the mean-field rate equation approach. The effects of the population-catalyzed death and asset-catalyzed birth on the evolution of resource aggregates based on the self-exchanges of population and asset appear in effective forms. The coefficients of the effective population-catalyzed death and the asset-catalyzed birth are expressed as J1e = J1/K1 and J2e = J2/K2, respectively. The aggregate size distribution of C species is found to be crucially dominated by the competition between the effective death and the effective birth. It satisfies the conventional scaling form, generalized scaling form, and modified scaling form in the cases of J1e < J2e, J1e = J2e, and J1e > J2e, respectively. Meanwhile, we also find the aggregate size distributions of populations and assets both fall into two distinct categories for different parameters μ, ν, and η: (i) When μ = ν = η = 0 and μ = ν = 0, η = 1, the population and asset aggregates obey the generalized scaling forms; and (ii) When μ = ν = 1, η = 0, and μ = ν = η = 1, the population and asset aggregates experience gelation transitions at finite times and the scaling forms break down.
NASA Astrophysics Data System (ADS)
Chmiel, Malgorzata; Roux, Philippe; Herrmann, Philippe; Rondeleux, Baptiste; Wathelet, Marc
2018-05-01
We investigated the construction of diffraction kernels for surface waves using two-point convolution and/or correlation from land active seismic data recorded in the context of exploration geophysics. The high density of controlled sources and receivers, combined with the application of the reciprocity principle, allows us to retrieve two-dimensional phase-oscillation diffraction kernels (DKs) of surface waves between any two source or receiver points in the medium at each frequency (up to 15 Hz, at least). These DKs are purely data-based as no model calculations and no synthetic data are needed. They naturally emerge from the interference patterns of the recorded wavefields projected on the dense array of sources and/or receivers. The DKs are used to obtain multi-mode dispersion relations of Rayleigh waves, from which near-surface shear velocity can be extracted. Using convolution versus correlation with a grid of active sources is an important step in understanding the physics of the retrieval of surface wave Green's functions. This provides the foundation for future studies based on noise sources or active sources with a sparse spatial distribution.
Pollen source effects on growth of kernel structures and embryo chemical compounds in maize.
Tanaka, W; Mantese, A I; Maddonni, G A
2009-08-01
Previous studies have reported effects of pollen source on the oil concentration of maize (Zea mays) kernels through modifications to both the embryo/kernel ratio and embryo oil concentration. The present study expands upon previous analyses by addressing pollen source effects on the growth of kernel structures (i.e. pericarp, endosperm and embryo), allocation of embryo chemical constituents (i.e. oil, protein, starch and soluble sugars), and the anatomy and histology of the embryos. Maize kernels with different oil concentration were obtained from pollinations with two parental genotypes of contrasting oil concentration. The dynamics of the growth of kernel structures and allocation of embryo chemical constituents were analysed during the post-flowering period. Mature kernels were dissected to study the anatomy (embryonic axis and scutellum) and histology [cell number and cell size of the scutellums, presence of sub-cellular structures in scutellum tissue (starch granules, oil and protein bodies)] of the embryos. Plants of all crosses exhibited a similar kernel number and kernel weight. Pollen source modified neither the growth period of kernel structures, nor pericarp growth rate. By contrast, pollen source determined a trade-off between embryo and endosperm growth rates, which impacted on the embryo/kernel ratio of mature kernels. Modifications to the embryo size were mediated by scutellum cell number. Pollen source also affected (P < 0.01) allocation of embryo chemical compounds. Negative correlations among embryo oil concentration and those of starch (r = 0.98, P < 0.01) and soluble sugars (r = 0.95, P < 0.05) were found. Coincidently, embryos with low oil concentration had an increased (P < 0.05-0.10) scutellum cell area occupied by starch granules and fewer oil bodies. The effects of pollen source on both embryo/kernel ratio and allocation of embryo chemicals seems to be related to the early established sink strength (i.e. sink size and sink activity) of the embryos.
Implementation of Two-Component Time-Dependent Density Functional Theory in TURBOMOLE.
Kühn, Michael; Weigend, Florian
2013-12-10
We report the efficient implementation of a two-component time-dependent density functional theory proposed by Wang et al. (Wang, F.; Ziegler, T.; van Lenthe, E.; van Gisbergen, S.; Baerends, E. J. J. Chem. Phys. 2005, 122, 204103) that accounts for spin-orbit effects on excitations of closed-shell systems by employing a noncollinear exchange-correlation kernel. In contrast to the aforementioned implementation, our method is based on two-component effective core potentials as well as Gaussian-type basis functions. It is implemented in the TURBOMOLE program suite for functionals of the local density approximation and the generalized gradient approximation. Accuracy is assessed by comparison of two-component vertical excitation energies of heavy atoms and ions (Cd, Hg, Au(+)) and small molecules (I2, TlH) to other two- and four-component approaches. Efficiency is demonstrated by calculating the electronic spectrum of Au20.
NASA Astrophysics Data System (ADS)
Spivey, Alvin J.
Mapping land-cover land-use change (LCLUC) over regional and continental scales, and long time scales (years and decades), can be accomplished using thematically identified classification maps of a landscape---a LCLU class map. Observations of a landscape's LCLU class map pattern can indicate the most relevant process, like hydrologic or ecologic function, causing landscape scale environmental change. Quantified as Landscape Pattern Metrics (LPM), emergent landscape patterns act as Landscape Indicators (LI) when physically interpreted. The common mathematical approach to quantifying observed landscape scale pattern is to have LPM measure how connected a class exists within the landscape, through nonlinear local kernel operations of edges and gradients in class maps. Commonly applied kernel-based LPM that consistently reveal causal processes are Dominance, Contagion, and Fractal Dimension. These kernel-based LPM can be difficult to interpret. The emphasis on an image pixel's edge by gradient operations and dependence on an image pixel's existence according to classification accuracy limit the interpretation of LPM. For example, the Dominance and Contagion kernel-based LPM very similarly measure how connected a landscape is. Because of this, their reported edge measurements of connected pattern correlate strongly, making their results ambiguous. Additionally, each of these kernel-based LPM are unscalable when comparing class maps from separate imaging system sensor scenarios that change the image pixel's edge position (i.e. changes in landscape extent, changes in pixel size, changes in orientation, etc), and can only interpret landscape pattern as accurately as the LCLU map classification will allow. This dissertation discusses the reliability of common LPM in light of imaging system effects such as: algorithm classification likelihoods, LCLU classification accuracy due to random image sensor noise, and image scale. A description of an approach to generating well behaved LPM through a Fourier system analysis of the entire class map, or any subset of the class map (e.g. the watershed) is the focus of this work. The Fourier approach provides four improvements for LPM. First, the approach reduces any correlation between metrics by developing them within an independent (i.e. orthogonal) Fourier vector space; a Fourier vector space that includes relevant physically representative parameters ( i.e. between class Euclidean distance). Second, accounting for LCLU classification accuracy the LPM measurement precision and measurement accuracy are reported. Third, the mathematics of this approach makes it possible to compare image data captured at separate pixel resolutions or even from separate landscape scenes. Fourth, Fourier interpreted landscape pattern measurement can be a measure of the entire landscape shape, of individual landscape cover change, or as exchanges between class map subsets by operating on the entire class map, subset of class map, or separate subsets of class map[s] respectively. These LCLUC LPM are examined along the 1991-1992 and 2000-2001 records of National Land Cover Database Landsat data products. Those LPM results are used in a predictive fecal coliform model at the South Carolina watershed level in the context of past (validation study) change. Finally, the proposed LPM ability to be used as ecologically relevant environmental indicators is tested by correlating metrics with other, well known LI that consistently reveal causal processes in the literature.
Chen, Tianle; Zeng, Donglin
2015-01-01
Summary Predicting disease risk and progression is one of the main goals in many clinical research studies. Cohort studies on the natural history and etiology of chronic diseases span years and data are collected at multiple visits. Although kernel-based statistical learning methods are proven to be powerful for a wide range of disease prediction problems, these methods are only well studied for independent data but not for longitudinal data. It is thus important to develop time-sensitive prediction rules that make use of the longitudinal nature of the data. In this paper, we develop a novel statistical learning method for longitudinal data by introducing subject-specific short-term and long-term latent effects through a designed kernel to account for within-subject correlation of longitudinal measurements. Since the presence of multiple sources of data is increasingly common, we embed our method in a multiple kernel learning framework and propose a regularized multiple kernel statistical learning with random effects to construct effective nonparametric prediction rules. Our method allows easy integration of various heterogeneous data sources and takes advantage of correlation among longitudinal measures to increase prediction power. We use different kernels for each data source taking advantage of the distinctive feature of each data modality, and then optimally combine data across modalities. We apply the developed methods to two large epidemiological studies, one on Huntington's disease and the other on Alzheimer's Disease (Alzheimer's Disease Neuroimaging Initiative, ADNI) where we explore a unique opportunity to combine imaging and genetic data to study prediction of mild cognitive impairment, and show a substantial gain in performance while accounting for the longitudinal aspect of the data. PMID:26177419
Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein
2017-11-01
We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Fruit position within the canopy affects kernel lipid composition of hazelnuts.
Pannico, Antonio; Cirillo, Chiara; Giaccone, Matteo; Scognamiglio, Pasquale; Romano, Raffaele; Caporaso, Nicola; Sacchi, Raffaele; Basile, Boris
2017-11-01
The aim of this research was to study the variability in kernel composition within the canopy of hazelnut trees. Kernel fresh and dry weight increased linearly with fruit height above the ground. Fat content decreased, while protein and ash content increased, from the bottom to the top layers of the canopy. The level of unsaturation of fatty acids decreased from the bottom to the top of the canopy. Thus, the kernels located in the bottom layers of the canopy appear to be more interesting from a nutritional point of view, but their lipids may be more exposed to oxidation. The content of different phytosterols increased progressively from bottom to top canopy layers. Most of these effects correlated with the pattern in light distribution inside the canopy. The results of this study indicate that fruit position within the canopy is an important factor in determining hazelnut kernel growth and composition. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Optimized data fusion for K-means Laplacian clustering
Yu, Shi; Liu, Xinhai; Tranchevent, Léon-Charles; Glänzel, Wolfgang; Suykens, Johan A. K.; De Moor, Bart; Moreau, Yves
2011-01-01
Motivation: We propose a novel algorithm to combine multiple kernels and Laplacians for clustering analysis. The new algorithm is formulated on a Rayleigh quotient objective function and is solved as a bi-level alternating minimization procedure. Using the proposed algorithm, the coefficients of kernels and Laplacians can be optimized automatically. Results: Three variants of the algorithm are proposed. The performance is systematically validated on two real-life data fusion applications. The proposed Optimized Kernel Laplacian Clustering (OKLC) algorithms perform significantly better than other methods. Moreover, the coefficients of kernels and Laplacians optimized by OKLC show some correlation with the rank of performance of individual data source. Though in our evaluation the K values are predefined, in practical studies, the optimal cluster number can be consistently estimated from the eigenspectrum of the combined kernel Laplacian matrix. Availability: The MATLAB code of algorithms implemented in this paper is downloadable from http://homes.esat.kuleuven.be/~sistawww/bioi/syu/oklc.html. Contact: shiyu@uchicago.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20980271
Zhang, Wencan; Leong, Siew Mun; Zhao, Feifei; Zhao, Fangju; Yang, Tiankui; Liu, Shaoquan
2018-05-01
With an interest to enhance the aroma of palm kernel oil (PKO), Viscozyme L, an enzyme complex containing a wide range of carbohydrases, was applied to alter the carbohydrates in palm kernels (PK) to modulate the formation of volatiles upon kernel roasting. After Viscozyme treatment, the content of simple sugars and free amino acids in PK increased by 4.4-fold and 4.5-fold, respectively. After kernel roasting and oil extraction, significantly more 2,5-dimethylfuran, 2-[(methylthio)methyl]-furan, 1-(2-furanyl)-ethanone, 1-(2-furyl)-2-propanone, 5-methyl-2-furancarboxaldehyde and 2-acetyl-5-methylfuran but less 2-furanmethanol and 2-furanmethanol acetate were found in treated PKO; the correlation between their formation and simple sugar profile was estimated by using partial least square regression (PLS1). Obvious differences in pyrroles and Strecker aldehydes were also found between the control and treated PKOs. Principal component analysis (PCA) clearly discriminated the treated PKOs from that of control PKOs on the basis of all volatile compounds. Such changes in volatiles translated into distinct sensory attributes, whereby treated PKO was more caramelic and burnt after aqueous extraction and more nutty, roasty, caramelic and smoky after solvent extraction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kinetic Behavior of Exchange-Driven Growth with Catalyzed-Birth Processes
NASA Astrophysics Data System (ADS)
Wang, Hai-Feng; Lin, Zhen-Quan; Kong, Xiang-Mu
2006-12-01
Two catalyzed-birth models of n-species (n>=2) aggregates with exchange-driven growth processes are proposed and compared. In the first one, the exchange reaction occurs between any two aggregates Amk and Amj of the same species with the rate kernels Km(k,j) = Kmkj (m = 1,2,...,n, n>=2), and aggregates of An species catalyze a monomer-birth of Al species (l = 1,2,...,n-1) with the catalysis rate kernel Jl(k,j) = Jlkjυ. The kinetic behaviors are investigated by means of the mean-field theory. We find that the evolution behavior of aggregate-size distribution alk(t) of Al species depends crucially on the value of the catalysis rate parameter υ: (i) alk(t) obeys the conventional scaling law in the case of υ<=0, (ii) alk(t) satisfies a modified scaling form in the case of υ>0. In the second model, the mechanism of monomer-birth of An-species catalyzed by Al species is added on the basis of the first model, that is, the aggregates of Al and An species catalyze each other to cause monomer-birth. The kinetic behaviors of Al and An species are found to fall into two categories for the different υ: (i) growth obeying conventional scaling form with υ<=0, (ii) gelling at finite time with υ>0.
Considering causal genes in the genetic dissection of kernel traits in common wheat.
Mohler, Volker; Albrecht, Theresa; Castell, Adelheid; Diethelm, Manuela; Schweizer, Günther; Hartl, Lorenz
2016-11-01
Genetic factors controlling thousand-kernel weight (TKW) were characterized for their association with other seed traits, including kernel width, kernel length, ratio of kernel width to kernel length (KW/KL), kernel area, and spike number per m 2 (SN). For this purpose, a genetic map was established utilizing a doubled haploid population derived from a cross between German winter wheat cultivars Pamier and Format. Association studies in a diversity panel of elite cultivars supplemented genetic analysis of kernel traits. In both populations, genomic signatures of 13 candidate genes for TKW and kernel size were analyzed. Major quantitative trait loci (QTL) for TKW were identified on chromosomes 1B, 2A, 2D, and 4D, and their locations coincided with major QTL for kernel size traits, supporting the common belief that TKW is a function of other kernel traits. The QTL on chromosome 2A was associated with TKW candidate gene TaCwi-A1 and the QTL on chromosome 4D was associated with dwarfing gene Rht-D1. A minor QTL for TKW on chromosome 6B coincided with TaGW2-6B. The QTL for kernel dimensions that did not affect TKW were detected on eight chromosomes. A major QTL for KW/KL located at the distal tip of chromosome arm 5AS is being reported for the first time. TaSus1-7A and TaSAP-A1, closely linked to each other on chromosome 7A, could be related to a minor QTL for KW/KL. Genetic analysis of SN confirmed its negative correlation with TKW in this cross. In the diversity panel, TaSus1-7A was associated with TKW. Compared to the Pamier/Format bi-parental population where TaCwi-A1a was associated with higher TKW, the same allele reduced grain yield in the diversity panel, suggesting opposite effects of TaCwi-A1 on these two traits.
Guo, Zhiqing; Döll, Katharina; Dastjerdi, Raana; Karlovsky, Petr; Dehne, Heinz-Wilhelm; Altincicek, Boran
2014-01-01
Species of Fusarium have significant agro-economical and human health-related impact by infecting diverse crop plants and synthesizing diverse mycotoxins. Here, we investigated interactions of grain-feeding Tenebrio molitor larvae with four grain-colonizing Fusarium species on wheat kernels. Since numerous metabolites produced by Fusarium spp. are toxic to insects, we tested the hypothesis that the insect senses and avoids Fusarium-colonized grains. We found that only kernels colonized with F. avenaceum or Beauveria bassiana (an insect-pathogenic fungal control) were avoided by the larvae as expected. Kernels colonized with F. proliferatum, F. poae or F. culmorum attracted T. molitor larvae significantly more than control kernels. The avoidance/preference correlated with larval feeding behaviors and weight gain. Interestingly, larvae that had consumed F. proliferatum- or F. poae-colonized kernels had similar survival rates as control. Larvae fed on F. culmorum-, F. avenaceum- or B. bassiana-colonized kernels had elevated mortality rates. HPLC analyses confirmed the following mycotoxins produced by the fungal strains on the kernels: fumonisins, enniatins and beauvericin by F. proliferatum, enniatins and beauvericin by F. poae, enniatins by F. avenaceum, and deoxynivalenol and zearalenone by F. culmorum. Our results indicate that T. molitor larvae have the ability to sense potential survival threats of kernels colonized with F. avenaceum or B. bassiana, but not with F. culmorum. Volatiles potentially along with gustatory cues produced by these fungi may represent survival threat signals for the larvae resulting in their avoidance. Although F. proliferatum or F. poae produced fumonisins, enniatins and beauvericin during kernel colonization, the larvae were able to use those kernels as diet without exhibiting increased mortality. Consumption of F. avenaceum-colonized kernels, however, increased larval mortality; these kernels had higher enniatin levels than F. proliferatum or F. poae-colonized ones suggesting that T. molitor can tolerate or metabolize those toxins. PMID:24932485
Yesbergenova-Cuny, Zhazira; Dinant, Sylvie; Martin-Magniette, Marie-Laure; Quilleré, Isabelle; Armengaud, Patrick; Monfalet, Priscilla; Lea, Peter J; Hirel, Bertrand
2016-11-01
Using a metabolomic approach, we have quantified the metabolite composition of the phloem sap exudate of seventeen European and American lines of maize that had been previously classified into five main groups on the basis of molecular marker polymorphisms. In addition to sucrose, glutamate and aspartate, which are abundant in the phloem sap of many plant species, large quantities of aconitate and alanine were also found in the phloem sap exudates of maize. Genetic variability of the phloem sap composition was observed in the different maize lines, although there was no obvious relationship between the phloem sap composition and the five previously classified groups. However, following hierarchical clustering analysis there was a clear relationship between two of the subclusters of lines defined on the basis of the composition of the phloem sap exudate and the earliness of silking date. A comparison between the metabolite contents of the ear leaves and the phloem sap exudates of each genotype, revealed that the relative content of most of the carbon- and nitrogen-containing metabolites was similar. Correlation studies performed between the metabolite content of the phloem sap exudates and yield-related traits also revealed that for some carbohydrates such as arabitol and sucrose there was a negative or positive correlation with kernel yield and kernel weight respectively. A posititive correlation was also found between kernel number and soluble histidine. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
QTL Mapping of Kernel Number-Related Traits and Validation of One Major QTL for Ear Length in Maize.
Huo, Dongao; Ning, Qiang; Shen, Xiaomeng; Liu, Lei; Zhang, Zuxin
2016-01-01
The kernel number is a grain yield component and an important maize breeding goal. Ear length, kernel number per row and ear row number are highly correlated with the kernel number per ear, which eventually determines the ear weight and grain yield. In this study, two sets of F2:3 families developed from two bi-parental crosses sharing one inbred line were used to identify quantitative trait loci (QTL) for four kernel number-related traits: ear length, kernel number per row, ear row number and ear weight. A total of 39 QTLs for the four traits were identified in the two populations. The phenotypic variance explained by a single QTL ranged from 0.4% to 29.5%. Additionally, 14 overlapping QTLs formed 5 QTL clusters on chromosomes 1, 4, 5, 7, and 10. Intriguingly, six QTLs for ear length and kernel number per row overlapped in a region on chromosome 1. This region was designated qEL1.10 and was validated as being simultaneously responsible for ear length, kernel number per row and ear weight in a near isogenic line-derived population, suggesting that qEL1.10 was a pleiotropic QTL with large effects. Furthermore, the performance of hybrids generated by crossing 6 elite inbred lines with two near isogenic lines at qEL1.10 showed the breeding value of qEL1.10 for the improvement of the kernel number and grain yield of maize hybrids. This study provides a basis for further fine mapping, molecular marker-aided breeding and functional studies of kernel number-related traits in maize.
NASA Astrophysics Data System (ADS)
Erhard, Jannis; Bleiziffer, Patrick; Görling, Andreas
2016-09-01
A power series approximation for the correlation kernel of time-dependent density-functional theory is presented. Using this approximation in the adiabatic-connection fluctuation-dissipation (ACFD) theorem leads to a new family of Kohn-Sham methods. The new methods yield reaction energies and barriers of unprecedented accuracy and enable a treatment of static (strong) correlation with an accuracy of high-level multireference configuration interaction methods but are single-reference methods allowing for a black-box-like handling of static correlation. The new methods exhibit a better scaling of the computational effort with the system size than rivaling wave-function-based electronic structure methods. Moreover, the new methods do not suffer from the problem of singularities in response functions plaguing previous ACFD methods and therefore are applicable to any type of electronic system.
Producing data-based sensitivity kernels from convolution and correlation in exploration geophysics.
NASA Astrophysics Data System (ADS)
Chmiel, M. J.; Roux, P.; Herrmann, P.; Rondeleux, B.
2016-12-01
Many studies have shown that seismic interferometry can be used to estimate surface wave arrivals by correlation of seismic signals recorded at a pair of locations. In the case of ambient noise sources, the convergence towards the surface wave Green's functions is obtained with the criterion of equipartitioned energy. However, seismic acquisition with active, controlled sources gives more possibilities when it comes to interferometry. The use of controlled sources makes it possible to recover the surface wave Green's function between two points using either correlation or convolution. We investigate the convolutional and correlational approaches using land active-seismic data from exploration geophysics. The data were recorded on 10,710 vertical receivers using 51,808 sources (seismic vibrator trucks). The sources spacing is the same in both X and Y directions (30 m) which is known as a "carpet shooting". The receivers are placed in parallel lines with a spacing 150 m in the X direction and 30 m in the Y direction. Invoking spatial reciprocity between sources and receivers, correlation and convolution functions can thus be constructed between either pairs of receivers or pairs of sources. Benefiting from the dense acquisition, we extract sensitivity kernels from correlation and convolution measurements of the seismic data. These sensitivity kernels are subsequently used to produce phase-velocity dispersion curves between two points and to separate the higher mode from the fundamental mode for surface waves. Potential application to surface wave cancellation is also envisaged.
Al-Saleh, Abboud; Brennan, Charles S
2012-11-22
The relationships between breadmaking quality, kernel properties (physical and chemical), and dough rheology were investigated using flours from six genotypes of Syrian wheat lines, comprising both commercially grown cultivars and advanced breeding lines. Genotypes were grown in 2008/2009 season in irrigated plots in the Eastern part of Syria. Grain samples were evaluated for vitreousness, test weight, 1000-kernel weight and then milled and tested for protein content, ash, and water content. Dough rheology of the samples was studied by the determination of the mixing time, stability, weakness, resistance and the extensibility of the dough. Loaf baking quality was evaluated by the measurement of the specific weight, resilience and firmness in addition to the sensory analysis. A comparative study between the six Syrian wheat genotypes and two English flour samples was conducted. Significant differences were observed among Syrian genotypes in vitreousness (69.3%-95.0%), 1000-kernel weight (35.2-46.9 g) and the test weight (82.2-88.0 kg/hL). All samples exhibited high falling numbers (346 to 417 s for the Syrian samples and 285 and 305 s for the English flours). A significant positive correlation was exhibited between the protein content of the flour and its absorption of water (r = 0.84 **), as well as with the vitreousness of the kernel (r = 0.54 *). Protein content was also correlated with dough stability (r = 0.86 **), extensibility (r = 0.8 **), and negatively correlated with dough weakness (r = -0.69 **). Bread firmness and dough weakness were positively correlated (r = 0.66 **). Sensory analysis indicated Doumah-2 was the best appreciated whilst Doumah 40765 and 46055 were the least appreciated which may suggest their suitability for biscuit preparation rather than bread making.
Al-Saleh, Abboud; Brennan, Charles S.
2012-01-01
The relationships between breadmaking quality, kernel properties (physical and chemical), and dough rheology were investigated using flours from six genotypes of Syrian wheat lines, comprising both commercially grown cultivars and advanced breeding lines. Genotypes were grown in 2008/2009 season in irrigated plots in the Eastern part of Syria. Grain samples were evaluated for vitreousness, test weight, 1000-kernel weight and then milled and tested for protein content, ash, and water content. Dough rheology of the samples was studied by the determination of the mixing time, stability, weakness, resistance and the extensibility of the dough. Loaf baking quality was evaluated by the measurement of the specific weight, resilience and firmness in addition to the sensory analysis. A comparative study between the six Syrian wheat genotypes and two English flour samples was conducted. Significant differences were observed among Syrian genotypes in vitreousness (69.3%–95.0%), 1000-kernel weight (35.2–46.9 g) and the test weight (82.2–88.0 kg/hL). All samples exhibited high falling numbers (346 to 417 s for the Syrian samples and 285 and 305 s for the English flours). A significant positive correlation was exhibited between the protein content of the flour and its absorption of water (r = 0.84 **), as well as with the vitreousness of the kernel (r = 0.54 *). Protein content was also correlated with dough stability (r = 0.86 **), extensibility (r = 0.8 **), and negatively correlated with dough weakness (r = −0.69 **). Bread firmness and dough weakness were positively correlated (r = 0.66 **). Sensory analysis indicated Doumah-2 was the best appreciated whilst Doumah 40765 and 46055 were the least appreciated which may suggest their suitability for biscuit preparation rather than bread making. PMID:28239087
Self-similar grid patterns in free-space shuffle-exchange networks
NASA Astrophysics Data System (ADS)
Haney, Michael W.
1993-12-01
Self-similar grid patterns are proposed as an alternative to rectangular grid, array optoelectronic sources, and detectors of smart pixels. For shuffle based multistage interconnection networks, it is suggested that smart pixel should not be arrayed on a rectangular grid and that smart pixel unit cell should be the kernel of a self-similar grid pattern.
NASA Astrophysics Data System (ADS)
Bally, B.; Duguet, T.
2018-02-01
Background: State-of-the-art multi-reference energy density functional calculations require the computation of norm overlaps between different Bogoliubov quasiparticle many-body states. It is only recently that the efficient and unambiguous calculation of such norm kernels has become available under the form of Pfaffians [L. M. Robledo, Phys. Rev. C 79, 021302 (2009), 10.1103/PhysRevC.79.021302]. Recently developed particle-number-restored Bogoliubov coupled-cluster (PNR-BCC) and particle-number-restored Bogoliubov many-body perturbation (PNR-BMBPT) ab initio theories [T. Duguet and A. Signoracci, J. Phys. G 44, 015103 (2017), 10.1088/0954-3899/44/1/015103] make use of generalized norm kernels incorporating explicit many-body correlations. In PNR-BCC and PNR-BMBPT, the Bogoliubov states involved in the norm kernels differ specifically via a global gauge rotation. Purpose: The goal of this work is threefold. We wish (i) to propose and implement an alternative to the Pfaffian method to compute unambiguously the norm overlap between arbitrary Bogoliubov quasiparticle states, (ii) to extend the first point to explicitly correlated norm kernels, and (iii) to scrutinize the analytical content of the correlated norm kernels employed in PNR-BMBPT. Point (i) constitutes the purpose of the present paper while points (ii) and (iii) are addressed in a forthcoming paper. Methods: We generalize the method used in another work [T. Duguet and A. Signoracci, J. Phys. G 44, 015103 (2017), 10.1088/0954-3899/44/1/015103] in such a way that it is applicable to kernels involving arbitrary pairs of Bogoliubov states. The formalism is presently explicated in detail in the case of the uncorrelated overlap between arbitrary Bogoliubov states. The power of the method is numerically illustrated and benchmarked against known results on the basis of toy models of increasing complexity. Results: The norm overlap between arbitrary Bogoliubov product states is obtained under a closed-form expression allowing its computation without any phase ambiguity. The formula is physically intuitive, accurate, and versatile. It equally applies to norm overlaps between Bogoliubov states of even or odd number parity. Numerical applications illustrate these features and provide a transparent representation of the content of the norm overlaps. Conclusions: The complex norm overlap between arbitrary Bogoliubov states is computed, without any phase ambiguity, via elementary linear algebra operations. The method can be used in any configuration mixing of orthogonal and non-orthogonal product states. Furthermore, the closed-form expression extends naturally to correlated overlaps at play in PNR-BCC and PNR-BMBPT. As such, the straight overlap between Bogoliubov states is the zero-order reduction of more involved norm kernels to be studied in a forthcoming paper.
Warren, Frederick J; Perston, Benjamin B; Galindez-Najera, Silvia P; Edwards, Cathrina H; Powell, Prudence O; Mandalari, Giusy; Campbell, Grant M; Butterworth, Peter J; Ellis, Peter R
2015-01-01
Infrared microspectroscopy is a tool with potential for studies of the microstructure, chemical composition and functionality of plants at a subcellular level. Here we present the use of high-resolution bench top-based infrared microspectroscopy to investigate the microstructure of Triticum aestivum L. (wheat) kernels and Arabidopsis leaves. Images of isolated wheat kernel tissues and whole wheat kernels following hydrothermal processing and simulated gastric and duodenal digestion were generated, as well as images of Arabidopsis leaves at different points during a diurnal cycle. Individual cells and cell walls were resolved, and large structures within cells, such as starch granules and protein bodies, were clearly identified. Contrast was provided by converting the hyperspectral image cubes into false-colour images using either principal component analysis (PCA) overlays or by correlation analysis. The unsupervised PCA approach provided a clear view of the sample microstructure, whereas the correlation analysis was used to confirm the identity of different anatomical structures using the spectra from isolated components. It was then demonstrated that gelatinized and native starch within cells could be distinguished, and that the loss of starch during wheat digestion could be observed, as well as the accumulation of starch in leaves during a diurnal period. PMID:26400058
Sensitivity Kernels for the Cross-Convolution Measure: Eliminate the Source in Waveform Tomography
NASA Astrophysics Data System (ADS)
Menke, W. H.
2017-12-01
We use the adjoint method to derive sensitivity kernels for the cross-convolution measure, a goodness-of-fit criterion that is applicable to seismic data containing closely-spaced multiple arrivals, such as reverberating compressional waves and split shear waves. In addition to a general formulation, specific expressions for sensitivity with respect to density, Lamé parameter and shear modulus are derived for a isotropic elastic solid. As is typical of adjoint methods, the kernels depend upon an adjoint field, the source of which, in this case, is the reference displacement field, pre-multiplied by a matrix of cross-correlations of components of the observed field. We use a numerical simulation to evaluate the resolving power of a topographic inversion that employs the cross-convolution measure. The estimated resolving kernel shows is point-like, indicating that the cross-convolution measure will perform well in waveform tomography settings.
Miller, Nathan D; Haase, Nicholas J; Lee, Jonghyun; Kaeppler, Shawn M; de Leon, Natalia; Spalding, Edgar P
2017-01-01
Grain yield of the maize plant depends on the sizes, shapes, and numbers of ears and the kernels they bear. An automated pipeline that can measure these components of yield from easily-obtained digital images is needed to advance our understanding of this globally important crop. Here we present three custom algorithms designed to compute such yield components automatically from digital images acquired by a low-cost platform. One algorithm determines the average space each kernel occupies along the cob axis using a sliding-window Fourier transform analysis of image intensity features. A second counts individual kernels removed from ears, including those in clusters. A third measures each kernel's major and minor axis after a Bayesian analysis of contour points identifies the kernel tip. Dimensionless ear and kernel shape traits that may interrelate yield components are measured by principal components analysis of contour point sets. Increased objectivity and speed compared to typical manual methods are achieved without loss of accuracy as evidenced by high correlations with ground truth measurements and simulated data. Millimeter-scale differences among ear, cob, and kernel traits that ranged more than 2.5-fold across a diverse group of inbred maize lines were resolved. This system for measuring maize ear, cob, and kernel attributes is being used by multiple research groups as an automated Web service running on community high-throughput computing and distributed data storage infrastructure. Users may create their own workflow using the source code that is staged for download on a public repository. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
Recio-Spinoso, Alberto; Fan, Yun-Hui; Ruggero, Mario A
2011-05-01
Basilar-membrane responses to white Gaussian noise were recorded using laser velocimetry at basal sites of the chinchilla cochlea with characteristic frequencies near 10 kHz and first-order Wiener kernels were computed by cross correlation of the stimuli and the responses. The presence or absence of minimum-phase behavior was explored by fitting the kernels with discrete linear filters with rational transfer functions. Excellent fits to the kernels were obtained with filters with transfer functions including zeroes located outside the unit circle, implying nonminimum-phase behavior. These filters accurately predicted basilar-membrane responses to other noise stimuli presented at the same level as the stimulus for the kernel computation. Fits with all-pole and other minimum-phase discrete filters were inferior to fits with nonminimum-phase filters. Minimum-phase functions predicted from the amplitude functions of the Wiener kernels by Hilbert transforms were different from the measured phase curves. These results, which suggest that basilar-membrane responses do not have the minimum-phase property, challenge the validity of models of cochlear processing, which incorporate minimum-phase behavior. © 2011 IEEE
Chrysanthopoulos, Panagiotis K.; Hodson, Mark P.; Darnell, Ross; Korie, Sam
2018-01-01
Aflatoxin contamination is associated with the development of aflatoxigenic fungi such as Aspergillus flavus and A. parasiticus on food grains. This study was aimed at investigating metabolites produced during fungal development on maize and their correlation with aflatoxin levels. Maize cobs were harvested at R3 (milk), R4 (dough), and R5 (dent) stages of maturity. Individual kernels were inoculated in petri dishes with four doses of fungal spores. Fungal colonisation, metabolite profile, and aflatoxin levels were examined. Grain colonisation decreased with kernel maturity: milk-, dough-, and dent-stage kernels by approximately 100%, 60%, and 30% respectively. Aflatoxin levels increased with dose at dough and dent stages. Polar metabolites including alanine, proline, serine, valine, inositol, iso-leucine, sucrose, fructose, trehalose, turanose, mannitol, glycerol, arabitol, inositol, myo-inositol, and some intermediates of the tricarboxylic acid cycle (TCA—also known as citric acid or Krebs cycle) were important for dose classification. Important non-polar metabolites included arachidic, palmitic, stearic, 3,4-xylylic, and margaric acids. Aflatoxin levels correlated with levels of several polar metabolites. The strongest positive and negative correlations were with arabitol (R = 0.48) and turanose and (R = −0.53), respectively. Several metabolites were interconnected with the TCA; interconnections of the metabolites with the TCA cycle varied depending upon the grain maturity. PMID:29735944
Falade, Titilayo D O; Chrysanthopoulos, Panagiotis K; Hodson, Mark P; Sultanbawa, Yasmina; Fletcher, Mary; Darnell, Ross; Korie, Sam; Fox, Glen
2018-05-07
Aflatoxin contamination is associated with the development of aflatoxigenic fungi such as Aspergillus flavus and A. parasiticus on food grains. This study was aimed at investigating metabolites produced during fungal development on maize and their correlation with aflatoxin levels. Maize cobs were harvested at R3 (milk), R4 (dough), and R5 (dent) stages of maturity. Individual kernels were inoculated in petri dishes with four doses of fungal spores. Fungal colonisation, metabolite profile, and aflatoxin levels were examined. Grain colonisation decreased with kernel maturity: milk-, dough-, and dent-stage kernels by approximately 100%, 60%, and 30% respectively. Aflatoxin levels increased with dose at dough and dent stages. Polar metabolites including alanine, proline, serine, valine, inositol, iso-leucine, sucrose, fructose, trehalose, turanose, mannitol, glycerol, arabitol, inositol, myo-inositol, and some intermediates of the tricarboxylic acid cycle (TCA—also known as citric acid or Krebs cycle) were important for dose classification. Important non-polar metabolites included arachidic, palmitic, stearic, 3,4-xylylic, and margaric acids. Aflatoxin levels correlated with levels of several polar metabolites. The strongest positive and negative correlations were with arabitol ( R = 0.48) and turanose and ( R = −0.53), respectively. Several metabolites were interconnected with the TCA; interconnections of the metabolites with the TCA cycle varied depending upon the grain maturity.
Segmentation of the Speaker's Face Region with Audiovisual Correlation
NASA Astrophysics Data System (ADS)
Liu, Yuyu; Sato, Yoichi
The ability to find the speaker's face region in a video is useful for various applications. In this work, we develop a novel technique to find this region within different time windows, which is robust against the changes of view, scale, and background. The main thrust of our technique is to integrate audiovisual correlation analysis into a video segmentation framework. We analyze the audiovisual correlation locally by computing quadratic mutual information between our audiovisual features. The computation of quadratic mutual information is based on the probability density functions estimated by kernel density estimation with adaptive kernel bandwidth. The results of this audiovisual correlation analysis are incorporated into graph cut-based video segmentation to resolve a globally optimum extraction of the speaker's face region. The setting of any heuristic threshold in this segmentation is avoided by learning the correlation distributions of speaker and background by expectation maximization. Experimental results demonstrate that our method can detect the speaker's face region accurately and robustly for different views, scales, and backgrounds.
NASA Astrophysics Data System (ADS)
Tehrany, Mahyat Shafapour; Pradhan, Biswajeet; Jebur, Mustafa Neamah
2014-05-01
Flood is one of the most devastating natural disasters that occur frequently in Terengganu, Malaysia. Recently, ensemble based techniques are getting extremely popular in flood modeling. In this paper, weights-of-evidence (WoE) model was utilized first, to assess the impact of classes of each conditioning factor on flooding through bivariate statistical analysis (BSA). Then, these factors were reclassified using the acquired weights and entered into the support vector machine (SVM) model to evaluate the correlation between flood occurrence and each conditioning factor. Through this integration, the weak point of WoE can be solved and the performance of the SVM will be enhanced. The spatial database included flood inventory, slope, stream power index (SPI), topographic wetness index (TWI), altitude, curvature, distance from the river, geology, rainfall, land use/cover (LULC), and soil type. Four kernel types of SVM (linear kernel (LN), polynomial kernel (PL), radial basis function kernel (RBF), and sigmoid kernel (SIG)) were used to investigate the performance of each kernel type. The efficiency of the new ensemble WoE and SVM method was tested using area under curve (AUC) which measured the prediction and success rates. The validation results proved the strength and efficiency of the ensemble method over the individual methods. The best results were obtained from RBF kernel when compared with the other kernel types. Success rate and prediction rate for ensemble WoE and RBF-SVM method were 96.48% and 95.67% respectively. The proposed ensemble flood susceptibility mapping method could assist researchers and local governments in flood mitigation strategies.
Improving Genomic Prediction in Cassava Field Experiments Using Spatial Analysis.
Elias, Ani A; Rabbi, Ismail; Kulakow, Peter; Jannink, Jean-Luc
2018-01-04
Cassava ( Manihot esculenta Crantz) is an important staple food in sub-Saharan Africa. Breeding experiments were conducted at the International Institute of Tropical Agriculture in cassava to select elite parents. Taking into account the heterogeneity in the field while evaluating these trials can increase the accuracy in estimation of breeding values. We used an exploratory approach using the parametric spatial kernels Power, Spherical, and Gaussian to determine the best kernel for a given scenario. The spatial kernel was fit simultaneously with a genomic kernel in a genomic selection model. Predictability of these models was tested through a 10-fold cross-validation method repeated five times. The best model was chosen as the one with the lowest prediction root mean squared error compared to that of the base model having no spatial kernel. Results from our real and simulated data studies indicated that predictability can be increased by accounting for spatial variation irrespective of the heritability of the trait. In real data scenarios we observed that the accuracy can be increased by a median value of 3.4%. Through simulations, we showed that a 21% increase in accuracy can be achieved. We also found that Range (row) directional spatial kernels, mostly Gaussian, explained the spatial variance in 71% of the scenarios when spatial correlation was significant. Copyright © 2018 Elias et al.
Spatial patterns of aflatoxin levels in relation to ear-feeding insect damage in pre-harvest corn.
Ni, Xinzhi; Wilson, Jeffrey P; Buntin, G David; Guo, Baozhu; Krakowsky, Matthew D; Lee, R Dewey; Cottrell, Ted E; Scully, Brian T; Huffaker, Alisa; Schmelz, Eric A
2011-07-01
Key impediments to increased corn yield and quality in the southeastern US coastal plain region are damage by ear-feeding insects and aflatoxin contamination caused by infection of Aspergillus flavus. Key ear-feeding insects are corn earworm, Helicoverpa zea, fall armyworm, Spodoptera frugiperda, maize weevil, Sitophilus zeamais, and brown stink bug, Euschistus servus. In 2006 and 2007, aflatoxin contamination and insect damage were sampled before harvest in three 0.4-hectare corn fields using a grid sampling method. The feeding damage by each of ear/kernel-feeding insects (i.e., corn earworm/fall armyworm damage on the silk/cob, and discoloration of corn kernels by stink bugs), and maize weevil population were assessed at each grid point with five ears. The spatial distribution pattern of aflatoxin contamination was also assessed using the corn samples collected at each sampling point. Aflatoxin level was correlated to the number of maize weevils and stink bug-discolored kernels, but not closely correlated to either husk coverage or corn earworm damage. Contour maps of the maize weevil populations, stink bug-damaged kernels, and aflatoxin levels exhibited an aggregated distribution pattern with a strong edge effect on all three parameters. The separation of silk- and cob-feeding insects from kernel-feeding insects, as well as chewing (i.e., the corn earworm and maize weevil) and piercing-sucking insects (i.e., the stink bugs) and their damage in relation to aflatoxin accumulation is economically important. Both theoretic and applied ramifications of this study were discussed by proposing a hypothesis on the underlying mechanisms of the aggregated distribution patterns and strong edge effect of insect damage and aflatoxin contamination, and by discussing possible management tactics for aflatoxin reduction by proper management of kernel-feeding insects. Future directions on basic and applied research related to aflatoxin contamination are also discussed.
Spatial Patterns of Aflatoxin Levels in Relation to Ear-Feeding Insect Damage in Pre-Harvest Corn
Ni, Xinzhi; Wilson, Jeffrey P.; Buntin, G. David; Guo, Baozhu; Krakowsky, Matthew D.; Lee, R. Dewey; Cottrell, Ted E.; Scully, Brian T.; Huffaker, Alisa; Schmelz, Eric A.
2011-01-01
Key impediments to increased corn yield and quality in the southeastern US coastal plain region are damage by ear-feeding insects and aflatoxin contamination caused by infection of Aspergillus flavus. Key ear-feeding insects are corn earworm, Helicoverpa zea, fall armyworm, Spodoptera frugiperda, maize weevil, Sitophilus zeamais, and brown stink bug, Euschistus servus. In 2006 and 2007, aflatoxin contamination and insect damage were sampled before harvest in three 0.4-hectare corn fields using a grid sampling method. The feeding damage by each of ear/kernel-feeding insects (i.e., corn earworm/fall armyworm damage on the silk/cob, and discoloration of corn kernels by stink bugs), and maize weevil population were assessed at each grid point with five ears. The spatial distribution pattern of aflatoxin contamination was also assessed using the corn samples collected at each sampling point. Aflatoxin level was correlated to the number of maize weevils and stink bug-discolored kernels, but not closely correlated to either husk coverage or corn earworm damage. Contour maps of the maize weevil populations, stink bug-damaged kernels, and aflatoxin levels exhibited an aggregated distribution pattern with a strong edge effect on all three parameters. The separation of silk- and cob-feeding insects from kernel-feeding insects, as well as chewing (i.e., the corn earworm and maize weevil) and piercing-sucking insects (i.e., the stink bugs) and their damage in relation to aflatoxin accumulation is economically important. Both theoretic and applied ramifications of this study were discussed by proposing a hypothesis on the underlying mechanisms of the aggregated distribution patterns and strong edge effect of insect damage and aflatoxin contamination, and by discussing possible management tactics for aflatoxin reduction by proper management of kernel-feeding insects. Future directions on basic and applied research related to aflatoxin contamination are also discussed. PMID:22069748
Gajera, H P; Gevariya, Shila N; Hirpara, Darshna G; Patel, S V; Golakiya, B A
2017-09-01
Fruit phenolics are important dietary antioxidant and antidiabetic constituents. The fruit parts (pulp, seed, seed coat, kernel) of underutilized indigenous six black jamun landraces ( Syzygium cumini L.), found in Gir forest region of India and differed in their fruit size, shape and weight, are evaluated and correlated with antidiabetic, DPPH radical scavenging and phenolic constituents. The α-amylase inhibitors propose an efficient antidiabetic strategy and the levels of postprandial hyperglycemia were lowered by restraining starch breakdown. The sequential solvent systems with ascending polarity-petroleum ether, ethyl acetate, methanol and water were performed for soxhlet extraction by hot percolation method and extractive yield was found maximum with methanolic fruit part extracts of six landraces. The methanolic extracts of fruit parts also evidenced higher antidiabetic activity and hence utilized for further characterization. Among the six landraces, pulp and kernel of BJLR-6 (very small, oblong fruits) evidenced maximum 53.8 and 98.2% inhibition of α-amylase activity, respectively. The seed attained inhibitory activity mostly contributed by the kernel fraction. The inhibition of DPPH radical scavenging activity was positively correlated with phenol constituents. An HPLC-PDA technique was used to quantify the seven individual phenolics. The seed and kernel of BJLR-6 exhibited higher individual phenolics-gallic, catechin, ellagic, ferulic acids and quercetin, whereas pulp evidenced higher with gallic acid and catechin as α-amylase inhibitors. The IC 50 value indicates concentration of fruit extracts exhibiting ≥50% inhibition on porcine pancreatic α-amylase (PPA) activity. The kernel fraction of BJLR6 evidenced lowest (8.3 µg ml -1 ) IC 50 value followed by seed (12.9 µg ml -1 ), seed coat (50.8 µg ml -1 ) and pulp (270 µg ml -1 ). The seed and kernel of BJLR-6 inhibited PPA at much lower concentrations than standard acarbose (24.7 µg ml -1 ) considering good candidates for antidiabetic herbal formulations.
Warren, Frederick J; Perston, Benjamin B; Galindez-Najera, Silvia P; Edwards, Cathrina H; Powell, Prudence O; Mandalari, Giusy; Campbell, Grant M; Butterworth, Peter J; Ellis, Peter R
2015-11-01
Infrared microspectroscopy is a tool with potential for studies of the microstructure, chemical composition and functionality of plants at a subcellular level. Here we present the use of high-resolution bench top-based infrared microspectroscopy to investigate the microstructure of Triticum aestivum L. (wheat) kernels and Arabidopsis leaves. Images of isolated wheat kernel tissues and whole wheat kernels following hydrothermal processing and simulated gastric and duodenal digestion were generated, as well as images of Arabidopsis leaves at different points during a diurnal cycle. Individual cells and cell walls were resolved, and large structures within cells, such as starch granules and protein bodies, were clearly identified. Contrast was provided by converting the hyperspectral image cubes into false-colour images using either principal component analysis (PCA) overlays or by correlation analysis. The unsupervised PCA approach provided a clear view of the sample microstructure, whereas the correlation analysis was used to confirm the identity of different anatomical structures using the spectra from isolated components. It was then demonstrated that gelatinized and native starch within cells could be distinguished, and that the loss of starch during wheat digestion could be observed, as well as the accumulation of starch in leaves during a diurnal period. © 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
Influence of Initial Correlations on Evolution of a Subsystem in a Heat Bath and Polaron Mobility
NASA Astrophysics Data System (ADS)
Los, Victor F.
2017-08-01
A regular approach to accounting for initial correlations, which allows to go beyond the unrealistic random phase (initial product state) approximation in deriving the evolution equations, is suggested. An exact homogeneous (time-convolution and time-convolutionless) equations for a relevant part of the two-time equilibrium correlation function for the dynamic variables of a subsystem interacting with a boson field (heat bath) are obtained. No conventional approximation like RPA or Bogoliubov's principle of weakening of initial correlations is used. The obtained equations take into account the initial correlations in the kernel governing their evolution. The solution to these equations is found in the second order of the kernel expansion in the electron-phonon interaction, which demonstrates that generally the initial correlations influence the correlation function's evolution in time. It is explicitly shown that this influence vanishes on a large timescale (actually at t→ ∞) and the evolution process enters an irreversible kinetic regime. The developed approach is applied to the Fröhlich polaron and the low-temperature polaron mobility (which was under a long-time debate) is found with a correction due to initial correlations.
NASA Astrophysics Data System (ADS)
Tarighi Ahmadpour, Mahdi; Rostamnejadi, Ali; Hashemifar, S. Javad
2018-04-01
We study the electronic structure and optical properties of a body-centered tetragonal phase of carbon (bct-C4) within the framework of time-dependent density functional theory and Bethe-Salpeter equation. The results indicate that the optical properties of bct-C4 are strongly affected by the electron-hole interaction. It is demonstrated that the long-range corrected exchange-correlation kernels could fairly reproduce the Bethe-Salpeter equation results. The effective carrier number reveals that at energies above 30 eV, the excitonic effects are not dominant any more and that the optical transitions originate mainly from electronic excitations. The emerged peaks in the calculated electron energy loss spectra are discussed in terms of plasmon excitations and interband transitions. The results of the research indicate that bct-C4 is an indirect wide-band-gap semiconductor, which is transparent in the visible region and opaque in the ultraviolet spectral range.
Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity
NASA Technical Reports Server (NTRS)
Takahashi, F.; Katta, V. R.
2001-01-01
Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.
Validation of Born Traveltime Kernels
NASA Astrophysics Data System (ADS)
Baig, A. M.; Dahlen, F. A.; Hung, S.
2001-12-01
Most inversions for Earth structure using seismic traveltimes rely on linear ray theory to translate observed traveltime anomalies into seismic velocity anomalies distributed throughout the mantle. However, ray theory is not an appropriate tool to use when velocity anomalies have scale lengths less than the width of the Fresnel zone. In the presence of these structures, we need to turn to a scattering theory in order to adequately describe all of the features observed in the waveform. By coupling the Born approximation to ray theory, the first order dependence of heterogeneity on the cross-correlated traveltimes (described by the Fréchet derivative or, more colourfully, the banana-doughnut kernel) may be determined. To determine for what range of parameters these banana-doughnut kernels outperform linear ray theory, we generate several random media specified by their statistical properties, namely the RMS slowness perturbation and the scale length of the heterogeneity. Acoustic waves are numerically generated from a point source using a 3-D pseudo-spectral wave propagation code. These waves are then recorded at a variety of propagation distances from the source introducing a third parameter to the problem: the number of wavelengths traversed by the wave. When all of the heterogeneity has scale lengths larger than the width of the Fresnel zone, ray theory does as good a job at predicting the cross-correlated traveltime as the banana-doughnut kernels do. Below this limit, wavefront healing becomes a significant effect and ray theory ceases to be effective even though the kernels remain relatively accurate provided the heterogeneity is weak. The study of wave propagation in random media is of a more general interest and we will also show our measurements of the velocity shift and the variance of traveltime compare to various theoretical predictions in a given regime.
NASA Astrophysics Data System (ADS)
Qian, Kun; Zhou, Huixin; Rong, Shenghui; Wang, Bingjian; Cheng, Kuanhong
2017-05-01
Infrared small target tracking plays an important role in applications including military reconnaissance, early warning and terminal guidance. In this paper, an effective algorithm based on the Singular Value Decomposition (SVD) and the improved Kernelized Correlation Filter (KCF) is presented for infrared small target tracking. Firstly, the super performance of the SVD-based algorithm is that it takes advantage of the target's global information and obtains a background estimation of an infrared image. A dim target is enhanced by subtracting the corresponding estimated background with update from the original image. Secondly, the KCF algorithm is combined with Gaussian Curvature Filter (GCF) to eliminate the excursion problem. The GCF technology is adopted to preserve the edge and eliminate the noise of the base sample in the KCF algorithm, helping to calculate the classifier parameter for a small target. At last, the target position is estimated with a response map, which is obtained via the kernelized classifier. Experimental results demonstrate that the presented algorithm performs favorably in terms of efficiency and accuracy, compared with several state-of-the-art algorithms.
Aflatoxin contamination of developing corn kernels.
Amer, M A
2005-01-01
Preharvest of corn and its contamination with aflatoxin is a serious problem. Some environmental and cultural factors responsible for infection and subsequent aflatoxin production were investigated in this study. Stage of growth and location of kernels on corn ears were found to be one of the important factors in the process of kernel infection with A. flavus & A. parasiticus. The results showed positive correlation between the stage of growth and kernel infection. Treatment of corn with aflatoxin reduced germination, protein and total nitrogen contents. Total and reducing soluble sugar was increase in corn kernels as response to infection. Sucrose and protein content were reduced in case of both pathogens. Shoot system length, seeding fresh weigh and seedling dry weigh was also affected. Both pathogens induced reduction of starch content. Healthy corn seedlings treated with aflatoxin solution were badly affected. Their leaves became yellow then, turned brown with further incubation. Moreover, their total chlorophyll and protein contents showed pronounced decrease. On the other hand, total phenolic compounds were increased. Histopathological studies indicated that A. flavus & A. parasiticus could colonize corn silks and invade developing kernels. Germination of A. flavus spores was occurred and hyphae spread rapidly across the silk, producing extensive growth and lateral branching. Conidiophores and conidia had formed in and on the corn silk. Temperature and relative humidity greatly influenced the growth of A. flavus & A. parasiticus and aflatoxin production.
Efficient Strategies for Estimating the Spatial Coherence of Backscatter
Hyun, Dongwoon; Crowley, Anna Lisa C.; Dahl, Jeremy J.
2017-01-01
The spatial coherence of ultrasound backscatter has been proposed to reduce clutter in medical imaging, to measure the anisotropy of the scattering source, and to improve the detection of blood flow. These techniques rely on correlation estimates that are obtained using computationally expensive strategies. In this study, we assess existing spatial coherence estimation methods and propose three computationally efficient modifications: a reduced kernel, a downsampled receive aperture, and the use of an ensemble correlation coefficient. The proposed methods are implemented in simulation and in vivo studies. Reducing the kernel to a single sample improved computational throughput and improved axial resolution. Downsampling the receive aperture was found to have negligible effect on estimator variance, and improved computational throughput by an order of magnitude for a downsample factor of 4. The ensemble correlation estimator demonstrated lower variance than the currently used average correlation. Combining the three methods, the throughput was improved 105-fold in simulation with a downsample factor of 4 and 20-fold in vivo with a downsample factor of 2. PMID:27913342
Design of exchange-correlation functionals through the correlation factor approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlíková Přecechtělová, Jana, E-mail: j.precechtelova@gmail.com, E-mail: Matthias.Ernzerhof@UMontreal.ca; Institut für Chemie, Theoretische Chemie / Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin; Bahmann, Hilke
The correlation factor model is developed in which the spherically averaged exchange-correlation hole of Kohn-Sham theory is factorized into an exchange hole model and a correlation factor. The exchange hole model reproduces the exact exchange energy per particle. The correlation factor is constructed in such a manner that the exchange-correlation energy correctly reduces to exact exchange in the high density and rapidly varying limits. Four different correlation factor models are presented which satisfy varying sets of physical constraints. Three models are free from empirical adjustments to experimental data, while one correlation factor model draws on one empirical parameter. The correlationmore » factor models are derived in detail and the resulting exchange-correlation holes are analyzed. Furthermore, the exchange-correlation energies obtained from the correlation factor models are employed to calculate total energies, atomization energies, and barrier heights. It is shown that accurate, non-empirical functionals can be constructed building on exact exchange. Avenues for further improvements are outlined as well.« less
Stochastic modeling of stock price process induced from the conjugate heat equation
NASA Astrophysics Data System (ADS)
Paeng, Seong-Hun
2015-02-01
Currency can be considered as a ruler for values of commodities. Then the price is the measured value by the ruler. We can suppose that inflation and variation of exchange rate are caused by variation of the scale of the ruler. In geometry, variation of the scale means that the metric is time-dependent. The conjugate heat equation is the modified heat equation which satisfies the heat conservation law for the time-dependent metric space. We propose a new model of stock prices by using the stochastic process whose transition probability is determined by the kernel of the conjugate heat equation. Our model of stock prices shows how the volatility term is affected by inflation and exchange rate. This model modifies the Black-Scholes equation in light of inflation and exchange rate.
Jung, Jooyeoun; Wang, Wenjie; McGorrin, Robert J; Zhao, Yanyun
2018-02-01
Moisture adsorption isotherms and storability of dried hazelnut inshells and kernels produced in Oregon were evaluated and compared among cultivars, including Barcelona, Yamhill, and Jefferson. Experimental moisture adsorption data fitted to Guggenheim-Anderson-de Boer (GAB) model, showing less hygroscopic properties in Yamhill than other cultivars of inshells and kernels due to lower content of carbohydrate and protein, but higher content of fat. The safe levels of moisture content (MC, dry basis) of dried inshells and kernels for reaching kernel water activity (a w ) ≤0.65 were estimated using the GAB model as 11.3% and 5.0% for Barcelona, 9.4% and 4.2% for Yamhill, and 10.7% and 4.9% for Jefferson, respectively. Storage conditions (2 °C at 85% to 95% relative humidity [RH], 10 °C at 65% to 75% RH, and 27 °C at 35% to 45% RH), times (0, 4, 8, or 12 mo), and packaging methods (atmosphere vs. vacuum) affected MC, a w , bioactive compounds, lipid oxidation, and enzyme activity of dried hazelnut inshells or kernels. For inshells packaged at woven polypropylene bag, MC and a w of inshells and kernels (inside shells) increased at 2 and 10 °C, but decreased at 27 °C during storage. For kernels, lipid oxidation and polyphenol oxidase activity also increased with extended storage time (P < 0.05), and MC and a w of vacuum packaged samples were more stable during storage than those atmospherically packaged ones. Principal component analysis showed correlation of kernel qualities with storage condition, time, and packaging method. This study demonstrated that the ideal storage condition or packaging method varied among cultivars due to their different moisture adsorption and physicochemical and enzymatic stability during storage. Moisture adsorption isotherm of hazelnut inshells and kernels is useful for predicting the storability of nuts. This study found that water adsorption and storability varied among the different cultivars of nuts, in which Yamhill was less hygroscopic than Barcelona and Jefferson, thus more stable during storage. For ensuring food safety and quality of nuts during storage, each cultivar of kernels should be dried to a certain level of MC. Lipid oxidation and enzyme activity of kernel could be increased with extended storage time. Vacuum packaging was recommended to kernels for reducing moisture adsorption during storage. © 2018 Institute of Food Technologists®.
A shortest-path graph kernel for estimating gene product semantic similarity.
Alvarez, Marco A; Qi, Xiaojun; Yan, Changhui
2011-07-29
Existing methods for calculating semantic similarity between gene products using the Gene Ontology (GO) often rely on external resources, which are not part of the ontology. Consequently, changes in these external resources like biased term distribution caused by shifting of hot research topics, will affect the calculation of semantic similarity. One way to avoid this problem is to use semantic methods that are "intrinsic" to the ontology, i.e. independent of external knowledge. We present a shortest-path graph kernel (spgk) method that relies exclusively on the GO and its structure. In spgk, a gene product is represented by an induced subgraph of the GO, which consists of all the GO terms annotating it. Then a shortest-path graph kernel is used to compute the similarity between two graphs. In a comprehensive evaluation using a benchmark dataset, spgk compares favorably with other methods that depend on external resources. Compared with simUI, a method that is also intrinsic to GO, spgk achieves slightly better results on the benchmark dataset. Statistical tests show that the improvement is significant when the resolution and EC similarity correlation coefficient are used to measure the performance, but is insignificant when the Pfam similarity correlation coefficient is used. Spgk uses a graph kernel method in polynomial time to exploit the structure of the GO to calculate semantic similarity between gene products. It provides an alternative to both methods that use external resources and "intrinsic" methods with comparable performance.
Supernova Neutrino Opacity from Nucleon-Nucleon Bremsstrahlung and Related Processes
NASA Astrophysics Data System (ADS)
Hannestad, Steen; Raffelt, Georg
1998-11-01
Elastic scattering on nucleons, νN --> Nν, is the dominant supernova (SN) opacity source for μ and τ neutrinos. The dominant energy- and number-changing processes were thought to be νe- --> e-ν and νν¯<-->e+e- until Suzuki showed that the bremsstrahlung process νν¯NN<-->NN was actually more important. We find that for energy exchange, the related ``inelastic scattering process'' νNN<-->NNν is even more effective by about a factor of 10. A simple estimate implies that the νμ and ντ spectra emitted during the Kelvin-Helmholtz cooling phase are much closer to that of ν¯e than had been thought previously. To facilitate a numerical study of the spectra formation we derive a scattering kernel that governs both bremsstrahlung and inelastic scattering and give an analytic approximation formula. We consider only neutron-neutron interactions; we use a one-pion exchange potential in Born approximation, nonrelativistic neutrons, and the long-wavelength limit, simplifications that appear justified for the surface layers of an SN core. We include the pion mass in the potential, and we allow for an arbitrary degree of neutron degeneracy. Our treatment does not include the neutron-proton process and does not include nucleon-nucleon correlations. Our perturbative approach applies only to the SN surface layers, i.e., to densities below about 1014 g cm-3.
ALMA Correlator Real-Time Data Processor
NASA Astrophysics Data System (ADS)
Pisano, J.; Amestica, R.; Perez, J.
2005-10-01
The design of a real-time Linux application utilizing Real-Time Application Interface (RTAI) to process real-time data from the radio astronomy correlator for the Atacama Large Millimeter Array (ALMA) is described. The correlator is a custom-built digital signal processor which computes the cross-correlation function of two digitized signal streams. ALMA will have 64 antennas with 2080 signal streams each with a sample rate of 4 giga-samples per second. The correlator's aggregate data output will be 1 gigabyte per second. The software is defined by hard deadlines with high input and processing data rates, while requiring interfaces to non real-time external computers. The designed computer system - the Correlator Data Processor or CDP, consists of a cluster of 17 SMP computers, 16 of which are compute nodes plus a master controller node all running real-time Linux kernels. Each compute node uses an RTAI kernel module to interface to a 32-bit parallel interface which accepts raw data at 64 megabytes per second in 1 megabyte chunks every 16 milliseconds. These data are transferred to tasks running on multiple CPUs in hard real-time using RTAI's LXRT facility to perform quantization corrections, data windowing, FFTs, and phase corrections for a processing rate of approximately 1 GFLOPS. Highly accurate timing signals are distributed to all seventeen computer nodes in order to synchronize them to other time-dependent devices in the observatory array. RTAI kernel tasks interface to the timing signals providing sub-millisecond timing resolution. The CDP interfaces, via the master node, to other computer systems on an external intra-net for command and control, data storage, and further data (image) processing. The master node accesses these external systems utilizing ALMA Common Software (ACS), a CORBA-based client-server software infrastructure providing logging, monitoring, data delivery, and intra-computer function invocation. The software is being developed in tandem with the correlator hardware which presents software engineering challenges as the hardware evolves. The current status of this project and future goals are also presented.
Deciphering drought-induced metabolic responses and regulation in developing maize kernels.
Yang, Liming; Fountain, Jake C; Ji, Pingsheng; Ni, Xinzhi; Chen, Sixue; Lee, Robert D; Kemerait, Robert C; Guo, Baozhu
2018-02-12
Drought stress conditions decrease maize growth and yield, and aggravate preharvest aflatoxin contamination. While several studies have been performed on mature kernels responding to drought stress, the metabolic profiles of developing kernels are not as well characterized, particularly in germplasm with contrasting resistance to both drought and mycotoxin contamination. Here, following screening for drought tolerance, a drought-sensitive line, B73, and a drought-tolerant line, Lo964, were selected and stressed beginning at 14 days after pollination. Developing kernels were sampled 7 and 14 days after drought induction (DAI) from both stressed and irrigated plants. Comparative biochemical and metabolomic analyses profiled 409 differentially accumulated metabolites. Multivariate statistics and pathway analyses showed that drought stress induced an accumulation of simple sugars and polyunsaturated fatty acids and a decrease in amines, polyamines and dipeptides in B73. Conversely, sphingolipid, sterol, phenylpropanoid and dipeptide metabolites accumulated in Lo964 under drought stress. Drought stress also resulted in the greater accumulation of reactive oxygen species (ROS) and aflatoxin in kernels of B73 in comparison with Lo964 implying a correlation in their production. Overall, field drought treatments disordered a cascade of normal metabolic programming during development of maize kernels and subsequently caused oxidative stress. The glutathione and urea cycles along with the metabolism of carbohydrates and lipids for osmoprotection, membrane maintenance and antioxidant protection were central among the drought stress responses observed in developing kernels. These results also provide novel targets to enhance host drought tolerance and disease resistance through the use of biotechnologies such as transgenics and genome editing. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Franchini, C; Kováčik, R; Marsman, M; Murthy, S Sathyanarayana; He, J; Ederer, C; Kresse, G
2012-06-13
Using the newly developed VASP2WANNIER90 interface we have constructed maximally localized Wannier functions (MLWFs) for the e(g) states of the prototypical Jahn-Teller magnetic perovskite LaMnO(3) at different levels of approximation for the exchange-correlation kernel. These include conventional density functional theory (DFT) with and without the additional on-site Hubbard U term, hybrid DFT and partially self-consistent GW. By suitably mapping the MLWFs onto an effective e(g) tight-binding (TB) Hamiltonian we have computed a complete set of TB parameters which should serve as guidance for more elaborate treatments of correlation effects in effective Hamiltonian-based approaches. The method-dependent changes of the calculated TB parameters and their interplay with the electron-electron (el-el) interaction term are discussed and interpreted. We discuss two alternative model parameterizations: one in which the effects of the el-el interaction are implicitly incorporated in the otherwise 'noninteracting' TB parameters and a second where we include an explicit mean-field el-el interaction term in the TB Hamiltonian. Both models yield a set of tabulated TB parameters which provide the band dispersion in excellent agreement with the underlying ab initio and MLWF bands.
Kernel PLS-SVC for Linear and Nonlinear Discrimination
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Trejo, Leonard J.; Matthews, Bryan
2003-01-01
A new methodology for discrimination is proposed. This is based on kernel orthonormalized partial least squares (PLS) dimensionality reduction of the original data space followed by support vector machines for classification. Close connection of orthonormalized PLS and Fisher's approach to linear discrimination or equivalently with canonical correlation analysis is described. This gives preference to use orthonormalized PLS over principal component analysis. Good behavior of the proposed method is demonstrated on 13 different benchmark data sets and on the real world problem of the classification finger movement periods versus non-movement periods based on electroencephalogram.
Software For Clear-Air Doppler-Radar Display
NASA Technical Reports Server (NTRS)
Johnston, Bruce W.
1990-01-01
System of software developed to present plan-position-indicator scans of clear-air Doppler radar station on color graphical cathode-ray-tube display. Designed to incorporate latest accepted standards for equipment, computer programs, and meteorological data bases. Includes use of Ada programming language, of "Graphical-Kernel-System-like" graphics interface, and of Common Doppler Radar Exchange Format. Features include portability and maintainability. Use of Ada software packages produced number of software modules reused on other related projects.
A locally adaptive kernel regression method for facies delineation
NASA Astrophysics Data System (ADS)
Fernàndez-Garcia, D.; Barahona-Palomo, M.; Henri, C. V.; Sanchez-Vila, X.
2015-12-01
Facies delineation is defined as the separation of geological units with distinct intrinsic characteristics (grain size, hydraulic conductivity, mineralogical composition). A major challenge in this area stems from the fact that only a few scattered pieces of hydrogeological information are available to delineate geological facies. Several methods to delineate facies are available in the literature, ranging from those based only on existing hard data, to those including secondary data or external knowledge about sedimentological patterns. This paper describes a methodology to use kernel regression methods as an effective tool for facies delineation. The method uses both the spatial and the actual sampled values to produce, for each individual hard data point, a locally adaptive steering kernel function, self-adjusting the principal directions of the local anisotropic kernels to the direction of highest local spatial correlation. The method is shown to outperform the nearest neighbor classification method in a number of synthetic aquifers whenever the available number of hard data is small and randomly distributed in space. In the case of exhaustive sampling, the steering kernel regression method converges to the true solution. Simulations ran in a suite of synthetic examples are used to explore the selection of kernel parameters in typical field settings. It is shown that, in practice, a rule of thumb can be used to obtain suboptimal results. The performance of the method is demonstrated to significantly improve when external information regarding facies proportions is incorporated. Remarkably, the method allows for a reasonable reconstruction of the facies connectivity patterns, shown in terms of breakthrough curves performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yongxi; Ernzerhof, Matthias, E-mail: Matthias.Ernzerhof@UMontreal.ca; Bahmann, Hilke
Drawing on the adiabatic connection of density functional theory, exchange-correlation functionals of Kohn-Sham density functional theory are constructed which interpolate between the extreme limits of the electron-electron interaction strength. The first limit is the non-interacting one, where there is only exchange. The second limit is the strong correlated one, characterized as the minimum of the electron-electron repulsion energy. The exchange-correlation energy in the strong-correlation limit is approximated through a model for the exchange-correlation hole that is referred to as nonlocal-radius model [L. O. Wagner and P. Gori-Giorgi, Phys. Rev. A 90, 052512 (2014)]. Using the non-interacting and strong-correlated extremes, variousmore » interpolation schemes are presented that yield new approximations to the adiabatic connection and thus to the exchange-correlation energy. Some of them rely on empiricism while others do not. Several of the proposed approximations yield the exact exchange-correlation energy for one-electron systems where local and semi-local approximations often fail badly. Other proposed approximations generalize existing global hybrids by using a fraction of the exchange-correlation energy in the strong-correlation limit to replace an equal fraction of the semi-local approximation to the exchange-correlation energy in the strong-correlation limit. The performance of the proposed approximations is evaluated for molecular atomization energies, total atomic energies, and ionization potentials.« less
Personal sleep pattern visualization using sequence-based kernel self-organizing map on sound data.
Wu, Hongle; Kato, Takafumi; Yamada, Tomomi; Numao, Masayuki; Fukui, Ken-Ichi
2017-07-01
We propose a method to discover sleep patterns via clustering of sound events recorded during sleep. The proposed method extends the conventional self-organizing map algorithm by kernelization and sequence-based technologies to obtain a fine-grained map that visualizes the distribution and changes of sleep-related events. We introduced features widely applied in sound processing and popular kernel functions to the proposed method to evaluate and compare performance. The proposed method provides a new aspect of sleep monitoring because the results demonstrate that sound events can be directly correlated to an individual's sleep patterns. In addition, by visualizing the transition of cluster dynamics, sleep-related sound events were found to relate to the various stages of sleep. Therefore, these results empirically warrant future study into the assessment of personal sleep quality using sound data. Copyright © 2017 Elsevier B.V. All rights reserved.
Plasmon dispersion and Coulomb drag in low-density electron bi-layers
NASA Astrophysics Data System (ADS)
Badalyan, S. M.; Kim, C. S.; Vignale, G.; Senatore, G.
2007-03-01
We investigate the effect of exchange and correlation (xc) on the plasmon spectrum and the Coulomb drag between spatially separated low-density two-dimensional electron layers. We adopt a new approach, which employs dynamic xc kernels in the calculation of the bi-layer plasmon spectra and of the plasmon-mediated drag, and static many-body local field factors in the calculation of the particle-hole contribution to the drag. We observe that both optical and acoustical plasmon modes are strongly affected by xc corrections and shift in opposite directions with decreasing density. This is in stark contrast with the tendency observed within the random phase approximation (RPA). We find that the introduction of xc corrections results in a significant enhancement of the transresistivity and qualitative changes in its temperature dependence. In particular, the large high-temperature plasmon peak that is present in the RPA is found to disappear when the xc corrections are included. Our numerical results are in good agreement with the results of recent experiments by M. Kellogg et al., Solid State Commun. 123, 515 (2002).
Open Field Study of Some Zea mays Hybrids, Lipid Compounds and Fumonisins Accumulation
Giorni, Paola; Dall’Asta, Chiara; Reverberi, Massimo; Scala, Valeria; Ludovici, Matteo; Cirlini, Martina; Galaverna, Gianni; Fanelli, Corrado; Battilani, Paola
2015-01-01
Lipid molecules are increasingly recognized as signals exchanged by organisms interacting in pathogenic and/or symbiotic ways. Some classes of lipids actively determine the fate of the interactions. Host cuticle/cell wall/membrane components such as sphingolipids and oxylipins may contribute to determining the fate of host–pathogen interactions. In the present field study, we considered the relationship between specific sphingolipids and oxylipins of different hybrids of Zea mays and fumonisin by F. verticillioides, sampling ears at different growth stages from early dough to fully ripe. The amount of total and free fumonisin differed significantly between hybrids and increased significantly with maize ripening. Oxylipins and phytoceramides changed significantly within the hybrids and decreased with kernel maturation, starting from physiological maturity. Although the correlation between fumonisin accumulation and plant lipid profile is certain, the data collected so far cannot define a cause-effect relationship but open up new perspectives. Therefore, the question—“Does fumonisin alter plant lipidome or does plant lipidome modulate fumonisin accumulation?”—is still open. PMID:26378580
Generalized Langevin equation with tempered memory kernel
NASA Astrophysics Data System (ADS)
Liemert, André; Sandev, Trifce; Kantz, Holger
2017-01-01
We study a generalized Langevin equation for a free particle in presence of a truncated power-law and Mittag-Leffler memory kernel. It is shown that in presence of truncation, the particle from subdiffusive behavior in the short time limit, turns to normal diffusion in the long time limit. The case of harmonic oscillator is considered as well, and the relaxation functions and the normalized displacement correlation function are represented in an exact form. By considering external time-dependent periodic force we obtain resonant behavior even in case of a free particle due to the influence of the environment on the particle movement. Additionally, the double-peak phenomenon in the imaginary part of the complex susceptibility is observed. It is obtained that the truncation parameter has a huge influence on the behavior of these quantities, and it is shown how the truncation parameter changes the critical frequencies. The normalized displacement correlation function for a fractional generalized Langevin equation is investigated as well. All the results are exact and given in terms of the three parameter Mittag-Leffler function and the Prabhakar generalized integral operator, which in the kernel contains a three parameter Mittag-Leffler function. Such kind of truncated Langevin equation motion can be of high relevance for the description of lateral diffusion of lipids and proteins in cell membranes.
General methodology for nonlinear modeling of neural systems with Poisson point-process inputs.
Marmarelis, V Z; Berger, T W
2005-07-01
This paper presents a general methodological framework for the practical modeling of neural systems with point-process inputs (sequences of action potentials or, more broadly, identical events) based on the Volterra and Wiener theories of functional expansions and system identification. The paper clarifies the distinctions between Volterra and Wiener kernels obtained from Poisson point-process inputs. It shows that only the Wiener kernels can be estimated via cross-correlation, but must be defined as zero along the diagonals. The Volterra kernels can be estimated far more accurately (and from shorter data-records) by use of the Laguerre expansion technique adapted to point-process inputs, and they are independent of the mean rate of stimulation (unlike their P-W counterparts that depend on it). The Volterra kernels can also be estimated for broadband point-process inputs that are not Poisson. Useful applications of this modeling approach include cases where we seek to determine (model) the transfer characteristics between one neuronal axon (a point-process 'input') and another axon (a point-process 'output') or some other measure of neuronal activity (a continuous 'output', such as population activity) with which a causal link exists.
Alamaniotis, Miltiadis; Bargiotas, Dimitrios; Tsoukalas, Lefteri H
2016-01-01
Integration of energy systems with information technologies has facilitated the realization of smart energy systems that utilize information to optimize system operation. To that end, crucial in optimizing energy system operation is the accurate, ahead-of-time forecasting of load demand. In particular, load forecasting allows planning of system expansion, and decision making for enhancing system safety and reliability. In this paper, the application of two types of kernel machines for medium term load forecasting (MTLF) is presented and their performance is recorded based on a set of historical electricity load demand data. The two kernel machine models and more specifically Gaussian process regression (GPR) and relevance vector regression (RVR) are utilized for making predictions over future load demand. Both models, i.e., GPR and RVR, are equipped with a Gaussian kernel and are tested on daily predictions for a 30-day-ahead horizon taken from the New England Area. Furthermore, their performance is compared to the ARMA(2,2) model with respect to mean average percentage error and squared correlation coefficient. Results demonstrate the superiority of RVR over the other forecasting models in performing MTLF.
Screening of the aerodynamic and biophysical properties of barley malt
NASA Astrophysics Data System (ADS)
Ghodsvali, Alireza; Farzaneh, Vahid; Bakhshabadi, Hamid; Zare, Zahra; Karami, Zahra; Mokhtarian, Mohsen; Carvalho, Isabel. S.
2016-10-01
An understanding of the aerodynamic and biophysical properties of barley malt is necessary for the appropriate design of equipment for the handling, shipping, dehydration, grading, sorting and warehousing of this strategic crop. Malting is a complex biotechnological process that includes steeping; germination and finally, the dehydration of cereal grains under controlled temperature and humidity conditions. In this investigation, the biophysical properties of barley malt were predicted using two models of artificial neural networks as well as response surface methodology. Stepping time and germination time were selected as the independent variables and 1 000 kernel weight, kernel density and terminal velocity were selected as the dependent variables (responses). The obtained outcomes showed that the artificial neural network model, with a logarithmic sigmoid activation function, presents more precise results than the response surface model in the prediction of the aerodynamic and biophysical properties of produced barley malt. This model presented the best result with 8 nodes in the hidden layer and significant correlation coefficient values of 0.783, 0.767 and 0.991 were obtained for responses one thousand kernel weight, kernel density, and terminal velocity, respectively. The outcomes indicated that this novel technique could be successfully applied in quantitative and qualitative monitoring within the malting process.
THREE-POINT PHASE CORRELATIONS: A NEW MEASURE OF NONLINEAR LARGE-SCALE STRUCTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolstenhulme, Richard; Bonvin, Camille; Obreschkow, Danail
2015-05-10
We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the nonlinear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F{sub 2}, which governs the nonlinear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a 1σ agreement for separations r ≳ 30 h{sup −1} Mpc.more » Fitting formulae for the power spectrum and the nonlinear coupling kernel at small scales allow us to extend our prediction into the strongly nonlinear regime, where we find a 1σ agreement with the simulations for r ≳ 2 h{sup −1} Mpc. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the bias, in the regime where the bias is local and linear. Furthermore, the variance of the line correlation is independent of the Gaussian variance on the modulus of the density field. This suggests that the line correlation can probe more precisely the nonlinear regime of gravity, with less contamination from the power spectrum variance.« less
Bilenko, Natalia Y; Gallant, Jack L
2016-01-01
In this article we introduce Pyrcca, an open-source Python package for performing canonical correlation analysis (CCA). CCA is a multivariate analysis method for identifying relationships between sets of variables. Pyrcca supports CCA with or without regularization, and with or without linear, polynomial, or Gaussian kernelization. We first use an abstract example to describe Pyrcca functionality. We then demonstrate how Pyrcca can be used to analyze neuroimaging data. Specifically, we use Pyrcca to implement cross-subject comparison in a natural movie functional magnetic resonance imaging (fMRI) experiment by finding a data-driven set of functional response patterns that are similar across individuals. We validate this cross-subject comparison method in Pyrcca by predicting responses to novel natural movies across subjects. Finally, we show how Pyrcca can reveal retinotopic organization in brain responses to natural movies without the need for an explicit model.
Bilenko, Natalia Y.; Gallant, Jack L.
2016-01-01
In this article we introduce Pyrcca, an open-source Python package for performing canonical correlation analysis (CCA). CCA is a multivariate analysis method for identifying relationships between sets of variables. Pyrcca supports CCA with or without regularization, and with or without linear, polynomial, or Gaussian kernelization. We first use an abstract example to describe Pyrcca functionality. We then demonstrate how Pyrcca can be used to analyze neuroimaging data. Specifically, we use Pyrcca to implement cross-subject comparison in a natural movie functional magnetic resonance imaging (fMRI) experiment by finding a data-driven set of functional response patterns that are similar across individuals. We validate this cross-subject comparison method in Pyrcca by predicting responses to novel natural movies across subjects. Finally, we show how Pyrcca can reveal retinotopic organization in brain responses to natural movies without the need for an explicit model. PMID:27920675
Miao, Jun; Wong, Wilbur C K; Narayan, Sreenath; Wilson, David L
2011-11-01
Partially parallel imaging (PPI) greatly accelerates MR imaging by using surface coil arrays and under-sampling k-space. However, the reduction factor (R) in PPI is theoretically constrained by the number of coils (N(C)). A symmetrically shaped kernel is typically used, but this often prevents even the theoretically possible R from being achieved. Here, the authors propose a kernel design method to accelerate PPI faster than R = N(C). K-space data demonstrates an anisotropic pattern that is correlated with the object itself and to the asymmetry of the coil sensitivity profile, which is caused by coil placement and B(1) inhomogeneity. From spatial analysis theory, reconstruction of such pattern is best achieved by a signal-dependent anisotropic shape kernel. As a result, the authors propose the use of asymmetric kernels to improve k-space reconstruction. The authors fit a bivariate Gaussian function to the local signal magnitude of each coil, then threshold this function to extract the kernel elements. A perceptual difference model (Case-PDM) was employed to quantitatively evaluate image quality. A MR phantom experiment showed that k-space anisotropy increased as a function of magnetic field strength. The authors tested a K-spAce Reconstruction with AnisOtropic KErnel support ("KARAOKE") algorithm with both MR phantom and in vivo data sets, and compared the reconstructions to those produced by GRAPPA, a popular PPI reconstruction method. By exploiting k-space anisotropy, KARAOKE was able to better preserve edges, which is particularly useful for cardiac imaging and motion correction, while GRAPPA failed at a high R near or exceeding N(C). KARAOKE performed comparably to GRAPPA at low Rs. As a rule of thumb, KARAOKE reconstruction should always be used for higher quality k-space reconstruction, particularly when PPI data is acquired at high Rs and/or high field strength.
Miao, Jun; Wong, Wilbur C. K.; Narayan, Sreenath; Wilson, David L.
2011-01-01
Purpose: Partially parallel imaging (PPI) greatly accelerates MR imaging by using surface coil arrays and under-sampling k-space. However, the reduction factor (R) in PPI is theoretically constrained by the number of coils (NC). A symmetrically shaped kernel is typically used, but this often prevents even the theoretically possible R from being achieved. Here, the authors propose a kernel design method to accelerate PPI faster than R = NC. Methods: K-space data demonstrates an anisotropic pattern that is correlated with the object itself and to the asymmetry of the coil sensitivity profile, which is caused by coil placement and B1 inhomogeneity. From spatial analysis theory, reconstruction of such pattern is best achieved by a signal-dependent anisotropic shape kernel. As a result, the authors propose the use of asymmetric kernels to improve k-space reconstruction. The authors fit a bivariate Gaussian function to the local signal magnitude of each coil, then threshold this function to extract the kernel elements. A perceptual difference model (Case-PDM) was employed to quantitatively evaluate image quality. Results: A MR phantom experiment showed that k-space anisotropy increased as a function of magnetic field strength. The authors tested a K-spAce Reconstruction with AnisOtropic KErnel support (“KARAOKE”) algorithm with both MR phantom and in vivo data sets, and compared the reconstructions to those produced by GRAPPA, a popular PPI reconstruction method. By exploiting k-space anisotropy, KARAOKE was able to better preserve edges, which is particularly useful for cardiac imaging and motion correction, while GRAPPA failed at a high R near or exceeding NC. KARAOKE performed comparably to GRAPPA at low Rs. Conclusions: As a rule of thumb, KARAOKE reconstruction should always be used for higher quality k-space reconstruction, particularly when PPI data is acquired at high Rs and∕or high field strength. PMID:22047378
Genomic-Enabled Prediction Kernel Models with Random Intercepts for Multi-environment Trials.
Cuevas, Jaime; Granato, Italo; Fritsche-Neto, Roberto; Montesinos-Lopez, Osval A; Burgueño, Juan; Bandeira E Sousa, Massaine; Crossa, José
2018-03-28
In this study, we compared the prediction accuracy of the main genotypic effect model (MM) without G×E interactions, the multi-environment single variance G×E deviation model (MDs), and the multi-environment environment-specific variance G×E deviation model (MDe) where the random genetic effects of the lines are modeled with the markers (or pedigree). With the objective of further modeling the genetic residual of the lines, we incorporated the random intercepts of the lines ([Formula: see text]) and generated another three models. Each of these 6 models were fitted with a linear kernel method (Genomic Best Linear Unbiased Predictor, GB) and a Gaussian Kernel (GK) method. We compared these 12 model-method combinations with another two multi-environment G×E interactions models with unstructured variance-covariances (MUC) using GB and GK kernels (4 model-method). Thus, we compared the genomic-enabled prediction accuracy of a total of 16 model-method combinations on two maize data sets with positive phenotypic correlations among environments, and on two wheat data sets with complex G×E that includes some negative and close to zero phenotypic correlations among environments. The two models (MDs and MDE with the random intercept of the lines and the GK method) were computationally efficient and gave high prediction accuracy in the two maize data sets. Regarding the more complex G×E wheat data sets, the prediction accuracy of the model-method combination with G×E, MDs and MDe, including the random intercepts of the lines with GK method had important savings in computing time as compared with the G×E interaction multi-environment models with unstructured variance-covariances but with lower genomic prediction accuracy. Copyright © 2018 Cuevas et al.
Genomic-Enabled Prediction Kernel Models with Random Intercepts for Multi-environment Trials
Cuevas, Jaime; Granato, Italo; Fritsche-Neto, Roberto; Montesinos-Lopez, Osval A.; Burgueño, Juan; Bandeira e Sousa, Massaine; Crossa, José
2018-01-01
In this study, we compared the prediction accuracy of the main genotypic effect model (MM) without G×E interactions, the multi-environment single variance G×E deviation model (MDs), and the multi-environment environment-specific variance G×E deviation model (MDe) where the random genetic effects of the lines are modeled with the markers (or pedigree). With the objective of further modeling the genetic residual of the lines, we incorporated the random intercepts of the lines (l) and generated another three models. Each of these 6 models were fitted with a linear kernel method (Genomic Best Linear Unbiased Predictor, GB) and a Gaussian Kernel (GK) method. We compared these 12 model-method combinations with another two multi-environment G×E interactions models with unstructured variance-covariances (MUC) using GB and GK kernels (4 model-method). Thus, we compared the genomic-enabled prediction accuracy of a total of 16 model-method combinations on two maize data sets with positive phenotypic correlations among environments, and on two wheat data sets with complex G×E that includes some negative and close to zero phenotypic correlations among environments. The two models (MDs and MDE with the random intercept of the lines and the GK method) were computationally efficient and gave high prediction accuracy in the two maize data sets. Regarding the more complex G×E wheat data sets, the prediction accuracy of the model-method combination with G×E, MDs and MDe, including the random intercepts of the lines with GK method had important savings in computing time as compared with the G×E interaction multi-environment models with unstructured variance-covariances but with lower genomic prediction accuracy. PMID:29476023
Finite-frequency sensitivity kernels for head waves
NASA Astrophysics Data System (ADS)
Zhang, Zhigang; Shen, Yang; Zhao, Li
2007-11-01
Head waves are extremely important in determining the structure of the predominantly layered Earth. While several recent studies have shown the diffractive nature and the 3-D Fréchet kernels of finite-frequency turning waves, analogues of head waves in a continuous velocity structure, the finite-frequency effects and sensitivity kernels of head waves are yet to be carefully examined. We present the results of a numerical study focusing on the finite-frequency effects of head waves. Our model has a low-velocity layer over a high-velocity half-space and a cylindrical-shaped velocity perturbation placed beneath the interface at different locations. A 3-D finite-difference method is used to calculate synthetic waveforms. Traveltime and amplitude anomalies are measured by the cross-correlation of synthetic seismograms from models with and without the velocity perturbation and are compared to the 3-D sensitivity kernels constructed from full waveform simulations. The results show that the head wave arrival-time and amplitude are influenced by the velocity structure surrounding the ray path in a pattern that is consistent with the Fresnel zones. Unlike the `banana-doughnut' traveltime sensitivity kernels of turning waves, the traveltime sensitivity of the head wave along the ray path below the interface is weak, but non-zero. Below the ray path, the traveltime sensitivity reaches the maximum (absolute value) at a depth that depends on the wavelength and propagation distance. The sensitivity kernels vary with the vertical velocity gradient in the lower layer, but the variation is relatively small at short propagation distances when the vertical velocity gradient is within the range of the commonly accepted values. Finally, the depression or shoaling of the interface results in increased or decreased sensitivities, respectively, beneath the interface topography.
Liu, Na; Xue, Yadong; Guo, Zhanyong; Li, Weihua; Tang, Jihua
2016-01-01
Kernel starch content is an important trait in maize (Zea mays L.) as it accounts for 65–75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60 to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM) as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001), among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437) is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops. PMID:27512395
Xing, Lijuan; Zhu, Ming; Zhang, Min; Li, Wenzong; Jiang, Haiyang; Zou, Junjie; Wang, Lei; Xu, Miaoyun
2017-12-14
Maize kernel development is a complex biological process that involves the temporal and spatial expression of many genes and fine gene regulation at a transcriptional and post-transcriptional level, and microRNAs (miRNAs) play vital roles during this process. To gain insight into miRNA-mediated regulation of maize kernel development, a deep-sequencing technique was used to investigate the dynamic expression of miRNAs in the embryo and endosperm at three developmental stages in B73. By miRNA transcriptomic analysis, we characterized 132 known miRNAs and six novel miRNAs in developing maize kernel, among which, 15 and 14 miRNAs were commonly differentially expressed between the embryo and endosperm at 9 days after pollination (DAP), 15 DAP and 20 DAP respectively. Conserved miRNA families such as miR159, miR160, miR166, miR390, miR319, miR528 and miR529 were highly expressed in developing embryos; miR164, miR171, miR393 and miR2118 were highly expressed in developing endosperm. Genes targeted by those highly expressed miRNAs were found to be largely related to a regulation category, including the transcription, macromolecule biosynthetic and metabolic process in the embryo as well as the vitamin biosynthetic and metabolic process in the endosperm. Quantitative reverse transcription-PCR (qRT-PCR) analysis showed that these miRNAs displayed a negative correlation with the levels of their corresponding target genes. Importantly, our findings revealed that members of the miR169 family were highly and dynamically expressed in the developing kernel, which will help to exploit new players functioning in maize kernel development.
Kan, Hirohito; Kasai, Harumasa; Arai, Nobuyuki; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta
2016-09-01
An effective background field removal technique is desired for more accurate quantitative susceptibility mapping (QSM) prior to dipole inversion. The aim of this study was to evaluate the accuracy of regularization enabled sophisticated harmonic artifact reduction for phase data with varying spherical kernel sizes (REV-SHARP) method using a three-dimensional head phantom and human brain data. The proposed REV-SHARP method used the spherical mean value operation and Tikhonov regularization in the deconvolution process, with varying 2-14mm kernel sizes. The kernel sizes were gradually reduced, similar to the SHARP with varying spherical kernel (VSHARP) method. We determined the relative errors and relationships between the true local field and estimated local field in REV-SHARP, VSHARP, projection onto dipole fields (PDF), and regularization enabled SHARP (RESHARP). Human experiment was also conducted using REV-SHARP, VSHARP, PDF, and RESHARP. The relative errors in the numerical phantom study were 0.386, 0.448, 0.838, and 0.452 for REV-SHARP, VSHARP, PDF, and RESHARP. REV-SHARP result exhibited the highest correlation between the true local field and estimated local field. The linear regression slopes were 1.005, 1.124, 0.988, and 0.536 for REV-SHARP, VSHARP, PDF, and RESHARP in regions of interest on the three-dimensional head phantom. In human experiments, no obvious errors due to artifacts were present in REV-SHARP. The proposed REV-SHARP is a new method combined with variable spherical kernel size and Tikhonov regularization. This technique might make it possible to be more accurate backgroud field removal and help to achive better accuracy of QSM. Copyright © 2016 Elsevier Inc. All rights reserved.
Two-stage autoignition and edge flames in a high pressure turbulent jet
Krisman, Alex; Hawkes, Evatt R.; Chen, Jacqueline H.
2017-07-04
A three-dimensional direct numerical simulation is conducted for a temporally evolving planar jet of n-heptane at a pressure of 40 atmospheres and in a coflow of air at 1100 K. At these conditions, n-heptane exhibits a two-stage ignition due to low- and high-temperature chemistry, which is reproduced by the global chemical model used in this study. The results show that ignition occurs in several overlapping stages and multiple modes of combustion are present. Low-temperature chemistry precedes the formation of multiple spatially localised high-temperature chemistry autoignition events, referred to as ‘kernels’. These kernels form within the shear layer and core ofmore » the jet at compositions with short homogeneous ignition delay times and in locations experiencing low scalar dissipation rates. An analysis of the kernel histories shows that the ignition delay time is correlated with the mixing rate history and that the ignition kernels tend to form in vortically dominated regions of the domain, as corroborated by an analysis of the topology of the velocity gradient tensor. Once ignited, the kernels grow rapidly and establish edge flames where they envelop the stoichiometric isosurface. A combination of kernel formation (autoignition) and the growth of existing burning surface (via edge-flame propagation) contributes to the overall ignition process. In conclusion, an analysis of propagation speeds evaluated on the burning surface suggests that although the edge-flame speed is promoted by the autoignitive conditions due to an increase in the local laminar flame speed, edge-flame propagation of existing burning surfaces (triggered initially by isolated autoignition kernels) is the dominant ignition mode in the present configuration.« less
DOEDEF Software System, Version 2. 2: Operational instructions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meirans, L.
The DOEDEF (Department of Energy Data Exchange Format) Software System is a collection of software routines written to facilitate the manipulation of IGES (Initial Graphics Exchange Specification) data. Typically, the IGES data has been produced by the IGES processors for a Computer-Aided Design (CAD) system, and the data manipulations are user-defined ''flavoring'' operations. The DOEDEF Software System is used in conjunction with the RIM (Relational Information Management) DBMS from Boeing Computer Services (Version 7, UD18 or higher). The three major pieces of the software system are: Parser, reads an ASCII IGES file and converts it to the RIM database equivalent;more » Kernel, provides the user with IGES-oriented interface routines to the database; and Filewriter, writes the RIM database to an IGES file.« less
Distributed delays in a hybrid model of tumor-immune system interplay.
Caravagna, Giulio; Graudenzi, Alex; d'Onofrio, Alberto
2013-02-01
A tumor is kinetically characterized by the presence of multiple spatio-temporal scales in which its cells interplay with, for instance, endothelial cells or Immune system effectors, exchanging various chemical signals. By its nature, tumor growth is an ideal object of hybrid modeling where discrete stochastic processes model low-numbers entities, and mean-field equations model abundant chemical signals. Thus, we follow this approach to model tumor cells, effector cells and Interleukin-2, in order to capture the Immune surveillance effect. We here present a hybrid model with a generic delay kernel accounting that, due to many complex phenomena such as chemical transportation and cellular differentiation, the tumor-induced recruitment of effectors exhibits a lag period. This model is a Stochastic Hybrid Automata and its semantics is a Piecewise Deterministic Markov process where a two-dimensional stochastic process is interlinked to a multi-dimensional mean-field system. We instantiate the model with two well-known weak and strong delay kernels and perform simulations by using an algorithm to generate trajectories of this process. Via simulations and parametric sensitivity analysis techniques we (i) relate tumor mass growth with the two kernels, we (ii) measure the strength of the Immune surveillance in terms of probability distribution of the eradication times, and (iii) we prove, in the oscillatory regime, the existence of a stochastic bifurcation resulting in delay-induced tumor eradication.
Alvarez Prado, Santiago; Sadras, Víctor O; Borrás, Lucas
2014-08-01
Maize kernel weight (KW) is associated with the duration of the grain-filling period (GFD) and the rate of kernel biomass accumulation (KGR). It is also related to the dynamics of water and hence is physiologically linked to the maximum kernel water content (MWC), kernel desiccation rate (KDR), and moisture concentration at physiological maturity (MCPM). This work proposed that principles of phenotypic plasticity can help to consolidated the understanding of the environmental modulation and genetic control of these traits. For that purpose, a maize population of 245 recombinant inbred lines (RILs) was grown under different environmental conditions. Trait plasticity was calculated as the ratio of the variance of each RIL to the overall phenotypic variance of the population of RILs. This work found a hierarchy of plasticities: KDR ≈ GFD > MCPM > KGR > KW > MWC. There was no phenotypic and genetic correlation between traits per se and trait plasticities. MWC, the trait with the lowest plasticity, was the exception because common quantitative trait loci were found for the trait and its plasticity. Independent genetic control of a trait per se and genetic control of its plasticity is a condition for the independent evolution of traits and their plasticities. This allows breeders potentially to select for high or low plasticity in combination with high or low values of economically relevant traits. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters
Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun
2017-01-01
Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved. PMID:28241475
Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters.
Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun
2017-02-23
Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved.
Ezekiel, C.N.; Udom, I.E.; Frisvad, J.C.; Adetunji, M.C.; Houbraken, J.; Fapohunda, S.O.; Samson, R.A.; Atanda, O.O.; Agi-Otto, M.C.; Onashile, O.A.
2014-01-01
Sixteen fonio millet and 17 sesame samples were analysed for incidence of moulds, especially aflatoxigenic Aspergillus species, in order to determine the safety of both crops to consumers, and to correlate aflatoxin levels in the crops with levels produced by toxigenic isolates on laboratory medium. Diverse moulds including Alternaria, Aspergillus, Cercospora, Fusarium, Mucor, Penicillium, Rhizopus and Trichoderma were isolated. Aspergillus was predominantly present in both crops (46–48%), and amongst the potentially aflatoxigenic Aspergillus species, A. flavus recorded the highest incidence (68% in fonio millet; 86% in sesame kernels). All A. parvisclerotigenus isolates produced B and G aflatoxins in culture while B aflatoxins were produced by only 39% and 20% of A. flavus strains isolated from the fonio millet and sesame kernels, respectively. Aflatoxin concentrations in fonio millet correlated inversely (r = −0.55; p = 0.02) with aflatoxin levels produced by toxigenic isolates on laboratory medium, but no correlation was observed in the case of the sesame samples. Both crops, especially sesame, may not be suitable substrates for aflatoxin biosynthesis. This is the first report on A. parvisclerotigenus in sesame. PMID:24772370
Bayesian Correlation Analysis for Sequence Count Data
Lau, Nelson; Perkins, Theodore J.
2016-01-01
Evaluating the similarity of different measured variables is a fundamental task of statistics, and a key part of many bioinformatics algorithms. Here we propose a Bayesian scheme for estimating the correlation between different entities’ measurements based on high-throughput sequencing data. These entities could be different genes or miRNAs whose expression is measured by RNA-seq, different transcription factors or histone marks whose expression is measured by ChIP-seq, or even combinations of different types of entities. Our Bayesian formulation accounts for both measured signal levels and uncertainty in those levels, due to varying sequencing depth in different experiments and to varying absolute levels of individual entities, both of which affect the precision of the measurements. In comparison with a traditional Pearson correlation analysis, we show that our Bayesian correlation analysis retains high correlations when measurement confidence is high, but suppresses correlations when measurement confidence is low—especially for entities with low signal levels. In addition, we consider the influence of priors on the Bayesian correlation estimate. Perhaps surprisingly, we show that naive, uniform priors on entities’ signal levels can lead to highly biased correlation estimates, particularly when different experiments have widely varying sequencing depths. However, we propose two alternative priors that provably mitigate this problem. We also prove that, like traditional Pearson correlation, our Bayesian correlation calculation constitutes a kernel in the machine learning sense, and thus can be used as a similarity measure in any kernel-based machine learning algorithm. We demonstrate our approach on two RNA-seq datasets and one miRNA-seq dataset. PMID:27701449
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, H.; Pal, S.; Riss, U.V.
1992-07-01
The interaction of a scattering electron with a correlated but frozen'' target may be called the correlated static-exchange interaction. There are two prior investigations (J.R. Rumble, W.J. Stevens, and D. Truhlar, J. Phys. B 17, 3151 (1984); C Weatherford, F.B. Brown, and A. Temkin, Phys. Rev. A 35, 4561 (1987)) on scattering off the correlated static-exchange potential. Both of these investigations concentrated on {ital e}{sup {minus}}+N{sub 2} scattering, and both have found that the correlated static-exchange potential is less attractive than the static-exchange potential. We will show, however, that the correlated static-exchange potential is more attractive than the static-exchange one---atmore » least for {ital e}{sup {minus}}+N{sub 2} scattering in {sup 2}{Pi}{sub {ital g}} symmetry. The two prior investigations were misled by an improper degree of correlation and by an improper treatment of the exchange.« less
Electron correlation in Hooke's law atom in the high-density limit.
Gill, P M W; O'Neill, D P
2005-03-01
Closed-form expressions for the first three terms in the perturbation expansion of the exact energy and Hartree-Fock energy of the lowest singlet and triplet states of the Hooke's law atom are found. These yield elementary formulas for the exact correlation energies (-49.7028 and -5.807 65 mE(h)) of the two states in the high-density limit and lead to a pair of necessary conditions on the exact correlation kernel G(w) in Hartree-Fock-Wigner theory.
Detrended cross-correlation analysis on RMB exchange rate and Hang Seng China Enterprises Index
NASA Astrophysics Data System (ADS)
Ruan, Qingsong; Yang, Bingchan; Ma, Guofeng
2017-02-01
In this paper, we investigate the cross-correlations between the Hang Seng China Enterprises Index and RMB exchange markets on the basis of a cross-correlation statistic test and multifractal detrended cross-correlation analysis (MF-DCCA). MF-DCCA has, at best, serious limitations for most of the signals describing complex natural processes and often indicates multifractal cross-correlations when there are none. In order to prevent these false multifractal cross-correlations, we apply MFCCA to verify the cross-correlations. Qualitatively, we find that the return series of the Hang Seng China Enterprises Index and RMB exchange markets were, overall, significantly cross-correlated based on the statistical analysis. Quantitatively, we find that the cross-correlations between the stock index and RMB exchange markets were strongly multifractal, and the multifractal degree of the onshore RMB exchange markets was somewhat larger than the offshore RMB exchange markets. Moreover, we use the absolute return series to investigate and confirm the fact of multifractality. The results from the rolling windows show that the short-term cross-correlations between volatility series remain high.
Cross-correlations between RMB exchange rate and international commodity markets
NASA Astrophysics Data System (ADS)
Lu, Xinsheng; Li, Jianfeng; Zhou, Ying; Qian, Yubo
2017-11-01
This paper employs multifractal detrended analysis (MF-DFA) and multifractal detrended cross-correlation analysis (MF-DCCA) to study cross-correlation behaviors between China's RMB exchange rate market and four international commodity markets, using a comprehensive set of data covering the period from 22 July 2005 to 15 March 2016. Our empirical results from MF-DFA indicate that the RMB exchange rate is the most inefficient among the 4 selected markets. The results from quantitative analysis have testified the existence of cross-correlations and the result from MF-DCCA have further confirmed a strong multifractal behavior between RMB exchange rate and international commodity markets. We also demonstrate that the recent financial crisis has significant impact on the cross-correlated behavior. Through the rolling window analysis, we find that the RMB exchange rates and international commodity prices are anti-persistent cross-correlated. The main sources of multifractality in the cross-correlations are long-range correlations between RMB exchange rate and the aggregate commodity, energy and metals index.
NASA Astrophysics Data System (ADS)
Wang, Hai-Feng; Lin, Zhen-Quan; Gao, Yan; Zhang, Heng
2009-10-01
A competition model of three species in exchange-driven aggregation growth is proposed. In the model, three distinct aggregates grow by exchange of monomers and in parallel, birth of species A is catalyzed by species B and death of species A is catalyzed by species C. The rates for both catalysis processes are proportional to kjν and kjω respectively, where ν(Ω) is a parameter reflecting the dependence of the catalysis reaction rate of birth (death) on the catalyst aggregate's size. The kinetic evolution behaviors of the three species are investigated by the rate equation approach based on the mean-field theory. The form of the aggregate size distribution of A-species ak(t) is found to be dependent crucially on the two catalysis rate kernel parameters. The results show that (i) in case of μ <= 0, the form of ak(t) mainly depends on the competition between self-exchange of species A and species-C-catalyzed death of species A; (ii) in case of ν > 0, the form of ak(t) mainly depends on the competition between species-B-catalyzed birth of species A and species-C-catalyzed death of species A.
NASA Astrophysics Data System (ADS)
Nazarov, Vladimir U.
2018-05-01
While it has been recently demonstrated that, for quasi-two-dimensional electron gas (Q2DEG) with one filled subband, the dynamic exchange f x and Hartree f H kernels cancel each other in the low-density regime r s → ∞ (by half and completely, for the spin-neutral and fully spin-polarized cases, respectively), here we analytically show that the same happens at arbitrary densities at short distances. This motivates us to study the confinement dependence of the excitations in Q2DEG. Our calculations unambiguously confirm that, at strong confinements, the time-dependent exact exchange excitation energies approach the single-particle Kohn-Sham ones for the spin-polarized case, while the same, but less pronounced, tendency is observed for spin-neutral Q2DEG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casida, M.E.
1995-03-01
The now classic optimized-effective-potential (OEP) approach of Sharp and Horton [Phys Rev. 90, 317 (1953)] and Talman and Shadwick [Phys. Rev. A 14, 36 (1976)] seeks the local potential that is variationally optimized to best approximate the Hartree-Fock exchange operator. The resulting OEP can be identified as the exchange potential of Kohn-Sham density-functional theory. The present work generalizes this OEP approach to treat the correlated case, and shows that the Kohn-Sham exchange-correlation potential is the variationally best local approximation to the exchange-correlation self-energy. This provides a variational derivation of the equation for the exact exchange-correlation potential that was derived bymore » Sham and Schlueter using a density condition. Implications for an approximate physical interpretation of the Kohn-Sham orbitals are discussesd. A correlated generalization of the Sharp-Horton--Krieger-Li-Iafrate [Phys Lett. A 146, 256 (1990)] approximation of the exchange potential is introduced in the quasiparticle limit.« less
Javanrouh, Niloufar; Daneshpour, Maryam S; Soltanian, Ali Reza; Tapak, Leili
2018-06-05
Obesity is a serious health problem that leads to low quality of life and early mortality. To the purpose of prevention and gene therapy for such a worldwide disease, genome wide association study is a powerful tool for finding SNPs associated with increased risk of obesity. To conduct an association analysis, kernel machine regression is a generalized regression method, has an advantage of considering the epistasis effects as well as the correlation between individuals due to unknown factors. In this study, information of the people who participated in Tehran cardio-metabolic genetic study was used. They were genotyped for the chromosomal region, evaluation 986 variations located at 16q12.2; build 38hg. Kernel machine regression and single SNP analysis were used to assess the association between obesity and SNPs genotyped data. We found that associated SNP sets with obesity, were almost in the FTO (P = 0.01), AIKTIP (P = 0.02) and MMP2 (P = 0.02) genes. Moreover, two SNPs, i.e., rs10521296 and rs11647470, showed significant association with obesity using kernel regression (P = 0.02). In conclusion, significant sets were randomly distributed throughout the region with more density around the FTO, AIKTIP and MMP2 genes. Furthermore, two intergenic SNPs showed significant association after using kernel machine regression. Therefore, more studies have to be conducted to assess their functionality or precise mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.
Multiscale Anomaly Detection and Image Registration Algorithms for Airborne Landmine Detection
2008-05-01
with the sensed image. The two- dimensional correlation coefficient r for two matrices A and B both of size M ×N is given by r = ∑ m ∑ n (Amn...correlation based method by matching features in a high- dimensional feature- space . The current implementation of the SIFT algorithm uses a brute-force...by repeatedly convolving the image with a Guassian kernel. Each plane of the scale
Scene-Aware Adaptive Updating for Visual Tracking via Correlation Filters
Zhang, Sirou; Qiao, Xiaoya
2017-01-01
In recent years, visual object tracking has been widely used in military guidance, human-computer interaction, road traffic, scene monitoring and many other fields. The tracking algorithms based on correlation filters have shown good performance in terms of accuracy and tracking speed. However, their performance is not satisfactory in scenes with scale variation, deformation, and occlusion. In this paper, we propose a scene-aware adaptive updating mechanism for visual tracking via a kernel correlation filter (KCF). First, a low complexity scale estimation method is presented, in which the corresponding weight in five scales is employed to determine the final target scale. Then, the adaptive updating mechanism is presented based on the scene-classification. We classify the video scenes as four categories by video content analysis. According to the target scene, we exploit the adaptive updating mechanism to update the kernel correlation filter to improve the robustness of the tracker, especially in scenes with scale variation, deformation, and occlusion. We evaluate our tracker on the CVPR2013 benchmark. The experimental results obtained with the proposed algorithm are improved by 33.3%, 15%, 6%, 21.9% and 19.8% compared to those of the KCF tracker on the scene with scale variation, partial or long-time large-area occlusion, deformation, fast motion and out-of-view. PMID:29140311
Multi-Target Regression via Robust Low-Rank Learning.
Zhen, Xiantong; Yu, Mengyang; He, Xiaofei; Li, Shuo
2018-02-01
Multi-target regression has recently regained great popularity due to its capability of simultaneously learning multiple relevant regression tasks and its wide applications in data mining, computer vision and medical image analysis, while great challenges arise from jointly handling inter-target correlations and input-output relationships. In this paper, we propose Multi-layer Multi-target Regression (MMR) which enables simultaneously modeling intrinsic inter-target correlations and nonlinear input-output relationships in a general framework via robust low-rank learning. Specifically, the MMR can explicitly encode inter-target correlations in a structure matrix by matrix elastic nets (MEN); the MMR can work in conjunction with the kernel trick to effectively disentangle highly complex nonlinear input-output relationships; the MMR can be efficiently solved by a new alternating optimization algorithm with guaranteed convergence. The MMR leverages the strength of kernel methods for nonlinear feature learning and the structural advantage of multi-layer learning architectures for inter-target correlation modeling. More importantly, it offers a new multi-layer learning paradigm for multi-target regression which is endowed with high generality, flexibility and expressive ability. Extensive experimental evaluation on 18 diverse real-world datasets demonstrates that our MMR can achieve consistently high performance and outperforms representative state-of-the-art algorithms, which shows its great effectiveness and generality for multivariate prediction.
Testosterone and androstanediol glucuronide among men in NHANES III.
Duan, Chuan Wei; Xu, Lin
2018-03-09
Most of the androgen replacement therapies were based on serum testosterone and without measurements of total androgen activities. Whether those with low testosterone also have low levels of androgen activity is largely unknown. We hence examined the association between testosterone and androstanediol glucuronide (AG), a reliable measure of androgen activity, in a nationally representative sample of US men. Cross-sectional analysis was based on 1493 men from the Third National Health and Nutrition examination Survey (NHANES III) conducted from 1988 to 1991. Serum testosterone and AG were measured by immunoassay. Kernel density was used to estimate the average density of serum AG concentrations by quartiles of testosterone. Testosterone was weakly and positively correlated with AG (correlation coefficient = 0.18). The kernel density estimates show that the distributions are quite similar between the quartiles of testosterone. After adjustment for age, the distributions of AG in quartiles of testosterone did not change. The correlation between testosterone and AG was stronger in men with younger age, lower body mass index, non-smoking and good self-rated health and health status. Serum testosterone is weakly correlated with total androgen activities, and the correlation is even weaker for those with poor self-rated health. Our results suggest that measurement of total androgen activity in addition to testosterone is necessary in clinical practice, especially before administration of androgen replacement therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziatdinov, Maxim A.; Fujii, Shintaro; Kiguchi, Manabu
The link between changes in the material crystal structure and its mechanical, electronic, magnetic, and optical functionalities known as the structure-property relationship is the cornerstone of the contemporary materials science research. The recent advances in scanning transmission electron and scanning probe microscopies (STEM and SPM) have opened an unprecedented path towards examining the materials structure property relationships on the single-impurity and atomic-configuration levels. Lacking, however, are the statistics-based approaches for cross-correlation of structure and property variables obtained in different information channels of the STEM and SPM experiments. Here we have designed an approach based on a combination of sliding windowmore » Fast Fourier Transform, Pearson correlation matrix, linear and kernel canonical correlation, to study a relationship between lattice distortions and electron scattering from the SPM data on graphene with defects. Our analysis revealed that the strength of coupling to strain is altered between different scattering channels which can explain coexistence of several quasiparticle interference patterns in the nanoscale regions of interest. In addition, the application of the kernel functions allowed us extracting a non-linear component of the relationship between the lattice strain and scattering intensity in graphene. Lastly, the outlined approach can be further utilized to analyzing correlations in various multi-modal imaging techniques where the information of interest is spatially distributed and has usually a complex multidimensional nature.« less
Ziatdinov, Maxim A.; Fujii, Shintaro; Kiguchi, Manabu; ...
2016-11-09
The link between changes in the material crystal structure and its mechanical, electronic, magnetic, and optical functionalities known as the structure-property relationship is the cornerstone of the contemporary materials science research. The recent advances in scanning transmission electron and scanning probe microscopies (STEM and SPM) have opened an unprecedented path towards examining the materials structure property relationships on the single-impurity and atomic-configuration levels. Lacking, however, are the statistics-based approaches for cross-correlation of structure and property variables obtained in different information channels of the STEM and SPM experiments. Here we have designed an approach based on a combination of sliding windowmore » Fast Fourier Transform, Pearson correlation matrix, linear and kernel canonical correlation, to study a relationship between lattice distortions and electron scattering from the SPM data on graphene with defects. Our analysis revealed that the strength of coupling to strain is altered between different scattering channels which can explain coexistence of several quasiparticle interference patterns in the nanoscale regions of interest. In addition, the application of the kernel functions allowed us extracting a non-linear component of the relationship between the lattice strain and scattering intensity in graphene. Lastly, the outlined approach can be further utilized to analyzing correlations in various multi-modal imaging techniques where the information of interest is spatially distributed and has usually a complex multidimensional nature.« less
Yenilmez, Firdes; Düzgün, Sebnem; Aksoy, Aysegül
2015-01-01
In this study, kernel density estimation (KDE) was coupled with ordinary two-dimensional kriging (OK) to reduce the number of sampling locations in measurement and kriging of dissolved oxygen (DO) concentrations in Porsuk Dam Reservoir (PDR). Conservation of the spatial correlation structure in the DO distribution was a target. KDE was used as a tool to aid in identification of the sampling locations that would be removed from the sampling network in order to decrease the total number of samples. Accordingly, several networks were generated in which sampling locations were reduced from 65 to 10 in increments of 4 or 5 points at a time based on kernel density maps. DO variograms were constructed, and DO values in PDR were kriged. Performance of the networks in DO estimations were evaluated through various error metrics, standard error maps (SEM), and whether the spatial correlation structure was conserved or not. Results indicated that smaller number of sampling points resulted in loss of information in regard to spatial correlation structure in DO. The minimum representative sampling points for PDR was 35. Efficacy of the sampling location selection method was tested against the networks generated by experts. It was shown that the evaluation approach proposed in this study provided a better sampling network design in which the spatial correlation structure of DO was sustained for kriging.
Kernelized correlation tracking with long-term motion cues
NASA Astrophysics Data System (ADS)
Lv, Yunqiu; Liu, Kai; Cheng, Fei
2018-04-01
Robust object tracking is a challenging task in computer vision due to interruptions such as deformation, fast motion and especially, occlusion of tracked object. When occlusions occur, image data will be unreliable and is insufficient for the tracker to depict the object of interest. Therefore, most trackers are prone to fail under occlusion. In this paper, an occlusion judgement and handling method based on segmentation of the target is proposed. If the target is occluded, the speed and direction of it must be different from the objects occluding it. Hence, the value of motion features are emphasized. Considering the efficiency and robustness of Kernelized Correlation Filter Tracking (KCF), it is adopted as a pre-tracker to obtain a predicted position of the target. By analyzing long-term motion cues of objects around this position, the tracked object is labelled. Hence, occlusion could be detected easily. Experimental results suggest that our tracker achieves a favorable performance and effectively handles occlusion and drifting problems.
Long-term scale adaptive tracking with kernel correlation filters
NASA Astrophysics Data System (ADS)
Wang, Yueren; Zhang, Hong; Zhang, Lei; Yang, Yifan; Sun, Mingui
2018-04-01
Object tracking in video sequences has broad applications in both military and civilian domains. However, as the length of input video sequence increases, a number of problems arise, such as severe object occlusion, object appearance variation, and object out-of-view (some portion or the entire object leaves the image space). To deal with these problems and identify the object being tracked from cluttered background, we present a robust appearance model using Speeded Up Robust Features (SURF) and advanced integrated features consisting of the Felzenszwalb's Histogram of Oriented Gradients (FHOG) and color attributes. Since re-detection is essential in long-term tracking, we develop an effective object re-detection strategy based on moving area detection. We employ the popular kernel correlation filters in our algorithm design, which facilitates high-speed object tracking. Our evaluation using the CVPR2013 Object Tracking Benchmark (OTB2013) dataset illustrates that the proposed algorithm outperforms reference state-of-the-art trackers in various challenging scenarios.
Detailed temporal structure of communication networks in groups of songbirds.
Stowell, Dan; Gill, Lisa; Clayton, David
2016-06-01
Animals in groups often exchange calls, in patterns whose temporal structure may be influenced by contextual factors such as physical location and the social network structure of the group. We introduce a model-based analysis for temporal patterns of animal call timing, originally developed for networks of firing neurons. This has advantages over cross-correlation analysis in that it can correctly handle common-cause confounds and provides a generative model of call patterns with explicit parameters for the influences between individuals. It also has advantages over standard Markovian analysis in that it incorporates detailed temporal interactions which affect timing as well as sequencing of calls. Further, a fitted model can be used to generate novel synthetic call sequences. We apply the method to calls recorded from groups of domesticated zebra finch (Taeniopygia guttata) individuals. We find that the communication network in these groups has stable structure that persists from one day to the next, and that 'kernels' reflecting the temporal range of influence have a characteristic structure for a calling individual's effect on itself, its partner and on others in the group. We further find characteristic patterns of influences by call type as well as by individual. © 2016 The Authors.
Phase space explorations in time dependent density functional theory
NASA Astrophysics Data System (ADS)
Rajam, Aruna K.
Time dependent density functional theory (TDDFT) is one of the useful tools for the study of the dynamic behavior of correlated electronic systems under the influence of external potentials. The success of this formally exact theory practically relies on approximations for the exchange-correlation potential which is a complicated functional of the co-ordinate density, non-local in space and time. Adiabatic approximations (such as ALDA), which are local in time, are most commonly used in the increasing applications of the field. Going beyond ALDA, has been proved difficult leading to mathematical inconsistencies. We explore the regions where the theory faces challenges, and try to answer some of them via the insights from two electron model systems. In this thesis work we propose a phase-space extension of the TDDFT. We want to answer the challenges the theory is facing currently by exploring the one-body phase-space. We give a general introduction to this theory and its mathematical background in the first chapter. In second chapter, we carryout a detailed study of instantaneous phase-space densities and argue that the functionals of distributions can be a better alternative to the nonlocality issue of the exchange-correlation potentials. For this we study in detail the interacting and the non-interacting phase-space distributions for Hookes atom model. The applicability of ALDA-based TDDFT for the dynamics in strongfields can become severely problematic due to the failure of single-Slater determinant picture.. In the third chapter, we analyze how the phase-space distributions can shine some light into this problem. We do a comparative study of Kohn-Sham and interacting phase-space and momentum distributions for single ionization and double ionization systems. Using a simple model of two-electron systems, we have showed that the momentum distribution computed directly from the exact KS system contains spurious oscillations: a non-classical description of the essentially classical two-electron dynamics. In Time dependent density matrix functional theory (TDDMFT), the evolution scheme of the 1RDM (first order reduced density matrix) contains second-order reduced density matrix (2RDM), which has to be expressed in terms of 1RDMs. Any non-correlated approximations (Hartree-Fock) for 2RDM would fail to capture the natural occupations of the system. In our fourth chapter, we show that by applying the quasi-classical and semi-classical approximations one can capture the natural occupations of the excited systems. We study a time-dependent Moshinsky atom model for this. The fifth chapter contains a comparative work on the existing non-local exchange-correlation kernels that are based on current density response frame work and the co-moving frame work. We show that the two approaches though coinciding with each other in linear response regime, actually turn out to be different in non-linear regime.
Gould, Tim; Bučko, Tomáš
2016-08-09
Using time-dependent density functional theory (TDDFT) with exchange kernels, we calculate and test imaginary frequency-dependent dipole polarizabilities for all atoms and many ions in rows 1-6 of the periodic table. These are then integrated over frequency to produce C6 coefficients. Results are presented under different models: straight TDDFT calculations using two different kernels; "benchmark" TDDFT calculations corrected by more accurate quantum chemical and experimental data; and "benchmark" TDDFT with frozen orbital anions. Parametrizations are presented for 411+ atoms and ions, allowing results to be easily used by other researchers. A curious relationship, C6,XY ∝ [αX(0)αY(0)](0.73), is found between C6 coefficients and static polarizabilities α(0). The relationship C6,XY = 2C6,XC6,Y/[(αX/αY)C6,Y + (αY/αX)C6,X] is tested and found to work well (<5% errors) in ∼80% of the cases, but can break down badly (>30% errors) in a small fraction of cases.
Hanft, J M; Jones, R J
1986-06-01
Kernels cultured in vitro were induced to abort by high temperature (35 degrees C) and by culturing six kernels/cob piece. Aborting kernels failed to enter a linear phase of dry mass accumulation and had a final mass that was less than 6% of nonaborting field-grown kernels. Kernels induced to abort by high temperature failed to synthesize starch in the endosperm and had elevated sucrose concentrations and low fructose and glucose concentrations in the pedicel during early growth compared to nonaborting kernels. Kernels induced to abort by high temperature also had much lower pedicel soluble acid invertase activities than did nonaborting kernels. These results suggest that high temperature during the lag phase of kernel growth may impair the process of sucrose unloading in the pedicel by indirectly inhibiting soluble acid invertase activity and prevent starch synthesis in the endosperm. Kernels induced to abort by culturing six kernels/cob piece had reduced pedicel fructose, glucose, and sucrose concentrations compared to kernels from field-grown ears. These aborting kernels also had a lower pedicel soluble acid invertase activity compared to nonaborting kernels from the same cob piece and from field-grown ears. The low invertase activity in pedicel tissue of the aborting kernels was probably caused by a lack of substrate (sucrose) for the invertase to cleave due to the intense competition for available assimilates. In contrast to kernels cultured at 35 degrees C, aborting kernels from cob pieces containing all six kernels accumulated starch in a linear fashion. These results indicate that kernels cultured six/cob piece abort because of an inadequate supply of sugar and are similar to apical kernels from field-grown ears that often abort prior to the onset of linear growth.
Exchange and correlation in positronium-molecule scattering
NASA Astrophysics Data System (ADS)
Fabrikant, I. I.; Wilde, R. S.
2018-05-01
Exchange and correlations play a particularly important role in positronium (Ps) collisions with atoms and molecules, since the static potential for Ps interaction with a neutral system is zero. Theoretical description of both effects is a very challenging task. In the present work we use the free-electron-gas model to describe exchange and correlations in Ps collisions with molecules similar to the approach widely used in the theory of electron-molecule collisions. The results for exchange and correlation energies are presented as functions of the Fermi momentum of the electron gas and the Ps incident energy. Using the Thomas-Fermi model, these functions can be converted into exchange and correlation potentials for Ps interaction with molecules as functions of the distance between the projectile and the target.
Maschietto, Valentina; Marocco, Adriano; Malachova, Alexandra; Lanubile, Alessandra
2015-09-01
Fusarium verticillioides causes ear rot in maize and contaminates the kernels with the fumonisin mycotoxins. It is known that plant lipoxygenase (LOX)-derived oxylipins regulate defence against pathogens and that the host-pathogen lipid cross-talk influences the pathogenesis. The expression profiles of fifteen genes of the LOX pathway were studied in kernels of resistant and susceptible maize lines, grown in field condition, at 3, 7 and 14 days post inoculation (dpi) with F. verticillioides. Plant defence responses were correlated with the pathogen growth, the expression profiles of fungal FUM genes for fumonisin biosynthesis and fumonisin content in the kernels. The resistant genotype limited fungal growth and fumonisin accumulation between 7 and 14 dpi. Pathogen growth became exponential in the susceptible line after 7 dpi, in correspondence with massive transcription of FUM genes and fumonisins augmented exponentially at 14 dpi. LOX pathway genes resulted strongly induced after pathogen inoculation in the resistant line at 3 and 7 dpi, whilst in the susceptible line the induction was reduced or delayed at 14 dpi. In addition, all genes resulted overexpressed before infection in kernels of the resistant genotype already at 3 dpi. The results suggest that resistance in maize may depend on an earlier activation of LOX genes and genes for jasmonic acid biosynthesis. Copyright © 2015 Elsevier GmbH. All rights reserved.
Mohammadi Moghaddam, Toktam; Razavi, Seyed M A; Taghizadeh, Masoud; Sazgarnia, Ameneh
2016-01-01
Roasting is an important step in the processing of pistachio nuts. The effect of hot air roasting temperature (90, 120 and 150 °C), time (20, 35 and 50 min) and air velocity (0.5, 1.5 and 2.5 m/s) on textural and sensory characteristics of pistachio nuts and kernels were investigated. The results showed that increasing the roasting temperature decreased the fracture force (82-25.54 N), instrumental hardness (82.76-37.59 N), apparent modulus of elasticity (47-21.22 N/s), compressive energy (280.73-101.18 N.s) and increased amount of bitterness (1-2.5) and the hardness score (6-8.40) of pistachio kernels. Higher roasting time improved the flavor of samples. The results of the consumer test showed that the roasted pistachio kernels have good acceptability for flavor (score 5.83-8.40), color (score 7.20-8.40) and hardness (score 6-8.40) acceptance. Moreover, Partial Least Square (PLS) analysis of instrumental and sensory data provided important information for the correlation of objective and subjective properties. The univariate analysis showed that over 93.87 % of the variation in sensory hardness and almost 87 % of the variation in sensory acceptability could be explained by instrumental texture properties.
7 CFR 810.602 - Definition of other terms.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Damaged kernels. Kernels and pieces of flaxseed kernels that are badly ground-damaged, badly weather... instructions. Also, underdeveloped, shriveled, and small pieces of flaxseed kernels removed in properly... recleaning. (c) Heat-damaged kernels. Kernels and pieces of flaxseed kernels that are materially discolored...
Hanft, Jonathan M.; Jones, Robert J.
1986-01-01
Kernels cultured in vitro were induced to abort by high temperature (35°C) and by culturing six kernels/cob piece. Aborting kernels failed to enter a linear phase of dry mass accumulation and had a final mass that was less than 6% of nonaborting field-grown kernels. Kernels induced to abort by high temperature failed to synthesize starch in the endosperm and had elevated sucrose concentrations and low fructose and glucose concentrations in the pedicel during early growth compared to nonaborting kernels. Kernels induced to abort by high temperature also had much lower pedicel soluble acid invertase activities than did nonaborting kernels. These results suggest that high temperature during the lag phase of kernel growth may impair the process of sucrose unloading in the pedicel by indirectly inhibiting soluble acid invertase activity and prevent starch synthesis in the endosperm. Kernels induced to abort by culturing six kernels/cob piece had reduced pedicel fructose, glucose, and sucrose concentrations compared to kernels from field-grown ears. These aborting kernels also had a lower pedicel soluble acid invertase activity compared to nonaborting kernels from the same cob piece and from field-grown ears. The low invertase activity in pedicel tissue of the aborting kernels was probably caused by a lack of substrate (sucrose) for the invertase to cleave due to the intense competition for available assimilates. In contrast to kernels cultured at 35°C, aborting kernels from cob pieces containing all six kernels accumulated starch in a linear fashion. These results indicate that kernels cultured six/cob piece abort because of an inadequate supply of sugar and are similar to apical kernels from field-grown ears that often abort prior to the onset of linear growth. PMID:16664846
Out-of-Sample Extensions for Non-Parametric Kernel Methods.
Pan, Binbin; Chen, Wen-Sheng; Chen, Bo; Xu, Chen; Lai, Jianhuang
2017-02-01
Choosing suitable kernels plays an important role in the performance of kernel methods. Recently, a number of studies were devoted to developing nonparametric kernels. Without assuming any parametric form of the target kernel, nonparametric kernel learning offers a flexible scheme to utilize the information of the data, which may potentially characterize the data similarity better. The kernel methods using nonparametric kernels are referred to as nonparametric kernel methods. However, many nonparametric kernel methods are restricted to transductive learning, where the prediction function is defined only over the data points given beforehand. They have no straightforward extension for the out-of-sample data points, and thus cannot be applied to inductive learning. In this paper, we show how to make the nonparametric kernel methods applicable to inductive learning. The key problem of out-of-sample extension is how to extend the nonparametric kernel matrix to the corresponding kernel function. A regression approach in the hyper reproducing kernel Hilbert space is proposed to solve this problem. Empirical results indicate that the out-of-sample performance is comparable to the in-sample performance in most cases. Experiments on face recognition demonstrate the superiority of our nonparametric kernel method over the state-of-the-art parametric kernel methods.
Arcisauskaite, Vaida; Melo, Juan I; Hemmingsen, Lars; Sauer, Stephan P A
2011-07-28
We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL(2) (L = Cl, Br, I, CH(3)) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH(3))(2) within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ∼2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr(2) and HgI(2) when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ∼500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ∼100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible. © 2011 American Institute of Physics
7 CFR 810.1202 - Definition of other terms.
Code of Federal Regulations, 2010 CFR
2010-01-01
... kernels. Kernels, pieces of rye kernels, and other grains that are badly ground-damaged, badly weather.... Also, underdeveloped, shriveled, and small pieces of rye kernels removed in properly separating the...-damaged kernels. Kernels, pieces of rye kernels, and other grains that are materially discolored and...
Czaban, Janusz; Wróblewska, Barbara; Sułek, Alicja; Mikos, Marzena; Boguszewska, Edyta; Podolska, Grażyna; Nieróbca, Anna
2015-01-01
Field experiments were conducted during three consecutive growing seasons (2007/08, 2008/09 and 2009/10) with four winter wheat (Triticum aestivum L.) cultivars - 'Bogatka', 'Kris', 'Satyna' and 'Tonacja' - grown on fields with a three-field crop rotation (winter triticale, spring barley, winter wheat) and in a four-field crop rotation experiment (spring wheat, spring cereals, winter rapeseed, winter wheat). After the harvest, kernels were surface disinfected with 2% NaOCl and then analysed for the internal infection by different species of Fusarium. Fusaria were isolated on Czapek-Dox iprodione dichloran agar medium and identified on the basis of macro- and micro-morphology on potato dextrose agar and synthetic nutrient agar media. The total wheat grain infection by Fusarium depended mainly on relative humidity (RH) and a rainfall during the flowering stage. Intensive rainfall and high RH in 2009 and 2010 in the period meant the proportions of infected kernels by the fungi were much higher than those in 2008 (lack of precipitation during anthesis). Weather conditions during the post-anthesis period changed the species composition of Fusarium communities internally colonising winter wheat grain. The cultivars significantly varied in the proportion of infected kernels by Fusarium spp. The growing season and type of crop rotation had a distinct effect on species composition of Fusarium communities colonising the grain inside. A trend of a higher percentage of the colonised kernels by the fungi in the grain from the systems using more fertilisers and pesticides as well as the buried straw could be perceived. The most frequent species in the grain were F. avenaceum, F. tricinctum and F. poae in 2008, and F. avenaceum, F. graminearum, F. tricinctum and F. poae in 2009 and 2010. The contents of deoxynivalenol and zearalenon in the grain were correlated with the percentage of kernels colonised by F. graminearum and were the highest in 2009 in the grain from the four-field crop rotation. The content of T-2/HT-2 toxins was the highest in 2010 in grain from the three-field crop rotation and it was correlated with the isolation frequency of F. langsethiae.
Chen, Jiafa; Zhang, Luyan; Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang
2016-01-01
Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed.
Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang
2016-01-01
Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed. PMID:27070143
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Jianmin; Perdew, John P; Staroverov, Viktor N
2008-01-01
We construct a nonlocal density functional approximation with full exact exchange, while preserving the constraint-satisfaction approach and justified error cancellations of simpler semilocal functionals. This is achieved by interpolating between different approximations suitable for two extreme regions of the electron density. In a 'normal' region, the exact exchange-correlation hole density around an electron is semilocal because its spatial range is reduced by correlation and because it integrates over a narrow range to -1. These regions are well described by popular semilocal approximations (many of which have been constructed nonempirically), because of proper accuracy for a slowly-varying density or because ofmore » error cancellation between exchange and correlation. 'Abnormal' regions, where non locality is unveiled, include those in which exchange can dominate correlation (one-electron, nonuniform high-density, and rapidly-varying limits), and those open subsystems of fluctuating electron number over which the exact exchange-correlation hole integrates to a value greater than -1. Regions between these extremes are described by a hybrid functional mixing exact and semi local exchange energy densities locally (i.e., with a mixing fraction that is a function of position r and a functional of the density). Because our mixing fraction tends to 1 in the high-density limit, we employ full exact exchange according to the rigorous definition of the exchange component of any exchange-correlation energy functional. Use of full exact exchange permits the satisfaction of many exact constraints, but the nonlocality of exchange also requires balanced nonlocality of correlation. We find that this nonlocality can demand at least five empirical parameters (corresponding roughly to the four kinds of abnormal regions). Our local hybrid functional is perhaps the first accurate size-consistent density functional with full exact exchange. It satisfies other known exact constraints, including exactness for all one-electron densities, and provides an excellent, fit 1.0 the 223 molecular enthalpies of formation of the G3/99 set and the 42 reaction barrier heights of the BH42/03 set, improving both (but especially the latter) over most semilocal functionals and global hybrids. Exact constraints, physical insights, and paradigm examples hopefully suppress 'overfitting'.« less
Mathematical inference in one point microrheology
NASA Astrophysics Data System (ADS)
Hohenegger, Christel; McKinley, Scott
2016-11-01
Pioneered by the work of Mason and Weitz, one point passive microrheology has been successfully applied to obtaining estimates of the loss and storage modulus of viscoelastic fluids when the mean-square displacement obeys a local power law. Using numerical simulations of a fluctuating viscoelastic fluid model, we study the problem of recovering the mechanical parameters of the fluid's memory kernel using statistical inference like mean-square displacements and increment auto-correlation functions. Seeking a better understanding of the influence of the assumptions made in the inversion process, we mathematically quantify the uncertainty in traditional one point microrheology for simulated data and demonstrate that a large family of memory kernels yields the same statistical signature. We consider both simulated data obtained from a full viscoelastic fluid simulation of the unsteady Stokes equations with fluctuations and from a Generalized Langevin Equation of the particle's motion described by the same memory kernel. From the theory of inverse problems, we propose an alternative method that can be used to recover information about the loss and storage modulus and discuss its limitations and uncertainties. NSF-DMS 1412998.
NASA Technical Reports Server (NTRS)
Acton, Charles H., Jr.; Bachman, Nathaniel J.; Semenov, Boris V.; Wright, Edward D.
2010-01-01
The Navigation Ancillary Infor ma tion Facility (NAIF) at JPL, acting under the direction of NASA s Office of Space Science, has built a data system named SPICE (Spacecraft Planet Instrument Cmatrix Events) to assist scientists in planning and interpreting scientific observations (see figure). SPICE provides geometric and some other ancillary information needed to recover the full value of science instrument data, including correlation of individual instrument data sets with data from other instruments on the same or other spacecraft. This data system is used to produce space mission observation geometry data sets known as SPICE kernels. It is also used to read SPICE kernels and to compute derived quantities such as positions, orientations, lighting angles, etc. The SPICE toolkit consists of a subroutine/ function library, executable programs (both large applications and simple utilities that focus on kernel management), and simple examples of using SPICE toolkit subroutines. This software is very accurate, thoroughly tested, and portable to all computers. It is extremely stable and reusable on all missions. Since the previous version, three significant capabilities have been added: Interactive Data Language (IDL) interface, MATLAB interface, and a geometric event finder subsystem.
Exploring the Brighter-fatter Effect with the Hyper Suprime-Cam
NASA Astrophysics Data System (ADS)
Coulton, William R.; Armstrong, Robert; Smith, Kendrick M.; Lupton, Robert H.; Spergel, David N.
2018-06-01
The brighter-fatter effect has been postulated to arise due to the build up of a transverse electric field, produced as photocharges accumulate in the pixels’ potential wells. We investigate the brighter-fatter effect in the Hyper Suprime-Cam by examining flat fields and moments of stars. We observe deviations from the expected linear relation in the photon transfer curve (PTC), luminosity-dependent correlations between pixels in flat-field images, and a luminosity-dependent point-spread function (PSF) in stellar observations. Under the key assumptions of translation invariance and Maxwell’s equations in the quasi-static limit, we give a first-principles proof that the effect can be parameterized by a translationally invariant scalar kernel. We describe how this kernel can be estimated from flat fields and discuss how this kernel has been used to remove the brighter-fatter distortions in Hyper Suprime-Cam images. We find that our correction restores the expected linear relation in the PTCs and significantly reduces, but does not completely remove, the luminosity dependence of the PSF over a wide range of magnitudes.
Hruska, Zuzana; Rajasekaran, Kanniah; Yao, Haibo; Kincaid, Russell; Darlington, Dawn; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.
2014-01-01
A currently utilized pre-harvest biocontrol method involves field inoculations with non-aflatoxigenic Aspergillus flavus strains, a tactic shown to strategically suppress native aflatoxin-producing strains and effectively decrease aflatoxin contamination in corn. The present in situ study focuses on tracking the invasion and colonization of an aflatoxigenic A. flavus strain (AF70), labeled with green fluorescent protein (GFP), in the presence of a non-aflatoxigenic A. flavus biocontrol strain (AF36), to better understand the competitive interaction between these two strains in seed tissue of corn (Zea mays). Corn kernels that had been co-inoculated with GFP-labeled AF70 and wild-type AF36 were cross-sectioned and observed under UV and blue light to determine the outcome of competition between these strains. After imaging, all kernels were analyzed for aflatoxin levels. There appeared to be a population difference between the co-inoculated AF70-GFP+AF36 and the individual AF70-GFP tests, both visually and with pixel count analysis. The GFP allowed us to observe that AF70-GFP inside the kernels was suppressed up to 82% when co-inoculated with AF36 indicating that AF36 inhibited progression of AF70-GFP. This was in agreement with images taken of whole kernels where AF36 exhibited a more robust external growth compared to AF70-GFP. The suppressed growth of AF70-GFP was reflected in a corresponding (upto 73%) suppression in aflatoxin levels. Our results indicate that the decrease in aflatoxin production correlated with population depression of the aflatoxigenic fungus by the biocontrol strain supporting the theory of competitive exclusion through robust propagation and fast colonization by the non-aflatoxigenic fungus. PMID:24734028
Hruska, Zuzana; Rajasekaran, Kanniah; Yao, Haibo; Kincaid, Russell; Darlington, Dawn; Brown, Robert L; Bhatnagar, Deepak; Cleveland, Thomas E
2014-01-01
A currently utilized pre-harvest biocontrol method involves field inoculations with non-aflatoxigenic Aspergillus flavus strains, a tactic shown to strategically suppress native aflatoxin-producing strains and effectively decrease aflatoxin contamination in corn. The present in situ study focuses on tracking the invasion and colonization of an aflatoxigenic A. flavus strain (AF70), labeled with green fluorescent protein (GFP), in the presence of a non-aflatoxigenic A. flavus biocontrol strain (AF36), to better understand the competitive interaction between these two strains in seed tissue of corn (Zea mays). Corn kernels that had been co-inoculated with GFP-labeled AF70 and wild-type AF36 were cross-sectioned and observed under UV and blue light to determine the outcome of competition between these strains. After imaging, all kernels were analyzed for aflatoxin levels. There appeared to be a population difference between the co-inoculated AF70-GFP+AF36 and the individual AF70-GFP tests, both visually and with pixel count analysis. The GFP allowed us to observe that AF70-GFP inside the kernels was suppressed up to 82% when co-inoculated with AF36 indicating that AF36 inhibited progression of AF70-GFP. This was in agreement with images taken of whole kernels where AF36 exhibited a more robust external growth compared to AF70-GFP. The suppressed growth of AF70-GFP was reflected in a corresponding (upto 73%) suppression in aflatoxin levels. Our results indicate that the decrease in aflatoxin production correlated with population depression of the aflatoxigenic fungus by the biocontrol strain supporting the theory of competitive exclusion through robust propagation and fast colonization by the non-aflatoxigenic fungus.
TEMPORAL EVOLUTION AND SPATIAL DISTRIBUTION OF WHITE-LIGHT FLARE KERNELS IN A SOLAR FLARE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawate, T.; Ishii, T. T.; Nakatani, Y.
2016-12-10
On 2011 September 6, we observed an X2.1-class flare in continuum and H α with a frame rate of about 30 Hz. After processing images of the event by using a speckle-masking image reconstruction, we identified white-light (WL) flare ribbons on opposite sides of the magnetic neutral line. We derive the light curve decay times of the WL flare kernels at each resolution element by assuming that the kernels consist of one or two components that decay exponentially, starting from the peak time. As a result, 42% of the pixels have two decay-time components with average decay times of 15.6 andmore » 587 s, whereas the average decay time is 254 s for WL kernels with only one decay-time component. The peak intensities of the shorter decay-time component exhibit good spatial correlation with the WL intensity, whereas the peak intensities of the long decay-time components tend to be larger in the early phase of the flare at the inner part of the flare ribbons, close to the magnetic neutral line. The average intensity of the longer decay-time components is 1.78 times higher than that of the shorter decay-time components. If the shorter decay time is determined by either the chromospheric cooling time or the nonthermal ionization timescale and the longer decay time is attributed to the coronal cooling time, this result suggests that WL sources from both regions appear in 42% of the WL kernels and that WL emission of the coronal origin is sometimes stronger than that of chromospheric origin.« less
7 CFR 810.802 - Definition of other terms.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Damaged kernels. Kernels and pieces of grain kernels for which standards have been established under the.... (d) Heat-damaged kernels. Kernels and pieces of grain kernels for which standards have been...
NASA Astrophysics Data System (ADS)
Nolet, G.; Mercerat, D.; Zaroli, C.
2012-12-01
We present the first complete test of finite frequency tomography with banana-doughnut kernels, from the generation of seismograms in a 3D model to the final inversion, and are able to lay to rest all of the so-called `controversies' that have slowed down its adoption. Cross-correlation delay times are influenced by energy arriving in a time window that includes later arrivals, either scattered from, or diffracted around lateral heterogeneities. We present here the results of a 3D test in which we generate 1716 seismograms using the spectral element method in a cross-borehole experiment conducted in a checkerboard box. Delays are determined for the broadband signals as well as for five frequency bands (each one octave apart) by cross-correlating seismograms for a homogeneous pattern with those for a checkerboard. The large (10 per cent) velocity contrast and the regularity of the checkerboard pattern causes severe reverberations that arrive late in the cross-correlation window. Data errors are estimated by comparing linearity between delays measured for a model with 10 per cent velocity contrast with those with a 4 per cent contrast. Sensitivity kernels are efficiently computed with ray theory using the `banana-doughnut' kernels from Dahlen et al. (GJI 141:157, 2000). The model resulting from the inversion with a data fit with reduced χ2red=1 shows an excellent correspondence with the input model and allows for a complete validation of the theory. Amplitudes in the (well resolved) top part of the model are close to the input amplitudes. Comparing a model derived from one band only shows the power of using multiple frequency bands in resolving detail - essentially the observed dispersion captures some of the waveform information. Finite frequency theory also allows us to image the checkerboard at some distance from the borehole plane. Most disconcertingly for advocates of ray theory are the results obtained when we interpret cross-correlation delays with ray theory. We shall present an extreme case of the devil's checkerboard (the term is from Jacobsen and Sigloch), in which the sign of the anomalies in the checkerboard is reversed in the ray-theoretical solution, a clear demonstration of the reality of effects of the doughnut hole. We conclude that the test fully validates `banana-doughnut' theory, and disqualifies ray theoretical inversions of cross-correlation delays.
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2014 CFR
2014-01-01
... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2011 CFR
2011-01-01
... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2012 CFR
2012-01-01
... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2013 CFR
2013-01-01
... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...
Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong
2017-06-19
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.
Oil price and exchange rate co-movements in Asian countries: Detrended cross-correlation approach
NASA Astrophysics Data System (ADS)
Hussain, Muntazir; Zebende, Gilney Figueira; Bashir, Usman; Donghong, Ding
2017-01-01
Most empirical literature investigates the relation between oil prices and exchange rate through different models. These models measure this relationship on two time scales (long and short terms), and often fail to observe the co-movement of these variables at different time scales. We apply a detrended cross-correlation approach (DCCA) to investigate the co-movements of the oil price and exchange rate in 12 Asian countries. This model determines the co-movements of oil price and exchange rate at different time scale. The exchange rate and oil price time series indicate unit root problem. Their correlation and cross-correlation are very difficult to measure. The result becomes spurious when periodic trend or unit root problem occurs in these time series. This approach measures the possible cross-correlation at different time scale and controlling the unit root problem. Our empirical results support the co-movements of oil prices and exchange rate. Our results support a weak negative cross-correlation between oil price and exchange rate for most Asian countries included in our sample. The results have important monetary, fiscal, inflationary, and trade policy implications for these countries.
Classification With Truncated Distance Kernel.
Huang, Xiaolin; Suykens, Johan A K; Wang, Shuning; Hornegger, Joachim; Maier, Andreas
2018-05-01
This brief proposes a truncated distance (TL1) kernel, which results in a classifier that is nonlinear in the global region but is linear in each subregion. With this kernel, the subregion structure can be trained using all the training data and local linear classifiers can be established simultaneously. The TL1 kernel has good adaptiveness to nonlinearity and is suitable for problems which require different nonlinearities in different areas. Though the TL1 kernel is not positive semidefinite, some classical kernel learning methods are still applicable which means that the TL1 kernel can be directly used in standard toolboxes by replacing the kernel evaluation. In numerical experiments, the TL1 kernel with a pregiven parameter achieves similar or better performance than the radial basis function kernel with the parameter tuned by cross validation, implying the TL1 kernel a promising nonlinear kernel for classification tasks.
Phase correlation of foreign exchange time series
NASA Astrophysics Data System (ADS)
Wu, Ming-Chya
2007-03-01
Correlation of foreign exchange rates in currency markets is investigated based on the empirical data of USD/DEM and USD/JPY exchange rates for a period from February 1 1986 to December 31 1996. The return of exchange time series is first decomposed into a number of intrinsic mode functions (IMFs) by the empirical mode decomposition method. The instantaneous phases of the resultant IMFs calculated by the Hilbert transform are then used to characterize the behaviors of pricing transmissions, and the correlation is probed by measuring the phase differences between two IMFs in the same order. From the distribution of phase differences, our results show explicitly that the correlations are stronger in daily time scale than in longer time scales. The demonstration for the correlations in periods of 1986-1989 and 1990-1993 indicates two exchange rates in the former period were more correlated than in the latter period. The result is consistent with the observations from the cross-correlation calculation.
Cross-correlations between crude oil and exchange markets for selected oil rich economies
NASA Astrophysics Data System (ADS)
Li, Jianfeng; Lu, Xinsheng; Zhou, Ying
2016-07-01
Using multifractal detrended cross-correlation analysis (MF-DCCA), this paper studies the cross-correlation behavior between crude oil market and five selected exchange rate markets. The dataset covers the period of January 1,1996-December 31,2014, and contains 4,633 observations for each of the series, including daily closing prices of crude oil, Australian Dollars, Canadian Dollars, Mexican Pesos, Russian Rubles, and South African Rand. Our empirical results obtained from cross-correlation statistic and cross-correlation coefficient have confirmed the existence of cross-correlations, and the MF-DCCA results have demonstrated a strong multifractality between cross-correlated crude oil market and exchange rate markets in both short term and long term. Using rolling window analysis, we have also found the persistent cross-correlations between the exchange rates and crude oil returns, and the cross-correlation scaling exponents exhibit volatility during some time periods due to its sensitivity to sudden events.
Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong
2017-01-01
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification. PMID:28629202
NASA Astrophysics Data System (ADS)
Ortiz, Gerardo; Souza, Ivo; Martin, Richard M.
1998-01-01
We present a simple and direct proof that the exchange-correlation hole, and therefore the exchange-correlation energy, in a polarized insulator is not determined by the bulk density alone. It is uniquely characterized by the density and the macroscopic electric polarization of the dielectric medium.
Gabor-based kernel PCA with fractional power polynomial models for face recognition.
Liu, Chengjun
2004-05-01
This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.
A multi-label learning based kernel automatic recommendation method for support vector machine.
Zhang, Xueying; Song, Qinbao
2015-01-01
Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance.
A Multi-Label Learning Based Kernel Automatic Recommendation Method for Support Vector Machine
Zhang, Xueying; Song, Qinbao
2015-01-01
Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance. PMID:25893896
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Edible kernel. 981.7 Section 981.7 Agriculture... Regulating Handling Definitions § 981.7 Edible kernel. Edible kernel means a kernel, piece, or particle of almond kernel that is not inedible. [41 FR 26852, June 30, 1976] ...
Kernel K-Means Sampling for Nyström Approximation.
He, Li; Zhang, Hong
2018-05-01
A fundamental problem in Nyström-based kernel matrix approximation is the sampling method by which training set is built. In this paper, we suggest to use kernel -means sampling, which is shown in our works to minimize the upper bound of a matrix approximation error. We first propose a unified kernel matrix approximation framework, which is able to describe most existing Nyström approximations under many popular kernels, including Gaussian kernel and polynomial kernel. We then show that, the matrix approximation error upper bound, in terms of the Frobenius norm, is equal to the -means error of data points in kernel space plus a constant. Thus, the -means centers of data in kernel space, or the kernel -means centers, are the optimal representative points with respect to the Frobenius norm error upper bound. Experimental results, with both Gaussian kernel and polynomial kernel, on real-world data sets and image segmentation tasks show the superiority of the proposed method over the state-of-the-art methods.
Ground-state properties of trapped Bose-Fermi mixtures: Role of exchange correlation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albus, Alexander P.; Wilkens, Martin; Illuminati, Fabrizio
2003-06-01
We introduce density-functional theory for inhomogeneous Bose-Fermi mixtures, derive the associated Kohn-Sham equations, and determine the exchange-correlation energy in local-density approximation. We solve numerically the Kohn-Sham system, and determine the boson and fermion density distributions and the ground-state energy of a trapped, dilute mixture beyond mean-field approximation. The importance of the corrections due to exchange correlation is discussed by a comparison with current experiments; in particular, we investigate the effect of the repulsive potential-energy contribution due to exchange correlation on the stability of the mixture against collapse.
Applications of temporal kernel canonical correlation analysis in adherence studies.
John, Majnu; Lencz, Todd; Ferbinteanu, Janina; Gallego, Juan A; Robinson, Delbert G
2017-10-01
Adherence to medication is often measured as a continuous outcome but analyzed as a dichotomous outcome due to lack of appropriate tools. In this paper, we illustrate the use of the temporal kernel canonical correlation analysis (tkCCA) as a method to analyze adherence measurements and symptom levels on a continuous scale. The tkCCA is a novel method developed for studying the relationship between neural signals and hemodynamic response detected by functional MRI during spontaneous activity. Although the tkCCA is a powerful tool, it has not been utilized outside the application that it was originally developed for. In this paper, we simulate time series of symptoms and adherence levels for patients with a hypothetical brain disorder and show how the tkCCA can be used to understand the relationship between them. We also examine, via simulations, the behavior of the tkCCA under various missing value mechanisms and imputation methods. Finally, we apply the tkCCA to a real data example of psychotic symptoms and adherence levels obtained from a study based on subjects with a first episode of schizophrenia, schizophreniform or schizoaffective disorder.
Exploiting graph kernels for high performance biomedical relation extraction.
Panyam, Nagesh C; Verspoor, Karin; Cohn, Trevor; Ramamohanarao, Kotagiri
2018-01-30
Relation extraction from biomedical publications is an important task in the area of semantic mining of text. Kernel methods for supervised relation extraction are often preferred over manual feature engineering methods, when classifying highly ordered structures such as trees and graphs obtained from syntactic parsing of a sentence. Tree kernels such as the Subset Tree Kernel and Partial Tree Kernel have been shown to be effective for classifying constituency parse trees and basic dependency parse graphs of a sentence. Graph kernels such as the All Path Graph kernel (APG) and Approximate Subgraph Matching (ASM) kernel have been shown to be suitable for classifying general graphs with cycles, such as the enhanced dependency parse graph of a sentence. In this work, we present a high performance Chemical-Induced Disease (CID) relation extraction system. We present a comparative study of kernel methods for the CID task and also extend our study to the Protein-Protein Interaction (PPI) extraction task, an important biomedical relation extraction task. We discuss novel modifications to the ASM kernel to boost its performance and a method to apply graph kernels for extracting relations expressed in multiple sentences. Our system for CID relation extraction attains an F-score of 60%, without using external knowledge sources or task specific heuristic or rules. In comparison, the state of the art Chemical-Disease Relation Extraction system achieves an F-score of 56% using an ensemble of multiple machine learning methods, which is then boosted to 61% with a rule based system employing task specific post processing rules. For the CID task, graph kernels outperform tree kernels substantially, and the best performance is obtained with APG kernel that attains an F-score of 60%, followed by the ASM kernel at 57%. The performance difference between the ASM and APG kernels for CID sentence level relation extraction is not significant. In our evaluation of ASM for the PPI task, ASM performed better than APG kernel for the BioInfer dataset, in the Area Under Curve (AUC) measure (74% vs 69%). However, for all the other PPI datasets, namely AIMed, HPRD50, IEPA and LLL, ASM is substantially outperformed by the APG kernel in F-score and AUC measures. We demonstrate a high performance Chemical Induced Disease relation extraction, without employing external knowledge sources or task specific heuristics. Our work shows that graph kernels are effective in extracting relations that are expressed in multiple sentences. We also show that the graph kernels, namely the ASM and APG kernels, substantially outperform the tree kernels. Among the graph kernels, we showed the ASM kernel as effective for biomedical relation extraction, with comparable performance to the APG kernel for datasets such as the CID-sentence level relation extraction and BioInfer in PPI. Overall, the APG kernel is shown to be significantly more accurate than the ASM kernel, achieving better performance on most datasets.
Improved correlation corrections to the local-spin-density approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Painter, G.S.
1981-10-15
The accurate correlation energies for the para- and ferromagnetic states of the electron liquid calculated by Ceperley and Alder were recently used by Vosko, Wilk, and Nusair to produce a new correlation-energy density of increased accuracy and proper limiting behavior in the metallic density regime (r/sub s/< or =6). In the present work, the correlation potential in the local-spin-density approximation (LSDA) is derived from the correlation-energy-density representation of Vosko et al. Characteristics of the new exchange-correlation model are compared with those of the LSDA model of Gunnarsson and Lundqvist. Specific comparison is made between these models and exact results inmore » the treatment of atomic and molecular hydrogen. Since the new treatment of correlation primarily affects the region of small r/sub s/, which is exchange dominated, correlation corrections are small compared with errors in the exchange energy. Thus, in light atoms the improved correlation model leads to a reduced cancellation of error between exchange and correlation energies, emphasizing the necessity for improved exchange treatment. For more homogeneous systems, the model should offer real improvement. The present results obtained with precise treatment of correlation within the prescription of Vosko et al. serve to define the present limitations of the LSDA and indicate the importance of nonlocal corrections, particularly for atoms.« less
7 CFR 810.2202 - Definition of other terms.
Code of Federal Regulations, 2014 CFR
2014-01-01
... kernels, foreign material, and shrunken and broken kernels. The sum of these three factors may not exceed... the removal of dockage and shrunken and broken kernels. (g) Heat-damaged kernels. Kernels, pieces of... sample after the removal of dockage and shrunken and broken kernels. (h) Other grains. Barley, corn...
7 CFR 981.8 - Inedible kernel.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Inedible kernel. 981.8 Section 981.8 Agriculture... Regulating Handling Definitions § 981.8 Inedible kernel. Inedible kernel means a kernel, piece, or particle of almond kernel with any defect scored as serious damage, or damage due to mold, gum, shrivel, or...
7 CFR 51.1415 - Inedible kernels.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Inedible kernels. 51.1415 Section 51.1415 Agriculture... Standards for Grades of Pecans in the Shell 1 Definitions § 51.1415 Inedible kernels. Inedible kernels means that the kernel or pieces of kernels are rancid, moldy, decayed, injured by insects or otherwise...
An Approximate Approach to Automatic Kernel Selection.
Ding, Lizhong; Liao, Shizhong
2016-02-02
Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.
NASA Astrophysics Data System (ADS)
Ngo, N. H.; Tran, H.; Gamache, R. R.; Bermejo, D.; Domenech, J.-L.
2012-08-01
The modeling of the shape of H2O lines perturbed by N2 (and air) using the Keilson-Storer (KS) kernel for collision-induced velocity changes is revisited with classical molecular dynamics simulations (CMDS). The latter have been performed for a large number of molecules starting from intermolecular-potential surfaces. Contrary to the assumption made in a previous study [H. Tran, D. Bermejo, J.-L. Domenech, P. Joubert, R. R. Gamache, and J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transf. 108, 126 (2007)], 10.1016/j.jqsrt.2007.03.009, the results of these CMDS show that the velocity-orientation and -modulus changes statistically occur at the same time scale. This validates the use of a single memory parameter in the Keilson-Storer kernel to describe both the velocity-orientation and -modulus changes. The CMDS results also show that velocity- and rotational state-changing collisions are statistically partially correlated. A partially correlated speed-dependent Keilson-Storer model has thus been used to describe the line-shape. For this, the velocity changes KS kernel parameters have been directly determined from CMDS, while the speed-dependent broadening and shifting coefficients have been calculated with a semi-classical approach. Comparisons between calculated spectra and measurements of several lines of H2O broadened by N2 (and air) in the ν3 and 2ν1 + ν2 + ν3 bands for a wide range of pressure show very satisfactory agreement. The evolution of non-Voigt effects from Doppler to collisional regimes is also presented and discussed.
Kernel canonical-correlation Granger causality for multiple time series
NASA Astrophysics Data System (ADS)
Wu, Guorong; Duan, Xujun; Liao, Wei; Gao, Qing; Chen, Huafu
2011-04-01
Canonical-correlation analysis as a multivariate statistical technique has been applied to multivariate Granger causality analysis to infer information flow in complex systems. It shows unique appeal and great superiority over the traditional vector autoregressive method, due to the simplified procedure that detects causal interaction between multiple time series, and the avoidance of potential model estimation problems. However, it is limited to the linear case. Here, we extend the framework of canonical correlation to include the estimation of multivariate nonlinear Granger causality for drawing inference about directed interaction. Its feasibility and effectiveness are verified on simulated data.
Optimisation of shape kernel and threshold in image-processing motion analysers.
Pedrocchi, A; Baroni, G; Sada, S; Marcon, E; Pedotti, A; Ferrigno, G
2001-09-01
The aim of the work is to optimise the image processing of a motion analyser. This is to improve accuracy, which is crucial for neurophysiological and rehabilitation applications. A new motion analyser, ELITE-S2, for installation on the International Space Station is described, with the focus on image processing. Important improvements are expected in the hardware of ELITE-S2 compared with ELITE and previous versions (ELITE-S and Kinelite). The core algorithm for marker recognition was based on the current ELITE version, using the cross-correlation technique. This technique was based on the matching of the expected marker shape, the so-called kernel, with image features. Optimisation of the kernel parameters was achieved using a genetic algorithm, taking into account noise rejection and accuracy. Optimisation was achieved by performing tests on six highly precise grids (with marker diameters ranging from 1.5 to 4 mm), representing all allowed marker image sizes, and on a noise image. The results of comparing the optimised kernels and the current ELITE version showed a great improvement in marker recognition accuracy, while noise rejection characteristics were preserved. An average increase in marker co-ordinate accuracy of +22% was achieved, corresponding to a mean accuracy of 0.11 pixel in comparison with 0.14 pixel, measured over all grids. An improvement of +37%, corresponding to an improvement from 0.22 pixel to 0.14 pixel, was observed over the grid with the biggest markers.
von Spiczak, Jochen; Mannil, Manoj; Peters, Benjamin; Hickethier, Tilman; Baer, Matthias; Henning, André; Schmidt, Bernhard; Flohr, Thomas; Manka, Robert; Maintz, David; Alkadhi, Hatem
2018-05-23
The aims of this study were to assess the value of a dedicated sharp convolution kernel for photon counting detector (PCD) computed tomography (CT) for coronary stent imaging and to evaluate to which extent iterative reconstructions can compensate for potential increases in image noise. For this in vitro study, a phantom simulating coronary artery stenting was prepared. Eighteen different coronary stents were expanded in plastic tubes of 3 mm diameter. Tubes were filled with diluted contrast agent, sealed, and immersed in oil calibrated to an attenuation of -100 HU simulating epicardial fat. The phantom was scanned in a modified second generation 128-slice dual-source CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Erlangen, Germany) equipped with both a conventional energy integrating detector and PCD. Image data were acquired using the PCD part of the scanner with 48 × 0.25 mm slices, a tube voltage of 100 kVp, and tube current-time product of 100 mAs. Images were reconstructed using a conventional convolution kernel for stent imaging with filtered back-projection (B46) and with sinogram-affirmed iterative reconstruction (SAFIRE) at level 3 (I463). For comparison, a dedicated sharp convolution kernel with filtered back-projection (D70) and SAFIRE level 3 (Q703) and level 5 (Q705) was used. The D70 and Q70 kernels were specifically designed for coronary stent imaging with PCD CT by optimizing the image modulation transfer function and the separation of contrast edges. Two independent, blinded readers evaluated subjective image quality (Likert scale 0-3, where 3 = excellent), in-stent diameter difference, in-stent attenuation difference, mathematically defined image sharpness, and noise of each reconstruction. Interreader reliability was calculated using Goodman and Kruskal's γ and intraclass correlation coefficients (ICCs). Differences in image quality were evaluated using a Wilcoxon signed-rank test. Differences in in-stent diameter difference, in-stent attenuation difference, image sharpness, and image noise were tested using a paired-sample t test corrected for multiple comparisons. Interreader and intrareader reliability were excellent (γ = 0.953, ICCs = 0.891-0.999, and γ = 0.996, ICCs = 0.918-0.999, respectively). Reconstructions using the dedicated sharp convolution kernel yielded significantly better results regarding image quality (B46: 0.4 ± 0.5 vs D70: 2.9 ± 0.3; P < 0.001), in-stent diameter difference (1.5 ± 0.3 vs 1.0 ± 0.3 mm; P < 0.001), and image sharpness (728 ± 246 vs 2069 ± 411 CT numbers/voxel; P < 0.001). Regarding in-stent attenuation difference, no significant difference was observed between the 2 kernels (151 ± 76 vs 158 ± 92 CT numbers; P = 0.627). Noise was significantly higher in all sharp convolution kernel images but was reduced by 41% and 59% by applying SAFIRE levels 3 and 5, respectively (B46: 16 ± 1, D70: 111 ± 3, Q703: 65 ± 2, Q705: 46 ± 2 CT numbers; P < 0.001 for all comparisons). A dedicated sharp convolution kernel for PCD CT imaging of coronary stents yields superior qualitative and quantitative image characteristics compared with conventional reconstruction kernels. Resulting higher noise levels in sharp kernel PCD imaging can be partially compensated with iterative image reconstruction techniques.
Coupling individual kernel-filling processes with source-sink interactions into GREENLAB-Maize.
Ma, Yuntao; Chen, Youjia; Zhu, Jinyu; Meng, Lei; Guo, Yan; Li, Baoguo; Hoogenboom, Gerrit
2018-02-13
Failure to account for the variation of kernel growth in a cereal crop simulation model may cause serious deviations in the estimates of crop yield. The goal of this research was to revise the GREENLAB-Maize model to incorporate source- and sink-limited allocation approaches to simulate the dry matter accumulation of individual kernels of an ear (GREENLAB-Maize-Kernel). The model used potential individual kernel growth rates to characterize the individual potential sink demand. The remobilization of non-structural carbohydrates from reserve organs to kernels was also incorporated. Two years of field experiments were conducted to determine the model parameter values and to evaluate the model using two maize hybrids with different plant densities and pollination treatments. Detailed observations were made on the dimensions and dry weights of individual kernels and other above-ground plant organs throughout the seasons. Three basic traits characterizing an individual kernel were compared on simulated and measured individual kernels: (1) final kernel size; (2) kernel growth rate; and (3) duration of kernel filling. Simulations of individual kernel growth closely corresponded to experimental data. The model was able to reproduce the observed dry weight of plant organs well. Then, the source-sink dynamics and the remobilization of carbohydrates for kernel growth were quantified to show that remobilization processes accompanied source-sink dynamics during the kernel-filling process. We conclude that the model may be used to explore options for optimizing plant kernel yield by matching maize management to the environment, taking into account responses at the level of individual kernels. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Unconventional protein sources: apricot seed kernels.
Gabrial, G N; El-Nahry, F I; Awadalla, M Z; Girgis, S M
1981-09-01
Hamawy apricot seed kernels (sweet), Amar apricot seed kernels (bitter) and treated Amar apricot kernels (bitterness removed) were evaluated biochemically. All kernels were found to be high in fat (42.2--50.91%), protein (23.74--25.70%) and fiber (15.08--18.02%). Phosphorus, calcium, and iron were determined in all experimental samples. The three different apricot seed kernels were used for extensive study including the qualitative determination of the amino acid constituents by acid hydrolysis, quantitative determination of some amino acids, and biological evaluation of the kernel proteins in order to use them as new protein sources. Weanling albino rats failed to grow on diets containing the Amar apricot seed kernels due to low food consumption because of its bitterness. There was no loss in weight in that case. The Protein Efficiency Ratio data and blood analysis results showed the Hamawy apricot seed kernels to be higher in biological value than treated apricot seed kernels. The Net Protein Ratio data which accounts for both weight, maintenance and growth showed the treated apricot seed kernels to be higher in biological value than both Hamawy and Amar kernels. The Net Protein Ratio for the last two kernels were nearly equal.
An introduction to kernel-based learning algorithms.
Müller, K R; Mika, S; Rätsch, G; Tsuda, K; Schölkopf, B
2001-01-01
This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel-based learning methods. We first give a short background about Vapnik-Chervonenkis theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by discussing applications such as optical character recognition and DNA analysis.
7 CFR 981.408 - Inedible kernel.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Inedible kernel. 981.408 Section 981.408 Agriculture... Administrative Rules and Regulations § 981.408 Inedible kernel. Pursuant to § 981.8, the definition of inedible kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as...
Design of CT reconstruction kernel specifically for clinical lung imaging
NASA Astrophysics Data System (ADS)
Cody, Dianna D.; Hsieh, Jiang; Gladish, Gregory W.
2005-04-01
In this study we developed a new reconstruction kernel specifically for chest CT imaging. An experimental flat-panel CT scanner was used on large dogs to produce 'ground-truth" reference chest CT images. These dogs were also examined using a clinical 16-slice CT scanner. We concluded from the dog images acquired on the clinical scanner that the loss of subtle lung structures was due mostly to the presence of the background noise texture when using currently available reconstruction kernels. This qualitative evaluation of the dog CT images prompted the design of a new recon kernel. This new kernel consisted of the combination of a low-pass and a high-pass kernel to produce a new reconstruction kernel, called the 'Hybrid" kernel. The performance of this Hybrid kernel fell between the two kernels on which it was based, as expected. This Hybrid kernel was also applied to a set of 50 patient data sets; the analysis of these clinical images is underway. We are hopeful that this Hybrid kernel will produce clinical images with an acceptable tradeoff of lung detail, reliable HU, and image noise.
Quality changes in macadamia kernel between harvest and farm-gate.
Walton, David A; Wallace, Helen M
2011-02-01
Macadamia integrifolia, Macadamia tetraphylla and their hybrids are cultivated for their edible kernels. After harvest, nuts-in-shell are partially dried on-farm and sorted to eliminate poor-quality kernels before consignment to a processor. During these operations, kernel quality may be lost. In this study, macadamia nuts-in-shell were sampled at five points of an on-farm postharvest handling chain from dehusking to the final storage silo to assess quality loss prior to consignment. Shoulder damage, weight of pieces and unsound kernel were assessed for raw kernels, and colour, mottled colour and surface damage for roasted kernels. Shoulder damage, weight of pieces and unsound kernel for raw kernels increased significantly between the dehusker and the final silo. Roasted kernels displayed a significant increase in dark colour, mottled colour and surface damage during on-farm handling. Significant loss of macadamia kernel quality occurred on a commercial farm during sorting and storage of nuts-in-shell before nuts were consigned to a processor. Nuts-in-shell should be dried as quickly as possible and on-farm handling minimised to maintain optimum kernel quality. 2010 Society of Chemical Industry.
Self spectrum window method in wigner-ville distribution.
Liu, Zhongguo; Liu, Changchun; Liu, Boqiang; Lv, Yangsheng; Lei, Yinsheng; Yu, Mengsun
2005-01-01
Wigner-Ville distribution (WVD) is an important type of time-frequency analysis in biomedical signal processing. The cross-term interference in WVD has a disadvantageous influence on its application. In this research, the Self Spectrum Window (SSW) method was put forward to suppress the cross-term interference, based on the fact that the cross-term and auto-WVD- terms in integral kernel function are orthogonal. With the Self Spectrum Window (SSW) algorithm, a real auto-WVD function was used as a template to cross-correlate with the integral kernel function, and the Short Time Fourier Transform (STFT) spectrum of the signal was used as window function to process the WVD in time-frequency plane. The SSW method was confirmed by computer simulation with good analysis results. Satisfactory time- frequency distribution was obtained.
NASA Astrophysics Data System (ADS)
Lu, Xinsheng; Sun, Xinxin; Ge, Jintian
2017-05-01
This paper investigates the dynamic relationship between Japanese Yen exchange rates and market anxiety during the period from January 5, 1998 to April 18, 2016. A quantitative technique of multifractal detrended cross-correlation analysis (MF-DCCA) is used to explore the multifractal features of the cross-correlations between USD/JPY, AUD/JPY exchange rates and the market anxiety gauge VIX. The investigation shows that the causal relationship between Japanese Yen exchange rates and VIX are bidirectional in general, and the cross-correlations between the two sets of time series are multifractal. Strong evidence suggests that the cross-correlation exponents tend to exhibit different volatility patterns in response to diverse external shocks such as financial distress and widening in interest rate spread, suggesting that the cross-correlated behavior between Japanese Yen exchange rates and VIX are susceptible to economic uncertainties and risks. In addition, the performances of two market anxiety gauges, the VIX and the TED spread, are compared and the sources of multifractality are also traced. Thus, this paper contributes to the literature by shedding light on the unique driving forces of the Yen exchange rate fluctuations in the international foreign exchange market.
A new discriminative kernel from probabilistic models.
Tsuda, Koji; Kawanabe, Motoaki; Rätsch, Gunnar; Sonnenburg, Sören; Müller, Klaus-Robert
2002-10-01
Recently, Jaakkola and Haussler (1999) proposed a method for constructing kernel functions from probabilistic models. Their so-called Fisher kernel has been combined with discriminative classifiers such as support vector machines and applied successfully in, for example, DNA and protein analysis. Whereas the Fisher kernel is calculated from the marginal log-likelihood, we propose the TOP kernel derived; from tangent vectors of posterior log-odds. Furthermore, we develop a theoretical framework on feature extractors from probabilistic models and use it for analyzing the TOP kernel. In experiments, our new discriminative TOP kernel compares favorably to the Fisher kernel.
Implementing Kernel Methods Incrementally by Incremental Nonlinear Projection Trick.
Kwak, Nojun
2016-05-20
Recently, the nonlinear projection trick (NPT) was introduced enabling direct computation of coordinates of samples in a reproducing kernel Hilbert space. With NPT, any machine learning algorithm can be extended to a kernel version without relying on the so called kernel trick. However, NPT is inherently difficult to be implemented incrementally because an ever increasing kernel matrix should be treated as additional training samples are introduced. In this paper, an incremental version of the NPT (INPT) is proposed based on the observation that the centerization step in NPT is unnecessary. Because the proposed INPT does not change the coordinates of the old data, the coordinates obtained by INPT can directly be used in any incremental methods to implement a kernel version of the incremental methods. The effectiveness of the INPT is shown by applying it to implement incremental versions of kernel methods such as, kernel singular value decomposition, kernel principal component analysis, and kernel discriminant analysis which are utilized for problems of kernel matrix reconstruction, letter classification, and face image retrieval, respectively.
Reconsideration of data and correlations for plate finned-tube heat exchangers
NASA Astrophysics Data System (ADS)
Otović, Milena; Mihailović, Miloš; Genić, Srbislav; Jaćimović, Branislav; Milovančević, Uroš; Marković, Saša
2018-04-01
This paper deals with heat exchangers having plain finned tubes in staggered (triangular) pattern. The objective of this paper is to provide the heat transfer and friction factor correlation which can be used in engineering practice. For this purpose, the experimental data of several (most cited) authors who deal with this type of heat exchangers are used. The new correlations are established to predict the air-side heat transfer coefficient and friction factor as a function of the Reynolds number and geometric variables of the heat exchanger - tube diameter, tube pitch, fin spacing, tube rows, etc. In those correlations the characteristic dimension in Reynolds number is calculated by using the new parameter - volumetric porosity. Also, there are given the errors of those correlations.
Increasing accuracy of dispersal kernels in grid-based population models
Slone, D.H.
2011-01-01
Dispersal kernels in grid-based population models specify the proportion, distance and direction of movements within the model landscape. Spatial errors in dispersal kernels can have large compounding effects on model accuracy. Circular Gaussian and Laplacian dispersal kernels at a range of spatial resolutions were investigated, and methods for minimizing errors caused by the discretizing process were explored. Kernels of progressively smaller sizes relative to the landscape grid size were calculated using cell-integration and cell-center methods. These kernels were convolved repeatedly, and the final distribution was compared with a reference analytical solution. For large Gaussian kernels (σ > 10 cells), the total kernel error was <10 &sup-11; compared to analytical results. Using an invasion model that tracked the time a population took to reach a defined goal, the discrete model results were comparable to the analytical reference. With Gaussian kernels that had σ ≤ 0.12 using the cell integration method, or σ ≤ 0.22 using the cell center method, the kernel error was greater than 10%, which resulted in invasion times that were orders of magnitude different than theoretical results. A goal-seeking routine was developed to adjust the kernels to minimize overall error. With this, corrections for small kernels were found that decreased overall kernel error to <10-11 and invasion time error to <5%.
Anthraquinones isolated from the browned Chinese chestnut kernels (Castanea mollissima blume)
NASA Astrophysics Data System (ADS)
Zhang, Y. L.; Qi, J. H.; Qin, L.; Wang, F.; Pang, M. X.
2016-08-01
Anthraquinones (AQS) represent a group of secondary metallic products in plants. AQS are often naturally occurring in plants and microorganisms. In a previous study, we found that AQS were produced by enzymatic browning reaction in Chinese chestnut kernels. To find out whether non-enzymatic browning reaction in the kernels could produce AQS too, AQS were extracted from three groups of chestnut kernels: fresh kernels, non-enzymatic browned kernels, and browned kernels, and the contents of AQS were determined. High performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) methods were used to identify two compounds of AQS, rehein(1) and emodin(2). AQS were barely exists in the fresh kernels, while both browned kernel groups sample contained a high amount of AQS. Thus, we comfirmed that AQS could be produced during both enzymatic and non-enzymatic browning process. Rhein and emodin were the main components of AQS in the browned kernels.
Integrated model of multiple kernel learning and differential evolution for EUR/USD trading.
Deng, Shangkun; Sakurai, Akito
2014-01-01
Currency trading is an important area for individual investors, government policy decisions, and organization investments. In this study, we propose a hybrid approach referred to as MKL-DE, which combines multiple kernel learning (MKL) with differential evolution (DE) for trading a currency pair. MKL is used to learn a model that predicts changes in the target currency pair, whereas DE is used to generate the buy and sell signals for the target currency pair based on the relative strength index (RSI), while it is also combined with MKL as a trading signal. The new hybrid implementation is applied to EUR/USD trading, which is the most traded foreign exchange (FX) currency pair. MKL is essential for utilizing information from multiple information sources and DE is essential for formulating a trading rule based on a mixture of discrete structures and continuous parameters. Initially, the prediction model optimized by MKL predicts the returns based on a technical indicator called the moving average convergence and divergence. Next, a combined trading signal is optimized by DE using the inputs from the prediction model and technical indicator RSI obtained from multiple timeframes. The experimental results showed that trading using the prediction learned by MKL yielded consistent profits.
Tavakoli, Javad; Emadi, Teymour; Hashemi, Seyed Mohammad Bagher; Mousavi Khaneghah, Amin; Munekata, Paulo Eduardo Sichetti; Lorenzo, Jose Manuel; Brnčić, Mladen; Barba, Francisco J
2018-05-01
The oxidative stability, as well as the chemical composition of Amygdalus reuteri kernel oil (ARKO), were evaluated and compared to those of Amygdalus scoparia kernel oil (ASKO) and extra virgin olive oil (EVOO) during and after holding in the oven (170 °C for 8 h). The oxidative stability analysis was carried out by measuring the changes in conjugated dienes, carbonyl and acid values as well as oil/oxidative stability index and their correlation with the antioxidant compounds (tocopherol, polyphenols, and sterol compounds). The oleic acid was determined as the predominant fatty acid of ARKO (65.5%). Calculated oxidizability value and an iodine value of ARKO, ASKO and EVOO were reported as 3.29 and 3.24, 2.00 and 100.0, 101.4 and 81.9, respectively. Due to the high wax content (4.5% and 3.3%, respectively), the saponification number of ARKO and ASKO (96.4 and 99.8, respectively) was lower than that of EVOO (169.7). ARKO had the highest oxidative stability, followed by ASKO and EVOO. Therefore, ARKO can be introduced as a new source of edible oil with high oxidative stability. Copyright © 2018. Published by Elsevier Ltd.
Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures.
Bobb, Jennifer F; Valeri, Linda; Claus Henn, Birgit; Christiani, David C; Wright, Robert O; Mazumdar, Maitreyi; Godleski, John J; Coull, Brent A
2015-07-01
Because humans are invariably exposed to complex chemical mixtures, estimating the health effects of multi-pollutant exposures is of critical concern in environmental epidemiology, and to regulatory agencies such as the U.S. Environmental Protection Agency. However, most health effects studies focus on single agents or consider simple two-way interaction models, in part because we lack the statistical methodology to more realistically capture the complexity of mixed exposures. We introduce Bayesian kernel machine regression (BKMR) as a new approach to study mixtures, in which the health outcome is regressed on a flexible function of the mixture (e.g. air pollution or toxic waste) components that is specified using a kernel function. In high-dimensional settings, a novel hierarchical variable selection approach is incorporated to identify important mixture components and account for the correlated structure of the mixture. Simulation studies demonstrate the success of BKMR in estimating the exposure-response function and in identifying the individual components of the mixture responsible for health effects. We demonstrate the features of the method through epidemiology and toxicology applications. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Modeling utilization distributions in space and time
Keating, K.A.; Cherry, S.
2009-01-01
W. Van Winkle defined the utilization distribution (UD) as a probability density that gives an animal's relative frequency of occurrence in a two-dimensional (x, y) plane. We extend Van Winkle's work by redefining the UD as the relative frequency distribution of an animal's occurrence in all four dimensions of space and time. We then describe a product kernel model estimation method, devising a novel kernel from the wrapped Cauchy distribution to handle circularly distributed temporal covariates, such as day of year. Using Monte Carlo simulations of animal movements in space and time, we assess estimator performance. Although not unbiased, the product kernel method yields models highly correlated (Pearson's r - 0.975) with true probabilities of occurrence and successfully captures temporal variations in density of occurrence. In an empirical example, we estimate the expected UD in three dimensions (x, y, and t) for animals belonging to each of two distinct bighorn sheep {Ovis canadensis) social groups in Glacier National Park, Montana, USA. Results show the method can yield ecologically informative models that successfully depict temporal variations in density of occurrence for a seasonally migratory species. Some implications of this new approach to UD modeling are discussed. ?? 2009 by the Ecological Society of America.
Image re-sampling detection through a novel interpolation kernel.
Hilal, Alaa
2018-06-01
Image re-sampling involved in re-size and rotation transformations is an essential element block in a typical digital image alteration. Fortunately, traces left from such processes are detectable, proving that the image has gone a re-sampling transformation. Within this context, we present in this paper two original contributions. First, we propose a new re-sampling interpolation kernel. It depends on five independent parameters that controls its amplitude, angular frequency, standard deviation, and duration. Then, we demonstrate its capacity to imitate the same behavior of the most frequent interpolation kernels used in digital image re-sampling applications. Secondly, the proposed model is used to characterize and detect the correlation coefficients involved in re-sampling transformations. The involved process includes a minimization of an error function using the gradient method. The proposed method is assessed over a large database of 11,000 re-sampled images. Additionally, it is implemented within an algorithm in order to assess images that had undergone complex transformations. Obtained results demonstrate better performance and reduced processing time when compared to a reference method validating the suitability of the proposed approaches. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rimza, Tripti; Sharma, Prerana
2017-05-01
The dispersion properties of lower hybrid wave are studied in electron-iondegenerate plasma with exchange effect in non-relativistic regime. It is found that the combined effect of Bohm potential and exchange correlation potential significantly modifies the dispersion properties of lower hybrid wave. The graphical results explicitly show the influence of degeneracy pressure, Bohm force and exchange correlation potential on the frequency of the lower hybrid mode. Present work should be of relevance for the dense astrophysical environments like white dwarfs and for laboratory experiments.
Naghii, Mohammad Reza; Mofid, Mahmood
2007-01-01
Iron deficiency, anemia, is the most prevalent nutritional problem in the world today. The objective of this study was to consider the effectiveness of consumption of iron fortified ready-to-eat cereal and pumpkin seed kernels as two sources of dietary iron on status of iron nutrition and response of hematological characteristics of women at reproductive ages. Eight healthy female, single or non pregnant subjects, aged 20-37 y consumed 30 g of iron fortified ready-to-eat cereal (providing 7.1 mg iron/day) plus 30 g of pumpkin seed kernels (providing 4.0 mg iron/day) for four weeks. Blood samples collected on the day 20 of menstrual cycles before and after consumption and indices of iron status such as reticulocyte count, hemoglobin (Hb), hematocrit (Ht), serum ferritin, iron, total iron-binding capacity (TIBC), transferrin and transferrin saturation percent were determined. Better response for iron status was observed after consumption period. The statistical analysis showed a significant difference between the pre and post consumption phase for higher serum iron (60 +/- 22 vs. 85 +/- 23 ug/dl), higher transferrin saturation percent (16.8 +/- 8.0 vs. 25.6 +/- 9.0%), and lower TIBC (367 +/- 31 vs. 339 +/- 31 ug/dl). All individuals had higher serum iron after consumption. A significant positive correlation (r=0.981, p=0.000) between the differences in serum iron levels and differences in transferrin saturation percentages and a significant negative correlation (r=-0.916, p<0.001) between the differences in serum iron levels and differences in TIBC was found, as well. Fortified foods contribute to maintaining optimal nutritional status and minimizing the likelihood of iron insufficiencies and use of fortified ready-to-eat cereals is a common strategy. The results showed that adding another food source of iron such as pumpkin seed kernels improves the iron status. Additional and longer studies using these two food products are recommended to further determine the effect of iron fortification on iron nutrition and status among the target population, and mainly in young children, adolescents, women of reproductive ages and pregnant women.
Nonlinear Deep Kernel Learning for Image Annotation.
Jiu, Mingyuan; Sahbi, Hichem
2017-02-08
Multiple kernel learning (MKL) is a widely used technique for kernel design. Its principle consists in learning, for a given support vector classifier, the most suitable convex (or sparse) linear combination of standard elementary kernels. However, these combinations are shallow and often powerless to capture the actual similarity between highly semantic data, especially for challenging classification tasks such as image annotation. In this paper, we redefine multiple kernels using deep multi-layer networks. In this new contribution, a deep multiple kernel is recursively defined as a multi-layered combination of nonlinear activation functions, each one involves a combination of several elementary or intermediate kernels, and results into a positive semi-definite deep kernel. We propose four different frameworks in order to learn the weights of these networks: supervised, unsupervised, kernel-based semisupervised and Laplacian-based semi-supervised. When plugged into support vector machines (SVMs), the resulting deep kernel networks show clear gain, compared to several shallow kernels for the task of image annotation. Extensive experiments and analysis on the challenging ImageCLEF photo annotation benchmark, the COREL5k database and the Banana dataset validate the effectiveness of the proposed method.
Multineuron spike train analysis with R-convolution linear combination kernel.
Tezuka, Taro
2018-06-01
A spike train kernel provides an effective way of decoding information represented by a spike train. Some spike train kernels have been extended to multineuron spike trains, which are simultaneously recorded spike trains obtained from multiple neurons. However, most of these multineuron extensions were carried out in a kernel-specific manner. In this paper, a general framework is proposed for extending any single-neuron spike train kernel to multineuron spike trains, based on the R-convolution kernel. Special subclasses of the proposed R-convolution linear combination kernel are explored. These subclasses have a smaller number of parameters and make optimization tractable when the size of data is limited. The proposed kernel was evaluated using Gaussian process regression for multineuron spike trains recorded from an animal brain. It was compared with the sum kernel and the population Spikernel, which are existing ways of decoding multineuron spike trains using kernels. The results showed that the proposed approach performs better than these kernels and also other commonly used neural decoding methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Haryanto, B.; Bukit, R. Br; Situmeang, E. M.; Christina, E. P.; Pandiangan, F.
2018-02-01
The purpose of this study was to determine the performance, productivity and feasibility of the operation of palm kernel processing plant based on Energy Productivity Ratio (EPR). EPR is expressed as the ratio of output to input energy and by-product. Palm Kernel plan is process in palm kernel to become palm kernel oil. The procedure started from collecting data needed as energy input such as: palm kernel prices, energy demand and depreciation of the factory. The energy output and its by-product comprise the whole production price such as: palm kernel oil price and the remaining products such as shells and pulp price. Calculation the equality of energy of palm kernel oil is to analyze the value of Energy Productivity Ratio (EPR) bases on processing capacity per year. The investigation has been done in Kernel Oil Processing Plant PT-X at Sumatera Utara plantation. The value of EPR was 1.54 (EPR > 1), which indicated that the processing of palm kernel into palm kernel oil is feasible to be operated based on the energy productivity.
Study of molecular N D bound states in the Bethe-Salpeter equation approach
NASA Astrophysics Data System (ADS)
Wang, Zhen-Yang; Qi, Jing-Juan; Guo, Xin-Heng; Wei, Ke-Wei
2018-05-01
We study the Λc(2595 )+ and Σc(2800 )0 states as the N D bound systems in the Bethe-Salpeter formalism in the ladder and instantaneous approximations. With the kernel induced by ρ , ω and σ exchanges, we solve the Bethe-Salpeter equations for the N D bound systems numerically and find that the bound states may exist. We assume that the observed states Λc(2595 )+ and Σc(2800 )0 are S -wave N D molecular bound states and calculate the decay widths of Λc(2595 )+→Σc0π+ and Σc(2800 )0→Λc+π-.
2013-01-01
Background Arguably, genotypes and phenotypes may be linked in functional forms that are not well addressed by the linear additive models that are standard in quantitative genetics. Therefore, developing statistical learning models for predicting phenotypic values from all available molecular information that are capable of capturing complex genetic network architectures is of great importance. Bayesian kernel ridge regression is a non-parametric prediction model proposed for this purpose. Its essence is to create a spatial distance-based relationship matrix called a kernel. Although the set of all single nucleotide polymorphism genotype configurations on which a model is built is finite, past research has mainly used a Gaussian kernel. Results We sought to investigate the performance of a diffusion kernel, which was specifically developed to model discrete marker inputs, using Holstein cattle and wheat data. This kernel can be viewed as a discretization of the Gaussian kernel. The predictive ability of the diffusion kernel was similar to that of non-spatial distance-based additive genomic relationship kernels in the Holstein data, but outperformed the latter in the wheat data. However, the difference in performance between the diffusion and Gaussian kernels was negligible. Conclusions It is concluded that the ability of a diffusion kernel to capture the total genetic variance is not better than that of a Gaussian kernel, at least for these data. Although the diffusion kernel as a choice of basis function may have potential for use in whole-genome prediction, our results imply that embedding genetic markers into a non-Euclidean metric space has very small impact on prediction. Our results suggest that use of the black box Gaussian kernel is justified, given its connection to the diffusion kernel and its similar predictive performance. PMID:23763755
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Kernel weight. 981.9 Section 981.9 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Regulating Handling Definitions § 981.9 Kernel weight. Kernel weight means the weight of kernels, including...
An SVM model with hybrid kernels for hydrological time series
NASA Astrophysics Data System (ADS)
Wang, C.; Wang, H.; Zhao, X.; Xie, Q.
2017-12-01
Support Vector Machine (SVM) models have been widely applied to the forecast of climate/weather and its impact on other environmental variables such as hydrologic response to climate/weather. When using SVM, the choice of the kernel function plays the key role. Conventional SVM models mostly use one single type of kernel function, e.g., radial basis kernel function. Provided that there are several featured kernel functions available, each having its own advantages and drawbacks, a combination of these kernel functions may give more flexibility and robustness to SVM approach, making it suitable for a wide range of application scenarios. This paper presents such a linear combination of radial basis kernel and polynomial kernel for the forecast of monthly flowrate in two gaging stations using SVM approach. The results indicate significant improvement in the accuracy of predicted series compared to the approach with either individual kernel function, thus demonstrating the feasibility and advantages of such hybrid kernel approach for SVM applications.
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bashir, Usman; Yu, Yugang; Hussain, Muntazir; Zebende, Gilney F.
2016-11-01
This paper investigates the dynamics of the relationship between foreign exchange markets and stock markets through time varying co-movements. In this sense, we analyzed the time series monthly of Latin American countries for the period from 1991 to 2015. Furthermore, we apply Granger causality to verify the direction of causality between foreign exchange and stock market and detrended cross-correlation approach (ρDCCA) for any co-movements at different time scales. Our empirical results suggest a positive cross correlation between exchange rate and stock price for all Latin American countries. The findings reveal two clear patterns of correlation. First, Brazil and Argentina have positive correlation in both short and long time frames. Second, the remaining countries are negatively correlated in shorter time scale, gradually moving to positive. This paper contributes to the field in three ways. First, we verified the co-movements of exchange rate and stock prices that were rarely discussed in previous empirical studies. Second, ρDCCA coefficient is a robust and powerful methodology to measure the cross correlation when dealing with non stationarity of time series. Third, most of the studies employed one or two time scales using co-integration and vector autoregressive approaches. Not much is known about the co-movements at varying time scales between foreign exchange and stock markets. ρDCCA coefficient facilitates the understanding of its explanatory depth.
Mueck, F G; Michael, L; Deak, Z; Scherr, M K; Maxien, D; Geyer, L L; Reiser, M; Wirth, S
2013-07-01
To compare the image quality in dose-reduced 64-row CT of the chest at different levels of adaptive statistical iterative reconstruction (ASIR) to full-dose baseline examinations reconstructed solely with filtered back projection (FBP) in a realistic upgrade scenario. A waiver of consent was granted by the institutional review board (IRB). The noise index (NI) relates to the standard deviation of Hounsfield units in a water phantom. Baseline exams of the chest (NI = 29; LightSpeed VCT XT, GE Healthcare) were intra-individually compared to follow-up studies on a CT with ASIR after system upgrade (NI = 45; Discovery HD750, GE Healthcare), n = 46. Images were calculated in slice and volume mode with ASIR levels of 0 - 100 % in the standard and lung kernel. Three radiologists independently compared the image quality to the corresponding full-dose baseline examinations (-2: diagnostically inferior, -1: inferior, 0: equal, + 1: superior, + 2: diagnostically superior). Statistical analysis used Wilcoxon's test, Mann-Whitney U test and the intraclass correlation coefficient (ICC). The mean CTDIvol decreased by 53 % from the FBP baseline to 8.0 ± 2.3 mGy for ASIR follow-ups; p < 0.001. The ICC was 0.70. Regarding the standard kernel, the image quality in dose-reduced studies was comparable to the baseline at ASIR 70 % in volume mode (-0.07 ± 0.29, p = 0.29). Concerning the lung kernel, every ASIR level outperformed the baseline image quality (p < 0.001), with ASIR 30 % rated best (slice: 0.70 ± 0.6, volume: 0.74 ± 0.61). Vendors' recommendation of 50 % ASIR is fair. In detail, the ASIR 70 % in volume mode for the standard kernel and ASIR 30 % for the lung kernel performed best, allowing for a dose reduction of approximately 50 %. © Georg Thieme Verlag KG Stuttgart · New York.
Multiple kernels learning-based biological entity relationship extraction method.
Dongliang, Xu; Jingchang, Pan; Bailing, Wang
2017-09-20
Automatic extracting protein entity interaction information from biomedical literature can help to build protein relation network and design new drugs. There are more than 20 million literature abstracts included in MEDLINE, which is the most authoritative textual database in the field of biomedicine, and follow an exponential growth over time. This frantic expansion of the biomedical literature can often be difficult to absorb or manually analyze. Thus efficient and automated search engines are necessary to efficiently explore the biomedical literature using text mining techniques. The P, R, and F value of tag graph method in Aimed corpus are 50.82, 69.76, and 58.61%, respectively. The P, R, and F value of tag graph kernel method in other four evaluation corpuses are 2-5% higher than that of all-paths graph kernel. And The P, R and F value of feature kernel and tag graph kernel fuse methods is 53.43, 71.62 and 61.30%, respectively. The P, R and F value of feature kernel and tag graph kernel fuse methods is 55.47, 70.29 and 60.37%, respectively. It indicated that the performance of the two kinds of kernel fusion methods is better than that of simple kernel. In comparison with the all-paths graph kernel method, the tag graph kernel method is superior in terms of overall performance. Experiments show that the performance of the multi-kernels method is better than that of the three separate single-kernel method and the dual-mutually fused kernel method used hereof in five corpus sets.
Arbuznikov, Alexei V; Kaupp, Martin
2012-01-07
Local hybrid functionals with their position-dependent exact-exchange admixture are a conceptually simple and promising extension of the concept of a hybrid functional. Local hybrids based on a simple mixing of the local spin density approximation (LSDA) with exact exchange have been shown to be successful for thermochemistry, reaction barriers, and a range of other properties. So far, the combination of this generation of local hybrids with an LSDA correlation functional has been found to give the most favorable results for atomization energies, for a range of local mixing functions (LMFs) governing the exact-exchange admixture. Here, we show that the choice of correlation functional to be used with local hybrid exchange crucially influences the parameterization also of the exchange part as well as the overall performance. A novel ansatz for the correlation part of local hybrids is suggested based on (i) range-separation of LSDA correlation into short-range (SR) and long-range (LR) parts, and (ii) partial or full elimination of the one-electron self-correlation from the SR part. It is shown that such modified correlation functionals allow overall larger exact exchange admixture in thermochemically competitive local hybrids than before. This results in improvements for reaction barriers and for other properties crucially influenced by self-interaction errors, as demonstrated by a number of examples. Based on the range-separation approach, a fresh view on the breakdown of the correlation energy into dynamical and non-dynamical parts is suggested.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Half kernel. 51.2295 Section 51.2295 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2295 Half kernel. Half kernel means the separated half of a kernel with not more than one-eighth broken off. ...
7 CFR 810.206 - Grades and grade requirements for barley.
Code of Federal Regulations, 2010 CFR
2010-01-01
... weight per bushel (pounds) Sound barley (percent) Maximum Limits of— Damaged kernels 1 (percent) Heat damaged kernels (percent) Foreign material (percent) Broken kernels (percent) Thin barley (percent) U.S... or otherwise of distinctly low quality. 1 Includes heat-damaged kernels. Injured-by-frost kernels and...
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Kernel which is “dark amber” or darker color; (e) Kernel having more than one dark kernel spot, or one dark kernel spot more than one-eighth inch in greatest dimension; (f) Shriveling when the surface of the kernel is very conspicuously wrinkled; (g) Internal flesh discoloration of a medium shade of gray...
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Kernel which is “dark amber” or darker color; (e) Kernel having more than one dark kernel spot, or one dark kernel spot more than one-eighth inch in greatest dimension; (f) Shriveling when the surface of the kernel is very conspicuously wrinkled; (g) Internal flesh discoloration of a medium shade of gray...
7 CFR 51.2125 - Split or broken kernels.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Split or broken kernels. 51.2125 Section 51.2125 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... kernels. Split or broken kernels means seven-eighths or less of complete whole kernels but which will not...
7 CFR 51.2296 - Three-fourths half kernel.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Three-fourths half kernel. 51.2296 Section 51.2296 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards...-fourths half kernel. Three-fourths half kernel means a portion of a half of a kernel which has more than...
The Classification of Diabetes Mellitus Using Kernel k-means
NASA Astrophysics Data System (ADS)
Alamsyah, M.; Nafisah, Z.; Prayitno, E.; Afida, A. M.; Imah, E. M.
2018-01-01
Diabetes Mellitus is a metabolic disorder which is characterized by chronicle hypertensive glucose. Automatics detection of diabetes mellitus is still challenging. This study detected diabetes mellitus by using kernel k-Means algorithm. Kernel k-means is an algorithm which was developed from k-means algorithm. Kernel k-means used kernel learning that is able to handle non linear separable data; where it differs with a common k-means. The performance of kernel k-means in detecting diabetes mellitus is also compared with SOM algorithms. The experiment result shows that kernel k-means has good performance and a way much better than SOM.
UNICOS Kernel Internals Application Development
NASA Technical Reports Server (NTRS)
Caredo, Nicholas; Craw, James M. (Technical Monitor)
1995-01-01
Having an understanding of UNICOS Kernel Internals is valuable information. However, having the knowledge is only half the value. The second half comes with knowing how to use this information and apply it to the development of tools. The kernel contains vast amounts of useful information that can be utilized. This paper discusses the intricacies of developing utilities that utilize kernel information. In addition, algorithms, logic, and code will be discussed for accessing kernel information. Code segments will be provided that demonstrate how to locate and read kernel structures. Types of applications that can utilize kernel information will also be discussed.
Detection of maize kernels breakage rate based on K-means clustering
NASA Astrophysics Data System (ADS)
Yang, Liang; Wang, Zhuo; Gao, Lei; Bai, Xiaoping
2017-04-01
In order to optimize the recognition accuracy of maize kernels breakage detection and improve the detection efficiency of maize kernels breakage, this paper using computer vision technology and detecting of the maize kernels breakage based on K-means clustering algorithm. First, the collected RGB images are converted into Lab images, then the original images clarity evaluation are evaluated by the energy function of Sobel 8 gradient. Finally, the detection of maize kernels breakage using different pixel acquisition equipments and different shooting angles. In this paper, the broken maize kernels are identified by the color difference between integrity kernels and broken kernels. The original images clarity evaluation and different shooting angles are taken to verify that the clarity and shooting angles of the images have a direct influence on the feature extraction. The results show that K-means clustering algorithm can distinguish the broken maize kernels effectively.
Modeling adaptive kernels from probabilistic phylogenetic trees.
Nicotra, Luca; Micheli, Alessio
2009-01-01
Modeling phylogenetic interactions is an open issue in many computational biology problems. In the context of gene function prediction we introduce a class of kernels for structured data leveraging on a hierarchical probabilistic modeling of phylogeny among species. We derive three kernels belonging to this setting: a sufficient statistics kernel, a Fisher kernel, and a probability product kernel. The new kernels are used in the context of support vector machine learning. The kernels adaptivity is obtained through the estimation of the parameters of a tree structured model of evolution using as observed data phylogenetic profiles encoding the presence or absence of specific genes in a set of fully sequenced genomes. We report results obtained in the prediction of the functional class of the proteins of the budding yeast Saccharomyces cerevisae which favorably compare to a standard vector based kernel and to a non-adaptive tree kernel function. A further comparative analysis is performed in order to assess the impact of the different components of the proposed approach. We show that the key features of the proposed kernels are the adaptivity to the input domain and the ability to deal with structured data interpreted through a graphical model representation.
Aflatoxin and nutrient contents of peanut collected from local market and their processed foods
NASA Astrophysics Data System (ADS)
Ginting, E.; Rahmianna, A. A.; Yusnawan, E.
2018-01-01
Peanut is succeptable to aflatoxin contamination and the sources of peanut as well as processing methods considerably affect aflatoxin content of the products. Therefore, the study on aflatoxin and nutrient contents of peanut collected from local market and their processed foods were performed. Good kernels of peanut were prepared into fried peanut, pressed-fried peanut, peanut sauce, peanut press cake, fermented peanut press cake (tempe) and fried tempe, while blended kernels (good and poor kernels) were processed into peanut sauce and tempe and poor kernels were only processed into tempe. The results showed that good and blended kernels which had high number of sound/intact kernels (82,46% and 62,09%), contained 9.8-9.9 ppb of aflatoxin B1, while slightly higher level was seen in poor kernels (12.1 ppb). However, the moisture, ash, protein, and fat contents of the kernels were similar as well as the products. Peanut tempe and fried tempe showed the highest increase in protein content, while decreased fat contents were seen in all products. The increase in aflatoxin B1 of peanut tempe prepared from poor kernels > blended kernels > good kernels. However, it averagely decreased by 61.2% after deep-fried. Excluding peanut tempe and fried tempe, aflatoxin B1 levels in all products derived from good kernels were below the permitted level (15 ppb). This suggests that sorting peanut kernels as ingredients and followed by heat processing would decrease the aflatoxin content in the products.
Partial Deconvolution with Inaccurate Blur Kernel.
Ren, Dongwei; Zuo, Wangmeng; Zhang, David; Xu, Jun; Zhang, Lei
2017-10-17
Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.
Dynamics of neurons controlling movements of a locust hind leg. III. Extensor tibiae motor neurons.
Newland, P L; Kondoh, Y
1997-06-01
Imposed movements of the apodeme of the femoral chordotonal organ (FeCO) of the locust hind leg elicit resistance reflexes in extensor and flexor tibiae motor neurons. The synaptic responses of the fast and slow extensor tibiae motor neurons (FETi and SETi, respectively) and the spike responses of SETi were analyzed with the use of the Wiener kernel white noise method to determine their response properties. The first-order Wiener kernels computed from soma recordings were essentially monophasic, or low passed, indicating that the motor neurons were primarily sensitive to the position of the tibia about the femorotibial joint. The responses of both extensor motor neurons had large nonlinear components. The second-order kernels of the synaptic responses of FETi and SETi had large on-diagonal peaks with two small off-diagonal valleys. That of SETi had an additional elongated valley on the diagonal, which was accompanied by two off-diagonal depolarizing peaks at a cutoff frequency of 58 Hz. These second-order components represent a half-wave rectification of the position-sensitive depolarizing response in FETi and SETi, and a delayed inhibitory input to SETi, indicating that both motor neurons were directionally sensitive. Model predictions of the responses of the motor neurons showed that the first-order (linear) characterization poorly predicted the actual responses of FETi and SETi to FeCO stimulation, whereas the addition of the second-order (nonlinear) term markedly improved the performance of the model. Simultaneous recordings from the soma and a neuropilar process of FETi showed that its synaptic responses to FeCO stimulation were phase delayed by about -30 degrees at 20 Hz, and reduced in amplitude by 30-40% when recorded in the soma. Similar configurations of the first and second-order kernels indicated that the primary process of FETi acted as a low-pass filter. Cross-correlation between a white noise stimulus and a unitized spike discharge of SETi again produced well-defined first- and second-order kernels that showed that the SETi spike response was also dependent on positional inputs. An elongated negative valley on the diagonal, characteristic of the second-order kernel of the synaptic response in SETi, was absent in the kernel from the spike component, suggesting that information is lost in the spike production process. The functional significance of these results is discussed in relation to the behavior of the locust.
Laser induced spark ignition of methane-oxygen mixtures
NASA Technical Reports Server (NTRS)
Santavicca, D. A.; Ho, C.; Reilly, B. J.; Lee, T.-W.
1991-01-01
Results from an experimental study of laser induced spark ignition of methane-oxygen mixtures are presented. The experiments were conducted at atmospheric pressure and 296 K under laminar pre-mixed and turbulent-incompletely mixed conditions. A pulsed, frequency doubled Nd:YAG laser was used as the ignition source. Laser sparks with energies of 10 mJ and 40 mJ were used, as well as a conventional electrode spark with an effective energy of 6 mJ. Measurements were made of the flame kernel radius as a function of time using pulsed laser shadowgraphy. The initial size of the spark ignited flame kernel was found to correlate reasonably well with breakdown energy as predicted by the Taylor spherical blast wave model. The subsequent growth rate of the flame kernel was found to increase with time from a value less than to a value greater than the adiabatic, unstretched laminar growth rate. This behavior was attributed to the combined effects of flame stretch and an apparent wrinkling of the flame surface due to the extremely rapid acceleration of the flame. The very large laminar flame speed of methane-oxygen mixtures appears to be the dominant factor affecting the growth rate of spark ignited flame kernels, with the mode of ignition having a small effect. The effect of incomplete fuel-oxidizer mixing was found to have a significant effect on the growth rate, one which was greater than could simply be accounted for by the effect of local variations in the equivalence ratio on the local flame speed.
Tao, Chenyang; Feng, Jianfeng
2016-03-15
Quantifying associations in neuroscience (and many other scientific disciplines) is often challenged by high-dimensionality, nonlinearity and noisy observations. Many classic methods have either poor power or poor scalability on data sets of the same or different scales such as genetical, physiological and image data. Based on the framework of reproducing kernel Hilbert spaces we proposed a new nonlinear association criteria (NAC) with an efficient numerical algorithm and p-value approximation scheme. We also presented mathematical justification that links the proposed method to related methods such as kernel generalized variance, kernel canonical correlation analysis and Hilbert-Schmidt independence criteria. NAC allows the detection of association between arbitrary input domain as long as a characteristic kernel is defined. A MATLAB package was provided to facilitate applications. Extensive simulation examples and four real world neuroscience examples including functional MRI causality, Calcium imaging and imaging genetic studies on autism [Brain, 138(5):13821393 (2015)] and alcohol addiction [PNAS, 112(30):E4085-E4093 (2015)] are used to benchmark NAC. It demonstrates the superior performance over the existing procedures we tested and also yields biologically significant results for the real world examples. NAC beats its linear counterparts when nonlinearity is presented in the data. It also shows more robustness against different experimental setups compared with its nonlinear counterparts. In this work we presented a new and robust statistical approach NAC for measuring associations. It could serve as an interesting alternative to the existing methods for datasets where nonlinearity and other confounding factors are present. Copyright © 2016 Elsevier B.V. All rights reserved.
Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models
Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A.; Burgueño, Juan; Pérez-Rodríguez, Paulino; de los Campos, Gustavo
2016-01-01
The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects (u) that can be assessed by the Kronecker product of variance–covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model (u) plus an extra component, f, that captures random effects between environments that were not captured by the random effects u. We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with u and f over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect u. PMID:27793970
Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models.
Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A; Burgueño, Juan; Pérez-Rodríguez, Paulino; de Los Campos, Gustavo
2017-01-05
The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects [Formula: see text] that can be assessed by the Kronecker product of variance-covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model [Formula: see text] plus an extra component, F: , that captures random effects between environments that were not captured by the random effects [Formula: see text] We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with [Formula: see text] over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect [Formula: see text]. Copyright © 2017 Cuevas et al.
Larson, Nicholas B; McDonnell, Shannon; Cannon Albright, Lisa; Teerlink, Craig; Stanford, Janet; Ostrander, Elaine A; Isaacs, William B; Xu, Jianfeng; Cooney, Kathleen A; Lange, Ethan; Schleutker, Johanna; Carpten, John D; Powell, Isaac; Bailey-Wilson, Joan E; Cussenot, Olivier; Cancel-Tassin, Geraldine; Giles, Graham G; MacInnis, Robert J; Maier, Christiane; Whittemore, Alice S; Hsieh, Chih-Lin; Wiklund, Fredrik; Catalona, William J; Foulkes, William; Mandal, Diptasri; Eeles, Rosalind; Kote-Jarai, Zsofia; Ackerman, Michael J; Olson, Timothy M; Klein, Christopher J; Thibodeau, Stephen N; Schaid, Daniel J
2017-05-01
Next-generation sequencing technologies have afforded unprecedented characterization of low-frequency and rare genetic variation. Due to low power for single-variant testing, aggregative methods are commonly used to combine observed rare variation within a single gene. Causal variation may also aggregate across multiple genes within relevant biomolecular pathways. Kernel-machine regression and adaptive testing methods for aggregative rare-variant association testing have been demonstrated to be powerful approaches for pathway-level analysis, although these methods tend to be computationally intensive at high-variant dimensionality and require access to complete data. An additional analytical issue in scans of large pathway definition sets is multiple testing correction. Gene set definitions may exhibit substantial genic overlap, and the impact of the resultant correlation in test statistics on Type I error rate control for large agnostic gene set scans has not been fully explored. Herein, we first outline a statistical strategy for aggregative rare-variant analysis using component gene-level linear kernel score test summary statistics as well as derive simple estimators of the effective number of tests for family-wise error rate control. We then conduct extensive simulation studies to characterize the behavior of our approach relative to direct application of kernel and adaptive methods under a variety of conditions. We also apply our method to two case-control studies, respectively, evaluating rare variation in hereditary prostate cancer and schizophrenia. Finally, we provide open-source R code for public use to facilitate easy application of our methods to existing rare-variant analysis results. © 2017 WILEY PERIODICALS, INC.
Seismic waveform sensitivity to global boundary topography
NASA Astrophysics Data System (ADS)
Colombi, Andrea; Nissen-Meyer, Tarje; Boschi, Lapo; Giardini, Domenico
2012-09-01
We investigate the implications of lateral variations in the topography of global seismic discontinuities, in the framework of high-resolution forward modelling and seismic imaging. We run 3-D wave-propagation simulations accurate at periods of 10 s and longer, with Earth models including core-mantle boundary topography anomalies of ˜1000 km spatial wavelength and up to 10 km height. We obtain very different waveform signatures for PcP (reflected) and Pdiff (diffracted) phases, supporting the theoretical expectation that the latter are sensitive primarily to large-scale structure, whereas the former only to small scale, where large and small are relative to the frequency. PcP at 10 s seems to be well suited to map such a small-scale perturbation, whereas Pdiff at the same frequency carries faint signatures that do not allow any tomographic reconstruction. Only at higher frequency, the signature becomes stronger. We present a new algorithm to compute sensitivity kernels relating seismic traveltimes (measured by cross-correlation of observed and theoretical seismograms) to the topography of seismic discontinuities at any depth in the Earth using full 3-D wave propagation. Calculation of accurate finite-frequency sensitivity kernels is notoriously expensive, but we reduce computational costs drastically by limiting ourselves to spherically symmetric reference models, and exploiting the axial symmetry of the resulting propagating wavefield that collapses to a 2-D numerical domain. We compute and analyse a suite of kernels for upper and lower mantle discontinuities that can be used for finite-frequency waveform inversion. The PcP and Pdiff sensitivity footprints are in good agreement with the result obtained cross-correlating perturbed and unperturbed seismogram, validating our approach against full 3-D modelling to invert for such structures.
Jeans instability with exchange effects in quantum dusty magnetoplasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamil, M., E-mail: jamil.gcu@gmail.com; Rasheed, A.; Rozina, Ch.
2015-08-15
Jeans instability is examined in magnetized quantum dusty plasmas using the quantum hydrodynamic model. The quantum effects are considered via exchange-correlation potential, recoil effect, and Fermi degenerate pressure, in addition to thermal effects of plasma species. It is found that the electron exchange and correlation potential have significant effects over the threshold value of wave vector and Jeans instability. The presence of electron exchange and correlation effect shortens the time of dust sound that comparatively stabilizes the self gravitational collapse. The results at quantum scale are helpful in understanding the collapse of the self-gravitating dusty plasma systems.
NASA Astrophysics Data System (ADS)
Yang, Hua; Zhong, Donghong; Liu, Chenyi; Song, Kaiyou; Yin, Zhouping
2018-03-01
Object tracking is still a challenging problem in computer vision, as it entails learning an effective model to account for appearance changes caused by occlusion, out of view, plane rotation, scale change, and background clutter. This paper proposes a robust visual tracking algorithm called deep convolutional neural network (DCNNCT) to simultaneously address these challenges. The proposed DCNNCT algorithm utilizes a DCNN to extract the image feature of a tracked target, and the full range of information regarding each convolutional layer is used to express the image feature. Subsequently, the kernelized correlation filters (CF) in each convolutional layer are adaptively learned, the correlation response maps of that are combined to estimate the location of the tracked target. To avoid the case of tracking failure, an online random ferns classifier is employed to redetect the tracked target, and a dual-threshold scheme is used to obtain the final target location by comparing the tracking result with the detection result. Finally, the change in scale of the target is determined by building scale pyramids and training a CF. Extensive experiments demonstrate that the proposed algorithm is effective at tracking, especially when evaluated using an index called the overlap rate. The DCNNCT algorithm is also highly competitive in terms of robustness with respect to state-of-the-art trackers in various challenging scenarios.
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2012 CFR
2012-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2011 CFR
2011-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2013 CFR
2013-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2010 CFR
2010-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...
7 CFR 981.401 - Adjusted kernel weight.
Code of Federal Regulations, 2014 CFR
2014-01-01
... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Half-kernel. 51.1441 Section 51.1441 Agriculture... Standards for Grades of Shelled Pecans Definitions § 51.1441 Half-kernel. Half-kernel means one of the separated halves of an entire pecan kernel with not more than one-eighth of its original volume missing...
7 CFR 51.1403 - Kernel color classification.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Kernel color classification. 51.1403 Section 51.1403... STANDARDS) United States Standards for Grades of Pecans in the Shell 1 Kernel Color Classification § 51.1403 Kernel color classification. (a) The skin color of pecan kernels may be described in terms of the color...
7 CFR 51.1450 - Serious damage.
Code of Federal Regulations, 2010 CFR
2010-01-01
...; (c) Decay affecting any portion of the kernel; (d) Insects, web, or frass or any distinct evidence of insect feeding on the kernel; (e) Internal discoloration which is dark gray, dark brown, or black and...) Dark kernel spots when more than three are on the kernel, or when any dark kernel spot or the aggregate...
7 CFR 51.1450 - Serious damage.
Code of Federal Regulations, 2011 CFR
2011-01-01
...; (c) Decay affecting any portion of the kernel; (d) Insects, web, or frass or any distinct evidence of insect feeding on the kernel; (e) Internal discoloration which is dark gray, dark brown, or black and...) Dark kernel spots when more than three are on the kernel, or when any dark kernel spot or the aggregate...
7 CFR 51.1450 - Serious damage.
Code of Federal Regulations, 2012 CFR
2012-01-01
...; (c) Decay affecting any portion of the kernel; (d) Insects, web, or frass or any distinct evidence of insect feeding on the kernel; (e) Internal discoloration which is dark gray, dark brown, or black and...) Dark kernel spots when more than three are on the kernel, or when any dark kernel spot or the aggregate...
NASA Astrophysics Data System (ADS)
Du, Peijun; Tan, Kun; Xing, Xiaoshi
2010-12-01
Combining Support Vector Machine (SVM) with wavelet analysis, we constructed wavelet SVM (WSVM) classifier based on wavelet kernel functions in Reproducing Kernel Hilbert Space (RKHS). In conventional kernel theory, SVM is faced with the bottleneck of kernel parameter selection which further results in time-consuming and low classification accuracy. The wavelet kernel in RKHS is a kind of multidimensional wavelet function that can approximate arbitrary nonlinear functions. Implications on semiparametric estimation are proposed in this paper. Airborne Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing image with 64 bands and Reflective Optics System Imaging Spectrometer (ROSIS) data with 115 bands were used to experiment the performance and accuracy of the proposed WSVM classifier. The experimental results indicate that the WSVM classifier can obtain the highest accuracy when using the Coiflet Kernel function in wavelet transform. In contrast with some traditional classifiers, including Spectral Angle Mapping (SAM) and Minimum Distance Classification (MDC), and SVM classifier using Radial Basis Function kernel, the proposed wavelet SVM classifier using the wavelet kernel function in Reproducing Kernel Hilbert Space is capable of improving classification accuracy obviously.
A trace ratio maximization approach to multiple kernel-based dimensionality reduction.
Jiang, Wenhao; Chung, Fu-lai
2014-01-01
Most dimensionality reduction techniques are based on one metric or one kernel, hence it is necessary to select an appropriate kernel for kernel-based dimensionality reduction. Multiple kernel learning for dimensionality reduction (MKL-DR) has been recently proposed to learn a kernel from a set of base kernels which are seen as different descriptions of data. As MKL-DR does not involve regularization, it might be ill-posed under some conditions and consequently its applications are hindered. This paper proposes a multiple kernel learning framework for dimensionality reduction based on regularized trace ratio, termed as MKL-TR. Our method aims at learning a transformation into a space of lower dimension and a corresponding kernel from the given base kernels among which some may not be suitable for the given data. The solutions for the proposed framework can be found based on trace ratio maximization. The experimental results demonstrate its effectiveness in benchmark datasets, which include text, image and sound datasets, for supervised, unsupervised as well as semi-supervised settings. Copyright © 2013 Elsevier Ltd. All rights reserved.
Murugesan, Gurusamy; Abdulkadhar, Sabenabanu; Natarajan, Jeyakumar
2017-01-01
Automatic extraction of protein-protein interaction (PPI) pairs from biomedical literature is a widely examined task in biological information extraction. Currently, many kernel based approaches such as linear kernel, tree kernel, graph kernel and combination of multiple kernels has achieved promising results in PPI task. However, most of these kernel methods fail to capture the semantic relation information between two entities. In this paper, we present a special type of tree kernel for PPI extraction which exploits both syntactic (structural) and semantic vectors information known as Distributed Smoothed Tree kernel (DSTK). DSTK comprises of distributed trees with syntactic information along with distributional semantic vectors representing semantic information of the sentences or phrases. To generate robust machine learning model composition of feature based kernel and DSTK were combined using ensemble support vector machine (SVM). Five different corpora (AIMed, BioInfer, HPRD50, IEPA, and LLL) were used for evaluating the performance of our system. Experimental results show that our system achieves better f-score with five different corpora compared to other state-of-the-art systems. PMID:29099838
Murugesan, Gurusamy; Abdulkadhar, Sabenabanu; Natarajan, Jeyakumar
2017-01-01
Automatic extraction of protein-protein interaction (PPI) pairs from biomedical literature is a widely examined task in biological information extraction. Currently, many kernel based approaches such as linear kernel, tree kernel, graph kernel and combination of multiple kernels has achieved promising results in PPI task. However, most of these kernel methods fail to capture the semantic relation information between two entities. In this paper, we present a special type of tree kernel for PPI extraction which exploits both syntactic (structural) and semantic vectors information known as Distributed Smoothed Tree kernel (DSTK). DSTK comprises of distributed trees with syntactic information along with distributional semantic vectors representing semantic information of the sentences or phrases. To generate robust machine learning model composition of feature based kernel and DSTK were combined using ensemble support vector machine (SVM). Five different corpora (AIMed, BioInfer, HPRD50, IEPA, and LLL) were used for evaluating the performance of our system. Experimental results show that our system achieves better f-score with five different corpora compared to other state-of-the-art systems.
Filatov, Gleb; Bauwens, Bruno; Kertész-Farkas, Attila
2018-05-07
Bioinformatics studies often rely on similarity measures between sequence pairs, which often pose a bottleneck in large-scale sequence analysis. Here, we present a new convolutional kernel function for protein sequences called the LZW-Kernel. It is based on code words identified with the Lempel-Ziv-Welch (LZW) universal text compressor. The LZW-Kernel is an alignment-free method, it is always symmetric, is positive, always provides 1.0 for self-similarity and it can directly be used with Support Vector Machines (SVMs) in classification problems, contrary to normalized compression distance (NCD), which often violates the distance metric properties in practice and requires further techniques to be used with SVMs. The LZW-Kernel is a one-pass algorithm, which makes it particularly plausible for big data applications. Our experimental studies on remote protein homology detection and protein classification tasks reveal that the LZW-Kernel closely approaches the performance of the Local Alignment Kernel (LAK) and the SVM-pairwise method combined with Smith-Waterman (SW) scoring at a fraction of the time. Moreover, the LZW-Kernel outperforms the SVM-pairwise method when combined with BLAST scores, which indicates that the LZW code words might be a better basis for similarity measures than local alignment approximations found with BLAST. In addition, the LZW-Kernel outperforms n-gram based mismatch kernels, hidden Markov model based SAM and Fisher kernel, and protein family based PSI-BLAST, among others. Further advantages include the LZW-Kernel's reliance on a simple idea, its ease of implementation, and its high speed, three times faster than BLAST and several magnitudes faster than SW or LAK in our tests. LZW-Kernel is implemented as a standalone C code and is a free open-source program distributed under GPLv3 license and can be downloaded from https://github.com/kfattila/LZW-Kernel. akerteszfarkas@hse.ru. Supplementary data are available at Bioinformatics Online.
A framework for optimal kernel-based manifold embedding of medical image data.
Zimmer, Veronika A; Lekadir, Karim; Hoogendoorn, Corné; Frangi, Alejandro F; Piella, Gemma
2015-04-01
Kernel-based dimensionality reduction is a widely used technique in medical image analysis. To fully unravel the underlying nonlinear manifold the selection of an adequate kernel function and of its free parameters is critical. In practice, however, the kernel function is generally chosen as Gaussian or polynomial and such standard kernels might not always be optimal for a given image dataset or application. In this paper, we present a study on the effect of the kernel functions in nonlinear manifold embedding of medical image data. To this end, we first carry out a literature review on existing advanced kernels developed in the statistics, machine learning, and signal processing communities. In addition, we implement kernel-based formulations of well-known nonlinear dimensional reduction techniques such as Isomap and Locally Linear Embedding, thus obtaining a unified framework for manifold embedding using kernels. Subsequently, we present a method to automatically choose a kernel function and its associated parameters from a pool of kernel candidates, with the aim to generate the most optimal manifold embeddings. Furthermore, we show how the calculated selection measures can be extended to take into account the spatial relationships in images, or used to combine several kernels to further improve the embedding results. Experiments are then carried out on various synthetic and phantom datasets for numerical assessment of the methods. Furthermore, the workflow is applied to real data that include brain manifolds and multispectral images to demonstrate the importance of the kernel selection in the analysis of high-dimensional medical images. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Komsa, Hannu-Pekka; Broqvist, Peter; Pasquarello, Alfredo
2010-05-01
We investigate how various treatments of exact exchange affect defect charge transition levels and band edges in hybrid functional schemes for a variety of systems. We distinguish the effects of long-range vs short-range exchange and of local vs nonlocal exchange. This is achieved by the consideration of a set of four functionals, which comprise the semilocal Perdew-Burke-Ernzerhof (PBE) functional, the PBE hybrid (PBE0), the Heyd-Scuseria-Ernzerhof (HSE) functional, and a hybrid derived from PBE0 in which the Coulomb kernel in the exact exchange term is screened as in the HSE functional but which, unlike HSE, does not include a local expression compensating for the loss of the long-range exchange. We find that defect levels in PBE0 and in HSE almost coincide when aligned with respect to a common reference potential, due to the close total-energy differences in the two schemes. At variance, the HSE band edges determined within the same alignment scheme are found to shift significantly with respect to the PBE0 ones: the occupied and the unoccupied states undergo shifts of about +0.4eV and -0.4eV , respectively. These shifts are found to vary little among the materials considered. Through a rationale based on the behavior of local and nonlocal long-range exchange, this conclusion is generalized beyond the class of materials used in this study. Finally, we explicitly address the practice of tuning the band gap by adapting the fraction of exact exchange incorporated in the functional. When PBE0-like and HSE-like functionals are tuned to yield identical band gaps, their respective results for the positions of defect levels within the band gap and for the band alignments at interfaces are found to be very close.
Non-Gaussian probabilistic MEG source localisation based on kernel density estimation☆
Mohseni, Hamid R.; Kringelbach, Morten L.; Woolrich, Mark W.; Baker, Adam; Aziz, Tipu Z.; Probert-Smith, Penny
2014-01-01
There is strong evidence to suggest that data recorded from magnetoencephalography (MEG) follows a non-Gaussian distribution. However, existing standard methods for source localisation model the data using only second order statistics, and therefore use the inherent assumption of a Gaussian distribution. In this paper, we present a new general method for non-Gaussian source estimation of stationary signals for localising brain activity from MEG data. By providing a Bayesian formulation for MEG source localisation, we show that the source probability density function (pdf), which is not necessarily Gaussian, can be estimated using multivariate kernel density estimators. In the case of Gaussian data, the solution of the method is equivalent to that of widely used linearly constrained minimum variance (LCMV) beamformer. The method is also extended to handle data with highly correlated sources using the marginal distribution of the estimated joint distribution, which, in the case of Gaussian measurements, corresponds to the null-beamformer. The proposed non-Gaussian source localisation approach is shown to give better spatial estimates than the LCMV beamformer, both in simulations incorporating non-Gaussian signals, and in real MEG measurements of auditory and visual evoked responses, where the highly correlated sources are known to be difficult to estimate. PMID:24055702
Evaluating the Gradient of the Thin Wire Kernel
NASA Technical Reports Server (NTRS)
Wilton, Donald R.; Champagne, Nathan J.
2008-01-01
Recently, a formulation for evaluating the thin wire kernel was developed that employed a change of variable to smooth the kernel integrand, canceling the singularity in the integrand. Hence, the typical expansion of the wire kernel in a series for use in the potential integrals is avoided. The new expression for the kernel is exact and may be used directly to determine the gradient of the wire kernel, which consists of components that are parallel and radial to the wire axis.
Kernel Machine SNP-set Testing under Multiple Candidate Kernels
Wu, Michael C.; Maity, Arnab; Lee, Seunggeun; Simmons, Elizabeth M.; Harmon, Quaker E.; Lin, Xinyi; Engel, Stephanie M.; Molldrem, Jeffrey J.; Armistead, Paul M.
2013-01-01
Joint testing for the cumulative effect of multiple single nucleotide polymorphisms grouped on the basis of prior biological knowledge has become a popular and powerful strategy for the analysis of large scale genetic association studies. The kernel machine (KM) testing framework is a useful approach that has been proposed for testing associations between multiple genetic variants and many different types of complex traits by comparing pairwise similarity in phenotype between subjects to pairwise similarity in genotype, with similarity in genotype defined via a kernel function. An advantage of the KM framework is its flexibility: choosing different kernel functions allows for different assumptions concerning the underlying model and can allow for improved power. In practice, it is difficult to know which kernel to use a priori since this depends on the unknown underlying trait architecture and selecting the kernel which gives the lowest p-value can lead to inflated type I error. Therefore, we propose practical strategies for KM testing when multiple candidate kernels are present based on constructing composite kernels and based on efficient perturbation procedures. We demonstrate through simulations and real data applications that the procedures protect the type I error rate and can lead to substantially improved power over poor choices of kernels and only modest differences in power versus using the best candidate kernel. PMID:23471868
Takagi, Satoshi; Nagase, Hiroyuki; Hayashi, Tatsuya; Kita, Tamotsu; Hayashi, Katsumi; Sanada, Shigeru; Koike, Masayuki
2014-01-01
The hybrid convolution kernel technique for computed tomography (CT) is known to enable the depiction of an image set using different window settings. Our purpose was to decrease the number of artifacts in the hybrid convolution kernel technique for head CT and to determine whether our improved combined multi-kernel head CT images enabled diagnosis as a substitute for both brain (low-pass kernel-reconstructed) and bone (high-pass kernel-reconstructed) images. Forty-four patients with nondisplaced skull fractures were included. Our improved multi-kernel images were generated so that pixels of >100 Hounsfield unit in both brain and bone images were composed of CT values of bone images and other pixels were composed of CT values of brain images. Three radiologists compared the improved multi-kernel images with bone images. The improved multi-kernel images and brain images were identically displayed on the brain window settings. All three radiologists agreed that the improved multi-kernel images on the bone window settings were sufficient for diagnosing skull fractures in all patients. This improved multi-kernel technique has a simple algorithm and is practical for clinical use. Thus, simplified head CT examinations and fewer images that need to be stored can be expected.
7 CFR 810.202 - Definition of other terms.
Code of Federal Regulations, 2014 CFR
2014-01-01
... barley kernels, other grains, and wild oats that are badly shrunken and distinctly discolored black or... kernels. Kernels and pieces of barley kernels that are distinctly indented, immature or shrunken in...
7 CFR 810.202 - Definition of other terms.
Code of Federal Regulations, 2013 CFR
2013-01-01
... barley kernels, other grains, and wild oats that are badly shrunken and distinctly discolored black or... kernels. Kernels and pieces of barley kernels that are distinctly indented, immature or shrunken in...
7 CFR 810.202 - Definition of other terms.
Code of Federal Regulations, 2012 CFR
2012-01-01
... barley kernels, other grains, and wild oats that are badly shrunken and distinctly discolored black or... kernels. Kernels and pieces of barley kernels that are distinctly indented, immature or shrunken in...
graphkernels: R and Python packages for graph comparison
Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten
2018-01-01
Abstract Summary Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. Availability and implementation The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. Contact mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch Supplementary information Supplementary data are available online at Bioinformatics. PMID:29028902
Aflatoxin variability in pistachios.
Mahoney, N E; Rodriguez, S B
1996-01-01
Pistachio fruit components, including hulls (mesocarps and epicarps), seed coats (testas), and kernels (seeds), all contribute to variable aflatoxin content in pistachios. Fresh pistachio kernels were individually inoculated with Aspergillus flavus and incubated 7 or 10 days. Hulled, shelled kernels were either left intact or wounded prior to inoculation. Wounded kernels, with or without the seed coat, were readily colonized by A. flavus and after 10 days of incubation contained 37 times more aflatoxin than similarly treated unwounded kernels. The aflatoxin levels in the individual wounded pistachios were highly variable. Neither fungal colonization nor aflatoxin was detected in intact kernels without seed coats. Intact kernels with seed coats had limited fungal colonization and low aflatoxin concentrations compared with their wounded counterparts. Despite substantial fungal colonization of wounded hulls, aflatoxin was not detected in hulls. Aflatoxin levels were significantly lower in wounded kernels with hulls than in kernels of hulled pistachios. Both the seed coat and a water-soluble extract of hulls suppressed aflatoxin production by A. flavus. PMID:8919781
graphkernels: R and Python packages for graph comparison.
Sugiyama, Mahito; Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten
2018-02-01
Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch. Supplementary data are available online at Bioinformatics. © The Author(s) 2017. Published by Oxford University Press.
Huang, Jessie Y.; Eklund, David; Childress, Nathan L.; Howell, Rebecca M.; Mirkovic, Dragan; Followill, David S.; Kry, Stephen F.
2013-01-01
Purpose: Several simplifications used in clinical implementations of the convolution/superposition (C/S) method, specifically, density scaling of water kernels for heterogeneous media and use of a single polyenergetic kernel, lead to dose calculation inaccuracies. Although these weaknesses of the C/S method are known, it is not well known which of these simplifications has the largest effect on dose calculation accuracy in clinical situations. The purpose of this study was to generate and characterize high-resolution, polyenergetic, and material-specific energy deposition kernels (EDKs), as well as to investigate the dosimetric impact of implementing spatially variant polyenergetic and material-specific kernels in a collapsed cone C/S algorithm. Methods: High-resolution, monoenergetic water EDKs and various material-specific EDKs were simulated using the EGSnrc Monte Carlo code. Polyenergetic kernels, reflecting the primary spectrum of a clinical 6 MV photon beam at different locations in a water phantom, were calculated for different depths, field sizes, and off-axis distances. To investigate the dosimetric impact of implementing spatially variant polyenergetic kernels, depth dose curves in water were calculated using two different implementations of the collapsed cone C/S method. The first method uses a single polyenergetic kernel, while the second method fully takes into account spectral changes in the convolution calculation. To investigate the dosimetric impact of implementing material-specific kernels, depth dose curves were calculated for a simplified titanium implant geometry using both a traditional C/S implementation that performs density scaling of water kernels and a novel implementation using material-specific kernels. Results: For our high-resolution kernels, we found good agreement with the Mackie et al. kernels, with some differences near the interaction site for low photon energies (<500 keV). For our spatially variant polyenergetic kernels, we found that depth was the most dominant factor affecting the pattern of energy deposition; however, the effects of field size and off-axis distance were not negligible. For the material-specific kernels, we found that as the density of the material increased, more energy was deposited laterally by charged particles, as opposed to in the forward direction. Thus, density scaling of water kernels becomes a worse approximation as the density and the effective atomic number of the material differ more from water. Implementation of spatially variant, polyenergetic kernels increased the percent depth dose value at 25 cm depth by 2.1%–5.8% depending on the field size, while implementation of titanium kernels gave 4.9% higher dose upstream of the metal cavity (i.e., higher backscatter dose) and 8.2% lower dose downstream of the cavity. Conclusions: Of the various kernel refinements investigated, inclusion of depth-dependent and metal-specific kernels into the C/S method has the greatest potential to improve dose calculation accuracy. Implementation of spatially variant polyenergetic kernels resulted in a harder depth dose curve and thus has the potential to affect beam modeling parameters obtained in the commissioning process. For metal implants, the C/S algorithms generally underestimate the dose upstream and overestimate the dose downstream of the implant. Implementation of a metal-specific kernel mitigated both of these errors. PMID:24320507
Chung, Moo K; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K
2015-05-01
We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel method is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, the method is applied to characterize the localized growth pattern of mandible surfaces obtained in CT images between ages 0 and 20 by regressing the length of displacement vectors with respect to a surface template. Copyright © 2015 Elsevier B.V. All rights reserved.
Patra, Abhilash; Jana, Subrata; Samal, Prasanjit
2018-04-07
The construction of meta generalized gradient approximations based on the density matrix expansion (DME) is considered as one of the most accurate techniques to design semilocal exchange energy functionals in two-dimensional density functional formalism. The exchange holes modeled using DME possess unique features that make it a superior entity. Parameterized semilocal exchange energy functionals based on the DME are proposed. The use of different forms of the momentum and flexible parameters is to subsume the non-uniform effects of the density in the newly constructed semilocal functionals. In addition to the exchange functionals, a suitable correlation functional is also constructed by working upon the local correlation functional developed for 2D homogeneous electron gas. The non-local effects are induced into the correlation functional by a parametric form of one of the newly constructed exchange energy functionals. The proposed functionals are applied to the parabolic quantum dots with a varying number of confined electrons and the confinement strength. The results obtained with the aforementioned functionals are quite satisfactory, which indicates why these are suitable for two-dimensional quantum systems.
NASA Astrophysics Data System (ADS)
Patra, Abhilash; Jana, Subrata; Samal, Prasanjit
2018-04-01
The construction of meta generalized gradient approximations based on the density matrix expansion (DME) is considered as one of the most accurate techniques to design semilocal exchange energy functionals in two-dimensional density functional formalism. The exchange holes modeled using DME possess unique features that make it a superior entity. Parameterized semilocal exchange energy functionals based on the DME are proposed. The use of different forms of the momentum and flexible parameters is to subsume the non-uniform effects of the density in the newly constructed semilocal functionals. In addition to the exchange functionals, a suitable correlation functional is also constructed by working upon the local correlation functional developed for 2D homogeneous electron gas. The non-local effects are induced into the correlation functional by a parametric form of one of the newly constructed exchange energy functionals. The proposed functionals are applied to the parabolic quantum dots with a varying number of confined electrons and the confinement strength. The results obtained with the aforementioned functionals are quite satisfactory, which indicates why these are suitable for two-dimensional quantum systems.
Quantifying NMR relaxation correlation and exchange in articular cartilage with time domain analysis
NASA Astrophysics Data System (ADS)
Mailhiot, Sarah E.; Zong, Fangrong; Maneval, James E.; June, Ronald K.; Galvosas, Petrik; Seymour, Joseph D.
2018-02-01
Measured nuclear magnetic resonance (NMR) transverse relaxation data in articular cartilage has been shown to be multi-exponential and correlated to the health of the tissue. The observed relaxation rates are dependent on experimental parameters such as solvent, data acquisition methods, data analysis methods, and alignment to the magnetic field. In this study, we show that diffusive exchange occurs in porcine articular cartilage and impacts the observed relaxation rates in T1-T2 correlation experiments. By using time domain analysis of T2-T2 exchange spectroscopy, the diffusive exchange time can be quantified by measurements that use a single mixing time. Measured characteristic times for exchange are commensurate with T1 in this material and so impacts the observed T1 behavior. The approach used here allows for reliable quantification of NMR relaxation behavior in cartilage in the presence of diffusive fluid exchange between two environments.
NASA Astrophysics Data System (ADS)
Jensen, Daniel; Wasserman, Adam; Baczewski, Andrew
The construction of approximations to the exchange-correlation potential for warm dense matter (WDM) is a topic of significant recent interest. In this work, we study the inverse problem of Kohn-Sham (KS) DFT as a means of guiding functional design at zero temperature and in WDM. Whereas the forward problem solves the KS equations to produce a density from a specified exchange-correlation potential, the inverse problem seeks to construct the exchange-correlation potential from specified densities. These two problems require different computational methods and convergence criteria despite sharing the same mathematical equations. We present two new inversion methods based on constrained variational and PDE-constrained optimization methods. We adapt these methods to finite temperature calculations to reveal the exchange-correlation potential's temperature dependence in WDM-relevant conditions. The different inversion methods presented are applied to both non-interacting and interacting model systems for comparison. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94.
NASA Astrophysics Data System (ADS)
Menéndez, J.
2018-01-01
Neutrinoless β β decay nuclear matrix elements calculated with the shell model and energy-density functional theory typically disagree by more than a factor of two in the standard scenario of light-neutrino exchange. In contrast, for a decay mediated by sterile heavy neutrinos the deviations are reduced to about 50%, an uncertainty similar to the one due to short-range effects. We compare matrix elements in the light- and heavy-neutrino-exchange channels, exploring the radial, momentum transfer and angular momentum-parity matrix element distributions, and considering transitions that involve correlated and uncorrelated nuclear states. We argue that the shorter-range heavy-neutrino exchange is less sensitive to collective nuclear correlations, and that discrepancies in matrix elements are mostly due to the treatment of long-range correlations in many-body calculations. Our analysis supports previous studies suggesting that isoscalar pairing correlations, which affect mostly the longer-range part of the neutrinoless β β decay operator, are partially responsible for the differences between nuclear matrix elements in the standard light-neutrino-exchange mechanism.
ERIC Educational Resources Information Center
Lee, Yi-Hsuan; von Davier, Alina A.
2008-01-01
The kernel equating method (von Davier, Holland, & Thayer, 2004) is based on a flexible family of equipercentile-like equating functions that use a Gaussian kernel to continuize the discrete score distributions. While the classical equipercentile, or percentile-rank, equating method carries out the continuization step by linear interpolation,…
Code of Federal Regulations, 2010 CFR
2010-01-01
...— Damaged kernels 1 (percent) Foreign material (percent) Other grains (percent) Skinned and broken kernels....0 10.0 15.0 1 Injured-by-frost kernels and injured-by-mold kernels are not considered damaged kernels or considered against sound barley. Notes: Malting barley shall not be infested in accordance with...
Schweigert, Igor V; Bartlett, Rodney J
2008-09-28
Adding a fraction of the nonlocal exchange operator to the local orbital-dependent exchange potential improves the many-body perturbation expansion based on the Kohn-Sham determinant. The effect of such a hybrid scheme on the performance of the orbital-dependent correlation functional from the second-order perturbation theory (PT2H) is investigated numerically. A small fraction of the nonlocal exchange is often sufficient to ensure the existence of the self-consistent solution for the PT2H potential. In the He and Be atoms, including 37% of the nonlocal exchange leads to the correlation energies and electronic densities that are very close to the exact ones. In molecules, varying the fraction of the nonlocal exchange may result in the PT2H energy closely reproducing the CCSD(T) value; however such a fraction depends on the system and does not always result in an accurate electronic density. We also numerically verify that the "semicanonical" perturbation series includes most of the beneficial effects of the nonlocal exchange without sacrificing the locality of the exchange potential.
Code of Federal Regulations, 2013 CFR
2013-01-01
... well cured; (e) Poorly developed kernels; (f) Kernels which are dark amber in color; (g) Kernel spots when more than one dark spot is present on either half of the kernel, or when any such spot is more...
Code of Federal Regulations, 2014 CFR
2014-01-01
... well cured; (e) Poorly developed kernels; (f) Kernels which are dark amber in color; (g) Kernel spots when more than one dark spot is present on either half of the kernel, or when any such spot is more...
7 CFR 810.205 - Grades and grade requirements for Two-rowed Malting barley.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (percent) Maximum limits of— Wild oats (percent) Foreign material (percent) Skinned and broken kernels... Injured-by-frost kernels and injured-by-mold kernels are not considered damaged kernels or considered...
Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca e; Mundim, Gabriel Borges
2016-01-01
Abstract The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis. PMID:27007903
Paes, Geísa Pinheiro; Viana, José Marcelo Soriano; Silva, Fabyano Fonseca E; Mundim, Gabriel Borges
2016-03-01
The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis.
Zhang, Daqing; Xiao, Jianfeng; Zhou, Nannan; Luo, Xiaomin; Jiang, Hualiang; Chen, Kaixian
2015-01-01
Blood-brain barrier (BBB) is a highly complex physical barrier determining what substances are allowed to enter the brain. Support vector machine (SVM) is a kernel-based machine learning method that is widely used in QSAR study. For a successful SVM model, the kernel parameters for SVM and feature subset selection are the most important factors affecting prediction accuracy. In most studies, they are treated as two independent problems, but it has been proven that they could affect each other. We designed and implemented genetic algorithm (GA) to optimize kernel parameters and feature subset selection for SVM regression and applied it to the BBB penetration prediction. The results show that our GA/SVM model is more accurate than other currently available log BB models. Therefore, to optimize both SVM parameters and feature subset simultaneously with genetic algorithm is a better approach than other methods that treat the two problems separately. Analysis of our log BB model suggests that carboxylic acid group, polar surface area (PSA)/hydrogen-bonding ability, lipophilicity, and molecular charge play important role in BBB penetration. Among those properties relevant to BBB penetration, lipophilicity could enhance the BBB penetration while all the others are negatively correlated with BBB penetration. PMID:26504797
TIME-DOMAIN METHODS FOR DIFFUSIVE TRANSPORT IN SOFT MATTER
Fricks, John; Yao, Lingxing; Elston, Timothy C.; Gregory Forest, And M.
2015-01-01
Passive microrheology [12] utilizes measurements of noisy, entropic fluctuations (i.e., diffusive properties) of micron-scale spheres in soft matter to infer bulk frequency-dependent loss and storage moduli. Here, we are concerned exclusively with diffusion of Brownian particles in viscoelastic media, for which the Mason-Weitz theoretical-experimental protocol is ideal, and the more challenging inference of bulk viscoelastic moduli is decoupled. The diffusive theory begins with a generalized Langevin equation (GLE) with a memory drag law specified by a kernel [7, 16, 22, 23]. We start with a discrete formulation of the GLE as an autoregressive stochastic process governing microbead paths measured by particle tracking. For the inverse problem (recovery of the memory kernel from experimental data) we apply time series analysis (maximum likelihood estimators via the Kalman filter) directly to bead position data, an alternative to formulas based on mean-squared displacement statistics in frequency space. For direct modeling, we present statistically exact GLE algorithms for individual particle paths as well as statistical correlations for displacement and velocity. Our time-domain methods rest upon a generalization of well-known results for a single-mode exponential kernel [1, 7, 22, 23] to an arbitrary M-mode exponential series, for which the GLE is transformed to a vector Ornstein-Uhlenbeck process. PMID:26412904
Lack of Host Specialization in Aspergillus flavus
St. Leger, Raymond J.; Screen, Steven E.; Shams-Pirzadeh, Bijan
2000-01-01
Aspergillus spp. cause disease in a broad range of organisms, but it is unknown if strains are specialized for particular hosts. We evaluated isolates of Aspergillus flavus, Aspergillus fumigatus, and Aspergillus nidulans for their ability to infect bean leaves, corn kernels, and insects (Galleria mellonella). Strains of A. flavus did not affect nonwounded bean leaves, corn kernels, or insects at 22°C, but they killed insects following hemocoelic challenge and caused symptoms ranging from moderate to severe in corn kernels and bean leaves injured during inoculation. The pectinase P2c, implicated in aggressive colonization of cotton bolls, is produced by most A. flavus isolates, but its absence did not prevent colonization of bean leaves. Proteases have been implicated in colonization of animal hosts. All A. flavus strains produced very similar patterns of protease isozymes when cultured on horse lung polymers. Quantitative differences in protease levels did not correlate with the ability to colonize insects. In contrast to A. flavus, strains of A. nidulans and A. fumigatus could not invade living insect or plant tissues or resist digestion by insect hemocytes. Our results indicate that A. flavus has parasitic attributes that are lacking in A. fumigatus and A. nidulans but that individual strains of A. flavus are not specialized to particular hosts. PMID:10618242
NASA Astrophysics Data System (ADS)
Dutta, Srimonti; Ghosh, Dipak; Chatterjee, Sucharita
2016-12-01
The manuscript studies autocorrelation and cross correlation of SENSEX fluctuations and Forex Exchange Rate in respect to Indian scenario. Multifractal detrended fluctuation analysis (MFDFA) and multifractal detrended cross correlation analysis (MFDXA) were employed to study the correlation between the two series. It was observed that the two series are strongly cross correlated. The change of degree of cross correlation with time was studied and the results are interpreted qualitatively.
Vyboishchikov, Sergei F
2016-12-05
We report correlation energies, electron densities, and exchange-correlation potentials obtained from configuration interaction and density functional calculations on spherically confined He, Be, Be 2+ , and Ne atoms. The variation of the correlation energy with the confinement radius R c is relatively small for the He, Be 2+ , and Ne systems. Curiously, the Lee-Yang-Parr (LYP) functional works well for weak confinements but fails completely for small R c . However, in the neutral beryllium atom the CI correlation energy increases markedly with decreasing R c . This effect is less pronounced at the density-functional theory level. The LYP functional performs very well for the unconfined Be atom, but fails badly for small R c . The standard exchange-correlation potentials exhibit significant deviation from the "exact" potential obtained by inversion of Kohn-Sham equation. The LYP correlation potential behaves erratically at strong confinements. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Detection of ochratoxin A contamination in stored wheat using near-infrared hyperspectral imaging
NASA Astrophysics Data System (ADS)
Senthilkumar, T.; Jayas, D. S.; White, N. D. G.; Fields, P. G.; Gräfenhan, T.
2017-03-01
Near-infrared (NIR) hyperspectral imaging system was used to detect five concentration levels of ochratoxin A (OTA) in contaminated wheat kernels. The wheat kernels artificially inoculated with two different OTA producing Penicillium verrucosum strains, two different non-toxigenic P. verrucosum strains, and sterile control wheat kernels were subjected to NIR hyperspectral imaging. The acquired three-dimensional data were reshaped into readable two-dimensional data. Principal Component Analysis (PCA) was applied to the two dimensional data to identify the key wavelengths which had greater significance in detecting OTA contamination in wheat. Statistical and histogram features extracted at the key wavelengths were used in the linear, quadratic and Mahalanobis statistical discriminant models to differentiate between sterile control, five concentration levels of OTA contamination in wheat kernels, and five infection levels of non-OTA producing P. verrucosum inoculated wheat kernels. The classification models differentiated sterile control samples from OTA contaminated wheat kernels and non-OTA producing P. verrucosum inoculated wheat kernels with a 100% accuracy. The classification models also differentiated between five concentration levels of OTA contaminated wheat kernels and between five infection levels of non-OTA producing P. verrucosum inoculated wheat kernels with a correct classification of more than 98%. The non-OTA producing P. verrucosum inoculated wheat kernels and OTA contaminated wheat kernels subjected to hyperspectral imaging provided different spectral patterns.
Application of kernel method in fluorescence molecular tomography
NASA Astrophysics Data System (ADS)
Zhao, Yue; Baikejiang, Reheman; Li, Changqing
2017-02-01
Reconstruction of fluorescence molecular tomography (FMT) is an ill-posed inverse problem. Anatomical guidance in the FMT reconstruction can improve FMT reconstruction efficiently. We have developed a kernel method to introduce the anatomical guidance into FMT robustly and easily. The kernel method is from machine learning for pattern analysis and is an efficient way to represent anatomical features. For the finite element method based FMT reconstruction, we calculate a kernel function for each finite element node from an anatomical image, such as a micro-CT image. Then the fluorophore concentration at each node is represented by a kernel coefficient vector and the corresponding kernel function. In the FMT forward model, we have a new system matrix by multiplying the sensitivity matrix with the kernel matrix. Thus, the kernel coefficient vector is the unknown to be reconstructed following a standard iterative reconstruction process. We convert the FMT reconstruction problem into the kernel coefficient reconstruction problem. The desired fluorophore concentration at each node can be calculated accordingly. Numerical simulation studies have demonstrated that the proposed kernel-based algorithm can improve the spatial resolution of the reconstructed FMT images. In the proposed kernel method, the anatomical guidance can be obtained directly from the anatomical image and is included in the forward modeling. One of the advantages is that we do not need to segment the anatomical image for the targets and background.
Credit scoring analysis using kernel discriminant
NASA Astrophysics Data System (ADS)
Widiharih, T.; Mukid, M. A.; Mustafid
2018-05-01
Credit scoring model is an important tool for reducing the risk of wrong decisions when granting credit facilities to applicants. This paper investigate the performance of kernel discriminant model in assessing customer credit risk. Kernel discriminant analysis is a non- parametric method which means that it does not require any assumptions about the probability distribution of the input. The main ingredient is a kernel that allows an efficient computation of Fisher discriminant. We use several kernel such as normal, epanechnikov, biweight, and triweight. The models accuracy was compared each other using data from a financial institution in Indonesia. The results show that kernel discriminant can be an alternative method that can be used to determine who is eligible for a credit loan. In the data we use, it shows that a normal kernel is relevant to be selected for credit scoring using kernel discriminant model. Sensitivity and specificity reach to 0.5556 and 0.5488 respectively.
Chung, Moo K.; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K.
2014-01-01
We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel regression is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. Unlike many previous partial differential equation based approaches involving diffusion, our approach represents the solution of diffusion analytically, reducing numerical inaccuracy and slow convergence. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, we have applied the method in characterizing the localized growth pattern of mandible surfaces obtained in CT images from subjects between ages 0 and 20 years by regressing the length of displacement vectors with respect to the template surface. PMID:25791435
Concerted hydrogen atom exchange between three HF molecules
NASA Technical Reports Server (NTRS)
Komornicki, Andrew; Dixon, David A.; Taylor, Peter R.
1992-01-01
We have investigated the termolecular reaction involving concerted hydrogen exchange between three HF molecules, with particular emphasis on the effects of correlation at the various stationary points along the reaction. Using an extended basis, we have located the geometries of the stable hydrogen-bonded trimer, which is of C(sub 3h) symmetry, and the transition state for hydrogen exchange, which is of D(sub 3h) symmetry. The energies of the exchange reation were then evaluated at the correlated level, using a large atomic natural orbital basis and correlating all valence electrons. Several correlation treatments were used, namely, configration interaction with single and double excitations, coupled-pair functional, and coupled-cluster methods. We are thus able to measure the effect of accounting for size-extensivity. Zero-point corrections to the correlated level energetics were determined using analytic second derivative techniques at the SCF level. Our best calculations, which include the effects of connected triple excitations in the coupled-cluster procedure, indicate that the trimer is bound by 9 +/- 1 kcal/mol relative to three separate monomers, in excellent agreement with previous estimates. The barrier to concerted hydrogen exchange is 15 kcal/mol above the trimer, or only 4.7 kcal/mol above three separated monomers. Thus the barrier to hydrogen exchange between HF molecules via this termolecular process is very low.
Short-range second order screened exchange correction to RPA correlation energies
NASA Astrophysics Data System (ADS)
Beuerle, Matthias; Ochsenfeld, Christian
2017-11-01
Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.
Short-range second order screened exchange correction to RPA correlation energies.
Beuerle, Matthias; Ochsenfeld, Christian
2017-11-28
Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.
Classification of Phylogenetic Profiles for Protein Function Prediction: An SVM Approach
NASA Astrophysics Data System (ADS)
Kotaru, Appala Raju; Joshi, Ramesh C.
Predicting the function of an uncharacterized protein is a major challenge in post-genomic era due to problems complexity and scale. Having knowledge of protein function is a crucial link in the development of new drugs, better crops, and even the development of biochemicals such as biofuels. Recently numerous high-throughput experimental procedures have been invented to investigate the mechanisms leading to the accomplishment of a protein’s function and Phylogenetic profile is one of them. Phylogenetic profile is a way of representing a protein which encodes evolutionary history of proteins. In this paper we proposed a method for classification of phylogenetic profiles using supervised machine learning method, support vector machine classification along with radial basis function as kernel for identifying functionally linked proteins. We experimentally evaluated the performance of the classifier with the linear kernel, polynomial kernel and compared the results with the existing tree kernel. In our study we have used proteins of the budding yeast saccharomyces cerevisiae genome. We generated the phylogenetic profiles of 2465 yeast genes and for our study we used the functional annotations that are available in the MIPS database. Our experiments show that the performance of the radial basis kernel is similar to polynomial kernel is some functional classes together are better than linear, tree kernel and over all radial basis kernel outperformed the polynomial kernel, linear kernel and tree kernel. In analyzing these results we show that it will be feasible to make use of SVM classifier with radial basis function as kernel to predict the gene functionality using phylogenetic profiles.
Steckel, S; Stewart, S D
2015-06-01
Ear-feeding larvae, such as corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), can be important insect pests of field corn, Zea mays L., by feeding on kernels. Recently introduced, stacked Bacillus thuringiensis (Bt) traits provide improved protection from ear-feeding larvae. Thus, our objective was to evaluate how injury to kernels in the ear tip might affect yield when this injury was inflicted at the blister and milk stages. In 2010, simulated corn earworm injury reduced total kernel weight (i.e., yield) at both the blister and milk stage. In 2011, injury to ear tips at the milk stage affected total kernel weight. No differences in total kernel weight were found in 2013, regardless of when or how much injury was inflicted. Our data suggested that kernels within the same ear could compensate for injury to ear tips by increasing in size, but this increase was not always statistically significant or sufficient to overcome high levels of kernel injury. For naturally occurring injury observed on multiple corn hybrids during 2011 and 2012, our analyses showed either no or a minimal relationship between number of kernels injured by ear-feeding larvae and the total number of kernels per ear, total kernel weight, or the size of individual kernels. The results indicate that intraear compensation for kernel injury to ear tips can occur under at least some conditions. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Modelling Nonlinear Dynamic Textures using Hybrid DWT-DCT and Kernel PCA with GPU
NASA Astrophysics Data System (ADS)
Ghadekar, Premanand Pralhad; Chopade, Nilkanth Bhikaji
2016-12-01
Most of the real-world dynamic textures are nonlinear, non-stationary, and irregular. Nonlinear motion also has some repetition of motion, but it exhibits high variation, stochasticity, and randomness. Hybrid DWT-DCT and Kernel Principal Component Analysis (KPCA) with YCbCr/YIQ colour coding using the Dynamic Texture Unit (DTU) approach is proposed to model a nonlinear dynamic texture, which provides better results than state-of-art methods in terms of PSNR, compression ratio, model coefficients, and model size. Dynamic texture is decomposed into DTUs as they help to extract temporal self-similarity. Hybrid DWT-DCT is used to extract spatial redundancy. YCbCr/YIQ colour encoding is performed to capture chromatic correlation. KPCA is applied to capture nonlinear motion. Further, the proposed algorithm is implemented on Graphics Processing Unit (GPU), which comprise of hundreds of small processors to decrease time complexity and to achieve parallelism.
Critical reflexivity in financial markets: a Hawkes process analysis
NASA Astrophysics Data System (ADS)
Hardiman, Stephen J.; Bercot, Nicolas; Bouchaud, Jean-Philippe
2013-10-01
We model the arrival of mid-price changes in the E-mini S&P futures contract as a self-exciting Hawkes process. Using several estimation methods, we find that the Hawkes kernel is power-law with a decay exponent close to -1.15 at short times, less than ≈ 103 s, and crosses over to a second power-law regime with a larger decay exponent ≈-1.45 for longer times scales in the range [ 103,106 ] seconds. More importantly, we find that the Hawkes kernel integrates to unity independently of the analysed period, from 1998 to 2011. This suggests that markets are and have always been close to criticality, challenging a recent study which indicates that reflexivity (endogeneity) has increased in recent years as a result of increased automation of trading. However, we note that the scale over which market events are correlated has decreased steadily over time with the emergence of higher frequency trading.
[Determination of acidity and vitamin C in apples using portable NIR analyzer].
Yang, Fan; Li, Ya-Ting; Gu, Xuan; Ma, Jiang; Fan, Xing; Wang, Xiao-Xuan; Zhang, Zhuo-Yong
2011-09-01
Near infrared (NIR) spectroscopy technology based on a portable NIR analyzer, combined with kernel Isomap algorithm and generalized regression neural network (GRNN) has been applied to establishing quantitative models for prediction of acidity and vitamin C in six kinds of apple samples. The obtained results demonstrated that the fitting and the predictive accuracy of the models with kernel Isomap algorithm were satisfactory. The correlation between actual and predicted values of calibration samples (R(c)) obtained by the acidity model was 0.999 4, and for prediction samples (R(p)) was 0.979 9. The root mean square error of prediction set (RMSEP) was 0.055 8. For the vitamin C model, R(c) was 0.989 1, R(p) was 0.927 2, and RMSEP was 4.043 1. Results proved that the portable NIR analyzer can be a feasible tool for the determination of acidity and vitamin C in apples.
Triangular Arbitrage as an Interaction in Foreign Exchange Markets
NASA Astrophysics Data System (ADS)
Aiba, Yukihiro; Hatano, Naomichi
Analyzing correlation in financial time series is a topic of considerable interest [1]-[17]. In the foreign exchange market, a correlation among the exchange rates can be generated by a triangular arbitrage transaction. The purpose of this article is to review our recent study [18]-[23] on modeling the interaction generated by the triangular arbitrage.
Evidence-based Kernels: Fundamental Units of Behavioral Influence
Biglan, Anthony
2008-01-01
This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior. PMID:18712600
Integrating the Gradient of the Thin Wire Kernel
NASA Technical Reports Server (NTRS)
Champagne, Nathan J.; Wilton, Donald R.
2008-01-01
A formulation for integrating the gradient of the thin wire kernel is presented. This approach employs a new expression for the gradient of the thin wire kernel derived from a recent technique for numerically evaluating the exact thin wire kernel. This approach should provide essentially arbitrary accuracy and may be used with higher-order elements and basis functions using the procedure described in [4].When the source and observation points are close, the potential integrals over wire segments involving the wire kernel are split into parts to handle the singular behavior of the integrand [1]. The singularity characteristics of the gradient of the wire kernel are different than those of the wire kernel, and the axial and radial components have different singularities. The characteristics of the gradient of the wire kernel are discussed in [2]. To evaluate the near electric and magnetic fields of a wire, the integration of the gradient of the wire kernel needs to be calculated over the source wire. Since the vector bases for current have constant direction on linear wire segments, these integrals reduce to integrals of the form
Ranking Support Vector Machine with Kernel Approximation
Dou, Yong
2017-01-01
Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms. PMID:28293256
Ranking Support Vector Machine with Kernel Approximation.
Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi
2017-01-01
Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.
Integrated Model of Multiple Kernel Learning and Differential Evolution for EUR/USD Trading
Deng, Shangkun; Sakurai, Akito
2014-01-01
Currency trading is an important area for individual investors, government policy decisions, and organization investments. In this study, we propose a hybrid approach referred to as MKL-DE, which combines multiple kernel learning (MKL) with differential evolution (DE) for trading a currency pair. MKL is used to learn a model that predicts changes in the target currency pair, whereas DE is used to generate the buy and sell signals for the target currency pair based on the relative strength index (RSI), while it is also combined with MKL as a trading signal. The new hybrid implementation is applied to EUR/USD trading, which is the most traded foreign exchange (FX) currency pair. MKL is essential for utilizing information from multiple information sources and DE is essential for formulating a trading rule based on a mixture of discrete structures and continuous parameters. Initially, the prediction model optimized by MKL predicts the returns based on a technical indicator called the moving average convergence and divergence. Next, a combined trading signal is optimized by DE using the inputs from the prediction model and technical indicator RSI obtained from multiple timeframes. The experimental results showed that trading using the prediction learned by MKL yielded consistent profits. PMID:25097891
Interlayer tunneling in a strongly correlated electron-phonon system
NASA Astrophysics Data System (ADS)
Mierzejewski, M.; Zieliński, J.
1996-10-01
We discuss the role of interlayer tunneling for superconducting properties of strongly correlated (U-->∞ limit) two-layer Hubbard model coupled to phonons. Strong correlations are taken into account within the mean-field approximation for auxiliary boson fields. To consider phonon-mediated and interlayer tunneling contribution to superconductivity on equal footing we incorporate the tunneling term into the generalized Eliashberg equations. This leads to the modification of the phonon-induced pairing kernel and implies a pronounced enhancement of the superconducting transition temperature in the d-wave channel for moderate doping. In numerical calculations the two-dimensional band structure has been explicitly taken into account. The relevance of our results for high-temperature superconductors is briefly discussed.
Code of Federal Regulations, 2011 CFR
2011-04-01
... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed...
Code of Federal Regulations, 2013 CFR
2013-04-01
... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed...
Code of Federal Regulations, 2012 CFR
2012-04-01
... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed...
Wigner functions defined with Laplace transform kernels.
Oh, Se Baek; Petruccelli, Jonathan C; Tian, Lei; Barbastathis, George
2011-10-24
We propose a new Wigner-type phase-space function using Laplace transform kernels--Laplace kernel Wigner function. Whereas momentum variables are real in the traditional Wigner function, the Laplace kernel Wigner function may have complex momentum variables. Due to the property of the Laplace transform, a broader range of signals can be represented in complex phase-space. We show that the Laplace kernel Wigner function exhibits similar properties in the marginals as the traditional Wigner function. As an example, we use the Laplace kernel Wigner function to analyze evanescent waves supported by surface plasmon polariton. © 2011 Optical Society of America
Online learning control using adaptive critic designs with sparse kernel machines.
Xu, Xin; Hou, Zhongsheng; Lian, Chuanqiang; He, Haibo
2013-05-01
In the past decade, adaptive critic designs (ACDs), including heuristic dynamic programming (HDP), dual heuristic programming (DHP), and their action-dependent ones, have been widely studied to realize online learning control of dynamical systems. However, because neural networks with manually designed features are commonly used to deal with continuous state and action spaces, the generalization capability and learning efficiency of previous ACDs still need to be improved. In this paper, a novel framework of ACDs with sparse kernel machines is presented by integrating kernel methods into the critic of ACDs. To improve the generalization capability as well as the computational efficiency of kernel machines, a sparsification method based on the approximately linear dependence analysis is used. Using the sparse kernel machines, two kernel-based ACD algorithms, that is, kernel HDP (KHDP) and kernel DHP (KDHP), are proposed and their performance is analyzed both theoretically and empirically. Because of the representation learning and generalization capability of sparse kernel machines, KHDP and KDHP can obtain much better performance than previous HDP and DHP with manually designed neural networks. Simulation and experimental results of two nonlinear control problems, that is, a continuous-action inverted pendulum problem and a ball and plate control problem, demonstrate the effectiveness of the proposed kernel ACD methods.
do Nascimento Silva, Jaqueline; Mascarin, Gabriel Moura; Dos Santos Gomes, Isabel Cristina; Tinôco, Ricardo Salles; Quintela, Eliane Dias; Dos Reis Castilho, Leda; Freire, Denise Maria Guimarães
2018-03-01
The present study aimed to add value to palm oil by-products as substrates to efficiently produce conidia of Beauveria bassiana and Isaria javanica (Hypocreales: Cordycipitaceae) for biological control of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae), through a solid-state fermentation process using palm kernel cake and palm fiber as nutrient source and solid matrix, respectively. The optimum culture conditions yielded high concentrations of viable conidia after air-drying, when the fungi were grown on palm kernel cake (B. bassiana 7.65 × 10 9 and I. javanica 2.91 × 10 9 conidia g -1 dry substrate) after 6 days under optimal growth conditions set to 60% substrate moisture and 32 °C. Both fungal strains exhibited high efficacy against third-instar whitefly nymphs, inducing mortality up to 62.9 and 56.6% by B. bassiana and I. javanica, respectively, assessed after 9 days post-application in a screenhouse. Furthermore, we noted that insect mortality was strongly correlated with high atmospheric moisture, while B. bassiana appeared to require shorter accumulative hours under high moisture to kill whitefly nymphs compared to I. javanica. Our results underpin a feasible and cost-effective mass production method for aerial conidia, using palm kernel as the main substrate in order to produce efficacious fungal bioinsecticides against an invasive whitefly species in Brazil. Finally, our fermentation process may offer a sustainable and cost-effective means to produce eco-friendly mycoinsecticides, using an abundant agro-industrial by-product from Brazil that will ultimately assist in the integrated management of agricultural insect pests.
Anifah, Lilik; Purnama, I Ketut Eddy; Hariadi, Mochamad; Purnomo, Mauridhi Hery
2013-01-01
Localization is the first step in osteoarthritis (OA) classification. Manual classification, however, is time-consuming, tedious, and expensive. The proposed system is designed as decision support system for medical doctors to classify the severity of knee OA. A method has been proposed here to localize a joint space area for OA and then classify it in 4 steps to classify OA into KL-Grade 0, KL-Grade 1, KL-Grade 2, KL-Grade 3 and KL-Grade 4, which are preprocessing, segmentation, feature extraction, and classification. In this proposed system, right and left knee detection was performed by employing the Contrast-Limited Adaptive Histogram Equalization (CLAHE) and the template matching. The Gabor kernel, row sum graph and moment methods were used to localize the junction space area of knee. CLAHE is used for preprocessing step, i.e.to normalize the varied intensities. The segmentation process was conducted using the Gabor kernel, template matching, row sum graph and gray level center of mass method. Here GLCM (contrast, correlation, energy, and homogeinity) features were employed as training data. Overall, 50 data were evaluated for training and 258 data for testing. Experimental results showed the best performance by using gabor kernel with parameters α=8, θ=0, Ψ=[0 π/2], γ=0,8, N=4 and with number of iterations being 5000, momentum value 0.5 and α0=0.6 for the classification process. The run gave classification accuracy rate of 93.8% for KL-Grade 0, 70% for KL-Grade 1, 4% for KL-Grade 2, 10% for KL-Grade 3 and 88.9% for KL-Grade 4.
Anifah, Lilik; Purnama, I Ketut Eddy; Hariadi, Mochamad; Purnomo, Mauridhi Hery
2013-01-01
Localization is the first step in osteoarthritis (OA) classification. Manual classification, however, is time-consuming, tedious, and expensive. The proposed system is designed as decision support system for medical doctors to classify the severity of knee OA. A method has been proposed here to localize a joint space area for OA and then classify it in 4 steps to classify OA into KL-Grade 0, KL-Grade 1, KL-Grade 2, KL-Grade 3 and KL-Grade 4, which are preprocessing, segmentation, feature extraction, and classification. In this proposed system, right and left knee detection was performed by employing the Contrast-Limited Adaptive Histogram Equalization (CLAHE) and the template matching. The Gabor kernel, row sum graph and moment methods were used to localize the junction space area of knee. CLAHE is used for preprocessing step, i.e.to normalize the varied intensities. The segmentation process was conducted using the Gabor kernel, template matching, row sum graph and gray level center of mass method. Here GLCM (contrast, correlation, energy, and homogeinity) features were employed as training data. Overall, 50 data were evaluated for training and 258 data for testing. Experimental results showed the best performance by using gabor kernel with parameters α=8, θ=0, Ψ=[0 π/2], γ=0,8, N=4 and with number of iterations being 5000, momentum value 0.5 and α0=0.6 for the classification process. The run gave classification accuracy rate of 93.8% for KL-Grade 0, 70% for KL-Grade 1, 4% for KL-Grade 2, 10% for KL-Grade 3 and 88.9% for KL-Grade 4. PMID:23525188
Optimisation of quantitative lung SPECT applied to mild COPD: a software phantom simulation study.
Norberg, Pernilla; Olsson, Anna; Alm Carlsson, Gudrun; Sandborg, Michael; Gustafsson, Agnetha
2015-01-01
The amount of inhomogeneities in a (99m)Tc Technegas single-photon emission computed tomography (SPECT) lung image, caused by reduced ventilation in lung regions affected by chronic obstructive pulmonary disease (COPD), is correlated to disease advancement. A quantitative analysis method, the CVT method, measuring these inhomogeneities was proposed in earlier work. To detect mild COPD, which is a difficult task, optimised parameter values are needed. In this work, the CVT method was optimised with respect to the parameter values of acquisition, reconstruction and analysis. The ordered subset expectation maximisation (OSEM) algorithm was used for reconstructing the lung SPECT images. As a first step towards clinical application of the CVT method in detecting mild COPD, this study was based on simulated SPECT images of an advanced anthropomorphic lung software phantom including respiratory and cardiac motion, where the mild COPD lung had an overall ventilation reduction of 5%. The best separation between healthy and mild COPD lung images as determined using the CVT measure of ventilation inhomogeneity and 125 MBq (99m)Tc was obtained using a low-energy high-resolution collimator (LEHR) and a power 6 Butterworth post-filter with a cutoff frequency of 0.6 to 0.7 cm(-1). Sixty-four reconstruction updates and a small kernel size should be used when the whole lung is analysed, and for the reduced lung a greater number of updates and a larger kernel size are needed. A LEHR collimator and 125 (99m)Tc MBq together with an optimal combination of cutoff frequency, number of updates and kernel size, gave the best result. Suboptimal selections of either cutoff frequency, number of updates and kernel size will reduce the imaging system's ability to detect mild COPD in the lung phantom.
Bischel, Alexander; Stratis, Andreas; Kakar, Apoorv; Bosmans, Hilde; Jacobs, Reinhilde; Gassner, Eva-Maria; Puelacher, Wolfgang; Pauwels, Ruben
2016-01-01
Objective: The aim of this study was to evaluate whether application of ultralow dose protocols and iterative reconstruction technology (IRT) influence quantitative Hounsfield units (HUs) and contrast-to-noise ratio (CNR) in dentomaxillofacial CT imaging. Methods: A phantom with inserts of five types of materials was scanned using protocols for (a) a clinical reference for navigated surgery (CT dose index volume 36.58 mGy), (b) low-dose sinus imaging (18.28 mGy) and (c) four ultralow dose imaging (4.14, 2.63, 0.99 and 0.53 mGy). All images were reconstructed using: (i) filtered back projection (FBP); (ii) IRT: adaptive statistical iterative reconstruction-50 (ASIR-50), ASIR-100 and model-based iterative reconstruction (MBIR); and (iii) standard (std) and bone kernel. Mean HU, CNR and average HU error after recalibration were determined. Each combination of protocols was compared using Friedman analysis of variance, followed by Dunn's multiple comparison test. Results: Pearson's sample correlation coefficients were all >0.99. Ultralow dose protocols using FBP showed errors of up to 273 HU. Std kernels had less HU variability than bone kernels. MBIR reduced the error value for the lowest dose protocol to 138 HU and retained the highest relative CNR. ASIR could not demonstrate significant advantages over FBP. Conclusions: Considering a potential dose reduction as low as 1.5% of a std protocol, ultralow dose protocols and IRT should be further tested for clinical dentomaxillofacial CT imaging. Advances in knowledge: HU as a surrogate for bone density may vary significantly in CT ultralow dose imaging. However, use of std kernels and MBIR technology reduce HU error values and may retain the highest CNR. PMID:26859336
Cabral, Adrian L; Jordan, Mark C; Larson, Gary; Somers, Daryl J; Humphreys, D Gavin; McCartney, Curt A
2018-01-01
Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/'AC Domain' was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The 'AC Domain' allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population.
Cabral, Adrian L.; Jordan, Mark C.; Larson, Gary; Somers, Daryl J.; Humphreys, D. Gavin
2018-01-01
Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/‘AC Domain’ was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The ‘AC Domain’ allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population. PMID:29357369
Relationship between processing score and kernel-fraction particle size in whole-plant corn silage.
Dias Junior, G S; Ferraretto, L F; Salvati, G G S; de Resende, L C; Hoffman, P C; Pereira, M N; Shaver, R D
2016-04-01
Kernel processing increases starch digestibility in whole-plant corn silage (WPCS). Corn silage processing score (CSPS), the percentage of starch passing through a 4.75-mm sieve, is widely used to assess degree of kernel breakage in WPCS. However, the geometric mean particle size (GMPS) of the kernel-fraction that passes through the 4.75-mm sieve has not been well described. Therefore, the objectives of this study were (1) to evaluate particle size distribution and digestibility of kernels cut in varied particle sizes; (2) to propose a method to measure GMPS in WPCS kernels; and (3) to evaluate the relationship between CSPS and GMPS of the kernel fraction in WPCS. Composite samples of unfermented, dried kernels from 110 corn hybrids commonly used for silage production were kept whole (WH) or manually cut in 2, 4, 8, 16, 32 or 64 pieces (2P, 4P, 8P, 16P, 32P, and 64P, respectively). Dry sieving to determine GMPS, surface area, and particle size distribution using 9 sieves with nominal square apertures of 9.50, 6.70, 4.75, 3.35, 2.36, 1.70, 1.18, and 0.59 mm and pan, as well as ruminal in situ dry matter (DM) digestibilities were performed for each kernel particle number treatment. Incubation times were 0, 3, 6, 12, and 24 h. The ruminal in situ DM disappearance of unfermented kernels increased with the reduction in particle size of corn kernels. Kernels kept whole had the lowest ruminal DM disappearance for all time points with maximum DM disappearance of 6.9% at 24 h and the greatest disappearance was observed for 64P, followed by 32P and 16P. Samples of WPCS (n=80) from 3 studies representing varied theoretical length of cut settings and processor types and settings were also evaluated. Each WPCS sample was divided in 2 and then dried at 60 °C for 48 h. The CSPS was determined in duplicate on 1 of the split samples, whereas on the other split sample the kernel and stover fractions were separated using a hydrodynamic separation procedure. After separation, the kernel fraction was redried at 60°C for 48 h in a forced-air oven and dry sieved to determine GMPS and surface area. Linear relationships between CSPS from WPCS (n=80) and kernel fraction GMPS, surface area, and proportion passing through the 4.75-mm screen were poor. Strong quadratic relationships between proportion of kernel fraction passing through the 4.75-mm screen and kernel fraction GMPS and surface area were observed. These findings suggest that hydrodynamic separation and dry sieving of the kernel fraction may provide a better assessment of kernel breakage in WPCS than CSPS. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Fengle; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Brown, Robert; Bhatnagar, Deepak; Cleveland, Thomas
2015-05-01
Aflatoxins are secondary metabolites produced by certain fungal species of the Aspergillus genus. Aflatoxin contamination remains a problem in agricultural products due to its toxic and carcinogenic properties. Conventional chemical methods for aflatoxin detection are time-consuming and destructive. This study employed fluorescence and reflectance visible near-infrared (VNIR) hyperspectral images to classify aflatoxin contaminated corn kernels rapidly and non-destructively. Corn ears were artificially inoculated in the field with toxigenic A. flavus spores at the early dough stage of kernel development. After harvest, a total of 300 kernels were collected from the inoculated ears. Fluorescence hyperspectral imagery with UV excitation and reflectance hyperspectral imagery with halogen illumination were acquired on both endosperm and germ sides of kernels. All kernels were then subjected to chemical analysis individually to determine aflatoxin concentrations. A region of interest (ROI) was created for each kernel to extract averaged spectra. Compared with healthy kernels, fluorescence spectral peaks for contaminated kernels shifted to longer wavelengths with lower intensity, and reflectance values for contaminated kernels were lower with a different spectral shape in 700-800 nm region. Principal component analysis was applied for data compression before classifying kernels into contaminated and healthy based on a 20 ppb threshold utilizing the K-nearest neighbors algorithm. The best overall accuracy achieved was 92.67% for germ side in the fluorescence data analysis. The germ side generally performed better than endosperm side. Fluorescence and reflectance image data achieved similar accuracy.
Influence of Kernel Age on Fumonisin B1 Production in Maize by Fusarium moniliforme
Warfield, Colleen Y.; Gilchrist, David G.
1999-01-01
Production of fumonisins by Fusarium moniliforme on naturally infected maize ears is an important food safety concern due to the toxic nature of this class of mycotoxins. Assessing the potential risk of fumonisin production in developing maize ears prior to harvest requires an understanding of the regulation of toxin biosynthesis during kernel maturation. We investigated the developmental-stage-dependent relationship between maize kernels and fumonisin B1 production by using kernels collected at the blister (R2), milk (R3), dough (R4), and dent (R5) stages following inoculation in culture at their respective field moisture contents with F. moniliforme. Highly significant differences (P ≤ 0.001) in fumonisin B1 production were found among kernels at the different developmental stages. The highest levels of fumonisin B1 were produced on the dent stage kernels, and the lowest levels were produced on the blister stage kernels. The differences in fumonisin B1 production among kernels at the different developmental stages remained significant (P ≤ 0.001) when the moisture contents of the kernels were adjusted to the same level prior to inoculation. We concluded that toxin production is affected by substrate composition as well as by moisture content. Our study also demonstrated that fumonisin B1 biosynthesis on maize kernels is influenced by factors which vary with the developmental age of the tissue. The risk of fumonisin contamination may begin early in maize ear development and increases as the kernels reach physiological maturity. PMID:10388675
The Exchange-Correlation Field Effect over the Magnetoacoustic-Gravitational Instability in Plasmas
NASA Astrophysics Data System (ADS)
Rasheed, A.; Jamil, M.; Jung, Young-Dae; Sahar, A.; Asif, M.
2017-09-01
Jeans instability with magnetosonic perturbations is discussed in quantum dusty magnetoplasmas. The quantum and smaller thermal effects are associated only with electrons. The quantum characteristics include exchange-correlation potential, recoil effect, and Fermi degenerate pressure. The multifluid model of plasmas is used for the analytical study of this problem. The significant contribution of electron exchange is noticed on the threshold value of wave vector and Jeans instability. The presence of electron exchange and correlation effects reduce the time to stabilise the phenomenon of self-gravitational collapse of massive species. The results of Jeans instability by magnetosonic perturbations at quantum scale help to disclose the details of the self-gravitating dusty magnetoplasma systems.
NASA Astrophysics Data System (ADS)
Binol, Hamidullah; Bal, Abdullah; Cukur, Huseyin
2015-10-01
The performance of the kernel based techniques depends on the selection of kernel parameters. That's why; suitable parameter selection is an important problem for many kernel based techniques. This article presents a novel technique to learn the kernel parameters in kernel Fukunaga-Koontz Transform based (KFKT) classifier. The proposed approach determines the appropriate values of kernel parameters through optimizing an objective function constructed based on discrimination ability of KFKT. For this purpose we have utilized differential evolution algorithm (DEA). The new technique overcomes some disadvantages such as high time consumption existing in the traditional cross-validation method, and it can be utilized in any type of data. The experiments for target detection applications on the hyperspectral images verify the effectiveness of the proposed method.
Design of a multiple kernel learning algorithm for LS-SVM by convex programming.
Jian, Ling; Xia, Zhonghang; Liang, Xijun; Gao, Chuanhou
2011-06-01
As a kernel based method, the performance of least squares support vector machine (LS-SVM) depends on the selection of the kernel as well as the regularization parameter (Duan, Keerthi, & Poo, 2003). Cross-validation is efficient in selecting a single kernel and the regularization parameter; however, it suffers from heavy computational cost and is not flexible to deal with multiple kernels. In this paper, we address the issue of multiple kernel learning for LS-SVM by formulating it as semidefinite programming (SDP). Furthermore, we show that the regularization parameter can be optimized in a unified framework with the kernel, which leads to an automatic process for model selection. Extensive experimental validations are performed and analyzed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Novel near-infrared sampling apparatus for single kernel analysis of oil content in maize.
Janni, James; Weinstock, B André; Hagen, Lisa; Wright, Steve
2008-04-01
A method of rapid, nondestructive chemical and physical analysis of individual maize (Zea mays L.) kernels is needed for the development of high value food, feed, and fuel traits. Near-infrared (NIR) spectroscopy offers a robust nondestructive method of trait determination. However, traditional NIR bulk sampling techniques cannot be applied successfully to individual kernels. Obtaining optimized single kernel NIR spectra for applied chemometric predictive analysis requires a novel sampling technique that can account for the heterogeneous forms, morphologies, and opacities exhibited in individual maize kernels. In this study such a novel technique is described and compared to less effective means of single kernel NIR analysis. Results of the application of a partial least squares (PLS) derived model for predictive determination of percent oil content per individual kernel are shown.
Zhou, Qijing; Jiang, Biao; Dong, Fei; Huang, Peiyu; Liu, Hongtao; Zhang, Minming
2014-01-01
To evaluate the improvement of iterative reconstruction in image space (IRIS) technique in computed tomographic (CT) coronary stent imaging with sharp kernel, and to make a trade-off analysis. Fifty-six patients with 105 stents were examined by 128-slice dual-source CT coronary angiography (CTCA). Images were reconstructed using standard filtered back projection (FBP) and IRIS with both medium kernel and sharp kernel applied. Image noise and the stent diameter were investigated. Image noise was measured both in background vessel and in-stent lumen as objective image evaluation. Image noise score and stent score were performed as subjective image evaluation. The CTCA images reconstructed with IRIS were associated with significant noise reduction compared to that of CTCA images reconstructed using FBP technique in both of background vessel and in-stent lumen (the background noise decreased by approximately 25.4% ± 8.2% in medium kernel (P
Zhang, Guoqing; Sun, Huaijiang; Xia, Guiyu; Sun, Quansen
2016-07-07
Sparse representation based classification (SRC) has been developed and shown great potential for real-world application. Based on SRC, Yang et al. [10] devised a SRC steered discriminative projection (SRC-DP) method. However, as a linear algorithm, SRC-DP cannot handle the data with highly nonlinear distribution. Kernel sparse representation-based classifier (KSRC) is a non-linear extension of SRC and can remedy the drawback of SRC. KSRC requires the use of a predetermined kernel function and selection of the kernel function and its parameters is difficult. Recently, multiple kernel learning for SRC (MKL-SRC) [22] has been proposed to learn a kernel from a set of base kernels. However, MKL-SRC only considers the within-class reconstruction residual while ignoring the between-class relationship, when learning the kernel weights. In this paper, we propose a novel multiple kernel sparse representation-based classifier (MKSRC), and then we use it as a criterion to design a multiple kernel sparse representation based orthogonal discriminative projection method (MK-SR-ODP). The proposed algorithm aims at learning a projection matrix and a corresponding kernel from the given base kernels such that in the low dimension subspace the between-class reconstruction residual is maximized and the within-class reconstruction residual is minimized. Furthermore, to achieve a minimum overall loss by performing recognition in the learned low-dimensional subspace, we introduce cost information into the dimensionality reduction method. The solutions for the proposed method can be efficiently found based on trace ratio optimization method [33]. Extensive experimental results demonstrate the superiority of the proposed algorithm when compared with the state-of-the-art methods.
Improving prediction of heterodimeric protein complexes using combination with pairwise kernel.
Ruan, Peiying; Hayashida, Morihiro; Akutsu, Tatsuya; Vert, Jean-Philippe
2018-02-19
Since many proteins become functional only after they interact with their partner proteins and form protein complexes, it is essential to identify the sets of proteins that form complexes. Therefore, several computational methods have been proposed to predict complexes from the topology and structure of experimental protein-protein interaction (PPI) network. These methods work well to predict complexes involving at least three proteins, but generally fail at identifying complexes involving only two different proteins, called heterodimeric complexes or heterodimers. There is however an urgent need for efficient methods to predict heterodimers, since the majority of known protein complexes are precisely heterodimers. In this paper, we use three promising kernel functions, Min kernel and two pairwise kernels, which are Metric Learning Pairwise Kernel (MLPK) and Tensor Product Pairwise Kernel (TPPK). We also consider the normalization forms of Min kernel. Then, we combine Min kernel or its normalization form and one of the pairwise kernels by plugging. We applied kernels based on PPI, domain, phylogenetic profile, and subcellular localization properties to predicting heterodimers. Then, we evaluate our method by employing C-Support Vector Classification (C-SVC), carrying out 10-fold cross-validation, and calculating the average F-measures. The results suggest that the combination of normalized-Min-kernel and MLPK leads to the best F-measure and improved the performance of our previous work, which had been the best existing method so far. We propose new methods to predict heterodimers, using a machine learning-based approach. We train a support vector machine (SVM) to discriminate interacting vs non-interacting protein pairs, based on informations extracted from PPI, domain, phylogenetic profiles and subcellular localization. We evaluate in detail new kernel functions to encode these data, and report prediction performance that outperforms the state-of-the-art.
Kernel learning at the first level of inference.
Cawley, Gavin C; Talbot, Nicola L C
2014-05-01
Kernel learning methods, whether Bayesian or frequentist, typically involve multiple levels of inference, with the coefficients of the kernel expansion being determined at the first level and the kernel and regularisation parameters carefully tuned at the second level, a process known as model selection. Model selection for kernel machines is commonly performed via optimisation of a suitable model selection criterion, often based on cross-validation or theoretical performance bounds. However, if there are a large number of kernel parameters, as for instance in the case of automatic relevance determination (ARD), there is a substantial risk of over-fitting the model selection criterion, resulting in poor generalisation performance. In this paper we investigate the possibility of learning the kernel, for the Least-Squares Support Vector Machine (LS-SVM) classifier, at the first level of inference, i.e. parameter optimisation. The kernel parameters and the coefficients of the kernel expansion are jointly optimised at the first level of inference, minimising a training criterion with an additional regularisation term acting on the kernel parameters. The key advantage of this approach is that the values of only two regularisation parameters need be determined in model selection, substantially alleviating the problem of over-fitting the model selection criterion. The benefits of this approach are demonstrated using a suite of synthetic and real-world binary classification benchmark problems, where kernel learning at the first level of inference is shown to be statistically superior to the conventional approach, improves on our previous work (Cawley and Talbot, 2007) and is competitive with Multiple Kernel Learning approaches, but with reduced computational expense. Copyright © 2014 Elsevier Ltd. All rights reserved.
Adaptive kernel function using line transect sampling
NASA Astrophysics Data System (ADS)
Albadareen, Baker; Ismail, Noriszura
2018-04-01
The estimation of f(0) is crucial in the line transect method which is used for estimating population abundance in wildlife survey's. The classical kernel estimator of f(0) has a high negative bias. Our study proposes an adaptation in the kernel function which is shown to be more efficient than the usual kernel estimator. A simulation study is adopted to compare the performance of the proposed estimators with the classical kernel estimators.
Kernel Partial Least Squares for Nonlinear Regression and Discrimination
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper summarizes recent results on applying the method of partial least squares (PLS) in a reproducing kernel Hilbert space (RKHS). A previously proposed kernel PLS regression model was proven to be competitive with other regularized regression methods in RKHS. The family of nonlinear kernel-based PLS models is extended by considering the kernel PLS method for discrimination. Theoretical and experimental results on a two-class discrimination problem indicate usefulness of the method.
7 CFR 868.254 - Broken kernels determination.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 7 2010-01-01 2010-01-01 false Broken kernels determination. 868.254 Section 868.254 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Governing Application of Standards § 868.254 Broken kernels determination. Broken kernels shall be...
7 CFR 51.2090 - Serious damage.
Code of Federal Regulations, 2010 CFR
2010-01-01
... defect which makes a kernel or piece of kernel unsuitable for human consumption, and includes decay...: Shriveling when the kernel is seriously withered, shrunken, leathery, tough or only partially developed: Provided, that partially developed kernels are not considered seriously damaged if more than one-fourth of...
Anisotropic hydrodynamics with a scalar collisional kernel
NASA Astrophysics Data System (ADS)
Almaalol, Dekrayat; Strickland, Michael
2018-04-01
Prior studies of nonequilibrium dynamics using anisotropic hydrodynamics have used the relativistic Anderson-Witting scattering kernel or some variant thereof. In this paper, we make the first study of the impact of using a more realistic scattering kernel. For this purpose, we consider a conformal system undergoing transversally homogenous and boost-invariant Bjorken expansion and take the collisional kernel to be given by the leading order 2 ↔2 scattering kernel in scalar λ ϕ4 . We consider both classical and quantum statistics to assess the impact of Bose enhancement on the dynamics. We also determine the anisotropic nonequilibrium attractor of a system subject to this collisional kernel. We find that, when the near-equilibrium relaxation-times in the Anderson-Witting and scalar collisional kernels are matched, the scalar kernel results in a higher degree of momentum-space anisotropy during the system's evolution, given the same initial conditions. Additionally, we find that taking into account Bose enhancement further increases the dynamically generated momentum-space anisotropy.
Ideal regularization for learning kernels from labels.
Pan, Binbin; Lai, Jianhuang; Shen, Lixin
2014-08-01
In this paper, we propose a new form of regularization that is able to utilize the label information of a data set for learning kernels. The proposed regularization, referred to as ideal regularization, is a linear function of the kernel matrix to be learned. The ideal regularization allows us to develop efficient algorithms to exploit labels. Three applications of the ideal regularization are considered. Firstly, we use the ideal regularization to incorporate the labels into a standard kernel, making the resulting kernel more appropriate for learning tasks. Next, we employ the ideal regularization to learn a data-dependent kernel matrix from an initial kernel matrix (which contains prior similarity information, geometric structures, and labels of the data). Finally, we incorporate the ideal regularization to some state-of-the-art kernel learning problems. With this regularization, these learning problems can be formulated as simpler ones which permit more efficient solvers. Empirical results show that the ideal regularization exploits the labels effectively and efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Baker, M. P.; King, J. C.; Gorman, B. P.; Braley, J. C.
2015-03-01
Current methods of TRISO fuel kernel production in the United States use a sol-gel process with trichloroethylene (TCE) as the forming fluid. After contact with radioactive materials, the spent TCE becomes a mixed hazardous waste, and high costs are associated with its recycling or disposal. Reducing or eliminating this mixed waste stream would not only benefit the environment, but would also enhance the economics of kernel production. Previous research yielded three candidates for testing as alternatives to TCE: 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane. This study considers the production of yttria-stabilized zirconia (YSZ) kernels in silicone oil and the three chosen alternative formation fluids, with subsequent characterization of the produced kernels and used forming fluid. Kernels formed in silicone oil and bromotetradecane were comparable to those produced by previous kernel production efforts, while those produced in chlorooctadecane and iodododecane experienced gelation issues leading to poor kernel formation and geometry.
NASA Astrophysics Data System (ADS)
Jaravel, Thomas; Labahn, Jeffrey; Ihme, Matthias
2017-11-01
The reliable initiation of flame ignition by high-energy spark kernels is critical for the operability of aviation gas turbines. The evolution of a spark kernel ejected by an igniter into a turbulent stratified environment is investigated using detailed numerical simulations with complex chemistry. At early times post ejection, comparisons of simulation results with high-speed Schlieren data show that the initial trajectory of the kernel is well reproduced, with a significant amount of air entrainment from the surrounding flow that is induced by the kernel ejection. After transiting in a non-flammable mixture, the kernel reaches a second stream of flammable methane-air mixture, where the successful of the kernel ignition was found to depend on the local flow state and operating conditions. By performing parametric studies, the probability of kernel ignition was identified, and compared with experimental observations. The ignition behavior is characterized by analyzing the local chemical structure, and its stochastic variability is also investigated.
The site, size, spatial stability, and energetics of an X-ray flare kernel
NASA Technical Reports Server (NTRS)
Petrasso, R.; Gerassimenko, M.; Nolte, J.
1979-01-01
The site, size evolution, and energetics of an X-ray kernel that dominated a solar flare during its rise and somewhat during its peak are investigated. The position of the kernel remained stationary to within about 3 arc sec over the 30-min interval of observations, despite pulsations in the kernel X-ray brightness in excess of a factor of 10. This suggests a tightly bound, deeply rooted magnetic structure, more plausibly associated with the near chromosphere or low corona rather than with the high corona. The H-alpha flare onset coincided with the appearance of the kernel, again suggesting a close spatial and temporal coupling between the chromospheric H-alpha event and the X-ray kernel. At the first kernel brightness peak its size was no larger than about 2 arc sec, when it accounted for about 40% of the total flare flux. In the second rise phase of the kernel, a source power input of order 2 times 10 to the 24th ergs/sec is minimally required.
Brownian motion of a nano-colloidal particle: the role of the solvent.
Torres-Carbajal, Alexis; Herrera-Velarde, Salvador; Castañeda-Priego, Ramón
2015-07-15
Brownian motion is a feature of colloidal particles immersed in a liquid-like environment. Usually, it can be described by means of the generalised Langevin equation (GLE) within the framework of the Mori theory. In principle, all quantities that appear in the GLE can be calculated from the molecular information of the whole system, i.e., colloids and solvent molecules. In this work, by means of extensive Molecular Dynamics simulations, we study the effects of the microscopic details and the thermodynamic state of the solvent on the movement of a single nano-colloid. In particular, we consider a two-dimensional model system in which the mass and size of the colloid are two and one orders of magnitude, respectively, larger than the ones associated with the solvent molecules. The latter ones interact via a Lennard-Jones-type potential to tune the nature of the solvent, i.e., it can be either repulsive or attractive. We choose the linear momentum of the Brownian particle as the observable of interest in order to fully describe the Brownian motion within the Mori framework. We particularly focus on the colloid diffusion at different solvent densities and two temperature regimes: high and low (near the critical point) temperatures. To reach our goal, we have rewritten the GLE as a second kind Volterra integral in order to compute the memory kernel in real space. With this kernel, we evaluate the momentum-fluctuating force correlation function, which is of particular relevance since it allows us to establish when the stationarity condition has been reached. Our findings show that even at high temperatures, the details of the attractive interaction potential among solvent molecules induce important changes in the colloid dynamics. Additionally, near the critical point, the dynamical scenario becomes more complex; all the correlation functions decay slowly in an extended time window, however, the memory kernel seems to be only a function of the solvent density. Thus, the explicit inclusion of the solvent in the description of Brownian motion allows us to better understand the behaviour of the memory kernel at those thermodynamic states near the critical region without any further approximation. This information is useful to elaborate more realistic descriptions of Brownian motion that take into account the particular details of the host medium.
Edwards, J M; Iritani, B J; Hallfors, D D
2006-10-01
This study examined the prevalence and correlates of exchanging sex for drugs or money among a nationally representative sample of 13,294 adolescents in the United States. Data are from the National Longitudinal Study of Adolescent Health, waves I and II. The lifetime prevalence of exchanging sex was estimated and a cross sectional analysis of sociodemographic and behavioural correlates was conducted. Unadjusted odds ratios were obtained. 3.5% of adolescents had ever exchanged sex for drugs or money. Two thirds of these youths were boys. The odds of having exchanged sex were higher for youths who had used drugs, had run away from home, were depressed, and had engaged in various sexual risk behaviours. 15% of boys and 20% of girls who had exchanged sex reported they had ever been told they have HIV or another sexually transmitted infection (STI). Adolescents with a history of exchanging sex have engaged in other high risk behaviours and may experience poor health outcomes, including depression and HIV/STIs. These findings should help inform strategies to prevent this high risk sexual behaviour and its potential consequences.
The pre-image problem in kernel methods.
Kwok, James Tin-yau; Tsang, Ivor Wai-hung
2004-11-01
In this paper, we address the problem of finding the pre-image of a feature vector in the feature space induced by a kernel. This is of central importance in some kernel applications, such as on using kernel principal component analysis (PCA) for image denoising. Unlike the traditional method which relies on nonlinear optimization, our proposed method directly finds the location of the pre-image based on distance constraints in the feature space. It is noniterative, involves only linear algebra and does not suffer from numerical instability or local minimum problems. Evaluations on performing kernel PCA and kernel clustering on the USPS data set show much improved performance.
Effects of Amygdaline from Apricot Kernel on Transplanted Tumors in Mice.
Yamshanov, V A; Kovan'ko, E G; Pustovalov, Yu I
2016-03-01
The effects of amygdaline from apricot kernel added to fodder on the growth of transplanted LYO-1 and Ehrlich carcinoma were studied in mice. Apricot kernels inhibited the growth of both tumors. Apricot kernels, raw and after thermal processing, given 2 days before transplantation produced a pronounced antitumor effect. Heat-processed apricot kernels given in 3 days after transplantation modified the tumor growth and prolonged animal lifespan. Thermal treatment did not considerably reduce the antitumor effect of apricot kernels. It was hypothesized that the antitumor effect of amygdaline on Ehrlich carcinoma and LYO-1 lymphosarcoma was associated with the presence of bacterial genome in the tumor.
Development of a kernel function for clinical data.
Daemen, Anneleen; De Moor, Bart
2009-01-01
For most diseases and examinations, clinical data such as age, gender and medical history guides clinical management, despite the rise of high-throughput technologies. To fully exploit such clinical information, appropriate modeling of relevant parameters is required. As the widely used linear kernel function has several disadvantages when applied to clinical data, we propose a new kernel function specifically developed for this data. This "clinical kernel function" more accurately represents similarities between patients. Evidently, three data sets were studied and significantly better performances were obtained with a Least Squares Support Vector Machine when based on the clinical kernel function compared to the linear kernel function.
Manycore Performance-Portability: Kokkos Multidimensional Array Library
Edwards, H. Carter; Sunderland, Daniel; Porter, Vicki; ...
2012-01-01
Large, complex scientific and engineering application code have a significant investment in computational kernels to implement their mathematical models. Porting these computational kernels to the collection of modern manycore accelerator devices is a major challenge in that these devices have diverse programming models, application programming interfaces (APIs), and performance requirements. The Kokkos Array programming model provides library-based approach to implement computational kernels that are performance-portable to CPU-multicore and GPGPU accelerator devices. This programming model is based upon three fundamental concepts: (1) manycore compute devices each with its own memory space, (2) data parallel kernels and (3) multidimensional arrays. Kernel executionmore » performance is, especially for NVIDIA® devices, extremely dependent on data access patterns. Optimal data access pattern can be different for different manycore devices – potentially leading to different implementations of computational kernels specialized for different devices. The Kokkos Array programming model supports performance-portable kernels by (1) separating data access patterns from computational kernels through a multidimensional array API and (2) introduce device-specific data access mappings when a kernel is compiled. An implementation of Kokkos Array is available through Trilinos [Trilinos website, http://trilinos.sandia.gov/, August 2011].« less
Wang, Shunfang; Nie, Bing; Yue, Kun; Fei, Yu; Li, Wenjia; Xu, Dongshu
2017-12-15
Kernel discriminant analysis (KDA) is a dimension reduction and classification algorithm based on nonlinear kernel trick, which can be novelly used to treat high-dimensional and complex biological data before undergoing classification processes such as protein subcellular localization. Kernel parameters make a great impact on the performance of the KDA model. Specifically, for KDA with the popular Gaussian kernel, to select the scale parameter is still a challenging problem. Thus, this paper introduces the KDA method and proposes a new method for Gaussian kernel parameter selection depending on the fact that the differences between reconstruction errors of edge normal samples and those of interior normal samples should be maximized for certain suitable kernel parameters. Experiments with various standard data sets of protein subcellular localization show that the overall accuracy of protein classification prediction with KDA is much higher than that without KDA. Meanwhile, the kernel parameter of KDA has a great impact on the efficiency, and the proposed method can produce an optimum parameter, which makes the new algorithm not only perform as effectively as the traditional ones, but also reduce the computational time and thus improve efficiency.
NASA Astrophysics Data System (ADS)
Jin, Hyeongmin; Heo, Changyong; Kim, Jong Hyo
2018-02-01
Differing reconstruction kernels are known to strongly affect the variability of imaging biomarkers and thus remain as a barrier in translating the computer aided quantification techniques into clinical practice. This study presents a deep learning application to CT kernel conversion which converts a CT image of sharp kernel to that of standard kernel and evaluates its impact on variability reduction of a pulmonary imaging biomarker, the emphysema index (EI). Forty cases of low-dose chest CT exams obtained with 120kVp, 40mAs, 1mm thickness, of 2 reconstruction kernels (B30f, B50f) were selected from the low dose lung cancer screening database of our institution. A Fully convolutional network was implemented with Keras deep learning library. The model consisted of symmetric layers to capture the context and fine structure characteristics of CT images from the standard and sharp reconstruction kernels. Pairs of the full-resolution CT data set were fed to input and output nodes to train the convolutional network to learn the appropriate filter kernels for converting the CT images of sharp kernel to standard kernel with a criterion of measuring the mean squared error between the input and target images. EIs (RA950 and Perc15) were measured with a software package (ImagePrism Pulmo, Seoul, South Korea) and compared for the data sets of B50f, B30f, and the converted B50f. The effect of kernel conversion was evaluated with the mean and standard deviation of pair-wise differences in EI. The population mean of RA950 was 27.65 +/- 7.28% for B50f data set, 10.82 +/- 6.71% for the B30f data set, and 8.87 +/- 6.20% for the converted B50f data set. The mean of pair-wise absolute differences in RA950 between B30f and B50f is reduced from 16.83% to 1.95% using kernel conversion. Our study demonstrates the feasibility of applying the deep learning technique for CT kernel conversion and reducing the kernel-induced variability of EI quantification. The deep learning model has a potential to improve the reliability of imaging biomarker, especially in evaluating the longitudinal changes of EI even when the patient CT scans were performed with different kernels.
Metabolic network prediction through pairwise rational kernels.
Roche-Lima, Abiel; Domaratzki, Michael; Fristensky, Brian
2014-09-26
Metabolic networks are represented by the set of metabolic pathways. Metabolic pathways are a series of biochemical reactions, in which the product (output) from one reaction serves as the substrate (input) to another reaction. Many pathways remain incompletely characterized. One of the major challenges of computational biology is to obtain better models of metabolic pathways. Existing models are dependent on the annotation of the genes. This propagates error accumulation when the pathways are predicted by incorrectly annotated genes. Pairwise classification methods are supervised learning methods used to classify new pair of entities. Some of these classification methods, e.g., Pairwise Support Vector Machines (SVMs), use pairwise kernels. Pairwise kernels describe similarity measures between two pairs of entities. Using pairwise kernels to handle sequence data requires long processing times and large storage. Rational kernels are kernels based on weighted finite-state transducers that represent similarity measures between sequences or automata. They have been effectively used in problems that handle large amount of sequence information such as protein essentiality, natural language processing and machine translations. We create a new family of pairwise kernels using weighted finite-state transducers (called Pairwise Rational Kernel (PRK)) to predict metabolic pathways from a variety of biological data. PRKs take advantage of the simpler representations and faster algorithms of transducers. Because raw sequence data can be used, the predictor model avoids the errors introduced by incorrect gene annotations. We then developed several experiments with PRKs and Pairwise SVM to validate our methods using the metabolic network of Saccharomyces cerevisiae. As a result, when PRKs are used, our method executes faster in comparison with other pairwise kernels. Also, when we use PRKs combined with other simple kernels that include evolutionary information, the accuracy values have been improved, while maintaining lower construction and execution times. The power of using kernels is that almost any sort of data can be represented using kernels. Therefore, completely disparate types of data can be combined to add power to kernel-based machine learning methods. When we compared our proposal using PRKs with other similar kernel, the execution times were decreased, with no compromise of accuracy. We also proved that by combining PRKs with other kernels that include evolutionary information, the accuracy can also also be improved. As our proposal can use any type of sequence data, genes do not need to be properly annotated, avoiding accumulation errors because of incorrect previous annotations.
Differential metabolome analysis of field-grown maize kernels in response to drought stress
USDA-ARS?s Scientific Manuscript database
Drought stress constrains maize kernel development and can exacerbate aflatoxin contamination. In order to identify drought responsive metabolites and explore pathways involved in kernel responses, a metabolomics analysis was conducted on kernels from a drought tolerant line, Lo964, and a sensitive ...
Occurrence of 'super soft' wheat kernel texture in hexaploid and tetraploid wheats
USDA-ARS?s Scientific Manuscript database
Wheat kernel texture is a key trait that governs milling performance, flour starch damage, flour particle size, flour hydration properties, and baking quality. Kernel texture is commonly measured using the Perten Single Kernel Characterization System (SKCS). The SKCS returns texture values (Hardness...
7 CFR 868.203 - Basis of determination.
Code of Federal Regulations, 2010 CFR
2010-01-01
... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Rough Rice Principles Governing..., heat-damaged kernels, red rice and damaged kernels, chalky kernels, other types, color, and the special grade Parboiled rough rice shall be on the basis of the whole and large broken kernels of milled rice...
7 CFR 868.203 - Basis of determination.
Code of Federal Regulations, 2011 CFR
2011-01-01
... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Rough Rice Principles Governing..., heat-damaged kernels, red rice and damaged kernels, chalky kernels, other types, color, and the special grade Parboiled rough rice shall be on the basis of the whole and large broken kernels of milled rice...
7 CFR 868.304 - Broken kernels determination.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 7 2011-01-01 2011-01-01 false Broken kernels determination. 868.304 Section 868.304 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Application of Standards § 868.304 Broken kernels determination. Broken kernels shall be determined by the use...
7 CFR 868.304 - Broken kernels determination.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 7 2010-01-01 2010-01-01 false Broken kernels determination. 868.304 Section 868.304 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Application of Standards § 868.304 Broken kernels determination. Broken kernels shall be determined by the use...
The double-soft limit in cosmological correlation functions and graviton exchange effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alinea, Allan L.; Kubota, Takahiro; Misumi, Nobuhiko, E-mail: alinea@het.phys.sci.osaka-u.ac.jp, E-mail: kubota@celas.osaka-u.ac.jp, E-mail: misumi.nobu@gmail.com
The graviton exchange effect on cosmological correlation functions is examined by employing the double-soft limit technique. A new relation among correlation functions that contain the effects due to graviton exchange diagrams in addition to those due to scalar-exchange and scalar-contact-interaction, is derived by using the background field method and independently by the method of Ward identities associated with dilatation symmetry. We compare these three terms, putting small values for the slow-roll parameters and (1− n {sub s} ) ≈ 0.042, where n {sub s} is the scalar spectral index. It is argued that the graviton exchange effects are more dominantmore » than the other two and could be observed in the trispectrum in the double-soft limit. Our observation strengthens the previous work by Seery, Sloth and Vernizzi, in which it has been argued that the graviton exchange dominates in the counter-collinear limit for single field slow-roll inflation.« less
Biasing anisotropic scattering kernels for deep-penetration Monte Carlo calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, L.L.; Hendricks, J.S.
1983-01-01
The exponential transform is often used to improve the efficiency of deep-penetration Monte Carlo calculations. This technique is usually implemented by biasing the distance-to-collision kernel of the transport equation, but leaving the scattering kernel unchanged. Dwivedi obtained significant improvements in efficiency by biasing an isotropic scattering kernel as well as the distance-to-collision kernel. This idea is extended to anisotropic scattering, particularly the highly forward Klein-Nishina scattering of gamma rays.
Performance Characteristics of a Kernel-Space Packet Capture Module
2010-03-01
Defense, or the United States Government . AFIT/GCO/ENG/10-03 PERFORMANCE CHARACTERISTICS OF A KERNEL-SPACE PACKET CAPTURE MODULE THESIS Presented to the...3.1.2.3 Prototype. The proof of concept for this research is the design, development, and comparative performance analysis of a kernel level N2d capture...changes to kernel code 5. Can be used for both user-space and kernel-space capture applications in order to control comparative performance analysis to
Makanza, R; Zaman-Allah, M; Cairns, J E; Eyre, J; Burgueño, J; Pacheco, Ángela; Diepenbrock, C; Magorokosho, C; Tarekegne, A; Olsen, M; Prasanna, B M
2018-01-01
Grain yield, ear and kernel attributes can assist to understand the performance of maize plant under different environmental conditions and can be used in the variety development process to address farmer's preferences. These parameters are however still laborious and expensive to measure. A low-cost ear digital imaging method was developed that provides estimates of ear and kernel attributes i.e., ear number and size, kernel number and size as well as kernel weight from photos of ears harvested from field trial plots. The image processing method uses a script that runs in a batch mode on ImageJ; an open source software. Kernel weight was estimated using the total kernel number derived from the number of kernels visible on the image and the average kernel size. Data showed a good agreement in terms of accuracy and precision between ground truth measurements and data generated through image processing. Broad-sense heritability of the estimated parameters was in the range or higher than that for measured grain weight. Limitation of the method for kernel weight estimation is discussed. The method developed in this work provides an opportunity to significantly reduce the cost of selection in the breeding process, especially for resource constrained crop improvement programs and can be used to learn more about the genetic bases of grain yield determinants.
Optimized Kernel Entropy Components.
Izquierdo-Verdiguier, Emma; Laparra, Valero; Jenssen, Robert; Gomez-Chova, Luis; Camps-Valls, Gustau
2017-06-01
This brief addresses two main issues of the standard kernel entropy component analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of variance, as in the kernel principal components analysis. In this brief, we propose an extension of the KECA method, named optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular, it is based on the independent component analysis framework, and introduces an extra rotation to the eigen decomposition, which is optimized via gradient-ascent search. This maximum entropy preservation suggests that OKECA features are more efficient than KECA features for density estimation. In addition, a critical issue in both the methods is the selection of the kernel parameter, since it critically affects the resulting performance. Here, we analyze the most common kernel length-scale selection criteria. The results of both the methods are illustrated in different synthetic and real problems. Results show that OKECA returns projections with more expressive power than KECA, the most successful rule for estimating the kernel parameter is based on maximum likelihood, and OKECA is more robust to the selection of the length-scale parameter in kernel density estimation.
Speeding up 3D speckle tracking using PatchMatch
NASA Astrophysics Data System (ADS)
Zontak, Maria; O'Donnell, Matthew
2016-03-01
Echocardiography provides valuable information to diagnose heart dysfunction. A typical exam records several minutes of real-time cardiac images. To enable complete analysis of 3D cardiac strains, 4-D (3-D+t) echocardiography is used. This results in a huge dataset and requires effective automated analysis. Ultrasound speckle tracking is an effective method for tissue motion analysis. It involves correlation of a 3D kernel (block) around a voxel with kernels in later frames. The search region is usually confined to a local neighborhood, due to biomechanical and computational constraints. For high strains and moderate frame-rates, however, this search region will remain large, leading to a considerable computational burden. Moreover, speckle decorrelation (due to high strains) leads to errors in tracking. To solve this, spatial motion coherency between adjacent voxels should be imposed, e.g., by averaging their correlation functions.1 This requires storing correlation functions for neighboring voxels, thus increasing memory demands. In this work, we propose an efficient search using PatchMatch, 2 a powerful method to find correspondences between images. Here we adopt PatchMatch for 3D volumes and radio-frequency signals. As opposed to an exact search, PatchMatch performs random sampling of the search region and propagates successive matches among neighboring voxels. We show that: 1) Inherently smooth offset propagation in PatchMatch contributes to spatial motion coherence without any additional processing or memory demand. 2) For typical scenarios, PatchMatch is at least 20 times faster than the exact search, while maintaining comparable tracking accuracy.
del Pozo, Alejandro; Yáñez, Alejandra; Matus, Iván A.; Tapia, Gerardo; Castillo, Dalma; Sanchez-Jardón, Laura; Araus, José L.
2016-01-01
Different physiological traits have been proposed as key traits associated with yield potential as well as performance under water stress. The aim of this paper is to examine the genotypic variability of leaf chlorophyll, stem water-soluble carbohydrate content and carbon isotope discrimination (Δ13C), and their relationship with grain yield (GY) and other agronomical traits, under contrasting water conditions in a Mediterranean environment. The study was performed on a large collection of 384 wheat genotypes grown under water stress (WS, rainfed), mild water stress (MWS, deficit irrigation), and full irrigation (FI). The average GY of two growing seasons was 2.4, 4.8, and 8.9 Mg ha−1 under WS, MWS, and FI, respectively. Chlorophyll content at anthesis was positively correlated with GY (except under FI in 2011) and the agronomical components kernels per spike (KS) and thousand kernel weight (TKW). The WSC content at anthesis (WSCCa) was negatively correlated with spikes per square meter (SM2), but positively correlated with KS and TKW under WS and FI conditions. As a consequence, the relationships between WSCCa with GY were low or not significant. Therefore, selecting for high stem WSC would not necessary lead to genotypes of GY potential. The relationship between Δ13C and GY was positive under FI and MWS but negative under severe WS (in 2011), indicating higher water use under yield potential and MWS conditions. PMID:27458470
Del Pozo, Alejandro; Yáñez, Alejandra; Matus, Iván A; Tapia, Gerardo; Castillo, Dalma; Sanchez-Jardón, Laura; Araus, José L
2016-01-01
Different physiological traits have been proposed as key traits associated with yield potential as well as performance under water stress. The aim of this paper is to examine the genotypic variability of leaf chlorophyll, stem water-soluble carbohydrate content and carbon isotope discrimination (Δ(13)C), and their relationship with grain yield (GY) and other agronomical traits, under contrasting water conditions in a Mediterranean environment. The study was performed on a large collection of 384 wheat genotypes grown under water stress (WS, rainfed), mild water stress (MWS, deficit irrigation), and full irrigation (FI). The average GY of two growing seasons was 2.4, 4.8, and 8.9 Mg ha(-1) under WS, MWS, and FI, respectively. Chlorophyll content at anthesis was positively correlated with GY (except under FI in 2011) and the agronomical components kernels per spike (KS) and thousand kernel weight (TKW). The WSC content at anthesis (WSCCa) was negatively correlated with spikes per square meter (SM2), but positively correlated with KS and TKW under WS and FI conditions. As a consequence, the relationships between WSCCa with GY were low or not significant. Therefore, selecting for high stem WSC would not necessary lead to genotypes of GY potential. The relationship between Δ(13)C and GY was positive under FI and MWS but negative under severe WS (in 2011), indicating higher water use under yield potential and MWS conditions.
Brain tumor image segmentation using kernel dictionary learning.
Jeon Lee; Seung-Jun Kim; Rong Chen; Herskovits, Edward H
2015-08-01
Automated brain tumor image segmentation with high accuracy and reproducibility holds a big potential to enhance the current clinical practice. Dictionary learning (DL) techniques have been applied successfully to various image processing tasks recently. In this work, kernel extensions of the DL approach are adopted. Both reconstructive and discriminative versions of the kernel DL technique are considered, which can efficiently incorporate multi-modal nonlinear feature mappings based on the kernel trick. Our novel discriminative kernel DL formulation allows joint learning of a task-driven kernel-based dictionary and a linear classifier using a K-SVD-type algorithm. The proposed approaches were tested using real brain magnetic resonance (MR) images of patients with high-grade glioma. The obtained preliminary performances are competitive with the state of the art. The discriminative kernel DL approach is seen to reduce computational burden without much sacrifice in performance.
SEMI-SUPERVISED OBJECT RECOGNITION USING STRUCTURE KERNEL
Wang, Botao; Xiong, Hongkai; Jiang, Xiaoqian; Ling, Fan
2013-01-01
Object recognition is a fundamental problem in computer vision. Part-based models offer a sparse, flexible representation of objects, but suffer from difficulties in training and often use standard kernels. In this paper, we propose a positive definite kernel called “structure kernel”, which measures the similarity of two part-based represented objects. The structure kernel has three terms: 1) the global term that measures the global visual similarity of two objects; 2) the part term that measures the visual similarity of corresponding parts; 3) the spatial term that measures the spatial similarity of geometric configuration of parts. The contribution of this paper is to generalize the discriminant capability of local kernels to complex part-based object models. Experimental results show that the proposed kernel exhibit higher accuracy than state-of-art approaches using standard kernels. PMID:23666108
Chapin, Jay W; Thomas, James S
2003-08-01
Pitfall traps placed in South Carolina peanut, Arachis hypogaea (L.), fields collected three species of burrower bugs (Cydnidae): Cyrtomenus ciliatus (Palisot de Beauvois), Sehirus cinctus cinctus (Palisot de Beauvois), and Pangaeus bilineatus (Say). Cyrtomenus ciliatus was rarely collected. Sehirus cinctus produced a nymphal cohort in peanut during May and June, probably because of abundant henbit seeds, Lamium amplexicaule L., in strip-till production systems. No S. cinctus were present during peanut pod formation. Pangaeus bilineatus was the most abundant species collected and the only species associated with peanut kernel feeding injury. Overwintering P. bilineatus adults were present in a conservation tillage peanut field before planting and two to three subsequent generations were observed. Few nymphs were collected until the R6 (full seed) growth stage. Tillage and choice of cover crop affected P. bilineatus populations. Peanuts strip-tilled into corn or wheat residue had greater P. bilineatus populations and kernel-feeding than conventional tillage or strip-tillage into rye residue. Fall tillage before planting a wheat cover crop also reduced burrower bug feeding on peanut. At-pegging (early July) granular chlorpyrifos treatments were most consistent in suppressing kernel feeding. Kernels fed on by P. bilineatus were on average 10% lighter than unfed on kernels. Pangaeus bilineatus feeding reduced peanut grade by reducing individual kernel weight, and increasing the percentage damaged kernels. Each 10% increase in kernels fed on by P. bilineatus was associated with a 1.7% decrease in total sound mature kernels, and kernel feeding levels above 30% increase the risk of damaged kernel grade penalties.
Toews, Michael D; Pearson, Tom C; Campbell, James F
2006-04-01
Computed tomography, an imaging technique commonly used for diagnosing internal human health ailments, uses multiple x-rays and sophisticated software to recreate a cross-sectional representation of a subject. The use of this technique to image hard red winter wheat, Triticum aestivm L., samples infested with pupae of Sitophilus oryzae (L.) was investigated. A software program was developed to rapidly recognize and quantify the infested kernels. Samples were imaged in a 7.6-cm (o.d.) plastic tube containing 0, 50, or 100 infested kernels per kg of wheat. Interkernel spaces were filled with corn oil so as to increase the contrast between voids inside kernels and voids among kernels. Automated image processing, using a custom C language software program, was conducted separately on each 100 g portion of the prepared samples. The average detection accuracy in the five infested kernels per 100-g samples was 94.4 +/- 7.3% (mean +/- SD, n = 10), whereas the average detection accuracy in the 10 infested kernels per 100-g sample was 87.3 +/- 7.9% (n = 10). Detection accuracy in the 10 infested kernels per 100-g samples was slightly less than the five infested kernels per 100-g samples because of some infested kernels overlapping with each other or air bubbles in the oil. A mean of 1.2 +/- 0.9 (n = 10) bubbles (per tube) was incorrectly classed as infested kernels in replicates containing no infested kernels. In light of these positive results, future studies should be conducted using additional grains, insect species, and life stages.
Relationship of source and sink in determining kernel composition of maize
Seebauer, Juliann R.; Singletary, George W.; Krumpelman, Paulette M.; Ruffo, Matías L.; Below, Frederick E.
2010-01-01
The relative role of the maternal source and the filial sink in controlling the composition of maize (Zea mays L.) kernels is unclear and may be influenced by the genotype and the N supply. The objective of this study was to determine the influence of assimilate supply from the vegetative source and utilization of assimilates by the grain sink on the final composition of maize kernels. Intermated B73×Mo17 recombinant inbred lines (IBM RILs) which displayed contrasting concentrations of endosperm starch were grown in the field with deficient or sufficient N, and the source supply altered by ear truncation (45% reduction) at 15 d after pollination (DAP). The assimilate supply into the kernels was determined at 19 DAP using the agar trap technique, and the final kernel composition was measured. The influence of N supply and kernel ear position on final kernel composition was also determined for a commercial hybrid. Concentrations of kernel protein and starch could be altered by genotype or the N supply, but remained fairly constant along the length of the ear. Ear truncation also produced a range of variation in endosperm starch and protein concentrations. The C/N ratio of the assimilate supply at 19 DAP was directly related to the final kernel composition, with an inverse relationship between the concentrations of starch and protein in the mature endosperm. The accumulation of kernel starch and protein in maize is uniform along the ear, yet adaptable within genotypic limits, suggesting that kernel composition is source limited in maize. PMID:19917600
Zhang, Zhanhui; Wu, Xiangyuan; Shi, Chaonan; Wang, Rongna; Li, Shengfei; Wang, Zhaohui; Liu, Zonghua; Xue, Yadong; Tang, Guiliang; Tang, Jihua
2016-02-01
Kernel development is an important dynamic trait that determines the final grain yield in maize. To dissect the genetic basis of maize kernel development process, a conditional quantitative trait locus (QTL) analysis was conducted using an immortalized F2 (IF2) population comprising 243 single crosses at two locations over 2 years. Volume (KV) and density (KD) of dried developing kernels, together with kernel weight (KW) at different developmental stages, were used to describe dynamic changes during kernel development. Phenotypic analysis revealed that final KW and KD were determined at DAP22 and KV at DAP29. Unconditional QTL mapping for KW, KV and KD uncovered 97 QTLs at different kernel development stages, of which qKW6b, qKW7a, qKW7b, qKW10b, qKW10c, qKV10a, qKV10b and qKV7 were identified under multiple kernel developmental stages and environments. Among the 26 QTLs detected by conditional QTL mapping, conqKW7a, conqKV7a, conqKV10a, conqKD2, conqKD7 and conqKD8a were conserved between the two mapping methodologies. Furthermore, most of these QTLs were consistent with QTLs and genes for kernel development/grain filling reported in previous studies. These QTLs probably contain major genes associated with the kernel development process, and can be used to improve grain yield and quality through marker-assisted selection.
Image quality of mixed convolution kernel in thoracic computed tomography.
Neubauer, Jakob; Spira, Eva Maria; Strube, Juliane; Langer, Mathias; Voss, Christian; Kotter, Elmar
2016-11-01
The mixed convolution kernel alters his properties geographically according to the depicted organ structure, especially for the lung. Therefore, we compared the image quality of the mixed convolution kernel to standard soft and hard kernel reconstructions for different organ structures in thoracic computed tomography (CT) images.Our Ethics Committee approved this prospective study. In total, 31 patients who underwent contrast-enhanced thoracic CT studies were included after informed consent. Axial reconstructions were performed with hard, soft, and mixed convolution kernel. Three independent and blinded observers rated the image quality according to the European Guidelines for Quality Criteria of Thoracic CT for 13 organ structures. The observers rated the depiction of the structures in all reconstructions on a 5-point Likert scale. Statistical analysis was performed with the Friedman Test and post hoc analysis with the Wilcoxon rank-sum test.Compared to the soft convolution kernel, the mixed convolution kernel was rated with a higher image quality for lung parenchyma, segmental bronchi, and the border between the pleura and the thoracic wall (P < 0.03). Compared to the hard convolution kernel, the mixed convolution kernel was rated with a higher image quality for aorta, anterior mediastinal structures, paratracheal soft tissue, hilar lymph nodes, esophagus, pleuromediastinal border, large and medium sized pulmonary vessels and abdomen (P < 0.004) but a lower image quality for trachea, segmental bronchi, lung parenchyma, and skeleton (P < 0.001).The mixed convolution kernel cannot fully substitute the standard CT reconstructions. Hard and soft convolution kernel reconstructions still seem to be mandatory for thoracic CT.
Exchange-Correlation Effects for Noncovalent Interactions in Density Functional Theory.
Otero-de-la-Roza, A; DiLabio, Gino A; Johnson, Erin R
2016-07-12
In this article, we develop an understanding of how errors from exchange-correlation functionals affect the modeling of noncovalent interactions in dispersion-corrected density-functional theory. Computed CCSD(T) reference binding energies for a collection of small-molecule clusters are decomposed via a molecular many-body expansion and are used to benchmark density-functional approximations, including the effect of semilocal approximation, exact-exchange admixture, and range separation. Three sources of error are identified. Repulsion error arises from the choice of semilocal functional approximation. This error affects intermolecular repulsions and is present in all n-body exchange-repulsion energies with a sign that alternates with the order n of the interaction. Delocalization error is independent of the choice of semilocal functional but does depend on the exact exchange fraction. Delocalization error misrepresents the induction energies, leading to overbinding in all induction n-body terms, and underestimates the electrostatic contribution to the 2-body energies. Deformation error affects only monomer relaxation (deformation) energies and behaves similarly to bond-dissociation energy errors. Delocalization and deformation errors affect systems with significant intermolecular orbital interactions (e.g., hydrogen- and halogen-bonded systems), whereas repulsion error is ubiquitous. Many-body errors from the underlying exchange-correlation functional greatly exceed in general the magnitude of the many-body dispersion energy term. A functional built to accurately model noncovalent interactions must contain a dispersion correction, semilocal exchange, and correlation components that minimize the repulsion error independently and must also incorporate exact exchange in such a way that delocalization error is absent.
21 CFR 176.350 - Tamarind seed kernel powder.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing, manufacturing, packing, processing, preparing, treating...
Local Observed-Score Kernel Equating
ERIC Educational Resources Information Center
Wiberg, Marie; van der Linden, Wim J.; von Davier, Alina A.
2014-01-01
Three local observed-score kernel equating methods that integrate methods from the local equating and kernel equating frameworks are proposed. The new methods were compared with their earlier counterparts with respect to such measures as bias--as defined by Lord's criterion of equity--and percent relative error. The local kernel item response…
Code of Federal Regulations, 2010 CFR
2010-01-01
... which have been broken to the extent that the kernel within is plainly visible without minute... discoloration beneath, but the peanut shall be judged as it appears with the talc. (c) Kernels which are rancid or decayed. (d) Moldy kernels. (e) Kernels showing sprouts extending more than one-eighth inch from...
7 CFR 981.61 - Redetermination of kernel weight.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Redetermination of kernel weight. 981.61 Section 981... GROWN IN CALIFORNIA Order Regulating Handling Volume Regulation § 981.61 Redetermination of kernel weight. The Board, on the basis of reports by handlers, shall redetermine the kernel weight of almonds...
7 CFR 981.60 - Determination of kernel weight.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 8 2010-01-01 2010-01-01 false Determination of kernel weight. 981.60 Section 981.60... Regulating Handling Volume Regulation § 981.60 Determination of kernel weight. (a) Almonds for which settlement is made on kernel weight. All lots of almonds, whether shelled or unshelled, for which settlement...
Genome-wide Association Analysis of Kernel Weight in Hard Winter Wheat
USDA-ARS?s Scientific Manuscript database
Wheat kernel weight is an important and heritable component of wheat grain yield and a key predictor of flour extraction. Genome-wide association analysis was conducted to identify genomic regions associated with kernel weight and kernel weight environmental response in 8 trials of 299 hard winter ...
7 CFR 999.400 - Regulation governing the importation of filberts.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Definitions. (1) Filberts means filberts or hazelnuts. (2) Inshell filberts means filberts, the kernels or edible portions of which are contained in the shell. (3) Shelled filberts means the kernels of filberts... Filbert kernels or portions of filbert kernels shall meet the following requirements: (1) Well dried and...
Code of Federal Regulations, 2010 CFR
2010-01-01
.... (2) For kernel defects, by count. (i) 12 percent for pecans with kernels which fail to meet the... kernels which are seriously damaged: Provided, That not more than six-sevenths of this amount, or 6 percent, shall be allowed for kernels which are rancid, moldy, decayed or injured by insects: And provided...
Enhanced gluten properties in soft kernel durum wheat
USDA-ARS?s Scientific Manuscript database
Soft kernel durum wheat is a relatively recent development (Morris et al. 2011 Crop Sci. 51:114). The soft kernel trait exerts profound effects on kernel texture, flour milling including break flour yield, milling energy, and starch damage, and dough water absorption (DWA). With the caveat of reduce...
End-use quality of soft kernel durum wheat
USDA-ARS?s Scientific Manuscript database
Kernel texture is a major determinant of end-use quality of wheat. Durum wheat has very hard kernels. We developed soft kernel durum wheat via Ph1b-mediated homoeologous recombination. The Hardness locus was transferred from Chinese Spring to Svevo durum wheat via back-crossing. ‘Soft Svevo’ had SKC...
Code of Federal Regulations, 2014 CFR
2014-01-01
... are excessively thin kernels and can have black, brown or gray surface with a dark interior color and the immaturity has adversely affected the flavor of the kernel. (2) Kernel spotting refers to dark brown or dark gray spots aggregating more than one-eighth of the surface of the kernel. (g) Serious...
Code of Federal Regulations, 2013 CFR
2013-01-01
... are excessively thin kernels and can have black, brown or gray surface with a dark interior color and the immaturity has adversely affected the flavor of the kernel. (2) Kernel spotting refers to dark brown or dark gray spots aggregating more than one-eighth of the surface of the kernel. (g) Serious...
7 CFR 51.1416 - Optional determinations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... throughout the lot. (a) Edible kernel content. A minimum sample of at least 500 grams of in-shell pecans shall be used for determination of edible kernel content. After the sample is weighed and shelled... determine edible kernel content for the lot. (b) Poorly developed kernel content. A minimum sample of at...
A study of accurate exchange-correlation functionals through adiabatic connection
NASA Astrophysics Data System (ADS)
Singh, Rabeet; Harbola, Manoj K.
2017-10-01
A systematic way of improving exchange-correlation energy functionals of density functional theory has been to make them satisfy more and more exact relations. Starting from the initial generalized gradient approximation (GGA) functionals, this has culminated into the recently proposed SCAN (strongly constrained and appropriately normed) functional that satisfies several known constraints and is appropriately normed. The ultimate test for the functionals developed is the accuracy of energy calculated by employing them. In this paper, we test these exchange-correlation functionals—the GGA hybrid functionals B3LYP and PBE0 and the meta-GGA functional SCAN—from a different perspective. We study how accurately these functionals reproduce the exchange-correlation energy when electron-electron interaction is scaled as αVee with α varying between 0 and 1. Our study reveals interesting comparison between these functionals and the associated difference Tc between the interacting and the non-interacting kinetic energy for the same density.
NASA Technical Reports Server (NTRS)
Lickly, Ben
2005-01-01
Data from all current JPL missions are stored in files called SPICE kernels. At present, animators who want to use data from these kernels have to either read through the kernels looking for the desired data, or write programs themselves to retrieve information about all the needed objects for their animations. In this project, methods of automating the process of importing the data from the SPICE kernels were researched. In particular, tools were developed for creating basic scenes in Maya, a 3D computer graphics software package, from SPICE kernels.
Generalization Performance of Regularized Ranking With Multiscale Kernels.
Zhou, Yicong; Chen, Hong; Lan, Rushi; Pan, Zhibin
2016-05-01
The regularized kernel method for the ranking problem has attracted increasing attentions in machine learning. The previous regularized ranking algorithms are usually based on reproducing kernel Hilbert spaces with a single kernel. In this paper, we go beyond this framework by investigating the generalization performance of the regularized ranking with multiscale kernels. A novel ranking algorithm with multiscale kernels is proposed and its representer theorem is proved. We establish the upper bound of the generalization error in terms of the complexity of hypothesis spaces. It shows that the multiscale ranking algorithm can achieve satisfactory learning rates under mild conditions. Experiments demonstrate the effectiveness of the proposed method for drug discovery and recommendation tasks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yueh -Lin; Wang, Xiao Renshaw; Lee, Ho Nyung
2015-12-17
Through alignment of theoretical modeling with experimental measurements of oxygen surface-exchange kinetics on (001)-oriented La 2–xSr xMO 4+δ (M = Co, Ni, Cu) thin films, we demonstrate here the capability of the theoretical bulk O 2p-band centers to correlate with oxygen surface-exchange kinetics of the Ruddlesden–Popper oxide (RP 214) (001)-oriented thin films. In addition, we demonstrate that the bulk O 2p-band centers can also correlate with the experimental activation energies for bulk oxygen transport and oxygen surface exchange of both the RP 214 and the perovskite polycrystalline materials reported in the literature, indicating the effectiveness of the bulk O 2p-bandmore » centers in describing the associated energetics and kinetics. Here, we propose that the opposite slopes of the bulk O 2p-band center correlations between the RP 214 and the perovskite materials are due to the intrinsic mechanistic differences of their oxygen surface-exchange kinetics bulk anionic transport.« less
Distributed Kernelized Locality-Sensitive Hashing for Faster Image Based Navigation
2015-03-26
Facebook, Google, and Yahoo !. Current methods for image retrieval become problematic when implemented on image datasets that can easily reach billions of...correlations. Tech industry leaders like Facebook, Google, and Yahoo ! sort and index even larger volumes of “big data” daily. When attempting to process...open source implementation of Google’s MapReduce programming paradigm [13] which has been used for many different things. Using Apache Hadoop, Yahoo
NASA Astrophysics Data System (ADS)
Isegawa, Miho; Kato, Shigeki
2007-12-01
Low-frequency infrared (IR) and depolarized Raman scattering (DRS) spectra of acetonitrile, methylene chloride, and acetone liquids are simulated via molecular dynamics calculations with the charge response kernel (CRK) model obtained at the second order Møller-Plesset perturbation (MP2) level. For this purpose, the analytical second derivative technique for the MP2 energy is employed to evaluate the CRK matrices. The calculated IR spectra reasonably agree with the experiments. In particular, the agreement is excellent for acetone because the present CRK model well reproduces the experimental polarizability in the gas phase. The importance of interaction induced dipole moments in characterizing the spectral shapes is stressed. The DRS spectrum of acetone is mainly discussed because the experimental spectrum is available only for this molecule. The calculated spectrum is close to the experiment. The comparison of the present results with those by the multiple random telegraph model is also made. By decomposing the polarizability anisotropy time correlation function to the contributions from the permanent, induced polarizability and their cross term, a discrepancy from the previous calculations is observed in the sign of permanent-induce cross term contribution. The origin of this discrepancy is discussed by analyzing the correlation functions for acetonitrile.
Antunes, Catarina; Mendes, Raquel; Lima, Arlindo; Barros, Graça; Fields, Paul; Da Costa, Luísa Beirão; Rodrigues, José Carlos; Silva, Maria José; Correia, Augusto Manuel; Carvalho, Maria Otilia
2016-02-01
Four common Portuguese rice varieties--Thaibonnet, Gladio, Albatros, and Eurosis--were tested for their relative susceptibility to Sitophilus zeamais Motschulsky, a common pest of stored rice in Portugal and in tropical countries. Physical (moisture content, hardness, length, and width) and chemical (by attenuated total reflection-Fourier transform infrared spectroscopy) properties of rice kernels were measured. Insect bioassays measured median developmental time, Dobie's index of susceptibility, percentage of damaged grains and weight loss, and progeny developed. This was done for paddy, brown rice, and polished rice for each variety. There were small, but significant, differences in insect resistance among the varieties. However, it was different for paddy and polished rice. In paddy, these differences were correlated with hull damage, and Eurosis was the most susceptible variety. In polished rice, resistance was correlated with hardness, and Thaibonnet was the most susceptible variety. In general, paddy rice was more resistant to insect attack, followed by polished rice and then brown rice. Paddy kernels selected with undamaged hull were completely resistant to attack. Implications for IPM and breeding for resistant varieties are discussed. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Yesbergenova-Cuny, Zhazira; Simons, Margaret; Chardon, Fabien; Armengaud, Patrick; Quilleré, Isabelle; Cukier, Caroline; Gibon, Yves; Limami, Anis M.; Nicolas, Stéphane; Brulé, Lenaïg; Lea, Peter J.; Maranas, Costas D.; Hirel, Bertrand
2017-01-01
A combined metabolomic, biochemical, fluxomic, and metabolic modeling approach was developed using 19 genetically distant maize (Zea mays) lines from Europe and America. Considerable differences were detected between the lines when leaf metabolic profiles and activities of the main enzymes involved in primary metabolism were compared. During grain filling, the leaf metabolic composition appeared to be a reliable marker, allowing a classification matching the genetic diversity of the lines. During the same period, there was a significant correlation between the genetic distance of the lines and the activities of enzymes involved in carbon metabolism, notably glycolysis. Although large differences were observed in terms of leaf metabolic fluxes, these variations were not tightly linked to the genome structure of the lines. Both correlation studies and metabolic network analyses allowed the description of a maize ideotype with a high grain yield potential. Such an ideotype is characterized by low accumulation of soluble amino acids and carbohydrates in the leaves and high activity of enzymes involved in the C4 photosynthetic pathway and in the biosynthesis of amino acids derived from glutamate. Chlorogenates appear to be important markers that can be used to select for maize lines that produce larger kernels. PMID:28396554
Graph wavelet alignment kernels for drug virtual screening.
Smalter, Aaron; Huan, Jun; Lushington, Gerald
2009-06-01
In this paper, we introduce a novel statistical modeling technique for target property prediction, with applications to virtual screening and drug design. In our method, we use graphs to model chemical structures and apply a wavelet analysis of graphs to summarize features capturing graph local topology. We design a novel graph kernel function to utilize the topology features to build predictive models for chemicals via Support Vector Machine classifier. We call the new graph kernel a graph wavelet-alignment kernel. We have evaluated the efficacy of the wavelet-alignment kernel using a set of chemical structure-activity prediction benchmarks. Our results indicate that the use of the kernel function yields performance profiles comparable to, and sometimes exceeding that of the existing state-of-the-art chemical classification approaches. In addition, our results also show that the use of wavelet functions significantly decreases the computational costs for graph kernel computation with more than ten fold speedup.
Anato, F M; Sinzogan, A A C; Offenberg, J; Adandonon, A; Wargui, R B; Deguenon, J M; Ayelo, P M; Vayssières, J-F; Kossou, D K
2017-06-01
Weaver ants, Oecophylla spp., are known to positively affect cashew, Anacardium occidentale L., raw nut yield, but their effects on the kernels have not been reported. We compared nut size and the proportion of marketable kernels between raw nuts collected from trees with and without ants. Raw nuts collected from trees with weaver ants were 2.9% larger than nuts from control trees (i.e., without weaver ants), leading to 14% higher proportion of marketable kernels. On trees with ants, the kernel: raw nut ratio from nuts damaged by formic acid was 4.8% lower compared with nondamaged nuts from the same trees. Weaver ants provided three benefits to cashew production by increasing yields, yielding larger nuts, and by producing greater proportions of marketable kernel mass. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Small convolution kernels for high-fidelity image restoration
NASA Technical Reports Server (NTRS)
Reichenbach, Stephen E.; Park, Stephen K.
1991-01-01
An algorithm is developed for computing the mean-square-optimal values for small, image-restoration kernels. The algorithm is based on a comprehensive, end-to-end imaging system model that accounts for the important components of the imaging process: the statistics of the scene, the point-spread function of the image-gathering device, sampling effects, noise, and display reconstruction. Subject to constraints on the spatial support of the kernel, the algorithm generates the kernel values that restore the image with maximum fidelity, that is, the kernel minimizes the expected mean-square restoration error. The algorithm is consistent with the derivation of the spatially unconstrained Wiener filter, but leads to a small, spatially constrained kernel that, unlike the unconstrained filter, can be efficiently implemented by convolution. Simulation experiments demonstrate that for a wide range of imaging systems these small kernels can restore images with fidelity comparable to images restored with the unconstrained Wiener filter.
Kernels, Degrees of Freedom, and Power Properties of Quadratic Distance Goodness-of-Fit Tests
Lindsay, Bruce G.; Markatou, Marianthi; Ray, Surajit
2014-01-01
In this article, we study the power properties of quadratic-distance-based goodness-of-fit tests. First, we introduce the concept of a root kernel and discuss the considerations that enter the selection of this kernel. We derive an easy to use normal approximation to the power of quadratic distance goodness-of-fit tests and base the construction of a noncentrality index, an analogue of the traditional noncentrality parameter, on it. This leads to a method akin to the Neyman-Pearson lemma for constructing optimal kernels for specific alternatives. We then introduce a midpower analysis as a device for choosing optimal degrees of freedom for a family of alternatives of interest. Finally, we introduce a new diffusion kernel, called the Pearson-normal kernel, and study the extent to which the normal approximation to the power of tests based on this kernel is valid. Supplementary materials for this article are available online. PMID:24764609
NASA Technical Reports Server (NTRS)
Kahler, S. W.; Petrasso, R. D.; Kane, S. R.
1976-01-01
The physical parameters for the kernels of three solar X-ray flare events have been deduced using photographic data from the S-054 X-ray telescope on Skylab as the primary data source and 1-8 and 8-20 A fluxes from Solrad 9 as the secondary data source. The kernels had diameters of about 5-7 seconds of arc and in two cases electron densities at least as high as 0.3 trillion per cu cm. The lifetimes of the kernels were 5-10 min. The presence of thermal conduction during the decay phases is used to argue: (1) that kernels are entire, not small portions of, coronal loop structures, and (2) that flare heating must continue during the decay phase. We suggest a simple geometric model to explain the role of kernels in flares in which kernels are identified with emerging flux regions.
21 CFR 176.350 - Tamarind seed kernel powder.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...
21 CFR 176.350 - Tamarind seed kernel powder.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...
21 CFR 176.350 - Tamarind seed kernel powder.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...
21 CFR 176.350 - Tamarind seed kernel powder.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...
7 CFR 51.1403 - Kernel color classification.
Code of Federal Regulations, 2013 CFR
2013-01-01
... generally conforms to the “light” or “light amber” classification, that color classification may be used to... 7 Agriculture 2 2013-01-01 2013-01-01 false Kernel color classification. 51.1403 Section 51.1403... Color Classification § 51.1403 Kernel color classification. (a) The skin color of pecan kernels may be...
7 CFR 51.1403 - Kernel color classification.
Code of Federal Regulations, 2014 CFR
2014-01-01
... generally conforms to the “light” or “light amber” classification, that color classification may be used to... 7 Agriculture 2 2014-01-01 2014-01-01 false Kernel color classification. 51.1403 Section 51.1403... Color Classification § 51.1403 Kernel color classification. (a) The skin color of pecan kernels may be...
Nutrition quality of extraction mannan residue from palm kernel cake on brolier chicken
NASA Astrophysics Data System (ADS)
Tafsin, M.; Hanafi, N. D.; Kejora, E.; Yusraini, E.
2018-02-01
This study aims to find out the nutrient residue of palm kernel cake from mannan extraction on broiler chicken by evaluating physical quality (specific gravity, bulk density and compacted bulk density), chemical quality (proximate analysis and Van Soest Test) and biological test (metabolizable energy). Treatment composed of T0 : palm kernel cake extracted aquadest (control), T1 : palm kernel cake extracted acetic acid (CH3COOH) 1%, T2 : palm kernel cake extracted aquadest + mannanase enzyme 100 u/l and T3 : palm kernel cake extracted acetic acid (CH3COOH) 1% + enzyme mannanase 100 u/l. The results showed that mannan extraction had significant effect (P<0.05) in improving the quality of physical and numerically increase the value of crude protein and decrease the value of NDF (Neutral Detergent Fiber). Treatments had highly significant influence (P<0.01) on the metabolizable energy value of palm kernel cake residue in broiler chickens. It can be concluded that extraction with aquadest + enzyme mannanase 100 u/l yields the best nutrient quality of palm kernel cake residue for broiler chicken.
Oil point and mechanical behaviour of oil palm kernels in linear compression
NASA Astrophysics Data System (ADS)
Kabutey, Abraham; Herak, David; Choteborsky, Rostislav; Mizera, Čestmír; Sigalingging, Riswanti; Akangbe, Olaosebikan Layi
2017-07-01
The study described the oil point and mechanical properties of roasted and unroasted bulk oil palm kernels under compression loading. The literature information available is very limited. A universal compression testing machine and vessel diameter of 60 mm with a plunger were used by applying maximum force of 100 kN and speed ranging from 5 to 25 mm min-1. The initial pressing height of the bulk kernels was measured at 40 mm. The oil point was determined by a litmus test for each deformation level of 5, 10, 15, 20, and 25 mm at a minimum speed of 5 mmmin-1. The measured parameters were the deformation, deformation energy, oil yield, oil point strain and oil point pressure. Clearly, the roasted bulk kernels required less deformation energy compared to the unroasted kernels for recovering the kernel oil. However, both kernels were not permanently deformed. The average oil point strain was determined at 0.57. The study is an essential contribution to pursuing innovative methods for processing palm kernel oil in rural areas of developing countries.
Jia, Xiaodong; Luo, Huiting; Xu, Mengyang; Zhai, Min; Guo, Zhongren; Qiao, Yushan; Wang, Liangju
2018-02-16
Pecan ( Carya illinoinensis ) kernels have a high phenolics content and a high antioxidant capacity compared to other nuts-traits that have attracted great interest of late. Changes in the total phenolic content (TPC), condensed tannins (CT), total flavonoid content (TFC), five individual phenolics, and antioxidant capacity of five pecan cultivars were investigated during the process of kernel ripening. Ultra-performance liquid chromatography coupled with quadruple time-of-flight mass (UPLC-Q/TOF-MS) was also used to analyze the phenolics profiles in mixed pecan kernels. TPC, CT, TFC, individual phenolics, and antioxidant capacity were changed in similar patterns, with values highest at the water or milk stages, lowest at milk or dough stages, and slightly varied at kernel stages. Forty phenolics were tentatively identified in pecan kernels, of which two were first reported in the genus Carya , six were first reported in Carya illinoinensis , and one was first reported in its kernel. The findings on these new phenolic compounds provide proof of the high antioxidant capacity of pecan kernels.
Lu, Zhao; Sun, Jing; Butts, Kenneth
2016-02-03
A giant leap has been made in the past couple of decades with the introduction of kernel-based learning as a mainstay for designing effective nonlinear computational learning algorithms. In view of the geometric interpretation of conditional expectation and the ubiquity of multiscale characteristics in highly complex nonlinear dynamic systems [1]-[3], this paper presents a new orthogonal projection operator wavelet kernel, aiming at developing an efficient computational learning approach for nonlinear dynamical system identification. In the framework of multiresolution analysis, the proposed projection operator wavelet kernel can fulfill the multiscale, multidimensional learning to estimate complex dependencies. The special advantage of the projection operator wavelet kernel developed in this paper lies in the fact that it has a closed-form expression, which greatly facilitates its application in kernel learning. To the best of our knowledge, it is the first closed-form orthogonal projection wavelet kernel reported in the literature. It provides a link between grid-based wavelets and mesh-free kernel-based methods. Simulation studies for identifying the parallel models of two benchmark nonlinear dynamical systems confirm its superiority in model accuracy and sparsity.
Novel characterization method of impedance cardiography signals using time-frequency distributions.
Escrivá Muñoz, Jesús; Pan, Y; Ge, S; Jensen, E W; Vallverdú, M
2018-03-16
The purpose of this document is to describe a methodology to select the most adequate time-frequency distribution (TFD) kernel for the characterization of impedance cardiography signals (ICG). The predominant ICG beat was extracted from a patient and was synthetized using time-frequency variant Fourier approximations. These synthetized signals were used to optimize several TFD kernels according to a performance maximization. The optimized kernels were tested for noise resistance on a clinical database. The resulting optimized TFD kernels are presented with their performance calculated using newly proposed methods. The procedure explained in this work showcases a new method to select an appropriate kernel for ICG signals and compares the performance of different time-frequency kernels found in the literature for the case of ICG signals. We conclude that, for ICG signals, the performance (P) of the spectrogram with either Hanning or Hamming windows (P = 0.780) and the extended modified beta distribution (P = 0.765) provided similar results, higher than the rest of analyzed kernels. Graphical abstract Flowchart for the optimization of time-frequency distribution kernels for impedance cardiography signals.
Muradian, Kh K; Utko, N O; Mozzhukhina, T H; Pishel', I M; Litoshenko, O Ia; Bezrukov, V V; Fraĭfel'd, V E
2002-01-01
Correlative and regressive relations between the gaseous exchange, thermoregulation and mitochondrial protein content were analyzed by two- and three-dimensional statistics in mice. It has been shown that the pair wise linear methods of analysis did not reveal any significant correlation between the parameters under exploration. However, it became evident at three-dimensional and non-linear plotting for which the coefficients of multivariable correlation reached and even exceeded 0.7-0.8. The calculations based on partial differentiation of the multivariable regression equations allow to conclude that at certain values of VO2, VCO2 and body temperature negative relations between the systems of gaseous exchange and thermoregulation become dominating.
Lu, Zhao; Sun, Jing; Butts, Kenneth
2014-05-01
Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.
New Fukui, dual and hyper-dual kernels as bond reactivity descriptors.
Franco-Pérez, Marco; Polanco-Ramírez, Carlos-A; Ayers, Paul W; Gázquez, José L; Vela, Alberto
2017-06-21
We define three new linear response indices with promising applications for bond reactivity using the mathematical framework of τ-CRT (finite temperature chemical reactivity theory). The τ-Fukui kernel is defined as the ratio between the fluctuations of the average electron density at two different points in the space and the fluctuations in the average electron number and is designed to integrate to the finite-temperature definition of the electronic Fukui function. When this kernel is condensed, it can be interpreted as a site-reactivity descriptor of the boundary region between two atoms. The τ-dual kernel corresponds to the first order response of the Fukui kernel and is designed to integrate to the finite temperature definition of the dual descriptor; it indicates the ambiphilic reactivity of a specific bond and enriches the traditional dual descriptor by allowing one to distinguish between the electron-accepting and electron-donating processes. Finally, the τ-hyper dual kernel is defined as the second-order derivative of the Fukui kernel and is proposed as a measure of the strength of ambiphilic bonding interactions. Although these quantities have never been proposed, our results for the τ-Fukui kernel and for τ-dual kernel can be derived in zero-temperature formulation of the chemical reactivity theory with, among other things, the widely-used parabolic interpolation model.
Urrutia, Eugene; Lee, Seunggeun; Maity, Arnab; Zhao, Ni; Shen, Judong; Li, Yun; Wu, Michael C
Analysis of rare genetic variants has focused on region-based analysis wherein a subset of the variants within a genomic region is tested for association with a complex trait. Two important practical challenges have emerged. First, it is difficult to choose which test to use. Second, it is unclear which group of variants within a region should be tested. Both depend on the unknown true state of nature. Therefore, we develop the Multi-Kernel SKAT (MK-SKAT) which tests across a range of rare variant tests and groupings. Specifically, we demonstrate that several popular rare variant tests are special cases of the sequence kernel association test which compares pair-wise similarity in trait value to similarity in the rare variant genotypes between subjects as measured through a kernel function. Choosing a particular test is equivalent to choosing a kernel. Similarly, choosing which group of variants to test also reduces to choosing a kernel. Thus, MK-SKAT uses perturbation to test across a range of kernels. Simulations and real data analyses show that our framework controls type I error while maintaining high power across settings: MK-SKAT loses power when compared to the kernel for a particular scenario but has much greater power than poor choices.
Cid, Jaime A; von Davier, Alina A
2015-05-01
Test equating is a method of making the test scores from different test forms of the same assessment comparable. In the equating process, an important step involves continuizing the discrete score distributions. In traditional observed-score equating, this step is achieved using linear interpolation (or an unscaled uniform kernel). In the kernel equating (KE) process, this continuization process involves Gaussian kernel smoothing. It has been suggested that the choice of bandwidth in kernel smoothing controls the trade-off between variance and bias. In the literature on estimating density functions using kernels, it has also been suggested that the weight of the kernel depends on the sample size, and therefore, the resulting continuous distribution exhibits bias at the endpoints, where the samples are usually smaller. The purpose of this article is (a) to explore the potential effects of atypical scores (spikes) at the extreme ends (high and low) on the KE method in distributions with different degrees of asymmetry using the randomly equivalent groups equating design (Study I), and (b) to introduce the Epanechnikov and adaptive kernels as potential alternative approaches to reducing boundary bias in smoothing (Study II). The beta-binomial model is used to simulate observed scores reflecting a range of different skewed shapes.
Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies
Manitz, Juliane; Burger, Patricia; Amos, Christopher I.; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike
2017-01-01
The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility. PMID:28785300
Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies.
Friedrichs, Stefanie; Manitz, Juliane; Burger, Patricia; Amos, Christopher I; Risch, Angela; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike; Hofner, Benjamin
2017-01-01
The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility.
Antioxidant and antimicrobial activities of bitter and sweet apricot (Prunus armeniaca L.) kernels.
Yiğit, D; Yiğit, N; Mavi, A
2009-04-01
The present study describes the in vitro antimicrobial and antioxidant activity of methanol and water extracts of sweet and bitter apricot (Prunus armeniaca L.) kernels. The antioxidant properties of apricot kernels were evaluated by determining radical scavenging power, lipid peroxidation inhibition activity and total phenol content measured with a DPPH test, the thiocyanate method and the Folin method, respectively. In contrast to extracts of the bitter kernels, both the water and methanol extracts of sweet kernels have antioxidant potential. The highest percent inhibition of lipid peroxidation (69%) and total phenolic content (7.9 +/- 0.2 microg/mL) were detected in the methanol extract of sweet kernels (Hasanbey) and in the water extract of the same cultivar, respectively. The antimicrobial activities of the above extracts were also tested against human pathogenic microorganisms using a disc-diffusion method, and the minimal inhibitory concentration (MIC) values of each active extract were determined. The most effective antibacterial activity was observed in the methanol and water extracts of bitter kernels and in the methanol extract of sweet kernels against the Gram-positive bacteria Staphylococcus aureus. Additionally, the methanol extracts of the bitter kernels were very potent against the Gram-negative bacteria Escherichia coli (0.312 mg/mL MIC value). Significant anti-candida activity was also observed with the methanol extract of bitter apricot kernels against Candida albicans, consisting of a 14 mm in diameter of inhibition zone and a 0.625 mg/mL MIC value.
Michalski, Andrew S; Edwards, W Brent; Boyd, Steven K
2017-10-17
Quantitative computed tomography has been posed as an alternative imaging modality to investigate osteoporosis. We examined the influence of computed tomography convolution back-projection reconstruction kernels on the analysis of bone quantity and estimated mechanical properties in the proximal femur. Eighteen computed tomography scans of the proximal femur were reconstructed using both a standard smoothing reconstruction kernel and a bone-sharpening reconstruction kernel. Following phantom-based density calibration, we calculated typical bone quantity outcomes of integral volumetric bone mineral density, bone volume, and bone mineral content. Additionally, we performed finite element analysis in a standard sideways fall on the hip loading configuration. Significant differences for all outcome measures, except integral bone volume, were observed between the 2 reconstruction kernels. Volumetric bone mineral density measured using images reconstructed by the standard kernel was significantly lower (6.7%, p < 0.001) when compared with images reconstructed using the bone-sharpening kernel. Furthermore, the whole-bone stiffness and the failure load measured in images reconstructed by the standard kernel were significantly lower (16.5%, p < 0.001, and 18.2%, p < 0.001, respectively) when compared with the image reconstructed by the bone-sharpening kernel. These data suggest that for future quantitative computed tomography studies, a standardized reconstruction kernel will maximize reproducibility, independent of the use of a quantitative calibration phantom. Copyright © 2017 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Xing, Fuguo; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Zhu, Fengle; Brown, Robert L.; Bhatnagar, Deepak; Liu, Yang
2017-05-01
Aflatoxin contamination in peanut products has been an important and long-standing problem around the world. Produced mainly by Aspergillus flavus and Aspergillus parasiticus, aflatoxins are the most toxic and carcinogenic compounds among toxins. This study investigated the application of fluorescence visible near-infrared (VNIR) hyperspectral images to assess the spectral difference between peanut kernels inoculated with toxigenic and atoxigenic inocula of A. flavus and healthy kernels. Peanut kernels were inoculated with NRRL3357, a toxigenic strain of A. flavus, and AF36, an atoxigenic strain of A. flavus, respectively. Fluorescence hyperspectral images under ultraviolet (UV) excitation were recorded on peanut kernels with and without skin. Contaminated kernels exhibited different fluorescence features compared with healthy kernels. For the kernels without skin, the inoculated kernels had a fluorescence peaks shifted to longer wavelengths with lower intensity than healthy kernels. In addition, the fluorescence intensity of peanuts without skin was higher than that of peanuts with skin (10 times). The fluorescence spectra of kernels with skin are significantly different from that of the control group (p<0.001). Furthermore, the fluorescence intensity of the toxigenic, AF3357 peanuts with skin was lower than that of the atoxigenic AF36 group. Discriminate analysis showed that the inoculation group can be separated from the controls with 100% accuracy. However, the two inoculation groups (AF3357 vis AF36) can be separated with only ∼80% accuracy. This study demonstrated the potential of fluorescence hyperspectral imaging techniques for screening of peanut kernels contaminated with A. flavus, which could potentially lead to the production of rapid and non-destructive scanning-based detection technology for the peanut industry.
Amin, Furheen; Masoodi, F A; Baba, Waqas N; Khan, Asma Ashraf; Ganie, Bashir Ahmad
2017-11-01
Packing tissue between and around the kernel halves just turning brown (PTB) is a phenological indicator of kernel ripening at harvest in walnuts. The effect of three ripening stages (Pre-PTB, PTB and Post-PTB) on kernel quality characteristics, mineral composition, lipid characterization, sensory analysis, antioxidant and antibacterial activity were investigated in fresh kernels of indigenous numbered walnut selection of Kashmir valley "SKAU-02". Proximate composition, physical properties and sensory analysis of walnut kernels showed better results for Pre-PTB and PTB while higher mineral content was seen for kernels at Post-PTB stage in comparison to other stages of ripening. Kernels showed significantly higher levels of Omega-3 PUFA (C18:3 n3 ) and low n6/n3 ratio when harvested at Pre-PTB and PTB stages. The highest phenolic content and antioxidant activity was observed at the first stage of ripening and a steady decrease was observed at later stages. TBARS values increased as ripening advanced but did not show any significant difference in malonaldehyde formation during early ripening stages whereas it showed marked increase in walnut kernels at post-PTB stage. Walnut extracts inhibited growth of Gram-positive bacteria ( B. cereus, B. subtilis, and S. aureus ) with respective MICs of 1, 1 and 5 mg/mL and gram negative bacteria ( E. coli, P. and K. pneumonia ) with MIC of 100 mg/mL. Zone of inhibition obtained against all the bacterial strains from walnut kernel extracts increased with increase in the stage of ripening. It is concluded that Pre-PTB harvest stage with higher antioxidant activities, better fatty acid profile and consumer acceptability could be preferred harvesting stage for obtaining functionally superior walnut kernels.
Salt stress reduces kernel number of corn by inhibiting plasma membrane H+-ATPase activity.
Jung, Stephan; Hütsch, Birgit W; Schubert, Sven
2017-04-01
Salt stress affects yield formation of corn (Zea mays L.) at various physiological levels resulting in an overall grain yield decrease. In this study we investigated how salt stress affects kernel development of two corn cultivars (cvs. Pioneer 3906 and Fabregas) at and shortly after pollination. In an earlier study, we found an accumulation of hexoses in the kernel tissue. Therefore, it was hypothesized that hexose uptake into developing endosperm and embryo might be inhibited. Hexoses are transported into the developing endosperm by carriers localized in the plasma membrane (PM). The transport is driven by the pH gradient which is built up by the PM H + -ATPase. It was investigated whether the PM H + -ATPase activity in developing corn kernels was inhibited by salt stress, which would cause a lower pH gradient resulting in impaired hexose import and finally in kernel abortion. Corn grown under control and salt stress conditions was harvested 0 and 2 days after pollination (DAP). Under salt stress sucrose and hexose concentrations in kernel tissue were higher 0 and 2 DAP. Kernel PM H + -ATPase activity was not affected at 0 DAP, but it was reduced at 2 DAP. This is in agreement with the finding, that kernel growth and thus kernel setting was not affected in the salt stress treatment at pollination, but it was reduced 2 days later. It is concluded that inhibition of PM H + -ATPase under salt stress impaired the energization of hexose transporters into the cells, resulting in lower kernel growth and finally in kernel abortion. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Three-Dimensional Sensitivity Kernels of Z/H Amplitude Ratios of Surface and Body Waves
NASA Astrophysics Data System (ADS)
Bao, X.; Shen, Y.
2017-12-01
The ellipticity of Rayleigh wave particle motion, or Z/H amplitude ratio, has received increasing attention in inversion for shallow Earth structures. Previous studies of the Z/H ratio assumed one-dimensional (1D) velocity structures beneath the receiver, ignoring the effects of three-dimensional (3D) heterogeneities on wave amplitudes. This simplification may introduce bias in the resulting models. Here we present 3D sensitivity kernels of the Z/H ratio to Vs, Vp, and density perturbations, based on finite-difference modeling of wave propagation in 3D structures and the scattering-integral method. Our full-wave approach overcomes two main issues in previous studies of Rayleigh wave ellipticity: (1) the finite-frequency effects of wave propagation in 3D Earth structures, and (2) isolation of the fundamental mode Rayleigh waves from Rayleigh wave overtones and converted Love waves. In contrast to the 1D depth sensitivity kernels in previous studies, our 3D sensitivity kernels exhibit patterns that vary with azimuths and distances to the receiver. The laterally-summed 3D sensitivity kernels and 1D depth sensitivity kernels, based on the same homogeneous reference model, are nearly identical with small differences that are attributable to the single period of the 1D kernels and a finite period range of the 3D kernels. We further verify the 3D sensitivity kernels by comparing the predictions from the kernels with the measurements from numerical simulations of wave propagation for models with various small-scale perturbations. We also calculate and verify the amplitude kernels for P waves. This study shows that both Rayleigh and body wave Z/H ratios provide vertical and lateral constraints on the structure near the receiver. With seismic arrays, the 3D kernels afford a powerful tool to use the Z/H ratios to obtain accurate and high-resolution Earth models.
Tan, Stéphanie; Soulez, Gilles; Diez Martinez, Patricia; Larrivée, Sandra; Stevens, Louis-Mathieu; Goussard, Yves; Mansour, Samer; Chartrand-Lefebvre, Carl
2016-01-01
Metallic artifacts can result in an artificial thickening of the coronary stent wall which can significantly impair computed tomography (CT) imaging in patients with coronary stents. The objective of this study is to assess in vivo visualization of coronary stent wall and lumen with an edge-enhancing CT reconstruction kernel, as compared to a standard kernel. This is a prospective cross-sectional study involving the assessment of 71 coronary stents (24 patients), with blinded observers. After 256-slice CT angiography, image reconstruction was done with medium-smooth and edge-enhancing kernels. Stent wall thickness was measured with both orthogonal and circumference methods, averaging thickness from diameter and circumference measurements, respectively. Image quality was assessed quantitatively using objective parameters (noise, signal to noise (SNR) and contrast to noise (CNR) ratios), as well as visually using a 5-point Likert scale. Stent wall thickness was decreased with the edge-enhancing kernel in comparison to the standard kernel, either with the orthogonal (0.97 ± 0.02 versus 1.09 ± 0.03 mm, respectively; p<0.001) or the circumference method (1.13 ± 0.02 versus 1.21 ± 0.02 mm, respectively; p = 0.001). The edge-enhancing kernel generated less overestimation from nominal thickness compared to the standard kernel, both with the orthogonal (0.89 ± 0.19 versus 1.00 ± 0.26 mm, respectively; p<0.001) and the circumference (1.06 ± 0.26 versus 1.13 ± 0.31 mm, respectively; p = 0.005) methods. The edge-enhancing kernel was associated with lower SNR and CNR, as well as higher background noise (all p < 0.001), in comparison to the medium-smooth kernel. Stent visual scores were higher with the edge-enhancing kernel (p<0.001). In vivo 256-slice CT assessment of coronary stents shows that the edge-enhancing CT reconstruction kernel generates thinner stent walls, less overestimation from nominal thickness, and better image quality scores than the standard kernel.
Hruska, Zuzana; Yao, Haibo; Kincaid, Russell; Brown, Robert L; Bhatnagar, Deepak; Cleveland, Thomas E
2017-01-01
Non-invasive, easy to use and cost-effective technology offers a valuable alternative for rapid detection of carcinogenic fungal metabolites, namely aflatoxins, in commodities. One relatively recent development in this area is the use of spectral technology. Fluorescence hyperspectral imaging, in particular, offers a potential rapid and non-invasive method for detecting the presence of aflatoxins in maize infected with the toxigenic fungus Aspergillus flavus . Earlier studies have shown that whole maize kernels contaminated with aflatoxins exhibit different spectral signatures from uncontaminated kernels based on the external fluorescence emission of the whole kernels. Here, the effect of time on the internal fluorescence spectral emissions from cross-sections of kernels infected with toxigenic and atoxigenic A. flavus , were examined in order to elucidate the interaction between the fluorescence signals emitted by some aflatoxin contaminated maize kernels and the fungal invasion resulting in the production of aflatoxins. First, the difference in internal fluorescence emissions between cross-sections of kernels incubated in toxigenic and atoxigenic inoculum was assessed. Kernels were inoculated with each strain for 5, 7, and 9 days before cross-sectioning and imaging. There were 270 kernels (540 halves) imaged, including controls. Second, in a different set of kernels (15 kernels/group; 135 total), the germ of each kernel was separated from the endosperm to determine the major areas of aflatoxin accumulation and progression over nine growth days. Kernels were inoculated with toxigenic and atoxigenic fungal strains for 5, 7, and 9 days before the endosperm and germ were separated, followed by fluorescence hyperspectral imaging and chemical aflatoxin determination. A marked difference in fluorescence intensity was shown between the toxigenic and atoxigenic strains on day nine post-inoculation, which may be a useful indicator of the location of aflatoxin contamination. This finding suggests that both, the fluorescence peak shift and intensity as well as timing, may be essential in distinguishing toxigenic and atoxigenic fungi based on spectral features. Results also reveal a possible preferential difference in the internal colonization of maize kernels between the toxigenic and atoxigenic strains of A. flavus suggesting a potential window for differentiating the strains based on fluorescence spectra at specific time points.
Hruska, Zuzana; Yao, Haibo; Kincaid, Russell; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.
2017-01-01
Non-invasive, easy to use and cost-effective technology offers a valuable alternative for rapid detection of carcinogenic fungal metabolites, namely aflatoxins, in commodities. One relatively recent development in this area is the use of spectral technology. Fluorescence hyperspectral imaging, in particular, offers a potential rapid and non-invasive method for detecting the presence of aflatoxins in maize infected with the toxigenic fungus Aspergillus flavus. Earlier studies have shown that whole maize kernels contaminated with aflatoxins exhibit different spectral signatures from uncontaminated kernels based on the external fluorescence emission of the whole kernels. Here, the effect of time on the internal fluorescence spectral emissions from cross-sections of kernels infected with toxigenic and atoxigenic A. flavus, were examined in order to elucidate the interaction between the fluorescence signals emitted by some aflatoxin contaminated maize kernels and the fungal invasion resulting in the production of aflatoxins. First, the difference in internal fluorescence emissions between cross-sections of kernels incubated in toxigenic and atoxigenic inoculum was assessed. Kernels were inoculated with each strain for 5, 7, and 9 days before cross-sectioning and imaging. There were 270 kernels (540 halves) imaged, including controls. Second, in a different set of kernels (15 kernels/group; 135 total), the germ of each kernel was separated from the endosperm to determine the major areas of aflatoxin accumulation and progression over nine growth days. Kernels were inoculated with toxigenic and atoxigenic fungal strains for 5, 7, and 9 days before the endosperm and germ were separated, followed by fluorescence hyperspectral imaging and chemical aflatoxin determination. A marked difference in fluorescence intensity was shown between the toxigenic and atoxigenic strains on day nine post-inoculation, which may be a useful indicator of the location of aflatoxin contamination. This finding suggests that both, the fluorescence peak shift and intensity as well as timing, may be essential in distinguishing toxigenic and atoxigenic fungi based on spectral features. Results also reveal a possible preferential difference in the internal colonization of maize kernels between the toxigenic and atoxigenic strains of A. flavus suggesting a potential window for differentiating the strains based on fluorescence spectra at specific time points. PMID:28966606
Research on interpolation methods in medical image processing.
Pan, Mei-Sen; Yang, Xiao-Li; Tang, Jing-Tian
2012-04-01
Image interpolation is widely used for the field of medical image processing. In this paper, interpolation methods are divided into three groups: filter interpolation, ordinary interpolation and general partial volume interpolation. Some commonly-used filter methods for image interpolation are pioneered, but the interpolation effects need to be further improved. When analyzing and discussing ordinary interpolation, many asymmetrical kernel interpolation methods are proposed. Compared with symmetrical kernel ones, the former are have some advantages. After analyzing the partial volume and generalized partial volume estimation interpolations, the new concept and constraint conditions of the general partial volume interpolation are defined, and several new partial volume interpolation functions are derived. By performing the experiments of image scaling, rotation and self-registration, the interpolation methods mentioned in this paper are compared in the entropy, peak signal-to-noise ratio, cross entropy, normalized cross-correlation coefficient and running time. Among the filter interpolation methods, the median and B-spline filter interpolations have a relatively better interpolating performance. Among the ordinary interpolation methods, on the whole, the symmetrical cubic kernel interpolations demonstrate a strong advantage, especially the symmetrical cubic B-spline interpolation. However, we have to mention that they are very time-consuming and have lower time efficiency. As for the general partial volume interpolation methods, from the total error of image self-registration, the symmetrical interpolations provide certain superiority; but considering the processing efficiency, the asymmetrical interpolations are better.
On the non-stationary generalized Langevin equation
NASA Astrophysics Data System (ADS)
Meyer, Hugues; Voigtmann, Thomas; Schilling, Tanja
2017-12-01
In molecular dynamics simulations and single molecule experiments, observables are usually measured along dynamic trajectories and then averaged over an ensemble ("bundle") of trajectories. Under stationary conditions, the time-evolution of such averages is described by the generalized Langevin equation. By contrast, if the dynamics is not stationary, it is not a priori clear which form the equation of motion for an averaged observable has. We employ the formalism of time-dependent projection operator techniques to derive the equation of motion for a non-equilibrium trajectory-averaged observable as well as for its non-stationary auto-correlation function. The equation is similar in structure to the generalized Langevin equation but exhibits a time-dependent memory kernel as well as a fluctuating force that implicitly depends on the initial conditions of the process. We also derive a relation between this memory kernel and the autocorrelation function of the fluctuating force that has a structure similar to a fluctuation-dissipation relation. In addition, we show how the choice of the projection operator allows us to relate the Taylor expansion of the memory kernel to data that are accessible in MD simulations and experiments, thus allowing us to construct the equation of motion. As a numerical example, the procedure is applied to Brownian motion initialized in non-equilibrium conditions and is shown to be consistent with direct measurements from simulations.
NASA Astrophysics Data System (ADS)
Cremer, Dieter
The electron correlation effects covered by density functional theory (DFT) can be assessed qualitatively by comparing DFT densities ρ(r) with suitable reference densities obtained with wavefunction theory (WFT) methods that cover typical electron correlation effects. The analysis of difference densities ρ(DFT)-ρ(WFT) reveals that LDA and GGA exchange (X) functionals mimic non-dynamic correlation effects in an unspecified way. It is shown that these long range correlation effects are caused by the self-interaction error (SIE) of standard X functionals. Self-interaction corrected (SIC) DFT exchange gives, similar to exact exchange, for the bonding region a delocalized exchange hole, and does not cover any correlation effects. Hence, the exchange SIE is responsible for the fact that DFT densities often resemble MP4 or MP2 densities. The correlation functional changes X-only DFT densities in a manner observed when higher order coupling effects between lower order N-electron correlation effects are included. Hybrid functionals lead to changes in the density similar to those caused by SICDFT, which simply reflects the fact that hybrid functionals have been developed to cover part of the SIE and its long range correlation effects in a balanced manner. In the case of spin-unrestricted DFT (UDFT), non-dynamic electron correlation effects enter the calculation both via the X functional and via the wavefunction, which may cause a double-counting of correlation effects. The use of UDFT in the form of permuted orbital and broken-symmetry DFT (PO-UDFT, BS-UDFT) can lead to reasonable descriptions of multireference systems provided certain conditions are fulfilled. More reliable, however, is a combination of DFT and WFT methods, which makes the routine description of multireference systems possible. The development of such methods implies a separation of dynamic and non-dynamic correlation effects. Strategies for accomplishing this goal are discussed in general and tested in practice for CAS (complete active space)-DFT.
Using the Intel Math Kernel Library on Peregrine | High-Performance
Computing | NREL the Intel Math Kernel Library on Peregrine Using the Intel Math Kernel Library on Peregrine Learn how to use the Intel Math Kernel Library (MKL) with Peregrine system software. MKL architectures. Core math functions in MKL include BLAS, LAPACK, ScaLAPACK, sparse solvers, fast Fourier
Code of Federal Regulations, 2014 CFR
2014-04-01
... the Act, are as follows: Common name Botanical name of plant source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed Cydonia oblonga Miller. [42 FR 14640, Mar...
7 CFR 51.2954 - Tolerances for grade defects.
Code of Federal Regulations, 2010 CFR
2010-01-01
... chart. Tolerances for Grade Defects Grade External (shell) defects Internal (kernel) defects Color of kernel U.S. No. 1. 10 pct, by count for splits. 5 pct. by count, for other shell defects, including not... tolerance to reduce the required 70 pct of “light amber” kernels or the required 40 pct of “light” kernels...
7 CFR 51.2284 - Size classification.
Code of Federal Regulations, 2010 CFR
2010-01-01
...: “Halves”, “Pieces and Halves”, “Pieces” or “Small Pieces”. The size of portions of kernels in the lot... consists of 85 percent or more, by weight, half kernels, and the remainder three-fourths half kernels. (See § 51.2285.) (b) Pieces and halves. Lot consists of 20 percent or more, by weight, half kernels, and the...
USDA-ARS?s Scientific Manuscript database
Normal oleic peanuts are often found within commercial lots of high oleic peanuts when sampling among individual kernels. Kernels not meeting high oleic threshold could be true contamination with normal oleic peanuts introduced via poor handling, or kernels not meeting threshold could be immature a...
THERMOS. 30-Group ENDF/B Scattered Kernels
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrosson, F.J.; Finch, D.R.
1973-12-01
These data are 30-group THERMOS thermal scattering kernels for P0 to P5 Legendre orders for every temperature of every material from s(alpha,beta) data stored in the ENDF/B library. These scattering kernels were generated using the FLANGE2 computer code. To test the kernels, the integral properties of each set of kernels were determined by a precision integration of the diffusion length equation and compared to experimental measurements of these properties. In general, the agreement was very good. Details of the methods used and results obtained are contained in the reference. The scattering kernels are organized into a two volume magnetic tapemore » library from which they may be retrieved easily for use in any 30-group THERMOS library.« less
Random matrix theory and portfolio optimization in Moroccan stock exchange
NASA Astrophysics Data System (ADS)
El Alaoui, Marwane
2015-09-01
In this work, we use random matrix theory to analyze eigenvalues and see if there is a presence of pertinent information by using Marčenko-Pastur distribution. Thus, we study cross-correlation among stocks of Casablanca Stock Exchange. Moreover, we clean correlation matrix from noisy elements to see if the gap between predicted risk and realized risk would be reduced. We also analyze eigenvectors components distributions and their degree of deviations by computing the inverse participation ratio. This analysis is a way to understand the correlation structure among stocks of Casablanca Stock Exchange portfolio.
Tao, Jianmin; Ye, Lin -Hui; Duan, Yuhua
2017-11-20
The primary goal of Kohn–Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao–Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew–Burke–Ernzerhof (PBE), Tao–Perdew–Staroverov–Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree–Fock density yields the exchange and correlation energies in good agreement with the Optimizedmore » Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Lastly, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.« less
NASA Astrophysics Data System (ADS)
Tao, Jianmin; Ye, Lin-Hui; Duan, Yuhua
2017-12-01
The primary goal of Kohn-Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao-Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE), Tao-Perdew-Staroverov-Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree-Fock density yields the exchange and correlation energies in good agreement with the Optimized Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Finally, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Jianmin; Ye, Lin -Hui; Duan, Yuhua
The primary goal of Kohn–Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao–Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew–Burke–Ernzerhof (PBE), Tao–Perdew–Staroverov–Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree–Fock density yields the exchange and correlation energies in good agreement with the Optimizedmore » Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Lastly, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.« less
Fielitz, Peter; Borchardt, Günter
2016-08-10
In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.
Agegnehu, Getachew; Bass, Adrian M; Nelson, Paul N; Bird, Michael I
2016-02-01
Soil quality decline represents a significant constraint on the productivity and sustainability of agriculture in the tropics. In this study, the influence of biochar, compost and mixtures of the two on soil fertility, maize yield and greenhouse gas (GHG) emissions was investigated in a tropical Ferralsol. The treatments were: 1) control with business as usual fertilizer (F); 2) 10 t ha(-1) biochar (B)+F; 3) 25 t ha(-1) compost (Com)+F; 4) 2.5 t ha(-1) B+25 t ha(-1) Com mixed on site+F; and 5) 25 t ha(-1) co-composted biochar-compost (COMBI)+F. Total aboveground biomass and maize yield were significantly improved relative to the control for all organic amendments, with increases in grain yield between 10 and 29%. Some plant parameters such as leaf chlorophyll were significantly increased by the organic treatments. Significant differences were observed among treatments for the δ(15)N and δ(13)C contents of kernels. Soil physicochemical properties including soil water content (SWC), total soil organic carbon (SOC), total nitrogen (N), available phosphorus (P), nitrate-nitrogen (NO3(-)N), ammonium-nitrogen (NH4(+)-N), exchangeable cations and cation exchange capacity (CEC) were significantly increased by the organic amendments. Maize grain yield was correlated positively with total biomass, leaf chlorophyll, foliar N and P content, SOC and SWC. Emissions of CO2 and N2O were higher from the organic-amended soils than from the fertilizer-only control. However, N2O emissions generally decreased over time for all treatments and emission from the biochar was lower compared to other treatments. Our study concludes that the biochar and biochar-compost-based soil management approaches can improve SOC, soil nutrient status and SWC, and maize yield and may help mitigate greenhouse gas emissions in certain systems. Copyright © 2015. Published by Elsevier B.V.
Ren, Xinguo; Tkatchenko, Alexandre; Rinke, Patrick; Scheffler, Matthias
2011-04-15
The random-phase approximation (RPA) for the electron correlation energy, combined with the exact-exchange (EX) energy, represents the state-of-the-art exchange-correlation functional within density-functional theory. However, the standard RPA practice--evaluating both the EX and the RPA correlation energies using Kohn-Sham (KS) orbitals from local or semilocal exchange-correlation functionals--leads to a systematic underbinding of molecules and solids. Here we demonstrate that this behavior can be corrected by adding a "single excitation" contribution, so far not included in the standard RPA scheme. A similar improvement can also be achieved by replacing the non-self-consistent EX total energy by the corresponding self-consistent Hartree-Fock total energy, while retaining the RPA correlation energy evaluated using KS orbitals. Both schemes achieve chemical accuracy for a standard benchmark set of noncovalent intermolecular interactions.
Stochastic Gravity: Theory and Applications.
Hu, Bei Lok; Verdaguer, Enric
2004-01-01
Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operatorvalued) stress-energy bi-tensor which describes the fluctuations of quantum matter fields in curved spacetimes. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to their correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods which are convenient for computations. It also brings out the open systems concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise, and decoherence. We then focus on the properties of the stress-energy bi-tensor. We obtain a general expression for the noise kernel of a quantum field defined at two distinct points in an arbitrary curved spacetime as products of covariant derivatives of the quantum field's Green function. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime. We offer an analytical solution of the Einstein-Langevin equation and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole (enclosed in a box). We derive a fluctuation-dissipation relation between the fluctuations in the radiation and the dissipative dynamics of metric fluctuations.
7 CFR 810.2003 - Basis of determination.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Basis of determination. Each determination of heat-damaged kernels, damaged kernels, material other than... shrunken and broken kernels. Other determinations not specifically provided for under the general...
Fushiki, Tadayoshi
2009-07-01
The correlation matrix is a fundamental statistic that is used in many fields. For example, GroupLens, a collaborative filtering system, uses the correlation between users for predictive purposes. Since the correlation is a natural similarity measure between users, the correlation matrix may be used in the Gram matrix in kernel methods. However, the estimated correlation matrix sometimes has a serious defect: although the correlation matrix is originally positive semidefinite, the estimated one may not be positive semidefinite when not all ratings are observed. To obtain a positive semidefinite correlation matrix, the nearest correlation matrix problem has recently been studied in the fields of numerical analysis and optimization. However, statistical properties are not explicitly used in such studies. To obtain a positive semidefinite correlation matrix, we assume the approximate model. By using the model, an estimate is obtained as the optimal point of an optimization problem formulated with information on the variances of the estimated correlation coefficients. The problem is solved by a convex quadratic semidefinite program. A penalized likelihood approach is also examined. The MovieLens data set is used to test our approach.
DNA sequence+shape kernel enables alignment-free modeling of transcription factor binding.
Ma, Wenxiu; Yang, Lin; Rohs, Remo; Noble, William Stafford
2017-10-01
Transcription factors (TFs) bind to specific DNA sequence motifs. Several lines of evidence suggest that TF-DNA binding is mediated in part by properties of the local DNA shape: the width of the minor groove, the relative orientations of adjacent base pairs, etc. Several methods have been developed to jointly account for DNA sequence and shape properties in predicting TF binding affinity. However, a limitation of these methods is that they typically require a training set of aligned TF binding sites. We describe a sequence + shape kernel that leverages DNA sequence and shape information to better understand protein-DNA binding preference and affinity. This kernel extends an existing class of k-mer based sequence kernels, based on the recently described di-mismatch kernel. Using three in vitro benchmark datasets, derived from universal protein binding microarrays (uPBMs), genomic context PBMs (gcPBMs) and SELEX-seq data, we demonstrate that incorporating DNA shape information improves our ability to predict protein-DNA binding affinity. In particular, we observe that (i) the k-spectrum + shape model performs better than the classical k-spectrum kernel, particularly for small k values; (ii) the di-mismatch kernel performs better than the k-mer kernel, for larger k; and (iii) the di-mismatch + shape kernel performs better than the di-mismatch kernel for intermediate k values. The software is available at https://bitbucket.org/wenxiu/sequence-shape.git. rohs@usc.edu or william-noble@uw.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Searching Remote Homology with Spectral Clustering with Symmetry in Neighborhood Cluster Kernels
Maulik, Ujjwal; Sarkar, Anasua
2013-01-01
Remote homology detection among proteins utilizing only the unlabelled sequences is a central problem in comparative genomics. The existing cluster kernel methods based on neighborhoods and profiles and the Markov clustering algorithms are currently the most popular methods for protein family recognition. The deviation from random walks with inflation or dependency on hard threshold in similarity measure in those methods requires an enhancement for homology detection among multi-domain proteins. We propose to combine spectral clustering with neighborhood kernels in Markov similarity for enhancing sensitivity in detecting homology independent of “recent” paralogs. The spectral clustering approach with new combined local alignment kernels more effectively exploits the unsupervised protein sequences globally reducing inter-cluster walks. When combined with the corrections based on modified symmetry based proximity norm deemphasizing outliers, the technique proposed in this article outperforms other state-of-the-art cluster kernels among all twelve implemented kernels. The comparison with the state-of-the-art string and mismatch kernels also show the superior performance scores provided by the proposed kernels. Similar performance improvement also is found over an existing large dataset. Therefore the proposed spectral clustering framework over combined local alignment kernels with modified symmetry based correction achieves superior performance for unsupervised remote homolog detection even in multi-domain and promiscuous domain proteins from Genolevures database families with better biological relevance. Source code available upon request. Contact: sarkar@labri.fr. PMID:23457439
Fine-mapping of qGW4.05, a major QTL for kernel weight and size in maize.
Chen, Lin; Li, Yong-xiang; Li, Chunhui; Wu, Xun; Qin, Weiwei; Li, Xin; Jiao, Fuchao; Zhang, Xiaojing; Zhang, Dengfeng; Shi, Yunsu; Song, Yanchun; Li, Yu; Wang, Tianyu
2016-04-12
Kernel weight and size are important components of grain yield in cereals. Although some information is available concerning the map positions of quantitative trait loci (QTL) for kernel weight and size in maize, little is known about the molecular mechanisms of these QTLs. qGW4.05 is a major QTL that is associated with kernel weight and size in maize. We combined linkage analysis and association mapping to fine-map and identify candidate gene(s) at qGW4.05. QTL qGW4.05 was fine-mapped to a 279.6-kb interval in a segregating population derived from a cross of Huangzaosi with LV28. By combining the results of regional association mapping and linkage analysis, we identified GRMZM2G039934 as a candidate gene responsible for qGW4.05. Candidate gene-based association mapping was conducted using a panel of 184 inbred lines with variable kernel weights and kernel sizes. Six polymorphic sites in the gene GRMZM2G039934 were significantly associated with kernel weight and kernel size. The results of linkage analysis and association mapping revealed that GRMZM2G039934 is the most likely candidate gene for qGW4.05. These results will improve our understanding of the genetic architecture and molecular mechanisms underlying kernel development in maize.
Searching remote homology with spectral clustering with symmetry in neighborhood cluster kernels.
Maulik, Ujjwal; Sarkar, Anasua
2013-01-01
Remote homology detection among proteins utilizing only the unlabelled sequences is a central problem in comparative genomics. The existing cluster kernel methods based on neighborhoods and profiles and the Markov clustering algorithms are currently the most popular methods for protein family recognition. The deviation from random walks with inflation or dependency on hard threshold in similarity measure in those methods requires an enhancement for homology detection among multi-domain proteins. We propose to combine spectral clustering with neighborhood kernels in Markov similarity for enhancing sensitivity in detecting homology independent of "recent" paralogs. The spectral clustering approach with new combined local alignment kernels more effectively exploits the unsupervised protein sequences globally reducing inter-cluster walks. When combined with the corrections based on modified symmetry based proximity norm deemphasizing outliers, the technique proposed in this article outperforms other state-of-the-art cluster kernels among all twelve implemented kernels. The comparison with the state-of-the-art string and mismatch kernels also show the superior performance scores provided by the proposed kernels. Similar performance improvement also is found over an existing large dataset. Therefore the proposed spectral clustering framework over combined local alignment kernels with modified symmetry based correction achieves superior performance for unsupervised remote homolog detection even in multi-domain and promiscuous domain proteins from Genolevures database families with better biological relevance. Source code available upon request. sarkar@labri.fr.
Nonmonotonic spatial structure of interneuronal correlations in prefrontal microcircuits
Safavi, Shervin; Dwarakanath, Abhilash; Kapoor, Vishal; Werner, Joachim; Hatsopoulos, Nicholas G.; Logothetis, Nikos K.; Panagiotaropoulos, Theofanis I.
2018-01-01
Correlated fluctuations of single neuron discharges, on a mesoscopic scale, decrease as a function of lateral distance in early sensory cortices, reflecting a rapid spatial decay of lateral connection probability and excitation. However, spatial periodicities in horizontal connectivity and associational input as well as an enhanced probability of lateral excitatory connections in the association cortex could theoretically result in nonmonotonic correlation structures. Here, we show such a spatially nonmonotonic correlation structure, characterized by significantly positive long-range correlations, in the inferior convexity of the macaque prefrontal cortex. This functional connectivity kernel was more pronounced during wakefulness than anesthesia and could be largely attributed to the spatial pattern of correlated variability between functionally similar neurons during structured visual stimulation. These results suggest that the spatial decay of lateral functional connectivity is not a common organizational principle of neocortical microcircuits. A nonmonotonic correlation structure could reflect a critical topological feature of prefrontal microcircuits, facilitating their role in integrative processes. PMID:29588415
USDA-ARS?s Scientific Manuscript database
The ionome, or elemental profile, of a maize kernel represents at least two distinct ideas. First, the collection of elements within the kernel are food, feed and feedstocks for people, animals and industrial processes. Second, the ionome of the kernel represents a developmental end point that can s...
USDA-ARS?s Scientific Manuscript database
Short wave infrared hyperspectral imaging (SWIR) (1000-2500 nm) was used to detect aflatoxin B1 (AFB1) in individual maize kernels. A total of 120 kernels of four varieties (or 30 kernels per variety) that had been artificially inoculated with a toxigenic strain of Aspergillus flavus and harvested f...
USDA-ARS?s Scientific Manuscript database
Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which precludes conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft whit...
Chemical components of cold pressed kernel oils from different Torreya grandis cultivars.
He, Zhiyong; Zhu, Haidong; Li, Wangling; Zeng, Maomao; Wu, Shengfang; Chen, Shangwei; Qin, Fang; Chen, Jie
2016-10-15
The chemical compositions of cold pressed kernel oils of seven Torreya grandis cultivars from China were analyzed in this study. The contents of the chemical components of T. grandis kernels and kernel oils varied to different extents with the cultivar. The T. grandis kernels contained relatively high oil and protein content (45.80-53.16% and 10.34-14.29%, respectively). The kernel oils were rich in unsaturated fatty acids including linoleic (39.39-47.77%), oleic (30.47-37.54%) and eicosatrienoic acid (6.78-8.37%). The kernel oils contained some abundant bioactive substances such as tocopherols (0.64-1.77mg/g) consisting of α-, β-, γ- and δ-isomers; sterols including β-sitosterol (0.90-1.29mg/g), campesterol (0.06-0.32mg/g) and stigmasterol (0.04-0.18mg/g) in addition to polyphenols (9.22-22.16μgGAE/g). The results revealed that the T. grandis kernel oils possessed the potentially important nutrition and health benefits and could be used as oils in the human diet or functional ingredients in the food industry. Copyright © 2016 Elsevier Ltd. All rights reserved.