Sample records for excision repair enzymes

  1. Excision Repair-Initiated Enzyme-Assisted Bicyclic Cascade Signal Amplification for Ultrasensitive Detection of Uracil-DNA Glycosylase.

    PubMed

    Wang, Li-Juan; Ren, Ming; Zhang, Qianyi; Tang, Bo; Zhang, Chun-Yang

    2017-04-18

    Uracil-DNA glycosylase (UDG) is an important base excision repair (BER) enzyme responsible for the repair of uracil-induced DNA lesion and the maintenance of genomic integrity, while the aberrant expression of UDG is associated with a variety of cancers. Thus, the accurate detection of UDG activity is essential to biomedical research and clinical diagnosis. Here, we develop a fluorescent method for ultrasensitive detection of UDG activity using excision repair-initiated enzyme-assisted bicyclic cascade signal amplification. This assay involves (1) UDG-actuated uracil-excision repair, (2) excision repair-initiated nicking enzyme-mediated isothermal exponential amplification, (3) ribonuclease H (RNase H)-induced hydrolysis of signal probes for generating fluorescence signal. The presence of UDG enables the removal of uracil from U·A pairs and generates an apurinic/apyrimidinic (AP) site. Endonuclease IV (Endo IV) subsequently cleaves the AP site, resulting in the break of DNA substrate. The cleaved DNA substrate functions as both a primer and a template to initiate isothermal exponential amplification, producing a large number of triggers. The resultant trigger may selectively hybridize with the signal probe which is modified with FAM and BHQ1, forming a RNA-DNA heterogeneous duplex. The subsequent hydrolysis of RNA-DNA duplex by RNase H leads to the generation of fluorescence signal. This assay exhibits ultrahigh sensitivity with a detection limit of 0.0001 U/mL, and it can even measure UDG activity at the single-cell level. Moreover, this method can be applied for the measurement of kinetic parameters and the screening of inhibitors, thereby providing a powerful tool for DNA repair enzyme-related biomedical research and clinical diagnosis.

  2. Base excision repair: a critical player in many games.

    PubMed

    Wallace, Susan S

    2014-07-01

    This perspective reviews the many dimensions of base excision repair from a 10,000 foot vantage point and provides one person's view on where the field is headed. Enzyme function is considered under the lens of X-ray diffraction and single molecule studies. Base excision repair in chromatin and telomeres, regulation of expression and the role of posttranslational modifications are also discussed in the context of enzyme activities, cellular localization and interacting partners. The specialized roles that base excision repair play in transcriptional activation by active demethylation and targeted oxidation as well as how base excision repair functions in the immune processes of somatic hypermutation and class switch recombination and its possible involvement in retroviral infection are also discussed. Finally the complexities of oxidative damage and its repair and its link to neurodegenerative disorders, as well as the role of base excision repair as a tumor suppressor are examined in the context of damage, repair and aging. By outlining the many base excision repair-related mysteries that have yet to be unraveled, hopefully this perspective will stimulate further interest in the field. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Repair of DNA-polypeptide crosslinks by human excision nuclease

    NASA Astrophysics Data System (ADS)

    Reardon, Joyce T.; Sancar, Aziz

    2006-03-01

    DNA-protein crosslinks are relatively common DNA lesions that form during the physiological processing of DNA by replication and recombination proteins, by side reactions of base excision repair enzymes, and by cellular exposure to bifunctional DNA-damaging agents such as platinum compounds. The mechanism by which pathological DNA-protein crosslinks are repaired in humans is not known. In this study, we investigated the mechanism of recognition and repair of protein-DNA and oligopeptide-DNA crosslinks by the human excision nuclease. Under our assay conditions, the human nucleotide excision repair system did not remove a 16-kDa protein crosslinked to DNA at a detectable level. However, 4- and 12-aa-long oligopeptides crosslinked to the DNA backbone were recognized by some of the damage recognition factors of the human excision nuclease with moderate selectivity and were excised from DNA at relatively efficient rates. Our data suggest that, if coupled with proteolytic degradation of the crosslinked protein, the human excision nuclease may be the major enzyme system for eliminating protein-DNA crosslinks from the genome. damage recognition | nucleotide excision repair

  4. A history of the DNA repair and mutagenesis field: The discovery of base excision repair.

    PubMed

    Friedberg, Errol C

    2016-01-01

    This article reviews the early history of the discovery of an DNA repair pathway designated as base excision repair (BER), since in contrast to the enzyme-catalyzed removal of damaged bases from DNA as nucleotides [called nucleotide excision repair (NER)], BER involves the removal of damaged or inappropriate bases, such as the presence of uracil instead of thymine, from DNA as free bases. Copyright © 2015. Published by Elsevier B.V.

  5. DNA Excision Repair at Telomeres

    PubMed Central

    Jia, Pingping; Her, Chengtao; Chai, Weihang

    2015-01-01

    DNA damage is caused by either endogenous cellular metabolic processes such as hydrolysis, oxidation, alkylation, and DNA base mismatches, or exogenous sources including ultraviolet (UV) light, ionizing radiation, and chemical agents. Damaged DNA that is not properly repaired can lead to genomic instability, driving tumorigenesis. To protect genomic stability, mammalian cells have evolved highly conserved DNA repair mechanisms to remove and repair DNA lesions. Telomeres are composed of long tandem TTAGGG repeats located at the ends of chromosomes. Maintenance of functional telomeres is critical for preventing genome instability. The telomeric sequence possesses unique features that predispose telomeres to a variety of DNA damage induced by environmental genotoxins. This review briefly describes the relevance of excision repair pathways in telomere maintenance, with the focus on base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). By summarizing current knowledge on excision repair of telomere damage and outlining many unanswered questions, it is our hope to stimulate further interest in a better understanding of excision repair processes at telomeres and in how these processes contribute to telomere maintenance. PMID:26422132

  6. Heat shock protein 70 stimulation of the deoxyribonucleic acid base excision repair enzyme polymerase β

    PubMed Central

    Mendez, Frances; Kozin, Elliott; Bases, Robert

    2003-01-01

    Base excision repair (BER) of damaged deoxyribonucleic acid (DNA) is a multistep process during which potentially lethal abasic sites temporarily exist. Repair of these lesions is greatly stimulated by heat shock protein 70 (Hsp70), which enhances strand incision and removal of the abasic sites by human apurinic-apyrimidinic endonuclease (HAP1). The resulting single-strand gaps must then be filled in. Here, we show that Hsp70 and its 48- and 43-kDa N-terminal domains greatly stimulated filling in the single-strand gaps by DNA polymerase β, a novel finding that extends the role of Hsps in DNA repair. Incorporation of deoxyguanosine monophosphate (dGMP) to fill in single-strand gaps in DNA phagemid pBKS by DNA polymerase β was stimulated by Hsp70. Truncated proteins derived from the C-terminus of Hsp70 as well as unrelated proteins were less effective, but proteins derived from the N-terminus of Hsp70 remained efficient stimulators of DNA polymerase β repair of DNA single-strand gaps. In agreement with these results, repair of a gap in a 30-bp oligonucleotide by polymerase β also was strongly stimulated by Hsp70 although not by a truncated protein from the C-terminus of Hsp70. Sealing of the repaired site in the oligonucleotide by human DNA ligase 1 was not specifically stimulated by Hsp-related proteins. Results presented here now implicate and extend the role of Hsp70 as a partner in the enzymatic repair of damaged DNA. The participation of Hsp70 jointly with base excision enzymes improves repair efficiency by mechanisms that are not yet understood. PMID:14627201

  7. Nucleotide excision repair by dual incisions in plants.

    PubMed

    Canturk, Fazile; Karaman, Muhammet; Selby, Christopher P; Kemp, Michael G; Kulaksiz-Erkmen, Gulnihal; Hu, Jinchuan; Li, Wentao; Lindsey-Boltz, Laura A; Sancar, Aziz

    2016-04-26

    Plants use light for photosynthesis and for various signaling purposes. The UV wavelengths in sunlight also introduce DNA damage in the form of cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts [(6-4)PPs] that must be repaired for the survival of the plant. Genome sequencing has revealed the presence of genes for both CPD and (6-4)PP photolyases, as well as genes for nucleotide excision repair in plants, such as Arabidopsis and rice. Plant photolyases have been purified, characterized, and have been shown to play an important role in plant survival. In contrast, even though nucleotide excision repair gene homologs have been found in plants, the mechanism of nucleotide excision repair has not been investigated. Here we used the in vivo excision repair assay developed in our laboratory to demonstrate that Arabidopsis removes CPDs and (6-4)PPs by a dual-incision mechanism that is essentially identical to the mechanism of dual incisions in humans and other eukaryotes, in which oligonucleotides with a mean length of 26-27 nucleotides are removed by incising ∼20 phosphodiester bonds 5' and 5 phosphodiester bonds 3' to the photoproduct.

  8. Both base excision repair and nucleotide excision repair in humans are influenced by nutritional factors.

    PubMed

    Brevik, Asgeir; Karlsen, Anette; Azqueta, Amaya; Tirado, Anna Estaban; Blomhoff, Rune; Collins, Andrew

    2011-01-01

    Lack of reliable assays for DNA repair has largely prevented measurements of DNA repair from being included in human biomonitoring studies. Using newly developed modifications of the comet assay we tested whether a fruit- and antioxidant-rich plant-based intervention could affect base excision repair (BER) and nucleotide excision repair (NER) in a group of 102 male volunteers. BER and NER repair capacities were measured in lymphocytes before and after a dietary intervention lasting 8 weeks. The study had one control group, one group consuming three kiwifruits per day and one group consuming a variety of antioxidant-rich fruits and plant products in addition to their normal diet. DNA strand breaks were reduced following consumption of both kiwifruits (13%, p = 0.05) and antioxidant-rich plant products (20%, p = 0.02). Increased BER (55%, p = 0.01) and reduced NER (-39%, p < 0.01) were observed in the group consuming a wide variety of plant products. Reduced NER was also observed in the kiwifruit group (-38%, p = 0.05), but BER was not affected in this group. Here we have demonstrated that DNA repair is affected by diet and that modified versions of the comet assay can be used to assess activity of different DNA repair pathways in human biomonitoring studies. Copyright © 2010 John Wiley & Sons, Ltd.

  9. Base Excision Repair

    PubMed Central

    Krokan, Hans E.; Bjørås, Magnar

    2013-01-01

    Base excision repair (BER) corrects DNA damage from oxidation, deamination and alkylation. Such base lesions cause little distortion to the DNA helix structure. BER is initiated by a DNA glycosylase that recognizes and removes the damaged base, leaving an abasic site that is further processed by short-patch repair or long-patch repair that largely uses different proteins to complete BER. At least 11 distinct mammalian DNA glycosylases are known, each recognizing a few related lesions, frequently with some overlap in specificities. Impressively, the damaged bases are rapidly identified in a vast excess of normal bases, without a supply of energy. BER protects against cancer, aging, and neurodegeneration and takes place both in nuclei and mitochondria. More recently, an important role of uracil-DNA glycosylase UNG2 in adaptive immunity was revealed. Furthermore, other DNA glycosylases may have important roles in epigenetics, thus expanding the repertoire of BER proteins. PMID:23545420

  10. Base excision repair, the redox environment and therapeutic implications.

    PubMed

    Storr, S J; Woolston, C M; Martin, S G

    2012-01-01

    Control of redox homeostasis is crucial for a number of cellular processes with deregulation leading to a number of serious consequences including oxidative damage such induction of DNA base lesions. The DNA lesions caused by oxidative damage are principally repaired by the base excision repair (BER) pathway. Pharmacological inhibition of BER is becoming an increasingly active area of research with the emergence of PARP inhibitors in cancer therapy. The redox status of the cell is modulated by a number of systems, including a large number of anti-oxidant enzymes who function in the control of superoxide and hydrogen peroxide, and ultimately in the release of the damaging hydroxyl radical. Here we provide an overview of reactive oxygen species (ROS) production and its modulation by antioxidant enzymes. The review also discusses the effect of ROS on the BER pathway, particularly in relation to cancer. Finally, as the modulation of the redox environment is of interest in cancer therapy, with certain agents having the potential to reverse chemo- and radiotherapy resistance or treat therapy related toxicity, we discuss redox modulating agents currently under development.

  11. Oxidatively-induced DNA damage and base excision repair in euthymic patients with bipolar disorder.

    PubMed

    Ceylan, Deniz; Tuna, Gamze; Kirkali, Güldal; Tunca, Zeliha; Can, Güneş; Arat, Hidayet Ece; Kant, Melis; Dizdaroglu, Miral; Özerdem, Ayşegül

    2018-05-01

    Oxidatively-induced DNA damage has previously been associated with bipolar disorder. More recently, impairments in DNA repair mechanisms have also been reported. We aimed to investigate oxidatively-induced DNA lesions and expression of DNA glycosylases involved in base excision repair in euthymic patients with bipolar disorder compared to healthy individuals. DNA base lesions including both base and nucleoside modifications were measured using gas chromatography-tandem mass spectrometry and liquid chromatography-tandem mass spectrometry with isotope-dilution in DNA samples isolated from leukocytes of euthymic patients with bipolar disorder (n = 32) and healthy individuals (n = 51). The expression of DNA repair enzymes OGG1 and NEIL1 were measured using quantitative real-time polymerase chain reaction. The levels of malondialdehyde were measured using high performance liquid chromatography. Seven DNA base lesions in DNA of leukocytes of patients and healthy individuals were identified and quantified. Three of them had significantly elevated levels in bipolar patients when compared to healthy individuals. No elevation of lipid peroxidation marker malondialdehyde was observed. The level of OGG1 expression was significantly reduced in bipolar patients compared to healthy individuals, whereas the two groups exhibited similar levels of NEIL1 expression. Our results suggest that oxidatively-induced DNA damage occurs and base excision repair capacity may be decreased in bipolar patients when compared to healthy individuals. Measurement of oxidatively-induced DNA base lesions and the expression of DNA repair enzymes may be of great importance for large scale basic research and clinical studies of bipolar disorder. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Removal of N-6-methyladenine by the nucleotide excision repair pathway triggers the repair of mismatches in yeast gap-repair intermediates.

    PubMed

    Guo, Xiaoge; Jinks-Robertson, Sue

    2013-12-01

    Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the collateral

  13. Removal of N-6-methyladenine by the nucleotide excision repair pathway triggers the repair of mismatches in yeast gap-repair intermediates

    PubMed Central

    Guo, Xiaoge; Jinks-Robertson, Sue

    2013-01-01

    Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the cillateral

  14. Base excision DNA repair in the embryonic development of the sea urchin, Strongylocentrotus intermedius.

    PubMed

    Torgasheva, Natalya A; Menzorova, Natalya I; Sibirtsev, Yurii T; Rasskazov, Valery A; Zharkov, Dmitry O; Nevinsky, Georgy A

    2016-06-21

    In actively proliferating cells, such as the cells of the developing embryo, DNA repair is crucial for preventing the accumulation of mutations and synchronizing cell division. Sea urchin embryo growth was analyzed and extracts were prepared. The relative activity of DNA polymerase, apurinic/apyrimidinic (AP) endonuclease, uracil-DNA glycosylase, 8-oxoguanine-DNA glycosylase, and other glycosylases was analyzed using specific oligonucleotide substrates of these enzymes; the reaction products were resolved by denaturing 20% polyacrylamide gel electrophoresis. We have characterized the profile of several key base excision repair activities in the developing embryos (2 blastomers to mid-pluteus) of the grey sea urchin, Strongylocentrotus intermedius. The uracil-DNA glycosylase specific activity sharply increased after blastula hatching, whereas the specific activity of 8-oxoguanine-DNA glycosylase steadily decreased over the course of the development. The AP-endonuclease activity gradually increased but dropped at the last sampled stage (mid-pluteus 2). The DNA polymerase activity was high at the first cleavage division and then quickly decreased, showing a transient peak at blastula hatching. It seems that the developing sea urchin embryo encounters different DNA-damaging factors early in development within the protective envelope and later as a free-floating larva, with hatching necessitating adaptation to the shift in genotoxic stress conditions. No correlation was observed between the dynamics of the enzyme activities and published gene expression data from developing congeneric species, S. purpuratus. The results suggest that base excision repair enzymes may be regulated in the sea urchin embryos at the level of covalent modification or protein stability.

  15. Base Excision Repair of Oxidative DNA Damage

    PubMed Central

    David, Sheila S.; O’Shea, Valerie L.; Kundu, Sucharita

    2010-01-01

    Base excision repair plays an important role in preventing mutations associated with the common product of oxidative damage, 8-oxoguanine. Recent structural studies have shown that 8-oxoguanine glycosylases use an intricate series of steps to efficiently search and locate 8-oxoguanine lesions within the multitude of undamaged bases. The importance of prevention of mutations associated with 8-oxoguanine has also been illustrated by direct connections between defects in the BER glycosylase MUTYH and colorectal cancer. In addition, the properties of other guanine oxidation products and the BER glycosylases that remove them are being uncovered. This work is providing surprising and intriguing new insights into the process of base excision repair. PMID:17581577

  16. Premature aging and cancer in nucleotide excision repair-disorders

    PubMed Central

    Diderich, K.; Alanazi, M.; Hoeijmakers, J.H.J.

    2014-01-01

    During past decades the major impact of DNA damage on cancer as ‘disease of the genes’ has become abundantly apparent. In addition to cancer recent years have also uncovered a very strong association of DNA damage with many features of (premature) aging. The notion that DNA repair systems not only protect against cancer but equally against too fast aging has become evident from a systematic, integral analysis of a variety of mouse mutants carrying defects in e.g. transcription-coupled repair with or without an additional impairment of global genome nucleotide excision repair and the corresponding segmental premature aging syndromes in man. A striking correlation between the degree of the DNA repair deficiency and the acceleration of specific progeroid symptoms has been discovered for those repair systems that primarily protect from the cytotoxic and cytostatic effects of DNA damage. These observations are explained from the perspective of nucleotide excision repair mouse mutant and human syndromes. However, similar principles likely apply to other DNA repair pathways including interstrand crosslink repair and double strand break repair and genome maintenance systems in general, supporting the notion that DNA damage constitutes an important intermediate in the process of aging. PMID:21680258

  17. Deficiency of base excision repair enzyme NEIL3 drives increased predisposition to autoimmunity

    PubMed Central

    Massaad, Michel J.; Zhou, Jia; Tsuchimoto, Daisuke; Chou, Janet; Jabara, Haifa; Janssen, Erin; Glauzy, Salomé; Olson, Brennan G.; Morbach, Henner; Ohsumi, Toshiro K.; Schmitz, Klaus; Kane, Jennifer; Torisu, Kumiko; Chouery, Eliane; Megarbane, Andre; Kang, Peter B.; Al-Idrissi, Eman; Aldhekri, Hasan; Meffre, Eric; Mizui, Masayuki; Manis, John P.; Al-Herz, Waleed; Wallace, Susan S.; Geha, Raif S.

    2016-01-01

    Alterations in the apoptosis of immune cells have been associated with autoimmunity. Here, we have identified a homozygous missense mutation in the gene encoding the base excision repair enzyme Nei endonuclease VIII-like 3 (NEIL3) that abolished enzymatic activity in 3 siblings from a consanguineous family. The NEIL3 mutation was associated with fatal recurrent infections, severe autoimmunity, hypogammaglobulinemia, and impaired B cell function in these individuals. The same homozygous NEIL3 mutation was also identified in an asymptomatic individual who exhibited elevated levels of serum autoantibodies and defective peripheral B cell tolerance, but normal B cell function. Further analysis of the patients revealed an absence of LPS-responsive beige-like anchor (LRBA) protein expression, a known cause of immunodeficiency. We next examined the contribution of NEIL3 to the maintenance of self-tolerance in Neil3–/– mice. Although Neil3–/– mice displayed normal B cell function, they exhibited elevated serum levels of autoantibodies and developed nephritis following treatment with poly(I:C) to mimic microbial stimulation. In Neil3–/– mice, splenic T and B cells as well as germinal center B cells from Peyer’s patches showed marked increases in apoptosis and cell death, indicating the potential release of self-antigens that favor autoimmunity. These findings demonstrate that deficiency in NEIL3 is associated with increased lymphocyte apoptosis, autoantibodies, and predisposition to autoimmunity. PMID:27760045

  18. Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1.

    PubMed

    Arczewska, Katarzyna D; Tomazella, Gisele G; Lindvall, Jessica M; Kassahun, Henok; Maglioni, Silvia; Torgovnick, Alessandro; Henriksson, Johan; Matilainen, Olli; Marquis, Bryce J; Nelson, Bryant C; Jaruga, Pawel; Babaie, Eshrat; Holmberg, Carina I; Bürglin, Thomas R; Ventura, Natascia; Thiede, Bernd; Nilsen, Hilde

    2013-05-01

    Transcription-blocking oxidative DNA damage is believed to contribute to aging and to underlie activation of oxidative stress responses and down-regulation of insulin-like signaling (ILS) in Nucleotide Excision Repair (NER) deficient mice. Here, we present the first quantitative proteomic description of the Caenorhabditis elegans NER-defective xpa-1 mutant and compare the proteome and transcriptome signatures. Both methods indicated activation of oxidative stress responses, which was substantiated biochemically by a bioenergetic shift involving increased steady-state reactive oxygen species (ROS) and Adenosine triphosphate (ATP) levels. We identify the lesion-detection enzymes of Base Excision Repair (NTH-1) and global genome NER (XPC-1 and DDB-1) as upstream requirements for transcriptomic reprogramming as RNA-interference mediated depletion of these enzymes prevented up-regulation of genes over-expressed in the xpa-1 mutant. The transcription factors SKN-1 and SLR-2, but not DAF-16, were identified as effectors of reprogramming. As shown in human XPA cells, the levels of transcription-blocking 8,5'-cyclo-2'-deoxyadenosine lesions were reduced in the xpa-1 mutant compared to the wild type. Hence, accumulation of cyclopurines is unlikely to be sufficient for reprogramming. Instead, our data support a model where the lesion-detection enzymes NTH-1, XPC-1 and DDB-1 play active roles to generate a genomic stress signal sufficiently strong to result in transcriptomic reprogramming in the xpa-1 mutant.

  19. EVIDENCE FOR BASE EXCISION REPAIR PROCESSING OF DNA INTERSTRAND CROSSLINKS

    PubMed Central

    Kothandapani, Anbarasi; Patrick, Steve M

    2013-01-01

    Many bifunctional alkylating agents and anticancer drugs exert their cytotoxicity by producing cross links between the two complementary strands of DNA, termed interstrand crosslinks (ICLs). This blocks the strand separating processes during DNA replication and transcription, which can lead to cell cycle arrest and apoptosis. Cells use multiple DNA repair systems to eliminate the ICLs. Concerted action of repair proteins involved in Nucleotide Excision Repair and Homologous Recombination pathways are suggested to play a key role in the ICL repair. However, recent studies indicate a possible role for Base Excision Repair (BER) in mediating the cytotoxicity of ICL inducing agents in mammalian cells. Elucidating the mechanism of BER mediated modulation of ICL repair would help in understanding the recognition and removal of ICLs and aid in the development of potential therapeutic agents. In this review, the influence of BER proteins on ICL DNA repair and the possible mechanisms of action are discussed. PMID:23219605

  20. Cellular Assays for Studying the Fe-S Cluster Containing Base Excision Repair Glycosylase MUTYH and Homologs.

    PubMed

    Majumdar, Chandrima; Nuñez, Nicole N; Raetz, Alan G; Khuu, Cindy; David, Sheila S

    2018-01-01

    Many DNA repair enzymes, including the human adenine glycosylase MUTYH, require iron-sulfur (Fe-S) cluster cofactors for DNA damage recognition and subsequent repair. MUTYH prokaryotic and eukaryotic homologs are a family of adenine (A) glycosylases that cleave A when mispaired with the oxidatively damaged guanine lesion, 8-oxo-7,8-dihydroguanine (OG). Faulty OG:A repair has been linked to the inheritance of missense mutations in the MUTYH gene. These inherited mutations can result in the onset of a familial colorectal cancer disorder known as MUTYH-associated polyposis (MAP). While in vitro studies can be exceptional at unraveling how MutY interacts with its OG:A substrate, cell-based assays are needed to provide a cellular context to these studies. In addition, strategic comparison of in vitro and in vivo studies can provide exquisite insight into the search, selection, excision process, and the coordination with protein partners, required to mediate full repair of the lesion. A commonly used assay is the rifampicin resistance assay that provides an indirect evaluation of the intrinsic mutation rate in Escherichia coli (E. coli or Ec), read out as antibiotic-resistant cell growth. Our laboratory has also developed a bacterial plasmid-based assay that allows for direct evaluation of repair of a defined OG:A mispair. This assay provides a means to assess the impact of catalytic defects in affinity and excision on overall repair. Finally, a mammalian GFP-based reporter assay has been developed that more accurately models features of mammalian cells. Taken together, these assays provide a cellular context to the repair activity of MUTYH and its homologs that illuminates the role these enzymes play in preventing mutations and disease. © 2018 Elsevier Inc. All rights reserved.

  1. Comparison of Three Surgical Methods in Treatment of Patients with Pilonidal Sinus: Modified Excision and Repair/Wide Excision/Wide Excision and Flap in RASOUL, OMID and SADR Hospitals( 2004-2007).

    PubMed

    Hosseini, Mostafa; Heidari, Afshin; Jafarnejad, Babak

    2013-10-01

    This study is a comparison between three methods that are frequently used for the surgical treatment of pilonidal disease all over the world: modified excision and repair, wide excision and secondary repair, and wide excision and flap. The first technique is done by our group for the first time, and has not been described previously in the literature. This is an interventional study performed at Omid, Sadr, and Rasoul Akram hospitals on patients who had undergone operation because of pilonidal sinus disease and met the inclusion criteria between 2004 and 2007. Exclusion criteria were (1) acute pilonidal sinus diseases, (2) history of pilonidal sinus surgery, (3) history of systemic diseases (DM, malignancy, etc.), and (4) pilonidal abscess. Essential information was extracted from complete medical archives. Any data not available in files or during follow-up visits (all patients supposed to be followed at least for 1 year) were gathered by a telephone interview. A total of 194 patients met the criteria and had complete archived files. Longer duration of hospital stay was found in the "wide excision and closing with flap" method comparing with two other methods (P < 0.05). Length of incapacity for work was not different between the "wide excision and modified repair" and "wide excision" (P > 0.5) methods, but longer for "wide excision and flap" in comparison with two others (P < 0.05). Healing time was significantly longer in the "wide excision" method in comparison with two other methods (P < 0.05). However, "wide excision and modified repair" method had the least healing time between all above techniques, except for length of leaving the office. All the three recurrences (1.5 %) occurred in the wide excision and flap method (P < 0.05). The frequency of postoperative complications was 2 (3.3 %) in wide excision and modified repair, 15 (18.5 %) in wide excision, and 17 (32.7 %) in wide excision and flap closure; these differences in

  2. Lys98 Substitution in Human AP Endonuclease 1 Affects the Kinetic Mechanism of Enzyme Action in Base Excision and Nucleotide Incision Repair Pathways

    PubMed Central

    Timofeyeva, Nadezhda A.; Koval, Vladimir V.; Ishchenko, Alexander A.; Saparbaev, Murat K.; Fedorova, Olga S.

    2011-01-01

    Human apurinic/apyrimidinic endonuclease 1 (APE1) is a key enzyme in the base excision repair (BER) and nucleotide incision repair (NIR) pathways. We recently analyzed the conformational dynamics and kinetic mechanism of wild-type (wt) protein, in a stopped-flow fluorescence study. In this study, we investigated the mutant enzyme APE1K98A using the same approach. Lys98 was known to hydrogen bond to the carboxyl group of Asp70, a residue implicated in binding the divalent metal ion. Our data suggested that the conformational selection and induced fit occur during the enzyme action. We expanded upon the evidence that APE1 can pre-exist in two conformations. The isomerization of an enzyme-product complex in the BER process and the additional isomerization stage of enzyme-substrate complex in the NIR process were established for APE1K98A. These stages had not been registered for the wtAPE1. We found that the K98A substitution resulted in a 12-fold reduction of catalytic constant of 5′-phosphodiester bond hydrolysis in (3-hydroxytetrahydrofuran-2-yl)methyl phosphate (F, tetrahydrofuran) containing substrate, and in 200-fold reduction in 5,6-dihydrouridine (DHU) containing substrate. Thus, the K98A substitution influenced NIR more than BER. We demonstrated that the K98A mutation influenced the formation of primary unspecific enzyme-substrate complex in a complicated manner, depending on the Mg2+ concentration and pH. This mutation obstructed the induced fit of enzyme in the complex with undamaged DNA and F-containing DNA and appreciably decreased the stability of primary complex upon interaction of enzyme with DNA, containing the natural apurinic/apyrimidinic (AP) site. Furthermore, it significantly delayed the activation of the less active form of enzyme during NIR and slowed down the conformational conversion of the complex of enzyme with the cleavage product of DHU-substrate. Our data revealed that APE1 uses the same active site to catalyze the cleavage of DHU- and

  3. Fe-S Clusters and MutY Base Excision Repair Glycosylases: Purification, Kinetics, and DNA Affinity Measurements.

    PubMed

    Nuñez, Nicole N; Majumdar, Chandrima; Lay, Kori T; David, Sheila S

    2018-01-01

    A growing number of iron-sulfur (Fe-S) cluster cofactors have been identified in DNA repair proteins. MutY and its homologs are base excision repair (BER) glycosylases that prevent mutations associated with the common oxidation product of guanine (G), 8-oxo-7,8-dihydroguanine (OG) by catalyzing adenine (A) base excision from inappropriately formed OG:A mispairs. The finding of an [4Fe-4S] 2+ cluster cofactor in MutY, Endonuclease III, and structurally similar BER enzymes was surprising and initially thought to represent an example of a purely structural role for the cofactor. However, in the two decades subsequent to the initial discovery, purification and in vitro analysis of bacterial MutYs and mammalian homologs, such as human MUTYH and mouse Mutyh, have demonstrated that proper Fe-S cluster coordination is required for OG:A substrate recognition and adenine excision. In addition, the Fe-S cluster in MutY has been shown to be capable of redox chemistry in the presence of DNA. The work in our laboratory aimed at addressing the importance of the MutY Fe-S cluster has involved a battery of approaches, with the overarching hypothesis that understanding the role(s) of the Fe-S cluster is intimately associated with understanding the biological and chemical properties of MutY and its unique damaged DNA substrate as a whole. In this chapter, we focus on methods of enzyme expression and purification, detailed enzyme kinetics, and DNA affinity assays. The methods described herein have not only been leveraged to provide insight into the roles of the MutY Fe-S cluster but have also been provided crucial information needed to delineate the impact of inherited variants of the human homolog MUTYH associated with a colorectal cancer syndrome known as MUTYH-associated polyposis or MAP. Notably, many MAP-associated variants have been found adjacent to the Fe-S cluster further underscoring the intimate relationship between the cofactor, MUTYH-mediated DNA repair, and disease.

  4. Direct inhibition of excision/synthesis DNA repair activities by cadmium: analysis on dedicated biochips.

    PubMed

    Candéias, S; Pons, B; Viau, M; Caillat, S; Sauvaigo, S

    2010-12-10

    The well established toxicity of cadmium and cadmium compounds results from their additive effects on several key cellular processes, including DNA repair. Mammalian cells have evolved several biochemical pathways to repair DNA lesions and maintain genomic integrity. By interfering with the homeostasis of redox metals and antioxidant systems, cadmium promotes the development of an intracellular environment that results in oxidative DNA damage which can be mutagenic if unrepaired. Small base lesions are recognised by specialized glycosylases and excised from the DNA molecule. The resulting abasic sites are incised, and the correct sequences restored by DNA polymerases using the opposite strands as template. Bulky lesions are recognised by a different set of proteins and excised from DNA as part of an oligonucleotide. As in base repair, the resulting gaps are filled by DNA polymerases using the opposite strands as template. Thus, these two repair pathways consist in excision of the lesion followed by DNA synthesis. In this study, we analysed in vitro the direct effects of cadmium exposure on the functionality of base and nucleotide DNA repair pathways. To this end, we used recently described dedicated microarrays that allow the parallel monitoring in cell extracts of the repair activities directed against several model base and/or nucleotide lesions. Both base and nucleotide excision/repair pathways are inhibited by CdCl₂, with different sensitivities. The inhibitory effects of cadmium affect mainly the recognition and excision stages of these processes. Furthermore, our data indicate that the repair activities directed against different damaged bases also exhibit distinct sensitivities, and the direct comparison of cadmium effects on the excision of uracile in different sequences even allows us to propose a hierarchy of cadmium sensibility within the glycosylases removing U from DNA. These results indicate that, in our experimental conditions, cadmium is a very

  5. ALC1/CHD1L, a chromatin-remodeling enzyme, is required for efficient base excision repair.

    PubMed

    Tsuda, Masataka; Cho, Kosai; Ooka, Masato; Shimizu, Naoto; Watanabe, Reiko; Yasui, Akira; Nakazawa, Yuka; Ogi, Tomoo; Harada, Hiroshi; Agama, Keli; Nakamura, Jun; Asada, Ryuta; Fujiike, Haruna; Sakuma, Tetsushi; Yamamoto, Takashi; Murai, Junko; Hiraoka, Masahiro; Koike, Kaoru; Pommier, Yves; Takeda, Shunichi; Hirota, Kouji

    2017-01-01

    ALC1/CHD1L is a member of the SNF2 superfamily of ATPases carrying a macrodomain that binds poly(ADP-ribose). Poly(ADP-ribose) polymerase (PARP) 1 and 2 synthesize poly(ADP-ribose) at DNA-strand cleavage sites, promoting base excision repair (BER). Although depletion of ALC1 causes increased sensitivity to various DNA-damaging agents (H2O2, UV, and phleomycin), the role played by ALC1 in BER has not yet been established. To explore this role, as well as the role of ALC1's ATPase activity in BER, we disrupted the ALC1 gene and inserted the ATPase-dead (E165Q) mutation into the ALC1 gene in chicken DT40 cells, which do not express PARP2. The resulting ALC1-/- and ALC1-/E165Q cells displayed an indistinguishable hypersensitivity to methylmethane sulfonate (MMS), an alkylating agent, and to H2O2, indicating that ATPase plays an essential role in the DNA-damage response. PARP1-/- and ALC1-/-/PARP1-/- cells exhibited a very similar sensitivity to MMS, suggesting that ALC1 and PARP1 collaborate in BER. Following pulse-exposure to H2O2, PARP1-/- and ALC1-/-/PARP1-/- cells showed similarly delayed kinetics in the repair of single-strand breaks, which arise as BER intermediates. To ascertain ALC1's role in BER in mammalian cells, we disrupted the ALC1 gene in human TK6 cells. Following exposure to MMS and to H2O2, the ALC1-/- TK6 cell line showed a delay in single-strand-break repair. We therefore conclude that ALC1 plays a role in BER. Following exposure to H2O2, ALC1-/- cells showed compromised chromatin relaxation. We thus propose that ALC1 is a unique BER factor that functions in a chromatin context, most likely as a chromatin-remodeling enzyme.

  6. Coupling between nucleotide excision repair and gene expression.

    PubMed

    Cambindo Botto, Adrián E; Muñoz, Juan C; Muñoz, Manuel J

    2018-05-17

    Gene expression and DNA repair are fundamental processes for life. During the last decade, accumulating experimental evidence point towards different modes of coupling between these processes. Here we discuss the molecular mechanisms by which RNAPII-dependent transcription affects repair by the Nucleotide Excision Repair system (NER) and how NER activity, through the generation of single stranded DNA intermediates and activation of the DNA damage response kinase ATR, drives gene expression in a genotoxic scenario. Since NER-dependent repair is compromised in Xeroderma Pigmentosum (XP) patients, and having in mind that these patients present a high degree of clinical heterogeneity, we speculate that some of the clinical features of XP patients can be explained by misregulation of gene expression.

  7. [Application of repair enzymes to improve the quality of degraded DNA templates for PCR amplification].

    PubMed

    Dovgerd, A P; Zharkov, D O

    2014-01-01

    PCR amplification of severely degraded DNA, including ancient DNA, forensic samples, and preparations from deeply processed foodstuffs, is a serious problem. Living organisms have a set of enzymes to repair lesions in their DNA. In this work, we have developed and characterized model systems of degraded high-molecular-weight DNA with a predominance of different types of damage. It was shown that depurination and oxidation of the model plasmid DNA template led to a decrease in the PCR efficiency. A set of enzymes performing a full cycle of excision repair of some lesions was determined. The treatment of model-damaged substrates with this set of enzymes resulted in an increased PCR product yield as compared with that of the unrepaired samples.

  8. The Influence of Hepatitis C Virus Therapy on the DNA Base Excision Repair System of Peripheral Blood Mononuclear Cells.

    PubMed

    Czarny, Piotr; Merecz-Sadowska, Anna; Majchrzak, Kinga; Jabłkowski, Maciej; Szemraj, Janusz; Śliwiński, Tomasz; Karwowski, Bolesław

    2017-07-01

    Hepatitis C virus (HCV) can infect extrahepatic tissues, including lymphocytes, creating reservoir of the virus. Moreover, HCV proteins can interact with DNA damage response proteins of infected cells. In this article we investigated the influence of the virus infection and a new ombitasvir/paritaprevir/ritonavir ± dasabuvir ± ribavirin (OBV/PTV/r ± DSV ± RBV) anti-HCV therapy on the PBMCs (peripheral blood mononuclear cells, mainly lymphocytes) DNA base excision repair (BER) system. BER protein activity was analyzed in the nuclear and mitochondrial extracts (NE and ME) of PBMC isolated from patients before and after therapy, and from subjects without HCV, using modeled double-strand DNA, with 2'-deoxyuridine substitution as the DNA damage. The NE and ME obtained from patients before therapy demonstrated lower efficacy of 2'-deoxyuridine removal and DNA repair polymerization than those of the control group or patients after therapy. Moreover, the extracts from the patients after therapy had similar activity to those from the control group. However, the efficacy of apurinic/apyrimidinic site excision in NE did not differ between the studied groups. We postulate that infection of lymphocytes by the HCV can lead to a decrease in the activity of BER enzymes. However, the use of novel therapy results in the improvement of glycosylase activity as well as the regeneration of endonuclease and other crucial repair enzymes.

  9. Uracil-DNA Glycosylase in Base Excision Repair and Adaptive Immunity

    PubMed Central

    Doseth, Berit; Visnes, Torkild; Wallenius, Anders; Ericsson, Ida; Sarno, Antonio; Pettersen, Henrik Sahlin; Flatberg, Arnar; Catterall, Tara; Slupphaug, Geir; Krokan, Hans E.; Kavli, Bodil

    2011-01-01

    Genomic uracil is a DNA lesion but also an essential key intermediate in adaptive immunity. In B cells, activation-induced cytidine deaminase deaminates cytosine to uracil (U:G mispairs) in Ig genes to initiate antibody maturation. Uracil-DNA glycosylases (UDGs) such as uracil N-glycosylase (UNG), single strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1), and thymine-DNA glycosylase remove uracil from DNA. Gene-targeted mouse models are extensively used to investigate the role of these enzymes in DNA repair and Ig diversification. However, possible species differences in uracil processing in humans and mice are yet not established. To address this, we analyzed UDG activities and quantities in human and mouse cell lines and in splenic B cells from Ung+/+ and Ung−/− backcrossed mice. Interestingly, human cells displayed ∼15-fold higher total uracil excision capacity due to higher levels of UNG. In contrast, SMUG1 activity was ∼8-fold higher in mouse cells, constituting ∼50% of the total U:G excision activity compared with less than 1% in human cells. In activated B cells, both UNG and SMUG1 activities were at levels comparable with those measured for mouse cell lines. Moreover, SMUG1 activity per cell was not down-regulated after activation. We therefore suggest that SMUG1 may work as a weak backup activity for UNG2 during class switch recombination in Ung−/− mice. Our results reveal significant species differences in genomic uracil processing. These findings should be taken into account when mouse models are used in studies of uracil DNA repair and adaptive immunity. PMID:21454529

  10. Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae. IV. Influence of DNA replication and excision repair on REV2 dependent UV-mutagenesis and repair.

    PubMed

    Siede, W; Eckardt, F

    1986-01-01

    A double mutant being thermoconditionally defective in mutation induction as well as in repair of pre-lethal UV-induced DNA damage (rev2ts) and deficient in excision repair (rad3-2) was studied in temperature-shift experiments. The influence of inhibitors of DNA replication (hydroxyurea, aphidicolin) was determined. Additionally, an analysis of the dose-response pattern of mutation induction ("mutation kinetics") at several ochre alleles was carried out. It was concluded that the UV-inducible REV2 dependent mutagenic repair process is not induced in excision-deficient cells. In excision-deficient cells, REV2 dependent mutation fixation is slow and mostly post-replicative though not dependent on DNA replication. The REV2 mediated mutagenic process could be separated from the repair function.

  11. Resistance to Nucleotide Excision Repair of Bulky Guanine Adducts Opposite Abasic Sites in DNA Duplexes and Relationships between Structure and Function

    PubMed Central

    Liu, Zhi; Ding, Shuang; Kropachev, Konstantin; Lei, Jia; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2015-01-01

    The nucleotide excision repair of certain bulky DNA lesions is abrogated in some specific non-canonical DNA base sequence contexts, while the removal of the same lesions by the nucleotide excision repair mechanism is efficient in duplexes in which all base pairs are complementary. Here we show that the nucleotide excision repair activity in human cell extracts is moderate-to-high in the case of two stereoisomeric DNA lesions derived from the pro-carcinogen benzo[a]pyrene (cis- and trans-B[a]P-N 2-dG adducts) in a normal DNA duplex. By contrast, the nucleotide excision repair activity is completely abrogated when the canonical cytosine base opposite the B[a]P-dG adducts is replaced by an abasic site in duplex DNA. However, base excision repair of the abasic site persists. In order to understand the structural origins of these striking phenomena, we used NMR and molecular spectroscopy techniques to evaluate the conformational features of 11mer DNA duplexes containing these B[a]P-dG lesions opposite abasic sites. Our results show that in these duplexes containing the clustered lesions, both B[a]P-dG adducts adopt base-displaced intercalated conformations, with the B[a]P aromatic rings intercalated into the DNA helix. To explain the persistence of base excision repair in the face of the opposed bulky B[a]P ring system, molecular modeling results suggest how the APE1 base excision repair endonuclease, that excises abasic lesions, can bind productively even with the trans-B[a]P-dG positioned opposite the abasic site. We hypothesize that the nucleotide excision repair resistance is fostered by local B[a]P residue—DNA base stacking interactions at the abasic sites, that are facilitated by the absence of the cytosine partner base in the complementary strand. More broadly, this study sets the stage for elucidating the interplay between base excision and nucleotide excision repair in processing different types of clustered DNA lesions that are substrates of nucleotide

  12. A network of enzymes involved in repair of oxidative DNA damage in Neisseria meningitidis

    PubMed Central

    Li, Yanwen; Pelicic, Vladimir; Freemont, Paul S.; Baldwin, Geoff S.; Tang, Christoph M.

    2013-01-01

    Although oxidative stress is a key aspect of innate immunity, little is known about how host-restricted pathogens successfully repair DNA damage. Base excision repair (BER) is responsible for correcting nucleobases damaged by oxidative stress, and is essential for bloodstream infection caused by the human pathogen, Neisseria meningitidis. We have characterised meningococcal BER enzymes involved in the recognition and removal of damaged nucleobases, and incision of the DNA backbone. We demonstrate that the bi-functional glycosylase/lyases Nth and MutM share several overlapping activities and functional redundancy. However MutM and other members of the GO system, which deal with 8-oxoG, a common lesion of oxidative damage, are not required for survival of N. meningitidis under oxidative stress. Instead, the mismatch repair pathway provides back-up for the GO system, while the lyase activity of Nth can substitute for the meningococcal AP endonuclease, NApe. Our genetic and biochemical evidence show that DNA repair is achieved through a robust network of enzymes that provides a flexible system of DNA repair. This network is likely to reflect successful adaptation to the human nasopharynx, and might provide a paradigm for DNA repair in other prokaryotes. PMID:22296581

  13. Regulatory mechanisms of RNA function: emerging roles of DNA repair enzymes.

    PubMed

    Jobert, Laure; Nilsen, Hilde

    2014-07-01

    The acquisition of an appropriate set of chemical modifications is required in order to establish correct structure of RNA molecules, and essential for their function. Modification of RNA bases affects RNA maturation, RNA processing, RNA quality control, and protein translation. Some RNA modifications are directly involved in the regulation of these processes. RNA epigenetics is emerging as a mechanism to achieve dynamic regulation of RNA function. Other modifications may prevent or be a signal for degradation. All types of RNA species are subject to processing or degradation, and numerous cellular mechanisms are involved. Unexpectedly, several studies during the last decade have established a connection between DNA and RNA surveillance mechanisms in eukaryotes. Several proteins that respond to DNA damage, either to process or to signal the presence of damaged DNA, have been shown to participate in RNA quality control, turnover or processing. Some enzymes that repair DNA damage may also process modified RNA substrates. In this review, we give an overview of the DNA repair proteins that function in RNA metabolism. We also discuss the roles of two base excision repair enzymes, SMUG1 and APE1, in RNA quality control.

  14. Base excision repair in Archaea: back to the future in DNA repair.

    PubMed

    Grasso, Stefano; Tell, Gianluca

    2014-09-01

    Together with Bacteria and Eukarya, Archaea represents one of the three domain of life. In contrast with the morphological difference existing between Archaea and Eukarya, these two domains are closely related. Phylogenetic analyses confirm this evolutionary relationship showing that most of the proteins involved in DNA transcription and replication are highly conserved. On the contrary, information is scanty about DNA repair pathways and their mechanisms. In the present review the most important proteins involved in base excision repair, namely glycosylases, AP lyases, AP endonucleases, polymerases, sliding clamps, flap endonucleases, and ligases, will be discussed and compared with bacterial and eukaryotic ones. Finally, possible applications and future perspectives derived from studies on Archaea and their repair pathways, will be taken into account. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Amplification of unscheduled DNA synthesis signal enables fluorescence-based single cell quantification of transcription-coupled nucleotide excision repair

    PubMed Central

    Wienholz, Franziska; Vermeulen, Wim

    2017-01-01

    Abstract Nucleotide excision repair (NER) comprises two damage recognition pathways: global genome NER (GG-NER) and transcription-coupled NER (TC-NER), which remove a wide variety of helix-distorting lesions including UV-induced damage. During NER, a short stretch of single-stranded DNA containing damage is excised and the resulting gap is filled by DNA synthesis in a process called unscheduled DNA synthesis (UDS). UDS is measured by quantifying the incorporation of nucleotide analogues into repair patches to provide a measure of NER activity. However, this assay is unable to quantitatively determine TC-NER activity due to the low contribution of TC-NER to the overall NER activity. Therefore, we developed a user-friendly, fluorescence-based single-cell assay to measure TC-NER activity. We combined the UDS assay with tyramide-based signal amplification to greatly increase the UDS signal, thereby allowing UDS to be quantified at low UV doses, as well as DNA-repair synthesis of other excision-based repair mechanisms such as base excision repair and mismatch repair. Importantly, we demonstrated that the amplified UDS is sufficiently sensitive to quantify TC-NER-derived repair synthesis in GG-NER-deficient cells. This assay is important as a diagnostic tool for NER-related disorders and as a research tool for obtaining new insights into the mechanism and regulation of excision repair. PMID:28088761

  16. Molecular Cloning and 3D Structure Modeling of APEX1, DNA Base Excision Repair Enzyme from the Camel, Camelus dromedarius

    PubMed Central

    Ataya, Farid Shokry; Fouad, Dalia; Malik, Ajamaluddin; Saeed, Hesham Mahmoud

    2012-01-01

    The domesticated one-humped camel, Camelus dromedarius, is one of the most important animals in the Arabian Desert. It is exposed most of its life to both intrinsic and extrinsic genotoxic factors that are known to cause gross DNA alterations in many organisms. Ionic radiation and sunlight are known producers of Reactive Oxygen Species (ROS), one of the causes for DNA lesions. The damaged DNA is repaired by many enzymes, among of them Base Excision Repair enzymes, producing the highly mutagenic apurinic/apyrimidinicsites (AP sites). Therefore, recognition of AP sites is fundamental to cell/organism survival. In the present work, the full coding sequence of a putative cAPEX1 gene was amplified for the first time from C. dromedarius by RT-PCR and cloned (NCBI accession number are HM209828 and ADJ96599 for nucleotides and amino acids, respectively). cDNA sequencing was deduced to be 1041 nucleotides, of which 954 nucleotides encode a protein of 318 amino acids, similar to the coding region of the APEX1 gene and the protein from many other species. The calculated molecular weight and isoelectric point of cAPEX1 using Bioinformatics tools was 35.5 kDa and 8.11, respectively. The relative expressions of cAPEX1 in camel kidney, spleen, lung and testis were examined using qPCR and compared with that of the liver using a 18S ribosomal subunit as endogenous control. The highest level of cAPEX1 transcript was found in the testis; 325% higher than the liver, followed by spleen (87%), kidney (20%) and lung (5%), respectively. The cAPEX1 is 94%–97% similar to their mammalian counterparts. Phylogenetic analysis revealed that cAPEX1 is grouped together with that of S. scrofa. The predicted 3D structure of cAPEX1 has similar folds and topology with the human (hAPEX1). The root-mean-square deviation (rmsd) between cAPEX1 and hAPEX1 was 0.582 and the Q-score was 0.939. PMID:22942721

  17. Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Rongxin; Mullins, Elwood A.; Shen, Xing‐Xing

    DNA glycosylases preserve genome integrity and define the specificity of the base excision repair pathway for discreet, detrimental modifications, and thus, the mechanisms by which glycosylases locate DNA damage are of particular interest. Bacterial AlkC and AlkD are specific for cationic alkylated nucleobases and have a distinctive HEAT-like repeat (HLR) fold. AlkD uses a unique non-base-flipping mechanism that enables excision of bulky lesions more commonly associated with nucleotide excision repair. In contrast, AlkC has a much narrower specificity for small lesions, principally N3-methyladenine (3mA). Here, we describe how AlkC selects for and excises 3mA using a non-base-flipping strategy distinct frommore » that of AlkD. A crystal structure resembling a catalytic intermediate complex shows how AlkC uses unique HLR and immunoglobulin-like domains to induce a sharp kink in the DNA, exposing the damaged nucleobase to active site residues that project into the DNA. This active site can accommodate and excise N3-methylcytosine (3mC) and N1-methyladenine (1mA), which are also repaired by AlkB-catalyzed oxidative demethylation, providing a potential alternative mechanism for repair of these lesions in bacteria.« less

  18. Nucleotide Excision Repair and Vitamin D--Relevance for Skin Cancer Therapy.

    PubMed

    Pawlowska, Elzbieta; Wysokinski, Daniel; Blasiak, Janusz

    2016-04-06

    Ultraviolet (UV) radiation is involved in almost all skin cancer cases, but on the other hand, it stimulates the production of pre-vitamin D3, whose active metabolite, 1,25-dihydroxyvitamin D3 (1,25VD3), plays important physiological functions on binding with its receptor (vitamin D receptor, VDR). UV-induced DNA damages in the form of cyclobutane pyrimidine dimers or (6-4)-pyrimidine-pyrimidone photoproducts are frequently found in skin cancer and its precursors. Therefore, removing these lesions is essential for the prevention of skin cancer. As UV-induced DNA damages are repaired by nucleotide excision repair (NER), the interaction of 1,25VD3 with NER components can be important for skin cancer transformation. Several studies show that 1,25VD3 protects DNA against damage induced by UV, but the exact mechanism of this protection is not completely clear. 1,25VD3 was also shown to affect cell cycle regulation and apoptosis in several signaling pathways, so it can be considered as a potential modulator of the cellular DNA damage response, which is crucial for mutagenesis and cancer transformation. 1,25VD3 was shown to affect DNA repair and potentially NER through decreasing nitrosylation of DNA repair enzymes by NO overproduction by UV, but other mechanisms of the interaction between 1,25VD3 and NER machinery also are suggested. Therefore, the array of NER gene functioning could be analyzed and an appropriate amount of 1.25VD3 could be recommended to decrease UV-induced DNA damage important for skin cancer transformation.

  19. Psoralen-induced DNA adducts are substrates for the base excision repair pathway in human cells

    PubMed Central

    Couvé-Privat, Sophie; Macé, Gaëtane; Saparbaev, Murat K.

    2007-01-01

    Interstrand cross-link (ICL) is a covalent modification of both strands of DNA, which prevents DNA strand separation during transcription and replication. Upon photoactivation 8-methoxypsoralen (8-MOP+UVA) alkylates both strands of DNA duplex at the 5,6-double bond of thymidines, generating monoadducts (MAs) and ICLs. It was thought that bulky DNA lesions such as MAs are eliminated only in the nucleotide excision repair pathway. Instead, non-bulky DNA lesions are substrates for DNA glycosylases and AP endonucleases which initiate the base excision repair (BER) pathway. Here we examined whether BER might be involved in the removal of psoralen–DNA photoadducts. The results show that in human cells DNA glycosylase NEIL1 excises the MAs in duplex DNA, subsequently the apurinic/apyrimidinic endonuclease 1, APE1, removes the 3′-phosphate residue at single-strand break generated by NEIL1. The apparent kinetic parameters suggest that NEIL1 excises MAs with high efficiency. Consistent with these results HeLa cells lacking APE1 and/or NEIL1 become hypersensitive to 8-MOP+UVA exposure. Furthermore, we demonstrate that bacterial homologues of NEIL1, the Fpg and Nei proteins, also excise MAs. New substrate specificity of the Fpg/Nei protein family provides an alternative repair pathway for ICLs and bulky DNA damage. PMID:17715144

  20. Base excision repair: NMR backbone assignments of Escherichia coli formamidopyrimidine-DNA glycosylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchko, Garry W.; Wallace, Susan S.; Kennedy, Michael A.

    2002-03-01

    Oxidative damage is emerging as one of the most important mechanisms responsible for mutagenesis, carcinogenesis, aging, and various diseases (Farr and Kogma, 1991). One of the potential targets for oxidation is cellular DNA. While exposure to exogenous agents, such as ionizing radiation and chemicals, contributes to damaging DNA, the most important oxidative agents are endogenous, such as the reactive free radicals produced during normal oxidative metabolism (Adelman et., 1988). To mitigate the potentially deleterious effects of oxidative DNA damage virtually all aerobic organisms have developed complex repair mechanisms (Petit and Sancar, 1999). One repair mechanism, base excision repair (BER), appearsmore » to be responsible for replacing most oxidative DNA damage (David and Williams, 1998). Formamidopyrimidine-DNA glycosylase (Fpg), a 269-residue metalloprotein with a molecular weight of 30.2 kDa, is a key BER enzyme in prokaryotes (Boiteaux et al., 1987). Substrates recognized and released by Fpg include 7,8-dihydro-8-oxoguanine (8-oxoG), 2,6 diamino-4-hydroxy-5-formamido pyrimidine (Fapy-G), the adenine equivalents 8-oxoA and Fapy-A, 5-hydroxycytosine, 5-hydroxyuracil, B ureidoisobutiric acid, and a-R-hydroxy-B-ureidoisobutiric acid (Freidberg et al., 1995). In vitro Fpg bind double-stranded DNA and performs three catalytic activities: (i) DNA glycosylase, (ii) AP lyase, and (iii) deoxyribophosphodiesterase.« less

  1. Base Excision Repair and Lesion-Dependent Subpathways for Repair of Oxidative DNA Damage

    PubMed Central

    Svilar, David; Goellner, Eva M.; Almeida, Karen H.

    2011-01-01

    Abstract Nuclear and mitochondrial genomes are under continuous assault by a combination of environmentally and endogenously derived reactive oxygen species, inducing the formation and accumulation of mutagenic, toxic, and/or genome-destabilizing DNA lesions. Failure to resolve these lesions through one or more DNA-repair processes is associated with genome instability, mitochondrial dysfunction, neurodegeneration, inflammation, aging, and cancer, emphasizing the importance of characterizing the pathways and proteins involved in the repair of oxidative DNA damage. This review focuses on the repair of oxidative damage–induced lesions in nuclear and mitochondrial DNA mediated by the base excision repair (BER) pathway in mammalian cells. We discuss the multiple BER subpathways that are initiated by one of 11 different DNA glycosylases of three subtypes: (a) bifunctional with an associated β-lyase activity; (b) monofunctional; and (c) bifunctional with an associated β,δ-lyase activity. These three subtypes of DNA glycosylases all initiate BER but yield different chemical intermediates and hence different BER complexes to complete repair. Additionally, we briefly summarize alternate repair events mediated by BER proteins and the role of BER in the repair of mitochondrial DNA damage induced by ROS. Finally, we discuss the relation of BER and oxidative DNA damage in the onset of human disease. Antioxid. Redox Signal. 14, 2491–2507. PMID:20649466

  2. True Lies: The Double Life of the Nucleotide Excision Repair Factors in Transcription and DNA Repair

    PubMed Central

    Le May, Nicolas; Egly, Jean-Marc; Coin, Frédéric

    2010-01-01

    Nucleotide excision repair (NER) is a major DNA repair pathway in eukaryotic cells. NER removes structurally diverse lesions such as pyrimidine dimers, arising upon UV irradiation or bulky chemical adducts, arising upon exposure to carcinogens and some chemotherapeutic drugs. NER defects lead to three genetic disorders that result in predisposition to cancers, accelerated aging, neurological and developmental defects. During NER, more than 30 polypeptides cooperate to recognize, incise, and excise a damaged oligonucleotide from the genomic DNA. Recent papers reveal an additional and unexpected role for the NER factors. In the absence of a genotoxic attack, the promoters of RNA polymerases I- and II-dependent genes recruit XPA, XPC, XPG, and XPF to initiate gene expression. A model that includes the growth arrest and DNA damage 45α protein (Gadd45α) and the NER factors, in order to maintain the promoter of active genes under a hypomethylated state, has been proposed but remains controversial. This paper focuses on the double life of the NER factors in DNA repair and transcription and describes the possible roles of these factors in the RNA synthesis process. PMID:20725631

  3. DIFFERENTIAL ROLE OF BASE EXCISION REPAIR PROTEINS IN MEDIATING CISPLATIN CYTOTOXICITY

    PubMed Central

    Sawant, Akshada; Floyd, Ashley M.; Dangeti, Mohan; Lei, Wen; Sobol, Robert W.; Patrick, Steve M.

    2017-01-01

    Interstrand crosslinks (ICLs) are covalent lesions formed by cisplatin. The mechanism for the processing and removal of ICLs by DNA repair proteins involves nucleotide excision repair (NER), homologous recombination (HR) and fanconi anemia (FA) pathways. In this report, we monitored the processing of a flanking uracil adjacent to a cisplatin ICL by the proteins involved in the base excision repair (BER) pathway. Using a combination of extracts, purified proteins, inhibitors, functional assays and cell culture studies, we determined the specific BER proteins required for processing a DNA substrate with a uracil adjacent to a cisplatin ICL. Uracil DNA glycosylase (UNG) is the primary glycosylase responsible for the removal of uracils adjacent to cisplatin ICLs, whereas other uracil glycosylases can process uracils in the context of undamaged DNA. Repair of the uracil adjacent to cisplatin ICLs proceeds through the classical BER pathway, highlighting the importance of specific proteins in this redundant pathway. Removal of uracil is followed by the generation of an abasic site and subsequent cleavage by AP endonuclease 1 (APE1). Inhibition of either the repair or redox domain of APE1 gives rise to cisplatin resistance. Inhibition of the lyase domain of Polymerase β (Polβ) does not influence cisplatin cytotoxicity. In addition, lack of XRCC1 leads to increased DNA damage and results in increased cisplatin cytotoxicity. Our results indicate that BER activation at cisplatin ICLs influences crosslink repair and modulates cisplatin cytotoxicity via specific UNG, APE1 and Polβ polymerase functions. PMID:28110804

  4. Differential role of base excision repair proteins in mediating cisplatin cytotoxicity.

    PubMed

    Sawant, Akshada; Floyd, Ashley M; Dangeti, Mohan; Lei, Wen; Sobol, Robert W; Patrick, Steve M

    2017-03-01

    Interstrand crosslinks (ICLs) are covalent lesions formed by cisplatin. The mechanism for the processing and removal of ICLs by DNA repair proteins involves nucleotide excision repair (NER), homologous recombination (HR) and fanconi anemia (FA) pathways. In this report, we monitored the processing of a flanking uracil adjacent to a cisplatin ICL by the proteins involved in the base excision repair (BER) pathway. Using a combination of extracts, purified proteins, inhibitors, functional assays and cell culture studies, we determined the specific BER proteins required for processing a DNA substrate with a uracil adjacent to a cisplatin ICL. Uracil DNA glycosylase (UNG) is the primary glycosylase responsible for the removal of uracils adjacent to cisplatin ICLs, whereas other uracil glycosylases can process uracils in the context of undamaged DNA. Repair of the uracil adjacent to cisplatin ICLs proceeds through the classical BER pathway, highlighting the importance of specific proteins in this redundant pathway. Removal of uracil is followed by the generation of an abasic site and subsequent cleavage by AP endonuclease 1 (APE1). Inhibition of either the repair or redox domain of APE1 gives rise to cisplatin resistance. Inhibition of the lyase domain of Polymerase β (Polβ) does not influence cisplatin cytotoxicity. In addition, lack of XRCC1 leads to increased DNA damage and results in increased cisplatin cytotoxicity. Our results indicate that BER activation at cisplatin ICLs influences crosslink repair and modulates cisplatin cytotoxicity via specific UNG, APE1 and Polβ polymerase functions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Disruption of TTDA Results in Complete Nucleotide Excision Repair Deficiency and Embryonic Lethality

    PubMed Central

    Theil, Arjan F.; Nonnekens, Julie; Steurer, Barbara; Mari, Pierre-Olivier; de Wit, Jan; Lemaitre, Charlène; Marteijn, Jurgen A.; Raams, Anja; Maas, Alex; Vermeij, Marcel; Essers, Jeroen; Hoeijmakers, Jan H. J.; Giglia-Mari, Giuseppina; Vermeulen, Wim

    2013-01-01

    The ten-subunit transcription factor IIH (TFIIH) plays a crucial role in transcription and nucleotide excision repair (NER). Inactivating mutations in the smallest 8-kDa TFB5/TTDA subunit cause the neurodevelopmental progeroid repair syndrome trichothiodystrophy A (TTD-A). Previous studies have shown that TTDA is the only TFIIH subunit that appears not to be essential for NER, transcription, or viability. We studied the consequences of TTDA inactivation by generating a Ttda knock-out (Ttda−/−) mouse-model resembling TTD-A patients. Unexpectedly, Ttda−/− mice were embryonic lethal. However, in contrast to full disruption of all other TFIIH subunits, viability of Ttda−/− cells was not affected. Surprisingly, Ttda−/− cells were completely NER deficient, contrary to the incomplete NER deficiency of TTD-A patient-derived cells. We further showed that TTD-A patient mutations only partially inactivate TTDA function, explaining the relatively mild repair phenotype of TTD-A cells. Moreover, Ttda−/− cells were also highly sensitive to oxidizing agents. These findings reveal an essential role of TTDA for life, nucleotide excision repair, and oxidative DNA damage repair and identify Ttda−/− cells as a unique class of TFIIH mutants. PMID:23637614

  6. Nucleotide excision repair is a potential therapeutic target in multiple myeloma

    PubMed Central

    Szalat, R; Samur, M K; Fulciniti, M; Lopez, M; Nanjappa, P; Cleynen, A; Wen, K; Kumar, S; Perini, T; Calkins, A S; Reznichenko, E; Chauhan, D; Tai, Y-T; Shammas, M A; Anderson, K C; Fermand, J-P; Arnulf, B; Avet-Loiseau, H; Lazaro, J-B; Munshi, N C

    2018-01-01

    Despite the development of novel drugs, alkylating agents remain an important component of therapy in multiple myeloma (MM). DNA repair processes contribute towards sensitivity to alkylating agents and therefore we here evaluate the role of nucleotide excision repair (NER), which is involved in the removal of bulky adducts and DNA crosslinks in MM. We first evaluated NER activity using a novel functional assay and observed a heterogeneous NER efficiency in MM cell lines and patient samples. Using next-generation sequencing data, we identified that expression of the canonical NER gene, excision repair cross-complementation group 3 (ERCC3), significantly impacted the outcome in newly diagnosed MM patients treated with alkylating agents. Next, using small RNA interference, stable knockdown and overexpression, and small-molecule inhibitors targeting xeroderma pigmentosum complementation group B (XPB), the DNA helicase encoded by ERCC3, we demonstrate that NER inhibition significantly increases sensitivity and overcomes resistance to alkylating agents in MM. Moreover, inhibiting XPB leads to the dual inhibition of NER and transcription and is particularly efficient in myeloma cells. Altogether, we show that NER impacts alkylating agents sensitivity in myeloma cells and identify ERCC3 as a potential therapeutic target in MM. PMID:28588253

  7. Impact of topical application of sulfur mustard on mice skin and distant organs DNA repair enzyme signature.

    PubMed

    Sauvaigo, Sylvie; Sarrazy, Fanny; Batal, Mohamed; Caillat, Sylvain; Pitiot, Benoit; Mouret, Stéphane; Cléry-Barraud, Cécile; Boudry, Isabelle; Douki, Thierry

    2016-01-22

    Sulfur mustard (SM) is a chemical warfare agent that, upon topical application, damages skin and reaches internal organs through diffusion in blood. Two major toxic consequences of SM exposure are inflammation, associated with oxidative stress, and the formation of alkylated DNA bases. In the present study, we investigated the impact of exposure to SM on DNA repair, using two different functional DNA repair assays which provide information on several Base Excision Repair (BER) and Excision/Synthesis Repair (ESR) activities. BER activities were reduced in all organs as early as 4h after exposure, with the exception of the defense systems against 8-oxo-guanine and hypoxanthine which were stimulated. Interestingly, the resulting BER intermediates could activate inflammation signals, aggravating the inflammation triggered by SM exposure and leading to increased oxidative stress. ESR activities were found to be mostly inhibited in skin, brain and kidneys. In contrast, in the lung there was a general increase in ESR activities. In summary, exposure to SM leads to a significant decrease in DNA repair in most organs, concomitant with the formation of DNA damage. These synergistic genotoxic effects are likely to participate in the high toxicity of this alkylating agent. Lungs, possibly better equipped with repair enzymes to handle exogenous exposure, are the exception. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Role of Rad23 and Dsk2 in Nucleotide Excision Repair and Spindle Pole Body Duplication

    DTIC Science & Technology

    2006-03-01

    AD Award Number: W81XWH-05-1-0310 TITLE: Role of Rad23 and Dsk2 in Nucleotide Excision Repair and Spindle Pole Body Duplication PRINCIPAL...Feb 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Role of Rad23 and Dsk2 in Nucleotide Excision Repair and Spindle Pole Body Duplication Sb. GRANT...Degradation, Cell Cycle, Spindle Pole Body 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON OF ABSTRACT OF

  9. Excision repair of UV radiation-induced DNA damage in Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, P.S.; Hevelone, J.; Dwarakanath, V.

    1989-06-01

    Radioimmunoassays were used to monitor the removal of antibody-binding sites associated with the two major UV radiation-induced DNA photoproducts (cyclobutane dimers and (6-4) photoproducts). Unlike with cultured human cells, where (6-4) photoproducts are removed more rapidly than cyclobutane dimers, the kinetics of repair were similar for both lesions. Repair capacity in wild type diminished throughout development. The radioimmunoassays were also employed to confirm the absence of photoreactivation in C. elegans. In addition, three radiation-sensitive mutants (rad-1, rad-2, rad-7) displayed normal repair capacities. An excision defect was much more pronounced in larvae than embryos in the fourth mutant tested (rad-3). Thismore » correlates with the hypersensitivity pattern of this mutant and suggests that DNA repair may be developmentally regulated in C. elegans. The mechanism of DNA repair in C. elegans as well as the relationship between the repair of specific photoproducts and UV radiation sensitivity during development are discussed.« less

  10. Evidence for an involvement of thymidine kinase in the excision repair of ultraviolet-irradiated herpes simplex virus in human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Intine, R.V.; Rainbow, A.J.

    1990-01-01

    A wild-type strain of herpes simplex virus type 1 (HSV-1:KOS) encoding a functional thymidine kinase (tk+) and a tk- mutant strain (HSV-1:PTK3B) were used to study the role of the viral tk in the repair of UV-irradiated HSV-1 in human cells. UV survival of HSV-1:PTK3B was substantially reduced compared with that of HSV-1:KOS when infecting normal human cells. In contrast, the UV survival of HSV-1:PTK3B was similar to that of HSV-1:KOS when infecting excision repair-deficient cells from a xeroderma pigmentosum patient from complementation group A. These results suggest that the repair of UV-irradiated HSV-1 in human cells depends, in partmore » at least, on expression of the viral tk and that the repair process influenced by tk activity is excision repair or a process dependent on excision repair.« less

  11. Implication of SUMO E3 ligases in nucleotide excision repair.

    PubMed

    Tsuge, Maasa; Kaneoka, Hidenori; Masuda, Yusuke; Ito, Hiroki; Miyake, Katsuhide; Iijima, Shinji

    2015-08-01

    Post-translational modifications alter protein function to mediate complex hierarchical regulatory processes that are crucial to eukaryotic cellular function. The small ubiquitin-like modifier (SUMO) is an important post-translational modification that affects transcriptional regulation, nuclear localization, and the maintenance of genome stability. Nucleotide excision repair (NER) is a very versatile DNA repair system that is essential for protection against ultraviolet (UV) irradiation. The deficiencies in NER function remarkably increase the risk of skin cancer. Recent studies have shown that several NER factors are SUMOylated, which influences repair efficiency. However, how SUMOylation modulates NER has not yet been elucidated. In the present study, we performed RNAi knockdown of SUMO E3 ligases and found that, in addition to PIASy, the polycomb protein Pc2 affected the repair of cyclobutane pyrimidine dimers. PIAS1 affected both the removal of 6-4 pyrimidine pyrimidone photoproducts and cyclobutane pyrimidine dimers, whereas other SUMO E3 ligases did not affect the removal of either UV lesion.

  12. Affinity of yeast nucleotide excision repair factor 2, consisting of the Rad4 and Rad23 proteins, for ultraviolet damaged DNA.

    PubMed

    Guzder, S N; Sung, P; Prakash, L; Prakash, S

    1998-11-20

    Saccharomyces cerevisiae Rad4 and Rad23 proteins are required for the nucleotide excision repair of UV light-damaged DNA. Previous studies have indicated that these two DNA repair proteins are associated in a tight complex, which we refer to as nucleotide excision repair factor 2 (NEF2). In a reconstituted nucleotide excision repair reaction, incision of UV-damaged DNA is dependent on NEF2, indicating a role of NEF2 in an early step of the repair process. NEF2 does not, however, possess an enzymatic activity, and its function in the damage-specific incision reaction has not yet been defined. Here we use a DNA mobility shift assay to demonstrate that NEF2 binds specifically to UV-damaged DNA. Elimination of cyclobutane pyrimidine dimers from the UV-damaged DNA by enzymatic photoreactivation has little effect on the affinity of NEF2 for the DNA, suggesting that NEF2 recognizes the 6-(1, 2)-dihydro-2-oxo-4-pyrimidinyl)-5-methyl-2,4-(1H,3H)-pyrimidinedione photoproducts in the damaged DNA. These results highlight the intricacy of the DNA damage-demarcation reaction during nucleotide excision repair in eukaryotes.

  13. Deficiency of gamma-ray excision repair in skin fibroblasts from patients with Fanconi's anemia.

    PubMed Central

    Remsen, J F; Cerutti, P A

    1976-01-01

    The capacity of preparations of skin fibroblasts from normal individuals and patients with Fanconi's anemia to excise gamma-ray products of the 5,6-dihydroxydihydrothymine type from exogenous DNA was investigated. The excision capacity of whole-cell homogenates of fibroblasts from two of four patients with Fanconi's anemia was substantially below normal. This repair deficiency was further pronounced in nuclear preparations from cells of the same two patients. PMID:1065896

  14. Regulation of DNA repair in serum-stimulated xeroderma pigmentosum cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, P.K.; Sirover, M.A.

    1984-10-01

    The regulation of DNA repair during serum stimulation of quiescent cells was examined in normal human cells, in fibroblasts from three xeroderma pigmentosum complementation groups (A, C, and D), in xeroderma pigmentosum variant cells, and in ataxia telangiectasia cells. The regulation of nucleotide excision repair was examined by exposing cells to ultraviolet irradiation at discrete intervals after cell stimulation. Similarly, base excision repair was quantitated after exposure to methylmethane sulfonate. WI-38 normal human diploid fibroblasts, xeroderma pigmentosum variant cells, as well as ataxia telangiectasia cells enhanced their capacity for both nucleotide excision repair and for base excision repair prior tomore » their enhancement of DNA synthesis. Further, in each cell strain, the base excision repair enzyme uracil DNA glycosylase was increased prior to the induction of DNA polymerase using the identical cells to quantitate each activity. In contrast, each of the three xeroderma complementation groups that were examined failed to increase their capacity for nucleotide excision repair above basal levels at any interval examined. This result was observed using either unscheduled DNA synthesis in the presence of 10 mM hydroxyurea or using repair replication in the absence of hydroxyurea to quantitate DNA repair. However, each of the three complementation groups normally regulated the enhancement of base excision repair after methylmethane sulfonate exposure and each induced the uracil DNA glycosylase prior to DNA synthesis. 62 references, 3 figures, 2 tables.« less

  15. Nucleotide excision repair and human syndromes.

    PubMed

    de Boer, J; Hoeijmakers, J H

    2000-03-01

    DNA damage is implicated in cancer and aging, and several DNA repair mechanisms exist that safeguard the genome from these deleterious consequences. Nucleotide excision repair (NER) removes a wide diversity of lesions, the main of which include UV-induced lesions, bulky chemical adducts and some forms of oxidative damage. The NER process involves the action of at least 30 proteins in a 'cut-and-paste'-like mechanism. The consequences of a defect in one of the NER proteins are apparent from three rare recessive syndromes: xeroderma pigmentosum (XP), Cockayne syndrome (CS) and the photosensitive form of the brittle hair disorder trichothiodystrophy (TTD). Sun-sensitive skin is associated with skin cancer predisposition in the case of XP, but remarkably not in CS and TTD. Moreover, the spectrum of clinical symptoms differs considerably between the three syndromes. CS and TTD patients exhibit a spectrum of neurodevelopmental abnormalities and, in addition, TTD is associated with ichthyosis and brittle hair. These typical CS and TTD abnormalities are difficult to comprehend as a consequence of defective NER. This review briefly describes the biochemistry of the NER process, summarizes the clinical features of the NER disorders and speculates on the molecular basis underlying these pleitropic syndromes.

  16. In vitro Repair of Oxidative DNA Damage by Human Nucleotide Excision Repair System: Possible Explanation for Neurodegeneration in Xeroderma Pigmentosum Patients

    NASA Astrophysics Data System (ADS)

    Reardon, Joyce T.; Bessho, Tadayoshi; Kung, Hsiang Chuan; Bolton, Philip H.; Sancar, Aziz

    1997-08-01

    Xeroderma pigmentosum (XP) patients fail to remove pyrimidine dimers caused by sunlight and, as a consequence, develop multiple cancers in areas exposed to light. The second most common sign, present in 20-30% of XP patients, is a set of neurological abnormalities caused by neuronal death in the central and peripheral nervous systems. Neural tissue is shielded from sunlight-induced DNA damage, so the cause of neurodegeneration in XP patients remains unexplained. In this study, we show that two major oxidative DNA lesions, 8-oxoguanine and thymine glycol, are excised from DNA in vitro by the same enzyme system responsible for removing pyrimidine dimers and other bulky DNA adducts. Our results suggest that XP neurological disease may be caused by defective repair of lesions that are produced in nerve cells by reactive oxygen species generated as by-products of an active oxidative metabolism.

  17. Oxidized Base Damage and Single-Strand Break Repair in Mammalian Genomes: Role of Disordered Regions and Posttranslational Modifications in Early Enzymes

    PubMed Central

    Hegde, Muralidhar L.; Izumi, Tadahide; Mitra, Sankar

    2012-01-01

    Oxidative genome damage induced by reactive oxygen species includes oxidized bases, abasic (AP) sites, and single-strand breaks, all of which are repaired via the evolutionarily conserved base excision repair/single-strand break repair (BER/SSBR) pathway. BER/SSBR in mammalian cells is complex, with preferred and backup sub-pathways, and is linked to genome replication and transcription. The early BER/SSBR enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic endonuclease 1 (APE1), form complexes with downstream repair (and other noncanonical) proteins via pairwise interactions. Furthermore, a unique feature of mammalian early BER/ SSBR enzymes is the presence of a disordered terminal extension that is absent in their Escherichia coli prototypes. These nonconserved segments usually contain organelle-targeting signals, common interaction interfaces, and sites of posttranslational modifications that may be involved in regulating their repair function including lesion scanning. Finally, the linkage of BER/SSBR deficiency to cancer, aging, and human neurodegenerative diseases, and therapeutic targeting of BER/SSBR are discussed. PMID:22749145

  18. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, Elwood A.; Shi, Rongxin; Parsons, Zachary D.

    Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. In this paper, we present the first, to ourmore » knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge–dipole and CH–π interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism. Finally and hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision.« less

  19. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions

    DOE PAGES

    Mullins, Elwood A.; Shi, Rongxin; Parsons, Zachary D.; ...

    2015-10-28

    Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. In this paper, we present the first, to ourmore » knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge–dipole and CH–π interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism. Finally and hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision.« less

  20. Potential of the homeopathic remedy, Arnica Montana 30C, to reduce DNA damage in Escherichia coli exposed to ultraviolet irradiation through up-regulation of nucleotide excision repair genes.

    PubMed

    Das, Sreemanti; Saha, Santu Kumar; De, Arnab; Das, Durba; Khuda-Bukhsh, Anisur Rahman

    2012-03-01

    To examine to what degree an ultra-highly diluted homeopathic remedy, Arnica Montana 30C (AM-30C), used in the treatment of shock and injury, can modulate the expression of nucleotide excision repair genes in Escherichia coli exposed to ultraviolet (UV) irradiation. E. coli were cultured to their log phase in a standard Luria-Bertani medium and then exposed to sublethal doses of UV irradiation at 25 and 50 J/m(2) for 22.5 and 45 s, respectively. The UV-exposed bacteria were then supplemented with either AM-30C (drug) or placebo (P-30C). The drug-treated and placebo-treated bacteria were subjected to assay for DNA damage and oxidative stress 90 min after UV exposure. Several protocols like comet assay, gel electrophoresis for DNA ladder and intracellular reactive oxygen species (ROS) generation, and biomarker measurement like superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH) were conducted. The mRNA expressions of the excision repair genes like ultraviolet repair uvrA, B and C genes (or also known as excision repair genes) were estimated by reverse transcription-polymerase chain reaction method. The UV-exposed bacteria showed DNA damage and oxidative stress, as revealed by an increase in ROS generation, and a decrease in SOD, CAT and GSH activities. As compared to placebo, the AM-30C-treated bacteria showed less DNA damage and oxidative stress as manifested by a decrease in ROS generation, and an increase in SOD, CAT and GSH activities. AM-30C also up-regulated the expression of repair genes as compared to the control. AM-30C helped repair the DNA damage through up-regulation of repair genes and also ameliorated the oxidative stress through the reduction of ROS generation and suitable modulation of anti-oxidative stress enzymes.

  1. Processing closely spaced lesions during Nucleotide Excision Repair triggers mutagenesis in E. coli

    PubMed Central

    Isogawa, Asako; Fujii, Shingo

    2017-01-01

    It is generally assumed that most point mutations are fixed when damage containing template DNA undergoes replication, either right at the fork or behind the fork during gap filling. Here we provide genetic evidence for a pathway, dependent on Nucleotide Excision Repair, that induces mutations when processing closely spaced lesions. This pathway, referred to as Nucleotide Excision Repair-induced Mutagenesis (NERiM), exhibits several characteristics distinct from mutations that occur within the course of replication: i) following UV irradiation, NER-induced mutations are fixed much more rapidly (t ½ ≈ 30 min) than replication dependent mutations (t ½ ≈ 80–100 min) ii) NERiM specifically requires DNA Pol IV in addition to Pol V iii) NERiM exhibits a two-hit dose-response curve that suggests processing of closely spaced lesions. A mathematical model let us define the geometry (infer the structure) of the toxic intermediate as being formed when NER incises a lesion that resides in close proximity of another lesion in the complementary strand. This critical NER intermediate requires Pol IV / Pol II for repair, it is either lethal if left unrepaired or mutation-prone when repaired. Finally, NERiM is found to operate in stationary phase cells providing an intriguing possibility for ongoing evolution in the absence of replication. PMID:28686598

  2. Mutational analysis of the human nucleotide excision repair gene ERCC1.

    PubMed Central

    Sijbers, A M; van der Spek, P J; Odijk, H; van den Berg, J; van Duin, M; Westerveld, A; Jaspers, N G; Bootsma, D; Hoeijmakers, J H

    1996-01-01

    The human DNA repair protein ERCC1 resides in a complex together with the ERCC4, ERCC11 and XP-F correcting activities, thought to perform the 5' strand incision during nucleotide excision repair (NER). Its yeast counterpart, RAD1-RAD10, has an additional engagement in a mitotic recombination pathway, probably required for repair of DNA cross-links. Mutational analysis revealed that the poorly conserved N-terminal 91 amino acids of ERCC1 are dispensable for both repair functions, in contrast to a deletion of only four residues from the C-terminus. A database search revealed a strongly conserved motif in this C-terminus sharing sequence homology with many DNA break processing proteins, indicating that this part is primarily required for the presumed structure-specific endonuclease activity of ERCC1. Most missense mutations in the central region give rise to an unstable protein (complex). Accordingly, we found that free ERCC1 is very rapidly degraded, suggesting that protein-protein interactions provide stability. Survival experiments show that the removal of cross-links requires less ERCC1 than UV repair. This suggests that the ERCC1-dependent step in cross-link repair occurs outside the context of NER and provides an explanation for the phenotype of the human repair syndrome xeroderma pigmentosum group F. PMID:8811092

  3. DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansson, J.; Keyse, S.M.; Lindahl, T.

    Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurementsmore » of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links.« less

  4. Repair of Oxidative DNA Damage in Saccharomyces cerevisiae.

    PubMed

    Chalissery, Jisha; Jalal, Deena; Al-Natour, Zeina; Hassan, Ahmed H

    2017-03-01

    Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Nrf1 CNC-bZIP protein promotes cell survival and nucleotide excision repair through maintaining glutathione homeostasis.

    PubMed

    Han, Weinong; Ming, Mei; Zhao, Rui; Pi, Jingbo; Wu, Chunli; He, Yu-Ying

    2012-05-25

    Skin cancer is the most common cancer in the United States. Its major environmental risk factor is UVB radiation in sunlight. In response to UVB damage, epidermal keratinocytes activate a specific repair pathway, i.e. nucleotide excision repair, to remove UVB-induced DNA lesions. However, the regulation of UVB response is not fully understood. Here we show that the long isoform of the nuclear factor erythroid 2-related factor 1 (Nrf1, also called NFE2L1), a cytoprotective transcription factor critical for the expression of multiple antioxidant response element-dependent genes, plays an important role in the response of keratinocytes to UVB. Nrf1 loss sensitized keratinocytes to UVB-induced apoptosis by up-regulating the expression of the proapoptotic Bcl-2 family member Bik through reducing glutathione levels. Knocking down Bik reduced UVB-induced apoptosis in Nrf1-inhibited cells. In UVB-irradiated surviving cells, however, disruption of Nrf1 impaired nucleotide excision repair through suppressing the transcription of xeroderma pigmentosum C (XPC), a factor essential for initiating the global genome nucleotide excision repair by recognizing the DNA lesion and recruiting downstream factors. Nrf1 enhanced XPC expression by increasing glutathione availability but was independent of the transcription repressor of XPC. Adding XPC or glutathione restored the DNA repair capacity in Nrf1-inhibited cells. Finally, we demonstrate that Nrf1 levels are significantly reduced by UVB radiation in mouse skin and are lower in human skin tumors than in normal skin. These results indicate a novel role of Nrf1 in UVB-induced DNA damage repair and suggest Nrf1 as a tumor suppressor in the skin.

  6. Emerging roles of the nucleolus in regulating the DNA damage response: the noncanonical DNA repair enzyme APE1/Ref-1 as a paradigmatical example.

    PubMed

    Antoniali, Giulia; Lirussi, Lisa; Poletto, Mattia; Tell, Gianluca

    2014-02-01

    An emerging concept in DNA repair mechanisms is the evidence that some key enzymes, besides their role in the maintenance of genome stability, display also unexpected noncanonical functions associated with RNA metabolism in specific subcellular districts (e.g., nucleoli). During the evolution of these key enzymes, the acquisition of unfolded domains significantly amplified the possibility to interact with different partners and substrates, possibly explaining their phylogenetic gain of functions. After nucleolar stress or DNA damage, many DNA repair proteins can freely relocalize from nucleoli to the nucleoplasm. This process may represent a surveillance mechanism to monitor the synthesis and correct assembly of ribosomal units affecting cell cycle progression or inducing p53-mediated apoptosis or senescence. A paradigm for this kind of regulation is represented by some enzymes of the DNA base excision repair (BER) pathway, such as apurinic/apyrimidinic endonuclease 1 (APE1). In this review, the role of the nucleolus and the noncanonical functions of the APE1 protein are discussed in light of their possible implications in human pathologies. A productive cross-talk between DNA repair enzymes and proteins involved in RNA metabolism seems reasonable as the nucleolus is emerging as a dynamic functional hub that coordinates cell growth arrest and DNA repair mechanisms. These findings will drive further analyses on other BER proteins and might imply that nucleic acid processing enzymes are more versatile than originally thought having evolved DNA-targeted functions after a previous life in the early RNA world.

  7. Excision and anastomotic repair for urethral stricture disease: experience with 150 cases.

    PubMed

    Martínez-Piñeiro, J A; Cárcamo, P; García Matres, M J; Martínez-Piñeiro, L; Iglesias, J R; Rodríguez Ledesma, J M

    1997-01-01

    To analyze the results of a series of end-to-end urethroplasties performed in our service from 1968 to 1995 and of the factors contributing to failure. 150 men (mean age 35.9 years) with urethral stricture disease underwent excision of the stricture and end-to-end anastomosis; in 95 it was the first attempt at repair while in 55 it was a secondary attempt. Eighty-two patients (54.6%) had a trauma-related stricture; of them, 56 followed a pelvic ring fracture with posterior urethra distraction defect, 24 (16%) had inflammatory strictures, 26 (17.3%) iatrogenic, 9 (6%) congenital, and 9 (6%) of unknown etiology; 81 (54%) were located in the bulbous urethra, 9 (6%) in the penoscrotal junction and 2 (1.3%) in the penile urethra. Ninety-one (60.6%) of the strictures or obliterative defects measured between 1 and 3 cm, 42 (28%) less than 1 cm and only 16 (10.6%) more than 3 cm. A perineal approach was used in 138 of the cases, while combined abdominoperineal route was necessary in 12; of these, 5 were children. The follow-up has ranged from 6 to 168 months (mean 44.4). The results were classified as good, fair (some re-stricturing, not needing treatment) and poor (recurrence). One hundred and twenty-six (84%) good outcomes, 10 (6.6%) fair, 14 (9.3%) poor. The factors influencing success or failure were: (1) primary or secondary character of the operation; (2) etiology; (3) length, and (4) location. Postoperative early complications consisted of 2 wound infections and 2 hematomas; as late complications, 1 chordee, 2 incontinence, 7 erectile dysfunction (in previously potent patients). The 14 patients considered as failures were operated again, all successfully; in 4 of them, a repeat excision and end-to-end anastomosis was performed, elevating the final success rate of the series to 93.3%. Excision and anastomotic repair represent the optimal mode of stricture repair for single lesions located from the penoscrotal junction to the membranous part of the urethra.

  8. Mutations associated with base excision repair deficiency and methylation-induced genotoxic stress

    PubMed Central

    Sobol, Robert W.; Watson, David E.; Nakamura, Jun; Yakes, F. Michael; Hou, Esther; Horton, Julie K.; Ladapo, Joseph; Van Houten, Bennett; Swenberg, James A.; Tindall, Kenneth R.; Samson, Leona D.; Wilson, Samuel H.

    2002-01-01

    The long-term effect of exposure to DNA alkylating agents is entwined with the cell's genetic capacity for DNA repair and appropriate DNA damage responses. A unique combination of environmental exposure and deficiency in these responses can lead to genomic instability; this “gene–environment interaction” paradigm is a theme for research on chronic disease etiology. In the present study, we used mouse embryonic fibroblasts with a gene deletion in the base excision repair (BER) enzymes DNA β-polymerase (β-pol) and alkyladenine DNA glycosylase (AAG), along with exposure to methyl methanesulfonate (MMS) to study mutagenesis as a function of a particular gene–environment interaction. The β-pol null cells, defective in BER, exhibit a modest increase in spontaneous mutagenesis compared with wild-type cells. MMS exposure increases mutant frequency in β-pol null cells, but not in isogenic wild-type cells; UV light exposure or N-methyl-N′-nitro-N-nitrosoguanidine exposure increases mutant frequency similarly in both cell lines. The MMS-induced increase in mutant frequency in β-pol null cells appears to be caused by DNA lesions that are AAG substrates, because overexpression of AAG in β-pol null cells eliminates the effect. In contrast, β-pol/AAG double null cells are slightly more mutable than the β-pol null cells after MMS exposure. These results illustrate that BER plays a role in protecting mouse embryonic fibroblast cells against methylation-induced mutations and characterize the effect of a particular combination of BER gene defect and environmental exposure. PMID:11983862

  9. Role of DNA base excision repair in the mutability and virulence of Streptococcus mutans

    PubMed Central

    Gonzalez, Kaisha; Faustoferri, Roberta C.; Quivey, Robert G.

    2012-01-01

    Summary The oral pathogen, Streptococcus mutans, possesses inducible DNA repair defenses for protection against pH fluctuations and production of reactive oxygen metabolites such as hydrogen peroxide (H2O2), which are present in the oral cavity. DNA base excision repair (BER) has a critical role in genome maintenance by preventing the accumulation of mutations associated with environmental factors and normal products of cellular metabolism. In this study, we examined the consequences of compromising the DNA glycosylases (Fpg and MutY) and endonucleases (Smx and Smn) of the BER pathway and their relative role in adaptation and virulence. Enzymatic characterization of the BER system showed that it protects the organism against the effects of the highly mutagenic lesion, 7,8-dihydro-8-oxo-2’-deoxyguanine (8-oxo-dG). S. mutans strains lacking a functional Fpg, MutY, or Smn showed elevated spontaneous mutation frequencies; and, these mutator phenotypes correlated with the ability of the strains to survive killing by acid and oxidative agents. In addition, in the G. mellonella virulence model, strains of S. mutans deficient in Fpg, MutY and Smn showed increased virulence as compared to the parent strain. Our results suggest that, for S. mutans, mutator phenotypes, due to loss of BER enzymes, may confer an advantage to virulence of the organism. PMID:22651851

  10. Single-Molecule Methods for Nucleotide Excision Repair: Building a System to Watch Repair in Real Time.

    PubMed

    Kong, Muwen; Beckwitt, Emily C; Springall, Luke; Kad, Neil M; Van Houten, Bennett

    2017-01-01

    Single-molecule approaches to solving biophysical problems are powerful tools that allow static and dynamic real-time observations of specific molecular interactions of interest in the absence of ensemble-averaging effects. Here, we provide detailed protocols for building an experimental system that employs atomic force microscopy and a single-molecule DNA tightrope assay based on oblique angle illumination fluorescence microscopy. Together with approaches for engineering site-specific lesions into DNA substrates, these complementary biophysical techniques are well suited for investigating protein-DNA interactions that involve target-specific DNA-binding proteins, such as those engaged in a variety of DNA repair pathways. In this chapter, we demonstrate the utility of the platform by applying these techniques in the studies of proteins participating in nucleotide excision repair. © 2017 Elsevier Inc. All rights reserved.

  11. Base Excision Repair Variants in Cancer

    PubMed Central

    Marsden, Carolyn G.; Dragon, Julie A.; Wallace, Susan S.; Sweasy, Joann B.

    2018-01-01

    Base excision repair (BER) is a key genome maintenance pathway that removes endogenously damaged DNA bases that arise in cells at very high levels on a daily basis. Failure to remove these damaged DNA bases leads to increased levels of mutagenesis and chromosomal instability, which have the potential to drive carcinogenesis. Next Generation sequencing efforts of the germline and tumors genomes of thousands of individuals has uncovered many rare mutations in BER genes. Given that BER is critical for genome maintenance, it is important to determine whether BER genomic variants have functional phenotypes. In this chapter we present our in silico methods for the identification and prioritization of BER variants for further study. We also provide detailed instructions and commentary on the initial cellular assays we employ to dissect potentially important phenotypes of human BER variants and highlight the strengths and weaknesses of our approaches. BER variants possessing interesting functional phenotypes can then be studied in more detail to provide important mechanistic insights regarding the role of aberrant BER in carcinogenesis. PMID:28645367

  12. NDR1 modulates the UV-induced DNA-damage checkpoint and nucleotide excision repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jeong-Min; Choi, Ji Ye; Yi, Joo Mi

    2015-06-05

    Nucleotide excision repair (NER) is the sole mechanism of UV-induced DNA lesion repair in mammals. A single round of NER requires multiple components including seven core NER factors, xeroderma pigmentosum A–G (XPA–XPG), and many auxiliary effector proteins including ATR serine/threonine kinase. The XPA protein helps to verify DNA damage and thus plays a rate-limiting role in NER. Hence, the regulation of XPA is important for the entire NER kinetic. We found that NDR1, a novel XPA-interacting protein, modulates NER by modulating the UV-induced DNA-damage checkpoint. In quiescent cells, NDR1 localized mainly in the cytoplasm. After UV irradiation, NDR1 accumulated inmore » the nucleus. The siRNA knockdown of NDR1 delayed the repair of UV-induced cyclobutane pyrimidine dimers in both normal cells and cancer cells. It did not, however, alter the expression levels or the chromatin association levels of the core NER factors following UV irradiation. Instead, the NDR1-depleted cells displayed reduced activity of ATR for some set of its substrates including CHK1 and p53, suggesting that NDR1 modulates NER indirectly via the ATR pathway. - Highlights: • NDR1 is a novel XPA-interacting protein. • NDR1 accumulates in the nucleus in response to UV irradiation. • NDR1 modulates NER (nucleotide excision repair) by modulating the UV-induced DNA-damage checkpoint response.« less

  13. Cdt2-mediated XPG degradation promotes gap-filling DNA synthesis in nucleotide excision repair

    PubMed Central

    Han, Chunhua; Wani, Gulzar; Zhao, Ran; Qian, Jiang; Sharma, Nidhi; He, Jinshan; Zhu, Qianzheng; Wang, Qi-En; Wani, Altaf A

    2015-01-01

    Xeroderma pigmentosum group G (XPG) protein is a structure-specific repair endonuclease, which cleaves DNA strands on the 3′ side of the DNA damage during nucleotide excision repair (NER). XPG also plays a crucial role in initiating DNA repair synthesis through recruitment of PCNA to the repair sites. However, the fate of XPG protein subsequent to the excision of DNA damage has remained unresolved. Here, we show that XPG, following its action on bulky lesions resulting from exposures to UV irradiation and cisplatin, is subjected to proteasome-mediated proteolytic degradation. Productive NER processing is required for XPG degradation as both UV and cisplatin treatment-induced XPG degradation is compromised in NER-deficient XP-A, XP-B, XP-C, and XP-F cells. In addition, the NER-related XPG degradation requires Cdt2, a component of an E3 ubiquitin ligase, CRL4Cdt2. Micropore local UV irradiation and in situ Proximity Ligation assays demonstrated that Cdt2 is recruited to the UV-damage sites and interacts with XPG in the presence of PCNA. Importantly, Cdt2-mediated XPG degradation is crucial to the subsequent recruitment of DNA polymerase δ and DNA repair synthesis. Collectively, our data support the idea of PCNA recruitment to damage sites which occurs in conjunction with XPG, recognition of the PCNA-bound XPG by CRL4Cdt2 for specific ubiquitylation and finally the protein degradation. In essence, XPG elimination from DNA damage sites clears the chromatin space needed for the subsequent recruitment of DNA polymerase δ to the damage site and completion of gap-filling DNA synthesis during the final stage of NER. PMID:25483071

  14. Base Excision Repair of Tandem Modifications in a Methylated CpG Dinucleotide*

    PubMed Central

    Sassa, Akira; Çağlayan, Melike; Dyrkheeva, Nadezhda S.; Beard, William A.; Wilson, Samuel H.

    2014-01-01

    Cytosine methylation and demethylation in tracks of CpG dinucleotides is an epigenetic mechanism for control of gene expression. The initial step in the demethylation process can be deamination of 5-methylcytosine producing the TpG alteration and T:G mispair, and this step is followed by thymine DNA glycosylase (TDG) initiated base excision repair (BER). A further consideration is that guanine in the CpG dinucleotide may become oxidized to 7,8-dihydro-8-oxoguanine (8-oxoG), and this could affect the demethylation process involving TDG-initiated BER. However, little is known about the enzymology of BER of altered in-tandem CpG dinucleotides; e.g. Tp8-oxoG. Here, we investigated interactions between this altered dinucleotide and purified BER enzymes, the DNA glycosylases TDG and 8-oxoG DNA glycosylase 1 (OGG1), apurinic/apyrimidinic (AP) endonuclease 1, DNA polymerase β, and DNA ligases. The overall TDG-initiated BER of the Tp8-oxoG dinucleotide is significantly reduced. Specifically, TDG and DNA ligase activities are reduced by a 3′-flanking 8-oxoG. In contrast, the OGG1-initiated BER pathway is blocked due to the 5′-flanking T:G mispair; this reduces OGG1, AP endonuclease 1, and DNA polymerase β activities. Furthermore, in TDG-initiated BER, TDG remains bound to its product AP site blocking OGG1 access to the adjacent 8-oxoG. These results reveal BER enzyme specificities enabling suppression of OGG1-initiated BER and coordination of TDG-initiated BER at this tandem alteration in the CpG dinucleotide. PMID:24695738

  15. Emerging Roles of the Nucleolus in Regulating the DNA Damage Response: The Noncanonical DNA Repair Enzyme APE1/Ref-1 as a Paradigmatical Example

    PubMed Central

    Antoniali, Giulia; Lirussi, Lisa; Poletto, Mattia

    2014-01-01

    Abstract Significance: An emerging concept in DNA repair mechanisms is the evidence that some key enzymes, besides their role in the maintenance of genome stability, display also unexpected noncanonical functions associated with RNA metabolism in specific subcellular districts (e.g., nucleoli). During the evolution of these key enzymes, the acquisition of unfolded domains significantly amplified the possibility to interact with different partners and substrates, possibly explaining their phylogenetic gain of functions. Recent Advances: After nucleolar stress or DNA damage, many DNA repair proteins can freely relocalize from nucleoli to the nucleoplasm. This process may represent a surveillance mechanism to monitor the synthesis and correct assembly of ribosomal units affecting cell cycle progression or inducing p53-mediated apoptosis or senescence. Critical Issues: A paradigm for this kind of regulation is represented by some enzymes of the DNA base excision repair (BER) pathway, such as apurinic/apyrimidinic endonuclease 1 (APE1). In this review, the role of the nucleolus and the noncanonical functions of the APE1 protein are discussed in light of their possible implications in human pathologies. Future Directions: A productive cross-talk between DNA repair enzymes and proteins involved in RNA metabolism seems reasonable as the nucleolus is emerging as a dynamic functional hub that coordinates cell growth arrest and DNA repair mechanisms. These findings will drive further analyses on other BER proteins and might imply that nucleic acid processing enzymes are more versatile than originally thought having evolved DNA-targeted functions after a previous life in the early RNA world. Antioxid. Redox Signal. 20, 621–639. PMID:23879289

  16. Direct and indirect roles of RECQL4 in modulating base excision repair capacity

    PubMed Central

    Schurman, Shepherd H.; Hedayati, Mohammad; Wang, ZhengMing; Singh, Dharmendra K.; Speina, Elzbieta; Zhang, Yongqing; Becker, Kevin; Macris, Margaret; Sung, Patrick; Wilson, David M.; Croteau, Deborah L.; Bohr, Vilhelm A.

    2009-01-01

    RECQL4 is a human RecQ helicase which is mutated in approximately two-thirds of individuals with Rothmund–Thomson syndrome (RTS), a disease characterized at the cellular level by chromosomal instability. BLM and WRN are also human RecQ helicases, which are mutated in Bloom and Werner's syndrome, respectively, and associated with chromosomal instability as well as premature aging. Here we show that primary RTS and RECQL4 siRNA knockdown human fibroblasts accumulate more H2O2-induced DNA strand breaks than control cells, suggesting that RECQL4 may stimulate repair of H2O2-induced DNA damage. RTS primary fibroblasts also accumulate more XRCC1 foci than control cells in response to endogenous or induced oxidative stress and have a high basal level of endogenous formamidopyrimidines. In cells treated with H2O2, RECQL4 co-localizes with APE1, and FEN1, key participants in base excision repair. Biochemical experiments indicate that RECQL4 specifically stimulates the apurinic endonuclease activity of APE1, the DNA strand displacement activity of DNA polymerase β, and incision of a 1- or 10-nucleotide flap DNA substrate by Flap Endonuclease I. Additionally, RTS cells display an upregulation of BER pathway genes and fail to respond like normal cells to oxidative stress. The data herein support a model in which RECQL4 regulates both directly and indirectly base excision repair capacity. PMID:19567405

  17. The versatile DNA nucleotide excision repair (NER) and its medical significance.

    PubMed

    Falik-Zaccai, Tzipora C; Keren, Zohar; Slor, Hanoch

    2009-12-01

    Two of DNA's worst enemies, ultraviolet light and chemical carcinogens, can cause damage to the molecule by mutating individual nucleotides or changing its physical structure. In most cases, genomic integrity is restored by specialized suites of proteins dedicated to repairing specific types of injuries. One restoration mechanism, called nucleotide excision repair (NER), recruits and coordinates the services of 20-30 proteins to recognize and remove structure-impairing lesions, including those induced by ultraviolet (UV) light. Mutations in a gene that encodes a protein from the NER machinery might cause a wide variety of rare inherited human disorders. Sun sensitivity, cancer, developmental retardation, neurodegeneration and premature aging characterize these syndromes. Identification of the causative genes and proteins in affected families in Israel allowed us to establish accurate molecular diagnosis of couples at risk, and provide them with better genetic counseling.

  18. A multistep damage recognition mechanism for global genomic nucleotide excision repair

    PubMed Central

    Sugasawa, Kaoru; Okamoto, Tomoko; Shimizu, Yuichiro; Masutani, Chikahide; Iwai, Shigenori; Hanaoka, Fumio

    2001-01-01

    A mammalian nucleotide excision repair (NER) factor, the XPC–HR23B complex, can specifically bind to certain DNA lesions and initiate the cell-free repair reaction. Here we describe a detailed analysis of its binding specificity using various DNA substrates, each containing a single defined lesion. A highly sensitive gel mobility shift assay revealed that XPC–HR23B specifically binds a small bubble structure with or without damaged bases, whereas dual incision takes place only when damage is present in the bubble. This is evidence that damage recognition for NER is accomplished through at least two steps; XPC–HR23B first binds to a site that has a DNA helix distortion, and then the presence of injured bases is verified prior to dual incision. Cyclobutane pyrimidine dimers (CPDs) were hardly recognized by XPC–HR23B, suggesting that additional factors may be required for CPD recognition. Although the presence of mismatched bases opposite a CPD potentiated XPC–HR23B binding, probably due to enhancement of the helix distortion, cell-free excision of such compound lesions was much more efficient than expected from the observed affinity for XPC–HR23B. This also suggests that additional factors and steps are required for the recognition of some types of lesions. A multistep mechanism of this sort may provide a molecular basis for ensuring the high level of damage discrimination that is required for global genomic NER. PMID:11238373

  19. A multistep damage recognition mechanism for global genomic nucleotide excision repair.

    PubMed

    Sugasawa, K; Okamoto, T; Shimizu, Y; Masutani, C; Iwai, S; Hanaoka, F

    2001-03-01

    A mammalian nucleotide excision repair (NER) factor, the XPC-HR23B complex, can specifically bind to certain DNA lesions and initiate the cell-free repair reaction. Here we describe a detailed analysis of its binding specificity using various DNA substrates, each containing a single defined lesion. A highly sensitive gel mobility shift assay revealed that XPC-HR23B specifically binds a small bubble structure with or without damaged bases, whereas dual incision takes place only when damage is present in the bubble. This is evidence that damage recognition for NER is accomplished through at least two steps; XPC-HR23B first binds to a site that has a DNA helix distortion, and then the presence of injured bases is verified prior to dual incision. Cyclobutane pyrimidine dimers (CPDs) were hardly recognized by XPC-HR23B, suggesting that additional factors may be required for CPD recognition. Although the presence of mismatched bases opposite a CPD potentiated XPC-HR23B binding, probably due to enhancement of the helix distortion, cell-free excision of such compound lesions was much more efficient than expected from the observed affinity for XPC-HR23B. This also suggests that additional factors and steps are required for the recognition of some types of lesions. A multistep mechanism of this sort may provide a molecular basis for ensuring the high level of damage discrimination that is required for global genomic NER.

  20. Repair of cyclobutyl pyrimidine dimers in human skin: variability among normal humans in nucleotide excision and in photorepair.

    PubMed

    Sutherland, Betsy M; Hacham, Haim; Bennett, Paula; Sutherland, John C; Moran, Michael; Gange, R W

    2002-06-01

    Photoreactivation (PR) of cyclobutyl pyrimidine dimers (CPD) in human skin remains controversial. Recently Whitmore et al. (1) reported negative results of experiments using two photorepair light (PRL) sources on UV-irradiated skin of volunteers. However, their PRL sources induced substantial levels of dimers in skin, suggesting that the additional dimers formed could have obscured PR. We met a similar problem of dimer induction by a PRL source. We designed and validated a PRL source of sufficient intensity to catalyse PR, but that did not induce CPD, and used it to measure photorepair in human skin. Using a solar simulator filtered with three types of UV-filters, we found significant dimer formation in skin, quantified by number average length analysis using electrophoretic gels of isolated skin DNA. To prevent scattered UV from reaching the skin, we interposed shields between the filters and skin, and showed that the UV-filtered/shielded solar simulator system did not induce damage in isolated DNA or in human skin. We exposed skin of seven healthy human volunteers to 302 nm radiation, then to the improved PRL source (control skin areas were kept in the dark for measurement of excision repair). Using a high intensity PRL source that did not induce dimers in skin, we found that three of seven subjects carried out rapid photorepair of dimers; two carried out moderate or slow dimer photorepair, and three did not show detectable photorepair. Excision repair was similarly variable in these volunteers. Subjects with slower excision repair showed rapid photorepair, whereas those with rapid excision generally showed little or no photoreactivation.

  1. Molecular mechanisms of DNA repair inhibition by caffeine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selby, C.P.; Sancar, A.

    1990-05-01

    Caffeine potentiates the mutagenic and lethal effects of genotoxic agents. It is thought that this is due, at least in some organisms, to inhibition of DNA repair. However, direct evidence for inhibition of repair enzymes has been lacking. Using purified Escherichia coli DNA photolyase and (A)BC excinuclease, we show that the drug inhibits photoreactivation and nucleotide excision repair by two different mechanisms. Caffeine inhibits photoreactivation by interfering with the specific binding of photolyase to damaged DNA, and it inhibits nucleotide excision repair by promoting nonspecific binding of the damage-recognition subunit, UvrA, of (A)BC excinuclease. A number of other intercalators, includingmore » acriflavin and ethidium bromide, appear to inhibit the excinuclease by a similar mechanism--that is, by trapping the UvrA subunit in nonproductive complexes on undamaged DNA.« less

  2. POLYMORPHISMS IN THE DNA NUCLEOTIDE EXCISION REPAIR GENES AND LUNG CANCER RISK IN XUAN WEI, CHINA

    EPA Science Inventory

    The lung cancer mortality rate in Xuan Wei County, China is among the highest in the country and has been etiologically attributed to exposure to indoor smoky coal emissions that contain very high levels of polycyclic aromatic hydrocarbons (PAHs). Nucleotide excision repair (NE...

  3. Poly(ADP-ribose) Contributes to an Association between Poly(ADP-ribose) Polymerase-1 and Xeroderma Pigmentosum Complementation Group A in Nucleotide Excision Repair*

    PubMed Central

    King, Brenee S.; Cooper, Karen L.; Liu, Ke Jian; Hudson, Laurie G.

    2012-01-01

    Exposure to ultraviolet radiation (UVR) promotes the formation of UVR-induced, DNA helix distorting photolesions such as (6-4) pyrimidine-pyrimidone photoproducts and cyclobutane pyrimidine dimers. Effective repair of such lesions by the nucleotide excision repair (NER) pathway is required to prevent DNA mutations and chromosome aberrations. Poly(ADP-ribose) polymerase-1 (PARP-1) is a zinc finger protein with well documented involvement in base excision repair. PARP-1 is activated in response to DNA damage and catalyzes the formation of poly(ADP-ribose) subunits that assist in the assembly of DNA repair proteins at sites of damage. In this study, we present evidence for PARP-1 contributions to NER, extending the knowledge of PARP-1 function in DNA repair beyond the established role in base excision repair. Silencing the PARP-1 protein or inhibiting PARP activity leads to retention of UVR-induced photolesions. PARP activation following UVR exposure promotes association between PARP-1 and XPA, a central protein in NER. Administration of PARP inhibitors confirms that poly(ADP-ribose) facilitates PARP-1 association with XPA in whole cell extracts, in isolated chromatin complexes, and in vitro. Furthermore, inhibition of PARP activity decreases UVR-stimulated XPA chromatin association, illustrating that these relationships occur in a meaningful context for NER. These results provide a mechanistic link for PARP activity in the repair of UVR-induced photoproducts. PMID:23038248

  4. Generation of DNA single-strand displacement by compromised nucleotide excision repair

    PubMed Central

    Godon, Camille; Mourgues, Sophie; Nonnekens, Julie; Mourcet, Amandine; Coin, Fréderic; Vermeulen, Wim; Mari, Pierre-Olivier; Giglia-Mari, Giuseppina

    2012-01-01

    Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage-induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single- or double-strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation (γH2AX) signal in the UV-exposed areas. We show that the observed γH2AX signal can be explained by the presence of longer single-strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH-XPG binding that could promote single-strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients. PMID:22863773

  5. Lower nucleotide excision repair capacity in newborns compared to their mothers: a pilot study.

    PubMed

    Vande Loock, Kim; Decordier, Ilse; Plas, Gina; Ciardelli, Roberta; Haumont, Dominique; Kirsch-Volders, Micheline

    2014-01-01

    Recognition of the potential vulnerability of children and newborns and protection of their health is essential, especially regarding to genotoxic compounds. Benzo(a)pyrene B(a)P a commonly found carcinogen, and its metabolite BPDE, are known to cross the placenta. To investigate how well newborns are able to cope with BPDE-induced DNA damage, a recent developed nucleotide excision repair cell phenotype assay was applied in a pilot study of 25 newborn daughters and their mothers, using the Alkaline Comet Assay and taking demographic data into account. Newborns seemed to be less able to repair BPDE-induced DNA damage since lower repair capacity levels were calculated compared to their mothers although statistical significance was not reached. Assessment of repair capacity in combination with genotypes will provide important information to support preventive strategies in neonatal care and to define science based exposure limits for pregnant women and children. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Isolation of a small molecule inhibitor of DNA base excision repair

    PubMed Central

    Madhusudan, Srinivasan; Smart, Fiona; Shrimpton, Paul; Parsons, Jason L.; Gardiner, Laurence; Houlbrook, Sue; Talbot, Denis C.; Hammonds, Timothy; Freemont, Paul A.; Sternberg, Michael J. E.; Dianov, Grigory L.; Hickson, Ian D.

    2005-01-01

    The base excision repair (BER) pathway is essential for the removal of DNA bases damaged by alkylation or oxidation. A key step in BER is the processing of an apurinic/apyrimidinic (AP) site intermediate by an AP endonuclease. The major AP endonuclease in human cells (APE1, also termed HAP1 and Ref-1) accounts for >95% of the total AP endonuclease activity, and is essential for the protection of cells against the toxic effects of several classes of DNA damaging agents. Moreover, APE1 overexpression has been linked to radio- and chemo-resistance in human tumors. Using a newly developed high-throughput screen, several chemical inhibitors of APE1 have been isolated. Amongst these, CRT0044876 was identified as a potent and selective APE1 inhibitor. CRT0044876 inhibits the AP endonuclease, 3′-phosphodiesterase and 3′-phosphatase activities of APE1 at low micromolar concentrations, and is a specific inhibitor of the exonuclease III family of enzymes to which APE1 belongs. At non-cytotoxic concentrations, CRT0044876 potentiates the cytotoxicity of several DNA base-targeting compounds. This enhancement of cytotoxicity is associated with an accumulation of unrepaired AP sites. In silico modeling studies suggest that CRT0044876 binds to the active site of APE1. These studies provide both a novel reagent for probing APE1 function in human cells, and a rational basis for the development of APE1-targeting drugs for antitumor therapy. PMID:16113242

  7. Nucleotide excision repair deficient mouse models and neurological disease

    PubMed Central

    Niedernhofer, Laura J.

    2008-01-01

    Nucleotide excision repair (NER) is a highly conserved mechanism to remove helix-distorting DNA base damage. A major substrate for NER is DNA damage caused by environmental genotoxins, most notably ultraviolet radiation. Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy are three human diseases caused by inherited defects in NER. The symptoms and severity of these diseases vary dramatically, ranging from profound developmental delay to cancer predisposition and accelerated aging. All three syndromes include neurological disease, indicating an important role for NER in protecting against spontaneous DNA damage as well. To study the pathophysiology caused by DNA damage, numerous mouse models of NER deficiency were generated by knocking-out genes required for NER or knocking-in disease-causing human mutations. This review explores the utility of these mouse models to study neurological disease caused by NER deficiency. PMID:18272436

  8. Oxidized nucleotide insertion by pol β confounds ligation during base excision repair

    PubMed Central

    Çağlayan, Melike; Horton, Julie K.; Dai, Da-Peng; Stefanick, Donna F.; Wilson, Samuel H.

    2017-01-01

    Oxidative stress in cells can lead to accumulation of reactive oxygen species and oxidation of DNA precursors. Oxidized purine nucleotides can be inserted into DNA during replication and repair. The main pathway for correcting oxidized bases in DNA is base excision repair (BER), and in vertebrates DNA polymerase β (pol β) provides gap filling and tailoring functions. Here we report that the DNA ligation step of BER is compromised after pol β insertion of oxidized purine nucleotides into the BER intermediate in vitro. These results suggest the possibility that BER mediated toxic strand breaks are produced in cells under oxidative stress conditions. We observe enhanced cytotoxicity in oxidizing-agent treated pol β expressing mouse fibroblasts, suggesting formation of DNA strand breaks under these treatment conditions. Increased cytotoxicity following MTH1 knockout or treatment with MTH1 inhibitor suggests the oxidation of precursor nucleotides. PMID:28067232

  9. USP7S-dependent inactivation of Mule regulates DNA damage signalling and repair.

    PubMed

    Khoronenkova, Svetlana V; Dianov, Grigory L

    2013-02-01

    The E3 ubiquitin ligase Mule/ARF-BP1 plays an important role in the cellular DNA damage response by controlling base excision repair and p53 protein levels. However, how the activity of Mule is regulated in response to DNA damage is currently unknown. Here, we report that the Ser18-containing isoform of the USP7 deubiquitylation enzyme (USP7S) controls Mule stability by preventing its self-ubiquitylation and subsequent proteasomal degradation. We find that in response to DNA damage, downregulation of USP7S leads to self-ubiquitylation and proteasomal degradation of Mule, which eventually leads to p53 accumulation. Cells that are unable to downregulate Mule show reduced ability to upregulate p53 levels in response to DNA damage. We also find that, as Mule inactivation is required for stabilization of base excision repair enzymes, the failure of cells to downregulate Mule after DNA damage results in deficient DNA repair. Our data describe a novel mechanism by which Mule is regulated in response to DNA damage and coordinates cellular DNA damage responses and DNA repair.

  10. Regulation of Nucleotide Excision Repair by UV-DDB: Prioritization of Damage Recognition to Internucleosomal DNA

    PubMed Central

    Luch, Andreas; Glas, Andreas; Carell, Thomas; Naegeli, Hanspeter

    2011-01-01

    How tightly packed chromatin is thoroughly inspected for DNA damage is one of the fundamental unanswered questions in biology. In particular, the effective excision of carcinogenic lesions caused by the ultraviolet (UV) radiation of sunlight depends on UV-damaged DNA-binding protein (UV-DDB), but the mechanism by which this DDB1-DDB2 heterodimer stimulates DNA repair remained enigmatic. We hypothesized that a distinctive function of this unique sensor is to coordinate damage recognition in the nucleosome repeat landscape of chromatin. Therefore, the nucleosomes of human cells have been dissected by micrococcal nuclease, thus revealing, to our knowledge for the first time, that UV-DDB associates preferentially with lesions in hypersensitive, hence, highly accessible internucleosomal sites joining the core particles. Surprisingly, the accompanying CUL4A ubiquitin ligase activity is necessary to retain the xeroderma pigmentosum group C (XPC) partner at such internucleosomal repair hotspots that undergo very fast excision kinetics. This CUL4A complex thereby counteracts an unexpected affinity of XPC for core particles that are less permissive than hypersensitive sites to downstream repair subunits. That UV-DDB also adopts a ubiquitin-independent function is evidenced by domain mapping and in situ protein dynamics studies, revealing direct but transient interactions that promote a thermodynamically unfavorable β-hairpin insertion of XPC into substrate DNA. We conclude that the evolutionary advent of UV-DDB correlates with the need for a spatiotemporal organizer of XPC positioning in higher eukaryotic chromatin. PMID:22039351

  11. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription*

    PubMed Central

    Nadkarni, Aditi; Burns, John A.; Gandolfi, Alberto; Chowdhury, Moinuddin A.; Cartularo, Laura; Berens, Christian; Geacintov, Nicholas E.; Scicchitano, David A.

    2016-01-01

    DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N6-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N6-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N6-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N6-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N6-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER. PMID:26559971

  12. Oxidative DNA damage background estimated by a system model of base excision repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokhansanj, B A; Wilson, III, D M

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parametersmore » from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.« less

  13. Bioenergetic metabolites regulate base excision repair dependent cell death in response to DNA damage

    PubMed Central

    Tang, Jiang-bo; Goellner, Eva M.; Wang, Xiao-hong; Trivedi, Ram N.; Croix, Claudette M. St; Jelezcova, Elena; Svilar, David; Brown, Ashley R.; Sobol, Robert W.

    2009-01-01

    Base excision repair (BER) protein expression is important for resistance to DNA damage-induced cytotoxicity. Conversely, BER imbalance (Polß deficiency or repair inhibition) enhances cytotoxicity of radiation and chemotherapeutic DNA-damaging agents. Whereas inhibition of critical steps in the BER pathway result in the accumulation of cytotoxic DNA double-strand breaks, we report that DNA damage-induced cytotoxicity due to deficiency in the BER protein Polß triggers cell death dependent on PARP activation yet independent of poly(ADP-ribose) (PAR)-mediated AIF nuclear translocation or PARG, suggesting that cytotoxicity is not from PAR or PAR-catabolite signaling. Cell death is rescued by the NAD+ metabolite NMN and is synergistic with inhibition of NAD+ biosynthesis, demonstrating that DNA damage-induced cytotoxicity mediated via BER inhibition is primarily dependent on cellular metabolite bioavailability. We offer a mechanistic justification for the elevated alkylation-induced cytotoxicity of Polß deficient cells, suggesting a linkage between DNA repair, cell survival and cellular bioenergetics. PMID:20068071

  14. Epistatic role of base excision repair and mismatch repair pathways in mediating cisplatin cytotoxicity

    PubMed Central

    Kothandapani, Anbarasi; Sawant, Akshada; Dangeti, Venkata Srinivas Mohan Nimai; Sobol, Robert W.; Patrick, Steve M.

    2013-01-01

    Base excision repair (BER) and mismatch repair (MMR) pathways play an important role in modulating cis-Diamminedichloroplatinum (II) (cisplatin) cytotoxicity. In this article, we identified a novel mechanistic role of both BER and MMR pathways in mediating cellular responses to cisplatin treatment. Cells defective in BER or MMR display a cisplatin-resistant phenotype. Targeting both BER and MMR pathways resulted in no additional resistance to cisplatin, suggesting that BER and MMR play epistatic roles in mediating cisplatin cytotoxicity. Using a DNA Polymerase β (Polβ) variant deficient in polymerase activity (D256A), we demonstrate that MMR acts downstream of BER and is dependent on the polymerase activity of Polβ in mediating cisplatin cytotoxicity. MSH2 preferentially binds a cisplatin interstrand cross-link (ICL) DNA substrate containing a mismatch compared with a cisplatin ICL substrate without a mismatch, suggesting a novel mutagenic role of Polβ in activating MMR in response to cisplatin. Collectively, these results provide the first mechanistic model for BER and MMR functioning within the same pathway to mediate cisplatin sensitivity via non-productive ICL processing. In this model, MMR participation in non-productive cisplatin ICL processing is downstream of BER processing and dependent on Polβ misincorporation at cisplatin ICL sites, which results in persistent cisplatin ICLs and sensitivity to cisplatin. PMID:23761438

  15. Nucleosomes Suppress the Formation of Double-strand DNA Breaks during Attempted Base Excision Repair of Clustered Oxidative Damages*

    PubMed Central

    Cannan, Wendy J.; Tsang, Betty P.; Wallace, Susan S.; Pederson, David S.

    2014-01-01

    Exposure to ionizing radiation can produce multiple, clustered oxidative lesions in DNA. The near simultaneous excision of nearby lesions in opposing DNA strands by the base excision repair (BER) enzymes can produce double-strand DNA breaks (DSBs). This attempted BER accounts for many of the potentially lethal or mutagenic DSBs that occur in vivo. To assess the impact of nucleosomes on the frequency and pattern of BER-dependent DSB formation, we incubated nucleosomes containing oxidative damages in opposing DNA strands with selected DNA glycosylases and human apurinic/apyrimidinic endonuclease 1. Overall, nucleosomes substantially suppressed DSB formation. However, the degree of suppression varied as a function of (i) the lesion type and DNA glycosylase tested, (ii) local sequence context and the stagger between opposing strand lesions, (iii) the helical orientation of oxidative lesions relative to the underlying histone octamer, and (iv) the distance between the lesion cluster and the nucleosome edge. In some instances the binding of a BER factor to one nucleosomal lesion appeared to facilitate binding to the opposing strand lesion. DSB formation did not invariably lead to nucleosome dissolution, and in some cases, free DNA ends resulting from DSB formation remained associated with the histone octamer. These observations explain how specific structural and dynamic properties of nucleosomes contribute to the suppression of BER-generated DSBs. These studies also suggest that most BER-generated DSBs will occur in linker DNA and in genomic regions associated with elevated rates of nucleosome turnover or remodeling. PMID:24891506

  16. Chronic low-dose ultraviolet-induced mutagenesis in nucleotide excision repair-deficient cells.

    PubMed

    Haruta, Nami; Kubota, Yoshino; Hishida, Takashi

    2012-09-01

    UV radiation induces two major types of DNA lesions, cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidine photoproducts, which are both primarily repaired by nucleotide excision repair (NER). Here, we investigated how chronic low-dose UV (CLUV)-induced mutagenesis occurs in rad14Δ NER-deficient yeast cells, which lack the yeast orthologue of human xeroderma pigmentosum A (XPA). The results show that rad14Δ cells have a marked increase in CLUV-induced mutations, most of which are C→T transitions in the template strand for transcription. Unexpectedly, many of the CLUV-induced C→T mutations in rad14Δ cells are dependent on translesion synthesis (TLS) DNA polymerase η, encoded by RAD30, despite its previously established role in error-free TLS. Furthermore, we demonstrate that deamination of cytosine-containing CPDs contributes to CLUV-induced mutagenesis. Taken together, these results uncover a novel role for Polη in the induction of C→T transitions through deamination of cytosine-containing CPDs in CLUV-exposed NER deficient cells. More generally, our data suggest that Polη can act as both an error-free and a mutagenic DNA polymerase, depending on whether the NER pathway is available to efficiently repair damaged templates.

  17. In Vitro Fluorogenic Real-time Assay of the Repair of Oxidative DNA Damage

    PubMed Central

    Edwards, Sarah K.; Ono, Toshikazu; Wang, Shenliang; Jiang, Wei; Franzini, Raphael M.; Jung, Jong Wha; Chan, Ke Min; Kool, Eric T.

    2015-01-01

    The repair of oxidative damage to DNA is essential to avoidance of mutations that lead to cancer. Oxidized DNA bases, such as 8-oxoguanine, are a chief source of these mutations, and the enzyme 8-oxoguanine glycosylase 1 (OGG1) is the chief human enzyme that excises 8-oxoguanine from DNA. The activity of OGG1 has been linked to human inflammation responses and to cancer, and researchers are beginning to search for inhibitors of the enzyme. However, measuring the activity of the enzyme typically requires laborious gel-based measurements of radiolabeled DNAs. Here we report on the design and properties of fluorogenic probes that directly report on OGG1 (and bacterial homologue Fpg) activity in real time as the oxidized base is excised. The probes are short modified DNA oligomers containing fluorescent DNA bases and are designed to utilize the damaged DNA base itself as a fluorescence quencher. Screening of combinations of fluorophores and 8-oxoguanine revealed two fluorophores, pyrene and tCo, that are strongly quenched by the damaged base. We tested 42 potential probe designs containing these fluorophores, and we found an optimized probe OGR1 that yields a 60-fold light-up signal in vitro with OGG1 and Fpg, and can report on oxidative repair activity in mammalian cell lysate and with bacterial cells overexpressing a repair enzyme. Such probes may be useful in quantifying enzyme activity and performing competitive inhibition assays. PMID:26073452

  18. Genetic instability associated with loop or stem–loop structures within transcription units can be independent of nucleotide excision repair

    PubMed Central

    Burns, John A; Chowdhury, Moinuddin A; Cartularo, Laura; Berens, Christian; Scicchitano, David A

    2018-01-01

    Abstract Simple sequence repeats (SSRs) are found throughout the genome, and under some conditions can change in length over time. Germline and somatic expansions of trinucleotide repeats are associated with a series of severely disabling illnesses, including Huntington's disease. The underlying mechanisms that effect SSR expansions and contractions have been experimentally elusive, but models suggesting a role for DNA repair have been proposed, in particular the involvement of transcription-coupled nucleotide excision repair (TCNER) that removes transcription-blocking DNA damage from the transcribed strand of actively expressed genes. If the formation of secondary DNA structures that are associated with SSRs were to block RNA polymerase progression, TCNER could be activated, resulting in the removal of the aberrant structure and a concomitant change in the region's length. To test this, TCNER activity in primary human fibroblasts was assessed on defined DNA substrates containing extrahelical DNA loops that lack discernible internal base pairs or DNA stem–loops that contain base pairs within the stem. The results show that both structures impede transcription elongation, but there is no corresponding evidence that nucleotide excision repair (NER) or TCNER operates to remove them. PMID:29474673

  19. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription.

    PubMed

    Nadkarni, Aditi; Burns, John A; Gandolfi, Alberto; Chowdhury, Moinuddin A; Cartularo, Laura; Berens, Christian; Geacintov, Nicholas E; Scicchitano, David A

    2016-01-08

    DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N(6)-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N(6)-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N(6)-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N(6)-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N(6)-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Nucleosomes suppress the formation of double-strand DNA breaks during attempted base excision repair of clustered oxidative damages.

    PubMed

    Cannan, Wendy J; Tsang, Betty P; Wallace, Susan S; Pederson, David S

    2014-07-18

    Exposure to ionizing radiation can produce multiple, clustered oxidative lesions in DNA. The near simultaneous excision of nearby lesions in opposing DNA strands by the base excision repair (BER) enzymes can produce double-strand DNA breaks (DSBs). This attempted BER accounts for many of the potentially lethal or mutagenic DSBs that occur in vivo. To assess the impact of nucleosomes on the frequency and pattern of BER-dependent DSB formation, we incubated nucleosomes containing oxidative damages in opposing DNA strands with selected DNA glycosylases and human apurinic/apyrimidinic endonuclease 1. Overall, nucleosomes substantially suppressed DSB formation. However, the degree of suppression varied as a function of (i) the lesion type and DNA glycosylase tested, (ii) local sequence context and the stagger between opposing strand lesions, (iii) the helical orientation of oxidative lesions relative to the underlying histone octamer, and (iv) the distance between the lesion cluster and the nucleosome edge. In some instances the binding of a BER factor to one nucleosomal lesion appeared to facilitate binding to the opposing strand lesion. DSB formation did not invariably lead to nucleosome dissolution, and in some cases, free DNA ends resulting from DSB formation remained associated with the histone octamer. These observations explain how specific structural and dynamic properties of nucleosomes contribute to the suppression of BER-generated DSBs. These studies also suggest that most BER-generated DSBs will occur in linker DNA and in genomic regions associated with elevated rates of nucleosome turnover or remodeling. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Development and validation of a modified comet assay to phenotypically assess nucleotide excision repair.

    PubMed

    Langie, Sabine A S; Knaapen, Ad M; Brauers, Karen J J; van Berlo, Damien; van Schooten, Frederik-Jan; Godschalk, Roger W L

    2006-03-01

    There is an increasing need for simple and reliable approaches to phenotypically assess DNA repair capacities. Therefore, a modification of the alkaline comet assay was developed to determine the ability of human lymphocyte extracts to perform the initial steps of the nucleotide excision repair (NER) process, i.e. damage recognition and incision. Gel-embedded nucleoids from A549 cells, pre-exposed to 1 microM benzo[a]pyrene-diol-epoxide, were incubated with cell extracts from frozen or freshly isolated lymphocytes. The rate at which incisions are introduced and the subsequent increase in tail moment is indicative for the repair capacity of the extracts. Freshly prepared extracts from lymphocytes of human volunteers (n = 8) showed significant inter-individual variations in their DNA repair capacity, which correlated with the removal of bulky DNA lesions over a period of 48 h determined by (32)P-post-labelling (R(2) = 0.76, P = 0.005). Repeated measurements revealed a low inter-assay variation (11%). Storage of cell extracts for more than 3 weeks significantly reduced (up to 80%) the capacity to incise the damaged DNA as compared to freshly isolated extracts. This reduction was completely restored by addition of ATP to the extracts before use, as it is required for the incision step of NER. In contrast, extracts freshly prepared from frozen lymphocyte pellets can be used without loss of repair activity. DNA repair deficient XPA-/- and XPC-/- fibroblasts were used to further validate the assay. Although some residual capacity to incise the DNA was observed in these cells, the repair activity was restored to normal wild-type levels when a complementary mixture of both extracts (thereby restoring XPA and XPC deficiency) was used. These results demonstrate that this repair assay can be applied in molecular epidemiological studies to assess inter-individual differences in NER.

  2. The Nucleotide Excision Repair Pathway Limits L1 Retrotransposition

    PubMed Central

    Servant, Geraldine; Streva, Vincent A.; Derbes, Rebecca S.; Wijetunge, Madushani I.; Neeland, Marc; White, Travis B.; Belancio, Victoria P.; Roy-Engel, Astrid M.; Deininger, Prescott L.

    2017-01-01

    Long interspersed elements 1 (L1) are active mobile elements that constitute almost 17% of the human genome. They amplify through a “copy-and-paste” mechanism termed retrotransposition, and de novo insertions related to these elements have been reported to cause 0.2% of genetic diseases. Our previous data demonstrated that the endonuclease complex ERCC1-XPF, which cleaves a 3′ DNA flap structure, limits L1 retrotransposition. Although the ERCC1-XPF endonuclease participates in several different DNA repair pathways, such as single-strand annealing, or in telomere maintenance, its recruitment to DNA lesions is best characterized in the nucleotide excision repair (NER) pathway. To determine if the NER pathway prevents the insertion of retroelements in the genome, we monitored the retrotransposition efficiencies of engineered L1 elements in NER-deficient cells and in their complemented versions. Core proteins of the NER pathway, XPD and XPA, and the lesion binding protein, XPC, are involved in limiting L1 retrotransposition. In addition, sequence analysis of recovered de novo L1 inserts and their genomic locations in NER-deficient cells demonstrated the presence of abnormally large duplications at the site of insertion, suggesting that NER proteins may also play a role in the normal L1 insertion process. Here, we propose new functions for the NER pathway in the maintenance of genome integrity: limitation of insertional mutations caused by retrotransposons and the prevention of potentially mutagenic large genomic duplications at the site of retrotransposon insertion events. PMID:28049704

  3. Overexpression of the base excision repair NTHL1 glycosylase causes genomic instability and early cellular hallmarks of cancer

    PubMed Central

    Limpose, Kristin L; Trego, Kelly S; Li, Zhentian; Leung, Sara W; Sarker, Altaf H; Shah, Jason A; Ramalingam, Suresh S; Werner, Erica M; Dynan, William S; Cooper, Priscilla K; Corbett, Anita H; Doetsch, Paul W

    2018-01-01

    Abstract Base excision repair (BER), which is initiated by DNA N-glycosylase proteins, is the frontline for repairing potentially mutagenic DNA base damage. The NTHL1 glycosylase, which excises DNA base damage caused by reactive oxygen species, is thought to be a tumor suppressor. However, in addition to NTHL1 loss-of-function mutations, our analysis of cancer genomic datasets reveals that NTHL1 frequently undergoes amplification or upregulation in some cancers. Whether NTHL1 overexpression could contribute to cancer phenotypes has not yet been explored. To address the functional consequences of NTHL1 overexpression, we employed transient overexpression. Both NTHL1 and a catalytically-dead NTHL1 (CATmut) induce DNA damage and genomic instability in non-transformed human bronchial epithelial cells (HBEC) when overexpressed. Strikingly, overexpression of either NTHL1 or CATmut causes replication stress signaling and a decrease in homologous recombination (HR). HBEC cells that overexpress NTHL1 or CATmut acquire the ability to grow in soft agar and exhibit loss of contact inhibition, suggesting that a mechanism independent of NTHL1 catalytic activity contributes to acquisition of cancer-related cellular phenotypes. We provide evidence that NTHL1 interacts with the multifunctional DNA repair protein XPG suggesting that interference with HR is a possible mechanism that contributes to acquisition of early cellular hallmarks of cancer. PMID:29522130

  4. Base excision repair imbalance in colorectal cancer has prognostic value and modulates response to chemotherapy

    PubMed Central

    Leguisamo, Natalia M.; Gloria, Helena C.; Kalil, Antonio N.; Martins, Talita V.; Azambuja, Daniel B.

    2017-01-01

    Colorectal cancer (CRC) is prevalent worldwide, and treatment often involves surgery and genotoxic chemotherapy. DNA repair mechanisms, such as base excision repair (BER) and mismatch repair (MMR), may not only influence tumour characteristics and prognosis but also dictate chemotherapy response. Defective MMR contributes to chemoresistance in colorectal cancer. Moreover, BER affects cellular survival by repairing genotoxic base damage in a process that itself can disrupt metabolism. In this study, we characterized BER and MMR gene expression in colorectal tumours and the association between this repair profile with patients’ clinical and pathological features. In addition, we exploited the possible mechanisms underlying the association between altered DNA repair, metabolism and response to chemotherapy. Seventy pairs of sporadic colorectal tumour samples and adjacent non-tumour mucosal specimens were assessed for BER and MMR gene and protein expression and their association with pathological and clinical features. MMR-deficient colon cancer cells (HCT116) transiently overexpressing MPG or XRCC1 were treated with 5-FU or TMZ and evaluated for viability and metabolic intermediate levels. Increase in BER gene and protein expression is associated with more aggressive tumour features and poor pathological outcomes in CRC. However, tumours with reduced MMR gene expression also displayed low MPG, OGG1 and PARP1 expression. Imbalancing BER by overexpression of MPG, but not XRCC1, sensitises MMR-deficient colon cancer cells to 5-FU and TMZ and leads to ATP depletion and lactate accumulation. MPG overexpression alters DNA repair and metabolism and is a potential strategy to overcome 5-FU chemotherapeutic resistance in MMR-deficient CRC. PMID:28903334

  5. Disruption of nucleotide excision repair by the human T-cell leukemia virus type 1 Tax protein.

    PubMed

    Kao, S Y; Marriott, S J

    1999-05-01

    The Tax protein of human T-cell leukemia virus type 1 (HTLV-1) is a transcriptional transactivator and viral oncogene. Since cellular transformation has been frequently linked to alterations in genome stability, we investigated the effect of Tax on nucleotide excision repair (NER), a prominent cellular DNA repair pathway. Cells expressing Tax exhibited a reduced capacity for NER as measured by unscheduled DNA synthesis and host cell reactivation assays. The cellular proliferating cell nuclear antigen (PCNA) gene product regulates DNA replication and repair pathways, including NER. Since Tax activates transcription of the PCNA promoter, we investigated whether this activity contributes to the reduction of NER. Tax increased endogenous PCNA protein expression, and analysis of Tax mutant proteins demonstrated that the reduction in NER correlated with Tax transactivation of PCNA gene expression. Direct overexpression of PCNA also reduced NER. We propose that overexpression of PCNA, and disruption of NER induced by Tax, predisposes cells to accumulate DNA damage and contributes to HTLV-1 transformation.

  6. Dimer excision in Escherichia coli in the presence of caffeine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothman, R.H.

    1980-07-01

    The observation that polA1 and recL152 mutations result in both slow pyrimidine dimer excision and large repair patch size leads to the hypothesis that patch size is directly related to the rate of excision. In this study caffeine, a known inhibitor of excision repair, was used to examine the extent of correlation between excision rate and patch size by measuring patch size in the presence of several concentrations of caffeine. Both the rate of excision and the resistance to ultraviolet radiation were reduced with increasing concentrations of caffeine after irradiation. Caffeine also inhibited the rate at which incisions were mademore » and prolonged the time required to rejoin the discontinuities. Patch size, however, was unaffected by caffeine treatment.« less

  7. Phosphorylation of XPB helicase regulates TFIIH nucleotide excision repair activity

    PubMed Central

    Coin, Frédéric; Auriol, Jérome; Tapias, Angel; Clivio, Pascale; Vermeulen, Wim; Egly, Jean-Marc

    2004-01-01

    Nucleotide excision repair (NER) removes damage from DNA in a tightly regulated multiprotein process. The xeroderma pigmentosum group B (XPB) helicase subunit of TFIIH functions in NER and transcription. The serine 751 (S751) residue of XPB was found to be phosphorylated in vivo. This phosphorylation inhibits NER and the microinjection of a phosphomimicking XPB-S751E mutant is unable to correct the NER defect of XP-B cells. Conversely, XPB-S751 dephosphorylation or its substitution with alanine (S751A) restores NER both in vivo and in vitro. Surprisingly, phospho/dephosphorylation of S751 spares TFIIH-dependent transcription. Finally, the phosphorylation of XPB-S751 does not impair the TFIIH unwinding of the DNA around the lesion, but rather prevents the 5′ incision triggered by the ERCC1-XPF endonuclease. These data support an additional role for XPB in promoting the incision of the damaged fragment and reveal a point of NER regulation on TFIIH without interference in its transcription activity. PMID:15549133

  8. Ordered Conformational Changes in Damaged DNA Induced by Nucleotide Excision Repair Factors*

    PubMed Central

    Tapias, Angels; Auriol, Jerome; Forget, Diane; Enzlin, Jacqueline H.; Schärer, Orlando D; Coin, Frederic; Coulombe, Benoit; Egly, Jean-Marc

    2015-01-01

    In response to genotoxic attacks, cells activate sophisticated DNA repair pathways such as nucleotide excision repair (NER), which consists of damage removal via dual incision and DNA resynthesis. Using permanganate footprinting as well as highly purified factors, we show that NER is a dynamic process that takes place in a number of successive steps during which the DNA is remodeled around the lesion in response to the various NER factors. XPC/HR23B first recognizes the damaged structure and initiates the opening of the helix from position −3 to +6. TFIIH is then recruited and, in the presence of ATP, extends the opening from position −6 to +6; it also displaces XPC downstream from the lesion, thereby providing the topological structure for recruiting XPA and RPA, which will enlarge the opening. Once targeted by XPG, the damaged DNA is further melted from position −19 to +8. XPG and XPF/ERCC1 endo-nucleases then cut the damaged DNA at the limit of the opened structure that was previously “labeled” by the positioning of XPC/HR23B and TFIIH. PMID:14981083

  9. Up-regulation of nucleotide excision repair in mouse lung and liver following chronic exposure to aflatoxin B{sub 1} and its dependence on p53 genotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulder, Jeanne E.; Bondy, Genevieve S.; Mehta, Rekha

    Aflatoxin B{sub 1} (AFB{sub 1}) is biotransformed in vivo into an epoxide metabolite that forms DNA adducts that may induce cancer if not repaired. p53 is a tumor suppressor gene implicated in the regulation of global nucleotide excision repair (NER). Male heterozygous p53 knockout (B6.129-Trp53{sup tm1Brd}N5, Taconic) and wild-type mice were exposed to 0, 0.2 or 1.0 ppm AFB{sub 1} for 26 weeks. NER activity was assessed with an in vitro assay, using AFB{sub 1}-epoxide adducted plasmid DNA as a substrate. For wild-type mice, repair of AFB{sub 1}–N7-Gua adducts was 124% and 96% greater in lung extracts from mice exposedmore » to 0.2 ppm and 1.0 ppm AFB{sub 1} respectively, and 224% greater in liver extracts from mice exposed to 0.2 ppm AFB{sub 1} (p < 0.05). In heterozygous p53 knockout mice, repair of AFB{sub 1}–N7-Gua was only 45% greater in lung extracts from mice exposed to 0.2 ppm AFB{sub 1} (p < 0.05), and no effect was observed in lung extracts from mice treated with 1.0 ppm AFB{sub 1} or in liver extracts from mice treated with either AFB{sub 1} concentration. p53 genotype did not affect basal levels of repair. AFB{sub 1} exposure did not alter repair of AFB{sub 1}-derived formamidopyrimidine adducts in lung or liver extracts of either mouse genotype nor did it affect XPA or XPB protein levels. In summary, chronic exposure to AFB{sub 1} increased NER activity in wild-type mice, and this response was diminished in heterozygous p53 knockout mice, indicating that loss of one allele of p53 limits the ability of NER to be up-regulated in response to DNA damage. - Highlights: • Mice are chronically exposed to low doses of the mycotoxin aflatoxin B{sub 1} (AFB{sub 1}). • The effects of AFB{sub 1} and p53 status on nucleotide excision repair are investigated. • AFB{sub 1} increases nucleotide excision repair in wild type mouse lung and liver. • This increase is attenuated in p53 heterozygous mouse lung and liver. • Results portray the role of p53 in

  10. A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification

    PubMed Central

    Almeida, Karen H.; Sobol, Robert W.

    2007-01-01

    Base excision repair (BER) proteins act upon a significantly broad spectrum of DNA lesions that result from endogenous and exogenous sources. Multiple sub-pathways of BER (short-path or long-patch) and newly designated DNA repair pathways (e.g., SSBR and NIR) that utilize BER proteins complicate any comprehensive understanding of BER and its role in genome maintenance, chemotherapeutic response, neurodegeneration, cancer or aging. Herein, we propose a unified model of BER, comprised of three functional processes: Lesion Recognition/Strand Scission, Gap Tailoring and DNA Synthesis/Ligation, each represented by one or more multiprotein complexes and coordinated via the XRCC1/DNA Ligase III and PARP1 scaffold proteins. BER therefore may be represented by a series of repair complexes that assemble at the site of the DNA lesion and mediates repair in a coordinated fashion involving protein-protein interactions that dictate subsequent steps or sub-pathway choice. Complex formation is influenced by post-translational protein modifications that arise from the cellular state or the DNA damage response, providing an increase in specificity and efficiency to the BER pathway. In this review, we have summarized the reported BER protein-protein interactions and protein post-translational modifications and discuss the impact on DNA repair capacity and complex formation. PMID:17337257

  11. Oxidatively Generated Guanine(C8)-Thymine(N3) Intrastrand Cross-links in Double-stranded DNA Are Repaired by Base Excision Repair Pathways*

    PubMed Central

    Talhaoui, Ibtissam; Shafirovich, Vladimir; Liu, Zhi; Saint-Pierre, Christine; Akishev, Zhiger; Matkarimov, Bakhyt T.; Gasparutto, Didier; Geacintov, Nicholas E.; Saparbaev, Murat

    2015-01-01

    Oxidatively generated guanine radical cations in DNA can undergo various nucleophilic reactions including the formation of C8-guanine cross-links with adjacent or nearby N3-thymines in DNA in the presence of O2. The G*[C8-N3]T* lesions have been identified in the DNA of human cells exposed to oxidative stress, and are most likely genotoxic if not removed by cellular defense mechanisms. It has been shown that the G*[C8-N3]T* lesions are substrates of nucleotide excision repair in human cell extracts. Cleavage at the sites of the lesions was also observed but not further investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506–2517). Using a panel of eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the analysis of cleavage fragments by PAGE and MALDI-TOF/MS show that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on either side of G*, that none of the recovered cleavage fragments contain G*, and that T* is converted to a normal T in the 3′-fragment cleavage products. The abilities of the DNA glycosylases to incise the DNA strand adjacent to G*, while this base is initially cross-linked with T*, is a surprising observation and an indication of the versatility of these base excision repair proteins. PMID:25903131

  12. Developing an in silico model of the modulation of base excision repair using methoxyamine for more targeted cancer therapeutics.

    PubMed

    Gurkan-Cavusoglu, Evren; Avadhani, Sriya; Liu, Lili; Kinsella, Timothy J; Loparo, Kenneth A

    2013-04-01

    Base excision repair (BER) is a major DNA repair pathway involved in the processing of exogenous non-bulky base damages from certain classes of cancer chemotherapy drugs as well as ionising radiation (IR). Methoxyamine (MX) is a small molecule chemical inhibitor of BER that is shown to enhance chemotherapy and/or IR cytotoxicity in human cancers. In this study, the authors have analysed the inhibitory effect of MX on the BER pathway kinetics using a computational model of the repair pathway. The inhibitory effect of MX depends on the BER efficiency. The authors have generated variable efficiency groups using different sets of protein concentrations generated by Latin hypercube sampling, and they have clustered simulation results into high, medium and low efficiency repair groups. From analysis of the inhibitory effect of MX on each of the three groups, it is found that the inhibition is most effective for high efficiency BER, and least effective for low efficiency repair.

  13. Silibinin enhances the repair of ultraviolet B-induced DNA damage by activating p53-dependent nucleotide excision repair mechanism in human dermal fibroblasts

    PubMed Central

    Guillermo-Lagae, Ruth; Deep, Gagan; Ting, Harold; Agarwal, Chapla; Agarwal, Rajesh

    2015-01-01

    Ultraviolet radiation B (UVB) is the main cause of DNA damage in epidermal cells; and if not repaired, this DNA damage leads to skin cancer. In earlier studies, we have reported that natural flavonolignan silibinin exerts strong chemopreventive efficacy against UVB-induced skin damage and carcinogenesis; however mechanistic studies are still being actively pursued. Here, we investigated the role of nucleotide excision repair (NER) pathway in silibinin's efficacy to repair UVB-induced DNA damage. Normal human dermal fibroblasts (NHDFs) were exposed to UVB (1 mJ/cm2) with pre- or post- silibinin (100 μM) treatment, and cyclobutane pyrimidine dimers (CPDs) formation/repair was measured. Results showed that post-UVB silibinin treatment accelerates DNA repair via activating the NER pathway including the expression of XPA (xeroderma pigmentosum complementation group A), XPB, XPC, and XPG. In UVB exposed fibroblasts, silibinin treatment also increased p53 and GADD45α expression; the key regulators of the NER pathway and DNA repair. Consistently, post-UVB silibinin treatment increased the mRNA transcripts of XPA and GADD45α. Importantly, silibinin showed no effect on UVB-induced DNA damage repair in XPA- and XPB-deficient human dermal fibroblasts suggesting their key role in silibinin-mediated DNA damage repair. Moreover, in the presence of pifithrin-α, an inhibitor of p53, the DNA repair efficacy of silibinin was compromised associated with a reduction in XPA and GADD45α transcripts. Together, these findings suggest that silibinin's efficacy against UVB-induced photodamage is primarily by inhibiting NER and p53; and these findings further support silibinin's usage as a potential inexpensive, effective, and non-toxic agent for skin cancer chemoprevention. PMID:26447614

  14. Silibinin enhances the repair of ultraviolet B-induced DNA damage by activating p53-dependent nucleotide excision repair mechanism in human dermal fibroblasts.

    PubMed

    Guillermo-Lagae, Ruth; Deep, Gagan; Ting, Harold; Agarwal, Chapla; Agarwal, Rajesh

    2015-11-24

    Ultraviolet radiation B (UVB) is the main cause of DNA damage in epidermal cells; and if not repaired, this DNA damage leads to skin cancer. In earlier studies, we have reported that natural flavonolignan silibinin exerts strong chemopreventive efficacy against UVB-induced skin damage and carcinogenesis; however mechanistic studies are still being actively pursued. Here, we investigated the role of nucleotide excision repair (NER) pathway in silibinin's efficacy to repair UVB-induced DNA damage. Normal human dermal fibroblasts (NHDFs) were exposed to UVB (1 mJ/cm2) with pre- or post- silibinin (100 μM) treatment, and cyclobutane pyrimidine dimers (CPDs) formation/repair was measured. Results showed that post-UVB silibinin treatment accelerates DNA repair via activating the NER pathway including the expression of XPA (xeroderma pigmentosum complementation group A), XPB, XPC, and XPG. In UVB exposed fibroblasts, silibinin treatment also increased p53 and GADD45α expression; the key regulators of the NER pathway and DNA repair. Consistently, post-UVB silibinin treatment increased the mRNA transcripts of XPA and GADD45α. Importantly, silibinin showed no effect on UVB-induced DNA damage repair in XPA- and XPB-deficient human dermal fibroblasts suggesting their key role in silibinin-mediated DNA damage repair. Moreover, in the presence of pifithrin-α, an inhibitor of p53, the DNA repair efficacy of silibinin was compromised associated with a reduction in XPA and GADD45α transcripts. Together, these findings suggest that silibinin's efficacy against UVB-induced photodamage is primarily by inhibiting NER and p53; and these findings further support silibinin's usage as a potential inexpensive, effective, and non-toxic agent for skin cancer chemoprevention.

  15. Nucleotide Excision Repair Proteins Rapidly Accumulate but Fail to Persist in Human XP-E (DDB2 Mutant) Cells

    PubMed Central

    Oh, Kyu-Seon; Imoto, Kyoko; Emmert, Steffen; Tamura, Deborah; DiGiovanna, John J.; Kraemer, Kenneth. H.

    2011-01-01

    The XP-E DNA damage binding protein (DDB2) is involved in early recognition of global genome DNA damage during DNA nucleotide excision repair (NER). We found that skin fibroblasts from 4 newly reported XP-E patients with numerous skin cancers and DDB2 mutations had slow repair of 6-4 photoproducts (6-4PP) and markedly reduced repair of cyclobutane pyrimidine dimers (CPD). NER proteins (XPC, XPB, XPG, XPA, and XPF) co-localized to CPD and 6-4PP positive regions immediately (< 0.1h) after localized UV irradiation in cells from the XP-E patients and normal controls. While these proteins persist in normal cells, surprisingly, within 0.5h these repair proteins were no longer detectable at the sites of DNA damage in XP-E cells. Our results indicate that DDB2 is not required for the rapid recruitment of NER proteins to sites of UV photoproducts or for partial repair of 6-4PP but is essential for normal persistence of these proteins for CPD photoproduct removal. PMID:21388382

  16. ERCC1 function in nuclear excision and interstrand crosslink repair pathways is mediated exclusively by the ERCC1-202 isoform

    PubMed Central

    Friboulet, Luc; Postel-Vinay, Sophie; Sourisseau, Tony; Adam, Julien; Stoclin, Annabelle; Ponsonnailles, Florence; Dorvault, Nicolas; Commo, Frédéric; Saulnier, Patrick; Salome-Desmoulez, Sophie; Pottier, Géraldine; André, Fabrice; Kroemer, Guido; Soria, Jean Charles; Olaussen, Ken André

    2013-01-01

    ERCC1 (excision repair cross-complementation group 1) plays essential roles in the removal of DNA intrastrand crosslinks by nucleotide excision repair, and that of DNA interstrand crosslinks by the Fanconi anemia (FA) pathway and homology-directed repair processes (HDR). The function of ERCC1 thus impacts on the DNA damage response (DDR), particularly in anticancer therapy when DNA damaging agents are employed. ERCC1 expression has been proposed as a predictive biomarker of the response to platinum-based therapy. However, the assessment of ERCC1 expression in clinical samples is complicated by the existence of 4 functionally distinct protein isoforms, which differently impact on DDR. Here, we explored the functional competence of each ERCC1 protein isoform and obtained evidence that the 202 isoform is the sole one endowed with ERCC1 activity in DNA repair pathways. The ERCC1 isoform 202 interacts with RPA, XPA, and XPF, and XPF stability requires expression of the ERCC1 202 isoform (but none of the 3 others). ERCC1-deficient non-small cell lung cancer cells show abnormal mitosis, a phenotype reminiscent of the FA phenotype that can be rescued by isoform 202 only. Finally, we could not observe any dominant-negative interaction between ERCC1 isoforms. These data suggest that the selective assessment of the ERCC1 isoform 202 in clinical samples should accurately reflect the DDR-related activity of the gene and hence constitute a useful biomarker for customizing anticancer therapies. PMID:24036546

  17. Overcoming temozolomide resistance in glioblastoma via dual inhibition of NAD+ biosynthesis and base excision repair

    PubMed Central

    Goellner, Eva M.; Grimme, Bradford; Brown, Ashley R.; Lin, Ying-Chih; Wang, Xiao-Hong; Sugrue, Kelsey F.; Mitchell, Leah; Trivedi, Ram N.; Tang, Jiang-bo; Sobol, Robert W.

    2011-01-01

    Glioblastoma multiforme (GBM) is a devastating brain tumor with poor prognosis and low median survival time. Standard treatment includes radiation and chemotherapy with the DNA alkylating agent temozolomide (TMZ). However, a large percentage of tumors are resistant to the cytotoxic effects of the TMZ-induced DNA lesion O6-methylguanine (O6-MeG) due to elevated expression of the repair protein O6-methylguanine-DNA methyltransferase (MGMT) or a defect in the mismatch repair (MMR) pathway. Although a majority of the TMZ induced lesions (N7-methylguanine and N3-methyladenine) are base excision repair (BER) substrates, these DNA lesions are also readily repaired. However, blocking BER can enhance response to TMZ and therefore the BER pathway has emerged as an attractive target for reversing TMZ resistance. Our lab has recently reported that inhibition of BER leads to the accumulation of repair intermediates that induce energy depletion-mediated cell death via hyperactivation of poly(ADP-ribose) polymerase. Based on our observation that TMZ-induced cell death via BER inhibition is dependent on the availability of NAD+, we have hypothesized that combined BER and NAD+ biosynthesis inhibition will increase TMZ efficacy in glioblastoma cell lines greater than BER inhibition alone. Importantly, we find that the combination of BER and NAD+ biosynthesis inhibition significantly sensitizes glioma cells with elevated expression of MGMT and those deficient in MMR, two genotypes normally associated with TMZ resistance. Dual targeting of these two interacting pathways (DNA repair and NAD+ biosynthesis) may prove to be an effective treatment combination for patients with resistant and recurrent GBM. PMID:21406402

  18. POLYMORPHISMS IN THE DNA BASE EXCISION REPAIR GENES APEX1 AND XRCC1 AND LUNG CANCER RISK IN XUAN WEI, CHINA

    EPA Science Inventory

    The lung cancer mortality rate in Xuan Wei County is among the highest in China and has been attributed to exposure to indoor smoky coal emissions that contain very high levels of polycyclic aromatic hydrocarbons (PAHs). Nucleotide excision repair (NER) plays a key role in revers...

  19. Dynamic Interaction of TTDA with TFIIH Is Stabilized by Nucleotide Excision Repair in Living Cells

    PubMed Central

    Theil, Arjan F; Mari, Pierre-Olivier; Hoogstraten, Deborah; Ng, Jessica M. Y; Dinant, Christoffel; Hoeijmakers, Jan H. J

    2006-01-01

    Transcription/repair factor IIH (TFIIH) is essential for RNA polymerase II transcription and nucleotide excision repair (NER). This multi-subunit complex consists of ten polypeptides, including the recently identified small 8-kDa trichothiodystrophy group A (TTDA)/ hTFB5 protein. Patients belonging to the rare neurodevelopmental repair syndrome TTD-A carry inactivating mutations in the TTDA/hTFB5 gene. One of these mutations completely inactivates the protein, whereas other TFIIH genes only tolerate point mutations that do not compromise the essential role in transcription. Nevertheless, the severe NER-deficiency in TTD-A suggests that the TTDA protein is critical for repair. Using a fluorescently tagged and biologically active version of TTDA, we have investigated the involvement of TTDA in repair and transcription in living cells. Under non-challenging conditions, TTDA is present in two distinct kinetic pools: one bound to TFIIH, and a free fraction that shuttles between the cytoplasm and nucleus. After induction of NER-specific DNA lesions, the equilibrium between these two pools dramatically shifts towards a more stable association of TTDA to TFIIH. Modulating transcriptional activity in cells did not induce a similar shift in this equilibrium. Surprisingly, DNA conformations that only provoke an abortive-type of NER reaction do not result into a more stable incorporation of TTDA into TFIIH. These findings identify TTDA as the first TFIIH subunit with a primarily NER-dedicated role in vivo and indicate that its interaction with TFIIH reflects productive NER. PMID:16669699

  20. DNA repair genes polymorphisms and genetic susceptibility to Philadelphia-negative myeloproliferative neoplasms in a Portuguese population: The role of base excision repair genes polymorphisms.

    PubMed

    Azevedo, Ana P; Silva, Susana N; De Lima, João P; Reichert, Alice; Lima, Fernando; Júnior, Esmeraldina; Rueff, José

    2017-06-01

    The role of base excision repair (BER) genes in Philadelphia-negative (PN)-myeloproliferative neoplasms (MPNs) susceptibility was evaluated by genotyping eight polymorphisms [apurinic/apyrimidinic endodeoxyribonuclease 1, mutY DNA glycosylase, earlier mutY homolog ( E. coli ) (MUTYH), 8-oxoguanine DNA glycosylase 1, poly (ADP-ribose) polymerase (PARP) 1, PARP4 and X-ray repair cross-complementing 1 (XRCC1)] in a case-control study involving 133 Caucasian Portuguese patients. The results did not reveal a correlation between individual BER polymorphisms and PN-MPNs when considered as a whole. However, stratification for essential thrombocythaemia revealed i) borderline effect/tendency to increased risk when carrying at least one variant allele for XRCC1_399 single-nucleotide polymorphism (SNP); ii) decreased risk for Janus kinase 2-positive patients carrying at least one variant allele for XRCC1_399 SNP; and iii) decreased risk in females carrying at least one variant allele for MUTYH SNP. Combination of alleles demonstrated an increased risk to PN-MPNs for one specific haplogroup. These findings may provide evidence for gene variants in susceptibility to MPNs. Indeed, common variants in DNA repair genes may hamper the capacity to repair DNA, thus increasing cancer susceptibility.

  1. DNA repair genes polymorphisms and genetic susceptibility to Philadelphia-negative myeloproliferative neoplasms in a Portuguese population: The role of base excision repair genes polymorphisms

    PubMed Central

    Azevedo, Ana P.; Silva, Susana N.; De Lima, João P.; Reichert, Alice; Lima, Fernando; Júnior, Esmeraldina; Rueff, José

    2017-01-01

    The role of base excision repair (BER) genes in Philadelphia-negative (PN)-myeloproliferative neoplasms (MPNs) susceptibility was evaluated by genotyping eight polymorphisms [apurinic/apyrimidinic endodeoxyribonuclease 1, mutY DNA glycosylase, earlier mutY homolog (E. coli) (MUTYH), 8-oxoguanine DNA glycosylase 1, poly (ADP-ribose) polymerase (PARP) 1, PARP4 and X-ray repair cross-complementing 1 (XRCC1)] in a case-control study involving 133 Caucasian Portuguese patients. The results did not reveal a correlation between individual BER polymorphisms and PN-MPNs when considered as a whole. However, stratification for essential thrombocythaemia revealed i) borderline effect/tendency to increased risk when carrying at least one variant allele for XRCC1_399 single-nucleotide polymorphism (SNP); ii) decreased risk for Janus kinase 2-positive patients carrying at least one variant allele for XRCC1_399 SNP; and iii) decreased risk in females carrying at least one variant allele for MUTYH SNP. Combination of alleles demonstrated an increased risk to PN-MPNs for one specific haplogroup. These findings may provide evidence for gene variants in susceptibility to MPNs. Indeed, common variants in DNA repair genes may hamper the capacity to repair DNA, thus increasing cancer susceptibility. PMID:28599464

  2. Oxidatively Generated Guanine(C8)-Thymine(N3) Intrastrand Cross-links in Double-stranded DNA Are Repaired by Base Excision Repair Pathways.

    PubMed

    Talhaoui, Ibtissam; Shafirovich, Vladimir; Liu, Zhi; Saint-Pierre, Christine; Akishev, Zhiger; Matkarimov, Bakhyt T; Gasparutto, Didier; Geacintov, Nicholas E; Saparbaev, Murat

    2015-06-05

    Oxidatively generated guanine radical cations in DNA can undergo various nucleophilic reactions including the formation of C8-guanine cross-links with adjacent or nearby N3-thymines in DNA in the presence of O2. The G*[C8-N3]T* lesions have been identified in the DNA of human cells exposed to oxidative stress, and are most likely genotoxic if not removed by cellular defense mechanisms. It has been shown that the G*[C8-N3]T* lesions are substrates of nucleotide excision repair in human cell extracts. Cleavage at the sites of the lesions was also observed but not further investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506-2517). Using a panel of eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the analysis of cleavage fragments by PAGE and MALDI-TOF/MS show that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on either side of G*, that none of the recovered cleavage fragments contain G*, and that T* is converted to a normal T in the 3'-fragment cleavage products. The abilities of the DNA glycosylases to incise the DNA strand adjacent to G*, while this base is initially cross-linked with T*, is a surprising observation and an indication of the versatility of these base excision repair proteins. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair.

    PubMed

    Mentegari, Elisa; Kissova, Miroslava; Bavagnoli, Laura; Maga, Giovanni; Crespan, Emmanuele

    2016-08-31

    DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell's genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.

  4. Expression of domains for protein-protein interaction of nucleotide excision repair proteins modifies cancer cell sensitivity to platinum derivatives and genomic stability.

    PubMed

    Jordheim, Lars Petter; Cros-Perrial, Emeline; Matera, Eva-Laure; Bouledrak, Karima; Dumontet, Charles

    2014-10-01

    Nucleotide excision repair (NER) is involved in the repair of DNA damage caused by platinum derivatives and has been shown to decrease the cytotoxic activity of these drugs. Because protein-protein interactions are essential for NER activity, we transfected human cancer cell lines (A549 and HCT116) with plasmids coding the amino acid sequences corresponding to the interacting domains between excision repair cross-complementation group 1 (ERCC1) and xeroderma pigmentosum, complementation group A (XPA), as well as ERCC1 and xeroderma pigmentosum, complementation group F (XPF), all NER proteins. Using the 3-(4,5-dimethyl-2 thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and annexin V staining, we showed that transfected A549 cells were sensitized 1.2-2.2-fold to carboplatin and that transfected HCT116 cells were sensitized 1.4-5.4-fold to oxaliplatin in vitro. In addition, transfected cells exhibited modified in vivo sensitivity to the same drugs. Finally, in particular cell models of the interaction between ERCC1 and XPF, DNA repair was decreased, as evidenced by increased phosphorylation of the histone 2AX after exposure to mitomycin C, and genomic instability was increased, as determined by comparative genomic hybridization studies. The results indicate that the interacting peptides act as dominant negatives and decrease NER activity through inhibition of protein-protein interactions. © 2014 Wiley Publishing Asia Pty Ltd.

  5. The Mechanism of Nucleotide Excision Repair-Mediated UV-Induced Mutagenesis in Nonproliferating Cells

    PubMed Central

    Kozmin, Stanislav G.; Jinks-Robertson, Sue

    2013-01-01

    Following the irradiation of nondividing yeast cells with ultraviolet (UV) light, most induced mutations are inherited by both daughter cells, indicating that complementary changes are introduced into both strands of duplex DNA prior to replication. Early analyses demonstrated that such two-strand mutations depend on functional nucleotide excision repair (NER), but the molecular mechanism of this unique type of mutagenesis has not been further explored. In the experiments reported here, an ade2 adeX colony-color system was used to examine the genetic control of UV-induced mutagenesis in nondividing cultures of Saccharomyces cerevisiae. We confirmed a strong suppression of two-strand mutagenesis in NER-deficient backgrounds and demonstrated that neither mismatch repair nor interstrand crosslink repair affects the production of these mutations. By contrast, proteins involved in the error-prone bypass of DNA damage (Rev3, Rev1, PCNA, Rad18, Pol32, and Rad5) and in the early steps of the DNA-damage checkpoint response (Rad17, Mec3, Ddc1, Mec1, and Rad9) were required for the production of two-strand mutations. There was no involvement, however, for the Pol η translesion synthesis DNA polymerase, the Mms2-Ubc13 postreplication repair complex, downstream DNA-damage checkpoint factors (Rad53, Chk1, and Dun1), or the Exo1 exonuclease. Our data support models in which UV-induced mutagenesis in nondividing cells occurs during the Pol ζ-dependent filling of lesion-containing, NER-generated gaps. The requirement for specific DNA-damage checkpoint proteins suggests roles in recruiting and/or activating factors required to fill such gaps. PMID:23307894

  6. Base Excision Repair Facilitates a Functional Relationship Between Guanine Oxidation and Histone Demethylation

    PubMed Central

    Li, Jianfeng; Braganza, Andrea

    2013-01-01

    Abstract Significance: Appropriately controlled epigenetic regulation is critical for the normal development and health of an organism. Misregulation of epigenetic control via deoxyribonucleic acid (DNA) methylation or histone methylation has been associated with cancer and chromosomal instability syndromes. Recent Advances: The main function of the proteins in the base excision repair (BER) pathway is to repair DNA single-strand breaks and deamination, oxidation, and alkylation-induced DNA base damage that may result from chemotherapy, environmental exposure, or byproducts of cellular metabolism. Recent studies have suggested that one or more BER proteins may also participate in epigenetic regulation to facilitate gene expression modulation via alteration of the state of DNA methylation or via a reaction coupled to histone modification. BER proteins have also been reported to play an essential role in pluripotent stem cell reprogramming. Critical Issues: One emerging function for BER in epigenetic regulation is the repair of base lesions induced by hydrogen peroxide as a byproduct of lysine-specific demethylase 1 (LSD1) enzymatic activity (LSD1/LSD2-coupled BER) for transcriptional regulation. Future Directions: To shed light on this novel role of BER, this review focuses on the repair of oxidative lesions in nuclear DNA that are induced during LSD1-mediated histone demethylation. Further, we highlight current studies suggesting a role for BER proteins in transcriptional regulation of gene expression via BER-coupled active DNA demethylation in mammalian cells. Such efforts to address the role of BER proteins in epigenetic regulation could broaden cancer therapeutic strategies to include epigenetic modifiers combined with BER inhibitors. Antioxid. Redox Signal. 18, 2429–2443. PMID:23311711

  7. The role of the PHP domain associated with DNA polymerase X from Thermus thermophilus HB8 in base excision repair.

    PubMed

    Nakane, Shuhei; Nakagawa, Noriko; Kuramitsu, Seiki; Masui, Ryoji

    2012-11-01

    Base excision repair (BER) is one of the most commonly used DNA repair pathways involved in genome stability. X-family DNA polymerases (PolXs) play critical roles in BER, especially in filling single-nucleotide gaps. In addition to a polymerase core domain, bacterial PolXs have a polymerase and histidinol phosphatase (PHP) domain with phosphoesterase activity which is also required for BER. However, the role of the PHP domain of PolX in bacterial BER remains unresolved. We found that the PHP domain of Thermus thermophilus HB8 PolX (ttPolX) functions as two types of phosphoesterase in BER, including a 3'-phosphatase and an apurinic/apyrimidinic (AP) endonuclease. Experiments using T. thermophilus HB8 cell lysates revealed that the majority of the 3'-phosphatase and AP endonuclease activities are attributable to the another phosphoesterase in T. thermophilus HB8, endonuclease IV (ttEndoIV). However, ttPolX possesses significant 3'-phosphatase activity in ΔttendoIV cell lysate, indicating possible complementation. Our experiments also reveal that there are only two enzymes that display the 3'-phosphatase activity in the T. thermophilus HB8 cell, ttPolX and ttEndoIV. Furthermore, phenotypic analysis of ΔttpolX, ΔttendoIV, and ΔttpolX/ΔttendoIV using hydrogen peroxide and sodium nitrite supports the hypothesis that ttPolX functions as a backup for ttEndoIV in BER. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Oxidative Damage to RPA Limits the Nucleotide Excision Repair Capacity of Human Cells.

    PubMed

    Guven, Melisa; Brem, Reto; Macpherson, Peter; Peacock, Matthew; Karran, Peter

    2015-11-01

    Nucleotide excision repair (NER) protects against sunlight-induced skin cancer. Defective NER is associated with photosensitivity and a high skin cancer incidence. Some clinical treatments that cause photosensitivity can also increase skin cancer risk. Among these, the immunosuppressant azathioprine and the fluoroquinolone antibiotics ciprofloxacin and ofloxacin interact with UVA radiation to generate reactive oxygen species that diminish NER capacity by causing protein damage. The replication protein A (RPA) DNA-binding protein has a pivotal role in DNA metabolism and is an essential component of NER. The relationship between protein oxidation and NER inhibition was investigated in cultured human cells expressing different levels of RPA. We show here that RPA is limiting for NER and that oxidative damage to RPA compromises NER capability. Our findings reveal that cellular RPA is surprisingly vulnerable to oxidation, and we identify oxidized forms of RPA that are associated with impaired NER. The vulnerability of NER to inhibition by oxidation provides a connection between cutaneous photosensitivity, protein damage, and increased skin cancer risk. Our findings emphasize that damage to DNA repair proteins, as well as to DNA itself, is likely to be an important contributor to skin cancer risk.

  9. Genetic variation in the base excision repair pathway and bladder cancer risk.

    PubMed

    Figueroa, Jonine D; Malats, Núria; Real, Francisco X; Silverman, Debra; Kogevinas, Manolis; Chanock, Stephen; Welch, Robert; Dosemeci, Mustafa; Tardón, Adonina; Serra, Consol; Carrato, Alfredo; García-Closas, Reina; Castaño-Vinyals, Gemma; Rothman, Nathaniel; García-Closas, Montserrat

    2007-04-01

    Genetic polymorphisms in DNA repair genes may impact individual variation in DNA repair capacity and alter cancer risk. In order to examine the association of common genetic variation in the base-excision repair (BER) pathway with bladder cancer risk, we analyzed 43 single nucleotide polymorphisms (SNPs) in 12 BER genes (OGG1, MUTYH, APEX1, PARP1, PARP3, PARP4, XRCC1, POLB, POLD1, PCNA, LIG1, and LIG3). Using genotype data from 1,150 cases of urinary bladder transitional cell carcinomas and 1,149 controls from the Spanish Bladder Cancer Study we estimated odds ratios (ORs) and 95% confidence intervals (CIs) adjusting for age, gender, region and smoking status. SNPs in three genes showed significant associations with bladder cancer risk: the 8-oxoG DNA glycosylase gene (OGG1), the Poly (ADP-ribose) polymerase family member 1 (PARP1) and the major gap filling polymerase-beta (POLB). Subjects who were heterozygous or homozygous variant for an OGG1 SNP in the promoter region (rs125701) had significantly decreased bladder cancer risk compared to common homozygous: OR (95%CI) 0.78 (0.63-0.96). Heterozygous or homozygous individuals for the functional SNP PARP1 rs1136410 (V762A) or for the intronic SNP POLB rs3136717 were at increased risk compared to those homozygous for the common alleles: 1.24 (1.02-1.51) and 1.30 (1.04-1.62), respectively. In summary, data from this large case-control study suggested bladder cancer risk associations with selected BER SNPs, which need to be confirmed in other study populations.

  10. Identification of a residue critical for the excision of 3′-blocking ends in apurinic/apyrimidinic endonucleases of the Xth family

    PubMed Central

    Castillo-Acosta, Víctor M.; Ruiz-Pérez, Luis M.; Yang, Wei; González-Pacanowska, Dolores; Vidal, Antonio E.

    2009-01-01

    DNA single-strand breaks containing 3′-blocking groups are generated from attack of the sugar backbone by reactive oxygen species or after base excision by DNA glycosylase/apurinic/apyrimidinic (AP) lyases. In human cells, APE1 excises sugar fragments that block the 3′-ends thus facilitating DNA repair synthesis. In Leishmania major, the causal agent of leishmaniasis, the APE1 homolog is the class II AP endonuclease LMAP. Expression of LMAP but not of APE1 reverts the hypersensitivity of a xth nfo repair-deficient Escherichia coli strain to the oxidative compound hydrogen peroxide (H2O2). To identify the residues specifically involved in the repair of oxidative DNA damage, we generated random mutations in the ape1 gene and selected those variants that conferred protection against H2O2. Among the resistant clones, we isolated a mutant in the nuclease domain of APE1 (D70A) with an increased capacity to remove 3′-blocking ends in vitro. D70 of APE1 aligns with A138 of LMAP and mutation of the latter to aspartate significantly reduces its 3′-phosphodiesterase activity. Kinetic analysis shows a novel role of residue D70 in the excision rate of 3′-blocking ends. The functional and structural differences between the parasite and human enzymes probably reflect a divergent molecular evolution of their DNA repair responses to oxidative damage. PMID:19181704

  11. Nuclear organization of nucleotide excision repair is mediated by RING1B dependent H2A-ubiquitylation

    PubMed Central

    Chitale, Shalaka; Richly, Holger

    2017-01-01

    One of the major cellular DNA repair pathways is nucleotide excision repair (NER). It is the primary pathway for repair of various DNA lesions caused by exposure to ultraviolet (UV) light, such as cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts. Although lesion-containing DNA associates with the nuclear matrix after UV irradiation it is still not understood how nuclear organization affects NER. Analyzing unscheduled DNA synthesis (UDS) indicates that NER preferentially occurs in specific nuclear areas, viz the nucleolus. Upon inducing localized damage, we observe migration of damaged DNA towards the nucleolus. Employing a LacR-based tethering system we demonstrate that H2A-ubiquitylation via the UV-RING1B complex localizes chromatin close to the nucleolus. We further show that the H2A-ubiquitin binding protein ZRF1 resides in the nucleolus, and that it anchors ubiquitylated chromatin along with XPC. Our data thus provide insight into the sub-nuclear organization of NER and reveal a novel role for histone H2A-ubiquitylation. PMID:28416769

  12. Wound repair and anti-inflammatory potential of Lonicera japonica in excision wound-induced rats.

    PubMed

    Chen, Wei-Cheng; Liou, Shorong-Shii; Tzeng, Thing-Fong; Lee, Shiow-Ling; Liu, I-Min

    2012-11-23

    Lonicera japonica Thunb. (Caprifoliaceae), a widely used traditional Chinese medicinal plant, is used to treat some infectious diseases and it may have uses as a healthy food and applications in cosmetics and as an ornamental groundcover. The ethanol extract of the flowering aerial parts of L. japonica (LJEE) was investigated for its healing efficiency in a rat excision wound model. Excision wounds were inflicted upon three groups of eight rats each. Healing was assessed by the rate of wound contraction in skin wound sites in rats treated with simple ointment base, 10% (w/w) LJEE ointment, or the reference standard drug, 0.2% (w/w) nitrofurazone ointment. The effects of LJEE on the contents of hydroxyproline and hexosamine during healing were estimated. The antimicrobial activity of LJEE against microorganisms was also assessed. The in vivo anti-inflammatory activity of LJEE was investigated to understand the mechanism of wound healing. LJEE exhibited significant antimicrobial activity against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Candida albicans, and Candida tropicalis. The ointment formulation prepared with 10% (w/w) LJEE exhibited potent wound healing capacity as evidenced by the wound contraction in the excision wound model. The contents of hydroxyproline and hexosamine also correlated with the observed healing pattern. These findings were supported by the histopathological characteristics of healed wound sections, as greater tissue regeneration, more fibroblasts, and angiogenesis were observed in the 10% (w/w) LJEE ointment-treated group. The results also indicated that LJEE possesses potent anti-inflammatory activity, as it enhanced the production of anti-inflammatory cytokines that suppress proinflammatory cytokine production. The results suggest that the antimicrobial and anti-inflammatory activities of LJEE act synergistically to accelerate wound repair.

  13. Naturally occurring polyphenol, morin hydrate, inhibits enzymatic activity of N-methylpurine DNA glycosylase, a DNA repair enzyme with various roles in human disease

    PubMed Central

    Dixon, Monica; Woodrick, Jordan; Gupta, Suhani; Karmahapatra, Soumendra Krishna; Devito, Stephen; Vasudevan, Sona; Dakshanamurthy, Sivanesan; Adhikari, Sanjay; Yenugonda, Venkata M.; Roy, Rabindra

    2015-01-01

    Interest in the mechanisms of DNA repair pathways, including the base excision repair (BER) pathway specifically, has heightened since these pathways have been shown to modulate important aspects of human disease. Modulation of the expression or activity of a particular BER enzyme, N-methylpurine DNA glycosylase (MPG), has been demonstrated to play a role in carcinogenesis and resistance to chemotherapy as well as neurodegenerative diseases, which has intensified the focus on studying MPG-related mechanisms of repair. A specific small molecule inhibitor for MPG activity would be a valuable biochemical tool for understanding these repair mechanisms. By screening several small molecule chemical libraries, we identified a natural polyphenolic compound, morin hydrate, which inhibits MPG activity specifically (IC50 = 2.6 µM). Detailed mechanism analysis showed that morin hydrate inhibited substrate DNA binding of MPG, and eventually the enzymatic activity of MPG. Computational docking studies with an x-ray derived MPG structure as well as comparison studies with other structurally-related flavanoids offer a rationale for the inhibitory activity of morin hydrate observed. The results of this study suggest that the morin hydrate could be an effective tool for studying MPG function and it is possible that morin hydrate and its derivatives could be utilized in future studies focused on the role of MPG in human disease. PMID:25650313

  14. XPC and human homologs of RAD23: intracellular localization and relationship to other nucleotide excision repair complexes.

    PubMed Central

    van der Spek, P J; Eker, A; Rademakers, S; Visser, C; Sugasawa, K; Masutani, C; Hanaoka, F; Bootsma, D; Hoeijmakers, J H

    1996-01-01

    The xeroderma pigmentosum syndrome complementation group C (XP-C) is due to a defect in the global genome repair subpathway of nucleotide excision repair (NER). The XPC protein is complexed with HHR23B, one of the two human homologs of the yeast NER protein, RAD23 (Masutani at al. (1994) EMBO J. 8, 1831-1843). Using heparin chromatography, gel filtration and native gel electrophoresis we demonstrate that the majority of HHR23B is in a free, non-complexed form, and that a minor fraction is tightly associated with XPC. In contrast, we cannot detect any bound HHR23A. Thus the HHR23 proteins may have an additional function independent of XPC. The fractionation behaviour suggests that the non-bound forms of the HHR23 proteins are not necessary for the core of the NER reaction. Although both HHR23 proteins share a high level of overall homology, they migrate very differently on native gels, pointing to a difference in conformation. Gel filtration suggests the XPC-HHR23B heterodimer resides in a high MW complex. However, immunodepletion studies starting from repair-competent Manley extracts fall to reveal a stable association of a significant fraction of the HHR23 proteins or the XPC-HHR23B complex with the basal transcription/repair factor TFIIH, or with the ERCC1 repair complex. Consistent with a function in repair or DNA/chromatin metabolism, immunofluorescence studies show all XPC, HHR23B and (the free) HHR23A to reside in the nucleus. PMID:8692695

  15. Disruption of DNA repair in cancer cells by ubiquitination of a destabilising dimerization domain of nucleotide excision repair protein ERCC1

    PubMed Central

    Yang, Lanlan; Ritchie, Ann-Marie; Melton, David W.

    2017-01-01

    DNA repair pathways present in all cells serve to preserve genome stability, but in cancer cells they also act reduce the efficacy of chemotherapy. The endonuclease ERCC1-XPF has an important role in the repair of DNA damage caused by a variety of chemotherapeutic agents and there has been intense interest in the use of ERCC1 as a predictive marker of therapeutic response in non-small cell lung carcinoma, squamous cell carcinoma and ovarian cancer. We have previously validated ERCC1 as a therapeutic target in melanoma, but all small molecule ERCC1-XPF inhibitors reported to date have lacked sufficient potency and specificity for clinical use. In an alternative approach to prevent the repair activity of ERCC1-XPF, we investigated the mechanism of ERCC1 ubiquitination and found that the key region was the C-terminal (HhH)2 domain which heterodimerizes with XPF. This ERCC1 region was modified by non-conventional lysine-independent, but proteasome-dependent polyubiquitination, involving Lys33 of ubiquitin and a linear ubiquitin chain. XPF was not polyubiquitinated and its expression was dependent on presence of ERCC1, but not vice versa. To our surprise we found that ERCC1 can also homodimerize through its C-terminal (HhH)2 domain. We exploited the ability of a peptide containing this C-terminal domain to destabilise both endogenous ERCC1 and XPF in human melanoma cells and fibroblasts, resulting in reductions of up to 85% in nucleotide excision repair and near two-fold increased sensitivity to DNA damaging agents. We suggest that the ERCC1 (HhH)2 domain could be used in an alternative strategy to treat cancer. PMID:28903417

  16. Multimodality gynecomastia repair by cross-chest power-assisted superficial liposuction combined with endoscopic-assisted pull-through excision.

    PubMed

    Ramon, Ytzhack; Fodor, Lucian; Peled, Isaac J; Eldor, Liron; Egozi, Dana; Ullmann, Yehuda

    2005-12-01

    Numerous methods of gynecomastia repair have been described to accomplish removal of breast tissue. Our multimodality surgical approach for the treatment of gynecomastia combines the use of power-assisted superficial cross-chest liposuction with direct pull-through excision of the breast parenchyma under endoscopic supervision. Seventeen patients, aging 17-39, underwent this multimodality approach. According to Simon's grading, 3 patients had grade 1, 5 had grade 2a, 6 had grade 2b, and 3 had grade 3 gynecomastia. Power-assisted liposuction was performed with a 3- or 4-mm triple-hole cannula inserted through the contralateral periareolar medial incision to suction the contralateral prepectoral fatty breast. At the end of the liposuction, the fibrous tissue was easily pulled through the ipsilateral stab wound and excised under endoscopic control. Follow-up time ranged from 6 to 34 months. The amount of fat removed by liposuction varied from 100-800 mL per breast, and the amount of breast parenchyma removed by excision varied from 20-110 g. All patients recovered remarkably well. No complications were recorded. All patients were satisfied with their results. This technique enables an effective treatment of both the fatty and fibrous tissue of the male breast and avoids skin redundancy due to skin contraction. A smooth masculine breast contour is consistently achieved without the stigma of this type of surgery.

  17. Wound repair and anti-inflammatory potential of Lonicera japonica in excision wound-induced rats

    PubMed Central

    2012-01-01

    Background Lonicera japonica Thunb. (Caprifoliaceae), a widely used traditional Chinese medicinal plant, is used to treat some infectious diseases and it may have uses as a healthy food and applications in cosmetics and as an ornamental groundcover. The ethanol extract of the flowering aerial parts of L. japonica (LJEE) was investigated for its healing efficiency in a rat excision wound model. Methods Excision wounds were inflicted upon three groups of eight rats each. Healing was assessed by the rate of wound contraction in skin wound sites in rats treated with simple ointment base, 10% (w/w) LJEE ointment, or the reference standard drug, 0.2% (w/w) nitrofurazone ointment. The effects of LJEE on the contents of hydroxyproline and hexosamine during healing were estimated. The antimicrobial activity of LJEE against microorganisms was also assessed. The in vivo anti-inflammatory activity of LJEE was investigated to understand the mechanism of wound healing. Results LJEE exhibited significant antimicrobial activity against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Candida albicans, and Candida tropicalis. The ointment formulation prepared with 10% (w/w) LJEE exhibited potent wound healing capacity as evidenced by the wound contraction in the excision wound model. The contents of hydroxyproline and hexosamine also correlated with the observed healing pattern. These findings were supported by the histopathological characteristics of healed wound sections, as greater tissue regeneration, more fibroblasts, and angiogenesis were observed in the 10% (w/w) LJEE ointment-treated group. The results also indicated that LJEE possesses potent anti-inflammatory activity, as it enhanced the production of anti-inflammatory cytokines that suppress proinflammatory cytokine production. Conclusions The results suggest that the antimicrobial and anti-inflammatory activities of LJEE act synergistically to accelerate wound repair. PMID:23173654

  18. Inducible error-prone repair in B. subtilis. Final report, September 1, 1979-June 30, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasbin, R. E.

    1981-06-01

    The research performed under this contract has been concentrated on the relationship between inducible DNA repair systems, mutagenesis and the competent state in the gram positive bacterium Bacillus subtilis. The following results have been obtained from this research: (1) competent Bacillus subtilis cells have been developed into a sensitive tester system for carcinogens; (2) competent B. subtilis cells have an efficient excision-repair system, however, this system will not function on bacteriophage DNA taken into the cell via the process of transfection; (3) DNA polymerase III is essential in the mechanism of the process of W-reactivation; (4) B. subtilis strains curedmore » of their defective prophages have been isolated and are now being developed for gene cloning systems; (5) protoplasts of B. subtilis have been shown capable of acquiring DNA repair enzymes (i.e., enzyme therapy); and (6) a plasmid was characterized which enhanced inducible error-prone repair in a gram positive organism.« less

  19. Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair.

    PubMed

    Akbari, Mansour; Keijzers, Guido; Maynard, Scott; Scheibye-Knudsen, Morten; Desler, Claus; Hickson, Ian D; Bohr, Vilhelm A

    2014-04-01

    Base excision repair (BER) is the most prominent DNA repair pathway in human mitochondria. BER also results in a temporary generation of AP-sites, single-strand breaks and nucleotide gaps. Thus, incomplete BER can result in the generation of DNA repair intermediates that can disrupt mitochondrial DNA replication and transcription and generate mutations. We carried out BER analysis in highly purified mitochondrial extracts from human cell lines U2OS and HeLa, and mouse brain using a circular DNA substrate containing a lesion at a specific position. We found that DNA ligation is significantly slower than the preceding mitochondrial BER steps. Overexpression of DNA ligase III in mitochondria improved the rate of overall BER, increased cell survival after menadione induced oxidative stress and reduced autophagy following the inhibition of the mitochondrial electron transport chain complex I by rotenone. Our results suggest that the amount of DNA ligase III in mitochondria may be critical for cell survival following prolonged oxidative stress, and demonstrate a functional link between mitochondrial DNA damage and repair, cell survival upon oxidative stress, and removal of dysfunctional mitochondria by autophagy. Copyright © 2014. Published by Elsevier B.V.

  20. Mechanism of Enzyme Repair by the AAA+ Chaperone Rubisco Activase.

    PubMed

    Bhat, Javaid Y; Miličić, Goran; Thieulin-Pardo, Gabriel; Bracher, Andreas; Maxwell, Andrew; Ciniawsky, Susanne; Mueller-Cajar, Oliver; Engen, John R; Hartl, F Ulrich; Wendler, Petra; Hayer-Hartl, Manajit

    2017-09-07

    How AAA+ chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA+ protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Regulation and disregulation of mammalian nucleotide excision repair: A pathway to nongermline breast carcinogenesis

    DOE PAGES

    Latimer, Jean J.; Majekwana, Vongai J.; Pabon-Padin, Yashira R.; ...

    2014-12-19

    Nucleotide excision repair (NER) is important as a modulator of disease, especially in constitutive deficiencies, such as the cancer predisposition syndrome Xeroderma pigmentosum. We have found profound variation of NER capacity among normal individuals, between cell-types and during carcinogenesis. NER is a repair system for many types of DNA damage, and therefore many types of genotoxic carcinogenic exposures, including ultraviolet light, products of organic combustion, metals, oxidative stress, etc. Since NER is intimately related to cellular metabolism, requiring components of both the DNA replicative and transcription machinery, it has a narrow range of functional viability. Thus, genes in the NERmore » pathway are expressed at the low levels manifested by, for example, nuclear transcription factors. Since NER activity and gene expression vary by cell-type, it is inherently epigenetically regulated. Furthermore, this epigenetic regulation is disregulated during sporadic breast carcinogenesis. Loss of NER is one basis of genomic instability, a required element in cellular transformation, and one that potentially modulates response to therapy. In this article, we demonstrate differences in NER capacity in eight adult mouse tissues, and place this result into the context of our previous work on mouse extraembryonic tissues, normal human tissues and sporadic early stage human breast cancer.« less

  2. Heat shock protein 70 enhanced deoxyribonucleic acid base excision repair in human leukemic cells after ionizing radiation

    PubMed Central

    Bases, Robert

    2006-01-01

    Base excision repair (BER) of DNA damage in irradiated THP1 human leukemic cells was stimulated by pretreating the cells with exogenous recombinant Hsp70. The treatment of THP1 cells with recombinant Hsp70 in cell culture promoted repair by reducing the frequency of apurinic, apyrimidinic (AP) sites in DNA before and after 1.3 Gy of radiation. However, by 30 minutes after 2.6 Gy, accelerated repair of abasic sites supervened, which may contribute to the loss of the very-low-dose cell hypersensitivity seen in clonogenic studies of other laboratories. After irradiation with 2.6 Gy, the crucial initial glycosylase step was markedly incomplete when cells had been transfected 24 hours before with a small interfering RNA (siRNA) designed to inhibit synthesis of Hsp70. In confirmation, lysates from irradiated siRNA-treated cells after 2.6 Gy were deficient in uracil glycosylase activity (UDG). Transfection with a scrambled RNA of the same size did not interfere with the glycosylase step, ie, the prompt conversion of damaged pyrimidine sites to abasic sites as well as the subsequent repair of those sites. BER measured by reduction of DNA AP sites before and after low-dose radiation was also deficient in THP1 cells that had been transfected with the siRNA designed to inhibit synthesis of Hsp70. These results implicate BER and the participation of Hsp70 in the repair of DNA in human leukemic cells with the doses of ionizing radiation used in clinical regimens. PMID:17009597

  3. Improving the acetic acid tolerance and fermentation of Acetobacter pasteurianus by nucleotide excision repair protein UvrA.

    PubMed

    Zheng, Yu; Wang, Jing; Bai, Xiaolei; Chang, Yangang; Mou, Jun; Song, Jia; Wang, Min

    2018-05-21

    Acetic acid bacteria (AAB) are widely used in acetic acid fermentation due to their remarkable ability to oxidize ethanol and high tolerance against acetic acid. In Acetobacter pasteurianus, nucleotide excision repair protein UvrA was up-regulated 2.1 times by acetic acid when compared with that without acetic acid. To study the effects of UvrA on A. pasteurianus acetic acid tolerance, uvrA knockout strain AC2005-ΔuvrA, uvrA overexpression strain AC2005 (pMV24-uvrA), and the control strain AC2005 (pMV24), were constructed. One percent initial acetic acid was almost lethal to AC2005-ΔuvrA. However, the biomass of the UvrA overexpression strain was higher than that of the control under acetic acid concentrations. After 6% acetic acid shock for 20 and 40 min, the survival ratios of AC2005 (pMV24-uvrA) were 2 and 0.12%, respectively; however, they were 1.5 and 0.06% for the control strain AC2005 (pMV24). UvrA overexpression enhanced the acetification rate by 21.7% when compared with the control. The enzymes involved in ethanol oxidation and acetic acid tolerance were up-regulated during acetic acid fermentation due to the overexpression of UvrA. Therefore, in A. pasteurianus, UvrA could be induced by acetic acid and is related with the acetic acid tolerance by protecting the genome against acetic acid to ensure the protein expression and metabolism.

  4. DNA Damage Induced by Alkylating Agents and Repair Pathways

    PubMed Central

    Kondo, Natsuko; Takahashi, Akihisa; Ono, Koji; Ohnishi, Takeo

    2010-01-01

    The cytotoxic effects of alkylating agents are strongly attenuated by cellular DNA repair processes, necessitating a clear understanding of the repair mechanisms. Simple methylating agents form adducts at N- and O-atoms. N-methylations are removed by base excision repair, AlkB homologues, or nucleotide excision repair (NER). O6-methylguanine (MeG), which can eventually become cytotoxic and mutagenic, is repaired by O6-methylguanine-DNA methyltransferase, and O6MeG:T mispairs are recognized by the mismatch repair system (MMR). MMR cannot repair the O6MeG/T mispairs, which eventually lead to double-strand breaks. Bifunctional alkylating agents form interstrand cross-links (ICLs) which are more complex and highly cytotoxic. ICLs are repaired by complex of NER factors (e.g., endnuclease xeroderma pigmentosum complementation group F-excision repair cross-complementing rodent repair deficiency complementation group 1), Fanconi anemia repair, and homologous recombination. A detailed understanding of how cells cope with DNA damage caused by alkylating agents is therefore potentially useful in clinical medicine. PMID:21113301

  5. Ntg1p, the base excision repair protein, generates mutagenic intermediates in yeast mitochondrial DNA.

    PubMed

    Phadnis, Naina; Mehta, Reema; Meednu, Nida; Sia, Elaine A

    2006-07-13

    Mitochondrial DNA is predicted to be highly prone to oxidative damage due to its proximity to free radicals generated by oxidative phosphorylation. Base excision repair (BER) is the primary repair pathway responsible for repairing oxidative damage in nuclear and mitochondrial genomes. In yeast mitochondria, three N-glycosylases have been identified so far, Ntg1p, Ogg1p and Ung1p. Ntg1p, a broad specificity N-glycosylase, takes part in catalyzing the first step of BER that involves the removal of the damaged base. In this study, we examined the role of Ntg1p in maintaining yeast mitochondrial genome integrity. Using genetic reporters and assays to assess mitochondrial mutations, we found that loss of Ntg1p suppresses mitochondrial point mutation rates, frameshifts and recombination rates. We also observed a suppression of respiration loss in the ntg1-Delta cells in response to ultraviolet light exposure implying an overlap between BER and UV-induced damage in the yeast mitochondrial compartment. Over-expression of the BER AP endonuclease, Apn1p, did not significantly affect the mitochondrial mutation rate in the presence of Ntg1p, whereas Apn1p over-expression in an ntg1-Delta background increased the frequency of mitochondrial mutations. In addition, loss of Apn1p also suppressed mitochondrial point mutations. Our work suggests that both Ntg1p and Apn1p generate mutagenic intermediates in the yeast mitochondrial genome.

  6. A novel regulatory circuit in base excision repair involving AP endonuclease 1, Creb1 and DNA polymerase β

    PubMed Central

    Pei, De-Sheng; Yang, Xiao-Jie; Liu, Wei; Guikema, Jeroen E. J.; Schrader, Carol E.; Strauss, Phyllis R.

    2011-01-01

    DNA repair is required to maintain genome stability in stem cells and early embryos. At critical junctures, oxidative damage to DNA requires the base excision repair (BER) pathway. Since early zebrafish embryos lack the major polymerase in BER, DNA polymerase ß, repair proceeds via replicative polymerases, even though there is ample polb mRNA. Here, we report that Polb protein fails to appear at the appropriate time in development when AP endonuclease 1 (Apex), the upstream protein in BER, is knocked down. Because polb contains a Creb1 binding site, we examined whether knockdown of Apex affects creb1. Apex knockdown results in loss of Creb1 and Creb complex members but not Creb1 phosphorylation. This effect is independent of p53. Although both apex and creb1 mRNA rescue Creb1 and Polb after Apex knockdown, Apex is not a co-activator of creb1 transcription. This observation has broad significance, as similar results occur when Apex is inhibited in B cells from apex+/− mice. These results describe a novel regulatory circuit involving Apex, Creb1 and Polb and provide a mechanism for lethality of Apex loss in higher eukaryotes. PMID:21172930

  7. Crystal structure and DNA repair activities of the AP endonuclease from Leishmania major.

    PubMed

    Vidal, Antonio E; Harkiolaki, Maria; Gallego, Claribel; Castillo-Acosta, Victor M; Ruiz-Pérez, Luis M; Wilson, Keith; González-Pacanowska, Dolores

    2007-11-02

    Apurinic/apyrimidinic endonucleases initiate the repair of abasic sites produced either spontaneously, from attack of bases by reactive oxygen species or as intermediates during base excision repair. The catalytic properties and crystal structure of Leishmania major apurinic/apyrimidinic endonuclease are described and compared with those of human APE1 and bacterial exonuclease III. The purified enzyme is shown to possess apurinic/apyrimidinic endonuclease activity of the same order as eukaryotic and prokaryotic counterparts and an equally robust 3'-phosphodiesterase activity. Consistent with this, expression of the L. major endonuclease confers resistance to both methyl methane sulphonate and H2O2 in Escherichia coli repair-deficient mutants while expression of the human homologue only reverts methyl methane sulphonate sensitivity. Structural analyses and modelling of the enzyme-DNA complex demonstrates a high degree of conservation to previously characterized homologues, although subtle differences in the active site geometry might account for the high 3'-phosphodiesterase activity. Our results confirm that the L. major's enzyme is a key element in mediating repair of apurinic/apyrimidinic sites and 3'-blocked termini and therefore must play an important role in the survival of kinetoplastid parasites after exposure to the highly oxidative environment within the host macrophage.

  8. Biomaterial-Mediated Delivery of Degradative Enzymes to Improve Meniscus Integration and Repair

    PubMed Central

    Qu, Feini; Lin, Jung-Ming G.; Esterhai, John L.; Fisher, Matthew B.; Mauck, Robert L.

    2013-01-01

    Endogenous repair of fibrous connective tissues is limited, and there exist few successful strategies to improve healing after injury. As such, new methods that advance repair by promoting cell growth, extracellular matrix (ECM) production, and tissue integration would represent a marked clinical advance. Using the meniscus as a test platform, we sought to develop an enzyme-releasing scaffold that enhances integrative repair. We hypothesized that the high ECM density and low cellularity present physical and biologic barriers to endogenous healing, and that localized collagenase treatment might expedite cell migration to the wound edge and tissue remodeling. To test this hypothesis, we fabricated a delivery system in which collagenase was stored inside electrospun poly(ethylene oxide) (PEO) nanofibers and released upon hydration. In vitro results showed that partial digestion of the wound interface improved repair by creating a microenvironment that facilitated cell migration, proliferation, and matrix deposition. Specifically, treatment with high-dose collagenase led to a 2-fold increase in cell density at the wound margin and a 2-fold increase in integrative tissue compared to untreated controls at 4 weeks (p≤0.05). Furthermore, when composite scaffolds containing both collagenase-releasing and structural fiber fractions were placed inside meniscal tears in vitro, enzyme release acted locally and resulted in a positive cellular response similar to that of global treatment with aqueous collagenase. This innovative approach of targeted enzyme delivery may aid the many patients that exhibit meniscal tears by promoting integration of the defect, thereby circumventing the pathologic consequences of partial meniscus removal, and may find widespread application in the treatment of injuries to a variety of dense connective tissues. PMID:23376132

  9. Uncommon nucleotide excision repair phenotypes revealed by targeted high-throughput sequencing.

    PubMed

    Calmels, Nadège; Greff, Géraldine; Obringer, Cathy; Kempf, Nadine; Gasnier, Claire; Tarabeux, Julien; Miguet, Marguerite; Baujat, Geneviève; Bessis, Didier; Bretones, Patricia; Cavau, Anne; Digeon, Béatrice; Doco-Fenzy, Martine; Doray, Bérénice; Feillet, François; Gardeazabal, Jesus; Gener, Blanca; Julia, Sophie; Llano-Rivas, Isabel; Mazur, Artur; Michot, Caroline; Renaldo-Robin, Florence; Rossi, Massimiliano; Sabouraud, Pascal; Keren, Boris; Depienne, Christel; Muller, Jean; Mandel, Jean-Louis; Laugel, Vincent

    2016-03-22

    Deficient nucleotide excision repair (NER) activity causes a variety of autosomal recessive diseases including xeroderma pigmentosum (XP) a disorder which pre-disposes to skin cancer, and the severe multisystem condition known as Cockayne syndrome (CS). In view of the clinical overlap between NER-related disorders, as well as the existence of multiple phenotypes and the numerous genes involved, we developed a new diagnostic approach based on the enrichment of 16 NER-related genes by multiplex amplification coupled with next-generation sequencing (NGS). Our test cohort consisted of 11 DNA samples, all with known mutations and/or non pathogenic SNPs in two of the tested genes. We then used the same technique to analyse samples from a prospective cohort of 40 patients. Multiplex amplification and sequencing were performed using AmpliSeq protocol on the Ion Torrent PGM (Life Technologies). We identified causative mutations in 17 out of the 40 patients (43%). Four patients showed biallelic mutations in the ERCC6(CSB) gene, five in the ERCC8(CSA) gene: most of them had classical CS features but some had very mild and incomplete phenotypes. A small cohort of 4 unrelated classic XP patients from the Basque country (Northern Spain) revealed a common splicing mutation in POLH (XP-variant), demonstrating a new founder effect in this population. Interestingly, our results also found ERCC2(XPD), ERCC3(XPB) or ERCC5(XPG) mutations in two cases of UV-sensitive syndrome and in two cases with mixed XP/CS phenotypes. Our study confirms that NGS is an efficient technique for the analysis of NER-related disorders on a molecular level. It is particularly useful for phenotypes with combined features or unusually mild symptoms. Targeted NGS used in conjunction with DNA repair functional tests and precise clinical evaluation permits rapid and cost-effective diagnosis in patients with NER-defects.

  10. Evidence for a repair enzyme complex involving ERCC1 and complementing activities of ERCC4, ERCC11 and xeroderma pigmentosum group F.

    PubMed Central

    van Vuuren, A J; Appeldoorn, E; Odijk, H; Yasui, A; Jaspers, N G; Bootsma, D; Hoeijmakers, J H

    1993-01-01

    Nucleotide excision repair (NER), one of the major cellular DNA repair systems, removes a wide range of lesions in a multi-enzyme reaction. In man, a NER defect due to a mutation in one of at least 11 distinct genes, can give rise to the inherited repair disorders xeroderma pigmentosum (XP), Cockayne's syndrome or PIBIDS, a photosensitive form of the brittle hair disease trichothiodystrophy. Laboratory-induced NER-deficient mutants of cultured rodent cells have been classified into 11 complementation groups (CGs). Some of these have been shown to correspond with human disorders. In cell-free extracts prepared from rodent CGs 1-5 and 11, but not in a mutant from CG6, we find an impaired repair of damage induced in plasmids by UV light and N-acetoxy-acetylaminofluorene. Complementation analysis in vitro of rodent CGs is accomplished by pairwise mixing of mutant extracts. The results show that mutants from groups 2, 3, 5 and XP-A can complement all other CGs tested. However, selective non-complementation in vitro was observed in mutual mixtures of groups 1, 4, 11 and XP-F, suggesting that the complementing activities involved somehow affect each other. Depletion of wild-type human extracts from ERCC1 protein using specific anti-ERCC1 antibodies concomitantly removed the correcting activities for groups 4, 11 and XP-F, but not those for the other CGs. Furthermore, we find that 33 kDa ERCC1 protein sediments as a high mol. wt species of approximately 120 kDa in a native glycerol gradient.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8253091

  11. Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2

    PubMed Central

    Grindel, Annemarie; Guggenberger, Bianca; Eichberger, Lukas; Pöppelmeyer, Christina; Gschaider, Michaela; Tosevska, Anela; Mare, George; Briskey, David; Brath, Helmut; Wagner, Karl-Heinz

    2016-01-01

    Background Diabetes mellitus type 2 (T2DM) is associated with oxidative stress which in turn can lead to DNA damage. The aim of the present study was to analyze oxidative stress, DNA damage and DNA repair in regard to hyperglycemic state and diabetes duration. Methods Female T2DM patients (n = 146) were enrolled in the MIKRODIAB study and allocated in two groups regarding their glycated hemoglobin (HbA1c) level (HbA1c≤7.5%, n = 74; HbA1c>7.5%, n = 72). In addition, tertiles according to diabetes duration (DD) were created (DDI = 6.94±3.1 y, n = 49; DDII = 13.35±1.1 y, n = 48; DDIII = 22.90±7.3 y, n = 49). Oxidative stress parameters, including ferric reducing ability potential, malondialdehyde, oxidized and reduced glutathione, reduced thiols, oxidized LDL and F2-Isoprostane as well as the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase were measured. Damage to DNA was analyzed in peripheral blood mononuclear cells and whole blood with single cell gel electrophoresis. DNA base excision repair capacity was tested with the modified comet repair assay. Additionally, mRNA expressions of nine genes related to base excision repair were analyzed in a subset of 46 matched individuals. Results No significant differences in oxidative stress parameters, antioxidant enzyme activities, damage to DNA and base excision repair capacity, neither between a HbA1c cut off />7.5%, nor between diabetes duration was found. A significant up-regulation in mRNA expression was found for APEX1, LIG3 and XRCC1 in patients with >7.5% HbA1c. Additionally, we observed higher total cholesterol, LDL-cholesterol, LDL/HDL-cholesterol, triglycerides, Framingham risk score, systolic blood pressure, BMI and lower HDL-cholesterol in the hyperglycemic group. Conclusion BMI, blood pressure and blood lipid status were worse in hyperglycemic individuals. However, no major disparities regarding oxidative stress, damage to DNA and DNA repair were present which

  12. Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2.

    PubMed

    Grindel, Annemarie; Guggenberger, Bianca; Eichberger, Lukas; Pöppelmeyer, Christina; Gschaider, Michaela; Tosevska, Anela; Mare, George; Briskey, David; Brath, Helmut; Wagner, Karl-Heinz

    2016-01-01

    Diabetes mellitus type 2 (T2DM) is associated with oxidative stress which in turn can lead to DNA damage. The aim of the present study was to analyze oxidative stress, DNA damage and DNA repair in regard to hyperglycemic state and diabetes duration. Female T2DM patients (n = 146) were enrolled in the MIKRODIAB study and allocated in two groups regarding their glycated hemoglobin (HbA1c) level (HbA1c≤7.5%, n = 74; HbA1c>7.5%, n = 72). In addition, tertiles according to diabetes duration (DD) were created (DDI = 6.94±3.1 y, n = 49; DDII = 13.35±1.1 y, n = 48; DDIII = 22.90±7.3 y, n = 49). Oxidative stress parameters, including ferric reducing ability potential, malondialdehyde, oxidized and reduced glutathione, reduced thiols, oxidized LDL and F2-Isoprostane as well as the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase were measured. Damage to DNA was analyzed in peripheral blood mononuclear cells and whole blood with single cell gel electrophoresis. DNA base excision repair capacity was tested with the modified comet repair assay. Additionally, mRNA expressions of nine genes related to base excision repair were analyzed in a subset of 46 matched individuals. No significant differences in oxidative stress parameters, antioxidant enzyme activities, damage to DNA and base excision repair capacity, neither between a HbA1c cut off />7.5%, nor between diabetes duration was found. A significant up-regulation in mRNA expression was found for APEX1, LIG3 and XRCC1 in patients with >7.5% HbA1c. Additionally, we observed higher total cholesterol, LDL-cholesterol, LDL/HDL-cholesterol, triglycerides, Framingham risk score, systolic blood pressure, BMI and lower HDL-cholesterol in the hyperglycemic group. BMI, blood pressure and blood lipid status were worse in hyperglycemic individuals. However, no major disparities regarding oxidative stress, damage to DNA and DNA repair were present which might be due to good medical treatment

  13. Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers.

    PubMed

    Fonseca, A S; Campos, V M A; Magalhães, L A G; Paoli, F

    2015-10-01

    Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T4endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T4endonuclease V. Low-intensity lasers:i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells,ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, andiv) did not alter the electrophoretic profile of plasmids incubated with T4 endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers.

  14. Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers

    PubMed Central

    Fonseca, A.S.; Campos, V.M.A.; Magalhães, L.A.G.; Paoli, F.

    2015-01-01

    Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T4endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T4endonuclease V. Low-intensity lasers:i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells,ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, andiv) did not alter the electrophoretic profile of plasmids incubated with T4 endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers. PMID:26445337

  15. Cloning of a human homolog of the yeast nucleotide excision repair gene MMS19 and interaction with transcription repair factor TFIIH via the XPB and XPD helicases.

    PubMed

    Seroz, T; Winkler, G S; Auriol, J; Verhage, R A; Vermeulen, W; Smit, B; Brouwer, J; Eker, A P; Weeda, G; Egly, J M; Hoeijmakers, J H

    2000-11-15

    Nucleotide excision repair (NER) removes UV-induced photoproducts and numerous other DNA lesions in a highly conserved 'cut-and-paste' reaction that involves approximately 25 core components. In addition, several other proteins have been identified which are dispensable for NER in vitro but have an undefined role in vivo and may act at the interface of NER and other cellular processes. An intriguing example is the Saccharomyces cerevisiae Mms19 protein that has an unknown dual function in NER and RNA polymerase II transcription. Here we report the cloning and characterization of a human homolog, designated hMMS19, that encodes a 1030 amino acid protein with 26% identity and 51% similarity to S.cerevisiae Mms19p and with a strikingly similar size. The expression profile and nuclear location are consistent with a repair function. Co-immunoprecipitation experiments revealed that hMMS19 directly interacts with the XPB and XPD subunits of NER-transcription factor TFIIH. These findings extend the conservation of the NER apparatus and the link between NER and basal transcription and suggest that hMMS19 exerts its function in repair and transcription by interacting with the XPB and XPD helicases.

  16. Nucleotide excision repair and recombination are engaged in repair of trans-4-hydroxy-2-nonenal adducts to DNA bases in Escherichia coli.

    PubMed

    Janowska, Beata; Komisarski, Marek; Prorok, Paulina; Sokołowska, Beata; Kuśmierek, Jarosław; Janion, Celina; Tudek, Barbara

    2009-09-23

    One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE). HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i) nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii) in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48% of all mutations; (iii) in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA(-) strain were G:C --> T:A transversions, occurring within the sequence which in recA(+) strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv) in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C --> A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations.

  17. Nucleotide excision repair and recombination are engaged in repair of trans-4-hydroxy-2-nonenal adducts to DNA bases in Escherichia coli

    PubMed Central

    Janowska, Beata; Komisarski, Marek; Prorok, Paulina; Sokołowska, Beata; Kuśmierek, Jarosław; Janion, Celina; Tudek, Barbara

    2009-01-01

    One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE). HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i) nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii) in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48 % of all mutations; (iii) in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA- strain were G:C → T:A transversions, occurring within the sequence which in recA+ strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv) in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C → A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations. PMID:19834545

  18. Chromatin associated mechanisms in base excision repair - nucleosome remodeling and DNA transcription, two key players.

    PubMed

    Menoni, Hervé; Di Mascio, Paolo; Cadet, Jean; Dimitrov, Stefan; Angelov, Dimitar

    2017-06-01

    Genomic DNA is prone to a large number of insults by a myriad of endogenous and exogenous agents. The base excision repair (BER) is the major mechanism used by cells for the removal of various DNA lesions spontaneously or environmentally induced and the maintenance of genome integrity. The presence of persistent DNA damage is not compatible with life, since abrogation of BER leads to early embryonic lethality in mice. There are several lines of evidences showing existence of a link between deficient BER, cancer proneness and ageing, thus illustrating the importance of this DNA repair pathway in human health. Although the enzymology of BER mechanisms has been largely elucidated using chemically defined DNA damage substrates and purified proteins, the complex interplay of BER with another vital process like transcription or when DNA is in its natural state (i.e. wrapped in nucleosome and assembled in chromatin fiber is largely unexplored. Cells use chromatin remodeling factors to overcome the general repression associated with the nucleosomal organization. It is broadly accepted that energy-dependent nucleosome remodeling factors disrupt histones-DNA interactions at the expense of ATP hydrolysis to favor transcription as well as DNA repair. Importantly, unlike transcription, BER is not part of a regulated developmental process but represents a maintenance system that should be efficient anytime and anywhere in the genome. In this review we will discuss how BER can deal with chromatin organization to maintain genetic information. Emphasis will be placed on the following challenging question: how BER is initiated within chromatin? Copyright © 2017 Elsevier Inc. All rights reserved.

  19. THE ROLE OF THE RETINOBLASTOMA/E2F1 TUMOR SUPPRESSOR PATHWAY IN THE LESION RECOGNITION STEP OF NUCLEOTIDE EXCISION REPAIR

    PubMed Central

    Lin, Patrick S.; McPherson, Lisa A.; Chen, Aubrey Y.; Sage, Julien; Ford, James M.

    2009-01-01

    The retinoblastoma Rb/E2F tumor suppressor pathway plays a major role in the regulation of mammalian cell cycle progression. The pRb protein, along with closely related proteins p107 and p130, exerts its anti-proliferative effects by binding to the E2F family of transcription factors known to regulate essential genes throughout the cell cycle. We sought to investigate the role of the Rb/E2F1 pathway in the lesion recognition step of nucleotide excision repair (NER) in mouse embryonic fibroblasts (MEFs). Rb−/−;p107−/−;p130−/− MEFs repaired both cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts (6-4PPs) at higher efficiency than did wildtype cells following UV-C irradiation. The expression of damaged DNA binding gene DDB2 involved in the DNA lesion recognition step was elevated in the Rb family-deficient MEFs. To determine if the enhanced DNA repair in the absence of the Rb gene family is due to the derepression of E2F1, we assayed the ability of E2F1-deficient cells to repair damaged DNA and demonstrated that E2F1−/− MEFs are impaired for the removal of both CPDs and 6-4PPs. Furthermore, wildtype cells induced a higher expression of DDB2 and xeroderma pigmentosum gene XPC transcript levels than did E2F1−/− cells following UV-C irradiation. Using an E2F SiteScan algorithm, we uncovered a putative E2F-responsive element in the XPC promoter upstream of the transcription start site. We showed with chromatin immunoprecipitation assays the binding of E2F1 to the XPC promoter in a UV-dependent manner, suggesting that E2F1 is a transcriptional regulator of XPC. Our study identifies a novel E2F1 gene target and further supports the growing body of evidence that the Rb/E2F1 tumor suppressor pathway is involved in the regulation of the DNA lesion recognition step of nucleotide excision repair. PMID:19376752

  20. 'Batman excision' of ventral skin in hypospadias repair, clue to aesthetic repair (point of technique).

    PubMed

    Hoebeke, P B; De Kuyper, P; Van Laecke, E

    2002-11-01

    In the hypospadiac penis the ventral skin is poorly developed, while dorsal skin is redundant. The classical Byars' flaps are a way to use the excess dorsal skin to cover the penile shaft. The appearance after Byars' flaps however is not natural. We use a more natural looking skin allocation with superior aesthetic results. The clue in this reconstruction is an inverted triangle shaped excision of ventral skin expanding over the edges of the hooded prepuce (which makes it look like Batman). After excision of the ventral skin it is possible to close the penile skin in the midline, thus mimicking the natural raphe. In case of preputial reconstruction the excised ventral skin makes the prepuce look more natural. The trend of further refining aesthetic appearance of the hypospadiac penis often neglects the penile skin reconstruction. A technique is presented by which the total penile appearances after surgery ameliorates due to better skin reconstruction.

  1. Poly(ADP-ribose) polymerase 1 escorts XPC to UV-induced DNA lesions during nucleotide excision repair

    PubMed Central

    Robu, Mihaela; Shah, Rashmi G.; Purohit, Nupur K.; Zhou, Pengbo; Naegeli, Hanspeter

    2017-01-01

    Xeroderma pigmentosum C (XPC) protein initiates the global genomic subpathway of nucleotide excision repair (GG-NER) for removal of UV-induced direct photolesions from genomic DNA. The XPC has an inherent capacity to identify and stabilize at the DNA lesion sites, and this function is facilitated in the genomic context by UV-damaged DNA-binding protein 2 (DDB2), which is part of a multiprotein UV–DDB ubiquitin ligase complex. The nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1) has been shown to facilitate the lesion recognition step of GG-NER via its interaction with DDB2 at the lesion site. Here, we show that PARP1 plays an additional DDB2-independent direct role in recruitment and stabilization of XPC at the UV-induced DNA lesions to promote GG-NER. It forms a stable complex with XPC in the nucleoplasm under steady-state conditions before irradiation and rapidly escorts it to the damaged DNA after UV irradiation in a DDB2-independent manner. The catalytic activity of PARP1 is not required for the initial complex formation with XPC in the nucleoplasm but it enhances the recruitment of XPC to the DNA lesion site after irradiation. Using purified proteins, we also show that the PARP1–XPC complex facilitates the handover of XPC to the UV-lesion site in the presence of the UV–DDB ligase complex. Thus, the lesion search function of XPC in the genomic context is controlled by XPC itself, DDB2, and PARP1. Our results reveal a paradigm that the known interaction of many proteins with PARP1 under steady-state conditions could have functional significance for these proteins. PMID:28760956

  2. Poly(ADP-ribose) polymerase 1 escorts XPC to UV-induced DNA lesions during nucleotide excision repair.

    PubMed

    Robu, Mihaela; Shah, Rashmi G; Purohit, Nupur K; Zhou, Pengbo; Naegeli, Hanspeter; Shah, Girish M

    2017-08-15

    Xeroderma pigmentosum C (XPC) protein initiates the global genomic subpathway of nucleotide excision repair (GG-NER) for removal of UV-induced direct photolesions from genomic DNA. The XPC has an inherent capacity to identify and stabilize at the DNA lesion sites, and this function is facilitated in the genomic context by UV-damaged DNA-binding protein 2 (DDB2), which is part of a multiprotein UV-DDB ubiquitin ligase complex. The nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1) has been shown to facilitate the lesion recognition step of GG-NER via its interaction with DDB2 at the lesion site. Here, we show that PARP1 plays an additional DDB2-independent direct role in recruitment and stabilization of XPC at the UV-induced DNA lesions to promote GG-NER. It forms a stable complex with XPC in the nucleoplasm under steady-state conditions before irradiation and rapidly escorts it to the damaged DNA after UV irradiation in a DDB2-independent manner. The catalytic activity of PARP1 is not required for the initial complex formation with XPC in the nucleoplasm but it enhances the recruitment of XPC to the DNA lesion site after irradiation. Using purified proteins, we also show that the PARP1-XPC complex facilitates the handover of XPC to the UV-lesion site in the presence of the UV-DDB ligase complex. Thus, the lesion search function of XPC in the genomic context is controlled by XPC itself, DDB2, and PARP1. Our results reveal a paradigm that the known interaction of many proteins with PARP1 under steady-state conditions could have functional significance for these proteins.

  3. Enhancement of UV-induced nucleotide excision repair activity upon forskolin treatment is cell growth-dependent.

    PubMed

    Lee, Jeong-Min; Park, Jeong-Min; Kang, Tae-Hong

    2016-10-01

    Forskolin (FSK), an adenylyl cyclase activator, has recently been shown to enhance nucleotide excision repair (NER) upon UV exposure. However, our study revealed that this effect was detected in human skin epithelial ARPE19 cells only in growing cells, but not in non-cycling cells. When the cells were grown at low density (70% confluence), FSK was capable of stimulating cAMP responsive element binding (CREB) phosphorylation, a marker for FSK-stimulated PKA activation, and resulted in a significant increase of NER activity compared to control treatment. However, cells grown under 100% confluent conditions showed neither FSK-induced CREB phosphorylation nor the resulting NER enhancement. These findings indicate that cellular growth is critical for FSK-induced NER enhancement and suggest that cellular growth conditions should be considered as a variable while evaluating a reagent's pharmacotherapeutic efficacy. [BMB Reports 2016; 49(10): 566-571].

  4. [Polymorphism of genes encoding proteins of DNA repair vs. occupational and environmental exposure to lead, arsenic and pesticides].

    PubMed

    Bukowski, Karol; Woźniak, Katarzyna

    2018-03-09

    Genetic polymorphism is associated with the occurrence of at least 2 different alleles in the locus with a frequency higher than 1% in the population. Among polymorphisms we can find single nucleotide polymorphism (SNP) and polymorphism of variable number of tandem repeats. The presence of certain polymorphisms in genes encoding DNA repair enzymes is associated with the speed and efficiency of DNA repair and can protect or expose humans to the effects provoked by xenobiotics. Chemicals, such as lead, arsenic pesticides are considered to exhibit strong toxicity. There are many different polymorphisms in genes encoding DNA repair enzymes, which determine the speed and efficiency of DNA damage repair induced by these xenobiotics. In the case of lead, the influence of various polymorphisms, such as APE1 (apurinic/apyrimidinic endonuclease 1) (rs1130409), hOGG1 (human 8-oxoguanine glycosylase) (rs1052133), XRCC1 (X-ray repair cross-complementing protein group 1) (rs25487), XRCC1 (rs1799782) and XRCC3 (X-ray repair cross-complementing protein group 3) (rs861539) were described. For arsenic polymorphisms, such as ERCC2 (excision repair cross-complementing) (rs13181), XRCC3 (rs861539), APE1 (rs1130409) and hOGG1 (rs1052133) were examined. As to pesticides, separate and combined effects of polymorphisms in genes encoding DNA repair enzymes, such as XRCC1 (rs1799782), hOGG1 (rs1052133), XRCC4 (X-ray repair cross-complementing protein group 4) (rs28360135) and the gene encoding the detoxification enzyme PON1 paraoxonase (rs662) were reported. Med Pr 2018;69(2):225-235. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  5. The endoperoxide ascaridol shows strong differential cytotoxicity in nucleotide excision repair-deficient cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbasi, Rashda; Efferth, Thomas; Kuhmann, Christine

    2012-03-15

    Targeting synthetic lethality in DNA repair pathways has become a promising anti-cancer strategy. However little is known about such interactions with regard to the nucleotide excision repair (NER) pathway. Therefore, cell lines with a defect in the NER genes ERCC6 or XPC and their normal counterparts were screened with 53 chemically defined phytochemicals isolated from plants used in traditional Chinese medicine for differential cytotoxic effects. The screening revealed 12 drugs that killed NER-deficient cells more efficiently than proficient cells. Five drugs were further analyzed for IC{sub 50} values, effects on cell cycle distribution, and induction of DNA damage. Ascaridol wasmore » the most effective compound with a difference of > 1000-fold in resistance between normal and NER-deficient cells (IC{sub 50} values for cells with deficiency in ERCC6: 0.15 μM, XPC: 0.18 μM, and normal cells: > 180 μM). NER-deficiency combined with ascaridol treatment led to G2/M-phase arrest, an increased percentage of subG1 cells, and a substantially higher DNA damage induction. These results were confirmed in a second set of NER-deficient and -proficient cell lines with isogenic background. Finally, ascaridol was characterized for its ability to generate oxidative DNA damage. The drug led to a dose-dependent increase in intracellular levels of reactive oxygen species at cytotoxic concentrations, but only NER-deficient cells showed a strongly induced amount of 8-oxodG sites. In summary, ascaridol is a cytotoxic and DNA-damaging compound which generates intracellular reactive oxidative intermediates and which selectively affects NER-deficient cells. This could provide a new therapeutic option to treat cancer cells with mutations in NER genes. -- Highlights: ► Thousand-fold higher Ascaridol activity in NER-deficient versus proficient cells. ► Impaired repair of Ascaridol-induced oxidative DNA damage in NER-deficient cells. ► Selective activity of Ascaridol opens new

  6. AML outcome: role of nucleotide excision repair polymorphisms in intermediate risk patients

    PubMed Central

    Strom, Sara S; Estey, Elihu H; Outschoorn, Ubaldo Martinez; Guillermo, Garcia-Manero

    2010-01-01

    Purpose Acute Myeloid Leukemia (AML) is frequently associated with genetic abnormalities. Based on pre-treatment cytogenetics, patients are classified into favorable, intermediate and poor subgroups. Cytogenetics predicts treatment outcome for the favorable and poor subgroups but not for the intermediate subgroup. Polymorphisms within the nucleotide excision repair (NER) pathway may lead to inter-individual differences in DNA repair capacity (DRC) which could influence outcome. Methods We studied the role of 6 polymorphisms (ERCC1 Gln504Lys, XPD Lys751Gln, XPC Ala499Val, XPC Lys939Gln, XPG Asp1104His, and CCNH Val270Ala) within NER pathway on overall and disease-free survival among 170 adult de-novo AML patients with intermediate cytogenetics [diploid (n=117); non-diploid (n=53)], treated with induction chemotherapy. Kaplan-Meier methods and Cox proportional hazards models were performed. Results Diploid patients with the XPD AC/CC genotype survived shorter than those with the wild-type (AA) genotype (median survival 22 vs. 40 months, log-rank p = 0.03). Similarly diploid patients with XPC CT/TT genotype survived shorter than those with the wild-type (CC) genotype (median survival 15 vs. 30 months, log-rank p = 0.02). Among diploid patients, after adjusting for clinical and socio-demographic variables, patients carrying both XPD AC/CC and XPC CT/TT had a greater than two-fold increased risk of dying compared to those with the wild-type genotypes (HR=2.49; 95%CI: 1.06–5.85). No significant associations were observed for disease-free survival in AML patients. Conclusion By reduced DRC, this combined genotype may result in greater susceptibility to treatment effects decreasing overall survival. These findings could in the future help in selecting treatment strategies for patients with normal cytogenetics. PMID:20141440

  7. Acute myeloid leukemia outcome: role of nucleotide excision repair polymorphisms in intermediate risk patients.

    PubMed

    Strom, Sara S; Estey, Elihu; Outschoorn, Ubaldo Martinez; Garcia-Manero, Guillermo

    2010-04-01

    In acute myeloid leukemia (AML), cytogenetics predicts treatment outcome for the favorable and poor subgroups but not for the intermediate subgroup. Polymorphisms within the nucleotide excision repair (NER) pathway may lead to interindividual differences in DNA repair capacity, influencing outcome. We studied the role of six polymorphisms (ERCC1 Gln504Lys, XPD Lys751Gln, XPC Ala499Val, XPC Lys939Gln, XPG Asp1104His, and CCNH Val270Ala) in overall and disease-free survival among 170 adult de novo patients with intermediate cytogenetics (diploid [n = 117]; non-diploid [n = 53]), treated with induction chemotherapy. Kaplan-Meier and Cox proportional hazards models were performed. Diploid patients with the XPD AC/CC genotype survived shorter than those with the wild-type genotype (median survival 22 vs. 40 months, p = 0.03). Diploid patients with XPC CT/TT genotype survived shorter than those with the wild-type genotype (median survival 15 vs. 30 months, p = 0.02). After adjusting for clinical and sociodemographic variables, patients carrying both XPD AC/CC and XPC CT/TT had a greater than two-fold increased risk of dying, compared to those with the wild-type genotypes (HR = 2.49; 95% CI: 1.06-5.85). No associations were observed for disease-free survival. This combined genotype may modulate treatment effect, decreasing overall survival. These findings could in the future help select treatments for patients with normal cytogenetics.

  8. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23.

    PubMed Central

    Masutani, C; Sugasawa, K; Yanagisawa, J; Sonoyama, T; Ui, M; Enomoto, T; Takio, K; Tanaka, K; van der Spek, P J; Bootsma, D

    1994-01-01

    Complementation group C of xeroderma pigmentosum (XP) represents one of the most common forms of this cancer-prone DNA repair syndrome. The primary defect is located in the subpathway of the nucleotide excision repair system, dealing with the removal of lesions from the non-transcribing sequences ('genome-overall' repair). Here we report the purification to homogeneity and subsequent cDNA cloning of a repair complex by in vitro complementation of the XP-C defect in a cell-free repair system containing UV-damaged SV40 minichromosomes. The complex has a high affinity for ssDNA and consists of two tightly associated proteins of 125 and 58 kDa. The 125 kDa subunit is an N-terminally extended version of previously reported XPCC gene product which is thought to represent the human homologue of the Saccharomyces cerevisiae repair gene RAD4. The 58 kDa species turned out to be a human homologue of yeast RAD23. Unexpectedly, a second human counterpart of RAD23 was identified. All RAD23 derivatives share a ubiquitin-like N-terminus. The nature of the XP-C defect implies that the complex exerts a unique function in the genome-overall repair pathway which is important for prevention of skin cancer. Images PMID:8168482

  9. Induction of base excision repair enzymes NTH1 and APE1 in rat spleen following aniline exposure

    PubMed Central

    Ma, Huaxian; Wang, Jianling; Abdel-Rahman, Sherif Z.; Boor, Paul J.; Khan, M. Firoze

    2013-01-01

    Mechanisms by which aniline exposure elicits splenotoxicity, especially a tumorigenic response, are not well-understood. Earlier, we have shown that aniline exposure leads to oxidative DNA damage and up-regulation of OGG1 and NEIL1/2 DNA glycosylases in rat spleen. However, the contribution of endonuclease III homolog 1 (NTH1) and apurinic/apyrimidinic endonuclease 1 (APE1) in the repair of aniline-induced oxidative DNA damage in the spleen is not known. This study was, therefore, focused on examining whether NTH1 and APE1 contribute to the repair of oxidative DNA lesions in the spleen, in an experimental condition preceding tumorigenesis. To achieve this, male SD rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. By quantitating the cleavage products, the activities of NTH1 and APE1 were assayed using substrates containing thymine glycol (Tg) and tetrahydrofuran, respectively. Aniline treatment led to significant increases in NTH1- and APE1-mediated BER activity in the nuclear extracts of spleen of aniline-treated rats compared to the controls. NTH1 and APE1 mRNA expression in the spleen showed 2.9- and 3.2-fold increases, respectively, in aniline-treated rats compared to controls. Likewise, Western blot analysis showed that protein expression of NTH1 and APE1 in the nuclear extracts of spleen from aniline-treated rats was 1.9- and 2.7-fold higher than controls, respectively. Immunohistochemistry indicated that aniline treatment also led to stronger immunoreactivity for both NTH1 and APE1 in the spleens, confined to the red pulp areas. These results, thus, show that aniline exposure is associated with induction of NTH1 and APE1 in the spleen. The increased repair activity of NTH1 and APE1 could be an important mechanism for the removal of oxidative DNA lesions. These findings thus identify a novel mechanism through which NTH1 and APE1 may regulate the repair of oxidative DNA

  10. Induction of base excision repair enzymes NTH1 and APE1 in rat spleen following aniline exposure.

    PubMed

    Ma, Huaxian; Wang, Jianling; Abdel-Rahman, Sherif Z; Boor, Paul J; Khan, M Firoze

    2013-03-15

    Mechanisms by which aniline exposure elicits splenotoxicity, especially a tumorigenic response, are not well-understood. Earlier, we have shown that aniline exposure leads to oxidative DNA damage and up-regulation of OGG1 and NEIL1/2 DNA glycosylases in rat spleen. However, the contribution of endonuclease III homolog 1 (NTH1) and apurinic/apyrimidinic endonuclease 1 (APE1) in the repair of aniline-induced oxidative DNA damage in the spleen is not known. This study was, therefore, focused on examining whether NTH1 and APE1 contribute to the repair of oxidative DNA lesions in the spleen, in an experimental condition preceding tumorigenesis. To achieve this, male SD rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. By quantitating the cleavage products, the activities of NTH1 and APE1 were assayed using substrates containing thymine glycol (Tg) and tetrahydrofuran, respectively. Aniline treatment led to significant increases in NTH1- and APE1-mediated BER activity in the nuclear extracts of spleen of aniline-treated rats compared to the controls. NTH1 and APE1 mRNA expression in the spleen showed 2.9- and 3.2-fold increases, respectively, in aniline-treated rats compared to the controls. Likewise, Western blot analysis showed that protein expression of NTH1 and APE1 in the nuclear extracts of spleen from aniline-treated rats was 1.9- and 2.7-fold higher than the controls, respectively. Immunohistochemistry indicated that aniline treatment also led to stronger immunoreactivity for both NTH1 and APE1 in the spleens, confined to the red pulp areas. These results, thus, show that aniline exposure is associated with induction of NTH1 and APE1 in the spleen. The increased repair activity of NTH1 and APE1 could be an important mechanism for the removal of oxidative DNA lesions. These findings thus identify a novel mechanism through which NTH1 and APE1 may regulate the repair of

  11. Nucleotide Excision Repair Gene Polymorphisms, Meat Intake and Colon Cancer Risk

    PubMed Central

    Steck, Susan E.; Butler, Lesley M.; Keku, Temitope; Antwi, Samuel; Galanko, Joseph; Sandler, Robert S.; Hu, Jennifer J.

    2014-01-01

    Purpose Much of the DNA damage from colon cancer-related carcinogens, including heterocyclic amines (HCA) and polycyclic aromatic hydrocarbons (PAH) from red meat cooked at high temperature, are repaired by the nucleotide excision repair (NER) pathway. Thus, we examined whether NER non-synonymous single nucleotide polymorphisms (nsSNPs) modified the association between red meat intake and colon cancer risk. Methods The study consists of 244 African-American and 311 white colon cancer cases and population-based controls (331 African Americans and 544 whites) recruited from 33 counties in North Carolina from 1996 to 2000. Information collected by food frequency questionnaire on meat intake and preparation methods were used to estimate HCA and benzo(a)pyrene (BaP, a PAH) intake. We tested 7 nsSNPs in 5 NER genes: XPC A499V and K939Q, XPD D312N and K751Q, XPF R415Q, XPG D1104H, and RAD23B A249V. Adjusted odds ratios (OR) and 95% confidence intervals (CI) were calculated using unconditional logistic regression. Results Among African Americans, we observed a statistically significant positive association between colon cancer risk and XPC 499 AV+VV genotype (OR=1.7, 95% CI: 1.1, 2.7, AA as referent), and an inverse association with XPC 939 QQ (OR=0.3, 95%CI: 0.2, 0.8, KK as referent). These associations were not observed among whites. For both races combined, there was interaction between the XPC 939 genotype, well-done red meat intake and colon cancer risk (OR=1.5, 95% CI=1.0, 2.2 for high well-done red meat and KK genotype as compared to low well-done red meat and KK genotype, pinteraction =0.05). Conclusions Our data suggest that NER nsSNPs are associated with colon cancer risk and may modify the association between well-done red meat intake and colon cancer risk. PMID:24607854

  12. Strand-specific Recognition of DNA Damages by XPD Provides Insights into Nucleotide Excision Repair Substrate Versatility*

    PubMed Central

    Buechner, Claudia N.; Heil, Korbinian; Michels, Gudrun; Carell, Thomas; Kisker, Caroline; Tessmer, Ingrid

    2014-01-01

    Recognition and removal of DNA damages is essential for cellular and organismal viability. Nucleotide excision repair (NER) is the sole mechanism in humans for the repair of carcinogenic UV irradiation-induced photoproducts in the DNA, such as cyclobutane pyrimidine dimers. The broad substrate versatility of NER further includes, among others, various bulky DNA adducts. It has been proposed that the 5′-3′ helicase XPD (xeroderma pigmentosum group D) protein plays a decisive role in damage verification. However, despite recent advances such as the identification of a DNA-binding channel and central pore in the protein, through which the DNA is threaded, as well as a dedicated lesion recognition pocket near the pore, the exact process of target site recognition and verification in eukaryotic NER still remained elusive. Our single molecule analysis by atomic force microscopy reveals for the first time that XPD utilizes different recognition strategies to verify structurally diverse lesions. Bulky fluorescein damage is preferentially detected on the translocated strand, whereas the opposite strand preference is observed for a cyclobutane pyrimidine dimer lesion. Both states, however, lead to similar conformational changes in the resulting specific complexes, indicating a merge to a “final” verification state, which may then trigger the recruitment of further NER proteins. PMID:24338567

  13. Association studies of excision repair cross-complementation group 1 (ERCC1) haplotypes with lung and head and neck cancer risk in a Caucasian population.

    PubMed

    Jones, Nathan R; Spratt, Thomas E; Berg, Arthur S; Muscat, Joshua E; Lazarus, Philip; Gallagher, Carla J

    2011-04-01

    The formation of bulky DNA adducts caused by diol epoxide derivatives of polycyclic aromatic hydrocarbons has been associated with tobacco-induced cancers, and inefficient repair of such adducts by the nucleotide excision repair (NER) system has been linked to increased risk of tobacco-induced lung and head and neck (H&N) cancers. The human excision repair cross-complementation group 1 (ERCC1) protein is essential for a functional NER system and genetic variation in ERCC1 may contribute to impaired DNA repair capacity and increased lung and H&N cancer risk. In order to comprehensively capture common genetic variation in the ERCC1 gene, Caucasian data from the International HapMap project was used to assess linkage disequilibrium and choose four tagSNPs (rs1319052, rs3212955, rs3212948, and rs735482) in the ERCC1 gene to genotype 452 lung cancer cases, 175 H&N cancer cases, and 790 healthy controls. Haplotypes were estimated using expectation maximization (EM) algorithm, and haplotype association with cancer was investigated using Haplo.stats software adjusting for known covariates. The genotype and haplotype frequencies matched previous estimates from Caucasians. There was no significant difference in the prevalence of rs1319052, rs3212955, rs3212948, and rs735482 when comparing lung or H&N cancer cases with controls (p-values>0.05). Similarly, there was no association between ERCC1 haplotypes and lung or H&N cancer susceptibility in this Caucasian population (p-values>0.05). No associations were found when stratifying lung cancer cases by histology, sex, smoking status, or smoking intensity. This study suggests that ERCC1 polymorphisms and haplotypes do not play a role in lung and H&N cancer susceptibility in Caucasians. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Low-intensity red and infrared lasers affect mRNA expression of DNA nucleotide excision repair in skin and muscle tissue.

    PubMed

    Sergio, Luiz Philippe S; Campos, Vera Maria A; Vicentini, Solange C; Mencalha, Andre Luiz; de Paoli, Flavia; Fonseca, Adenilson S

    2016-04-01

    Lasers emit light beams with specific characteristics, in which wavelength, frequency, power, fluence, and emission mode properties determine the photophysical, photochemical, and photobiological responses. Low-intensity lasers could induce free radical generation in biological tissues and cause alterations in macromolecules, such as DNA. Thus, the aim of this work was to evaluate excision repair cross-complementing group 1 (ERCC1) and excision repair cross-complementing group 2 (ERCC2) messenger RNA (mRNA) expression in biological tissues exposed to low-intensity lasers. Wistar rat (n = 28, 4 for each group) skin and muscle were exposed to low-intensity red (660 nm) and near-infrared (880 nm) lasers at different fluences (25, 50, and 100 J/cm(2)), and samples of these tissues were withdrawn for RNA extraction, cDNA synthesis, and gene expression evaluation by quantitative polymerase chain reaction. Laser exposure was in continuous wave and power of 100 mW. Data show that ERCC1 and ERCC2 mRNA expressions decrease in skin (p < 0.001) exposed to near-infrared laser, but increase in muscle tissue (p < 0.001). ERCC1 mRNA expression does not alter (p > 0.05), but ERCC2 mRNA expression decreases in skin (p < 0.001) and increases in muscle tissue (p < 0.001) exposed to red laser. Our results show that ERCC1 and ERCC2 mRNA expression is differently altered in skin and muscle tissue exposed to low-intensity lasers depending on wavelengths and fluences used in therapeutic protocols.

  15. Rubisco Activases: AAA+ Chaperones Adapted to Enzyme Repair

    PubMed Central

    Bhat, Javaid Y.; Thieulin-Pardo, Gabriel; Hartl, F. Ulrich; Hayer-Hartl, Manajit

    2017-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the key enzyme of the Calvin-Benson-Bassham cycle of photosynthesis, requires conformational repair by Rubisco activase for efficient function. Rubisco mediates the fixation of atmospheric CO2 by catalyzing the carboxylation of the five-carbon sugar ribulose-1,5-bisphosphate (RuBP). It is a remarkably inefficient enzyme, and efforts to increase crop yields by bioengineering Rubisco remain unsuccessful. This is due in part to the complex cellular machinery required for Rubisco biogenesis and metabolic maintenance. To function, Rubisco must undergo an activation process that involves carboxylation of an active site lysine by a non-substrate CO2 molecule and binding of a Mg2+ ion. Premature binding of the substrate RuBP results in an inactive enzyme. Moreover, Rubisco can also be inhibited by a range of sugar phosphates, some of which are “misfire” products of its multistep catalytic reaction. The release of the inhibitory sugar molecule is mediated by the AAA+ protein Rubisco activase (Rca), which couples hydrolysis of ATP to the structural remodeling of Rubisco. Rca enzymes are found in the vast majority of photosynthetic organisms, from bacteria to higher plants. They share a canonical AAA+ domain architecture and form six-membered ring complexes but are diverse in sequence and mechanism, suggesting their convergent evolution. In this review, we discuss recent advances in understanding the structure and function of this important group of client-specific AAA+ proteins. PMID:28443288

  16. Rubisco Activases: AAA+ Chaperones Adapted to Enzyme Repair.

    PubMed

    Bhat, Javaid Y; Thieulin-Pardo, Gabriel; Hartl, F Ulrich; Hayer-Hartl, Manajit

    2017-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the key enzyme of the Calvin-Benson-Bassham cycle of photosynthesis, requires conformational repair by Rubisco activase for efficient function. Rubisco mediates the fixation of atmospheric CO 2 by catalyzing the carboxylation of the five-carbon sugar ribulose-1,5-bisphosphate (RuBP). It is a remarkably inefficient enzyme, and efforts to increase crop yields by bioengineering Rubisco remain unsuccessful. This is due in part to the complex cellular machinery required for Rubisco biogenesis and metabolic maintenance. To function, Rubisco must undergo an activation process that involves carboxylation of an active site lysine by a non-substrate CO 2 molecule and binding of a Mg 2+ ion. Premature binding of the substrate RuBP results in an inactive enzyme. Moreover, Rubisco can also be inhibited by a range of sugar phosphates, some of which are "misfire" products of its multistep catalytic reaction. The release of the inhibitory sugar molecule is mediated by the AAA+ protein Rubisco activase (Rca), which couples hydrolysis of ATP to the structural remodeling of Rubisco. Rca enzymes are found in the vast majority of photosynthetic organisms, from bacteria to higher plants. They share a canonical AAA+ domain architecture and form six-membered ring complexes but are diverse in sequence and mechanism, suggesting their convergent evolution. In this review, we discuss recent advances in understanding the structure and function of this important group of client-specific AAA+ proteins.

  17. Silymarin Protects Epidermal Keratinocytes from Ultraviolet Radiation-Induced Apoptosis and DNA Damage by Nucleotide Excision Repair Mechanism

    PubMed Central

    Katiyar, Santosh K.; Mantena, Sudheer K.; Meeran, Syed M.

    2011-01-01

    Solar ultraviolet (UV) radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum), inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK) with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs) and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER) genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells. PMID:21731736

  18. Ubiquitin-specific Protease 7 Regulates Nucleotide Excision Repair through Deubiquitinating XPC Protein and Preventing XPC Protein from Undergoing Ultraviolet Light-induced and VCP/p97 Protein-regulated Proteolysis*

    PubMed Central

    He, Jinshan; Zhu, Qianzheng; Wani, Gulzar; Sharma, Nidhi; Han, Chunhua; Qian, Jiang; Pentz, Kyle; Wang, Qi-en; Wani, Altaf A.

    2014-01-01

    Ubiquitin specific protease 7 (USP7) is a known deubiquitinating enzyme for tumor suppressor p53 and its downstream regulator, E3 ubiquitin ligase Mdm2. Here we report that USP7 regulates nucleotide excision repair (NER) via deubiquitinating xeroderma pigmentosum complementation group C (XPC) protein, a critical damage recognition factor that binds to helix-distorting DNA lesions and initiates NER. XPC is ubiquitinated during the early stage of NER of UV light-induced DNA lesions. We demonstrate that transiently compromising cellular USP7 by siRNA and chemical inhibition leads to accumulation of ubiquitinated forms of XPC, whereas complete USP7 deficiency leads to rapid ubiquitin-mediated XPC degradation upon UV irradiation. We show that USP7 physically interacts with XPC in vitro and in vivo. Overexpression of wild-type USP7, but not its catalytically inactive or interaction-defective mutants, reduces the ubiquitinated forms of XPC. Importantly, USP7 efficiently deubiquitinates XPC-ubiquitin conjugates in deubiquitination assays in vitro. We further show that valosin-containing protein (VCP)/p97 is involved in UV light-induced XPC degradation in USP7-deficient cells. VCP/p97 is readily recruited to DNA damage sites and colocalizes with XPC. Chemical inhibition of the activity of VCP/p97 ATPase causes an increase in ubiquitinated XPC on DNA-damaged chromatin. Moreover, USP7 deficiency severely impairs the repair of cyclobutane pyrimidine dimers and, to a lesser extent, affects the repair of 6-4 photoproducts. Taken together, our findings uncovered an important role of USP7 in regulating NER via deubiquitinating XPC and by preventing its VCP/p97-regulated proteolysis. PMID:25118285

  19. Alcohol-induced one-carbon metabolism impairment promotes dysfunction of DNA base excision repair in adult brain.

    PubMed

    Fowler, Anna-Kate; Hewetson, Aveline; Agrawal, Rajiv G; Dagda, Marisela; Dagda, Raul; Moaddel, Ruin; Balbo, Silvia; Sanghvi, Mitesh; Chen, Yukun; Hogue, Ryan J; Bergeson, Susan E; Henderson, George I; Kruman, Inna I

    2012-12-21

    The brain is one of the major targets of chronic alcohol abuse. Yet the fundamental mechanisms underlying alcohol-mediated brain damage remain unclear. The products of alcohol metabolism cause DNA damage, which in conditions of DNA repair dysfunction leads to genomic instability and neural death. We propose that one-carbon metabolism (OCM) impairment associated with long term chronic ethanol intake is a key factor in ethanol-induced neurotoxicity, because OCM provides cells with DNA precursors for DNA repair and methyl groups for DNA methylation, both critical for genomic stability. Using histological (immunohistochemistry and stereological counting) and biochemical assays, we show that 3-week chronic exposure of adult mice to 5% ethanol (Lieber-Decarli diet) results in increased DNA damage, reduced DNA repair, and neuronal death in the brain. These were concomitant with compromised OCM, as evidenced by elevated homocysteine, a marker of OCM dysfunction. We conclude that OCM dysfunction plays a causal role in alcohol-induced genomic instability in the brain because OCM status determines the alcohol effect on DNA damage/repair and genomic stability. Short ethanol exposure, which did not disturb OCM, also did not affect the response to DNA damage, whereas additional OCM disturbance induced by deficiency in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR) in Mthfr(+/-) mice, exaggerated the ethanol effect on DNA repair. Thus, the impact of long term ethanol exposure on DNA repair and genomic stability in the brain results from OCM dysfunction, and MTHFR mutations such as Mthfr 677C→T, common in human population, may exaggerate the adverse effects of ethanol on the brain.

  20. Mode of action of trifluorothymidine (TFT) against DNA replication and repair enzymes.

    PubMed

    Suzuki, Norihiko; Emura, Tomohiro; Fukushima, Masakazu

    2011-07-01

    Trifluorothymidine (TFT) is well known to be converted to TFT-monophosphate by thymidine kinase and to inhibit thymidylate synthase. In addition, TFT-triphosphate (TFT-TP) is also incorporated into DNA, resulting in cytocidal effects. However, the precise mechanism of TFT-induced DNA damage is still unclear. Therefore, we investigated the modes of action of TFT against DNA replication and repair enzymes, as compared with those of 5FU and FdUrd. When HeLa cells were treated with TFT at a concentration of 1 µM (IC50 value), the concentration of TFT in the DNA was calculated as 62.2±0.9 pmol/1x106 cells for 4 h. On the other hand, following treatment of the cells with FdUrd (0.5 µM) and 5FU (10 µM) at their IC50 doses, the drug concentrations in the DNA were 7.53, and 0.17 pmol/1 x 10⁶ cells for 4 h, respectively. These results show the markedly greater degree of incorporation of TFT into the DNA of the HeLa cells compared with that of 5FU (approximately more than 300-fold for 4 h) or FdUrd (approximately more than 8-fold for 4 h). The primer extension assay demonstrated that TFT-TP was also incorporated into the T-sites of the growing DNA strand, however, it competed only weakly with thymidine triphosphate. The DNA glycosylase assay was performed using commercially available DNA glycosylase and fractionated HeLa cell extracts obtained by gel filtration. There was no detectable excision of the TFT pairing to adenine by uracil DNA glycosylase (UDG), thymine DNA glycosylase (TDG), methyl-CpG binding domain 4 (MBD4) or the fractionated HeLa cell extracts, however, TDG and MBD4 were able to excise the TFT pairing to guanine. Additional data indicate that small-interfering RNA-mediated knockdown of TDG or MBD4 significantly increased the resistance to the cytotoxic effects of FdUrd, but not to that of TFT. These studies show the greater degree of incorporation of TFT into the DNA than that of 5FU or FdUrd, and that such a high degree of incorporation of TFT residues

  1. Modulation of proteostasis counteracts oxidative stress and affects DNA base excision repair capacity in ATM-deficient cells

    PubMed Central

    Yang, Di; Fletcher, Sally C.; Vendrell, Iolanda; Fischer, Roman; Legrand, Arnaud J.

    2017-01-01

    Abstract Ataxia telangiectasia (A-T) is a syndrome associated with loss of ATM protein function. Neurodegeneration and cancer predisposition, both hallmarks of A-T, are likely to emerge as a consequence of the persistent oxidative stress and DNA damage observed in this disease. Surprisingly however, despite these severe features, a lack of functional ATM is still compatible with early life, suggesting that adaptation mechanisms contributing to cell survival must be in place. Here we address this gap in our knowledge by analysing the process of human fibroblast adaptation to the lack of ATM. We identify profound rearrangement in cellular proteostasis occurring very early on after loss of ATM in order to counter protein damage originating from oxidative stress. Change in proteostasis, however, is not without repercussions. Modulating protein turnover in ATM-depleted cells also has an adverse effect on the DNA base excision repair pathway, the major DNA repair system that deals with oxidative DNA damage. As a consequence, the burden of unrepaired endogenous DNA lesions intensifies, progressively leading to genomic instability. Our study provides a glimpse at the cellular consequences of loss of ATM and highlights a previously overlooked role for proteostasis in maintaining cell survival in the absence of ATM function. PMID:28973444

  2. DNA Damage Levels Determine Cyclobutyl Pyrimidine Dimer Repair Mechanisms in Alfalfa Seedlings.

    PubMed Central

    Quaite, F. E.; Takayanagi, S.; Ruffini, J.; Sutherland, J. C.; Sutherland, B. M.

    1994-01-01

    Ultraviolet radiation in sunlight damages DNA in plants, but little is understood about the types, lesion capacity, and coordination of repair pathways. We challenged intact alfalfa seedlings with UV doses that induced different initial levels of cyclobutyl pyrimidine dimers and measured repair by excision and photoreactivation. By using alkaline gel electrophoresis of nonradioactive DNAs treated with a cyclobutyl pyrimidine dimer-specific UV endonuclease, we quantitated ethidium-stained DNA by electronic imaging and calculated lesion frequencies from the number average molecular lengths. At low initial dimer frequencies (less than ~30 dimers per million bases), the seedlings used only photoreactivation to repair dimers; excision repair was not significant. At higher damage levels, both excision and photorepair contributed significantly. This strategy would allow plants with low damage levels to use error-free repair requiring only an external light energy source, whereas seedlings subjected to higher damage frequencies could call on additional repair processes requiring cellular energy. Characterization of repair in plants thus requires an investigation of a range of conditions, including the level of initial damage. PMID:12244228

  3. International congress on DNA damage and repair: Book of abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This document contains the abstracts of 105 papers presented at the Congress. Topics covered include the Escherichia coli nucleotide excision repair system, DNA repair in malignant transformations, defective DNA repair, and gene regulation. (TEM)

  4. DNA Repair in Drosophila: Mutagens, Models, and Missing Genes

    PubMed Central

    Sekelsky, Jeff

    2017-01-01

    The numerous processes that damage DNA are counterbalanced by a complex network of repair pathways that, collectively, can mend diverse types of damage. Insights into these pathways have come from studies in many different organisms, including Drosophila melanogaster. Indeed, the first ideas about chromosome and gene repair grew out of Drosophila research on the properties of mutations produced by ionizing radiation and mustard gas. Numerous methods have been developed to take advantage of Drosophila genetic tools to elucidate repair processes in whole animals, organs, tissues, and cells. These studies have led to the discovery of key DNA repair pathways, including synthesis-dependent strand annealing, and DNA polymerase theta-mediated end joining. Drosophila appear to utilize other major repair pathways as well, such as base excision repair, nucleotide excision repair, mismatch repair, and interstrand crosslink repair. In a surprising number of cases, however, DNA repair genes whose products play important roles in these pathways in other organisms are missing from the Drosophila genome, raising interesting questions for continued investigations. PMID:28154196

  5. Scanning confocal fluorescence microscopy for single molecule analysis of nucleotide excision repair complexes.

    PubMed

    Segers-Nolten, G M J; Wyman, C; Wijgers, N; Vermeulen, W; Lenferink, A T M; Hoeijmakers, J H J; Greve, J; Otto, C

    2002-11-01

    We used scanning confocal fluorescence microscopy to observe and analyze individual DNA- protein complexes formed between human nucleotide excision repair (NER) proteins and model DNA substrates. For this purpose human XPA protein was fused to EGFP, purified and shown to be functional. Binding of EGFP-labeled XPA protein to a Cy3.5-labeled DNA substrate, in the presence and absence of RPA, was assessed quantitatively by simultaneous excitation and emission detection of both fluorophores. Co-localization of Cy3.5 and EGFP signals within one diffraction limited spot indicated complexes of XPA with DNA. Measurements were performed on samples in a 1% agarose matrix in conditions that are compatible with protein activity and where reactions can be studied under equilibrium conditions. In these samples DNA alone was freely diffusing and protein-bound DNA was immobile, whereby they could be discriminated resulting in quantitative data on DNA binding. On the single molecule level approximately 10% of XPA co-localized with DNA; this increased to 32% in the presence of RPA. These results, especially the enhanced binding of XPA in the presence of RPA, are similar to those obtained in bulk experiments, validating the utility of scanning confocal fluorescence microscopy for investigating functional interactions at the single molecule level.

  6. Interactions of Human Nucleotide Excision Repair Protein XPA with DNA and RPA70 Delta c327: Chemical Shift Mapping and N-15 NMR Relaxation Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchko, Garry W.; Daughdrill, Gary W.; De Lorimier, Robert

    1999-12-28

    Human XPA is an essential component in the multienzyme nucleotide excision repair (NER) pathway. The solution structure of the minimal DNA binding domain of XPA (XPA-MBD: M98-F219) was recently determined [Buchko et al. (1998) Nucleic Acids Res. 26, 2779-2788, Ikegami et al (1998) Nat. Struct. Biol. 5, 701-706] and shown to consist of a compact zinc-binding core and a loop-rich C-terminal subdomain connected by a linker sequence.

  7. Predictive role of repair enzymes in the efficacy of Cisplatin combinations in pancreatic and lung cancer.

    PubMed

    Peters, Godefridus J; Avan, Abolfazl; Ruiz, Marielle Gallegos; Orsini, Vanessa; Avan, Amir; Giovannetti, Elisa; Smit, Egbert F

    2014-01-01

    Platinum combinations are the mainstay of treatment for non-small cell lung cancer (NSCLC), while for pancreatic cancer platinum combinations are being given to good-performance status patients. These platinum combinations consist of cis- or carboplatin with gemcitabine, while, for non-squamous NSCLC and mesothelioma, of pemetrexed. The combination of gemcitabine and cisplatin is based on gemcitabine-induced increased formation and retention of DNA-platinum adducts, which can be explained by a decrease of excision repair cross-complementing group-1 (ERCC1)-mediated DNA repair. In these patients, survival and response is prolonged when ERCC1 has a low protein or mRNA expression. A low expression of ribonucleotide reductase (RR) is related to a better treatment outcome after both gemcitabine and gemcitabine-platinum combinations. For pemetrexed combinations, ERCC1 expression was not related to survival. For both NSCLC and pancreatic cancer, polymorphisms in ERCC1 (C118T) and Xeroderma pigmentosum group D (XPD) (A751C) were related to survival. In currently ongoing and future prospective studies, patients should be selected based on their DNA repair status, but it still has to be determined whether this should be by immunohistochemistry, mRNA expression, or a polymorphism.

  8. Modulation of proteostasis counteracts oxidative stress and affects DNA base excision repair capacity in ATM-deficient cells.

    PubMed

    Poletto, Mattia; Yang, Di; Fletcher, Sally C; Vendrell, Iolanda; Fischer, Roman; Legrand, Arnaud J; Dianov, Grigory L

    2017-09-29

    Ataxia telangiectasia (A-T) is a syndrome associated with loss of ATM protein function. Neurodegeneration and cancer predisposition, both hallmarks of A-T, are likely to emerge as a consequence of the persistent oxidative stress and DNA damage observed in this disease. Surprisingly however, despite these severe features, a lack of functional ATM is still compatible with early life, suggesting that adaptation mechanisms contributing to cell survival must be in place. Here we address this gap in our knowledge by analysing the process of human fibroblast adaptation to the lack of ATM. We identify profound rearrangement in cellular proteostasis occurring very early on after loss of ATM in order to counter protein damage originating from oxidative stress. Change in proteostasis, however, is not without repercussions. Modulating protein turnover in ATM-depleted cells also has an adverse effect on the DNA base excision repair pathway, the major DNA repair system that deals with oxidative DNA damage. As a consequence, the burden of unrepaired endogenous DNA lesions intensifies, progressively leading to genomic instability. Our study provides a glimpse at the cellular consequences of loss of ATM and highlights a previously overlooked role for proteostasis in maintaining cell survival in the absence of ATM function. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Red meat and poultry intake, polymorphisms in the nucleotide excision repair and mismatch repair pathways and colorectal cancer risk

    PubMed Central

    Joshi, Amit D.; Corral, Román; Siegmund, Kimberly D.; Haile, Robert W.; Le Marchand, Loïc; Martínez, Maria Elena; Ahnen, Dennis J.; Sandler, Robert S.; Lance, Peter; Stern, Mariana C.

    2009-01-01

    Diets high in red meat have been consistently associated with colorectal cancer (CRC) risk and may result in exposure to carcinogens that cause DNA damage [i.e polycyclic aromatic hydrocarbons, heterocyclic amines (HCAs) and N-nitroso compounds]. Using a family-based study, we investigated whether polymorphisms in the nucleotide excision repair (NER) (ERCC1 3′ untranslated region (UTR) G/T, XPD Asp312Asn and Lys751Gln, XPC intron 11 C/A, XPA 5′ UTR C/T, XPF Arg415Gln and XPG Asp1104His) and mismatch repair (MLH1 Ile219Val and MSH2 Gly322Asp) pathways modified the association with red meat and poultry intake. We tested for gene–environment interactions using case-only analyses (n = 577) and compared the results using case-unaffected sibling comparisons (n = 307 sibships). Increased risk of CRC was observed for intake of more than or equal to three servings per week of red meat [odds ratio (OR) = 1.8, 95% confidence interval (CI) = 1.3–2.5)] or high-temperature cooked red meat (OR = 1.6, 95% CI = 1.1–2.2). Intake of red meat heavily brown on the outside or inside increased CRC risk only among subjects who carried the XPD codon 751 Lys/Lys genotype (case-only interaction P = 0.006 and P = 0.001, respectively, for doneness outside or inside) or the XPD codon 312 Asp/Asp genotype (case-only interaction P = 0.090 and P < 0.001, respectively). These interactions were stronger for rectal cancer cases (heterogeneity test P = 0.002 for XPD Asp312Asn and P = 0.03 for XPD Lys751Gln) and remained statistically significant after accounting for multiple testing. Case-unaffected sibling analyses were generally supportive of the case-only results. These findings highlight the possible contribution of diets high in red meat to the formation of lesions that elicit the NER pathway, such as carcinogen-induced bulky adducts. PMID:19029193

  10. XPD polymorphisms: effects on DNA repair proficiency.

    PubMed

    Lunn, R M; Helzlsouer, K J; Parshad, R; Umbach, D M; Harris, E L; Sanford, K K; Bell, D A

    2000-04-01

    XPD codes for a DNA helicase involved in transcription and nucleotide excision repair. Rare XPD mutations diminish nucleotide excision repair resulting in hypersensitivity to UV light and increased risk of skin cancer. Several polymorphisms in this gene have been identified but their impact on DNA repair is not known. We compared XPD genotypes at codons 312 and 751 with DNA repair proficiency in 31 women. XPD genotypes were measured by PCR-RFLP. DNA repair proficiency was assessed using a cytogenetic assay that detects X-ray induced chromatid aberrations (breaks and gaps). Chromatid aberrations were scored per 100 metaphase cells following incubation at 37 degrees C (1.5 h after irradiation) to allow for repair of DNA damage. Individuals with the Lys/Lys codon 751 XPD genotype had a higher number of chromatid aberrations (132/100 metaphase cells) than those having a 751Gln allele (34/100 metaphase cells). Individuals having greater than 60 chromatid breaks plus gaps were categorized as having sub-optimal repair. Possessing a Lys/Lys751 genotype increased the risk of sub-optimal DNA repair (odds ratio = 7.2, 95% confidence interval = 1.01-87.7). The Asp312Asn XPD polymorphism did not appear to affect DNA repair proficiency. These results suggest that the Lys751 (common) allele may alter the XPD protein product resulting in sub-optimal repair of X-ray-induced DNA damage.

  11. DNA repair enzyme APE1 from evolutionarily ancient Hydra reveals redox activity exclusively found in mammalian APE1.

    PubMed

    Pekhale, Komal; Haval, Gauri; Perween, Nusrat; Antoniali, Giulia; Tell, Gianluca; Ghaskadbi, Surendra; Ghaskadbi, Saroj

    2017-11-01

    Only mammalian apurinic/apyrimidinic endonuclease1 (APE1) has been reported to possess both DNA repair and redox activities. C terminal of the protein is required for base excision repair, while the redox activity resides in the N terminal due to cysteine residues at specific positions. APE1s from other organisms studied so far lack the redox activity in spite of having the N terminal domain. We find that APE1 from the Cnidarian Hydra exhibits both endonuclease and redox activities similar to mammalian APE1. We further show the presence of the three indispensable cysteines in Hydra APE1 for redox activity by site directed mutagenesis. Importance of redox domain but not the repair domain of APE1 in regeneration has been demonstrated by using domain-specific inhibitors. Our findings clearly demonstrate that the redox function of APE1 evolved very early in metazoan evolution and is not a recent acquisition in mammalian APE1 as believed so far. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. DNA repair in Chromobacterium violaceum.

    PubMed

    Duarte, Fábio Teixeira; Carvalho, Fabíola Marques de; Bezerra e Silva, Uaska; Scortecci, Kátia Castanho; Blaha, Carlos Alfredo Galindo; Agnez-Lima, Lucymara Fassarella; Batistuzzo de Medeiros, Silvia Regina

    2004-03-31

    Chromobacterium violaceum is a Gram-negative beta-proteobacterium that inhabits a variety of ecosystems in tropical and subtropical regions, including the water and banks of the Negro River in the Brazilian Amazon. This bacterium has been the subject of extensive study over the last three decades, due to its biotechnological properties, including the characteristic violacein pigment, which has antimicrobial and anti-tumoral activities. C. violaceum promotes the solubilization of gold in a mercury-free process, and has been used in the synthesis of homopolyesters suitable for the production of biodegradable polymers. The complete genome sequence of this organism has been completed by the Brazilian National Genome Project Consortium. The aim of our group was to study the DNA repair genes in this organism, due to their importance in the maintenance of genomic integrity. We identified DNA repair genes involved in different pathways in C. violaceum through a similarity search against known sequences deposited in databases. The phylogenetic analyses were done using programs of the PHILYP package. This analysis revealed various metabolic pathways, including photoreactivation, base excision repair, nucleotide excision repair, mismatch repair, recombinational repair, and the SOS system. The similarity between the C. violaceum sequences and those of Neisserie miningitidis and Ralstonia solanacearum was greater than that between the C. violaceum and Escherichia coli sequences. The peculiarities found in the C. violaceum genome were the absence of LexA, some horizontal transfer events and a large number of repair genes involved with alkyl and oxidative DNA damage.

  13. Base excision repair genes and risk of lung cancer among San Francisco Bay Area Latinos and African-Americans

    PubMed Central

    Chang, Jeffrey S.; Wrensch, Margaret R.; Hansen, Helen M.; Sison, Jennette D.; Aldrich, Melinda C.; Quesenberry, Charles P.; Seldin, Michael F.; Kelsey, Karl T.; Wiencke, John K.

    2009-01-01

    Base excision repair (BER) is the primary DNA damage repair mechanism for repairing small base lesions resulting from oxidation and alkylation damage. This study examines the association between 24 single-nucleotide polymorphisms (SNPs) belonging to five BER genes (XRCC1, APEX1, PARP1, MUTYH and OGG1) and lung cancer among Latinos (113 cases and 299 controls) and African-Americans (255 cases and 280 controls). The goal was to evaluate the differences in genetic contribution to lung cancer risk by ethnic groups. Analyses of individual SNPs and haplotypes were performed using unconditional logistic regressions adjusted for age, sex and genetic ancestry. Four SNPs among Latinos and one SNP among African-Americans were significantly (P < 0.05) associated with either risk of all lung cancer or non-small cell lung cancer (NSCLC). However, only the association between XRCC1 Arg399Gln (rs25487) and NSCLC among Latinos (odds ratio associated with every copy of Gln = 1.52; 95% confidence interval: 1.01–2.28) had a false-positive report probability of <0.5. Arg399Gln is a SNP with some functional evidence and has been shown previously to be an important SNP associated with lung cancer, mostly for Asians. Since the analyses were adjusted for genetic ancestry, the observed association between Arg399Gln and NSCLC among Latinos is unlikely to be confounded by population stratification; however, this result needs to be confirmed by additional studies among the Latino population. This study suggests that there are genetic differences in the association between BER pathway and lung cancer between Latinos and African-Americans. PMID:19029194

  14. Mitotic regulator Nlp interacts with XPA/ERCC1 complexes and regulates nucleotide excision repair (NER) in response to UV radiation.

    PubMed

    Ma, Xiao-Juan; Shang, Li; Zhang, Wei-Min; Wang, Ming-Rong; Zhan, Qi-Min

    2016-04-10

    Cellular response to DNA damage, including ionizing radiation (IR) and UV radiation, is critical for the maintenance of genomic fidelity. Defects of DNA repair often result in genomic instability and malignant cell transformation. Centrosomal protein Nlp (ninein-like protein) has been characterized as an important cell cycle regulator that is required for proper mitotic progression. In this study, we demonstrate that Nlp is able to improve nucleotide excision repair (NER) activity and protects cells against UV radiation. Upon exposure of cells to UVC, Nlp is translocated into the nucleus. The C-terminus (1030-1382) of Nlp is necessary and sufficient for its nuclear import. Upon UVC radiation, Nlp interacts with XPA and ERCC1, and enhances their association. Interestingly, down-regulated expression of Nlp is found to be associated with human skin cancers, indicating that dysregulated Nlp might be related to the development of human skin cancers. Taken together, this study identifies mitotic protein Nlp as a new and important member of NER pathway and thus provides novel insights into understanding of regulatory machinery involved in NER. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Relationship between polymorphisms of nucleotide excision repair genes and oral cancer risk in Taiwan: evidence for modification of smoking habit.

    PubMed

    Bau, Da-Tian; Tsai, Ming-Hsui; Huang, Chih-Yang; Lee, Cheng-Chun; Tseng, Hsien-Chang; Lo, Yen-Li; Tsai, Yuhsin; Tsai, Fuu-Jen

    2007-12-31

    Inherited polymorphisms in DNA repair genes may be associated with differences in the repair capacity and contribute to individual's susceptibility to smoking-related cancers. Both XPA and XPD encode proteins that are part of the nucleotide excision repair (NER) pathway. In a hospital-based case-control study, we have investigated the influence of XPA A-23G and XPD Lys751Gln polymorphisms on oral cancer risk in a Taiwanese population. In total, 154 patients with oral cancer, and 105 age-matched controls recruited from the Chinese Medical Hospital in Central Taiwan were genotyped. No significant association was found between the heterozygous variant allele (AG), the homozygous variant allele (AA) at XPA A-23G, the heterozygous variant allele (AC), the homozygous variant allele (CC) at XPD Lys751Gln, and oral cancer risk. There was no significant joint effect of XPA A-23G and XPD Lys751Gln on oral cancer risk either. Since XPA and XPD are both NER genes, which are very important in removing tobacco-induced DNA adducts, further stratified analyses of both genotype and smoking habit were performed. We found a synergistic effect of variant genotypes of both XPA and XPD, and smoking status on oral cancer risk. Our results suggest that the genetic polymorphisms are modified by environmental carcinogen exposure status, and combined analyses of both genotype and personal habit record are a better access to know the development of oral cancer and useful for primary prevention and early intervention.

  16. DNA Repair Deficiency in Neurodegeneration

    PubMed Central

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A.; Stevnsner, Tinna

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby causing Huntington’s disease. Single-strand breaks are common DNA lesions and are associated with the neurodegenerative diseases, ataxia-oculomotor apraxia-1 and spinocerebellar ataxia with axonal neuropathy-1. DNA double-strand breaks are toxic lesions and two main pathways exist for their repair: homologous recombination and non-homologous end-joining. Ataxia telangiectasia and related disorders with defects in these pathways illustrate that such defects can lead to early childhood neurodegeneration. Aging is a risk factor for neurodegeneration and accumulation of oxidative mitochondrial DNA damage may be linked with the age-associated neurodegenerative disorders Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Mutation in the WRN protein leads to the premature aging disease Werner syndrome, a disorder that features neurodegeneration. In this article we review the evidence linking deficiencies in the DNA repair pathways with neurodegeneration. PMID:21550379

  17. New paradigms in the repair of oxidative damage in human genome: mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins.

    PubMed

    Dutta, Arijit; Yang, Chunying; Sengupta, Shiladitya; Mitra, Sankar; Hegde, Muralidhar L

    2015-05-01

    Oxidized bases in the mammalian genome, which are invariably mutagenic due to their mispairing property, are continuously induced by endogenous reactive oxygen species and more abundantly after oxidative stress. Unlike bulky base adducts induced by UV and other environmental mutagens in the genome that block replicative DNA polymerases, oxidatively damaged bases such as 5-hydroxyuracil, produced by oxidative deamination of cytosine in the template strand, do not block replicative polymerases and thus need to be repaired prior to replication to prevent mutation. Following up our earlier studies, which showed that the Nei endonuclease VIII like 1 (NEIL1) DNA glycosylase, one of the five base excision repair (BER)-initiating enzymes in mammalian cells, has enhanced expression during the S-phase and higher affinity for replication fork-mimicking single-stranded (ss) DNA substrates, we recently provided direct experimental evidence for NEIL1's role in replicating template strand repair. The key requirement for this event, which we named as the 'cow-catcher' mechanism of pre-replicative BER, is NEIL1's non-productive binding (substrate binding without product formation) to the lesion base in ss DNA template to stall DNA synthesis, causing fork regression. Repair of the lesion in reannealed duplex is then carried out by NEIL1 in association with the DNA replication proteins. NEIL1 (and other BER-initiating enzymes) also interact with several accessory and non-canonical proteins including the heterogeneous nuclear ribonucleoprotein U and Y-box-binding protein 1 as well as high mobility group box 1 protein, whose precise roles in BER are still obscure. In this review, we have discussed the recent advances in our understanding of oxidative genome damage repair pathways with particular focus on the pre-replicative template strand repair and the role of scaffold factors like X-ray repairs cross-complementing protein 1 and poly (ADP-ribose) polymerase 1 and other accessory

  18. Bypass of a 5',8-cyclopurine-2'-deoxynucleoside by DNA polymerase β during DNA replication and base excision repair leads to nucleotide misinsertions and DNA strand breaks.

    PubMed

    Jiang, Zhongliang; Xu, Meng; Lai, Yanhao; Laverde, Eduardo E; Terzidis, Michael A; Masi, Annalisa; Chatgilialoglu, Chryssostomos; Liu, Yuan

    2015-09-01

    5',8-Cyclopurine-2'-deoxynucleosides including 5',8-cyclo-dA (cdA) and 5',8-cyclo-dG (cdG) are induced by hydroxyl radicals resulting from oxidative stress such as ionizing radiation. 5',8-cyclopurine-2'-deoxynucleoside lesions are repaired by nucleotide excision repair with low efficiency, thereby leading to their accumulation in the human genome and lesion bypass by DNA polymerases during DNA replication and base excision repair (BER). In this study, for the first time, we discovered that DNA polymerase β (pol β) efficiently bypassed a 5'R-cdA, but inefficiently bypassed a 5'S-cdA during DNA replication and BER. We found that cell extracts from pol β wild-type mouse embryonic fibroblasts exhibited significant DNA synthesis activity in bypassing a cdA lesion located in replication and BER intermediates. However, pol β knock-out cell extracts exhibited little DNA synthesis to bypass the lesion. This indicates that pol β plays an important role in bypassing a cdA lesion during DNA replication and BER. Furthermore, we demonstrated that pol β inserted both a correct and incorrect nucleotide to bypass a cdA at a low concentration. Nucleotide misinsertion was significantly stimulated by a high concentration of pol β, indicating a mutagenic effect induced by pol β lesion bypass synthesis of a 5',8-cyclopurine-2'-deoxynucleoside. Moreover, we found that bypass of a 5'S-cdA by pol β generated an intermediate that failed to be extended by pol β, resulting in accumulation of single-strand DNA breaks. Our study provides the first evidence that pol β plays an important role in bypassing a 5',8-cyclo-dA during DNA replication and repair, as well as new insight into mutagenic effects and genome instability resulting from pol β bypassing of a cdA lesion. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The minimally invasive approach to the symptomatic isthmocele - what does the literature say? A step-by-step primer on laparoscopic isthmocele - excision and repair.

    PubMed

    Sipahi, Sevgi; Sasaki, Kirsten; Miller, Charles E

    2017-08-01

    The purpose of this review is to understand the minimally invasive approach to the excision and repair of an isthmocele. Previous small trials and case reports have shown that the minimally invasive approach by hysteroscopy and/or laparoscopy can cure symptoms of a uterine isthmocele, including abnormal bleeding, pelvic pain and secondary infertility. A recent larger prospective study has been published that evaluates outcomes of minimally invasive isthmocele repair. Smaller studies and individual case reports echo the positive results of this larger trial. The cesarean section scar defect, also known as an isthmocele, has become an important diagnosis for women who present with abnormal uterine bleeding, pelvic pain and secondary infertility. It is important for providers to be aware of the effective surgical treatment options for the symptomatic isthmocele. A minimally invasive approach, whether it be laparoscopic or hysteroscopic, has proven to be a safe and effective option in reducing symptoms and improving fertility. VIDEO ABSTRACT: http://links.lww.com/COOG/A37.

  20. Excision of Sleeping Beauty transposons: parameters and applications to gene therapy

    PubMed Central

    Liu, Geyi; Aronovich, Elena L.; Cui, Zongbin; Whitley, Chester B.; Hackett, Perry B.

    2007-01-01

    A major problem in gene therapy is the determination of the rates at which gene transfer has occurred. Our work has focused on applications of the Sleeping Beauty (SB) transposon system as a non-viral vector for gene therapy. Excision of a transposon from a donor molecule and its integration into a cellular chromosome are catalyzed by SB transposase. In this study, we used a plasmid-based excision assay to study the excision step of transposition. We used the excision assay to evaluate the importance of various sequences that border the sites of excision inside and outside the transposon in order to determine the most active sequences for transposition from a donor plasmid. These findings together with our previous results in transposase binding to the terminal repeats suggest that the sequences in the transposon-junction of SB are involved in steps subsequent to DNA binding but before excision, and that they may have a role in transposase–transposon interaction. We found that SB transposons leave characteristically different footprints at excision sites in different cell types, suggesting that alternative repair machineries operate in concert with transposition. Most importantly, we found that the rates of excision correlate with the rates of transposition. We used this finding to assess transposition in livers of mice that were injected with the SB transposon and transposase. The excision assay appears to be a relatively quick and easy method to optimize protocols for delivery of genes in SB transposons to mammalian chromosomes in living animals. PMID:15133768

  1. Outcome of excision of megarectum in children with anorectal malformation.

    PubMed

    Keshtgar, Alireza S; Ward, Harry C; Richards, Catherine; Clayden, Graham S

    2007-01-01

    Megarectum in association with anorectal malformation contributes to chronic constipation and fecal incontinence. Resection of megarectum in anorectal malformation improves bowel function, but neuropathy and poor sphincter quality may affect the outcome of fecal continence adversely. The aim of this study was to evaluate the benefits of resection of megarectum in anorectal malformation and to ascertain the impact of anal sphincter quality and neuropathy on the outcome. We studied 62 children with intractable fecal incontinence after repair of anorectal malformation between January 1991 and January 2005. All patients were investigated with anorectal manometry and anal endosonography under ketamine anesthesia. On endosonography, an intact or scarred internal anal sphincter (IAS) was classified as good and a fragmented or absent IAS as poor. On manometry, a resting anal sphincter pressure equal to or more than 30 mm Hg was classified as good and a lower pressure as poor. Functional assessment of fecal continence was done before and after excision of megarectum using a modified Wingfield scores. Sixteen children had excision of megarectum with median age of 9 years (range, 2-15 years) and postoperative follow-up of 5 years (range, 1-10 years). Seven had formation of antegrade continent enema stoma before excision of megarectum. Children were classified into three groups of anomalies: low (n = 6), intermediate (n = 4), and high (n = 6). All children were incontinent of feces. After excision of megarectum, of the 9 children with good IAS and no neuropathy, 7 became continent of feces. Of the remaining 7 children, 4 had poor IAS and 3 had neuropathy, 5 of whom required an antegrade continent enema stoma to be clean. Excision of megarectum in children who had previous repair of anorectal malformation results in fecal continence in the presence of a good IAS and absence of neuropathy. Patients with a poor IAS or neuropathy will often require artificial means of fecal

  2. DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces cerevisiae

    PubMed Central

    Boiteux, Serge; Jinks-Robertson, Sue

    2013-01-01

    DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage. PMID:23547164

  3. Hernia sac of indirect inguinal hernia: invagination, excision, or ligation?

    PubMed

    Othman, I; Hady, H A

    2014-04-01

    This study compares the effect of invaginating excision of hernia sac without ligation with the traditional method of high ligation of the hernia sac on postoperative pain and recurrence. This multicenter prospective randomized study included 152 patients with 167 primary indirect inguinal hernias. In group I (54 hernias), the sac was not opened and was inverted with the finger into the peritoneal cavity. In group E (56 hernias), the sac was excised at the neck without ligation. In group L (57 hernias), the sac was transfixed at the neck and excised in the traditional manner. The repair of the posterior wall of the inguinal canal was done according to Lichtenstein tension-free technique. Mean length of follow-up was 81.50 ± 22.34, 79.35 ± 26.76, and 77.83 ± 21.26 months, respectively. Postoperative seroma occurred in 1 patient (0.60%) in group E and 1 patient (0.60%) in group L. Surgical site infection occurred in 2 patients (1.20%) in group I, 1 patient (0.60%) in group E, and 2 patients (1.20%) in group L. Mean postoperative pain score was 3.04 ± 2.11, 3.98 ± 2.33 and 4.06 ± 2.43, respectively (p: 0.049). Chronic pain occurred in 3 patients in group I (1.80%), 3 patients in group E (1.80%), and 5 patients in group L (3.00%) (p: 0.749). The difference between the complications in three groups was statistically insignificant (p: 0.887). Hernia recurrence occurred in 3 patients (1.80%) in group I, 1 patient (0.60%) in group E, and 1 patient (0.60%) in group L (p: 0.429). Invagination and excision of the hernia sac do not have adverse effects on repair integrity. They limit the dissection and reduce the morbidity and risk of injury to the spermatic cord and surrounded structures. They are safer and more appropriate for repair of sliding hernia. Ligation of the hernia sac in inguinal hernia surgery is not only unnecessary and time consuming but also leads to increased postoperative pain. Recurrence rates are statistically unaffected by not ligating the sac.

  4. Formation and Repair of Tobacco Carcinogen-Derived Bulky DNA Adducts

    DOE PAGES

    Hang, Bo

    2010-01-01

    DNA adducts play a central role in chemical carcinogenesis. The analysis of formation and repair of smoking-related DNA adducts remains particularly challenging as both smokers and nonsmokers exposed to smoke are repetitively under attack from complex mixtures of carcinogens such as polycyclic aromatic hydrocarbons and N -nitrosamines. The bulky DNA adducts, which usually have complex structure, are particularly important because of their biological relevance. Several known cellular DNA repair pathways have been known to operate in human cells on specific types of bulky DNA adducts, for example, nucleotide excision repair, base excision repair, and direct reversal involving O 6 -alkylguaninemore » DNA alkyltransferase or AlkB homologs. Understanding the mechanisms of adduct formation and repair processes is critical for the assessment of cancer risk resulting from exposure to cigarette smoke, and ultimately for developing strategies of cancer prevention. This paper highlights the recent progress made in the areas concerning formation and repair of bulky DNA adducts in the context of tobacco carcinogen-associated genotoxic and carcinogenic effects.« less

  5. Molecular Mechanisms of Ultraviolet Radiation-Induced DNA Damage and Repair

    PubMed Central

    Rastogi, Rajesh P.; Richa; Kumar, Ashok; Tyagi, Madhu B.; Sinha, Rajeshwar P.

    2010-01-01

    DNA is one of the prime molecules, and its stability is of utmost importance for proper functioning and existence of all living systems. Genotoxic chemicals and radiations exert adverse effects on genome stability. Ultraviolet radiation (UVR) (mainly UV-B: 280–315 nm) is one of the powerful agents that can alter the normal state of life by inducing a variety of mutagenic and cytotoxic DNA lesions such as cyclobutane-pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and their Dewar valence isomers as well as DNA strand breaks by interfering the genome integrity. To counteract these lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Additionally, double-strand break repair (by homologous recombination and nonhomologous end joining), SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis) are also operative in various organisms with the expense of specific gene products. This review deals with UV-induced alterations in DNA and its maintenance by various repair mechanisms. PMID:21209706

  6. Binding Pattern Elucidation of NNK and NNAL Cigarette Smoke Carcinogens with NER Pathway Enzymes: an Onco- Informatics Study.

    PubMed

    Jamal, Qazi Mohammad Sajid; Dhasmana, Anupam; Lohani, Mohtashim; Firdaus, Sumbul; Ansari, Md Yousuf; Sahoo, Ganesh Chandra; Haque, Shafiul

    2015-01-01

    Cigarette smoke derivatives like NNK (4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone) and NNAL (4-(methylnitrosamino)-1-(3-pyridyl)-1-butan-1-ol) are well-known carcinogens. We analyzed the interaction of enzymes involved in the NER (nucleotide excision repair) pathway with ligands (NNK and NNAL). Binding was characterized for the enzymes sharing equivalent or better interaction as compared to +Ve control. The highest obtained docking energy between NNK and enzymes RAD23A, CCNH, CDK7, and CETN2 were -7.13 kcal/mol, -7.27 kcal/mol, -8.05 kcal/mol and -7.58 kcal/mol respectively. Similarly the highest obtained docking energy between NNAL and enzymes RAD23A, CCNH, CDK7, and CETN2 were -7.46 kcal/mol, -7.94 kcal/mol, -7.83 kcal/mol and -7.67 kcal/mol respectively. In order to find out the effect of NNK and NNAL on enzymes involved in the NER pathway applying protein-protein interaction and protein-complex (i.e. enzymes docked with NNK/NNAL) interaction analysis. It was found that carcinogens are well capable to reduce the normal functioning of genes like RAD23A (HR23A), CCNH, CDK7 and CETN2. In silico analysis indicated loss of functions of these genes and their corresponding enzymes, which possibly might be a cause for alteration of DNA repair pathways leading to damage buildup and finally contributing to cancer formation.

  7. Dual CRISPR-Cas9 Cleavage Mediated Gene Excision and Targeted Integration in Yarrowia lipolytica.

    PubMed

    Gao, Difeng; Smith, Spencer; Spagnuolo, Michael; Rodriguez, Gabriel; Blenner, Mark

    2018-05-29

    CRISPR-Cas9 technology has been successfully applied in Yarrowia lipolytica for targeted genomic editing including gene disruption and integration; however, disruptions by existing methods typically result from small frameshift mutations caused by indels within the coding region, which usually resulted in unnatural protein. In this study, a dual cleavage strategy directed by paired sgRNAs is developed for gene knockout. This method allows fast and robust gene excision, demonstrated on six genes of interest. The targeted regions for excision vary in length from 0.3 kb up to 3.5 kb and contain both non-coding and coding regions. The majority of the gene excisions are repaired by perfect nonhomologous end-joining without indel. Based on this dual cleavage system, two targeted markerless integration methods are developed by providing repair templates. While both strategies are effective, homology mediated end joining (HMEJ) based method are twice as efficient as homology recombination (HR) based method. In both cases, dual cleavage leads to similar or improved gene integration efficiencies compared to gene excision without integration. This dual cleavage strategy will be useful for not only generating more predictable and robust gene knockout, but also for efficient targeted markerless integration, and simultaneous knockout and integration in Y. lipolytica. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Role of base-excision repair in the treatment of childhood acute lymphoblastic leukaemia with 6-mercaptopurine and high doses of methotrexate.

    PubMed

    Stanczyk, M; Sliwinski, T; Trelinska, J; Cuchra, M; Markiewicz, L; Dziki, L; Bieniek, A; Bielecka-Kowalska, A; Kowalski, M; Pastorczak, A; Szemraj, J; Mlynarski, W; Majsterek, I

    2012-01-24

    Methotrexate (MTX) and 6-mercaptopurine (6MP) are the most commonly used drugs in the therapy of childhood acute lymphoblastic leukaemia (ALL). The main genotoxic effect of MTX resulting from inhibition of thymidylate synthase is mis-incorporation of uracil into DNA, which is considered essential for the effectiveness of the Protocol M in ALL IC BFM 2002/EURO LB 2002 regimens. In this study, we investigated the level of basal and induced DNA damage as well as the effectiveness of DNA repair in lymphocytes of children with ALL at four time-points during therapy with MTX and 6MP. To assess DNA damage and the efficacy of DNA repair we used the modified alkaline comet assay with uracil DNA glycosylase (Udg) and endonuclease III (EndoIII). In addition, we examined the induction of apoptosis in the lymphocytes of the patients during treatment. Finally, we compared the activity of base-excision repair (BER), involved in removal of both uracil and oxidized bases from DNA in lymphocytes of children with ALL and lymphocytes of healthy children. BER efficiency was estimated in an in vitro assay with cellular extracts and plasmid substrates of heteroduplex DNA with an AP-site. Our results indicate that there is a significant decrease in the efficacy of DNA repair associated with an increased level of uracil in DNA and induction of apoptosis during therapy. Moreover, it was found that the BER capacity was decreased in the lymphocytes of ALL patients in contrast to that in lymphocytes of healthy children. Thus, we suggest that an impairment of the BER pathway may play a role in the pathogenesis and therapy of childhood ALL. © 2011 Elsevier B.V. All rights reserved.

  9. Monitoring regulation of DNA repair activities of cultured cells in-gel using the comet assay

    PubMed Central

    Nickson, Catherine M.; Parsons, Jason L.

    2014-01-01

    Base excision repair (BER) is the predominant cellular mechanism by which human cells repair DNA base damage, sites of base loss, and DNA single strand breaks of various complexity, that are generated in their thousands in every human cell per day as a consequence of cellular metabolism and exogenous agents, including ionizing radiation. Over the last three decades the comet assay has been employed in scientific research to examine the cellular response to these types of DNA damage in cultured cells, therefore revealing the efficiency and capacity of BER. We have recently pioneered new research demonstrating an important role for post-translational modifications (particularly ubiquitylation) in the regulation of cellular levels of BER proteins, and that subtle changes (∼20–50%) in protein levels following siRNA knockdown of E3 ubiquitin ligases or deubiquitylation enzymes can manifest in significant changes in DNA repair capacity monitored using the comet assay. For example, we have shown that the E3 ubiquitin ligase Mule, the tumor suppressor protein ARF, and the deubiquitylation enzyme USP47 modulate DNA repair by controlling cellular levels of DNA polymerase β, and also that polynucleotide kinase phosphatase levels are controlled by ATM-dependant phosphorylation and Cul4A–DDB1–STRAP-dependent ubiquitylation. In these studies we employed a modification of the comet assay whereby cultured cells, following DNA damage treatment, are embedded in agarose and allowed to repair in-gel prior to lysis and electrophoresis. Whilst this method does have its limitations, it avoids the extensive cell culture-based processing associated with the traditional approach using attached cells and also allows for the examination of much more precise DNA repair kinetics. In this review we will describe, using this modified comet assay, our accumulating evidence that ubiquitylation-dependant regulation of BER proteins has important consequences for overall cellular DNA repair

  10. DNA repair in mammalian mitochondria: Much more than we thought?

    PubMed

    Liu, Pingfang; Demple, Bruce

    2010-06-01

    For many years, the repair of most damage in mitochondrial DNA (mtDNA) was thought limited to short-patch base excision repair (SP-BER), which replaces a single nucleotide by the sequential action of DNA glycosylases, an apurinic/apyrimidinic (AP) endonuclease, the mitochondrial DNA polymerase gamma, an abasic lyase activity, and mitochondrial DNA ligase. However, the likely array of lesions inflicted on mtDNA by oxygen radicals and the possibility of replication errors and disruptions indicated that such a restricted repair repertoire would be inadequate. Recent studies have considerably expanded our knowledge of mtDNA repair to include long-patch base excision repair (LP-BER), mismatch repair, and homologous recombination and nonhomologous end-joining. In addition, elimination of mutagenic 8-oxodeoxyguanosine triphosphate (8-oxodGTP) helps prevent cell death due to the accumulation of this oxidation product in mtDNA. Although it was suspected for many years that irreparably damaged mtDNA might be targeted for degradation, only recently was clear evidence provided for this hypothesis. Therefore, multiple DNA repair pathways and controlled degradation of mtDNA function together to maintain the integrity of mitochondrial genome.

  11. Hypomorphic PCNA mutation underlies a human DNA repair disorder

    PubMed Central

    Baple, Emma L.; Chambers, Helen; Cross, Harold E.; Fawcett, Heather; Nakazawa, Yuka; Chioza, Barry A.; Harlalka, Gaurav V.; Mansour, Sahar; Sreekantan-Nair, Ajith; Patton, Michael A.; Muggenthaler, Martina; Rich, Phillip; Wagner, Karin; Coblentz, Roselyn; Stein, Constance K.; Last, James I.; Taylor, A. Malcolm R.; Jackson, Andrew P.; Ogi, Tomoo; Lehmann, Alan R.; Green, Catherine M.; Crosby, Andrew H.

    2014-01-01

    Numerous human disorders, including Cockayne syndrome, UV-sensitive syndrome, xeroderma pigmentosum, and trichothiodystrophy, result from the mutation of genes encoding molecules important for nucleotide excision repair. Here, we describe a syndrome in which the cardinal clinical features include short stature, hearing loss, premature aging, telangiectasia, neurodegeneration, and photosensitivity, resulting from a homozygous missense (p.Ser228Ile) sequence alteration of the proliferating cell nuclear antigen (PCNA). PCNA is a highly conserved sliding clamp protein essential for DNA replication and repair. Due to this fundamental role, mutations in PCNA that profoundly impair protein function would be incompatible with life. Interestingly, while the p.Ser228Ile alteration appeared to have no effect on protein levels or DNA replication, patient cells exhibited marked abnormalities in response to UV irradiation, displaying substantial reductions in both UV survival and RNA synthesis recovery. The p.Ser228Ile change also profoundly altered PCNA’s interaction with Flap endonuclease 1 and DNA Ligase 1, DNA metabolism enzymes. Together, our findings detail a mutation of PCNA in humans associated with a neurodegenerative phenotype, displaying clinical and molecular features common to other DNA repair disorders, which we showed to be attributable to a hypomorphic amino acid alteration. PMID:24911150

  12. The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair

    PubMed Central

    Roos, Wynand Paul; Krumm, Andrea

    2016-01-01

    Histone/protein deacetylases play multiple roles in regulating gene expression and protein activation and stability. Their deregulation during cancer initiation and progression cause resistance to therapy. Here, we review the role of histone deacetylases (HDACs) and the NAD+ dependent sirtuins (SIRTs) in the DNA damage response (DDR). These lysine deacetylases contribute to DNA repair by base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), homologous recombination (HR) and interstrand crosslink (ICL) repair. Furthermore, we discuss possible mechanisms whereby these histone/protein deacetylases facilitate the switch between DNA double-strand break (DSB) repair pathways, how SIRTs play a central role in the crosstalk between DNA repair and cell death pathways due to their dependence on NAD+, and the influence of small molecule HDAC inhibitors (HDACi) on cancer cell resistance to genotoxin based therapies. Throughout the review, we endeavor to identify the specific HDAC targeted by HDACi leading to therapy sensitization. PMID:27738139

  13. Effect of Amalaki rasayana on DNA damage and repair in randomized aged human individuals.

    PubMed

    Vishwanatha, Udupi; Guruprasad, Kanive P; Gopinath, Puthiya M; Acharya, Raviraj V; Prasanna, Bokkasa V; Nayak, Jayakrishna; Ganesh, Rajeshwari; Rao, Jayalaxmi; Shree, Rashmi; Anchan, Suchitra; Raghu, Kothanahalli S; Joshi, Manjunath B; Paladhi, Puspendu; Varier, Panniampilly M; Muraleedharan, Kollath; Muraleedharan, Thrikovil S; Satyamoorthy, Kapaettu

    2016-09-15

    Preparations from Phyllanthus emblica called Amalaki rasayana is used in the Indian traditional medicinal system of Ayurveda for healthy living in elderly. The biological effects and its mechanisms are not fully understood. Since the diminishing DNA repair is the hallmark of ageing, we tested the influence of Amalaki rasayana on recognized DNA repair activities in healthy aged individuals. Amalaki rasayana was prepared fresh and healthy aged randomized human volunteers were administrated with either rasayana or placebo for 45 days strictly as per the traditional text. The DNA repair was analyzed in peripheral blood mononuclear cells before and after rasayana administration and after 45 days post-rasayana treatment regimen. UVC-induced DNA strand break repair (DSBR) based on extent of DNA unwinding by fluorometric analysis, nucleotide excision repair (NER) by flow cytometry and constitutive base excision repair (BER) by gap filling method were analyzed. Amalaki rasayana administration stably maintained/enhanced the DSBR in aged individuals. There were no adverse side effects. Further, subjects with different body mass index showed differential DNA strand break repair capacity. No change in unscheduled DNA synthesis during NER and BER was observed between the groups. Intake of Amalaki rasayana by aged individuals showed stable maintenance of DNA strand break repair without toxic effects. However, there was no change in nucleotide and base excision repair activities. Results warrant further studies on the effects of Amalaki rasayana on DSBR activities. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Mitochondrial DNA repair and damage tolerance.

    PubMed

    Stein, Alexis; Sia, Elaine A

    2017-01-01

    The accurate maintenance of mitochondrial DNA (mtDNA) is required in order for eukaryotic cells to assemble a functional electron transport chain. This independently-maintained genome relies on nuclear-encoded proteins that are imported into the mitochondria to carry out replication and repair processes. Decades of research has made clear that mitochondria employ robust and varied mtDNA repair and damage tolerance mechanisms in order to ensure the proper maintenance of the mitochondrial genome. This review focuses on our current understanding of mtDNA repair and damage tolerance pathways including base excision repair, mismatch repair, homologous recombination, non-homologous end joining, translesion synthesis and mtDNA degradation in both yeast and mammalian systems.

  15. Contribution of DNA unwrapping from histone octamers to the repair of oxidatively damaged DNA in nucleosomes

    PubMed Central

    Maher, Robyn L.; Prasad, Amalthiya; Rizvanova, Olga; Wallace, Susan S.; Pederson, David S.

    2013-01-01

    Reactive oxygen species generate ~20,000 oxidative lesions in the DNA of every cell, every day. Most of these lesions are located within nucleosomes, which package DNA in chromatin and impede base excision repair (BER). We demonstrated previously that periodic, spontaneous partial unwrapping of DNA from the underlying histone octamer enables BER enzymes to bind to oxidative lesions that would otherwise be sterically inaccessible. In the present study, we asked if these periodic DNA unwrapping events are frequent enough to account for the estimated rates of BER in vivo. We measured rates of excision of oxidative lesions from sites in nucleosomes that are accessible only during unwrapping episodes. Using reaction conditions appropriate for presteady-state kinetic analyses, we derived lesion exposure rates for both 601 and 5S rDNA-based nucleosomes. Although DNA unwrapping-mediated exposure of a lesion ~16 NT from the nucleosome edge occurred ~7–8 times per minute, exposure rates fell dramatically for lesions located 10 or more NT further in from the nucleosome edge. The rates likely are too low to account for observed rates of BER in cells. Thus, chromatin remodeling, either BER-specific or that associated with transcription, replication, or other DNA repair processes, probably contributes to efficient BER in vivo. PMID:24051050

  16. Age and exposure to arsenic alter base excision repair transcript levels in mice.

    PubMed

    Osmond, Megan J; Kunz, Bernard A; Snow, Elizabeth T

    2010-09-01

    Arsenic (As) induces DNA-damaging reactive oxygen species. Most oxidative DNA damage is countered by base excision repair (BER), the capacity for which may be reduced in older animals. We examined whether age and consumption of As in lactational milk or drinking water influences BER gene transcript levels in mice. Lactating mothers and 24-week-old mice were exposed (24 h or 2 weeks) to As (2 or 50 p.p.m.) in drinking water. Lung tissue was harvested from adults, neonates (initially 1 week old) feeding from lactating mothers and untreated animals 1-26 weeks old. Transcripts encoding BER proteins were quantified. BER transcript levels decreased precipitously with age in untreated mice but increased in neonates whose mothers were exposed to 50 p.p.m. As for 24 h or 2 weeks. Treatment of 24-week-old mice with 2 or 50 p.p.m. As for 2 weeks decreased all transcript levels measured. Exposure to As attenuated the age-related transcript level decline for only one BER gene. We conclude that aging is associated with a rapid reduction of BER transcript levels in mice, which may contribute to decreased BER activity in older animals. Levels of As that can alter gene expression are transmitted to neonatal mice in lactational milk produced by mothers drinking water containing As, raising concerns about breastfeeding in countries having As-contaminated groundwater. Reduction of BER transcript levels in 24-week-old mice exposed to As for 2 weeks suggests As may potentiate sensitivity to itself in older animals.

  17. The formation of catalytically competent enzyme-substrate complex is not a bottleneck in lesion excision by human alkyladenine DNA glycosylase.

    PubMed

    Kuznetsov, N A; Kiryutin, A S; Kuznetsova, A A; Panov, M S; Barsukova, M O; Yurkovskaya, A V; Fedorova, O S

    2017-04-01

    Human alkyladenine DNA glycosylase (AAG) protects DNA from alkylated and deaminated purine lesions. AAG flips out the damaged nucleotide from the double helix of DNA and catalyzes the hydrolysis of the N-glycosidic bond to release the damaged base. To understand better, how the step of nucleotide eversion influences the overall catalytic process, we performed a pre-steady-state kinetic analysis of AAG interaction with specific DNA-substrates, 13-base pair duplexes containing in the 7th position 1-N6-ethenoadenine (εA), hypoxanthine (Hx), and the stable product analogue tetrahydrofuran (F). The combination of the fluorescence of tryptophan, 2-aminopurine, and 1-N6-ethenoadenine was used to record conformational changes of the enzyme and DNA during the processes of DNA lesion recognition, damaged base eversion, excision of the N-glycosidic bond, and product release. The thermal stability of the duplexes characterized by the temperature of melting, T m , and the rates of spontaneous opening of individual nucleotide base pairs were determined by NMR spectroscopy. The data show that the relative thermal stability of duplexes containing a particular base pair in position 7, (T m (F/T) < T m (εA/T) < T m (Hx/T) < T m (A/T)) correlates with the rate of reversible spontaneous opening of the base pair. However, in contrast to that, the catalytic lesion excision rate is two orders of magnitude higher for Hx-containing substrates than for substrates containing εA, proving that catalytic activity is not correlated with the stability of the damaged base pair. Our study reveals that the formation of the catalytically competent enzyme-substrate complex is not the bottleneck controlling the catalytic activity of AAG.

  18. A compromised yeast RNA polymerase II enhances UV sensitivity in the absence of global genome nucleotide excision repair.

    PubMed

    Wong, J M; Ingles, C J

    2001-02-01

    Nucleotide excision repair is the major pathway responsible for removing UV-induced DNA damage, and is therefore essential for cell survival following exposure to UV radiation. In this report, we have assessed the contributions of some components of the RNA polymerase II (Pol II) transcription machinery to UV resistance in Saccharomyces cerevisiae. Deletion of the gene encoding the Pol II elongation factor TFIIS (SII) resulted in enhanced UV sensitivity, but only in the absence of global genome repair dependent on the RAD7 and RAD16 genes, a result seen previously with deletions of RAD26 and RAD28, yeast homologs of the human Cockayne syndrome genes CSB and CSA, respectively. A RAD7/16-dependent reduction in survival after UV irradiation was also seen in the presence of mutations in RNA Pol II that confer a defect in its response to SII, as well as with other mutations which reside in regions of the largest subunit of Pol II not involved in SII interactions. Indeed, an increase in UV sensitivity was achieved by simply decreasing the steadystate level of RNA Pol II. Truncation of the C-terminal domain and other RNA Pol II mutations conferred sensitivity to the ribonucleotide reductase inhibitor hydroxyurea and induction of RNR1 and RNR2 mRNAs after UV irradiation was attenuated in these mutant cells. That UV sensitivity can be a consequence of mutations in the RNA Pol II machinery in yeast cells suggests that alterations in transcriptional programs could underlie some of the pathophysiological defects seen in the human disease Cockayne syndrome.

  19. Mutants of the base excision repair glycosylase, endonuclease III: DNA charge transport as a first step in lesion detection.

    PubMed

    Romano, Christine A; Sontz, Pamela A; Barton, Jacqueline K

    2011-07-12

    Endonuclease III (EndoIII) is a base excision repair glycosylase that targets damaged pyrimidines and contains a [4Fe-4S] cluster. We have proposed a model where BER proteins that contain redox-active [4Fe-4S] clusters utilize DNA charge transport (CT) as a first step in the detection of DNA lesions. Here, several mutants of EndoIII were prepared to probe their efficiency of DNA/protein charge transport. Cyclic voltammetry experiments on DNA-modified electrodes show that aromatic residues F30, Y55, Y75, and Y82 help mediate charge transport between DNA and the [4Fe-4S] cluster. On the basis of circular dichroism studies to measure protein stability, mutations at residues W178 and Y185 are found to destabilize the protein; these residues may function to protect the [4Fe-4S] cluster. Atomic force microscopy studies furthermore reveal a correlation in the ability of mutants to carry out protein/DNA CT and their ability to relocalize onto DNA strands containing a single base mismatch; EndoIII mutants that are defective in carrying out DNA/protein CT do not redistribute onto mismatch-containing strands, consistent with our model. These results demonstrate a link between the ability of the repair protein to carry out DNA CT and its ability to relocalize near lesions, thus pointing to DNA CT as a key first step in the detection of base damage in the genome.

  20. Mutants of the Base Excision Repair Glycosylase, Endonuclease III: DNA Charge Transport as a First Step in Lesion Detection

    PubMed Central

    Romano, Christine A.; Sontz, Pamela A.; Barton, Jacqueline K.

    2011-01-01

    Endonuclease III (EndoIII) is a base excision repair glycosylase that targets damaged pyrimidines and contains a [4Fe-4S] cluster. We have proposed a model where BER proteins that contain redox-active [4Fe-4S] clusters utilize DNA charge transport (CT) as a first step in the detection of DNA lesions. Here, several mutants of EndoIII were prepared to probe their efficiency of DNA/protein charge transport. Cyclic voltammetry experiments on DNA-modified electrodes show that aromatic residues F30, Y55, Y75 and Y82 help mediate charge transport between DNA and the [4Fe-4S] cluster. Based on circular dichroism studies to measure protein stability, mutations at residues W178 and Y185 are found to destabilize the protein; these residues may function to protect the [4Fe-4S] cluster. Atomic force microscopy studies furthermore reveal a correlation in the ability of mutants to carry out protein/DNA CT and their ability to relocalize onto DNA strands containing a single base mismatch; EndoIII mutants that are defective in carrying out DNA/protein CT do not redistribute onto mismatch-containing strands, consistent with our model. These results demonstrate a link between the ability of the repair protein to carry out DNA CT and its ability to relocalize near lesions, thus pointing to DNA CT as a key first step in the detection of base damage in the genome. PMID:21651304

  1. Unnatural substrates reveal the importance of 8-oxoguanine for in vivo mismatch repair by MutY

    PubMed Central

    Livingston, Alison L.; O’Shea, Valerie L.; Kim, Taewoo; Kool, Eric T.; David, Sheila S.

    2009-01-01

    Escherchia coli MutY plays an important role in preventing mutations associated with the oxidative lesion 7,8-dihydro-8-oxo-2′-deoxyguanosine (OG) in DNA by excising adenines from OG:A mismatches as the first step of base excision repair. To determine the importance of specific steps in the base pair recognition and base removal process of MutY, we have evaluated the effects of modifications of the OG:A substrate on the kinetics of base removal, mismatch affinity and repair to G:C in an Escherchia coli-based assay. Surprisingly, adenine modification was tolerated in the cellular assay, while modification of OG results in minimal cellular repair. High affinity for the mismatch and efficient base removal require the presence of OG. Taken together, these results suggest that the presence of OG is a critical feature for MutY to locate OG:A mismatches and select the appropriate adenines for excision to initiate repair in vivo prior to replication. PMID:18026095

  2. Formation and Repair of Mismatches Containing Ribonucleotides and Oxidized Bases at Repeated DNA Sequences*

    PubMed Central

    Cilli, Piera; Minoprio, Anna; Bossa, Cecilia; Bignami, Margherita; Mazzei, Filomena

    2015-01-01

    The cellular pool of ribonucleotide triphosphates (rNTPs) is higher than that of deoxyribonucleotide triphosphates. To ensure genome stability, DNA polymerases must discriminate against rNTPs and incorporated ribonucleotides must be removed by ribonucleotide excision repair (RER). We investigated DNA polymerase β (POL β) capacity to incorporate ribonucleotides into trinucleotide repeated DNA sequences and the efficiency of base excision repair (BER) and RER enzymes (OGG1, MUTYH, and RNase H2) when presented with an incorrect sugar and an oxidized base. POL β incorporated rAMP and rCMP opposite 7,8-dihydro-8-oxoguanine (8-oxodG) and extended both mispairs. In addition, POL β was able to insert and elongate an oxidized rGMP when paired with dA. We show that RNase H2 always preserves the capacity to remove a single ribonucleotide when paired to an oxidized base or to incise an oxidized ribonucleotide in a DNA duplex. In contrast, BER activity is affected by the presence of a ribonucleotide opposite an 8-oxodG. In particular, MUTYH activity on 8-oxodG:rA mispairs is fully inhibited, although its binding capacity is retained. This results in the reduction of RNase H2 incision capability of this substrate. Thus complex mispairs formed by an oxidized base and a ribonucleotide can compromise BER and RER in repeated sequences. PMID:26338705

  3. DNA Damage: Quantum Mechanics/Molecular Mechanics Study on the Oxygen Binding and Substrate Hydroxylation Step in AlkB Repair Enzymes

    PubMed Central

    Quesne, Matthew G; Latifi, Reza; Gonzalez-Ovalle, Luis E; Kumar, Devesh; de Visser, Sam P

    2014-01-01

    AlkB repair enzymes are important nonheme iron enzymes that catalyse the demethylation of alkylated DNA bases in humans, which is a vital reaction in the body that heals externally damaged DNA bases. Its mechanism is currently controversial and in order to resolve the catalytic mechanism of these enzymes, a quantum mechanics/molecular mechanics (QM/MM) study was performed on the demethylation of the N1-methyladenine fragment by AlkB repair enzymes. Firstly, the initial modelling identified the oxygen binding site of the enzyme. Secondly, the oxygen activation mechanism was investigated and a novel pathway was found, whereby the catalytically active iron(IV)–oxo intermediate in the catalytic cycle undergoes an initial isomerisation assisted by an Arg residue in the substrate binding pocket, which then brings the oxo group in close contact with the methyl group of the alkylated DNA base. This enables a subsequent rate-determining hydrogen-atom abstraction on competitive σ-and π-pathways on a quintet spin-state surface. These findings give evidence of different locations of the oxygen and substrate binding channels in the enzyme and the origin of the separation of the oxygen-bound intermediates in the catalytic cycle from substrate. Our studies are compared with small model complexes and the effect of protein and environment on the kinetics and mechanism is explained. PMID:24339041

  4. DNA repair deficiency sensitizes lung cancer cells to NAD+ biosynthesis blockade.

    PubMed

    Touat, Mehdi; Sourisseau, Tony; Dorvault, Nicolas; Chabanon, Roman M; Garrido, Marlène; Morel, Daphné; Krastev, Dragomir B; Bigot, Ludovic; Adam, Julien; Frankum, Jessica R; Durand, Sylvère; Pontoizeau, Clement; Souquère, Sylvie; Kuo, Mei-Shiue; Sauvaigo, Sylvie; Mardakheh, Faraz; Sarasin, Alain; Olaussen, Ken A; Friboulet, Luc; Bouillaud, Frédéric; Pierron, Gérard; Ashworth, Alan; Lombès, Anne; Lord, Christopher J; Soria, Jean-Charles; Postel-Vinay, Sophie

    2018-04-02

    Synthetic lethality is an efficient mechanism-based approach to selectively target DNA repair defects. Excision repair cross-complementation group 1 (ERCC1) deficiency is frequently found in non-small-cell lung cancer (NSCLC), making this DNA repair protein an attractive target for exploiting synthetic lethal approaches in the disease. Using unbiased proteomic and metabolic high-throughput profiling on a unique in-house-generated isogenic model of ERCC1 deficiency, we found marked metabolic rewiring of ERCC1-deficient populations, including decreased levels of the metabolite NAD+ and reduced expression of the rate-limiting NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT). We also found reduced NAMPT expression in NSCLC samples with low levels of ERCC1. These metabolic alterations were a primary effect of ERCC1 deficiency, and caused selective exquisite sensitivity to small-molecule NAMPT inhibitors, both in vitro - ERCC1-deficient cells being approximately 1,000 times more sensitive than ERCC1-WT cells - and in vivo. Using transmission electronic microscopy and functional metabolic studies, we found that ERCC1-deficient cells harbor mitochondrial defects. We propose a model where NAD+ acts as a regulator of ERCC1-deficient NSCLC cell fitness. These findings open therapeutic opportunities that exploit a yet-undescribed nuclear-mitochondrial synthetic lethal relationship in NSCLC models, and highlight the potential for targeting DNA repair/metabolic crosstalks for cancer therapy.

  5. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts

    NASA Astrophysics Data System (ADS)

    Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2016-07-01

    Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm-2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.

  6. Conservation of the Nucleotide Excision Repair Pathway: Characterization of Hydra Xeroderma Pigmentosum Group F Homolog

    PubMed Central

    Barve, Apurva; Ghaskadbi, Saroj; Ghaskadbi, Surendra

    2013-01-01

    Hydra, one of the earliest metazoans with tissue grade organization and nervous system, is an animal with a remarkable regeneration capacity and shows no signs of organismal aging. We have for the first time identified genes of the nucleotide excision repair (NER) pathway from hydra. Here we report cloning and characterization of hydra homolog of xeroderma pigmentosum group F (XPF) gene that encodes a structure-specific 5′ endonuclease which is a crucial component of NER. In silico analysis shows that hydra XPF amino acid sequence is very similar to its counterparts from other animals, especially vertebrates, and shows all features essential for its function. By in situ hybridization, we show that hydra XPF is expressed prominently in the multipotent stem cell niche in the central region of the body column. Ectoderm of the diploblastic hydra was shown to express higher levels of XPF as compared to the endoderm by semi-quantitative RT-PCR. Semi-quantitative RT-PCR analysis also demonstrated that interstitial cells, a multipotent and rapidly cycling stem cell lineage of hydra, express higher levels of XPF mRNA than other cell types. Our data show that XPF and by extension, the NER pathway is highly conserved during evolution. The prominent expression of an NER gene in interstitial cells may have implications for the lack of senescence in hydra. PMID:23577191

  7. Conservation of the nucleotide excision repair pathway: characterization of hydra Xeroderma Pigmentosum group F homolog.

    PubMed

    Barve, Apurva; Ghaskadbi, Saroj; Ghaskadbi, Surendra

    2013-01-01

    Hydra, one of the earliest metazoans with tissue grade organization and nervous system, is an animal with a remarkable regeneration capacity and shows no signs of organismal aging. We have for the first time identified genes of the nucleotide excision repair (NER) pathway from hydra. Here we report cloning and characterization of hydra homolog of xeroderma pigmentosum group F (XPF) gene that encodes a structure-specific 5' endonuclease which is a crucial component of NER. In silico analysis shows that hydra XPF amino acid sequence is very similar to its counterparts from other animals, especially vertebrates, and shows all features essential for its function. By in situ hybridization, we show that hydra XPF is expressed prominently in the multipotent stem cell niche in the central region of the body column. Ectoderm of the diploblastic hydra was shown to express higher levels of XPF as compared to the endoderm by semi-quantitative RT-PCR. Semi-quantitative RT-PCR analysis also demonstrated that interstitial cells, a multipotent and rapidly cycling stem cell lineage of hydra, express higher levels of XPF mRNA than other cell types. Our data show that XPF and by extension, the NER pathway is highly conserved during evolution. The prominent expression of an NER gene in interstitial cells may have implications for the lack of senescence in hydra.

  8. RPA and XPA interaction with DNA structures mimicking intermediates of the late stages in nucleotide excision repair

    PubMed Central

    Maltseva, Ekaterina A.

    2018-01-01

    Replication protein A (RPA) and the xeroderma pigmentosum group A (XPA) protein are indispensable for both pathways of nucleotide excision repair (NER). Here we analyze the interaction of RPA and XPA with DNA containing a flap and different size gaps that imitate intermediates of the late NER stages. Using gel mobility shift assays, we found that RPA affinity for DNA decreased when DNA contained both extended gap and similar sized flap in comparison with gapped-DNA structure. Moreover, crosslinking experiments with the flap-gap DNA revealed that RPA interacts mainly with the ssDNA platform within the long gap and contacts flap in DNA with a short gap. XPA exhibits higher affinity for bubble-DNA structures than to flap-gap-containing DNA. Protein titration analysis showed that formation of the RPA-XPA-DNA ternary complex depends on the protein concentration ratio and these proteins can function as independent players or in tandem. Using fluorescently-labelled RPA, direct interaction of this protein with XPA was detected and characterized quantitatively. The data obtained allow us to suggest that XPA can be involved in the post-incision NER stages via its interaction with RPA. PMID:29320546

  9. RPA and XPA interaction with DNA structures mimicking intermediates of the late stages in nucleotide excision repair.

    PubMed

    Krasikova, Yuliya S; Rechkunova, Nadejda I; Maltseva, Ekaterina A; Lavrik, Olga I

    2018-01-01

    Replication protein A (RPA) and the xeroderma pigmentosum group A (XPA) protein are indispensable for both pathways of nucleotide excision repair (NER). Here we analyze the interaction of RPA and XPA with DNA containing a flap and different size gaps that imitate intermediates of the late NER stages. Using gel mobility shift assays, we found that RPA affinity for DNA decreased when DNA contained both extended gap and similar sized flap in comparison with gapped-DNA structure. Moreover, crosslinking experiments with the flap-gap DNA revealed that RPA interacts mainly with the ssDNA platform within the long gap and contacts flap in DNA with a short gap. XPA exhibits higher affinity for bubble-DNA structures than to flap-gap-containing DNA. Protein titration analysis showed that formation of the RPA-XPA-DNA ternary complex depends on the protein concentration ratio and these proteins can function as independent players or in tandem. Using fluorescently-labelled RPA, direct interaction of this protein with XPA was detected and characterized quantitatively. The data obtained allow us to suggest that XPA can be involved in the post-incision NER stages via its interaction with RPA.

  10. Polymorphisms in nucleotide excision repair genes and risk of primary prostate cancer in Chinese Han populations.

    PubMed

    Wang, Mengyun; Li, Qiaoxin; Gu, Chengyuan; Zhu, Yao; Yang, Yajun; Wang, Jiucun; Jin, Li; He, Jing; Ye, Dingwei; Wei, Qingyi

    2017-04-11

    Genetic variants of nucleotide excision repair (NER) genes have been extensively investigated for their roles in the development of prostate cancer (PCa); however, the published results have been inconsistent. In a hospital-based case-control study of 1,004 PCa cases and 1,055 cancer-free controls, we genotyped eight potentially functional single nucleotide polymorphisms (SNPs) of NER genes (i.e., XPC, rs2228001 T>G and rs1870134 G>C; XPD, rs13181 T>G and rs238406 G>T; XPG, rs1047768 T>C, rs751402 C>T, and rs17655 G>C; and XPF, rs2276464 G>C) and assessed their associations with risk of PCa by using logistic regression analysis. Among these eight SNPs investigated, only XPC rs1870134 CG/CC variant genotypes were associated with a decreased risk of prostate cancer under a dominant genetic model (adjusted odds ratio [OR] = 0.77, 95% confidence interval [CI] = 0.64-1.91, P = 0.003). Phenotype-genotype analysis also suggested that the XPC rs1870134 CG/CC variant genotypes were associated with significantly decreased expression levels of XPC mRNA in a mix population of different ethnicities. These findings suggested that XPC SNPs may contribute to risk of PCa in Eastern Chinese men.

  11. Quantum mechanics/molecular mechanics study on the oxygen binding and substrate hydroxylation step in AlkB repair enzymes.

    PubMed

    Quesne, Matthew G; Latifi, Reza; Gonzalez-Ovalle, Luis E; Kumar, Devesh; de Visser, Sam P

    2014-01-07

    AlkB repair enzymes are important nonheme iron enzymes that catalyse the demethylation of alkylated DNA bases in humans, which is a vital reaction in the body that heals externally damaged DNA bases. Its mechanism is currently controversial and in order to resolve the catalytic mechanism of these enzymes, a quantum mechanics/molecular mechanics (QM/MM) study was performed on the demethylation of the N(1) -methyladenine fragment by AlkB repair enzymes. Firstly, the initial modelling identified the oxygen binding site of the enzyme. Secondly, the oxygen activation mechanism was investigated and a novel pathway was found, whereby the catalytically active iron(IV)-oxo intermediate in the catalytic cycle undergoes an initial isomerisation assisted by an Arg residue in the substrate binding pocket, which then brings the oxo group in close contact with the methyl group of the alkylated DNA base. This enables a subsequent rate-determining hydrogen-atom abstraction on competitive σ- and π-pathways on a quintet spin-state surface. These findings give evidence of different locations of the oxygen and substrate binding channels in the enzyme and the origin of the separation of the oxygen-bound intermediates in the catalytic cycle from substrate. Our studies are compared with small model complexes and the effect of protein and environment on the kinetics and mechanism is explained. © 2013 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  12. DNA repair targeted therapy: the past or future of cancer treatment?

    PubMed Central

    Gavande, Navnath S.; VanderVere-Carozza, Pamela S.; Hinshaw, Hilary D.; Jalal, Shadia I.; Sears, Catherine R.; Pawelczak, Katherine S.; Turchi, John J.

    2016-01-01

    The repair of DNA damage is a complex process that relies on particular pathways to remedy specific types of damage to DNA. The range of insults to DNA includes small, modest changes in structure including mismatched bases and simple methylation events to oxidized bases, intra- and interstrand DNA crosslinks, DNA double strand breaks and protein-DNA adducts. Pathways required for the repair of these lesions include mismatch repair, base excision repair, nucleotide excision repair, and the homology directed repair/Fanconi anemia pathway. Each of these pathways contributes to genetic stability, and mutations in genes encoding proteins involved in these pathways have been demonstrated to promote genetic instability and cancer. In fact, it has been suggested all cancers display defects in DNA repair. It has also been demonstrated that the ability of cancer cells to repair therapeutically induced DNA damage impacts therapeutic efficacy. This has led to targeting DNA repair pathways and proteins to develop anti-cancer agents that will increase sensitivity to traditional chemotherapeutics. While initial studies languished and were plagued by a lack of specificity and a defined mechanism of action, more recent approaches to exploit synthetic lethal interaction and develop high affinity chemical inhibitors have proven considerably more effective. In this review we will highlight recent advances and discuss previous failures in targeting DNA repair to pave the way for future DNA repair targeted agents and their use in cancer therapy. PMID:26896565

  13. BRCA1 is Required for Post-replication Repair After UV-induced DNA Damage

    PubMed Central

    Pathania, Shailja; Nguyen, Jenna; Hill, Sarah J.; Scully, Ralph; Feunteun, Jean; Livingston, David M.

    2011-01-01

    BRCA1 contributes to the response to UV irradiation. Utilizing its BRCT motifs, it is recruited during S/G2 to UV-damaged sites in a DNA replication-dependent, but nucleotide excision repair- independent manner. More specifically, at UV- stalled replication forks, it promotes photoproduct excision, suppression of translesion synthesis, and the localization and activation of replication factor C complex (RFC) subunits. The last function, in turn, triggers post-UV checkpoint activation and post- replicative repair. These BRCA1 functions differ from those required for DSBR. PMID:21963239

  14. Arthroscopic excision of heterotopic calcification in a chronic rectus femoris origin injury: a case report

    PubMed Central

    El-Husseiny, M; Sukeik, M; Haddad, FS

    2012-01-01

    Rectus femoris origin injuries in adult athletes are uncommon. In the acute phase, conservative treatment seems to have a favourable outcome, with surgical repair reserved for unsuccessful cases only. However, a group of patients may develop chronic pain and disability after recovery from the acute phase due to heterotopic calcification occurring at the site of injury. Open and arthroscopic excision of such calcifications has been described in the literature although arthroscopic excision of large calcified lesions in the rectus femoris has not been reported previously. A relevant case is presented and discussed. PMID:22507710

  15. BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1.

    PubMed

    Yang, Jenq-Lin; Lin, Yu-Ting; Chuang, Pei-Chin; Bohr, Vilhelm A; Mattson, Mark P

    2014-03-01

    Brain-derived neurotrophic factor (BDNF) promotes the survival and growth of neurons during brain development and mediates activity-dependent synaptic plasticity and associated learning and memory in the adult. BDNF levels are reduced in brain regions affected in Alzheimer's, Parkinson's, and Huntington's diseases, and elevation of BDNF levels can ameliorate neuronal dysfunction and degeneration in experimental models of these diseases. Because neurons accumulate oxidative lesions in their DNA during normal activity and in neurodegenerative disorders, we determined whether and how BDNF affects the ability of neurons to cope with oxidative DNA damage. We found that BDNF protects cerebral cortical neurons against oxidative DNA damage-induced death by a mechanism involving enhanced DNA repair. BDNF stimulates DNA repair by activating cyclic AMP response element-binding protein (CREB), which, in turn, induces the expression of apurinic/apyrimidinic endonuclease 1 (APE1), a key enzyme in the base excision DNA repair pathway. Suppression of either APE1 or TrkB by RNA interference abolishes the ability of BDNF to protect neurons against oxidized DNA damage-induced death. The ability of BDNF to activate CREB and upregulate APE1 expression is abolished by shRNA of TrkB as well as inhibitors of TrkB, PI3 kinase, and Akt kinase. Voluntary running wheel exercise significantly increases levels of BDNF, activates CREB, and upregulates APE1 in the cerebral cortex and hippocampus of mice, suggesting a novel mechanism whereby exercise may protect neurons from oxidative DNA damage. Our findings reveal a previously unknown ability of BDNF to enhance DNA repair by inducing the expression of the DNA repair enzyme APE1.

  16. DNA bending and a flip-out mechanism for base excision by the helix–hairpin–helix DNA glycosylase, Escherichia coli AlkA

    PubMed Central

    Hollis, Thomas; Ichikawa, Yoshitaka; Ellenberger, Tom

    2000-01-01

    The Escherichia coli AlkA protein is a base excision repair glycosylase that removes a variety of alkylated bases from DNA. The 2.5 Å crystal structure of AlkA complexed to DNA shows a large distortion in the bound DNA. The enzyme flips a 1–azaribose abasic nucleotide out of DNA and induces a 66° bend in the DNA with a marked widening of the minor groove. The position of the 1–azaribose in the enzyme active site suggests an SN1-type mechanism for the glycosylase reaction, in which the essential catalytic Asp238 provides direct assistance for base removal. Catalytic selectivity might result from the enhanced stacking of positively charged, alkylated bases against the aromatic side chain of Trp272 in conjunction with the relative ease of cleaving the weakened glycosylic bond of these modified nucleotides. The structure of the AlkA–DNA complex offers the first glimpse of a helix–hairpin–helix (HhH) glycosylase complexed to DNA. Modeling studies suggest that other HhH glycosylases can bind to DNA in a similar manner. PMID:10675345

  17. Nucleotide Excision Repair Lesion-Recognition Protein Rad4 Captures a Pre-Flipped Partner Base in a Benzo[a]pyrene-Derived DNA Lesion: How Structure Impacts the Binding Pathway.

    PubMed

    Mu, Hong; Geacintov, Nicholas E; Min, Jung-Hyun; Zhang, Yingkai; Broyde, Suse

    2017-06-19

    The xeroderma pigmentosum C protein complex (XPC) recognizes a variety of environmentally induced DNA lesions and is the key in initiating their repair by the nucleotide excision repair (NER) pathway. When bound to a lesion, XPC flips two nucleotide pairs that include the lesion out of the DNA duplex, yielding a productively bound complex that can lead to successful lesion excision. Interestingly, the efficiencies of NER vary greatly among different lesions, influencing their toxicity and mutagenicity in cells. Though differences in XPC binding may influence NER efficiency, it is not understood whether XPC utilizes different mechanisms to achieve productive binding with different lesions. Here, we investigated the well-repaired 10R-(+)-cis-anti-benzo[a]pyrene-N 2 -dG (cis-B[a]P-dG) DNA adduct in a duplex containing normal partner C opposite the lesion. This adduct is derived from the environmental pro-carcinogen benzo[a]pyrene and is likely to be encountered by NER in the cell. We have extensively investigated its binding to the yeast XPC orthologue, Rad4, using umbrella sampling with restrained molecular dynamics simulations and free energy calculations. The NMR solution structure of this lesion in duplex DNA has shown that the dC complementary to the adducted dG is flipped out of the DNA duplex in the absence of XPC. However, it is not known whether the "pre-flipped" base would play a role in its recognition by XPC. Our results show that Rad4 first captures the displaced dC, which is followed by a tightly coupled lesion-extruding pathway for productive binding. This binding path differs significantly from the one deduced for the small cis-syn cyclobutane pyrimidine dimer lesion opposite mismatched thymines [ Mu , H. , ( 2015 ) Biochemistry , 54 ( 34 ), 5263 - 7 ]. The possibility of multiple paths that lead to productive binding to XPC is consistent with the versatile lesion recognition by XPC that is required for successful NER.

  18. Nucleotide Excision Repair Lesion-Recognition Protein Rad4 Captures a Pre-Flipped Partner Base in a Benzo[a]pyrene-Derived DNA Lesion: How Structure Impacts the Binding Pathway

    PubMed Central

    2017-01-01

    The xeroderma pigmentosum C protein complex (XPC) recognizes a variety of environmentally induced DNA lesions and is the key in initiating their repair by the nucleotide excision repair (NER) pathway. When bound to a lesion, XPC flips two nucleotide pairs that include the lesion out of the DNA duplex, yielding a productively bound complex that can lead to successful lesion excision. Interestingly, the efficiencies of NER vary greatly among different lesions, influencing their toxicity and mutagenicity in cells. Though differences in XPC binding may influence NER efficiency, it is not understood whether XPC utilizes different mechanisms to achieve productive binding with different lesions. Here, we investigated the well-repaired 10R-(+)-cis-anti-benzo[a]pyrene-N2-dG (cis-B[a]P-dG) DNA adduct in a duplex containing normal partner C opposite the lesion. This adduct is derived from the environmental pro-carcinogen benzo[a]pyrene and is likely to be encountered by NER in the cell. We have extensively investigated its binding to the yeast XPC orthologue, Rad4, using umbrella sampling with restrained molecular dynamics simulations and free energy calculations. The NMR solution structure of this lesion in duplex DNA has shown that the dC complementary to the adducted dG is flipped out of the DNA duplex in the absence of XPC. However, it is not known whether the “pre-flipped” base would play a role in its recognition by XPC. Our results show that Rad4 first captures the displaced dC, which is followed by a tightly coupled lesion-extruding pathway for productive binding. This binding path differs significantly from the one deduced for the small cis-syn cyclobutane pyrimidine dimer lesion opposite mismatched thymines [MuH., (2015) Biochemistry, 54(34), 5263−726270861]. The possibility of multiple paths that lead to productive binding to XPC is consistent with the versatile lesion recognition by XPC that is required for successful NER. PMID:28460163

  19. The 2015 Nobel Prize in Chemistry The Discovery of Essential Mechanisms that Repair DNA Damage.

    PubMed

    Lindahl, Tomas; Modrich, Paul; Sancar, Aziz

    2016-01-01

    The Royal Swedish Academy awarded the Nobel Prize in Chemistry for 2015 to Tomas Lindahl, Paul Modrich and Aziz Sancar for their discoveries in fundamental mechanisms of DNA repair. This pioneering research described three different essential pathways that correct DNA damage, safeguard the integrity of the genetic code to ensure its accurate replication through generations, and allow proper cell division. Working independently of each other, Tomas Lindahl, Paul Modrich and Aziz Sancar delineated the mechanisms of base excision repair, mismatch repair and nucleotide excision repair, respectively. These breakthroughs challenged and dismissed the early view that the DNA molecule was very stable, paving the way for the discovery of human hereditary diseases associated with distinct DNA repair deficiencies and a susceptibility to cancer. It also brought a deeper understanding of cancer as well as neurodegenerative or neurological diseases, and let to novel strategies to treat cancer.

  20. Formation and Repair of Mismatches Containing Ribonucleotides and Oxidized Bases at Repeated DNA Sequences.

    PubMed

    Cilli, Piera; Minoprio, Anna; Bossa, Cecilia; Bignami, Margherita; Mazzei, Filomena

    2015-10-23

    The cellular pool of ribonucleotide triphosphates (rNTPs) is higher than that of deoxyribonucleotide triphosphates. To ensure genome stability, DNA polymerases must discriminate against rNTPs and incorporated ribonucleotides must be removed by ribonucleotide excision repair (RER). We investigated DNA polymerase β (POL β) capacity to incorporate ribonucleotides into trinucleotide repeated DNA sequences and the efficiency of base excision repair (BER) and RER enzymes (OGG1, MUTYH, and RNase H2) when presented with an incorrect sugar and an oxidized base. POL β incorporated rAMP and rCMP opposite 7,8-dihydro-8-oxoguanine (8-oxodG) and extended both mispairs. In addition, POL β was able to insert and elongate an oxidized rGMP when paired with dA. We show that RNase H2 always preserves the capacity to remove a single ribonucleotide when paired to an oxidized base or to incise an oxidized ribonucleotide in a DNA duplex. In contrast, BER activity is affected by the presence of a ribonucleotide opposite an 8-oxodG. In particular, MUTYH activity on 8-oxodG:rA mispairs is fully inhibited, although its binding capacity is retained. This results in the reduction of RNase H2 incision capability of this substrate. Thus complex mispairs formed by an oxidized base and a ribonucleotide can compromise BER and RER in repeated sequences. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Nucleotide excision repair-dependent DNA double-strand break formation and ATM signaling activation in mammalian quiescent cells.

    PubMed

    Wakasugi, Mitsuo; Sasaki, Takuma; Matsumoto, Megumi; Nagaoka, Miyuki; Inoue, Keiko; Inobe, Manabu; Horibata, Katsuyoshi; Tanaka, Kiyoji; Matsunaga, Tsukasa

    2014-10-10

    Histone H2A variant H2AX is phosphorylated at Ser(139) in response to DNA double-strand break (DSB) and single-stranded DNA (ssDNA) formation. UV light dominantly induces pyrimidine photodimers, which are removed from the mammalian genome by nucleotide excision repair (NER). We previously reported that in quiescent G0 phase cells, UV induces ATR-mediated H2AX phosphorylation plausibly caused by persistent ssDNA gap intermediates during NER. In this study, we have found that DSB is also generated following UV irradiation in an NER-dependent manner and contributes to an earlier fraction of UV-induced H2AX phosphorylation. The NER-dependent DSB formation activates ATM kinase and triggers the accumulation of its downstream factors, MRE11, NBS1, and MDC1, at UV-damaged sites. Importantly, ATM-deficient cells exhibited enhanced UV sensitivity under quiescent conditions compared with asynchronously growing conditions. Finally, we show that the NER-dependent H2AX phosphorylation is also observed in murine peripheral T lymphocytes, typical nonproliferating quiescent cells in vivo. These results suggest that in vivo quiescent cells may suffer from NER-mediated secondary DNA damage including ssDNA and DSB. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. [Ubiquitin-proteasome system and sperm DNA repair: An update].

    PubMed

    Zhang, Guo-Wei; Cai, Hong-Cai; Shang, Xue-Jun

    2016-09-01

    The ubiquitin-proteasome system (UPS) is a proteasome system widely present in the human body, which is composed of ubiquitin (Ub), ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2), ubiquitin protein ligases (E3), 26S proteasome, and deubiquitinating enzymes (DUBs) and involved in cell cycle regulation, immune response, signal transduction, DNA repair as well as protein degradation. Sperm DNA is vulnerable to interference or damage in the progression of chromosome association and homologous recombination. Recent studies show that UPS participates in DNA repair in spermatogenesis by modulating DNA repair enzymes via ubiquitination, assisting in the identification of DNA damage sites, raising damage repair-related proteins, initiating the DNA repair pathway, maintaining chromosome stability, and ensuring the normal process of spermatogenesis.

  3. Results of surgical excision of urethral prolapse in symptomatic patients.

    PubMed

    Hall, Mary E; Oyesanya, Tola; Cameron, Anne P

    2017-11-01

    Here, we present the clinical presentation and surgical outcomes of women with symptomatic urethral prolapse presenting to our institution over 20 years, and seek to provide treatment recommendations for management of symptomatic urethral prolapse and caruncle. A retrospective review of medical records from female patients who underwent surgery for symptomatic urethral prolapse from June 1995 to August 2015 was performed. Surgical technique consisted of a four-quadrant excisional approach for repair of urethral prolapse. A total of 26 patients were identified with a mean age of 38.8 years (range 3-81). The most common presentations were vaginal bleeding, hematuria, pain, and dysuria. All patients underwent surgical excision of urethral prolapse via a standard approach. Follow-up data was available in 24 patients. Six patients experienced temporary postoperative bleeding, and one patient required placement of a Foley catheter for tamponade. One patient experienced temporary postoperative urinary retention requiring Foley catheter placement. Three patients had visible recurrence of urethral prolapse, for which one later underwent re-excision. Surgical excision of urethral prolapse is a reasonable treatment option in patients who have tried conservative management without relief, as well as in those who present with severe symptoms. Possible complications following excision include postoperative bleeding and recurrence, and patients must be counseled accordingly. In this work, we propose a treatment algorithm for symptomatic urethral prolapse. © 2017 Wiley Periodicals, Inc.

  4. Repair of Clustered Damage and DNA Polymerase Iota.

    PubMed

    Belousova, E A; Lavrik, O I

    2015-08-01

    Multiple DNA lesions occurring within one or two turns of the DNA helix known as clustered damage are a source of double-stranded DNA breaks, which represent a serious threat to the cells. Repair of clustered lesions is accomplished in several steps. If a clustered lesion contains oxidized bases, an individual DNA lesion is repaired by the base excision repair (BER) mechanism involving a specialized DNA polymerase after excising DNA damage. Here, we investigated DNA synthesis catalyzed by DNA polymerase iota using damaged DNA templates. Two types of DNA substrates were used as model DNAs: partial DNA duplexes containing breaks of different length, and DNA duplexes containing 5-formyluracil (5-foU) and uracil as a precursor of apurinic/apyrimidinic sites (AP) in opposite DNA strands. For the first time, we showed that DNA polymerase iota is able to catalyze DNA synthesis using partial DNA duplexes having breaks of different length as substrates. In addition, we found that DNA polymerase iota could catalyze DNA synthesis during repair of clustered damage via the BER system by using both undamaged and 5-foU-containing templates. We found that hPCNA (human proliferating cell nuclear antigen) increased efficacy of DNA synthesis catalyzed by DNA polymerase iota.

  5. Esthetic management of mucogingival defects after excision of epulis using laterally positioned flaps.

    PubMed

    Xie, Yu-feng; Shu, Rong; Qian, Jie-lei; Lin, Zhi-kai; Romanos, Georgios E

    2015-03-01

    Epulis is a benign hyperplasia of the oral soft tissues. Surgical excision always extends to the periosteum and includes scaling of adjacent teeth to remove any possible irritants. The esthetics of the soft tissues may be compromised, however. This article studies three cases in which an immediate laterally positioned flap (LRF) was used to repair mucogingival defects after epulis biopsies. After 24 months, the color and shape of the surgical areas were healthy and stable, nearly complete root coverage was evident, and no lesions reoccurred. For repairing gingival defects after biopsy, LRF appears to be minimally traumatic while promoting esthetic outcomes.

  6. Mitochondrial base excision repair in mouse synaptosomes during normal aging and in a model of Alzheimer’s disease

    PubMed Central

    Gredilla, Ricardo; Weissman, Lior; Yang, Jenq-Lin; Bohr, Vilhelm A.; Stevnsner, Tinna

    2010-01-01

    Brain aging is associated with synaptic decline and cognitive impairment. Increased levels of oxidative DNA base damage and accumulation of mitochondrial DNA (mtDNA) mutations or deletions lead to mitochondrial dysfunction, playing an important role in the aging process and the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease (AD). In mitochondria, base excision repair (BER) is the main DNA repair pathway for base modifications such as deamination and oxidation, and constitutes an important mechanism to avoid accumulation of mtDNA mutations. Synaptic function is highly dependent on mitochondria, and in the current study we have investigated BER in synaptosomes of mouse brain during normal aging and in an AD model. Synaptosomes are isolated synapses in membranous structures produced by subcellular fractionation of brain tissue. They include the whole presynaptic terminal as well as portions of the postsynaptic terminal. Synaptosomes contain the molecular machinery necessary for uptake, storage, and release of neurotransmitters, including synaptic vesicles and mitochondria. BER activities were measured in synaptosomal fractions from young and old mice and from pre-symptomatic and symptomatic AD mice harboring mutated APP, Tau and PS1 (3xTgAD). During normal aging, a reduction in the BER capacity was observed in the synaptosomal fraction, which was associated with a decrease in the level of BER proteins. However, we did not observe changes between the synaptosomal BER activities of pre-symptomatic and symptomatic AD mice. Our findings suggest that the age-related reduction in BER capacity in the synaptosomal fraction might contribute to mitochondrial and synaptic dysfunction during aging. The development of AD-like pathology in the 3xTgAD mouse model was, however, not associated with deficiencies of the BER mechanisms in the synaptosomal fraction when the whole brain was analyzed. PMID:20708822

  7. Study of interaction of antimutagenic 1,4-dihydropyridine AV-153-Na with DNA-damaging molecules and its impact on DNA repair activity.

    PubMed

    Leonova, Elina; Rostoka, Evita; Sauvaigo, Sylvie; Baumane, Larisa; Selga, Turs; Sjakste, Nikolajs

    2018-01-01

    1,4-dihydropyridines (1,4-DHP) possesses important biochemical and pharmacological properties, including antioxidant and antimutagenic activities. It was shown that the antimutagenic 1,4-dihydropyridine AV-153-Na interacts with DNA. The aim of the current study was to test the capability of the compound to scavenge peroxynitrite and hydroxyl radical, to test intracellular distribution of the compound, and to assess the ability of the compound to modify the activity of DNA repair enzymes and to protect the DNA in living cells against peroxynitrite-induced damage. Peroxynitrite decomposition was assayed by UV spectroscopy, hydroxyl radical scavenging-by EPR spectroscopy. DNA breakage was determined by the "comet method", activity of DNA repair enzymes-using Glyco-SPOT and ExSy-SPOT assays. Intracellular distribution of the compound was studied by laser confocal scanning fluorescence microscopy. Fluorescence spectroscopy titration and circular dichroism spectroscopy were used to study interactions of the compound with human serum albumin. Some ability to scavenge hydroxyl radical by AV-153-Na was detected by the EPR method, but it turned out to be incapable of reacting chemically with peroxynitrite. However, AV-153-Na effectively decreased DNA damage produced by peroxynitrite in cultured HeLa cells. The Glyco-SPOT test essentially revealed an inhibition by AV-153-Na of the enzymes involved thymine glycol repair. Results with ExSy-SPOT chip indicate that AV-153-Na significantly stimulates excision/synthesis repair of 8-oxoguanine (8-oxoG), abasic sites (AP sites) and alkylated bases. Laser confocal scanning fluorescence microscopy demonstrated that within the cells AV-153-Na was found mostly in the cytoplasm; however, a stain in nucleolus was also detected. Binding to cytoplasmic structures might occur due to high affinity of the compound to proteins revealed by spectroscopical methods. Activation of DNA repair enzymes after binding to DNA appears to be the basis for

  8. Decreased DNA repair gene expression among individuals exposed to arsenic in United States drinking water.

    PubMed

    Andrew, Angeline S; Karagas, Margaret R; Hamilton, Joshua W

    2003-04-10

    Arsenic is well established as a human carcinogen, but its precise mechanism of action remains unknown. Arsenic does not directly damage DNA, but may act as a carcinogen through inhibition of DNA repair mechanisms, leading indirectly to increased mutations from other DNA damaging agents. The molecular mechanism underlying arsenic inhibition of nucleotide excision repair after UV irradiation (Hartwig et al., Carcinogenesis 1997;18:399-405) is unknown, but could be due to decreased expression of critical genes involved in nucleotide excision repair of damaged DNA. This hypothesis was tested by analyzing expression of repair genes and arsenic exposure in a subset of 16 individuals enrolled in a population based case-control study investigating arsenic exposure and cancer risk in New Hampshire. Toenail arsenic levels were inversely correlated with expression of critical members of the nucleotide excision repair complex, ERCC1 (r(2) = 0.82, p < 0.0001), XPF (r(2) = 0.56, p < 0.002), and XPB (r(2) = 0.75, p < 0.0001). The internal dose marker, toenail arsenic level, was more strongly associated with changes in expression of these genes than drinking water arsenic concentration. Our findings, based on human exposure to arsenic in a US population, show an association between biomarkers of arsenic exposure and expression of DNA repair genes. Although our findings need verification in a larger study group, they are consistent with the hypothesis that inhibition of DNA repair capacity is a potential mechanism for the co-carcinogenic activity of arsenic. Copyright 2003 Wiley-Liss, Inc.

  9. The C-terminal region of Escherichia coli UvrC contributes to the flexibility of the UvrABC nucleotide excision repair system

    PubMed Central

    Verhoeven, Esther E. A.; van Kesteren, Marian; Turner, John J.; van der Marel, Gijs A.; van Boom, Jacques H.; Moolenaar, Geri F.; Goosen, Nora

    2002-01-01

    Nucleotide excision repair in Escherichia coli involves formation of the UvrB–DNA complex and subsequent DNA incisions on either site of the damage by UvrC. In this paper, we studied the incision of substrates with different damages in varying sequence contexts. We show that there is not always a correlation between the incision efficiency and the stability of the UvrB–DNA complex. Both stable and unstable UvrB–DNA complexes can be efficiently incised. However some lesions that give rise to stable UvrB–DNA complexes do result in a very low incision. We present evidence that this poor incision is due to sterical hindrance of the damage itself. In its C-terminal region UvrC contains two helix–hairpin–helix (HhH) motifs. Mutational analysis shows that these motifs constitute one functional unit, probably folded as one structural unit; the (HhH)2 domain. This (HhH)2 domain was previously shown to be important for the 5′ incision on a substrate containing a (cis-Pt)·GG adduct, but not for 3′ incision. Here we show that, mainly depending on the sequence context of the lesion, the (HhH)2 domain can be important for 3′ and/or 5′ incision. We propose that the (HhH)2 domain stabilises specific DNA structures required for the two incisions, thereby contributing to the flexibility of the UvrABC repair system. PMID:12034838

  10. Canonical DNA Repair Pathways Influence R-Loop-Driven Genome Instability.

    PubMed

    Stirling, Peter C; Hieter, Philip

    2017-10-27

    DNA repair defects create cancer predisposition in humans by fostering a higher rate of mutations. While DNA repair is quite well characterized, recent studies have identified previously unrecognized relationships between DNA repair and R-loop-mediated genome instability. R-loops are three-stranded nucleic acid structures in which RNA binds to genomic DNA to displace a loop of single-stranded DNA. Mutations in homologous recombination, nucleotide excision repair, crosslink repair, and DNA damage checkpoints have all now been linked to formation and function of transcription-coupled R-loops. This perspective will summarize recent literature linking DNA repair to R-loop-mediated genomic instability and discuss how R-loops may contribute to mutagenesis in DNA-repair-deficient cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Influence of oxidized purine processing on strand directionality of mismatch repair.

    PubMed

    Repmann, Simone; Olivera-Harris, Maite; Jiricny, Josef

    2015-04-17

    Replicative DNA polymerases are high fidelity enzymes that misincorporate nucleotides into nascent DNA with a frequency lower than [1/10(5)], and this precision is improved to about [1/10(7)] by their proofreading activity. Because this fidelity is insufficient to replicate most genomes without error, nature evolved postreplicative mismatch repair (MMR), which improves the fidelity of DNA replication by up to 3 orders of magnitude through correcting biosynthetic errors that escaped proofreading. MMR must be able to recognize non-Watson-Crick base pairs and excise the misincorporated nucleotides from the nascent DNA strand, which carries by definition the erroneous genetic information. In eukaryotes, MMR is believed to be directed to the nascent strand by preexisting discontinuities such as gaps between Okazaki fragments in the lagging strand or breaks in the leading strand generated by the mismatch-activated endonuclease of the MutL homologs PMS1 in yeast and PMS2 in vertebrates. We recently demonstrated that the eukaryotic MMR machinery can make use also of strand breaks arising during excision of uracils or ribonucleotides from DNA. We now show that intermediates of MutY homolog-dependent excision of adenines mispaired with 8-oxoguanine (G(O)) also act as MMR initiation sites in extracts of human cells or Xenopus laevis eggs. Unexpectedly, G(O)/C pairs were not processed in these extracts and failed to affect MMR directionality, but extracts supplemented with exogenous 8-oxoguanine DNA glycosylase (OGG1) did so. Because OGG1-mediated excision of G(O) might misdirect MMR to the template strand, our findings suggest that OGG1 activity might be inhibited during MMR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Functional Polymorphisms of Base Excision Repair Genes XRCC1 and APEX1 Predict Risk of Radiation Pneumonitis in Patients With Non-Small Cell Lung Cancer Treated With Definitive Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin Ming; Liao Zhongxing; Liu Zhensheng

    2011-11-01

    Purpose: To explore whether functional single nucleotide polymorphisms (SNPs) of base-excision repair genes are predictors of radiation treatment-related pneumonitis (RP), we investigated associations between functional SNPs of ADPRT, APEX1, and XRCC1 and RP development. Methods and Materials: We genotyped SNPs of ADPRT (rs1136410 [V762A]), XRCC1 (rs1799782 [R194W], rs25489 [R280H], and rs25487 [Q399R]), and APEX1 (rs1130409 [D148E]) in 165 patients with non-small cell lung cancer (NSCLC) who received definitive chemoradiation therapy. Results were assessed by both Logistic and Cox regression models for RP risk. Kaplan-Meier curves were generated for the cumulative RP probability by the genotypes. Results: We found that SNPsmore » of XRCC1 Q399R and APEX1 D148E each had a significant effect on the development of Grade {>=}2 RP (XRCC1: AA vs. GG, adjusted hazard ratio [HR] = 0.48, 95% confidence interval [CI], 0.24-0.97; APEX1: GG vs. TT, adjusted HR = 3.61, 95% CI, 1.64-7.93) in an allele-dose response manner (Trend tests: p = 0.040 and 0.001, respectively). The number of the combined protective XRCC1 A and APEX1 T alleles (from 0 to 4) also showed a significant trend of predicting RP risk (p = 0.001). Conclusions: SNPs of the base-excision repair genes may be biomarkers for susceptibility to RP. Larger prospective studies are needed to validate our findings.« less

  13. Dimethylarsinic acid in drinking water changed the morphology of urinary bladder but not the expression of DNA repair genes of bladder transitional epithelium in F344 rats.

    PubMed

    Wang, Amy; Wolf, Douglas C; Sen, Banalata; Knapp, Geremy W; Holladay, Steven D; Huckle, William R; Caceci, Thomas; Robertson, John L

    2009-06-01

    Inorganic arsenic increases urinary bladder transitional cell carcinoma in humans. In F344 rats, dimethylarsinic acid (DMA[V]) increases transitional cell carcinoma. Arsenic-induced inhibition of DNA repair has been reported in cultured cell lines and in lymphocytes of arsenic-exposed humans, but it has not been studied in urinary bladder. Should inhibition of DNA damage repair in transitional epithelium occur, it may contribute to carcinogenesis or cocarcinogenesis. We investigated morphology and expression of DNA repair genes in F344 rat transitional cells following up to 100 ppm DMA(V) in drinking water for four weeks. Mitochondria were very sensitive to DMA(V), and swollen mitochondria appeared to be the main source of vacuoles in the transitional epithelium. Real-time reverse transcriptase polymerase chain reaction (Real-Time RT PCR) showed the mRNA levels of tested DNA repair genes, ataxia telangectasia mutant (ATM), X-ray repair cross-complementing group 1 (XRCC1), excision repair cross-complementing group 3/xeroderma pigmentosum B (ERCC3/XPB), and DNA polymerase beta (Polbeta), were not altered by DMA(V). These data suggested that either DMA(V) does not affect DNA repair in the bladder or DMA(V) affects DNA repair without affecting baseline mRNA levels of repair genes. The possibility remains that DMA(V) may lower damage-induced increases in repair gene expression or cause post-translational modification of repair enzymes.

  14. Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1−/− mice

    PubMed Central

    Prasher, Joanna M; Lalai, Astrid S; Heijmans-Antonissen, Claudia; Ploemacher, Robert E; Hoeijmakers, Jan H J; Touw, Ivo P; Niedernhofer, Laura J

    2005-01-01

    The ERCC1-XPF heterodimer is a structure-specific endonuclease involved in both nucleotide excision repair and interstrand crosslink repair. Mice carrying a genetic defect in Ercc1 display symptoms suggestive of a progressive, segmental progeria, indicating that disruption of one or both of these DNA damage repair pathways accelerates aging. In the hematopoietic system, there are defined age-associated changes for which the cause is unknown. To determine if DNA repair is critical to prolonged hematopoietic function, hematopoiesis in Ercc1−/− mice was compared to that in young and old wild-type mice. Ercc1−/− mice (3-week-old) exhibited multilineage cytopenia and fatty replacement of bone marrow, similar to old wild-type mice. In addition, the proliferative reserves of hematopoietic progenitors and stress erythropoiesis were significantly reduced in Ercc1−/− mice compared to age-matched controls. These features were not seen in nucleotide excision repair-deficient Xpa−/− mice, but are characteristic of Fanconi anemia, a human cancer syndrome caused by defects in interstrand crosslink repair. These data support the hypothesis that spontaneous interstrand crosslink damage contributes to the functional decline of the hematopoietic system associated with aging. PMID:15692571

  15. Transcription-Coupled Repair and Complex Biology.

    PubMed

    Portman, James R; Strick, Terence R

    2018-05-04

    All active living organisms mitigate DNA damage via DNA repair, and the so-called nucleotide excision repair pathway (NER) represents a functionally major part of the cell's DNA repair repertoire [1]. In this pathway, the damaged strand of DNA is incised and removed before being resynthesized. This form of DNA repair requires a multitude of proteins working in a complex choreography. Repair thus typically involves detection of a DNA lesion; validation of that detection event; search for an appropriate incision site and subsequent DNA incision; DNA unwinding/removal; and DNA resynthesis and religation. These activities are ultimately the result of molecules randomly diffusing and bumping into each other and acting in succession. It is also true however that repair components are often assembled into functional complexes which may be more efficient or regular in their mode of action. Studying DNA repair complexes for their mechanisms of assembly, action, and disassembly can help address fundamental questions such as whether DNA repair pathways are branched or linear; whether for instance they tolerate fluctuations in numbers of components; and more broadly how search processes between macromolecules take place or can be enhanced. Copyright © 2018. Published by Elsevier Ltd.

  16. Day and night variations in the repair of ionizing-radiation-induced DNA damage in mouse splenocytes.

    PubMed

    Palombo, Philipp; Moreno-Villanueva, Maria; Mangerich, Aswin

    2015-04-01

    In mammals, biological rhythms synchronize physiological and behavioral processes to the 24-h light-dark (LD) cycle. At the molecular level, self-sustaining processes, such as oscillations of transcription-translation feedback loops, control the circadian clock, which in turn regulates a wide variety of cellular processes, including gene expression and cell cycle progression. Furthermore, previous studies reported circadian oscillations in the repair capacity of DNA lesions specifically repaired by nucleotide excision repair (NER). However, it is so far only poorly understood if DNA repair pathways other than NER are under circadian control, in particular base excision and DNA strand break repair. In the present study, we analyzed potential day and night variations in the repair of DNA lesions induced by ionizing radiation (i.e., mainly oxidative damage and DNA strand breaks) in living mouse splenocytes using a modified protocol of the automated FADU assay. Our results reveal that splenocytes isolated from mice during the light phase (ZT06) displayed higher DNA repair activity than those of the dark phase (ZT18). As analyzed by highly sensitive and accurate qPCR arrays, these alterations were accompanied by significant differences in expression profiles of genes involved in the circadian clock and DNA repair. Notably, the majority of the DNA repair genes were expressed at higher levels during the light phase (ZT06). This included genes of all major DNA repair pathways with the strongest differences observed for genes of base excision and DNA double strand break repair. In conclusion, here we provide novel evidence that mouse splenocytes exhibit significant differences in the repair of IR-induced DNA damage during the LD cycle, both on a functional and on a gene expression level. It will be interesting to test if these findings could be exploited for therapeutic purposes, e.g. time-of-the-day-specific application of DNA-damaging treatments used against blood

  17. Structure of a DNA glycosylase that unhooks interstrand cross-links

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, Elwood A.; Warren, Garrett M.; Bradley, Noah P.

    DNA glycosylases are important editing enzymes that protect genomic stability by excising chemically modified nucleobases that alter normal DNA metabolism. These enzymes have been known only to initiate base excision repair of small adducts by extrusion from the DNA helix. However, recent reports have described both vertebrate and microbial DNA glycosylases capable of unhooking highly toxic interstrand cross-links (ICLs) and bulky minor groove adducts normally recognized by Fanconi anemia and nucleotide excision repair machinery, although the mechanisms of these activities are unknown. Here we report the crystal structure of Streptomyces sahachiroi AlkZ (previously Orf1), a bacterial DNA glycosylase that protectsmore » its host by excising ICLs derived from azinomycin B (AZB), a potent antimicrobial and antitumor genotoxin. AlkZ adopts a unique fold in which three tandem winged helix-turn-helix motifs scaffold a positively charged concave surface perfectly shaped for duplex DNA. Through mutational analysis, we identified two glutamine residues and a β-hairpin within this putative DNA-binding cleft that are essential for catalytic activity. Additionally, we present a molecular docking model for how this active site can unhook either or both sides of an AZB ICL, providing a basis for understanding the mechanisms of base excision repair of ICLs. Given the prevalence of this protein fold in pathogenic bacteria, this work also lays the foundation for an emerging role of DNA repair in bacteria-host pathogenesis.« less

  18. Toll-Like Receptor-4 deficiency enhances repair of ultraviolet radiation induced cutaneous DNA damage by nucleotide excision repair mechanism

    PubMed Central

    Ahmad, Israr; Simanyi, Eva; Guroji, Purushotham; Tamimi, Iman A; delaRosa, Hillary J; Nagar, Anusuiya; Nagar, Priyamvada; Katiyar, Santosh K; Elmets, Craig A; Yusuf, Nabiha

    2014-01-01

    UVB-induced DNA damage plays a critical role in development of photoimmunosuppression. The purpose of this study was to determine whether repair of UVB-induced DNA damage is regulated by Toll-like receptor-4 (TLR4). When TLR4 gene knockout (TLR4-/-) and TLR4 competent (TLR4+/+) mice were subjected to 90 mJ/cm2 UVB radiation locally, DNA damage in the form of CPD, were repaired more efficiently in the skin and bone marrow dendritic cells (BMDC) of TLR4-/- mice in comparison to TLR4+/+ mice. Expression of DNA repair gene XPA (Xeroderma pigmentosum complementation group A) was significantly lower in skin and BMDC of TLR4+/+ mice than TLR4-/- mice after UVB exposure. When cytokine levels were compared in these strains after UVB exposure, BMDC from UV-irradiated TLR4-/- mice produced significantly more interleukin (IL)-12 and IL-23 cytokines (p<0.05) than BMDC from TLR4+/+ mice. Addition of anti-IL-12 and anti-IL-23 antibodies to BMDC of TLR4-/- mice (before UVB exposure) inhibited repair of CPD, with a concomitant decrease in XPA expression. Addition of TLR4 agonist to TLR4+/+ BMDC cultures decreased XPA expression and inhibited CPD repair. Thus, strategies to inhibit TLR4 may allow for immunopreventive and immunotherapeutic approaches for managing UVB-induced cutaneous DNA damage and skin cancer. PMID:24326454

  19. Repair-Resistant DNA Lesions

    PubMed Central

    2017-01-01

    The eukaryotic global genomic nucleotide excision repair (GG-NER) pathway is the major mechanism that removes most bulky and some nonbulky lesions from cellular DNA. There is growing evidence that certain DNA lesions are repaired slowly or are entirely resistant to repair in cells, tissues, and in cell extract model assay systems. It is well established that the eukaryotic DNA lesion-sensing proteins do not detect the damaged nucleotide, but recognize the distortions/destabilizations in the native DNA structure caused by the damaged nucleotides. In this article, the nature of the structural features of certain bulky DNA lesions that render them resistant to NER, or cause them to be repaired slowly, is compared to that of those that are good-to-excellent NER substrates. Understanding the structural features that distinguish NER-resistant DNA lesions from good NER substrates may be useful for interpreting the biological significance of biomarkers of exposure of human populations to genotoxic environmental chemicals. NER-resistant lesions can survive to replication and cause mutations that can initiate cancer and other diseases. Furthermore, NER diminishes the efficacy of certain chemotherapeutic drugs, and the design of more potent pharmaceuticals that resist repair can be advanced through a better understanding of the structural properties of DNA lesions that engender repair-resistance. PMID:28750166

  20. In vitro excision of adeno-associated virus DNA from recombinant plasmids: Isolation of an enzyme fraction from HeLa cells that cleaves DNA at poly(G) sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottlieb, J.; Muzyczka, N.

    1988-06-01

    When circular recombinant plasmids containing adeno-associated virus (AAV) DNA sequences are transfected into human cells, the AAV provirus is rescued. Using these circular AAV plasmids as substrates, the authors isolated an enzyme fraction from HeLa cell nuclear extracts that excises intact AAV DNA in vitro from vector DNA and produces linear DNA products. The recognition signal for the enzyme is a polypurine-polypyrimidine sequence which is at least 9 residues long and rich in G . C base pairs. Such sequences are present in AAV recombinant plasmids as part of the first 15 base pairs of the AAV terminal repeat andmore » in some cases as the result of cloning the AAV genome by G . C tailing. The isolated enzyme fraction does not have significant endonucleolytic activity on single-stranded or double-stranded DNA. Plasmid DNA that is transfected into tissue culture cells is cleaved in vivo to produce a pattern of DNA fragments similar to that seen with purified enzyme in vitro. The activity has been called endo R for rescue, and its behavior suggests that it may have a role in recombination of cellular chromosomes.« less

  1. Oncometabolite D-2-Hydroxyglutarate Inhibits ALKBH DNA Repair Enzymes and Sensitizes IDH Mutant Cells to Alkylating Agents.

    PubMed

    Wang, Pu; Wu, Jing; Ma, Shenghong; Zhang, Lei; Yao, Jun; Hoadley, Katherine A; Wilkerson, Matthew D; Perou, Charles M; Guan, Kun-Liang; Ye, Dan; Xiong, Yue

    2015-12-22

    Chemotherapy of a combination of DNA alkylating agents, procarbazine and lomustine (CCNU), and a microtubule poison, vincristine, offers a significant benefit to a subset of glioma patients. The benefit of this regimen, known as PCV, was recently linked to IDH mutation that occurs frequently in glioma and produces D-2-hydroxyglutarate (D-2-HG), a competitive inhibitor of α-ketoglutarate (α-KG). We report here that D-2-HG inhibits the α-KG-dependent alkB homolog (ALKBH) DNA repair enzymes. Cells expressing mutant IDH display reduced repair kinetics, accumulate more DNA damages, and are sensitized to alkylating agents. The observed sensitization to alkylating agents requires the catalytic activity of mutant IDH to produce D-2-HG and can be reversed by the deletion of mutant IDH allele or overexpression of ALKBH2 or AKLBH3. Our results suggest that impairment of DNA repair may contribute to tumorigenesis driven by IDH mutations and that alkylating agents may merit exploration for treating IDH-mutated cancer patients. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Transcription-coupled repair of UV damage in the halophilic archaea.

    PubMed

    Stantial, Nicole; Dumpe, Jarrod; Pietrosimone, Kathryn; Baltazar, Felicia; Crowley, David J

    2016-05-01

    Transcription-coupled repair (TCR) is a subpathway of nucleotide excision repair (NER) in which excision repair proteins are targeted to RNA polymerase-arresting lesions located in the transcribed strand of active genes. TCR has been documented in a variety of bacterial and eukaryotic organisms but has yet to be observed in the Archaea. We used Halobacterium sp. NRC-1 and Haloferax volcanii to determine if TCR occurs in the halophilic archaea. Following UV irradiation of exponentially growing cultures, we quantified the rate of repair of cyclobutane pyrimidine dimers in the two strands of the rpoB2B1A1A2 and the trpDFEG operons of Halobacterium sp. NRC-1 and the pts operon of H. volcanii through the use of a Southern blot assay and strand-specific probes. TCR was observed in all three operons and was dependent on the NER gene uvrA in Halobacterium sp. NRC-1, but not in H. volcanii. The halophilic archaea likely employ a novel mechanism for TCR in which an as yet unknown coupling factor recognizes the arrested archaeal RNA polymerase complex and recruits certain NER proteins to complete the process. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Fowlpox Virus Encodes a Novel DNA Repair Enzyme, CPD-Photolyase, That Restores Infectivity of UV Light-Damaged Virus

    PubMed Central

    Srinivasan, Viswanathan; Schnitzlein, William M.; Tripathy, Deoki N.

    2001-01-01

    Fowlpox virus (FPV), a pathogen of poultry, can persist in desiccated scabs shed from infected hosts. Although the mechanisms which ensure virus survival are unknown, it is likely that some type of remedial action against environmentally induced damage is required. In this regard, we have identified an open reading frame (ORF) coding for a putative class II cyclobutane pyrimidine dimer (CPD)-photolyase in the genome of FPV. This enzyme repairs the UV light-induced formation of CPDs in DNA by using blue light as an energy source and thus could enhance the viability of FPV during its exposure to sunlight. Based on transcriptional analyses, the photolyase gene was found to be expressed late during the FPV replicative cycle. That the resultant protein retained DNA repair activity was demonstrated by the ability of the corresponding FPV ORF to complement functionally a photolyase-deficient Escherichia coli strain. Interestingly, insertional inactivation of the FPV photolyase gene did not impair the replication of such a genetically altered virus in cultured cells. However, greater sensitivity of this mutant than of the parental virus to UV light irradiation was evident when both were subsequently photoreactivated in the absence of host participation. Therefore, FPV appears to incorporate its photolyase into mature virions where the enzyme can promote their survival in the environment. Although expression of a homologous protein has been predicted for some chordopoxviruses, this report is the first to demonstrate that a poxvirus can utilize light to repair damage to its genome. PMID:11160666

  4. DNA repair inhibition by UVA photoactivated fluoroquinolones and vemurafenib

    PubMed Central

    Peacock, Matthew; Brem, Reto; Macpherson, Peter; Karran, Peter

    2014-01-01

    Cutaneous photosensitization is a common side effect of drug treatment and can be associated with an increased skin cancer risk. The immunosuppressant azathioprine, the fluoroquinolone antibiotics and vemurafenib—a BRAF inhibitor used to treat metastatic melanoma—are all recognized clinical photosensitizers. We have compared the effects of UVA radiation on cultured human cells treated with 6-thioguanine (6-TG, a DNA-embedded azathioprine surrogate), the fluoroquinolones ciprofloxacin and ofloxacin and vemurafenib. Despite widely different structures and modes of action, each of these drugs potentiated UVA cytotoxicity. UVA photoactivation of 6-TG, ciprofloxacin and ofloxacin was associated with the generation of singlet oxygen that caused extensive protein oxidation. In particular, these treatments were associated with damage to DNA repair proteins that reduced the efficiency of nucleotide excision repair. Although vemurafenib was also highly phototoxic to cultured cells, its effects were less dependent on singlet oxygen. Highly toxic combinations of vemurafenib and UVA caused little protein carbonylation but were nevertheless inhibitory to nucleotide excision repair. Thus, for three different classes of drugs, photosensitization by at least two distinct mechanisms is associated with reduced protection against potentially mutagenic and carcinogenic DNA damage. PMID:25414333

  5. ATR- and ATM-Mediated DNA Damage Response Is Dependent on Excision Repair Assembly during G1 but Not in S Phase of Cell Cycle.

    PubMed

    Ray, Alo; Blevins, Chessica; Wani, Gulzar; Wani, Altaf A

    2016-01-01

    Cell cycle checkpoint is mediated by ATR and ATM kinases, as a prompt early response to a variety of DNA insults, and culminates in a highly orchestrated signal transduction cascade. Previously, we defined the regulatory role of nucleotide excision repair (NER) factors, DDB2 and XPC, in checkpoint and ATR/ATM-dependent repair pathway via ATR and ATM phosphorylation and recruitment to ultraviolet radiation (UVR)-induced damage sites. Here, we have dissected the molecular mechanisms of DDB2- and XPC- mediated regulation of ATR and ATM recruitment and activation upon UVR exposures. We show that the ATR and ATM activation and accumulation to UVR-induced damage not only depends on DDB2 and XPC, but also on the NER protein XPA, suggesting that the assembly of an active NER complex is essential for ATR and ATM recruitment. ATR and ATM localization and H2AX phosphorylation at the lesion sites occur as early as ten minutes in asynchronous as well as G1 arrested cells, showing that repair and checkpoint-mediated by ATR and ATM starts early upon UV irradiation. Moreover, our results demonstrated that ATR and ATM recruitment and H2AX phosphorylation are dependent on NER proteins in G1 phase, but not in S phase. We reasoned that in G1 the UVR-induced ssDNA gaps or processed ssDNA, and the bound NER complex promote ATR and ATM recruitment. In S phase, when the UV lesions result in stalled replication forks with long single-stranded DNA, ATR and ATM recruitment to these sites is regulated by different sets of proteins. Taken together, these results provide evidence that UVR-induced ATR and ATM recruitment and activation differ in G1 and S phases due to the existence of distinct types of DNA lesions, which promote assembly of different proteins involved in the process of DNA repair and checkpoint activation.

  6. Ultraviolet B-Sensitive Rice Cultivar Deficient in Cyclobutyl Pyrimidine Dimer Repair.

    PubMed Central

    Hidema, J.; Kumagai, T.; Sutherland, J. C.; Sutherland, B. M.

    1997-01-01

    Repair of cyclobutyl pyrimidine dimers (CPDs) in DNA is essential in most organisms to prevent biological damage by ultraviolet (UV) light. In higher plants tested thus far, UV-sensitive strains had higher initial damage levels or deficient repair of nondimer DNA lesions but normal CPD repair. This suggested that CPDs might not be important for biological lesions. The photosynthetic apparatus has also been proposed as a critical target. We have analyzed CPD induction and repair in the UV-sensitive rice (Oryza sativa L.) cultivar Norin 1 and its close relative UV-resistant Sasanishiki using alkaline agarose gel electrophoresis. Norin 1 is deficient in cyclobutyl pyrimidine dimer photoreactivation and excision; thus, UV sensitivity correlates with deficient dimer repair. PMID:12223592

  7. RAD25 (SSL2), the yeast homolog of the human xeroderma pigmentosum group B DNA repair gene, is essential for viability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, E.; Prakash, L.; Guzder, S.N.

    1992-12-01

    Xeroderma pigmentosum (XP) patients are extremely sensitive to ultraviolet (UV) light and suffer from a high incidence of skin cancers, due to a defect in nucleotide excision repair. The disease is genetically heterogeneous, and seven complementation groups, A-G, have been identified. Homologs of human excision repair genes ERCC1, XPDC/ERCC2, and XPAC have been identified in the yeast Saccharomyces cerevisiae. Since no homolog of human XPBC/ERCC3 existed among the known yeast genes, we cloned the yeast homolog by using XPBC cDNA as a hybridization probe. The yeast homolog, RAD25 (SSL2), encodes a protein of 843 amino acids (M[sub r] 95,356). Themore » RAD25 (SSL2)- and XPCX-encoded proteins share 55% identical and 72% conserved amino acid residues, and the two proteins resemble one another in containing the conserved DNA helicase sequence motifs. A nonsense mutation at codon 799 that deletes the 45 C-terminal amino acid residues in RAD25 (SSL2) confers UV sensitivity. This mutation shows epistasis with genes in the excision repair group, whereas a synergistic increase in UN sensitivity occurs when it is combined with mutations in genes in other DNA repair pathways, indicating that RAD25 (SSL2) functions in excision repair but not in other repair pathways. We also show that RAD25 (SSL2) is an essential gene. A mutation of the Lys[sup 392] residue to arginine in the conserved Walker type A nucleotide-binding motif is lethal, suggesting an essential role of the putative RAD 25 (SSL2) ATPase/DNA helicase activity in viability. 40 refs., 3 figs., 1 tab.« less

  8. Host DNA repair proteins in response to Pseudomonas aeruginosa in lung epitehlial cells and in mice

    USDA-ARS?s Scientific Manuscript database

    Host DNA damage and DNA repair response to bacterial infections and its significance are not fully understood. Here, we demonstrate that infection by Gram-negative bacterium P. aeruginosa significantly altered the expression and enzymatic activity of base excision DNA repair protein OGG1 in lung epi...

  9. Repair Mechanism of UV-damaged DNA in Xeroderma Pigmentosum | Center for Cancer Research

    Cancer.gov

    Xeroderma pigmentosum (XP) is a rare, inherited disorder characterized by extreme skin sensitivity to ultraviolet (UV) rays from sunlight. XP is caused by mutations in genes involved in nucleotide excision repair (NER) of damaged DNA. Normal cells are usually able to fix this damage before it leads to problems; however, the DNA damage is not repaired normally in patients with

  10. Distinct pathways for repairing mutagenic lesions induced by methylating and ethylating agents

    PubMed Central

    Negishi, Tomoe

    2013-01-01

    DNA alkylation damage can be repaired by nucleotide excision repair (NER), base excision repair (BER) or by direct removal of alkyl groups from modified bases by O 6-alkylguanine DNA alkyltransferase (AGT; E.C. 2.1.1.63). DNA mismatch repair (MMR) is also likely involved in this repair. We have investigated alkylation-induced mutagenesis in a series of NER- or AGT-deficient Escherichia coli strains, alone or in combination with defects in the MutS, MutL or MutH components of MMR. All strains used contained the Fʹprolac from strain CC102 (FʹCC102) episome capable of detecting specifically lac GC to AT reverse mutations resulting from O 6-alkylguanine. The results showed the repair of O 6-methylguanine to be performed by AGT ≫ MMR > NER in order of importance, whereas the repair of O 6-ethylguanine followed the order NER > AGT > MMR. Studies with double mutants showed that in the absence of AGT or NER repair pathways, the lack of MutS protein generally increased mutant frequencies for both methylating and ethylating agents, suggesting a repair or mutation avoidance role for this protein. However, lack of MutL or MutH protein did not increase alkylation-induced mutagenesis under these conditions and, in fact, reduced mutagenesis by the N-alkyl-N-nitrosoureas MNU and ENU. The combined results suggest that little or no alkylation damage is actually corrected by the mutHLS MMR system; instead, an as yet unspecified interaction of MutS protein with alkylated DNA may promote the involvement of a repair system other than MMR to avoid a mutagenic outcome. Furthermore, both mutagenic and antimutagenic effects of MMR were detected, revealing a dual function of the MMR system in alkylation-exposed cells. PMID:23446177

  11. Mfd translocase is necessary and sufficient for transcription-coupled repair in Escherichia coli.

    PubMed

    Adebali, Ogun; Sancar, Aziz; Selby, Christopher P

    2017-11-10

    Nucleotide excision repair in Escherichia coli is stimulated by transcription, specifically in the transcribed strand. Previously, it was shown that this transcription-coupled repair (TCR) is mediated by the Mfd translocase. Recently, it was proposed that in fact the majority of TCR in E. coli is catalyzed by a second pathway ("backtracking-mediated TCR") that is dependent on the UvrD helicase and the guanosine pentaphosphate (ppGpp) alarmone/stringent response regulator. Recently, we reported that as measured by the excision repair-sequencing (XR-seq), UvrD plays no role in TCR genome-wide. Here, we tested the role of ppGpp and UvrD in TCR genome-wide and in the lacZ operon using the XR-seq method, which directly measures repair. We found that the mfd mutation abolishes TCR genome-wide and in the lacZ operon. In contrast, the relA - spoT - mutant deficient in ppGpp synthesis carries out normal TCR. We conclude that UvrD and ppGpp play no role in TCR in E. coli . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Influence of Morinda citrifolia (Noni) on Expression of DNA Repair Genes in Cervical Cancer Cells.

    PubMed

    Gupta, Rakesh Kumar; Bajpai, Deepti; Singh, Neeta

    2015-01-01

    Previous studies have suggested that Morinda citrifolia (Noni) has potential to reduce cancer risk. The purpose of this study was to investigate the effect of Noni, cisplatin, and their combination on DNA repair genes in the SiHa cervical cancer cell line. SiHa cells were cultured and treated with 10% Noni, 10 μg/dl cisplatin or their combination for 24 hours. Post culturing, the cells were pelleted, RNA extracted, and processed for investigating DNA repair genes by real time PCR. The expression of nucleotide excision repair genes ERCC1, ERCC2, and ERCC4 and base excision repair gene XRCC1 was increased 4 fold, 8.9 fold, 4 fold, and 5.5 fold, respectively, on treatment with Noni as compared to untreated controls (p<0.05). In contrast, expression was found to be decreased 22 fold, 13 fold, 16 fold, and 23 fold on treatment with cisplatin (p<0.05). However, the combination of Noni and cisplatin led to an increase of 2 fold, 1.6 fold, 3 fold, 1.2 fold, respectively (p<0.05). Noni enhanced the expression of DNA repair genes by itself and in combination with cisplatin. However, high expression of DNA repair genes at mRNA level only signifies efficient DNA transcription of the above mentioned genes; further investigations are needed to evaluate the DNA repair protein expression.

  13. Rational Inhibitors of DNA Base Excision Repair (BER) Enzymes: New Tools for Elucidating the Role of the BER in Cancer Chemotherapy

    DTIC Science & Technology

    2005-05-01

    Revised Manuscript Received March 3, 2005 ABSTRACT: Base flipping is a highly conserved strategy used by enzymes to gain catalytic access to DNA bases that...73.13. Jencks, W. P. (1985) A primer for the bema hapothle-an between uracil and other normal DNA bases at this inter- empirical-approach to the

  14. Functional characterization of polymorphisms in DNA repair genes using cytogenetic challenge assays.

    PubMed

    Au, William W; Salama, Salama A; Sierra-Torres, Carlos H

    2003-11-01

    A major barrier to understanding the role of polymorphic DNA repair genes for environmental cancer is that the functions of variant genotypes are largely unknown. Using our cytogenetic challenge assays, we conducted an investigation to address the deficiency. Using X-rays or ultraviolet (UV) light, we irradiated blood lymphocytes from 80 nonsmoking donors to challenge the cells to repair the induced DNA damage, and we analyzed expression of chromosome aberrations (CA) specific to the inducing agents. We have genotyped polymorphic DNA repair genes preferentially involved with base excision repair (BER) and nucleotide excision repair (NER) activities (XRCC1, XRCC3, APE1, XPD) corresponding to the repair of X-ray- and UV light-induced DNA damage, respectively. We expected that defects in specific DNA repair pathways due to polymorphisms would cause corresponding increases of specific CA. From our data, XRCC1 399Gln and XRCC3 241Met were associated with significant increases in chromosome deletions compared with the corresponding homozygous wild types (18.27 1.1 vs 14.79 1.2 and 18.22 0.99 vs 14.20 1.39, respectively); XPD 312Asn and XPD 751Gln were associated with significant increases in chromatid breaks compared with wild types (16.09 1.36 vs 11.41 0.98 and 16.87 1.27 vs 10.54 0.87, respectively), p < 0.05. The data indicate that XRCC1 399Gln and XRCC3 241Met are significantly defective in BER, and the XPD 312Asn and XPD 751Gln are significantly defective in NER. In addition, the variant genotypes interact significantly, with limited overlap of the two different repair pathways.

  15. Metabolite damage and repair in metabolic engineering design.

    PubMed

    Sun, Jiayi; Jeffryes, James G; Henry, Christopher S; Bruner, Steven D; Hanson, Andrew D

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects. Copyright © 2017 International Metabolic Engineering Society. All rights reserved.

  16. Metabolite damage and repair in metabolic engineering design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jiayi; Jeffryes, James G.; Henry, Christopher S.

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields,more » and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects.« less

  17. Differential role of Wnt signaling and base excision repair pathways in gastric adenocarcinoma aggressiveness.

    PubMed

    Korourian, Alireza; Roudi, Raheleh; Shariftabrizi, Ahmad; Kalantari, Elham; Sotoodeh, Kambiz; Madjd, Zahra

    2017-11-01

    Aberrant activation of Wnt and base excision repair (BER) signaling pathways are implicated in tumor progression and chemotherapy resistance in gastric adenocarcinoma. This study was conducted to clarify the role of E2F6 and RhoA, components of the Wnt signaling pathway, and SMUG1, a component of the BER pathway in gastric adenocarcinoma. Expression levels and clinicopathological significance of three biomarkers, namely E2F6, RhoA, and SMUG1, as potential signaling molecules involved in tumorigenesis and aggressive behavior, were examined using tissue microarray. Our analysis showed a relative increase in the expression of E2F6 in gastric adenocarcinoma with no lymph node metastasis (χ 2 , P = 0.04 and OR, P = 0.08), while overexpression of RhoA and SMUG1 was found more often in the diffuse subtype of gastric adenocarcinoma as compared to the intestinal subtype (χ 2 , P = 0.05, OR, P = 0.08 and χ 2 , P = 0.001, OR, P = 0.009, respectively). Higher expression of RhoA was frequently seen in tumors with vascular invasion (χ 2 , P = 0.01 and OR, P = 0.01). In addition, increased expression of SMUG1 was found more often in poorly differentiated tumors (χ 2 , P = 0.01 and OR, P = 0.01). The distinct phenotype of E2F6 Low /SMUG1 High was more common in poorly differentiated tumors (P = 0.04) and with omental involvement (P = 0.01). The RhoA High /SMUG1 High expression pattern was significantly more often found in diffuse subtype compared to the intestinal subtype (P = 0.001) as well as in poorly differentiated tumors (P = 0.004). The E2F6 Low /SMUG1 High and RhoA High /SMUG1 High phenotypes can be considered as aggressive phenotypes of gastric adenocarcinoma. Our findings also demonstrated the synergistic effect of RhoA and SMUG1 in conferring tumor aggressiveness in diffuse subtype of gastric adenocarcinoma.

  18. Analysis of repair and PCNA complex formation induced by ionizing radiation in human fibroblast cell lines.

    PubMed

    Karmakar, P; Balajee, A S; Natarajan, A T

    2001-05-01

    Proliferating cell nuclear antigen (PCNA), an auxiliary factor for DNA polymerase delta and epsilon, is involved in both DNA replication and repair. Previous studies in vitro have demonstrated the requirement of PCNA in the resynthesis step of nucleotide excision repair (NER) and base excision repair (BER). Using a native chromatin template isolated under near physiological conditions, we have analysed the involvement of PCNA in the BER pathway in different NER defective human cell lines. The repair sites and PCNA were visualized by indirect immunolabelling followed by fluorescence microscopy. The results indicate that exposure to X-rays triggers the induction of PCNA in all the three human fibroblast cell lines studied, namely normal, xeroderma pigmentosum group A (XP-A) and Cockayne syndrome group B (CS-B). In all the cell lines, induction of PCNA and repair patches occurred in a dose- and time-dependent fashion. Induction of repair patches in NER-deficient XP-A cells suggests that the X-ray-induced lesions are largely repaired via the BER pathway involving PCNA as one of the key components of this pathway. X-ray-induced repair synthesis was greatly inhibited by treatment of cells with DNA polymerase inhibitors aphidicolin and cytosine arabinoside. Interestingly, inhibition of repair resynthesis did not affect the intensity of PCNA staining in X-irradiated cells indicating that the PCNA may be required for the BER pathway at a step preceding the resynthesis step.

  19. EFFECTS OF X-IRRADIATION ON THE HEXOBARBITAL METABOLIZING ENZYME SYSTEM OF RAT LIVER MICROSOMES.

    DTIC Science & Technology

    RADIATION EFFECTS , *ENZYME INHIBITORS, *HYPNOTICS AND SEDATIVES, ENZYMES, BIOSYNTHESIS, METABOLISM, DETOXIFICATION, BARBITURATES, OXIDATION...MICROSOMES, LIVER, REGENERATION(ENGINEERING), EXCISION, SUBLETHAL DOSAGE, TOXICITY , HYPNOSIS, SLEEP, HEAD(ANATOMY), MALES, FEMALES, RATS.

  20. Ada response – a strategy for repair of alkylated DNA in bacteria

    PubMed Central

    Mielecki, Damian; Grzesiuk, Elżbieta

    2014-01-01

    Alkylating agents are widespread in the environment and also occur endogenously. They can be cytotoxic or mutagenic to the cells introducing alkylated bases to DNA or RNA. All organisms have evolved multiple DNA repair mechanisms to counteract the effects of DNA alkylation: the most cytotoxic lesion, N3-methyladenine (3meA), is excised by AlkA glycosylase initiating base excision repair (BER); toxic N1-methyladenine (1meA) and N3-methylcytosine (3meC), induced in DNA and RNA, are removed by AlkB dioxygenase; and mutagenic and cytotoxic O6-methylguanine (O6meG) is repaired by Ada methyltransferase. In Escherichia coli, Ada response involves the expression of four genes, ada, alkA, alkB, and aidB, encoding respective proteins Ada, AlkA, AlkB, and AidB. The Ada response is conserved among many bacterial species; however, it can be organized differently, with diverse substrate specificity of the particular proteins. Here, an overview of the organization of the Ada regulon and function of individual proteins is presented. We put special effort into the characterization of AlkB dioxygenases, their substrate specificity, and function in the repair of alkylation lesions in DNA/RNA. PMID:24810496

  1. Repair of Ultraviolet Radiation Damage in Sensitive Mutants of Micrococcus radiodurans

    PubMed Central

    Moseley, B. E. B.

    1969-01-01

    Various aspects of the repair of ultraviolet (UV) radiation-induced damage were compared in wild-type Micrococcus radiodurans and two UV-sensitive mutants. Unlike the wild type, the mutants are more sensitive to radiation at 265 nm than at 280 nm. The delay in deoxyribonucleic acid (DNA) synthesis following exposure to UV is about seven times as long in the mutants as in the wild type. All three strains excise UV-induced pyrimidine dimers from their DNA, although the rate at which cytosine-thymine dimers are excised is slower in the mutants. The three strains also mend the single-strand breaks that appear in the irradiated DNA as a result of dimer excision, although the process is less efficient in the mutants. It is suggested that the increased sensitivity of the mutants to UV radiation may be caused by a partial defect in the second step of dimer excision. PMID:5773016

  2. ICE Afe 1, an actively excising genetic element from the biomining bacterium Acidithiobacillus ferrooxidans.

    PubMed

    Bustamante, Paula; Covarrubias, Paulo C; Levicán, Gloria; Katz, Assaf; Tapia, Pablo; Holmes, David; Quatrini, Raquel; Orellana, Omar

    2012-01-01

    Integrative conjugative elements (ICEs) are self-transferred mobile genetic elements that contribute to horizontal gene transfer. An ICE (ICEAfe1) was identified in the genome of Acidithiobacillus ferrooxidans ATCC 23270. Excision of the element and expression of relevant genes under normal and DNA-damaging growth conditions was analyzed. Bioinformatic tools and DNA amplification methods were used to identify and to assess the excision and expression of genes related to the mobility of the element. Both basal and mitomycin C-inducible excision as well as expression and induction of the genes for integration/excision are demonstrated, suggesting that ICEAfe1 is an actively excising SOS-regulated mobile genetic element. The presence of a complete set of genes encoding self-transfer functions that are induced in response to DNA damage caused by mitomycin C additionally suggests that this element is capable of conjugative transfer to suitable recipient strains. Transfer of ICEAfe1 may provide selective advantages to other acidophiles in this ecological niche through dissemination of gene clusters expressing transfer RNAs, CRISPRs, and exopolysaccharide biosynthesis enzymes, probably by modification of translation efficiency, resistance to bacteriophage infection and biofilm formation, respectively. These data open novel avenues of research on conjugative transformation of biotechnologically relevant microorganisms recalcitrant to genetic manipulation. Copyright © 2013 S. Karger AG, Basel.

  3. Mutations in Replicative Stress Response Pathways Are Associated with S Phase-specific Defects in Nucleotide Excision Repair*

    PubMed Central

    Bélanger, François; Angers, Jean-Philippe; Fortier, Émile; Hammond-Martel, Ian; Costantino, Santiago; Drobetsky, Elliot; Wurtele, Hugo

    2016-01-01

    Nucleotide excision repair (NER) is a highly conserved pathway that removes helix-distorting DNA lesions induced by a plethora of mutagens, including UV light. Our laboratory previously demonstrated that human cells deficient in either ATM and Rad3-related (ATR) kinase or translesion DNA polymerase η (i.e. key proteins that promote the completion of DNA replication in response to UV-induced replicative stress) are characterized by profound inhibition of NER exclusively during S phase. Toward elucidating the mechanistic basis of this phenomenon, we developed a novel assay to quantify NER kinetics as a function of cell cycle in the model organism Saccharomyces cerevisiae. Using this assay, we demonstrate that in yeast, deficiency of the ATR homologue Mec1 or of any among several other proteins involved in the cellular response to replicative stress significantly abrogates NER uniquely during S phase. Moreover, initiation of DNA replication is required for manifestation of this defect, and S phase NER proficiency is correlated with the capacity of individual mutants to respond to replicative stress. Importantly, we demonstrate that partial depletion of Rfa1 recapitulates defective S phase-specific NER in wild type yeast; moreover, ectopic RPA1–3 overexpression rescues such deficiency in either ATR- or polymerase η-deficient human cells. Our results strongly suggest that reduction of NER capacity during periods of enhanced replicative stress, ostensibly caused by inordinate sequestration of RPA at stalled DNA replication forks, represents a conserved feature of the multifaceted eukaryotic DNA damage response. PMID:26578521

  4. Polymorphisms in base excision repair genes as colorectal cancer risk factors and modifiers of the effect of diets high in red meat.

    PubMed

    Brevik, Asgeir; Joshi, Amit D; Corral, Román; Onland-Moret, N Charlotte; Siegmund, Kimberly D; Le Marchand, Loïc; Baron, John A; Martinez, Maria Elena; Haile, Robert W; Ahnen, Dennis J; Sandler, Robert S; Lance, Peter; Stern, Mariana C

    2010-12-01

    A diet high in red meat is an established colorectal cancer (CRC) risk factor. Carcinogens generated during meat cooking have been implicated as causal agents and can induce oxidative DNA damage, which elicits repair by the base excision repair (BER) pathway. Using a family-based study, we investigated the role of polymorphisms in 4 BER genes (APEX1 Gln51His, Asp148Glu; OGG1 Ser236Cys; PARP Val742Ala; and XRCC1 Arg194Trp, Arg280His, Arg399Gln) as potential CRC risk factors and modifiers of the association between diets high in red meat or poultry and CRC risk. We tested for gene-environment interactions using case-only analyses (n = 577) and compared statistically significant results with those obtained using case-unaffected sibling comparisons (n = 307 sibships). Carriers of the APEX1 codon 51 Gln/His genotype had a reduced CRC risk compared with carriers of the Gln/Gln genotype (odds ratio (OR) = 0.15, 95% CI = 0.03-0.69, P = 0.015). The association between higher red meat intake (>3 servings per week) and CRC was modified by the PARP Val762Ala single-nucleotide polymorphisms (SNP; case-only interaction P = 0.026). This SNP also modified the association between higher intake of high-temperature cooked red meat (case-only interaction P = 0.0009). We report evidence that the BER pathway PARP gene modifies the association of diets high in red meat cooked at high temperatures with risk of CRC. Our findings suggest a contribution to colorectal carcinogenesis of free radical damage as one of the possible harmful effects of a diet high in red meat. ©2010 AACR.

  5. Polymorphisms in base excision repair genes as colorectal cancer risk factors and modifiers of the effect of diets high in red meat

    PubMed Central

    Brevik, Asgeir; Joshi, Amit D.; Corral, Román; Onland-Moret, N. Charlotte; Siegmund, Kimberly D.; Le Marchand, Loïc; Baron, John A.; Martinez, Maria Elena; Haile, Robert W.; Ahnen, Dennis J.; Sandler, Robert S.; Lance, Peter; Stern, Mariana C.

    2010-01-01

    Background A diet high in red meat is an established colorectal cancer (CRC) risk factor. Carcinogens generated during meat cooking have been implicated as causal agents, and can induce oxidative DNA damage, which elicits repair by the base excision repair (BER) pathway. Methods Using a family-based study we investigated the role of polymorphisms in four BER genes (APEX1 Gln51His, Asp148Glu; OGG1 Ser236Cys; PARP Val742Ala; XRCC1 Arg194Trp, Arg280His, Arg399Gln) as potential CRC risk factors and modifiers of the association between high-red meat or poultry diets and CRC risk. We tested for gene-environment interactions using case-only analyses (N = 577) and compared statistically significant results to those obtained using case-unaffected sibling comparisons (N = 307 sibships). Results Carriers of the APEX1 codon 51 Gln/His genotype had a reduced CRC risk compared to carriers of the Gln/Gln genotype (OR 0.15, 95% CI 0.03-0.69, p = 0.015). The association between higher red meat intake (>3 servings/week) and CRC was modified by the PARP Val762Ala SNP (case-only interaction p = 0.026). This SNP also modified the association between higher intake of high-temperature cooked red meat (case-only interaction p = 0.0009). Conclusions We report evidence that the BER pathway PARP gene modifies the association of diets high in red meat cooked at high temperatures with risk of CRC. Impact Our findings suggest a contribution to colorectal carcinogenesis of free radical damage as one of the possible harmful effects of a high-red meat diet. PMID:21037106

  6. Spermatogenesis is not impaired in a nucleotide excision repair-deficient min mouse model with or without neonatal mutagen treatment.

    PubMed

    Andreassen, Ashild; Steffensen, Inger-Lise; Olsen, Ann-Karin; Tanaka, Kiyoji; Wiger, Richard

    2011-01-01

    Mice deficient in the xeroderma pigmentosum group A gene (Xpa) exhibit impaired nucleotide excision repair (NER) and are expected to accumulate bulky DNA adducts when subjected to certain compounds (eg, heterocyclic amines). Multiple intestinal neoplasia (Min) mice (B6(Min)(/+)) are particularly sensitive to low concentrations of mutagenic compounds in food. They develop intestinal tumors spontaneously, and the number and size of the tumors increase following exposure to 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), which humans are exposed to via fried food. We previously reported that NER is inefficient in adult testicular cells. Reduced NER (genetic deficiency; Xpa(-/-)) is expected to represent risk factors for PhIP-induced genotoxicity and could possibly disturb spermatogenesis, particularly in B6(Min)(/+) mice. We therefore studied spermatogenesis in mice with combinations of Xpa and Min or wild-type genotypes 11 weeks after exposure to PhIP on days 3 to 6. Fewer offspring were obtained from B6(Min)(/+)Xpa(-/-) than from B6(Min)(/+)Xpa(+/+) or B6(Min)(/+)Xpa(+/-). Distributions of the different testicular cell types, indicative of normal spermatogenesis and relative testes weights, did not differ significantly in PhIP-exposed or unexposed mice regardless of their genotypes. We conclude that the removal of bulky DNA adducts does not seem to be essential for normal spermatogenesis.

  7. Mobile phone specific electromagnetic fields induce transient DNA damage and nucleotide excision repair in serum-deprived human glioblastoma cells.

    PubMed

    Al-Serori, Halh; Ferk, Franziska; Kundi, Michael; Bileck, Andrea; Gerner, Christopher; Mišík, Miroslav; Nersesyan, Armen; Waldherr, Monika; Murbach, Manuel; Lah, Tamara T; Herold-Mende, Christel; Collins, Andrew R; Knasmüller, Siegfried

    2018-01-01

    Some epidemiological studies indicate that the use of mobile phones causes cancer in humans (in particular glioblastomas). It is known that DNA damage plays a key role in malignant transformation; therefore, we investigated the impact of the UMTS signal which is widely used in mobile telecommunications, on DNA stability in ten different human cell lines (six brain derived cell lines, lymphocytes, fibroblasts, liver and buccal tissue derived cells) under conditions relevant for users (SAR 0.25 to 1.00 W/kg). We found no evidence for induction of damage in single cell gel electrophoresis assays when the cells were cultivated with serum. However, clear positive effects were seen in a p53 proficient glioblastoma line (U87) when the cells were grown under serum free conditions, while no effects were found in p53 deficient glioblastoma cells (U251). Further experiments showed that the damage disappears rapidly in U87 and that exposure induced nucleotide excision repair (NER) and does not cause double strand breaks (DSBs). The observation of NER induction is supported by results of a proteome analysis indicating that several proteins involved in NER are up-regulated after exposure to UMTS; additionally, we found limited evidence for the activation of the γ-interferon pathway. The present findings show that the signal causes transient genetic instability in glioma derived cells and activates cellular defense systems.

  8. Relationship Between Radiation Response and the Deoxyribonucleic Acid Replication Cycle in Bacteria: Dependence on the Excision-Repair System

    PubMed Central

    Billen, Daniel; Bruns, Laura

    1970-01-01

    Prestarvation of Escherichia coli for required amino acids results in a marked enhancement in both ultraviolet light (UV) or X-ray resistance for selective strains. Preventing protein synthesis by starvation for required amino acids results in completion of the cycle of chromosomal replication then underway. We have investigated the relationship between starvation-induced resistance enhancement (SIRE) and the excision-repair (Hcr) system in several E. coli strains including E. coli B/r hcr+ and its isogenic mutant E. coli B/r hcr−. The following observations were made. (i) The Hcr system is the major component of SIRE in UV-irradiated strain B/r. By using the Hcr+ strain, SIRE increases the 10% survival dose from ∼400 ergs to ∼1,200 ergs/mm2. With the Hcr cells, the increase is from ∼45 ergs to 60 ergs/mm2. (ii) Although prestarvation leads to a moderate enhancement of resistance to X irradiation, this effect is not dependent on the Hcr system. (iii) The double mutant, E. coli Bs–1 (hcr−exr−) is completely unable to express SIRE whether studied with UV or X irradiation. It is concluded that the Hcr system is the major system responsible for SIRE in UV-treated cells, whereas Exr (resistance to X rays) may be involved to a minor extent. The Exr character appears to be required for SIRE expression in X-ray exposed cells. PMID:4914566

  9. Nucleotide Excision Repair and Transcriptional Regulation: TFIIH and Beyond.

    PubMed

    Compe, Emmanuel; Egly, Jean-Marc

    2016-06-02

    Transcription factor IIH (TFIIH) is a multiprotein complex involved in both transcription and DNA repair, revealing a striking functional link between these two processes. Some of its subunits also belong to complexes involved in other cellular processes, such as chromosome segregation and cell cycle regulation, emphasizing the multitasking capabilities of this factor. This review aims to depict the structure of TFIIH and to dissect the roles of its subunits in different cellular mechanisms. Our understanding of the biochemistry of TFIIH has greatly benefited from studies focused on diseases related to TFIIH mutations. We address the etiology of these disorders and underline the fact that TFIIH can be considered a promising target for therapeutic strategies.

  10. Ada response - a strategy for repair of alkylated DNA in bacteria.

    PubMed

    Mielecki, Damian; Grzesiuk, Elżbieta

    2014-06-01

    Alkylating agents are widespread in the environment and also occur endogenously. They can be cytotoxic or mutagenic to the cells introducing alkylated bases to DNA or RNA. All organisms have evolved multiple DNA repair mechanisms to counteract the effects of DNA alkylation: the most cytotoxic lesion, N(3)-methyladenine (3meA), is excised by AlkA glycosylase initiating base excision repair (BER); toxic N(1)-methyladenine (1meA) and N(3)-methylcytosine (3meC), induced in DNA and RNA, are removed by AlkB dioxygenase; and mutagenic and cytotoxic O(6)-methylguanine (O(6) meG) is repaired by Ada methyltransferase. In Escherichia coli, Ada response involves the expression of four genes, ada, alkA, alkB, and aidB, encoding respective proteins Ada, AlkA, AlkB, and AidB. The Ada response is conserved among many bacterial species; however, it can be organized differently, with diverse substrate specificity of the particular proteins. Here, an overview of the organization of the Ada regulon and function of individual proteins is presented. We put special effort into the characterization of AlkB dioxygenases, their substrate specificity, and function in the repair of alkylation lesions in DNA/RNA. © 2014 The Authors. FEMS Microbiology Letters published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  11. Arthroscopic excision of ganglion cysts.

    PubMed

    Bontempo, Nicholas A; Weiss, Arnold-Peter C

    2014-02-01

    Arthroscopy is an advancing field in orthopedics, the applications of which have been expanding over time. Traditionally, excision of ganglion cysts has been done in an open fashion. However, more recently, studies show outcomes following arthroscopic excision to be as good as open excision. Cosmetically, the incisions are smaller and heal faster following arthroscopy. In addition, there is the suggested benefit that patients will regain function and return to work faster following arthroscopic excision. More prospective studies comparing open and arthroscopic excision of ganglion cysts need to be done in order to delineate if there is a true functional benefit. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. A domain in human EXOG converts apoptotic endonuclease to DNA-repair exonuclease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szymanski, Michal R.; Yu, Wangsheng; Gmyrek, Aleksandra M.

    Human EXOG (hEXOG) is a 5'-exonuclease that is crucial for mitochondrial DNA repair; the enzyme belongs to a nonspecific nuclease family that includes the apoptotic endonuclease EndoG. Here we report biochemical and structural studies of hEXOG, including structures in its apo form and in a complex with DNA at 1.81 and 1.85 Å resolution, respectively. A Wing domain, absent in other ββα-Me members, suppresses endonuclease activity, but confers on hEXOG a strong 5'-dsDNA exonuclease activity that precisely excises a dinucleotide using an intrinsic ‘tape-measure’. The symmetrical apo hEXOG homodimer becomes asymmetrical upon binding to DNA, providing a structural basis formore » how substrate DNA bound to one active site allosterically regulates the activity of the other. These properties of hEXOG suggest a pathway for mitochondrial BER that provides an optimal substrate for subsequent gap-filling synthesis by DNA polymerase γ.« less

  13. Alkyltransferase-like proteins: brokers dealing with alkylated DNA bases.

    PubMed

    Schärer, Orlando D

    2012-07-13

    A new pathway for the repair of DNA alkylation damage is described in this issue of Molecular Cell (Latypov et al., 2012). Alkyltransferase-like enzymes mark O(6)-alkylguanine lesions and, depending on adduct size, channel them into global genome or transcription-coupled nucleotide excision repair pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Small-molecule inhibitors of APE1 DNA repair function: an overview.

    PubMed

    Al-Safi, Rasha I; Odde, Srinivas; Shabaik, Yumna; Neamati, Nouri

    2012-01-01

    APE1 is a multifaceted protein that orchestrates multiple activities in the cell, one of which is the preservation of genomic integrity; a vital process that takes place in the context of the base excision repair (BER) pathway. Studies have implicated APE1 in rendering cancerous cells less vulnerable to the effects of DNA-damaging agents that are commonly used for the treatment of cancer. Furthermore, suppression of APE1 expression in cancer cell lines is accompanied by the potentiation of the activity of cytotoxic agents. As a result, major efforts have been directed towards the identification of small-molecule inhibitors of this DNA-repair enzyme. Herein, we review all patented small-molecule APE1 inhibitors reported prior to 2011. Unfortunately, the potency and selectivity of many of the reported inhibitors were not disclosed by the original authors, and at present it is unclear if APE1 is a bona fide target for many of the purported inhibitors. Moreover, cellular activity and toxicity of many inhibitors remain to be established. Since this is the first comprehensive review of small molecule APE1 inhibitors, we present all compounds reported to inhibit APE1 activity with an IC50 value ≤ 25 μM. Efforts towards a careful validation and optimization of these compounds are warranted. Furthermore, we explore potential allosteric drug-binding sites on the protein as an alternative approach for modulating the activity of this multifunctional protein. In addition, we give an overview of APE2, as well as other APE1 homologues in some disease-causing pathogens. Finally, given the universal importance of DNA repair, as well as the considerable conservation of repair proteins across all living organisms, we propose targeting the AP endonuclease activity of pathogens by the compounds discussed in this review, thereby expanding their therapeutic potential and application.

  15. Role of mesenchymal stem cells versus angiotensin converting enzyme inhibitor in kidney repair.

    PubMed

    Ahmed, Hanaa H; Toson, Elshahat A; El-Mezayen, Hatem A; Rashed, Laila A; Elsherbiny, Eslam S

    2017-07-01

    The current study sought to clarify the role of bone marrow derived mesenchymal stem cells (BM-MSCs) and adipose tissue derived mesenchymal stem cells (AD-MSCs) in repressing nephropathy in the experimental model. Moreover, the aim of this work was extended to compare between stem cells role and angiotensin converting enzyme inhibitor in kidney repair. Isolation and preparation of MSCs culture, flow cytometry using CD34, CD44 and CD105 cell surface markers, biochemical analyses for determination of serum creatinine, urea, transforming growth factor β (TGF-β), cystatin C (CYS-C) and urinary N-Acetyl-ß-D-Glucosaminidase (UNAG), and histopathological investigation of kidney tissue sections were performed. The results of the present study revealed that single intravenous infusion of MSCs either derived from bone marrow or adipose tissue was able to enhance renal reparative processes through significantly decreased serum creatinine, urea, TGF-β and CYS-C levels as well as UNAG level and significantly increase glomerular filtration rate. Additionally, the histopathological investigations of kidney tissues showed that MSCs have significant regenerative effects as evidenced by the decrease in focal inflammatory cells infiltration, focal interstitial nephritis and congested glomeruli as well as degenerated tubules. The current data provided distinct evidence about the favourable impact of AD-MSCs and BM-MSCs in attenuation of cyclosporine-induced nephropathy in rats through their ability to promote functional and structural kidney repair via transdifferentiation. © 2016 Asian Pacific Society of Nephrology.

  16. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea

    PubMed Central

    Jones, Daniel L.; Baxter, Bonnie K.

    2017-01-01

    Halophilic archaea push the limits of life at several extremes. In particular, they are noted for their biochemical strategies in dealing with osmotic stress, low water activity and cycles of desiccation in their hypersaline environments. Another feature common to their habitats is intense ultraviolet (UV) radiation, which is a challenge that microorganisms must overcome. The consequences of high UV exposure include DNA lesions arising directly from bond rearrangement of adjacent bipyrimidines, or indirectly from oxidative damage, which may ultimately result in mutation and cell death. As such, these microorganisms have evolved a number of strategies to navigate the threat of DNA damage, which we differentiate into two categories: DNA repair and photoprotection. Photoprotection encompasses damage avoidance strategies that serve as a “first line of defense,” and in halophilic archaea include pigmentation by carotenoids, mechanisms of oxidative damage avoidance, polyploidy, and genomic signatures that make DNA less susceptible to photodamage. Photolesions that do arise are addressed by a number of DNA repair mechanisms that halophilic archaea efficiently utilize, which include photoreactivation, nucleotide excision repair, base excision repair, and homologous recombination. This review seeks to place DNA damage, repair, and photoprotection in the context of halophilic archaea and the solar radiation of their hypersaline environments. We also provide new insight into the breadth of strategies and how they may work together to produce remarkable UV-resistance for these microorganisms. PMID:29033920

  17. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea.

    PubMed

    Jones, Daniel L; Baxter, Bonnie K

    2017-01-01

    Halophilic archaea push the limits of life at several extremes. In particular, they are noted for their biochemical strategies in dealing with osmotic stress, low water activity and cycles of desiccation in their hypersaline environments. Another feature common to their habitats is intense ultraviolet (UV) radiation, which is a challenge that microorganisms must overcome. The consequences of high UV exposure include DNA lesions arising directly from bond rearrangement of adjacent bipyrimidines, or indirectly from oxidative damage, which may ultimately result in mutation and cell death. As such, these microorganisms have evolved a number of strategies to navigate the threat of DNA damage, which we differentiate into two categories: DNA repair and photoprotection. Photoprotection encompasses damage avoidance strategies that serve as a "first line of defense," and in halophilic archaea include pigmentation by carotenoids, mechanisms of oxidative damage avoidance, polyploidy, and genomic signatures that make DNA less susceptible to photodamage. Photolesions that do arise are addressed by a number of DNA repair mechanisms that halophilic archaea efficiently utilize, which include photoreactivation, nucleotide excision repair, base excision repair, and homologous recombination. This review seeks to place DNA damage, repair, and photoprotection in the context of halophilic archaea and the solar radiation of their hypersaline environments. We also provide new insight into the breadth of strategies and how they may work together to produce remarkable UV-resistance for these microorganisms.

  18. Disruption or Excision of Provirus as an Approach to HIV Cure.

    PubMed

    Jerome, Keith R

    2016-12-01

    An effective approach to HIV cure will almost certainly require a combination of strategies, including some means of reducing the latent HIV reservoir. Because the integrated HIV provirus represents the major source of viral persistence and reactivation, one attractive approach is the direct targeting of provirus for disruption or excision using targeted endonucleases, such as CRISPR/Cas9, zinc finger nucleases, TAL effector nucleases, or meganucleases (homing endonucleases). This article highlights some of the challenges for successful endonuclease therapy for HIV, including optimization of enzyme activity and specificity, the possible emergence of viral resistance, and most importantly, efficient in vivo delivery of the enzymes to a sufficient portion of the latent reservoir.

  19. Co-expression of antioxidant enzymes with expression of p53, DNA repair, and heat shock protein genes in the gamma ray-irradiated hermaphroditic fish Kryptolebias marmoratus larvae.

    PubMed

    Rhee, Jae-Sung; Kim, Bo-Mi; Kim, Ryeo-Ok; Seo, Jung Soo; Kim, Il-Chan; Lee, Young-Mi; Lee, Jae-Seong

    2013-09-15

    To investigate effects of gamma ray irradiation in the hermaphroditic fish, Kryptolebias marmoratus larvae, we checked expression of p53, DNA repair, and heat shock protein genes with several antioxidant enzyme activities by quantitative real-time RT-PCR and biochemical methods in response to different doses of gamma radiation. As a result, the level of gamma radiation-induced DNA damage was initiated after 4Gy of radiation, and biochemical and molecular damage became substantial from 8Gy. In particular, several DNA repair mechanism-related genes were significantly modulated in the 6Gy gamma radiation-exposed fish larvae, suggesting that upregulation of such DNA repair genes was closely associated with cell survival after gamma irradiation. The mRNA expression of p53 and most hsps was also significantly upregulated at high doses of gamma radiation related to cellular damage. This finding indicates that gamma radiation can induce oxidative stress with associated antioxidant enzyme activities, and linked to modulation of the expression of DNA repair-related genes as one of the defense mechanisms against radiation damage. This study provides a better understanding of the molecular mode of action of defense mechanisms upon gamma radiation in fish larvae. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Evidence that the metabolite repair enzyme NAD(P)HX epimerase has a moonlighting function.

    PubMed

    Niehaus, Thomas D; Elbadawi-Sidhu, Mona; Huang, Lili; Prunetti, Laurence; Gregory, Jesse F; de Crécy-Lagard, Valérie; Fiehn, Oliver; Hanson, Andrew D

    2018-06-29

    NAD(P)H-hydrate epimerase (EC 5.1.99.6) is known to help repair NAD(P)H hydrates (NAD(P)HX), which are damage products existing as R and S epimers. The S epimer is reconverted to NAD(P)H by a dehydratase; the epimerase facilitates epimer interconversion. Epimerase deficiency in humans causes a lethal disorder attributed to NADHX accumulation. However, bioinformatic evidence suggest caution about this attribution by predicting that the epimerase has a second function connected to vitamin B 6 (pyridoxal 5'-phosphate and related compounds). Specifically, (i) the epimerase is fused to a B 6 salvage enzyme in plants, (ii) epimerase genes cluster on the chromosome with B 6 -related genes in bacteria, and (iii) epimerase and B 6 -related genes are coexpressed in yeast and Arabidopsis The predicted second function was explored in Escherichia coli , whose epimerase and dehydratase are fused and encoded by yjeF The putative NAD(P)HX epimerase active site has a conserved lysine residue (K192 in E. coli YjeF). Changing this residue to alanine cut in vitro epimerase activity by ≥95% but did not affect dehydratase activity. Mutant cells carrying the K192A mutation had essentially normal NAD(P)HX dehydratase activity and NAD(P)HX levels, showing that the mutation had little impact on NAD(P)HX repair in vivo However, these cells showed metabolome changes, particularly in amino acids, which exceeded those in cells lacking the entire yjeF gene. The K192A mutant cells also had reduced levels of 'free' (i.e. weakly bound or unbound) pyridoxal 5'-phosphate. These results provide circumstantial evidence that the epimerase has a metabolic function beyond NAD(P)HX repair and that this function involves vitamin B 6 . © 2018 The Author(s).

  1. Evidence that the metabolite repair enzyme NAD(P)HX epimerase has a moonlighting function

    PubMed Central

    Niehaus, Thomas D.; Elbadawi-Sidhu, Mona; Huang, Lili; Prunetti, Laurence; Gregory, Jesse F.; de Crécy-Lagard, Valérie; Fiehn, Oliver; Hanson, Andrew D.

    2018-01-01

    NAD(P)H-hydrate epimerase (EC 5.1.99.6) is known to help repair NAD(P)H hydrates (NAD(P)HX), which are damage products existing as R and S epimers. The S epimer is reconverted to NAD(P)H by a dehydratase; the epimerase facilitates epimer interconversion. Epimerase deficiency in humans causes a lethal disorder attributed to NADHX accumulation. However, bioinformatic evidence suggest caution about this attribution by predicting that the epimerase has a second function connected to vitamin B6 (pyridoxal 5′-phosphate and related compounds). Specifically, (i) the epimerase is fused to a B6 salvage enzyme in plants, (ii) epimerase genes cluster on the chromosome with B6-related genes in bacteria, and (iii) epimerase and B6-related genes are coexpressed in yeast and Arabidopsis. The predicted second function was explored in Escherichia coli, whose epimerase and dehydratase are fused and encoded by yjeF. The putative NAD(P)HX epimerase active site has a conserved lysine residue (K192 in E. coli YjeF). Changing this residue to alanine cut in vitro epimerase activity by ≥95% but did not affect dehydratase activity. Mutant cells carrying the K192A mutation had essentially normal NAD(P)HX dehydratase activity and NAD(P)HX levels, showing that the mutation had little impact on NAD(P)HX repair in vivo. However, these cells showed metabolome changes, particularly in amino acids, which exceeded those in cells lacking the entire yjeF gene. The K192A mutant cells also had reduced levels of ‘free’ (i.e. weakly bound or unbound) pyridoxal 5'-phosphate. These results provide circumstantial evidence that the epimerase has a metabolic function beyond NAD(P)HX repair and that this function involves vitamin B6. PMID:29654173

  2. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor.

    PubMed

    Roy, R; Adamczewski, J P; Seroz, T; Vermeulen, W; Tassan, J P; Schaeffer, L; Nigg, E A; Hoeijmakers, J H; Egly, J M

    1994-12-16

    A protein kinase activity that phosphorylates the C-terminal domain (CTD) of RNA polymerase II and is associated with the basal transcription-repair factor TFIIH (also called BTF2) resides with MO15, a cyclin-dependent protein kinase that was first found to be involved in cell cycle regulation. Using in vivo and in vitro repair assays, we show that MO15 is important for nucleotide excision repair, most likely through its association with TFIIH, thus providing an unexpected link among three important cellular mechanisms.

  3. DNA repair: a changing geography? (1964-2008).

    PubMed

    Maisonobe, Marion; Giglia-Mari, Giuseppina; Eckert, Denis

    2013-07-01

    This article aims to explain the current state of DNA Repair studies' global geography by focusing on the genesis of the community. Bibliometric data is used to localize scientific activities related to DNA Repair at the city level. The keyword "DNA Repair" was introduced first by American scientists. It started to spread after 1964 that is to say, after P. Howard-Flanders (Yale University), P. Hanawalt (Stanford University) and R. Setlow (Oak Ridge Laboratories) found evidence for Excision Repair mechanisms. It was the first stage in the emergence of an autonomous scientific community. In this article, we will try to assess to what extent the geo-history of this scientific field is determinant in understanding its current geography. In order to do so, we will localize the places where the first "DNA Repair" publications were signed fifty years ago and the following spatial diffusion process, which led to the current geography of the field. Then, we will focus on the evolution of the research activity of "early entrants" in relation to the activity of "latecomers". This article is an opportunity to share with DNA Repair scientists some research results of a dynamic field in Science studies: spatial scientometrics. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells.

    PubMed

    Lefevre, Sophie; Brossas, Caroline; Auchère, Françoise; Boggetto, Nicole; Camadro, Jean-Michel; Santos, Renata

    2012-09-15

    Frataxin deficiency results in mitochondrial dysfunction and oxidative stress and it is the cause of the hereditary neurodegenerative disease Friedreich ataxia (FA). Here, we present evidence that one of the pleiotropic effects of oxidative stress in frataxin-deficient yeast cells (Δyfh1 mutant) is damage to nuclear DNA and that repair requires the Apn1 AP-endonuclease of the base excision repair pathway. Major phenotypes of Δyfh1 cells are respiratory deficit, disturbed iron homeostasis and sensitivity to oxidants. These phenotypes are weak or absent under anaerobiosis. We show here that exposure of anaerobically grown Δyfh1 cells to oxygen leads to down-regulation of antioxidant defenses, increase in reactive oxygen species, delay in G1- and S-phases of the cell cycle and damage to mitochondrial and nuclear DNA. Nuclear DNA lesions in Δyfh1 cells are primarily caused by oxidized bases and single-strand breaks that can be detected 15-30 min after oxygen exposition. The Apn1 enzyme is essential for the repair of the DNA lesions in Δyfh1 cells. Compared with Δyfh1, the double Δyfh1Δapn1 mutant shows growth impairment, increased mutagenesis and extreme sensitivity to H(2)O(2). On the contrary, overexpression of the APN1 gene in Δyfh1 cells decreases spontaneous and induced mutagenesis. Our results show that frataxin deficiency in yeast cells leads to increased DNA base oxidation and requirement of Apn1 for repair, suggesting that DNA damage and repair could be important features in FA disease progression.

  5. Role of DNA repair enzymes in the cellular resistance to oxidative stress.

    PubMed

    Laval, J

    1996-01-01

    ) excise many oxidized pyrimidines, whereas the FPG protein (formamidopyrimidine-DNA-glycosylase) eliminates 8-oxoG and Fapy lesions. Besides its DNA glycosylase activity, the protein FPG has a beta-lyase activity incising DNA at abasic site by a beta-delta elimination mechanism, and a dRPase activity. The FPG protein has a zinc finger motive which is mandatory for the recognition of its substrate. Mammalian cells have similar DNA repair proteins and it should be emphazized that there is conservation of the different functions and in most cases a remarquable homology of the amino acids sequences from E. coli to man.

  6. The Human Ligase IIIα-XRCC1 Protein Complex Performs DNA Nick Repair after Transient Unwrapping of Nucleosomal DNA*

    PubMed Central

    Rashid, Ishtiaque; Tomkinson, Alan E.; Pederson, David S.

    2017-01-01

    Reactive oxygen species generate potentially cytotoxic and mutagenic lesions in DNA, both between and within the nucleosomes that package DNA in chromatin. The vast majority of these lesions are subject to base excision repair (BER). Enzymes that catalyze the first three steps in BER can act at many sites in nucleosomes without the aid of chromatin-remodeling agents and without irreversibly disrupting the host nucleosome. Here we show that the same is true for a protein complex comprising DNA ligase IIIα and the scaffolding protein X-ray repair cross-complementing protein 1 (XRCC1), which completes the fourth and final step in (short-patch) BER. Using in vitro assembled nucleosomes containing discretely positioned DNA nicks, our evidence indicates that the ligase IIIα-XRCC1 complex binds to DNA nicks in nucleosomes only when they are exposed by periodic, spontaneous partial unwrapping of DNA from the histone octamer; that the scaffolding protein XRCC1 enhances the ligation; that the ligation occurs within a complex that ligase IIIα-XRCC1 forms with the host nucleosome; and that the ligase IIIα-XRCC1-nucleosome complex decays when ligation is complete, allowing the host nucleosome to return to its native configuration. Taken together, our results illustrate ways in which dynamic properties intrinsic to nucleosomes may contribute to the discovery and efficient repair of base damage in chromatin. PMID:28184006

  7. Ultraviolet light-resistant primary transfectants of xeroderma pigmentosum cells are also DNA repair-proficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, M.; Naiman, T.; Canaani, D.

    1989-08-15

    In a previous work, an immortal xeroderma pigmentosum cell line belonging to complementation group C was complemented to a UV-resistant phenotype by transfection with a human cDNA clone library. We now report that the primary transformants selected for UV-resistance also acquired normal levels of DNA repair. This was assessed both by measurement of UV-induced ({sup 3}H)thymidine incorporation and by equilibrium sedimentation analysis of repair-DNA synthesis. Therefore, the transduced DNA element which confers normal UV-resistance also corrects the excision repair defect of the xeroderma pigmentosum group C cell line.

  8. Determination of human DNA polymerase utilization for the repair of a model ionizing radiation-induced DNA strand break lesion in a defined vector substrate

    NASA Technical Reports Server (NTRS)

    Winters, T. A.; Russell, P. S.; Kohli, M.; Dar, M. E.; Neumann, R. D.; Jorgensen, T. J.

    1999-01-01

    Human DNA polymerase and DNA ligase utilization for the repair of a major class of ionizing radiation-induced DNA lesion [DNA single-strand breaks containing 3'-phosphoglycolate (3'-PG)] was examined using a novel, chemically defined vector substrate containing a single, site-specific 3'-PG single-strand break lesion. In addition, the major human AP endonuclease, HAP1 (also known as APE1, APEX, Ref-1), was tested to determine if it was involved in initiating repair of 3'-PG-containing single-strand break lesions. DNA polymerase beta was found to be the primary polymerase responsible for nucleotide incorporation at the lesion site following excision of the 3'-PG blocking group. However, DNA polymerase delta/straightepsilon was also capable of nucleotide incorporation at the lesion site following 3'-PG excision. In addition, repair reactions catalyzed by DNA polymerase beta were found to be most effective in the presence of DNA ligase III, while those catalyzed by DNA polymerase delta/straightepsilon appeared to be more effective in the presence of DNA ligase I. Also, it was demonstrated that the repair initiating 3'-PG excision reaction was not dependent upon HAP1 activity, as judged by inhibition of HAP1 with neutralizing HAP1-specific polyclonal antibody.

  9. Correction of xeroderma pigmentosum complementation group D mutant cell phenotypes by chromosome and gene transfer: Involvement of the human ERCC2 DNA repair gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flejter, W.L.; McDaniel, L.D.; Johns, D.

    1992-01-01

    Cultured cells from individuals afflicted with the genetically heterogeneous autosomal recessive disorder xeroderma pigmentosum (XP) exhibit sensitivity to UV radiation and defective nucleotide excision repair. Complementation of these mutant phenotypes after the introduction of single human chromosomes from repair-proficient cells into XP cells has provided a means of mapping the genes involved in this disease. The authors now report the phenotypic correction of XP cells from genetic complementation group D (XP-D) by a single human chromosome designated Tneo. Detailed molecular characterization of Tneo revealed a rearranged structure involving human chromosomes 16 and 19, including the excision repair cross-complementing 2 (ERCC2)more » gene from the previously described human DNA repair gene cluster at 19q13.2-q13.3. Direct transfer of a cosmid bearing the ERCC2 gene conferred UV resistance to XP-D cells.« less

  10. The production and repair of aflatoxin B sub 1 -induced DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leadon, S.A.

    To investigate the influence of function or activity of a DNA sequence on its repair, we have studied excision repair of aflatoxin B{sub 1} (AFB{sub 1})-induced damage in the nontranscribed, heterochromatic alpha DNA of monkey cells and in the metallothionein genes of human cells. In confluent cells, AFB{sub 1} adducts are produced in similar frequencies in alpha and in the rest of the DNA, but removal from alpha DNA is severely deficient, however, removal of AFB{sub 1} adducts from alpha DNA is enhanced by small doses of UV. The repair deficiencies are not observed in actively growing cells. We havemore » also shown that there is preferential repair of AFB{sub 1} damage in active genes. AFB{sub 1} damage is efficiently repaired in the active human metallothionein (hMT) genes, but deficiently repaired in inactive hMT genes. 51 refs., 3 tabs.« less

  11. Expression of DNA repair genes in burned skin exposed to low-level red laser.

    PubMed

    Trajano, Eduardo Tavares Lima; Mencalha, Andre Luiz; Monte-Alto-Costa, Andréa; Pôrto, Luís Cristóvão; de Souza da Fonseca, Adenilson

    2014-11-01

    Although red laser lights lie in the region of non-ionizing radiations in the electromagnetic spectrum, there are doubts whether absorption of these radiations causes lesions in the DNA molecule. Our aim was to investigate the expression of the genes involved with base excision and nucleotide excision repair pathways in skin tissue submitted to burn injury and exposed to low-level red laser. Wistar rats were divided as follows: control group-rats burned and not irradiated, laser group-rats burned and irradiated 1 day after injury for five consecutive days, and later laser group-rats injured and treated 4 days after injury for five consecutive days. Irradiation was performed according to a clinical protocol (20 J/cm(2), 100 mW, continuous wave emission mode). The animals were sacrificed on day 10, and scarred tissue samples were withdrawn for total RNA extraction, complementary DNA (cDNA) synthesis, and evaluation of gene expression by quantitative polymerase chain reaction. Low-level red laser exposure (1) reduces the expression of APE1 messenger (mRNA), (2) increases the expression of OGG1 mRNA, (3) reduces the expression of XPC mRNA, and (4) increases the expression of XPA mRNA both in laser and later laser groups. Red laser exposure at therapeutic fluences alters the expression of genes related to base excision and nucleotide excision pathways of DNA repair during wound healing of burned skin.

  12. Replication fork collapse is a major cause of the high mutation frequency at three-base lesion clusters

    PubMed Central

    Sedletska, Yuliya; Radicella, J. Pablo; Sage, Evelyne

    2013-01-01

    Unresolved repair of clustered DNA lesions can lead to the formation of deleterious double strand breaks (DSB) or to mutation induction. Here, we investigated the outcome of clusters composed of base lesions for which base excision repair enzymes have different kinetics of excision/incision. We designed multiply damaged sites (MDS) composed of a rapidly excised uracil (U) and two oxidized bases, 5-hydroxyuracil (hU) and 8-oxoguanine (oG), excised more slowly. Plasmids harboring these U-oG/hU MDS-carrying duplexes were introduced into Escherichia coli cells either wild type or deficient for DNA n-glycosylases. Induction of DSB was estimated from plasmid survival and mutagenesis determined by sequencing of surviving clones. We show that a large majority of MDS is converted to DSB, whereas almost all surviving clones are mutated at hU. We demonstrate that mutagenesis at hU is correlated with excision of the U placed on the opposite strand. We propose that excision of U by Ung initiates the loss of U-oG-carrying strand, resulting in enhanced mutagenesis at the lesion present on the opposite strand. Our results highlight the importance of the kinetics of excision by base excision repair DNA n-glycosylases in the processing and fate of MDS and provide evidence for the role of strand loss/replication fork collapse during the processing of MDS on their mutational consequences. PMID:23945941

  13. Human cells contain a factor that facilitates the DNA glycosylase-mediated excision of oxidized bases from occluded sites in nucleosomes.

    PubMed

    Maher, R L; Marsden, C G; Averill, A M; Wallace, S S; Sweasy, J B; Pederson, D S

    2017-09-01

    Reactive oxygen species generate some 20,000 base lesions per human cell per day. The vast majority of these potentially mutagenic or cytotoxic lesions are subject to base excision repair (BER). Although chromatin remodelers have been shown to enhance the excision of oxidized bases from nucleosomes in vitro, it is not clear that they are recruited to and act at sites of BER in vivo. To test the hypothesis that cells possess factors that enhance BER in chromatin, we assessed the capacity of nuclear extracts from human cells to excise thymine glycol (Tg) lesions from exogenously added, model nucleosomes. The DNA glycosylase NTHL1 in these extracts was able to excise Tg from both naked DNA and sites in nucleosomes that earlier studies had shown to be sterically accessible. However, the same extracts were able to excise lesions from sterically-occluded sites in nucleosomes only after the addition of Mg 2+ /ATP. Gel mobility shift assays indicated that nucleosomes remain largely intact following the Mg 2+ /ATP -dependent excision reaction. Size exclusion chromatography indicated that the NTHL1-stimulating activity has a relatively low molecular weight, close to that of NTHL1 and other BER glycosylases; column fractions that contained the very large chromatin remodeling complexes did not exhibit this same stimulatory activity. These results indicate that cells possess a factor(s) that promotes the initiation of BER in chromatin, but differs from most known chromatin remodeling complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Genetic polymorphisms in 85 DNA repair genes and bladder cancer risk.

    PubMed

    Michiels, Stefan; Laplanche, Agnès; Boulet, Thomas; Dessen, Philippe; Guillonneau, Bertrand; Méjean, Arnaud; Desgrandchamps, François; Lathrop, Mark; Sarasin, Alain; Benhamou, Simone

    2009-05-01

    Several defense mechanisms have been developed and maintained during the evolution to protect human cells against damage produced from exogenous or endogenous sources. We examined the associations between bladder cancer and a panel of 652 polymorphisms from 85 genes involved in maintenance of genetic stability [base excision repair, nucleotide excision repair, double-strand break repair (DSBR) and mismatch repair, as well as DNA synthesis and cell cycle regulation pathways] in 201 incident bladder cancer cases and 326 hospital controls. Score statistics were used to test differences in haplotype frequencies between cases and controls in an unconditional logistic regression model. To account for multiple testing, we associated to each P-value the expected proportion of false discoveries (q-value). Haplotype analysis revealed significant associations (P < 0.01) between bladder cancer and two genes (POLB and FANCA) with an associated q-value of 24%. A permutation test was also used to determine whether, in each pathway analyzed, there are more variants whose allelic frequencies are different between cases and controls as compared with what would be expected by chance. Differences were found for cell cycle regulation (P = 0.02) and to a lesser extent for DSBR (P = 0.05) pathways. These results hint to a few potential candidate genes; however, our study was limited by the small sample size and therefore low statistical power to detect associations. It is anticipated that genome-wide association studies will open new perspectives for interpretation of the results of extensive candidate gene studies such as ours.

  15. DNA Damage and Repair in Human Cancer: Molecular Mechanisms and Contribution to Therapy-Related Leukemias

    PubMed Central

    Casorelli, Ida; Bossa, Cecilia; Bignami, Margherita

    2012-01-01

    Most antitumour therapies damage tumour cell DNA either directly or indirectly. Without repair, damage can result in genetic instability and eventually cancer. The strong association between the lack of DNA damage repair, mutations and cancer is dramatically demonstrated by a number of cancer-prone human syndromes, such as xeroderma pigmentosum, ataxia-telangiectasia and Fanconi anemia. Notably, DNA damage responses, and particularly DNA repair, influence the outcome of therapy. Because DNA repair normally excises lethal DNA lesions, it is intuitive that efficient repair will contribute to intrinsic drug resistance. Unexpectedly, a paradoxical relationship between DNA mismatch repair and drug sensitivity has been revealed by model studies in cell lines. This suggests that connections between DNA repair mechanism efficiency and tumour therapy might be more complex. Here, we review the evidence for the contribution of carcinogenic properties of several drugs as well as of alterations in specific mechanisms involved in drug-induced DNA damage response and repair in the pathogenesis of therapy-related cancers. PMID:23066388

  16. Mitochondrial targeting of the human peptide methionine sulfoxide reductase (MSRA), an enzyme involved in the repair of oxidized proteins.

    PubMed

    Hansel, Alfred; Kuschel, Lioba; Hehl, Solveig; Lemke, Cornelius; Agricola, Hans-Jürgen; Hoshi, Toshinori; Heinemann, Stefan H

    2002-06-01

    Peptide methionine sulfoxide reductase (MSRA) catalyzes the reduction of methionine sulfoxide to methionine. This widely expressed enzyme constitutes an important repair mechanism for oxidatively damaged proteins, which accumulate during the manifestation of certain degenerative diseases and aging processes. In addition, it is discussed to be involved in regulatory processes. Here we address the question of how the enzyme's diverse functions are reflected in its subcellular localization. Using fusions of the human version of MSRA with the enhanced green fluorescence protein expressed in various mammalian cell lines, we show a distinct localization at mitochondria. The N-terminal 23 amino acid residues contain the signal for this mitochondrial targeting. Activity tests showed that they are not required for enzyme function. Mitochondrial localization of native MSRA in mouse and rat liver slices was verified with an MSRA-specific antibody by using immunohistochemical methods. The protein was located in the mitochondrial matrix, as demonstrated by using pre-embedding immunostaining and electron microscopy. Mitochondria are the major source of reactive oxygen species (ROS). Therefore, MSRA has to be considered an important means for the general reduction of ROS release from mitochondria.

  17. Correction of xeroderma pigmentosum repair defect by basal transcription factor BTF2 (TFIIH).

    PubMed Central

    van Vuuren, A J; Vermeulen, W; Ma, L; Weeda, G; Appeldoorn, E; Jaspers, N G; van der Eb, A J; Bootsma, D; Hoeijmakers, J H; Humbert, S

    1994-01-01

    ERCC3 was initially identified as a gene correcting the nucleotide excision repair (NER) defect of xeroderma pigmentosum complementation group B (XP-B). The recent finding that its gene product is identical to the p89 subunit of basal transcription factor BTF2(TFIIH), opened the possibility that it is not directly involved in NER but that it regulates the transcription of one or more NER genes. Using an in vivo microinjection repair assay and an in vitro NER system based on cell-free extracts we demonstrate that ERCC3 in BTF2 is directly implicated in excision repair. Antibody depletion experiments support the idea that the p62 BTF2 subunit and perhaps the entire transcription factor function in NER. Microinjection experiments suggest that exogenous ERCC3 can exchange with ERCC3 subunits in the complex. Expression of a dominant negative K436-->R ERCC3 mutant, expected to have lost all helicase activity, completely abrogates NER and transcription and concomitantly induces a dramatic chromatin collapse. These findings establish the role of ERCC3 and probably the entire BTF2 complex in transcription in vivo which was hitherto only demonstrated in vitro. The results strongly suggest that transcription itself is a critical component for maintenance of chromatin structure. The remarkable dual role of ERCC3 in NER and transcription provides a clue in understanding the complex clinical features of some inherited repair syndromes. Images PMID:8157004

  18. Mohs micrographic surgery vs traditional surgical excision: a cost comparison analysis.

    PubMed

    Bialy, Tracy L; Whalen, James; Veledar, Emir; Lafreniere, Denis; Spiro, Jeffrey; Chartier, Timothy; Chen, Suephy C

    2004-06-01

    To compare the cost and margin adequacy of Mohs micrographic surgery (Mohs) and traditional surgical excision (TSE) for the treatment of facial and auricular nonmelanoma skin cancer (NMSC). Prospective cost analysis with each patient serving as his or her own control. Study was performed from 1999 to 2001 at the University of Connecticut dermatology clinic, a tertiary care referral center. A total of 98 consecutive patients with a primary diagnosis of NMSC on the face and ears. The average cost of Mohs and TSE per patient for the treatment and repair of NMSC; adequacy of TSE margins after the initial procedure(because this outcome affects overall cost). Mohs was cost comparable to TSE when the subsequent procedure for inadequate TSE margins after permanent section was Mohs (937 vs 1029 US dollars; P =.16) or a subsequent TSE (937 vs 944 US dollars; P =.53). When facility-based frozen sections were requested for TSE, Mohs was significantly less costly (956 vs 1399 US dollars; P<.001). The cost difference between Mohs and TSE was sensitive to the type of repair chosen. If the end point is clear margins, Mohs is cost comparable to TSE performed by otolaryngologic surgeons. Some caution is needed when evaluating the cost of facial and auricular NMSC treatment because the choice of repair can significantly affect the cost conclusions.

  19. Platinum sensitivity and DNA repair in a recently established panel of patient-derived ovarian carcinoma xenografts

    PubMed Central

    Guffanti, Federica; Fratelli, Maddalena; Ganzinelli, Monica; Bolis, Marco; Ricci, Francesca; Bizzaro, Francesca; Chilà, Rosaria; Sina, Federica Paola; Fruscio, Robert; Lupia, Michela; Cavallaro, Ugo; Cappelletti, Maria Rosa; Generali, Daniele; Giavazzi, Raffaella; Damia, Giovanna

    2018-01-01

    A xenobank of patient-derived (PDX) ovarian tumor samples has been established consisting of tumors with different sensitivity to cisplatin (DDP), from very responsive to resistant. As the DNA repair pathway is an important driver in tumor response to DDP, we analyzed the mRNA expression of 20 genes involved in the nucleotide excision repair, fanconi anemia, homologous recombination, base excision repair, mismatch repair and translesion repair pathways and the methylation patterns of some of these genes. We also investigated the correlation with the response to platinum-based therapy. The mRNA levels of the selected genes were evaluated by Real Time-PCR (RT-PCR) with ad hoc validated primers and gene promoter methylation by pyrosequencing. All the DNA repair genes were variably expressed in all 42 PDX samples analyzed, with no particular histotype-specific pattern of expression. In high-grade serous/endometrioid PDXs, the CDK12 mRNA expression levels positively correlated with the expression of TP53BP1, PALB2, XPF and POLB. High-grade serous/endometrioid PDXs with TP53 mutations had significantly higher levels of POLQ, FANCD2, RAD51 and POLB than high-grade TP53 wild type PDXs. The mRNA levels of CDK12, PALB2 and XPF inversely associated with the in vivo DDP antitumor activity; higher CDK12 mRNA levels were associated with a higher recurrence rate in ovarian patients with low residual tumor. These data support the important role of CDK12 in the response to a platinum based therapy in ovarian patients. PMID:29872499

  20. DNA Repair and the Evolution of Transformation in Bacillus Subtilis. II. Role of Inducible Repair

    PubMed Central

    Wojciechowski, M. F.; Hoelzer, M. A.; Michod, R. E.

    1989-01-01

    In Bacillus subtilis, DNA repair and recombination are intimately associated with competence, the physiological state in which the bacterium can bind, take up and recombine exogenous DNA. Previously, we have shown that the homologous DNA transformation rate (ratio of transformants to total cells) increases with increasing UV dosage if cells are transformed after exposure to UV radiation (UV-DNA), whereas the transformation rate decreases if cells are transformed before exposure to UV (DNA-UV). In this report, by using different DNA repair-deficient mutants, we show that the greater increase in transformation rate in UV-DNA experiments than in DNA-UV experiments does not depend upon excision repair or inducible SOS-like repair, although certain quantitative aspects of the response do depend upon these repair systems. We also show that there is no increase in the transformation rate in a UV-DNA experiment when repair and recombination proficient cells are transformed with nonhomologous plasmid DNA, although the results in a DNA-UV experiment are essentially unchanged by using plasmid DNA. We have used din operon fusions as a sensitive means of assaying for the expression of genes under the control of the SOS-like regulon in both competent and noncompetent cell subpopulations as a consequence of competence development and our subsequent experimental treatments. Results indicate that the SOS-like system is induced in both competent and noncompetent subpopulations in our treatments and so should not be a major factor in the differential response in transformation rate observed in UV-DNA and DNA-UV treatments. These results provide further support to the hypothesis that the evolutionary function of competence is to bring DNA into the cell for use as template in the repair of DNA damage. PMID:2497048

  1. Cyclosporin A inhibits nucleotide excision repair via downregulation of the xeroderma pigmentosum group A and G proteins, which is mediated by calcineurin inhibition.

    PubMed

    Kuschal, Christiane; Thoms, Kai-Martin; Boeckmann, Lars; Laspe, Petra; Apel, Antje; Schön, Michael P; Emmert, Steffen

    2011-10-01

    Cyclosporin A (CsA) inhibits nucleotide excision repair (NER) in human cells, a process that contributes to the skin cancer proneness in organ transplant patients. We investigated the mechanisms of CsA-induced NER reduction by assessing all xeroderma pigmentosum (XP) genes (XPA-XPG). Western blot analyses revealed that XPA and XPG protein expression was reduced in normal human GM00637 fibroblasts exposed to 0.1 and 0.5 μm CsA. Interestingly, the CsA treatment reduced XPG, but not XPA, mRNA expression. Calcineurin knockdown in GM00637 fibroblasts using RNAi led to similar results suggesting that calcineurin-dependent signalling is involved in XPA and XPG protein regulation. CsA-induced reduction in NER could be complemented by the overexpression of either XPA or XPG protein. Likewise, XPA-deficient fibroblasts with stable overexpression of XPA (XP2OS-pCAH19WS) did not show the inhibitory effect of CsA on NER. In contrast, XPC-deficient fibroblasts overexpressing XPC showed CsA-reduced NER. Our data indicate that the CsA-induced inhibition of NER is a result of downregulation of XPA and XPG protein in a calcineurin-dependent manner. © 2011 John Wiley & Sons A/S.

  2. Physiological Function of Rac Prophage During Biofilm Formation and Regulation of Rac Excision in Escherichia coli K-12.

    PubMed

    Liu, Xiaoxiao; Li, Yangmei; Guo, Yunxue; Zeng, Zhenshun; Li, Baiyuan; Wood, Thomas K; Cai, Xingsheng; Wang, Xiaoxue

    2015-11-04

    Rac or rac-like prophage harbors many genes with important physiological functions, while it remains excision-proficient in several bacterial strains including Escherichia coli, Salmonella spp. and Shigella spp. Here, we found that rac excision is induced during biofilm formation, and the isogenic stain without rac is more motile and forms more biofilms in nutrient-rich medium at early stages in E. coli K-12. Additionally, the presence of rac genes increases cell lysis during biofilm development. In most E. coli strains, rac is integrated into the ttcA gene which encodes a tRNA-thioltransferase. Rac excision in E. coli K-12 leads to a functional change of TtcA, which results in reduced fitness in the presence of carbenicillin. Additionally, we demonstrate that YdaQ (renamed as XisR) is the excisionase of rac in E. coli K-12, and that rac excision is induced by the stationary sigma factor RpoS through inducing xisR expression. Taken together, our results reveal that upon rac integration, not only are new genes introduced into the host, but also there is a functional change in a host enzyme. Hence, rac excision is tightly regulated by host factors to control its stability in the host genome under different stress conditions.

  3. Physiological Function of Rac Prophage During Biofilm Formation and Regulation of Rac Excision in Escherichia coli K-12

    PubMed Central

    Liu, Xiaoxiao; Li, Yangmei; Guo, Yunxue; Zeng, Zhenshun; Li, Baiyuan; Wood, Thomas K.; Cai, Xingsheng; Wang, Xiaoxue

    2015-01-01

    Rac or rac-like prophage harbors many genes with important physiological functions, while it remains excision-proficient in several bacterial strains including Escherichia coli, Salmonella spp. and Shigella spp. Here, we found that rac excision is induced during biofilm formation, and the isogenic stain without rac is more motile and forms more biofilms in nutrient-rich medium at early stages in E. coli K-12. Additionally, the presence of rac genes increases cell lysis during biofilm development. In most E. coli strains, rac is integrated into the ttcA gene which encodes a tRNA-thioltransferase. Rac excision in E. coli K-12 leads to a functional change of TtcA, which results in reduced fitness in the presence of carbenicillin. Additionally, we demonstrate that YdaQ (renamed as XisR) is the excisionase of rac in E. coli K-12, and that rac excision is induced by the stationary sigma factor RpoS through inducing xisR expression. Taken together, our results reveal that upon rac integration, not only are new genes introduced into the host, but also there is a functional change in a host enzyme. Hence, rac excision is tightly regulated by host factors to control its stability in the host genome under different stress conditions. PMID:26530864

  4. Impact of DNA repair on the dose-response of colorectal cancer formation induced by dietary carcinogens.

    PubMed

    Fahrer, Jörg; Kaina, Bernd

    2017-08-01

    Colorectal cancer (CRC) is one of the most frequently diagnosed cancers, which is causally linked to dietary habits, notably the intake of processed and red meat. Processed and red meat contain dietary carcinogens, including heterocyclic aromatic amines (HCAs) and N-nitroso compounds (NOC). NOC are agents that induce various N-methylated DNA adducts and O 6 -methylguanine (O 6 -MeG), which are removed by base excision repair (BER) and O 6 -methylguanine-DNA methyltransferase (MGMT), respectively. HCAs such as the highly mutagenic 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) cause bulky DNA adducts, which are removed from DNA by nucleotide excision repair (NER). Both O 6 -MeG and HCA-induced DNA adducts are linked to the occurrence of KRAS and APC mutations in colorectal tumors of rodents and humans, thereby driving CRC initiation and progression. In this review, we focus on DNA repair pathways removing DNA lesions induced by NOC and HCA and assess their role in protecting against mutagenicity and carcinogenicity in the large intestine. We further discuss the impact of DNA repair on the dose-response relationship in colorectal carcinogenesis in view of recent studies, demonstrating the existence of 'no effect' point of departures (PoDs), i.e. thresholds for genotoxicity and carcinogenicity. The available data support the threshold concept for NOC with DNA repair being causally involved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Two sides of the same coin: TFIIH complexes in transcription and DNA repair.

    PubMed

    Zhovmer, Alexander; Oksenych, Valentyn; Coin, Frédéric

    2010-04-13

    TFIIH is organized into a seven-subunit core associated with a three-subunit Cdk-activating kinase (CAK) module. TFIIH has roles in both transcription initiation and DNA repair. During the last 15 years, several studies have been conducted to identify the composition of the TFIIH complex involved in DNA repair. Recently, a new technique combining chromatin immunoprecipitation and western blotting resolved the hidden nature of the TFIIH complex participating in DNA repair. Following the recruitment of TFIIH to the damaged site, the CAK module is released from the core TFIIH, and the core subsequently associates with DNA repair factors. The release of the CAK is specifically driven by the recruitment of the DNA repair factor XPA and is required to promote the incision/excision of the damaged DNA. Once the DNA lesions have been repaired, the CAK module returns to the core TFIIH on the chromatin, together with the release of the repair factors. These data highlight the dynamic composition of a fundamental cellular factor that adapts its subunit composition to the cell needs.

  6. Alar base reduction: the boomerang-shaped excision.

    PubMed

    Foda, Hossam M T

    2011-04-01

    A boomerang-shaped alar base excision is described to narrow the nasal base and correct the excessive alar flare. The boomerang excision combined the external alar wedge resection with an internal vestibular floor excision. The internal excision was inclined 30 to 45 degrees laterally to form the inner limb of the boomerang. The study included 46 patients presenting with wide nasal base and excessive alar flaring. All cases were followed for a mean period of 18 months (range, 8 to 36 months). The laterally oriented vestibular floor excision allowed for maximum preservation of the natural curvature of the alar rim where it meets the nostril floor and upon its closure resulted in a considerable medialization of alar lobule, which significantly reduced the amount of alar flare and the amount of external alar excision needed. This external alar excision measured, on average, 3.8 mm (range, 2 to 8 mm), which is significantly less than that needed when a standard vertical internal excision was used ( P < 0.0001). Such conservative external excisions eliminated the risk of obliterating the natural alar-facial crease, which did not occur in any of our cases. No cases of postoperative bleeding, infection, or vestibular stenosis were encountered. Keloid or hypertrophic scar formation was not encountered; however, dermabrasion of the scars was needed in three (6.5%) cases to eliminate apparent suture track marks. The boomerang alar base excision proved to be a safe and effective technique for narrowing the nasal base and elimination of the excessive flaring and resulted in a natural, well-proportioned nasal base with no obvious scarring. © Thieme Medical Publishers.

  7. NAD(P)H-hydrate dehydratase- a metabolic repair enzyme and its role in Bacillus subtilis stress adaptation.

    PubMed

    Petrovova, Miroslava; Tkadlec, Jan; Dvoracek, Lukas; Streitova, Eliska; Licha, Irena

    2014-01-01

    One of the strategies for survival stress conditions in bacteria is a regulatory adaptive system called general stress response (GSR), which is dependent on the SigB transcription factor in Bacillus sp. The GSR is one of the largest regulon in Bacillus sp., including about 100 genes; however, most of the genes that show changes in expression during various stresses have not yet been characterized or assigned a biochemical function for the encoded proteins. Previously, we characterized the Bacillus subtilis168 osmosensitive mutant, defective in the yxkO gene (encoding a putative ribokinase), which was recently assigned in vitro as an ADP/ATP-dependent NAD(P)H-hydrate dehydratase and was demonstrated to belong to the SigB operon. We show the impact of YxkO on the activity of SigB-dependent Pctc promoter and adaptation to osmotic and ethanol stress and potassium limitation respectively. Using a 2DE approach, we compare the proteomes of WT and mutant strains grown under conditions of osmotic and ethanol stress. Both stresses led to changes in the protein level of enzymes that are involved in motility (flagellin), citrate cycle (isocitrate dehydrogenase, malate dehydrogenase), glycolysis (phosphoglycerate kinase), and decomposition of Amadori products (fructosamine-6-phosphate deglycase). Glutamine synthetase revealed a different pattern after osmotic stress. The patterns of enzymes for branched amino acid metabolism and cell wall synthesis (L-alanine dehydrogenase, aspartate-semialdehyde dehydrogenase, ketol-acid reductoisomerase) were altered after ethanol stress. We performed the first characterization of a Bacillus subtilis168 knock-out mutant in the yxkO gene that encodes a metabolite repair enzyme. We show that such enzymes could play a significant role in the survival of stressed cells.

  8. Detection of damaged DNA bases by DNA glycosylase enzymes.

    PubMed

    Friedman, Joshua I; Stivers, James T

    2010-06-22

    A fundamental and shared process in all forms of life is the use of DNA glycosylase enzymes to excise rare damaged bases from genomic DNA. Without such enzymes, the highly ordered primary sequences of genes would rapidly deteriorate. Recent structural and biophysical studies are beginning to reveal a fascinating multistep mechanism for damaged base detection that begins with short-range sliding of the glycosylase along the DNA chain in a distinct conformation we call the search complex (SC). Sliding is frequently punctuated by the formation of a transient "interrogation" complex (IC) where the enzyme extrahelically inspects both normal and damaged bases in an exosite pocket that is distant from the active site. When normal bases are presented in the exosite, the IC rapidly collapses back to the SC, while a damaged base will efficiently partition forward into the active site to form the catalytically competent excision complex (EC). Here we review the unique problems associated with enzymatic detection of rare damaged DNA bases in the genome and emphasize how each complex must have specific dynamic properties that are tuned to optimize the rate and efficiency of damage site location.

  9. Meiotic DNA Metabolism in Wild-Type and Excision-Deficient Yeast following Uv Exposure

    PubMed Central

    Resnick, Michael A.; Stasiewicz, Stanley; Game, John C.

    1983-01-01

    The effects of UV irradiation on DNA metabolism during meiosis have been examined in wild-type (RAD+) and mitotically defined excision-defective (rad1-1) strains of Saccharomyces cerevisiae that exhibit high levels of sporulation. The rad1-1 gene product is not required for normal meiosis: DNA synthesis, RNA synthesis, size of parental and newly synthesized DNA and sporulation are comparable in RAD+ and rad1-1 strains. Cells were UV irradiated at the beginning of meiosis, and the fate of UV-induced pyrimidine dimers as well as changes in DNA and DNA synthesis were followed during meiosis. Excision repair of pyrimidine dimers can occur during meiosis and the RAD1 gene product is required; alternate excision pathways do not exist. Although the rate of elongation is decreased, the presence of pyrimidine dimers during meiosis in the rad1-1 strain does not block meiotic DNA synthesis suggesting a bypass mechanism. The final size of DNA is about five times the distance between pyrimidine dimers after exposure to 4 J/m2. Since pyrimidine dimers induced in parental strands of rad1-1 prior to premeiotic DNA synthesis do not become associated with newly synthesized DNA, the mechanism for replicational bypass does not appear to involve a recombinational process. The absence of such association indicates that normal meiotic recombination is also suppressed by UV-induced damage in DNA; this result at the molecular level is supported by observations at the genetic level. PMID:6352404

  10. Xeroderma pigmentosum and other diseases of human premature aging and DNA repair: Molecules to patients

    PubMed Central

    Niedernhofer, Laura J.; Bohr, Vilhelm A.; Sander, Miriam; Kraemer, Kenneth H.

    2012-01-01

    A workshop1 to share, consider and discuss the latest developments in understanding xeroderma pigmentosum and other human diseases caused by defects in nucleotide excision repair (NER) of DNA damage was held on September 21–24, 2010 in Virginia. It was attended by approximately 100 researchers and clinicians, as well as several patients and representatives of patient support groups. This was the third in a series of workshops with similar design and goals: to emphasize discussion and interaction among participants as well as open exchange of information and ideas. The participation of patients, their parents and physicians was an important feature of this and the preceding two workshops. Topics discussed included the natural history and clinical features of the diseases, clinical and laboratory diagnosis of these rare diseases, therapeutic strategies, mouse models of neurodegeneration, molecular analysis of accelerated aging, impact of transcriptional defects and mitochondrial dysfunction on neurodegeneration, and biochemical insights into mechanisms of NER and base excision repair. PMID:21708183

  11. The contribution of Nth and Nei DNA glycosylases to mutagenesis in Mycobacterium smegmatis.

    PubMed

    Moolla, Nabiela; Goosens, Vivianne J; Kana, Bavesh D; Gordhan, Bhavna G

    2014-01-01

    The increased prevalence of drug resistant strains of Mycobacterium tuberculosis (Mtb) indicates that significant mutagenesis occurs during tuberculosis disease in humans. DNA damage by host-derived reactive oxygen/nitrogen species is hypothesized to be critical for the mutagenic process in Mtb thus, highlighting an important role for DNA repair enzymes in maintenance of genome fidelity. Formamidopyrimidine (Fpg/MutM/Fapy) and EndonucleaseVIII (Nei) constitute the Fpg/Nei family of DNA glycosylases and together with EndonucleaseIII (Nth) are central to the base excision repair pathway in bacteria. In this study we assess the contribution of Nei and Nth DNA repair enzymes in Mycobacterium smegmatis (Msm), which retains a single nth homologue and duplications of the Fpg (fpg1 and fpg2) and Nei (nei1 and nei2) homologues. Using an Escherichia coli nth deletion mutant, we confirm the functionality of the mycobacterial nth gene in the base excision repair pathway. Msm mutants lacking nei1, nei2 and nth individually or in combination did not display aberrant growth in broth culture. Deletion of nth individually results in increased UV-induced mutagenesis and combinatorial deletion with the nei homologues results in reduced survival under oxidative stress conditions and an increase in spontaneous mutagenesis to rifampicin. Deletion of nth together with the fpg homolgues did not result in any growth/survival defects or changes in mutation rate. Furthermore, no differential emergence of the common rifampicin resistance conferring genotypes were noted. Collectively, these data confirm a role for Nth in base excision repair in mycobacteria and further highlight a novel interplay between the Nth and Nei homologues in spontaneous mutagenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Interplay of DNA repair with transcription: from structures to mechanisms.

    PubMed

    Deaconescu, Alexandra M; Artsimovitch, Irina; Grigorieff, Nikolaus

    2012-12-01

    Many DNA transactions are crucial for maintaining genomic integrity and faithful transfer of genetic information but remain poorly understood. An example is the interplay between nucleotide excision repair (NER) and transcription, also known as transcription-coupled DNA repair (TCR). Discovered decades ago, the mechanisms for TCR have remained elusive, not in small part due to the scarcity of structural studies of key players. Here we summarize recent structural information on NER/TCR factors, focusing on bacterial systems, and integrate it with existing genetic, biochemical, and biophysical data to delineate the mechanisms at play. We also review emerging, alternative modalities for recruitment of NER proteins to DNA lesions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Maintaining Genetic Integrity Under Extreme Conditions: Novel DNA Damage Repair Biology in the Archaea

    DTIC Science & Technology

    2013-11-23

    Genetic analysis of Nre DNA repair function A4 Conclusions B. Widening the net in the search for new DNA-directed enzyme activities C. New tools for H...Figure 1) were hypothesised to be novel DNA repair enzymes . The stated aims of the proposal were to use a combination of genetic, biochemical and...in E.coli Almost all proteins that interact directly with PCNA are enzymes possessing DNA-directed activities such as nucleases, glycosylases

  14. Surgical excision of skin cancer: the importance of training.

    PubMed

    Salmon, P; Mortimer, N; Rademaker, M; Adams, L; Stanway, A; Hill, S

    2010-01-01

    Background Skin cancers are the most common malignancy in New Zealand and their treatment imparts a huge burden on the healthcare system both in terms of the cost of surgical intervention and in treatment delivery (estimates are in excess of NZ$33 million per annum for the year 2000). Currently in New Zealand, skin cancers are excised by dermatologists, general practitioners (GPs), GPs with a special interest in skin surgery (GPSIs) and specialist surgeons with diverse training backgrounds including ear, nose and throat, ophthalmic and general surgeons. To date there is scant literature evaluating complete excision rates following surgical treatment of skin cancer between these vocational groups. Objectives To review retrospectively pathology reports from all skin excisions sent to one private pathology laboratory over three consecutive months. The aim was to investigate the margins of excision and completeness of skin cancer surgery performed by each vocational group. Methods A retrospective analysis of skin pathology reports was undertaken for a 3-month period between April and June 2007. Raw data obtained from the pathology reports included diagnosis, completeness of excision, size of specimens, body site and vocational group of the medical practitioner performing the surgery. Results In total, 1532 lesions were excised: 432 benign and 1100 malignant. Six hundred and seven were from the head and neck. Dermatologists excised 276 lesions of which 93% were malignant, 55% were from the head and neck, and 0% were incompletely excised. GPs excised 633 lesions: 63% malignant, 30% head and neck, 23% incomplete excision of malignant lesions. GPSIs excised 368 lesions: 71% malignant, 35% head and neck, 21.5% incomplete malignant excision. Specialist surgeons excised 255 lesions: 72% malignant, 53% head and neck, 20% incomplete malignant excision. Conclusion GPs and GPSIs excised more benign lesions and had higher incomplete excision rates of skin cancer surgery than

  15. Mediator MED23 Links Pigmentation and DNA Repair through the Transcription Factor MITF.

    PubMed

    Xia, Min; Chen, Kun; Yao, Xiao; Xu, Yichi; Yao, Jiaying; Yan, Jun; Shao, Zhen; Wang, Gang

    2017-08-22

    DNA repair is related to many physiological and pathological processes, including pigmentation. Little is known about the role of the transcriptional cofactor Mediator complex in DNA repair and pigmentation. Here, we demonstrate that Mediator MED23 plays an important role in coupling UV-induced DNA repair to pigmentation. The loss of Med23 specifically impairs the pigmentation process in melanocyte-lineage cells and in zebrafish. Med23 deficiency leads to enhanced nucleotide excision repair (NER) and less DNA damage following UV radiation because of the enhanced expression and recruitment of NER factors to chromatin for genomic stability. Integrative analyses of melanoma cells reveal that MED23 controls the expression of a melanocyte master regulator, Mitf, by modulating its distal enhancer activity, leading to opposing effects on pigmentation and DNA repair. Collectively, the Mediator MED23/MITF axis connects DNA repair to pigmentation, thus providing molecular insights into the DNA damage response and skin-related diseases. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Refining the intraoperative measurement of the distal intrapancreatic part of a choledochal cyst during laparoscopic repair allows near total excision.

    PubMed

    Koga, Hiroyuki; Okawada, Manabu; Doi, Takashi; Miyano, Go; Lane, Geoffrey J; Yamataka, Atsuyuki

    2015-10-01

    During surgery for choledochal cyst (CC), any intrapancreatic CC (IPCC) must also be excised to prevent postoperative pancreatitis and stone formation. We report our technique for laparoscopic total IPCC excision (n = 16; mean age 6.0 years). We insert a fine ureteroscope with a light source into the opened CC through an extra 3.9-mm trocar placed in the epigastrium through a minute incision to identify the pancreatic duct orifice. By pulling the end of the ureteroscope emerging from the trocar gently to withdraw the tip from the pancreatic duct to where distal dissection was ceased under laparoscopic view, the IPCC can be measured. If longer than 5 mm, the distal CC is dissected further caudally until it is less than 5 mm. For accuracy, the distal CC is elevated with a suture that is exteriorized and clamped to provide constant traction. The IPCC was able to be measured in 11/16 (68 %). Initial lengths measured were 3-10 mm (5.2 ± 2.7 mm). Final IPCC were all 5 mm or less. Surgery was uncomplicated without any pancreatic duct injury and postoperative recovery was unremarkable. Follow-up MRI at 32 months showed no IPCC in any case. Measuring the IPCC enables total CC excision, thus reducing the potential for postoperative complications.

  17. NADPH Oxidase-1 Plays a Key Role in Keratinocyte Responses to UV Radiation and UVB-Induced Skin Carcinogenesis.

    PubMed

    Raad, Houssam; Serrano-Sanchez, Martin; Harfouche, Ghida; Mahfouf, Walid; Bortolotto, Doriane; Bergeron, Vanessa; Kasraian, Zeinab; Dousset, Lea; Hosseini, Mohsen; Taieb, Alain; Rezvani, Hamid Reza

    2017-06-01

    The nicotinamide adenine dinucleotide phosphate oxidase (NOX) family enzymes are involved in several physiological functions. However, their roles in keratinocyte responses to UV radiation have not been clearly elucidated. This study shows that, among other NOX family members, UVB irradiation results in a biphasic activation of NOX1 that plays a critical role in defining keratinocyte fate through the modulation of the DNA damage response network. Indeed, suppression of both bursts of UVB-induced NOX1 activation by using a specific peptide inhibitor of NOX1 (InhNOX1) is associated with increased nucleotide excision repair efficiency and reduction of apoptosis, which is finally translated into decreased photocarcinogenesis. On the contrary, when only the second peak of UVB-induced NOX1 activation is blocked, both nucleotide excision repair efficiency and apoptosis are decreased. Our results show that inhibition of NOX1 activation could be a promising target for the prevention and treatment of UVB-induced skin cancer in nucleotide excision repair-proficient and -deficient patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End Joining Pathway

    PubMed Central

    Lieber, Michael R.

    2011-01-01

    Double-strand DNA breaks are common events in eukaryotic cells, and there are two major pathways for repairing them: homologous recombination and nonhomologous DNA end joining (NHEJ). The diverse causes of DSBs result in a diverse chemistry of DNA ends that must be repaired. Across NHEJ evolution, the enzymes of the NHEJ pathway exhibit a remarkable degree of structural tolerance in the range of DNA end substrate configurations upon which they can act. In vertebrate cells, the nuclease, polymerases and ligase of NHEJ are the most mechanistically flexible and multifunctional enzymes in each of their classes. Unlike repair pathways for more defined lesions, NHEJ repair enzymes act iteratively, act in any order, and can function independently of one another at each of the two DNA ends being joined. NHEJ is critical not only for the repair of pathologic DSBs as in chromosomal translocations, but also for the repair of physiologic DSBs created during V(D)J recombination and class switch recombination. Therefore, patients lacking normal NHEJ are not only sensitive to ionizing radiation, but also severely immunodeficient. PMID:20192759

  19. Structural Basis for Eukaryotic Transcription-Coupled DNA Repair Initiation

    PubMed Central

    Xu, Jun; Lahiri, Indrajit; Wang, Wei; Wier, Adam; Cianfrocco, Michael A.; Chong, Jenny; Hare, Alissa A.; Dervan, Peter B.; DiMaio, Frank; Leschziner, Andres E.; Wang, Dong

    2017-01-01

    Eukaryotic transcription-coupled repair (TCR), or transcription-coupled nucleotide excision repair (TC-NER), is an important and well-conserved sub-pathway of nucleotide excision repair (NER) that preferentially removes DNA lesions from the template strand blocking RNA polymerase II (Pol II) translocation1,2. Cockayne syndrome group B protein in humans (CSB, or ERCC6), or its yeast orthologs (Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe), is among the first proteins to be recruited to the lesion-arrested Pol II during initiation of eukaryotic TCR1,3–10. Mutations in CSB are associated with Cockayne syndrome, an autosomal-recessive neurologic disorder characterized by progeriod features, growth failure, and photosensitivity1. The molecular mechanism of eukaryotic TCR initiation remains elusive, with several long-standing questions unanswered: How do cells distinguish DNA lesion-arrested Pol II from other forms of arrested Pol II? How does CSB interact with the arrested Pol II complex? What is the role of CSB in TCR initiation? The lack of structures of CSB or the Pol II-CSB complex have hindered our ability to answer those questions. Here we report the first structure of S. cerevisiae Pol II-Rad26 complex solved by cryo-electron microscopy (cryo-EM). The structure reveals that Rad26 binds to the DNA upstream of Pol II where it dramatically alters its path. Our structural and functional data suggest that the conserved Swi2/Snf2-family core ATPase domain promotes forward movement of Pol II and elucidate key roles for Rad26/CSB in both TCR and transcription elongation. PMID:29168508

  20. Arsenic Exposure Is Associated with Decreased DNA Repair in Vitro and in Individuals Exposed to Drinking Water Arsenic

    PubMed Central

    Andrew, Angeline S.; Burgess, Jefferey L.; Meza, Maria M.; Demidenko, Eugene; Waugh, Mary G.; Hamilton, Joshua W.; Karagas, Margaret R.

    2006-01-01

    The mechanism(s) by which arsenic exposure contributes to human cancer risk is unknown; however, several indirect cocarcinogenesis mechanisms have been proposed. Many studies support the role of As in altering one or more DNA repair processes. In the present study we used individual-level exposure data and biologic samples to investigate the effects of As exposure on nucleotide excision repair in two study populations, focusing on the excision repair cross-complement 1 (ERCC1) component. We measured drinking water, urinary, or toenail As levels and obtained cryopreserved lymphocytes of a subset of individuals enrolled in epidemiologic studies in New Hampshire (USA) and Sonora (Mexico). Additionally, in corroborative laboratory studies, we examined the effects of As on DNA repair in a cultured human cell model. Arsenic exposure was associated with decreased expression of ERCC1 in isolated lymphocytes at the mRNA and protein levels. In addition, lymphocytes from As-exposed individuals showed higher levels of DNA damage, as measured by a comet assay, both at baseline and after a 2-acetoxyacetylaminofluorene (2-AAAF) challenge. In support of the in vivo data, As exposure decreased ERCC1 mRNA expression and enhanced levels of DNA damage after a 2-AAAF challenge in cell culture. These data provide further evidence to support the ability of As to inhibit the DNA repair machinery, which is likely to enhance the genotoxicity and mutagenicity of other directly genotoxic compounds, as part of a cocarcinogenic mechanism of action. PMID:16882524

  1. Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes

    PubMed Central

    Shaposhnikov, Mikhail; Proshkina, Ekaterina; Shilova, Lyubov; Zhavoronkov, Alex; Moskalev, Alexey

    2015-01-01

    DNA repair declines with age and correlates with longevity in many animal species. In this study, we investigated the effects of GAL4-induced overexpression of genes implicated in DNA repair on lifespan and resistance to stress factors in Drosophila melanogaster. Stress factors included hyperthermia, oxidative stress, and starvation. Overexpression was either constitutive or conditional and either ubiquitous or tissue-specific (nervous system). Overexpressed genes included those involved in recognition of DNA damage (homologs of HUS1, CHK2), nucleotide and base excision repair (homologs of XPF, XPC and AP-endonuclease-1), and repair of double-stranded DNA breaks (homologs of BRCA2, XRCC3, KU80 and WRNexo). The overexpression of different DNA repair genes led to both positive and negative effects on lifespan and stress resistance. Effects were dependent on GAL4 driver, stage of induction, sex, and role of the gene in the DNA repair process. While the constitutive/neuron-specific and conditional/ubiquitous overexpression of DNA repair genes negatively impacted lifespan and stress resistance, the constitutive/ubiquitous and conditional/neuron-specific overexpression of Hus1, mnk, mei-9, mus210, and WRNexo had beneficial effects. This study demonstrates for the first time the effects of overexpression of these DNA repair genes on both lifespan and stress resistance in D. melanogaster. PMID:26477511

  2. [The expression of thymidylate synthase (TS) and excision repair complementing-1 (ERCC-1) protein in patients with unresectable colorectal cancer treated with mFOLFOX6 therapy].

    PubMed

    Ishibashi, Keiichiro; Okada, Norimichi; Ishiguro, Toru; Kuwabara, Kouki; Ohsawa, Tomonori; Yokoyama, Masaru; Kumamoto, Kensuke; Haga, Norihiro; Mori, Takashi; Yamada, Hirofumi; Miura, Ichiro; Tamaru, Junichi; Itoyama, Shinji; Ishida, Hideyuki

    2010-11-01

    Thymidylate synthase (TS) and excision repair complementing-1 (ERCC-1) were known to be important biomarkers to predict a tumor response to 5-fluorouracil (5-FU) and oxaliplatin, but the relationship between these expressions and tumor response were still unclear. The aim of this study was to determine whether the expression of TS and ERCC-1 protein predict a tumor response in patients with unresectable colorectal cancer treated with mFOLFOX6 therapy as first-line treatment. Fifty patients with unresectable colorectal cancer treated with mFOLFOX6 therapy were enrolled in this study. The expression of TS and ERCC-1 protein in primary cancer cells were examined using immunohistochemistry. There were no significant differences between response rate and the expression of TS or ERCC-1 protein (TS: p>0.99, ERCC-1: p= 0.50). There were no significant differences between progression-free survival time and the expression of TS or ERCC-1 protein (TS: p=0.60, ERCC-1: p=0.60). In this study, the expression TS and ERCC-1 protein may not be useful for the prediction of tumor response in patients with unresectable colorectal cancer treated with mFOLFOX6 therapy.

  3. Mammalian DNA single-strand break repair: an X-ra(y)ted affair.

    PubMed

    Caldecott, K W

    2001-05-01

    The genetic stability of living cells is continuously threatened by the presence of endogenous reactive oxygen species and other genotoxic molecules. Of particular threat are the thousands of DNA single-strand breaks that arise in each cell, each day, both directly from disintegration of damaged sugars and indirectly from the excision repair of damaged bases. If un-repaired, single-strand breaks can be converted into double-strand breaks during DNA replication, potentially resulting in chromosomal rearrangement and genetic deletion. Consequently, cells have adopted multiple pathways to ensure the rapid and efficient removal of single-strand breaks. A general feature of these pathways appears to be the extensive employment of protein-protein interactions to stimulate both the individual component steps and the overall repair reaction. Our current understanding of DNA single-strand break repair is discussed, and testable models for the architectural coordination of this important process are presented. Copyright 2001 John Wiley & Sons, Inc.

  4. Metal binding mediated conformational change of XPA protein: a potential cytotoxic mechanism of nickel in the nucleotide excision repair

    PubMed Central

    Hu, Jianping; Hu, Ziheng; Zhang, Yan; Gou, Xiaojun; Mu, Ying; Wang, Lirong; Xie, Xiang-Qun

    2017-01-01

    Nucleotide excision repair (NER) is a pivotal life process for repairing DNA nucleotide mismatch caused by chemicals, metal ions, radiation, and other factors. As the initiation step of NER, the xeroderma pigmentosum complementation group A protein (XPA) recognizes damaged DNA molecules, and recruits the replication protein A (RPA), another important player in the NER process. The stability of the Zn2+-chelated Zn-finger domain of XPA center core portion (i.e., XPA98–210) is the foundation of its biological functionality, while the displacement of the Zn2+ by toxic metal ions (such as Ni2+, a known human carcinogen and allergen) may impair the effectiveness of NER and hence elevate the chance of carcinogenesis. In this study, we first calculated the force field parameters for the bonded model in the metal center of the XPA98–210 system, showing that the calculated results, including charges, bonds, angles etc., are congruent with previously reported results measured by spectrometry experiments and quantum chemistry computation. Then, comparative molecular dynamics simulations using these parameters revealed the changes in the conformation and motion mode of XPA98–210 Zn-finger after the substitution of Zn2+ by Ni2+. The results showed that Ni2+ dramatically disrupted the relative positions of the four Cys residues in the Zn-finger structure, forcing them to collapse from a tetrahedron into an almost planar structure. Finally, we acquired the binding mode of XPA98–210 with its ligands RPA70N and DNA based on molecular docking and structural alignment. We found that XPA98–210’s Zn-finger domain primarily binds to a V-shaped cleft in RPA70N, while the cationic band in its C-terminal subdomain participates in the recognition of damaged DNA. In addition, this article sheds light on the multi-component interaction pattern among XPA, DNA, and other NER-related proteins (i.e., RPA70N, RPA70A, RPA70B, RPA70C, RPA32, and RPA14) based on previously reported

  5. TED, an autonomous and rare maize transposon of the mutator superfamily with a high gametophytic excision frequency.

    PubMed

    Li, Yubin; Harris, Linda; Dooner, Hugo K

    2013-09-01

    Mutator (Mu) elements, one of the most diverse superfamilies of DNA transposons, are found in all eukaryotic kingdoms, but are particularly numerous in plants. Most of the present knowledge on the transposition behavior of this superfamily comes from studies of the maize (Zea mays) Mu elements, whose transposition is mediated by the autonomous Mutator-Don Robertson (MuDR) element. Here, we describe the maize element TED (for Transposon Ellen Dempsey), an autonomous cousin that differs significantly from MuDR. Element excision and reinsertion appear to require both proteins encoded by MuDR, but only the single protein encoded by TED. Germinal excisions, rare with MuDR, are common with TED, but arise in one of the mitotic divisions of the gametophyte, rather than at meiosis. Instead, transposition-deficient elements arise at meiosis, suggesting that the double-strand breaks produced by element excision are repaired differently in mitosis and meiosis. Unlike MuDR, TED is a very low-copy transposon whose number and activity do not undergo dramatic changes upon inbreeding or outcrossing. Like MuDR, TED transposes mostly to unlinked sites and can form circular transposition products. Sequences closer to TED than to MuDR were detected only in the grasses, suggesting a rather recent evolutionary split from a common ancestor.

  6. Dynamic maps of UV damage formation and repair for the human genome

    PubMed Central

    Hu, Jinchuan; Adebali, Ogun; Adar, Sheera; Sancar, Aziz

    2017-01-01

    Formation and repair of UV-induced DNA damage in human cells are affected by cellular context. To study factors influencing damage formation and repair genome-wide, we developed a highly sensitive single-nucleotide resolution damage mapping method [high-sensitivity damage sequencing (HS–Damage-seq)]. Damage maps of both cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts [(6-4)PPs] from UV-irradiated cellular and naked DNA revealed that the effect of transcription factor binding on bulky adducts formation varies, depending on the specific transcription factor, damage type, and strand. We also generated time-resolved UV damage maps of both CPDs and (6-4)PPs by HS–Damage-seq and compared them to the complementary repair maps of the human genome obtained by excision repair sequencing to gain insight into factors that affect UV-induced DNA damage and repair and ultimately UV carcinogenesis. The combination of the two methods revealed that, whereas UV-induced damage is virtually uniform throughout the genome, repair is affected by chromatin states, transcription, and transcription factor binding, in a manner that depends on the type of DNA damage. PMID:28607063

  7. Dynamic maps of UV damage formation and repair for the human genome.

    PubMed

    Hu, Jinchuan; Adebali, Ogun; Adar, Sheera; Sancar, Aziz

    2017-06-27

    Formation and repair of UV-induced DNA damage in human cells are affected by cellular context. To study factors influencing damage formation and repair genome-wide, we developed a highly sensitive single-nucleotide resolution damage mapping method [high-sensitivity damage sequencing (HS-Damage-seq)]. Damage maps of both cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts [(6-4)PPs] from UV-irradiated cellular and naked DNA revealed that the effect of transcription factor binding on bulky adducts formation varies, depending on the specific transcription factor, damage type, and strand. We also generated time-resolved UV damage maps of both CPDs and (6-4)PPs by HS-Damage-seq and compared them to the complementary repair maps of the human genome obtained by excision repair sequencing to gain insight into factors that affect UV-induced DNA damage and repair and ultimately UV carcinogenesis. The combination of the two methods revealed that, whereas UV-induced damage is virtually uniform throughout the genome, repair is affected by chromatin states, transcription, and transcription factor binding, in a manner that depends on the type of DNA damage.

  8. Poxvirus uracil-DNA glycosylase-An unusual member of the family I uracil-DNA glycosylases: Poxvirus Uracil-DNA Glycosylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schormann, Norbert; Zhukovskaya, Natalia; Bedwell, Gregory

    We report that uracil-DNA glycosylases are ubiquitous enzymes, which play a key role repairing damages in DNA and in maintaining genomic integrity by catalyzing the first step in the base excision repair pathway. Within the superfamily of uracil-DNA glycosylases family I enzymes or UNGs are specific for recognizing and removing uracil from DNA. These enzymes feature conserved structural folds, active site residues and use common motifs for DNA binding, uracil recognition and catalysis. Within this family the enzymes of poxviruses are unique and most remarkable in terms of amino acid sequences, characteristic motifs and more importantly for their novel non-enzymaticmore » function in DNA replication. UNG of vaccinia virus, also known as D4, is the most extensively characterized UNG of the poxvirus family. D4 forms an unusual heterodimeric processivity factor by attaching to a poxvirus-specific protein A20, which also binds to the DNA polymerase E9 and recruits other proteins necessary for replication. D4 is thus integrated in the DNA polymerase complex, and its DNA-binding and DNA scanning abilities couple DNA processivity and DNA base excision repair at the replication fork. In conclusion, the adaptations necessary for taking on the new function are reflected in the amino acid sequence and the three-dimensional structure of D4. We provide an overview of the current state of the knowledge on the structure-function relationship of D4.« less

  9. Genetic Effects of Uv Irradiation on Excision-Proficient and -Deficient Yeast during Meiosis

    PubMed Central

    Resnick, Michael A.; Game, John C.; Stasiewicz, Stanley

    1983-01-01

    The lethal and recombinational responses to ultraviolet light irradiation (UV) by excision-proficient (RAD+) and deficient strains (rad1) of Saccharomyces cerevisiae has been examined in cells undergoing meiosis. Cells that exhibit high levels of meiotic synchrony were irradiated either at the beginning or at various times during meiosis and allowed to proceed through meiosis. Based on survival responses, the only excision repair mechanism for UV damage available during meiosis is that controlled by the RAD1 pathway. The presence of pyrimidine dimers at the beginning of meiosis does not prevent cells from undergoing meiosis; however, the spore products exhibit much lower survival than cells from earlier stages of meiosis. The reduced survival is probably due to effects of UV on recombination. Meiotic levels of gene conversion are reduced only two to three times in these experiments; however, intergenic recombination is nearly abolished after a dose of 4 J/m 2 to the rad1 strain. Exposure to 25 J/m2 had little effect on the wild-type strain. Since normal meiotic reciprocal recombination is generally considered to involve gene conversion-type intermediates, it appears that unrepaired UV damage dissociates the two processes. These results complement those obtained with the mei-9 mutants of Drosophila which also demonstrate a dissociation between gene conversion and reciprocal recombination. These results are consistent with molecular observations on the UV-irradiated rad1 strain in that there is no excision of pyrimidine dimers or exchange of dimers during meiosis. PMID:6352405

  10. Enhanced spontaneous DNA twisting/bending fluctuations unveiled by fluorescence lifetime distributions promote mismatch recognition by the Rad4 nucleotide excision repair complex

    PubMed Central

    Chakraborty, Sagnik; Steinbach, Peter J; Paul, Debamita; Mu, Hong; Broyde, Suse

    2018-01-01

    Abstract Rad4/XPC recognizes diverse DNA lesions including ultraviolet-photolesions and carcinogen-DNA adducts, initiating nucleotide excision repair. Studies have suggested that Rad4/XPC senses lesion-induced helix-destabilization to flip out nucleotides from damaged DNA sites. However, characterizing how DNA deformability and/or distortions impact recognition has been challenging. Here, using fluorescence lifetime measurements empowered by a maximum entropy algorithm, we mapped the conformational heterogeneities of artificially destabilized mismatched DNA substrates of varying Rad4-binding specificities. The conformational distributions, as probed by FRET between a cytosine-analog pair exquisitely sensitive to DNA twisting/bending, reveal a direct connection between intrinsic DNA deformability and Rad4 recognition. High-specificity CCC/CCC mismatch, free in solution, sampled a strikingly broad range of conformations from B-DNA-like to highly distorted conformations that resembled those observed with Rad4 bound; the extent of these distortions increased with bound Rad4 and with temperature. Conversely, the non-specific TAT/TAT mismatch had a homogeneous, B-DNA-like conformation. Molecular dynamics simulations also revealed a wide distribution of conformations for CCC/CCC, complementing experimental findings. We propose that intrinsic deformability promotes Rad4 damage recognition, perhaps by stalling a diffusing protein and/or facilitating ‘conformational capture’ of pre-distorted damaged sites. Surprisingly, even mismatched DNA specifically bound to Rad4 remains highly dynamic, a feature that may reflect the versatility of Rad4/XPC to recognize many structurally dissimilar lesions. PMID:29267981

  11. Balancing repair and tolerance of DNA damage caused by alkylating agents.

    PubMed

    Fu, Dragony; Calvo, Jennifer A; Samson, Leona D

    2012-01-12

    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity.

  12. Repair of a facial defect with an interpolation skin flap in a cat.

    PubMed

    Allen, S W; Miller, M A; Haas, K M

    1997-05-01

    A 9-year-old domestic shorthair cat was referred for removal of a rostrally located fibrosarcoma on the face, which had previously recurred twice following excision. A wide excision was performed, using a neodymium:yttrium-aluminumgarnet (Nd:YAG) laser, resulting in a facial defect that could not be closed by primary suture. An interpolation skin flap was elevated, using skin from the side of the cat's face, and sutured in place over the defect. Recurrence of the tumor at the medial canthus of the left eye, which was observed 4 months after surgery, was treated by laser excision and cryotherapy. Other recurrences of the fibrosarcoma were not noticed for 2.5 years after referral, at which time the cat was euthanatized for other reasons. Necropsy revealed that the fibrosarcoma had not recurred. In this cat, an interpolation skin flap was useful in repairing a large rostral facial defect. Care should be taken when elevating this flap to preserve the palpebral nerve.

  13. Relationship of the Xeroderma Pigmentosum Group E DNA Repair Defect to the Chromatin and DNA Binding Proteins UV-DDB and Replication Protein A

    PubMed Central

    Rapić Otrin, Vesna; Kuraoka, Isao; Nardo, Tiziana; McLenigan, Mary; Eker, A. P. M.; Stefanini, Miria; Levine, Arthur S.; Wood, Richard D.

    1998-01-01

    Cells from complementation groups A through G of the heritable sun-sensitive disorder xeroderma pigmentosum (XP) show defects in nucleotide excision repair of damaged DNA. Proteins representing groups A, B, C, D, F, and G are subunits of the core recognition and incision machinery of repair. XP group E (XP-E) is the mildest form of the disorder, and cells generally show about 50% of the normal repair level. We investigated two protein factors previously implicated in the XP-E defect, UV-damaged DNA binding protein (UV-DDB) and replication protein A (RPA). Three newly identified XP-E cell lines (XP23PV, XP25PV, and a line formerly classified as an XP variant) were defective in UV-DDB binding activity but had levels of RPA in the normal range. The XP-E cell extracts did not display a significant nucleotide excision repair defect in vitro, with either UV-irradiated DNA or a uniquely placed cisplatin lesion used as a substrate. Purified UV-DDB protein did not stimulate repair of naked DNA by DDB− XP-E cell extracts, but microinjection of the protein into DDB− XP-E cells could partially correct the repair defect. RPA stimulated repair in normal, XP-E, or complemented extracts from other XP groups, and so the effect of RPA was not specific for XP-E cell extracts. These data strengthen the connection between XP-E and UV-DDB. Coupled with previous results, the findings suggest that UV-DDB has a role in the repair of DNA in chromatin. PMID:9584159

  14. Divergent Requirement for a DNA Repair Enzyme during Enterovirus Infections

    PubMed Central

    Maciejewski, Sonia; Nguyen, Joseph H. C.; Gómez-Herreros, Fernando; Cortés-Ledesma, Felipe; Caldecott, Keith W.

    2015-01-01

    ABSTRACT Viruses of the Enterovirus genus of picornaviruses, including poliovirus, coxsackievirus B3 (CVB3), and human rhinovirus, commandeer the functions of host cell proteins to aid in the replication of their small viral genomic RNAs during infection. One of these host proteins is a cellular DNA repair enzyme known as 5′ tyrosyl-DNA phosphodiesterase 2 (TDP2). TDP2 was previously demonstrated to mediate the cleavage of a unique covalent linkage between a viral protein (VPg) and the 5′ end of picornavirus RNAs. Although VPg is absent from actively translating poliovirus mRNAs, the removal of VPg is not required for the in vitro translation and replication of the RNA. However, TDP2 appears to be excluded from replication and encapsidation sites during peak times of poliovirus infection of HeLa cells, suggesting a role for TDP2 during the viral replication cycle. Using a mouse embryonic fibroblast cell line lacking TDP2, we found that TDP2 is differentially required among enteroviruses. Our single-cycle viral growth analysis shows that CVB3 replication has a greater dependency on TDP2 than does poliovirus or human rhinovirus replication. During infection, CVB3 protein accumulation is undetectable (by Western blot analysis) in the absence of TDP2, whereas poliovirus protein accumulation is reduced but still detectable. Using an infectious CVB3 RNA with a reporter, CVB3 RNA could still be replicated in the absence of TDP2 following transfection, albeit at reduced levels. Overall, these results indicate that TDP2 potentiates viral replication during enterovirus infections of cultured cells, making TDP2 a potential target for antiviral development for picornavirus infections. PMID:26715620

  15. POLD1: central mediator of DNA replication and repair, and implication in cancer and other pathologies

    PubMed Central

    Nicolas, Emmanuelle; Golemis, Erica A.; Arora, Sanjeevani

    2016-01-01

    The evolutionarily conserved human polymerase delta (POLD1) gene encodes the large p125 subunit which provides the essential catalytic activities of polymerase δ (Polδ), mediated by 5’–3’ DNA polymerase and 3’–5’ exonuclease moieties. POLD1 associates with three smaller subunits (POLD2, POLD3, POLD4), which together with Replication Factor C and Proliferating Nuclear Cell Antigen constitute the polymerase holoenzyme. Polδ function is essential for replication, with a primary role as the replicase for the lagging strand. Polδ also has an important proofreading ability conferred by the exonuclease activity, which is critical for ensuring replicative fidelity, but also serves to repair DNA lesions arising as a result of exposure to mutagens. Polδ has been shown to be important for multiple forms of DNA repair, including nucleotide excision repair, double strand break repair, base excision repair, and mismatch repair. A growing number of studies in the past decade have linked germline and sporadic mutations in POLD1 and the other subunits of Polδ with human pathologies. Mutations in Polδ in mice and humans lead to genomic instability, mutator phenotype and tumorigenesis. The advent of genome sequencing techniques has identified damaging mutations in the proofreading domain of POLD1 as the underlying cause of some inherited cancers, and suggested that mutations in POLD1 may influence therapeutic management. In addition, mutations in POLD1 have been identified in the developmental disorders of mandibular hypoplasia, deafness, progeroid features and lipodystrophy and atypical Werner syndrome, while changes in expression or activity of POLD1 have been linked to senescence and aging. Intriguingly, some recent evidence suggests POLD1 function may also be altered in diabetes. We provide an overview of critical Polδ activities in the context of these pathologic conditions. PMID:27320729

  16. Stress and DNA repair biology of the Fanconi anemia pathway

    PubMed Central

    Longerich, Simonne; Li, Jian; Xiong, Yong; Sung, Patrick

    2014-01-01

    Fanconi anemia (FA) represents a paradigm of rare genetic diseases, where the quest for cause and cure has led to seminal discoveries in cancer biology. Although a total of 16 FA genes have been identified thus far, the biochemical function of many of the FA proteins remains to be elucidated. FA is rare, yet the fact that 5 FA genes are in fact familial breast cancer genes and FA gene mutations are found frequently in sporadic cancers suggest wider applicability in hematopoiesis and oncology. Establishing the interaction network involving the FA proteins and their associated partners has revealed an intersection of FA with several DNA repair pathways, including homologous recombination, DNA mismatch repair, nucleotide excision repair, and translesion DNA synthesis. Importantly, recent studies have shown a major involvement of the FA pathway in the tolerance of reactive aldehydes. Moreover, despite improved outcomes in stem cell transplantation in the treatment of FA, many challenges remain in patient care. PMID:25237197

  17. A hypothesis: factor VII governs clot formation, tissue repair and apoptosis.

    PubMed

    Coleman, Lewis S

    2007-01-01

    A hypothesis: thrombin is a "Universal Enzyme of Energy Transduction" that employs ATP energy in flowing blood to activate biochemical reactions and cell effects in both hemostasis and tissue repair. All cells possess PAR-1 (thrombin) receptors and are affected by thrombin elevations, and thrombin effects on individual cell types are determined by their unique complement of PAR-1 receptors. Disruption of the vascular endothelium (VE) activates a tissue repair mechanism (TRM) consisting of the VE, tissue factor (TF), and circulating Factors VII, IX and X that governs localized thrombin elevations to activate clot formation and cellular effects that repair tissue damage. The culmination of the repair process occurs with the restoration of the VE followed by declines in thrombin production that causes Apoptosis ("programmed cell death") in wound-healing fibroblasts, which functions as a mechanism to draw wound edges together. The location and magnitude of TRM activity governs the location and magnitude of Factor VIII activity and clot formation, but the large size of Factor VIII prevents it from penetrating the clot formed by its activity, so that its effects are self-limiting. Factors VII, IX and X function primarily as tissue repair enzymes, while Factor VIII and Factor XIII are the only serine protease enzymes in the "Coagulation Cascade" that are exclusively associated with hemostasis.

  18. Structural basis for the recognition and cleavage of abasic DNA in Neisseria meningitidis

    PubMed Central

    Lu, Duo; Silhan, Jan; MacDonald, James T.; Carpenter, Elisabeth P.; Jensen, Kirsten; Tang, Christoph M.; Baldwin, Geoff S.; Freemont, Paul S.

    2012-01-01

    Base excision repair (BER) is a highly conserved DNA repair pathway throughout all kingdoms from bacteria to humans. Whereas several enzymes are required to complete the multistep repair process of damaged bases, apurinic-apyrimidic (AP) endonucleases play an essential role in enabling the repair process by recognizing intermediary abasic sites cleaving the phosphodiester backbone 5′ to the abasic site. Despite extensive study, there is no structure of a bacterial AP endonuclease bound to substrate DNA. Furthermore, the structural mechanism for AP-site cleavage is incomplete. Here we report a detailed structural and biochemical study of the AP endonuclease from Neisseria meningitidis that has allowed us to capture structural intermediates providing more complete snapshots of the catalytic mechanism. Our data reveal subtle differences in AP-site recognition and kinetics between the human and bacterial enzymes that may reflect different evolutionary pressures. PMID:23035246

  19. A Cross-Cancer Genetic Association Analysis of the DNA Repair and DNA Damage Signaling Pathways for Lung, Ovary, Prostate, Breast, and Colorectal Cancer.

    PubMed

    Scarbrough, Peter M; Weber, Rachel Palmieri; Iversen, Edwin S; Brhane, Yonathan; Amos, Christopher I; Kraft, Peter; Hung, Rayjean J; Sellers, Thomas A; Witte, John S; Pharoah, Paul; Henderson, Brian E; Gruber, Stephen B; Hunter, David J; Garber, Judy E; Joshi, Amit D; McDonnell, Kevin; Easton, Doug F; Eeles, Ros; Kote-Jarai, Zsofia; Muir, Kenneth; Doherty, Jennifer A; Schildkraut, Joellen M

    2016-01-01

    DNA damage is an established mediator of carcinogenesis, although genome-wide association studies (GWAS) have identified few significant loci. This cross-cancer site, pooled analysis was performed to increase the power to detect common variants of DNA repair genes associated with cancer susceptibility. We conducted a cross-cancer analysis of 60,297 single nucleotide polymorphisms, at 229 DNA repair gene regions, using data from the NCI Genetic Associations and Mechanisms in Oncology (GAME-ON) Network. Our analysis included data from 32 GWAS and 48,734 controls and 51,537 cases across five cancer sites (breast, colon, lung, ovary, and prostate). Because of the unavailability of individual data, data were analyzed at the aggregate level. Meta-analysis was performed using the Association analysis for SubSETs (ASSET) software. To test for genetic associations that might escape individual variant testing due to small effect sizes, pathway analysis of eight DNA repair pathways was performed using hierarchical modeling. We identified three susceptibility DNA repair genes, RAD51B (P < 5.09 × 10(-6)), MSH5 (P < 5.09 × 10(-6)), and BRCA2 (P = 5.70 × 10(-6)). Hierarchical modeling identified several pleiotropic associations with cancer risk in the base excision repair, nucleotide excision repair, mismatch repair, and homologous recombination pathways. Only three susceptibility loci were identified, which had all been previously reported. In contrast, hierarchical modeling identified several pleiotropic cancer risk associations in key DNA repair pathways. Results suggest that many common variants in DNA repair genes are likely associated with cancer susceptibility through small effect sizes that do not meet stringent significance testing criteria. ©2015 American Association for Cancer Research.

  20. Phosphorylation of Nucleotide Excision Repair Factor Xeroderma Pigmentosum Group A by Ataxia Telangiectasia Mutated and Rad3-Related-Dependent Checkpoint Pathway Promotes Cell Survival in Response to UV Irradiation

    PubMed Central

    Wu, Xiaoming; Shell, Steven M.; Yang, Zhengguan; Zou, Yue

    2006-01-01

    DNA damage triggers complex cellular responses in eukaryotic cells, including initiation of DNA repair and activation of cell cycle checkpoints. In addition to inducing cell cycle arrest, checkpoint also has been suggested to modulate a variety of other cellular processes in response to DNA damage. In this study, we present evidence showing that the cellular function of xeroderma pigmentosum group A (XPA), a major nucleotide excision repair (NER) factor, could be modulated by checkpoint kinase ataxia-telangiectasia mutated and Rad3-related (ATR) in response to UV irradiation. We observed the apparent interaction and colocalization of XPA with ATR in response to UV irradiation. We showed that XPA was a substrate for in vitro phosphorylation by phosphatidylinositol-3-kinase-related kinase family kinases whereas in cells XPA was phosphorylated in an ATR-dependent manner and stimulated by UV irradiation. The Ser196 of XPA was identified as a biologically significant residue to be phosphorylated in vivo. The XPA-deficient cells complemented with XPA-S196A mutant, in which Ser196 was substituted with an alanine, displayed significantly higher UV sensitivity compared with the XPA cells complemented with wild-type XPA. Moreover, substitution of Ser196 with aspartic acid for mimicking the phosphorylation of XPA increased the cell survival to UV irradiation. Taken together, our results revealed a potential physical and functional link between NER and the ATR-dependent checkpoint pathway in human cells and suggested that the ATR checkpoint pathway could modulate the cellular activity of NER through phosphorylation of XPA at Ser196 on UV irradiation. PMID:16540648

  1. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair.

    PubMed

    Sterpone, Silvia; Cozzi, Renata

    2010-07-25

    It is well known that ionizing radiation (IR) can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs) of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER). In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer.

  2. Mechanisms of double-strand-break repair during gene targeting in mammalian cells.

    PubMed Central

    Ng, P; Baker, M D

    1999-01-01

    In the present study, the mechanism of double-strand-break (DSB) repair during gene targeting at the chromosomal immunoglobulin mu-locus in a murine hybridoma was examined. The gene-targeting assay utilized specially designed insertion vectors genetically marked in the region of homology to the chromosomal mu-locus by six diagnostic restriction enzyme site markers. The restriction enzyme markers permitted the contribution of vector-borne and chromosomal mu-sequences in the recombinant product to be determined. The use of the insertion vectors in conjunction with a plating procedure in which individual integrative homologous recombination events were retained for analysis revealed several important features about the mammalian DSB repair process:The presence of the markers within the region of shared homology did not affect the efficiency of gene targeting.In the majority of recombinants, the vector-borne marker proximal to the DSB was absent, being replaced with the corresponding chromosomal restriction enzyme site. This result is consistent with either formation and repair of a vector-borne gap or an "end" bias in mismatch repair of heteroduplex DNA (hDNA) that favored the chromosomal sequence. Formation of hDNA was frequently associated with gene targeting and, in most cases, began approximately 645 bp from the DSB and could encompass a distance of at least 1469 bp.The hDNA was efficiently repaired prior to DNA replication.The repair of adjacent mismatches in hDNA occurred predominantly on the same strand, suggesting the involvement of a long-patch repair mechanism. PMID:10049929

  3. TED, an Autonomous and Rare Maize Transposon of the Mutator Superfamily with a High Gametophytic Excision Frequency[W

    PubMed Central

    Li, Yubin; Harris, Linda; Dooner, Hugo K.

    2013-01-01

    Mutator (Mu) elements, one of the most diverse superfamilies of DNA transposons, are found in all eukaryotic kingdoms, but are particularly numerous in plants. Most of the present knowledge on the transposition behavior of this superfamily comes from studies of the maize (Zea mays) Mu elements, whose transposition is mediated by the autonomous Mutator-Don Robertson (MuDR) element. Here, we describe the maize element TED (for Transposon Ellen Dempsey), an autonomous cousin that differs significantly from MuDR. Element excision and reinsertion appear to require both proteins encoded by MuDR, but only the single protein encoded by TED. Germinal excisions, rare with MuDR, are common with TED, but arise in one of the mitotic divisions of the gametophyte, rather than at meiosis. Instead, transposition-deficient elements arise at meiosis, suggesting that the double-strand breaks produced by element excision are repaired differently in mitosis and meiosis. Unlike MuDR, TED is a very low-copy transposon whose number and activity do not undergo dramatic changes upon inbreeding or outcrossing. Like MuDR, TED transposes mostly to unlinked sites and can form circular transposition products. Sequences closer to TED than to MuDR were detected only in the grasses, suggesting a rather recent evolutionary split from a common ancestor. PMID:24038653

  4. Correction of the DNA repair defect in xeroderma pigmentosum group E by injection of a DNA damage-binding protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keeney, S.; Brody, T.; Linn, S.

    1994-04-26

    Cells from a subset of patients with the DNA-repair-defective disease xeroderma pigmentosum complementation group E (XP-E) are known to lack a DNA damage-binding (DDB) activity. Purified human DDB protein was injected into XP-E cells to test whether the DNA-repair defect in these cells is caused by a defect in DDB activity. Injected DDB protein stimulated DNA repair to normal levels in those strains that lack the DDB activity but did not stimulate repair in cells from other xeroderma pigmentosum groups or in XP-E cells that contain the activity. These results provide direct evidence that defective DDB activity causes the repairmore » defect in a subset of XP-E patients, which in turn establishes a role for this activity in nucleotide-excision repair in vivo.« less

  5. Polymerization by DNA polymerase eta is blocked by cis-diamminedichloroplatinum(II) 1,3-d(GpTpG) cross-link: implications for cytotoxic effects in nucleotide excision repair-negative tumor cells.

    PubMed

    Chijiwa, Shotaro; Masutani, Chikahide; Hanaoka, Fumio; Iwai, Shigenori; Kuraoka, Isao

    2010-03-01

    cis-Diamminedichloroplatinum(II) (cisplatin) forms DNA adducts that interfere with replication and transcription. The most common adducts formed in vivo are 1,2-intrastrand d(GpG) cross-links (Pt-GG) and d(ApG) cross-links (Pt-AG), with minor amounts of 1,3-d(GpNpG) cross-links (Pt-GNG), interstrand cross-links and monoadducts. Although the relative contribution of these different adducts to toxicity is not known, literature implicates that Pt-GG and Pt-AG adducts block replication. Thus, nucleotide excision repair (NER), by which platinum adducts are excised, and translesion DNA synthesis (TLS), which permits adduct bypass, are thought to be associated with cisplatin resistance. Recent studies have reported that the clinical benefit from platinum-based chemotherapy is high if tumor cells express low levels of NER factors. To investigate the role of platinum-DNA adducts in mediating tumor cell survival by TLS, we examined whether 1,3-intrastrand d(GpTpG) platinum cross-links (Pt-GTG), which probably exist in NER-negative tumor cells but not in NER-positive tumor cells, are bypassed by the translesion DNA polymerase eta (pol eta), which is known to bypass Pt-GG. We show that pol eta can incorporate the correct deoxycytidine triphosphate opposite the first 3'-cross-linked G of Pt-GTG but cannot insert any nucleotides opposite the second intact T or the third 5'-cross-linked G of the adducts, thereby suggesting that TLS does not facilitate replication past Pt-GTG adducts. Thus, our findings implicate Pt-GNG adducts as mediating the cytotoxicity of platinum-DNA adducts in NER-negative tumors in vivo.

  6. Modeling the interactions of the nucleotide excision repair UvrA(2) dimer with DNA.

    PubMed

    Gantchev, Tsvetan G; Hunting, Darel J

    2010-12-28

    The UvrA protein initiates the DNA damage recognition process by the bacterial nucleotide excision repair (NER) system. Recently, crystallographic structures of holo-UvrA(2) dimers from two different microorganisms have been released (Protein Data Bank entries 2r6f , 2vf7 , and 2vf8 ). However, the details of the DNA binding by UvrA(2) and other peculiarities involved in the damage recognition process remain unknown. We have undertaken a molecular modeling approach to appraise the possible modes of DNA-UvrA(2) interaction using molecular docking and short-scale guided molecular dynamics [continuum field, constrained, and/or unrestricted simulated annealing (SA)], taking into account the three-dimensional location of a series of mutation-identified UvrA residues implicated in DNA binding. The molecular docking was based on the assumptions that the UvrA(2) dimer is preformed prior to DNA binding and that no major protein conformational rearrangements, except moderate domain reorientations, are required for binding of undamaged DNA. As a first approximation, DNA was treated as a rigid ligand. From the electrostatic relief of the ventral surface of UvrA(2), we initially identified three, noncollinear DNA binding paths. Each of the three resulting nucleoprotein complexes (C1, C2, and C3) was analyzed separately, including calculation of binding energies, the number and type of interaction residues (including mutated ones), and the predominant mode of translational and rotational motion of specific protein domains after SA to ensure improved DNA binding. The UvrA(2) dimer can accommodate DNA in all three orientations, albeit with different binding strengths. One of the UvrA(2)-DNA complexes (C1) fulfilled most of the requirements (high interaction energy, proximity of DNA to mutated residues, etc.) expected for a natural, high-affinity DNA binding site. This nucleoprotein presents a structural organization that is designed to clamp and bend double-stranded DNA. We

  7. Application of Laser Micro-irradiation for Examination of Single and Double Strand Break Repair in Mammalian Cells.

    PubMed

    Holton, Nathaniel W; Andrews, Joel F; Gassman, Natalie R

    2017-09-05

    Highly coordinated DNA repair pathways exist to detect, excise and replace damaged DNA bases, and coordinate repair of DNA strand breaks. While molecular biology techniques have clarified structure, enzymatic functions, and kinetics of repair proteins, there is still a need to understand how repair is coordinated within the nucleus. Laser micro-irradiation offers a powerful tool for inducing DNA damage and monitoring the recruitment of repair proteins. Induction of DNA damage by laser micro-irradiation can occur with a range of wavelengths, and users can reliably induce single strand breaks, base lesions and double strand breaks with a range of doses. Here, laser micro-irradiation is used to examine repair of single and double strand breaks induced by two common confocal laser wavelengths, 355 nm and 405 nm. Further, proper characterization of the applied laser dose for inducing specific damage mixtures is described, so users can reproducibly perform laser micro-irradiation data acquisition and analysis.

  8. Excision of thymine dimers in vitro by extracts of bacteriophage-infected Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedberg, E.C.; Minton, K.; Pawl, G.

    1974-05-01

    Extracts of DNA polymerase I defective Escherichia coli infected with phage T4 contain an exonuclease activity that removes thymine dimers from uv- irradiated DNA previously nicked with T4 uv endonuclease. This activity is not expressed if cells are infected in the presence of chloramphenicol. The enzyme has a requirement for divalent cation and is not affected by caffeine, but excision is inhibited in the presence of proflavine. The enzyme is present in all phage T4 mutants thus far examined, including 25 uv-sensitive mutants isolated during the course of the experiments, all of which are defective in the v gene. Amore » similar activity can be detected in cells infected with phages T2, T3, and T6, but not in cells infected with phage T7. (auth)« less

  9. Divergent Requirement for a DNA Repair Enzyme during Enterovirus Infections.

    PubMed

    Maciejewski, Sonia; Nguyen, Joseph H C; Gómez-Herreros, Fernando; Cortés-Ledesma, Felipe; Caldecott, Keith W; Semler, Bert L

    2015-12-29

    Viruses of the Enterovirus genus of picornaviruses, including poliovirus, coxsackievirus B3 (CVB3), and human rhinovirus, commandeer the functions of host cell proteins to aid in the replication of their small viral genomic RNAs during infection. One of these host proteins is a cellular DNA repair enzyme known as 5' tyrosyl-DNA phosphodiesterase 2 (TDP2). TDP2 was previously demonstrated to mediate the cleavage of a unique covalent linkage between a viral protein (VPg) and the 5' end of picornavirus RNAs. Although VPg is absent from actively translating poliovirus mRNAs, the removal of VPg is not required for the in vitro translation and replication of the RNA. However, TDP2 appears to be excluded from replication and encapsidation sites during peak times of poliovirus infection of HeLa cells, suggesting a role for TDP2 during the viral replication cycle. Using a mouse embryonic fibroblast cell line lacking TDP2, we found that TDP2 is differentially required among enteroviruses. Our single-cycle viral growth analysis shows that CVB3 replication has a greater dependency on TDP2 than does poliovirus or human rhinovirus replication. During infection, CVB3 protein accumulation is undetectable (by Western blot analysis) in the absence of TDP2, whereas poliovirus protein accumulation is reduced but still detectable. Using an infectious CVB3 RNA with a reporter, CVB3 RNA could still be replicated in the absence of TDP2 following transfection, albeit at reduced levels. Overall, these results indicate that TDP2 potentiates viral replication during enterovirus infections of cultured cells, making TDP2 a potential target for antiviral development for picornavirus infections. Picornaviruses are one of the most prevalent groups of viruses that infect humans and livestock worldwide. These viruses include the human pathogens belonging to the Enterovirus genus, such as poliovirus, coxsackievirus B3 (CVB3), and human rhinovirus. Diseases caused by enteroviruses pose a major problem

  10. Novel application of internal obturator and semitendinosus muscle flaps for rectal wall repair or reinforcement.

    PubMed

    Riggs, J; Ladlow, J F; Owen, L J; Hall, J L

    2018-01-29

    Internal obturator and/or semitendinosus muscle flaps were used to reinforce primary appositional rectal wall repair in three dogs and one cat in this case series. All three dogs incurred rectal wall compromise during surgical excision of anal sac tumours. The cat sustained bite wounds to the perianal region resulting in abscessation and a rectal tear. Our results indicate that application of an internal obturator and/or semitendinosus muscle flap can reduce the risk of rectal wall dehiscence after primary repair, and consequently the risk of pararectal abscess or rectocutaneous fistula formation. © 2018 British Small Animal Veterinary Association.

  11. Repair of damaged DNA in-vivo. Comprehensive progress report, August 1980-August 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanawalt, P.C.

    1983-07-01

    We have extended our characterization of long patch excision repair (LPER) and have demonstrated that LPER is not mutagenic (or error-prone); that the recA function is required for LPER, at least for its regulation; that the substrate for LPER is produced as a linear (not an exponential) function of uv (254 nm) dose; and that LPER can occur in uvr/sup -/ cells treated with N-methyl-N-nitro-N-nitrosoguanidine (MNNG). We have developed 3 methods for measuring the frequency of interstrand crosslinks in DNA and are now applying these methods to the study of the formation and repair of DNA crosslinks in E.Coli. Wemore » have developed a monoclonal antibody specific for thymine glycol in DNA, and are using it to study the repair of thymine glycol in E. coli.« less

  12. Assessment of Patients Who Underwent Nasal Reconstruction After Non-Melanoma Skin Cancer Excision.

    PubMed

    Uzun, Hakan; Bitik, Ozan; Kamburoğlu, Haldun Onuralp; Dadaci, Mehmet; Çaliş, Mert; Öcal, Engin

    2015-06-01

    Basal and squamous cell carcinomas are the most common malignant cutaneous lesions affecting the nose. With the rising incidence of skin cancers, plastic surgeons increasingly face nasal reconstruction challenges. Although multiple options exist, optimal results are obtained when "like is used to repair like". We aimed to introduce a simple algorithm for the reconstruction of nasal defects with local flaps, realizing that there is always more than one option for reconstruction. We retrospectively reviewed 163 patients who underwent nasal reconstruction after excision of non-melanoma skin cancer between March 2011 and April 2014. We analyzed the location of the defects and correlated them with the techniques used to reconstruct them. There were 66 males and 97 females (age, 21-98 years). Basal cell carcinoma was diagnosed in 121 patients and squamous cell carcinoma in 42. After tumor excision, all the defects were immediately closed by either primary closure or local flap options such as Limberg, Miter, glabellar, bilobed, nasolabial, V-Y advancement, and forehead flaps. Obtaining tumor-free borders and a pleasing aesthetic result are major concerns in nasal reconstruction. Defect reconstruction and cosmesis are as important as rapid recovery and quick return to normal daily activities, and these should be considered before performing any procedure, particularly in elderly patients.

  13. DNA repair gene XRCC1 polymorphisms, smoking, and bladder cancer risk.

    PubMed

    Stern, M C; Umbach, D M; van Gils, C H; Lunn, R M; Taylor, J A

    2001-02-01

    Bladder cancer is the sixth most common cancer in the United States. The main identified risk factor is cigarette smoking, which is estimated to contribute to up to 50% of new cases in men and 20% in women. Besides containing other carcinogens, cigarette smoke is a rich source of reactive oxygen species (ROS) that can induce a variety of DNA damage, some of which is repaired by the base excision repair (BER) pathway. The XRCC1 gene protein plays an important role in BER by serving as a scaffold for other repair enzymes and by recognizing single-strand DNA breaks. Three polymorphisms that induce amino acid changes have been found in codon 194 (exon 6), codon 280 (exon 9), and codon 399 (exon 10) of this gene. We tested whether polymorphisms in XRCC1 were associated with bladder cancer risk and whether this association was modified by cigarette smoking. Therefore, we genotyped for the three polymorphisms in 235 bladder cancer cases and 213 controls who had been frequency matched to cases on age, sex, and ethnicity. We found no evidence of an association between the codon 280 variant and bladder cancer risk [odds ratio (OR), 1.2; 95% confidence interval (CI), 0.6-2.6]. We found some evidence of a protective effect for subjects that carried at least one copy of the codon 194 variant allele relative to those homozygous for the common allele (OR, 0.59; 95% CI, 0.3-1.0). The combined analysis with smoking history suggested a possible gene-exposure interaction; however, the results were not statistically significant. Similarly, for the codon 399 polymorphism, our data suggested a protective effect of the homozygous variant genotype relative to carriers of either one or two copies of the common allele (OR, 0.70; 95% CI, 0.4-1.3), and provided limited evidence, albeit not statistically significant, for a gene-smoking interaction.

  14. Cloning and characterization of p52, the fifth subunit of the core of the transcription/DNA repair factor TFIIH.

    PubMed Central

    Marinoni, J C; Roy, R; Vermeulen, W; Miniou, P; Lutz, Y; Weeda, G; Seroz, T; Gomez, D M; Hoeijmakers, J H; Egly, J M

    1997-01-01

    TFIIH is a multiprotein factor involved in transcription and DNA repair and is implicated in DNA repair/transcription deficiency disorders such as xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Eight out of the nine genes encoding the subunits forming TFIIH have already been cloned. We report here the identification, cDNA cloning and gene structure of the 52 kDa polypeptide and its homology with the yeast counterpart TFB2. This protein, along with p89/XPB, p62, p44 and p34, forms the core of TFIIH. Moreover, using in vitro reconstituted transcription and nucleotide excision repair (NER) assays and microinjection experiments, we demonstrate that p52 is directly involved in both transcription and DNA repair mechanisms in vitro and in vivo. PMID:9118947

  15. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA.

    PubMed

    Ferron, François; Subissi, Lorenzo; Silveira De Morais, Ana Theresa; Le, Nhung Thi Tuyet; Sevajol, Marion; Gluais, Laure; Decroly, Etienne; Vonrhein, Clemens; Bricogne, Gérard; Canard, Bruno; Imbert, Isabelle

    2018-01-09

    Coronaviruses (CoVs) stand out among RNA viruses because of their unusually large genomes (∼30 kb) associated with low mutation rates. CoVs code for nsp14, a bifunctional enzyme carrying RNA cap guanine N7-methyltransferase (MTase) and 3'-5' exoribonuclease (ExoN) activities. ExoN excises nucleotide mismatches at the RNA 3'-end in vitro, and its inactivation in vivo jeopardizes viral genetic stability. Here, we demonstrate for severe acute respiratory syndrome (SARS)-CoV an RNA synthesis and proofreading pathway through association of nsp14 with the low-fidelity nsp12 viral RNA polymerase. Through this pathway, the antiviral compound ribavirin 5'-monophosphate is significantly incorporated but also readily excised from RNA, which may explain its limited efficacy in vivo. The crystal structure at 3.38 Å resolution of SARS-CoV nsp14 in complex with its cofactor nsp10 adds to the uniqueness of CoVs among RNA viruses: The MTase domain presents a new fold that differs sharply from the canonical Rossmann fold.

  16. DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    PubMed Central

    Osorio, Ana; Milne, Roger L.; Kuchenbaecker, Karoline; Vaclová, Tereza; Pita, Guillermo; Alonso, Rosario; Peterlongo, Paolo; Blanco, Ignacio; de la Hoya, Miguel; Duran, Mercedes; Díez, Orland; Ramón y Cajal, Teresa; Konstantopoulou, Irene; Martínez-Bouzas, Cristina; Andrés Conejero, Raquel; Soucy, Penny; McGuffog, Lesley; Barrowdale, Daniel; Lee, Andrew; SWE-BRCA; Arver, Brita; Rantala, Johanna; Loman, Niklas; Ehrencrona, Hans; Olopade, Olufunmilayo I.; Beattie, Mary S.; Domchek, Susan M.; Nathanson, Katherine; Rebbeck, Timothy R.; Arun, Banu K.; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; John, Esther M.; Whittemore, Alice S.; Daly, Mary B.; Southey, Melissa; Hopper, John; Terry, Mary B.; Buys, Saundra S.; Janavicius, Ramunas; Dorfling, Cecilia M.; van Rensburg, Elizabeth J.; Steele, Linda; Neuhausen, Susan L.; Ding, Yuan Chun; Hansen, Thomas v. O.; Jønson, Lars; Ejlertsen, Bent; Gerdes, Anne-Marie; Infante, Mar; Herráez, Belén; Moreno, Leticia Thais; Weitzel, Jeffrey N.; Herzog, Josef; Weeman, Kisa; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Scuvera, Giulietta; Bonanni, Bernardo; Mariette, Frederique; Volorio, Sara; Viel, Alessandra; Varesco, Liliana; Papi, Laura; Ottini, Laura; Tibiletti, Maria Grazia; Radice, Paolo; Yannoukakos, Drakoulis; Garber, Judy; Ellis, Steve; Frost, Debra; Platte, Radka; Fineberg, Elena; Evans, Gareth; Lalloo, Fiona; Izatt, Louise; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Cole, Trevor; Eccles, Diana; Cook, Jackie; Hodgson, Shirley; Brewer, Carole; Tischkowitz, Marc; Douglas, Fiona; Porteous, Mary; Side, Lucy; Walker, Lisa; Morrison, Patrick; Donaldson, Alan; Kennedy, John; Foo, Claire; Godwin, Andrew K.; Schmutzler, Rita Katharina; Wappenschmidt, Barbara; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ditsch, Nina; Arnold, Norbert; Plendl, Hans Jörg; Niederacher, Dieter; Sutter, Christian; Wang-Gohrke, Shan; Steinemann, Doris; Preisler-Adams, Sabine; Kast, Karin; Varon-Mateeva, Raymonda; Gehrig, Andrea; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M.; Mazoyer, Sylvie; Damiola, Francesca; Poppe, Bruce; Claes, Kathleen; Piedmonte, Marion; Tucker, Kathy; Backes, Floor; Rodríguez, Gustavo; Brewster, Wendy; Wakeley, Katie; Rutherford, Thomas; Caldés, Trinidad; Nevanlinna, Heli; Aittomäki, Kristiina; Rookus, Matti A.; van Os, Theo A. M.; van der Kolk, Lizet; de Lange, J. L.; Meijers-Heijboer, Hanne E. J.; van der Hout, A. H.; van Asperen, Christi J.; Gómez Garcia, Encarna B.; Hoogerbrugge, Nicoline; Collée, J. Margriet; van Deurzen, Carolien H. M.; van der Luijt, Rob B.; Devilee, Peter; HEBON; Olah, Edith; Lázaro, Conxi; Teulé, Alex; Menéndez, Mireia; Jakubowska, Anna; Cybulski, Cezary; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Johannsson, Oskar Th.; Maugard, Christine; Montagna, Marco; Tognazzo, Silvia; Teixeira, Manuel R.; Healey, Sue; Investigators, kConFab; Olswold, Curtis; Guidugli, Lucia; Lindor, Noralane; Slager, Susan; Szabo, Csilla I.; Vijai, Joseph; Robson, Mark; Kauff, Noah; Zhang, Liying; Rau-Murthy, Rohini; Fink-Retter, Anneliese; Singer, Christian F.; Rappaport, Christine; Geschwantler Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Berger, Andreas; Phelan, Catherine M.; Greene, Mark H.; Mai, Phuong L.; Lejbkowicz, Flavio; Andrulis, Irene; Mulligan, Anna Marie; Glendon, Gord; Toland, Amanda Ewart; Bojesen, Anders; Pedersen, Inge Sokilde; Sunde, Lone; Thomassen, Mads; Kruse, Torben A.; Jensen, Uffe Birk; Friedman, Eitan; Laitman, Yael; Shimon, Shani Paluch; Simard, Jacques; Easton, Douglas F.; Offit, Kenneth; Couch, Fergus J.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Benitez, Javier

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2). Eleven SNPs showed evidence of association with breast and/or ovarian cancer at p<0.05 in the combined analysis. Four of the five genes for which strongest evidence of association was observed were DNA glycosylases. The strongest evidence was for rs1466785 in the NEIL2 (endonuclease VIII-like 2) gene (HR: 1.09, 95% CI (1.03–1.16), p = 2.7×10−3) for association with breast cancer risk in BRCA2 mutation carriers, and rs2304277 in the OGG1 (8-guanine DNA glycosylase) gene, with ovarian cancer risk in BRCA1 mutation carriers (HR: 1.12 95%CI: 1.03–1.21, p = 4.8×10−3). DNA glycosylases involved in the first steps of the BER pathway may be associated with cancer risk in BRCA1/2 mutation carriers and should be more comprehensively studied. PMID:24698998

  17. 27 CFR 70.412 - Excise taxes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2011-04-01 2011-04-01 false Excise taxes. 70.412 Section 70.412 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Beer § 70.412 Excise taxes. (a) Collection. Taxes on distilled spirits, wines, and beer are paid by...

  18. 76 FR 52862 - Time for Payment of Certain Excise Taxes, and Quarterly Excise Tax Payments for Small Alcohol...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... 40 Cigars and cigarettes, Claims, Electronic fund transfers, Excise taxes, Labeling, Packaging and... that are not required to pay taxes through electronic funds transfer (EFT), this first payment period..., Electronic funds transfers, Excise taxes, Exports, Food additives, Fruit juices, Labeling, Liquors, Packaging...

  19. En bloc excision of a dermal sinus tract.

    PubMed

    Coumans, Jean-Valery; Walcott, Brian P; Redjal, Navid; Kahle, Kristopher T; Nahed, Brian V

    2011-04-01

    Dermal sinus tracts are a form of spinal dysraphism that arises from a failure of dysjunction early in embryogenesis. They are diagnosed in pediatric patients and who present with a dimple, infection, or neurologic deficit. The tract is surgically excised en bloc to avoid contamination from the tract, which harbors bacteria. However, dermal sinus tracts typically terminate intradurally, rendering their en bloc excision difficult. To avoid entering the tract, allowing for an en bloc excision, we modified the usual technique employed for accessing the spinal intradural space. An en bloc excision of the dermal sinus tract was successfully performed. The patient recovered from the procedure neurologically intact and her postoperative course was uncomplicated. We conclude that en bloc excision of a dermal sinus tract down to the intradural space is feasible with modifications to standard operative technique. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Excision and Patch Grafting of a Lateral Peyronie's Plaque-Utilizing a Longitudinal "Window" Approach.

    PubMed

    Lue, Kathy; Emtage, Justin B; Martinez, Daniel R; Yang, Christopher; Carrion, Rafael

    2015-06-01

    Peyronie's disease (PD) is a debilitating disorder in which collagen deposition, fibrosis, and plaques in the tunica albuginea result in penile curvature, shortening, and pain. For severe curvatures requiring plaque incision or excision with grafting (PIEG), a subcoronal circumcising incision with penile degloving has historically been used. The aim of this study was to report our unique approach to PIEG via a longitudinal "window" incision for the correction of PD, minimizing the surgical manipulation and dissection accompanying the traditional circumcising incisional approach that may lead to increased postoperative edema, pain, and prolonged healing time. A patient presented with a stable, painless, 90-degree midshaft leftward curvature causing penetration difficulties and painful intercourse for his partner. His Sexual Health Inventory for Men (SHIM) score was 23. The patient opted for surgical correction with plaque excision and grafting via a 4-cm longitudinal incision overlying the point of maximal curvature along the left lateral penile shaft. This direct access to the left corpus cavernosum and plaque, along with dissecting skin, dartos, and Buck's fascia, created a window with sufficient exposure for excision and patch grafting. The main outcome measures were objective data and subjective data in men undergoing PIEG via lateral longitudinal "window" incision for PD repair. The plaque was excised and a porcine small intestinal submucosa graft was sewn in. Intraoperative artificial tumescence at the end of surgery revealed complete correction of the curvature. The patient experienced painless rigid erections by postoperative day three with minimal penile edema. By postoperative week four, he could successfully partake in coitus. His SHIM score remained unchanged. At maximum follow-up 6 months postoperatively, he still endorsed excellent cosmetic and functional outcomes with spontaneous unassisted erections and no recurrence of his curvature. A lateral

  1. Repair Mechanism of UV-damaged DNA in Xeroderma Pigmentosum | Center for Cancer Research

    Cancer.gov

    Xeroderma pigmentosum (XP) is a rare, inherited disorder characterized by extreme skin sensitivity to ultraviolet (UV) rays from sunlight. XP is caused by mutations in genes involved in nucleotide excision repair (NER) of damaged DNA. Normal cells are usually able to fix this damage before it leads to problems; however, the DNA damage is not repaired normally in patients with XP. As more abnormalities form in DNA, cells malfunction and eventually become cancerous or die. XP patients have more than a 10,000-fold increased risk of developing skin cancer. Kenneth Kraemer, M.D., in CCR’s Dermatology Branch, has been studying XP patients at the Clinical Center for more than 40 years.

  2. [Aesthetic effect of wound repair with flaps].

    PubMed

    Tan, Qian; Zhou, Hong-Reng; Wang, Shu-Qin; Zheng, Dong-Feng; Xu, Peng; Wu, Jie; Ge, Hua-Qiang; Lin, Yue; Yan, Xin

    2012-08-01

    To investigate the aesthetic effect of wound repair with flaps. One thousand nine hundred and ninety-six patients with 2082 wounds hospitalized from January 2004 to December 2011. These wounds included 503 deep burn wounds, 268 pressure sores, 392 soft tissue defects caused by trauma, 479 soft tissue defects due to resection of skin cancer and mole removal, 314 soft tissue defects caused by scar excision, and 126 other wounds. Wound area ranged from 1.5 cm x 1.0 cm to 30.0 cm x 22.0 cm. Sliding flaps, expanded flaps, pedicle flaps, and free flaps were used to repair the wounds in accordance with the principle and timing of wound repair with flaps. Five flaps showed venous congestion within 48 hours post-operation, 2 flaps of them improved after local massage. One flap survived after local heparin wet packing and venous bloodletting. One flap survived after emergency surgical embolectomy and bridging with saphenous vein graft. One flap showed partial necrosis and healed after skin grafting. The other flaps survived well. One thousand three hundred and twenty-one patients were followed up for 3 months to 2 years, and flaps of them were satisfactory in shape, color, and elasticity, similar to that of normal skin. Some patients underwent scar revision later with good results. Application of suitable flaps in wound repair will result in quick wound healing, good function recovery, and satisfactory aesthetic effect.

  3. A Protective Mechanism of Visible Red Light in Normal Human Dermal Fibroblasts: Enhancement of GADD45A-Mediated DNA Repair Activity.

    PubMed

    Kim, Yeo Jin; Kim, Hyoung-June; Kim, Hye Lim; Kim, Hyo Jeong; Kim, Hyun Soo; Lee, Tae Ryong; Shin, Dong Wook; Seo, Young Rok

    2017-02-01

    The phototherapeutic effects of visible red light on skin have been extensively investigated, but the underlying biological mechanisms remain poorly understood. We aimed to elucidate the protective mechanism of visible red light in terms of DNA repair of UV-induced oxidative damage in normal human dermal fibroblasts. The protective effect of visible red light on UV-induced DNA damage was identified by several assays in both two-dimensional and three-dimensional cell culture systems. With regard to the protective mechanism of visible red light, our data showed alterations in base excision repair mediated by growth arrest and DNA damage inducible, alpha (GADD45A). We also observed an enhancement of the physical activity of GADD45A and apurinic/apyrimidinic endonuclease 1 (APE1) by visible red light. Moreover, UV-induced DNA damages were diminished by visible red light in an APE1-dependent manner. On the basis of the decrease in GADD45A-APE1 interaction in the activating transcription factor-2 (ATF2)-knockdown system, we suggest a role for ATF2 modulation in GADD45A-mediated DNA repair upon visible red light exposure. Thus, the enhancement of GADD45A-mediated base excision repair modulated by ATF2 might be a potential protective mechanism of visible red light. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. 75 FR 9359 - Drawback of Internal Revenue Excise Tax

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... Drawback of Internal Revenue Excise Tax AGENCY: Customs and Border Protection, Department of Homeland... substitution drawback claim for internal revenue excise tax paid on imported merchandise in situations where no excise tax was paid upon the substituted merchandise or where the substituted merchandise is the subject...

  5. 29 CFR 779.262 - Excise taxes at the retail level.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Coverage Excise Taxes § 779.262 Excise taxes at the retail level. (a) Federal excise taxes are imposed at.... Such excise taxes are levied at the retail level on any liquid fuel sold for use, or used in a diesel... levied at the retail level, and thus excludable when separately stated, depends, of course, upon the law...

  6. 29 CFR 779.262 - Excise taxes at the retail level.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Excise taxes at the retail level. 779.262 Section 779.262... Coverage Excise Taxes § 779.262 Excise taxes at the retail level. (a) Federal excise taxes are imposed at the retail level on highway vehicle fuels other than gasoline under the provisions of 26 U.S.C. 4041...

  7. 29 CFR 779.262 - Excise taxes at the retail level.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Excise taxes at the retail level. 779.262 Section 779.262... Coverage Excise Taxes § 779.262 Excise taxes at the retail level. (a) Federal excise taxes are imposed at the retail level on highway vehicle fuels other than gasoline under the provisions of 26 U.S.C. 4041...

  8. 29 CFR 779.262 - Excise taxes at the retail level.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Excise taxes at the retail level. 779.262 Section 779.262... Coverage Excise Taxes § 779.262 Excise taxes at the retail level. (a) Federal excise taxes are imposed at the retail level on highway vehicle fuels other than gasoline under the provisions of 26 U.S.C. 4041...

  9. 29 CFR 779.262 - Excise taxes at the retail level.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Excise taxes at the retail level. 779.262 Section 779.262... Coverage Excise Taxes § 779.262 Excise taxes at the retail level. (a) Federal excise taxes are imposed at the retail level on highway vehicle fuels other than gasoline under the provisions of 26 U.S.C. 4041...

  10. Deficient expression of DNA repair enzymes in early progression to sporadic colon cancer

    PubMed Central

    2012-01-01

    Background Cancers often arise within an area of cells (e.g. an epithelial patch) that is predisposed to the development of cancer, i.e. a "field of cancerization" or "field defect." Sporadic colon cancer is characterized by an elevated mutation rate and genomic instability. If a field defect were deficient in DNA repair, DNA damages would tend to escape repair and give rise to carcinogenic mutations. Purpose To determine whether reduced expression of DNA repair proteins Pms2, Ercc1 and Xpf (pairing partner of Ercc1) are early steps in progression to colon cancer. Results Tissue biopsies were taken during colonoscopies of 77 patients at 4 different risk levels for colon cancer, including 19 patients who had never had colonic neoplasia (who served as controls). In addition, 158 tissue samples were taken from tissues near or within colon cancers removed by resection and 16 tissue samples were taken near tubulovillous adenomas (TVAs) removed by resection. 568 triplicate tissue sections (a total of 1,704 tissue sections) from these tissue samples were evaluated by immunohistochemistry for 4 DNA repair proteins. Substantially reduced protein expression of Pms2, Ercc1 and Xpf occurred in field defects of up to 10 cm longitudinally distant from colon cancers or TVAs and within colon cancers. Expression of another DNA repair protein, Ku86, was infrequently reduced in these areas. When Pms2, Ercc1 or Xpf were reduced in protein expression, then either one or both of the other two proteins most often had reduced protein expression as well. The mean inner colon circumferences, from 32 resections, of the ascending, transverse and descending/sigmoid areas were measured as 6.6 cm, 5.8 cm and 6.3 cm, respectively. When combined with other measurements in the literature, this indicates the approximate mean number of colonic crypts in humans is 10 million. Conclusions The substantial deficiencies in protein expression of DNA repair proteins Pms2, Ercc1 and Xpf in about 1 million

  11. Crystal structures of catalytic complexes of the oxidative DNA/RNA repair enzyme AlkB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu,B.; Edstrom, W.; Benach, J.

    2006-01-01

    Nucleic acid damage by environmental and endogenous alkylation reagents creates lesions that are both mutagenic and cytotoxic, with the latter effect accounting for their widespread use in clinical cancer chemotherapy. Escherichia coliAlkB and the homologous human proteins ABH2 and ABH3 (refs 5, 7) promiscuously repair DNA and RNA bases damaged by SN2 alkylation reagents, which attach hydrocarbons to endocyclic ring nitrogen atoms (N1 of adenine and guanine and N3 of thymine and cytosine). Although the role of AlkB in DNA repair has long been established based on phenotypic studies, its exact biochemical activity was only elucidated recently after sequence profilemore » analysis revealed it to be a member of the Fe-oxoglutarate-dependent dioxygenase superfamily. These enzymes use an Fe(ii) cofactor and 2-oxoglutarate co-substrate to oxidize organic substrates. AlkB hydroxylates an alkylated nucleotide base to produce an unstable product that releases an aldehyde to regenerate the unmodified base. Here we have determined crystal structures of substrate and product complexes of E. coli AlkB at resolutions from 1.8 to 2.3 Angstroms. Whereas the Fe-2-oxoglutarate dioxygenase core matches that in other superfamily members, a unique subdomain holds a methylated trinucleotide substrate into the active site through contacts to the polynucleotide backbone. Amide hydrogen exchange studies and crystallographic analyses suggest that this substrate-binding 'lid' is conformationally flexible, which may enable docking of diverse alkylated nucleotide substrates in optimal catalytic geometry. Different crystal structures show open and closed states of a tunnel putatively gating O2 diffusion into the active site. Exposing crystals of the anaerobic Michaelis complex to air yields slow but substantial oxidation of 2-oxoglutarate that is inefficiently coupled to nucleotide oxidation. These observations suggest that protein dynamics modulate redox chemistry and that a hypothesized

  12. RPA physically interacts with the human DNA glycosylase NEIL1 to regulate excision of oxidative DNA base damage in primer-template structures.

    PubMed

    Theriot, Corey A; Hegde, Muralidhar L; Hazra, Tapas K; Mitra, Sankar

    2010-06-04

    The human DNA glycosylase NEIL1, activated during the S-phase, has been shown to excise oxidized base lesions in single-strand DNA substrates. Furthermore, our previous work demonstrating functional interaction of NEIL1 with PCNA and flap endonuclease 1 (FEN1) suggested its involvement in replication-associated repair. Here we show interaction of NEIL1 with replication protein A (RPA), the heterotrimeric single-strand DNA binding protein that is essential for replication and other DNA transactions. The NEIL1 immunocomplex isolated from human cells contains RPA, and its abundance in the complex increases after exposure to oxidative stress. NEIL1 directly interacts with the large subunit of RPA (K(d) approximately 20 nM) via the common interacting interface (residues 312-349) in NEIL1's disordered C-terminal region. RPA inhibits the base excision activity of both wild-type NEIL1 (389 residues) and its C-terminal deletion CDelta78 mutant (lacking the interaction domain) for repairing 5-hydroxyuracil (5-OHU) in a primer-template structure mimicking the DNA replication fork. This inhibition is reduced when the damage is located near the primer-template junction. Contrarily, RPA moderately stimulates wild-type NEIL1 but not the CDelta78 mutant when 5-OHU is located within the duplex region. While NEIL1 is inhibited by both RPA and Escherichia coli single-strand DNA binding protein, only inhibition by RPA is relieved by PCNA. These results showing modulation of NEIL1's activity on single-stranded DNA substrate by RPA and PCNA support NEIL1's involvement in repairing the replicating genome. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Polychlorinated biphenyl quinone induces oxidative DNA damage and repair responses: The activations of NHEJ, BER and NER via ATM-p53 signaling axis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Hui; Shi, Qiong; Song, Xiufang

    2015-07-01

    Our previous studies demonstrated that polychlorinated biphenyl (PCB) quinone induced oxidative DNA damage in HepG2 cells. To promote genomic integrity, DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair and apoptosis. PCB quinone-induced cell cycle arrest and apoptosis have been documented, however, whether PCB quinone insult induce DNA repair signaling is still unknown. In this study, we identified the activation of DDR and corresponding signaling events in HepG2 cells upon the exposure to a synthetic PCB quinone, PCB29-pQ. Our data illustrated that PCB29-pQ induces the phosphorylation of p53, which was mediated by ataxia telangiectasia mutated (ATM) protein kinase. The observedmore » phosphorylated histone H2AX (γ-H2AX) foci and the elevation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) indicated that DDR was stimulated by PCB29-pQ treatment. Additionally, we found PCB29-pQ activates non-homologous end joining (NHEJ), base excision repair (BER) and nucleotide excision repair (NER) signalings. However, these repair pathways are not error-free processes and aberrant repair of DNA damage may cause the potential risk of carcinogenesis and mutagenesis. - Highlights: • Polychlorinated biphenyl quinone induces oxidative DNA damage in HepG2 cells. • The elevation of γ-H2AX and 8-OHdG indicates the activation of DNA damage response. • ATM-p53 signaling acts as the DNA damage sensor and effector. • Polychlorinated biphenyl quinone activates NHEJ, BER and NER signalings.« less

  14. Accelerated age-related cognitive decline and neurodegeneration, caused by deficient DNA repair.

    PubMed

    Borgesius, Nils Z; de Waard, Monique C; van der Pluijm, Ingrid; Omrani, Azar; Zondag, Gerben C M; van der Horst, Gijsbertus T J; Melton, David W; Hoeijmakers, Jan H J; Jaarsma, Dick; Elgersma, Ype

    2011-08-31

    Age-related cognitive decline and neurodegenerative diseases are a growing challenge for our societies with their aging populations. Accumulation of DNA damage has been proposed to contribute to these impairments, but direct proof that DNA damage results in impaired neuronal plasticity and memory is lacking. Here we take advantage of Ercc1(Δ/-) mutant mice, which are impaired in DNA nucleotide excision repair, interstrand crosslink repair, and double-strand break repair. We show that these mice exhibit an age-dependent decrease in neuronal plasticity and progressive neuronal pathology, suggestive of neurodegenerative processes. A similar phenotype is observed in mice where the mutation is restricted to excitatory forebrain neurons. Moreover, these neuron-specific mutants develop a learning impairment. Together, these results suggest a causal relationship between unrepaired, accumulating DNA damage, and age-dependent cognitive decline and neurodegeneration. Hence, accumulated DNA damage could therefore be an important factor in the onset and progression of age-related cognitive decline and neurodegenerative diseases.

  15. Mediator links transcription and DNA repair by facilitating Rad2/XPG recruitment.

    PubMed

    Eyboulet, Fanny; Cibot, Camille; Eychenne, Thomas; Neil, Helen; Alibert, Olivier; Werner, Michel; Soutourina, Julie

    2013-12-01

    Mediator is a large multiprotein complex conserved in all eukaryotes. The crucial function of Mediator in transcription is now largely established. However, we found that this complex also plays an important role by connecting transcription with DNA repair. We identified a functional contact between the Med17 Mediator subunit and Rad2/XPG, the 3' endonuclease involved in nucleotide excision DNA repair. Genome-wide location analyses revealed that Rad2 is associated with RNA polymerase II (Pol II)- and Pol III-transcribed genes and telomeric regions in the absence of exogenous genotoxic stress. Rad2 occupancy of Pol II-transcribed genes is transcription-dependent. Genome-wide Rad2 occupancy of class II gene promoters is well correlated with that of Mediator. Furthermore, UV sensitivity of med17 mutants is correlated with reduced Rad2 occupancy of class II genes and concomitant decrease of Mediator interaction with Rad2 protein. Our results suggest that Mediator is involved in DNA repair by facilitating Rad2 recruitment to transcribed genes.

  16. Atl1 regulates choice between global genome and transcription-coupled repair of O(6)-alkylguanines.

    PubMed

    Latypov, Vitaly F; Tubbs, Julie L; Watson, Amanda J; Marriott, Andrew S; McGown, Gail; Thorncroft, Mary; Wilkinson, Oliver J; Senthong, Pattama; Butt, Amna; Arvai, Andrew S; Millington, Christopher L; Povey, Andrew C; Williams, David M; Santibanez-Koref, Mauro F; Tainer, John A; Margison, Geoffrey P

    2012-07-13

    Nucleotide excision repair (NER) has long been known to remove DNA lesions induced by chemical carcinogens, and the molecular mechanism has been partially elucidated. Here we demonstrate that in Schizosaccharomyces pombe a DNA recognition protein, alkyltransferase-like 1 (Atl1), can play a pivotal role in selecting a specific NER pathway, depending on the nature of the DNA modification. The relative ease of dissociation of Atl1 from DNA containing small O(6)-alkylguanines allows accurate completion of global genome repair (GGR), whereas strong Atl1 binding to bulky O(6)-alkylguanines blocks GGR, stalls the transcription machinery, and diverts the damage to transcription-coupled repair. Our findings redraw the initial stages of the NER process in those organisms that express an alkyltransferase-like gene and raise the question of whether or not O(6)-alkylguanine lesions that are poor substrates for the alkyltransferase proteins in higher eukaryotes might, by analogy, signal such lesions for repair by NER. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Primary surgical excision for pediatric orbital capillary hemangioma.

    PubMed

    Krema, Hatem

    2015-05-01

    We report the technique and outcome of surgical excision of subcutaneous orbital capillary hemangioma causing eye globe displacement in two children. Primary surgical excision was performed with blunt dissection along the tumor walls using a cotton-tipped applicator as the dissecting tool with simultaneous outward gentle traction on the tumor wall. Despite the deep and extensive orbital involvement, complete excision of the hemangiomas was achievable with this technique, which permitted excellent visualization of the surgical planes throughout the procedures. Deep and extensive pediatric orbital capillary hemangioma can be surgically excised with the suggested technique, which obviates the need for intralesional or systemic medical therapy, yielding optimal cosmetic and functional outcomes, shortly after surgery.

  18. An Aromatic Sensor with Aversion to Damaged Strands Confers Versatility to DNA Repair

    PubMed Central

    Maillard, Olivier; Solyom, Szilvia; Naegeli, Hanspeter

    2007-01-01

    It was not known how xeroderma pigmentosum group C (XPC) protein, the primary initiator of global nucleotide excision repair, achieves its outstanding substrate versatility. Here, we analyzed the molecular pathology of a unique Trp690Ser substitution, which is the only reported missense mutation in xeroderma patients mapping to the evolutionary conserved region of XPC protein. The function of this critical residue and neighboring conserved aromatics was tested by site-directed mutagenesis followed by screening for excision activity and DNA binding. This comparison demonstrated that Trp690 and Phe733 drive the preferential recruitment of XPC protein to repair substrates by mediating an exquisite affinity for single-stranded sites. Such a dual deployment of aromatic side chains is the distinctive feature of functional oligonucleotide/oligosaccharide-binding folds and, indeed, sequence homologies with replication protein A and breast cancer susceptibility 2 protein indicate that XPC displays a monomeric variant of this recurrent interaction motif. An aversion to associate with damaged oligonucleotides implies that XPC protein avoids direct contacts with base adducts. These results reveal for the first time, to our knowledge, an entirely inverted mechanism of substrate recognition that relies on the detection of single-stranded configurations in the undamaged complementary sequence of the double helix. PMID:17355181

  19. The formation of double-strand breaks at multiply damaged sites is driven by the kinetics of excision/incision at base damage in eukaryotic cells

    PubMed Central

    Kozmin, Stanislav G.; Sedletska, Yuliya; Reynaud-Angelin, Anne; Gasparutto, Didier; Sage, Evelyne

    2009-01-01

    It has been stipulated that repair of clustered DNA lesions may be compromised, possibly leading to the formation of double-strand breaks (DSB) and, thus, to deleterious events. Using a variety of model multiply damaged sites (MDS), we investigated parameters that govern the formation of DSB during the processing of MDS. Duplexes carrying MDS were inserted into replicative or integrative vectors, and used to transform yeast Saccharomyces cerevisiae. Formation of DSB was assessed by a relevant plasmid survival assay. Kinetics of excision/incision and DSB formation at MDS was explored using yeast cell extracts. We show that MDS composed of two uracils or abasic sites, were rapidly incised and readily converted into DSB in yeast cells. In marked contrast, none of the MDS carrying opposed oG and hU separated by 3–8 bp gave rise to DSB, despite the fact that some of them contained preexisting single-strand break (a 1-nt gap). Interestingly, the absence of DSB formation in this case correlated with slow excision/incision rates of lesions. We propose that the kinetics of the initial repair steps at MDS is a major parameter that direct towards the conversion of MDS into DSB. Data provides clues to the biological consequences of MDS in eukaryotic cells. PMID:19174565

  20. Induction of pure and sectored mutant clones in excision-proficient and deficient strains of yeast.

    PubMed

    Eckardt, F; Haynes, R H

    1977-06-01

    We have found that UV-induced mutation frequency in a forward non-selective assay system (scoring white adex ade2 double auxotroph mutants among the red pigmented ade2 clones) increases linearly with dose up to a maximum frequency of about 3 X 10(-3) mutants per survivor and then declines in both RAD wild-type and rad2 excision deficient strains of Saccharomyces cerevisiae. Mutation frequencies of the RAD and the rad2 strains plotted against survival are nearly identical over the entire survival range. On this basis we conclude that unexcised pyrimidine dimers are the predominant type of pre-mutational lesions in both strains. In the RAD wild-type strain pure mutant clones outnumber sectors in a 10:1 ratio at all doses used; in rad2 this ratio varies from 1:1 at low doses up to 10:1 at high doses. As others have concluded for wild-type strains we find also in the rad2 strain that pure clone formation cannot be accounted for quantitatively by lethal sectoring events alone. We conclude that heteroduplex repair is a crucial step in pure mutant clone formation and we examine the plausibility of certain macromolecular mechanisms according to which heteroduplex repair may be coupled with replication, repair and sister strand exchange in yeast mutagenesis.

  1. Potential risk of esophageal squamous cell carcinoma due to nucleotide excision repair XPA and XPC gene variants and their interaction among themselves and with environmental factors.

    PubMed

    Rafiq, Rumaisa; Bhat, Gulzar Ahmad; Lone, Mohd Maqbool; Masood, Akbar; Dar, Nazir Ahmad

    2016-08-01

    The association of nucleotide excision repair (NER) gene polymorphisms with esophageal squamous cell carcinoma (ESCC) is inconclusive. The aim of the current study was to assess the association of repair gene xeroderma pigmentosum A (XPA) (rs-1800975) and xeroderma pigmentosum C (XPC) (rs-2228000) polymorphisms with ESCC risk as well as modifying effects of environmental factors. The genotyping was done in 450 confirmed ESCC cases and equal number of individually matched controls by the polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) and direct sequencing methods. Conditional logistic regression models were used to assess the genotypic associations and interactions. A high ESCC risk was found in subjects who carried the homozygous minor allele of XPA (odds ratio (OR) = 3.57; 95 % confidence interval (CI) = 1.76-7.23), and the risk was higher when analysis was limited to participants who were ever smokers (OR = 4.22; 95 % CI = 2.01-8.88), lived in adobe houses (OR = 8.42; 95 % CI = 3.74-18.95), consumed large volumes of salt tea (OR = 7.42; 95 % CI = 3.30-16.69), or had a positive family history of cancer (FHC) (OR = 9.47; 95 % CI = 4.67-19.20). In case of XPC, a homozygous minor allele also showed strong association with ESCC risk (OR = 4.43; 95 % CI = 2.41-8.16). We again observed a very strong effect of the above environmental factors in elevating the risk of ESCC. Further, the variant genotypes of both genes in combination showed an increased risk towards ESCC (OR = 7.01; 95 % CI = 3.14-15.64) and such association was synergistically significant. Salt tea consumption showed an interaction with genotypes of XPA and XPC. However, an interaction with FHC was significant in the case of XPA genotype only. XPA and XPC genotypes are associated with an increased risk of ESCC, and such association was reasonably modulated by different exposures.

  2. Associations between expression levels of nucleotide excision repair proteins in lymphoblastoid cells and risk of squamous cell carcinoma of the head and neck.

    PubMed

    Han, Peng; Liu, Hongliang; Shi, Qiong; Liu, Zhensheng; Troy, Jesse D; Lee, Walter T; Zevallos, Jose P; Li, Guojun; Sturgis, Erich M; Wei, Qingyi

    2018-06-01

    Squamous cell carcinoma of head and neck (SCCHN) is one of the most common malignancies worldwide, and nucleotide excision repair (NER) is involved in SCCHN susceptibility. In this analysis of 349 newly diagnosed SCCHN patients and 295 cancer-free controls, we investigated whether expression levels of eight core NER proteins were associated with risk of SCCHN. We quantified NER protein expression levels in cultured peripheral lymphocytes using a reverse-phase protein microarray. Compared with the controls, SCCHN patients had statistically significantly lower expression levels of ERCC3 and XPA (P = 0.001 and 0.001, respectively). After dividing the subjects by controls' median values of expression levels, we found a dose-dependent association between an increased risk of SCCHN and low expression levels of ERCC3 (adjusted OR, 1.75, and 95% CI: 1.26-2.42; P trend  = 0.008) and XPA (adjusted OR, 1.88; 95% CI, 1.35-2.60; P trend  = 0.001). We also identified a significant multiplicative interaction between smoking status and ERCC3 expression levels (P = 0.014). Finally, after integrating demographic and clinical variables, we found that the addition of ERCC3 and XPA expression levels to the model significantly improved the sensitivity of the expanded model on SCCHN risk. In conclusion, reduced protein expression levels of ERCC3 and XPA were associated with an increased risk of SCCHN. However, these results need to be confirmed in additional large studies. © 2018 Wiley Periodicals, Inc.

  3. Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo.

    PubMed

    Hoogstraten, Deborah; Nigg, Alex L; Heath, Helen; Mullenders, Leon H F; van Driel, Roel; Hoeijmakers, Jan H J; Vermeulen, Wim; Houtsmuller, Adriaan B

    2002-11-01

    The transcription/repair factor TFIIH operates as a DNA helix opener in RNA polymerase II (RNAP2) transcription and nucleotide excision repair. To study TFIIH in vivo, we generated cell lines expressing functional GFP-tagged TFIIH. TFIIH was homogeneously distributed throughout the nucleus with nucleolar accumulations. We provide in vivo evidence for involvement of TFIIH in RNA polymerase I (RNAP1) transcription. Photobleaching revealed that TFIIH moves freely and gets engaged in RNAP1 and RNAP2 transcription for approximately 25 and approximately 6 s, respectively. TFIIH readily switches between transcription and repair sites (where it is immobilized for approximately 4 min) without large-scale alterations in composition. Our findings support a model of diffusion and random collision of individual components that permits a quick and versatile response to changing conditions.

  4. Evaluation of the Antimicrobial Activity of Lysostaphin-Coated Hernia Repair Meshes▿

    PubMed Central

    Satishkumar, Rohan; Sankar, Sriram; Yurko, Yuliya; Lincourt, Amy; Shipp, John; Heniford, B. Todd; Vertegel, Alexey

    2011-01-01

    Bacterial infections by antibiotic-resistant Staphylococcus aureus strains are among the most common postoperative complications in surgical hernia repair with synthetic mesh. Surface coating of medical devices/implants using antibacterial peptides and enzymes has recently emerged as a potentially effective method for preventing infections. The objective of this study was to evaluate the in vitro antimicrobial activity of hernia repair meshes coated by the antimicrobial enzyme lysostaphin at different initial concentrations. Lysostaphin was adsorbed on pieces of polypropylene (Ultrapro) mesh with binding yields of ∼10 to 40% at different coating concentrations of between 10 and 500 μg/ml. Leaching of enzyme from the surface of all the samples was studied in 2% (wt/vol) bovine serum albumin in phosphate-buffered saline buffer at 37°C, and it was found that less than 3% of adsorbed enzyme desorbed from the surface after 24 h of incubation. Studies of antibacterial activity against a cell suspension of S. aureus were performed using turbidity assay and demonstrated that the small amount of enzyme leaching from the mesh surface contributes to the lytic activity of the lysostaphin-coated samples. Colony counting data from the broth count (model for bacteria in wound fluid) and wash count (model for colonized bacteria) for the enzyme-coated samples showed significantly decreased numbers of CFU compared to uncoated samples (P < 0.05). A pilot in vivo study showed a dose-dependent efficacy of lysostaphin-coated meshes in a rat model of S. aureus infection. The antimicrobial activity of the lysostaphin-coated meshes suggests that such enzyme-leaching surfaces could be efficient at actively resisting initial bacterial adhesion and preventing subsequent colonization of hernia repair meshes. PMID:21709102

  5. COMPREHENSIVE ANALYSES OF DNA REPAIR PATHWAYS, SMOKING, AND BLADDER CANCER RISK IN LOS ANGELES AND SHANGHAI

    PubMed Central

    Corral, Roman; Lewinger, Juan Pablo; Berg, David Van Den; Joshi, Amit D.; Yuan, Jian-Min; Gago-Dominguez, Manuela; Cortessis, Victoria K.; Pike, Malcolm C.; Conti, David V.; Thomas, Duncan C.; Edlund, Christopher K.; Gao, Yu-Tang; Xiang, Yong-Bing; Zhang, Wei; Su, Yu-Chen; Stern, Mariana C.

    2014-01-01

    Tobacco smoking is a bladder cancer risk factor and a source of carcinogens that induce DNA damage to urothelial cells. Using data and samples from 988 cases and 1,004 controls enrolled in the Los Angeles County Bladder Cancer Study and the Shanghai Bladder Cancer Study we investigated associations between bladder cancer risk and 632 tagSNPs that comprehensively capture genetic variation in 28 DNA repair genes from four DNA repair pathways: base excision repai, nucleotide excision repair (NER), non-homologous end-joining (NHEJ), and homologous recombination repair (HHR). Odds ratios (ORs) and 95% confidence intervals (CIs) for each tagSNP were corrected for multiple testing for all SNPs within each gene using pACT, and for genes within each pathway and across pathways with Bonferroni. Gene and pathway summary estimates were obtained using ARTP. We observed an association between bladder cancer and POLB rs7832529 (BER) (pACT = 0.003; ppathway = 0.021) among all, and SNPs in XPC (NER) and OGG1 (BER) among Chinese men and women, respectively. The NER pathway showed an overall association with risk among Chinese males (ARTP NER p = 0.034). The XRCC6 SNP rs2284082 (NHEJ), also in LD with SREBF2, showed an interaction with smoking (Smoking status interaction pgene = 0.001, ppathway = 0.008, poverall = 0.034). Our findings support a role in bladder carcinogenesis for regions that map close to or within BER (POLB, OGG1) and NER genes (XPC). A SNP that tags both the XRCC6 and SREBF2 genes strongly modifies the association between bladder cancer risk and smoking. PMID:24382701

  6. Fanconi Anemia Proteins, DNA Interstrand Crosslink Repair Pathways, and Cancer Therapy

    PubMed Central

    Andreassen, Paul R.; Ren, Keqin

    2016-01-01

    DNA interstrand crosslinkers, a chemically diverse group of compounds which also induce alkylation of bases and DNA intrastrand crosslinks, are extensively utilized for cancer therapy. Understanding the cellular response to DNA damage induced by these agents is critical for more effective utilization of these compounds and for the identification of novel therapeutic targets. Importantly, the repair of DNA interstrand crosslinks (ICLs) involves many distinct DNA repair pathways, including nucleotide excision repair, translesion synthesis (TLS), and homologous recombination (HR). Additionally, proteins implicated in the pathophysiology of the multigenic disease Fanconi anemia (FA) have a role in the repair of ICLs that is not well understood. Cells from FA patients are hypersensitive to agents that induce ICLs, therefore FA proteins are potentially novel therapeutic targets. Here we will review current research directed at identifying FA genes and understanding the function of FA proteins in DNA damage responses. We will also examine interactions of FA proteins with other repair proteins and pathways, including signaling networks, which are potentially involved in ICL repair. Potential approaches to the modulation of FA protein function to enhance therapeutic outcome will be discussed. Also, mutation of many genes that encode proteins involved in ICL repair, including FA genes, increases susceptibility to cancer. A better understanding of these pathways is therefore critical for the design of individualized therapies tailored to the genetic profile of a particular malignancy. For this purpose, we will also review evidence for the association of mutation of FA genes with cancer in non-FA patients. PMID:19200054

  7. Reconstruction of the symphysis pubis to repair a complex midline hernia in the setting of congenital bladder exstrophy

    PubMed Central

    Kohler, J. E.; Friedstat, J. S.; Jacobs, M. A.; Voelzke, B. B.; Foy, H. M.; Grady, R. W.; Gruss, J. S.

    2015-01-01

    Purpose A 40-year-old man with congenital midline defect and wide pubic symphysis diastasis secondary to bladder exstrophy presented with a massive incisional hernia resulting from complications of multiple prior abdominal repairs. Using a multi-disciplinary team of general, plastic, and urologic surgeons, we performed a complex hernia repair including creation of a pubic symphysis with rib graft for inferior fixation of mesh. Methods The skin graft overlying the peritoneum was excised, and the posterior rectus sheath mobilized, then re-approximated. The previously augmented bladder and urethra were mobilized into the pelvis, after which a rib graft was constructed from the 7th rib and used to create a symphysis pubis using a mortise joint. This rib graft was used to fix the inferior portion of a 20 × 25 cm porcine xenograft mesh in a retro-rectus position. With the defect closed, prior skin scars were excised and the wound closed over multiple drains. Results The patient tolerated the procedure well. His post-operative course was complicated by a vesico-cutaneous fistula and associated urinary tract and wound infections. This resolved by drainage with a urethral catheter and bilateral percutaneous nephrostomies. The patient has subsequently healed well with an intact hernia repair. The increased intra-abdominal pressure from his intact abdominal wall has been associated with increased stress urinary incontinence. Conclusions Although a difficult operation prone to serious complications, reconstruction of the symphysis pubis is an effective means for creating an inferior border to affix mesh in complex hernia repairs associated with bladder exstrophy. PMID:25156539

  8. A Surgical Procedure for Resecting the Mouse Rib: A Model for Large-Scale Long Bone Repair

    PubMed Central

    Funnell, John W.; Thein, Thu Zan Tun; Mariani, Francesca V.

    2015-01-01

    This protocol introduces researchers to a new model for large-scale bone repair utilizing the mouse rib. The procedure details the following: preparation of the animal for surgery, opening the thoracic body wall, exposing the desired rib from the surrounding intercostal muscles, excising the desired section of rib without inducing a pneumothorax, and closing the incisions. Compared to the bones of the appendicular skeleton, the ribs are highly accessible. In addition, no internal or external fixator is necessary since the adjacent ribs provide a natural fixation. The surgery uses commercially available supplies, is straightforward to learn, and well-tolerated by the animal. The procedure can be carried out with or without removing the surrounding periosteum, and therefore the contribution of the periosteum to repair can be assessed. Results indicate that if the periosteum is retained, robust repair occurs in 1 - 2 months. We expect that use of this protocol will stimulate research into rib repair and that the findings will facilitate the development of new ways to stimulate bone repair in other locations around the body. PMID:25651082

  9. Psychrometric Field Measurement of Water Potential Changes following Leaf Excision.

    PubMed

    Savage, M J; Cass, A

    1984-01-01

    In situ measurement of sudden leaf water potential changes has not been performed under field conditions. A laboratory investigation involving the measurement of leaf water potential prior to and 2 to 200 minutes after excision of citrus leaves (Citrus jambhiri) showed good linear correlation (r = 0.99) between in situ leaf psychrometer and Scholander pressure chamber measurements. Following this, a field investigation was conducted which involved psychrometric measurement prior to petiole excision and 1 minute after excision. Simultaneous pressure chamber measurements were performed on neighboring leaves prior to the time of excision and then on the psychrometer leaf about 2 minutes after excision. These data indicate that within the first 2 minutes after excision, psychrometer and pressure chamber measurements were linearly correlated (r = 0.97). Under high evaporative demand conditions, the rate of water potential decrease was between 250 and 700 kilopascals in the first minute after excision. These results show that the thermocouple psychrometer can be used as a dynamic and nondestructive field technique for monitoring leaf water potential.

  10. Robotic assisted excision of a left ventricular myxoma.

    PubMed

    Hassan, Mohammed; Smith, J Michael

    2012-01-01

    We present a rare case of left ventricular myxoma discovered incidentally in an asymptomatic 16-year old male. The patient underwent the appropriate work-up and a robotic-assisted excision of the mass. The patient had an uneventful recovery and was discharged home at postoperative day 3. To our knowledge, this is the first case of robotic-assisted left ventricular myxoma excision in the literature. Robotic-assisted surgery of left ventricular myxomas is a safe and feasible method of excision.

  11. SERIES: Genomic instability in cancer Balancing repair and tolerance of DNA damage caused by alkylating agents

    PubMed Central

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D

    2013-01-01

    Alkylating agents comprise a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER), and mismatch repair (MMR) respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for an organism's favorable response to alkylating agents. Furthermore, an individual's response to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity. PMID:22237395

  12. Repair of naturally occurring mismatches can induce mutations in flanking DNA

    PubMed Central

    Chen, Jia; Miller, Brendan F; Furano, Anthony V

    2014-01-01

    ‘Normal’ genomic DNA contains hundreds of mismatches that are generated daily by the spontaneous deamination of C (U/G) and methyl-C (T/G). Thus, a mutagenic effect of their repair could constitute a serious genetic burden. We show here that while mismatches introduced into human cells on an SV40-based episome were invariably repaired, this process induced mutations in flanking DNA at a significantly higher rate than no mismatch controls. Most mutations involved the C of TpC, the substrate of some single strand-specific APOBEC cytidine deaminases, similar to the mutations that can typify the ‘mutator phenotype’ of numerous tumors. siRNA knockdowns and chromatin immunoprecipitation showed that TpC preferring APOBECs mediate the mutagenesis, and siRNA knockdowns showed that both the base excision and mismatch repair pathways are involved. That naturally occurring mispairs can be converted to mutators, represents an heretofore unsuspected source of genetic changes that could underlie disease, aging, and evolutionary change. DOI: http://dx.doi.org/10.7554/eLife.02001.001 PMID:24843013

  13. Inefficient DNA Repair Is an Aging-Related Modifier of Parkinson's Disease.

    PubMed

    Sepe, Sara; Milanese, Chiara; Gabriels, Sylvia; Derks, Kasper W J; Payan-Gomez, Cesar; van IJcken, Wilfred F J; Rijksen, Yvonne M A; Nigg, Alex L; Moreno, Sandra; Cerri, Silvia; Blandini, Fabio; Hoeijmakers, Jan H J; Mastroberardino, Pier G

    2016-05-31

    The underlying relation between Parkinson's disease (PD) etiopathology and its major risk factor, aging, is largely unknown. In light of the causative link between genome stability and aging, we investigate a possible nexus between DNA damage accumulation, aging, and PD by assessing aging-related DNA repair pathways in laboratory animal models and humans. We demonstrate that dermal fibroblasts from PD patients display flawed nucleotide excision repair (NER) capacity and that Ercc1 mutant mice with mildly compromised NER exhibit typical PD-like pathological alterations, including decreased striatal dopaminergic innervation, increased phospho-synuclein levels, and defects in mitochondrial respiration. Ercc1 mouse mutants are also more sensitive to the prototypical PD toxin MPTP, and their transcriptomic landscape shares important similarities with that of PD patients. Our results demonstrate that specific defects in DNA repair impact the dopaminergic system and are associated with human PD pathology and might therefore constitute an age-related risk factor for PD. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Endothelial reaction to perforating and non-perforating excimer laser excisions in rabbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, J.W.; Lang, G.K.; Naumann, G.O.

    1991-05-01

    With an ArF excimer laser (193 nm, 750 mJ/cm2, 20 Hz) and a special slit-mask system, perforating and non-perforating linear keratectomies were performed in 55 rabbit corneas with a follow-up from 1 hour to 6 months. Varying the pulse number according to ablation rate (0.8 micron/pulse) and corneal thickness, four linear radial excisions (3 mm length, 70 microns width) of increasing depth (70%, 80%, 90%, 100% perforation) were produced. The corneas were processed for light microscopy, scanning and transmission electron microscopy, and vital staining of the endothelium. Except for mild cell contact alterations and discrete single cell damage in themore » 90% deep excisions, no endothelial damage could be detected after non-perforating keratectomies. Minute (less than 20 microns) and small (20 to 100 microns maximal diameter) perforations induced cell enlargement, formation of pseudopodia, rosette-like figures, multi-nucleated giant cells, and ultimately uniform reformation of the cell pattern (1 hour to 7 days postoperatively). Larger excimer laser defects of Descemet's membrane (greater than 100 microns) were overgrown by dedifferentiated endothelial cells producing a new PAS-positive basement membrane. Vital staining revealed the complete and stable reorganization of the endothelium over these lesions within 6 months. The authors observations are similar to those reported on the endothelial repair process following other surgical manipulations (knife incisions, direct Nd:YAG-laser trauma) and support the applicability of excimer lasers for corneal trephination in patients.« less

  15. RNA repair: an antidote to cytotoxic eukaryal RNA damage.

    PubMed

    Nandakumar, Jayakrishnan; Schwer, Beate; Schaffrath, Raffael; Shuman, Stewart

    2008-07-25

    RNA healing and sealing enzymes drive informational and stress response pathways entailing repair of programmed 2',3' cyclic PO(4)/5'-OH breaks. Fungal, plant, and phage tRNA ligases use different strategies to discriminate the purposefully broken ends of the anticodon loop. Whereas phage ligase recognizes the tRNA fold, yeast and plant ligases do not and are instead hardwired to seal only the tRNA 3'-OH, 2'-PO(4) ends formed by healing of a cyclic phosphate. tRNA anticodon damage inflicted by secreted ribotoxins such as fungal gamma-toxin underlies a rudimentary innate immune system. Yeast cells are susceptible to gamma-toxin because the sealing domain of yeast tRNA ligase is unable to rectify a break at the modified wobble base of tRNA(Glu(UUC)). Plant andphage tRNA repair enzymes protect yeast from gamma-toxin because they are able to reverse the damage. Our studies underscore how a ribotoxin exploits an Achilles' heel in the target cell's tRNA repair system.

  16. DNA double strand breaks induced by the indirect effect of radiation are more efficiently repaired by non-homologous end joining compared to homologous recombination repair.

    PubMed

    Bajinskis, Ainars; Natarajan, Adayapalam T; Erixon, Klaus; Harms-Ringdahl, Mats

    2013-08-30

    The aim of this study was to investigate the relative involvement of three major DNA repair pathways, i.e., non-homologous end joining (NHEJ), homologous recombination (HRR) and base excision (BER) in repair of DNA lesions of different complexity induced by low- or high-LET radiation with emphasis on the contribution of the indirect effect of radiation for these radiation qualities. A panel of DNA repair-deficient CHO cell lines was irradiated by (137)Cs γ-rays or radon progeny α-particles. Irradiation was also performed in the presence of 2M DMSO to reduce the indirect effect of radiation and the complexity of the DNA damage formed. Clonogenic survival and micronucleus assays were used to estimate efficiencies of the different repair pathways for DNA damages produced by direct and indirect effects. Removal of the indirect effect of low-LET radiation by DMSO increased clonogenic survival and decreased MN formation for all cell lines investigated. A direct contribution of the indirect effect of radiation to DNA base damage was suggested by the significant protection by DMSO seen for the BER deficient cell line. Lesions formed by the indirect effect are more readily repaired by the NHEJ pathway than by HRR after irradiation with γ-rays or α-particles as evaluated by cell survival and the yields of MN. The results obtained with BER- and NHEJ-deficient cells suggest that the indirect effect of radiation contributes significantly to the formation of repair substrates for these pathways. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Exposure to runoff from coal-tar-sealed pavement induces genotoxicity and impairment of DNA repair capacity in the RTL-W1 fish liver cell line

    USGS Publications Warehouse

    Kienzler, Aude; Mahler, Barbara J.; Van Metre, Peter C.; Schweigert, Nathalie; Devaux, Alain; Bony, Sylvie

    2015-01-01

    Coal-tar-based (CTB) sealcoat, frequently applied to parking lots and driveways in North America, contains elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and related compounds. The RTL-W1 fish liver cell line was used to investigate two endpoints (genotoxicity and DNA-repair-capacity impairment) associated with exposure to runoff from asphalt pavement with CTB sealcoat or with an asphalt-based sealcoat hypothesized to contain about 7% CTB sealcoat (AS-blend). Genotoxic potential was assessed by the Formamido pyrimidine glycosylase (Fpg)-modified comet assay for 1:10 and 1:100 dilutions of runoff samples collected from 5 h to 36 d following sealcoat application. DNA-repair capacity was assessed by the base excision repair comet assay for 1:10 dilution of samples collected 26 h and 36 d following application. Both assays were run with and without co-exposure to ultraviolet-A radiation (UVA). With co-exposure to UVA, genotoxic effects were significant for both dilutions of CTB runoff for three of four sample times, and for some samples of AS-blend runoff. Base excision repair was significantly impaired for CTB runoff both with and without UVA exposure, and for AS-blend runoff only in the absence of UVA. This study is the first to investigate the effects of exposure to the complex mixture of chemicals in coal tar on DNA repair capacity. The results indicate that co-exposure to runoff from CT-sealcoated pavement and UVA as much as a month after sealcoat application has the potential to cause genotoxicity and impair DNA repair capacity.

  18. A novel function of adenomatous polyposis coli (APC) in regulating DNA repair

    PubMed Central

    Jaiswal, Aruna S.; Narayan, Satya

    2008-01-01

    Prevailing literature suggests diversified cellular functions for the adenomatous polyposis coli (APC) gene. Among them a recently discovered unique role of APC is in DNA repair. The APC gene can modulate the base excision repair (BER) pathway through an interaction with DNA polymerase β (Pol-β) and flap endonuclease 1 (Fen-1). Taken together with the transcriptional activation of APC gene by alkylating agents and modulation of BER activity, APC may play an important role in carcinogenesis and chemotherapy by determining whether cells with DNA damage survive or undergo apoptosis. In this review, we summarize the evidence supporting this novel concept and suggest that these results will have implications for the development of more effective strategies for chemoprevention, prognosis, and chemotherapy of certain types of tumors. PMID:18662849

  19. Differential DNA lesion formation and repair in heterochromatin and euchromatin

    PubMed Central

    Han, Chunhua; Srivastava, Amit Kumar; Cui, Tiantian; Wang, Qi-En; Wani, Altaf A.

    2016-01-01

    Discretely orchestrated chromatin condensation is important for chromosome protection from DNA damage. However, it is still unclear how different chromatin states affect the formation and repair of nucleotide excision repair (NER) substrates, e.g. ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPD) and the pyrimidine (6-4) pyrimidone photoproducts (6-4PP), as well as cisplatin-induced intrastrand crosslinks (Pt-GG). Here, by using immunofluorescence and chromatin immunoprecipitation assays, we have demonstrated that CPD, which cause minor distortion of DNA double helix, can be detected in both euchromatic and heterochromatic regions, while 6-4PP and Pt-GG, which cause major distortion of DNA helix, can exclusively be detected in euchromatin, indicating that the condensed chromatin environment specifically interferes with the formation of these DNA lesions. Mechanistic investigation revealed that the class III histone deacetylase SIRT1 is responsible for restricting the formation of 6-4PP and Pt-GG in cells, probably by facilitating the maintenance of highly condensed heterochromatin. In addition, we also showed that the repair of CPD in heterochromatin is slower than that in euchromatin, and DNA damage binding protein 2 (DDB2) can promote the removal of CPD from heterochromatic region. In summary, our data provide evidence for differential formation and repair of DNA lesions that are substrates of NER. Both the sensitivity of DNA to damage and the kinetics of repair can be affected by the underlying level of chromatin compaction. PMID:26717995

  20. Predictors of Residual Disease after Unplanned Excision of Soft Tissue Sarcomas

    PubMed Central

    Gingrich, Alicia A.; Elias, Alexandra; Michael Lee, Chia-Yuan; Nakache, Yves-Paul N.; Li, Chin-Shang; Shah, Dhruvil R.; Boutin, Robert D.; Canter, Robert J.

    2016-01-01

    Background Unplanned excision of soft tissue sarcomas (STS) is an important quality of care issue given the morbidity related to tumor bed excision. Since not all patients harbor residual disease at the time of re-excision, we sought to determine predictors of residual STS following unplanned excision. Methods We identified 76 patients from a prospective database (1/1/2008 – 9/30/2014) who received a diagnosis of primary STS following unplanned excision on the trunk or extremities. We used univariable and multivariable analyses to evaluate predictors of residual STS as the primary endpoint. We calculated the sensitivity/specificity and accuracy of interval magnetic resonance imaging (MRI) to predict residual sarcoma at re-excision. Results Mean age was 52 years, and 63.2% were male. 50% had fragmented unplanned excision. Among patients undergoing re-excision, residual STS was identified in 70%. On univariable analysis, MRI showing gross disease and fragmented excision were significant predictors of residual STS (OR 10.59, 95% CI 2.14–52.49, P=0.004 and OR 3.61, 95% CI 1.09–11.94, P=0.035, respectively). On multivariable analysis, tumor size predicted distant recurrence and overall survival. When we combined equivocal and positive MRI, the sensitivity and specificity of MRI for predicting residual STS were 86.7% (95% CI 73.2–95.0%) and 57.9% (95% CI 33.5–79.8%), with an overall accuracy of 78.1% (95% CI 66.0–87.5%). Conclusions 70% of patients undergoing repeat excision after unplanned excision of STS harbor residual sarcoma. Although interval MRI and fragmented excision appear to be the most significant predictors of residual STS, the accuracy of MRI remains modest, especially given the incidence of equivocal MRI. PMID:27993214

  1. Hereditary Disorders with Defective Repair of UV-Induced DNA Damage

    PubMed Central

    Moriwaki, Shinichi

    2013-01-01

    Nucleotide excision repair (NER) is an essential system for correcting ultraviolet (UV)—induced DNA damage. Lesions remaining in DNA due to reduced capacity of NER may result in cellular death, premature aging, mutagenesis and carcinogenesis of the skin. So, NER is an important protection against these changes. There are three representative genodermatoses resulting from genetic defects in NER: xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). In Japan, CS is similarly rare but XP is more common and TTD is less common compared to Western countries. In 1998, we established the system for the diagnosis of these disorders and we have been performing DNA repair and genetic analysis for more than 400 samples since then. At present, there is no cure for any human genetic disorder. Early diagnosis and symptomatic treatment of neurological, ocular and dermatological abnormalities should contribute to prolonging life and elevating QOL in patients. PMID:23966815

  2. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate.

    PubMed

    Bajinskis, Ainars; Olsson, Gunilla; Harms-Ringdahl, Mats

    2012-03-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO(3)). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Clinical heterogeneity within xeroderma pigmentosum associated with mutations in the DNA repair and transcription gene ERCC3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vermeulen, W.; Kleijer, W.J.; Bootsma, D.

    1994-02-01

    The human DNA excision repair gene ERCC3 specifically corrects the nucleotide excision repair (NER) defect of xeroderma pigmentosum (XP) complementation group B. In addition to its function in NER, the ERCC3 DNA helicase was recently identified as one of the components of the human BTF2/TFIIH transcription factor complex, which is required for initiation of transcription of class II genes. To date, a single patient (XP11BE) has been assigned to this XP group B (XP-B), with the remarkable conjunction of two autosomal recessive DNA repair deficiency disorders: XP and Cockayne syndrome (CS). The intriguing involvement of the ERCC3 protein in themore » vital process of transcription may provide an explanation for the rarity, severity, and wide spectrum of clinical features in this complementation group. Here the authors report the identification of two new XP-B patients: XPCS1BA and XPCS2BA (siblings), by microneedle injection of the cloned ERCC3 repair gene as well as by cell hybridization. Molecular analysis of the ERCC3 gene in both patients revealed a single base substitution causing a missense mutation in a region that is completely conserved in yeast, Drosophila, mouse, and human ERCC3. As in patient XP11BE, the expression of only one allele (paternal) is detected. The mutation causes a virtually complete inactivation of the NER function of the protein. Despite this severe NER defect, both patients display a late onset of neurologic impairment, mild cutaneous symptoms, and a striking absence of skin tumors even at an age of >40 years. Analysis of the frequency of hprt[sup [minus

  4. Exonuclease of human DNA polymerase gamma disengages its strand displacement function.

    PubMed

    He, Quan; Shumate, Christie K; White, Mark A; Molineux, Ian J; Yin, Y Whitney

    2013-11-01

    Pol γ, the only DNA polymerase found in human mitochondria, functions in both mtDNA repair and replication. During mtDNA base-excision repair, gaps are created after damaged base excision. Here we show that Pol γ efficiently gap-fills except when the gap is only a single nucleotide. Although wild-type Pol γ has very limited ability for strand displacement DNA synthesis, exo(-) (3'-5' exonuclease-deficient) Pol γ has significantly high activity and rapidly unwinds downstream DNA, synthesizing DNA at a rate comparable to that of the wild-type enzyme on a primer-template. The catalytic subunit Pol γA alone, even when exo(-), is unable to synthesize by strand displacement, making this the only known reaction of Pol γ holoenzyme that has an absolute requirement for the accessory subunit Pol γB. © 2013. Published by Elsevier B.V.

  5. Covalent trapping of human DNA polymerase beta by the oxidative DNA lesion 2-deoxyribonolactone.

    PubMed

    DeMott, Michael S; Beyret, Ergin; Wong, Donny; Bales, Brian C; Hwang, Jae-Taeg; Greenberg, Marc M; Demple, Bruce

    2002-03-08

    Oxidized abasic residues in DNA constitute a major class of radiation and oxidative damage. Free radical attack on the nucleotidyl C-1' carbon yields 2-deoxyribonolactone (dL) as a significant lesion. Although dL residues are efficiently incised by the main human abasic endonuclease enzyme Ape1, we show here that subsequent excision by human DNA polymerase beta is impaired at dL compared with unmodified abasic sites. This inhibition is accompanied by accumulation of a protein-DNA cross-link not observed in reactions of polymerase beta with unmodified abasic sites, although a similar form can be trapped by reduction with sodium borohydride. The formation of the stably cross-linked species with dL depends on the polymerase lysine 72 residue, which forms a Schiff base with the C-1 aldehyde during excision of an unmodified abasic site. In the case of a dL residue, attack on the lactone C-1 by lysine 72 proceeds more slowly and evidently produces an amide linkage, which resists further processing. Consequently dL residues may not be readily repaired by "short-patch" base excision repair but instead function as suicide substrates in the formation of protein-DNA cross-links that may require alternative modes of repair.

  6. Novel repair activities of AlkA (3-methyladenine DNA glycosylase II) and endonuclease VIII for xanthine and oxanine, guanine lesions induced by nitric oxide and nitrous acid

    PubMed Central

    Terato, Hiroaki; Masaoka, Aya; Asagoshi, Kenjiro; Honsho, Akiko; Ohyama, Yoshihiko; Suzuki, Toshinori; Yamada, Masaki; Makino, Keisuke; Yamamoto, Kazuo; Ide, Hiroshi

    2002-01-01

    Nitrosation of guanine in DNA by nitrogen oxides such as nitric oxide (NO) and nitrous acid leads to formation of xanthine (Xan) and oxanine (Oxa), potentially cytotoxic and mutagenic lesions. In the present study, we have examined the repair capacity of DNA N-glycosylases from Escherichia coli for Xan and Oxa. The nicking assay with the defined substrates containing Xan and Oxa revealed that AlkA [in combination with endonuclease (Endo) IV] and Endo VIII recognized Xan in the tested enzymes. The activity (Vmax/Km) of AlkA for Xan was 5-fold lower than that for 7-methylguanine, and that of Endo VIII was 50-fold lower than that for thymine glycol. The activity of AlkA and Endo VIII for Xan was further substantiated by the release of [3H]Xan from the substrate. The treatment of E.coli with N-methyl-N′-nitro-N-nitrosoguanidine increased the Xan-excising activity in the cell extract from alkA+ but not alkA– strains. The alkA and nei (the Endo VIII gene) double mutant, but not the single mutants, exhibited increased sensitivity to nitrous acid relative to the wild type strain. AlkA and Endo VIII also exhibited excision activity for Oxa, but the activity was much lower than that for Xan. PMID:12434002

  7. "The lobbying strategy is to keep excise as low as possible" - tobacco industry excise taxation policy in Ukraine

    PubMed Central

    2010-01-01

    Background Tobacco taxes are one of the most effective ways to reduce tobacco use. Transnational tobacco companies (TTCs) claim they wish to develop and secure excise systems that benefit both governments and the profitability of the companies themselves. The objective of the paper is to use the case of Ukraine, with its inconsistent history of excise tax changes in 1992-2008, to explore tobacco industry taxation strategies and tactics, and their implications for governmental revenues. Methods Details of tobacco industry policy on tobacco taxation in Ukraine were obtained by searching tobacco industry internal documents and various published reports. Results Even before entering the market in Ukraine, TTCs had made efforts to change the excise system in the country. In 1993-1994, TTCs lobbied the Ukrainian Government, and succeeded in achieving a lowering in tobacco tax. This, however, did not produce revenue increase they promised the Government. In 1996-1998, Ukrainian authorities increased excise several times, ignoring the wishes of TTCs, caused significant growth in revenue. Due to TTCs lobbying activities in 1999-2007 the tax increases were very moderate and it resulted in increased tobacco consumption in Ukraine. In 2008, despite the TTCs position, excise rates were increased twice and it was very beneficial for revenues. Conclusions The Framework Convention on Tobacco Control includes provisions both on tobacco taxation policy and on protection of public health policy from vested interests of tobacco industry. This paper provides arguments why tobacco taxation policy should also be protected from vested interests of tobacco industry. TTCs taxation strategy appears to be consistent: keep excise as low as possible. Apparent conflicts between TTCs concerning tax structures often hide their real aim to change tax structures for competing interests without increasing total tax incidence. Governments, that aim to reduce levels of tobacco use, should not allow

  8. Double-Row Suture Anchor Repair of Posterolateral Corner Avulsion Fractures.

    PubMed

    Gilmer, Brian B

    2017-08-01

    Posterolateral corner avulsion fractures are a rare variant of ligamentous knee injury primarily described in the skeletally immature population. Injury is often related to a direct varus moment placed on the knee during sporting activities. Various treatment strategies have been discussed ranging from nonoperative management, to excision of the bony fragment, to primary repair with screws or suture. The described technique is a means for achieving fixation of the bony avulsion using principles familiar to double-row transosseous equivalent rotator cuff repair. Proximal anchors are placed in the epiphysis, and sutures are passed in horizontal mattress fashion. Once tied, the limbs of these same sutures are then passed to more distal anchors. Remaining eyelet sutures can be used to manage peripheral tissue. The final repair provides anatomic reduction and compression of the fragment to its bony bed with minimal extracortical hardware prominence and no violation of the physis. Risks include potential for physeal injury or chondral damage to the lateral femoral condyle through aberrant anchor placement. Postoperative care includes toe-touch weight-bearing restrictions and range of motion restrictions of 0°-90° in a hinged brace for 6 weeks followed by gradual return to activity.

  9. DNA repair pathways and mitochondrial DNA mutations in gastrointestinal carcinogenesis.

    PubMed

    Basso, Daniela; Navaglia, Filippo; Fogar, Paola; Zambon, Carlo-Federico; Greco, Eliana; Schiavon, Stefania; Fasolo, Michela; Stranges, Alessia; Falda, Alessandra; Padoan, Andrea; Fadi, Elisa; Pedrazzoli, Sergio; Plebani, Mario

    2007-05-01

    This work focuses on the main DNA repair pathways, highlighting their role in gastrointestinal carcinogenesis and the role of mitochondrial DNA (mtDNA), mutations being described in several tumor types, including those of the gastrointestinal tract. The mismatch repair (MMR) system is inherently altered in patients with hereditary non-polyposis colorectal cancer, and plays a role in carcinogenesis in a subset of sporadic colorectal, gastric and esophageal cancers. Alterations in homologous recombination (HR) and non-homologous end-joining (NHEJ) also contribute to the development of pancreatic cancer. Gene polymorphisms of some X-ray cross-complementing (XRCCs), cofactor proteins involved in the base excision repair pathway, have been investigated in relation to gastric, colorectal and pancreatic cancer. Yet only one polymorphism, XRCC1 Arg194Trp, appears to be involved in smoking-related cancers and in early onset pancreatic cancer. Although evidence in the literature indicates that mtDNA somatic mutations play a role in gastric and colorectal carcinogenesis, no sound conclusions have yet been drawn regarding this issue in pancreatic cancer, although an mtDNA variant at 16519 is believed to worsen the outcome of pancreatic cancer patients, possibly because it is involved in altering cellular metabolism.

  10. Enzyme-Regulated Fast Self-Healing of a Pillararene-Based Hydrogel.

    PubMed

    Zhang, Xin; Xu, Jiayun; Lang, Chao; Qiao, Shanpeng; An, Guo; Fan, Xiaotong; Zhao, Linlu; Hou, Chunxi; Liu, Junqiu

    2017-06-12

    Self-healing, one of the exciting properties of materials, is frequently used to repair the damage of biological and artificial systems. Here we have used enzymatic catalysis approaches to develop a fast self-healing hydrogel, which has been constructed by dynamic aldimine cross-linking of pillar[5]arene-derivant and dialdehyde-functionalized PEG followed by encapsulation of glucose oxidase (GOx) and catalase (CAT). In specific, the two hydroxyl groups at terminal of PEG 4000 are functionalized with benzaldehydes that can interact with amino-containing pillar[5]arene-derivant through dynamic aldimine cross-links, resulting in reversible dynamic hydrogels. Modulus analysis indicated that storage modulus (G') and loss modulus (G″) of the hydrogel increased obviously as the concentration of dialdehyde-functionalized PEG 4000 (DF-PEG 4000 ) increased or the pH values decreased. Once glucose oxidase (GOx) and catalase (CAT) are located, the hydrogel could be fast repaired, with self-healing efficiency up to 100%. Notably tensile test showed that the repair process of pillararene-based hydrogel can finish in several minutes upon enzyme catalysis, while it needed more than 24 h to achieve this recovery without enzymes. This enzyme-regulated self-healing hydrogel would hold promise for delivering drugs and for soft tissue regeneration in the future.

  11. Genomic survey and expression analysis of DNA repair genes in the genus Leptospira.

    PubMed

    Martins-Pinheiro, Marinalva; Schons-Fonseca, Luciane; da Silva, Josefa B; Domingos, Renan H; Momo, Leonardo Hiroyuki Santos; Simões, Ana Carolina Quirino; Ho, Paulo Lee; da Costa, Renata M A

    2016-04-01

    Leptospirosis is an emerging zoonosis with important economic and public health consequences and is caused by pathogenic leptospires. The genus Leptospira belongs to the order Spirochaetales and comprises saprophytic (L. biflexa), pathogenic (L. interrogans) and host-dependent (L. borgpetersenii) members. Here, we present an in silico search for DNA repair pathways in Leptospira spp. The relevance of such DNA repair pathways was assessed through the identification of mRNA levels of some genes during infection in animal model and after exposition to spleen cells. The search was performed by comparison of available Leptospira spp. genomes in public databases with known DNA repair-related genes. Leptospires exhibit some distinct and unexpected characteristics, for instance the existence of a redundant mechanism for repairing a chemically diverse spectrum of alkylated nucleobases, a new mutS-like gene and a new shorter version of uvrD. Leptospira spp. shares some characteristics from Gram-positive, as the presence of PcrA, two RecQ paralogs and two SSB proteins; the latter is considered a feature shared by naturally competent bacteria. We did not find a significant reduction in the number of DNA repair-related genes in both pathogenic and host-dependent species. Pathogenic leptospires were enriched for genes dedicated to base excision repair and non-homologous end joining. Their evolutionary history reveals a remarkable importance of lateral gene transfer events for the evolution of the genus. Up-regulation of specific DNA repair genes, including components of SOS regulon, during infection in animal model validates the critical role of DNA repair mechanisms for the complex interplay between host/pathogen.

  12. Erosion of State Alcohol Excise Taxes in the United States.

    PubMed

    Naimi, Timothy S; Blanchette, Jason G; Xuan, Ziming; Chaloupka, Francis J

    2018-01-01

    In the United States, excessive alcohol consumption is responsible for 88,000 deaths annually and cost $249 billion, or $2.05 per drink, in 2010. Specific excise taxes, the predominant form of alcohol taxation in the United States, are based on the volume of alcohol sold rather than a percentage of price and can thus degrade over time because of inflation. The objective of this study was to describe changes in inflation-adjusted state alcohol excise taxes on a beverage-specific basis. State-level data on specific excise taxes were obtained from the Alcohol Policy Information System and the Tax Foundation. Excise tax rates were converted into the tax per standard U.S. drink (14 g of ethanol) for beer, wine, and distilled spirits, and converted into 2015 dollars using annual Consumer Price Index data. Across U.S. states, the average state alcohol excise tax per drink in 2015 was $0.03 for beer, $0.05 for distilled spirits, and $0.03 for wine. From 1991 to 2015, the average inflation-adjusted (in 2015 dollars) state alcohol excise tax rate declined 30% for beer, 32% for distilled spirits, and 27% for wine. Percentage declines in state excise taxes since their inception were more than twice as large as those from 1991 to 2015. In 2015, average state specific excise taxes were $0.05 or less per standard drink across all beverage types and have experienced substantial inflation-adjusted declines.

  13. Excision and Patch Grafting of a Lateral Peyronie’s Plaque—Utilizing a Longitudinal “Window” Approach

    PubMed Central

    Lue, Kathy; Emtage, Justin B; Martinez, Daniel R; Yang, Christopher; Carrion, Rafael

    2015-01-01

    Introduction Peyronie’s disease (PD) is a debilitating disorder in which collagen deposition, fibrosis, and plaques in the tunica albuginea result in penile curvature, shortening, and pain. For severe curvatures requiring plaque incision or excision with grafting (PIEG), a subcoronal circumcising incision with penile degloving has historically been used. Aims The aim of this study was to report our unique approach to PIEG via a longitudinal “window” incision for the correction of PD, minimizing the surgical manipulation and dissection accompanying the traditional circumcising incisional approach that may lead to increased postoperative edema, pain, and prolonged healing time. Methods A patient presented with a stable, painless, 90-degree midshaft leftward curvature causing penetration difficulties and painful intercourse for his partner. His Sexual Health Inventory for Men (SHIM) score was 23. The patient opted for surgical correction with plaque excision and grafting via a 4-cm longitudinal incision overlying the point of maximal curvature along the left lateral penile shaft. This direct access to the left corpus cavernosum and plaque, along with dissecting skin, dartos, and Buck’s fascia, created a window with sufficient exposure for excision and patch grafting. Main Outcome Measures The main outcome measures were objective data and subjective data in men undergoing PIEG via lateral longitudinal “window” incision for PD repair. Results The plaque was excised and a porcine small intestinal submucosa graft was sewn in. Intraoperative artificial tumescence at the end of surgery revealed complete correction of the curvature. The patient experienced painless rigid erections by postoperative day three with minimal penile edema. By postoperative week four, he could successfully partake in coitus. His SHIM score remained unchanged. At maximum follow-up 6 months postoperatively, he still endorsed excellent cosmetic and functional outcomes with spontaneous

  14. Union Women, the Tobacco Industry, and Excise Taxes

    PubMed Central

    Balbach, Edith D.; Campbell, Richard B.

    2009-01-01

    Between 1987 and 1997, the tobacco industry used the issue of cigarette excise tax increases to create a political partnership with the Coalition of Labor Union Women (CLUW), a group representing female trade unionists in the U.S. This paper documents how the industry created this relationship and the lessons tobacco-control advocates can learn from the industry’s example, in order to mitigate possible unintended consequences of advocating excise tax increases In 1998, under the terms of the Master Settlement Agreement, the tobacco industry began making documents produced in litigation available publicly. Currently, approximately 50 million pages are available online, including substantial documentation of the industry–CLUW relationship. For this study, a comprehensive search of these documents was conducted. The tobacco industry encouraged CLUW’s opposition to excise tax increases by emphasizing the economic regressivity of these taxes, discussing excise taxes generically to deflect attention from cigarettes, and encouraging opposition to earmarking cigarette taxes to pay for specific programs. In addition, CLUW received at least $221,500 in financial support between 1987 and 1997 and in-kind support for its conferences, membership materials, and other services. Excise tax increases, if pursued without considering the impacts they may have on low-SES populations, may have unintended consequences. In this case, such proposals may have helped to create a relationship between CLUW and the tobacco industry. Because excise taxes are endorsed in the Framework Convention on Tobacco Control, tobacco-control advocates must understand how to build relationships with low-SES populations and mitigate potential alliances with the tobacco industry. PMID:19591750

  15. Mediator links transcription and DNA repair by facilitating Rad2/XPG recruitment

    PubMed Central

    Eyboulet, Fanny; Cibot, Camille; Eychenne, Thomas; Neil, Helen; Alibert, Olivier; Werner, Michel; Soutourina, Julie

    2013-01-01

    Mediator is a large multiprotein complex conserved in all eukaryotes. The crucial function of Mediator in transcription is now largely established. However, we found that this complex also plays an important role by connecting transcription with DNA repair. We identified a functional contact between the Med17 Mediator subunit and Rad2/XPG, the 3′ endonuclease involved in nucleotide excision DNA repair. Genome-wide location analyses revealed that Rad2 is associated with RNA polymerase II (Pol II)- and Pol III-transcribed genes and telomeric regions in the absence of exogenous genotoxic stress. Rad2 occupancy of Pol II-transcribed genes is transcription-dependent. Genome-wide Rad2 occupancy of class II gene promoters is well correlated with that of Mediator. Furthermore, UV sensitivity of med17 mutants is correlated with reduced Rad2 occupancy of class II genes and concomitant decrease of Mediator interaction with Rad2 protein. Our results suggest that Mediator is involved in DNA repair by facilitating Rad2 recruitment to transcribed genes. PMID:24298055

  16. The Bxb1 recombination system demonstrates heritable transmission of site-specific excision in Arabidopsis

    PubMed Central

    2012-01-01

    Background The mycobacteriophage large serine recombinase Bxb1 catalyzes site-specific recombination between its corresponding attP and attB recognition sites. Previously, we and others have shown that Bxb1 has catalytic activity in various eukaryotic species including Nicotiana tabacum, Schizosaccharomyces pombe, insects and mammalian cells. Results In this work, the Bxb1 recombinase gene was transformed and constitutively expressed in Arabidopsis thaliana plants harboring a chromosomally integrated attP and attB-flanked target sequence. The Bxb1 recombinase successfully excised the target sequence in a conservative manner and the resulting recombination event was heritably transmitted to subsequent generations in the absence of the recombinase transgene. In addition, we also show that Bxb1 recombinase expressing plants can be manually crossed with att-flanked target transgenic plants to generate excised progeny. Conclusion The Bxb1 large serine recombinase performs site-specific recombination in Arabidopsis thaliana germinal tissue, producing stable lines free of unwanted DNA. The precise site-specific deletion produced by Bxb1 in planta demonstrates that this enzyme can be a useful tool for the genetic engineering of plants without selectable marker transgenes or other undesirable exogenous sequences. PMID:22436504

  17. Arthroscopic suture anchor repair of the lateral ligament ankle complex: a cadaveric study.

    PubMed

    Giza, Eric; Shin, Edward C; Wong, Stephanie E; Acevedo, Jorge I; Mangone, Peter G; Olson, Kirstina; Anderson, Matthew J

    2013-11-01

    Operative treatment of mechanical ankle instability is indicated for patients with multiple sprains and continued episodes of instability. Open repair of the lateral ankle ligaments involves exposure of the attenuated ligaments and advancement back to their anatomic insertions on the fibula using bone tunnels or suture implants. Open and arthroscopic fixation are equal in strength to failure for anatomic Broström repair. Controlled laboratory study. Seven matched pairs of human cadaveric ankle specimens were randomized into 2 groups of anatomic Broström repair: open or arthroscopic. The calcaneofibular ligament and anterior talofibular ligament were excised from their origin on the fibula. In the open repair group, 2 suture anchors were used to reattach the ligaments to their anatomic origins. In the arthroscopic repair group, identical suture anchors were used for repair via an arthroscopic technique. The ligaments were cyclically loaded 20 times and then tested to failure. Torque to failure, degrees to failure, initial stiffness, and working stiffness were measured. A matched-pair analysis was performed. Power analysis of 0.8 demonstrated that 7 pairs needed to show a difference of 30%, with a 15% standard error at a significance level of α = .05. There was no difference in the degrees to failure, torque to failure, or stiffness for the repaired ligament complex. Nine of 14 specimens failed at the suture anchor. There is no statistical difference in strength or stiffness of a traditional open repair as compared with an arthroscopic anatomic repair of the lateral ligaments of the ankle. An arthroscopic technique can be considered for lateral ligament stabilization in patients with mild to moderate mechanical instability.

  18. Distant neighbor base sequence context effects in human nucleotide excision repair of a benzo[a]pyrene-derived DNA lesion

    PubMed Central

    Cai, Yuqin; Kropachev, Konstantin; Xu, Rong; Tang, Yijin; Kolbanovskii, Marina; Kolbanovskii, Alexander; Amin, Shantu; Patel, Dinshaw J.; Broyde, Suse; Geacintov, Nicholas E.

    2010-01-01

    Summary The effects of non-nearest base sequences, beyond the nucleotides flanking a DNA lesion on either side, on nucleotide excision repair (NER) in extracts from human cells were investigated. We constructed two duplexes containing the same minor groove-aligned 10S (+)-trans-anti-B[a]P-N2-dG (G*) DNA adduct, derived from the environmental carcinogen benzo[a]pyrene (B[a]P): 5′-C-C-A-T-C-G*-C-T-A-C-C-3′ (CG*C-I), and 5′-C-A-C3-A4-C5-G*-C-A-C-A-C-3′ (CG*C-II). We utilized gel electrophoresis to compare the extent of DNA bending, and molecular dynamics (MD) simulations to analyze the structural characteristics of these two DNA duplexes. The NER efficiencies are 1.6 ± 0.2 times greater in the case of the CG*C-II than the CG*C-I sequence context in 135-mer duplexes. Gel electrophoresis and self-ligation circularization experiments revealed that the CG*C-II duplex is more bent than the CG*C-I duplex, while MD simulations showed that the unique -C3-A4-C5- segment in the CG*C-II duplex plays a key role. The presence of a minor groove-positioned guanine amino group, namely, the Watson-Crick partner to C3, acts as a wedge; facilitated by a highly deformable local -C3-A4- base step, this amino group allows the B[a]P ring system to produce a more enlarged minor groove in CG*C-II than in CG*C-I, as well as a local untwisting and enlarged and flexible Roll only in the CG*C-II sequence. These structural properties fit well with our prior findings that in the case of the family of minor groove 10S (+)-trans-anti-B[a]P-N2-dG lesions, flexible bends and enlarged minor groove widths (Cai et al. (2009) J. Mol. Biol., 385: 30–44) constitute NER recognition signals, and extend our understanding of sequence context effects on NER to the neighbors that are distant to the lesion. PMID:20399214

  19. The Human DNA glycosylases NEIL1 and NEIL3 Excise Psoralen-Induced DNA-DNA Cross-Links in a Four-Stranded DNA Structure.

    PubMed

    Martin, Peter R; Couvé, Sophie; Zutterling, Caroline; Albelazi, Mustafa S; Groisman, Regina; Matkarimov, Bakhyt T; Parsons, Jason L; Elder, Rhoderick H; Saparbaev, Murat K

    2017-12-12

    Interstrand cross-links (ICLs) are highly cytotoxic DNA lesions that block DNA replication and transcription by preventing strand separation. Previously, we demonstrated that the bacterial and human DNA glycosylases Nei and NEIL1 excise unhooked psoralen-derived ICLs in three-stranded DNA via hydrolysis of the glycosidic bond between the crosslinked base and deoxyribose sugar. Furthermore, NEIL3 from Xenopus laevis has been shown to cleave psoralen- and abasic site-induced ICLs in Xenopus egg extracts. Here we report that human NEIL3 cleaves psoralen-induced DNA-DNA cross-links in three-stranded and four-stranded DNA substrates to generate unhooked DNA fragments containing either an abasic site or a psoralen-thymine monoadduct. Furthermore, while Nei and NEIL1 also cleave a psoralen-induced four-stranded DNA substrate to generate two unhooked DNA duplexes with a nick, NEIL3 targets both DNA strands in the ICL without generating single-strand breaks. The DNA substrate specificities of these Nei-like enzymes imply the occurrence of long uninterrupted three- and four-stranded crosslinked DNA-DNA structures that may originate in vivo from DNA replication fork bypass of an ICL. In conclusion, the Nei-like DNA glycosylases unhook psoralen-derived ICLs in various DNA structures via a genuine repair mechanism in which complex DNA lesions can be removed without generation of highly toxic double-strand breaks.

  20. Staged margin-controlled excision (SMEX) for lentigo maligna melanoma in situ.

    PubMed

    Beveridge, Julie; Taher, Muba; Zhu, Jay; Mahmood, Muhammad N; Salopek, Thomas G

    2018-06-24

    No consensus exists regarding the best surgical strategy to achieve clear surgical margins while minimizing tissue excision when definitely excising lentigo maligna melanoma in situ (LM). The staged margin controlled excision (SMEX) technique is a modification of the spaghetti technique that allows surgeons to minimize margins and ensure complete excision of LM. Our objectives were twofold: a) to evaluate the effectiveness of SMEX for treatment of LM and b) detail the SMEX technique. A retrospective chart review of adult patients who underwent the SMEX technique for treatment of LM from 2011 to 2016 was conducted. Twenty-four patients were identified with predominantly facial lesions. The mean defect size was 12.1 cm 2 . A mean number of two SMEX procedures, with an average margin of 9 mm, were required to obtain complete excision of the LM. Using SMEX, we achieved 100% clearance of LM over a median follow up period of 18 months, with a range of 1-63 months. SMEX offers a reliable surgical excision method that ensures complete excision of LM in a cosmetically sensitive manner. The recurrence outcomes of SMEX are comparable, if not better, than those of alternative excision techniques in the literature. © 2018 Wiley Periodicals, Inc.

  1. Psychrometric Field Measurement of Water Potential Changes following Leaf Excision 1

    PubMed Central

    Savage, Michael J.; Cass, Alfred

    1984-01-01

    In situ measurement of sudden leaf water potential changes has not been performed under field conditions. A laboratory investigation involving the measurement of leaf water potential prior to and 2 to 200 minutes after excision of citrus leaves (Citrus jambhiri) showed good linear correlation (r = 0.99) between in situ leaf psychrometer and Scholander pressure chamber measurements. Following this, a field investigation was conducted which involved psychrometric measurement prior to petiole excision and 1 minute after excision. Simultaneous pressure chamber measurements were performed on neighboring leaves prior to the time of excision and then on the psychrometer leaf about 2 minutes after excision. These data indicate that within the first 2 minutes after excision, psychrometer and pressure chamber measurements were linearly correlated (r = 0.97). Under high evaporative demand conditions, the rate of water potential decrease was between 250 and 700 kilopascals in the first minute after excision. These results show that the thermocouple psychrometer can be used as a dynamic and nondestructive field technique for monitoring leaf water potential. PMID:16663394

  2. Exposure to runoff from coal-tar-sealed pavement induces genotoxicity and impairment of DNA repair capacity in the RTL-W1 fish liver cell line.

    PubMed

    Kienzler, Aude; Mahler, Barbara J; Van Metre, Peter C; Schweigert, Nathalie; Devaux, Alain; Bony, Sylvie

    2015-07-01

    Coal-tar-based (CTB) sealcoat, frequently applied to parking lots and driveways in North America, contains elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and related compounds. The RTL-W1 fish liver cell line was used to investigate two endpoints (genotoxicity and DNA-repair-capacity impairment) associated with exposure to runoff from asphalt pavement with CTB sealcoat or with an asphalt-based sealcoat hypothesized to contain about 7% CTB sealcoat (AS-blend). Genotoxic potential was assessed by the Formamido pyrimidine glycosylase (Fpg)-modified comet assay for 1:10 and 1:100 dilutions of runoff samples collected from 5 h to 36 d following sealcoat application. DNA-repair capacity was assessed by the base excision repair comet assay for 1:10 dilution of samples collected 26 h and 36 d following application. Both assays were run with and without co-exposure to ultraviolet-A radiation (UVA). With co-exposure to UVA, genotoxic effects were significant for both dilutions of CTB runoff for three of four sample times, and for some samples of AS-blend runoff. Base excision repair was significantly impaired for CTB runoff both with and without UVA exposure, and for AS-blend runoff only in the absence of UVA. This study is the first to investigate the effects of exposure to the complex mixture of chemicals in coal tar on DNA repair capacity. The results indicate that co-exposure to runoff from CT-sealcoated pavement and UVA as much as a month after sealcoat application has the potential to cause genotoxicity and impair DNA repair capacity. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Formulation and Evaluation of Exotic Fat Based Cosmeceuticals for Skin Repair

    PubMed Central

    Mandawgade, S. D.; Patravale, Vandana B.

    2008-01-01

    Mango butter was explored as a functional, natural supplement and active skin ingredient in skin care formulations. A foot care cream was developed with mango butter to evaluate its medicinal value and protective function in skin repair. Qualitative comparison and clinical case studies of the product were carried out. Wound healing potential of foot care cream was investigated on the rat excision and incision wound models. Results of the clinical studies demonstrated complete repair of worn and cracked skin in all the human volunteers. Furthermore, foot care cream exhibited significant healing response in both the wound models. The project work could be concluded as establishment of high potential for mango butter to yield excellent emolliency for better skin protection. Improving the product features and medicinal functionality further validate mango butter as a specialty excipient in development of cosmeceuticals and has an immense value for its commercialization. PMID:20046792

  4. The Seed Repair Response during Germination: Disclosing Correlations between DNA Repair, Antioxidant Response, and Chromatin Remodeling in Medicago truncatula

    PubMed Central

    Pagano, Andrea; Araújo, Susana de Sousa; Macovei, Anca; Leonetti, Paola; Balestrazzi, Alma

    2017-01-01

    This work provides novel insights into the effects caused by the histone deacetylase inhibitor trichostatin A (TSA) during Medicago truncatula seed germination, with emphasis on the seed repair response. Seeds treated with H2O and TSA (10 and 20 μM) were collected during imbibition (8 h) and at the radicle protrusion phase. Biometric data showed delayed germination and impaired seedling growth in TSA-treated samples. Comet assay, performed on radicles at the protrusion phase and 4-days old M. truncatula seedlings, revealed accumulation of DNA strand breaks upon exposure to TSA. Activation of DNA repair toward TSA-mediated genotoxic damage was evidenced by the up-regulation of MtOGG1(8-OXOGUANINE GLYCOSYLASE/LYASE) gene involved in the removal of oxidative DNA lesions, MtLIGIV(LIGASE IV) gene, a key determinant of seed quality, required for the rejoining of DNA double strand breaks and TDP(TYROSYL-DNA PHOSPHODIESTERASE) genes encoding the multipurpose DNA repair enzymes tyrosyl-DNA phosphodiesterases. Since radical scavenging can prevent DNA damage, the specific antioxidant activity (SAA) was measured by DPPH (1,1-diphenyl-2-picrylhydrazyl) and Folin-Ciocalteu reagent assays. Fluctuations of SAA were observed in TSA-treated seeds/seedlings concomitant with the up-regulation of antioxidant genes MtSOD(SUPEROXIDE DISMUTASE, MtAPX(ASCORBATE PEROXIDASE) and MtMT2(TYPE 2 METALLOTHIONEIN). Chromatin remodeling, required to facilitate the access of DNA repair enzymes at the damaged sites, is also part of the multifaceted seed repair response. To address this aspect, still poorly explored in plants, the MtTRRAP(TRANSFORMATION/TRANSACTIVATION DOMAIN-ASSOCIATED PROTEIN) gene was analyzed. TRRAP is a transcriptional adaptor, so far characterized only in human cells where it is needed for the recruitment of histone acetyltransferase complexes to chromatin during DNA repair. The MtTRRAP gene and the predicted interacting partners MtHAM2 (HISTONE ACETYLTRANSFERASE OF THE MYST

  5. Cigarette side-stream smoke lung and bladder carcinogenesis: inducing mutagenic acrolein-DNA adducts, inhibiting DNA repair and enhancing anchorage-independent-growth cell transformation

    PubMed Central

    Chin, Chiu; Huang, William; Lepor, Herbert; Wu, Xue-Ru; Rom, William N.; Chen, Lung-Chi; Tang, Moon-shong

    2015-01-01

    Second-hand smoke (SHS) is associated with 20–30% of cigarette-smoke related diseases, including cancer. Majority of SHS (>80%) originates from side-stream smoke (SSS). Compared to mainstream smoke, SSS contains more tumorigenic polycyclic aromatic hydrocarbons and acrolein (Acr). We assessed SSS-induced benzo(a)pyrene diol epoxide (BPDE)- and cyclic propano-deoxyguanosine (PdG) adducts in bronchoalveolar lavage (BAL), lung, heart, liver, and bladder-mucosa from mice exposed to SSS for 16 weeks. In SSS exposed mice, Acr-dG adducts were the major type of PdG adducts formed in BAL (p < 0.001), lung (p < 0.05), and bladder mucosa (p < 0.001), with no significant accumulation of Acr-dG adducts in heart or liver. SSS exposure did not enhance BPDE-DNA adduct formation in any of these tissues. SSS exposure reduced nucleotide excision repair (p < 0.01) and base excision repair (p < 0.001) in lung tissue. The levels of DNA repair proteins, XPC and hOGG1, in lung tissues of exposed mice were significantly (p < 0.001 and p < 0.05) lower than the levels in lung tissues of control mice. We found that Acr can transform human bronchial epithelial and urothelial cells in vitro. We propose that induction of mutagenic Acr-DNA adducts, inhibition of DNA repair, and induction of cell transformation are three mechanisms by which SHS induces lung and bladder cancers. PMID:26431382

  6. Unusual Association Between Spontaneous Lateral Sphenoid Encephalocele and Chiari Malformation Type I: Endoscopic Repair Through a Transpterygoid Approach.

    PubMed

    Starnoni, Daniele; Daniel, Roy Thomas; George, Mercy; Messerer, Mahmoud

    2017-01-01

    Spontaneous meningoencephaloceles of the lateral sphenoid sinus are rare entities, and their peculiar location represents a surgical challenge due to the importance of a wide exposure and skull base reconstruction. They are thought to arise from the congenital base defect of the lateral sphenoid or in some cases have been postulated to represent a rare manifestation of altered cerebrospinal fluid (CSF) dynamics. We report the first case in the literature of a Chiari malformation type I (CMI) and a lateral sphenoid encephalocele, revising the theoretic etiology and surgical technique of endoscopic repair. A 50-year-old woman with a surgical history of symptomatic CMI presented with episodes of spontaneous CSF rhinorrhea. Radiologic investigations revealed a left mesial temporal encephalocele herniating into the lateral recess of the sphenoid sinus and radiologic features of altered CSF dynamics, which may have played an etiologic role. An endoscopic transpterygoid excision of the encephalocele and multilayer skull base repair were performed. The association of spontaneous lateral sphenoid encephaloceles with CMI is distinctly unusual. Predisposing factors and disruption of CSF dynamics may play a major role in the development of these rare complications in patients with CMI. Because of their distinct location, transethmoid or transpterygoid endoscopic approaches represent an excellent surgical technique to treat these lesions thanks to their wide and direct visualization of the entire skull base defect following the encephalocele excision, allowing an adequate multilayer repair and lateral sphenoid recess occlusion. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Circadian Modulation of 8-Oxoguanine DNA Damage Repair

    PubMed Central

    Manzella, Nicola; Bracci, Massimo; Strafella, Elisabetta; Staffolani, Sara; Ciarapica, Veronica; Copertaro, Alfredo; Rapisarda, Venerando; Ledda, Caterina; Amati, Monica; Valentino, Matteo; Tomasetti, Marco; Stevens, Richard G.; Santarelli, Lory

    2015-01-01

    The DNA base excision repair pathway is the main system involved in the removal of oxidative damage to DNA such as 8-Oxoguanine (8-oxoG) primarily via the 8-Oxoguanine DNA glycosylase (OGG1). Our goal was to investigate whether the repair of 8-oxoG DNA damage follow a circadian rhythm. In a group of 15 healthy volunteers, we found a daily variation of Ogg1 expression and activity with higher levels in the morning compared to the evening hours. Consistent with this, we also found lower levels of 8-oxoG in morning hours compared to those in the evening hours. Lymphocytes exposed to oxidative damage to DNA at 8:00 AM display lower accumulation of 8-oxoG than lymphocytes exposed at 8:00 PM. Furthermore, altered levels of Ogg1 expression were also observed in a group of shift workers experiencing a deregulation of circadian clock genes compared to a control group. Moreover, BMAL1 knockdown fibroblasts with a deregulated molecular clock showed an abolishment of circadian variation of Ogg1 expression and an increase of OGG1 activity. Our results suggest that the circadian modulation of 8-oxoG DNA damage repair, according to a variation of Ogg1 expression, could render humans less susceptible to accumulate 8-oxoG DNA damage in the morning hours. PMID:26337123

  8. Lateral repair of parastomal hernia.

    PubMed Central

    Amin, S. N.; Armitage, N. C.; Abercrombie, J. F.; Scholefield, J. H.

    2001-01-01

    INTRODUCTION: Parastomal hernia is a common complication of stoma construction. Although the majority of patients are asymptomatic, about 10% require surgical correction. AIMS: We describe a new surgical approach for the repair of parastomal hernias, which avoids both the need for laparotomy and stoma mobilization. PATIENTS AND METHODS: Nine patients (4 female) with parastomal hernia underwent surgical repair. Median age was 55 years (range 38-73 years). There were 8 para-ileostomy herniae and one paracolostomy hernia. A lateral incision was made approximately 10 cm from the stoma, and carried down to the rectus sheath. The dissection was carried medially towards the stoma, and around the defect in the abdominal musculature. The hernia sac was excised when possible and the fascial defect closed with non-absorbable, monofilament suture. A polyprolene mesh was placed round the stoma by making a slit in the mesh. The skin was closed with subcuticular monofilament absorbable suture. RESULTS: All patients returned to normal diet on the first postoperative day, and were discharged from hospital within 72 h. There were no wound infections, and no recurrences after a median follow up of 6 months (range 3-12 months). DISCUSSION: The technique we describe is simple and avoids the need of laparotomy. The mucocutaneous junction of the stoma is not disturbed, reducing the risk of contamination of the mesh, stenosis or retraction of the stoma. Grooving of the stoma and difficulty in fitting appliances is avoided because the wound is not placed near the mucocutaneous junction. This approach may be superior to other mesh repairs for parastomal hernia. Images Figure 1 Figure 2 PMID:11432142

  9. ERCC1 isoform expression and DNA repair in non-small-cell lung cancer.

    PubMed

    Friboulet, Luc; Olaussen, Ken André; Pignon, Jean-Pierre; Shepherd, Frances A; Tsao, Ming-Sound; Graziano, Stephen; Kratzke, Robert; Douillard, Jean-Yves; Seymour, Lesley; Pirker, Robert; Filipits, Martin; André, Fabrice; Solary, Eric; Ponsonnailles, Florence; Robin, Angélique; Stoclin, Annabelle; Dorvault, Nicolas; Commo, Frédéric; Adam, Julien; Vanhecke, Elsa; Saulnier, Patrick; Thomale, Jürgen; Le Chevalier, Thierry; Dunant, Ariane; Rousseau, Vanessa; Le Teuff, Gwénaël; Brambilla, Elisabeth; Soria, Jean-Charles

    2013-03-21

    The excision repair cross-complementation group 1 (ERCC1) protein is a potential prognostic biomarker of the efficacy of cisplatin-based chemotherapy in non-small-cell lung cancer (NSCLC). Although several ongoing trials are evaluating the level of expression of ERCC1, no consensus has been reached regarding a method for evaluation. We used the 8F1 antibody to measure the level of expression of ERCC1 protein by means of immunohistochemical analysis in a validation set of samples obtained from 494 patients in two independent phase 3 trials (the National Cancer Institute of Canada Clinical Trials Group JBR.10 and the Cancer and Leukemia Group B 9633 trial from the Lung Adjuvant Cisplatin Evaluation Biology project). We compared the results of repeated staining of the entire original set of samples obtained from 589 patients in the International Adjuvant Lung Cancer Trial Biology study, which had led to the initial correlation between the absence of ERCC1 expression and platinum response, with our previous results in the same tumors. We mapped the epitope recognized by 16 commercially available ERCC1 antibodies and investigated the capacity of the different ERCC1 isoforms to repair platinum-induced DNA damage. We were unable to validate the predictive effect of immunostaining for ERCC1 protein. The discordance in the results of staining for ERCC1 suggested a change in the performance of the 8F1 antibody since 2006. We found that none of the 16 antibodies could distinguish among the four ERCC1 protein isoforms, whereas only one isoform produced a protein that had full capacities for nucleotide excision repair and cisplatin resistance. Immunohistochemical analysis with the use of currently available ERCC1 antibodies did not specifically detect the unique functional ERCC1 isoform. As a result, its usefulness in guiding therapeutic decision making is limited. (Funded by Eli Lilly and others.).

  10. Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells.

    PubMed

    Nojima, Kuniharu; Hochegger, Helfrid; Saberi, Alihossein; Fukushima, Toru; Kikuchi, Koji; Yoshimura, Michio; Orelli, Brian J; Bishop, Douglas K; Hirano, Seiki; Ohzeki, Mioko; Ishiai, Masamichi; Yamamoto, Kazuhiko; Takata, Minoru; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Yamazoe, Mitsuyoshi; Kawamoto, Takuo; Araki, Kasumi; Takahashi, Jun A; Hashimoto, Nobuo; Takeda, Shunichi; Sonoda, Eiichiro

    2005-12-15

    Cross-linking agents that induce DNA interstrand cross-links (ICL) are widely used in anticancer chemotherapy. Yeast genetic studies show that nucleotide excision repair (NER), Rad6/Rad18-dependent postreplication repair, homologous recombination, and cell cycle checkpoint pathway are involved in ICL repair. To study the contribution of DNA damage response pathways in tolerance to cross-linking agents in vertebrates, we made a panel of gene-disrupted clones from chicken DT40 cells, each defective in a particular DNA repair or checkpoint pathway, and measured the sensitivities to cross-linking agents, including cis-diamminedichloroplatinum (II) (cisplatin), mitomycin C, and melphalan. We found that cells harboring defects in translesion DNA synthesis (TLS), Fanconi anemia complementation groups (FANC), or homologous recombination displayed marked hypersensitivity to all the cross-linking agents, whereas NER seemed to play only a minor role. This effect of replication-dependent repair pathways is distinctively different from the situation in yeast, where NER seems to play a major role in dealing with ICL. Cells deficient in Rev3, the catalytic subunit of TLS polymerase Polzeta, showed the highest sensitivity to cisplatin followed by fanc-c. Furthermore, epistasis analysis revealed that these two mutants work in the same pathway. Our genetic comprehensive study reveals a critical role for DNA repair pathways that release DNA replication block at ICLs in cellular tolerance to cross-linking agents and could be directly exploited in designing an effective chemotherapy.

  11. Inducible DNA-repair systems in yeast: competition for lesions.

    PubMed

    Mitchel, R E; Morrison, D P

    1987-03-01

    DNA lesions may be recognized and repaired by more than one DNA-repair process. If two repair systems with different error frequencies have overlapping lesion specificity and one or both is inducible, the resulting variable competition for the lesions can change the biological consequences of these lesions. This concept was demonstrated by observing mutation in yeast cells (Saccharomyces cerevisiae) exposed to combinations of mutagens under conditions which influenced the induction of error-free recombinational repair or error-prone repair. Total mutation frequency was reduced in a manner proportional to the dose of 60Co-gamma- or 254 nm UV radiation delivered prior to or subsequent to an MNNG exposure. Suppression was greater per unit radiation dose in cells gamma-irradiated in O2 as compared to N2. A rad3 (excision-repair) mutant gave results similar to wild-type but mutation in a rad52 (rec-) mutant exposed to MNNG was not suppressed by radiation. Protein-synthesis inhibition with heat shock or cycloheximide indicated that it was the mutation due to MNNG and not that due to radiation which had changed. These results indicate that MNNG lesions are recognized by both the recombinational repair system and the inducible error-prone system, but that gamma-radiation induction of error-free recombinational repair resulted in increased competition for the lesions, thereby reducing mutation. Similarly, gamma-radiation exposure resulted in a radiation dose-dependent reduction in mutation due to MNU, EMS, ENU and 8-MOP + UVA, but no reduction in mutation due to MMS. These results suggest that the number of mutational MMS lesions recognizable by the recombinational repair system must be very small relative to those produced by the other agents. MNNG induction of the inducible error-prone systems however, did not alter mutation frequencies due to ENU or MMS exposure but, in contrast to radiation, increased the mutagenic effectiveness of EMS. These experiments demonstrate

  12. Genome-wide maps of alkylation damage, repair, and mutagenesis in yeast reveal mechanisms of mutational heterogeneity.

    PubMed

    Mao, Peng; Brown, Alexander J; Malc, Ewa P; Mieczkowski, Piotr A; Smerdon, Michael J; Roberts, Steven A; Wyrick, John J

    2017-10-01

    DNA base damage is an important contributor to genome instability, but how the formation and repair of these lesions is affected by the genomic landscape and contributes to mutagenesis is unknown. Here, we describe genome-wide maps of DNA base damage, repair, and mutagenesis at single nucleotide resolution in yeast treated with the alkylating agent methyl methanesulfonate (MMS). Analysis of these maps revealed that base excision repair (BER) of alkylation damage is significantly modulated by chromatin, with faster repair in nucleosome-depleted regions, and slower repair and higher mutation density within strongly positioned nucleosomes. Both the translational and rotational settings of lesions within nucleosomes significantly influence BER efficiency; moreover, this effect is asymmetric relative to the nucleosome dyad axis and is regulated by histone modifications. Our data also indicate that MMS-induced mutations at adenine nucleotides are significantly enriched on the nontranscribed strand (NTS) of yeast genes, particularly in BER-deficient strains, due to higher damage formation on the NTS and transcription-coupled repair of the transcribed strand (TS). These findings reveal the influence of chromatin on repair and mutagenesis of base lesions on a genome-wide scale and suggest a novel mechanism for transcription-associated mutation asymmetry, which is frequently observed in human cancers. © 2017 Mao et al.; Published by Cold Spring Harbor Laboratory Press.

  13. DNA end-processing enzyme polynucleotide kinase as a potential target in the treatment of cancer.

    PubMed

    Allinson, Sarah L

    2010-06-01

    Pharmacological inhibition of DNA-repair pathways as an approach for the potentiation of chemo- and radio-therapeutic cancer treatments has attracted increasing levels of interest in recent years. Inhibitors of several enzymes involved in the repair of DNA strand breaks are currently at various stages of the drug development process. Polynucleotide kinase (PNK), a bifunctional DNA-repair enzyme that possesses both 3'-phosphatase and 5'-kinase activities, plays an important role in the repair of both single strand and double strand breaks and as a result, RNAi-mediated knockdown of PNK sensitizes cells to a range of DNA-damaging agents. Recently, a small molecule inhibitor of PNK has been developed that is able to sensitize cells to ionizing radiation and the topoisomerase I poison, camptothecin. Although still in the early stages of development, PNK inhibition represents a promising means of enhancing the efficacy of existing cancer treatments.

  14. Posterior Endoscopic Excision of Os Trigonum in Professional National Ballet Dancers.

    PubMed

    Ballal, Moez S; Roche, Andy; Brodrick, Anna; Williams, R Lloyd; Calder, James D F

    2016-01-01

    Previous studies have compared the outcomes after open and endoscopic excision of an os trigonum in patients of mixed professions. No studies have compared the differences in outcomes between the 2 procedures in elite ballet dancers. From October 2005 to February 2010, 35 professional ballet dancers underwent excision of a symptomatic os trigonum of the ankle after a failed period of nonoperative treatment. Of the 35 patients, 13 (37.1%) underwent endoscopic excision and 22 (62.9%) open excision. We compared the outcomes, complications, and time to return to dancing. The open excision group experienced a significantly greater incidence of flexor hallucis longus tendon decompression compared with the endoscopic group. The endoscopic release group returned to full dance earlier at a mean of 9.8 (range 6.5 to 16.1) weeks and those undergoing open excision returned to full dance at a mean of 14.9 (range 9 to 20) weeks (p = .001). No major complications developed in either group, such as deep infection or nerve or vessel injury. We have concluded that both techniques are safe and effective in the treatment of symptomatic os trigonum in professional ballet dancers. Endoscopic excision of the os trigonum offers a more rapid return to full dance compared with open excision. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Effect of point substitutions within the minimal DNA-binding domain of xeroderma pigmentosum group A protein on interaction with DNA intermediates of nucleotide excision repair.

    PubMed

    Maltseva, E A; Krasikova, Y S; Naegeli, H; Lavrik, O I; Rechkunova, N I

    2014-06-01

    Xeroderma pigmentosum factor A (XPA) is one of the key proteins in the nucleotide excision repair (NER) process. The effects of point substitutions in the DNA-binding domain of XPA (positively charged lysine residues replaced by negatively charged glutamate residues: XPA K204E, K179E, K141E, and tandem mutant K141E/K179E) on the interaction of the protein with DNA structures modeling intermediates of the damage recognition and pre-incision stages in NER were analyzed. All these mutations decreased the affinity of the protein to DNA, the effect depending on the substitution and the DNA structure. The mutant as well as wild-type proteins bind with highest efficiency partly open damaged DNA duplex, and the affinity of the mutants to this DNA is reduced in the order: K204E > K179E > K141E = K141/179E. For all the mutants, decrease in DNA binding efficiency was more pronounced in the case of full duplex and single-stranded DNA than with bubble-DNA structure, the difference between protein affinities to different DNA structures increasing as DNA binding activity of the mutant decreased. No effect of the studied XPA mutations on the location of the protein on the partially open DNA duplex was observed using photoinduced crosslinking with 5-I-dUMP in different positions of the damaged DNA strand. These results combined with earlier published data suggest no direct correlation between DNA binding and activity in NER for these XPA mutants.

  16. DNA Repair in Human Pluripotent Stem Cells Is Distinct from That in Non-Pluripotent Human Cells

    PubMed Central

    Luo, Li Z.; Park, Sang-Won; Bates, Steven E.; Zeng, Xianmin; Iverson, Linda E.; O'Connor, Timothy R.

    2012-01-01

    The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use. PMID:22412831

  17. Elliptical excisions: variations and the eccentric parallelogram.

    PubMed

    Goldberg, Leonard H; Alam, Murad

    2004-02-01

    The elliptical (fusiform) excision is a basic tool of cutaneous surgery. To assess the design, functionality, ease of construction, and aesthetic outcomes of the ellipse. A systematic review of elliptical designs and their site-specific benefits and limitations. In particular, we consider the (1). context of prevailing relaxed skin tension lines and tissue laxity; and (2). removal of the smallest possible amount of tissue around the lesion and in the "dog-ears." Attention is focused on intuitive methods that can be reproducibly planned and executed. Elliptical variations are easily designed and can be adapted to many situations. The eccentric parallelogram excision is offered as a new technique that minimizes notching and focal tension in the center of an elliptical closure. Conclusion The elliptical (fusiform) excision is an efficient, elegant, and versatile technique that will remain a mainstay of the cutaneous surgical armamentarium.

  18. Turbine repair process, repaired coating, and repaired turbine component

    DOEpatents

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  19. Genomic stability and telomere regulation in skeletal muscle tissue.

    PubMed

    Trajano, Larissa Alexsandra da Silva Neto; Trajano, Eduardo Tavares Lima; Silva, Marco Aurélio Dos Santos; Stumbo, Ana Carolina; Mencalha, Andre Luiz; Fonseca, Adenilson de Souza da

    2018-02-01

    Muscle injuries are common, especially in sports and cumulative trauma disorder, and their repair is influenced by free radical formation, which causes damages in lipids, proteins and DNA. Oxidative DNA damages are repaired by base excision repair and nucleotide excision repair, ensuring telomeric and genomic stability. There are few studies on this topic in skeletal muscle cells. This review focuses on base excision repair and nucleotide excision repair, telomere regulation and how telomeric stabilization influences healthy muscle, injured muscle, exercise, and its relationship with aging. In skeletal muscle, genomic stabilization and telomere regulation seem to play an important role in tissue health, influencing muscle injury repair. Thus, therapies targeting mechanisms of DNA repair and telomeric regulation could be new approaches for improving repair and prevention of skeletal muscle injuries in young and old people. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Characterizing DNA Repair Processes at Transient and Long-lasting Double-strand DNA Breaks by Immunofluorescence Microscopy.

    PubMed

    Murthy, Vaibhav; Dacus, Dalton; Gamez, Monica; Hu, Changkun; Wendel, Sebastian O; Snow, Jazmine; Kahn, Andrew; Walterhouse, Stephen H; Wallace, Nicholas A

    2018-06-08

    The repair of double-stranded breaks (DSBs) in DNA is a highly coordinated process, necessitating the formation and resolution of multi-protein repair complexes. This process is regulated by a myriad of proteins that promote the association and disassociation of proteins to these lesions. Thanks in large part to the ability to perform functional screens of a vast library of proteins, there is a greater appreciation of the genes necessary for the double-strand DNA break repair. Often knockout or chemical inhibitor screens identify proteins involved in repair processes by using increased toxicity as a marker for a protein that is required for DSB repair. Although useful for identifying novel cellular proteins involved in maintaining genome fidelity, functional analysis requires the determination of whether the protein of interest promotes localization, formation, or resolution of repair complexes. The accumulation of repair proteins can be readily detected as distinct nuclear foci by immunofluorescence microscopy. Thus, association and disassociation of these proteins at sites of DNA damage can be accessed by observing these nuclear foci at representative intervals after the induction of double-strand DNA breaks. This approach can also identify mis-localized repair factor proteins, if repair defects do not simultaneously occur with incomplete delays in repair. In this scenario, long-lasting double-strand DNA breaks can be engineered by expressing a rare cutting endonuclease (e.g., I-SceI) in cells where the recognition site for the said enzyme has been integrated into the cellular genome. The resulting lesion is particularly hard to resolve as faithful repair will reintroduce the enzyme's recognition site, prompting another round of cleavage. As a result, differences in the kinetics of repair are eliminated. If repair complexes are not formed, localization has been impeded. This protocol describes the methodology necessary to identify changes in repair kinetics as

  1. 27 CFR 24.323 - Excise Tax Return form.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Excise Tax Return form. 24.323 Section 24.323 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.323 Excise Tax Return form. A proprietor who...

  2. 29 CFR 794.121 - Exclusion of excise taxes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... From Overtime Pay Requirements Under Section 7(b)(3) of the Act Annual Gross Volume of Sales § 794.121 Exclusion of excise taxes. The computation of the annual gross volume of sales of the enterprise for... excise taxes which are included in the sales price may be excluded in computing the annual gross volume...

  3. Biochemical characterization of a thermostable endonuclease V from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5.

    PubMed

    Wang, Yuxiao; Zhang, Likui; Zhu, Xinyuan; Li, Yuting; Shi, Haoqiang; Oger, Philippe; Yang, Zhihui

    2018-05-22

    Endonuclease V (Endo V) is an important enzyme for repairing deoxyinosine in DNA. While bacterial and eukaryotic endo Vs have been well studied, knowledge of archaeal endo Vs is limited. Here, we first presented biochemical characterization of a thermostable endonuclease V from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5 (Tba endo V). The recombinant enzyme possessed optimal endonuclease activity for cleaving deoxyinosine-containing DNA at 70-90 °C. Furthermore, Tba endo V can withstand 100 °C for 120 min without significant loss of its activity, suggesting the enzyme is thermostable. Tba endo V exhibited varying cleavage efficiencies at various pH levels from 6.0 to 11.0, among which an optimal pH for the enzyme was 8.0-9.0. In addition, a divalent metal ion was required for the enzyme to cleave DNA. Mn 2+ and Mg 2+ were optimal ions for the enzyme's activity whereas Ca 2+ , Zn 2+ and Co 2+ inhibited the enzyme activity. Moreover, the enzyme activity was suppressed by high NaCl concentration. Tba endo V bound to all DNA substrates; however, the enzyme exhibited a higher affinity for binding to deoxyinosine-containing DNA than normal DNA. Our work provides valuable information for revealing the role of Tba endo V in the base excision repair pathway for deoxyinosine repair in Thermococcus. Copyright © 2018. Published by Elsevier B.V.

  4. Partial complementation of the UV sensitivity of E. coli and yeast excision repair mutants by the cloned denV gene of bacteriophage T4.

    PubMed

    Chenevert, J M; Naumovski, L; Schultz, R A; Friedberg, E C

    1986-04-01

    The denV gene of bacteriophage T4 was reconstituted from two overlapping DNA fragments cloned in M13 vectors. The coding region of the intact gene was tailored into a series of plasmid vectors containing different promoters suitable for expression of the gene in E. coli and in yeast. Induction of the TAC promoter with IPTG resulted in overexpression of the gene, which was lethal to E. coli. Expression of the TACdenV gene in the absence of IPTG, or the use of the yeast GAL1 or ADH promoters resulted in partial complementation of the UV sensitivity of uvrA, uvrB, uvrC and recA mutants of E. coli and rad1, rad2, rad3, rad4 and rad10 mutants of S. cerevisiae. The extent of denV-mediated reactivation of excision-defective mutants was approximately equal to that of photoreactivation of such strains. Excision proficient E. coli cells transformed with a plasmid containing the denV gene were slightly more resistant to ultraviolet (UV) radiation than control cells without the denV gene. On the other hand, excision proficient yeast cells were slightly more sensitive to killing by UV radiation following transformation with a plasmid containing the denV gene. This effect was more pronounced in yeast mutants of the RAD52 epistasis group.

  5. Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases.

    PubMed

    Zhang, Xing-Hai; Weissbach, Herbert

    2008-08-01

    The majority of extant life forms thrive in an O2-rich environment, which unavoidably induces the production of reactive oxygen species (ROS) during cellular activities. ROS readily oxidize methionine (Met) residues in proteins/peptides to form methionine sulphoxide [Met(O)] that can lead to impaired protein function. Two methionine sulphoxide reductases, MsrA and MsrB, catalyse the reduction of the S and R epimers, respectively, of Met(O) in proteins to Met. The Msr system has two known functions in protecting cells against oxidative damage. The first is to repair proteins that have lost activity due to Met oxidation and the second is to function as part of a scavenger system to remove ROS through the reversible oxidation/reduction of Met residues in proteins. Bacterial, plant and animal cells lacking MsrA are known to be more sensitive to oxidative stress. The Msr system is considered an important cellular defence mechanism to protect against oxidative stress and may be involved in ageing/senescence. MsrA is present in all known eukaryotes and eubacteria and a majority of archaea, reflecting its essential role in cellular life. MsrB is found in all eukaryotes and the majority of eubacteria and archaea but is absent in some eubacteria and archaea, which may imply a less important role of MsrB compared to MsrA. MsrA and MsrB share no sequence or structure homology, and therefore probably emerged as a result of independent evolutionary events. The fact that some archaea lack msr genes raises the question of how these archaea cope with oxidative damage to proteins and consequently of the significance of msr evolution in oxic eukaryotes dealing with oxidative stress. Our best hypothesis is that the presence of ROS-destroying enzymes such as peroxiredoxins and a lower dissolved O2 concentration in those msr-lacking organisms grown at high temperatures might account for the successful survival of these organisms under oxidative stress.

  6. Margins in Skin Excision Biopsies: Principles and Guidelines

    PubMed Central

    Ranjan, Richa; Singh, Lavleen; Arava, Sudheer K; Singh, Manoj Kumar

    2014-01-01

    Skin biopsies are usually undertaken to confirm a clinical diagnosis, to remove a lesion, and to determine the adequacy of excised tissue margin. A surgical margin is technically defined as the “edge” of the tissue removed. The term is especially pertinent when the tissue excised is suspected of being involved by a malignant process. One of the most important predictive and prognostic factors of a malignant lesion is whether the margins of the resected specimen are involved by the tumor or not. The purpose of this review is to provide an insight into grossing of a skin biopsy specimen with emphasis on techniques and reporting of excision biopsy margins. PMID:25484385

  7. Recruitment and positioning determine the specific role of the XPF-ERCC1 endonuclease in interstrand crosslink repair.

    PubMed

    Klein Douwel, Daisy; Hoogenboom, Wouter S; Boonen, Rick Acm; Knipscheer, Puck

    2017-07-14

    XPF-ERCC1 is a structure-specific endonuclease pivotal for several DNA repair pathways and, when mutated, can cause multiple diseases. Although the disease-specific mutations are thought to affect different DNA repair pathways, the molecular basis for this is unknown. Here we examine the function of XPF-ERCC1 in DNA interstrand crosslink (ICL) repair. We used Xenopus egg extracts to measure both ICL and nucleotide excision repair, and we identified mutations that are specifically defective in ICL repair. One of these separation-of-function mutations resides in the helicase-like domain of XPF and disrupts binding to SLX4 and recruitment to the ICL A small deletion in the same domain supports recruitment of XPF to the ICL, but inhibited the unhooking incisions most likely by disrupting a second, transient interaction with SLX4. Finally, mutation of residues in the nuclease domain did not affect localization of XPF-ERCC1 to the ICL but did prevent incisions on the ICL substrate. Our data support a model in which the ICL repair-specific function of XPF-ERCC1 is dependent on recruitment, positioning and substrate recognition. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  8. Superoxide poisons mononuclear iron enzymes by causing mismetallation

    PubMed Central

    Gu, Mianzhi; Imlay, James A.

    2013-01-01

    Summary Superoxide (O2−) is a primary agent of intracellular oxidative stress. Genetic studies in many organisms have confirmed that excess O2− disrupts metabolism, but to date only a small family of [4Fe-4S] dehydratases have been identified as direct targets. This investigation reveals that in Escherichia coli O2− also poisons a broader cohort of non-redox enzymes that employ ferrous iron atoms as catalytic cofactors. These enzymes were inactivated by O2− both in vitro and in vivo. Although the enzymes are known targets of hydrogen peroxide, the outcome with O2− differs substantially. When purified enzymes were damaged by O2− in vitro, activity could be completely restored by iron addition, indicating that the O2− treatment generated an apoprotein without damaging the protein polypeptide. Superoxide stress inside cells caused the progressive mismetallation of these enzymes with zinc, which confers little activity. When O2− stress was terminated, cells gradually restored activity by extracting zinc from the proteins. The overloading of cells with zinc caused mismetallation even without O2− stress. These results support a model in which O2− repeatedly excises iron from these enzymes, allowing zinc to compete with iron for remetallation of their apoprotein forms. This action substantially expands the physiological imprint of O2− stress. PMID:23678969

  9. Technique for laparoscopic autonomic nerve preserving total mesorectal excision.

    PubMed

    Breukink, S O; Pierie, J P E N; Hoff, C; Wiggers, T; Meijerink, W J H J

    2006-05-01

    With the introduction of total mesorectal excision (TME) for treatment of rectal cancer, the prognosis of patients with rectal cancer is improved. With this better prognosis, there is a growing awareness about the quality of life of patients after rectal carcinoma. Laparoscopic total mesorectal excision (LTME) for rectal cancer offers several advantages in comparison with open total mesorectal excision (OTME), including greater patient comfort and an earlier return to daily activities while preserving the oncologic radicality of the procedure. Moreover, laparoscopy allows good exposure of the pelvic cavity because of magnification and good illumination. The laparoscope seems to facilitate pelvic dissection including identification and preservation of critical structures such as the autonomic nervous system. The technique for laparoscopic autonomic nerve preserving total mesorectal excision is reported. A three- or four-port technique is used. Vascular ligation, sharp mesorectal dissection and identification and preservation of the autonomic pelvic nerves are described.

  10. Nucleotide excision repair modulates the cytotoxic and mutagenic effects of N-n-butyl-N-nitrosourea in cultured mammalian cells as well as in mouse splenocytes in vivo.

    PubMed

    Bol, S A; van Steeg, H; van Oostrom, C T; Tates, A D; Vrieling, H; de Groot, A J; Mullenders, L H; van Zeeland, A A; Jansen, J G

    1999-05-01

    The butylating agent N-n-butyl-N-nitrosourea (BNU) was employed to study the role of nucleotide excision repair (NER) in protecting mammalian cells against the genotoxic effects of monofunctional alkylating agents. The direct acting agent BNU was found to be mutagenic in normal and XPA mouse splenocytes after a single i.p. treatment in vivo. After 25 and 35 mg/kg BNU, but not after 75 mg/ kg, 2- to 3-fold more hprt mutants were detected in splenocytes from XPA mice than from normal mice. Using O6-alkylguanine-DNA alkyltransferase (AGT)-deficient hamster cells, it was found that NER-deficient CHO UV5 cells carrying a mutation in the ERCC-2 gene were 40% more mutable towards lesions induced by BNU when compared with parental NER-proficient CHO AA8 cells. UV5 cells were 1.4-fold more sensitive to the cytotoxic effects of BNU compared with AA8 cells. To investigate whether this increased sensitivity of NER-deficient cells is modulated by AGT activity, cell survival studies were performed in human and mouse primary fibroblasts as well. BNU was 2.7-fold more toxic for mouse XPA fibroblasts compared with normal mouse fibroblasts. Comparable results were found for human fibroblasts. Taken together these data indicate that the role of NER in protecting rodent cells against the mutagenic and cytotoxic effects of the alkylating agent BNU depends on AGT.

  11. Low intensity infrared laser affects expression of oxidative DNA repair genes in mitochondria and nucleus

    NASA Astrophysics Data System (ADS)

    Fonseca, A. S.; Magalhães, L. A. G.; Mencalha, A. L.; Geller, M.; Paoli, F.

    2014-11-01

    Practical properties and physical characteristics of low intensity lasers have made possible their application to treat soft tissue diseases. Excitation of intracellular chromophores by red and infrared radiation at low energy fluences with increase of mitochondrial metabolism is the basis of the biostimulation effect but free radicals can be produced. DNA lesions induced by free radicals are repaired by the base excision repair pathway. In this work, we evaluate the expression of POLγ and APEX2 genes related to repair of mitochondrial and nuclear DNA, respectively. Skin and muscle tissue of Wistar rats were exposed to low intensity infrared laser at different fluences. One hour and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of POLγ and APEX2 mRNA expression by real time quantitative polymerase chain reaction. Skin and muscle tissue of Wistar rats exposed to laser radiation show different expression of POLγ and APEX2 mRNA depending of the fluence and time after exposure. Our study suggests that a low intensity infrared laser affects expression of genes involved in repair of oxidative lesions in mitochondrial and nuclear DNA.

  12. P element excision in drosophila melanogaster and related drosophilids

    USDA-ARS?s Scientific Manuscript database

    The frequency of P element excision and the structure of the resulting excision products were determined in three drosophilid species, Drosophila melanogaster, D. virilis, and Chymomyza procnemis. A transient P element mobility assay was conducted in the cells of developing insect embryos, but unlik...

  13. Reduced repair capacity of a DNA clustered damage site comprised of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 2-deoxyribonolactone results in an increased mutagenic potential of these lesions

    DOE PAGES

    Cunniffe, Siobhan; O’Neill, Peter; Greenberg, Marc M.; ...

    2014-04-01

    A signature of ionizing radiation is the induction of DNA clustered damaged sites. Non-double strand break (DSB) clustered damage has been shown to compromise the base excision repair pathway, extending the lifetimes of the lesions within the cluster, compared to isolated lesions. This increases the likelihood the lesions persist to replication and thus increasing the mutagenic potential of the lesions within the cluster. Lesions formed by ionizing radiation include 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 2-deoxyribonolactone (dL). dL poses an additional challenge to the cell as it is not repaired by the short-patch base excision repair pathway. Here we show recalcitrant dL repairmore » is reflected in mutations observed when DNA containing it and a proximal 8-oxodGuo is replicated in Escherichia coli. 8-oxodGuo in close proximity to dL on the opposing DNA strand results in an enhanced frequency of mutation of the lesions within the cluster and a 20 base sequence flanking the clustered damage site in an E. coli based plasmid assay. In vitro repair of a dL lesion is reduced when compared to the repair of an abasic (AP) site and a tetrahydrofuran (THF), and this is due mainly to a reduction in the activity of polymerase β, leading to retarded FEN1 and ligase 1 activities. This study has given insights in to the biological effects of clusters containing dL.« less

  14. Polymorphisms in RAI and in genes of nucleotide and base excision repair are not associated with risk of testicular cancer.

    PubMed

    Laska, Magdalena J; Nexø, Bjørn A; Vistisen, Kirsten; Poulsen, Henrik Enghusen; Loft, Steffen; Vogel, Ulla

    2005-07-28

    Testicular cancer has been suggested to be primed in utero and there is familiar occurrence, particularly brothers and sons of men with testicular cancer have increased risk. Although no specific causative genotoxic agents have been identified, variations in DNA repair capacity could be associated with the risk of testicular cancer. A case-control study of 184 testicular cancer cases and 194 population-based controls living in the Copenhagen Greater Area in Denmark was performed. We found that neither polymorphisms in several DNA repair genes nor alleles of several polymorphisms in the chromosomal of region 19q13.2-3, encompassing the genes ASE, ERCC1, RAI and XPD, were associated with risk of testicular cancer in Danish patients. This is in contrast to other cancers, where we reported strong associations between polymorphisms in ERCC1, ASE and RAI and occurrence of basal cell carcinoma, breast cancer and lung. To our knowledge this is the first study of DNA repair gene polymorphisms and risk of testicular cancer.

  15. 29 CFR 779.263 - Excise taxes not at the retail level.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ACT AS APPLIED TO RETAILERS OF GOODS OR SERVICES Employment to Which the Act May Apply; Enterprise Coverage Excise Taxes § 779.263 Excise taxes not at the retail level. There are also a wide variety of... 29 Labor 3 2010-07-01 2010-07-01 false Excise taxes not at the retail level. 779.263 Section 779...

  16. 29 CFR 779.263 - Excise taxes not at the retail level.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Excise taxes not at the retail level. 779.263 Section 779... Coverage Excise Taxes § 779.263 Excise taxes not at the retail level. There are also a wide variety of taxes levied at the manufacturer's or distributor's level and not at the retail level. It should be...

  17. 29 CFR 779.263 - Excise taxes not at the retail level.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Excise taxes not at the retail level. 779.263 Section 779... Coverage Excise Taxes § 779.263 Excise taxes not at the retail level. There are also a wide variety of taxes levied at the manufacturer's or distributor's level and not at the retail level. It should be...

  18. 29 CFR 779.263 - Excise taxes not at the retail level.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Excise taxes not at the retail level. 779.263 Section 779... Coverage Excise Taxes § 779.263 Excise taxes not at the retail level. There are also a wide variety of taxes levied at the manufacturer's or distributor's level and not at the retail level. It should be...

  19. 29 CFR 779.263 - Excise taxes not at the retail level.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Excise taxes not at the retail level. 779.263 Section 779... Coverage Excise Taxes § 779.263 Excise taxes not at the retail level. There are also a wide variety of taxes levied at the manufacturer's or distributor's level and not at the retail level. It should be...

  20. Chloroethyinitrosourea-derived ethano cytosine and adenine adducts are substrates for escherichia coli glycosylases excising analogous etheno adducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guliaev, Anton B.; Singer, B.; Hang, Bo

    2004-05-05

    Exocyclic ethano DNA adducts are saturated etheno ring derivatives formed mainly by therapeutic chloroethylnitrosoureas (CNUs), which are also mutagenic and carcinogenic. In this work, we report that two of the ethano adducts, 3,N{sup 4}-ethanocytosine (EC) and 1,N{sup 6}-ethanoadenine (EA), are novel substrates for the Escherichia coli mismatch-specific uracil-DNA glycosylase (Mug) and 3-methyladenine DNA glycosylase II (AlkA), respectively. It has been shown previously that Mug excises 3,N{sup 4}-ethenocytosine ({var_epsilon}C) and AlkA releases 1,N{sup 6}-ethenoadenine ({var_epsilon}A). Using synthetic oligonucleotides containing a single ethano or etheno adduct, we found that both glycosylases had a {approx}20-fold lower excision activity toward EC or EA thanmore » that toward their structurally analogous {var_epsilon}C or {var_epsilon}A adduct. Both enzymes were capable of excising the ethano base paired with any of the four natural bases, but with varying efficiencies. The Mug activity toward EC could be stimulated by E. coli endonuclease IV and, more efficiently, by exonuclease III. Molecular dynamics (MD) simulations showed similar structural features of the etheno and ethano derivatives when present in DNA duplexes. However, also as shown by MD, the stacking interaction between the EC base and Phe 30 in the Mug active site is reduced as compared to the {var_epsilon}C base, which could account for the lower EC activity observed in this study.« less

  1. Structure and expression of the human XPBC/ERCC-3 gene involved in DNA repair disorders xeroderma pigmentosum and Cockayne's syndrome.

    PubMed Central

    Weeda, G; Ma, L B; van Ham, R C; van der Eb, A J; Hoeijmakers, J H

    1991-01-01

    The human XPBC/ERCC-3 was cloned by virtue of its ability to correct the excision repair defect of UV-sensitive rodent mutants of complementation group 3. The gene appeared to be in addition implicated in the human, cancer prone repair disorder xeroderma pigmentosum group B, which is also associated with Cockayne's syndrome. Here we present the genomic architecture of the gene and its expression. The XPBC/ERCC-3 gene consists of at least 14 exons spread over approximately 45 kb. Notably, the donor splice site of the third exon contains a GC instead of the canonical GT dinucleotide. The promoter region, first exon and intron comprise a CpG island with several putative GC boxes. The promoter was confined to a region of 260 bp upstream of the presumed cap site and acts bidirectionally. Like the promoter of another excision repair gene, ERCC-1, it lacks classical promoter elements such as CAAT and TATA boxes, but it shares with ERCC-1 a hitherto unknown 12 nucleotide sequence element, preceding a polypyrimidine track. Despite the presence of (AU)-rich elements in the 3'-untranslated region, which are thought to be associated with short mRNA half-life actinomycin-D experiments indicate that the mRNA is very stable (t 1/2 greater than 3h). Southern blot analysis revealed the presence of XPBC/ERCC-3 cross-hybridizing fragments elsewhere in the genome, which may belong to a related gene. Images PMID:1956789

  2. Mucosal excision and suturing for obesity and GERD.

    PubMed

    Légner, András; Tsuboi, Kazuto; Stadlhuber, Rudolf; Yano, Fumiaki; Halvax, Peter; Hunt, Brandon; Penka, Wayne; Filipi, Charles J

    2013-12-01

    Suture and staple-based endoluminal devices for gastroesophageal reflux disease (GERD) and obesity have failed to demonstrate long-term efficacy. To demonstrate the feasibility of mucosal excision and full-thickness suture apposition of the excision beds to create sufficient scar tissue formation at the gastroesophageal junction for the intraluminal treatment of GERD or obesity. Survival animal experiments. Seven mongrel dogs. Interventions. Under general endotracheal anesthesia, a Barostat test was performed on 4 dogs. A mucosal excision device was introduced through the esophagus into the proximal stomach. Two to 4 mucosal excisions were performed on all dogs at or just below the gastroesophageal junction and the mucosal pieces were removed. After hemostasis, an intraluminal suturing instrument was introduced and either 2 or 4 sutures were placed through the excision beds to bring them into apposition. These were tied and the suture strands cut. All dogs were survived for 2 months. End-term endoscopies were performed, and a repeat Barostat procedure was performed on the animals undergoing an antireflux procedure. After euthanasia the stomachs were explanted, examined, photographed, and sectioned for histologic examination. All dogs survived without complication. In the 4 GERD dogs, the Barostat studies demonstrated a significant decrease in gastroesophageal junction compliance. In the 3 dogs undergoing the obesity procedure, the gastric outlet apposition to a 6-mm endoscope was satisfactory with full insufflation and the desired scarring was seen on histologic examination. It is possible to create adequate gastroesophageal junction scarring for the treatment of GERD and obesity. A clinical pilot study will be initiated.

  3. Regulation of Immunoglobulin Class-Switch Recombination: Choreography of Noncoding Transcription, Targeted DNA Deamination, and Long-Range DNA Repair

    PubMed Central

    Matthews, Allysia J.; Zheng, Simin; DiMenna, Lauren J.; Chaudhuri, Jayanta

    2014-01-01

    Upon encountering antigens, mature IgM-positive B lymphocytes undergo class-switch recombination (CSR) wherein exons encoding the default Cμ constant coding gene segment of the immunoglobulin (Ig) heavy-chain (Igh) locus are excised and replaced with a new constant gene segment (referred to as “Ch genes”, e.g., Cγ, Cε, or Cα). The B cell thereby changes from expressing IgM to one producing IgG, IgE, or IgA, with each antibody isotype having a different effector function during an immune reaction. CSR is a DNA deletional-recombination reaction that proceeds through the generation of DNA double-strand breaks (DSBs) in repetitive switch (S) sequences preceding each Ch gene and is completed by end-joining between donor Sμ and acceptor S regions. CSR is a multistep reaction requiring transcription through S regions, the DNA cytidine deaminase AID, and the participation of several general DNA repair pathways including base excision repair, mismatch repair, and classical nonhomologous end-joining. In this review, we discuss our current understanding of how transcription through S regions generates substrates for AID-mediated deamination and how AID participates not only in the initiation of CSR but also in the conversion of deaminated residues into DSBs. Additionally, we review the multiple processes that regulate AID expression and facilitate its recruitment specifically to the Ig loci, and how deregulation of AID specificity leads to oncogenic translocations. Finally, we summarize recent data on the potential role of AID in the maintenance of the pluripotent stem cell state during epigenetic reprogramming. PMID:24507154

  4. The RAD24 (= Rs1) Gene Product of Saccharomyces cerevisiae Participates in Two Different Pathways of DNA Repair

    PubMed Central

    Eckardt-Schupp, Friederike; Siede, Wolfram; Game, John C.

    1987-01-01

    The moderately UV- and X-ray-sensitive mutant of Saccharomyces cerevisiae originally designated rs1 complements all rad and mms mutants available. Therefore, the new nomination rad24-1 according to the RAD nomenclature is suggested. RAD24 maps on chromosome V, close to RAD3 (1.3 cM). In order to associate the RAD24 gene with one of the three repair pathways, double mutants of rad24 and various representative genes of each pathway were constructed. The UV and X-ray sensitivities of the double mutants compared to the single mutants indicate that RAD24 is involved in excision repair of UV damage (RAD3 epistasis group), as well as in recombination repair of UV and X-ray damage (RAD52 epistasis group). Properties of the mutant are discussed which hint at the control of late steps in the pathways. PMID:3549445

  5. Integration of single-molecule detection with magnetic separation for multiplexed detection of DNA glycosylases.

    PubMed

    Li, Chen-Chen; Zhang, Yan; Tang, Bo; Zhang, Chun-Yang

    2018-06-05

    We combine single-molecule detection with magnetic separation for simultaneous measurement of human 8-oxoG DNA glycosylase 1 (hOGG1) and uracil DNA glycosylase (UDG) based on excision repair-initiated endonuclease IV (Endo IV)-assisted signal amplification. This method can sensitively detect multiple DNA glycosylases, and it can be further applied for the simultaneous measurement of enzyme kinetic parameters and screening of both hOGG1 and UDG inhibitors.

  6. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways

    PubMed Central

    Wang, Minli; Wu, Weizhong; Wu, Wenqi; Rosidi, Bustanur; Zhang, Lihua; Wang, Huichen; Iliakis, George

    2006-01-01

    Poly(ADP-ribose)polymerase 1 (PARP-1) recognizes DNA strand interruptions in vivo and triggers its own modification as well as that of other proteins by the sequential addition of ADP-ribose to form polymers. This modification causes a release of PARP-1 from DNA ends and initiates a variety of responses including DNA repair. While PARP-1 has been firmly implicated in base excision and single strand break repair, its role in the repair of DNA double strand breaks (DSBs) remains unclear. Here, we show that PARP-1, probably together with DNA ligase III, operates in an alternative pathway of non-homologous end joining (NHEJ) that functions as backup to the classical pathway of NHEJ that utilizes DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos and Artemis. PARP-1 binds to DNA ends in direct competition with Ku. However, in irradiated cells the higher affinity of Ku for DSBs and an excessive number of other forms of competing DNA lesions limit its contribution to DSB repair. When essential components of the classical pathway of NHEJ are absent, PARP-1 is recruited for DSB repair, particularly in the absence of Ku and non-DSB lesions. This form of DSB repair is sensitive to PARP-1 inhibitors. The results define the function of PARP-1 in DSB repair and characterize a candidate pathway responsible for joining errors causing genomic instability and cancer. PMID:17088286

  7. Reactive oxygen species spermine metabolites generated from amine oxidases and radiation represent a therapeutic gain in cancer treatments.

    PubMed

    Amendola, Roberto; Cervelli, Manuela; Fratini, Emiliano; Sallustio, Davide E; Tempera, Giampiero; Ueshima, Taichi; Mariottini, Paolo; Agostinelli, Enzo

    2013-09-01

    The most frequent interventions in cancer therapy are currently the destruction of cells by irradiation or administration of drugs both able to induce radical formation and toxic metabolites by enzyme-catalyzed reactions. The aim of this study was to determine the cell viability of cells undergoing a DNA damage threshold accomplished by ROS overproduction via both ectopic expression of murine spermine oxidase (mSMOX) and bovine serum amine oxidase (BSAO) enzymes. Low dose of X-irradiation delivers a challenging dose of damage as evaluated in proficient Chinese hamster AA8 cell line and both deficient transcription-coupled nucleotide excision repair (NER) UV61 cells and deficient base excision repair (BER) EM9 cells, at 6 and 24 h after exposure. The priming dose of ROS overexposure by mSMOX provokes an adaptive response in N18TG2, AA8 and EM9 cell lines at 24 h. Interestingly, in the UV61 cells, ROS overexposure by mSMOX delivers an earlier adaptive response to radiation. The enzymatic formation of toxic metabolites has mainly been investigated on wild-type (WT) and multidrug-resistant (MDR) cancer cell lines, using and spermine as substrate of the BSAO enzyme. MDR cells are more sensitive to the toxic polyamine metabolites than WT cells, thus indicating a new therapeutic strategy to overcome MDR tumors. Since SMOX in mammals is differentially activated in a tissue-specific manner and cancer cells can differ in terms of DNA repair and MDR capabilities, it could be of interest to simultaneously treat with very low dose of X-rays and/or to alter SMOX metabolism to generate a differential response in healthy and cancer tissues.

  8. Involvement of the host DNA-repair enzyme TDP2 in formation of the covalently closed circular DNA persistence reservoir of hepatitis B viruses.

    PubMed

    Königer, Christian; Wingert, Ida; Marsmann, Moritz; Rösler, Christine; Beck, Jürgen; Nassal, Michael

    2014-10-07

    Hepatitis B virus (HBV), the causative agent of chronic hepatitis B and prototypic hepadnavirus, is a small DNA virus that replicates by protein-primed reverse transcription. The product is a 3-kb relaxed circular DNA (RC-DNA) in which one strand is linked to the viral polymerase (P protein) through a tyrosyl-DNA phosphodiester bond. Upon infection, the incoming RC-DNA is converted into covalently closed circular (ccc) DNA, which serves as a viral persistence reservoir that is refractory to current anti-HBV treatments. The mechanism of cccDNA formation is unknown, but the release of P protein is one mandatory step. Structural similarities between RC-DNA and cellular topoisomerase-DNA adducts and their known repair by tyrosyl-DNA-phosphodiesterase (TDP) 1 or TDP2 suggested that HBV may usurp these enzymes for its own purpose. Here we demonstrate that human and chicken TDP2, but only the yeast ortholog of TDP1, can specifically cleave the Tyr-DNA bond in virus-adapted model substrates and release P protein from authentic HBV and duck HBV (DHBV) RC-DNA in vitro, without prior proteolysis of the large P proteins. Consistent with TPD2's having a physiological role in cccDNA formation, RNAi-mediated TDP2 depletion in human cells significantly slowed the conversion of RC-DNA to cccDNA. Ectopic TDP2 expression in the same cells restored faster conversion kinetics. These data strongly suggest that TDP2 is a first, although likely not the only, host DNA-repair factor involved in HBV cccDNA biogenesis. In addition to establishing a functional link between hepadnaviruses and DNA repair, our results open new prospects for directly targeting HBV persistence.

  9. 77 FR 37838 - Disregarded Entities and the Indoor Tanning Services Excise Tax

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... 1545-BK38 Disregarded Entities and the Indoor Tanning Services Excise Tax AGENCY: Internal Revenue... the indoor tanning services excise tax. These regulations affect disregarded entities responsible for collecting the indoor tanning services excise tax and owners of those disregarded entities. The text of the...

  10. Is surgical excision necessary for the treatment of Granulomatous lobular mastitis?

    PubMed

    Shin, Young Duck; Park, Sung Su; Song, Young Jin; Son, Seung-Myoung; Choi, Young Jin

    2017-07-24

    We aimed to investigate the role of surgical excision in treating granulomatous lobular mastitis. We performed a retrospective chart review of patients with granulomatous lobular mastitis treated from March 2008 to March 2014. We analyzed clinical features and therapeutic modalities and compared the patient outcomes based on treatment. During the study period, a total of 34 patients were diagnosed with granulomatous lobular mastitis and treated. Initial treatments included wide excision (18), oral steroids after incision and drainage (14), and antibiotic therapy (2). The patients receiving only antibiotic therapy showed no improvement after 1 month and wide excision was then performed. Wide excision resulted in nine case of delayed wound healing with fistula. These patients were treated with oral steroids for 1.5-5 months, with subsequent improvement. Overall, 11 out of 20 patients who had underwent wide excision showed improvement without additional treatment. Fourteen patients who had initially received oral steroids for 1 to 6 months (average, 2.8 months) after incision and drainage showed complete remission. During the median follow-up period with 45.5 months (range, 22-98 months), six patients (17.6%) experienced recurrence. Wide excision group experienced recurrence in five (25%) and steroid and drainage group experienced recurrence in one (7.1%). All six recurrences responded to additional steroid therapy for average 3.5 months. Most wide excision group left extensive breast scarring with deformation that was not in steroid and drainage group. Wide excision resulted high recurrence than steroid and drainage group and left extensive scarring. Steroid therapy with or without abscess drainage may be the first choice of treatment for majority cases with granulomatous lobular mastitis.

  11. Genetic polymorphisms in 19q13.3 genes associated with alteration of repair capacity to BPDE-DNA adducts in primary cultured lymphocytes.

    PubMed

    Xiao, Mingyang; Xiao, Sha; Straaten, Tahar van der; Xue, Ping; Zhang, Guopei; Zheng, Xiao; Zhang, Qianye; Cai, Yuan; Jin, Cuihong; Yang, Jinghua; Wu, Shengwen; Zhu, Guolian; Lu, Xiaobo

    2016-12-01

    Benzo[a]pyrene(B[a]P), and its ultimate metabolite Benzo[a]pyrene 7,8-diol 9,10-epoxide (BPDE), are classic DNA damaging carcinogens. DNA damage in cells caused by BPDE is normally repaired by Nucleotide Excision Repair (NER) and Base Excision Repair (BER). Genetic variations in NER and BER can change individual DNA repair capacity to DNA damage induced by BPDE. In the present study we determined the number of in vitro induced BPDE-DNA adducts in lymphocytes, to reflect individual susceptibility to Polycyclic aromatic hydrocarbons (PAHs)-induced carcinogenesis. The BPDE-DNA adduct level in lymphocytes were assessed by high performance liquid chromatography (HPLC) in 281 randomly selected participants. We genotyped for 9 single nucleotide polymorphisms (SNPs) in genes involved in NER (XPB rs4150441, XPC rs2228001, rs2279017 and XPF rs4781560), BER (XRCC1 rs25487, rs25489 and rs1799782) and genes located on chromosome 19q13.2-3 (PPP1R13L rs1005165 and CAST rs967591). We found that 3 polymorphisms in chromosome 19q13.2-3 were associated with lower levels of BPDE-DNA adducts (MinorT allele in XRCC1 rs1799782, minor T allele in PPP1R13L rs1005165 and minor A allele in CAST rs967571). In addition, a modified comet assay was performed to further confirm the above conclusions. We found both minor T allele in PPP1R13L rs1005165 and minor A allele in CAST rs967571 were associated with the lower levels of BPDE-adducts. Our data suggested that the variant genotypes of genes in chromosome 19q13.2-3 are associated with the alteration of repair efficiency to DNA damage caused by Benzo[a]pyrene, and may contribute to enhance predictive value for individual's DNA repair capacity in response to environmental carcinogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein

    PubMed Central

    Ng, Jessica M.Y.; Vermeulen, Wim; van der Horst, Gijsbertus T.J.; Bergink, Steven; Sugasawa, Kaoru; Vrieling, Harry; Hoeijmakers, Jan H.J.

    2003-01-01

    Primary DNA damage sensing in mammalian global genome nucleotide excision repair (GG-NER) is performed by the xeroderma pigmentosum group C (XPC)/HR23B protein complex. HR23B and HR23A are human homologs of the yeast ubiquitin-domain repair factor RAD23, the function of which is unknown. Knockout mice revealed that mHR23A and mHR23B have a fully redundant role in NER, and a partially redundant function in embryonic development. Inactivation of both genes causes embryonic lethality, but appeared still compatible with cellular viability. Analysis of mHR23A/B double-mutant cells showed that HR23 proteins function in NER by governing XPC stability via partial protection against proteasomal degradation. Interestingly, NER-type DNA damage further stabilizes XPC and thereby enhances repair. These findings resolve the primary function of RAD23 in repair and reveal a novel DNA-damage-dependent regulation mechanism of DNA repair in eukaryotes, which may be part of a more global damage-response circuitry. PMID:12815074

  13. Gene manipulated peritoneal cell patch repairs infarcted myocardium

    PubMed Central

    Huang, Wei; Zhang, Dongsheng; Millard, Ronald W.; Wang, Tao; Zhao, Tiemin; Fan, Guo-Chang; Ashraf, Atif; Xu, Meifeng; Ashraf, Muhammad; Wang, Yigang

    2010-01-01

    A gene manipulated cell patch using a homologous peritoneum substrate was developed and applied after myocardial infarction to repair scarred myocardium. We genetically engineered male rat mesenchymal stem cells (MSC) using adenoviral transduction to over-express CXCR4/green fluorescent protein (GFP) (MSCCXCR4) or MSCNull or siRNA targeting CXCR4 (MSCsiRNA). Gene expression was studied by real-time quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). Cells were cultured on excised peritoneum for 9 days. Two weeks after left anterior descending (LAD) coronary artery ligation in female hearts, the peritoneum patch was applied over the scarred myocardium, cell side down. Efficacy of engraftment was determined by presence of GFP positive cells. One month after cell implantation, echocardiography was performed and hearts were harvested for histological analysis. Left ventricle (LV) fibrosis, LV anterior wall thickness (AWT) and blood vessel density at the margins of the graft were measured. There was significant up-regulation of the chemokines in the MSCCXCR4 group cultured under normoxic conditions when compared to the MSCNull group and a further increase was observed after exposure to hypoxia. One month after cell transplantation with the peritoneum patch, substantial numbers of GFP-positive cells were observed in and around the infarcted myocardium in MSCCXCR4 group. LV AWT, LV fibrosis and LV function were significantly improved in the MSCCXCR4 group as compared to these same variables in the MSCNull control. These salutary effects were absent in MSCsiRNA group. The gene manipulated MSC-seeded peritoneum patch promotes tissue nutrition (angiogenesis), reduces myocardial remodeling, and enhances heart function after myocardial infarction. PMID:19913551

  14. Peroxidase Enzymes Regulate Collagen Biosynthesis and Matrix Mineralization by Cultured Human Osteoblasts.

    PubMed

    DeNichilo, Mark O; Shoubridge, Alexandra J; Panagopoulos, Vasilios; Liapis, Vasilios; Zysk, Aneta; Zinonos, Irene; Hay, Shelley; Atkins, Gerald J; Findlay, David M; Evdokiou, Andreas

    2016-03-01

    The early recruitment of inflammatory cells to sites of bone fracture and trauma is a critical determinant in successful fracture healing. Released by infiltrating inflammatory cells, myeloperoxidase (MPO) and eosinophil peroxidase (EPO) are heme-containing enzymes, whose functional involvement in bone repair has mainly been studied in the context of providing a mechanism for oxidative defense against invading microorganisms. We report here novel findings that show peroxidase enzymes have the capacity to stimulate osteoblastic cells to secrete collagen I protein and generate a mineralized extracellular matrix in vitro. Mechanistic studies conducted using cultured osteoblasts show that peroxidase enzymes stimulate collagen biosynthesis at a post-translational level in a prolyl hydroxylase-dependent manner, which does not require ascorbic acid. Our studies demonstrate that osteoblasts rapidly bind and internalize both MPO and EPO, and the catalytic activity of these peroxidase enzymes is essential to support collagen I biosynthesis and subsequent release of collagen by osteoblasts. We show that EPO is capable of regulating osteogenic gene expression and matrix mineralization in culture, suggesting that peroxidase enzymes may play an important role not only in normal bone repair, but also in the progression of pathological states where infiltrating inflammatory cells are known to deposit peroxidases.

  15. Requirement of the Saccharomyces cerevisiae APN1 Gene for the Repair of Mitochondrial DNA Alkylation Damage

    PubMed Central

    Acevedo-Torres, Karina; Fonseca-Williams, Sharon; Ayala-Torres, Sylvette; Torres-Ramos, Carlos A.

    2010-01-01

    The Saccharomyces cerevisiae APN1 gene that participates in base excision repair has been localized both in the nucleus and the mitochondria. APN1 deficient cells (apn1Δ) show increased mutation frequencies in mitochondrial DNA (mtDNA) suggesting that APN1 is also important for mtDNA stability. To understand APN1-dependent mtDNA repair processes we studied the formation and repair of mtDNA lesions in cells exposed to methyl methanesulfonate (MMS). We show that MMS induces mtDNA damage in a dose-dependent fashion and that deletion of the APN1 gene enhances the susceptibility of mtDNA to MMS. Repair kinetic experiments demonstrate that in wild-type cells (WT) it takes 4 hr to repair the damage induced by 0.1% MMS, whereas in the apn1Δ strain there is a lag in mtDNA repair that results in significant differences in the repair capacity between the two yeast strains. Analysis of lesions in nuclear DNA (nDNA) after treatment with 0.1% MMS shows a significant difference in the amount of nDNA lesions between WT and apn1Δ cells. Interestingly, comparisons between nDNA and mtDNA damage show that nDNA is more sensitive to the effects of MMS treatment. However, both strains are able to repair the nDNA lesions, contrary to mtDNA repair, which is compromised in the apn1Δ mutant strain. Therefore, although nDNA is more sensitive than mtDNA to the effects of MMS, deletion of APN1 has a stronger phenotype in mtDNA repair than in nDNA. These results highlight the prominent role of APN1 in the repair of environmentally induced mtDNA damage. PMID:19197988

  16. Aberrant methylation of nucleotide excision repair genes is associated with chronic arsenic poisoning.

    PubMed

    Zhang, Aihua; Li, Huiyao; Xiao, Yun; Chen, Liping; Zhu, Xiaonian; Li, Jun; Ma, Lu; Pan, Xueli; Chen, Wen; He, Zhini

    2017-07-01

    To define whether aberrant methylation of DNA repair genes is associated with chronic arsenic poisoning. Hundred and two endemic arsenicosis patients and 36 healthy subjects were recruited. Methylight and bisulfite sequencing (BSP) assays were used to examine the methylation status of ERCC1, ERCC2 and XPC genes in peripheral blood lymphocytes (PBLs) and skin lesions of arsenicosis patients and NaAsO 2 -treated HaCaT cells. Hypermethylation of ERCC1 and ERCC2 and suppressed gene expression were found in PBLs and skin lesions of arsenicosis patients and was correlated with the level of arsenic exposure. Particularly, the expression of ERCC1 and ERCC2 was associated with the severity of skin lesions. In vitro studies revealed an induction of ERCC2 hypermethylation and decreased mRNA expression in response to NaAsO 2 treatment. Hypermethylation of ERCC1 and ERCC2 and concomitant suppression of gene expression might be served as the epigenetic marks associated with arsenic exposure and adverse health effects.

  17. Cusp repair in aortic valve reconstruction: does the technique affect stability?

    PubMed

    Aicher, Diana; Langer, Frank; Adam, Oliver; Tscholl, Dietmar; Lausberg, Henning; Schäfers, Hans-Joachim

    2007-12-01

    Cusp prolapse may be an isolated cause of aortic regurgitation or may exist in conjunction with dilatation of the proximal aorta. Prolapse can be corrected by central plication, triangular resection, or pericardial patch implantation. We retrospectively analyzed our results with these techniques. From October 1995 to December 2006, 604 patients (aged 3-86 years) underwent aortic valve repair. Cusp prolapse was found in 427 patients (246 tricuspid, 181 bicuspid). Prolapse was corrected by central plication (n = 275) or triangular resection (n = 80). A pericardial patch was implanted for pre-existing cusp defects or after excision of calcium (n = 72). One cusp was repaired in 198 patients; the remaining patients underwent repair of 2 (n = 189) or 3 cusps (n = 40). In 102 patients more than one technique was used, and the patients were allocated to the group of the assumedly more complex repair (central plication < triangular resection < pericardial patch plasty). Cumulative follow-up was 1238 patient-years (mean 35 +/- 27 months). Hospital mortality was 2.6% (11/427). Actuarial freedom from aortic regurgitation of grade II or more at 5 years was 92% (central plication), 90% (triangular resection), and 90% (pericardial patch plasty). Thirteen patients were reoperated on, with prolapse as the most common reason for failure (n = 7); 6 underwent re-repair. Freedom from reoperation at 5 years was 95% (central plication), 94% (triangular resection), and 94% (pericardial patch plasty). Freedom from valve replacement at 5 years was 97% (central plication), 99% (triangular resection), and 98% (pericardial patch plasty). In aortic valve repair, cusp prolapse can be treated reliably by central plication. In the presence of more complex disease, triangular resection or pericardial patch plasty may be used without compromising midterm durability.

  18. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases.

    PubMed

    Boiteux, Serge; Coste, Franck; Castaing, Bertrand

    2017-06-01

    Oxidatively damaged DNA results from the attack of sugar and base moieties by reactive oxygen species (ROS), which are formed as byproducts of normal cell metabolism and during exposure to endogenous or exogenous chemical or physical agents. Guanine, having the lowest redox potential, is the DNA base the most susceptible to oxidation, yielding products such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2-6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). In DNA, 8-oxoG was shown to be mutagenic yielding GC to TA transversions upon incorporation of dAMP opposite this lesion by replicative DNA polymerases. In prokaryotic and eukaryotic cells, 8-oxoG is primarily repaired by the base excision repair pathway (BER) initiated by a DNA N-glycosylase, Fpg and OGG1, respectively. In Escherichia coli, Fpg cooperates with MutY and MutT to prevent 8-oxoG-induced mutations, the "GO-repair system". In Saccharomyces cerevisiae, OGG1 cooperates with nucleotide excision repair (NER), mismatch repair (MMR), post-replication repair (PRR) and DNA polymerase η to prevent mutagenesis. Human and mouse cells mobilize all these pathways using OGG1, MUTYH (MutY-homolog also known as MYH), MTH1 (MutT-homolog also known as NUDT1), NER, MMR, NEILs and DNA polymerases η and λ, to prevent 8-oxoG-induced mutations. In fact, mice deficient in both OGG1 and MUTYH develop cancer in different organs at adult age, which points to the critical impact of 8-oxoG repair on genetic stability in mammals. In this review, we will focus on Fpg and OGG1 proteins, their biochemical and structural properties as well as their biological roles. Other DNA N-glycosylases able to release 8-oxoG from damaged DNA in various organisms will be discussed. Finally, we will report on the role of OGG1 in human disease and the possible use of 8-oxoG DNA N-glycosylases as therapeutic targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Emodin regulating excision repair cross-complementation group 1 through fibroblast growth factor receptor 2 signaling

    PubMed Central

    Chen, Gang; Qiu, Hong; Ke, Shan-Dong; Hu, Shao-Ming; Yu, Shi-Ying; Zou, Sheng-Quan

    2013-01-01

    AIM: To investigate the molecular mechanisms underlying the reversal effect of emodin on platinum resistance in hepatocellular carcinoma. METHODS: After the addition of 10 μmol/L emodin to HepG2/oxaliplatin (OXA) cells, the inhibition rate (IR), 50% inhibitory concentration (IC50) and reversal index (IC50 in experimental group/IC50 in control group) were calculated. For HepG2, HepG2/OXA, HepG2/OXA/T, each cell line was divided into a control group, OXA group, OXA + fibroblast growth factor 7 (FGF7) group and OXA + emodin group, and the final concentrations of FGF7, emodin and OXA in each group were 5 ng/mL, 10 μg/mL and 10 μmol/L, respectively. Single-cell gel electrophoresis was conducted to detect DNA damage, and the fibroblast growth factor receptor 2 (FGFR2), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) and excision repair cross-complementing gene 1 (ERCC1) protein expression levels in each group were examined by Western blotting. RESULTS: Compared with the IC50 of 120.78 μmol/L in HepG2/OXA cells, the IC50 decreased to 39.65 μmol/L after treatment with 10 μmol/L emodin; thus, the reversal index was 3.05. Compared with the control group, the tail length and Olive tail length in the OXA group, OXA + FGF7 group and OXA + emodin group were significantly increased, and the differences were statistically significant (P < 0.01). The tail length and Olive tail length were lower in the OXA + FGF7 group than in the OXA group, and this difference was also statistically significant. Compared with the OXA + FGF7 group, the tail extent, the Olive tail moment and the percentage of tail DNA were significantly increased in the OXA + emodin group, and these differences were statistically significant (P < 0.01). In comparison with its parental cell line HepG2, the HepG2/OXA cells demonstrated significantly increased FGFR2, p-ERK1/2 and ERCC1 expression levels, whereas the expression of all three molecules was significantly inhibited in HepG2/OXA

  20. Impact of the excision of an ancient repeat insertion on Rickettsia conorii guanylate kinase activity.

    PubMed

    Abergel, Chantal; Blanc, Guillaume; Monchois, Vincent; Renesto, Patricia; Sigoillot, Cécile; Ogata, Hiroyuki; Raoult, Didier; Claverie, Jean-Michel

    2006-11-01

    The genomic sequencing of Rickettsia conorii revealed a new family of Rickettsia-specific palindromic elements (RPEs) capable of in-frame insertion in preexisting open reading frames (ORFs). Many of these altered ORFs correspond to proteins with well-characterized or essential functions in other microorganisms. Previous experiments indicated that RPE-containing genes are normally transcribed and that no excision of the repeat occurs at the mRNA level. Using mass spectrometry, we now confirmed the retention of the RPE-derived amino acid residues in 4 proteins successfully expressed in Escherichia coli, raising the general question of the consequences of this common insertion event on the fitness of Rickettsia enzymes. The predicted guanylate kinase activity of the R. conorii gmk gene product was measured both on the RPE-containing and RPE-excised recombinant proteins. We show that the 2 proteins are active but exhibit substantial differences in their affinity for adenosine triphosphate, guanosine monophosphate, and catalytic constants. The distribution of the RPEgmk insert among Rickettsia species indicates that the insertion event is ancient and occurred after the divergence of Rickettsia felis and R. conorii but before that of Rickettsia helvetica and R. conorii. We found no evidence that the gmk gene fixed adaptive changes to compensate the RPE peptide insertion. Furthermore, the analysis of the rates of divergence in 23 RPE-containing genes indicates that coding RPE repeats tend to evolve under weak selective constraint, at a rate similar to intergenic noncoding RPE sequences. Altogether, these results suggest that the insertion of RPE-encoded "selfish peptides," although respecting the original fold and activity of the host proteins, might be slightly detrimental to the enzyme efficiency within limits tolerable for slow-growing intracellular parasites such as Rickettsia.