Solid-state radiation-emitting compositions and devices
Ashley, Carol S.; Brinker, C. Jeffrey; Reed, Scott; Walko, Robert J.
1992-01-01
The invention relates to a composition for the volumetric generation of radiation, wherein a first substance functions as a source of exciting radiation, and a second substance interacts with the exciting radiation to provide a second radiation. The compositions comprise a porous substrate which is loaded with: a source of exciting radiation, a component capable of emitting radiation upon interaction with the exciting radiation, or both. Preferably, the composition is an aerogel substrate loaded with both a source of exciting radiation, such as tritium, and a component capable of interacting with the exciting radiation, e.g., a phosphor, to produce radiation of a second energy.
Solid-state radiation-emitting compositions and devices
Ashley, C.S.; Brinker, C.J.; Reed, S.; Walko, R.J.
1992-08-11
The invention relates to a composition for the volumetric generation of radiation, wherein a first substance functions as a source of exciting radiation, and a second substance interacts with the exciting radiation to provide a second radiation. The compositions comprise a porous substrate which is loaded with: a source of exciting radiation, a component capable of emitting radiation upon interaction with the exciting radiation, or both. Preferably, the composition is an aerogel substrate loaded with both a source of exciting radiation, such as tritium, and a component capable of interacting with the exciting radiation, e.g., a phosphor, to produce radiation of a second energy. 4 figs.
Rg-Lg coupling as a Lg-wave excitation mechanism
NASA Astrophysics Data System (ADS)
Ge, Z.; Xie, X.
2003-12-01
Regional phase Lg is predominantly comprised of shear wave energy trapped in the crust. Explosion sources are expected to be less efficient for excitation of Lg phases than earthquakes to the extent that the source can be approximated as isotropic. Shallow explosions generate relatively large surface wave Rg compared to deeper earthquakes, and Rg is readily disrupted by crustal heterogeneity. Rg energy may thus scatter into trapped crustal S-waves near the source region and contribute to low-frequency Lg wave. In this study, a finite-difference modeling plus the slowness analysis are used for investigating the above mentioned Lg-wave excitation mechanism. The method allows us to investigate near source energy partitioning in multiple domains including frequency, slowness and time. The main advantage of this method is that it can be applied at close range, before Lg is actually formed, which allows us to use very fine near source velocity model to simulate the energy partitioning process. We use a layered velocity structure as the background model and add small near source random velocity patches to the model to generate the Rg to Lg coupling. Two types of simulations are conducted, (1) a fixed shallow explosion source vs. randomness at different depths and (2) a fixed shallow randomness vs. explosion sources at different depths. The results show apparent couplings between the Rg and Lg waves at lower frequencies (0.3-1.5 Hz). A shallow source combined with shallow randomness generates the maximum Lg-wave, which is consistent with the Rg energy distribution of a shallow explosion source. The Rg energy and excited Lg energy show a near linear relationship. The numerical simulation and slowness analysis suggest that the Rg to Lg coupling is an effective excitation mechanism for low frequency Lg-waves from a shallow explosion source.
Solid-state radiation-emitting compositions and devices
Ashley, Carol S.; Brinker, C. Jeffrey; Reed, Scott; Shepodd, Timothy J.; Leonard, Leroy E.; Ellefson, Robert E.; Gill, John T.; Walko, Robert J.; Renschler, Clifford L.
1992-01-01
The invention relates to a composition for the volumetric generation of radiation, wherein a first substance functions as a source of exciting radiation, and a second substance interacts with the exciting radiation to provide a second radiation. The compositions comprise a porous substrate which is loaded with: a source of exciting radiation, a component capable of emitting radiation upon interaction with the exciting radiation, or both. In the composition, a composite is formed from a carrier material and at least one of the source of the exciting radiation or the component which is capable of interacting with the exciting radiation. The composite is then employed for loading a porous substrate, preferably an aerogel substrate.
Practical system for the generation of pulsed quantum frequency combs.
Roztocki, Piotr; Kues, Michael; Reimer, Christian; Wetzel, Benjamin; Sciara, Stefania; Zhang, Yanbing; Cino, Alfonso; Little, Brent E; Chu, Sai T; Moss, David J; Morandotti, Roberto
2017-08-07
The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation. Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum frequency combs are of particular interest, since they allow the generation of single-frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon states, and for quantum information applications. However, generation schemes for such pulsed combs have, to date, relied on micro-cavity excitation via lasers external to the sources, being neither versatile nor power-efficient, and impractical for scalable realizations of quantum technologies. Here, we introduce an actively-modulated, nested-cavity configuration that exploits the resonance pass-band characteristic of the micro-cavity to enable a mode-locked and energy-efficient excitation. We demonstrate that the scheme allows the generation of high-purity photons at large coincidence-to-accidental ratios (CAR). Furthermore, by increasing the repetition rate of the excitation field via harmonic mode-locking (i.e. driving the cavity modulation at harmonics of the fundamental repetition rate), we managed to increase the pair production rates (i.e. source efficiency), while maintaining a high CAR and photon purity. Our approach represents a significant step towards the realization of fully on-chip, stable, and versatile sources of pulsed quantum frequency combs, crucial for the development of accessible quantum technologies.
Luminescent light source for laser pumping and laser system containing same
Hamil, Roy A.; Ashley, Carol S.; Brinker, C. Jeffrey; Reed, Scott; Walko, Robert J.
1994-01-01
The invention relates to a pumping lamp for use with lasers comprising a porous substrate loaded with a component capable of emitting light upon interaction of the component with exciting radiation and a source of exciting radiation. Preferably, the pumping lamp comprises a source of exciting radiation, such as an electron beam, and an aerogel or xerogel substrate loaded with a component capable of interacting with the exciting radiation, e.g., a phosphor, to produce light, e.g., visible light, of a suitable band width and of a sufficient intensity to generate a laser beam from a laser material.
Investigating the generation of Love waves in secondary microseisms using 3D numerical simulations
NASA Astrophysics Data System (ADS)
Wenk, Stefan; Hadziioannou, Celine; Pelties, Christian; Igel, Heiner
2014-05-01
Longuet-Higgins (1950) proposed that secondary microseismic noise can be attributed to oceanic disturbances by surface gravity wave interference causing non-linear, second-order pressure perturbations at the ocean bottom. As a first approximation, this source mechanism can be considered as a force acting normal to the ocean bottom. In an isotropic, layered, elastic Earth model with plain interfaces, vertical forces generate P-SV motions in the vertical plane of source and receiver. In turn, only Rayleigh waves are excited at the free surface. However, several authors report on significant Love wave contributions in the secondary microseismic frequency band of real data measurements. The reason is still insufficiently analysed and several hypothesis are under debate: - The source mechanism has strongest influence on the excitation of shear motions, whereas the source direction dominates the effect of Love wave generation in case of point force sources. Darbyshire and Okeke (1969) proposed the topographic coupling effect of pressure loads acting on a sloping sea-floor to generate the shear tractions required for Love wave excitation. - Rayleigh waves can be converted into Love waves by scattering. Therefore, geometric scattering at topographic features or internal scattering by heterogeneous material distributions can cause Love wave generation. - Oceanic disturbances act on large regions of the ocean bottom, and extended sources have to be considered. In combination with topographic coupling and internal scattering, the extent of the source region and the timing of an extended source should effect Love wave excitation. We try to elaborate the contribution of different source mechanisms and scattering effects on Love to Rayleigh wave energy ratios by 3D numerical simulations. In particular, we estimate the amount of Love wave energy generated by point and extended sources acting on the free surface. Simulated point forces are modified in their incident angle, whereas extended sources are adapted in their spatial extent, magnitude and timing. Further, the effect of variations in the correlation length and perturbation magnitude of a random free surface topography as well as an internal random material distribution are studied.
Method and apparatus for imaging a sample on a device
Trulson, Mark; Stern, David; Fiekowsky, Peter; Rava, Richard; Walton, Ian; Fodor, Stephen P. A.
1996-01-01
The present invention provides methods and systems for detecting a labeled marker on a sample located on a support. The imaging system comprises a body for immobilizing the support, an excitation radiation source and excitation optics to generate and direct the excitation radiation at the sample. In response, labeled material on the sample emits radiation which has a wavelength that is different from the excitation wavelength, which radiation is collected by collection optics and imaged onto a detector which generates an image of the sample.
Using axicons for depth discrimination in excitation-emission laser scanning imaging systems
NASA Astrophysics Data System (ADS)
Iglesias, Ignacio
2017-10-01
Besides generating good approximations to zero-order Bessel beams, an axicon lens coupled to a spatial filter can be used to collect light while preserving information on the depth coordinate of the source location. To demonstrate the principle, we describe an experimental excitation-emission fluorescence imaging system that uses an axicon twice: to generate an excitation Bessel beam and to collect the emitted light.
Cathode luminescence light source for broadband applications in the visible spectrum
NASA Technical Reports Server (NTRS)
Foster, John E. (Inventor)
2007-01-01
A device and method for generating cathode luminescence is provided. The device and method generate broad spectrum electromagnetic radiation in the visible. A layer of particles, such as quartz or alumina powder, is exposed to electrons in a plasma discharge. Surface excitation of these particles or the generations/excitation of F-center sites give rise to luminescence.
Substantially parallel flux uncluttered rotor machines
Hsu, John S.
2012-12-11
A permanent magnet-less and brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by polyphase alternating currents. An uncluttered rotor is positioned within the magnetic rotating field and is spaced apart from the stator. An excitation core is spaced apart from the stator and the uncluttered rotor and magnetically couples the uncluttered rotor. The brushless excitation source generates a magnet torque by inducing magnetic poles near an outer peripheral surface of the uncluttered rotor, and the stator currents also generate a reluctance torque by a reaction of the difference between the direct and quadrature magnetic paths of the uncluttered rotor. The system can be used either as a motor or a generator
MOSFET-based high voltage short pulse generator for ultrasonic transducer excitation
NASA Astrophysics Data System (ADS)
Hidayat, Darmawan; Setianto, Syafei, Nendi Suhendi; Wibawa, Bambang Mukti
2018-02-01
This paper presents the generation of a high-voltage short pulse for the excitation of high frequency ultrasonic transducers. This is highly required in the purpose of various ultrasonic-based evaluations, particularly when high resolution measurement is necessary. A high voltage (+760 V) DC voltage source was pulsated by an ultrafast switching MOSFET which was driven by a pulse generator circuit consisting of an astable multivibrator, a one-shot multivibrator with Schmitt trigger input and a high current MOSFET driver. The generated pulses excited a 200-kHz and a 1-MHz ultrasonic transducers and tested in the transmission mode propagation to evaluate the performances of the generated pulse. The test results showed the generator were able to produce negative spike pulses up to -760 V voltage with the shortest time-width of 107.1 nanosecond. The transmission-received ultrasonic waves show frequency oscillation at 200 and 961 kHz and their amplitudes varied with the voltage of excitation pulse. These results conclude that the developed pulse generator is applicable to excite transducer for the generation of high frequency ultrasonic waves.
Zhang, Shuo
2015-09-01
The spectral, electrical and atomic fluorescence characteristics of As, Se, Sb and Pb hollow cathode lamps (HCLs) powered by a laboratory-built high current microsecond pulse (HCMP) power supply were studied, and the feasibility of using HCMP-HCLs as the excitation source of hydride generation atomic fluorescence spectrometry (HG-AFS) was evaluated. Under the HCMP power supply mode, the As, Se, Sb, Pb HCLs can maintain stable glow discharge at frequency of 100~1000 Hz, pulse width of 4.0~20 μs and pulse current up to 4.0 A. Relationship between the intensity of characteristic emission lines and HCMP power supply parameters, such as pulse current, power supply voltage, pulse width and frequency, was studied in detail. Compared with the conventional pulsed (CP) HCLs used in commercial AFS instruments, HCMP-HCLs have a narrower pulse width and much stronger pulse current. Under the optimized HCMP power supply parameters, the intensity of atomic emission lines of As, Se, Sb HCLs had sharp enhancement and that indicated their capacity of being a novel HG-AFS excitation source. However, the attenuation of atomic lines and enhancement of ionic lines negated such feasibility of HCMP-Pb HCL. Then the HG-AFS analytical capability of using the HCMP-As/Se/Sb HCLs excitation source was established and results showed that the HCMP-HCL is a promising excitation source for HG-AFS.
Synthesis of laughter by modifying excitation characteristics.
Thati, Sathya Adithya; Kumar K, Sudheer; Yegnanarayana, B
2013-05-01
In this paper, a method to synthesize laughter by modifying the excitation source information is presented. The excitation source information is derived by extracting epoch locations and instantaneous fundamental frequency using zero frequency filtering approach. The zero frequency filtering approach is modified to capture the rapidly varying instantaneous fundamental frequency in natural laugh signals. The nature of variation of excitation features in natural laughter is examined to determine the features to be incorporated in the synthesis of a laugh signal. Features such as pitch period and strength of excitation are modified in the utterance of vowel /a/ or /i/ to generate the laughter signal. Frication is also incorporated wherever appropriate. Laugh signal is generated by varying parameters at both call level and bout level. Experiments are conducted to determine the significance of different features in the perception of laughter. Subjective evaluation is performed to determine the level of acceptance and quality of synthesis of the synthesized laughter signal for different choices of parameter values and for different input types.
NASA Astrophysics Data System (ADS)
Kano, Hideaki; Hamaguchi, Hiro-O.
2006-04-01
A supercontinuum light source generated with a femtosecond Ti:Sapphire oscillator has been used to obtain both vibrational and two-photon excitation fluorescence (TPEF) images of a living cell simultaneously at different wavelengths. Owing to an ultrabroadband spectral profile of the supercontinuum, multiple vibrational resonances have been detected through coherent anti-Stokes Raman scattering (CARS) process. In addition to the multiplex CARS process, multiple electronic states can be excited due to the broadband electronic two-photon excitation using the supercontinuum, giving rise to a two-photon excitation fluorescence (TPEF) signal. Using a living yeast cell whose nucleus is labeled by green fluorescent protein (GFP), we have succeeded in visualizing organelles such as mitochondria, septum, and nucleus through the CARS and the TPEF processes. The supercontinuum enables us to perform unique multi-nonlinear optical imaging through two different nonlinear optical processes.
Modeling the Excitation of Seismic Waves by the Joplin Tornado
NASA Astrophysics Data System (ADS)
Valovcin, Anne; Tanimoto, Toshiro
2017-10-01
Tornadoes generate seismic signals when they contact the ground. Here we examine the signals excited by the Joplin tornado, which passed within 2 km of a station in the Earthscope Transportable Array. We model the tornado-generated vertical seismic signal at low frequencies (0.01-0.03 Hz) and solve for the strength of the seismic source. The resulting source amplitude is largest when the tornado was reported to be strongest (EF 4-5), and the amplitude is smallest when the tornado was weak (EF 0-2). A further understanding of the relationship between source amplitude and tornado intensity could open up new ways to study tornadoes from the ground.
NASA Astrophysics Data System (ADS)
Morizane, Toshimitsu; Kimura, Noriyuki; Taniguchi, Katsunori
This paper investigates advantages of new combination of the induction generator for wind power and the power electronic equipment. Induction generator is popularly used for the wind power generation. The disadvantage of it is impossible to generate power at the lower rotor speed than the synchronous speed. To compensate this disadvantage, expensive synchronous generator with the permanent magnets is sometimes used. In proposed scheme, the diode rectifier is used to convert the real power from the induction generator to the intermediate dc voltage, while only the reactive power necessary to excite the induction generator is supplied from the voltage source converter (VSC). This means that the rating of the expensive VSC is minimized and total cost of the wind power generation system is decreased compared to the system with synchronous generator. Simulation study to investigate the control strategy of proposed system is performed. The results show the reduction of the VSC rating is prospective.
NASA Technical Reports Server (NTRS)
Bechert, D. W.
1982-01-01
The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.
Microfabricated ion frequency standard
Schwindt, Peter; Biedermann, Grant; Blain, Matthew G.; Stick, Daniel L.; Serkland, Darwin K.; Olsson, III, Roy H.
2010-12-28
A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.
Melanin fluorescence spectra by step-wise three photon excitation
NASA Astrophysics Data System (ADS)
Lai, Zhenhua; Kerimo, Josef; DiMarzio, Charles A.
2012-03-01
Melanin is the characteristic chromophore of human skin with various potential biological functions. Kerimo discovered enhanced melanin fluorescence by stepwise three-photon excitation in 2011. In this article, step-wise three-photon excited fluorescence (STPEF) spectrum between 450 nm -700 nm of melanin is reported. The melanin STPEF spectrum exhibited an exponential increase with wavelength. However, there was a probability of about 33% that another kind of step-wise multi-photon excited fluorescence (SMPEF) that peaks at 525 nm, shown by previous research, could also be generated using the same process. Using an excitation source at 920 nm as opposed to 830 nm increased the potential for generating SMPEF peaks at 525 nm. The SMPEF spectrum peaks at 525 nm photo-bleached faster than STPEF spectrum.
Excited singlet molecular O2 (1Δg) is generated enzymatically from excited carbonyls in the dark
Mano, Camila M.; Prado, Fernanda M.; Massari, Júlio; Ronsein, Graziella E.; Martinez, Glaucia R.; Miyamoto, Sayuri; Cadet, Jean; Sies, Helmut; Medeiros, Marisa H. G.; Bechara, Etelvino J. H.; Di Mascio, Paolo
2014-01-01
In mammalian tissues, ultraweak chemiluminescence arising from biomolecule oxidation has been attributed to the radiative deactivation of singlet molecular oxygen [O2 (1Δg)] and electronically excited triplet carbonyl products involving dioxetane intermediates. Herein, we describe evidence of the generation of O2 (1Δg) in aqueous solution via energy transfer from excited triplet acetone. This involves thermolysis of 3,3,4,4-tetramethyl-1,2-dioxetane, a chemical source, and horseradish peroxidase-catalyzed oxidation of 2-methylpropanal, as an enzymatic source. Both sources of excited carbonyls showed characteristic light emission at 1,270 nm, directly indicative of the monomolecular decay of O2 (1Δg). Indirect analysis of O2 (1Δg) by electron paramagnetic resonance using the chemical trap 2,2,6,6-tetramethylpiperidine showed the formation of 2,2,6,6-tetramethylpiperidine-1-oxyl. Using [18O]-labeled triplet, ground state molecular oxygen [18O2 (3Σg-)], chemical trapping of 18O2 (1Δg) with disodium salt of anthracene-9,10-diyldiethane-2,1-diyl disulfate yielding the corresponding double-[18O]-labeled 9,10-endoperoxide, was detected through mass spectrometry. This corroborates formation of O2 (1Δg). Altogether, photoemission and chemical trapping studies clearly demonstrate that chemically and enzymatically nascent excited carbonyl generates 18O2 (1Δg) by triplet-triplet energy transfer to ground state oxygen O2 (3Σg−), and supports the long formulated hypothesis of O2 (1Δg) involvement in physiological and pathophysiological events that might take place in tissues in the absence of light. PMID:25087485
Gamma source for active interrogation
Leung, Ka-Ngo; Lou, Tak Pui; Barletta, William A.
2012-10-02
A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.
Gamma source for active interrogation
Leung, Ka-Ngo [Hercules, CA; Lou, Tak Pui [Berkeley, CA; Barletta, William A [Oakland, CA
2009-09-29
A cylindrical gamma generator includes a coaxial RF-driven plasma ion source and target. A hydrogen plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical gamma generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which has many openings. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired.
Roles of the Excitation in Harvesting Energy from Vibrations
Zhang, Hui; Ma, Tianwei
2015-01-01
The study investigated the role of excitation in energy harvesting applications. While the energy ultimately comes from the excitation, it was shown that the excitation may not always behave as a source. When the device characteristics do not perfectly match the excitation, the excitation alternately behaves as a source and a sink. The extent to which the excitation behaves as a sink determines the energy harvesting efficiency. Such contradictory roles were shown to be dictated by a generalized phase defined as the instantaneous phase angle between the velocity of the device and the excitation. An inductive prototype device with a diamagnetically levitated seismic mass was proposed to take advantage of the well established phase changing mechanism of vibro-impact to achieve a broader device bandwidth. Results suggest that the vibro-impact can generate an instantaneous, significant phase shift in response velocity that switches the role of the excitation. If introduced properly outside the resonance zone it could dramatically increase the energy harvesting efficiency. PMID:26496183
Relativistic electron beam generator
Mooney, L.J.; Hyatt, H.M.
1975-11-11
A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.
Cross-sectional transport imaging in a multijunction solar cell
Haegel, Nancy M.; Ke, Chi -Wen; Taha, Hesham; ...
2016-12-01
Here, we combine a highly localized electron-beam point source excitation to generate excess free carriers with the spatial resolution of optical near-field imaging to map recombination in a cross-sectioned multijunction (Ga 0.5In 0.5P/GaIn 0.01As/Ge) solar cell. By mapping the spatial variations in emission of light for fixed generation (as opposed to traditional cathodoluminescence (CL), which maps integrated emission as a function of position of generation), it is possible to directly monitor the motion of carriers and photons. We observe carrier diffusion throughout the full width of the middle (GaInAs) cell, as well as luminescent coupling from point source excitation inmore » the top cell GaInP to the middle cell. Supporting CL and near-field photoluminescence (PL) measurements demonstrate the excitation-dependent Fermi level splitting effects that influence cross-sectioned spectroscopy results, as well as transport limitations on the spatial resolution of conventional cross-sectional far-field measurements.« less
Chouet, B.
1988-01-01
A dynamic source model is presented, in which a 3-D crack containing a viscous compressible fluid is excited into resonance by an impulsive pressure transient applied over a small area DELTA S of the crack surface. The crack excitation depends critically on two dimensionless parameters called the crack stiffness and viscous damping loss. According to the model, the long-period event and harmonic tremor share the same source but differ in the boundary conditions for fluid flow and in the triggering mechanism setting up the resonance of the source, the former being viewed as the impulse response of the tremor generating system and the later representing the excitation due to more complex forcing functions.-from Author
Prediction of X-33 Engine Dynamic Environments
NASA Technical Reports Server (NTRS)
Shi, John J.
1999-01-01
Rocket engines normally have two primary sources of dynamic excitation. The first source is the injector and the combustion chambers that generate wide band random vibration. The second source is the turbopumps, which produce lower levels of wide band random vibration as well as sinusoidal vibration at frequencies related to the rotating speed and multiples thereof. Additionally, the pressure fluctuations due to flow turbulence and acoustics represent secondary sources of excitation. During the development stage, in order to design/size the rocket engine components, the local dynamic environments as well as dynamic interface loads have to be defined.
Riporto, Jérémy; Demierre, Alexis; Kilin, Vasyl; Balciunas, Tadas; Schmidt, Cédric; Campargue, Gabriel; Urbain, Mathias; Baltuska, Andrius; Le Dantec, Ronan; Wolf, Jean-Pierre; Mugnier, Yannick; Bonacina, Luigi
2018-05-03
We demonstrate the simultaneous generation of second, third, and fourth harmonics from a single dielectric bismuth ferrite nanoparticle excited using a telecom fiber laser at 1560 nm. We first characterize the signals associated with different nonlinear orders in terms of spectrum, excitation intensity dependence, and relative signal strengths. Successively, on the basis of the polarization-resolved emission curves of the three harmonics, we discuss the interplay of susceptibility tensor components at different orders and show how polarization can be used as an optical handle to control the relative frequency conversion properties.
Biophoton research in blood reveals its holistic properties.
Voeikov, V L; Asfaramov, R; Bouravleva, E V; Novikov, C N; Vilenskaya, N D
2003-05-01
Monitoring of spontaneous and luminophore amplified photon emission (PE) from non-diluted human blood under resting conditions and artificially induced immune reaction revealed that blood is a continuous source of biophotons indicating that it persists in electronically excited state. This state is pumped through generation of electron excitation produced in reactive oxygen species (ROS) reactions. Excited state of blood and of neutrophil suspensions (primary sources of ROS in blood) is an oscillatory one suggesting of interaction between individual sources of electron excitation. Excited state of blood is extremely sensitive to the tiniest fluctuations of external photonic fields but resistant to temperature variations as reflected in hysteresis of PE in response to temperature variations. These data suggest that blood is a highly cooperative non-equilibrium and non-linear system, whose components unceasingly interact in time and space. At least in part this property is provided by the ability of blood to store energy of electron excitation that is produced in course of its own normal metabolism. From a practical point of view analysis of these qualities of blood may be a basement of new approach to diagnostic procedures.
NASA Astrophysics Data System (ADS)
Pan, Shijia; Mirshekari, Mostafa; Fagert, Jonathon; Ramirez, Ceferino Gabriel; Chung, Albert Jin; Hu, Chih Chi; Shen, John Paul; Zhang, Pei; Noh, Hae Young
2018-02-01
Many human activities induce excitations on ambient structures with various objects, causing the structures to vibrate. Accurate vibration excitation source detection and characterization enable human activity information inference, hence allowing human activity monitoring for various smart building applications. By utilizing structural vibrations, we can achieve sparse and non-intrusive sensing, unlike pressure- and vision-based methods. Many approaches have been presented on vibration-based source characterization, and they often either focus on one excitation type or have limited performance due to the dispersion and attenuation effects of the structures. In this paper, we present our method to characterize two main types of excitations induced by human activities (impulse and slip-pulse) on multiple structures. By understanding the physical properties of waves and their propagation, the system can achieve accurate excitation tracking on different structures without large-scale labeled training data. Specifically, our algorithm takes properties of surface waves generated by impulse and of body waves generated by slip-pulse into account to handle the dispersion and attenuation effects when different types of excitations happen on various structures. We then evaluate the algorithm through multiple scenarios. Our method achieves up to a six times improvement in impulse localization accuracy and a three times improvement in slip-pulse trajectory length estimation compared to existing methods that do not take wave properties into account.
Selective THz control of magnetic order: new opportunities from superradiant undulator sources
NASA Astrophysics Data System (ADS)
Kovalev, S.; Wang, Zhe; Deinert, J.-C.; Awari, N.; Chen, M.; Green, B.; Germanskiy, S.; de Oliveira, T. V. A. G.; Lee, J. S.; Deac, A.; Turchinovich, D.; Stojanovic, N.; Eisebitt, S.; Radu, I.; Bonetti, S.; Kampfrath, T.; Gensch, M.
2018-03-01
Recent advancements of accelerator technology enable the generation of carrier-envelope-phase stable THz pulses with high fields at adjustable high repetition rates. The appropriate choice of THz radiator allows generation of narrow-band, spectrally dense, multicycle THz transients of tunable THz frequency which are ideally suited to selectively excite low-energy excitations such as magnons or phonons. They also allow one to study the frequency dependence of nonresonant THz-field interactions with various order parameters with high dynamic range. In this paper, we discuss the future prospects of this new type of THz light source for studying the coherent control of magnetic order based on recent results.
Spectrum Gaps of Spin Waves Generated by Interference in a Uniform Nanostripe Waveguide
Wang, Qi; Zhang, Huaiwu; Ma, Guokun; Liao, Yulong; Tang, Xiaoli; Zhong, Zhiyong
2014-01-01
We studied spin waves excited by two or more excitation sources in a uniform nanostripe waveguide without periodic structures. Several distinct spectrum gaps formed by spin waves interference rather than by Bragg reflection were observed. We found the center frequency and the number of spectrum gaps of spin waves can be controlled by modulating the distance, number and width of the excitation sources. The results obtained by micromagnetic simulations agree well with that of analytical calculations. Our work therefore paves a new way to control the spectrum gaps of spin waves, which is promising for future spin wave-based devices. PMID:25082001
Inorganic volumetric light source excited by ultraviolet light
Reed, Scott; Walko, Robert J.; Ashley, Carol S.; Brinker, C. Jeffrey
1994-01-01
The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light.
Inorganic volumetric light source excited by ultraviolet light
Reed, S.; Walko, R.J.; Ashley, C.S.; Brinker, C.J.
1994-04-26
The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light. 4 figures.
Fast pulsed excitation wiggler or undulator
van Steenbergen, Arie
1990-01-01
A fast pulsed excitation, electromagnetic undulator or wiggler, employing geometrically alternating substacks of thin laminations of ferromagnetic material, together with a single turn current loop excitation of the composite assembly, of such shape and configuration that intense, spatially alternating, magnetic fields are generated; for use as a pulsed mode undulator or wiggler radiator, for use in a Free Electron Laser (FEL) type radiation source or, for use in an Inverse Free Electron Laser (IFEL) charged particle accelerator.
Pappas, D.S.
1987-07-31
The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yong-Jie; Yuan, Qiang-Hua; Li, Fei
2013-11-15
An atmospheric pressure plasma jet is generated by dual sinusoidal wave (50 kHz and 2 MHz). The dual-frequency plasma jet exhibits the advantages of both low frequency and radio frequency plasmas, namely, the long plasma plume and the high electron density. The radio frequency ignition voltage can be reduced significantly by using dual-frequency excitation compared to the conventional radio frequency without the aid of the low frequency excitation source. A larger operating range of α mode discharge can be obtained using dual-frequency excitation which is important to obtain homogeneous and low-temperature plasma. A larger controllable range of the gas temperaturemore » of atmospheric pressure plasma could also be obtained using dual-frequency excitation.« less
Generation and Radiation of Acoustic Waves from a 2D Shear Layer
NASA Technical Reports Server (NTRS)
Dahl, Milo D.
2000-01-01
A thin free shear layer containing an inflection point in the mean velocity profile is inherently unstable. Disturbances in the flow field can excite the unstable behavior of a shear layer, if the appropriate combination of frequencies and shear layer thicknesses exists, causing instability waves to grow. For other combinations of frequencies and thicknesses, these instability waves remain neutral in amplitude or decay in the downstream direction. A growing instability wave radiates noise when its phase velocity becomes supersonic relative to the ambient speed of sound. This occurs primarily when the mean jet flow velocity is supersonic. Thus, the small disturbances in the flow, which themselves may generate noise, have generated an additional noise source. It is the purpose of this problem to test the ability of CAA to compute this additional source of noise. The problem is idealized such that the exciting disturbance is a fixed known acoustic source pulsating at a single frequency. The source is placed inside of a 2D jet with parallel flow; hence, the shear layer thickness is constant. With the source amplitude small enough, the problem is governed by the following set of linear equations given in dimensional form.
High-Rydberg Xenon Submillimeter-Wave Detector
NASA Technical Reports Server (NTRS)
Chutjian, Ara
1987-01-01
Proposed detector for infrared and submillimeter-wavelength radiation uses excited xenon atoms as Rydberg sensors instead of customary beams of sodium, potassium, or cesium. Chemically inert xenon easily stored in pressurized containers, whereas beams of dangerously reactive alkali metals must be generated in cumbersome, unreliable ovens. Xenon-based detector potential for infrared astronomy and for Earth-orbiter detection of terrestrial radiation sources. Xenon atoms excited to high energy states in two stages. Doubly excited atoms sensitive to photons in submillimeter wavelength range, further excited by these photons, then ionized and counted.
A novel torsional exciter for modal vibration testing of large rotating machinery
NASA Astrophysics Data System (ADS)
Sihler, Christof
2006-10-01
A novel exciter for applying a dynamic torsional force to a rotating structure is presented in this paper. It has been developed at IPP in order to perform vibration tests with shaft assemblies of large flywheel generators (synchronous machines). The electromagnetic exciter (shaker) needs no fixture to the rotating shaft because the torque is applied by means of the stator winding of an electrical machine. Therefore, the exciter can most easily be applied in cases where a three-phase electrical machine (a motor or generator) is part of the shaft assembly. The oscillating power for the shaker is generated in a separate current-controlled DC circuit with an inductor acting as a buffer storage of magnetic energy. An AC component with adjustable frequency is superimposed on the inductor current in order to generate pulsating torques acting on the rotating shaft with the desired waveform and frequency. Since this torsional exciter does not require an external power source, can easily be installed (without contact to the rotating structure) and provides dynamic torsional forces which are sufficient for multi-megawatt applications, it is best suited for on-site tests of large rotating machinery.
NASA Astrophysics Data System (ADS)
Sakamoto, Yasuaki; Kashiwagi, Takayuki; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo
The eddy current rail brake is a type of braking system used in railway vehicles. Because of problems such as rail heating and problems associated with ensuring that power is supplied when the feeder malfunctions, this braking system has not been used for practical applications in Japan. Therefore, we proposed the use of linear induction motor (LIM) technology in eddy current rail brake systems. The LIM rail brake driven by dynamic braking can reduce rail heating and generate the energy required for self-excitation. In this paper, we present an excitation system and control method for the LIM rail brake driven by “dynamic braking with zero electrical output”. The proposed system is based on the concept that the LIM rail brake can be energized without using excitation power sources such as a feeder circuit and that high reliability can be realized by providing an independent excitation system. We have studied this system and conducted verification tests using a prototype LIM rail brake on a roller rig. The results show that the system performance is adequate for commercializing the proposed system, in which the LIM rail brake is driven without using any excitation power source.
Zhu, Zhenli; He, Haiyang; He, Dong; Zheng, Hongtao; Zhang, Caixiang; Hu, Shenghong
2014-05-01
A low power dielectric barrier discharge excitation source was developed to determine arsenic in a cost-effective manner. Arsenic in water was reduced to AsH₃ by hydride generation (HG), which was transported to the miniature dielectric barrier discharge (DBD) excitation source for excitation and optical detection at As 193.7 nm atomic line. The DBD source consists of a quartz tube, a tungsten rod electrode, and a copper coil electrode. The main operation parameters and the potential interferences affecting the determination were investigated. The detection limit for arsenic with the proposed DBD-AES was 4.8 μg L(-1) when the HG products were dried with concentrated H₂SO₄ before introducing to DBD. Repeatability, expressed as the relative standard deviation of the spectral peak height, was 2.8% (n=11) for 0.1 mg L(-1) arsenic solution. The proposed method was successfully applied to the determinations of certified reference material (GBW08605) and nature water samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Characterizing, synthesizing, and/or canceling out acoustic signals from sound sources
Holzrichter, John F [Berkeley, CA; Ng, Lawrence C [Danville, CA
2007-03-13
A system for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate and animate sound sources. Electromagnetic sensors monitor excitation sources in sound producing systems, such as animate sound sources such as the human voice, or from machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The systems disclosed enable accurate calculation of transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.
NASA Astrophysics Data System (ADS)
Yao, Yuhong; Knox, Wayne H.
2015-03-01
We report the optical system design of a novel speckle-free ultrafast Red-Green-Blue (RGB) source based on angularly multiplexed simultaneous second harmonic generation from the efficiently generated Stokes and anti-Stokes pulses from a commercially available photonic crystal fiber (PCF) with two zero dispersion wavelengths (TZDW). We describe the optimized configuration of the TZDW fiber source which supports excitations of dual narrow-band pulses with peak wavelengths at 850 nm, 1260 nm and spectral bandwidths of 23 nm, 26 nm, respectively within 12 cm of commercially available TZDW PCF. The conversion efficiencies are as high as 44% and 33% from the pump source (a custom-built Yb:fiber master-oscillator-power-amplifier). As a result of the nonlinear dynamics of propagation, the dual pulses preserve their ultrashort pulse width (with measured autocorrelation traces of 200 fs and 227 fs,) which eliminates the need for dispersion compensation before harmonic generation. With proper optical design of the free-space harmonic generation system, we achieve milli-Watt power level red, green and blue pulses at 630 nm, 517 nm and 425 nm. Having much broader spectral bandwidths compared to picosecond RGB laser sources, the source is inherently speckle-free due to the ultra-short coherence length (<37 μm) while still maintaining an excellent color rendering capability with >99.4% excitation purities of the three primaries, leading to the coverage of 192% NTSC color gamut (CIE 1976). The reported RGB source features a very simple system geometry, its potential for power scaling is discussed with currently available technologies.
Superior optical nonlinearity of an exceptional fluorescent stilbene dye
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Tingchao; Division of Physics and Applied Physics, Centre for Disruptive Photonic Technologies; Sreejith, Sivaramapanicker
2015-03-16
Strong multiphoton absorption and harmonic generation in organic fluorescent chromophores are, respectively, significant in many fields of research. However, most of fluorescent chromophores fall short of the full potential due to the absence of the combination of such different nonlinear upconversion behaviors. Here, we demonstrate that an exceptional fluorescent stilbene dye could exhibit efficient two- and three-photon absorption under the excitation of femtosecond pulses in solution phase. Benefiting from its biocompatibility and strong excited state absorption behavior, in vitro two-photon bioimaging and superior optical limiting have been exploited, respectively. Simultaneously, the chromophore could generate efficient three-photon excited fluorescence and third-harmonicmore » generation (THG) when dispersed into PMMA film, circumventing the limitations of classical fluorescent chromophores. Such chromophore may find application in the production of coherent light sources of higher photon energy. Moreover, the combination of three-photon excited fluorescence and THG can be used in tandem to provide complementary information in biomedical studies.« less
Field-circuit analysis and measurements of a single-phase self-excited induction generator
NASA Astrophysics Data System (ADS)
Makowski, Krzysztof; Leicht, Aleksander
2017-12-01
The paper deals with a single-phase induction machine operating as a stand-alone self-excited single-phase induction generator for generation of electrical energy from renewable energy sources. By changing number of turns and size of wires in the auxiliary stator winding, an improvement of performance characteristics of the generator were obtained as regards no-load and load voltage of the stator windings as well as stator winding currents of the generator. Field-circuit simulation models of the generator were developed using Flux2D software package for the generator with shunt capacitor in the main stator winding. The obtained results have been validated experimentally at the laboratory setup using the single-phase capacitor induction motor of 1.1 kW rated power and 230 V voltage as a base model of the generator.
Kraus, W; Briefi, S; Fantz, U; Gutmann, P; Doerfler, J
2014-02-01
Large RF driven negative hydrogen ion sources are being developed at IPP Garching for the future neutral beam injection system of ITER. The overall power efficiency of these sources is low, because for the RF power supply self-excited generators are utilized and the plasma is generated in small cylindrical sources ("drivers") and expands into the source main volume. At IPP experiments to reduce the primary power and the RF power required for the plasma production are performed in two ways: The oscillator generator of the prototype source has been replaced by a transistorized RF transmitter and two alternative driver concepts, a spiral coil, in which the field is concentrated by ferrites, which omits the losses by plasma expansion and a helicon source are being tested.
Numerical simulations of internal wave generation by convection in water.
Lecoanet, Daniel; Le Bars, Michael; Burns, Keaton J; Vasil, Geoffrey M; Brown, Benjamin P; Quataert, Eliot; Oishi, Jeffrey S
2015-06-01
Water's density maximum at 4°C makes it well suited to study internal gravity wave excitation by convection: an increasing temperature profile is unstable to convection below 4°C, but stably stratified above 4°C. We present numerical simulations of a waterlike fluid near its density maximum in a two-dimensional domain. We successfully model the damping of waves in the simulations using linear theory, provided we do not take the weak damping limit typically used in the literature. To isolate the physical mechanism exciting internal waves, we use the spectral code dedalus to run several simplified model simulations of our more detailed simulation. We use data from the full simulation as source terms in two simplified models of internal-wave excitation by convection: bulk excitation by convective Reynolds stresses, and interface forcing via the mechanical oscillator effect. We find excellent agreement between the waves generated in the full simulation and the simplified simulation implementing the bulk excitation mechanism. The interface forcing simulations overexcite high-frequency waves because they assume the excitation is by the "impulsive" penetration of plumes, which spreads energy to high frequencies. However, we find that the real excitation is instead by the "sweeping" motion of plumes parallel to the interface. Our results imply that the bulk excitation mechanism is a very accurate heuristic for internal-wave generation by convection.
Nonlinear excitation of fast magnetosonic waves via quasi-electrostatic whistler wave mixing
NASA Astrophysics Data System (ADS)
Zechar, Nathan; Sotnikov, Vladimir; Caplinger, James; Chu, Arthur
2017-10-01
We report on experiments of nonlinear simultaneous generation of low frequency fast magnetosonic waves and electromagnetic whistler waves using two loop antennas in the afterglow of a cold magnetized helium plasma. The exciting antennas each have a frequency that is below half the electron cyclotron frequency, and the difference between the two is just below the lower hybrid frequency. They both directly excite whistler waves, however their nonlinear interaction excite the low frequency fast magnetosonic waves at the frequency given by their difference. Plasma is generated using a helicon plasma source in a one meter length cylindrical chamber. The spatial and temporal data of the electromagnetic and electrostatic components of the plasma waves are then captured with developed diagnostic techniques. Wave spectra, general structure and time domain frequencies observed will be reported.
Brunstein, Maia; Hérault, Karine; Oheim, Martin
2014-01-01
Azimuthal beam scanning makes evanescent-wave (EW) excitation isotropic, thereby producing total internal reflection fluorescence (TIRF) images that are evenly lit. However, beam spinning does not fundamentally address the problem of propagating excitation light that is contaminating objective-type TIRF. Far-field excitation depends more on the specific objective than on cell scattering. As a consequence, the excitation impurities in objective-type TIRF are only weakly affected by changes of azimuthal or polar beam angle. These are the main results of the first part of this study (Eliminating unwanted far-field excitation in objective-type TIRF. Pt.1. Identifying sources of nonevanescent excitation light). This second part focuses on exactly where up beam in the illumination system stray light is generated that gives rise to nonevanescent components in TIRF. Using dark-field imaging of scattered excitation light we pinpoint the objective, intermediate lenses and, particularly, the beam scanner as the major sources of stray excitation. We study how adhesion-molecule coating and astrocytes or BON cells grown on the coverslip surface modify the dark-field signal. On flat and weakly scattering cells, most background comes from stray reflections produced far from the sample plane, in the beam scanner and the objective lens. On thick, optically dense cells roughly half of the scatter is generated by the sample itself. We finally show that combining objective-type EW excitation with supercritical-angle fluorescence (SAF) detection efficiently rejects the fluorescence originating from deeper sample regions. We demonstrate that SAF improves the surface selectivity of TIRF, even at shallow penetration depths. The coplanar microscopy scheme presented here merges the benefits of beam spinning EW excitation and SAF detection and provides the conditions for quantitative wide-field imaging of fluorophore dynamics at or near the plasma membrane. PMID:24606929
Non-Migrating Diurnal Tides Generated with Planetary Waves in the Mesosphere
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Talaat, E. R.; Porter, H. S.; Chan, K. L.
2003-01-01
We report here the results from a modeling study with our Numerical Spectral Model (NSM) that extends from the ground into thermosphere. The NSM incorporates Hines Doppler Spread Parameterization for small-scale gravity waves (GWs) and describes the major dynamical features of the atmosphere, including the wave driven equatorial oscillations (QBO and SAO), and the seasonal variations of tides and planetary waves. Accounting solely for the solar migrating tidal excitation sources, the NSM generates through dynamical interactions also non-migrating tides in the mesosphere that have amplitudes comparable to those observed. The model produces the diurnal (and semidiurnal) oscillations of the zonal mean (m = 0), and eastward and westward propagating tides for zonal wave numbers m = 1 to 4. To identify the mechanism of excitation for these tides, a numerical experiment is performed. The NSM is run without the heat source for the zonal-mean circulation and temperature variation, and the amplitudes of the resulting nonmigrating tides are then negligibly small. This leads to the conclusion that the planetary waves, which normally are excited in the NSM by instabilities but are suppressed in this case, generate the nonmigrating tides through nonlinear interactions with the migrating tides.
The source of stratospheric NO and N2O
NASA Technical Reports Server (NTRS)
Slanger, T. G.
1984-01-01
The photodissociation of O3 was investigated as a possible sources of N2O production in the stratosphere. Photolysis was conducted at 1576 A to generate the excited O2 states that react with N2 to form N2O. At this wavelength, there is a quantum yield of two for prompt production of oygen atoms, which is a consequence of the existence of two photodissociative channels giving comparable yields. One of these channels gives O(D1) and O2(b1sigma(+)subg), with a quantum yield of 0.6, whereas the other results in fragmentation of the O3, with production of three ground state oxygen atoms. The O2(b) is generated with vibrational excitation, and there are comparable populations in levels O to 3. These observations are the first to show O2(b) production from any photodissociative process, and were made under conditions in which the kinetics of vibrationally excited O2(b) can be studied. It appears that O3 photodissociation at 1576 A is not a good system for generating the higher electronic states of O2; it is likely that better results will be obtained at 1930 A.
Pappas, Daniel S.
1989-01-01
Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.
Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.
2003-01-01
A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.
Holzrichter, John F; Burnett, Greg C; Ng, Lawrence C
2013-05-21
A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.
Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.
2007-10-16
A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.
Development of excitation light source for photodynamic diagnosis
NASA Astrophysics Data System (ADS)
Lim, Hyun Soo
2008-02-01
Photodynamic diagnosis (PDD) is a method to diagnose the possibility of cancer, both by the principle that if a photosensitizer is injected into an organic tissue, it is accumulated in the tissue of a malignant tumor selectively after a specific period, and by a comparison of the intensity of the fluorescence of normal tissue with abnormal tissue after investigating the excitation light of a tissue with accumulated photosensitizer. Currently, there are two methods of PDD: The first is a way to acquire incitement fluorescence by using a photosensitizer, and the second is a way to use auto-fluorescence by green fluorescence protein (GFP) and red fluorescence protein (RFP) such as NADH+ active factors within the organic body. Since the selection of the wavelength band of excitation light has an interrelation with fluorescence generation according to the selection of a photosensitizer, it plays an important role in PDD. This study aims at designing and evaluating light source devices that can stably generate light with various kinds of wavelengths in order to make possible PDD using a photosensitizer and diagnosis using auto-fluorescence. The light source was a Xenon lamp and filter wheel, composed of an optical output control through Iris and filters with several wavelength bands. It also makes the inducement of auto-fluorescence possible because it is designed to generate a wavelength band of 380-420nm, 430-480nm, 480-560nm. The transmission part of the light source was developed to enhance the efficiency of light transmission. To evaluate this light source, the characteristics of light output and wavelength band were verified. To validate the capability of this device as PDD, the detection of auto-fluorescence using mouse models was performed.
Generation of Antibunched Light by Excited Molecules in a Microcavity Trap
NASA Technical Reports Server (NTRS)
DeMartini, F.; DiGiuseppe, G.; Marrocco, M.
1996-01-01
The active microcavity is adopted as an efficient source of non-classical light. By this device, excited by a mode-locked laser at a rate of 100 MHz, single-photons are generated over a single field mode with a nonclassical sub-poissonian distribution. The process of adiabatic recycling within a multi-step Franck-Condon molecular optical-pumping mechanism, characterized in our case by a quantum efficiency very close to one, implies a pump self-regularization process leading to a striking n-squeezing effect. By a replication of the basic single-atom excitation process a beam of quantum photon (Fock states) can be created. The new process represents a significant advance in the modern fields of basic quantum-mechanical investigation, quantum communication and quantum cryptography.
Use of CFD to predict trapped gas excitation as source of vibration and noise in screw compressors
NASA Astrophysics Data System (ADS)
Willie, James
2017-08-01
This paper investigates the source of noise in oil free screw compressors mounted on highway trucks and driven by a power take-off (PTO) transmission system. Trapped gas at the discharge side is suggested as possible source of the excitation of low frequency torsional resonance in these compressors that can lead to noise and vibration. Measurements and lumped mass torsional models have shown low frequency torsional resonance in the drive train of these compressors when they are mounted on trucks. This results in high torque peak at the compressor input shaft and in part to pulsating noise inside the machine. The severity of the torque peak depends on the amplitude of the input torque fluctuation from the drive (electric motor or truck engine). This in turn depends on the prop-shaft angle. However, the source of the excitation of this low torsional resonance inside the machine is unknown. Using CFD with mesh motion at every 1° rotation of the rotors, it is shown that the absence of a pressure equalizing chamber at the discharge can lead to trapped gas creation, which can lead to over-compression, over-heating of the rotors, and to high pressure pulsations at the discharge. Over-compression can lead to shock wave generation at the discharge plenum and the pulsation in pressure can lead to noise generation. In addition, if the frequency of the pressure pulsation in the low frequency range coincides with the first torsional frequency of the drive train the first torsional resonance mode can be excited.
Fluorescent optical position sensor
Weiss, Jonathan D.
2005-11-15
A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.
NASA Astrophysics Data System (ADS)
Chen, Huayue; Gao, Xinliang; Lu, Quanming; Sun, Jicheng; Wang, Shui
2018-02-01
Nonlinear physical processes related to whistler mode waves are attracting more and more attention for their significant role in reshaping whistler mode spectra in the Earth's magnetosphere. Using a 1-D particle-in-cell simulation model, we have investigated the nonlinear evolution of parallel counter-propagating whistler mode waves excited by anisotropic electrons within the equatorial source region. In our simulations, after the linear phase of whistler mode instability, the strong electrostatic standing structures along the background magnetic field will be formed, resulting from the coupling between excited counter-propagating whistler mode waves. The wave numbers of electrostatic standing structures are about twice those of whistler mode waves generated by anisotropic hot electrons. Moreover, these electrostatic standing structures can further be coupled with either parallel or antiparallel propagating whistler mode waves to excite high-k modes in this plasma system. Compared with excited whistler mode waves, these high-k modes typically have 3 times wave number, same frequency, and about 2 orders of magnitude smaller amplitude. Our study may provide a fresh view on the evolution of whistler mode waves within their equatorial source regions in the Earth's magnetosphere.
Wide-field depth-sectioning fluorescence microscopy using projector-generated patterned illumination
NASA Astrophysics Data System (ADS)
Delica, Serafin; Mar Blanca, Carlo
2007-10-01
We present a simple and cost-effective wide-field, depth-sectioning, fluorescence microscope utilizing a commercial multimedia projector to generate excitation patterns on the sample. Highly resolved optical sections of fluorescent pollen grains at 1.9 μm axial resolution are constructed using the structured illumination technique. This requires grid excitation patterns to be scanned across the sample, which is straightforwardly implemented by creating slideshows of gratings at different phases, projecting them onto the sample, and synchronizing camera acquisition with slide transition. In addition to rapid dynamic pattern generation, the projector provides high illumination power and spectral excitation selectivity. We exploit these properties by imaging mouse neural cells in cultures multistained with Alexa 488 and Cy3. The spectral and structural neural information is effectively resolved in three dimensions. The flexibility and commercial availability of this light source is envisioned to open multidimensional imaging to a broader user base.
Observation of broadband terahertz wave generation from liquid water
NASA Astrophysics Data System (ADS)
Jin, Qi; E, Yiwen; Williams, Kaia; Dai, Jianming; Zhang, X.-C.
2017-08-01
Bulk liquid water is a strong absorber in the terahertz (THz) frequency range, due to which liquid water has historically been sworn off as a source for THz radiation. Here, we experimentally demonstrate the generation of broadband THz waves from liquid water excited by femtosecond laser pulses. Our measurements reveal the critical dependence of the THz field upon the relative position between the water film and the focal point of the laser beam. The THz radiation from liquid water shows distinct characteristics when compared with the THz radiation from air plasmas with single color optical excitation. First, the THz field is maximized with the laser beam of longer pulse durations. In addition, the p-polarized component of the emitted THz waves will be influenced by the polarization of the optical excitation beam. It is also shown that the energy of the THz radiation is linearly dependent on the excitation pulse energy.
On-demand generation of background-free single photons from a solid-state source
NASA Astrophysics Data System (ADS)
Schweickert, Lucas; Jöns, Klaus D.; Zeuner, Katharina D.; Covre da Silva, Saimon Filipe; Huang, Huiying; Lettner, Thomas; Reindl, Marcus; Zichi, Julien; Trotta, Rinaldo; Rastelli, Armando; Zwiller, Val
2018-02-01
True on-demand high-repetition-rate single-photon sources are highly sought after for quantum information processing applications. However, any coherently driven two-level quantum system suffers from a finite re-excitation probability under pulsed excitation, causing undesirable multi-photon emission. Here, we present a solid-state source of on-demand single photons yielding a raw second-order coherence of g(2 )(0 )=(7.5 ±1.6 )×10-5 without any background subtraction or data processing. To this date, this is the lowest value of g(2 )(0 ) reported for any single-photon source even compared to the previously reported best background subtracted values. We achieve this result on GaAs/AlGaAs quantum dots embedded in a low-Q planar cavity by employing (i) a two-photon excitation process and (ii) a filtering and detection setup featuring two superconducting single-photon detectors with ultralow dark-count rates of (0.0056 ±0.0007 ) s-1 and (0.017 ±0.001 ) s-1, respectively. Re-excitation processes are dramatically suppressed by (i), while (ii) removes false coincidences resulting in a negligibly low noise floor.
Method and apparatus for imaging a sample on a device
Trulson, Mark; Stern, David; Fiekowsky, Peter; Rava, Richard; Walton, Ian; Fodor, Stephen P. A.
2001-01-01
A method and apparatus for imaging a sample are provided. An electromagnetic radiation source generates excitation radiation which is sized by excitation optics to a line. The line is directed at a sample resting on a support and excites a plurality of regions on the sample. Collection optics collect response radiation reflected from the sample I and image the reflected radiation. A detector senses the reflected radiation and is positioned to permit discrimination between radiation reflected from a certain focal plane in the sample and certain other planes within the sample.
Near-ultraviolet laser diodes for brilliant ultraviolet fluorophore excitation.
Telford, William G
2015-12-01
Although multiple lasers are now standard equipment on most modern flow cytometers, ultraviolet (UV) lasers (325-365 nm) remain an uncommon excitation source for cytometry. Nd:YVO4 frequency-tripled diode pumped solid-state lasers emitting at 355 nm are now the primary means of providing UV excitation on multilaser flow cytometers. Although a number of UV excited fluorochromes are available for flow cytometry, the cost of solid-state UV lasers remains prohibitively high, limiting their use to all but the most sophisticated multilaser instruments. The recent introduction of the brilliant ultraviolet (BUV) series of fluorochromes for cell surface marker detection and their importance in increasing the number of simultaneous parameters for high-dimensional analysis has increased the urgency of including UV sources in cytometer designs; however, these lasers remain expensive. Near-UV laser diodes (NUVLDs), a direct diode laser source emitting in the 370-380 nm range, have been previously validated for flow cytometric analysis of most UV-excited probes, including quantum nanocrystals, the Hoechst dyes, and 4',6-diamidino-2-phenylindole. However, they remain a little-used laser source for cytometry, despite their significantly lower cost. In this study, the ability of NUVLDs to excite the BUV dyes was assessed, along with their compatibility with simultaneous brilliant violet (BV) labeling. A NUVLD emitting at 375 nm was found to excite most of the available BUV dyes at least as well as a UV 355 nm source. This slightly longer wavelength did produce some unwanted excitation of BV dyes, but at sufficiently low levels to require minimal additional compensation. NUVLDs are compact, relatively inexpensive lasers that have higher power levels than the newest generation of small 355 nm lasers. They can, therefore, make a useful, cost-effective substitute for traditional UV lasers in multicolor analysis involving the BUV and BV dyes. Published 2015 Wiley Periodicals Inc. on behalf of ISAC.
Method for surface plasmon amplification by stimulated emission of radiation (SPASER)
Stockman, Mark I [Atlanta, GA; Bergman, David J [Ramat Hasharon, IL
2011-09-13
A nanostructure is used to generate a highly localized nanoscale optical field. The field is excited using surface plasmon amplification by stimulated emission of radiation (SPASER). The SPASER radiation consists of surface plasmons that undergo stimulated emission, but in contrast to photons can be localized within a nanoscale region. A SPASER can incorporate an active medium formed by two-level emitters, excited by an energy source, such as an optical, electrical, or chemical energy source. The active medium may be quantum dots, which transfer excitation energy by radiationless transitions to a resonant nanosystem that can play the same role as a laser cavity in a conventional laser. The transitions are stimulated by the surface plasmons in the nanostructure, causing the buildup of a macroscopic number of surface plasmons in a single mode.
Surface plasmon amplification by stimulated emission of radiation (SPASER)
Stockman, Mark I [Atlanta, GA; Bergman, David J [Ramat Hasharon, IL
2009-08-04
A nanostructure is used to generate a highly localized nanoscale optical field. The field is excited using surface plasmon amplification by stimulated emission of radiation (SPASER). The SPASER radiation consists of surface plasmons that undergo stimulated emission, but in contrast to photons can be localized within a nanoscale region. A SPASER can incorporate an active medium formed by two-level emitters, excited by an energy source, such as an optical, electrical, or chemical energy source. The active medium may be quantum dots, which transfer excitation energy by radiationless transitions to a resonant nanosystem that can play the same role as a laser cavity in a conventional laser. The transitions are stimulated by the surface plasmons in the nanostructure, causing the buildup of a macroscopic number of surface plasmons in a single mode.
Enhancement of negative hydrogen ion production in an electron cyclotron resonance source
NASA Astrophysics Data System (ADS)
Dugar-Zhabon, V. D.; Murillo, M. T.; Karyaka, V. I.
2013-07-01
In this paper, we present a method for improving the negative hydrogen ion yield in the electron cyclotron resonance source with driven plasma rings where the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with plasma electrons to high-laying Rydberg and high vibration levels in the plasma volume. The second stage leads to negative ion production through the process of repulsive attachment of low-energy electrons by the excited molecules. The low-energy electrons originate due to a bombardment of the plasma electrode surface by ions of a driven ring and the thermoelectrons produced by a rare earth ceramic electrode, which is appropriately installed in the source chamber. The experimental and calculation data on the negative hydrogen ion generation rate demonstrate that very low-energy thermoelectrons significantly enhance the negative-ion generation rate that occurs in the layer adjacent to the plasma electrode surface. It is found that heating of the tungsten filaments placed in the source chamber improves the discharge stability and extends the pressure operation range.
Bigelow, Timothy A
2009-01-01
High-Intensity Focused Ultrasound (HIFU) is quickly becoming one of the best methods to thermally ablate tissue noninvasively. Unlike RF or Laser ablation, the tissue can be destroyed without inserting any probes into the body minimizing the risk of secondary complications such as infections. In this study, the heating efficiency of HIFU sources is improved by altering the excitation of the ultrasound source to take advantage of nonlinear propagation. For ultrasound, the phase velocity of the ultrasound wave depends on the amplitude of the wave resulting in the generation of higher harmonics. These higher harmonics are more efficiently converted into heat in the body due to the frequency dependence of the ultrasound absorption in tissue. In our study, the generation of the higher harmonics by nonlinear propagation is enhanced by transmitting an ultrasound wave with both the fundamental and a higher harmonic component included. Computer simulations demonstrated up to a 300% increase in temperature increase compared to transmitting at only the fundamental for the same acoustic power transmitted by the source.
ERIC Educational Resources Information Center
Rodriguez-Falces, Javier
2013-01-01
In electrophysiology studies, it is becoming increasingly common to explain experimental observations using both descriptive methods and quantitative approaches. However, some electrophysiological phenomena, such as the generation of extracellular potentials that results from the propagation of the excitation source along the muscle fiber, are…
Physics of thermo-acoustic sound generation
NASA Astrophysics Data System (ADS)
Daschewski, M.; Boehm, R.; Prager, J.; Kreutzbruck, M.; Harrer, A.
2013-09-01
We present a generalized analytical model of thermo-acoustic sound generation based on the analysis of thermally induced energy density fluctuations and their propagation into the adjacent matter. The model provides exact analytical prediction of the sound pressure generated in fluids and solids; consequently, it can be applied to arbitrary thermal power sources such as thermophones, plasma firings, laser beams, and chemical reactions. Unlike existing approaches, our description also includes acoustic near-field effects and sound-field attenuation. Analytical results are compared with measurements of sound pressures generated by thermo-acoustic transducers in air for frequencies up to 1 MHz. The tested transducers consist of titanium and indium tin oxide coatings on quartz glass and polycarbonate substrates. The model reveals that thermo-acoustic efficiency increases linearly with the supplied thermal power and quadratically with thermal excitation frequency. Comparison of the efficiency of our thermo-acoustic transducers with those of piezoelectric-based airborne ultrasound transducers using impulse excitation showed comparable sound pressure values. The present results show that thermo-acoustic transducers can be applied as broadband, non-resonant, high-performance ultrasound sources.
Hyperspectral stimulated emission depletion microscopy and methods of use thereof
Timlin, Jerilyn A; Aaron, Jesse S
2014-04-01
A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").
Detection of Charged Particles in Superfluid Helium
NASA Astrophysics Data System (ADS)
Bandler, Simon Richard
1995-01-01
At the present time the measurement of the flux of neutrinos from the sun remains a challenging experimental problem. The ideal detector would be able to detect neutrinos at high rate, in real time, with good energy resolution and would have a threshold which is low enough for investigation of the entire solar neutrino spectrum. A new detection scheme using superfluid helium as a target has been proposed which has the potential to meet most of the criteria of the ideal detector. In this scheme a neutrino would be detected when it elastically scatters off an atomic electron in superfluid helium. The electron loses energy via a number of processes eventually leading to the generation of phonons and rotons in the liquid. At low temperatures these excitations propagate ballistically through the superfluid helium. When the excitations reach the free surface some of them are able to evaporate helium atoms. These atoms can be detected by an array of calorimeters suspended above the liquid surface. In this thesis, results are presented for a small -scale prototype of this type of detector. Experiments have been performed using various radioactive sources to generate energy depositions in the liquid. The results reveal details about the processes of generation of rotons and phonons, the propagation of these excitations through the superfluid, the evaporation of helium atoms and the adsorption of helium atoms onto the wafer. Results are also presented on the detection of fluorescent photons generated in the liquid. One source of energy depositions was 241{rm Am} which produces monoenergetic 5.5 MeV alpha particles. It was found that the ratio of the energy deposited in a calorimeter to the energy deposited in liquid helium was 0.084 when alpha's are emitted parallel to the liquid surface, and 0.020 for alpha's emitted perpendicular. The difference is due to the anisotropic distribution of helium excitations generated. A 113{rm Sn} source of 360 keV electrons stopped in superfluid helium have also produced signals in a calorimeter and this ratio was similar. Finally, the implications of these results to the design of a full-scale detector of solar neutrinos are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertzscher, G; Beddar, S
Purpose: To study the promising potential of inorganic scintillator detectors (ISDs) and investigate various unwanted luminescence properties which may compromise their accuracy. Methods: The ISDs were comprised of a ruby crystal coupled to a polymethyl methacrylate (PMMA) fiber-optic cable and a charged coupled device camera. A new type of ISD was manufactured and included a long-pass filter that was sandwiched between the crystal and the fiber-optic cable. The purpose of the filter was to suppress the Cerenkov and fluorescence background light induced in the PMMA (the stem signal) from striking the ruby crystal, generating unwanted ruby excitation. A variety ofmore » experiments were performed to characterize the ruby based ISDs. The relative contribution of the induced ruby signal and the stem signal were quantified while exposing the detector and a bare fiber-optic cable to a high dose rate (HDR) brachytherapy (BT) source, respectively. The unwanted ruby excitation was quantified while irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and a comparison to other commonly used organic scintillator detectors (BCF-12, BCF-60). Results: When the BT source dwelled 0.5 cm away from the fiber-optic cable, the unwanted ruby excitation amounted to >5% of the total signal if the source-distance from the scintillator was >7 cm. However, the unwanted excitation was suppressed to <1% if the ISD incorporated an optic filter. The stem signal was suppressed with a 20 nm band-pass filter and was <3% as long as the source-distance was <7 cm. The ruby based ISDs generated signal up to 20(40) times that of BCF-12(BCF-60). Conclusion: The study presents solutions to unwanted luminescence properties of ruby based ISDs for HDR BT. An optic filter should be sandwiched between the scintillator volume and the fiber-optic cable to prevent the stem signal to excite the ruby crystal.« less
Leung, Ka-Ngo
2006-11-21
A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.
Optical element for full spectral purity from IR-generated EUV light sources
NASA Astrophysics Data System (ADS)
van den Boogaard, A. J. R.; Louis, E.; van Goor, F. A.; Bijkerk, F.
2009-03-01
Laser produced plasma (LLP) sources are generally considered attractive for high power EUV production in next generation lithography equipment. Such plasmas are most efficiently excited by the relatively long, infrared wavelengths of CO2-lasers, but a significant part of the rotational-vibrational excitation lines of the CO2 radiation will be backscattered by the plasma's critical density surface and consequently will be present as parasitic radiation in the spectrum of such sources. Since most optical elements in the EUV collecting and imaging train have a high reflection coefficient for IR radiation, undesirable heating phenomena at the resist level are likely to occur. In this study a completely new principle is employed to obtain full separation of EUV and IR radiation from the source by a single optical component. While the application of a transmission filter would come at the expense of EUV throughput, this technique potentially enables wavelength separation without loosing reflectance compared to a conventional Mo/Si multilayer coated element. As a result this method provides full spectral purity from the source without loss in EUV throughput. Detailed calculations on the principal of functioning are presented.
NASA Astrophysics Data System (ADS)
Uchimura, Tomohiro; Onoda, Takayuki; Lin, Cheng-Huang; Imasaka, Totaro
1999-08-01
An optical parametric oscillator and a Ti:sapphire laser are used as a pump source for the generation of high-order vibrational stimulated Raman emission in the vacuum ultraviolet region. This tunable laser is employed as an excitation/ionization source in a supersonic jet/multiphoton ionization/time-of-flight mass spectrometric study of benzene. The merits and potential advantages of this approach are discussed in this study.
Excitation mechanism of non-migrating tides
NASA Astrophysics Data System (ADS)
Miyoshi, Yasunobu; Pancheva, Dora; Mukhtarov, Plamen; Jin, Hidekatsu; Fujiwara, Hitoshi; Shinagawa, Hiroyuki
2017-04-01
Using an atmosphere-ionosphere coupled model, the excitation source and temporal (seasonal and interannual) variations in non-migrating tides are investigated in this study. We first focus our attention on temporal variations in eastward moving diurnal tide with zonal wavenumber 3 (DE3), which is the largest of all the non-migrating tides in the mesosphere and lower thermosphere (MLT). Our simulation results indicate that upward propagation of the DE3 excited in the troposphere is sensitive to the zonal mean zonal wind in the stratosphere and mesosphere. The DE3 amplitude is enhanced in the region where the vertical shear of the zonal mean zonal wind is positive (westerly shear). Quasi-2-year variation in the DE3 amplitude in the MLT region is generated by quasi-2-year variation in the zonal mean zonal wind between 40 and 70 km, which is modulated by the stratospheric QBO. The excitation mechanisms of SW3 (westward moving semidiurnal tide with zonal wavenumber 3) and SW1 (westward moving semidiurnal tide with zonal wavenumber 1) are also investigated. During equinoxes, the SW3 and SW1 are excited by tropospheric heating (latent heat release and solar radiative heating) associated with cumulus convection in the tropics, and propagate upward into the MLT region. On the other hand, during solstices, SW3 and SW1 are generated in the winter stratosphere and mesosphere through the nonlinear interaction between the stationary planetary wave and migrating semidiurnal tide, and propagate upward to the lower thermosphere. The excitation sources of other non-migrating tides are also discussed.
Quasisubharmonic vibrations in metal plates excited by high-power ultrasonic pulses
NASA Astrophysics Data System (ADS)
Chen, Zhao-jiang; Zhang, Shu-yi; Zheng, Kai; Kuo, Pao-kuang
2009-07-01
Strongly nonlinear vibration phenomena in metal plates excited by high-power ultrasonic pulses in different conditions are studied experimentally and theoretically. The experimental conditions for generating quasisubharmonics and subharmonics are found and discussed. The plate vibrations are characterized by waveforms, frequency spectra, pseudostate portraits, and Poincaré maps. Then, a three-degree-of-freedom vibroimpact-dynamic model is presented to explore the generation mechanisms of the quasisubharmonic and subharmonic vibrations in the plates. According to the model, the intermittent contact-impact forces caused by the interactions between the transducer horn tip and the plate are considered as the main source for generating the complex nonlinear vibration in the plate. The numerical calculation results can explain reasonably the observed experimental phenomena.
Time-resolved multicolor two-photon excitation fluorescence microscopy of cells and tissues
NASA Astrophysics Data System (ADS)
Zheng, Wei
2014-11-01
Multilabeling which maps the distribution of different targets is an indispensable technique in many biochemical and biophysical studies. Two-photon excitation fluorescence (TPEF) microscopy of endogenous fluorophores combining with conventional fluorescence labeling techniques such as genetically encoded fluorescent protein (FP) and fluorescent dyes staining could be a powerful tool for imaging living cells. However, the challenge is that the excitation and emission wavelength of these endogenous fluorophores and fluorescent labels are very different. A multi-color ultrafast source is required for the excitation of multiple fluorescence molecules. In this study, we developed a two-photon imaging system with excitations from the pump femtosecond laser and the selected supercontinuum generated from a photonic crystal fiber (PCF). Multiple endogenous fluorophores, fluorescent proteins and fluorescent dyes were excited in their optimal wavelengths simultaneously. A time- and spectral-resolved detection system was used to record the TPEF signals. This detection technique separated the TPEF signals from multiple sources in time and wavelength domains. Cellular organelles such as nucleus, mitochondria, microtubule and endoplasmic reticulum, were clearly revealed in the TPEF images. The simultaneous imaging of multiple fluorophores of cells will greatly aid the study of sub-cellular compartments and protein localization.
Picosecond x-ray diagnostics for third and fourth generation synchrotron sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeCamp, Matthew
2016-03-30
In the DOE-EPSCoR State/National Laboratory partnership grant ``Picosecond x-ray diagnostics for third and fourth generation synchrotron sources'' Dr. DeCamp set forth a partnership between the University of Delaware and Argonne National Laboratory. This proposal aimed to design and implement a series of experiments utilizing, or improving upon, existing time-domain hard x-ray spectroscopies at a third generation synchrotron source. Specifically, the PI put forth three experimental projects to be explored in the grant cycle: 1) implementing a picosecond ``x-ray Bragg switch'' using a laser excited nano-structured metallic film, 2) designing a robust x-ray optical delay stage for x-ray pump-probe studies atmore » a hard x-ray synchrotron source, and 3) building/installing a laser based x-ray source at the Advanced Photon Source for two-color x-ray pump-probe studies.« less
NASA Astrophysics Data System (ADS)
Jailaubekov, Askat E.; Song, Sang-Hun; Vengris, Mikas; Cogdell, Richard J.; Larsen, Delmar S.
2010-02-01
The hypothesis that S∗ is a vibrationally-excited ground-state population is tested and discarded for two carotenoid samples: β-carotene in solution and rhodopin glucoside embedded in the light harvesting 2 protein from Rhodopseudomonas acidophila. By demonstrating that the transient absorption signals measured in both systems that are induced by broadband (1000 cm -1) and narrowband (50 cm -1) excitation pulses are near identical and hence bandwidth independent, the impulsive stimulated Raman scattering mechanism proposed as the primary source for S∗ generation is discarded. To support this conclusion, previously published multi-pulse pump-dump-probe signals [17] are revisited to discard secondary mechanisms for S∗ formation.
NASA Astrophysics Data System (ADS)
Sotnikov, V.; Kim, T.; Caplinger, J.; Main, D.; Mishin, E.; Gershenzon, N.; Genoni, T.; Paraschiv, I.; Rose, D.
2018-04-01
The concept of a parametric antenna in ionospheric plasma is analyzed. Such antennas are capable of exciting electromagnetic radiation fields, specifically the creation of whistler waves generated at the very low frequency (VLF) range, which are also capable of propagating large distances away from the source region. The mechanism of whistler wave generation is considered a parametric interaction of quasi-electrostatic whistler waves (also known as low oblique resonance (LOR) oscillations) excited by a conventional loop antenna. The interaction of LOR waves with quasi-neutral density perturbations in the near field of an antenna gives rise to electromagnetic whistler waves on combination frequencies. It is shown in this work that the amplitude of these waves can considerably exceed the amplitude of whistler waves directly excited by a loop. Additionally, particle-in-cell simulations, which demonstrate the excitation and spatial structure of VLF waves excited by a loop antenna, are presented. Possible applications including the wave-particle interactions to mitigate performance anomalies of low Earth orbit satellites, active space experiments, communication via VLF waves, and modification experiments in the ionosphere will be discussed.
Laser resonance ionization spectroscopy of antimony
NASA Astrophysics Data System (ADS)
Li, R.; Lassen, J.; Ruczkowski, J.; Teigelhöfer, A.; Bricault, P.
2017-02-01
The resonant ionization laser ion source is an element selective, efficient and versatile ion source to generate radioactive ion beams at on-line mass separator facilities. For some elements with complex atomic structures and incomplete spectroscopic data, laser spectroscopic investigations are required for ionization scheme development. Laser resonance ionization spectroscopy using Ti:Sa lasers has been performed on antimony (Sb) at TRIUMF's off-line laser ion source test stand. Laser light of 230.217 nm (vacuum wavelength) as the first excitation step and light from a frequency-doubled Nd:YVO4 laser (532 nm) as the nonresonant ionization step allowed to search for suitable second excitation steps by continuous wavelength scans from 720 nm to 920 nm across the wavelength tuning range of a grating-tuned Ti:Sa laser. Upon the identification of efficient SES, the third excitation steps for resonance ionization were investigated by laser scans across Rydberg states, the ionization potential and autoionizing states. One Rydberg state and six AI states were found to be well suitable for efficient resonance ionization.
QUALITY ASSESSMENT OF CONFOCAL MICROSCOPY SLIDE-BASED SYSTEMS: INSTABLITY
Background: All slide-based fluorescence cytometry detections systems basically include an excitation light source, intermediate optics, and a detection device (CCD or PMT). Occasionally, this equipment becomes unstable, generating unreliable and inferior data. Methods: A num...
Hydroelectric System Response to Part Load Vortex Rope Excitation
NASA Astrophysics Data System (ADS)
Alligné, S.; Nicolet, C.; Bégum, A.; Landry, C.; Gomes, J.; Avellan, F.
2016-11-01
The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope on the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of v = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed to analyse potential interactions between hydraulic excitation sources and electrical components.
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse
NASA Astrophysics Data System (ADS)
Grishkov, V. E.; Uryupin, S. A.
2017-03-01
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron-ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.
NASA Astrophysics Data System (ADS)
Rivera, V. A. G.; Ferri, F. A.; Nunes, L. A. O.; Marega, E.
2017-05-01
Yb3+, Er3+ and Tm3+ triply doped zinc-tellurite glass have been prepared containing up to 3.23 wt% of rare-earth ion oxides, were characterized by absorption spectroscopy, excitation, emission and up-conversion spectra. Transparent and homogeneous glasses have been produced, managing the red, green and blue emission bands, in order to generate white light considering the human eye perception. The energy transfer (resonant or non-resonant) between those rare-earth ions provides a color balancing mechanism that maintains the operating point in the white region, generating warm white light, cool white light and artificial daylight through the increase of the 976/980 nm diode laser excitation power from 4 to 470 mW. A light source at 4000 K is obtained under the excitation at 980 nm with 15 mW, providing a white light environment that is comfortable to the human eye vision. The spectroscopic study presented in this work describes the white light generation by the triply-doped zinc-tellurite glass, ranging from blue, green and red, by controlling the laser excitation power and wavelength at 976/980 nm. Such white tuning provokes healthy effects on human health throughout the day, especially the circadian system.
Zhang, Yaxin; Zhou, Yucong; Gang, Yin; Jiang, Guili; Yang, Ziqiang
2017-01-23
Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 subwavelength holes array has been proposed in this paper. It has been found that in the structure the electromagnetic fields in each hole can be coupled with one another to construct a composite mode with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation system may provide a favorable way to combine photonics structure with electronics excitation to generate middle, high power terahertz radiation.
Zhang, Yaxin; Zhou, Yucong; Gang, Yin; Jiang, Guili; Yang, Ziqiang
2017-01-01
Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 subwavelength holes array has been proposed in this paper. It has been found that in the structure the electromagnetic fields in each hole can be coupled with one another to construct a composite mode with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation system may provide a favorable way to combine photonics structure with electronics excitation to generate middle, high power terahertz radiation. PMID:28112234
Study of Linear and Nonlinear Wave Excitation
NASA Astrophysics Data System (ADS)
Chu, Feng; Berumen, Jorge; Hood, Ryan; Mattingly, Sean; Skiff, Frederick
2013-10-01
We report an experimental study of externally excited low-frequency waves in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional. Wave excitation in the drift wave frequency range is accomplished by low-percentage amplitude modulation of the RF plasma source. Laser-induced fluorescence is adopted to study ion-density fluctuations in phase space. The laser is chopped to separate LIF from collisional fluorescence. A single negatively-biased Langmuir probe is used to detect ion-density fluctuations in the plasma. A ring array of Langmuir probes is also used to analyze the spatial and spectral structure of the excited waves. We apply coherent detection with respect to the wave frequency to obtain the ion distribution function associated with externally generated waves. Higher-order spectra are computed to evaluate the nonlinear coupling between fluctuations at various frequencies produced by the externally generated waves. Parametric decay of the waves is observed. This work is supported by U.S. DOE Grant No. DE-FG02-99ER54543.
Microseismic source locations with deconvolution migration
NASA Astrophysics Data System (ADS)
Wu, Shaojiang; Wang, Yibo; Zheng, Yikang; Chang, Xu
2018-03-01
Identifying and locating microseismic events are critical problems in hydraulic fracturing monitoring for unconventional resources exploration. In contrast to active seismic data, microseismic data are usually recorded with unknown source excitation time and source location. In this study, we introduce deconvolution migration by combining deconvolution interferometry with interferometric cross-correlation migration (CCM). This method avoids the need for the source excitation time and enhances both the spatial resolution and robustness by eliminating the square term of the source wavelets from CCM. The proposed algorithm is divided into the following three steps: (1) generate the virtual gathers by deconvolving the master trace with all other traces in the microseismic gather to remove the unknown excitation time; (2) migrate the virtual gather to obtain a single image of the source location and (3) stack all of these images together to get the final estimation image of the source location. We test the proposed method on complex synthetic and field data set from the surface hydraulic fracturing monitoring, and compare the results with those obtained by interferometric CCM. The results demonstrate that the proposed method can obtain a 50 per cent higher spatial resolution image of the source location, and more robust estimation with smaller errors of the localization especially in the presence of velocity model errors. This method is also beneficial for source mechanism inversion and global seismology applications.
Giordano, A.; Verba, R.; Zivieri, R.; Laudani, A.; Puliafito, V.; Gubbiotti, G.; Tomasello, R.; Siracusano, G.; Azzerboni, B.; Carpentieri, M.; Slavin, A.; Finocchio, G.
2016-01-01
Spin-Hall oscillators (SHO) are promising sources of spin-wave signals for magnonics applications, and can serve as building blocks for magnonic logic in ultralow power computation devices. Thin magnetic layers used as “free” layers in SHO are in contact with heavy metals having large spin-orbital interaction, and, therefore, could be subject to the spin-Hall effect (SHE) and the interfacial Dzyaloshinskii-Moriya interaction (i-DMI), which may lead to the nonreciprocity of the excited spin waves and other unusual effects. Here, we analytically and micromagnetically study magnetization dynamics excited in an SHO with oblique magnetization when the SHE and i-DMI act simultaneously. Our key results are: (i) excitation of nonreciprocal spin-waves propagating perpendicularly to the in-plane projection of the static magnetization; (ii) skyrmions generation by pure spin-current; (iii) excitation of a new spin-wave mode with a spiral spatial profile originating from a gyrotropic rotation of a dynamical skyrmion. These results demonstrate that SHOs can be used as generators of magnetic skyrmions and different types of propagating spin-waves for magnetic data storage and signal processing applications. PMID:27786261
Fundamental and subharmonic excitation for an oscillator with several tunneling diodes in series
NASA Technical Reports Server (NTRS)
Boric-Lubecke, Olga; Pan, Dee-Son; Itoh, Tatsuo
1995-01-01
Connecting several tunneling diodes in series shows promise as a method for increasing the output power of these devices as millimeter-wave oscillators. However, due to the negative differential resistance (NDR) region in the dc I-V curve of a single tunneling diode, a circuit using several devices connected in series, and biased simultaneously in the NDR region, is dc unstable. Because of this instability, an oscillator with several tunneling diodes in series has a demanding excitation condition. Excitation using an externally applied RF signal is one approach to solving this problem. This is experimentally demonstrated using an RF source, both with frequency close to as well as with frequency considerably lower than the oscillation frequency. Excitation by an RF (radio frequency) source with a frequency as low as one sixth of the oscillation frequency was demonstrated in a proof-of-principle experiment at 2 GHz, for an oscillator with two tunnel diodes connected in series. Strong harmonics of the oscillation signal were generated as a result of the highly nonlinear dc I-V curve of the tunnel diode and a large signal oscillator design. Third harmonic output power comparable to that of the fundamental was observed in one oscillator circuit. If submillimeter wave resonant-tunneling diodes (RTD's) are used instead of tunnel diodes, this harmonic output may be useful for generating signals at frequencies well into the terahertz range.
Validation of a hybrid electromagnetic-piezoelectric vibration energy harvester
NASA Astrophysics Data System (ADS)
Edwards, Bryn; Hu, Patrick A.; Aw, Kean C.
2016-05-01
This paper presents a low frequency vibration energy harvester with contact based frequency up-conversion and hybrid electromagnetic-piezoelectric transduction. An electromagnetic generator is proposed as a power source for low power wearable electronic devices, while a second piezoelectric generator is investigated as a potential power source for a power conditioning circuit for the electromagnetic transducer output. Simulations and experiments are conducted in order to verify the behaviour of the device under harmonic as well as wide-band excitations across two key design parameters—the length of the piezoelectric beam and the excitation frequency. Experimental results demonstrated that the device achieved a power output between 25.5 and 34 μW at an root mean squared (rms) voltage level between 16 and 18.5 mV for the electromagnetic transducer in the excitation frequency range of 3-7 Hz, while the output power of the piezoelectric transducer ranged from 5 to 10.5 μW with a minimum peak-to-peak output voltage of 6 V. A multivariate model validation was performed between experimental and simulation results under wide-band excitation in terms of the rms voltage outputs of the electromagnetic and piezoelectric transducers, as well as the peak-to-peak voltage output of the piezoelectric transducer, and it is found that the experimental data fit the model predictions with a minimum probability of 63.4% across the parameter space.
NASA Astrophysics Data System (ADS)
Waldrop, L.; Kerr, R. B.; Huang, Y.
2018-04-01
Photoelectron (PE) impact on ground-state O(3P) atoms is well known as a major source of twilight 844.6 nm emission in the midlatitude thermosphere. Knowledge of the PE flux can be used to infer thermospheric oxygen density, [O], from photometric measurements of 844.6 nm airglow, provided that PE impact is the dominant process generating the observed emission. During several spring observational campaigns at Arecibo Observatory, however, we have observed significant 844.6 nm emission throughout the night, which is unlikely to arise from PE impact excitation which requires solar illumination of either the local or geomagnetically conjugate thermosphere. Here we show that radiative recombination (RR) of O+ ions is likely responsible for the observed nighttime emission, based on model predictions of electron and O+ ion density and temperature by the Incoherent Scatter Radar Ionosphere Model. The calculated emission brightness produced by O + RR exhibits good agreement with the airglow data, in that both decay approximately monotonically throughout the night at similar rates. We conclude that the conventional assumption of a pure PE impact source is most likely to be invalid during dusk twilight, when RR-generated emission is most significant. Estimation of [O] from measurements of 844.6 nm emission demands isolation of the PE impact source via coincident estimation of the RR source, and the effective cross section for RR-generated emission is found here to be consistent with optically thin conditions.
Modeling Study of Mesospheric Planetary Waves: Genesis and Characteristics
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.
2003-01-01
In preparation for the measurements from the TIMED mission and coordinated ground based observations, we discuss results for the planetary waves (PWs) that appear in our Numerical Spectral Model (NSM). The present model accounts for a tropospheric heat source in the zonal mean (m = 0), which reproduces qualitatively the observed zonal jets near the tropopause and the accompanying reversal in the latitudinal temperature variations. We discuss the PWs that are solely generated internally, i.e., without the explicit excitation sources related to tropospheric convection or topography. Our analysis shows that PWs are not produced when the zonally averaged heat source into the atmosphere is artificially suppressed, and that the PWs generally are significantly weaker when the tropospheric source is not applied. Instabilities associated with the zonal mean temperature, pressure and wind fields, which still need to be explored, are exciting PWs that have amplitudes in the mesosphere comparable to those observed. Three classes of PWs are generated in the NSM. (1) Rossby waves, (2) Rossby gravity waves propagating westward at low latitudes, and (3) Eastward propagating equatorial Kelvin waves. A survey of the PWs reveals that the largest wind amplitudes tend to occur below 80 km in the winter hemisphere, but above that altitude they occur in the summer hemisphere where the amplitudes can approach 50 meters per second. It is shown that the non-migrating tides in the mesosphere, generated by non-linear coupling between migrating tides and PWs, are significantly larger for the model with the tropospheric heat source.
Attosecond Coherent Control of the Photo-Dissociation of Oxygen Molecules
NASA Astrophysics Data System (ADS)
Sturm, Felix; Ray, Dipanwita; Wright, Travis; Shivaram, Niranjan; Bocharova, Irina; Slaughter, Daniel; Ranitovic, Predrag; Belkacem, Ali; Weber, Thorsten
2016-05-01
Attosecond Coherent Control has emerged in recent years as a technique to manipulate the absorption and ionization in atoms as well as the dissociation of molecules on an attosecond time scale. Single attosecond pulses and attosecond pulse trains (APTs) can coherently excite multiple electronic states. The electronic and nuclear wave packets can then be coupled with a second pulse forming multiple interfering quantum pathways. We have built a high flux extreme ultraviolet (XUV) light source delivering APTs based on HHG that allows to selectively excite neutral and ion states in molecules. Our beamline provides spectral selectivity and attosecond interferometric control of the pulses. In the study presented here, we use APTs, generated by High Harmonic Generation in a high flux extreme ultraviolet light source, to ionize highly excited states of oxygen molecules. We identify the ionization/dissociation pathways revealing vibrational structure with ultra-high resolution ion 3D-momentum imaging spectroscopy. Furthermore, we introduce a delay between IR pulses and XUV/IR pulses to constructively or destructively interfere the ionization and dissociation pathways, thus, enabling the manipulation of both the O2+and the O+ ion yields with attosecond precision. Supported by DOE under Contract No. DE-AC02-05CH11231.
NASA Astrophysics Data System (ADS)
Moura, André L.; Jerez, Vladimir; Maia, Lauro J. Q.; Gomes, Anderson S. L.; de Araújo, Cid B.
2015-09-01
Random lasers (RLs) based on neodymium ions (Nd3+) doped crystalline powders rely on multiple light scattering to sustain laser oscillation. Although Stokes and anti-Stokes Nd3+ RLs have been demonstrated, the optical gain obtained up to now was possibly not large enough to produce self-frequency conversion. Here we demonstrate self-frequency upconversion from Nd3+ doped YAl3(BO3)4 monocrystals excited at 806 nm, in resonance with the Nd3+ transition 4I9/2 → 4F5/2. Besides the observation of the RL emission at 1062 nm, self-converted second-harmonic at 531 nm, and self-sum-frequency generated emission at 459 nm due to the RL and the excitation laser at 806 nm, are reported. Additionally, second-harmonic of the excitation laser at 403 nm was generated. These results exemplify the first multi-wavelength source of radiation owing to nonlinear optical effect in a Nd3+ doped crystalline powder RL. Contrary to the RLs based on dyes, this multi-wavelength light source can be used in photonic devices due to the large durability of the gain medium.
Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate.
Eibl, Matthias; Karpf, Sebastian; Weng, Daniel; Hakert, Hubertus; Pfeiffer, Tom; Kolb, Jan Philip; Huber, Robert
2017-07-01
Two-photon-excited fluorescence lifetime imaging microscopy (FLIM) is a chemically specific 3-D sensing modality providing valuable information about the microstructure, composition and function of a sample. However, a more widespread application of this technique is hindered by the need for a sophisticated ultra-short pulse laser source and by speed limitations of current FLIM detection systems. To overcome these limitations, we combined a robust sub-nanosecond fiber laser as the excitation source with high analog bandwidth detection. Due to the long pulse length in our configuration, more fluorescence photons are generated per pulse, which allows us to derive the lifetime with a single excitation pulse only. In this paper, we show high quality FLIM images acquired at a pixel rate of 1 MHz. This approach is a promising candidate for an easy-to-use and benchtop FLIM system to make this technique available to a wider research community.
NASA Astrophysics Data System (ADS)
Kenar, Necla; Lim, H. S.; Mirzaaghasi, Amin
2014-02-01
New design of the excitation light source that can stably generate light with center wavelengths of 450nm, 530nm, 632.8nm and white light for auto-fluorescence(AF) and photodynamic diagnosis(PDD) of cancer in clinics in a single system is presented in this study. The light source consists of Xenon Lamp (300W), light guide module including motorize filter wheel equipped with optical filters with corresponding to wavelength bands, servo motor, motorize iris, a cooling system, power supply and optical transmission part for the output light. The transmission part of the light source was developed to collimate the light with desired wavelength into input of fiber optic. Output powers are obtained average 99.91 mW for 450+/-40 nm, 111.01 mW for 530+/-10nm, and 78.50 mW for 632.8+/-10nm.
Acoustics of Excited Jets: A Historical Perspective
NASA Technical Reports Server (NTRS)
Brown, Cliffard A.
2005-01-01
The idea that a jet may be excited by external forcing is not new. The first published demonstration of a jet responding to external pressure waves occurred in the mid-1800's. It was not, however, until the 1950's, with the advent of commercial jet aircraft, that interest in the subject greatly increased. Researchers first used excited jets to study the structure of the jet and attempt to determine the nature of the noise sources. The jet actuators of the time limited the range (Reynolds and Mach numbers) of jets that could be excited. As the actuators improved, more realistic jets could be studied. This has led to a better understanding of how jet excitation may be used not only as a research tool to understand the flow properties and noise generation process, but also as a method to control jet noise.
High Tc Superconducting Magnet Excited by a Semiconductor Thermoelectric Element
NASA Astrophysics Data System (ADS)
Kuriyama, T.; Ono, M.; Tabe, S.; Oguchi, A.; Okamura, T.
2006-04-01
A high Tc superconducting (HTS) magnet excited by a thermal electromotive force of a thermoelectric element is studied. This HTS magnet has the advantages of compactness, lightweight and continuous excitation in comparison with conventional HTS magnets, because this HTS magnet does not need a large external power source. In this system, a heat input into the cryogenic environment is necessary to excite the thermoelectric element for constant operation. This heat generation, however, causes a rise in temperature of an HTS coil and reduces the system performance. In this paper, a newly designed magnet system which adopted a two-stage GM cryocooler was investigated. It enabled us to control the temperature of a thermoelectric element and that of an HTS coil independently. The temperature of the HTS coil could be kept at 10-20 K at the second stage of the GM cryocooler, while the thermoelectric element could be excited at higher temperature in the range of 50-70 K at the first stage, where the performance of the thermoelectric element was higher. The experimental results on this HTS magnet are shown and the possibility of the thermoelectric element as a main power source of the HTS magnets is discussed.
Dual-color three-dimensional STED microscopy with a single high-repetition-rate laser
Han, Kyu Young; Ha, Taekjip
2016-01-01
We describe a dual-color three-dimensional stimulated emission depletion (3D-STED) microscopy employing a single laser source with a repetition rate of 80 MHz. Multiple excitation pulses synchronized with a STED pulse were generated by a photonic crystal fiber and the desired wavelengths were selected by an acousto-optic tunable filter with high spectral purity. Selective excitation at different wavelengths permits simultaneous imaging of two fluorescent markers at a nanoscale resolution in three dimensions. PMID:26030581
Geist, E.; Yoshioka, S.
1996-01-01
The largest uncertainty in assessing hazards from local tsunamis along the Cascadia margin is estimating the possible earthquake source parameters. We investigate which source parameters exert the largest influence on tsunami generation and determine how each parameter affects the amplitude of the local tsunami. The following source parameters were analyzed: (1) type of faulting characteristic of the Cascadia subduction zone, (2) amount of slip during rupture, (3) slip orientation, (4) duration of rupture, (5) physical properties of the accretionary wedge, and (6) influence of secondary faulting. The effect of each of these source parameters on the quasi-static displacement of the ocean floor is determined by using elastic three-dimensional, finite-element models. The propagation of the resulting tsunami is modeled both near the coastline using the two-dimensional (x-t) Peregrine equations that includes the effects of dispersion and near the source using the three-dimensional (x-y-t) linear long-wave equations. The source parameters that have the largest influence on local tsunami excitation are the shallowness of rupture and the amount of slip. In addition, the orientation of slip has a large effect on the directivity of the tsunami, especially for shallow dipping faults, which consequently has a direct influence on the length of coastline inundated by the tsunami. Duration of rupture, physical properties of the accretionary wedge, and secondary faulting all affect the excitation of tsunamis but to a lesser extent than the shallowness of rupture and the amount and orientation of slip. Assessment of the severity of the local tsunami hazard should take into account that relatively large tsunamis can be generated from anomalous 'tsunami earthquakes' that rupture within the accretionary wedge in comparison to interplate thrust earthquakes of similar magnitude. ?? 1996 Kluwer Academic Publishers.
Apparatus and method for monitoring breath acetone and diabetic diagnostics
Duan, Yixiang [Los Alamos, NM; Cao, Wenqing [Los Alamos, NM
2008-08-26
An apparatus and method for monitoring diabetes through breath acetone detection and quantitation employs a microplasma source in combination with a spectrometer. The microplasma source provides sufficient energy to produce excited acetone fragments from the breath gas that emit light. The emitted light is sent to the spectrometer, which generates an emission spectrum that is used to detect and quantify acetone in the breath gas.
Solid state laser media driven by remote nuclear powered fluorescence
Prelas, Mark A.
1992-01-01
An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.
Analysis of UV-excited fluorochromes by flow cytometry using near-ultraviolet laser diodes.
Telford, William G
2004-09-01
Violet laser diodes have become common and reliable laser sources for benchtop flow cytometers. While these lasers are very useful for a variety of violet and some ultraviolet-excited fluorochromes (e.g., DAPI), they do not efficiently excite most UV-stimulated probes. In this study, the next generation of InGaN near-UV laser diodes (NUVLDs) emitting in the 370-375-nm range have been evaluated as laser sources for cuvette-based flow cytometers. Several NUVLDs, ranging in wavelength from 370 to 374 nm and in power level from 1.5 to 10 mW, were mounted on a BD Biosciences LSR II and evaluated for their ability to excite cells labeled with the UV DNA binding dye DAPI, several UV phenotyping fluorochromes (including Alexa Fluor 350, Marina Blue, and quantum dots), and the fluorescent calcium chelator indo-1. NUVLDs at the 8-10-mW power range gave detection sensitivity levels comparable to more powerful solid-state and ion laser sources, using low-fluorescence microsphere beads as measurement standards. NUVLDs at all tested power levels allowed extremely high-resolution DAPI cell cycle analysis, and sources in the 8-10-mW power range excited Alexa Fluor 350, Marina Blue, and a variety of quantum dots at virtually the same signal-to-noise ratios as more powerful UV sources. These evaluations indicate that near-UV laser diodes installed on a cuvette-based flow cytometer performed nearly as well as more powerful solid-state UV lasers on the same instrumentation, and comparably to more powerful ion lasers on a jet-in-air system, and. Despite their limited power, integration of these small and inexpensive lasers into benchtop flow cytometers should allow the use of flow cytometric applications requiring UV excitation on a wide variety of instruments. Copyright 2004 Wiley-Liss, Inc.
Photoconductive circuit element pulse generator
Rauscher, Christen
1989-01-01
A pulse generator for characterizing semiconductor devices at millimeter wavelength frequencies where a photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test.
In vivo, two-color multiphoton microscopy using a femtosecond diamond Raman laser
NASA Astrophysics Data System (ADS)
Jarrett, Jeremy W.; Perillo, Evan P.; Hassan, Ahmed; Miller, David R.; Dunn, Andrew K.
2018-02-01
Multiphoton microscopy is an essential tool for detailed study of neurovascular structure and function. Wavelength mixing of synchronized laser sources—two-color multiphoton microscopy—increases the spectral window of excitable fluorophores without the need for wavelength tuning. However, implementation of two-color microscopy requires a dual output laser source, which is typically costly and complicated. We have developed a relatively simple and low-cost diamond Raman laser pumped with a ytterbium fiber amplifier. The dual output system generates excitation light at both 1060 nm (pump wavelength) and 1250 nm (first Stokes emission of diamond laser) which, when temporally and spatially overlapped, yield an effective two-color excitation wavelength of 1160 nm. This source provides an almost complete coverage of fluorophores excitable within the range of 1000-1300 nm. When compared with 1060 nm excitation, twocolor excitation at 1160 nm offers a 90% increase in signal for many far-red emitting fluorescent proteins (e.g. tdKatushka2). We demonstrate multicolor imaging of tdKatushka2 and Hoechst 33342 via simultaneous two-color twophoton, and two-color three-photon microscopy in engineered 3-D multicellular spheroids. Additionally, we show that this laser system is capable of in vivo imaging in mouse cortex to nearly 1 mm in depth with two-color excitation. This system can also be used to excite genetically encoded calcium indicators (e.g. RCaMP and GCaMP), which will be paramount in studying neuronal activity.
Cai, Yi; Li, Shao-Hua; Dou, Shuai; Yu, Yong-Liang; Wang, Jian-Hua
2015-01-20
The scope of dielectric barrier discharge (DBD) microplasma as a radiation source for optical emission spectrometry (OES) is extended by nickel carbonyl vapor generation. We proved that metal carbonyl completely avoids the extinguishing of plasma, and it is much more suitable for matching the DBD excitation and OES detection with respect to significant DBD quenching by concomitant hydrogen when hydride generation is used. A concentric quartz UV reactor allows sample solution to flow through the central channel wherein to efficiently receive the uniformly distributed UV irradiation in the confined cylindrical space between the concentric tubes, which facilitates effective carbonyl generation in a nickel solution. The carbonyl is transferred into the DBD excitation chamber by an argon stream for nickel excitation, and the characteristic emission of nickel at 232.0 nm is detected by a charge-coupled device (CCD) spectrometer. A 1.0 mL sample solution results in a linear range of 5-100 μg L(-1) along with a detection limit of 1.3 μg L(-1) and a precision of 2.4% RSD at 50 μg L(-1). The present DBD-OES system is validated by nickel in certified reference materials.
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.; Varosi, F.; Herrero, F. A.
1987-01-01
A linear trasnfer function model of the earth's thermosphere which includes the electric field momentum source is used to study the differences in the response characteristics for Joule heating and momentum coupling in the thermosphere. It is found that, for Joule/particle heating, the temperature and density perturbations contain a relatively large trapped component which has the property of a low-pass filter, with slow decay after the source is turned off. The decay time is sensitive to the altitude of energy deposition and is significantly reduced as the source peak moves from 125 to 150 km. For electric field momentum coupling, the trapped components in the temperature and density perturbations are relatively small. In the curl field of the velocity, however, the trapped component dominates, but compared with the temperature and density its decay time is much shorter. Outside the source region the form of excitation is of secondary importance for the generation of the various propagating gravity wave modes.
X-ray Diffuse Scattering from Ultrafast Laser Excited Solids
NASA Astrophysics Data System (ADS)
Trigo, Mariano; Sheu, Yu-Miin; Chen, Jian; Reis, David; Fahy, Stephen; Murray, Eamonn; Graber, Timothy; Henning, Robert
2009-03-01
Intense, ultrashort laser pulses can be used to excite and detect coherent phonons in solids. However, optical experiments can only probe a reduced fraction of the Brillouin zone and hence most of the decay channels of such coherent phonons become invisible. In contrast, time-resolved x-ray diffuse scattering (TRXDS) has the potential to be the ultimate tool to study these phonon decay processes throughout the Brillouin-zone of the crystal. In our work, performed at the BioCARS beamline at the Advanced Photon Source, we use synchrotron time-resolved diffuse x-ray scattering to study Si and Bi under intense laser excitation with 100 ps resolution. We show that reasonable signal levels can be achieved with incident flux of 10^12 photons comparable to the flux that will be available at future 4th generation sources such as the LCLS in a single pulse. These sources will also provide three orders of magnitude shorter pulses; thus, this experiment serves as a test of the feasibility of time-resolved X-ray diffuse scattering as a tool for studying nonequilibrium phonon dynamics in solids.
Hopkins Ultraviolet Telescope determination of the Io torus electron temperature
NASA Technical Reports Server (NTRS)
Hall, D. T.; Bednar, C. J.; Durrance, S. T.; Feldman, P. D.; Mcgrath, M. A.; Moos, H. W.; Strobel, D. F.
1994-01-01
Sulfur ion emissions from the Io plasma torus observed by the Hopkins Ultraviolet Telescope (HUT) in 1990 December have been analyzed to determine the effective temperature of the exciting electrons. Spectra were obtained with a long slit that extended from 3.1 to 8.7 Jupiter radii R(sub J) on both dawn and dusk torus ansae. The average temperature of electrons exciting S(2+) emissions from the dawn ansa is (4800 +/- 2400) K lower than on the dusk ansa, a dawn-dusk asymmetry comparable in both sign and magnitude to that measured by the Voyager Ultraviolet Spectrograph (UVS) experiment. Emissions from S(2+) ions are generated in a source region with electron temperatures in the range 32,000-56,000 K; S(3+) ion emissions are excited by electrons that average 20,000-40,000 K hotter. This distinct difference suggests that the S(3+) emission source region is spatially separate from the S(2+) source region. Estimated relative aperture filling factors suggest that the S(3+) emissions originate from a region more extended out of the centrifugal plane than the S(2+) emissions.
Controlling excited-state contamination in nucleon matrix elements
Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; ...
2016-06-08
We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1-flavor ensemble with lattices of size 32 3 × 64 generated using the rational hybrid Monte Carlo algorithm at a = 0.081 fm and with M π = 312 MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a 2-state fit to data at multiple values of the source-sink separationmore » t sep. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost effectiveness. As a result, a detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of t sep needed to demonstrate convergence of the isovector charges of the nucleon to the t sep → ∞ estimates is presented.« less
NASA Astrophysics Data System (ADS)
Shao, Tao; Yang, Wenjin; Zhang, Cheng; Fang, Zhi; Zhou, Yixiao; Schamiloglu, Edl
2014-09-01
Current-voltage characteristics, discharge images, and optical spectra of atmospheric pressure plasma jets (APPJs) are studied using a microsecond pulse length generator producing repetitive output pulses with different polarities. The experimental results show that the APPJs excited by the pulses with positive polarity have longer plume, faster propagation speed, higher power, and more excited species, such as \\text{N}2 , O, He, \\text{N}2+ , than that with the negatively excited APPJs. The images taken using an intensified charge-coupled device show that the APPJs excited by pulses with positive polarity are characterized by a bullet-like structure, while the APPJs excited by pulses with negative polarity are continuous. The propagation speed of the APPJs driven by a microsecond pulse length generator is about tens of km/s, which is similar to the APPJs driven by a kHz frequency sinusoidal voltage source. The analysis shows that the space charge accumulation effect plays an important role during the discharge. The transient enhanced electric field induced by the accumulated ions between the needle-like electrode and the nozzle in the APPJs excited by pulses with negative polarity enhances electron field emission from the cathode, which is illustrated by the bright line on the time-integrated images. This makes the shape of the APPJ excited using pulses with negative polarity different from the bullet-like shape of the APPJs excited by pulses with positive polarity.
Fumeaux, Christophe; Lin, Hungyen; Serita, Kazunori; Withayachumnankul, Withawat; Kaufmann, Thomas; Tonouchi, Masayoshi; Abbott, Derek
2012-07-30
The process of terahertz generation through optical rectification in a nonlinear crystal is modeled using discretized equivalent current sources. The equivalent terahertz sources are distributed in the active volume and computed based on a separately modeled near-infrared pump beam. This approach can be used to define an appropriate excitation for full-wave electromagnetic numerical simulations of the generated terahertz radiation. This enables predictive modeling of the near-field interactions of the terahertz beam with micro-structured samples, e.g. in a near-field time-resolved microscopy system. The distributed source model is described in detail, and an implementation in a particular full-wave simulation tool is presented. The numerical results are then validated through a series of measurements on square apertures. The general principle can be applied to other nonlinear processes with possible implementation in any full-wave numerical electromagnetic solver.
A Monte Carlo study of fluorescence generation probability in a two-layered tissue model
NASA Astrophysics Data System (ADS)
Milej, Daniel; Gerega, Anna; Wabnitz, Heidrun; Liebert, Adam
2014-03-01
It was recently reported that the time-resolved measurement of diffuse reflectance and/or fluorescence during injection of an optical contrast agent may constitute a basis for a technique to assess cerebral perfusion. In this paper, we present results of Monte Carlo simulations of the propagation of excitation photons and tracking of fluorescence photons in a two-layered tissue model mimicking intra- and extracerebral tissue compartments. Spatial 3D distributions of the probability that the photons were converted from excitation to emission wavelength in a defined voxel of the medium (generation probability) during their travel between source and detector were obtained for different optical properties in intra- and extracerebral tissue compartments. It was noted that the spatial distribution of the generation probability depends on the distribution of the fluorophore in the medium and is influenced by the absorption of the medium and of the fluorophore at excitation and emission wavelengths. Simulations were also carried out for realistic time courses of the dye concentration in both layers. The results of the study show that the knowledge of the absorption properties of the medium at excitation and emission wavelengths is essential for the interpretation of the time-resolved fluorescence signals measured on the surface of the head.
Multiple protocol fluorometer and method
Kolber, Zbigniew S.; Falkowski, Paul G.
2000-09-19
A multiple protocol fluorometer measures photosynthetic parameters of phytoplankton and higher plants using actively stimulated fluorescence protocols. The measured parameters include spectrally-resolved functional and optical absorption cross sections of PSII, extent of energy transfer between reaction centers of PSII, F.sub.0 (minimal), F.sub.m (maximal) and F.sub.v (variable) components of PSII fluorescence, photochemical and non-photochemical quenching, size of the plastoquinone (PQ) pool, and the kinetics of electron transport between Q.sub.a and PQ pool and between PQ pool and PSI. The multiple protocol fluorometer, in one embodiment, is equipped with an excitation source having a controlled spectral output range between 420 nm and 555 nm and capable of generating flashlets having a duration of 0.125-32 .mu.s, an interval between 0.5 .mu.s and 2 seconds, and peak optical power of up to 2 W/cm.sup.2. The excitation source is also capable of generating, simultaneous with the flashlets, a controlled continuous, background illumination.
On-demand semiconductor single-photon source with near-unity indistinguishability.
He, Yu-Ming; He, Yu; Wei, Yu-Jia; Wu, Dian; Atatüre, Mete; Schneider, Christian; Höfling, Sven; Kamp, Martin; Lu, Chao-Yang; Pan, Jian-Wei
2013-03-01
Single-photon sources based on semiconductor quantum dots offer distinct advantages for quantum information, including a scalable solid-state platform, ultrabrightness and interconnectivity with matter qubits. A key prerequisite for their use in optical quantum computing and solid-state networks is a high level of efficiency and indistinguishability. Pulsed resonance fluorescence has been anticipated as the optimum condition for the deterministic generation of high-quality photons with vanishing effects of dephasing. Here, we generate pulsed single photons on demand from a single, microcavity-embedded quantum dot under s-shell excitation with 3 ps laser pulses. The π pulse-excited resonance-fluorescence photons have less than 0.3% background contribution and a vanishing two-photon emission probability. Non-postselective Hong-Ou-Mandel interference between two successively emitted photons is observed with a visibility of 0.97(2), comparable to trapped atoms and ions. Two single photons are further used to implement a high-fidelity quantum controlled-NOT gate.
Holz, Jasmin A; Boerwinkel, David F; Meijer, Sybren L; Visser, Mike; van Leeuwen, Ton G; Aalders, Maurice C G; Bergman, Jacques J G H M
2013-12-01
Fluorescence spectroscopy has the potential to detect early cellular changes in Barrett's oesophagus before these become visible. As the technique is based on varying concentrations of intrinsic fluorophores, each with its own optimal excitation wavelength, it is important to assess the optimal excitation wavelength(s) for identification of premalignant lesions in patients with Barrett's oesophagus. The endoscopic spectroscopy system used contained five (ultra)violet light sources (λexc=369-416 nm) to generate autofluorescence during routine endoscopic surveillance. Autofluorescence spectroscopy was followed by a biopsy for histological assessment and spectra correlation. Three intensity ratios (r1, r2, r3) were calculated by dividing the area, A, under the spectral curve of selected emission wavelength ranges for each spectrum generated by each excitation wavelength λexc as follows (Equation is included in full-text article.). Double intensity ratios were calculated using two excitation wavelengths. Fifty-eight tissue areas from 22 patients were used for autofluorescence spectra analysis. Excitation with 395, 405 or 410 nm showed a significant (P≤0.0006) differentiation between intestinal metaplasia and grouped high-grade dysplasia/early carcinoma for intensity ratios r2 and r3. A sensitivity of 80.0% and specificity of 89.5% with an area under the ROC curve of 0.85 was achieved using 395 nm excitation and intensity ratio r3. Double excitation showed no additional value over single excitation. The combination of 395 nm excitation and intensity ratio r3 showed optimal conditions to discriminate nondysplastic from early neoplasia in Barrett's oesophagus.
Coherent anti-Stokes Raman scattering spectroscope/microscope based on a widely tunable laser source
NASA Astrophysics Data System (ADS)
Dementjev, A.; Gulbinas, V.; Serbenta, A.; Kaucikas, M.; Niaura, G.
2010-03-01
We present a coherent anti-Stokes Raman scattering (CARS) microscope based on a robust and simple laser source. A picosecond laser operating in a cavity dumping regime at the 1 MHz repetition rate was used to pump a traveling wave optical parametric generator, which serves as a two-color excitation light source for the CARS microscope. We demonstrate the ability of the presented CARS microscope to measure CARS spectra and images by using several detection schemes.
Microseisms Generated by Super Typhoon Megi in the Western Pacific Ocean
NASA Astrophysics Data System (ADS)
Lin, Jianmin; Lin, Jian; Xu, Min
2017-12-01
Microseisms generated by the super typhoon Megi (13-24 October 2010) were detected on both land-based and island-based seismic stations. We applied temporal frequency spectrum analysis to investigate the temporal evolution of the microseisms. When Megi was over the deep basins of the Philippine Sea, only weak microseisms with short-period double frequency (SPDF, ˜0.20-0.40 Hz) were observed. However, after Megi traveled into the shallower waters of the South China Sea, microseisms with both long-period double frequency (LPDF, ˜0.12-0.20 Hz) and SPDF were recorded. The excitation source regions of the microseisms were analyzed using seismic waveform records and synthetic modeling in frequency domain. Results reveal that part of the LPDF microseisms were excited in coastal source regions, while the intensity of both LPDF and SPDF microseisms correlated well with the distance from seismic stations to the typhoon center. Synthetic computations of equivalent surface pressure and corresponding microseisms show that the wave-to-wave interaction induced by coastal reflection has primary effects on microseismic frequency band of ˜0.10-0.20 Hz. The coastal generation of the dispersive LPDF microseisms is also supported by the observation of ocean swells induced by Megi through the images of C-band ENVISAT-ASAR satellite during its migration process. Two source regions of the microseisms during the life span of Megi are finally distinguished: One was mainly located in the left-rear quadrant of the typhoon center that generated both LPDF and SPDF microseisms at shallow seas, while the other one was near the coasts that generated mostly LPDF microseisms.
NASA Astrophysics Data System (ADS)
Gupta, I.; Chan, W.; Wagner, R.
2005-12-01
Several recent studies of the generation of low-frequency Lg from explosions indicate that the Lg wavetrain from explosions contains significant contributions from (1) the scattering of explosion-generated Rg into S and (2) direct S waves from the non-spherical spall source associated with a buried explosion. The pronounced spectral nulls observed in Lg spectra of Yucca Flats (NTS) and Semipalatinsk explosions (Patton and Taylor, 1995; Gupta et al., 1997) are related to Rg excitation caused by spall-related block motions in a conical volume over the shot point, which may be approximately represented by a compensated linear vector dipole (CLVD) source (Patton et al., 2005). Frequency-dependent excitation of Rg waves should be imprinted on all scattered P, S and Lg waves. A spectrogram may be considered as a three-dimensional matrix of numbers providing amplitude and frequency information for each point in the time series. We found difference spectrograms, derived from a normal explosion and a closely located over-buried shot recorded at the same common station, to be remarkably useful for an understanding of the origin and spectral contents of various regional phases. This technique allows isolation of source characteristics, essentially free from path and recording site effects, since the overburied shot acts as the empirical Green's function. Application of this methodology to several pairs of closely located explosions shows that the scattering of explosion-generated Rg makes significant contribution to not only Lg and its coda but also to the two other regional phases Pg (presumably by the scattering of Rg into P) and Sn. The scattered energy, identified by the presence of a spectral null at the appropriate frequency, generally appears to be more prominent in the somewhat later-arriving sections of Pg, Sn, and Lg than in the initial part. Difference spectrograms appear to provide a powerful new technique for understanding the mechanism of near-source scattering of explosion-generated Rg and its contribution to various regional phases.
Analysis and Simulation of Far-Field Seismic Data from the Source Physics Experiment
2012-09-01
ANALYSIS AND SIMULATION OF FAR-FIELD SEISMIC DATA FROM THE SOURCE PHYSICS EXPERIMENT Arben Pitarka, Robert J. Mellors, Arthur J. Rodgers, Sean...Security Site (NNSS) provides new data for investigating the excitation and propagation of seismic waves generated by buried explosions. A particular... seismic model. The 3D seismic model includes surface topography. It is based on regional geological data, with material properties constrained by shallow
Ding, Xing; He, Yu; Duan, Z-C; Gregersen, Niels; Chen, M-C; Unsleber, S; Maier, S; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei
2016-01-15
Scalable photonic quantum technologies require on-demand single-photon sources with simultaneously high levels of purity, indistinguishability, and efficiency. These key features, however, have only been demonstrated separately in previous experiments. Here, by s-shell pulsed resonant excitation of a Purcell-enhanced quantum dot-micropillar system, we deterministically generate resonance fluorescence single photons which, at π pulse excitation, have an extraction efficiency of 66%, single-photon purity of 99.1%, and photon indistinguishability of 98.5%. Such a single-photon source for the first time combines the features of high efficiency and near-perfect levels of purity and indistinguishabilty, and thus opens the way to multiphoton experiments with semiconductor quantum dots.
Continuous-wave deep ultraviolet sources for resonance Raman explosive sensing
NASA Astrophysics Data System (ADS)
Yellampalle, Balakishore; Martin, Robert; Sluch, Mikhail; McCormick, William; Ice, Robert; Lemoff, Brian
2015-05-01
A promising approach to stand-off detection of explosive traces is using resonance Raman spectroscopy with Deepultraviolet (DUV) light. The DUV region offers two main advantages: strong explosive signatures due to resonant and λ- 4 enhancement of Raman cross-section, and lack of fluorescence and solar background. For DUV Raman spectroscopy, continuous-wave (CW) or quasi-CW lasers are preferable to high peak powered pulsed lasers because Raman saturation phenomena and sample damage can be avoided. In this work we present a very compact DUV source that produces greater than 1 mw of CW optical power. The source has high optical-to-optical conversion efficiency, greater than 5 %, as it is based on second harmonic generation (SHG) of a blue/green laser source using a nonlinear crystal placed in an external resonant enhancement cavity. The laser system is extremely compact, lightweight, and can be battery powered. Using two such sources, one each at 236.5 nm and 257.5 nm, we are building a second generation explosive detection system called Dual-Excitation-Wavelength Resonance-Raman Detector (DEWRRED-II). The DEWRRED-II system also includes a compact dual-band high throughput DUV spectrometer, and a highly-sensitive detection algorithm. The DEWRRED technique exploits the DUV excitation wavelength dependence of Raman signal strength, arising from complex interplay of resonant enhancement, self-absorption and laser penetration depth. We show sensor measurements from explosives/precursor materials at different standoff distances.
Design and evaluation of excitation light source device for fluorescence endoscope
NASA Astrophysics Data System (ADS)
Lim, Hyun Soo
2009-06-01
This study aims at designing and evaluating light source devices that can stably generate light with various wavelengths in order to make possible PDD using a photosensitizer and diagnosis using auto-fluorescence. The light source was a Xenon lamp and filter wheel, composed of an optical output control through Iris and filters with several wavelength bands. It also makes the inducement of auto-fluorescence possible because it is designed to generate a wavelength band of 380-420nm, 430-480nm, and 480-560nm. The transmission part of the light source was developed to enhance the efficiency of light transmission. To evaluate this light source, the characteristics of light output and wavelength band were verified. To validate the capability of this device as PDD, the detection of auto-fluorescence using mouse models was performed.
Tecchio, Franca; Assenza, Giovanni; Zappasodi, Filippo; Mariani, Stefania; Salustri, Carlo; Squitti, Rosanna
2011-01-01
Objective. To verify whether markers of metal homeostasis are related to a magnetoencephalographic index representative of glutamate-mediated excitability of the primary somatosensory cortex. The index is identified as the source strength of the earliest component (M20) of the somatosensory magnetic fields (SEFs) evoked by right median nerve stimulation at wrist. Method. Thirty healthy right-handed subjects (51 ± 22 years) were enrolled in the study. A source reconstruction algorithm was applied to assess the amount of synchronously activated neurons subtending the M20 and the following SEF component (M30), which is generated by two independent contributions of gabaergic and glutamatergic transmission. Serum copper, ceruloplasmin, iron, transferrin, transferrin saturation, and zinc levels were measured. Results. Total copper and ceruloplasmin negatively correlated with the M20 source strength. Conclusion. This pilot study suggests that higher level of body copper reserve, as marked by ceruloplasmin variations, parallels lower cortical glutamatergic responsiveness. PMID:22145081
Magneto-acoustic imaging by continuous-wave excitation.
Shunqi, Zhang; Zhou, Xiaoqing; Tao, Yin; Zhipeng, Liu
2017-04-01
The electrical characteristics of tissue yield valuable information for early diagnosis of pathological changes. Magneto-acoustic imaging is a functional approach for imaging of electrical conductivity. This study proposes a continuous-wave magneto-acoustic imaging method. A kHz-range continuous signal with an amplitude range of several volts is used to excite the magneto-acoustic signal and improve the signal-to-noise ratio. The magneto-acoustic signal amplitude and phase are measured to locate the acoustic source via lock-in technology. An optimisation algorithm incorporating nonlinear equations is used to reconstruct the magneto-acoustic source distribution based on the measured amplitude and phase at various frequencies. Validation simulations and experiments were performed in pork samples. The experimental and simulation results agreed well. While the excitation current was reduced to 10 mA, the acoustic signal magnitude increased up to 10 -7 Pa. Experimental reconstruction of the pork tissue showed that the image resolution reached mm levels when the excitation signal was in the kHz range. The signal-to-noise ratio of the detected magneto-acoustic signal was improved by more than 25 dB at 5 kHz when compared to classical 1 MHz pulse excitation. The results reported here will aid further research into magneto-acoustic generation mechanisms and internal tissue conductivity imaging.
Chemical Excitation of Electrons: A Dark Path to Melanoma
Premi, Sanjay; Brash, Douglas E.
2016-01-01
Sunlight’s ultraviolet wavelengths induce cyclobutane pyrimidine dimers (CPDs), which then cause mutations that lead to melanoma or to cancers of skin keratinocytes. In pigmented melanocytes, we found that CPDs arise both instantaneously and for hours after UV exposure ends. Remarkably, the CPDs arising in the dark originate by a novel pathway that resembles bioluminescence but does not end in light: First, UV activates the enzymes nitric oxide synthase (NOS) and NADPH oxidase (NOX), which generate the radicals nitric oxide (NO•) and superoxide (O2•−); these combine to form the powerful oxidant peroxynitrite (ONOO−). A fragment of the skin pigment melanin is then oxidized, exciting an electron to an energy level so high that it is rarely seen in biology. This process of chemically exciting electrons, termed “chemiexcitation”, is used by fireflies to generate light but it had never been seen in mammalian cells. In melanocytes, the energy transfers radiationlessly to DNA, inducing CPDs. Chemiexcitation is a new source of genome instability, and it calls attention to endogenous mechanisms of genome maintenance that prevent electronic excitation or dissipate the energy of excited states. Chemiexcitation may also trigger pathogenesis in internal tissues because the same chemistry should arise wherever superoxide and nitric oxide arise near cells that contain melanin. PMID:27262612
Chemical excitation of electrons: A dark path to melanoma.
Premi, Sanjay; Brash, Douglas E
2016-08-01
Sunlight's ultraviolet wavelengths induce cyclobutane pyrimidine dimers (CPDs), which then cause mutations that lead to melanoma or to cancers of skin keratinocytes. In pigmented melanocytes, we found that CPDs arise both instantaneously and for hours after UV exposure ends. Remarkably, the CPDs arising in the dark originate by a novel pathway that resembles bioluminescence but does not end in light: First, UV activates the enzymes nitric oxide synthase (NOS) and NADPH oxidase (NOX), which generate the radicals nitric oxide (NO) and superoxide (O2(-)); these combine to form the powerful oxidant peroxynitrite (ONOO(-)). A fragment of the skin pigment melanin is then oxidized, exciting an electron to an energy level so high that it is rarely seen in biology. This process of chemically exciting electrons, termed "chemiexcitation", is used by fireflies to generate light but it had never been seen in mammalian cells. In melanocytes, the energy transfers radiationlessly to DNA, inducing CPDs. Chemiexcitation is a new source of genome instability, and it calls attention to endogenous mechanisms of genome maintenance that prevent electronic excitation or dissipate the energy of excited states. Chemiexcitation may also trigger pathogenesis in internal tissues because the same chemistry should arise wherever superoxide and nitric oxide arise near cells that contain melanin. Copyright © 2016 Elsevier B.V. All rights reserved.
Signatures of two-photon pulses from a quantum two-level system
NASA Astrophysics Data System (ADS)
Fischer, Kevin A.; Hanschke, Lukas; Wierzbowski, Jakob; Simmet, Tobias; Dory, Constantin; Finley, Jonathan J.; Vučković, Jelena; Müller, Kai
2017-07-01
A two-level atom can generate a strong many-body interaction with light under pulsed excitation. The best known effect is single-photon generation, where a short Gaussian laser pulse is converted into a Lorentzian single-photon wavepacket. However, recent studies suggested that scattering of intense laser fields off a two-level atom may generate oscillations in two-photon emission that come out of phase with the Rabi oscillations, as the power of the pulse increases. Here, we provide an intuitive explanation for these oscillations using a quantum trajectory approach and show how they may preferentially result in emission of two-photon pulses. Experimentally, we observe the signatures of these oscillations by measuring the bunching of photon pulses scattered off a two-level quantum system. Our theory and measurements provide insight into the re-excitation process that plagues on-demand single-photon sources while suggesting the possibility of producing new multi-photon states.
Domingue, Scott R.; Bartels, Randy A.
2014-12-04
Here, we demonstrate 1250 nm pulses generated in dual-zero dispersion photonic crystal fiber capable of three-photon excitation fluorescence microscopy. The total power conversion efficiency from the 28 fs seed pulse centered at 1075 nm to pulses at 1250 nm, including coupling losses from the nonlinear fiber, is 35%, with up to 67% power conversion efficiency of the fiber coupled light. Frequency-resolved optical gating measurements characterize 1250 nm pulses at 0.6 nJ and 2 nJ, illustrating the change in nonlinear spectral phase accumulation with pulse energy even for nonlinear fiber lengths < 50 mm. The 0.6 nJ pulse has a 26more » fs duration and is the shortest nonlinear fiber derived 1250 nm pulse yet reported (to the best of our knowledge). The short pulse durations and energies make these pulses a viable route to producing light at 1250 nm for multiphoton microscopy, which we we demonstrate here, via a three-photon excitation fluorescence microscope.« less
NASA Astrophysics Data System (ADS)
Lee, Jae-Chul; Kim, Wansun; Park, Hun-Kuk; Choi, Samjin
2017-03-01
This study investigates why a silver nanoparticle (SNP)-induced surface-enhanced Raman scattering (SERS) paper chip fabricated at low successive ionic layer absorption and reaction (SILAR) cycles leads to a high SERS enhancement factor (7 × 108) with an inferior nanostructure and without generating a hot spot effect. The multi-layered structure of SNPs on cellulose fibers, verified by magnified scanning electron microscopy (SEM) and analyzed by a computational simulation method, was hypothesized as the reason. The pattern of simulated local electric field distribution with respect to the number of SILAR cycles showed good agreement with the experimental Raman intensity, regardless of the wavelength of the excitation laser sources. The simulated enhancement factor at the 785-nm excitation laser source (2.8 × 109) was 2.5 times greater than the experimental enhancement factor (1.1 × 109). A 532-nm excitation laser source exhibited the highest maximum local electric field intensity (1.9 × 1011), particularly at the interparticle gap called a hot spot. The short wavelength led to a strong electric field intensity caused by strong electromagnetic coupling arising from the SNP-induced local surface plasmon resonance (LSPR) effects through high excitation energy. These findings suggest that our paper-based SILAR-fabricated SNP-induced LSPR model is valid for understanding SNP-induced LSPR effects.
Fusion energy science: Clean, safe, and abundant energy through innovative science and technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Fusion energy science combines the study of the behavior of plasmas--the state of matter that forms 99% of the visible universe--with a vision of using fusion--the energy source of the stars--to create an affordable, plentiful, and environmentally benign energy source for humankind. The dual nature of fusion energy science provides an unfolding panorama of exciting intellectual challenge and a promise of an attractive energy source for generations to come. The goal of this report is a comprehensive understanding of plasma behavior leading to an affordable and attractive fusion energy source.
On meteor-generated infrasound. [propagation characteristics during entry into earth atmosphere
NASA Technical Reports Server (NTRS)
Revelle, D. O.
1976-01-01
The characteristics of generation and propagation of infrasonic pressure waves excited during meteor entry into the earth's atmosphere are studied. Existing line source blast wave theory is applied to infrasonic airwave data from four bright fire-balls. It is shown that the strong shock behavior of the blast wave is confined to a cylinderical region with a radius proportional to the product of the meteor Mach number and its diameter. A description of the wave form far from the source is provided. Infrasonic data reported elsewhere are analyzed. All the results should be considered as preliminary, and additional work is under way to refine the estimates obtained.
Qiu, Gongzhe
2017-01-01
Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs), two shear (SH) waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly. PMID:29186790
Song, Xiaochun; Qiu, Gongzhe
2017-11-24
Due to the symmetry of conventional periodic-permanent-magnet electromagnetic acoustic transducers (PPM EMATs), two shear (SH) waves can be generated and propagated simultaneously in opposite directions, which makes the signal recognition and interpretation complicatedly. Thus, this work presents a new SH wave PPM EMAT design, rotating the parallel line sources to realize the wave beam focusing in a single-direction. The theoretical model of distributed line sources was deduced firstly, and the effects of some parameters, such as the inner coil width, adjacent line sources spacing and the angle between parallel line sources, on SH wave focusing and directivity were studied mainly with the help of 3D FEM. Employing the proposed PPM EMATs, some experiments are carried out to verify the reliability of FEM simulation. The results indicate that rotating the parallel line sources can strength the wave on the closing side of line sources, decreasing the inner coil width and the adjacent line sources spacing can improve the amplitude and directivity of signals excited by transducers. Compared with traditional PPM EMATs, both the capacity of unidirectional excitation and directivity of the proposed PPM EMATs are improved significantly.
A new debris sensor based on dual excitation sources for online debris monitoring
NASA Astrophysics Data System (ADS)
Hong, Wei; Wang, Shaoping; Tomovic, Mileta M.; Liu, Haokuo; Wang, Xingjian
2015-09-01
Mechanical systems could be severely damaged by loose debris generated through wear processes between contact surfaces. Hence, debris detection is necessary for effective fault diagnosis, life prediction, and prevention of catastrophic failures. This paper presents a new in-line debris sensor for hydraulic systems based on dual excitation sources. The proposed sensor makes magnetic lines more concentrated while at the same time improving magnetic field uniformity. As a result the sensor has higher sensitivity and improved precision. This paper develops the sensor model, discusses sensor structural features, and introduces a measurement method for debris size identification. Finally, experimental verification is presented indicating that that the sensor can effectively detect 81 μm (cube) or larger particles in 12 mm outside diameter (OD) organic glass pipe.
Computer screen photo-excited surface plasmon resonance imaging.
Filippini, Daniel; Winquist, Fredrik; Lundström, Ingemar
2008-09-12
Angle and spectra resolved surface plasmon resonance (SPR) images of gold and silver thin films with protein deposits is demonstrated using a regular computer screen as light source and a web camera as detector. The screen provides multiple-angle illumination, p-polarized light and controlled spectral radiances to excite surface plasmons in a Kretchmann configuration. A model of the SPR reflectances incorporating the particularities of the source and detector explain the observed signals and the generation of distinctive SPR landscapes is demonstrated. The sensitivity and resolution of the method, determined in air and solution, are 0.145 nm pixel(-1), 0.523 nm, 5.13x10(-3) RIU degree(-1) and 6.014x10(-4) RIU, respectively, encouraging results at this proof of concept stage and considering the ubiquity of the instrumentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suyanto, Hery; Pardede, Marincan; Hedwig, Rinda
2016-08-15
A time-resolved spectroscopic study is performed on the enhancement signals of He gas plasma emission using nanosecond (ns) and picosecond (ps) lasers in an orthogonal configuration. The ns laser is used for the He gas plasma generation and the ps laser is employed for the ejection of fast electrons from a metal target, which serves to excite subsequently the He atoms in the plasma. The study is focused on the most dominant He I 587.6 nm and He I 667.8 nm emission lines suggested to be responsible for the He-assisted excitation (HAE) mechanism. The time-dependent intensity enhancements induced by themore » fast electrons generated with a series of delayed ps laser ablations are deduced from the intensity time profiles of both He emission lines. The results clearly lead to the conclusion that the metastable excited triplet He atoms are actually the species overwhelmingly produced during the recombination process in the ns laser-induced He gas plasma. These metastable He atoms are believed to serve as the major energy source for the delayed excitation of analyte atoms in ns laser-induced breakdown spectroscopy (LIBS) using He ambient gas.« less
Novel system for picosecond photoemission spectroscopy
NASA Astrophysics Data System (ADS)
Haight, R.; Silberman, J. A.; Lilie, M. I.
1988-09-01
This article describes a laser-based source and detection scheme for performing time-resolved photoemission studies of materials. The pulsed laser source produces intense picosecond pulses of coherent radiation that are nearly continuously tunable from the near infrared to photon energies up to 13 eV. To achieve high sensitivity, a novel multianode time-of-flight spectrometer has been built that generates an angularly resolved intensity versus kinetic energy spectrum with better than 100-meV resolution. The source and detector provide an opportunity to study the electronic dynamics of excited systems on a picosecond time scale.
Electron acceleration and high harmonic generation by relativistic surface plasmons
NASA Astrophysics Data System (ADS)
Cantono, Giada; Luca Fedeli Team; Andrea Sgattoni Team; Andrea Macchi Team; Tiberio Ceccotti Team
2016-10-01
Intense, short laser pulses with ultra-high contrast allow resonant surface plasmons (SPs) excitation on solid wavelength-scale grating targets, opening the way to the extension of Plasmonics in the relativistic regime and the manipulation of intense electromagnetic fields to develop new short, energetic, laser-synchronized radiation sources. Recent theoretical and experimental studies have explored the role of SP excitation in increasing the laser-target coupling and enhancing ion acceleration, high-order harmonic generation and surface electron acceleration. Here we present our results on SP driven electron acceleration from grating targets at ultra-high laser intensities (I = 5 ×1019 W/cm2, τ = 25 fs). When the resonant condition for SP excitation is fulfilled, electrons are emitted in a narrow cone along the target surface, with a total charge of about 100 pC and energy spectra peaked around 5 MeV. Distinguishing features of the resonant process were investigated by varying the incidence angle, grating type and with the support of 3D PIC simulations, which closely reproduced the experimental data. Open challenges and further measurements on high-order harmonic generation in presence of a relativistic SP will also be discussed.
Generation of High Brightness X-rays with the PLEIADES Thomson X-ray Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W J; Anderson, S G; Barty, C P J
2003-05-28
The use of short laser pulses to generate high peak intensity, ultra-short x-ray pulses enables exciting new experimental capabilities, such as femtosecond pump-probe experiments used to temporally resolve material structural dynamics on atomic time scales. PLEIADES (Picosecond Laser Electron InterAction for Dynamic Evaluation of Structures) is a next generation Thomson scattering x-ray source being developed at Lawrence Livermore National Laboratory (LLNL). Ultra-fast picosecond x-rays (10-200 keV) are generated by colliding an energetic electron beam (20-100 MeV) with a high intensity, sub-ps, 800 nm laser pulse. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm2/mrad2. Simulationsmore » of the electron beam production, transport, and final focus are presented. Electron beam measurements, including emittance and final focus spot size are also presented and compared to simulation results. Measurements of x-ray production are also reported and compared to theoretical calculations.« less
NASA Astrophysics Data System (ADS)
Pitarka, Arben; Mellors, Robert; Rodgers, Arthur; Vorobiev, Oleg; Ezzedine, Souheil; Matzel, Eric; Ford, Sean; Walter, Bill; Antoun, Tarabay; Wagoner, Jeffery; Pasyanos, Mike; Petersson, Anders; Sjogreen, Bjorn
2014-05-01
We investigate the excitation and propagation of far-field (epicentral distance larger than 20 m) seismic waves by analyzing and modeling ground motion from an underground chemical explosion recorded during the Source Physics Experiment (SPE), Nevada. The far-field recorded ground motion is characterized by complex features, such as large azimuthal variations in P- and S-wave amplitudes, as well as substantial energy on the tangential component of motion. Shear wave energy is also observed on the tangential component of the near-field motion (epicentral distance smaller than 20 m) suggesting that shear waves were generated at or very near the source. These features become more pronounced as the waves propagate away from the source. We address the shear wave generation during the explosion by modeling ground motion waveforms recorded in the frequency range 0.01-20 Hz, at distances of up to 1 km. We used a physics based approach that combines hydrodynamic modeling of the source with anelastic modeling of wave propagation in order to separate the contributions from the source and near-source wave scattering on shear motion generation. We found that wave propagation scattering caused by the near-source geological environment, including surface topography, contributes to enhancement of shear waves generated from the explosion source. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-06NA25946/ NST11-NCNS-TM-EXP-PD15.
Green fiber lasers: An alternative to traditional DPSS green lasers for flow cytometry
Telford, William G.; Babin, Sergey A.; Khorev, Serge V.; Rowe, Stephen H.
2009-01-01
Green and yellow diode-pumped solid state (DPSS) lasers (532 and 561 nm) have become common fixtures on flow cytometers, due to their efficient excitation of phycoerythrin (PE) and its tandems, and their ability to excite an expanding array of expressible red fluorescent proteins. Nevertheless, they have some disadvantages. DPSS 532 nm lasers emit very close to the fluorescein bandwidth, necessitating optical modifications to permit detection of fluorescein and GFP. DPSS 561 nm lasers likewise emit very close to the PE detection bandwidth, and also cause unwanted excitation of APC and its tandems, requiring high levels of crossbeam compensation to reduce spectral overlap into the PE tandems. In this paper, we report the development of a new generation of green fiber lasers that can be engineered to emit in the range between 532 and 561 nm. A 550 nm green fiber laser was integrated into both a BD LSR II™ cuvette and FACSVantage DiVa™ jet-in-air cell sorter. This laser wavelength avoided both the fluorescein and PE bandwidths, and provided better excitation of PE and the red fluorescent proteins DsRed and dTomato than a power-matched 532 nm source. Excitation at 550 nm also caused less incidental excitation of APC and its tandems, reducing the need for crossbeam compensation. Excitation in the 550 nm range therefore proved to be a good compromise between 532 and 561 nm sources. Fiber laser technology is therefore providing the flexibility necessary for precisely matching laser wavelengths to our flow cytometry applications. PMID:19777600
NASA Astrophysics Data System (ADS)
Razani, Marjan; Zam, Azhar; Arezza, Nico J. J.; Wang, Yan J.; Kolios, Michael C.
2016-03-01
In this study, we present a technique to image the enhanced particle displacement generated using an acoustic radiation force (ARF) excitation source. A swept-source OCT (SS-OCT) system with a center wavelength of 1310nm, a bandwidth of ~100nm, and an A-scan rate of 100 kHz (MEMS-VCSEL OCT Thorlabs) was used to detect gold nanoparticle (70nm in diameter) displacement .ARF was applied after the nanoparticles passed through a porous membrane and diffused into a collagen (6% collagen) matrix. B-mode, M-B mode, 3D and Speckle Variance (SV) images were acquired before and after the ARF beam was on. Differential OCT speckle variance images with and without the ARF were used to measure the particle displacement. The images were used to detect the microscopic enhancement of nanoparticle displacement generated by the ARF. Using this OCT imaging technique, the extravasation of particles though a porous membrane and characterization of the enhanced particle displacement in a collagen gel after using an ARF excitation was achieved.
X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics
NASA Astrophysics Data System (ADS)
Rouxel, Jérémy R.; Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
2018-06-01
X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved x-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear x-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband x-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor or acceptor substituted stilbene.
Analysis of Ground Motion from An Underground Chemical Explosion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitarka, Arben; Mellors, Robert J.; Walter, William R.
Here in this paper we investigate the excitation and propagation of far-field seismic waves from the 905 kg trinitrotoluene equivalent underground chemical explosion SPE-3 recorded during the Source Physics Experiment (SPE) at the Nevada National Security Site. The recorded far-field ground motion at short and long distances is characterized by substantial shear-wave energy, and large azimuthal variations in P-and S-wave amplitudes. The shear waves observed on the transverse component of sensors at epicentral distances <50 m suggests they were generated at or very near the source. The relative amplitude of the shear waves grows as the waves propagate away frommore » the source. We analyze and model the shear-wave excitation during the explosion in the 0.01–10 Hz frequency range, at epicentral distances of up to 1 km. We used two simulation techniques. One is based on the empirical isotropic Mueller–Murphy (MM) (Mueller and Murphy, 1971) nuclear explosion source model, and 3D anelastic wave propagation modeling. The second uses a physics-based approach that couples hydrodynamic modeling of the chemical explosion source with anelastic wave propagation modeling. Comparisons with recorded data show the MM source model overestimates the SPE-3 far-field ground motion by an average factor of 4. The observations show that shear waves with substantial high-frequency energy were generated at the source. However, to match the observations additional shear waves from scattering, including surface topography, and heterogeneous shallow structure contributed to the amplification of far-field shear motion. Comparisons between empirically based isotropic and physics-based anisotropic source models suggest that both wave-scattering effects and near-field nonlinear effects are needed to explain the amplitude and irregular radiation pattern of shear motion observed during the SPE-3 explosion.« less
Analysis of Ground Motion from An Underground Chemical Explosion
Pitarka, Arben; Mellors, Robert J.; Walter, William R.; ...
2015-09-08
Here in this paper we investigate the excitation and propagation of far-field seismic waves from the 905 kg trinitrotoluene equivalent underground chemical explosion SPE-3 recorded during the Source Physics Experiment (SPE) at the Nevada National Security Site. The recorded far-field ground motion at short and long distances is characterized by substantial shear-wave energy, and large azimuthal variations in P-and S-wave amplitudes. The shear waves observed on the transverse component of sensors at epicentral distances <50 m suggests they were generated at or very near the source. The relative amplitude of the shear waves grows as the waves propagate away frommore » the source. We analyze and model the shear-wave excitation during the explosion in the 0.01–10 Hz frequency range, at epicentral distances of up to 1 km. We used two simulation techniques. One is based on the empirical isotropic Mueller–Murphy (MM) (Mueller and Murphy, 1971) nuclear explosion source model, and 3D anelastic wave propagation modeling. The second uses a physics-based approach that couples hydrodynamic modeling of the chemical explosion source with anelastic wave propagation modeling. Comparisons with recorded data show the MM source model overestimates the SPE-3 far-field ground motion by an average factor of 4. The observations show that shear waves with substantial high-frequency energy were generated at the source. However, to match the observations additional shear waves from scattering, including surface topography, and heterogeneous shallow structure contributed to the amplification of far-field shear motion. Comparisons between empirically based isotropic and physics-based anisotropic source models suggest that both wave-scattering effects and near-field nonlinear effects are needed to explain the amplitude and irregular radiation pattern of shear motion observed during the SPE-3 explosion.« less
NASA Astrophysics Data System (ADS)
Roberts, Z. A.; Casey, A. D.; Gunduz, I. E.; Rhoads, J. F.; Son, S. F.
2017-12-01
Composite energetic materials have been shown to generate heat under certain ultrasonic excitations, enough to drive rapid reactions in some cases. In an attempt to isolate the proposed heat generation mechanisms of frictional and viscoelastic heating at crystal-crystal and crystal-binder interfaces, a systematic study was conducted with cyclotetramethylene-tetranitramine crystals arranged as discrete inclusions within Sylgard 184 binder. Groups of three embedded crystals, or "triads," were arranged in two geometries with the crystals either in contact or slightly separated. Additionally, samples with good crystal-binder adhesion as well as ones mechanically debonded using compression were considered. The samples were excited ultrasonically with a contact piezoelectric transducer, and the top surface of each sample was monitored via infrared thermography. The contacting triads showed evidence of an intense localized heat source conducting to the polymer surface above the crystal locations in contrast to the separated triads. The debonded samples of both types reached higher maximum surface temperatures, on average. The results of both two-way and nested analysis of variance indicate a statistically significant difference for both adhesion and separation distance on temperature rise. We conclude that friction between crystal contact points and a debonded, moving binder at the crystal interface (also a mode of friction) play a significant role in localized heat generation, while viscoelastic/viscoplastic heating appears comparatively minor for these specific excitation conditions. The significance of frictional heat generation over viscoelastic heating in these systems may influence future design considerations related to the selection of binder materials for composite energetic materials.
Laser magnetic resonance in supersonic plasmas - The rotational spectrum of SH(+)
NASA Technical Reports Server (NTRS)
Hovde, David C.; Saykally, Richard J.
1987-01-01
The rotational spectrum of v = 0 and v = 1X3Sigma(-)SH(+) was measured by laser magnetic resonance. Rotationally cold (Tr = 30 K), vibrationally excited (Tv = 3000 K) ions were generated in a corona excited supersonic expansion. The use of this source to identify ion signals is described. Improved molecular parameters were obtained; term values are presented from which astrophysically important transitions may be calculated. Accurate hyperfine parameters for both vibrational levels were determined and the vibrational dependence of the Fermi contact interaction was resolved. The hyperfine parameters agree well with recent many-body perturbation theory calculations.
Rodriguez-Falces, Javier
2013-12-01
In electrophysiology studies, it is becoming increasingly common to explain experimental observations using both descriptive methods and quantitative approaches. However, some electrophysiological phenomena, such as the generation of extracellular potentials that results from the propagation of the excitation source along the muscle fiber, are difficult to describe and conceptualize. In addition, most traditional approaches aimed at describing extracellular potentials consist of complex mathematical machinery that gives no chance for physical interpretation. The aim of the present study is to present a new method to teach the formation of extracellular potentials around a muscle fiber from both a descriptive and quantitative perspective. The implementation of this method was tested through a written exam and a satisfaction survey. The new method enhanced the ability of students to visualize the generation of bioelectrical potentials. In addition, the new approach improved students' understanding of how changes in the fiber-to-electrode distance and in the shape of the excitation source are translated into changes in the extracellular potential. The survey results show that combining general principles of electrical fields with accurate graphic imagery gives students an intuitive, yet quantitative, feel for electrophysiological signals and enhances their motivation to continue their studies in the biomedical engineering field.
Performance of active feedforward control systems in non-ideal, synthesized diffuse sound fields.
Misol, Malte; Bloch, Christian; Monner, Hans Peter; Sinapius, Michael
2014-04-01
The acoustic performance of passive or active panel structures is usually tested in sound transmission loss facilities. A reverberant sending room, equipped with one or a number of independent sound sources, is used to generate a diffuse sound field excitation which acts as a disturbance source on the structure under investigation. The spatial correlation and coherence of such a synthesized non-ideal diffuse-sound-field excitation, however, might deviate significantly from the ideal case. This has consequences for the operation of an active feedforward control system which heavily relies on the acquisition of coherent disturbance source information. This work, therefore, evaluates the spatial correlation and coherence of ideal and non-ideal diffuse sound fields and considers the implications on the performance of a feedforward control system. The system under consideration is an aircraft-typical double panel system, equipped with an active sidewall panel (lining), which is realized in a transmission loss facility. Experimental results for different numbers of sound sources in the reverberation room are compared to simulation results of a comparable generic double panel system excited by an ideal diffuse sound field. It is shown that the number of statistically independent noise sources acting on the primary structure of the double panel system depends not only on the type of diffuse sound field but also on the sample lengths of the processed signals. The experimental results show that the number of reference sensors required for a defined control performance exhibits an inverse relationship to control filter length.
Kim, Namje; Shin, Jaeheon; Sim, Eundeok; Lee, Chul Wook; Yee, Dae-Su; Jeon, Min Yong; Jang, Yudong; Park, Kyung Hyun
2009-08-03
We report on a monolithic dual-mode semiconductor laser operating in the 1550-nm range as a compact optical beat source for tunable continuous-wave (CW) terahertz (THz) generation. It consists of two distributed feedback (DFB) laser sections and one phase section between them. Each wavelength of the two modes can be independently tuned by adjusting currents in micro-heaters which are fabricated on the top of the each DFB section. The continuous tuning of the CW THz emission from Fe(+)-implanted InGaAs photomixers is successfully demonstrated using our dual-mode laser as the excitation source. The CW THz frequency is continuously tuned from 0.17 to 0.49 THz.
Dusanowski, Ł; Holewa, P; Maryński, A; Musiał, A; Heuser, T; Srocka, N; Quandt, D; Strittmatter, A; Rodt, S; Misiewicz, J; Reitzenstein, S; Sęk, G
2017-12-11
We report on the experimental demonstration of triggered single-photon emission at the telecom O-band from In(Ga)As/GaAs quantum dots (QDs) grown by metal-organic vapor-phase epitaxy. Micro-photoluminescence excitation experiments allowed us to identify the p-shell excitonic states in agreement with high excitation photoluminescence on the ensemble of QDs. Hereby we drive an O-band-emitting GaAs-based QD into the p-shell states to get a triggered single photon source of high purity. Applying pulsed p-shell resonant excitation results in strong suppression of multiphoton events evidenced by the as measured value of the second-order correlation function at zero delay of 0.03 (and ~0.005 after background correction).
Intelligent and robust optimization frameworks for smart grids
NASA Astrophysics Data System (ADS)
Dhansri, Naren Reddy
A smart grid implies a cyberspace real-time distributed power control system to optimally deliver electricity based on varying consumer characteristics. Although smart grids solve many of the contemporary problems, they give rise to new control and optimization problems with the growing role of renewable energy sources such as wind or solar energy. Under highly dynamic nature of distributed power generation and the varying consumer demand and cost requirements, the total power output of the grid should be controlled such that the load demand is met by giving a higher priority to renewable energy sources. Hence, the power generated from renewable energy sources should be optimized while minimizing the generation from non renewable energy sources. This research develops a demand-based automatic generation control and optimization framework for real-time smart grid operations by integrating conventional and renewable energy sources under varying consumer demand and cost requirements. Focusing on the renewable energy sources, the intelligent and robust control frameworks optimize the power generation by tracking the consumer demand in a closed-loop control framework, yielding superior economic and ecological benefits and circumvent nonlinear model complexities and handles uncertainties for superior real-time operations. The proposed intelligent system framework optimizes the smart grid power generation for maximum economical and ecological benefits under an uncertain renewable wind energy source. The numerical results demonstrate that the proposed framework is a viable approach to integrate various energy sources for real-time smart grid implementations. The robust optimization framework results demonstrate the effectiveness of the robust controllers under bounded power plant model uncertainties and exogenous wind input excitation while maximizing economical and ecological performance objectives. Therefore, the proposed framework offers a new worst-case deterministic optimization algorithm for smart grid automatic generation control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy
We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1 flavor ensemble with lattices of sizemore » $$32^3 \\times 64$$ generated using the rational hybrid Monte Carlo algorithm at $a=0.081$~fm and with $$M_\\pi=312$$~MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a two-state fit to data at multiple values of the source-sink separation $$t_{\\rm sep}$$. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost-effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of $$t_{\\rm sep}$$ needed to demonstrate convergence of the isovector charges of the nucleon to the $$t_{\\rm sep} \\to \\infty $$ estimates is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy
We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1-flavor ensemble with lattices of size 32 3 × 64 generated using the rational hybrid Monte Carlo algorithm at a = 0.081 fm and with M π = 312 MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a 2-state fit to data at multiple values of the source-sink separationmore » t sep. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost effectiveness. As a result, a detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of t sep needed to demonstrate convergence of the isovector charges of the nucleon to the t sep → ∞ estimates is presented.« less
A Variable Frequency, Mis-Match Tolerant, Inductive Plasma Source
NASA Astrophysics Data System (ADS)
Rogers, Anthony; Kirchner, Don; Skiff, Fred
2014-10-01
Presented here is a survey and analysis of an inductively coupled, magnetically confined, singly ionized Argon plasma generated by a square-wave, variable frequency plasma source. The helicon-style antenna is driven directly by the class ``D'' amplifier without matching network for increased efficiency while maintaining independent control of frequency and applied power at the feed point. The survey is compared to similar data taken using a traditional exciter--power amplifier--matching network source. Specifically, the flexibility of this plasma source in terms of the independent control of electron plasma temperature and density is discussed in comparison to traditional source arrangements. Supported by US DOE Grant DE-FG02-99ER54543.
Laser Pulse Duration Is Critical For the Generation of Plasmonic Nanobubbles
2015-01-01
Plasmonic nanobubbles (PNBs) are transient vapor nanobubbles generated in liquid around laser-overheated plasmonic nanoparticles. Unlike plasmonic nanoparticles, PNBs’ properties are still largely unknown due to their highly nonstationary nature. Here we show the influence of the duration of the optical excitation on the energy efficacy and threshold of PNB generation. The combination of picosecond pulsed excitation with the nanoparticle clustering provides the highest energy efficacy and the lowest threshold fluence, around 5 mJ cm–2, of PNB generation. In contrast, long excitation pulses reduce the energy efficacy of PNB generation by several orders of magnitude. Ultimately, the continuous excitation has the minimal energy efficacy, nine orders of magnitude lower than that for the picosecond excitation. Thus, the duration of the optical excitation of plasmonic nanoparticles can have a stronger effect on the PNB generation than the excitation wavelength, nanoparticle size, shape, or other “stationary” properties of plasmonic nanoparticles. PMID:24916057
Leung, Ka-Ngo [Hercules, CA
2008-04-22
A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.
Leung, Ka-Ngo
2005-06-14
A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.
Leung, Ka-Ngo [Hercules, CA
2009-12-29
A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.
A LED-based phosphorimeter for measurement of microcirculatory oxygen pressure.
Guerci, Philippe; Ince, Yasin; Heeman, Paul; Faber, Dirk; Ergin, Bulent; Ince, Can
2017-02-01
Quantitative measurements of microcirculatory and tissue oxygenation are of prime importance in experimental research. The noninvasive phosphorescence quenching method has given further insight into the fundamental mechanisms of oxygen transport to healthy tissues and in models of disease. Phosphorimeters are devices dedicated to the study of phosphorescence quenching. The experimental applications of phosphorimeters range from measuring a specific oxygen partial pressure (Po 2 ) in cellular organelles such as mitochondria, finding values of Po 2 distributed over an organ or capillaries, to measuring microcirculatory Po 2 changes simultaneously in several organ systems. Most of the current phosphorimeters use flash lamps as a light excitation source. However, a major drawback of flash lamps is their inherent plasma glow that persists for tens of microseconds after the primary discharge. This complex distributed excitation pattern generated by the flash lamp can lead to inaccurate Po 2 readings unless a deconvolution analysis is performed. Using light-emitting diode (LED), a rectangular shaped light pulse can be generated that provides a more uniformly distributed excitation signal. This study presents the design and calibration process of an LED-based phosphorimeter (LED-P). The in vitro calibration of the LED-P using palladium(II)-meso-tetra(4-carboxyphenyl)-porphyrin (Pd-TCCP) as a phosphorescent dye is presented. The pH and temperature were altered to assess whether the decay times of the Pd-TCCP measured by the LED-P were significantly influenced. An in vivo validation experiment was undertaken to measure renal cortical Po 2 in a rat subjected to hypoxic ventilation conditions and ischemia/reperfusion. The benefits of using LEDs as a light excitation source are presented. Copyright © 2017 the American Physiological Society.
Scavenging energy from human walking through a shoe-mounted piezoelectric harvester
NASA Astrophysics Data System (ADS)
Fan, Kangqi; Liu, Zhaohui; Liu, Haiyan; Wang, Liansong; Zhu, Yingmin; Yu, Bo
2017-04-01
This study presents a shoe-mounted nonlinear piezoelectric energy harvester (PEH) with intent to capture energy from human walking. The PEH consists of a piezoelectric cantilever beam magnetically coupled to a ferromagnetic ball and a crossbeam. A sleeve is included to guide the travel of the ball. Experimental measurements and theoretical simulations demonstrate that the proposed design can collect energy from diverse excitation sources with different directions produced by the foot, including vibrations, swing motions, and the compressive force. The ball and the crossbeam sense the swing motion and the compressive force, respectively, and then actuate the piezoelectric beam to function. The piezoelectric beam senses the vibration along the tibial axis and generates electricity. The proposed PEH achieves the superposition of these excitations and generates multiple peaks in voltage output within one gait cycle. The output power generated by the fabricated prototype ranges from 0.03 mW to 0.35 mW when the walking velocity varies from 2 km/h to 8 km/h.
Analysis of Rayleigh-Lamb Modes in Soft-solids with Application to Surface Wave Elastography
NASA Astrophysics Data System (ADS)
Benech, Nicolás; Grinspan, Gustavo; Aguiar, Sofía; Brum, Javier; Negreira, Carlos; tanter, Mickäel; Gennisson, Jean-Luc
The goal of Surface Wave Elastography (SE) techniques is to estimate the shear elasticity of the sample by measuring the surface wave speed. In SE the thickness of the sample is often assumed to be infinite, in this way, the surface wave speed is directly linked to the sample's shear elasticity. However for many applications this assumption is not true. In this work, we study experimentally the Rayleigh-Lamb modes in soft solids of finite thickness to explore the optimal conditions for SWE. Experiments were carried out in three tissue mimicking phantoms of different thicknesses (10 mm, 20 mm and 60 mm) and same shear elasticity. The surface waves were generated at the surface of the phantom using piston attached to a mechanical vibrator. The central frequency of the excitation was varied between 60 Hz to 160 Hz. One component of the displacement field generated by the piston was measured at the surface and in the bulk of the sample trough a standard speckle tracking technique using a 256 element, 7.5 MHz central frequency linear array and an ultrasound ultrafast electronics. Finally, by measuring the phase velocity at each excitation frequency, velocity dispersion curves were obtained for each phantom. The results show that instead of a Rayleigh wave, zero order symmetric (S0) and antisymmetric (A0) Lamb modes are excited with this type of source. Moreover, in this study we show that due to the near field effects of the source, which are appreciable only in soft solids at low frequencies, both Lamb modes are separable in time and space. We show that while the Ao mode dominates close the source, the S0 mode dominates far away.
Water vapor: An extraordinary terahertz wave source under optical excitation
NASA Astrophysics Data System (ADS)
Johnson, Keith; Price-Gallagher, Matthew; Mamer, Orval; Lesimple, Alain; Fletcher, Clark; Chen, Yunqing; Lu, Xiaofei; Yamaguchi, Masashi; Zhang, X.-C.
2008-09-01
In modern terahertz (THz) sensing and imaging spectroscopy, water is considered a nemesis to be avoided due to strong absorption in the THz frequency range. Here we report the first experimental demonstration and theoretical implications of using femtosecond laser pulses to generate intense broadband THz emission from water vapor. When we focused an intense laser pulse in water vapor contained in a gas cell or injected from a gas jet nozzle, an extraordinarily strong THz field from optically excited water vapor is observed. Water vapor has more than 50% greater THz generation efficiency than dry nitrogen. It had previously been assumed that the nonlinear generation of THz waves in this manner primarily involves a free-electron plasma, but we show that the molecular structure plays an essential role in the process. In particular, we found that THz wave generation from H2O vapor is significantly stronger than that from D2O vapor. Vibronic activities of water cluster ions, occurring naturally in water vapor, may possibly contribute to the observed isotope effect along with rovibrational contributions from the predominant monomers.
Wind energy harvesting using a piezo-composite generating element (PCGE)
NASA Astrophysics Data System (ADS)
Tien, Cam Minh Tri; Goo, Nam-Seo
2010-04-01
Energy can be reclaimed and stored for later use to recharge a battery or power a device through a process called energy harvesting. Piezoelectric is being widely investigated for use in harvesting surrounding energy sources such as sun, wind, tides, indoor lighting, body movement or machine vibration, etc. This paper introduces a wind energy harvesting device using a Piezo-Composite Generating Element (PCGE). The PCGE is composed of layers of carbon/epoxy, PZT ceramic, and glass/epoxy cured at an elevated temperature. In the prototype, The PCGE performs as a secondary beam element. One end of the PCGE is attached on the frame of the device. The fan blade rotates in the direction of the wind and hits the PCGE's tip. When the PCGE is excited, the effects of the beam deformation allow it to generate electric power. In wind tunnel experiments, the PCGE is excited to vibrate at its first natural frequency and generates the power up to 8.5 mW. The prototype can harvest energy in urban regions with minor wind movement.
Zhao, Tao; Gong, Sen; Hu, Min; Zhong, Renbin; Liu, Diwei; Chen, Xiaoxing; Zhang, Ping; Wang, Xinran; Zhang, Chao; Wu, Peiheng; Liu, Shenggang
2015-01-01
Terahertz (THz) radiation can revolutionize modern science and technology. To this date, it remains big challenges to develop intense, coherent and tunable THz radiation sources that can cover the whole THz frequency region either by means of only electronics (both vacuum electronics and semiconductor electronics) or of only photonics (lasers, for example, quantum cascade laser). Here we present a mechanism which can overcome these difficulties in THz radiation generation. Due to the natural periodicity of 2π of both the circular cylindrical graphene structure and cyclotron electron beam (CEB), the surface plasmon polaritions (SPPs) dispersion can cross the light line of dielectric, making transformation of SPPs into radiation immediately possible. The dual natural periodicity also brings significant excellences to the excitation and the transformation. The fundamental and hybrid SPPs modes can be excited and transformed into radiation. The excited SPPs propagate along the cyclotron trajectory together with the beam and gain energy from the beam continuously. The radiation density is enhanced over 300 times, up to 105 W/cm2. The radiation frequency can be widely tuned by adjusting the beam energy or chemical potential. This mechanism opens a way for developing desired THz radiation sources to cover the whole THz frequency regime. PMID:26525516
NASA Astrophysics Data System (ADS)
Chandrasekhar, Ngangbam; Singh, Nungleppam Monorajan; Gartia, R. K.
2018-04-01
Luminescent techniques require one or the other source of excitations which may vary from high cost X-rays, γ-rays, β-rays etc. to low cost LED. Persistent luminescent materials or Glow-in-the-Dark phosphors are the optical harvesters which store the optical energy from day light illuminating a whole night. They are so sensitive that they can be excited even with the low light of firefly. Therefore, instead of using a high cost excitation source authors have developed a low cost functioning of excitation source controlling short pulses of LED to excite persistent phosphors with the aid of ExpEYES Junior (Hardware/software framework developed by IUAC, New Delhi). Using this, the authors have excited the sample under investigation upto 10 ms. Trap spectroscopy of the pre-excited sample with LED is studied using Thermoluminescence (TL) technique. In this communication, development of the excitation source is discussed and demonstrate the its usefulness in the study of trap spectroscopy of commercially available CaS:Eu2+, Sm3+. Trapping parameters are also evaluated using Computerized Glow Curve Deconvolution (CGCD) technique.
Layer-specific excitation/inhibition balances during neuronal synchronization in the visual cortex.
Adesnik, Hillel
2018-05-01
Understanding the balance between synaptic excitation and inhibition in cortical circuits in the brain, and how this contributes to cortical rhythms, is fundamental to explaining information processing in the cortex. This study used cortical layer-specific optogenetic activation in mouse cortex to show that excitatory neurons in any cortical layer can drive powerful gamma rhythms, while inhibition balances excitation. The net impact of this is to keep activity within each layer in check, but simultaneously to promote the propagation of activity to downstream layers. The data show that rhythm-generating circuits exist in all principle layers of the cortex, and provide layer-specific balances of excitation and inhibition that affect the flow of information across the layers. Rhythmic activity can synchronize neural ensembles within and across cortical layers. While gamma band rhythmicity has been observed in all layers, the laminar sources and functional impacts of neuronal synchronization in the cortex remain incompletely understood. Here, layer-specific optogenetic stimulation demonstrates that populations of excitatory neurons in any cortical layer of the mouse's primary visual cortex are sufficient to powerfully entrain neuronal oscillations in the gamma band. Within each layer, inhibition balances excitation and keeps activity in check. Across layers, translaminar output overcomes inhibition and drives downstream firing. These data establish that rhythm-generating circuits exist in all principle layers of the cortex, but provide layer-specific balances of excitation and inhibition that may dynamically shape the flow of information through cortical circuits. These data might help explain how excitation/inhibition (E/I) balances across cortical layers shape information processing, and shed light on the diverse nature and functional impacts of cortical gamma rhythms. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Schmauch, Preston
2011-01-01
Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. Assessing the blade structural integrity is a complex task requiring an initial characterization of whether resonance is possible and then performing a forced response analysis if that condition is met. The standard technique for forced response analysis in rocket engines is to decompose a CFD-generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non-harmonic excitation sources that become present in complex flows. A substantial effort has been made to account for this denser spatial Fourier content in frequency response analysis (described in another paper by the author), but the question still remains whether the frequency response analysis itself is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, of bladed-disks undergoing this complex flow environment have been performed. The first is of a bladed disk with each blade modeled by simple beam elements. Six loading cases were generated by varying a baseline harmonic excitation in different ways based upon cold-flow testing from Heritage Fuel Air Turbine Test. It was hypothesized that the randomness and other variation from the standard harmonic excitation would reduce the blade structural response, but the results showed little reduction. The second study was of a realistic model of a bladed-disk excited by the same CFD used in the J2X engine program. It was hypothesized that enforcing periodicity in the CFD (inherent in the frequency response technique) would overestimate the response. The results instead showed that the transient analysis results were up to 10% higher for "clean" nodal diameter excitations and six times larger for "messy" excitations, where substantial Fourier content around the main harmonic exists. Because the bulk of resonance problems are due to the "clean" excitations, a 10% underprediction is not necessarily a problem, especially since the average response in the transient is similar to the frequency response result, and so in a realistic finite life calculation, the life would be same. However, in the rare cases when the "messy" excitations harmonics are identified as the source of potential resonance concerns, this research does indicate that frequency response analysis is inadequate for accurate characterization of blade structural capability.
Current source density correlates of cerebellar Golgi and Purkinje cell responses to tactile input
Tahon, Koen; Wijnants, Mike; De Schutter, Erik
2011-01-01
The overall circuitry of the cerebellar cortex has been known for over a century, but the function of many synaptic connections remains poorly characterized in vivo. We used a one-dimensional multielectrode probe to estimate the current source density (CSD) of Crus IIa in response to perioral tactile stimuli in anesthetized rats and to correlate current sinks and sources to changes in the spike rate of corecorded Golgi and Purkinje cells. The punctate stimuli evoked two distinct early waves of excitation (at <10 and ∼20 ms) associated with current sinks in the granular layer. The second wave was putatively of corticopontine origin, and its associated sink was located higher in the granular layer than the first trigeminal sink. The distinctive patterns of granular-layer sinks correlated with the spike responses of corecorded Golgi cells. In general, Golgi cell spike responses could be linearly reconstructed from the CSD profile. A dip in simple-spike activity of coregistered Purkinje cells correlated with a current source deep in the molecular layer, probably generated by basket cell synapses, interspersed between sparse early sinks presumably generated by synapses from granule cells. The late (>30 ms) enhancement of simple-spike activity in Purkinje cells was characterized by the absence of simultaneous sinks in the granular layer and by the suppression of corecorded Golgi cell activity, pointing at inhibition of Golgi cells by Purkinje axon collaterals as a likely mechanism of late Purkinje cell excitation. PMID:21228303
Pegylated and nanoparticle-conjugated sulfonium salt photo triggers necrotic cell death.
Fadhel, Alaa A; Yue, Xiling; Ghazvini Zadeh, Ebrahim H; Bondar, Mykhailo V; Belfield, Kevin D
Photodynamic therapy (PDT) processes involving the production of singlet oxygen face the issue of oxygen concentration dependency. Despite high oxygen delivery, a variety of properties related to metabolism and vascular morphology in cancer cells result in hypoxic environments, resulting in limited effectiveness of such therapies. An alternative oxygen-independent agent whose cell cytotoxicity can be remotely controlled by light may allow access to treatment of hypoxic tumors. Toward that end, we developed and tested both polyethylene glycol (PEG)-functionalized and hydrophilic silica nanoparticle (SiNP)-enriched photoacid generator (PAG) as a nontraditional PDT agent to effectively induce necrotic cell death in HCT-116 cells. Already known for applications in lithography and cationic polymerization, our developed oxygen-independent PDT, whether free or highly monodispersed on SiNPs, generates acid when a one-photon (1P) or two-photon (2P) excitation source is used, thus potentially permitting deep tissue treatment. Our study shows that when conjugated to SiNPs with protruding amine functionalities (SiNP-PAG9), such atypical PDT agents can be effectively delivered into HCT-116 cells and compartmentalize exclusively in lysosomes and endosomes. Loss of cell adhesion and cell swelling are detected when an excitation source is applied, suggesting that SiNP-PAG9, when excited via near-infrared 2P absorption (a subject of future investigation), can be used as a delivery system to selectively induce cell death in oxygen-deprived optically thick tissue.
Tropical Convection's Roles in Tropical Tropopause Cirrus
NASA Technical Reports Server (NTRS)
Boehm, Matthew T.; Starr, David OC.; Verlinde, Johannes; Lee, Sukyoung
2002-01-01
The results presented here show that tropical convection plays a role in each of the three primary processes involved in the in situ formation of tropopause cirrus. First, tropical convection transports moisture from the surface into the upper troposphere. Second, tropical convection excites Rossby waves that transport zonal momentum toward the ITCZ, thereby generating rising motion near the equator. This rising motion helps transport moisture from where it is detrained from convection to the cold-point tropopause. Finally, tropical convection excites vertically propagating tropical waves (e.g. Kelvin waves) that provide one source of large-scale cooling near the cold-point tropopause, leading to tropopause cirrus formation.
NASA Astrophysics Data System (ADS)
Yamamoto, Takeshi; Kato, Shigeki
2000-05-01
The mode specificity of the unimolecular reaction of HFCO is studied by six-dimensional quantum dynamics calculations. The energy and mode dependency of the dissociation rate is examined by propagating a number of wave packets with a small energy dispersion representing highly excited states with respect to a specific vibrational mode. The wave packets are generated by applying a set of filter operators onto a source vibrational state. All the information necessary for propagating the wave packets is obtained from a single propagation of the source state, thus allowing a significant decrease of computational effort. The relevant spectral peaks are assigned using the three-dimensional CH chromophore Hamiltonian. The resulting dissociation rate of the CH stretching excited state is in agreement with that obtained from a statistical theory, while the rates of the out-of-plane bending excited states are about one order of magnitude smaller than the statistical rates. A local-mode analysis also shows that the relaxation of the out-of-plane excitation proceeds very slowly within 3 ps. These results clearly indicate weak couplings of the out-of-plane bending excited states with other in-plane vibrational states, which is in qualitative agreement with experimental findings. From a computational point of view, a parallel supercomputer is utilized efficiently to handle an ultra large basis set of an order of 108, and 200 Gflops rate on average is achieved in the dynamics calculations.
NASA Astrophysics Data System (ADS)
Mazlan, Mohamed Mubin Aizat; Sulaiman, Erwan; Husin, Zhafir Aizat; Othman, Syed Muhammad Naufal Syed; Khan, Faisal
2015-05-01
In hybrid excitation machines (HEMs), there are two main flux sources which are permanent magnet (PM) and field excitation coil (FEC). These HEMs have better features when compared with the interior permanent magnet synchronous machines (IPMSM) used in conventional hybrid electric vehicles (HEVs). Since all flux sources including PM, FEC and armature coils are located on the stator core, the rotor becomes a single piece structure similar with switch reluctance machine (SRM). The combined flux generated by PM and FEC established more excitation fluxes that are required to produce much higher torque of the motor. In addition, variable DC FEC can control the flux capabilities of the motor, thus the machine can be applied for high-speed motor drive system. In this paper, the comparisons of single-phase 8S-4P outer and inner rotor hybrid excitation flux switching machine (HEFSM) are presented. Initially, design procedures of the HEFSM including parts drawing, materials and conditions setting, and properties setting are explained. Flux comparisons analysis is performed to investigate the flux capabilities at various current densities. Then the flux linkages of PM with DC FEC of various DC FEC current densities are examined. Finally torque performances are analyzed at various armature and FEC current densities for both designs. As a result, the outer-rotor HEFSM has higher flux linkage of PM with DC FEC and higher average torque of approximately 10% when compared with inner-rotor HEFSM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, C. S., E-mail: csd203@exeter.ac.uk; Kruglyak, V. V.; Sadovnikov, A. V.
We have used Brillouin Light Scattering and micromagnetic simulations to demonstrate a point-like source of spin waves created by the inherently nonuniform internal magnetic field in the vicinity of an isolated antidot formed in a continuous film of yttrium-iron-garnet. The field nonuniformity ensures that only well-defined regions near the antidot respond in resonance to a continuous excitation of the entire sample with a harmonic microwave field. The resonantly excited parts of the sample then served as reconfigurable sources of spin waves propagating (across the considered sample) in the form of caustic beams. Our findings are relevant to further development ofmore » magnonic circuits, in which point-like spin wave stimuli could be required, and as a building block for interpretation of spin wave behavior in magnonic crystals formed by antidot arrays.« less
Plasmonic superfocusing on metallic tips for near-field optical imaging and spectroscopy
NASA Astrophysics Data System (ADS)
Neacsu, Catalin C.; Olmon, Rob; Berweger, Samuel; Kappus, Alexandria; Kirchner, Friedrich; Ropers, Claus; Saraf, Lax; Raschke, Markus B.
2008-03-01
Realization of localized light sources through nonlocal excitation is important in the context of plasmon photonics, molecular sensing, and in particular near-field optical techniques. Here, the efficient conversion of propagating surface plasmons, launched on the shaft of a scanning probe tip, into localized plasmon at the apex provides a true nanoconfined light source. Focused ion beam milling is used to generate periodic surface nanostructures on the tip shaft that allow for tailoring the plasmon excitation. Using ultrashort visible and mid-IR transients the dynamics of the propagation and subsequent scattered emission is characterized. The strong field enhancement and spatial field confinement at the apex is demonstrated studying the coupling of the tip in near-field interaction with a flat sample surface. It is used in scattering near-field spectroscopic imaging (s-SNOM) to probe surface nanostructures with spatial resolution down to 10 nm.
Two-photon or higher-order absorbing optical materials and methods of use
NASA Technical Reports Server (NTRS)
Marder, Seth (Inventor); Perry, Joseph (Inventor)
2012-01-01
Compositions capable of simultaneous two-photon absorption and higher order absorptivities are provided. Compounds having a donor-pi-donor or acceptor-pi-acceptor structure are of particular interest, where the donor is an electron donating group, acceptor is an electron accepting group, and pi is a pi bridge linking the donor and/or acceptor groups. The pi bridge may additionally be substituted with electron donating or withdrawing groups to alter the absorptive wavelength of the structure. Also disclosed are methods of generating an excited state of such compounds through optical stimulation with light using simultaneous absorption of photons of energies individually insufficient to achieve an excited state of the compound, but capable of doing so upon simultaneous absorption of two or more such photons. Applications employing such methods are also provided, including controlled polymerization achieved through focusing of the light source(s) used.
NASA Astrophysics Data System (ADS)
Shanks, W. C., III; Böhlke, J. K.; Seal, R. R., II
Studies of abundance variations of light stable isotopes in nature have had a tremendous impact on all aspects of geochemistry since the development, in 1947, of a gas source isotope ratio mass spectrometer capable of measuring small variations in stable isotope ratios [Nier, 1947] Stable isotope geochemistry is now a mature field, as witnessed by the proliferation of commercially available mass spectrometers installed at virtually every major academic, government, and private-sector research geochemistry laboratory. A recent search of a literature database revealed over 3,000 articles that utilized stable isotope geochemistry over the last 20 years. Nonetheless, many exciting new technical developments are leading to exciting new discoveries and applications. In particular, micro analytical techniques involving new generations of laser- and ion-microprobes are revolutionizing the types of analyses that can be done on spot sizes as small as a few tens of micrometers [Shanks and Criss, 1989]. New generations of conventional gas source and thermal ionization mass spectrometers, with high levels of automation and increased sensitivity and precision, are allowing analyses of large numbers of samples, like those needed for stable isotope stratigraphy in marine sediments, and are enabling the development and application of new isotopic systems.
Shanks, Wayne C.; Böhlke, John Karl; Seal, Robert R.; Humphries, S.D.; Zierenberg, Robert A.; Mullineaux, Lauren S.; Thomson, Richard E.
1995-01-01
Studies of abundance variations of light stable isotopes in nature have had a tremendous impact on all aspects of geochemistry since the development, in 1947, of a gas source isotope ratio mass spectrometer capable of measuring small variations in stable isotope ratios (Nice, 1947]. Stable isotope geochemistry is now a mature field, as witnessed by the proliferation of commercially available mass spectrometers installed at virtually every major academic, government, and private-sector research geochemistry laboratory. A recent search of a literature database revealed over 3,000 articles that utilized stable isotope geochemistry over the last 20 years. Nonetheless, many exciting new technical developments are leading to exciting new discoveries and applications. In particular, micro-analytical techniques involving new generations of laser- and ion-microprobes are revolutionizing the types of analyses that can be done on spot sizes as small as a few tens of micrometers [Shanks and Criss, 1989]. New generations of conventional gas source and thermal ionization mass spectrometers, with high levels of automation and increased sensitivity and precision, are allowing analyses of large numbers of samples, like those needed for stable isotope stratigraphy in marine sediments, and are enabling the development and application of new isotopic systems.
Donoso, José R; Schmitz, Dietmar; Maier, Nikolaus; Kempter, Richard
2018-03-21
Hippocampal ripples are involved in memory consolidation, but the mechanisms underlying their generation remain unclear. Models relying on interneuron networks in the CA1 region disagree on the predominant source of excitation to interneurons: either "direct," via the Schaffer collaterals that provide feedforward input from CA3 to CA1, or "indirect," via the local pyramidal cells in CA1, which are embedded in a recurrent excitatory-inhibitory network. Here, we used physiologically constrained computational models of basket-cell networks to investigate how they respond to different conditions of transient, noisy excitation. We found that direct excitation of interneurons could evoke ripples (140-220 Hz) that exhibited intraripple frequency accommodation and were frequency-insensitive to GABA modulators, as previously shown in in vitro experiments. In addition, the indirect excitation of the basket-cell network enabled the expression of intraripple frequency accommodation in the fast-gamma range (90-140 Hz), as in vivo In our model, intraripple frequency accommodation results from a hysteresis phenomenon in which the frequency responds differentially to the rising and descending phases of the transient excitation. Such a phenomenon predicts a maximum oscillation frequency occurring several milliseconds before the peak of excitation. We confirmed this prediction for ripples in brain slices from male mice. These results suggest that ripple and fast-gamma episodes are produced by the same interneuron network that is recruited via different excitatory input pathways, which could be supported by the previously reported intralaminar connectivity bias between basket cells and functionally distinct subpopulations of pyramidal cells in CA1. Together, our findings unify competing inhibition-first models of rhythm generation in the hippocampus. SIGNIFICANCE STATEMENT The hippocampus is a part of the brain of humans and other mammals that is critical for the acquisition and consolidation of memories. During deep sleep and resting periods, the hippocampus generates high-frequency (∼200 Hz) oscillations called ripples, which are important for memory consolidation. The mechanisms underlying ripple generation are not well understood. A prominent hypothesis holds that the ripples are generated by local recurrent networks of inhibitory neurons. Using computational models and experiments in brain slices from rodents, we show that the dynamics of interneuron networks clarify several previously unexplained characteristics of ripple oscillations, which advances our understanding of hippocampus-dependent memory consolidation. Copyright © 2018 the authors 0270-6474/18/383125-23$15.00/0.
NASA Astrophysics Data System (ADS)
Booske, John H.
2008-05-01
Homeland security and military defense technology considerations have stimulated intense interest in mobile, high power sources of millimeter-wave (mmw) to terahertz (THz) regime electromagnetic radiation, from 0.1 to 10THz. While vacuum electronic sources are a natural choice for high power, the challenges have yet to be completely met for applications including noninvasive sensing of concealed weapons and dangerous agents, high-data-rate communications, high resolution radar, next generation acceleration drivers, and analysis of fluids and condensed matter. The compact size requirements for many of these high frequency sources require miniscule, microfabricated slow wave circuits. This necessitates electron beams with tiny transverse dimensions and potentially very high current densities for adequate gain. Thus, an emerging family of microfabricated, vacuum electronic devices share many of the same plasma physics challenges that are currently confronting "classic" high power microwave (HPM) generators including long-life bright electron beam sources, intense beam transport, parasitic mode excitation, energetic electron interaction with surfaces, and rf air breakdown at output windows. The contemporary plasma physics and other related issues of compact, high power mmw-to-THz sources are compared and contrasted to those of HPM generation, and future research challenges and opportunities are discussed.
Permanent-magnet-less machine having an enclosed air gap
Hsu, John S [Oak Ridge, TN
2012-02-07
A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).
Permanent-magnet-less machine having an enclosed air gap
Hsu, John S.
2013-03-05
A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).
NASA Technical Reports Server (NTRS)
Shaw, D. T.; Manikopoulos, C. N.; Chang, T.; Lee, C. H.; Chiu, N.
1977-01-01
Ion generation and recombination mechanisms in the cesium plasma as they pertain to the advanced mode thermionic energy converter were studied. The decay of highly ionized cesium plasma was studied in the near afterglow to examine the recombination processes. Very low recombination in such a plasma may prove to be of considerable importance in practical converters. The approaches of external cesium generation were vibrationally excited nitrogen as an energy source of ionization of cesium ion, and microwave power as a means of resonant sustenance of the cesium plasma. Experimental data obtained so far show that all three techniques - i.e., the non-LTE high-voltage pulsing, the energy transfer from vibrationally excited diatomic gases, and the external pumping with a microwave resonant cavity - can produce plasmas with their densities significantly higher than the Richardson density. The implication of these findings as related to Lam's theory is discussed.
Synchronous Generators with Superconductive Excitation Windings,
1983-07-27
AD-Al3i 832 SYNCHRONOUS GENERATORS WITH SUPERCONDUCTIVE EXCITATION i/i WINDINGS(U) FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OH W PASZEK ET AL. 27...1.1 FTD-ID(RS)T-1087-83 FOREIGN TECHNOLOGY DIVISION SYNCHRONOUS GENERATORS WITH SUPERCONDUCTIVE EXCITATION WINDINGS by W. Paszek and A. Rozycki DTIC...MICROFICHE NR: FTD-83-C-000906 j.r.voiFor SYNCHRONOUS GENERATORS WITH SUPERCONDUCTIVE T EXCITATION WINDINGS 0;~f~on~ SJustification By: W./Paszek and A
49. VIEW LOOKING NORTHEAST AT EXCITER GENERATOR "c" LOCATED UNDER ...
49. VIEW LOOKING NORTHEAST AT EXCITER GENERATOR "c" LOCATED UNDER CONTROL ROOM ON SOUTH SIDE OF TURBINE HALL. THE EXCITER GENERATORS PROVIDED DIRECT CURRENT TO THE FIELD COILS OF THE MAIN GENERATORS. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT
NASA Astrophysics Data System (ADS)
Chen, Te-Chih; Kuo, Yue; Chang, Ting-Chang; Chen, Min-Chen; Chen, Hua-Mao
2017-10-01
Device characteristics changes in an a-IGZO thin film transistor under light illumination and at raised temperature have been investigated. Light exposure causes a large leakage current, which is more obvious with an increase in the illumination energy, power and the temperature. The increase in the leakage current is due to the trap assisted photon excitation process that generates electron-hole pairs and the mechanism is enhanced with the additional thermal energy. The leakage current comes from the source side because holes generated in the process drift to the source side and therefore lower the barrier height. The above mechanism has been further verified with experiments of drain bias induced shifts in the threshold voltage and the subthreshold slope.
Bright nanoscale source of deterministic entangled photon pairs violating Bell's inequality.
Jöns, Klaus D; Schweickert, Lucas; Versteegh, Marijn A M; Dalacu, Dan; Poole, Philip J; Gulinatti, Angelo; Giudice, Andrea; Zwiller, Val; Reimer, Michael E
2017-05-10
Global, secure quantum channels will require efficient distribution of entangled photons. Long distance, low-loss interconnects can only be realized using photons as quantum information carriers. However, a quantum light source combining both high qubit fidelity and on-demand bright emission has proven elusive. Here, we show a bright photonic nanostructure generating polarization-entangled photon pairs that strongly violates Bell's inequality. A highly symmetric InAsP quantum dot generating entangled photons is encapsulated in a tapered nanowire waveguide to ensure directional emission and efficient light extraction. We collect ~200 kHz entangled photon pairs at the first lens under 80 MHz pulsed excitation, which is a 20 times enhancement as compared to a bare quantum dot without a photonic nanostructure. The performed Bell test using the Clauser-Horne-Shimony-Holt inequality reveals a clear violation (S CHSH > 2) by up to 9.3 standard deviations. By using a novel quasi-resonant excitation scheme at the wurtzite InP nanowire resonance to reduce multi-photon emission, the entanglement fidelity (F = 0.817 ± 0.002) is further enhanced without temporal post-selection, allowing for the violation of Bell's inequality in the rectilinear-circular basis by 25 standard deviations. Our results on nanowire-based quantum light sources highlight their potential application in secure data communication utilizing measurement-device-independent quantum key distribution and quantum repeater protocols.
Ultrasound acoustic wave energy transfer and harvesting
NASA Astrophysics Data System (ADS)
Shahab, Shima; Leadenham, Stephen; Guillot, François; Sabra, Karim; Erturk, Alper
2014-04-01
This paper investigates low-power electricity generation from ultrasound acoustic wave energy transfer combined with piezoelectric energy harvesting for wireless applications ranging from medical implants to naval sensor systems. The focus is placed on an underwater system that consists of a pulsating source for spherical wave generation and a harvester connected to an external resistive load for quantifying the electrical power output. An analytical electro-acoustic model is developed to relate the source strength to the electrical power output of the harvester located at a specific distance from the source. The model couples the energy harvester dynamics (piezoelectric device and electrical load) with the source strength through the acoustic-structure interaction at the harvester-fluid interface. Case studies are given for a detailed understanding of the coupled system dynamics under various conditions. Specifically the relationship between the electrical power output and system parameters, such as the distance of the harvester from the source, dimensions of the harvester, level of source strength, and electrical load resistance are explored. Sensitivity of the electrical power output to the excitation frequency in the neighborhood of the harvester's underwater resonance frequency is also reported.
In vivo three-photon imaging of deep cerebellum
NASA Astrophysics Data System (ADS)
Wang, Mengran; Wang, Tianyu; Wu, Chunyan; Li, Bo; Ouzounov, Dimitre G.; Sinefeld, David; Guru, Akash; Nam, Hyung-Song; Capecchi, Mario R.; Warden, Melissa R.; Xu, Chris
2018-02-01
We demonstrate three-photon microscopy (3PM) of mouse cerebellum at 1 mm depth by imaging both blood vessels and neurons. We compared 3PM and 2PM in the mouse cerebellum for imaging green (using excitation sources at 1300 nm and 920 nm, respectively) and red fluorescence (using excitation sources at 1680 nm and 1064 nm, respectively). 3PM enabled deeper imaging than 2PM because the use of longer excitation wavelength reduces the scattering in biological tissue and the higher order nonlinear excitation provides better 3D localization. To illustrate these two advantages quantitatively, we measured the signal decay as well as the signal-to-background ratio (SBR) as a function of depth. We performed 2-photon imaging from the brain surface all the way down to the area where the SBR reaches 1, while at the same depth, 3PM still has SBR above 30. The segmented decay curve shows that the mouse cerebellum has different effective attenuation lengths at different depths, indicating heterogeneous tissue property for this brain region. We compared the third harmonic generation (THG) signal, which is used to visualize myelinated fibers, with the decay curve. We found that the regions with shorter effective attenuation lengths correspond to the regions with more fibers. Our results indicate that the widespread, non-uniformly distributed myelinated fibers adds heterogeneity to mouse cerebellum, which poses additional challenges in deep imaging of this brain region.
Infrasonic troposphere-ionosphere coupling in Hawaii
NASA Astrophysics Data System (ADS)
Garces, M. A.
2011-12-01
The propagation of infrasonic waves in the ionospheric layers has been considered since the 1960's. It is known that space weather can alter infrasonic propagation below the E layer (~120 km altitude), but it was thought that acoustic attenuation was too severe above this layer to sustain long-range propagation. Although volcanoes, earthquakes and tsunamis (all surface sources) appear to routinely excite perturbations in the ionospheric F layer by the propagation of acoustic and acoustic-gravity waves through the atmosphere, there are few reports of the inverse pathway. This paper discusses some of the routine ground-based infrasonic array observations of ionospheric returns from surface sources. These thermospheric returns generally point back towards the source, with an azimuth deviation that can be corrected using the wind velocity profiles in the mesosphere and lower thermosphere. However, the seismic excitation in the North Pacific by the Tohoku earthquake ensonified the coupled lithosphere-atmosphere-ionosphere waveguide in the 0.01 - 0.1 Hz frequency band, producing anomalous signals observed by infrasound arrays in Hawaii. These infrasonic signals propagated at curiously high velocities, suggesting that some assumptions on ionospheric sound generation and propagation could be revisited.
NASA Technical Reports Server (NTRS)
Fung, Shing F.; Vinas, Adolfo F.
1994-01-01
The electron cyclotron maser instability (CMI) driven by momentum space anisotropy (df/dp (sub perpendicular) greater than 0) has been invoked to explain many aspects, such as the modes of propagation, harmonic emissions, and the source characteristics of the auroral kilometric radiation (AKR). Recent satellite observations of AKR sources indicate that the source regions are often imbedded within the auroral acceleration region characterized by the presence of a field-aligned potential drop. In this paper we investigate the excitation of the fundamental extraordinary mode radiation due to the accelerated electrons. The momentum space distribution of these energetic electrons is modeled by a realistic upward loss cone as modified by the presence of a parallel potential drop below the observation point. On the basis of linear growth rate calculations we present the emission characteristics, such as the frequency spectrum and the emission angular distribution as functions of the plasma parameters. We will discuss the implication of our results on the generation of the AKR from the edges of the auroral density cavities.
High energy photons excited photodynamic cancer therapy in vitro
NASA Astrophysics Data System (ADS)
Guo, Yiping; Sheng, Shi; Zhang, Wei; Lun, Michael; Tsai, Shih-Ming; Chin, Wei-Chun; Hoglund, Roy; Li, Changqing
2018-02-01
Photodynamic therapy (PDT) is a noninvasive phototherapy method that has been clinically approved for many years. During this type of therapy, the photosensitizing agent will be excited by optical photons to generate reactive oxygen species which can kill nearby cancer cells. However, due to the strong optical scattering and absorption of tissue, optical photons can only penetrate tissues in few millimeters which result in the limited applications of PDT to superficial lesions like skin cancers. In this study, to overcome the penetration limitations, we used high-energy photons to excite photosensitizers directly by assuming that high-energy photons generate low-energy optical photons in tissues to excite photosensitizers. Cesium- 137 irradiator has been used as the high-energy photon source. A fiber pigtailed diode laser was used to validate the photosensitizer's efficacy. We used MPPa as the photosensitizer to treat A549 cancer cell line with different concentrations of drug (10μM/ ml, 5 μM/ml, 2.5 μM/ml, 1 μM/ml and 0 μM/ml). We have performed an irradiation experiment for different time durations of 30 min, 15 min, 7 min to 3 min, respectively, and we also compared different drug concentrations and different exposure durations. Our study not only proved the MPPa PDT method was effective, but also indicated that high-energy photons enhanced PDT could potentially overcome the penetration limitations thus making PDT feasible for deep tissue cancer.
Hofmann, Oliver; Wang, Xuhua; Demello, John C; Bradley, Donal D C; Demello, Andrew J
2005-08-01
As a first step towards a fully disposable stand-alone diagnostic microchip for determination of urinary human serum albumin (HSA), we report the use of a thin-film organic light emitting diode (OLED) as an excitation source for microscale fluorescence detection. The OLED has a peak emission wavelength of 540 nm, is simple to fabricate on flexible or rigid substrates, and operates at drive voltages below 10 V. In a fluorescence assay, HSA is reacted with Albumin Blue 580, generating a strong emission at 620 nm when excited with the OLED. Filter-less discrimination between excitation light and generated fluorescence is achieved through an orthogonal detection geometry. When the assay is performed in 800 microm deep and 800 microm wide microchannels on a poly(dimethylsiloxane)(PDMS) microchip at flow rates of 20 microL min(-1), HSA concentrations down to 10 mg L(-1) can be detected with a linear range from 10 to 100 mg L(-1). This sensitivity is sufficient for the determination of microalbuminuria (MAU), an increased urinary albumin excretion indicative of renal disease (clinical cut-off levels: 15-40 mg L(-1)).
Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li
2016-01-01
In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed. PMID:27125663
Reduction of phase noise in nanowire spin orbit torque oscillators
Yang, Liu; Verba, Roman; Tiberkevich, Vasil; Schneider, Tobias; Smith, Andrew; Duan, Zheng; Youngblood, Brian; Lenz, Kilian; Lindner, Jürgen; Slavin, Andrei N.; Krivorotov, Ilya N.
2015-01-01
Spin torque oscillators (STOs) are compact, tunable sources of microwave radiation that serve as a test bed for studies of nonlinear magnetization dynamics at the nanometer length scale. The spin torque in an STO can be created by spin-orbit interaction, but low spectral purity of the microwave signals generated by spin orbit torque oscillators hinders practical applications of these magnetic nanodevices. Here we demonstrate a method for decreasing the phase noise of spin orbit torque oscillators based on Pt/Ni80Fe20 nanowires. We experimentally demonstrate that tapering of the nanowire, which serves as the STO active region, significantly decreases the spectral linewidth of the generated signal. We explain the observed linewidth narrowing in the framework of the Ginzburg-Landau auto-oscillator model. The model reveals that spatial non-uniformity of the spin current density in the tapered nanowire geometry hinders the excitation of higher order spin-wave modes, thus stabilizing the single-mode generation regime. This non-uniformity also generates a restoring force acting on the excited self-oscillatory mode, which reduces thermal fluctuations of the mode spatial position along the wire. Both these effects improve the STO spectral purity. PMID:26592432
Illuminating water and life: Emilio Del Giudice.
Ho, Mae-Wan
2015-01-01
The quantum electrodynamics theory of water put forward by Del Giudice and colleagues provides a useful foundation for a new science of water for life. The interaction of light with liquid water generates quantum coherent domains in which the water molecules oscillate between the ground state and an excited state close to the ionizing potential of water. This produces a plasma of almost free electrons favoring redox reactions, the basis of energy metabolism in living organisms. Coherent domains stabilized by surfaces, such as membranes and macromolecules, provide the excited interfacial water that enables photosynthesis to take place, on which most of life on Earth depends. Excited water is the source of superconducting protons for rapid intercommunication within the body. Coherent domains can also trap electromagnetic frequencies from the environment to orchestrate and activate specific biochemical reactions through resonance, a mechanism for the most precise regulation of gene function.
Comparison of one- and two-photon optical beam-induced current imaging
NASA Astrophysics Data System (ADS)
Xu, Chris; Denk, Winfried
1999-08-01
Optical beam induced current (OBIC) imaging through the backside of integrated circuits was investigated in the wavelength λ region from 1.15 to 1.26 μm. With a subpicosecond excitation source and approximately 1 mW at the sample, the two-photon contribution to the generated photocurrent dominates at λ=1.25 μm but becomes negligible for λ<1.18 μm. One-photon- (1P-) and two-photon- (2P-) OBIC images are very different. In the 1P case a strong contribution by scattered light to the carrier generation leads to an edge enhancement effect that is entirely missing when 2P excitation dominates. 2P-OBIC images often show supply-voltage dependent intensity steps that are much sharper than the optical resolution permits. The advantages of 2P-OBIC lie in the spatial confinement of the free carrier generation, a more relevant contrast mechanism, and the promise of a substantial increase in spatial resolution because of the quadratic intensity dependence and the possibility of using silicon solid immersion lenses, which could eventually provide resolution sufficient for circuits made by deep UV lithography.
Floating electrode dielectrophoresis.
Golan, Saar; Elata, David; Orenstein, Meir; Dinnar, Uri
2006-12-01
In practice, dielectrophoresis (DEP) devices are based on micropatterned electrodes. When subjected to applied voltages, the electrodes generate nonuniform electric fields that are necessary for the DEP manipulation of particles. In this study, electrically floating electrodes are used in DEP devices. It is demonstrated that effective DEP forces can be achieved by using floating electrodes. Additionally, DEP forces generated by floating electrodes are different from DEP forces generated by excited electrodes. The floating electrodes' capabilities are explained theoretically by calculating the electric field gradients and demonstrated experimentally by using test-devices. The test-devices show that floating electrodes can be used to collect erythrocytes (red blood cells). DEP devices which contain many floating electrodes ought to have fewer connections to external signal sources. Therefore, the use of floating electrodes may considerably facilitate the fabrication and operation of DEP devices. It can also reduce device dimensions. However, the key point is that DEP devices can integrate excited electrodes fabricated by microtechnology processes and floating electrodes fabricated by nanotechnology processes. Such integration is expected to promote the use of DEP devices in the manipulation of nanoparticles.
Comparison of exciplex generation under optical and X-ray excitation
NASA Astrophysics Data System (ADS)
Kipriyanov, A. A.; Melnikov, A. R.; Stass, D. V.; Doktorov, A. B.
2017-09-01
Exciplex generation under optical and X-ray excitation in identical conditions is experimentally compared using a specially chosen model donor-acceptor system, anthracene (electron acceptor) and N,N-dimethylaniline (electron donor) in non-polar solution, and the results are analyzed and interpreted based on analytically calculated luminescence quantum yields. Calculations are performed on the basis of kinetic equations for multistage schemes of bulk exciplex production reaction under optical excitation and combination of bulk and geminate reactions of radical ion pairs under X-ray excitation. These results explain the earlier experimentally found difference in the ratio of the quantum yields of exciplexes and excited electron acceptors (exciplex generation efficiency) and the corresponding change in the exciplex generation efficiency under X-irradiation as compared to the reaction under optical excitation.
Comparison of exciplex generation under optical and X-ray excitation.
Kipriyanov, A A; Melnikov, A R; Stass, D V; Doktorov, A B
2017-09-07
Exciplex generation under optical and X-ray excitation in identical conditions is experimentally compared using a specially chosen model donor-acceptor system, anthracene (electron acceptor) and N,N-dimethylaniline (electron donor) in non-polar solution, and the results are analyzed and interpreted based on analytically calculated luminescence quantum yields. Calculations are performed on the basis of kinetic equations for multistage schemes of bulk exciplex production reaction under optical excitation and combination of bulk and geminate reactions of radical ion pairs under X-ray excitation. These results explain the earlier experimentally found difference in the ratio of the quantum yields of exciplexes and excited electron acceptors (exciplex generation efficiency) and the corresponding change in the exciplex generation efficiency under X-irradiation as compared to the reaction under optical excitation.
Atlas of Atomic Spectral Lines of Neptunium Emitted by Inductively Coupled Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeKalb, E.L. and Edelson, M. C.
1987-08-01
Optical emission spectra from high-purity Np-237 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 230-700 nm wavelength range are presented along with general commentary on the methodology used in collecting the data. The Ames Laboratory Nuclear Safeguards and Security Program has been charged with the task of developing optical spectroscopic methods to analyze the composition of spent nuclear fuels. Such materials are highly radioactive even after prolonged 'cooling' and are chemically complex. Neptunium (Np) is a highly toxic by-product of nuclear power generation and is found, in low abundance, in spent nuclear fuels. This atlasmore » of the optical emission spectrum of Np, as produced by an inductively coupled plasma (ICP) spectroscopic source, is part of a general survey of the ICP emission spectra of the actinide elements. The ICP emission spectrum of the actinides originates almost exclusively from the electronic relaxation of excited, singly ionized species. Spectral data on the Np ion emission spectrum (i.e., the Np II spectrum) have been reported by Tomkins and Fred [1] and Haaland [2]. Tomkins and Fred excited the Np II spectrum with a Cu spark discharge and identified 114 Np lines in the 265.5 - 436.3 nm spectral range. Haaland, who corrected some spectral line misidentifications in the work of Tomkins and Fred, utilized an enclosed Au spark discharge to excite the Np II spectrum and reported 203 Np lines within the 265.4 - 461.0 nm wavelength range.« less
Block 3 X-band receiver-exciter
NASA Technical Reports Server (NTRS)
Johns, C. E.
1987-01-01
The development of an X-band exciter, for use in the X-Band Uplink Subsystem, was completed. The exciter generates the drive signal for the X-band transmitter and also generates coherent test signals for the S- and X-band Block 3 translator and a Doppler reference signal for the Doppler extractor system. In addition to the above, the exciter generates other reference signals that are described. Also presented is an overview of the exciter design and some test data taken on the prototype. A brief discussion of the Block 3 Doppler extractor is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.H. Seabury; D.L. Chichester; C.J. Wharton
2008-08-01
Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory’s PINS Chemical Assay System has traditionally used a Cf-252 isotopic neutron source, but recently a Deuterium-Tritium (DT) Electronic Neutron Generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) andmore » high explosive (HE) filled munitions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seabury, E. H.; Chichester, D. L.; Wharton, C. J.
2009-03-10
Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory's PINS Chemical Assay System has traditionally used a {sup 252}Cf isotopic neutron source, but recently a deuterium-tritium (DT) electronic neutron generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM)more » and high explosive (HE) filled munitions.« less
Generation of auroral kilometric radiation by a finite-size source in a dipole magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burinskaya, T. M., E-mail: tburinsk@iki.rssi.ru; Shevelev, M. M.
2016-10-15
Generation, amplification, and propagation of auroral kilometric radiation in a narrow three-dimensional plasma cavity in which a weakly relativistic electron beam propagates is studied in the geometrical optics approximation. It is shown that the waves that start with a group velocity directed earthward and have optimal relation between the wave vector components determining the linear growth rate and the wave residence time inside the amplification region undergo the largest amplification. Taking into account the longitudinal velocity of fast electrons results in the shift of the instability domain toward wave vectors directed to the Earth and leads to a change inmore » the dispersion relation, due to which favorable conditions are created for the generation of waves with frequencies above the cutoff frequency for the cold background plasma at the wave generation altitude. The amplification factor for these waves is lower than for waves that have the same wave vectors but are excited by the electron beams with lower velocities along the magnetic field. For waves excited at frequencies below the cutoff frequency of the background plasma at the generation altitude, the amplification factor increases with increasing longitudinal electron velocity, because these waves reside for a longer time in the amplification region.« less
Generation and Radiation of Acoustic Waves from a 2-D Shear Layer using the CE/SE Method
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Wang, Xiao Y.; Chang, Sin-Chung; Jorgenson, Philip C. E.
2000-01-01
In the present work, the generation and radiation of acoustic waves from a 2-D shear layer problem is considered. An acoustic source inside of a 2-D jet excites an instability wave in the shear layer, resulting in sound Mach radiation. The numerical solution is obtained by solving the Euler equations using the space time conservation element and solution element (CE/SE) method. Linearization is achieved through choosing a small acoustic source amplitude. The Euler equations are nondimensionalized as instructed in the problem statement. All other conditions are the same except that the Crocco's relation has a slightly different form. In the following, after a brief sketch of the CE/SE method, the numerical results for this problem are presented.
Ultrafast strong broadband light source generated in nanoscale plasmonic Au-AAO-Al structures
NASA Astrophysics Data System (ADS)
Han, Junbo; Yao, Linhua; Ma, Zongwei
we demonstrate an ultrafast strong broadband photoluminescence (PL) from Au-AAO-Al composite under low excitation power intensity of 3.8 34.5 GW /cm2. The emission wavelength is in the range of 450-1050 nm and the lifetime is under sub-nanosecond. Comparative studies of PL in Au-AAO-Al with different Au rod length and Au-AAO without Al coupling layer, together with the finite difference time domain (FDTD) calculations, present that the fast PL originates from the surface plasmon enhanced supercontinuum generation (SCG) in AAO membrane. The observations indicate that strong SCG could be realized in nanoscale plasmonic structures, which have promise applications in the minimization and integration of ultrafast lighting sources in photonic devices. National Natural Scientific Foundation of China (11404124).
Spaggiari, S; Baruffi, S; Macchi, E; Traversa, M; Arisi, G; Taccardi, B
1986-11-01
We tried to establish whether some of the manifestations of electrical anisotropy previously observed on the canine ventricular epicardium during the spread of excitation were also present during repolarization, with the appropriate polarity. To this end we determined the potential distribution on the ventricular surface of exposed dog hearts during ventricular excitation and repolarization. The ventricles were paced by means of epicardial or intramural electrodes. During the early stages of ventricular excitation following epicardial pacing we observed typical, previously described potential patterns, with negative, elliptical equipotential lines surrounding the pacing site, and two maxima aligned along the direction of subepicardial fibers. Intramural pacing gave rise to similar patterns. The axis joining the maxima, however, was oriented along the direction of intramural fibers. The repolarization potential pattern relating to epicardial excitation exhibited some features similar to those observed during the spread of excitation, namely the presence of families of elliptical equipotential lines around the pacing site, with pairs of potential extrema along the major or minor axes of the ellipses or both. The location of the extrema and the distribution of the epicardial potential gradients during repolarization suggested the presence of anisotropic current generators mainly oriented along the direction of deep myocardial fibers, with some contribution from more superficial sources which were oriented along the direction of subepicardial fibers. Deep stimulation elicited more complicated epicardial patterns whose interpretation is still obscure. We conclude that the electrical anisotropy of the heart affects the distribution of repolarization potentials and probably the strength of electrical generators during ventricular repolarization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenbo; Department of Dermatology and Skin Science, University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8; Department of Biomedical Engineering, University of British Columbia, KAIS 5500, 2332 Main Mall, Vancouver, British Columbia V6T 1Z4
Scanning speed and coupling efficiency of excitation light to optic fibres are two major technical challenges that limit the potential of fluorescence excitation-emission matrix (EEM) spectrometer for on-line applications and in vivo studies. In this paper, a novel EEM system, utilizing a supercontinuum white light source and acousto-optic tunable filters (AOTFs), was introduced and evaluated. The supercontinuum white light, generated by pumping a nonlinear photonic crystal fiber with an 800 nm femtosecond laser, was efficiently coupled into a bifurcated optic fiber bundle. High speed EEM spectral scanning was achieved using AOTFs both for selecting excitation wavelength and scanning emission spectra.more » Using calibration lamps (neon and mercury argon), wavelength deviations were determined to vary from 0.18 nm to −0.70 nm within the spectral range of 500–850 nm. Spectral bandwidth for filtered excitation light broadened by twofold compared to that measured with monochromatic light between 650 nm and 750 nm. The EEM spectra for methanol solutions of laser dyes were successfully acquired with this rapid fluorometer using an integration time of 5 s.« less
NASA Astrophysics Data System (ADS)
Patton, Howard J.; Bonner, Jessie L.; Gupta, Indra N.
2005-12-01
Near-field seismograms of chemical explosions detonated as part of the 1997 depth-of-burial (DOB) experiment at the former Semipalatinsk nuclear test site provide an excellent opportunity to study the excitation of Rg waves for source effects. Rg waves were identified with particle-motion analysis and isolated from other arrivals using group velocity filtering. Amplitude and phase spectra of Rg waves were corrected for path effects based on observed attenuation in the near-field and path-specific phase velocity models. The path-corrected spectra were inputs to a grid-search method for finding source parameters of an axisymmetric source consisting of a monopole plus a compensated linear vector dipole (CLVD) or a horizontal tensile crack. The suite of observations, including ground-zero accelerograms and geophysical data from borehole logs, are best satisfied by models involving a CLVD with static (zero-frequency) seismic moment Mo. The CLVD source is related to tensile failure occurring at depths above the shotpoint. A static Mo distinguishes this source from classical models of spall, which are usually characterized by horizontal cracks that dynamically open and close with no permanent displacement (i.e. no static Mo). The CLVD source in this study appears to be more closely related to a driven block motion model envisaged by Masse. Rg source amplitudes are consistent with mb(Lg) measurements at station MAK, as would be expected if near-field Rg-to-S scattering plays a role in generating S waves observed at regional distances.
Acoustic field of a pulsating cylinder in a rarefied gas: Thermoviscous and curvature effects
NASA Astrophysics Data System (ADS)
Ben Ami, Y.; Manela, A.
2017-09-01
We study the acoustic field of a circular cylinder immersed in a rarefied gas and subject to harmonic small-amplitude normal-to-wall displacement and heat-flux excitations. The problem is analyzed in the entire range of gas rarefaction rates and excitation frequencies, considering both single cylinder and coaxial cylinders setups. Numerical calculations are carried out via the direct simulation Monte Carlo method, applying a noniterative algorithm to impose the boundary heat-flux condition. Analytical predictions are obtained in the limits of ballistic- and continuum-flow conditions. Comparing with a reference inviscid continuum solution, the results illustrate the specific impacts of gas rarefaction and boundary curvature on the acoustic source efficiency. Inspecting the far-field properties of the generated disturbance, the continuum-limit solution exhibits an exponential decay of the signal with the distance from the source, reflecting thermoviscous effects, and accompanied by an inverse square-root decay, characteristic of the inviscid problem. Stronger attenuation is observed in the ballistic limit, where boundary curvature results in "geometric reduction" of the molecular layer affected by the source, and the signal vanishes at a distance of few acoustic wavelengths from the cylinder. The combined effects of mechanical and thermal excitations are studied to seek for optimal conditions to monitor the vibroacoustic signal. The impact of boundary curvature becomes significant in the ballistic-flow regime, where the optimal heat-flux amplitude required for sound reduction decreases with the distance from the source and is essentially a function of the acoustic-wavelength-scaled distance only.
Turbofan noise generation. Volume 2: Computer programs
NASA Technical Reports Server (NTRS)
Ventres, C. S.; Theobald, M. A.; Mark, W. D.
1982-01-01
The use of a package of computer programs developed to calculate the in duct acoustic mods excited by a fan/stator stage operating at subsonic tip speed is described. The following three noise source mechanisms are included: (1) sound generated by the rotor blades interacting with turbulence ingested into, or generated within, the inlet duct; (2) sound generated by the stator vanes interacting with the turbulent wakes of the rotor blades; and (3) sound generated by the stator vanes interacting with the velocity deficits in the mean wakes of the rotor blades. The computations for three different noise mechanisms are coded as three separate computer program packages. The computer codes are described by means of block diagrams, tables of data and variables, and example program executions; FORTRAN listings are included.
Turbofan noise generation. Volume 2: Computer programs
NASA Astrophysics Data System (ADS)
Ventres, C. S.; Theobald, M. A.; Mark, W. D.
1982-07-01
The use of a package of computer programs developed to calculate the in duct acoustic mods excited by a fan/stator stage operating at subsonic tip speed is described. The following three noise source mechanisms are included: (1) sound generated by the rotor blades interacting with turbulence ingested into, or generated within, the inlet duct; (2) sound generated by the stator vanes interacting with the turbulent wakes of the rotor blades; and (3) sound generated by the stator vanes interacting with the velocity deficits in the mean wakes of the rotor blades. The computations for three different noise mechanisms are coded as three separate computer program packages. The computer codes are described by means of block diagrams, tables of data and variables, and example program executions; FORTRAN listings are included.
RF low-level control for the Linac4 H{sup −} source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butterworth, A., E-mail: andrew.butterworth@cern.ch; Grudiev, A.; Lettry, J.
2015-04-08
The H{sup −} source for the Linac4 accelerator at CERN uses an RF driven plasma for the production of H{sup −}. The RF is supplied by a 2 MHz RF tube amplifier with a maximum power output of 100 kW and a pulse duration of up to 2 ms. The low-level RF signal generation and measurement system has been developed using standard CERN controls electronics in the VME form factor. The RF frequency and amplitude reference signals are generated using separate arbitrary waveform generator channels. The frequency and amplitude are both freely programmable over the duration of the RF pulse, which allowsmore » fine-tuning of the excitation. Measurements of the forward and reverse RF power signals are performed via directional couplers using high-speed digitizers, and permit the estimation of the plasma impedance and deposited power via an equivalent circuit model. The low-level RF hardware and software implementations are described, and experimental results obtained with the Linac4 ion sources in the test stand are presented.« less
NASA Astrophysics Data System (ADS)
Sayler, Nicholas
Nonlinear microscopy benefits from broadband laser sources, enabling efficient excitation of an array of fluorophores, for example. This work demonstrates broadening of a narrow band input pulse (6 nm to 40 nm) centered at 1040 nm with excellent shot-to-shot stability. In a preliminary demonstration, multiphoton imaging with pulses from the fiber is performed. In particular second harmonic imaging of corn starch is performed.
Cavity Enhanced Absorption Spectroscopy using a Prism Cavity and Supercontinuum Source
NASA Astrophysics Data System (ADS)
Lehmann, Kevin K.; Johnston, Paul S.
2010-03-01
The multiplex advantage of current cavity enhanced spectrometers is limited by the limited high reflectivity bandwidth of the dielectric mirrors used to construct the high finesse cavity. We report on our development of a spectrometer that uses Brewster's angle retroreflectors that is excited with supercontinuum radiation generated by a 1.06 μm pumped photonic crystal fiber, which covers the 500-1800 nm spectral range. Recent progress will be discussed including modeling of the prism cavity losses, alternative prism materials for use in the UV and mid-IR, and a new higher power source pumped by a mode-locked laser.
Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities.
Ishii, Akihiro; He, Xiaowei; Hartmann, Nicolai F; Machiya, Hidenori; Htoon, Han; Doorn, Stephen K; Kato, Yuichiro K
2018-06-13
Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ∼50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ∼30% decrease of emission lifetime is observed. The statistics of photons emitted from the cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ∼1.7 × 10 7 Hz.
Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, Akihiro; He, Xiaowei; Hartmann, Nicolai F.
Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ~50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ~30% decrease of emission lifetime is observed. The statistics of photons emitted from themore » cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ~1.7 × 10 7 Hz.« less
Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities
Ishii, Akihiro; He, Xiaowei; Hartmann, Nicolai F.; ...
2018-05-21
Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ~50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ~30% decrease of emission lifetime is observed. The statistics of photons emitted from themore » cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ~1.7 × 10 7 Hz.« less
Wave energy transfer in elastic half-spaces with soft interlayers.
Glushkov, Evgeny; Glushkova, Natalia; Fomenko, Sergey
2015-04-01
The paper deals with guided waves generated by a surface load in a coated elastic half-space. The analysis is based on the explicit integral and asymptotic expressions derived in terms of Green's matrix and given loads for both laminate and functionally graded substrates. To perform the energy analysis, explicit expressions for the time-averaged amount of energy transferred in the time-harmonic wave field by every excited guided or body wave through horizontal planes and lateral cylindrical surfaces have been also derived. The study is focused on the peculiarities of wave energy transmission in substrates with soft interlayers that serve as internal channels for the excited guided waves. The notable features of the source energy partitioning in such media are the domination of a single emerging mode in each consecutive frequency subrange and the appearance of reverse energy fluxes at certain frequencies. These effects as well as modal and spatial distribution of the wave energy coming from the source into the substructure are numerically analyzed and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X., E-mail: iu.xiangming@nims.go.jp; National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044; Kumano, H.
2014-07-28
We have recently reported the successful fabrication of bright single-photon sources based on Ag-embedded nanocone structures that incorporate InAs quantum dots. The source had a photon collection efficiency as high as 24.6%. Here, we show the results of various types of photonic characterizations of the Ag-embedded nanocone structures that confirm their versatility as regards a broad range of quantum optical applications. We measure the first-order autocorrelation function to evaluate the coherence time of emitted photons, and the second-order correlation function, which reveals the strong suppression of multiple photon generation. The high indistinguishability of emitted photons is shown by the Hong-Ou-Mandel-typemore » two-photon interference. With quasi-resonant excitation, coherent population flopping is demonstrated through Rabi oscillations. Extremely high single-photon purity with a g{sup (2)}(0) value of 0.008 is achieved with π-pulse quasi-resonant excitation.« less
NASA Astrophysics Data System (ADS)
Pope, Michael; Waldrip, Matthew; Ferron, Thomas; Collins, Brian
Increased solar power conversion efficiencies to 12% in bulk heterojunction organic photovoltaics (OPVs) continue to brighten their prospects as an economically viable source of solar energy. It is known that OPV performance can be enhanced through processing additives that change the nanostructure. We track these critical structure-property relationships in the OPV system PCPDTBT:PC70BM while varying the amount of DIO additive. Resonant Soft X-ray Scattering reveals domain purity, domain size, and molecular orientation to highlight the system's complex dependence on DIO concentration. We will show the effect the resulting structure has on charge generation and recombination via in-situ transient and steady state optoelectronic measurements. By measuring structure, excited state dynamics and device performance all on the same sample enables direct relationships to be measured. We show that the appropriate balance of crystallinity, domain size and domain purity are important for optimized excited state dynamics and device performance.
NASA Astrophysics Data System (ADS)
Silvi, Mattia; Verrier, Charlie; Rey, Yannick P.; Buzzetti, Luca; Melchiorre, Paolo
2017-09-01
Chiral iminium ions—generated upon condensation of α,β-unsaturated aldehydes and amine catalysts—are used extensively by chemists to make chiral molecules in enantioenriched form. In contrast, their potential to absorb light and promote stereocontrolled photochemical processes remains unexplored. This is despite the fact that visible-light absorption by iminium ions is a naturally occurring event that triggers the mechanism of vision in higher organisms. Herein we demonstrate that the direct excitation of chiral iminium ions can unlock unconventional reaction pathways, enabling enantioselective catalytic photochemical β-alkylations of enals that cannot be realized via thermal activation. The chemistry uses readily available alkyl silanes, which are recalcitrant to classical conjugate additions, and occurs under illumination by visible-light-emitting diodes. Crucial to success was the design of a chiral amine catalyst with well-tailored electronic properties that can generate a photo-active iminium ion while providing the source of stereochemical induction. This strategy is expected to offer new opportunities for reaction design in the field of enantioselective catalytic photochemistry.
NASA Astrophysics Data System (ADS)
Kasper, Axel; Van Hille, Herbert; Kuk, Sola
2018-02-01
Modern instruments for molecular diagnostics are continuously optimized for diagnostic accuracy, versatility and throughput. The latest progress in LED technology together with tailored optics solutions allows developing highly efficient photonics engines perfectly adapted to the sample under test. Super-bright chip-on-board LED light sources are a key component for such instruments providing maximum luminous intensities in a multitude of narrow spectral bands. In particular the combination of white LEDs with other narrow band LEDs allows achieving optimum efficiency outperforming traditional Xenon light sources in terms of energy consumption, heat dissipation in the system, and switching time between spectral channels. Maximum sensitivity of the diagnostic system can only be achieved with an optimized optics system for the illumination and imaging of the sample. The illumination beam path must be designed for optimum homogeneity across the field while precisely limiting the angular distribution of the excitation light. This is a necessity for avoiding spill-over to the detection beam path and guaranteeing the efficiency of the spectral filtering. The imaging optics must combine high spatial resolution, high light collection efficiency and optimized suppression of excitation light for good signal-to-noise ratio. In order to achieve minimum cross-talk between individual wells in the sample, the optics design must also consider the generation of stray light and the formation of ghost images. We discuss what parameters and limitations have to be considered in an integrated system design approach covering the full path from the light source to the detector.
Nd³⁺-Yb³⁺ doped powder for near-infrared optical temperature sensing.
Rakov, Nikifor; Maciel, Glauco S
2014-07-01
Er³⁺ doped powders are generally used for fluorescence-based temperature sensing application when near-infrared lasers are the excitation sources of choice. The fluorescence of Er³⁺ is produced by nonlinear (upconversion) processes, which generate strong internal heat. Lowering the excitation power causes drastic reduction of the fluorescence signal, and as a consequence the sensor applicability of Er³⁺ doped powders becomes compromised. Here we propose the use of the downconverted fluorescence of Yb³⁺ produced by efficient energy transfer from Nd³⁺ as an alternative temperature sensing system. Our results are presented for yttrium silicate powders prepared by combustion synthesis.
An SCR inverter for electric vehicles
NASA Technical Reports Server (NTRS)
Latos, T.; Bosack, D.; Ehrlich, R.; Jahns, T.; Mezera, J.; Thimmesch, D.
1980-01-01
An inverter for an electric vehicle propulsion application has been designed and constructed to excite a polyphase induction motor from a fixed propulsion battery source. The inverter, rated at 35kW peak power, is fully regenerative and permits vehicle operation in both the forward and reverse directions. Thyristors are employed as the power switching devices arranged in a dc bus commutated topology. This paper describes the major role the controller plays in generating the motor excitation voltage and frequency to deliver performance similar to dc systems. Motoring efficiency test data for the controller are presented. It is concluded that an SCR inverter in conjunction with an ac induction motor is a viable alternative to present dc vehicle propulsion systems on the basis of performance and size criteria.
ERIC Educational Resources Information Center
Department of the Interior, Denver, CO. Engineering and Research Center.
Subjects covered in this text are controlling the hydroelectric generator, generator excitation, basic principles of direct current generation, direction of current flow, basic alternating current generator, alternating and direct current voltage outputs, converting alternating current to direct current, review of the basic generator and…
Transient Control of Synchronous Machine Active and Reactive Power in Micro-grid Power Systems
NASA Astrophysics Data System (ADS)
Weber, Luke G.
There are two main topics associated with this dissertation. The first is to investigate phase-to-neutral fault current magnitude occurring in generators with multiple zero-sequence current sources. The second is to design, model, and tune a linear control system for operating a micro-grid in the event of a separation from the electric power system. In the former case, detailed generator, AC8B excitation system, and four-wire electric power system models are constructed. Where available, manufacturers data is used to validate the generator and exciter models. A gain-delay with frequency droop control is used to model an internal combustion engine and governor. The four wire system is connected through a transformer impedance to an infinite bus. Phase-to-neutral faults are imposed on the system, and fault magnitudes analyzed against three-phase faults to gauge their severity. In the latter case, a balanced three-phase system is assumed. The model structure from the former case - but using data for a different generator - is incorporated with a model for an energy storage device and a net load model to form a micro-grid. The primary control model for the energy storage device has a high level of detail, as does the energy storage device plant model in describing the LC filter and transformer. A gain-delay battery and inverter model is used at the front end. The net load model is intended to be the difference between renewable energy sources and load within a micro-grid system that has separated from the grid. Given the variability of both renewable generation and load, frequency and voltage stability are not guaranteed. This work is an attempt to model components of a proposed micro-grid system at the University of Wisconsin Milwaukee, and design, model, and tune a linear control system for operation in the event of a separation from the electric power system. The control module is responsible for management of frequency and active power, and voltage and reactive power. The scope of this work is to • develop a mathematical model for a salient pole, 2 damper winding synchronous generator with d axis saturation suitable for transient analysis, • develop a mathematical model for a voltage regulator and excitation system using the IEEE AC8B voltage regulator and excitation system template, • develop mathematical models for an energy storage primary control system, LC filter and transformer suitable for transient analysis, • combine the generator and energy storage models in a micro-grid context, • develop mathematical models for electric system components in the stationary abc frame and rotating dq reference frame, • develop a secondary control network for dispatch of micro-grid assets, • establish micro-grid limits of stable operation for step changes in load and power commands based on simulations of model data assuming net load on the micro-grid, and • use generator and electric system models to assess the generator current magnitude during phase-to-ground faults.
Fast, reagentless and reliable screening of "white powders" during the bioterrorism hoaxes.
Włodarski, Maksymilian; Kaliszewski, Miron; Trafny, Elżbieta Anna; Szpakowska, Małgorzata; Lewandowski, Rafał; Bombalska, Aneta; Kwaśny, Mirosław; Kopczyński, Krzysztof; Mularczyk-Oliwa, Monika
2015-03-01
The classification of dry powder samples is an important step in managing the consequences of terrorist incidents. Fluorescence decays of these samples (vegetative bacteria, bacterial endospores, fungi, albumins and several flours) were measured with stroboscopic technique using an EasyLife LS system PTI. Three pulsed nanosecond LED sources, generating 280, 340 and 460nm were employed for samples excitation. The usefulness of a new 460nm light source for fluorescence measurements of dry microbial cells has been demonstrated. The principal component analysis (PCA) and hierarchical cluster analysis (HCA) have been used for classification of dry biological samples. It showed that the single excitation wavelength was not sufficient for differentiation of biological samples of diverse origin. However, merging fluorescence decays from two or three excitation wavelengths allowed classification of these samples. An experimental setup allowing the practical implementation of this method for the real time fluorescence decay measurement was designed. It consisted of the LED emitting nanosecond pulses at 280nm and two fast photomultiplier tubes (PMTs) for signal detection in two fluorescence bands simultaneously. The positive results of the dry powder samples measurements confirmed that the fluorescence decay-based technique could be a useful tool for fast classification of the suspected "white powders" performed by the first responders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Mode-locked thin-disk lasers and their potential application for high-power terahertz generation
NASA Astrophysics Data System (ADS)
Saraceno, Clara J.
2018-04-01
The progress achieved in the last few decades in the performance of ultrafast laser systems with high average power has been tremendous, and continues to provide momentum to new exciting applications, both in scientific research and technology. Among the various technological advances that have shaped this progress, mode-locked thin-disk oscillators have attracted significant attention as a unique technology capable of providing ultrashort pulses with high energy (tens to hundreds of microjoules) and at very high repetition rates (in the megahertz regime) from a single table-top oscillator. This technology opens the door to compact high repetition rate ultrafast sources spanning the entire electromagnetic spectrum from the XUV to the terahertz regime, opening various new application fields. In this article, we focus on their unexplored potential as compact driving sources for high average power terahertz generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Tao; Fan, Tingbo; Jiangsu Province Institute for Medical Equipment Testing, Nanjing 210012
Prediction and measurement of the acoustic field emitted from a high intensity focused ultrasound (HIFU) is essential for the accurate ultrasonic treatment. In this study, the acoustic field generated from a strongly focused HIFU transmitter was characterized by a combined experiment and simulation method. The spheroidal beam equation (SBE) was utilized to describe the nonlinear sound propagation. The curve of the source pressure amplitude versus voltage excitation was determined by fitting the measured ratio of the second harmonic to the fundamental component of the focal waveform to the simulation result; finally, the acoustic pressure field generated by the strongly focusedmore » HIFU transmitter was predicted by using the SBE model. A commercial fiber optic probe hydrophone was utilized to measure the acoustic pressure field generated from a 1.1 MHz HIFU transmitter with a large half aperture angle of 30°. The maximum measured peak-to-peak pressure was up to 72 MPa. The validity of this combined approach was confirmed by the comparison between the measured results and the calculated ones. The results indicate that the current approach might be useful to describe the HIFU field. The results also suggest that this method is not valid for low excitations owing to low sensitivity of the second harmonic.« less
Lou, Janet W; Currie, Marc; Sivaprakasam, Vasanthi; Eversole, Jay D
2010-10-01
We use a compact chirped-pulse amplified system to harmonically generate ultrashort pulses for aerosol fluorescence measurements. The seed laser is a compact, all-normal dispersion, mode-locked Yb-doped fiber laser with a 1050 nm center wavelength operating at 41 MHz. Average powers of more than 1.2 W at 525 nm and 350 mW at 262 nm are generated with <500 fs pulse durations. The pulses are time-stretched with high-dispersion fiber, amplified by a high-power, large-mode-area fiber amplifier, and recompressed using a chirped volume holographic Bragg grating. The resulting high-peak-power pulses allow for highly efficient harmonic generation. We also demonstrate for the first time to our knowledge, the use of a mode-locked ultraviolet source to excite individual biological particles and other calibration particles in an inlet air flow as they pass through an optical chamber. The repetition rate is ideal for biofluorescence measurements as it allows faster sampling rates as well as the higher peak powers as compared to previously demonstrated Q-switched systems while maintaining a pulse period that is longer than the typical fluorescence lifetimes. Thus, the fluorescence excitation can be considered to be quasicontinuous and requires no external synchronization and triggering.
NASA Astrophysics Data System (ADS)
Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang
2014-01-01
Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.
NASA Astrophysics Data System (ADS)
Lipatov, N. I.; Biryukov, A. S.; Gulyamova, E. S.
2008-12-01
An ecologically perfect generator of singlet oxygen O2 (a1Δg) is proposed which fundamentally differs from existing singlet-oxygen generators. Excited O2 (a1Δg) molecules are generated due to interaction of the O2 (X3Σ-g) molecules with a quasi-monochromatic field, which is supplied from an external source to a closed volume — an optical boiler containing oxygen. It is shown that, by pumping continuously the optical boiler by the light field of power ~3×105 W, it is possible to accumulate up to 40% of singlet oxygen (O2(b1Σ+g)) + (O2 (a1Δg)) in the boiler volume during ~10-2 s.
Global modeling of thermospheric airglow in the far ultraviolet
NASA Astrophysics Data System (ADS)
Solomon, Stanley C.
2017-07-01
The Global Airglow (GLOW) model has been updated and extended to calculate thermospheric emissions in the far ultraviolet, including sources from daytime photoelectron-driven processes, nighttime recombination radiation, and auroral excitation. It can be run using inputs from empirical models of the neutral atmosphere and ionosphere or from numerical general circulation models of the coupled ionosphere-thermosphere system. It uses a solar flux module, photoelectron generation routine, and the Nagy-Banks two-stream electron transport algorithm to simultaneously handle energetic electron distributions from photon and auroral electron sources. It contains an ion-neutral chemistry module that calculates excited and ionized species densities and the resulting airglow volume emission rates. This paper describes the inputs, algorithms, and code structure of the model and demonstrates example outputs for daytime and auroral cases. Simulations of far ultraviolet emissions by the atomic oxygen doublet at 135.6 nm and the molecular nitrogen Lyman-Birge-Hopfield bands, as viewed from geostationary orbit, are shown, and model calculations are compared to limb-scan observations by the Global Ultraviolet Imager on the TIMED satellite. The GLOW model code is provided to the community through an open-source academic research license.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oloff, L.-P., E-mail: oloff@physik.uni-kiel.de; Hanff, K.; Stange, A.
With the advent of ultrashort-pulsed extreme ultraviolet sources, such as free-electron lasers or high-harmonic-generation (HHG) sources, a new research field for photoelectron spectroscopy has opened up in terms of femtosecond time-resolved pump-probe experiments. The impact of the high peak brilliance of these novel sources on photoemission spectra, so-called vacuum space-charge effects caused by the Coulomb interaction among the photoemitted probe electrons, has been studied extensively. However, possible distortions of the energy and momentum distributions of the probe photoelectrons caused by the low photon energy pump pulse due to the nonlinear emission of electrons have not been studied in detail yet.more » Here, we systematically investigate these pump laser-induced space-charge effects in a HHG-based experiment for the test case of highly oriented pyrolytic graphite. Specifically, we determine how the key parameters of the pump pulse—the excitation density, wavelength, spot size, and emitted electron energy distribution—affect the measured time-dependent energy and momentum distributions of the probe photoelectrons. The results are well reproduced by a simple mean-field model, which could open a path for the correction of pump laser-induced space-charge effects and thus toward probing ultrafast electron dynamics in strongly excited materials.« less
4. INTERIOR OF POWERHOUSE GENERATOR ROOM SHOWING GENERATOR UNITS AT ...
4. INTERIOR OF POWERHOUSE GENERATOR ROOM SHOWING GENERATOR UNITS AT FOREGROUND RIGHT, GOVERNORS AND CONTROL VALVES AT LEFT, AND EXCITERS AT BACK LEFT. VIEW TO NORTH. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.; Walker, Bruce E.
2014-01-01
An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the program was to provide an estimate of the acoustic shielding benefits possible from mounting an engine on the upper surface of a wing; a flat plate model was used as the shielding surface. Simple analytical simulations were used to preview the radiation patterns - Fresnel knife-edge diffraction was coupled with a dense phased array of point sources to compute shielded and unshielded sound pressure distributions for potential test geometries and excitation modes. Contour plots of sound pressure levels, and integrated power levels, from nacelle alone and shielded configurations for both the experimental measurements and the analytical predictions are presented in this paper.
NASA Astrophysics Data System (ADS)
Kralkina, E. A.; Rukhadze, A. A.; Nekliudova, P. A.; Pavlov, V. B.; Petrov, A. K.; Vavilin, K. V.
2018-03-01
Present paper is aimed to reveal experimentally and theoretically the influence of magnetic field strength, antenna shape, pressure, operating frequency and geometrical size of plasma sources on the ability of plasma to absorb the RF power characterized by the equivalent plasma resistance for the case of low pressure RF inductive discharge located in the external magnetic field. The distinguishing feature of the present paper is the consideration of the antennas that generate not only current but charge on the external surface of plasma sources. It is shown that in the limited plasma source two linked waves can be excited. In case of antennas generating only azimuthal current the waves can be attributed as helicon and TG waves. In the case of an antenna with the longitudinal current there is a surface charge on the side surface of the plasma source, which gives rise to a significant increase of the longitudinal and radial components of the RF electric field as compared with the case of the azimuthal antenna current.
Numerical simulation of seismic wave propagation from land-excited large volume air-gun source
NASA Astrophysics Data System (ADS)
Cao, W.; Zhang, W.
2017-12-01
The land-excited large volume air-gun source can be used to study regional underground structures and to detect temporal velocity changes. The air-gun source is characterized by rich low frequency energy (from bubble oscillation, 2-8Hz) and high repeatability. It can be excited in rivers, reservoirs or man-made pool. Numerical simulation of the seismic wave propagation from the air-gun source helps to understand the energy partitioning and characteristics of the waveform records at stations. However, the effective energy recorded at a distance station is from the process of bubble oscillation, which can not be approximated by a single point source. We propose a method to simulate the seismic wave propagation from the land-excited large volume air-gun source by finite difference method. The process can be divided into three parts: bubble oscillation and source coupling, solid-fluid coupling and the propagation in the solid medium. For the first part, the wavelet of the bubble oscillation can be simulated by bubble model. We use wave injection method combining the bubble wavelet with elastic wave equation to achieve the source coupling. Then, the solid-fluid boundary condition is implemented along the water bottom. And the last part is the seismic wave propagation in the solid medium, which can be readily implemented by the finite difference method. Our method can get accuracy waveform of land-excited large volume air-gun source. Based on the above forward modeling technology, we analysis the effect of the excited P wave and the energy of converted S wave due to different water shapes. We study two land-excited large volume air-gun fields, one is Binchuan in Yunnan, and the other is Hutubi in Xinjiang. The station in Binchuan, Yunnan is located in a large irregular reservoir, the waveform records have a clear S wave. Nevertheless, the station in Hutubi, Xinjiang is located in a small man-made pool, the waveform records have very weak S wave. Better understanding of the characteristics of land-excited large volume air-gun can help to better use of the air-gun source.
NASA Astrophysics Data System (ADS)
Takeda, Shun; Kumagai, Hiroshi
2018-02-01
Hyperpolarized (HP) noble gas has attracted attention in NMR / MRI. In an ultra-low magnetic field, the effectiveness of signal enhancement by HP noble gas should be required because reduction of the signal intensity is serious. One method of generating HP noble gas is spin exchange optical pumping which uses selective excitation of electrons of alkali metal vapor and spin transfer to nuclear spin by collision to noble gas. Although SEOP does not require extreme cooling or strong magnetic field, generally it required large-scale equipment including high power light source to generate HP noble gas with high efficiency. In this study, we construct a simply generation system of HP xenon-129 by SEOP with an ultralow magnetic field (up to 1 mT) and small-scale light source (about 1W). In addition, we measure in situ NMR signal at the same time, and then examine efficient conditions for SEOP in ultra-low magnetic fields.
Magnetic nano-oscillator driven by pure spin current.
Demidov, Vladislav E; Urazhdin, Sergei; Ulrichs, Henning; Tiberkevich, Vasyl; Slavin, Andrei; Baither, Dietmar; Schmitz, Guido; Demokritov, Sergej O
2012-12-01
With the advent of pure-spin-current sources, spin-based electronic (spintronic) devices no longer require electrical charge transfer, opening new possibilities for both conducting and insulating spintronic systems. Pure spin currents have been used to suppress noise caused by thermal fluctuations in magnetic nanodevices, amplify propagating magnetization waves, and to reduce the dynamic damping in magnetic films. However, generation of coherent auto-oscillations by pure spin currents has not been achieved so far. Here we demonstrate the generation of single-mode coherent auto-oscillations in a device that combines local injection of a pure spin current with enhanced spin-wave radiation losses. Counterintuitively, radiation losses enable excitation of auto-oscillation, suppressing the nonlinear processes that prevent auto-oscillation by redistributing the energy between different modes. Our devices exhibit auto-oscillations at moderate current densities, at a microwave frequency tunable over a wide range. These findings suggest a new route for the implementation of nanoscale microwave sources for next-generation integrated electronics.
Energy Supply Alternatives for Picatinny Arsenal, NJ
1992-09-01
condensation unit. The generator is a 3- phase, 60 cycle, synchronous, air -cooled type with brushless exciters. The generator’s voltage is 13.8 kV and rated at...60 cycle, synchronous, air -cooled type with brushless exciters. The generator’s voltage is 13.8 kV and rated at 150 MVA with a 0.85 Power Factor...condensation unit. The generator is a 3- phase, 60 cycle, synchronous, air -cooled type with brushless exciters. The generator’s voltage is 13.8 kV and rated
Early, James W.; Lester, Charles S.
2002-01-01
In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. The beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being recombined with the first portion after a delay before injection into the ignitor laser. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones.
NASA Astrophysics Data System (ADS)
Carroll, Lewis
2014-02-01
We are developing a new dose calibrator for nuclear pharmacies that can measure radioactivity in a vial or syringe without handling it directly or removing it from its transport shield “pig”. The calibrator's detector comprises twin opposing scintillating crystals coupled to Si photodiodes and current-amplifying trans-resistance amplifiers. Such a scheme is inherently linear with respect to dose rate over a wide range of radiation intensities, but accuracy at low activity levels may be impaired, beyond the effects of meager photon statistics, by baseline fluctuation and drift inevitably present in high-gain, current-mode photodiode amplifiers. The work described here is motivated by our desire to enhance accuracy at low excitations while maintaining linearity at high excitations. Thus, we are also evaluating a novel “pulse-mode” analog signal processing scheme that employs a linear threshold discriminator to virtually eliminate baseline fluctuation and drift. We will show the results of a side-by-side comparison of current-mode versus pulse-mode signal processing schemes, including perturbing factors affecting linearity and accuracy at very low and very high excitations. Bench testing over a wide range of excitations is done using a Poisson random pulse generator plus an LED light source to simulate excitations up to ˜106 detected counts per second without the need to handle and store large amounts of radioactive material.
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Schmauch, Preston
2012-01-01
Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. The standard technique for forced response analysis to assess structural integrity is to decompose a CFD generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non-harmonic excitation sources that become present in complex flows. These complications suggest the question of whether frequency domain analysis is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, have been performed. The first is of a bladed disk with each blade modeled by simple beam elements. It was hypothesized that the randomness and other variation from the standard harmonic excitation would reduce the blade structural response, but the results showed little reduction. The second study was of a realistic model of a bladed-disk excited by the same CFD used in the J2X engine program. The results showed that the transient analysis results were up to 10% higher for "clean" nodal diameter excitations and six times larger for "messy" excitations, where substantial Fourier content around the main harmonic exists.
Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy
Caram, Justin R.; Zheng, Haibin; Dahlberg, Peter D.; Rolczynski, Brian S.; Griffin, Graham B.; Dolzhnikov, Dmitriy S.; Talapin, Dmitri V.; Engel, Gregory S.
2014-01-01
Development of optoelectronic technologies based on quantum dots depends on measuring, optimizing, and ultimately predicting charge carrier dynamics in the nanocrystal. In such systems, size inhomogeneity and the photoexcited population distribution among various excitonic states have distinct effects on electron and hole relaxation, which are difficult to distinguish spectroscopically. Two-dimensional electronic spectroscopy can help to untangle these effects by resolving excitation energy and subsequent nonlinear response in a single experiment. Using a filament-generated continuum as a pump and probe source, we collect two-dimensional spectra with sufficient spectral bandwidth to follow dynamics upon excitation of the lowest three optical transitions in a polydisperse ensemble of colloidal CdSe quantum dots. We first compare to prior transient absorption studies to confirm excitation-state-dependent dynamics such as increased surface-trapping upon excitation of hot electrons. Second, we demonstrate fast band-edge electron-hole pair solvation by ligand and phonon modes, as the ensemble relaxes to the photoluminescent state on a sub-picosecond time-scale. Third, we find that static disorder due to size polydispersity dominates the nonlinear response upon excitation into the hot electron manifold; this broadening mechanism stands in contrast to that of the band-edge exciton. Finally, we demonstrate excitation-energy dependent hot-carrier relaxation rates, and we describe how two-dimensional electronic spectroscopy can complement other transient nonlinear techniques. PMID:24588185
Turbofan noise generation. Volume 1: Analysis
NASA Astrophysics Data System (ADS)
Ventres, C. S.; Theobald, M. A.; Mark, W. D.
1982-07-01
Computer programs were developed which calculate the in-duct acoustic modes excited by a fan/stator stae operating at subsonic tip speed. Three noise source mechanisms are included: (1) sound generated by the rotor blades interacting with turbulence ingested into, or generated within, the inlet duct; (2) sound generated by the stator vanes interacting with the turbulent wakes of the rotors blades; and (3) sound generated by the stator vanes interacting with the mean velocity deficit wakes of the rotor blades. The fan/stator stage is modeled as an ensemble of blades and vanes of zero camber and thickness enclosed within an infinite hard-walled annular duct. Turbulence drawn into or generated within the inlet duct is modeled as nonhomogeneous and anisotropic random fluid motion, superimposed upon a uniform axial mean flow, and convected with that flow. Equations for the duct mode amplitudes, or expected values of the amplitudes, are derived.
Turbofan noise generation. Volume 1: Analysis
NASA Technical Reports Server (NTRS)
Ventres, C. S.; Theobald, M. A.; Mark, W. D.
1982-01-01
Computer programs were developed which calculate the in-duct acoustic modes excited by a fan/stator stae operating at subsonic tip speed. Three noise source mechanisms are included: (1) sound generated by the rotor blades interacting with turbulence ingested into, or generated within, the inlet duct; (2) sound generated by the stator vanes interacting with the turbulent wakes of the rotors blades; and (3) sound generated by the stator vanes interacting with the mean velocity deficit wakes of the rotor blades. The fan/stator stage is modeled as an ensemble of blades and vanes of zero camber and thickness enclosed within an infinite hard-walled annular duct. Turbulence drawn into or generated within the inlet duct is modeled as nonhomogeneous and anisotropic random fluid motion, superimposed upon a uniform axial mean flow, and convected with that flow. Equations for the duct mode amplitudes, or expected values of the amplitudes, are derived.
Dual wavelength laser diode excitation source for 2D photoacoustic imaging.
NASA Astrophysics Data System (ADS)
Allen, Thomas J.; Beard, Paul C.
2007-02-01
Photoacoustic methods can be used to make spatially resolved spectroscopic measurements of blood oxygenation when using a multiwavelength excitation source, such as an OPO system. Since these excitation sources are usually expensive and bulky, an alternative is to use laser diodes. A fibre coupled laser diode excitation system has been developed, providing two wavelengths, 850 and 905nm, each composed of 6 high peak power pulsed laser diodes. The system provided variable pulse durations (65-500ns) and repetition rates of up to 5KHz. The pulse energies delivered by the excitation system at 905nm and 850nm were measured to be 120μJ and 80μJ respectively for a 200ns pulse duration. To demonstrate the utility of the system, the excitation source was combined with an ultrasound detector to form a probe for in vivo single point measurements of superficial blood vessels. Changes in blood oxygenation and volume in the finger tip were monitored while making venous and arterial occlusions. To demonstrate the imaging capability of the excitation system, 2D photoacoustic images of a physiologically realistic phantom were obtained for a range of pulse durations using a cylindrical scanning system. The phantom was composed of cylindrical absorbing elements (μa=1mm^{-1}) of 2.7mm diameter, immersed in a 1% intralipid solution (μs=1mm^{-1}). This study demonstrated the potential use of laser diodes as an excitation source for photoacoustic imaging of superficial vascular structures.
Band excitation method applicable to scanning probe microscopy
Jesse, Stephen [Knoxville, TN; Kalinin, Sergei V [Knoxville, TN
2010-08-17
Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.
Band excitation method applicable to scanning probe microscopy
Jesse, Stephen; Kalinin, Sergei V
2013-05-28
Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.
EXCITATION OF A BURIED MAGMATIC PIPE: A SEISMIC SOURCE MODEL FOR VOLCANIC TREMOR.
Chouet, Bernard
1985-01-01
A model of volcanic tremor is presented in which the modes of vibration of a volcanic pipe are excited by the motion of the fluid within the pipe in response to a short-term perturbation in pressure. The model shows the relative importance of the various parts constituting this composite source in the radiated elastic field at near and intermediate distances. The paper starts with the presentation of the elastic field radiated by the source, and proceeds with an analysis of the energy balance between hydraulic and elastic motions. Next, the hydraulic excitation of the source is addressed and, finally, the ground response to this excitation is analyzed in the simple case of a pipe buried in a homogeneous half space.
Multi-Excitation Magnetoacoustic Tomography with Magnetic Induction for Bioimpedance Imaging
Li, Xu; He, Bin
2011-01-01
Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging approach proposed to conduct non-invasive electrical conductivity imaging of biological tissue with high spatial resolution. In the present study, based on the analysis of the relationship between the conductivity distribution and the generated MAT-MI acoustic source, we propose a new multi-excitation MAT-MI approach and the corresponding reconstruction algorithms. In the proposed method, multiple magnetic excitations using different coil configurations are employed and ultrasound measurements corresponding to each excitation are collected to derive the conductivity distribution inside the sample. A modified reconstruction algorithm is also proposed for the multi-excitation MAT-MI imaging approach when only limited bandwidth acoustic measurements are available. Computer simulation and phantom experiment studies have been done to demonstrate the merits of the proposed method. It is shown that if unlimited bandwidth acoustic data is available, we can accurately reconstruct the internal conductivity contrast of an object using the proposed method. With limited bandwidth data and the use of the modified algorithm we can reconstruct the relative conductivity contrast of an object instead of only boundaries at the conductivity heterogeneity. Benefits that come with this new method include better differentiation of tissue types with conductivity contrast using the MAT-MI approach, specifically for potential breast cancer screening application in the future. PMID:20529729
Du, Yu; Zhuang, Ziwei; He, Jiexing; Liu, Hongji; Qiu, Ping; Wang, Ke
2018-05-16
With tunable excitation light, multiphoton microscopy (MPM) is widely used for imaging biological structures at subcellular resolution. Axial chromatic dispersion, present in virtually every transmissive optical system including the multiphoton microscope, leads to focal (and the resultant image) plane separation. Here we demonstrate experimentally a technique to measure the axial chromatic dispersion in a multiphoton microscope, using simultaneous 2-color third-harmonic generation (THG) imaging excited by a 2-color soliton source with tunable wavelength separation. Our technique is self-referenced, eliminating potential measurement error when 1-color tunable excitation light is used which necessitates reciprocating motion of the mechanical translation stage. Using this technique, we demonstrate measured axial chromatic dispersion with 2 different objective lenses in a multiphoton microscope. Further measurement in a biological sample also indicates that this axial chromatic dispersion, in combination with 2-color imaging, may open up opportunity for simultaneous imaging of two different axial planes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Laboratory tank studies of a single species of phytoplankton using a remote sensing fluorosensor
NASA Technical Reports Server (NTRS)
Brown, C. A., Jr.; Jarrett, O., Jr.; Farmer, F. H.
1981-01-01
Phytoplankton were grown in the laboratory for the purpose of testing a remote fluorosensor. The fluorosensor uses a unique four-wavelength dye laser system to excite phytoplankton bearing chlorophyll and to measure the chlorophyll fluorescence generated by this excitation. Six different species were tested, one at a time, and each was grown two to four times. Fluorescence measured by the fluorosensor provides good quantitative measurement of chlorophyll concentrations for all species tested while the cultures were in log phase growth. Fluorescene cross section ratios obtained in the single species tank tests support the hypothesis that the shape of the fluorescence cross section curve remains constant with the species (differences in fluorescence cross section ratios are a basis for determining composition of phytoplankton according to color group when a multiwavelength source of excitation is used. Linear relationships exist between extracted chlorophyll concentration and fluorescence measured by the remote fluorosensor during the log phase growth of phytoplankton cultures tested.
Defects formation and wave emitting from defects in excitable media
NASA Astrophysics Data System (ADS)
Ma, Jun; Xu, Ying; Tang, Jun; Wang, Chunni
2016-05-01
Abnormal electrical activities in neuronal system could be associated with some neuronal diseases. Indeed, external forcing can cause breakdown even collapse in nervous system under appropriate condition. The excitable media sometimes could be described by neuronal network with different topologies. The collective behaviors of neurons can show complex spatiotemporal dynamical properties and spatial distribution for electrical activities due to self-organization even from the regulating from central nervous system. Defects in the nervous system can emit continuous waves or pulses, and pacemaker-like source is generated to perturb the normal signal propagation in nervous system. How these defects are developed? In this paper, a network of neurons is designed in two-dimensional square array with nearest-neighbor connection type; the formation mechanism of defects is investigated by detecting the wave propagation induced by external forcing. It is found that defects could be induced under external periodical forcing under the boundary, and then the wave emitted from the defects can keep balance with the waves excited from external forcing.
Electromagnetic torques in the core and resonant excitation of decadal polar motion
NASA Astrophysics Data System (ADS)
Mound, Jon E.
2005-02-01
Motion of the rotation axis of the Earth contains decadal variations with amplitudes on the order of 10 mas. The origin of these decadal polar motions is unknown. A class of rotational normal modes of the core-mantle system termed torsional oscillations are known to affect the length of day (LOD) at decadal periods and have also been suggested as a possible excitation source for the observed decadal polar motion. Torsional oscillations involve relative motion between the outer core and the surrounding solid bodies, producing electromagnetic torques at the inner-core boundary (ICB) and core-mantle boundary (CMB). It has been proposed that the ICB torque can explain the excitation of the approximately 30-yr-period polar motion termed the Markowitz wobble. This paper uses the results of a torsional oscillation model to calculate the torques generated at Markowitz and other decadal periods and finds, in contrast to previous results, that electromagnetic torques at the ICB can not explain the observed polar motion.
NASA Astrophysics Data System (ADS)
Mironov, Mikhail; Gusev, Vitalyi; Auregan, Yves; Lotton, Pierrick; Bruneau, Michel; Piatakov, Pavel
2002-08-01
It is demonstrated that the differentially heated stack, the heart of all thermoacoustic devices, provides a source of streaming additional to those associated with Reynolds stresses in quasi-unidirectional gas flow. This source of streaming is related to temperature-induced asymmetry in the generation of vortices and turbulence near the stack ends. The asymmetry of the hydrodynamic effects in an otherwise geometrically symmetric stack is due to the temperature difference between stack ends. The proposed mechanism of streaming excitation in annular thermoacoustic devices operates even in the absence of thermo-viscous interaction of sound waves with resonator walls. copyright 2002 Acoustical Society of America.
Efficient Multiphoton Generation in Waveguide Quantum Electrodynamics.
González-Tudela, A; Paulisch, V; Kimble, H J; Cirac, J I
2017-05-26
Engineering quantum states of light is at the basis of many quantum technologies such as quantum cryptography, teleportation, or metrology among others. Though, single photons can be generated in many scenarios, the efficient and reliable generation of complex single-mode multiphoton states is still a long-standing goal in the field, as current methods either suffer from low fidelities or small probabilities. Here we discuss several protocols which harness the strong and long-range atomic interactions induced by waveguide QED to efficiently load excitations in a collection of atoms, which can then be triggered to produce the desired multiphoton state. In order to boost the success probability and fidelity of each excitation process, atoms are used to both generate the excitations in the rest, as well as to herald the successful generation. Furthermore, to overcome the exponential scaling of the probability of success with the number of excitations, we design a protocol to merge excitations that are present in different internal atomic levels with a polynomial scaling.
VIEW OF #2 EXCITER WITH GOVERNOR ON GENERATOR FLOOR. THIS ...
VIEW OF #2 EXCITER WITH GOVERNOR ON GENERATOR FLOOR. THIS EXCITER IS DRIVEN BY A HORIZONTAL KAPLAN WHEEL LOCATED ON OPPOSITE SIDE OF WALL IN WHEELROOM. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA
Note: A simple vibrating orifice monodisperse droplet generator using a hard drive actuator arm
NASA Astrophysics Data System (ADS)
Kosch, Sebastian; Ashgriz, Nasser
2015-04-01
We propose that the rotary voice coil actuators found in magnetic hard drives are fit to supercede loudspeakers as expedient vibration sources in the laboratory setting. A specific use case is the excitation of a liquid jet to induce controlled breakup into monodisperse droplets. Like loudspeakers, which are typically used for prototyping such devices, hard drive actuators are cheap and ubiquitous, but they are less unwieldy and supply greater amplitudes without producing noise. Frequencies between 0 and 17 kHz, and likely beyond, can be reproduced reliably. No machining tools or amplifying electronics are needed for the construction and operation of the presented droplet generator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelley, R.P., E-mail: rpkelley@ufl.edu; Ray, H.; Jordan, K.A.
An empirical investigation of the scintillation mechanism in a pressurized {sup 4}He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a {sup 252}Cf spontaneous fission source and a (d,d) neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactive isotopes. This pulse shape expression was fitted to the measured neutron pulse shape using a least-squares optimization algorithm, allowing an empiricalmore » analysis of the mechanism of scintillation inside the {sup 4}He detector. A further understanding of this mechanism in the {sup 4}He detector will advance the use of this system as a neutron spectrometer. For {sup 252}Cf neutrons, the triplet and singlet time constants were found to be 970 ns and 686 ns, respectively. For neutrons from the (d,d) generator, the time constants were found to be 884 ns and 636 ns. Differences were noted in the magnitude of these parameters compared to previously published data, however the general relationships were noted to be the same and checked with expected trends from theory. Of the excited helium states produced from a {sup 252}Cf neutron interaction, 76% were found to be born as triplet states, similar to the result from the neutron generator of 71%. The two sources yielded similar pulse shapes despite having very different neutron energy spectra, validating the robustness of the fits across various neutron energies.« less
MEANS FOR VISUALIZING FLUID FLOW PATTERNS
Lynch, F.E.; Palmer, L.D.; Poppendick, H.F.; Winn, G.M.
1961-05-16
An apparatus is given for determining both the absolute and relative velocities of a phosphorescent fluid flowing through a transparent conduit. The apparatus includes a source for exciting a narrow trsnsverse band of the fluid to phosphorescence, detecting means such as a camera located downstream from the exciting source to record the shape of the phosphorescent band as it passes, and a timer to measure the time elapsed between operation of the exciting source and operation of the camera.
NASA Technical Reports Server (NTRS)
Dahl, Milo D.
2000-01-01
An acoustic source inside of a 2-D jet excites an instability wave in the shear layer resulting in sound radiating away from the shear layer. Solve the linearized Euler equations to predict the sound radiation outside of the jet. The jet static pressure is assumed to be constant. The jet flow is parallel and symmetric about the x-axis. Use a symmetry boundary condition along the x-axis.
Early, James W.; Lester, Charles S.
2003-01-01
In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.
NASA Astrophysics Data System (ADS)
Khalil, A. A. I.
2015-12-01
Double-pulse lasers ablation (DPLA) technique was developed to generate gold (Au) ion source and produce high current under applying an electric potential in an argon ambient gas environment. Two Q-switched Nd:YAG lasers operating at 1064 and 266 nm wavelengths are combined in an unconventional orthogonal (crossed-beam) double-pulse configuration with 45° angle to focus on a gold target along with a spectrometer for spectral analysis of gold plasma. The properties of gold plasma produced under double-pulse lasers excitation were studied. The velocity distribution function (VDF) of the emitted plasma was studied using a dedicated Faraday-cup ion probe (FCIP) under argon gas discharge. The experimental parameters were optimized to attain the best signal to noise (S/N) ratio. The results depicted that the VDF and current signals depend on the discharge applied voltage, laser intensity, laser wavelength and ambient argon gas pressure. A seven-fold increases in the current signal by increasing the discharge applied voltage and ion velocity under applying double-pulse lasers field. The plasma parameters (electron temperature and density) were also studied and their dependence on the delay (times between the excitation laser pulse and the opening of camera shutter) was investigated as well. This study could provide significant reference data for the optimization and design of DPLA systems engaged in laser induced plasma deposition thin films and facing components diagnostics.
Characterizing lamina propria of human gastric mucosa by multiphoton microscopy
NASA Astrophysics Data System (ADS)
Liu, Y. C.; Yang, H. Q.; Chen, G.; Zhuo, S. M.; Chen, J. X.; Yan, J.
2011-01-01
Lamina propria (LP) of gastric mucosa plays an important role in progression of gastric cancer because of the site at where inflammatory reactions occur. Multiphoton imaging has been recently employed for microscopic examination of intact tissue. In this paper, using multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG), high resolution multiphoton microscopic images of lamina propria (LP) are obtained in normal human gastric mucosa at excitation wavelength λex = 800 nm. The main source of tissue TPEF originated from the cells of gastric glands, and loose connective tissue, collagen, produced SHG signals. Our results demonstrated that MPM can be effective for characterizing the microstructure of LP in human gastric mucosa. The findings will be helpful for diagnosing and staging early gastric cancer in the clinics.
Vortex-induced vibration (VIV) effects of a drilling riser due to vessel motion
NASA Astrophysics Data System (ADS)
Joseph, R. S.; Wang, J.; Ong, M. C.; Jakobsen, J. B.
2017-12-01
A marine riser undergoes oscillatory motion in water due to the vessel motions, known as global dynamic response. This to-and-fro motion of the riser will generate an equivalent flow that can cause Vortex-Induced Vibrations (VIVs), even in the absence of the ocean current. In the present work, full-scale measurement data of a drilling riser operating in the Gulf of Mexico are analysed. The VIV occurrences for the riser are identified from the data and the possible excitation sources are discussed. The oscillatory flow due to vessel motion is compared with the ocean current and its possibility to excite VIV is analysed. The full-scale data analysis provides an insight into the vessel motion-induced VIV of marine risers in the actual field environment.
NASA Astrophysics Data System (ADS)
Sung, Hae-Jin; Go, Byeong-Soo; Jiang, Zhenan; Park, Minwon; Yu, In-Keun
2016-11-01
The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.
NASA Astrophysics Data System (ADS)
Krzempek, Karol; Sobon, Grzegorz; Sotor, Jaroslaw; Dudzik, Grzegorz; Abramski, Krzysztof M.
2014-10-01
We present a difference frequency generation based (DFG) mid-infrared (mid-IR) laser source using an all-polarization-maintaining-fiber (all-PM) amplifier capable of simultaneous amplification of 1064 nm and 1550 nm signals. The amplifier incorporates a single piece of a standard erbium:ytterbium (Er:Yb) co-doped double-clad (DC) active fiber and a limited number of off-the-shelf fiber-based components. Excited by a single 9 W multimode pump, the amplifier delivered over 12.1 dB and 17.8 dB gain at 1 µm and 1.55 µm, respectively. Due to an all-PM configuration, the amplifier was exceptionally convenient for DFG of mid-IR radiation in periodically polled lithium niobate (PPLN) crystal, yielding an output power of ~200 µW in a wide spectral range spanning from 3300 to 3470 nm.
Sub-one-third wavelength focusing of surface plasmon polaritons excited by linearly polarized light.
Wang, Jiayuan; Zhang, Jiasen
2018-05-28
We report the generation of a subwavelength focal spot for surface plasmon polaritons (SPPs) by increasing the proportion of high-spatial-frequency components in the plasmonic focusing field. We have derived an analytical expression for the angular-dependent contribution of an arbitrary-shaped SPP line source to the focal field and have found that the proportion for high-spatial-frequency components can be significantly increased by launching SPPs from a horizontal line source. Accordingly, we propose a rectangular-groove plasmonic lens (PL) consisting of horizontally-arrayed central grooves and slantingly-arrayed flanking grooves on gold film. We demonstrate both numerically and experimentally that, under linearly polarized illumination, such a PL generates a focal spot of full width half maximum 274 nm at an operating wavelength of 830 nm. The method we describe provides guidance to the further structure design and optimization for plasmonic focusing devices.
Diagnostics of AC excited Atmospheric Pressure Plasma Jet with He for Biomedical Applications
NASA Astrophysics Data System (ADS)
Hori, Masaru; Takeda, Keigo; Kumakura, Takumi; Ishikawa, Kenji; Tanaka, Hiromasa; Kondo, Hiroki; Sekine, Makoto; Nakai, Yoshihiro
2014-10-01
Atmospheric pressure plasma jets (APPJ) are frequently used for biomedical applications. Reactive species generated by the APPJ play important roles for treatments of biomedical samples. Therefore, high density APPJ sources are required to realize the high performance. Our group has developed AC excited Ar APPJ with electron density as high as 1015 cm-3, and realized the selective killing of cancer cells and the inactivate spores of Penicillium digitatum. Recently, a new spot-size AC excited APPJ with He gas have been developed. In this study, the He APPJ was characterized by using spectroscopy. The plasma was discharged at a He flow rate of 5 slm and a discharge voltage of AC 9 kV. Gas temperature and electron density of the APPJ were measured by optical emission spectroscopy. From theoretical fitting of 2nd positive system of N2 emission (380.4 nm) and Stark broadening of Balmer β line of H atom (486.1 nm), the gas temperature and the electron density was estimated to be 299 K and 3.4. × 1015 cm-3. The AC excited He APPJ has a potential to realize high density with room temperature and become a very powerful tool for biomedical applications.
Chen, Disheng; Lander, Gary R; Flagg, Edward B
2017-10-13
The ability to perform simultaneous resonant excitation and fluorescence detection is important for quantum optical measurements of quantum dots (QDs). Resonant excitation without fluorescence detection - for example, a differential transmission measurement - can determine some properties of the emitting system, but does not allow applications or measurements based on the emitted photons. For example, the measurement of photon correlations, observation of the Mollow triplet, and realization of single photon sources all require collection of the fluorescence. Incoherent excitation with fluorescence detection - for example, above band-gap excitation - can be used to create single photon sources, but the disturbance of the environment due to the excitation reduces the indistinguishability of the photons. Single photon sources based on QDs will have to be resonantly excited to have high photon indistinguishability, and simultaneous collection of the photons will be necessary to make use of them. We demonstrate a method to resonantly excite a single QD embedded in a planar cavity by coupling the excitation beam into this cavity from the cleaved face of the sample while collecting the fluorescence along the sample's surface normal direction. By carefully matching the excitation beam to the waveguide mode of the cavity, the excitation light can couple into the cavity and interact with the QD. The scattered photons can couple to the Fabry-Perot mode of the cavity and escape in the surface normal direction. This method allows complete freedom in the detection polarization, but the excitation polarization is restricted by the propagation direction of the excitation beam. The fluorescence from the wetting layer provides a guide to align the collection path with respect to the excitation beam. The orthogonality of the excitation and detection modes enables resonant excitation of a single QD with negligible laser scattering background.
NASA Astrophysics Data System (ADS)
Wobrauschek, P.; Prost, J.; Ingerle, D.; Kregsamer, P.; Misra, N. L.; Streli, C.
2015-08-01
The extension of the detectable elemental range with Total Reflection X-ray Fluorescence (TXRF) analysis is a challenging task. In this paper, it is demonstrated how a TXRF spectrometer is modified to analyze elements from carbon to uranium. Based on the existing design of a vacuum TXRF spectrometer with a 12 specimen sample changer, the following components were renewed: the silicon drift detector with 20 mm2 active area and having a special ultra-thin polymer window allowing the detection of elements from carbon upwards. Two exchangeable X-ray sources guarantee the efficient excitation of both low and high Z elements. These X-ray sources were two light-weighted easily mountable 35 W air-cooled low-power tubes with Cr and Rh anodes, respectively. The air cooled tubes and the Peltier-cooled detector allowed to construct a transportable tabletop spectrometer with compact dimensions, as neither liquid nitrogen cooling for the detector nor a water cooling circuit and a bulky high voltage generator for the X-ray tubes are required. Due to the excellent background conditions as a result of the TXRF geometry, detection limits of 150 ng for C, 12 ng for F, and 3.3 ng for Na have been obtained using Cr excitation in vacuum. For Rh excitation, the detection limits of 90 pg could be achieved for Sr. Taking 10 to 20 μl of sample volume, extrapolated detection limits in the ng/g (ppb) range are resulting in terms of concentration.
Excitation of Love waves in a thin film layer by a line source.
NASA Technical Reports Server (NTRS)
Tuan, H.-S.; Ponamgi, S. R.
1972-01-01
The excitation of a Love surface wave guided by a thin film layer deposited on a semiinfinite substrate is studied in this paper. Both the thin film and the substrate are considered to be elastically isotropic. Amplitudes of the surface wave in the thin film region and the substrate are found in terms of the strength of a line source vibrating in a direction transverse to the propagating wave. In addition to the surface wave, the bulk shear wave excited by the source is also studied. Analytical expressions for the bulk wave amplitude as a function of the direction of propagation, the acoustic powers transported by the surface and bulk waves, and the efficiency of surface wave excitation are obtained. A numerical example is given to show how the bulk wave radiation pattern depends upon the source frequency, the film thickness and other important parameters of the problem. The efficiency of surface wave excitation is also calculated for various parameter values.
Competition and transformation of modes of unidirectional air waveguide
NASA Astrophysics Data System (ADS)
Sun, Yu-xin; Kong, Xiang-kun; Fang, Yun-tuan
2016-10-01
In order to study the mode excitation of the unidirectional air waveguide, we place a line source at different positions in the waveguide. The source position plays an important role in determining the result of the competition of the even mode and the odd mode. For the source at the edge of the waveguide, the odd mode gets advantage over the even mode. As a result, the odd mode is excited, but the even mode is suppressed. For the source at the center of the waveguide, the even mode is excited, but the odd mode is suppressed. With two sources at two edges of the waveguide, the even mode is released because the two odd modes are canceled.
NASA Astrophysics Data System (ADS)
Alligné, S.; Nicolet, C.; Béguin, A.; Landry, C.; Gomes, J.; Avellan, F.
2017-04-01
The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope from the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of ν = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed for all technologies to analyse potential interactions between hydraulic excitation sources and electrical components. Three technologies have been compared: the classical fixed speed configuration with Synchronous Machine (SM) and the two variable speed technologies which are Doubly Fed Induction Machine (DFIM) and Full Size Frequency Converter (FSFC).
Widely tunable narrow-band coherent Terahertz radiation from an undulator at THU
NASA Astrophysics Data System (ADS)
Su, X.; Wang, D.; Tian, Q.; Liang, Y.; Niu, L.; Yan, L.; Du, Y.; Huang, W.; Tang, C.
2018-01-01
There is anxious demand for intense widely tunable narrow-band Terahertz (THz) radiation in scientific research, which is regarded as a powerful tool for the coherent control of matter. We report the generation of widely tunable THz radiation from a planar permanent magnet undulator at Tsinghua University (THU). A relativistic electron beam is compressed by a magnetic chicane into sub-ps bunch length to excite THz radiation in the undulator coherently. The THz frequency can be tuned from 0.4 THz to 10 THz continuously with narrow-band spectrums when the undulator gap ranges from 23 mm to 75 mm. The measured pulse THz radiation energy from 220 pC bunch is 3.5 μJ at 1 THz and tens of μJ pulse energy (corresponding peak power of 10 MW) can be obtained when excited by 1 nC beam extrapolated from the property of coherent radiation. The experimental results agree well with theoretical predictions, which demonstrates a suitable THz source for the many applications that require intense and widely tunable THz sources.
Internal Wave Generation by Convection
NASA Astrophysics Data System (ADS)
Lecoanet, Daniel Michael
In nature, it is not unusual to find stably stratified fluid adjacent to convectively unstable fluid. This can occur in the Earth's atmosphere, where the troposphere is convective and the stratosphere is stably stratified; in lakes, where surface solar heating can drive convection above stably stratified fresh water; in the oceans, where geothermal heating can drive convection near the ocean floor, but the water above is stably stratified due to salinity gradients; possible in the Earth's liquid core, where gradients in thermal conductivity and composition diffusivities maybe lead to different layers of stable or unstable liquid metal; and, in stars, as most stars contain at least one convective and at least one radiative (stably stratified) zone. Internal waves propagate in stably stratified fluids. The characterization of the internal waves generated by convection is an open problem in geophysical and astrophysical fluid dynamics. Internal waves can play a dynamically important role via nonlocal transport. Momentum transport by convectively excited internal waves is thought to generate the quasi-biennial oscillation of zonal wind in the equatorial stratosphere, an important physical phenomenon used to calibrate global climate models. Angular momentum transport by convectively excited internal waves may play a crucial role in setting the initial rotation rates of neutron stars. In the last year of life of a massive star, convectively excited internal waves may transport even energy to the surface layers to unbind them, launching a wind. In each of these cases, internal waves are able to transport some quantity--momentum, angular momentum, energy--across large, stable buoyancy gradients. Thus, internal waves represent an important, if unusual, transport mechanism. This thesis advances our understanding of internal wave generation by convection. Chapter 2 provides an underlying theoretical framework to study this problem. It describes a detailed calculation of the internal gravity wave spectrum, using the Lighthill theory of wave excitation by turbulence. We use a Green's function approach, in which we convolve a convective source term with the Green's function of different internal gravity waves. The remainder of the thesis is a circuitous attempt to verify these analytical predictions. I test the predictions of Chapter 2 via numerical simulation. The first step is to identify a code suitable for this study. I helped develop the Dedalus code framework to study internal wave generation by convection. Dedalus can solve many different partial differential equations using the pseudo-spectral numerical method. In Chapter 3, I demonstrate Dedalus' ability to solve different equations used to model convection in astrophysics. I consider both the propagation and damping of internal waves, and the properties of low Rayleigh number convective steady states, in six different equation sets used in the astrophysics literature. This shows that Dedalus can be used to solve the equations of interest. Next, in Chapter 4, I verify the high accuracy of Dedalus by comparing it to the popular astrophysics code Athena in a standard Kelvin-Helmholtz instability test problem. Dedalus performs admirably in comparison to Athena, and provides a high standard for other codes solving the fully compressible Navier-Stokes equations. Chapter 5 demonstrates that Dedalus can simulate convective adjacent to a stably stratified region, by studying convective mixing near carbon flames. The convective overshoot and mixing is well-resolved, and is able to generate internal waves. Confident in Dedalus' ability to study the problem at hand, Chapter 6 describes simulations inspired by water experiments of internal wave generation by convection. The experiments exploit water's unusual property that its density maximum is at 4°C, rather than at 0°C. We use a similar equation of state in Dedalus, and study internal gravity waves generation by convection in a water-like fluid. We test two models of wave generation: bulk excitation (equivalent to the Lighthill theory described in Chapter 2), and surface excitation. We find the bulk excitation model accurately reproduces the waves generated in the simulations, validating the calculations of Chapter 2.
Developing single-laser sources for multimodal coherent anti-Stokes Raman scattering microscopy
NASA Astrophysics Data System (ADS)
Pegoraro, Adrian Frank
Coherent anti-Stokes Raman scattering (CARS) microscopy has developed rapidly and is opening the door to new types of experiments. This work describes the development of new laser sources for CARS microscopy and their use for different applications. It is specifically focused on multimodal nonlinear optical microscopy—the simultaneous combination of different imaging techniques. This allows us to address a diverse range of applications, such as the study of biomaterials, fluid inclusions, atherosclerosis, hepatitis C infection in cells, and ice formation in cells. For these applications new laser sources are developed that allow for practical multimodal imaging. For example, it is shown that using a single Ti:sapphire oscillator with a photonic crystal fiber, it is possible to develop a versatile multimodal imaging system using optimally chirped laser pulses. This system can perform simultaneous two photon excited fluorescence, second harmonic generation, and CARS microscopy. The versatility of the system is further demonstrated by showing that it is possible to probe different Raman modes using CARS microscopy simply by changing a time delay between the excitation beams. Using optimally chirped pulses also enables further simplification of the laser system required by using a single fiber laser combined with nonlinear optical fibers to perform effective multimodal imaging. While these sources are useful for practical multimodal imaging, it is believed that for further improvements in CARS microscopy sensitivity, new excitation schemes are necessary. This has led to the design of a new, high power, extended cavity oscillator that should be capable of implementing new excitation schemes for CARS microscopy as well as other techniques. Our interest in multimodal imaging has led us to other areas of research as well. For example, a fiber-coupling scheme for signal collection in the forward direction is demonstrated that allows for fluorescence lifetime imaging without significant temporal distortion. Also highlighted is an imaging artifact that is unique to CARS microscopy that can alter image interpretation, especially when using multimodal imaging. By combining expertise in nonlinear optics, laser development, fiber optics, and microscopy, we have developed systems and techniques that will be of benefit for multimodal CARS microscopy.
NASA Astrophysics Data System (ADS)
Lonzaga, Joel Barci
Both modulated ultrasonic radiation pressure and oscillating Maxwell stress from a voltage-modulated ring electrode are employed to excite low-frequency capillary modes of a weakly tapered liquid jet issuing from a nozzle. The capillary modes are waves formed at the surface of the liquid jet. The ultrasound is internally applied to the liquid jet waveguide and is cut off at a location resulting in a significantly enhanced oscillating radiation stress near the cutoff location. Alternatively, the thin electrode can generate a highly localized oscillating Maxwell stress on the jet surface. Experimental evidence shows that a spatially unstable mode with positive group velocity (propagating downstream from the excitation source) and a neutral mode with negative group velocity are both excited. Reflection at the nozzle boundary converts the neutral mode into an unstable one that interferes with the original unstable mode. The interference effect is observed downstream from the source using a laser-based optical extinction technique that detects the surface waves while the modulation frequency is scanned. This technique is very sensitive to small-amplitude disturbances. Existing linear, convective stability analyses on liquid jets accounting for the gravitational effect (i.e. varying radius and velocity) appear to be not applicable to non-slender, slow liquid jets considered here where the gravitational effect is found substantial at low flow rates. The multiple-scales method, asymptotic expansion and WKB approximation are used to derive a dispersion relation for the capillary wave similar to one obtained by Rayleigh but accounting for the gravitational effect. These mathematical tools aided by Langer's transformation are also used to derive a uniformly valid approximation for the acoustic wave propagation in a tapered cylindrical waveguide. The acoustic analytical approximation is validated by finite-element calculations. The jet response is modeled using a hybrid of Fourier analysis and the WKB-type analysis as proposed by Lighthill. The former derives the mode response to a highly localized source while the latter governs the mode propagation in a weakly inhomogeneous jet away from the source.
Early, James W.; Lester, Charles S.
2002-01-01
In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In the embodiment of the invention claimed herein, the beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being combined with either the first portion after a delay before injection into the ignitor laser.
Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components.
Ciampa, Francesco; Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele
2018-02-16
Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters' primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites.
CO excitation in the Seyfert galaxy NGC 7130
NASA Astrophysics Data System (ADS)
Pozzi, F.; Vallini, L.; Vignali, C.; Talia, M.; Gruppioni, C.; Mingozzi, M.; Massardi, M.; Andreani, P.
2017-09-01
We present a coherent multiband modelling of the carbon monoxide (CO) spectral energy distribution of the local Seyfert galaxy NGC 7130 to assess the impact of the active galactic nucleus (AGN) activity on the molecular gas. We take advantage of all the available data from X-ray to the submillimetre, including ALMA data. The high-resolution (˜0.2 arcsec) ALMA CO(6-5) data constrain the spatial extension of the CO emission down to an ˜70 pc scale. From the analysis of the archival Chandra and NuSTAR data, we infer the presence of a buried, Compton-thick AGN of moderate luminosity, L2-10 keV ˜ 1.6 × 1043 erg s-1. We explore photodissociation and X-ray-dominated-region (PDR and XDR) models to reproduce the CO emission. We find that PDRs can reproduce the CO lines up to J ˜ 6; however, the higher rotational ladder requires the presence of a separate source of excitation. We consider X-ray heating by the AGNs as a source of excitation, and find that it can reproduce the observed CO spectral energy distribution. By adopting a composite PDR+XDR model, we derive molecular cloud properties. Our study clearly indicates the capabilities offered by the current generation of instruments to shed light on the properties of nearby galaxies by adopting state-of-the-art physical modelling.
Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components
Mahmoodi, Pooya; Pinto, Fulvio; Meo, Michele
2018-01-01
Active infrared thermography is a fast and accurate non-destructive evaluation technique that is of particular relevance to the aerospace industry for the inspection of aircraft and helicopters’ primary and secondary structures, aero-engine parts, spacecraft components and its subsystems. This review provides an exhaustive summary of most recent active thermographic methods used for aerospace applications according to their physical principle and thermal excitation sources. Besides traditional optically stimulated thermography, which uses external optical radiation such as flashes, heaters and laser systems, novel hybrid thermographic techniques are also investigated. These include ultrasonic stimulated thermography, which uses ultrasonic waves and the local damage resonance effect to enhance the reliability and sensitivity to micro-cracks, eddy current stimulated thermography, which uses cost-effective eddy current excitation to generate induction heating, and microwave thermography, which uses electromagnetic radiation at the microwave frequency bands to provide rapid detection of cracks and delamination. All these techniques are here analysed and numerous examples are provided for different damage scenarios and aerospace components in order to identify the strength and limitations of each thermographic technique. Moreover, alternative strategies to current external thermal excitation sources, here named as material-based thermography methods, are examined in this paper. These novel thermographic techniques rely on thermoresistive internal heating and offer a fast, low power, accurate and reliable assessment of damage in aerospace composites. PMID:29462953
Third-harmonic generation susceptibility spectroscopy in free fatty acids
NASA Astrophysics Data System (ADS)
Chen, Yu-Cheng; Hsu, Hsun-Chia; Lee, Chien-Ming; Sun, Chi-Kuang
2015-09-01
Lipid-correlated disease such as atherosclerosis has been an important medical research topic for decades. Many new microscopic imaging techniques such as coherent anti-Stokes Raman scattering and third-harmonic generation (THG) microscopy were verified to have the capability to target lipids in vivo. In the case of THG microscopy, biological cell membranes and lipid bodies in cells and tissues have been shown as good sources of contrast with a laser excitation wavelength around 1200 nm. We report the THG excitation spectroscopy study of two pure free fatty acids including oleic acid and linoleic acid from 1090 to 1330 nm. Different pure fatty acids presented slightly-different THG χ(3) spectra. The measured peak values of THG third-order susceptibility χ(3) in both fatty acids were surprisingly found not to match completely with the resonant absorption wavelengths around 1190 to 1210 nm, suggesting possible wavelengths selection for enhanced THG imaging of lipids while avoiding laser light absorption. Along with the recent advancement in THG imaging, this new window between 1240 to 1290 nm may offer tremendous new opportunities for sensitive label-free lipid imaging in biological tissues.
Next-generation materials for future synchrotron and free-electron laser sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assoufid, Lahsen; Graafsma, Heinz
We show that the development of new materials and improvements of existing ones are at the root of the spectacular recent developments of new technologies for synchrotron storage rings and free-electron laser sources. This holds true for all relevant application areas, from electron guns to undulators, x-ray optics, and detectors. As demand grows for more powerful and efficient light sources, efficient optics, and high-speed detectors, an overview of ongoing materials research for these applications is timely. In this article, we focus on the most exciting and demanding areas of materials research and development for synchrotron radiation optics and detectors. Materialsmore » issues of components for synchrotron and free-electron laser accelerators are briefly discussed. Lastly, the articles in this issue expand on these topics.« less
Next-generation materials for future synchrotron and free-electron laser sources
Assoufid, Lahsen; Graafsma, Heinz
2017-06-09
We show that the development of new materials and improvements of existing ones are at the root of the spectacular recent developments of new technologies for synchrotron storage rings and free-electron laser sources. This holds true for all relevant application areas, from electron guns to undulators, x-ray optics, and detectors. As demand grows for more powerful and efficient light sources, efficient optics, and high-speed detectors, an overview of ongoing materials research for these applications is timely. In this article, we focus on the most exciting and demanding areas of materials research and development for synchrotron radiation optics and detectors. Materialsmore » issues of components for synchrotron and free-electron laser accelerators are briefly discussed. Lastly, the articles in this issue expand on these topics.« less
Application of crowd-sourced data to multi-scale evolutionary exposure and vulnerability models
NASA Astrophysics Data System (ADS)
Pittore, Massimiliano
2016-04-01
Seismic exposure, defined as the assets (population, buildings, infrastructure) exposed to earthquake hazard and susceptible to damage, is a critical -but often neglected- component of seismic risk assessment. This partly stems from the burden associated with the compilation of a useful and reliable model over wide spatial areas. While detailed engineering data have still to be collected in order to constrain exposure and vulnerability models, the availability of increasingly large crowd-sourced datasets (e. g. OpenStreetMap) opens up the exciting possibility to generate incrementally evolving models. Integrating crowd-sourced and authoritative data using statistical learning methodologies can reduce models uncertainties and also provide additional drive and motivation to volunteered geoinformation collection. A case study in Central Asia will be presented and discussed.
Properies of the microseism wave field in Australia from three component array data
NASA Astrophysics Data System (ADS)
Gal, Martin; Reading, Anya; Ellingsen, Simon; Koper, Keith; Burlacu, Relu; Tkalčić, Hrvoje
2016-04-01
In the last two decades, ambient noise studies in the range of 1-20 seconds have predominantly focused on the analysis of source regions for Rayleigh and P waves. The theoretical excitation of these phases is well understood for primary microseisms (direct coupling of gravity waves in sloping shallow bathymetry) and secondary microseisms (wave-wave interaction) and correlates well with observations. For Love waves, the excitation mechanism in the secondary microseism band is to date unknown. It has been shown, that LQ waves can exhibit larger amplitudes than Rg waves for certain frequencies. Therefore detailed analysis of the wave field are necessary to find indications on the generation mechanism. We analyse data from two spiral-shaped arrays located in Australia, the Pilbara Array (PSAR) in the North-West and an array in South Queensland (SQspa) in the East. The two arrays are different in aperture and allow for the study of primary and secondary microseisms with SQspa and higher secondary microseisms with PSAR. We use a deconvolution enhanced beamforming approach, which is based on the CLEAN algorithm. It allows the accurate detection of weaker sources and the estimation of power levels on each component or wave type. For PSAR we evaluate 1 year of data in the frequency range of 0.35-1 Hz and find fundamental and higher mode Rg and LQ waves. For the low end of the frequency range, we find the strongest fundamental mode Rg waves to originate from multiple direction, but confined to coastline reflectors, i.e. coastlines that are perpendicular to the main swell direction, while higher mode Rg waves are mainly generated in the Great Australian Bight. For higher frequencies, the source locations of Rg waves move toward the north coast, which is closest to the array and we see an increase in the Lg phase. The majority of fundamental LQ waves are generated at the west coast of Australia and we find some agreement between low frequency Rg and LQ source locations, which becomes uncorrelated with increasing frequency. For higher mode LQ waves the generation region is in the south-west, where Australia is exposed to direct swells from the Antarctic. In the case of Rg-to-LQ power ratio, we find a frequency and backazimuth dependence. Results from SQspa allow lower frequency arrivals around the primary and secondary microseism peak to be investigated.
Utilization of rotor kinetic energy storage for hybrid vehicles
Hsu, John S [Oak Ridge, TN
2011-05-03
A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.
Plasma waves in the magnetic hole
NASA Technical Reports Server (NTRS)
Lin, Naiguo; Kellogg, P. J.; MacDowall, R.; Balogh, A.; Forsyth, R. J.; Phillips, J. L.; Pick, M.
1995-01-01
Magnetic holes in the solar wind, which are characterized by isolated local depressions in the magnetic field magnitude, have been observed previously. The Unified Radio and Plasma Wave (URAP) instrument of Ulysses has found that within such magnetic structures, electrostatic waves at kHz frequency and ultralow frequency electromagnetic waves are often excited and seen as short duration wave bursts. Most of these bursts occur near the ambient electron plasma frequency, which suggests that the waves are Langmuir waves. Such waves are usually excited by electron streams. Some evidence of the streaming of energetic electrons required for exciting Langmuir waves has been observed. These electrons may have originated at sources near the Sun, which would imply that the magnetic structures containing the waves would exist as long channels formed by field and plasma conditions near the Sun. On the other hand, the electrons could be suprathermal 'tails' from wave collapse processes occurring near the spacecraft. In either case, the Langmuir waves excited in the magnetic holes provide a measurement of the plasma density inside the holes. Low frequency electromagnetic waves, having frequencies of a fraction of the local electron cyclotron frequency, sometimes accompany the Langmuir waves observed in magnetic holes. Waves excited in this frequency range are very likely to be whistler-mode waves. They may have been excited by an electron temperature anisotropy which has been observed in the vicinity of the magnetic holes or generated through the decay of Langmuir waves.
NASA Astrophysics Data System (ADS)
Hikosaka, Tomoyuki; Miyamoto, Masahiro; Yamada, Mamoru; Morita, Tadashi
1993-05-01
It is very important to obtain saturated magnetic properties from reverse saturation (full B-H curve) of ferromagnetic cores to design magnetic switches which are used in high power pulse generators. The magnetic switch is excited in the high frequency range (˜MHz). But, it is extremely difficult to measure full B-H curve of large toroidal cores of which diameter is some hundreds of mm, using the conventional ac excitation method at high frequency. The main reason is poor output ability of power source for core excitation. Therefore we have developed pulse excitation method to get high frequency magnetic properties. The measurement circuit has two sections. One is excitation part composed by charge transfer circuit. The others is reset part for adjustment initial point on direct B-H curve. The sample core is excited by sinusoidal voltage pulse expressed as 1-cos(2π ft). Excitation frequency f is decided by the constants of the elements of the charge transfer circuit. The change of magnetic flux density ΔB and magnetic field H are calculated, respectively, by measuring the induced voltage of search coil and magnetizing current. ΔB-H characteristics from reverse saturation of four different kinds of large cores were measured in frequency range from 50 kHz to 1 MHz. Core loss increases in proportion to Nth powers of the frequency, where the index N depends on each of cores. N is about 0.5 in case of winding ribbon cores, such as Fe-based amorphous, Co-based amorphous, and Finemet, but N is about 0.2 in case of the Ni-Zn ferrite.
Robertson, J. Brian; Zhang, Yunfei; Johnson, Carl Hirschie
2009-01-01
Summary Light-emitting diodes (LEDs) are becoming more commonly used as light sources for fluorescence microscopy. We describe the adaptation of a commercially available LED flashlight for use as a source for fluorescence excitation. This light source is long-lived, inexpensive, and is effective for excitation in the range of 440–600 nm. PMID:19772530
Single photon generation through exciton-exciton annihilation in air-suspended carbon nanotubes
NASA Astrophysics Data System (ADS)
Ishii, Akihiro; Uda, Takushi; Kato, Yuichiro K.
Carbon nanotubes have great potential for single photon sources as they have stable exciton states even at room temperature and their emission wavelengths cover the telecommunication bands. In recent years, single photon emission from carbon nanotubes has been achieved by creating localized states of excitons. In contrast to such an approach, here we utilize mobile excitons and show that single photons can be generated in air-suspended carbon nanotubes, where exciton diffusion length is as long as several hundred nanometers and exciton-exciton annihilation is efficient. We perform photoluminescence microscopy on as-grown air-suspended carbon nanotubes in order to determine their chirality and suspended length. Photon correlation measurements are performed on nanotube emission at room temperature using a Hanbury-Brown-Twiss setup with InGaAs/InP single photon detectors. We observe antibunching with a clear excitation power dependence, where we obtain g (2) (0) value less than 0.5 at low excitation powers, indicating single photon generation. We show such g (2) (0) data with different chiralities and suspended lengths, and the effects of exciton diffusion on single photon generation processes are discussed. Work supported by KAKENHI (26610080, 16H05962), The Canon Foundation, and MEXT (Photon Frontier Network Program, Nanotechnology Platform). A.I. is supported by MERIT and JSPS Research Fellowship, and T.U. is supported by ALPS.
Efficient Photochemical Dihydrogen Generation Initiated by a Bimetallic Self-Quenching Mechanism
Chambers, Matthew B.; Kurtz, Daniel A.; Pitman, Catherine L.; ...
2016-09-27
Artificial photosynthesis relies on coupling light absorption with chemical fuel generation. A mechanistic study of visible light-driven H 2 production from [Cp*Ir(bpy)H] + (1) has revealed a new, highly efficient pathway for integrating light absorption with bond formation. The net reaction of 1 with a proton source produces H 2, but the rate of excited state quenching is surprisingly acid-independent and displays no observable deuterium kinetic isotopic effect. Time-resolved photoluminescence and labeling studies are consistent with diffusion-limited bimetallic self-quenching by electron transfer. Accordingly, the quantum yield of H 2 release nearly reaches unity as the concentration of 1 increases. Furthermore,more » this unique pathway for photochemical H 2 generation provides insight into transformations catalyzed by 1.« less
NASA powered lift facility internally generated noise and its transmission to the acoustic far field
NASA Technical Reports Server (NTRS)
Huff, Ronald G.
1988-01-01
Noise tests of NASA Lewis Research Center's Powered Lift Facility (PLF) were performed to determine the frequency content of the internally generated noise that reaches the far field. The sources of the internally generated noise are the burner, elbows, valves, and flow turbulence. Tests over a range of nozzle pressure ratios from 1.2 to 3.5 using coherence analysis revealed that low frequency noise below 1200 Hz is transmitted through the nozzle. Broad banded peaks at 240 and 640 Hz were found in the transmitted noise. Aeroacoustic excitation effects are possible in this frequency range. The internal noise creates a noise floor that limits the amount of jet noise suppression that can be measured on the PLF and similar facilities.
Development of 70 MW class superconducting generator with quick-response excitation
NASA Astrophysics Data System (ADS)
Miyaike, Kiyoshi; Kitajima, Toshio; Ito, Tetsuo
2002-03-01
The development of a superconducting generator had been carried out for 12 years under the first stage of a Super GM project. The 70 MW class model machine with quick response excitation was manufactured and evaluated in the project. This type of superconducting generator improves power system stability against rapid load fluctuations at the power system faults. This model machine achieved all development targets including high stability during rapid excitation control. It was also connected to the actual 77 kV electrical power grid as a synchronous condenser and proved advantages and high-operation reliability of the superconducting generator.
Comparison Study of Three Different Image Reconstruction Algorithms for MAT-MI
Xia, Rongmin; Li, Xu
2010-01-01
We report a theoretical study on magnetoacoustic tomography with magnetic induction (MAT-MI). According to the description of signal generation mechanism using Green’s function, the acoustic dipole model was proposed to describe acoustic source excited by the Lorentz force. Using Green’s function, three kinds of reconstruction algorithms based on different models of acoustic source (potential energy, vectored acoustic pressure, and divergence of Lorenz force) are deduced and compared, and corresponding numerical simulations were conducted to compare these three kinds of reconstruction algorithms. The computer simulation results indicate that the potential energy method and vectored pressure method can directly reconstruct the Lorentz force distribution and give a more accurate reconstruction of electrical conductivity. PMID:19846363
Electric machine and current source inverter drive system
Hsu, John S
2014-06-24
A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.
Ultrasound modulation of bioluminescence generated inside a turbid medium
NASA Astrophysics Data System (ADS)
Ahmad, Junaid; Jayet, Baptiste; Hill, Philip J.; Mather, Melissa L.; Dehghani, Hamid; Morgan, Stephen P.
2017-03-01
In vivo bioluminescence imaging (BLI) has poor spatial resolution owing to strong light scattering by tissue, which also affects quantitative accuracy. This paper proposes a hybrid acousto-optic imaging platform that images bioluminescence modulated at ultrasound (US) frequency inside an optically scattering medium. This produces an US modulated light within the tissue that reduces the effects of light scattering and improves the spatial resolution. The system consists of a continuously excited 3.5 MHz US transducer applied to a tissue like phantom of known optical properties embedded with bio-or chemiluminescent sources that are used to mimic in vivo experiments. Scanning US over the turbid medium modulates the luminescent sources deep inside tissue at several US scan points. These modulated signals are recorded by a photomultiplier tube and lock-in detection to generate a 1D profile. Indeed, high frequency US enables small focal volume to improve spatial resolution, but this leads to lower signal-to-noise ratio. First experimental results show that US enables localization of a small luminescent source (around 2 mm wide) deep ( 20 mm) inside a tissue phantom having a scattering coefficient of 80 cm-1. Two sources separated by 10 mm could be resolved 20 mm inside a chicken breast.
NASA Astrophysics Data System (ADS)
Tarvainen, O.; Rouleau, G.; Keller, R.; Geros, E.; Stelzer, J.; Ferris, J.
2008-02-01
The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H- ion beams in a filament-driven discharge. In this kind of an ion source the extracted H- beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H- converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H- ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H- ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H- production (main discharge) in order to further improve the brightness of extracted H- ion beams.
Tarvainen, O; Rouleau, G; Keller, R; Geros, E; Stelzer, J; Ferris, J
2008-02-01
The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H(-) ion beams in a filament-driven discharge. In this kind of an ion source the extracted H(-) beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H(-) converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H(-) ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H(-) ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H(-) production (main discharge) in order to further improve the brightness of extracted H(-) ion beams.
Note: A simple vibrating orifice monodisperse droplet generator using a hard drive actuator arm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosch, Sebastian, E-mail: skosch@mie.utoronto.ca, E-mail: ashgriz@mie.utoronto.ca; Ashgriz, Nasser, E-mail: skosch@mie.utoronto.ca, E-mail: ashgriz@mie.utoronto.ca
2015-04-15
We propose that the rotary voice coil actuators found in magnetic hard drives are fit to supercede loudspeakers as expedient vibration sources in the laboratory setting. A specific use case is the excitation of a liquid jet to induce controlled breakup into monodisperse droplets. Like loudspeakers, which are typically used for prototyping such devices, hard drive actuators are cheap and ubiquitous, but they are less unwieldy and supply greater amplitudes without producing noise. Frequencies between 0 and 17 kHz, and likely beyond, can be reproduced reliably. No machining tools or amplifying electronics are needed for the construction and operation ofmore » the presented droplet generator.« less
Parametric emittance measurements of electron beams produced by a laser plasma accelerator
NASA Astrophysics Data System (ADS)
Barber, S. K.; van Tilborg, J.; Schroeder, C. B.; Lehe, R.; Tsai, H.-E.; Swanson, K. K.; Steinke, S.; Nakamura, K.; Geddes, C. G. R.; Benedetti, C.; Esarey, E.; Leemans, W. P.
2018-05-01
Laser plasma accelerators (LPA) offer an exciting possibility to deliver high energy, high brightness electrons beams in drastically smaller distance scales than is typical for conventional accelerators. As such, LPAs draw considerable attention as potential drivers for next generation light sources and for a compact linear collider. In order to asses the viability of an LPA source for a particular application, the brightness of the source should be properly characterized. In this paper, we present charge dependent transverse emittance measurements of LPA sources using both ionization injection and shock induced density down ramp injection, with the latter delivering smaller transverse emittances by a factor of two when controlling for charge density. The single shot emittance method is described in detail with a discussion on limitations related to second order transport effects. The direct role of space charge is explored through a series of simulations and found to be consistent with experimental observations.
Ultraviolet 320 nm laser excitation for flow cytometry.
Telford, William; Stickland, Lynn; Koschorreck, Marco
2017-04-01
Although multiple lasers and high-dimensional analysis capability are now standard on advanced flow cytometers, ultraviolet (UV) lasers (usually 325-365 nm) remain an uncommon excitation source for cytometry. This is primarily due to their cost, and the small number of applications that require this wavelength. The development of the Brilliant Ultraviolet (BUV fluorochromes, however, has increased the importance of this formerly niche excitation wavelength. Historically, UV excitation was usually provided by water-cooled argon- and krypton-ion lasers. Modern flow cytometers primary rely on diode pumped solid state lasers emitting at 355 nm. While useful for all UV-excited applications, DPSS UV lasers are still large by modern solid state laser standards, and remain very expensive. Smaller and cheaper near UV laser diodes (NUVLDs) emitting at 375 nm make adequate substitutes for 355 nm sources in many situations, but do not work as well with very short wavelength probes like the fluorescent calcium chelator indo-1. In this study, we evaluate a newly available UV 320 nm laser for flow cytometry. While shorter in wavelength that conventional UV lasers, 320 is close to the 325 nm helium-cadmium wavelength used in the past on early benchtop cytometers. A UV 320 nm laser was found to excite almost all Brilliant Ultraviolet dyes to nearly the same level as 355 nm sources. Both 320 nm and 355 nm sources worked equally well for Hoechst and DyeCycle Violet side population analysis of stem cells in mouse hematopoetic tissue. The shorter wavelength UV source also showed excellent excitation of indo-1, a probe that is not compatible with NUVLD 375 nm sources. In summary, a 320 nm laser module made a suitable substitute for conventional 355 nm sources. This laser technology is available in a smaller form factor than current 355 nm units, making it useful for small cytometers with space constraints. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
NASA Astrophysics Data System (ADS)
Ombaba, Jackson M.
This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The device exhibits a stable signal because the plasma is self-seeding and reignites itself every half cycle. A tesla coil is not required to commence generation of the plasma if the ac voltage applied is greater than the breakdown voltage of the plasma-supporting gas. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (Mvutilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienyl manganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer (common room humidifier) was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were also considered. Figures of merits of selected elements both in absorption and emission modes are reported. The evaluation of a computer-aided optimization program, Drylab GC, using spearmint oil and Environmental Protection Agency (EPA) standard mixture as probes is also discussed. The program supplied by LC Resources (Lafayette, CA) is used for separation optimization and prediction of gas chromatographic parameters. Column dead-time and average plate number were used as input data in conjunction with the retention times and peak areas of solutes at two different temperature programming rates. Once input data are entered into an IBM or IBM compatible personal computer, the program produces a 'relative resolution map' (RRM) which guides the analyst in selecting the most favorable temperature programming rate for the separation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 CFR 110.10-1). In particular, no static exciter may be used for excitation of an emergency generator unless it is provided with a permanent magnet or a residual-magnetism-type exciter that has the...
47 CFR 73.1660 - Acceptability of broadcast transmitters.
Code of Federal Regulations, 2010 CFR
2010-10-01
... station at which it is used. (d) AM stereophonic exciter-generators for interfacing with approved or... stereophonic exciter-generators in accordance with § 73.1690. (e) Additional rules covering certification and...
Design and control of the phase current of a brushless dc motor to eliminate cogging torque
NASA Astrophysics Data System (ADS)
Jang, G. H.; Lee, C. J.
2006-04-01
This paper presents a design and control method of the phase current to reduce the torque ripple of a brushless dc (BLDC) motor by eliminating cogging torque. The cogging torque is the main source of torque ripple and consequently of speed error, and it is also the excitation source to generate the vibration and noise of a motor. This research proposes a modified current wave form, which is composed of main and auxiliary currents. The former is the conventional current to generate the commutating torque. The latter generates the torque with the same magnitude and opposite sign of the corresponding cogging torque at the given position in order to eliminate the cogging torque. Time-stepping finite element method simulation considering pulse-width-modulation switching method has been performed to verify the effectiveness of the proposed method, and it shows that this proposed method reduces torque ripple by 36%. A digital-signal-processor-based controller is also developed to implement the proposed method, and it shows that this proposed method reduces the speed ripple significantly.
Parametric scaling of neutral and ion excited state densities in an argon helicon source
NASA Astrophysics Data System (ADS)
McCarren, D.; Scime, E.
2016-04-01
We report measurements of the absolute density and temperature of ion and neutral excited states in an argon helicon source. The excited ion state density, which depends on ion density, electron density, and electron temperature, increases sharply with increasing magnetic field in the source. The neutral argon metastable density measurements are consistent with an increasing ionization fraction with increasing magnetic field strength. The ion temperature shows no evidence of increased heating with increasing magnetic field strength (which has only been observed in helicon sources operating at driving frequencies close to the lower hybrid frequency). The measurements were obtained through cavity ring down spectroscopy, a measurement technique that does not require the target excited state to be metastable or part of a fluorescence scheme; and is therefore applicable to any laser accessible atomic or ionic transition in a plasma.
50. EASTSIDE PLANT: GENERAL VIEW OF GENERATOR EXCITER AND CONTROL ...
50. EASTSIDE PLANT: GENERAL VIEW OF GENERATOR EXCITER AND CONTROL MECHANISM - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID
Microwave Assisted Helicon Plasmas
NASA Astrophysics Data System (ADS)
McKee, John; Caron, David; Jemiolo, Andrew; Scime, Earl
2017-10-01
The use of two (or more) rf sources at different frequencies is a common technique in the plasma processing industry to control ion energy characteristics separately from plasma generation. A similar approach is presented here with the focus on modifying the electron population in argon and helium plasmas. The plasma is generated by a helicon source at a frequency f0 = 13.56 MHz. Microwaves of frequency f1 = 2.45 GHz are then injected into the helicon source chamber perpendicular to the background magnetic field. The microwaves damp on the electrons via X-mode Electron Cyclotron Heating (ECH) at the upper hybrid resonance, providing additional energy input into the electrons. The effects of this secondary-source heating on electron density, temperature, and energy distribution function are examined and compared to helicon-only single source plasmas as well as numeric models suggesting that the heating is not evenly distributed. Optical Emission Spectroscopy (OES) is used to examine the impact of the energetic tail of the electron distribution on ion and neutral species via collisional excitation. Large enhancements of neutral spectral lines are observed in both Ar and He. While small enhancement of ion lines is seen in Ar, ion lines not normally present in He are observed during microwave injection. U.S. National Science Foundation Grant No. PHY-1360278.
Watanabe, Sadayuki; Furube, Akihiro; Katoh, Ryuzi
2006-08-31
We studied the generation and decay dynamics of triplet excitons in tris-(8-hydroxyquinoline) aluminum (Alq3) thin films by using transient absorption spectroscopy. Absorption spectra of both singlet and triplet excitons in the film were identified by comparison with transient absorption spectra of the ligand molecule (8-hydroxyquinoline) itself and the excited triplet state in solution previously reported. By measuring the excitation light intensity dependence of the absorption, we found that exciton annihilation dominated under high-density excitation conditions. Annihilation rate constants were estimated to be gammaSS = (6 +/- 3) x 10(-11) cm3 s(-1) for single excitons and gammaTT = (4 +/- 2) x 10(-13) cm3 s(-1) for triplet excitons. From detailed analysis of the light intensity dependence of the quantum yield of triplet excitons under high-density conditions, triplet excitons were mainly generated through fission from highly excited singlet states populated by singlet-singlet exciton annihilation. We estimated that 30% of the highly excited states underwent fission.
QED effects induced harmonics generation in extreme intense laser foil interaction
NASA Astrophysics Data System (ADS)
Yu, J. Y.; Yuan, T.; Liu, W. Y.; Chen, M.; Luo, W.; Weng, S. M.; Sheng, Z. M.
2018-04-01
A new mechanism of harmonics generation (HG) induced by quantum electrodynamics (QED) effects in extreme intense laser foil interaction is found and investigated by particle-in-cell (PIC) simulations. When two laser pulses with identical intensities of 1.6× {10}24 {{W}} {{{cm}}}-2 are counter-incident on a thin foil target, harmonics emission is observed in their reflected electromagnetic waves. Such harmonics radiation is excited due to transversely oscillating electric currents coming from the vibration of QED effect generated {e}-{e}+ pairs. The effects of laser intensity and polarization were studied. By distinguishing the cascade depth of generated photons and pairs, the influence of QED cascades on HG was analyzed. Although the current HG is not an efficient way for radiation source applications, it may provide a unique way to detect the QED processes in the near future ultra-relativistic laser solid interactions.
Magnetoplasmonic RF mixing and nonlinear frequency generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firby, C. J., E-mail: firby@ualberta.ca; Elezzabi, A. Y.
2016-07-04
We present the design of a magnetoplasmonic Mach-Zehnder interferometer (MZI) modulator facilitating radio-frequency (RF) mixing and nonlinear frequency generation. This is achieved by forming the MZI arms from long-range dielectric-loaded plasmonic waveguides containing bismuth-substituted yttrium iron garnet (Bi:YIG). The magnetization of the Bi:YIG can be driven in the nonlinear regime by RF magnetic fields produced around adjacent transmission lines. Correspondingly, the nonlinear temporal dynamics of the transverse magnetization component are mapped onto the nonreciprocal phase shift in the MZI arms, and onto the output optical intensity signal. We show that this tunable mechanism can generate harmonics, frequency splitting, and frequencymore » down-conversion with a single RF excitation, as well as RF mixing when driven by two RF signals. This magnetoplasmonic component can reduce the number of electrical sources required to generate distinct optical modulation frequencies and is anticipated to satisfy important applications in integrated optics.« less
NASA Astrophysics Data System (ADS)
Cherepanov, Dmitry A.; Shelaev, Ivan V.; Gostev, Fedor E.; Mamedov, Mahir D.; Petrova, Anastasia A.; Aybush, Arseniy V.; Shuvalov, Vladimir A.; Semenov, Alexey Yu; Nadtochenko, Victor A.
2017-09-01
Excitation of photosystem I (PS I) by a femtosecond 760 nm pump leads to one- and two-photon absorption. The one-photon excitation produces intermediates with transient absorption spectra similar to the spectra of the primary [{{{P}}700}+{{{A}}0}-{{A}}1] and secondary [{{{P}}700}+{{A}}0{{{A}}1}-] ion-radical pairs in the PS I reaction center. The two-photon absorption generates the upper level excited states of chlorophyll (Chl) and carotenoid molecules in the antenna. These excited states are converted into the long-lived intermediates and can be tentatively attributed to the excited and charge-transfer ion-radical states of Chl molecules and to the excited states of carotenoids in the antenna. The transient spectra of intermediates generated by two-photon excitation differ from the transient one-photon spectra of the primary and secondary ion-radical pairs.
NASA Astrophysics Data System (ADS)
Dai, Quanqi; Harne, Ryan L.
2017-04-01
Effective development of vibration energy harvesters is required to convert ambient kinetic energy into useful electrical energy as power supply for sensors, for example in structural health monitoring applications. Energy harvesting structures exhibiting bistable nonlinearities have previously been shown to generate large alternating current (AC) power when excited so as to undergo snap-through responses between stable equilibria. Yet, most microelectronics in sensors require rectified voltages and hence direct current (DC) power. While researchers have studied DC power generation from bistable energy harvesters subjected to harmonic excitations, there remain important questions as to the promise of such harvester platforms when the excitations are more realistic and include both harmonic and random components. To close this knowledge gap, this research computationally and experimentally studies the DC power delivery from bistable energy harvesters subjected to such realistic excitation combinations as those found in practice. Based on the results, it is found that the ability for bistable energy harvesters to generate peak DC power is significantly reduced by introducing sufficient amount of stochastic excitations into an otherwise harmonic input. On the other hand, the elimination of a low amplitude, coexistent response regime by way of the additive noise promotes power delivery if the device was not originally excited to snap-through. The outcomes of this research indicate the necessity for comprehensive studies about the sensitivities of DC power generation from bistable energy harvester to practical excitation scenarios prior to their optimal deployment in applications.
NASA Astrophysics Data System (ADS)
Berkowitz, Evan; Nicholson, Amy; Chang, Chia Cheng; Rinaldi, Enrico; Clark, M. A.; Joó, Bálint; Kurth, Thorsten; Vranas, Pavlos; Walker-Loud, André
2018-03-01
There are many outstanding problems in nuclear physics which require input and guidance from lattice QCD calculations of few baryons systems. However, these calculations suffer from an exponentially bad signal-to-noise problem which has prevented a controlled extrapolation to the physical point. The variational method has been applied very successfully to two-meson systems, allowing for the extraction of the two-meson states very early in Euclidean time through the use of improved single hadron operators. The sheer numerical cost of using the same techniques in two-baryon systems has so far been prohibitive. We present an alternate strategy which offers some of the same advantages as the variational method while being significantly less numerically expensive. We first use the Matrix Prony method to form an optimal linear combination of single baryon interpolating fields generated from the same source and different sink interpolating fields. Very early in Euclidean time this optimal linear combination is numerically free of excited state contamination, so we coin it a calm baryon. This calm baryon operator is then used in the construction of the two-baryon correlation functions. To test this method, we perform calculations on the WM/JLab iso-clover gauge configurations at the SU(3) flavor symmetric point with mπ 800 MeV — the same configurations we have previously used for the calculation of two-nucleon correlation functions. We observe the calm baryon significantly removes the excited state contamination from the two-nucleon correlation function to as early a time as the single-nucleon is improved, provided non-local (displaced nucleon) sources are used. For the local two-nucleon correlation function (where both nucleons are created from the same space-time location) there is still improvement, but there is significant excited state contamination in the region the single calm baryon displays no excited state contamination.
Force sensor characterization under sinusoidal excitations.
Medina, Nieves; de Vicente, Jesús
2014-10-06
The aim in the current work is the development of a method to characterize force sensors under sinusoidal excitations using a primary standard as the source of traceability. During this work the influence factors have been studied and a method to minimise their contributions, as well as the corrections to be performed under dynamic conditions have been established. These results will allow the realization of an adequate characterization of force sensors under sinusoidal excitations, which will be essential for its further proper use under dynamic conditions. The traceability of the sensor characterization is based in the direct definition of force as mass multiplied by acceleration. To do so, the sensor is loaded with different calibrated loads and is maintained under different sinusoidal accelerations by means of a vibration shaker system that is able to generate accelerations up to 100 m/s2 with frequencies from 5 Hz up to 2400 Hz. The acceleration is measured by means of a laser vibrometer with traceability to the units of time and length. A multiple channel data acquisition system is also required to simultaneously acquire the electrical output signals of the involved instrument in real time.
NASA Astrophysics Data System (ADS)
Zao, Yongming; Ouyang, Qi; Chen, Jiawei; Zhang, Xinglan; Hou, Shuaicheng
2017-08-01
This paper investigates the design and implementation of an improved series-parallel inductor-capacitor-inductor (LsCpLp) resonant circuit power supply for excitation of electromagnetic acoustic transducers (EMATs). The main advantage of the proposed resonant circuit is the absence of a high-permeability dynamic transformer. A high-frequency pulsating voltage gain can be achieved through a double resonance phenomenon. Both resonant tailing behavior and higher harmonics are suppressed by the improved resonant circuit, which also contributes to the generation of ultrasonic waves. Additionally, the proposed circuit can realize impedance matching and can also optimize the transduction efficiency. The complete design and implementation procedure for the power supply is described and has been validated by implementation of the proposed power supply to drive a portable EMAT. The circuit simulation results show close agreement with the experimental results and thus confirm the validity of the proposed topology. The proposed circuit is suitable for use as a portable EMAT excitation power supply that is fed by a low-voltage source.
Calculation of singlet oxygen formation from one photon absorbing photosensitizers used in PDT
NASA Astrophysics Data System (ADS)
Potasek, M.; Parilov, Evgueni; Beeson, K.
2013-03-01
Advances in biophotonic medicine require new information on photodynamic mechanisms. In photodynamic therapy (PDT), a photosensitizer (PS) is injected into the body and accumulates at higher concentrations in diseased tissue compared to normal tissue. The PS absorbs light from a light source and generates excited-state triplet states of the PS. The excited triplet states of the PS can then react with ground state molecular oxygen to form excited singlet - state oxygen or form other highly reactive species. The reactive species react with living cells, resulting in cel l death. This treatment is used in many forms of cancer including those in the prostrate, head and neck, lungs, bladder, esophagus and certain skin cancers. We developed a novel numerical method to model the photophysical and photochemical processes in the PS and the subsequent energy transfer to O2, improving the understanding of these processes at a molecular level. Our numerical method simulates light propagation and photo-physics in PS using methods that build on techniques previously developed for optical communications and nonlinear optics applications.
Zheng, Min; Li, Jing; Xie, Zhigang; ...
2015-11-10
Carbon nanodots (CDs) have generated enormous excitement because of their superiority in water solubility, chemical inertness, low toxicity, ease of functionalization and resistance to photobleaching. Here we report a facile thermal pyrolysis route to prepare CDs with high quantum yield (QY) using citric acid as the carbon source and ethylene diamine derivatives (EDAs) including triethylenetetramine (TETA), tetraethylenepentamine (TEPA) and polyene polyamine (PEPA) as the passivation agents. We find that the CDs prepared from EDAs, such as TETA, TEPA and PEPA, show relatively high photoluminescence (PL) QY (11.4, 10.6, and 9.8%, respectively) at 1 ex of 465 nm. The cytotoxicity ofmore » the CDs has been investigated through in vitro and in vivo bio-imaging studies. The results indicate that these CDs possess low toxicity and good biocompatibility. As a result, the unique properties such as the high PL QY at large excitation wave length and the low toxicity of the resulting CDs make them promising fluorescent nanoprobes for applications in optical bio-imaging and biosensing.« less
Electron cyclotron resonance heating by magnetic filter field in a negative hydrogen ion source.
Kim, June Young; Cho, Won-Hwi; Dang, Jeong-Jeung; Chung, Kyoung-Jae; Hwang, Y S
2016-02-01
The influence of magnetic filter field on plasma properties in the heating region has been investigated in a planar-type inductively coupled radio-frequency (RF) H(-) ion source. Besides filtering high energy electrons near the extraction region, the magnetic filter field is clearly observed to increase the electron temperature in the heating region at low pressure discharge. With increasing the operating pressure, enhancement of electron temperature in the heating region is reduced. The possibility of electron cyclotron resonance (ECR) heating in the heating region due to stray magnetic field generated by a filter magnet located at the extraction region is examined. It is found that ECR heating by RF wave field in the discharge region, where the strength of an axial magnetic field is approximately ∼4.8 G, can effectively heat low energy electrons. Depletion of low energy electrons in the electron energy distribution function measured at the heating region supports the occurrence of ECR heating. The present study suggests that addition of axial magnetic field as small as several G by an external electromagnet or permanent magnets can greatly increase the generation of highly ro-vibrationally excited hydrogen molecules in the heating region, thus improving the performance of H(-) ion generation in volume-produced negative hydrogen ion sources.
Pálfalvi, László; Tóth, György; Tokodi, Levente; Márton, Zsuzsanna; Fülöp, József András; Almási, Gábor; Hebling, János
2017-11-27
A hybrid-type terahertz pulse source is proposed for high energy terahertz pulse generation. It is the combination of the conventional tilted-pulse-front setup and a transmission stair-step echelon-faced nonlinear crystal with a period falling in the hundred-micrometer range. The most important advantage of the setup is the possibility of using plane parallel nonlinear optical crystal for producing good-quality, symmetric terahertz beam. Another advantage of the proposed setup is the significant reduction of imaging errors, which is important in the case of wide pump beams that are used in high energy experiments. A one dimensional model was developed for determining the terahertz generation efficiency, and it was used for quantitative comparison between the proposed new hybrid setup and previously introduced terahertz sources. With lithium niobate nonlinear material, calculations predict an approximately ten-fold increase in the efficiency of the presently described hybrid terahertz pulse source with respect to that of the earlier proposed setup, which utilizes a reflective stair-step echelon and a prism shaped nonlinear optical crystal. By using pump pulses of 50 mJ pulse energy, 500 fs pulse length and 8 mm beam spot radius, approximately 1% conversion efficiency and 0.5 mJ terahertz pulse energy can be reached with the newly proposed setup.
Multiple excitation nano-spot generation and confocal detection for far-field microscopy.
Mondal, Partha Pratim
2010-03-01
An imaging technique is developed for the controlled generation of multiple excitation nano-spots for far-field microscopy. The system point spread function (PSF) is obtained by interfering two counter-propagating extended depth-of-focus PSF (DoF-PSF), resulting in highly localized multiple excitation spots along the optical axis. The technique permits (1) simultaneous excitation of multiple planes in the specimen; (2) control of the number of spots by confocal detection; and (3) overcoming the point-by-point based excitation. Fluorescence detection from the excitation spots can be efficiently achieved by Z-scanning the detector/pinhole assembly. The technique complements most of the bioimaging techniques and may find potential application in high resolution fluorescence microscopy and nanoscale imaging.
Multiple excitation nano-spot generation and confocal detection for far-field microscopy
NASA Astrophysics Data System (ADS)
Mondal, Partha Pratim
2010-03-01
An imaging technique is developed for the controlled generation of multiple excitation nano-spots for far-field microscopy. The system point spread function (PSF) is obtained by interfering two counter-propagating extended depth-of-focus PSF (DoF-PSF), resulting in highly localized multiple excitation spots along the optical axis. The technique permits (1) simultaneous excitation of multiple planes in the specimen; (2) control of the number of spots by confocal detection; and (3) overcoming the point-by-point based excitation. Fluorescence detection from the excitation spots can be efficiently achieved by Z-scanning the detector/pinhole assembly. The technique complements most of the bioimaging techniques and may find potential application in high resolution fluorescence microscopy and nanoscale imaging.
NASA Astrophysics Data System (ADS)
Lin, Jian Hung; Lai, Ngoc Diep; Hsu, Chia Chen
2006-03-01
Recovery speed of photoinduced third-harmonic (TH) generation in azo-copolymer thin films can be controlled by a nanosecond laser excitation. When the excitation is tuned on, the TH signal decreases because of angular hole burning and angular redistribution effects. After turning off the excitation, the TH signal can recover to its original level either within 1min (high intensity excitation) or longer than several days (low intensity excitation). The fast recovery of the TH signal is attributed to the increase of temperature in the sample that causes molecules to more easily reorient and return to the original trans form.
53. EASTSIDE PLANT: GENERAL VIEW OF GENERATOR, EXCITER, GOVERNOR, AND ...
53. EASTSIDE PLANT: GENERAL VIEW OF GENERATOR, EXCITER, GOVERNOR, AND CONTROL MECHANISM - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID
Brunstein, Maia; Teremetz, Maxime; Hérault, Karine; Tourain, Christophe; Oheim, Martin
2014-01-01
Total internal reflection fluorescence microscopy (TIRFM) achieves subdiffraction axial sectioning by confining fluorophore excitation to a thin layer close to the cell/substrate boundary. However, it is often unknown how thin this light sheet actually is. Particularly in objective-type TIRFM, large deviations from the exponential intensity decay expected for pure evanescence have been reported. Nonevanescent excitation light diminishes the optical sectioning effect, reduces contrast, and renders TIRFM-image quantification uncertain. To identify the sources of this unwanted fluorescence excitation in deeper sample layers, we here combine azimuthal and polar beam scanning (spinning TIRF), atomic force microscopy, and wavefront analysis of beams passing through the objective periphery. Using a variety of intracellular fluorescent labels as well as negative staining experiments to measure cell-induced scattering, we find that azimuthal beam spinning produces TIRFM images that more accurately portray the real fluorophore distribution, but these images are still hampered by far-field excitation. Furthermore, although clearly measureable, cell-induced scattering is not the dominant source of far-field excitation light in objective-type TIRF, at least for most types of weakly scattering cells. It is the microscope illumination optical path that produces a large cell- and beam-angle invariant stray excitation that is insensitive to beam scanning. This instrument-induced glare is produced far from the sample plane, inside the microscope illumination optical path. We identify stray reflections and high-numerical aperture aberrations of the TIRF objective as one important source. This work is accompanied by a companion paper (Pt.2/2). PMID:24606927
NASA Astrophysics Data System (ADS)
Aviles-Espinosa, Rodrigo; Filippidis, George; Hamilton, Craig; Malcolm, Graeme; Weingarten, Kurt J.; Südmeyer, Thomas; Barbarin, Yohan; Keller, Ursula; Artigas, David; Loza-Alvarez, Pablo
2011-07-01
Long term in vivo observations at large penetration depths and minimum sample disturbance are some of the key factors that have enabled the study of different cellular and tissue mechanisms. The continuous optimization of these aspects is the main driving force for the development of advanced microscopy techniques such as those based on nonlinear effects. Its wide implementation for general biomedical applications is however, limited as the currently used nonlinear microscopes are based on bulky, maintenance-intensive and expensive excitation sources such as Ti:sapphire ultrafast lasers. We present the suitability of a portable (140x240x70 mm) ultrafast semiconductor disk laser (SDL) source, to be used in nonlinear microscopy. The SDL is modelocked by a quantum-dot semiconductor saturable absorber mirror (SESAM). This enables the source to deliver an average output power of 287 mW with 1.5 ps pulses at 500 MHz, corresponding to a peak power of 0.4 kW. The laser center wavelength (965 nm) virtually matches the two-photon absorption cross-section of the widely used Green Fluorescent Protein (GFP). This property greatly relaxes the required peak powers, thus maximizing sample viability. This is demonstrated by presenting two-photon excited fluorescence images of GFP labeled neurons and second-harmonic generation images of pharyngeal muscles in living C. elegans nematodes. Our results also demonstrate that this compact laser is well suited for efficiently exciting different biological dyes. Importantly this non expensive, turn-key, compact laser system could be used as a platform to develop portable nonlinear bio-imaging devices, facilitating its widespread adoption in biomedical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wobrauschek, P., E-mail: wobi@ati.ac.at; Prost, J.; Ingerle, D.
2015-08-15
The extension of the detectable elemental range with Total Reflection X-ray Fluorescence (TXRF) analysis is a challenging task. In this paper, it is demonstrated how a TXRF spectrometer is modified to analyze elements from carbon to uranium. Based on the existing design of a vacuum TXRF spectrometer with a 12 specimen sample changer, the following components were renewed: the silicon drift detector with 20 mm{sup 2} active area and having a special ultra-thin polymer window allowing the detection of elements from carbon upwards. Two exchangeable X-ray sources guarantee the efficient excitation of both low and high Z elements. These X-raymore » sources were two light-weighted easily mountable 35 W air-cooled low-power tubes with Cr and Rh anodes, respectively. The air cooled tubes and the Peltier-cooled detector allowed to construct a transportable tabletop spectrometer with compact dimensions, as neither liquid nitrogen cooling for the detector nor a water cooling circuit and a bulky high voltage generator for the X-ray tubes are required. Due to the excellent background conditions as a result of the TXRF geometry, detection limits of 150 ng for C, 12 ng for F, and 3.3 ng for Na have been obtained using Cr excitation in vacuum. For Rh excitation, the detection limits of 90 pg could be achieved for Sr. Taking 10 to 20 μl of sample volume, extrapolated detection limits in the ng/g (ppb) range are resulting in terms of concentration.« less
NASA Astrophysics Data System (ADS)
Wilhelm, Michael J.; Martínez-Núñez, Emilio; González-Vázquez, Jesús; Vázquez, Saulo A.; Smith, Jonathan M.; Dai, Hai-Lung
2017-11-01
Motivated by the possibility that cyano-containing hydrocarbons may act as photolytic sources for HCN and HNC in astrophysical environments, we conducted a combined experimental and theoretical investigation of the 193 nm photolysis of the cyano-ester, methyl cyanoformate (MCF). Experimentally, nanosecond time-resolved infrared emission spectroscopy was used to detect the emission from nascent products generated in the photolysis reaction. The time-resolved spectra were analyzed using a recently developed spectral reconstruction analysis, which revealed spectral bands assignable to HCN and HNC. Fitting of the emission band shape and intensity allowed determination of the photolysis quantum yields of HCN, HNC, and {CN}({A}2{{{\\Pi }}}1) and an HNC/HCN ratio of ˜0.076 ± 0.059. Additionally, multiconfiguration self-consistent field calculations were used to characterize photoexcitation-induced reactions in the ground and four lowest singlet excited states of MCF. At 193 nm excitation, dissociation is predicted to occur predominantly on the repulsive S 2 state, with minor pathways via internal conversion from S 2 to highly excited ground state. An automated transition-state search algorithm was employed to identify the corresponding ground-state dissociation channels, and Rice-Ramsperger-Kassel-Marcus and Kinetic Monte Carlo simulations were used to calculate the associated branching ratios. The proposed mechanisms were validated using the experimentally measured and quasi-classical trajectory-deduced nascent internal energy distributions of HCN and HNC. This work, along with previous studies, illustrates the propensity for cyano-containing hydrocarbons to act as photolytic sources for astrophysical HCN and HNC and may help explain the observed overabundance of HNC in astrophysical environments.
NASA Astrophysics Data System (ADS)
Williams, Henry E.; Diaz, Carlos; Padilla, Gabriel; Hernandez, Florencio E.; Kuebler, Stephen M.
2017-06-01
Multiphoton lithography (MPL), Z-scan spectroscopy, and quantum chemical calculations were employed to investigate the order of multiphoton excitation that occurs when femtosecond laser pulses are used to excite two sulfonium photo-acid generators (PAGs) commonly used in photoresists based on the cross-linkable epoxide SU-8. The mole-fractions of the mono- and bis-sulfonium forms of these PAGs were determined for the commercially available photoresist SU-8 2075 and for the PAGs alone from a separate source. Both were found to contain similar fractions of the mono- and bis-forms, with the mono form present in the majority. Reichert's method was used to determine the solvatochromic strength of the SU-8 matrix, so that results obtained for the PAGs in SU-8 and in solution could be reliably compared. The PAGs were found to exhibit a minimal solvatochromic shift for a series of solvents that span across the solvatochromic strength of SU-8 itself. Sub-micron-sized features were fabricated in SU-8 2075 by MPL using amplified and continuous-wave mode-locked laser pulses. Analysis of the features as a function of average laser power, scan speed, and excitation wavelength shows that the PAGs can be activated by both two- and three-photon absorption (2PA and 3PA). Which activation mode dominates depends principally upon the excitation wavelength because the average laser powers that can be used with the photoresist are limited by practical considerations. The power must be high enough to effect sufficient cross-linking, yet not so high as to exceed the damage threshold of the material. When the laser pulses have a duration on the order of 100 fs, 3PA dominates at wavelengths near 800 nm, whereas 2PA becomes dominant at wavelengths below 700 nm. These findings are corroborated by open-aperture Z-scan measurements and quantum chemical calculations of the cross-sections for 2PA and 3PA as a function of wavelength.
Adiabatic and fast passage ultra-wideband inversion in pulsed EPR.
Doll, Andrin; Pribitzer, Stephan; Tschaggelar, René; Jeschke, Gunnar
2013-05-01
We demonstrate that adiabatic and fast passage ultra-wideband (UWB) pulses can achieve inversion over several hundreds of MHz and thus enhance the measurement sensitivity, as shown by two selected experiments. Technically, frequency-swept pulses are generated by a 12 GS/s arbitrary waveform generator and upconverted to X-band frequencies. This pulsed UWB source is utilized as an incoherent channel in an ordinary pulsed EPR spectrometer. We discuss experimental methodologies and modeling techniques to account for the response of the resonator, which can strongly limit the excitation bandwidth of the entire non-linear excitation chain. Aided by these procedures, pulses compensated for bandwidth or variations in group delay reveal enhanced inversion efficiency. The degree of bandwidth compensation is shown to depend critically on the time available for excitation. As a result, we demonstrate optimized inversion recovery and double electron electron resonance (DEER) experiments. First, virtually complete inversion of the nitroxide spectrum with an adiabatic pulse of 128ns length is achieved. Consequently, spectral diffusion between inverted and non-inverted spins is largely suppressed and the observation bandwidth can be increased to increase measurement sensitivity. Second, DEER is performed on a terpyridine-based copper (II) complex with a nitroxide-copper distance of 2.5nm. As previously demonstrated on this complex, when pumping copper spins and observing nitroxide spins, the modulation depth is severely limited by the excitation bandwidth of the pump pulse. By using fast passage UWB pulses with a maximum length of 64ns, we achieve up to threefold enhancement of the modulation depth. Associated artifacts in distance distributions when increasing the bandwidth of the pump pulse are shown to be small. Copyright © 2013 Elsevier Inc. All rights reserved.
Eddy Current Probe for Surface and Sub-Surface Inspection
NASA Technical Reports Server (NTRS)
Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor)
2014-01-01
An eddy current probe includes an excitation coil for coupling to a low-frequency alternating current (AC) source. A magneto-resistive sensor is centrally disposed within and at one end of the excitation coil to thereby define a sensing end of the probe. A tubular flux-focusing lens is disposed between the excitation coil and the magneto-resistive sensor. An excitation wire is spaced apart from the magneto-resistive sensor in a plane that is perpendicular to the sensor's axis of sensitivity and such that, when the sensing end of the eddy current probe is positioned adjacent to the surface of a structure, the excitation wire is disposed between the magneto-resistive sensor and the surface of the structure. The excitation wire is coupled to a high-frequency AC source. The excitation coil and flux-focusing lens can be omitted when only surface inspection is required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Dennis; Padmore, Howard; Lessner, Eliane
Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today’s X-ray sources. Withmore » ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today’s resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting and potentially revolutionary science involves soft excitations such as magnons and phonons; in general, these are well below the resolution that can be probed by today’s optical systems. The study of these low-energy excitations will only move forward if advances are made in high-resolution gratings for the soft X-ray energy region, and higher-resolution crystal analyzers for the hard X-ray region. In almost all the forefront areas of X-ray science today, the main limitation is our ability to focus, monochromate, and manipulate X-rays at the level required for these advanced measurements. To address these issues, the U.S. Department of Energy (DOE) Office of Basic Energy Sciences (BES) sponsored a workshop, X-ray Optics for BES Light Source Facilities, which was held March 27–29, 2013, near Washington, D.C. The workshop addressed a wide range of technical and organizational issues. Eleven working groups were formed in advance of the meeting and sought over several months to define the most pressing problems and emerging opportunities and to propose the best routes forward for a focused R&D program to solve these problems. The workshop participants identified eight principal research directions (PRDs), as follows: Development of advanced grating lithography and manufacturing for high-energy resolution techniques such as soft X-ray inelastic scattering. Development of higher-precision mirrors for brightness preservation through the use of advanced metrology in manufacturing, improvements in manufacturing techniques, and in mechanical mounting and cooling. Development of higher-accuracy optical metrology that can be used in manufacturing, verification, and testing of optomechanical systems, as well as at wavelength metrology that can be used for quantification of individual optics and alignment and testing of beamlines. Development of an integrated optical modeling and design framework that is designed and maintained specifically for X-ray optics. Development of nanolithographic techniques for improved spatial resolution and efficiency of zone plates. Development of large, perfect single crystals of materials other than silicon for use as beam splitters, seeding monochromators, and high-resolution analyzers. Development of improved thin-film deposition methods for fabrication of multilayer Laue lenses and high-spectral-resolution multilayer gratings. Development of supports, actuator technologies, algorithms, and controls to provide fully integrated and robust adaptive X-ray optic systems. Development of fabrication processes for refractive lenses in materials other than silicon. The workshop participants also addressed two important nontechnical areas: our relationship with industry and organization of optics within the light source facilities. Optimization of activities within these two areas could have an important effect on the effectiveness and efficiency of our overall endeavor. These are crosscutting managerial issues that we identified as areas that needed further in-depth study, but they need to be coordinated above the individual facilities. Finally, an issue that cuts across many of the optics improvements listed above is routine access to beamlines that ideally are fully dedicated to optics research and/or development. The success of the BES X-ray user facilities in serving a rapidly increasing user community has led to a squeezing of beam time for vital instrumentation activities. Dedicated development beamlines could be shared with other R&D activities, such as detector programs and novel instrument development. In summary, to meet the challenges of providing the highest-quality X-ray beams for users and to fully utilize the high-brightness sources of today and those that are on the horizon, it will be critical to make strategic investments in X-ray optics R&D. This report can provide guidance and direction for effective use of investments in the field of X-ray optics and potential approaches to develop a better-coordinated program of X-ray optics development within the suite of BES synchrotron radiation facilities. Due to the importance and complexity of the field, the need for tight coordination between BES light source facilities and with industry, as well as the rapid evolution of light source capabilities, the workshop participants recommend holding similar workshops at least biannually.« less
View of governor, water wheel, generator #1 and exciter (west ...
View of governor, water wheel, generator #1 and exciter (west end of Childs Powerhouse). Looking southeast - Childs-Irving Hydroelectric Project, Childs System, Childs Powerhouse, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ
Supercontinuum white light lasers for flow cytometry
Telford, William G.; Subach, Fedor V.; Verkhusha, Vladislav V.
2009-01-01
Excitation of fluorescent probes for flow cytometry has traditionally been limited to a few discrete laser lines, an inherent limitation in our ability to excite the vast array of fluorescent probes available for cellular analysis. In this report, we have used a supercontinuum (SC) white light laser as an excitation source for flow cytometry. By selectively filtering the wavelength of interest, almost any laser wavelength in the visible spectrum can be separated and used for flow cytometric analysis. The white light lasers used in this study were integrated into a commercial flow cytometry platform, and a series of high-transmission bandpass filters used to select wavelength ranges from the blue (~480 nm) to the long red (>700 nm). Cells labeled with a variety of fluorescent probes or expressing fluorescent proteins were then analyzed, in comparison with traditional lasers emitting at wavelengths similar to the filtered SC source. Based on a standard sensitivity metric, the white light laser bandwidths produced similar excitation levels to traditional lasers for a wide variety of fluorescent probes and expressible proteins. Sensitivity assessment using fluorescent bead arrays confirmed that the SC laser and traditional sources resulted in similar levels of detection sensitivity. Supercontinuum white light laser sources therefore have the potential to remove a significant barrier in flow cytometric analysis, namely the limitation of excitation wavelengths. Almost any visible wavelength range can be made available for excitation, allowing access to virtually any fluorescent probe, and permitting “fine-tuning” of excitation wavelength to particular probes. PMID:19072836
NASA Astrophysics Data System (ADS)
Luong, Hung Truyen; Goo, Nam Seo
2011-03-01
We introduce a design for a magnetic force exciter that applies vibration to a piezo-composite generating element (PCGE) for a small-scale windmill to convert wind energy into electrical energy. The windmill can be used to harvest wind energy in urban regions. The magnetic force exciter consists of exciting magnets attached to the device's input rotor, and a secondary magnet that is fixed at the tip of the PCGE. Under an applied wind force, the input rotor rotates to create a magnetic force interaction to excite the PCGE. Deformation of the PCGE enables it to generate the electric power. Experiments were performed to test power generation and battery charging capabilities. In a battery charging test, the charging time for a 40 mAh battery is approximately 1.5 hours for a wind speed of 2.5 m/s. Our experimental results show that the prototype can harvest energy in urban areas with low wind speeds, and convert the wasted wind energy into electricity for city use.
Spectroscopic study of excitations in pi-conjugated polymers
NASA Astrophysics Data System (ADS)
Yang, Cungeng
This dissertation deals with spin-physics of photo excitations in pi-conjugated polymers. Optical and magneto-optical spectroscopies, including continuous wave and time-resolved photo-induced absorption, photoluminescence, electroluminescence, and their optically detected magnetic resonance, were used to study steady state and transient photogeneration, energy transfer, spin relaxation, and spin dependent recombination process in the time domain from tens of nanoseconds to tens of milliseconds in polymer materials including regio-random poly (3-hexyl-thiophene-2,5-diyl), regio-regular poly (3-hexyl-thiophene-2,5-diyl), poly (9,9-dioctyl-fluorenyl-2,7-diyl), poly (poly (2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene) of various morphologies, and transition metal complex poly (Pt-quinoxene). Our studies provided the tools to clarify the physical pictures regarding two types of long-lived photoexcitations, namely polarons (both germinate polaron-pairs, and unpaired polarons) and triplet excitons, which are the major excitations in these exotic semiconductors in electrical and optical related applications. From measurements of transient fluorescence and transient fluorescence detected magnetic resonance we show that photogenerated geminate polaron pairs live up to hundreds of microseconds following laser pulsed excitation. This conclusion is in agreement with the delayed formation of triplet excitons that we measured by transient photoinduced absorption. It also agrees with the weak spin-lattice relaxation rate in polymers that we measured using the optically detected magnetic resonance dynamic in thin films and organic light emitting devices. Randomly captured nongeminate polaron pairs were shown to be the major source of optically detected magnetic resonance signal at steady, state. We found that the dynamics and magnitude of the signal depend on the spin-relaxation rate, generation rate and decay rate of the geminate pairs and nongeminate pairs. Importantly we found that the spin-relaxation rate depends weakly on temperature and strongly on coupled heavy atom orbital and magnetic momentum dipole induced by dopants or high intensity excitation. Also the polaron generation rate is excitation energy and nano-morphology dependent; whereas the polaron decay rate is morphology and spin dependent.
On-Chip Waveguide Coupling of a Layered Semiconductor Single-Photon Source.
Tonndorf, Philipp; Del Pozo-Zamudio, Osvaldo; Gruhler, Nico; Kern, Johannes; Schmidt, Robert; Dmitriev, Alexander I; Bakhtinov, Anatoly P; Tartakovskii, Alexander I; Pernice, Wolfram; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf
2017-09-13
Fully integrated quantum technology based on photons is in the focus of current research, because of its immense potential concerning performance and scalability. Ideally, the single-photon sources, the processing units, and the photon detectors are all combined on a single chip. Impressive progress has been made for on-chip quantum circuits and on-chip single-photon detection. In contrast, nonclassical light is commonly coupled onto the photonic chip from the outside, because presently only few integrated single-photon sources exist. Here, we present waveguide-coupled single-photon emitters in the layered semiconductor gallium selenide as promising on-chip sources. GaSe crystals with a thickness below 100 nm are placed on Si 3 N 4 rib or slot waveguides, resulting in a modified mode structure efficient for light coupling. Using optical excitation from within the Si 3 N 4 waveguide, we find nonclassicality of generated photons routed on the photonic chip. Thus, our work provides an easy-to-implement and robust light source for integrated quantum technology.
Overview of Mono-Energetic Gamma-Ray Sources and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartemann, Fred; /LLNL, Livermore; Albert, Felicie
2012-06-25
Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGaray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence.« less
NASA Astrophysics Data System (ADS)
Wu, Guohong; Shirato, Hideyuki
SCG (Superconducting Generator) has a superconducting field winding, which leads to many advantages such as small size, high generation efficiency, low impedance, and so on, and be considered as one of the candidates to meet the needs of high stability and high efficiency in the future power system networks. SCG with high response excitation is especially expected to be able to enhance the transient stability of power system by its SMES (Superconducting Magnetic Energy System) effect. The SMES effect of SCG is recognized that its behaviors are dominated by the structures and controls of its excitation system. For this reason, in order to verify exactly how the SMES effect of SCG influences on the power system stability, the electrical circuits of SCG high response excitation are modeled in detail for conducting digital simulation, and its influence on excitation voltage and active power output of SCG are discussed as well. The simulation results with a typical one machine - infinite bus power system model shows that the SMES effect can be certainly obtained when its exciting power is supplied from SCG terminal bus and may considerably lead to an improvement of power system transient stability.
Yan Wei, Xiao; Kuang, Shuang Yang; Yang Li, Hua; Pan, Caofeng; Zhu, Guang; Wang, Zhong Lin
2015-01-01
Self-powered system that is interface-free is greatly desired for area-scalable application. Here we report a self-powered electroluminescent system that consists of a triboelectric generator (TEG) and a thin-film electroluminescent (TFEL) lamp. The TEG provides high-voltage alternating electric output, which fits in well with the needs of the TFEL lamp. Induced charges pumped onto the lamp by the TEG generate an electric field that is sufficient to excite luminescence without an electrical interface circuit. Through rational serial connection of multiple TFEL lamps, effective and area-scalable luminescence is realized. It is demonstrated that multiple types of TEGs are applicable to the self-powered system, indicating that the system can make use of diverse mechanical sources and thus has potentially broad applications in illumination, display, entertainment, indication, surveillance and many others. PMID:26338365
Shock waves raised by explosions in space as sources of ultra-high-energy cosmic rays
NASA Astrophysics Data System (ADS)
Kichigin, Gennadiy
2015-03-01
The paper discusses the possibility of particle acceleration up to ultrahigh energies in the relativistic waves generated by various explosive processes in the interstellar medium. We propose to use the surfatron mechanism of acceleration (surfing) of charged particles trapped in the front of relativistic waves as a generator of high-energy cosmic rays (CRs). Conditions under which surfing in these waves can be made are studied thoroughly. Ultra-high-energy CRs (up to 10^20 eV) are shown to be obtained due to the surfing in the relativistic plane and spherical waves. Surfing is supposed to take place in nonlinear Langmuir waves excited by powerful electromagnetic radiation or relativistic beams of charged particles, as well as in strong shock waves generated by relativistic jets or spherical formations that expand fast (fireballs).
A novel model incorporating two variability sources for describing motor evoked potentials
Goetz, Stefan M.; Luber, Bruce; Lisanby, Sarah H.; Peterchev, Angel V.
2014-01-01
Objective Motor evoked potentials (MEPs) play a pivotal role in transcranial magnetic stimulation (TMS), e.g., for determining the motor threshold and probing cortical excitability. Sampled across the range of stimulation strengths, MEPs outline an input–output (IO) curve, which is often used to characterize the corticospinal tract. More detailed understanding of the signal generation and variability of MEPs would provide insight into the underlying physiology and aid correct statistical treatment of MEP data. Methods A novel regression model is tested using measured IO data of twelve subjects. The model splits MEP variability into two independent contributions, acting on both sides of a strong sigmoidal nonlinearity that represents neural recruitment. Traditional sigmoidal regression with a single variability source after the nonlinearity is used for comparison. Results The distribution of MEP amplitudes varied across different stimulation strengths, violating statistical assumptions in traditional regression models. In contrast to the conventional regression model, the dual variability source model better described the IO characteristics including phenomena such as changing distribution spread and skewness along the IO curve. Conclusions MEP variability is best described by two sources that most likely separate variability in the initial excitation process from effects occurring later on. The new model enables more accurate and sensitive estimation of the IO curve characteristics, enhancing its power as a detection tool, and may apply to other brain stimulation modalities. Furthermore, it extracts new information from the IO data concerning the neural variability—information that has previously been treated as noise. PMID:24794287
NASA Technical Reports Server (NTRS)
Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)
1996-01-01
An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.
NASA Technical Reports Server (NTRS)
Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)
1994-01-01
An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.
Resource Paper: Molecular Excited State Relaxation Processes.
ERIC Educational Resources Information Center
Rhodes, William
1979-01-01
Develops the concept of oscillatory v dissipative limits as it applies to electronic excited state processes in molecular systems. Main emphasis is placed on the radiative and nonradiative dynamics of the excited state of a molecule prepared by interaction with light or some other excitation source. (BT)
Source location impact on relative tsunami strength along the U.S. West Coast
NASA Astrophysics Data System (ADS)
Rasmussen, L.; Bromirski, P. D.; Miller, A. J.; Arcas, D.; Flick, R. E.; Hendershott, M. C.
2015-07-01
Tsunami propagation simulations are used to identify which tsunami source locations would produce the highest amplitude waves on approach to key population centers along the U.S. West Coast. The reasons for preferential influence of certain remote excitation sites are explored by examining model time sequences of tsunami wave patterns emanating from the source. Distant bathymetric features in the West and Central Pacific can redirect tsunami energy into narrow paths with anomalously large wave height that have disproportionate impact on small areas of coastline. The source region generating the waves can be as little as 100 km along a subduction zone, resulting in distinct source-target pairs with sharply amplified wave energy at the target. Tsunami spectral ratios examined for transects near the source, after crossing the West Pacific, and on approach to the coast illustrate how prominent bathymetric features alter wave spectral distributions, and relate to both the timing and magnitude of waves approaching shore. To contextualize the potential impact of tsunamis from high-amplitude source-target pairs, the source characteristics of major historical earthquakes and tsunamis in 1960, 1964, and 2011 are used to generate comparable events originating at the highest-amplitude source locations for each coastal target. This creates a type of "worst-case scenario," a replicate of each region's historically largest earthquake positioned at the fault segment that would produce the most incoming tsunami energy at each target port. An amplification factor provides a measure of how the incoming wave height from the worst-case source compares to the historical event.
Coherent transport and energy flow patterns in photosynthesis under incoherent excitation.
Pelzer, Kenley M; Can, Tankut; Gray, Stephen K; Morr, Dirk K; Engel, Gregory S
2014-03-13
Long-lived coherences have been observed in photosynthetic complexes after laser excitation, inspiring new theories regarding the extreme quantum efficiency of photosynthetic energy transfer. Whether coherent (ballistic) transport occurs in nature and whether it improves photosynthetic efficiency remain topics of debate. Here, we use a nonequilibrium Green's function analysis to model exciton transport after excitation from an incoherent source (as opposed to coherent laser excitation). We find that even with an incoherent source, the rate of environmental dephasing strongly affects exciton transport efficiency, suggesting that the relationship between dephasing and efficiency is not an artifact of coherent excitation. The Green's function analysis provides a clear view of both the pattern of excitonic fluxes among chromophores and the multidirectionality of energy transfer that is a feature of coherent transport. We see that even in the presence of an incoherent source, transport occurs by qualitatively different mechanisms as dephasing increases. Our approach can be generalized to complex synthetic systems and may provide a new tool for optimizing synthetic light harvesting materials.
NASA Astrophysics Data System (ADS)
Truyen Luong, Hung; Goo, Nam Seo
2012-02-01
A piezocomposite generating element (PCGE) can be used to convert ambient vibrations into electrical energy that can be stored and used to power other devices. This paper introduces a design of a magnetic force exciter for a small-scale windmill that vibrates a PCGE to convert wind energy into electrical energy. A small-scale windmill was designed to be sensitive to low-speed wind in urban regions for the purpose of collecting wind energy. The magnetic force exciter consists of exciting magnets attached to the device’s input rotor and a secondary magnet fixed at the tip of the PCGE. The PCGE is fixed to a clamp that can be adjusted to slide on the windmill’s frame in order to change the gap between exciting and secondary magnets. Under an applied wind force, the input rotor rotates to create a magnetic force interaction that excites the PCGE. The deformation of the PCGE enables it to generate electric power. Experiments were performed with different numbers of exciting magnets and different gaps between the exciting and secondary magnets to determine the optimal configuration for generating the peak voltage and harvesting the maximum wind energy for the same range of wind speeds. In a battery-charging test, the charging time for a 40 mA h battery was approximately 3 h for natural wind in an urban region. The experimental results show that the prototype can harvest energy in urban regions with low wind speeds and convert the wasted wind energy into electricity for city use.
The Evolution and Stability of Massive Stars
NASA Astrophysics Data System (ADS)
Shiode, Joshua Hajime
Massive stars are the ultimate source for nearly all the elements necessary for life. The first stars forge these elements from the sparse set of ingredients supplied by the Big Bang, and distribute enriched ashes throughout their galactic homes via their winds and explosive deaths. Subsequent generations follow suit, assembling from the enriched ashes of their predecessors. Over the last several decades, the astrophysics community has developed a sophisticated theoretical picture of the evolution of these stars, but it remains an incomplete accounting of the rich set of observations. Using state of the art models of massive stars, I have investigated the internal processes taking place throughout the life-cycles of stars spanning those from the first generation ("Population III") to the present-day ("Population I"). I will argue that early-generation stars were not highly unstable to perturbations, contrary to a host of past investigations, if a correct accounting is made for the viscous effect of convection. For later generations, those with near solar metallicity, I find that this very same convection may excite gravity-mode oscillations that produce observable brightness variations at the stellar surface when the stars are near the main sequence. If confirmed with modern high-precision monitoring experiments, like Kepler and CoRoT, the properties of observed gravity modes in massive stars could provide a direct probe of the poorly constrained physics of gravity mode excitation by convection. Finally, jumping forward in stellar evolutionary time, I propose and explore an entirely new mechanism to explain the giant eruptions observed and inferred to occur during the final phases of massive stellar evolution. This mechanism taps into the vast nuclear fusion luminosity, and accompanying convective luminosity, in the stellar core to excite waves capable of carrying a super-Eddington luminosity out to the stellar envelope. This energy transfer from the core to the envelope has the potential to unbind a significant amount of mass in close proximity to a star's eventual explosion as a core collapse supernova.
Radiation pattern synthesis of planar antennas using the iterative sampling method
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Coffey, E. L.
1975-01-01
A synthesis method is presented for determining an excitation of an arbitrary (but fixed) planar source configuration. The desired radiation pattern is specified over all or part of the visible region. It may have multiple and/or shaped main beams with low sidelobes. The iterative sampling method is used to find an excitation of the source which yields a radiation pattern that approximates the desired pattern to within a specified tolerance. In this paper the method is used to calculate excitations for line sources, linear arrays (equally and unequally spaced), rectangular apertures, rectangular arrays (arbitrary spacing grid), and circular apertures. Examples using these sources to form patterns with shaped main beams, multiple main beams, shaped sidelobe levels, and combinations thereof are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okubo, Sho; Nakayama, Hirotaka; Sasada, Hiroyuki
Saturated absorption spectra of the {nu}{sub 1} fundamental band of CH{sub 3}I are recorded with a cavity-enhanced cell and a tunable difference frequency generation source having an 86-cm{sup -1} range. The recorded spectral lines are 250 kHz wide, and most of them are resolved into the individual hyperfine components. The Coriolis interaction between the v{sub 1}=1 and (v{sub 2},v{sub 6}{sup l})=(1,2{sup 2}) states locally perturbing the hyperfine structures is analyzed to yield the Coriolis and hyperfine coupling constants with uncertainties similar to those in typical microwave spectroscopy. The spectrometer has demonstrated the potential for precisely determining the energy structure inmore » the vibrational excited states.« less
Tian, Long; Xu, Zhongxiao; Chen, Lirong; Ge, Wei; Yuan, Haoxiang; Wen, Yafei; Wang, Shengzhi; Li, Shujing; Wang, Hai
2017-09-29
The light-matter quantum interface that can create quantum correlations or entanglement between a photon and one atomic collective excitation is a fundamental building block for a quantum repeater. The intrinsic limit is that the probability of preparing such nonclassical atom-photon correlations has to be kept low in order to suppress multiexcitation. To enhance this probability without introducing multiexcitation errors, a promising scheme is to apply multimode memories to the interface. Significant progress has been made in temporal, spectral, and spatial multiplexing memories, but the enhanced probability for generating the entangled atom-photon pair has not been experimentally realized. Here, by using six spin-wave-photon entanglement sources, a switching network, and feedforward control, we build a multiplexed light-matter interface and then demonstrate a ∼sixfold (∼fourfold) probability increase in generating entangled atom-photon (photon-photon) pairs. The measured compositive Bell parameter for the multiplexed interface is 2.49±0.03 combined with a memory lifetime of up to ∼51 μs.
Investigation of excitation control for wind-turbine generator stability
NASA Technical Reports Server (NTRS)
Gebben, V. D.
1977-01-01
High speed horizontal axis wind turbine generators with blades on the downwind side of the support tower require special design considerations to handle disturbances introduced by the flow wake behind the tower. Experiments and analytical analyses were made to determine benefits that might be obtained by using the generator exciter to provide system damping for reducing power fluctuations.
Hájos, Norbert; Karlócai, Mária R; Németh, Beáta; Ulbert, István; Monyer, Hannah; Szabó, Gábor; Erdélyi, Ferenc; Freund, Tamás F; Gulyás, Attila I
2013-07-10
Hippocampal sharp waves and the associated ripple oscillations (SWRs) are implicated in memory processes. These network events emerge intrinsically in the CA3 network. To understand cellular interactions that generate SWRs, we detected first spiking activity followed by recording of synaptic currents in distinct types of anatomically identified CA3 neurons during SWRs that occurred spontaneously in mouse hippocampal slices. We observed that the vast majority of interneurons fired during SWRs, whereas only a small portion of pyramidal cells was found to spike. There were substantial differences in the firing behavior among interneuron groups; parvalbumin-expressing basket cells were one of the most active GABAergic cells during SWRs, whereas ivy cells were silent. Analysis of the synaptic currents during SWRs uncovered that the dominant synaptic input to the pyramidal cell was inhibitory, whereas spiking interneurons received larger synaptic excitation than inhibition. The discharge of all interneurons was primarily determined by the magnitude and the timing of synaptic excitation. Strikingly, we observed that the temporal structure of synaptic excitation and inhibition during SWRs significantly differed between parvalbumin-containing basket cells, axoaxonic cells, and type 1 cannabinoid receptor (CB1)-expressing basket cells, which might explain their distinct recruitment to these synchronous events. Our data support the hypothesis that the active current sources restricted to the stratum pyramidale during SWRs originate from the synaptic output of parvalbumin-expressing basket cells. Thus, in addition to gamma oscillation, these GABAergic cells play a central role in SWR generation.
Vortex Flows in the Liquid Layer and Droplets on a Vibrating Flexible Plate
NASA Astrophysics Data System (ADS)
Aleksandrov, Vladimir; Kopysov, Sergey; Tonkov, Leonid
2018-02-01
In certain conditions, in the layers and droplets of a liquid on a vibrating rectangular flexible plate, vortex flows are formed simultaneously with the excitation of capillary oscillations on the free surface of the liquid layers and droplets. Capillary oscillations in the form of two-dimensional standing waves form Faraday ripples on the free surface of the liquid layer. On the surface of the vibrating droplets, at the excitation of capillary oscillations a light spot reflected from a spotlight source moves along a trajectory in the form of a Lissajous figure observed with a microscope. When vortex flows visualized with graphite microparticles appear in the layer and droplets of a transparent liquid, the trajectory of the light spot on the layer and droplet surface is a two-dimensional trajectory in the form of an ellipse or a saddle. This indicates that the generation of the vortex flows in a liquid at vibrations is due to capillary oscillations in the orthogonally related directions. In the liquid layer and droplets on the surface of the flexible plate, the vibrations of which are generated by bending vibrations, the vortex flows appear due to the plate vibrations and the capillary oscillations of the surface of a layer or a droplet of the liquid. On the free surface of the liquid, the capillary waves, which are parametrically excited by the plate bending vibrations, are additionally modulated by the same bending vibrations in the transverse direction.
NASA Astrophysics Data System (ADS)
Wendt, Klaus; Gottwald, Tina; Hanstorp, Dag; Mattolat, Christoph; Raeder, Sebastian; Rothe, Sebastian; Schwellnus, Fabio; Havener, Charles; Lassen, Jens; Liu, Yuan
2010-02-01
Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. A recent trend is the complementary installation of reliable state-of-the-art all solid-state Ti:Sapphire laser systems. To date, 35 elements of the Periodic Table are available at laser ion sources by using these novel laser systems, which complements the overall accessibility to 54 elements including use of traditional dye lasers. Recent progress in the field concerns the identification of suitable optical excitation schemes for Ti:Sapphire laser excitation as well as technical developments of the source in respect to geometry, cavity material as well as by incorporation of an ion guide system in the form of the laser ion source trap LIST.
Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide
NASA Astrophysics Data System (ADS)
KiršanskÄ--, Gabija; Thyrrestrup, Henri; Daveau, Raphaël S.; Dreeßen, Chris L.; Pregnolato, Tommaso; Midolo, Leonardo; Tighineanu, Petru; Javadi, Alisa; Stobbe, Søren; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Park, Suk In; Song, Jin D.; Kuhlmann, Andreas V.; Söllner, Immo; Löbl, Matthias C.; Warburton, Richard J.; Lodahl, Peter
2017-10-01
We demonstrate a high-purity source of indistinguishable single photons using a quantum dot embedded in a nanophotonic waveguide. The source features a near-unity internal coupling efficiency and the collected photons are efficiently coupled off chip by implementing a taper that adiabatically couples the photons to an optical fiber. By quasiresonant excitation of the quantum dot, we measure a single-photon purity larger than 99.4 % and a photon indistinguishability of up to 94 ±1 % by using p -shell excitation combined with spectral filtering to reduce photon jitter. A temperature-dependent study allows pinpointing the residual decoherence processes, notably the effect of phonon broadening. Strict resonant excitation is implemented as well as another means of suppressing photon jitter, and the additional complexity of suppressing the excitation laser source is addressed. The paper opens a clear pathway towards the long-standing goal of a fully deterministic source of indistinguishable photons, which is integrated on a planar photonic chip.
NASA Astrophysics Data System (ADS)
Dey, Soumyodeep; Bongu, Sudhakara Reddy; Bisht, Prem Ballabh
2017-03-01
We study the nonlinear optical response of a standard dye IR26 using the Z-scan technique, but with the white light continuum. The continuum source of wavelength from 450 nm to 1650 nm has been generated from the photonic crystal fiber on pumping with 772 nm of Ti:Sapphire oscillator. The use of broadband incident pulse enables us to probe saturable absorption (SA) and reverse saturable absorption (RSA) over the large spectral range with a single Z-scan measurement. The system shows SA in the resonant region while it turns to RSA in the non-resonant regions. The low saturation intensity of the dye can be explained based on the simultaneous excitation from ground states to various higher energy levels with the help of composite energy level diagram. The cumulative effects of excited state absorption and thermal induced nonlinear optical effects are responsible for the observed RSA.
Collisional and radiative processes in high-pressure discharge plasmas
NASA Astrophysics Data System (ADS)
Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.
2002-05-01
Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.
NASA Astrophysics Data System (ADS)
Bayrakli, Ismail; Erdogan, Yasar Kemal
2018-06-01
The present paper focuses on development of a compact photo-acoustic sensor using inexpensive components for glucose analysis. An amplitude-stabilized wavelength-tunable single-mode external cavity diode laser operating around 1050 nm was realized and characterized for the use of laser beam as an excitation light source. In the established setup, a fine tuning range of 9 GHz was achieved. The glucose solution was obtained by diluting D-glucose in sterile water. The acoustic signal generated by the optical excitation was detected via a chip piezoelectric film transducer. A detection limit of 50 mM (900 mg/dl) was achieved. The device may be of great interest for its applications in medicine and health monitoring. The sensor is promising for non-invasive in vivo glucose measurements from interstitial fluid.
Lensless Photoluminescence Hyperspectral Camera Employing Random Speckle Patterns.
Žídek, Karel; Denk, Ondřej; Hlubuček, Jiří
2017-11-10
We propose and demonstrate a spectrally-resolved photoluminescence imaging setup based on the so-called single pixel camera - a technique of compressive sensing, which enables imaging by using a single-pixel photodetector. The method relies on encoding an image by a series of random patterns. In our approach, the image encoding was maintained via laser speckle patterns generated by an excitation laser beam scattered on a diffusor. By using a spectrometer as the single-pixel detector we attained a realization of a spectrally-resolved photoluminescence camera with unmatched simplicity. We present reconstructed hyperspectral images of several model scenes. We also discuss parameters affecting the imaging quality, such as the correlation degree of speckle patterns, pattern fineness, and number of datapoints. Finally, we compare the presented technique to hyperspectral imaging using sample scanning. The presented method enables photoluminescence imaging for a broad range of coherent excitation sources and detection spectral areas.
NASA Astrophysics Data System (ADS)
Tang, Yang; Wei, Juan; Costello, Catherine E.; Lin, Cheng
2018-04-01
The occurrence of numerous structural isomers in glycans from biological sources presents a severe challenge for structural glycomics. The subtle differences among isomeric structures demand analytical methods that can provide structural details while working efficiently with on-line glycan separation methods. Although liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a powerful tool for mixture analysis, the commonly utilized collision-induced dissociation (CID) method often does not generate a sufficient number of fragments at the MS2 level for comprehensive structural characterization. Here, we studied the electronic excitation dissociation (EED) behaviors of metal-adducted, permethylated glycans, and identified key spectral features that could facilitate both topology and linkage determinations. We developed an EED-based, nanoscale, reversed phase (RP)LC-MS/MS platform, and demonstrated its ability to achieve complete structural elucidation of up to five structural isomers in a single LC-MS/MS analysis. [Figure not available: see fulltext.
Frequency-controls of electromagnetic multi-beam scanning by metasurfaces.
Li, Yun Bo; Wan, Xiang; Cai, Ben Geng; Cheng, Qiang; Cui, Tie Jun
2014-11-05
We propose a method to control electromagnetic (EM) radiations by holographic metasurfaces, including to producing multi-beam scanning in one dimension (1D) and two dimensions (2D) with the change of frequency. The metasurfaces are composed of subwavelength metallic patches on grounded dielectric substrate. We present a combined theory of holography and leaky wave to realize the multi-beam radiations by exciting the surface interference patterns, which are generated by interference between the excitation source and required radiation waves. As the frequency changes, we show that the main lobes of EM radiation beams could accomplish 1D or 2D scans regularly by using the proposed holographic metasurfaces shaped with different interference patterns. This is the first time to realize 2D scans of antennas by changing the frequency. Full-wave simulations and experimental results validate the proposed theory and confirm the corresponding physical phenomena.
Stochastic road excitation and control feasibility in a 2D linear tyre model
NASA Astrophysics Data System (ADS)
Rustighi, E.; Elliott, S. J.
2007-03-01
For vehicle under normal driving conditions and speeds above 30-40 km/h the dominating internal and external noise source is the sound generated by the interaction between the tyre and the road. This paper presents a simple model to predict tyre behaviour in the frequency range up to 400 Hz, where the dominant vibration is two dimensional. The tyre is modelled as an elemental system, which permits the analysis of the low-frequency tyre response when excited by distributed stochastic displacements in the contact patch. A linear model has been used to calculate the contact forces from the road roughness and thus calculate the average spectral properties of the resulting radial velocity of the tyre in one step from the spectral properties of the road roughness. Such a model has also been used to provide an estimate of the potential effect of various active control strategies for reducing the tyre vibrations.
Fuselage shell and cavity response measurements on a DC-9 test section
NASA Technical Reports Server (NTRS)
Simpson, M. A.; Mathur, G. P.; Cannon, M. R.; Tran, B. N.; Burge, P. L.
1991-01-01
A series of fuselage shell and cavity response measurements conducted on a DC-9 aircraft test section are described. The objectives of these measurements were to define the shell and cavity model characteristics of the fuselage, understand the structural-acoustic coupling characteristics of the fuselage, and measure the response of the fuselage to different types of acoustic and vibration excitation. The fuselage was excited with several combinations of acoustic and mechanical sources using interior and exterior loudspeakers and shakers, and the response to these inputs was measured with arrays of microphones and accelerometers. The data were analyzed to generate spatial plots of the shell acceleration and cabin acoustic pressure field, and corresponding acceleration and pressure wavenumber maps. Analysis and interpretation of the spatial plots and wavenumber maps provided the required information on modal characteristics, structural-acoustic coupling, and fuselage response.
Biosynthesis, degradation and pharmacological importance of the fatty acid amides.
Farrell, Emma K; Merkler, David J
2008-07-01
The identification of two biologically active fatty acid amides, N-arachidonoylethanolamine (anandamide) and oleamide, has generated a great deal of excitement and stimulated considerable research. However, anandamide and oleamide are merely the best-known and best-understood members of a much larger family of biologically occurring fatty acid amides. In this review, we will outline which fatty acid amides have been isolated from mammalian sources, detail what is known about how these molecules are made and degraded in vivo, and highlight their potential for the development of novel therapeutics.
Biosynthesis, degradation, and pharmacological importance of the fatty acid amides
Farrell, Emma K.; Merkler, David J.
2008-01-01
The identification of two biologically active fatty acid amides, N-arachidonoylethanolamine (anandamide) and oleamide, has generated a great deal of excitement and stimulated considerable research. However, anandamide and oleamide are merely the best-known and best-understood members of a much larger family of biologically-occurring fatty acid amides. In this review, we will outline which fatty acid amides have been isolated from mammalian sources, detail what is known about how these molecules are made and degraded in vivo, and highlight their potential for the development of novel therapeutics. PMID:18598910
NASA Astrophysics Data System (ADS)
Nedorezov, V. G.; Savel'ev-Trofimov, A. B.
2017-12-01
A review of works performed at the Institute for Nuclear Research of the Russian Academy of Sciences and at the International Laser Center of the Moscow State University in the context of the new research area called "nuclear photonics" is presented. Nuclear photonics is based on creation of the new-generation gamma-ray sources which make it possible to solve a number of fundamental and applied problems, including research of low-energy photonuclear reactions, namely, investigation of collective excitations of nuclei near the threshold (pygmy resonances); nuclear safety assurance; production of low-energy positron beams; and phase-contrast X-ray imaging.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Excitation. 111.12-3 Section 111.12-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Generator Construction and Circuits § 111.12-3 Excitation. In general, excitation must meet...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Excitation. 111.12-3 Section 111.12-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Generator Construction and Circuits § 111.12-3 Excitation. In general, excitation must meet...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Excitation. 111.12-3 Section 111.12-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Generator Construction and Circuits § 111.12-3 Excitation. In general, excitation must meet...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Excitation. 111.12-3 Section 111.12-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Generator Construction and Circuits § 111.12-3 Excitation. In general, excitation must meet...
Quantum phase transitions between a class of symmetry protected topological states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, Lokman; Jiang, Hong-Chen; Lu, Yuan-Ming
2015-07-01
The subject of this paper is the phase transition between symmetry protected topological states (SPTs). We consider spatial dimension d and symmetry group G so that the cohomology group, Hd+1(G,U(1)), contains at least one Z2n or Z factor. We show that the phase transition between the trivial SPT and the root states that generate the Z2n or Z groups can be induced on the boundary of a (d+1)-dimensional View the MathML source-symmetric SPT by a View the MathML source symmetry breaking field. Moreover we show these boundary phase transitions can be “transplanted” to d dimensions and realized in lattice modelsmore » as a function of a tuning parameter. The price one pays is for the critical value of the tuning parameter there is an extra non-local (duality-like) symmetry. In the case where the phase transition is continuous, our theory predicts the presence of unusual (sometimes fractionalized) excitations corresponding to delocalized boundary excitations of the non-trivial SPT on one side of the transition. This theory also predicts other phase transition scenarios including first order transition and transition via an intermediate symmetry breaking phase.« less
Simulation of Chirping Avalanche in Neighborhood of TAE gap
NASA Astrophysics Data System (ADS)
Berk, Herb; Breizman, Boris; Wang, Ge; Zheng, Linjin
2016-10-01
A new kinetic code, CHIRP, focuses on the nonlinear response of resonant energetic particles (EPs) that destabilize Alfven waves which then can produce hole and clump phase space chirping structures, while the background plasma currents are assumed to respond linearly to the generated fields. EP currents are due to the motion arising from the perturbed field that is time averaged over an equilibrium orbit. A moderate EP source produces TAE chirping structures that have a limited range of chirping that do not reach the continuum. When the source is sufficiently strong, an EPM is excited in the lower continuum and it chirps rapidly downward as its amplitude rapidly grows in time. This response resembles the experimental observation of an avalanche, which occurs after a series of successive chirping events with a modest frequency shift, and then suddenly a rapid large amplitude and rapid frequency burst to low frequency with the loss of EPs. From these simulation observations we propose that in the experiment the EP population is slowly increasing to the point where the EPM is eventually excited. Supported by SCIDAC Center for Nonlinear Simulation of Energetic Particles Burning Plasmas (CSEP).
Branches of electrostatic turbulence inside solitary plasma structures in the auroral ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golovchanskaya, Irina V.; Kozelov, Boris V.; Chernyshov, Alexander A.
2014-08-15
The excitation of electrostatic turbulence inside space-observed solitary structures is a central topic of this exposition. Three representative solitary structures observed in the topside auroral ionosphere as large-amplitude nonlinear signatures in the electric field and magnetic-field-aligned current on the transverse scales of ∼10{sup 2}–10{sup 3} m are evaluated by the theories of electrostatic wave generation in inhomogeneous background configurations. A quantitative analysis shows that the structures are, in general, effective in destabilizing the inhomogeneous energy-density-driven (IEDD) waves, as well as of the ion acoustic waves modified by a shear in the parallel drift of ions. It is demonstrated that the dominatingmore » branch of the electrostatic turbulence is determined by the interplay of various driving sources inside a particular solitary structure. The sources do not generally act in unison, so that their common effect may be inhibiting for excitation of electrostatic waves of a certain type. In the presence of large magnetic-field-aligned current, which is not correlated to the inhomogeneous electric field inside the structure, the ion-acoustic branch becomes dominating. In other cases, the IEDD instability is more central.« less
47. INTERIOR UNDER CONSTRUCTION, SHOWING EXCITERS AND BASES FOR GENERATOR ...
47. INTERIOR UNDER CONSTRUCTION, SHOWING EXCITERS AND BASES FOR GENERATOR UNITS. EEC print no. N-C-01-00033, no date. Photograph by Benjamin F. Pearson. - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA
NASA Astrophysics Data System (ADS)
Liang, Yifan; Du, Yingchao; Su, Xiaolu; Wang, Dan; Yan, Lixin; Tian, Qili; Zhou, Zheng; Wang, Dong; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang; Konoplev, I. V.; Zhang, H.; Doucas, G.
2018-01-01
Generation of coherent Smith-Purcell (cSPr) and transition/diffraction radiation using a single bunch or a pre-modulated relativistic electron beam is one of the growing research areas aiming at the development of radiation sources and beam diagnostics for accelerators. We report the results of comparative experimental studies of terahertz radiation generation by an electron bunch and micro-bunched electron beams and the spectral properties of the coherent transition and SP radiation. The properties of cSPr spectra are investigated and discussed, and excitations of the fundamental and second harmonics of cSPr and their dependence on the beam-grating separation are shown. The experimental and theoretical results are compared, and good agreement is demonstrated.
Kovalev, S; Green, B; Golz, T; Maehrlein, S; Stojanovic, N; Fisher, A S; Kampfrath, T; Gensch, M
2017-03-01
Understanding dynamics on ultrafast timescales enables unique and new insights into important processes in the materials and life sciences. In this respect, the fundamental pump-probe approach based on ultra-short photon pulses aims at the creation of stroboscopic movies. Performing such experiments at one of the many recently established accelerator-based 4th-generation light sources such as free-electron lasers or superradiant THz sources allows an enormous widening of the accessible parameter space for the excitation and/or probing light pulses. Compared to table-top devices, critical issues of this type of experiment are fluctuations of the timing between the accelerator and external laser systems and intensity instabilities of the accelerator-based photon sources. Existing solutions have so far been only demonstrated at low repetition rates and/or achieved a limited dynamic range in comparison to table-top experiments, while the 4th generation of accelerator-based light sources is based on superconducting radio-frequency technology, which enables operation at MHz or even GHz repetition rates. In this article, we present the successful demonstration of ultra-fast accelerator-laser pump-probe experiments performed at an unprecedentedly high repetition rate in the few-hundred-kHz regime and with a currently achievable optimal time resolution of 13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple beam parameters relevant for the experiment, allows us to achieve an excellent sensitivity in real-world ultra-fast experiments, as demonstrated for the example of THz-field-driven coherent spin precession.
OLED-based biosensing platform with ZnO nanoparticles for enzyme immobilization
NASA Astrophysics Data System (ADS)
Cai, Yuankun; Shinar, Ruth; Shinar, Joseph
2009-08-01
Organic light-emitting diode (OLED)-based sensing platforms are attractive for photoluminescence (PL)-based monitoring of a variety of analytes. Among the promising OLED attributes for sensing applications is the thin and flexible size and design of the OLED pixel array that is used for PL excitation. To generate a compact, fielddeployable sensor, other major sensor components, such as the sensing probe and the photodetector, in addition to the thin excitation source, should be compact. To this end, the OLED-based sensing platform was tested with composite thin biosensing films, where oxidase enzymes were immobilized on ZnO nanoparticles, rather than dissolved in solution, to generate a more compact device. The analytes tested, glucose, cholesterol, and lactate, were monitored by following their oxidation reactions in the presence of oxygen and their respective oxidase enzymes. During such reactions, oxygen is consumed and its residual concentration, which is determined by the initial concentration of the above-mentioned analytes, is monitored. The sensors utilized the oxygen-sensitive dye Pt octaethylporphyrin, embedded in polystyrene. The enzymes were sandwiched between two thin ZnO layers, an approach that was found to improve the stability of the sensing probes.
Localised excitation of a single photon source by a nanowaveguide.
Geng, Wei; Manceau, Mathieu; Rahbany, Nancy; Sallet, Vincent; De Vittorio, Massimo; Carbone, Luigi; Glorieux, Quentin; Bramati, Alberto; Couteau, Christophe
2016-01-29
Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities are good candidates but do not tackle how to effectively address a nanoscale emitter. Using a nanowire nanowaveguide, we realise an hybrid nanodevice which locally excites a single photon source (SPS). The nanowire acts as a passive or active sub-wavelength waveguide to excite the quantum emitter. Our results show that localised excitation of a SPS is possible and is compared with free-space excitation. Our proof of principle experiment presents an absolute addressing efficiency ηa ~ 10(-4) only ~50% lower than the one using free-space optics. This important step demonstrates that sufficient guided light in a nanowaveguide made of a semiconductor nanowire is achievable to excite a single photon source. We accomplish a hybrid system offering great potentials for electrically driven SPSs and efficient single photon collection and detection, opening the way for optimum absorption/emission of nanoscale emitters. We also discuss how to improve the addressing efficiency of a dipolar nanoscale emitter with our system.
Localised excitation of a single photon source by a nanowaveguide
Geng, Wei; Manceau, Mathieu; Rahbany, Nancy; Sallet, Vincent; De Vittorio, Massimo; Carbone, Luigi; Glorieux, Quentin; Bramati, Alberto; Couteau, Christophe
2016-01-01
Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities are good candidates but do not tackle how to effectively address a nanoscale emitter. Using a nanowire nanowaveguide, we realise an hybrid nanodevice which locally excites a single photon source (SPS). The nanowire acts as a passive or active sub-wavelength waveguide to excite the quantum emitter. Our results show that localised excitation of a SPS is possible and is compared with free-space excitation. Our proof of principle experiment presents an absolute addressing efficiency ηa ~ 10−4 only ~50% lower than the one using free-space optics. This important step demonstrates that sufficient guided light in a nanowaveguide made of a semiconductor nanowire is achievable to excite a single photon source. We accomplish a hybrid system offering great potentials for electrically driven SPSs and efficient single photon collection and detection, opening the way for optimum absorption/emission of nanoscale emitters. We also discuss how to improve the addressing efficiency of a dipolar nanoscale emitter with our system. PMID:26822999
69. Credit TCL. Housing of Pelton exciter impulse wheel and ...
69. Credit TCL. Housing of Pelton exciter impulse wheel and attached General Electric 60 kW exciter generator. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA
Stripline split-ring resonator with integrated optogalvanic sample cell
NASA Astrophysics Data System (ADS)
Persson, Anders; Berglund, Martin; Thornell, Greger; Possnert, Göran; Salehpour, Mehran
2014-04-01
Intracavity optogalvanic spectroscopy (ICOGS) has been proposed as a method for unambiguous detection of rare isotopes. Of particular interest is 14C, where detection of extremely low concentrations in the 1:1015 range (14C: 12C), is of interest in, e.g., radiocarbon dating and pharmaceutical sciences. However, recent reports show that ICOGS suffers from substantial problems with reproducibility. To qualify ICOGS as an analytical method, more stable and reliable plasma generation and signal detection are needed. In our proposed setup, critical parameters have been improved. We have utilized a stripline split-ring resonator microwave-induced microplasma source to excite and sustain the plasma. Such a microplasma source offers several advantages over conventional ICOGS plasma sources. For example, the stripline split-ring resonator concept employs separated plasma generation and signal detection, which enables sensitive detection at stable plasma conditions. The concept also permits in situ observation of the discharge conditions, which was found to improve reproducibility. Unique to the stripline split-ring resonator microplasma source in this study, is that the optogalvanic sample cell has been embedded in the device itself. This integration enables improved temperature control and more stable and accurate signal detection. Significant improvements are demonstrated, including reproducibility, signal-to-noise ratio, and precision.
NASA Astrophysics Data System (ADS)
Wang, Hao; Zhang, Fengge; Guan, Tao; Yu, Siyang
2017-09-01
A brushless electrically excited synchronous generator (BEESG) with a hybrid rotor is a novel electrically excited synchronous generator. The BEESG proposed in this paper is composed of a conventional stator with two different sets of windings with different pole numbers, and a hybrid rotor with powerful coupling capacity. The pole number of the rotor is different from those of the stator windings. Thus, an analysis method different from that applied to conventional generators should be applied to the BEESG. In view of this problem, the equivalent circuit and electromagnetic torque expression of the BEESG are derived on the basis of electromagnetic relation of the proposed generator. The generator is simulated and tested experimentally using the established equivalent circuit model. The experimental and simulation data are then analyzed and compared. Results show the validity of the equivalent circuit model.
Campagnola, Paul J; Millard, Andrew C; Terasaki, Mark; Hoppe, Pamela E; Malone, Christian J; Mohler, William A
2002-01-01
We find that several key endogenous protein structures give rise to intense second-harmonic generation (SHG)-nonabsorptive frequency doubling of an excitation laser line. Second-harmonic imaging microscopy (SHIM) on a laser-scanning system proves, therefore, to be a powerful and unique tool for high-resolution, high-contrast, three-dimensional studies of live cell and tissue architecture. Unlike fluorescence, SHG suffers no inherent photobleaching or toxicity and does not require exogenous labels. Unlike polarization microscopy, SHIM provides intrinsic confocality and deep sectioning in complex tissues. In this study, we demonstrate the clarity of SHIM optical sectioning within unfixed, unstained thick specimens. SHIM and two-photon excited fluorescence (TPEF) were combined in a dual-mode nonlinear microscopy to elucidate the molecular sources of SHG in live cells and tissues. SHG arose not only from coiled-coil complexes within connective tissues and muscle thick filaments, but also from microtubule arrays within interphase and mitotic cells. Both polarization dependence and a local symmetry cancellation effect of SHG allowed the signal from species generating the second harmonic to be decoded, by ratiometric correlation with TPEF, to yield information on local structure below optical resolution. The physical origin of SHG within these tissues is addressed and is attributed to the laser interaction with dipolar protein structures that is enhanced by the intrinsic chirality of the protein helices. PMID:11751336
Early, James W.; Lester, Charles S.
2002-01-01
In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.
Harmonics generation near ion-cyclotron frequency of ECR plasma
NASA Astrophysics Data System (ADS)
Chowdhury, Satyajit; Biswas, Subir; Chakrabarti, Nikhil; Pal, Rabindranath
2017-10-01
Wave excitation at different frequency regime is employed in the MaPLE device ECR plasma for varied excitation amplitude. At very low amplitude excitation, mainly fundamental frequency mode of the exciter signal frequency comes into play. With the increase in amplitude of applied perturbation, harmonics are generated and dominant over the fundamental frequency mode. There is a fixed critical amplitude of exciter to yield the harmonics and is independent of applied frequency. Observed harmonics and the main frequency mode has propagation characteristics and are discussed here. Exact mode number and propagation nature are also tried to measure in the experiment. Detailed experimental results will be presented. Department of Science and Technology of Government of India (Project No. SB/S2/HEP-005/2014).
Wang, Jiawei; Zhou, Yuqi; Sun, Xiaodong; Ma, Qingyu; Zhang, Dong
2016-04-01
As a multiphysics imaging approach, magnetoacoustic tomography with magnetic induction (MAT-MI) works on the physical mechanism of magnetic excitation, acoustic vibration, and transmission. Based on the theoretical analysis of the source vibration, numerical studies are conducted to simulate the pathological changes of tissues for a single-layer cylindrical conductivity gradual-varying model and estimate the strengths of sources inside the model. The results suggest that the inner source is generated by the product of the conductivity and the curl of the induced electric intensity inside conductivity homogeneous medium, while the boundary source is produced by the cross product of the gradient of conductivity and the induced electric intensity at conductivity boundary. For a biological tissue with low conductivity, the strength of boundary source is much higher than that of the inner source only when the size of conductivity transition zone is small. In this case, the tissue can be treated as a conductivity abrupt-varying model, ignoring the influence of inner source. Otherwise, the contributions of inner and boundary sources should be evaluated together quantitatively. This study provide basis for further study of precise image reconstruction of MAT-MI for pathological tissues.
Band excitation method applicable to scanning probe microscopy
Jesse, Stephen; Kalinin, Sergei V.
2015-08-04
Scanning probe microscopy may include a method for generating a band excitation (BE) signal and simultaneously exciting a probe at a plurality of frequencies within a predetermined frequency band based on the excitation signal. A response of the probe is measured across a subset of frequencies of the predetermined frequency band and the excitation signal is adjusted based on the measured response.
Band excitation method applicable to scanning probe microscopy
Jesse, Stephen; Kalinin, Sergei V.
2017-01-03
Scanning probe microscopy may include a method for generating a band excitation (BE) signal and simultaneously exciting a probe at a plurality of frequencies within a predetermined frequency band based on the excitation signal. A response of the probe is measured across a subset of frequencies of the predetermined frequency band and the excitation signal is adjusted based on the measured response.
Excitation efficiency of an optical fiber core source
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.; Tai, Alan C.
1992-01-01
The exact field solution of a step-index profile fiber is used to determine the excitation efficiency of a distribution of sources in the core of an optical fiber. Previous results of a thin-film cladding source distribution to its core source counterpart are used for comparison. The behavior of power efficiency with the fiber parameters is examined and found to be similar to the behavior exhibited by cladding sources. It is also found that a core-source fiber is two orders of magnitude more efficient than a fiber with a bulk distribution of cladding sources. This result agrees qualitatively with previous ones obtained experimentally.
NASA Astrophysics Data System (ADS)
Wada, Y.; Enokida, I.; Yamamoto, J.; Furukawa, Y.
2018-05-01
Raman images of carriers (positive polarons) at the channel of an ionic liquid-gated transistor (ILGT) fabricated with regioregular poly(3-hexylthiophene) (P3HT) have been measured with excitation at 785 nm. The observed spectra indicate that carriers generated are positive polarons. The intensities of the 1415 cm-1 band attributed to polarons in the P3HT channel were plotted as Raman images; they showed the carrier density distribution. When the source-drain voltage VD is lower than the source-gate voltage VG (linear region), the carrier density was uniform. When VD is nearly equal to VG (saturation region), a negative carrier density gradient from the source electrode towards the drain electrode was observed. This carrier density distribution is associated with the observed current-voltage characteristics, which is not consistent with the "pinch-off" theory of inorganic semiconductor transistors.
Ultra-bright pulsed electron beam with low longitudinal emittance
Zolotorev, Max
2010-07-13
A high-brightness pulsed electron source, which has the potential for many useful applications in electron microscopy, inverse photo-emission, low energy electron scattering experiments, and electron holography has been described. The source makes use of Cs atoms in an atomic beam. The source is cycled beginning with a laser pulse that excites a single Cs atom on average to a band of high-lying Rydberg nP states. The resulting valence electron Rydberg wave packet evolves in a nearly classical Kepler orbit. When the electron reaches apogee, an electric field pulse is applied that ionizes the atom and accelerates the electron away from its parent ion. The collection of electron wave packets thus generated in a series of cycles can occupy a phase volume near the quantum limit and it can possess very high brightness. Each wave packet can exhibit a considerable degree of coherence.
Glazer, A M; Collins, S P; Zekria, D; Liu, J; Golshan, M
2004-03-01
In 1947 Kathleen Lonsdale conducted a series of experiments on X-ray diffraction using a divergent beam external to a crystal sample. Unlike the Kossel technique, where divergent X-rays are excited by the presence of fluorescing atoms within the crystal, the use of an external divergent source made it possible to study non-fluorescing crystals. The resulting photographs not only illustrated the complexity of X-ray diffraction from crystals in a truly beautiful way, but also demonstrated unprecedented experimental precision. This long-forgotten work is repeated here using a synchrotron radiation source and, once again, considerable merit is found in Lonsdale's technique. The results of this experiment suggest that, through the use of modern 'third-generation' synchrotron sources, divergent-beam diffraction could soon enjoy a renaissance for high-precision lattice-parameter determination and the study of crystal perfection.
IEC fusion: The future power and propulsion system for space
NASA Astrophysics Data System (ADS)
Hammond, Walter E.; Coventry, Matt; Hanson, John; Hrbud, Ivana; Miley, George H.; Nadler, Jon
2000-01-01
Rapid access to any point in the solar system requires advanced propulsion concepts that will provide extremely high specific impulse, low specific power, and a high thrust-to-power ratio. Inertial Electrostatic Confinement (IEC) fusion is one of many exciting concepts emerging through propulsion and power research in laboratories across the nation which will determine the future direction of space exploration. This is part of a series of papers that discuss different applications of the Inertial Electrostatic Confinement (IEC) fusion concept for both in-space and terrestrial use. IEC will enable tremendous advances in faster travel times within the solar system. The technology is currently under investigation for proof of concept and transitioning into the first prototype units for commercial applications. In addition to use in propulsion for space applications, terrestrial applications include desalinization plants, high energy neutron sources for radioisotope generation, high flux sources for medical applications, proton sources for specialized medical applications, and tritium production. .
On selection of primary modes for generation of strong internally resonant second harmonics in plate
NASA Astrophysics Data System (ADS)
Liu, Yang; Chillara, Vamshi Krishna; Lissenden, Cliff J.
2013-09-01
The selection of primary shear-horizontal (SH) and Rayleigh-Lamb (RL) ultrasonic wave modes that generate cumulative second harmonics in homogeneous isotropic plates is analyzed by theoretical modeling. Selection criteria include: internal resonance (synchronism and nonzero power flux), group velocity matching, and excitability/receivability. The power flux, group velocity matching, and excitability are tabulated for the SH and RL internal resonance points. The analysis indicates that SH waves can generate cumulative symmetric RL secondary wave fields. Laboratory experiments on aluminum plates demonstrate that excitation of the SH3 primary mode generates the s4 secondary RL mode and that the secondary wave field amplitude increases linearly with propagation distance. Simple magnetostrictive transducers were used to excite the primary SH wave and to receive the SH and RL wave signals. Reception of these wave modes having orthogonal polarizations was achieved by simply reorienting the electrical coil. The experiment was complicated by the presence of a nonplanar primary wavefront, however finite element simulations were able to clarify the experimental results.
2017-01-01
Light driven excitation of gold nanoparticles (GNPs) has emerged as a potential strategy to generate hot carriers for photocatalysis through excitation of localized surface plasmon resonance (LSPR). In contrast, carrier generation through excitation of interband transitions remains a less explored and underestimated pathway for photocatalytic activity. Photoinduced oxidative etching of GNPs with FeCl3 was investigated as a model reaction in order to elucidate the effects of both types of transitions. The quantitative results show that interband transitions more efficiently generate hot carriers and that those carriers exhibit higher reactivity as compared to those generated solely by LSPR. Further, leveraging the strong π-acidic character of the resulting photogenerated Au+ hole, an interband transition induced cyclization reaction of alkynylphenols was developed. Notably, alkyne coordination to the Au+ hole intercepts the classic oxidation event and leads to the formation of the catalytically active gold clusters on subnanometer scale. PMID:28573211
On- and off-axis spectral emission features from laser-produced gas breakdown plasmas
NASA Astrophysics Data System (ADS)
Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.; Brumfield, B. E.; Phillips, M. C.; Miloshevsky, G.
2017-06-01
Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during their early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of the surrounding ambient: photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early times of their creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with a pulse duration of 6 ns are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density, and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times, while space and time resolved spectroscopy is used for evaluating the emission features and for inferring plasma physical conditions at on- and off-axis positions. The structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using the computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms, and molecules are separated in time with early time temperatures and densities in excess of 35 000 K and 4 × 1018/cm3 with an existence of thermal equilibrium. However, the emission from the off-kernel positions from the breakdown plasmas showed enhanced ultraviolet radiation with the presence of N2 bands and is represented by non-local thermodynamic equilibrium (non-LTE) conditions. Our results also highlight that the ultraviolet radiation emitted during the early time of spark evolution is the predominant source of the photo-excitation of the surrounding medium.
On- and off-axis spectral emission features from laser-produced gas breakdown plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.
Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during its early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of surrounding ambient: viz. photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early timesmore » of its creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission features of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with 6 ns pulse duration are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times while space and time resolved spectroscopy is used for evaluating the emission features as well as for inferring plasma fundaments at on- and off-axis. Structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms and molecules are separated in time with an early time temperatures and densities in excess of 35000 K and 4×10 18 /cm 3 with an existence of thermal equilibrium. However, the emission from the off-kernel positions from the breakdown plasmas showed enhanced ultraviolet radiation with the presence of N 2 bands and represented by non-LTE conditions. Finally, our results also highlight that the ultraviolet radiation emitted during early time of spark evolution is the predominant source of the photo-excitation of the surrounding medium.« less
On- and off-axis spectral emission features from laser-produced gas breakdown plasmas
Harilal, S. S.; Skrodzki, P. J.; Miloshevsky, A.; ...
2017-06-01
Laser-heated gas breakdown plasmas or sparks emit profoundly in the ultraviolet and visible region of the electromagnetic spectrum with contributions from ionic, atomic, and molecular species. Laser created kernels expand into a cold ambient with high velocities during its early lifetime followed by confinement of the plasma kernel and eventually collapse. However, the plasma kernels produced during laser breakdown of gases are also capable of exciting and ionizing the surrounding ambient medium. Two mechanisms can be responsible for excitation and ionization of surrounding ambient: viz. photoexcitation and ionization by intense ultraviolet emission from the sparks produced during the early timesmore » of its creation and/or heating by strong shocks generated by the kernel during its expansion into the ambient. In this study, an investigation is made on the spectral features of on- and off-axis emission features of laser-induced plasma breakdown kernels generated in atmospheric pressure conditions with an aim to elucidate the mechanisms leading to ambient excitation and emission. Pulses from an Nd:YAG laser emitting at 1064 nm with 6 ns pulse duration are used to generate plasma kernels. Laser sparks were generated in air, argon, and helium gases to provide different physical properties of expansion dynamics and plasma chemistry considering the differences in laser absorption properties, mass density and speciation. Point shadowgraphy and time-resolved imaging were used to evaluate the shock wave and spark self-emission morphology at early and late times while space and time resolved spectroscopy is used for evaluating the emission features as well as for inferring plasma fundaments at on- and off-axis. Structure and dynamics of the plasma kernel obtained using imaging techniques are also compared to numerical simulations using computational fluid dynamics code. The emission from the kernel showed that spectral features from ions, atoms and molecules are separated in time with an early time temperatures and densities in excess of 35000 K and 4×1018 /cm3 with an existence of thermal equilibrium. However, the emission from the off-kernel positions from the breakdown plasmas showed enhanced ultraviolet radiation with the presence of N2 bands and represented by non-LTE conditions. Our results also highlight that the ultraviolet radiation emitted during early time of spark evolution is the predominant source of the photo-excitation of the surrounding medium.« less
Nguyen, Hung X; Kirkton, Robert D; Bursac, Nenad
2018-05-01
We describe a two-stage protocol to generate electrically excitable and actively conducting cell networks with stable and customizable electrophysiological phenotypes. Using this method, we have engineered monoclonally derived excitable tissues as a robust and reproducible platform to investigate how specific ion channels and mutations affect action potential (AP) shape and conduction. In the first stage of the protocol, we combine computational modeling, site-directed mutagenesis, and electrophysiological techniques to derive optimal sets of mammalian and/or prokaryotic ion channels that produce specific AP shape and conduction characteristics. In the second stage of the protocol, selected ion channels are stably expressed in unexcitable human cells by means of viral or nonviral delivery, followed by flow cytometry or antibiotic selection to purify the desired phenotype. This protocol can be used with traditional heterologous expression systems or primary excitable cells, and application of this method to primary fibroblasts may enable an alternative approach to cardiac cell therapy. Compared with existing methods, this protocol generates a well-defined, relatively homogeneous electrophysiological phenotype of excitable cells that facilitates experimental and computational studies of AP conduction and can decrease arrhythmogenic risk upon cell transplantation. Although basic cell culture and molecular biology techniques are sufficient to generate excitable tissues using the described protocol, experience with patch-clamp techniques is required to characterize and optimize derived cell populations.
Active Vibration Control for Helicopter Interior Noise Reduction Using Power Minimization
NASA Technical Reports Server (NTRS)
Mendoza, J.; Chevva, K.; Sun, F.; Blanc, A.; Kim, S. B.
2014-01-01
This report describes work performed by United Technologies Research Center (UTRC) for NASA Langley Research Center (LaRC) under Contract NNL11AA06C. The objective of this program is to develop technology to reduce helicopter interior noise resulting from multiple gear meshing frequencies. A novel active vibration control approach called Minimum Actuation Power (MAP) is developed. MAP is an optimal control strategy that minimizes the total input power into a structure by monitoring and varying the input power of controlling sources. MAP control was implemented without explicit knowledge of the phasing and magnitude of the excitation sources by driving the real part of the input power from the controlling sources to zero. It is shown that this occurs when the total mechanical input power from the excitation and controlling sources is a minimum. MAP theory is developed for multiple excitation sources with arbitrary relative phasing for single or multiple discrete frequencies and controlled by a single or multiple controlling sources. Simulations and experimental results demonstrate the feasibility of MAP for structural vibration reduction of a realistic rotorcraft interior structure. MAP control resulted in significant average global vibration reduction of a single frequency and multiple frequency excitations with one controlling actuator. Simulations also demonstrate the potential effectiveness of the observed vibration reductions on interior radiated noise.
NASA Astrophysics Data System (ADS)
Cere, Alessandro; Leong, Victor; Kaur Gulati, Gurpreet; Srivathsan, Bharath; Kosen, Sandoko; Kurtsiefer, Christian
2015-05-01
The realization of quantum networks and long distance quantum communication rely on the capability of generating entanglement between separated nodes. We demonstrate the compatibility of two different sources of single photons: a single atom and four-wave mixing in a cold cloud of atoms. The four-wave mixing process in a cloud of cold 87Rb generates photon pairs. The cascade level scheme used ensures the generation of heralded single photons with exponentially decaying temporal envelope. The temporal shape of the heralding photons matches the shape of photons emitted by spontaneous decay but for the shorter coherence time A single 87Rb atom is trapped in an far-off-resonance optical dipole trap and can be excited with high probability using a short (~3 ns) intense pulse of resonant light, emitting a single photon by spontaneous decay. A large numerical aperture lens collects ~4% of the total fluorescence. The heralded and the triggered photons are launched into a Houng-Ou-Mandel interferometer: a symmetrical beam-splitter with outputs connected to single photon detectors. Scanning the relative delay between the two sources we observe the HOM dip with a maximum visibility of 70 +/-4%.
Investigation of voltage source design's for Electrical Impedance Mammography (EIM) Systems.
Qureshi, Tabassum R; Chatwin, Chris R; Zhou, Zhou; Li, Nan; Wang, W
2012-01-01
According to Jossient, interesting characteristics of breast tissues mostly lie above 1MHz; therefore a wideband excitation source covering higher frequencies (i.e. above 1MHz) is required. The main objective of this research is to establish a feasible bandwidth envelope that can be used to design a constant EIM voltage source over a wide bandwidth with low output impedance for practical implementation. An excitation source is one of the major components in bio-impedance measurement systems. In any bio-impedance measurement system the excitation source can be achieved either by injecting current and measuring the resulting voltages, or by applying voltages and measuring the current developed. This paper describes three voltage source architectures and based on their bandwidth comparison; a differential voltage controlled voltage source (VCVS) is proposed, which can be used over a wide bandwidth (>15MHz). This paper describes the performance of the designed EIM voltage source for different load conditions and load capacitances reporting signal-to-noise ratio of approx 90dB at 10MHz frequency, signal phase and maximum of 4.75kΩ source output impedance at 10MHz. Optimum data obtained using Pspice® is used to demonstrate the high-bandwidth performance of the source.
Recent progress in nanostructured next-generation field emission devices
NASA Astrophysics Data System (ADS)
Mittal, Gaurav; Lahiri, Indranil
2014-08-01
Field emission has been known to mankind for more than a century, and extensive research in this field for the last 40-50 years has led to development of exciting applications such as electron sources, miniature x-ray devices, display materials, etc. In the last decade, large-area field emitters were projected as an important material to revolutionize healthcare and medical devices, and space research. With the advent of nanotechnology and advancements related to carbon nanotubes, field emitters are demonstrating highly enhanced performance and novel applications. Next-generation emitters need ultra-high emission current density, high brightness, excellent stability and reproducible performance. Novel design considerations and application of new materials can lead to achievement of these capabilities. This article presents an overview of recent developments in this field and their effects on improved performance of field emitters. These advancements are demonstrated to hold great potential for application in next-generation field emission devices.
Efficient Second-Harmonic Generation in Nanocrystalline Silicon Nanoparticles.
Makarov, Sergey V; Petrov, Mihail I; Zywietz, Urs; Milichko, Valentin; Zuev, Dmitry; Lopanitsyna, Natalia; Kuksin, Alexey; Mukhin, Ivan; Zograf, George; Ubyivovk, Evgeniy; Smirnova, Daria A; Starikov, Sergey; Chichkov, Boris N; Kivshar, Yuri S
2017-05-10
Recent trends to employ high-index dielectric particles in nanophotonics are motivated by their reduced dissipative losses and large resonant enhancement of nonlinear effects at the nanoscale. Because silicon is a centrosymmetric material, the studies of nonlinear optical properties of silicon nanoparticles have been targeting primarily the third-harmonic generation effects. Here we demonstrate, both experimentally and theoretically, that resonantly excited nanocrystalline silicon nanoparticles fabricated by an optimized laser printing technique can exhibit strong second-harmonic generation (SHG) effects. We attribute an unexpectedly high yield of the nonlinear conversion to a nanocrystalline structure of nanoparticles supporting the Mie resonances. The demonstrated efficient SHG at green light from a single silicon nanoparticle is 2 orders of magnitude higher than that from unstructured silicon films. This efficiency is significantly higher than that of many plasmonic nanostructures and small silicon nanoparticles in the visible range, and it can be useful for a design of nonlinear nanoantennas and silicon-based integrated light sources.
Holographic free-electron light source
Li, Guanhai; Clarke, Brendan P.; So, Jin-Kyu; MacDonald, Kevin F.; Zheludev, Nikolay I.
2016-01-01
Recent advances in the physics and technology of light generation via free-electron proximity and impact interactions with nanostructures (gratings, photonic crystals, nano-undulators, metamaterials and antenna arrays) have enabled the development of nanoscale-resolution techniques for such applications as mapping plasmons, studying nanoparticle structural transformations and characterizing luminescent materials (including time-resolved measurements). Here, we introduce a universal approach allowing generation of light with prescribed wavelength, direction, divergence and topological charge via point-excitation of holographic plasmonic metasurfaces. It is illustrated using medium-energy free-electron injection to generate highly-directional visible to near-infrared light beams, at selected wavelengths in prescribed azimuthal and polar directions, with brightness two orders of magnitude higher than that from an unstructured surface, and vortex beams with topological charge up to ten. Such emitters, with micron-scale dimensions and the freedom to fully control radiation parameters, offer novel applications in nano-spectroscopy, nano-chemistry and sensing. PMID:27910853
Computing volume potentials for noninvasive imaging of cardiac excitation.
van der Graaf, A W Maurits; Bhagirath, Pranav; van Driel, Vincent J H M; Ramanna, Hemanth; de Hooge, Jacques; de Groot, Natasja M S; Götte, Marco J W
2015-03-01
In noninvasive imaging of cardiac excitation, the use of body surface potentials (BSP) rather than body volume potentials (BVP) has been favored due to enhanced computational efficiency and reduced modeling effort. Nowadays, increased computational power and the availability of open source software enable the calculation of BVP for clinical purposes. In order to illustrate the possible advantages of this approach, the explanatory power of BVP is investigated using a rectangular tank filled with an electrolytic conductor and a patient specific three dimensional model. MRI images of the tank and of a patient were obtained in three orthogonal directions using a turbo spin echo MRI sequence. MRI images were segmented in three dimensional using custom written software. Gmsh software was used for mesh generation. BVP were computed using a transfer matrix and FEniCS software. The solution for 240,000 nodes, corresponding to a resolution of 5 mm throughout the thorax volume, was computed in 3 minutes. The tank experiment revealed that an increased electrode surface renders the position of the 4 V equipotential plane insensitive to mesh cell size and reduces simulated deviations. In the patient-specific model, the impact of assigning a different conductivity to lung tissue on the distribution of volume potentials could be visualized. Generation of high quality volume meshes and computation of BVP with a resolution of 5 mm is feasible using generally available software and hardware. Estimation of BVP may lead to an improved understanding of the genesis of BSP and sources of local inaccuracies. © 2014 Wiley Periodicals, Inc.
Quinary excitation method for pulse compression ultrasound measurements.
Cowell, D M J; Freear, S
2008-04-01
A novel switched excitation method for linear frequency modulated excitation of ultrasonic transducers in pulse compression systems is presented that is simple to realise, yet provides reduced signal sidelobes at the output of the matched filter compared to bipolar pseudo-chirp excitation. Pulse compression signal sidelobes are reduced through the use of simple amplitude tapering at the beginning and end of the excitation duration. Amplitude tapering using switched excitation is realised through the use of intermediate voltage switching levels, half that of the main excitation voltages. In total five excitation voltages are used creating a quinary excitation system. The absence of analogue signal generation and power amplifiers renders the excitation method attractive for applications with requirements such as a high channel count or low cost per channel. A systematic study of switched linear frequency modulated excitation methods with simulated and laboratory based experimental verification is presented for 2.25 MHz non-destructive testing immersion transducers. The signal to sidelobe noise level of compressed waveforms generated using quinary and bipolar pseudo-chirp excitation are investigated for transmission through a 0.5m water and kaolin slurry channel. Quinary linear frequency modulated excitation consistently reduces signal sidelobe power compared to bipolar excitation methods. Experimental results for transmission between two 2.25 MHz transducers separated by a 0.5m channel of water and 5% kaolin suspension shows improvements in signal to sidelobe noise power in the order of 7-8 dB. The reported quinary switched method for linear frequency modulated excitation provides improved performance compared to pseudo-chirp excitation without the need for high performance excitation amplifiers.
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.; Herrero, F. A.; Varosi, F.
1984-01-01
A transfer function approach is taken in constructing a spectral model of the acoustic-gravity wave response in a multiconstituent thermosphere. The model is then applied to describing the thermospheric response to various sources around the globe. Zonal spherical harmonics serve to model the horizontal variations in propagating waves which, when integrated with respect to height, generate a transfer function for a vertical source distribution in the thermosphere. Four wave components are characterized as resonance phenomena and are associated with magnetic activity and ionospheric disturbances. The waves are either trapped or propagate, the latter becoming significant when possessing frequencies above 3 cycles/day. The energy input is distributed by thermospheric winds. The disturbances decay slowly, mainly due to heat conduction and diffusion. Gravity waves appear abruptly and are connected to a sudden switching on or off of a source. Turn off of a source coincides with a reversal of the local atmospheric circulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goulding, Richard Howell; Caughman, John B.; Rapp, Juergen
Proto-MPEX is a linear plasma device being used to study a novel RF source concept for the planned Material Plasma Exposure eXperiment (MPEX), which will address plasma-materials interaction (PMI) for nuclear fusion reactors. Plasmas are produced using a large diameter helicon source operating at a frequency of 13.56 MHz at power levels up to 120 kW. In recent experiments the helicon source has produced deuterium plasmas with densities up to ~6 × 1019 m–3 measured at a location 2 m downstream from the antenna and 0.4 m from the target. Previous plasma production experiments on Proto-MPEX have generated lower densitymore » plasmas with hollow electron temperature profiles and target power deposition peaked far off axis. The latest experiments have produced flat Te profiles with a large portion of the power deposited on the target near the axis. This and other evidence points to the excitation of a helicon mode in this case.« less
Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY
2012-03-13
The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.
LASERS IN MEDICINE: Two-photon excitation of aluminium phthalocyanines
NASA Astrophysics Data System (ADS)
Meshalkin, Yu P.; Alfimov, E. E.; Vasil'ev, N. E.; Denisov, A. N.; Makukha, V. K.; Ogirenko, A. P.
1999-12-01
A demonstration is given of the feasibility of two-photon excitation of aluminium phthalocyanine and of the pharmaceutical preparation 'Fotosens', used in photodynamic therapy. The excitation source was an Nd:YAG laser emitting at the 1064 nm wavelength. The spectra of the two-photon-excited luminescence were obtained and the two-photon absorption cross sections were determined.
Transparent lattice characterization with gated turn-by-turn data of diagnostic bunch train
NASA Astrophysics Data System (ADS)
Li, Yongjun; Cheng, Weixing; Ha, Kiman; Rainer, Robert
2017-11-01
Methods of characterization of a storage ring's lattice have traditionally been intrusive to routine operations. More importantly, the lattice seen by particles can drift with the beam current due to collective effects. To circumvent this, we have developed a novel approach for dynamically characterizing a storage ring's lattice that is transparent to operations. Our approach adopts a dedicated filling pattern which has a short, separate diagnostic bunch train (DBT). Through the use of a bunch-by-bunch feedback system, the DBT can be selectively excited on demand. Gated functionality of a beam position monitor system is capable of collecting turn-by-turn data of the DBT, from which the lattice can then be characterized after excitation. As the DBT comprises only about one percent of the total operational bunches, the effects of its excitation are negligible to users. This approach allows us to localize the distributed quadrupolar wakefields generated in the storage ring vacuum chamber during beam accumulation. While effectively transparent to operations, our approach enables us to dynamically control the beta beat and phase beat, and unobtrusively optimize performance of the National Synchrotron Light Source-II accelerator during routine operations.
Force Sensor Characterization Under Sinusoidal Excitations
Medina, Nieves; de Vicente, Jesús
2014-01-01
The aim in the current work is the development of a method to characterize force sensors under sinusoidal excitations using a primary standard as the source of traceability. During this work the influence factors have been studied and a method to minimise their contributions, as well as the corrections to be performed under dynamic conditions have been established. These results will allow the realization of an adequate characterization of force sensors under sinusoidal excitations, which will be essential for its further proper use under dynamic conditions. The traceability of the sensor characterization is based in the direct definition of force as mass multiplied by acceleration. To do so, the sensor is loaded with different calibrated loads and is maintained under different sinusoidal accelerations by means of a vibration shaker system that is able to generate accelerations up to 100 m/s2 with frequencies from 5 Hz up to 2400 Hz. The acceleration is measured by means of a laser vibrometer with traceability to the units of time and length. A multiple channel data acquisition system is also required to simultaneously acquire the electrical output signals of the involved instrument in real time. PMID:25290287
Transparent lattice characterization with gated turn-by-turn data of diagnostic bunch train
Li, Yongjun; Cheng, Weixing; Ha, Kiman; ...
2017-11-21
Methods of characterization of a storage ring's lattice have traditionally been intrusive to routine operations. More importantly, the lattice seen by particles can drift with the beam current due to collective effects. To circumvent this, we have developed a novel approach for dynamically characterizing a storage ring's lattice that is transparent to operations. Our approach adopts a dedicated filling pattern which has a short, separate Diagnostic Bunch-Train (DBT). Through the use of a bunch-by-bunch feedback system, the DBT can be selectively excited on-demand. Gated functionality of a beam position monitor system is capable of collecting turn-by-turn data of the DBT,more » from which the lattice can then be characterized after excitation. As the DBT comprises only about one percent of the total operational bunches, the effects of its excitation are negligible to users. Therefore, this approach allows us to localize the distributed quadrupolar wake fields generated in the storage ring vacuum chamber during beam accumulation. While effectively transparent to operations, our approach enables us to dynamically control the beta-beat and phase-beat, and unobtrusively optimize performance of National Synchrotron Light Source-II accelerator during routine operations.« less
Design, fabrication and characterization of rugged, high-performance quantum dot photocathodes
NASA Astrophysics Data System (ADS)
Pietryga, Jeffrey; Robel, Istvan; Makarov, Nikolay; Lim, Jaehoon; Lin, Qianglu; Lewellen, John; Moody, Nathan
Semiconductor nanocrystal quantum dots (QDs) are bright, tunable fluorophores used as, e.g., biolabels and downcoverting phosphors. Such applications make use of over three decades in advances in techniques for overcoming the natural tendency of these materials toward losing photoexcited carriers to surface defect states or to ionization. Ironically, QDs first gained attention as a material class for use in photocatalysis, which uses QD photoionization to drive redox reactions. Here, we explore the use of QDs in an alternative application that also exploits photoionization, namely within photocathodes for the electron guns that will enable next-generation light sources. We evaluate the efficiency of electron photoemission of conductive, solution-cast QD films of a variety of compositions in a typical electron gun configuration. By quantifying photocurrent as a function of excitation photon energy, excitation intensity and pulse duration, we demonstrate efficiencies superior to standard copper cathodes in films that are more robust against oxidation. Finally, we establish the dominant mechanism responsible for electron emission in the multi-photon excitation regime, which suggests numerous pathways for further enhancements. We gratefully acknowledge the support of the Los Alamos National Laboratory Directed Research and Development (LDRD) program.
NASA Astrophysics Data System (ADS)
Sawyer, Brian; Britton, Joseph; Keith, Adam; Wang, C.-C. Joseph; Freericks, James; Bollinger, John
2013-10-01
Confined non-neutral plasmas of ions in the regime of strong coupling serve as a platform for studying a diverse range of phenomena including: dense astrophysical matter, quantum computation/simulation, dynamical decoupling, and precision measurements. We describe a method of simultaneously detecting and measuring the temperature of transverse plasma modes in two-dimensional crystals of cold 9Be+ confined within a Penning trap. We employ a spin-dependent optical dipole force (ODF) generated from off-resonant laser beams to directly excite plasma modes transverse to the crystal plane of ~ 100 ions. Extremely small mode excitations (~ 1 nm) may be detected through spin-motion entanglement induced by an ODF as small as 10 yN , and even the shortest-wavelength (~ 20 μm) modes are excited and detected through the spin dependence of the force. This mode-specific thermometry has facilitated characterization and mitigation of ion heating sources in this system. Future work may include sub-yN force detection, spectroscopy/thermometry of the more complex in-plane oscillations, and implementation/confirmation of sub-Doppler cooling. The authors acknowledge support from the DARPA-OLE program.
3. INTERIOR OF POWERHOUSE BUILDING SHOWING EXCITER No. 2 (FOREGROUND), ...
3. INTERIOR OF POWERHOUSE BUILDING SHOWING EXCITER No. 2 (FOREGROUND), EXCITER No. 1, AND GENERATOR UNIT No. 2. BAYS FOR TRANSFORMERS No. 1 AND 2 ARE VISIBLE ALONG SIDE-WALL IN BACKGROUND. VIEW TO SOUTHWEST. - Kern County No. 1 Hydroelectric System, Powerhouse Exciters, Kern River Canyon, Bakersfield, Kern County, CA
NASA Technical Reports Server (NTRS)
Reiner, M. J.; Stone, R. G.; Fainberg, J.
1992-01-01
Type III radio emission generated in the vicinity of the Ulysses spacecraft has been detected at both the fundamental and harmonic of the local plasma frequency. The observations represent the first clear evidence of locally generated type III radio emission. This local emission shows no evidence of frequency drift, exhibits a relatively short rise time, is less intense than the observed remotely generated radio emission, and is temporally correlated with observed in situ Langmuir waves. The observations were made with the unified radio astronomy and wave (URAP) experiment on the Ulysses spacecraft between 1990 November 4 and 1991 April 30, as it traveled from 1 to 3 AU from the sun. During this time period many thousands of bursts were observed. However, only three examples of local emission and associated Langmuir waves were identified. This supports previous suggestions that type III radio emission is generated in localized regions of the interplanetary medium, rather than uniformly along the extent of the electron exciter beam.
View of water wheel, generator #3 and exciter (at east ...
View of water wheel, generator #3 and exciter (at east end of Childs Powerhouse) on a single shaft. In foreground the governor and shut-off valve are visible. Looking southwest - Childs-Irving Hydroelectric Project, Childs System, Childs Powerhouse, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ
Laboratory Studies in UV and EUV Solar Physics
NASA Technical Reports Server (NTRS)
Parkinson, William
2003-01-01
The Ion Beam Experiment at the Center for Astrophysics is dedicated to the study of ion-electron collision processes of importance in solar physics. A paper describing our most recent measurement 'Absolute cross section for Si(2+)(3s3p(sup 3)Rho (sup 0) yields 3s3p(sup 1)Rho(sup 0)) electron-impact excitation' was published during the past year. Dr. Paul Janzen received his PhD. from the Harvard Physics Department on the basis of this and other work, such as the new electron cyclotron resonance (ECR) ion source. The ion source is producing stable beams with large currents for our present work on C(2+), and it also produces stable beams with large currents of more highly charged systems, for future work on systems such as O(4+). The past year has been focussed on our current program to measure absolute cross sections for Electron Impact Excitation (EIE) in C(2+), one of the primary ions used for probing the solar transition region. C(2+) beams produced by the ion source have been transported to the interaction region of the experiment, where the collisions are studied, and Visiting Scientist Dr. Adrian Daw is currently collecting data to measure the C(2+)(2s2p(sup 3)Rho(sup 0) yields 2p(sup 2)(sup 3)Rho) EIE cross section as a function of collision energy, under the guidance of Drs. John Kohl, Larry Gardner and Bill Parkinson. Also this year, modifications were made to the ECR ion source in order to produce greater currents of highly charged ions. Testing of the ion source was completed. Modifications were designed to extend the photon detection capabilities of the apparatus to shorter UV wavelengths, or EUV. Following the work on C(2+)(2s2p(sup 3)Pho(sup 0) yields 2p(sup 2)(sup 3)Rho), the extended UV detection capabilities will be used to measure the C(2+)(2s(sup 2)(sup 1)S yields 2s2p(sup 1)Rho(sup 0)) EIE cross section. The EUV modifications complement those of the new ion source, by enabling detection of EUV light generated by high charge state ions and putting us in a position to measure the excitation cross sections for more highly charged ions as well.
LASER FLUORESCENCE EEM PROBE FOR CONE PENETROMETER POLLUTION ANALYSIS
A fiber optic LIF (Laser induced fluorescence) EEM (Excitation emission matrix) instrument for CPT deployment has been successfully developed and field tested. The system employs a Nd: YAG laser and Raman shifter as a rugged field portable excitation source. This excitation sou...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shenggang, E-mail: liusg@uestc.edu.cn; Hu, Min; Chen, Xiaoxing
2014-05-19
Although surface plasmon polaritons (SPPs) resonance in graphene can be tuned in the terahertz regime, transforming such SPPs into coherent terahertz radiation has not been achieved. Here, we propose a graphene-based coherent terahertz radiation source with greatly enhanced intensity. The radiation works at room temperature, it is tunable and can cover the whole terahertz regime. The radiation intensity generated with this method is 400 times stronger than that from SPPs at a conventional dielectric or semiconducting surface and is comparable to that from the most advanced photonics source such as a quantum cascade laser. The physical mechanism for this strongmore » radiation is presented. The phase diagrams defining the parameters range for the occurrence of radiation is also shown.« less
Herringbone bursts associated with type II solar radio emission
NASA Technical Reports Server (NTRS)
Cairns, I. H.; Robinson, R. D.
1987-01-01
Detailed observations of the herringbone (HB) fine structure on type II solar radio bursts are presented. Data from the Culgoora radiospectrograph, radiometer and radioheliograph are analyzed. The characteristic spectral profiles, frequency drift rates and exciter velocities, fluxes, source sizes, brightness temperatures, and polarizations of individual HB bursts are determined. Correlations between individual bursts within the characteristic groups of bursts and the properties of the associated type II bursts are examined. These data are compatible with HB bursts being radiation at multiples of the plasma frequency generated by electron streams accelerated by the type II shock. HB bursts are physically distinct phenomena from type II and type III bursts, differing significantly in emission processes and/or source conditions; this conclusion indicates that many of the presently available theoretical ideas for HB bursts are incorrect.
Resonant features of the terahertz generation in semiconductor nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trukhin, V. N., E-mail: valera.truchin@mail.ioffe.ru; Bouravleuv, A. D.; Mustafin, I. A.
2016-12-15
The paper presents the results of experimental studies of the generation of terahertz radiation in periodic arrays of GaAs nanowires via excitation by ultrashort optical pulses. It is found that the generation of THz radiation exhibits resonant behavior due to the resonant excitation of cylindrical modes in the nanowires. At the optimal geometric parameters of the nanowire array, the generation efficiency is found to be higher than that for bulk p-InAs, which is one of the most effective coherent terahertz emitters.
NASA Technical Reports Server (NTRS)
Hubbard, H. H.; Shepherd, K. P.
1984-01-01
Window and wall acceleration measurements and interior noise measurements ere made for two different building structures during excitation by noise from the WTS-4 horizontal axis wind turbine generator operating in a normal power generation mode. With turbine noise input pulses resulted in acceleration pulses for the wall and window elements of the two tests buildings. Response spectra suggest that natural vibration modes of the structures are excited. Responses of a house trailer were substantially greater than those for a building of sturdier construction. Peak acceleration values correlate well with similar data for houses excited by flyover noise from commercial and military airplanes and helicopters, and sonic booms from supersonic aircraft. Interior noise spectra have peaks at frequencies corresponding to structural vibration modes and room standing waves; and the levels for particular frequencies and locations can be higher than the outside levels.
Coherent blue emission generated by Rb two-photon excitation using diode and femtosecond lasers
NASA Astrophysics Data System (ADS)
Lopez, Jesus P.; Moreno, Marco P.; de Miranda, Marcio H. G.; Vianna, Sandra S.
2017-04-01
The coherent blue light generated in rubidium vapor due to the combined action of an ultrashort pulse train and a continuous wave diode laser is investigated. Each step of the two-photon transition 5S-5P{}3/2-5D is excited by one of the lasers, and the induced coherence between the 5S and 6P{}3/2 states is responsible for generating the blue beam. Measurements of the excitation spectrum reveal the frequency comb structure and allow us to identify the resonant modes responsible for inducing the nonlinear process. Further, each resonant mode excites a different group of atoms, making the process selective in atomic velocity. The signal dependency on the atomic density is characterized by a sharp growth and a rapid saturation. We also show that for high intensity of the diode laser, the Stark shift at resonance causes the signal suppression observed at low atomic density.
26. Generator Voltage Regulator Cabinet Exterior for Unit 1, view ...
26. Generator Voltage Regulator Cabinet Exterior for Unit 1, view to the northwest. The exciter supplies the DC current to the generator rotor to create electricity. Each of the four original units has an exciter identical to this one, and all are scheduled for replacement. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT
15. Interior of Right Powerhouse, looking east, showing turbinegenerator unit ...
15. Interior of Right Powerhouse, looking east, showing turbine-generator unit No. 11, which is undergoing repair. This is generator is identical to the other eight units located in the Right Powerhouse: Westinghouse AC generator, 108,000 kva, 13,800 volts, 4,200 amps, 3 phase, 60 cycle, 1220 exciter amps, 250 exciter volts. - Columbia Basin Project, Grand Coulee Dam Powerplant Complex, Grand Coulee, Grant County, WA
Observation of magnetic fluctuations and rapid density decay of magnetospheric plasma in Ring Trap 1
NASA Astrophysics Data System (ADS)
Saitoh, H.; Yoshida, Z.; Morikawa, J.; Yano, Y.; Mikami, H.; Kasaoka, N.; Sakamoto, W.
2012-06-01
The Ring Trap 1 device, a magnetospheric configuration generated by a levitated dipole field magnet, has created high-β (local β ˜ 70%) plasma by using electron cyclotron resonance heating (ECH). When a large population of energetic electrons is generated at low neutral gas pressure operation, high frequency magnetic fluctuations are observed. When the fluctuations are strongly excited, rapid loss of plasma was simultaneously observed especially in a quiet decay phase after the ECH microwave power is turned off. Although the plasma is confined in a strongly inhomogeneous dipole field configuration, the frequency spectra of the fluctuations have sharp frequency peaks, implying spatially localized sources of the fluctuations. The fluctuations are stabilized by decreasing the hot electron component below approximately 40%, realizing stable high-β confinement.
Pappas, Daniel S.
1989-01-01
Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.
Single nano-hole as a new effective nonlinear element for third-harmonic generation
NASA Astrophysics Data System (ADS)
Melentiev, P. N.; Konstantinova, T. V.; Afanasiev, A. E.; Kuzin, A. A.; Baturin, A. S.; Tausenev, A. V.; Konyaschenko, A. V.; Balykin, V. I.
2013-07-01
In this letter, we report on a particularly strong optical nonlinearity at the nanometer scale in aluminum. A strong optical nonlinearity of the third order was demonstrated on a single nanoslit. Single nanoslits of different aspect ratio were excited by a laser pulse (120 fs) at the wavelength 1.5 μm, leading predominantly to third-harmonic generation (THG). It has been shown that strong surface plasmon resonance in a nanoslit allows the realization of an effective nanolocalized source of third-harmonic radiation. We show also that a nanoslit in a metal film has a significant advantage in nonlinear processes over its Babinet complementary nanostructure (nanorod): the effective abstraction of heat in a film with a slit makes it possible to use much higher laser radiation intensities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yukhimuk, V.; Roussel-Dupre, R.
In this paper the evolution of nonlinear scattering of whistler mode waves by kinetic Alfven waves (KAW) in time and two spatial dimensions is studied analytically. The authors suggest this nonlinear process as a mechanism of kinetic Alfven wave generation in space plasmas. This mechanism can explain the dependence of Alfven wave generation on whistler waves observed in magnetospheric and ionospheric plasmas. The observational data show a dependence for the generation of long periodic pulsations Pc5 on whistler wave excitation in the auroral and subauroral zone of the magnetosphere. This dependence was first observed by Ondoh T.I. For 79 casesmore » of VLF wave excitation registered by Ondoh at College Observatory (L=64.6 N), 52 of them were followed by Pc5 geomagnetic pulsation generation. Similar results were obtained at the Loparskaia Observatory (L=64 N) for auroral and subauroral zone of the magnetosphere. Thus, in 95% of the cases when VLF wave excitation occurred the generation of long periodic geomagnetic pulsations Pc5 were observed. The observations also show that geomagnetic pulsations Pc5 are excited simultaneously or insignificantly later than VLF waves. In fact these two phenomena are associated genetically: the excitation of VLF waves leads to the generation of geomagnetic pulsations Pc5. The observations show intensive generation of geomagnetic pulsations during thunderstorms. Using an electromagnetic noise monitoring system covering the ULF range (0.01-10 Hz) A.S. Fraser-Smith observed intensive ULF electromagnetic wave during a large thunderstorm near the San-Francisco Bay area on September 23, 1990. According to this data the most significant amplification in ULF wave activity was observed for waves with a frequency of 0.01 Hz and it is entirely possible that stronger enhancements would have been measured at lower frequencies.« less
Thermoacoustic sound projector: exceeding the fundamental efficiency of carbon nanotubes.
Aliev, Ali E; Codoluto, Daniel; Baughman, Ray H; Ovalle-Robles, Raquel; Inoue, Kanzan; Romanov, Stepan A; Nasibulin, Albert G; Kumar, Prashant; Priya, Shashank; Mayo, Nathanael K; Blottman, John B
2018-08-10
The combination of smooth, continuous sound spectra produced by a sound source having no vibrating parts, a nanoscale thickness of a flexible active layer and the feasibility of creating large, conformal projectors provoke interest in thermoacoustic phenomena. However, at low frequencies, the sound pressure level (SPL) and the sound generation efficiency of an open carbon nanotube sheet (CNTS) is low. In addition, the nanoscale thickness of fragile heating elements, their high sensitivity to the environment and the high surface temperatures practical for thermoacoustic sound generation necessitate protective encapsulation of a freestanding CNTS in inert gases. Encapsulation provides the desired increase of sound pressure towards low frequencies. However, the protective enclosure restricts heat dissipation from the resistively heated CNTS and the interior of the encapsulated device. Here, the heat dissipation issue is addressed by short pulse excitations of the CNTS. An overall increase of energy conversion efficiency by more than four orders (from 10 -5 to 0.1) and the SPL of 120 dB re 20 μPa @ 1 m in air and 170 dB re 1 μPa @ 1 m in water were demonstrated. The short pulse excitation provides a stable linear increase of output sound pressure with substantially increased input power density (>2.5 W cm -2 ). We provide an extensive experimental study of pulse excitations in different thermodynamic regimes for freestanding CNTSs with varying thermal inertias (single-walled and multiwalled with varying diameters and numbers of superimposed sheet layers) in vacuum and in air. The acoustical and geometrical parameters providing further enhancement of energy conversion efficiency are discussed.
A Study of Electron and Phonon Dynamics by Broadband Two-Dimensional THz Time-Domain Spectroscopy
NASA Astrophysics Data System (ADS)
Fu, Zhengping
Terahertz (THz) wave interacts with semiconductors in many ways, such as resonant excitation of lattice vibration, intraband transition and polaron formation. Different from the optical waves, THz wave has lower photon energy (1 THz = 4.14 meV) and is suitable for studying dynamics of low-energy excitations. Recently the studies of the interaction of THz wave and semiconductors have been extending from the linear regime to the nonlinear regime, owing to the advance of the high-intensity THz generation and detection methods. Two-dimensional (2D) spectroscopy, as a useful tool to unravel the nonlinearity of materials, has been well developed in nuclear magnetic resonance and infrared region. However, the counterpart in THz region has not been well developed and was only demonstrated at frequency around 20 THz due to the lack of intense broadband THz sources. Using laser-induced plasma as the THz source, we developed collinear broadband 2D THz time-domain spectroscopy covering from 0.5 THz to 20 THz. Broadband intense THz pulses emitted from laser-induced plasma provide access to a variety of nonlinear properties of materials. Ultrafast optical and THz pulses make it possible to resolve the transient change of the material properties with temporal resolution of tens of femtoseconds. This thesis focuses on the linear and nonlinear interaction of the THz wave with semiconductors. Since a great many physical processes, including vibrational motion of lattice and plasma oscillation, has resonant frequency in the THz range, rich physics can be studies in our experiment. The thesis starts from the linear interaction of the THz wave with semiconductors. In the narrow band gap semiconductor InSb, the plasma absorption edge, Restrahlen band and dispersion of polaritons are observed. The nonlinear response of InSb in high THz field is verified in the frequency-resolved THz Z-scan experiment. The third harmonic generations due to the anharmonicity of plasma oscillation and the second order signal due to the plasma-phonon interaction are observed in 2D THz transmission spectra. In this thesis, the coherent phonons excited by THz pulses are experimentally demonstrated for the first time in both GaAs and InSb. The resonant excitation using THz pulses enables the coherent control of the lattice motion via direct interaction of atoms and electromagnetic wave, without inducing electronic transition as reported in the optical excitation of coherent phonons. The classic model is used to explain both excitation and detection mechanisms. An increase of the damping rate of the coherent lattice motion due to higher carrier density is observed in our experiment. Transient reflectivity change of GaAs induced by THz pulses is studied in 2D THz-pump/optical-probe configuration. Using the perturbative analysis of nonlinear electrooptic effect, we conclude that the nonlinear response of GaAs to two phase-locked THz pulses is mainly caused by the nonlinearity of the electronic response.
14. POWERHOUSE INTERIOR, EXCITER No. 2 SHOWING GENERAL ELECTRIC INDUCTION ...
14. POWERHOUSE INTERIOR, EXCITER No. 2 SHOWING GENERAL ELECTRIC INDUCTION MOTOR IN SERIES BETWEEN PELTON-DOBLE IMPULSE WHEEL AND GENERAL ELECTRIC GENERATOR. VIEW TO EAST. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalev, S.; Green, B.; Golz, T.
Here, understanding dynamics on ultrafast timescales enables unique and new insights into important processes in the materials and life sciences. In this respect, the fundamental pump-probe approach based on ultra-short photon pulses aims at the creation of stroboscopic movies. Performing such experiments at one of the many recently established accelerator-based 4th-generation light sources such as free-electron lasers or superradiant THz sources allows an enormous widening of the accessible parameter space for the excitation and/or probing light pulses. Compared to table-top devices, critical issues of this type of experiment are fluctuations of the timing between the accelerator and external laser systemsmore » and intensity instabilities of the accelerator-based photon sources. Existing solutions have so far been only demonstrated at low repetition rates and/or achieved a limited dynamic range in comparison to table-top experiments, while the 4th generation of accelerator-based light sources is based on superconducting radio-frequency technology, which enables operation at MHz or even GHz repetition rates. In this article, we present the successful demonstration of ultra-fast accelerator-laser pump-probe experiments performed at an unprecedentedly high repetition rate in the few-hundred-kHz regime and with a currently achievable optimal time resolution of 13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple beam parameters relevant for the experiment, allows us to achieve an excellent sensitivity in real-world ultra-fast experiments, as demonstrated for the example of THz-field-driven coherent spin precession.« less
Kovalev, S.; Green, B.; Golz, T.; ...
2017-03-06
Here, understanding dynamics on ultrafast timescales enables unique and new insights into important processes in the materials and life sciences. In this respect, the fundamental pump-probe approach based on ultra-short photon pulses aims at the creation of stroboscopic movies. Performing such experiments at one of the many recently established accelerator-based 4th-generation light sources such as free-electron lasers or superradiant THz sources allows an enormous widening of the accessible parameter space for the excitation and/or probing light pulses. Compared to table-top devices, critical issues of this type of experiment are fluctuations of the timing between the accelerator and external laser systemsmore » and intensity instabilities of the accelerator-based photon sources. Existing solutions have so far been only demonstrated at low repetition rates and/or achieved a limited dynamic range in comparison to table-top experiments, while the 4th generation of accelerator-based light sources is based on superconducting radio-frequency technology, which enables operation at MHz or even GHz repetition rates. In this article, we present the successful demonstration of ultra-fast accelerator-laser pump-probe experiments performed at an unprecedentedly high repetition rate in the few-hundred-kHz regime and with a currently achievable optimal time resolution of 13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple beam parameters relevant for the experiment, allows us to achieve an excellent sensitivity in real-world ultra-fast experiments, as demonstrated for the example of THz-field-driven coherent spin precession.« less
2. INTERIOR OF POWERHOUSE BUILDING SHOWING EXCITER No. 1 (FOREGROUND), ...
2. INTERIOR OF POWERHOUSE BUILDING SHOWING EXCITER No. 1 (FOREGROUND), EXCITER No 2, AND GENERATOR UNIT No. 3. BAYS FOR TRANSFORMERS No. 3 AND 4 ARE VISIBLE ALONG SIDE-WALL IN BACKGROUND. STAIRS LEAD TO OFFICE. VIEW TO SOUTHEAST. - Kern County No. 1 Hydroelectric System, Powerhouse Exciters, Kern River Canyon, Bakersfield, Kern County, CA
Precursor and Neutral Loss Scans in an RF Scanning Linear Quadrupole Ion Trap
NASA Astrophysics Data System (ADS)
Snyder, Dalton T.; Szalwinski, Lucas J.; Schrader, Robert L.; Pirro, Valentina; Hilger, Ryan; Cooks, R. Graham
2018-03-01
Methodology for performing precursor and neutral loss scans in an RF scanning linear quadrupole ion trap is described and compared to the unconventional ac frequency scan technique. In the RF scanning variant, precursor ions are mass selectively excited by a fixed frequency resonance excitation signal at low Mathieu q while the RF amplitude is ramped linearly to pass ions through the point of excitation such that the excited ion's m/z varies linearly with time. Ironically, a nonlinear ac frequency scan is still required for ejection of the product ions since their frequencies vary nonlinearly with the linearly varying RF amplitude. In the case of the precursor scan, the ejection frequency must be scanned so that it is fixed on a product ion m/z throughout the RF scan, whereas in the neutral loss scan, it must be scanned to maintain a constant mass offset from the excited precursor ions. Both simultaneous and sequential permutation scans are possible; only the former are demonstrated here. The scans described are performed on a variety of samples using different ionization sources: protonated amphetamine ions generated by nanoelectrospray ionization (nESI), explosives ionized by low-temperature plasma (LTP), and chemical warfare agent simulants sampled from a surface and analyzed with swab touch spray (TS). We lastly conclude that the ac frequency scan variant of these MS/MS scans is preferred due to electronic simplicity. In an accompanying manuscript, we thus describe the implementation of orthogonal double resonance precursor and neutral loss scans on the Mini 12 using constant RF voltage. [Figure not available: see fulltext.
Investigation of laser holographic interferometric techniques for structure inspection
NASA Technical Reports Server (NTRS)
Chu, W. P.
1973-01-01
The application of laser holographic interferometric techniques for nondestructive inspection of material structures commonly used in aerospace works is investigated. Two types of structures, composite plate and solid fuel rocket engine motor casing, were examined. In conducting the experiments, both CW HeNe gas lasers and Q-switched ruby lasers were used as light sources for holographic recording setups. Different stressing schemes were investigated as to their effectiveness in generating maximum deformation at regions of structural weakness such as flaws and disbonds. Experimental results on stressing schemes such as thermal stressing, pressurized stressing, transducer excitation, and mechanical impact are presented and evaluated.
Mukamel, Shaul; Healion, Daniel; Zhang, Yu; Biggs, Jason D.
2013-01-01
New free-electron laser and high-harmonic generation X-ray light sources are capable of supplying pulses short and intense enough to perform resonant nonlinear time-resolved experiments in molecules. Valence-electron motions can be triggered impulsively by core excitations and monitored with high temporal and spatial resolution. We discuss possible experiments that employ attosecond X-ray pulses to probe the quantum coherence and correlations of valence electrons and holes, rather than the charge density alone, building on the analogy with existing studies of vibrational motions using femtosecond techniques in the visible regime. PMID:23245522
Characteristics of Helicopter-Generated and Volcano-Related Seismic Tremor Signals
NASA Astrophysics Data System (ADS)
Eibl, Eva P. S.; Lokmer, Ivan; Bean, Christopher J.; Akerlie, Eggert; Vogfjörd, Kristin S.
2017-04-01
In volcanic environments it is crucial to distinguish between man-made seismic signals and signals created by the volcano. We compare volcanic, seismic signals with helicopter generated, seismic signals recorded in the last 2.5 years in Iceland. In both cases a long-lasting, emergent seismic signal, that can be referred to as seismic tremor, was generated. In the case of a helicopter, the rotating blades generate pressure pulses that travel through the air and excite Rayleigh waves at up to 40 km distance depending on wind speed, wind direction and topographic features. The longest helicopter related seismic signal we recorded was at the order of 40 minutes long. The tremor usually has a fundamental frequency of more than 10 Hz and overtones at integers of the fundamental frequency. Changes in distance lead to either increases or decreases of the frequency due to the Doppler Effect and are strongest for small source-receiver distances. The volcanic tremor signal was recorded during the Bardarbunga eruption at Holuhraun in 2014/15. For volcano-related seismic signals it is usually more difficult to determine the source process that generated the tremor. The pre-eruptive tremor persists for 2 weeks, while the co-eruptive tremor lasted for 6 months. We observed no frequency changes, most energy between 1 and 2 Hz and no or very little energy above 5 Hz. We compare the different characteristics of helicopter-related and volcano-related seismic signals and discuss how they can be distinguished. In addition we discuss how we can determine if a frequency change is related to a moving source or change in repeat time or a change in the geometry of the resonating body.
A Low-Cost Time-Resolved Spectrometer for the Study of Ruby Emission
ERIC Educational Resources Information Center
McBane, George C.; Cannella, Christian; Schaertel, Stephanie
2018-01-01
A low-cost time-resolved emission spectrometer optimized for ruby emission is presented. The use of a Class II diode laser module as the excitation source reduces costs and hazards. The design presented here can facilitate the inclusion of time-resolved emission spectroscopy with laser excitation sources in the undergraduate laboratory curriculum.…
Advanced Compton scattering light source R&D at LLNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, F; Anderson, S G; Anderson, G
2010-02-16
We report the design and current status of a monoenergetic laser-based Compton scattering 0.5-2.5 MeV {gamma}-ray source. Previous nuclear resonance fluorescence results and future linac and laser developments for the source are presented. At MeV photon energies relevant for nuclear processes, Compton scattering light sources are attractive because of their relative compactness and improved brightness above 100 keV, compared to typical 4th generation synchrotrons. Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable Mono-Energetic Gamma-Ray (MEGa-Ray) light sources based on Compton scattering between a high-brightness, relativistic electron beam and a highmore » intensity laser pulse produced via chirped-pulse amplification (CPA). A new precision, tunable gamma-ray source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. Based on the success of the previous Thomson-Radiated Extreme X-rays (T-REX) Compton scattering source at LLNL, the source will be used to excite nuclear resonance fluorescence lines in various isotopes; applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. After a brief presentation of successful nuclear resonance fluorescence (NRF) experiments done with T-REX, the new source design, key parameters, and current status are presented.« less
Romeira, Bruno; Javaloyes, Julien; Ironside, Charles N; Figueiredo, José M L; Balle, Salvador; Piro, Oreste
2013-09-09
We demonstrate, experimentally and theoretically, excitable nanosecond optical pulses in optoelectronic integrated circuits operating at telecommunication wavelengths (1550 nm) comprising a nanoscale double barrier quantum well resonant tunneling diode (RTD) photo-detector driving a laser diode (LD). When perturbed either electrically or optically by an input signal above a certain threshold, the optoelectronic circuit generates short electrical and optical excitable pulses mimicking the spiking behavior of biological neurons. Interestingly, the asymmetric nonlinear characteristic of the RTD-LD allows for two different regimes where one obtain either single pulses or a burst of multiple pulses. The high-speed excitable response capabilities are promising for neurally inspired information applications in photonics.
Effects of excitation frequency on high-order terahertz sideband generation in semiconductors
NASA Astrophysics Data System (ADS)
Xie, Xiao-Tao; Zhu, Bang-Fen; Liu, Ren-Bao
2013-10-01
We theoretically investigate the effects of the excitation frequency on the plateau of high-order terahertz sideband generation (HSG) in semiconductors driven by intense terahertz (THz) fields. We find that the plateau of the sideband spectrum strongly depends on the detuning between the near-infrared laser field and the band gap. We use the quantum trajectory theory (three-step model) to understand the HSG. In the three-step model, an electron-hole pair is first excited by a weak laser, then driven by the strong THz field, and finally recombined to emit a photon with energy gain. When the laser is tuned below the band gap (negative detuning), the electron-hole generation is a virtual process that requires quantum tunneling to occur. When the energy gained by the electron-hole pair from the THz field is less than 3.17 times the ponderomotive energy (Up), the electron and the hole can be driven to the same position and recombined without quantum tunneling, so that the HSG will have large probability amplitude. This leads to a plateau feature of the HSG spectrum with a high-frequency cutoff at about 3.17Up above the band gap. Such a plateau feature is similar to the case of high-order harmonics generation in atoms where electrons have to overcome the binding energy to escape the atomic core. A particularly interesting excitation condition in HSG is that the laser can be tuned above the band gap (positive detuning), corresponding to the unphysical ‘negative’ binding energy in atoms for high-order harmonic generation. Now the electron-hole pair is generated by real excitation, but the recombination process can be real or virtual depending on the energy gained from the THz field, which determines the plateau feature in HSG. Both the numerical calculation and the quantum trajectory analysis reveal that for positive detuning, the HSG plateau cutoff depends on the frequency of the excitation laser. In particular, when the laser is tuned more than 3.17Up above the band gap, the HSG spectrum presents no plateau feature but instead sharp peaks near the band edge and near the excitation frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jie; Nguyen, Son C.; Ye, Rong
Light driven excitation of gold nanoparticles (GNPs) has emerged as a potential strategy to generate hot carriers for photocatalysis through excitation of localized surface plasmon resonance (LSPR). In contrast, carrier generation through excitation of interband transitions remains a less explored and underestimated pathway for photocatalytic activity. Photoinduced oxidative etching of GNPs with FeCl3 was investigated as a model reaction in order to elucidate the effects of both types of transitions. Our quantitative results show that interband transitions more efficiently generate hot carriers and that those carriers exhibit higher reactivity as compared to those generated solely by LSPR. Furthermore, by leveragingmore » the strong π-acidic character of the resulting photogenerated Au+ hole, an interband transition induced cyclization reaction of alkynylphenols was developed. One thing of note is that the, alkyne coordination to the Au+ hole intercepts the classic oxidation event and leads to the formation of the catalytically active gold clusters on subnanometer scale.« less
Zhao, Jie; Nguyen, Son C.; Ye, Rong; ...
2017-05-10
Light driven excitation of gold nanoparticles (GNPs) has emerged as a potential strategy to generate hot carriers for photocatalysis through excitation of localized surface plasmon resonance (LSPR). In contrast, carrier generation through excitation of interband transitions remains a less explored and underestimated pathway for photocatalytic activity. Photoinduced oxidative etching of GNPs with FeCl3 was investigated as a model reaction in order to elucidate the effects of both types of transitions. Our quantitative results show that interband transitions more efficiently generate hot carriers and that those carriers exhibit higher reactivity as compared to those generated solely by LSPR. Furthermore, by leveragingmore » the strong π-acidic character of the resulting photogenerated Au+ hole, an interband transition induced cyclization reaction of alkynylphenols was developed. One thing of note is that the, alkyne coordination to the Au+ hole intercepts the classic oxidation event and leads to the formation of the catalytically active gold clusters on subnanometer scale.« less
Isotopic dependence of the fragments' internal temperatures determined from multifragment emission
NASA Astrophysics Data System (ADS)
Souza, S. R.; Donangelo, R.
2018-05-01
The internal temperatures of fragments produced by an excited nuclear source are investigated by using the microcanonical version of the statistical multifragmentation model, with discrete energy. We focus on the fragments' properties at the breakup stage, before they have time to deexcite by particle emission. Since the adopted model provides the excitation energy distribution of these primordial fragments, it allows one to calculate the temperatures of different isotope families and to make inferences about the sensitivity to their isospin composition. It is found that, due to the functional form of the nuclear density of states and the excitation energy distribution of the fragments, proton-rich isotopes are hotter than neutron-rich isotopes. This property has been taken to be an indication of earlier emission of the former from a source that cools down as it expands and emits fragments. Although this scenario is incompatible with the prompt breakup of a thermally equilibrated source, our results reveal that the latter framework also provides the same qualitative features just mentioned. Therefore they suggest that this property cannot be taken as evidence for nonequilibrium emission. We also found that this sensitivity to the isotopic composition of the fragments depends on the isospin composition of the source, and that it is weakened as the excitation energy of the source increases.
Self-Exciting Point Process Modeling of Conversation Event Sequences
NASA Astrophysics Data System (ADS)
Masuda, Naoki; Takaguchi, Taro; Sato, Nobuo; Yano, Kazuo
Self-exciting processes of Hawkes type have been used to model various phenomena including earthquakes, neural activities, and views of online videos. Studies of temporal networks have revealed that sequences of social interevent times for individuals are highly bursty. We examine some basic properties of event sequences generated by the Hawkes self-exciting process to show that it generates bursty interevent times for a wide parameter range. Then, we fit the model to the data of conversation sequences recorded in company offices in Japan. In this way, we can estimate relative magnitudes of the self excitement, its temporal decay, and the base event rate independent of the self excitation. These variables highly depend on individuals. We also point out that the Hawkes model has an important limitation that the correlation in the interevent times and the burstiness cannot be independently modulated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Kyoung-Jae; Jung, Bong-Ki; An, YoungHwa
2014-02-15
In a volume-produced negative hydrogen ion source, control of electron temperature is essential due to its close correlation with the generation of highly vibrationally excited hydrogen molecules in the heating region as well as the generation of negative hydrogen ions by dissociative attachment in the extraction region. In this study, geometric effects of the cylindrical discharge chamber on negative ion generation via electron temperature changes are investigated in two discharge chambers with different lengths of 7.5 cm and 11 cm. Measurements with a radio-frequency-compensated Langmuir probe show that the electron temperature in the heating region is significantly increased by reducingmore » the length of the discharge chamber due to the reduced effective plasma size. A particle balance model which is modified to consider the effects of discharge chamber configuration on the plasma parameters explains the variation of the electron temperature with the chamber geometry and gas pressure quite well. Accordingly, H{sup −} ion density measurement with laser photo-detachment in the short chamber shows a few times increase compared to the longer one at the same heating power depending on gas pressure. However, the increase drops significantly as operating gas pressure decreases, indicating increased electron temperatures in the extraction region degrade dissociative attachment significantly especially in the low pressure regime. It is concluded that the increase of electron temperature by adjusting the discharge chamber geometry is efficient to increase H{sup −} ion production as long as low electron temperatures are maintained in the extraction region in volume-produced negative hydrogen ion sources.« less
NASA Astrophysics Data System (ADS)
Akbas, Y.; Plecenik, T.; Durina, P.; Plecenik, A.; Jukna, A.; Wicks, G.; Sobolewski, Roman
2017-05-01
The asymmetric nano-channel diode (ANCD) is the 2-dimensional electron gas (2DEG) semiconductor nanodevice that, unlike a conventional diode, relies on the device nanostructure and field-controlled transport in a ballistic nanometerwidth channel instead of barriers to develop its asymmetric, diode-like current-voltage (I-V) characteristics. We focus on ANCD optoelectronic properties, and demonstrate that the devices can act as very sensitive, single-photon-level, visiblelight photodetectors. Our test structures consist of 2-μm-long and 230-nm-wide channels and were fabricated using electron-beam lithography on a GaAs/AlGaAs heterostructure with a 2DEG layer, followed by reactive ion etching. The I-V curves were collected by measuring the transport current under the voltage-source biasing condition, both in the dark and under light illumination. The experiments were conducted inside a cryostat, in a temperature range from 300 K to 78 K. As an optical excitation, we used a 800-nm-wavelength, generated by a commercial Ti:sapphire laser operated either at a quasi-continuous-wave mode or as a source of 100-fs-wide pulses. The impact of the light illumination was very clear, and at low temperatures we observed a significant photocurrent Iph 0.25 μA at temperature 78 K for the incident optical power as low as 1 nW, with a limited dark-current background. The magnitude of the device optical responsivity increased linearly with the decrease of the optical power, reaching for 1-nW optical excitation the value as high as 400 A/W at room temperature and >800 A/W at 78K. The physics of the photoresponse gain mechanism in the ANCD arises from a vast disparity between the sub-picosecond transit time of photo-excited electrons travelling in the 2DEG nanochannel and the up to microsecond lifetime of photo-excited holes pushed towards the device substrate.
Hyperspectral imaging of microalgae using two-photon excitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinclair, Michael B.; Melgaard, David Kennett; Reichardt, Thomas A.
2010-10-01
A considerable amount research is being conducted on microalgae, since microalgae are becoming a promising source of renewable energy. Most of this research is centered on lipid production in microalgae because microalgae produce triacylglycerol which is ideal for biodiesel fuels. Although we are interested in research to increase lipid production in algae, we are also interested in research to sustain healthy algal cultures in large scale biomass production farms or facilities. The early detection of fluctuations in algal health, productivity, and invasive predators must be developed to ensure that algae are an efficient and cost-effective source of biofuel. Therefore wemore » are developing technologies to monitor the health of algae using spectroscopic measurements in the field. To do this, we have proposed to spectroscopically monitor large algal cultivations using LIDAR (Light Detection And Ranging) remote sensing technology. Before we can deploy this type of technology, we must first characterize the spectral bio-signatures that are related to algal health. Recently, we have adapted our confocal hyperspectral imaging microscope at Sandia to have two-photon excitation capabilities using a chameleon tunable laser. We are using this microscope to understand the spectroscopic signatures necessary to characterize microalgae at the cellular level prior to using these signatures to classify the health of bulk samples, with the eventual goal of using of LIDAR to monitor large scale ponds and raceways. By imaging algal cultures using a tunable laser to excite at several different wavelengths we will be able to select the optimal excitation/emission wavelengths needed to characterize algal cultures. To analyze the hyperspectral images generated from this two-photon microscope, we are using Multivariate Curve Resolution (MCR) algorithms to extract the spectral signatures and their associated relative intensities from the data. For this presentation, I will show our two-photon hyperspectral imaging results on a variety of microalgae species and show how these results can be used to characterize algal ponds and raceways.« less
Models of charge pair generation in organic solar cells.
Few, Sheridan; Frost, Jarvist M; Nelson, Jenny
2015-01-28
Efficient charge pair generation is observed in many organic photovoltaic (OPV) heterojunctions, despite nominal electron-hole binding energies which greatly exceed the average thermal energy. Empirically, the efficiency of this process appears to be related to the choice of donor and acceptor materials, the resulting sequence of excited state energy levels and the structure of the interface. In order to establish a suitable physical model for the process, a range of different theoretical studies have addressed the nature and energies of the interfacial states, the energetic profile close to the heterojunction and the dynamics of excited state transitions. In this paper, we review recent developments underpinning the theory of charge pair generation and phenomena, focussing on electronic structure calculations, electrostatic models and approaches to excited state dynamics. We discuss the remaining challenges in achieving a predictive approach to charge generation efficiency.
NASA Astrophysics Data System (ADS)
Hlondo, L. R.; Lalremruata, B.; Punte, L. R. M.; Rebecca, L.; Lalnunthari, J.; Thanga, H. H.
2016-04-01
Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hlondo, L. R.; Lalremruata, B.; Punte, L. R. M.
Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power aremore » studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.« less
Hlondo, L R; Lalremruata, B; Punte, L R M; Rebecca, L; Lalnunthari, J; Thanga, H H
2016-04-01
Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.
Hrncir, Michael; Maia-Silva, Camila; Mc Cabe, Sofia I; Farina, Walter M
2011-12-01
The honey bee's waggle dance constitutes a remarkable example of an efficient code allowing social exploitation of available feeding sites. In addition to indicating the position (distance, direction) of a food patch, both the occurrence and frequency of the dances depend on the profitability of the exploited resource (sugar concentration, solution flow rate). During the waggle dance, successful foragers generate pulsed thoracic vibrations that putatively serve as a source of different kinds of information for hive bees, who cannot visually decode dances in the darkness of the hive. In the present study, we asked whether these vibrations are a reliable estimator of the excitement of the dancer when food profitability changes in terms of both sugar concentration and solution flow rate. The probability of producing thoracic vibrations as well as several features related to their intensity during the waggle phase (pulse duration, velocity amplitude, duty cycle) increased with both these profitability variables. The number of vibratory pulses, however, was independent of sugar concentration and reward rate exploited. Thus, pulse number could indeed be used by dance followers as reliable information about food source distance, as suggested in previous studies. The variability of the dancer's thoracic vibrations in relation to changes in food profitability suggests their role as an indicator of the recruiter's motivational state. Hence, the vibrations could make an important contribution to forager reactivation and, consequently, to the organisation of collective foraging processes in honey bees.
The Einstein objective grating spectrometer survey of galactic binary X-ray sources
NASA Technical Reports Server (NTRS)
Vrtilek, S. D.; Mcclintock, J. E.; Seward, F. D.; Kahn, S. M.; Wargelin, B. J.
1991-01-01
The results of observations of 22 bright Galactic X-ray point sources are presented, and the most reliable measurements to date of X-ray column densities to these sources are derived. The results are consistent with the idea that some of the objects have a component of column density intrinsic to the source in addition to an interstellar component. The K-edge absorption due to oxygen is clearly detected in 10 of the sources and the Fe L and Ne K edges are detected in a few. The spectra probably reflect emission originating in a collisionally excited region combined with emission from a photoionized region excited directly by the central source.
Golz, Jürgen; MacLeod, Donald I A
2003-05-01
We analyze the sources of error in specifying color in CRT displays. These include errors inherent in the use of the color matching functions of the CIE 1931 standard observer when only colorimetric, not radiometric, calibrations are available. We provide transformation coefficients that prove to correct the deficiencies of this observer very well. We consider four different candidate sets of cone sensitivities. Some of these differ substantially; variation among candidate cone sensitivities exceeds the variation among phosphors. Finally, the effects of the recognized forms of observer variation on the visual responses (cone excitations or cone contrasts) generated by CRT stimuli are investigated and quantitatively specified. Cone pigment polymorphism gives rise to variation of a few per cent in relative excitation by the different phosphors--a variation larger than the errors ensuing from the adoption of the CIE standard observer, though smaller than the differences between some candidate cone sensitivities. Macular pigmentation has a larger influence, affecting mainly responses to the blue phosphor. The estimated combined effect of all sources of observer variation is comparable in magnitude with the largest differences between competing cone sensitivity estimates but is not enough to disrupt very seriously the relation between the L and M cone weights and the isoluminance settings of individual observers. It is also comparable with typical instrumental colorimetric errors, but we discuss these only briefly.
What is the contribution of scattering to the Love-to-Rayleigh ratio in ambient microseismic noise?
NASA Astrophysics Data System (ADS)
Ziane, D.; Hadziioannou, C.
2015-12-01
Several observations show the existence of both Rayleigh and Love waves in the secondary microseism. While the Rayleigh wave excitation is well described by Longuet-Higgins, the process responsible for Love wave generation still needs further investigation. Several different mechanisms could excite Love waves in this frequency band: broadly speaking, we can differentiate between source effects, like pressure variations on the oblique sea floor, or internal effects in the medium along the propagation path, such as scattering and conversions. Here we will focus on the internal effects. We perform single scattering tests in 2D and 3D to gain a better understanding of the scattering radiation pattern and the conversion between P, S, Rayleigh and Love waves. Furthermore, we use random media with continuous variations of the elastic parameters to create a scattering regime similar to the Earths interior, e.g. Gaussian or von Karmann correlation functions. The aim is to explore the contribution of scattering along the propagation path to the observed Love to Rayleigh wave energy ratios, assuming a purely vertical force source mechanism. We use finite different solvers to calculate the synthetic seismograms, and to separate the different wave types we measure the rotational and divergent components of the wave field.
Isovector charges of the nucleon from 2 + 1 -flavor QCD with clover fermions
Yoon, Boram; Jang, Yong -Chull; Gupta, Rajan; ...
2017-04-13
We present high-statistics estimates of the isovector charges of the nucleon from four 2+1-flavor ensembles generated using Wilson-clover fermions with stout smearing and tree-level tadpole improved Symanzik gauge action at lattice spacingsmore » $a=0.114$ and $0.080$ fm and with $$M_\\pi \\approx 315$$ and 200 MeV. The truncated solver method with bias correction and the coherent source sequential propagator construction are used to cost-effectively achieve $O(10^5)$ measurements on each ensemble. Using these data, the analysis of two-point correlation functions is extended to include four states in the fits and of three-point functions to three states. Control over excited-state contamination in the calculation of the nucleon mass, the mass gaps between excited states, and in the matrix elements is demonstrated by the consistency of estimates using this multistate analysis of the spectral decomposition of the correlation functions and from simulations of the three-point functions at multiple values of the source-sink separation. Lastly, the results for all three charges, $$g_A$$, $$g_S$$ and $$g_T$$, are in good agreement with calculations done using the clover-on-HISQ lattice formulation with similar values of the lattice parameters.« less
NASA Astrophysics Data System (ADS)
Shinohara, Katsuji; Shinhatsubo, Kurato; Iimori, Kenichi; Yamamoto, Kichiro; Saruban, Takamichi; Yamaemori, Takahiro
In recent year, consciousness of environmental problems is enhancing, and the price of the electric power purchased by an electric power company is established expensive for the power plant utilizing the natural energy. So, the introduction of the wind power generation is promoted in Japan. Generally, squirrel-cage induction machines are widely used as a generator in wind power generation system because of its small size, lightweight and low-cost. However, the induction machines do not have a source of excitation. Thus, it causes the inrush currents and the instantaneous voltage drop when the generator is directly connected to a power grid. To reduce the inrush currents, an AC power regulator is used. Wind power generations are frequently connected to and disconnected from the power grid. However, when the inrush currents are reduced, harmonic currents are caused by phase control of the AC power regulator. And the phase control of AC power regulator cannot control the power factor. Therefore, we propose the use of the AC power regulator to compensate for the harmonic currents and reactive power in the wind power generation system, and demonstrate the validity of its system by simulated and experimental results.
Investigation of self-excited induction generators for wind turbine applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, E.; Butterfield, C.P.; Sallan, J.
2000-02-28
The use of squirrel-cage induction machines in wind generation is widely accepted as a generator of choice. The squirrel-cage induction machine is simple, reliable, cheap, lightweight, and requires very little maintenance. Generally, the induction generator is connected to the utility at constant frequency. With a constant frequency operation, the induction generator operates at practically constant speed (small range of slip). The wind turbine operates in optimum efficiency only within a small range of wind speed variation. The variable-speed operation allows an increase in energy captured and reduces both the torque peaks in the drive train and the power fluctuations sentmore » to the utility. In variable-speed operation, an induction generator needs an interface to convert the variable frequency output of the generator to the fixed frequency at the utility. This interface can be simplified by using a self-excited generator because a simple diode bridge is required to perform the ac/dc conversion. The subsequent dc/ac conversion can be performed using different techniques. The use of a thyristor bridge is readily available for large power conversion and has a lower cost and higher reliability. The firing angle of the inverter bridge can be controlled to track the optimum power curve of the wind turbine. With only diodes and thyristors used in power conversion, the system can be scaled up to a very high voltage and high power applications. This paper analyzes the operation of such a system applied to a 1/3-hp self-excited induction generator. It includes the simulations and tests performed for the different excitation configurations.« less
Optimization of a RF-generated CF4/O2 gas plasma sterilization process.
Lassen, Klaus S; Nordby, Bolette; Grün, Reinar
2003-05-15
A sterilization process with the use of RF-generated (13.56 MHz) CF(4)/O(2) gas plasma was optimized in regards to power, flow rate, exposure time, and RF-system type. The dependency of the sporicidal effect on the spore inoculum positioning in the chamber of the RF systems was also investigated. Dried Bacillus stearothermophilus ATCC 7953 endospores were used as test organisms. The treatments were evaluated on the basis of survival curves and corresponding D values. The only parameter found to affect the sterilization process was the power of the RF system. Higher power resulted in higher kill. Finally, when the samples were placed more than 3-8 cm away from a centrally placed electrode in System 2, the sporicidal effect was reduced. The results are discussed and compared to results from the present literature. The RF excitation source is evaluated to be more appropriate for sterilization processes than the MW source. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 65B: 239-244, 2003
Compensated individually addressable array technology for human breast imaging
Lewis, D. Kent
2003-01-01
A method of forming broad bandwidth acoustic or microwave beams which encompass array design, array excitation, source signal preprocessing, and received signal postprocessing. This technique uses several different methods to achieve improvement over conventional array systems. These methods are: 1) individually addressable array elements; 2) digital-to-analog converters for the source signals; 3) inverse filtering from source precompensation; and 4) spectral extrapolation to expand the bandwidth of the received signals. The components of the system will be used as follows: 1) The individually addressable array allows scanning around and over an object, such as a human breast, without any moving parts. The elements of the array are broad bandwidth elements and efficient radiators, as well as detectors. 2) Digital-to-analog converters as the source signal generators allow virtually any radiated field to be created in the half-space in front of the array. 3) Preprocessing allows for corrections in the system, most notably in the response of the individual elements and in the ability to increase contrast and resolution of signal propagating through the medium under investigation. 4) Postprocessing allows the received broad bandwidth signals to be expanded in a process similar to analytic continuation. Used together, the system allows for compensation to create beams of any desired shape, control the wave fields generated to correct for medium differences, and improve contract and resolution in and through the medium.
NASA Astrophysics Data System (ADS)
Takahashi, Yohei; Taki, Yusuke; Takeda, Keigo; Hashizume, Hiroshi; Tanaka, Hiromasa; Ishikawa, Kenji; Hori, Masaru
2018-03-01
Cytotoxic effects of human epithelial carcinoma HeLa cells sensitivity to human mammary epithelial MCF10A cells appeared in incubation with the plasma-activated medium (PAM), where the cell culture media were irradiated with the hollow-shaped contact of a continuously discharged plasma that was sustained by application of a microwave power under Ar gas flow at atmospheric pressure. The discharged plasma had an electron density of 7 × 1014 cm-3. As the nozzle exit to the plasma source was a distance of 5 mm to the medium, concentrations of 180 µM for H2O2 and 77 µM for NO2- were generated in the PAM for 30 s irradiation, resulting in the control of irradiation periods for aqueous H2O2 with a generation rate of 6.0 µM s-1, and nitrite ion (NO2- ) with a rate of 2.2 µM s-1. Effective concentrations of H2O2 and NO2- for the antitumor effects were revealed in the microwave-excited PAM, with consideration of the complicated reactions at the plasma-liquid interfaces.
Schaub, Franz X; Reza, Md Shamim; Flaveny, Colin A; Li, Weimin; Musicant, Adele M; Hoxha, Sany; Guo, Min; Cleveland, John L; Amelio, Antonio L
2015-01-01
Fluorescent proteins are widely used to study molecular and cellular events, yet this traditionally relies on delivery of excitation light, which can trigger autofluorescence, photoxicity, and photobleaching, impairing their use in vivo. Accordingly, chemiluminescent light sources such as those generated by luciferases have emerged, as they do not require excitation light. However, current luciferase reporters lack the brightness needed to visualize events in deep tissues. We report the creation of chimeric eGFP-NanoLuc (GpNLuc) and LSSmOrange-NanoLuc (OgNLuc) fusion reporter proteins coined LumiFluors, which combine the benefits of eGFP or LSSmOrange fluorescent proteins with the bright, glow-type bioluminescent light generated by an enhanced small luciferase subunit (NanoLuc) of the deep sea shrimp Oplophorus gracilirostris. The intramolecular bioluminescence resonance energy transfer (BRET) that occurs between NanoLuc and the fused fluorophore generates the brightest bioluminescent signal known to date, including improved intensity, sensitivity and durable spectral properties, thereby dramatically reducing image acquisition times and permitting highly sensitive in vivo imaging. Notably, the self-illuminating and bi-functional nature of these LumiFluor reporters enables greatly improved spatio-temporal monitoring of very small numbers of tumor cells via in vivo optical imaging and also allows the isolation and analyses of single cells by flow cytometry. Thus, LumiFluor reporters are inexpensive, robust, non-invasive tools that allow for markedly improved in vivo optical imaging of tumorigenic processes. PMID:26424696
Line-source excitation of realistic conformal metasurface cloaks
NASA Astrophysics Data System (ADS)
Padooru, Yashwanth R.; Yakovlev, Alexander B.; Chen, Pai-Yen; Alù, Andrea
2012-11-01
Following our recently introduced analytical tools to model and design conformal mantle cloaks based on metasurfaces [Padooru et al., J. Appl. Phys. 112, 034907 (2012)], we investigate their performance and physical properties when excited by an electric line source placed in their close proximity. We consider metasurfaces formed by 2-D arrays of slotted (meshes and Jerusalem cross slots) and printed (patches and Jerusalem crosses) sub-wavelength elements. The electromagnetic scattering analysis is carried out using a rigorous analytical model, which utilizes the two-sided impedance boundary conditions at the interface of the sub-wavelength elements. It is shown that the homogenized grid-impedance expressions, originally derived for planar arrays of sub-wavelength elements and plane-wave excitation, may be successfully used to model and tailor the surface reactance of cylindrical conformal mantle cloaks illuminated by near-field sources. Our closed-form analytical results are in good agreement with full-wave numerical simulations, up to sub-wavelength distances from the metasurface, confirming that mantle cloaks may be very effective to suppress the scattering of moderately sized objects, independent of the type of excitation and point of observation. We also discuss the dual functionality of these metasurfaces to boost radiation efficiency and directivity from confined near-field sources.
A case for ZnO nanowire field emitter arrays in advanced x-ray source applications
NASA Astrophysics Data System (ADS)
Robinson, Vance S.; Bergkvist, Magnus; Chen, Daokun; Chen, Jun; Huang, Mengbing
2016-09-01
Reviewing current efforts in X-ray source miniaturization reveals a broad spectrum of applications: Portable and/or remote nondestructive evaluation, high throughput protein crystallography, invasive radiotherapy, monitoring fluid flow and particulate generation in situ, and portable radiography devices for battle-front or large scale disaster triage scenarios. For the most part, all of these applications are being addressed with a top-down approach aimed at improving portability, weight and size. That is, the existing system or a critical sub-component is shrunk in some manner in order to miniaturize the overall package. In parallel to top-down x-ray source miniaturization, more recent efforts leverage field emission and semiconductor device fabrication techniques to achieve small scale x-ray sources via a bottom-up approach where phenomena effective at a micro/nanoscale are coordinated for macro-scale effect. The bottom-up approach holds potential to address all the applications previously mentioned but its entitlement extends into new applications with much more ground-breaking potential. One such bottom-up application is the distributed x-ray source platform. In the medical space, using an array of microscale x-ray sources instead of a single source promises significant reductions in patient dose as well as smaller feature detectability and fewer image artifacts. Cold cathode field emitters are ideal for this application because they can be gated electrostatically or via photonic excitation, they do not generate excessive heat like other common electron emitters, they have higher brightness and they are relatively compact. This document describes how ZnO nanowire field emitter arrays are well suited for distributed x-ray source applications because they hold promise in each of the following critical areas: emission stability, simple scalable fabrication, performance, radiation resistance and photonic coupling.
NASA Astrophysics Data System (ADS)
Parvaneh, Hamed
This research project is aimed to study the application of ion-induced Auger electron spectroscopy (IAES) in combination with the characteristics of focused ion beam (FIB) microscopy for performing chemical spectroscopy and further evaluate its potential for 3-dimensional chemical tomography applications. The mechanism for generation of Auger electrons by bombarding ions is very different from its electron induced counterpart. In the conventional electron-induced Auger electron spectroscopy (EAES), an electron beam with energy typically in the range 1-10kV is used to excite inner-shell (core) electrons of the solid. An electron from a higher electron energy state then de-excites to fill the hole and the extra energy is then transferred to either another electron, i.e. the Auger electron, or generation of an X-ray (photon). In both cases the emitting particles have charac-teristic energies and could be used to identify the excited target atoms. In IAES, however, large excitation cross sections can occur by promotion of in-ner shell electrons through crossing of molecular orbitals. Originally such phenomenological excitation processes were first proposed [3] for bi-particle gas phase collision systems to explain the generation of inner shell vacancies in violent collisions. In addition to excitation of incident or target atoms, due to a much heavier mass of ions compared to electrons, there would also be a substantial momentum transfer from the incident to the target atoms. This may cause the excited target atom to recoil from the lattice site or alternatively sputter off the surface with the possibility of de-excitation while the atom is either in motion in the matrix or traveling in vacuum. As a result, one could expect differences between the spectra induced by incident electrons and ions and interpretation of the IAE spectra requires separate consideration of both excitation and decay processes. In the first stage of the project, a state-of-the-art mass-filtered FIB (MS-FIB) from Orsay Physics has been integrated with a VersaProbe 5000 XPS instrument from ULVAC-PHI. The integration process involved overcoming major mechanical and electrical obstacles and numerous problem-solving situations. The major reason for choosing the VersaProbe was to utilize its analytical concentric hemispherical analyzer (CHA) to measure the kinetic energy of the Auger electrons induced by the ions generated from a gold-silicon liquid alloy source. Subsequently the acquisition and detection parameters of both MS-FIB and the electron energy analyzer were successfully optimized and IAES of selected elements in third-row of the periodic table, namely Mg, Al, Si, and the ones in the fourth-row, namely Ti, V, Cr, Mn, Fe, Co, Ni and Cu acquired using Si++ and Au+ incident ions. As a result of energetic collisions between the incident and target atoms, in addition to plasmon excitations, Auger electrons from both colliding particles were generated and detected. Different components of the electron energy spectra acquired were carefully analyzed and the origin of different features observed identified. Then the relative efficiencies of Auger electron generation by ion impact from the above mentioned targets, acquired under the same conditions, were compared with each other and the origin of the differences in line shape were explained. The elements on the third row of periodic table in particular show narrow peaks emanat-ed mainly from the decay of excited atoms. For heavier elements, however, the increase of fluorescence yield by increasing atomic number and smaller lifetime for the inner shell vacancies result in reduction of atomic contribution to the spectrum. The absolute yield of Auger electrons were also evaluated using an indirect method using the ion-induced electron emission yield and, in particular, estimation for Al and Cr, where the values of ion-induced electron emission were available in the literature, was provided. The resolution of the technique both spatially (x-y) and in depth (z) were also evaluated. For spatial resolution mainly the Monte Carlo simulations were utilized to estimate the area from which the excited target atoms with inner shell vacancies originate. Attention was paid to the relationship between the Auger electron infor-mation depth and the depth-dependency of various energy-loss mechanisms for the incoming ions. In particular, an area from which target atoms with energies higher than a threshold energy sputter off the surface, was concluded to be an estimate for lateral spatial resolution. Finally the effects of hardware parameters, in particular the solid angle of the detector and the transmission of the electron energy analyzer, on the collected signal were characterized and used to put together an estimate for the edge length of an information cube representing the minimum amount of material that has to be removed before a meaningful signal can be collected.
Metastable States Arising from the Ablation of Solid Copper
NASA Astrophysics Data System (ADS)
Andrejeva, Anna; Harris, Joe; Wright, Tim
2014-06-01
Laser ablation is a popular method for generating metal atoms so that metal clusters, complexes, and molecules may be investigated in gas phase spectroscopic studies. However, the initial production of a highly energetic metal plasma from the surface of a solid metal target can produce atoms which are not in their ground electronic state, and consequently atomic spectra can become quite complicated due to transitions arising from metastable atomic excited states which remain populated on the experimental timescale. Presented herein are details of the laser vaporisation source in use by our group. Spectra of atomic copper are presented, recorded via (1+1') and (2+1) resonance enhanced multiphoton ionisation (REMPI) spectroscopy. The energetic regions examined are expected to correspond to the (4s24p) 2P ← 2S and the (4s2nd) 2D ← 2S Rydberg series respectively, but the observed spectra also exhibit many additional contributions which are found to arise from electronically excited states, and these will be discussed.
Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy.
You, Sixian; Tu, Haohua; Chaney, Eric J; Sun, Yi; Zhao, Youbo; Bower, Andrew J; Liu, Yuan-Zhi; Marjanovic, Marina; Sinha, Saurabh; Pu, Yang; Boppart, Stephen A
2018-05-29
Intravital microscopy (IVM) emerged and matured as a powerful tool for elucidating pathways in biological processes. Although label-free multiphoton IVM is attractive for its non-perturbative nature, its wide application has been hindered, mostly due to the limited contrast of each imaging modality and the challenge to integrate them. Here we introduce simultaneous label-free autofluorescence-multiharmonic (SLAM) microscopy, a single-excitation source nonlinear imaging platform that uses a custom-designed excitation window at 1110 nm and shaped ultrafast pulses at 10 MHz to enable fast (2-orders-of-magnitude improvement), simultaneous, and efficient acquisition of autofluorescence (FAD and NADH) and second/third harmonic generation from a wide array of cellular and extracellular components (e.g., tumor cells, immune cells, vesicles, and vessels) in living tissue using only 14 mW for extended time-lapse investigations. Our work demonstrates the versatility and efficiency of SLAM microscopy for tracking cellular events in vivo, and is a major enabling advance in label-free IVM.
NASA Astrophysics Data System (ADS)
Takiguchi, Yu; Toyoda, Haruyoshi
2017-11-01
We report here an algorithm for calculating a hologram to be employed in a high-access speed microscope for observing sensory-driven synaptic activity across all inputs to single living neurons in an intact cerebral cortex. The system is based on holographic multi-beam generation using a two-dimensional phase-only spatial light modulator to excite multiple locations in three dimensions with a single hologram. The hologram was calculated with a three-dimensional weighted iterative Fourier transform method using the Ewald sphere restriction to increase the calculation speed. Our algorithm achieved good uniformity of three dimensionally generated excitation spots; the standard deviation of the spot intensities was reduced by a factor of two compared with a conventional algorithm.
NASA Astrophysics Data System (ADS)
Takiguchi, Yu; Toyoda, Haruyoshi
2018-06-01
We report here an algorithm for calculating a hologram to be employed in a high-access speed microscope for observing sensory-driven synaptic activity across all inputs to single living neurons in an intact cerebral cortex. The system is based on holographic multi-beam generation using a two-dimensional phase-only spatial light modulator to excite multiple locations in three dimensions with a single hologram. The hologram was calculated with a three-dimensional weighted iterative Fourier transform method using the Ewald sphere restriction to increase the calculation speed. Our algorithm achieved good uniformity of three dimensionally generated excitation spots; the standard deviation of the spot intensities was reduced by a factor of two compared with a conventional algorithm.
Duan, Yixiang; Jia, Quanxi; Cao, Wenqing
2010-11-23
A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.
NASA Astrophysics Data System (ADS)
Kuo, Chun-Liang; Lin, Shun-Chiu; Wu, Wen-Jong
2016-10-01
This paper presents the development of a bimorph microelectromechanical system (MEMS) generator for vibration energy harvesting. The bimorph generator is in cantilever beam structure formed by laminating two lead zirconate titanate thick-film layers on both sides of a stainless steel substrate. Aiming to scavenge vibration energy efficiently from the environment and transform into useful electrical energy, the two piezoelectric layers on the device can be poled for serial and parallel connections to enhance the output voltage or output current respectively. In addition, a tungsten proof mass is bonded at the tip of the device to adjust the resonance frequency. The experimental result shows superior performance the generator. At the 0.5 g base excitation acceleration level, the devices pooled for serial connection and the device poled for parallel connection possess an open-circuit output voltage of 11.6 VP-P and 20.1 VP-P, respectively. The device poled for parallel connection reaches a maximum power output of 423 μW and an output voltage of 15.2 VP-P at an excitation frequency of 143.4 Hz and an externally applied based excitation acceleration of 1.5 g, whereas the device poled serial connection achieves a maximum power output of 413 μW and an output voltage of 33.0 VP-P at an excitation frequency of 140.8 Hz and an externally applied base excitation acceleration of 1.5 g. To demonstrate the feasibility of the MEMS generator for real applications, we finished the demonstration of a self-powered Bluetooth low energy wireless temperature sensor sending readings to a smartphone with only the power from the MEMS generator harvesting from vibration.
Hull, Michael J.; Soffe, Stephen R.; Willshaw, David J.; Roberts, Alan
2016-01-01
What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition. PMID:26824331
Es'kin, V A; Kudrin, A V; Petrov, E Yu
2011-06-01
The behavior of electromagnetic fields in nonlinear media has been a topical problem since the discovery of materials with a nonlinearity of electromagnetic properties. The problem of finding exact solutions for the source-excited nonlinear waves in curvilinear coordinates has been regarded as unsolvable for a long time. In this work, we present the first solution of this type for a cylindrically symmetric field excited by a pulsed current filament in a nondispersive medium that is simultaneously inhomogeneous and nonlinear. Assuming that the medium has a power-law permittivity profile in the linear regime and lacks a center of inversion, we derive an exact solution for the electromagnetic field excited by a current filament in such a medium and discuss the properties of this solution.
NASA Astrophysics Data System (ADS)
Esayan, G. L.; Krivoshlykov, S. G.
1989-08-01
A method of coherent states is used to describe the process of Rayleigh scattering in a multimode graded-index waveguide with a quadratic refractive-index profile. Explicit expressions are obtained for the coefficients representing excitation of Gaussian-Hermite backscattering modes in two cases of practical importance: excitation of a waveguide by an extended noncoherent light source and selective excitation of different modes at the entry to a waveguide. An analysis is also made of the coefficients of coupling between forward and backward modes. Explicit expressions for the coefficients representing capture of backscattered radiation by a waveguide are obtained for two special cases of excitation (extended light source and zeroth mode).
High-power THz to IR emission by femtosecond laser irradiation of random 2D metallic nanostructures.
Zhang, Liangliang; Mu, Kaijun; Zhou, Yunsong; Wang, Hai; Zhang, Cunlin; Zhang, X-C
2015-07-24
Terahertz (THz) spectroscopic sensing and imaging has identified its potentials in a number of areas such as standoff security screening at portals, explosive detection at battle fields, bio-medical research, and so on. With these needs, the development of an intense and broadband THz source has been a focus of THz research. In this work, we report an intense (~10 mW) and ultra-broadband (~150 THz) THz to infrared (IR) source with a Gaussian wavefront, emitted from nano-pore-structured metallic thin films with femtosecond laser pulse excitation. The underlying mechanism has been proposed as thermal radiation. In addition, an intense coherent THz signal was generated through the optical rectification process simultaneously with the strong thermal signal. This unique feature opens up new avenues in biomedical research.
Coupled microwave ECR and radio-frequency plasma source for plasma processing
Tsai, Chin-Chi; Haselton, Halsey H.
1994-01-01
In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm.sup.2 at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance.
Coupled microwave ECR and radio-frequency plasma source for plasma processing
Tsai, C.C.; Haselton, H.H.
1994-03-08
In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm[sup 2] at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance. 4 figures.