Science.gov

Sample records for excited compound nuclei

  1. Collective Clusterization in Nuclei and Excited Compound Systems: The Dynamical Cluster-Decay Model

    NASA Astrophysics Data System (ADS)

    Gupta, Raj K.

    Clustering is a general feature of light, N = Z, α-like stable nuclei for both the ground and (intrinsic) excited states. This phenomenon is observed in spontaneous decays of heavy radioactive nuclei, and seems to play an important role in the decay of excited compound systems formed in heavy ion reactions. It is also shown to be present in exotic light-halo, super-heavy and super-superheavy nuclei.

  2. Stochastic model of angular distributions of fragments originating from the fission of excited compound nuclei

    SciTech Connect

    Hiryanov, R. M.; Karpov, A. V.; Adeev, G. D.

    2008-08-15

    The anisotropy of angular distributions of fission fragments and the average multiplicity of prescission neutrons were calculated within a stochastic approach to fission dynamics on the basis of three-dimensional Langevin equations. This approach was combined with a Monte Carlo algorithm for the degree of freedom K (projection of the total angular momentum I onto the fission axis). The relaxation time {tau}{sub K} in the coordinate K was considered as a free parameter of the model; it was estimated on the basis of a fit to experimental data on the anisotropy of angular distributions. Specifically, the relaxation time {tau}{sub K} was estimated at 2 x 10{sup -21} s for the compound nuclei {sup 224}Th and {sup 225}Pa and at 4 x 10{sup -21} s for the heavier nuclei {sup 248}Cf, {sup 254}Fm, and {sup 264}Rf. The potential energy was calculated on the basis of the liquid-drop model with allowance for finiteness of the range of nuclear forces and for the diffuseness of the nuclear surface. A modified one-body viscosity mechanism featuring a coefficient k{sub s} that takes into account the reduction of the contribution from the wall formula was used to describe collective-energy dissipation. The coefficient k{sub s} was also treated as a free parameter and was estimated at 0.5 on the basis of a fit to experimental data on the average prescission multiplicity of neutrons.

  3. Measurement of light charged particles in the decay channels of medium-mass excited compound nuclei

    NASA Astrophysics Data System (ADS)

    Valdré, S.; Barlini, S.; Casini, G.; Pasquali, G.; Piantelli, S.; Carboni, S.; Cinausero, M.; Gramegna, F.; Marchi, T.; Baiocco, G.; Bardelli, L.; Benzoni, G.; Bini, M.; Blasi, N.; Bracco, A.; Brambilla, S.; Bruno, M.; Camera, F.; Corsi, A.; Crespi, F.; D'Agostino, M.; Degerlier, M.; Kravchuk, V. L.; Leoni, S.; Million, B.; Montanari, D.; Morelli, L.; Nannini, A.; Nicolini, R.; Poggi, G.; Vannini, G.; Wieland, O.; Bednarczyk, P.; Ciemała, M.; Dudek, J.; Fornal, B.; Kmiecik, M.; Maj, A.; Matejska-Minda, M.; Mazurek, K.; Męczyński, W. M.; Myalski, S.; Styczeń, J.; Ziębliński, M.

    2014-03-01

    The 48Ti on 40Ca reactions have been studied at 300 and 600 MeV focusing on the fusion-evaporation (FE) and fusion-fission (FF) exit channels. Energy spectra and multiplicities of the emitted light charged particles have been compared to Monte Carlo simulations based on the statistical model. Indeed, in this mass region (A ~ 100) models predict that shape transitions can occur at high spin values and relatively scarce data exist in the literature about coincidence measurements between evaporation residues and light charged particles. Signals of shape transitions can be found in the variations of the lineshape of high energy gamma rays emitted from the de-excitation of GDR states gated on different region of angular momenta. For this purpose it is important to keep under control the FE and FF processes, to regulate the statistical model parameters and to control the onset of possible pre-equilibrium emissions from 300 to 600 MeV bombarding energy.

  4. Complex fragment emission from hot compound nuclei

    SciTech Connect

    Moretto, L.G.

    1986-03-01

    The experimental evidence for compound nucleus emission of complex fragments at low energies is used to interpret the emission of the same fragments at higher energies. The resulting experimental picture is that of highly excited compound nuclei formed in incomplete fusion processes which decay statistically. In particular, complex fragments appear to be produced mostly through compound nucleus decay. In the appendix a geometric-kinematic theory for incomplete fusion and the associated momentum transfer is outlined. 10 refs., 19 figs.

  5. Fission Barriers of Compound Superheavy Nuclei

    NASA Astrophysics Data System (ADS)

    Pei, J. C.; Nazarewicz, W.; Sheikh, J. A.; Kerman, A. K.

    2009-05-01

    The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. In this work, we investigate the isentropic fission barriers by means of the self-consistent nuclear density functional theory. The relationship between isothermal and isentropic descriptions is demonstrated. Calculations have been carried out for Fm264, Ds272, 127812, 129214, and 131224. For nuclei around 127812 produced in “cold-fusion” reactions, we predict a more rapid decrease of fission barriers with excitation energy as compared to the nuclei around 129214 synthesized in “hot-fusion” experiments. This is explained in terms of the difference between the ground-state and saddle-point temperatures. The effect of the particle gas is found to be negligible in the range of temperatures studied.

  6. Fission barriers of compound superheavy nuclei.

    PubMed

    Pei, J C; Nazarewicz, W; Sheikh, J A; Kerman, A K

    2009-05-15

    The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. In this work, we investigate the isentropic fission barriers by means of the self-consistent nuclear density functional theory. The relationship between isothermal and isentropic descriptions is demonstrated. Calculations have been carried out for 264Fm, 272Ds, ;{278}112, ;{292}114, and ;{312}124. For nuclei around ;{278}112 produced in "cold-fusion" reactions, we predict a more rapid decrease of fission barriers with excitation energy as compared to the nuclei around ;{292}114 synthesized in "hot-fusion" experiments. This is explained in terms of the difference between the ground-state and saddle-point temperatures. The effect of the particle gas is found to be negligible in the range of temperatures studied.

  7. Fission Barriers of Compound Superheavy Nuclei

    NASA Astrophysics Data System (ADS)

    Nazarewicz, Witold

    2010-02-01

    The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. In this work [1,2], we investigate the isentropic fission barriers by means of the self-consistent nuclear density functional theory. The relationship between isothermal and isentropic descriptions is demonstrated. Calculations have been carried out for ^264Fm, ^272Ds, ^278Cp, ^292114, and ^312124. For nuclei around ^278Cp produced in ``cold fusion" reactions, we predict a more rapid decrease of fission barriers with excitation energy as compared to the nuclei around ^292114 synthesized in ``hot fusion'' experiments. This is explained in terms of the difference between the ground-state and saddle-point temperatures. [4pt] [1] J.C. Pei, W. Nazarewicz, J.A. Sheikh and A.K. Kerman, Phys. Rev. Lett. 102, 192501 (2009).[0pt] [2] J.A. Sheikh, W. Nazarewicz, and J.C. Pei, Phys. Rev. C 80, 011302(R) (2009). )

  8. Delta excitations in compressed finite nuclei

    SciTech Connect

    Hasan, M.A. ); Vary, J.P. Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 )

    1994-07-01

    We treat [sup 16]O, [sup 40]Ca, and [sup 56]Ni as systems of baryons which can exist in either the ground (nucleon) state or first excited (delta) state and follow their behavior under static comrpession using constrained spherical Hartree-Fock approximation (SHF). We use realistic effective nucleon-nucleon interactions with meson-exchange-based nucleon-delta transition potentials and delta-delta interactions and we make phenomenological adjustments to obtain SHF equilibrium properties in agreement with experiment. We then show how physical properties are affected by delta excitation under compression. We find that a significant fraction of the increase in energy of these nuclei under compression is stored in the form of [Delta]-mass creation. This, in turn, may have implications for an enhanced role for nuclear compression in subthreshold pion production in nucleus-nucleus collisions. In addition, including the deltas leads to a lower compressibility of each of these nuclei.

  9. Fission Barriers of Compound Superheavy Nuclei

    SciTech Connect

    Pei, Junchen; Nazarewicz, Witold; Sheikh, J. A.; Kerman, A. K.

    2009-01-01

    The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. We study the temperature-dependent fission barriers by means of the self-consistent nuclear density functional theory. The equivalence of isothermal and isentropic descriptions is demonstrated. The effect of the particle gas is found to be negligible in the range of temperatures studied. Calculations have been carried out for ^{264}Fm, ^{272}Ds, ^{278}112, ^{292}114, and ^{312}124. For nuclei around ^{278}112 produced in "cold fusion" reactions, we predict a more rapid decrease of fission barriers with temperature as compared to the nuclei around ^{292}114 synthesized in "hot fusion" experiments. This is explained in terms of the difference between the ground-state and fission-barrier temperatures. Our calculations are consistent with the long survival probabilities of the superheavy elements produced in Dubna with the ^{48}Ca beam.

  10. Fusion excitation functions involving transitional nuclei

    SciTech Connect

    Rehm, K.E.; Jiang, C.L.; Esbensen, H.

    1995-08-01

    Measurements of fusion excitation functions involving transitional nuclei {sup 78}Kr and {sup 100}Mo showed a different behavior at low energies, if compared to measurements with {sup 86}Kr and {sup 92}Mo. This points to a possible influence of nuclear structure on the fusion process. One way to characterize the structure of vibrational nuclei is via their restoring force parameters C{sub 2} which can be calculated from the energy of the lowest 2{sup +} state and the corresponding B(E2) value. A survey of the even-even nuclei between A = 28-150 shows strong variations in C{sub 2} values spanning two orders of magnitude. The lowest values for C{sub 2} are observed for {sup 78}Kr, {sup 104}Ru and {sup 124}Xe followed by {sup 74,76}Ge, {sup 74,76}Se, {sup 100}Mo and {sup 110}Pd. In order to learn more about the influence of {open_quotes}softness{close_quotes} on the sub-barrier fusion enhancement, we measured cross sections for evaporation residue production for the systems {sup 78}Kr + {sup 104}Ru and {sup 78}Kr + {sup 76}Ge with the gas-filled magnet technique. For both systems, fusion excitation functions involving the closed neutron shell nucleus {sup 86}Kr were measured previously. The data are presently being analyzed.

  11. Dilute Excited States in Light Nuclei

    NASA Astrophysics Data System (ADS)

    Demyanova, A. S.; Ogloblin, A. A.; Danilov, A. N.; Goncharov, S. A.; Belyaeva, T. L.; Trzaska, W. H.

    2015-11-01

    A review of measurements of the radii of 11B, 12C and 13C nuclei in some excited states, whose structure recently attracted a lot of attention, is presented. The differential cross-sections of the inelastic α-scattering were measured. The radii values were extracted from the date using the Modified Diffraction Model (MDM). The evidence that the famous Hoyle state (0+, 7.65 MeV) in 12C has the enhanced dimensions and is the head of a new rotational band (besides the known band based on the 12C ground state) was obtained. The radius of the second 2+ member state (E* = 9.8 or 9.6 MeV) was seen to be similar to that of the Hoyle state (~3.0 fm). A 4+ state was identified at E* = 13.75 MeV. The radii of the 8.86 MeV, 1/2- state in 13C and 8.56 MeV, 3/2- state in 11B are found to be close to that of the Hoyle state and these states can be considered as analogues of the latter. Comparison of the data with the predictions of some theoretical models, e.g., alpha condensation, has been made. The obtained results show that one may speak only about rudimentary manifestation of the condensate effects.

  12. Intrinsic excitations in doubly odd nuclei

    SciTech Connect

    Sood, P.C.

    1985-01-15

    A procedure is outlined for predicting the bandhead energies of the two-particle (intrinsic) states of odd-odd deformed nuclei based on a quantitative evaluation of the zero range n-p residual interaction energy. We present our results for 250Bk, where many such levels are experimentally known, and for 236Np and 246Am, where the information is very scarce and that too uncertain, to illustrate the effectiveness of this approach.

  13. The quest for novel modes of excitation in exotic nuclei

    NASA Astrophysics Data System (ADS)

    Paar, N.

    2010-06-01

    This paper provides an insight into several open problems in the quest for novel modes of excitation in nuclei with isospin asymmetry, deformation and finite-temperature characteristics in stellar environments. Major unsolved problems include the nature of pygmy dipole resonances, the quest for various multipole and spin-isospin excitations both in neutron-rich and proton drip-line nuclei mainly driven by loosely bound nucleons, excitations in unstable deformed nuclei and evolution of their properties with the shape phase transition. Exotic modes of excitation in nuclei at finite temperatures characteristic of supernova evolution present open problems with a possible impact in modeling astrophysically relevant weak interaction rates. All these issues challenge self-consistent many-body theory frameworks at the frontiers of on-going research, including nuclear energy density functionals, both phenomenological and constrained by the strong interaction physics of QCD, models based on low-momentum two-nucleon interaction Vlow-k and correlated realistic nucleon-nucleon interaction VUCOM, supplemented by three-body force, as well as two-nucleon and three-nucleon interactions derived from the chiral effective field theory. Joined theoretical and experimental efforts, including research with radioactive isotope beams, are needed to provide insight into dynamical properties of nuclei away from the valley of stability, involving the interplay of isospin asymmetry, deformation and finite temperature.

  14. Excitation modes in non-axial nuclei

    SciTech Connect

    Leviatan, A.; Ginnochio, J.N.

    1990-01-01

    Excitation modes of non-axial quadrupole shapes are investigated in the framework of interacting boson models. Both {gamma}-unstable and {gamma}-rigid nuclear shapes are considered for systems with one type of boson as well as with proton-neutron bosons. 6 refs.

  15. Alpha-particle clustering in excited alpha-conjugate nuclei

    NASA Astrophysics Data System (ADS)

    Borderie, B.; Raduta, Ad R.; Ademard, G.; Rivet, M. F.; De Filippo, E.; Geraci, E.; Le Neindre, N.; Alba, R.; Amorini, F.; Cardella, G.; Chatterjee, M.; Guinet, D.; Lautesse, P.; La Guidara, E.; Lanzalone, G.; Lanzano, G.; Lombardo, I.; Lopez, O.; Maiolino, C.; Pagano, A.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Rizzo, F.; Russotto, P.; Wieleczko, J. P.

    2017-06-01

    The nuclear reaction 40Ca+12C at 25 MeV per nucleon incident energy was used to produce excited alpha-conjugate fragments from projectile fragmentation mechanism. From a careful selection provided by a complete detection and from comparisons with models of sequential and simultaneous decays, evidence in favor of α-particle clustering from excited light alpha-conjugate nuclei is reported.

  16. Core excitation effects in the breakup of halo nuclei

    SciTech Connect

    Moro, A. M.; Diego, R. de; Lay, J. A.; Crespo, R.; Johnson, R. C.; Arias, J. M.; Gomez-Camacho, J.

    2012-10-20

    The role of core excitation in the structure and dynamics of two-body halo nuclei is investigated. We present calculations for the resonant breakup of {sup 11}Be on protons at an incident energy of 63.7 MeV/nucleon, where core excitation effects were shown to be important. To describe the reaction, we use a recently developed extension of the DWBA formalism which incorporates these core excitation effects within the no-recoil approximation. The validity of the no-recoil approximation is also examined by comparing with DWBA calculations which take into account core recoil. In addition, calculations with two different continuum representations are presented and compared.

  17. Neutron star structure and collective excitations of finite nuclei

    NASA Astrophysics Data System (ADS)

    Paar, N.; Moustakidis, Ch. C.; Marketin, T.; Vretenar, D.; Lalazissis, G. A.

    2014-07-01

    A method is introduced that establishes relations between properties of collective excitations in finite nuclei and the phase transition density nt and pressure Pt at the inner edge separating the liquid core and the solid crust of a neutron star. A theoretical framework that includes the thermodynamic method, relativistic nuclear energy density functionals, and the quasiparticle random-phase approximation is employed in a self-consistent calculation of (nt,Pt) and collective excitations in nuclei. Covariance analysis shows that properties of charge-exchange dipole transitions, isovector giant dipole and quadrupole resonances, and pygmy dipole transitions are correlated with the core-crust transition density and pressure. A set of relativistic nuclear energy density functionals, characterized by systematic variation of the density dependence of the symmetry energy of nuclear matter, is used to constrain possible values for (nt,Pt). By comparing the calculated excitation energies of giant resonances, energy-weighted pygmy dipole strength, and dipole polarizability with available data, we obtain the weighted average values: nt=0.0955±0.0007 fm-3 and Pt=0.59±0.05 MeV fm-3. This approach crucially depends on experimental results for collective excitations in nuclei and, therefore, accurate measurements are necessary to further constrain the structure of the crust of neutron stars.

  18. Bulk Properties of Nuclear Matter From Excitations of Nuclei

    SciTech Connect

    Shlomo, Shalom

    2007-10-26

    We consider the predictive power of Hartree-Fock (HF) approximation in determining properties of finite nuclei and thereby in extracting bulk properties of infinite nuclear matter (NM) by extrapolation. In particular, we review the current status of determining the value of NM incompressibility coefficient K, considering the most sensitive method of analyzing the recent accurate experimental data on excitation strengths of compression modes of nuclei within microscopic relativistic and non-relativistic theoretical models. We discuss the consequences of common violations of self-consistency in HF based random-phase-approximation calculations of strength functions and present results of highly accurate calculations of centroid energies and excitation cross sections of giant resonances. Explanations (resolutions) of long standing discrepancies in the value of K are presented.

  19. Excitation Spectra of Carbon Nuclei near η ' Emission Threshold

    NASA Astrophysics Data System (ADS)

    Itahashi, Kenta; Ayyad, Yassid; Benlliure, Jose; Brinkmann, Kai-Thomas; Friedrich, Stefan; Fujioka, Hiroyuki; Geissel, Hans; Gellanki, Jnaneswari; Guo, Chenlei; Gutz, Eric; Haettner, Emma; Harakeh, Muhsin N.; Hayano, Ryugo S.; Higashi, Yuko; Hirenzaki, Satoru; Hornung, Christine; Igarashi, Yoichi; Ikeno, Natsumi; Iwasaki, Masahiko; Jido, Daisuke; Kalantar-Nayestanaki, Nasser; Kanungo, Rituparna; Knoebel, Ronja; Kurz, Nikolaus; Metag, Volker; Mukha, Ivan; Nagae, Tomofumi; Nagahiro, Hideko; Nanova, Mariana; Nishi, Takahiro; Ong, Hooi Jin; Pietri, Stephane; Prochazka, Andrej; Rappold, Christophe; Reiter, Moritz P.; Rodríguez-Sánchez, José L.; Scheidenberger, Christoph; Simon, Haik; Sitar, Branislav; Strmen, Peter; Sun, Baohua; Suzuki, Ken; Szarka, Imrich; Takechi, Maya; Tanaka, Yoshiki K.; Tanihata, Isao; Terashima, Satoru; Watanabe, Yuni N.; Weick, Helmut; Widmann, Eberhard; Winfield, John S.; Xu, Xiaodong; Yamakami, Hiroki; Zhao, Jianwei

    We measured an excitation spectrum of 12C(p, d) reaction near the η' emission threshold using a 2.5 GeV proton beam. The measured spectrum shows no peak structures which are associated to formation of η'-mesic nuclei. Further analysis is ongoing to deduce upper limits of the formation cross section and to set constraints in the η'-nucleus interaction.

  20. Long Fission Times of Super-Heavy Compound Nuclei

    SciTech Connect

    Drouart, A.; Charvet, J. L.; Dayras, R.; Nalpas, L.; Volant, C.; Jacquet, D.

    2008-04-17

    The blocking technique in single crystals is a direct method to investigate the presence of long fission time components. With a lead beam impinging on a germanium single crystal, we tried to produce compound nuclei (CN) with atomic number Z = 114 at high excitation energy. Blocking patterns for reaction products are reconstructed with position sensitive detectors at 20 deg. relative to the beam direction. The Z and the energies of all products are measured with {delta}E-E telescopes of the 4{pi} INDRA array, so that all reaction channels are unambiguously identified. With this setup, we can reach long fission times (>10{sup -18} s) that can be associated with CN fissions. However, in contrast to previous experiments in which such long fission times could be measured for Z = 120 and 124, no hint of long lifetimes within our sensitivity limit for Z = 114 was observed, which may be due to the neutron deficiency of the formed isotopes.

  1. Triaxial shape fluctuations and quasiparticle excitations in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Chen, Fang-Qi; Egido, J. Luis

    2017-02-01

    The deformation parameters (β ,γ ) together with two-quasiparticle excitations are taken into account, for the first time, as coordinates within a symmetry conserving (angular momentum and particle number) generator coordinate method. The simultaneous consideration of collective as well as single-particle degrees of freedom allows us to describe soft and rigid nuclei as well as the transition region in between. We apply the new theory to the study of the spectra and transition probabilities of the Er-172156 isotopes with a pairing-plus-quadrupole residual interaction. Good agreement with the experimental results is obtained for most of the observables studied and with the same quality for the very soft and the strongly deformed nuclei.

  2. The liquid to vapor phase transition in excited nuclei

    SciTech Connect

    Elliott, J.B.; Moretto, L.G.; Phair, L.; Wozniak, G.J.; Beaulieu, L.; Breuer, H.; Korteling, R.G.; Kwiatkowski, K.; Lefort, T.; Pienkowski, L.; Ruangma, A.; Viola, V.E.; Yennello, S.J.

    2001-05-08

    For many years it has been speculated that excited nuclei would undergo a liquid to vapor phase transition. For even longer, it has been known that clusterization in a vapor carries direct information on the liquid-vapor equilibrium according to Fisher's droplet model. Now the thermal component of the 8 GeV/c pion + 197 Au multifragmentation data of the ISiS Collaboration is shown to follow the scaling predicted by Fisher's model, thus providing the strongest evidence yet of the liquid to vapor phase transition.

  3. Calculation of nuclear reaction cross sections on excited nuclei with the coupled-channels method

    SciTech Connect

    Kawano, T.; Talou, P.; Lynn, J. E.; Chadwick, M. B.; Madland, D. G.

    2009-08-15

    We calculate nuclear cross sections on excited nuclei in the fast neutron energy range. We partition the whole process into two contributions: the direct reaction part and the compound nuclear reactions. A coupled-channels method is used for calculating the direct transition of the nucleus from the initial excited state, which is a member of the ground-state rotational band, to the final ground and excited low-lying levels. This process is strongly affected by the channel coupling. The compound nuclear reactions on the excited state are calculated with the statistical Hauser-Feshbach model, with the transmission coefficients obtained from the coupled-channels calculation. The calculations are performed for a strongly deformed nucleus {sup 169}Tm, and selected cross sections for the ground and first excited states are compared. The calculation is also made for actinides to investigate possible modification to the fission cross section when the target is excited. It is shown that both the level coupling for the entrance channel, and the different target spin, change the fission cross section.

  4. Recent results on giant dipole resonance decays in highly excited nuclei

    SciTech Connect

    Snover, K.A.

    1991-12-31

    Some recent results on Giant Dipole Resonance (GDR) decays in highly excited, equilibrated nuclei, are discussed based primarily on work done at Seattle. Four sections address the following topics: oblate shapes of rotating, highly excited Zr--Mo nuclei; adiabatic versus `motionally narrowed` GDR decay; large spin-driven deformations observed in hot medium-mass nuclei; and search for entrance channel effects in GDR decay following {sup 58}Ni {plus} {sup 92}Zr fusion. 22 refs.

  5. Recent results on giant dipole resonance decays in highly excited nuclei

    SciTech Connect

    Snover, K.A.

    1991-01-01

    Some recent results on Giant Dipole Resonance (GDR) decays in highly excited, equilibrated nuclei, are discussed based primarily on work done at Seattle. Four sections address the following topics: oblate shapes of rotating, highly excited Zr--Mo nuclei; adiabatic versus motionally narrowed' GDR decay; large spin-driven deformations observed in hot medium-mass nuclei; and search for entrance channel effects in GDR decay following [sup 58]Ni [plus] [sup 92]Zr fusion. 22 refs.

  6. Excited-state one-neutron halo nuclei within a parallel momentum distribution analysis

    NASA Astrophysics Data System (ADS)

    Shubhchintak

    2017-08-01

    Using a fully quantum mechanical post-form finite-range distorted-wave Born approximation theory of Coulomb breakup, I study the parallel momentum distribution of the core in the Coulomb breakup of suggested excited-state one-neutron halo nuclei considered in their different bound excited states. Narrow momentum distributions obtained in the present calculations for some cases indicate the possibilities of the excited-state halo structure in the nuclei under consideration and therefore favor the previous predictions.

  7. Observation of low- and high-energy Gamow-Teller phonon excitations in nuclei.

    PubMed

    Fujita, Y; Fujita, H; Adachi, T; Bai, C L; Algora, A; Berg, G P A; von Brentano, P; Colò, G; Csatlós, M; Deaven, J M; Estevez-Aguado, E; Fransen, C; De Frenne, D; Fujita, K; Ganioğlu, E; Guess, C J; Gulyás, J; Hatanaka, K; Hirota, K; Honma, M; Ishikawa, D; Jacobs, E; Krasznahorkay, A; Matsubara, H; Matsuyanagi, K; Meharchand, R; Molina, F; Muto, K; Nakanishi, K; Negret, A; Okamura, H; Ong, H J; Otsuka, T; Pietralla, N; Perdikakis, G; Popescu, L; Rubio, B; Sagawa, H; Sarriguren, P; Scholl, C; Shimbara, Y; Shimizu, Y; Susoy, G; Suzuki, T; Tameshige, Y; Tamii, A; Thies, J H; Uchida, M; Wakasa, T; Yosoi, M; Zegers, R G T; Zell, K O; Zenihiro, J

    2014-03-21

    Gamow-Teller (GT) transitions in atomic nuclei are sensitive to both nuclear shell structure and effective residual interactions. The nuclear GT excitations were studied for the mass number A = 42, 46, 50, and 54 "f-shell" nuclei in ((3)He, t) charge-exchange reactions. In the (42)Ca → (42)Sc reaction, most of the GT strength is concentrated in the lowest excited state at 0.6 MeV, suggesting the existence of a low-energy GT phonon excitation. As A increases, a high-energy GT phonon excitation develops in the 6-11 MeV region. In the (54)Fe → (54)Co reaction, the high-energy GT phonon excitation mainly carries the GT strength. The existence of these two GT phonon excitations are attributed to the 2 fermionic degrees of freedom in nuclei.

  8. Core excitation effects in halo nuclei using a transformed oscillator basis

    SciTech Connect

    Lay, J. A.; Arias, J. M.; Moro, A. M.; Gomez-Camacho, J.

    2013-06-10

    A recent generalization of the Transformed Harmonic Oscillator basis, intended to consider core excitations in the structure of one nucleon halo nuclei, is applied to the break up of {sup 11}Be. The reaction studied is {sup 11}Be+{sup 208}Pb at 69 MeV/nucleon. The experimental set up is designed to ensure pure dipole Coulomb excitations. Making use of the Equivalent Photon Method and the electromagnetic transition probabilities obtained with the transformed oscillator basis, a relevant contribution of the quadrupole excitations of the core is found. The inclusion of core excitations is, therefore, necessary for the correct extraction of the dipole electromagnetic transition probability of halo nuclei.

  9. Nonaxial shapes of even–even lantanide and actinide nuclei in excited collective states

    SciTech Connect

    Nadirbekov, M. S. Bozarov, O. A.

    2016-07-15

    Quadrupole-type excited states of even–even nuclei are studied on the basis of arbitrary-triaxiality model. It is shown that the inclusion of high-order terms in the expansion of the rotational-energy operator in the variable γ improves substantially agreement between our theoretical results and respective experimental data. The proposed model makes it possible to explain the intricate character of the spectrum of excited states of even–even lanthanide and actinide nuclei.

  10. A statistical approach to describe highly excited heavy and superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Chen, Peng-Hui; Feng, Zhao-Qing; Li, Jun-Qing; Zhang, Hong-Fei

    2016-09-01

    A statistical approach based on the Weisskopf evaporation theory has been developed to describe the de-excitation process of highly excited heavy and superheavy nuclei, in particular for the proton-rich nuclei. The excited nucleus is cooled by evaporating γ-rays, light particles (neutrons, protons, α etc) in competition with binary fission, in which the structure effects (shell correction, fission barrier, particle separation energy) contribute to the processes. The formation of residual nuclei is evaluated via sequential emission of possible particles above the separation energies. The available data of fusion-evaporation excitation functions in the 28Si+198Pt reaction can be reproduced nicely within the approach. Supported by Major State Basic Research Development Program in China (2015CB856903), National Natural Science Foundation of China Projects (11175218, U1332207, 11475050, 11175074), and Youth Innovation Promotion Association of Chinese Academy of Sciences

  11. Low lying electric dipole excitations in nuclei of the rare earth region

    SciTech Connect

    von Brentano, P.; Zilges, A.; Herzberg, R.D. . Inst. fuer Kernphysik); Zamfir, N.V. ); Kneissl, U.; Heil, R.D.; Pitz, H.H. . Inst. fuer Strahlenphysik); Wesselborg, C. . Inst. fuer Kernphysik)

    1992-01-01

    From many experiments with low energy photon scattering on deformed rare earth nuclei we have obtained detailed information about the distribution of electric dipole strength below 4 MeV. Apart from some weaker transitions between 2 and 4 MeV we observed one, and sometimes two, very strong El-groundstate transitions around 1.5 MeV in all examined nuclei. They arise from the de-excitation of the bandheads of the (J[sup [pi

  12. Exclusive studies of the GDR in excited nuclei.

    SciTech Connect

    Nanal, V.

    1998-09-07

    The GDR in {sup 164}Er at 62 MeV excitation energy has been studied in coincidence with the evaporation residues, selected using the Argonne fragment mass analyzer (FMA). The {sup 164}Er* has a prolate shape with deformation statistical model fit to the data indicate that similar to the ground state.

  13. Excited bands in even-even rare-earth nuclei

    SciTech Connect

    Vargas, Carlos E.; Hirsch, Jorge G.

    2004-09-13

    The energetics of states belonging to normal parity bands in even-even dysprosium isotopes, and their B(E2) transition strengths, are studied using an extended pseudo-SU(3) shell model. States with pseudospin 1 are added to the standard pseudospin 0 space, allowing for a proper description of known excited normal parity bands.

  14. {Delta} excitation in inelastic scattering of nucleons on nuclei

    SciTech Connect

    Ramachandran, G.; Vidya, M.S.

    1997-07-01

    We outline an elegant way of deducing the spin structure of any reaction A(a,b)B with arbitrary spins s{sub A},s{sub a},s{sub b},s{sub B} and apply the same to NN{r_arrow}N{Delta}, taking into consideration the Pauli exclusion principle. This method, based on irreducible tensor techniques is then extended to {Delta} excitation in A(N,N{sup {prime}}{pi})B by considering the target excitation process (TDP) as A(N,N{sup {prime}})B{sub {Delta}}{sup {asterisk}} followed by B{sub {Delta}}{sup {asterisk}}{r_arrow}B+{pi} and the projectile excitation process (PDP) as A(N,{Delta})B followed by {Delta}{r_arrow}N{sup {prime}}{pi}. Expressions for the double differential cross section and inelastic nucleon spin observables are given, which are of current experimental interest. {copyright} {ital 1997} {ital The American Physical Society}

  15. Properties of high-energy isoscalar monopole excitations in medium-heavy mass spherical nuclei

    SciTech Connect

    Gorelik, M. L. Shlomo, Sh. Tulupov, B. A. Urin, M. H.

    2015-07-15

    The recently developed particle-hole dispersive optical model is applied to describe properties of high-energy isoscalar monopole excitations in medium-heavy mass spherical nuclei. In particular, the double transition density averaged over the energy of the isoscalar monopole excitations is considered for {sup 208}Pb in a wide energy interval, which includes the isoscalar giant monopole resonance and its overtone. The energy-averaged strength functions of these resonances are also analyzed.

  16. Exotic modes of excitation in deformed neutron-rich nuclei

    SciTech Connect

    Yoshida, Kenichi

    2011-05-06

    Low-lying dipole excitation mode in neutron-rich Mg isotopes close to the drip line is investigated in the framework of the Hartree-Fock-Bogoliubov and the quasiparticle random-phase approximation employing the Skyrme and the pairing energy-density functionals. It is found that the low-lying dipole-strength distribution splits into the K{sup {pi}} = 0{sup -} and 1{sup -} components due to the nuclear deformation. The low-lying dipole strength increases as the neutron drip-line is approached.

  17. H2 line emission in three Seyfert nuclei: Evidence against UV-excitation

    NASA Technical Reports Server (NTRS)

    Geballe, T. R.

    1990-01-01

    Line emission from vibrationally excited molecular hydrogen has been detected in a considerable number of active galactic nuclei (AGNs), including those generally believed to contain compact and luminous central engines (e.g., Seyfert nuclei) and those in which the luminosity is believed to arise from massive bursts of star formation (starburst nuclei). In most of these AGNs, only the bright 1-0 S(1) line (rest wavelength 2.12 microns) has been searched for and detected to date. Line-emitting H2 can be excited directly either by energetic collisions created by shock waves or by absorption of UV radiation. Each of these excitation mechanisms has been clearly identified in galactic and extragalactic regions. In active galactic nuclei strong sources of UV and (in some case) x rays are present. If the nuclear molecular matter is quiescent (i.e., isolated from the active nucleus and not set into motion by episodes of star formation) the H2 line emission will be dominated by fluorescence, or possibly by thermal emission due to heating by x rays (Krolik, this conference). However, it is expected or indeed observed that a significant fraction of the interstellar medium in and near these nuclei is undergoing rapid motions; either generated by the central engine or by a nuclear starburst, which are capable of producing strong shock phenomena in nearby molecular gas. Thus, a priori it is not obvious which mechanism is responsible for the H2 line emission from the nucleus of an active galaxy.

  18. Effect of neutron excess on {delta} excitations in exotic nuclei

    SciTech Connect

    Hasan, Mahmoud A.; Vary, James P.; Lee, T.-S. H.

    2000-01-01

    The effects of neutron excess on the formation of {delta}(3,3) resonance states in exotic nuclei at equilibrium and under large amplitude compression have been investigated within the radial constraint spherical Hartree-Fock method. An effective Hamiltonian has been used which includes the {delta} degree of freedom explicitly. Results are presented for {sup 28}O, {sup 60}Ca, and {sup 70}Ca in a model space of seven major oscillator shells and eight {delta} orbitals. The results show that the formation of the {delta}'s depends strongly on the amount of neutron excess in the nuclear system. In contrast to previous work where we found no {delta}'s in {sup 16}O and {sup 40}Ca at equilibrium, these results show that a significant amount of {delta}'s exists at equilibrium in exotic isotopes. In addition, as the nucleus is compressed to a density of 2.5 times the ordinary nuclear density, the percentage of the {delta}'s rises to 3%, 5%, and 7% of the total number of all baryons in {sup 28}O, {sup 60}Ca, and {sup 70}Ca, respectively. This suggests a parametrization for the percentage of the {delta}'s created at 2.5 times the normal density of the form 0.25(N-Z)%. The results are consistent with the theoretical prediction of the formation of {delta} matter in neutron-rich matter at high compression. (c) 1999 The American Physical Society.

  19. Survey of Excited State Neutron Spectroscopic Factors for Z=8-28 Nuclei

    NASA Astrophysics Data System (ADS)

    Tsang, M. B.; Lee, Jenny; Su, S. C.; Dai, J. Y.; Horoi, M.; Liu, H.; Lynch, W. G.; Warren, S.

    2009-02-01

    We have extracted 565 neutron spectroscopic factors of sd and fp shell nuclei by systematically analyzing more than 2000 measured (d, p) angular distributions. We are able to compare 125 of the extracted spectroscopic factors to values predicted by large-basis shell-model calculations and evaluate the accuracies of spectroscopic factors predicted by different shell-model interactions in these regions. We find that the spectroscopic factors predicted for most excited states of sd-shell nuclei using the latest USDA or USDB interactions agree with the experimental values. For fp shell nuclei, the inability of the current models to account for the core excitation and fragmentation of the states leads to considerable discrepancies. In particular, the agreement between data and shell-model predictions for Ni isotopes is not better than a factor of 2 using either the GXPF1A or the XT interaction.

  20. TOPICAL REVIEW: Shapes and collectivity of exotic nuclei via low-energy Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Görgen, Andreas

    2010-10-01

    The way in which an atomic nucleus responds to excitations, whether by promoting individual nucleons into higher shells or by collective rotation or vibration, reveals many details of the underlying nuclear structure. The response of the nucleus is closely related to its macroscopic shape. Low-energy Coulomb excitation provides a well-understood means of exciting atomic nuclei, allowing the measurement of static and dynamic electromagnetic moments as a probe of the nuclear wavefunctions. Owing to the availability of radioactive heavy-ion beams with energies near the Coulomb barrier, it is now possible to study the shape and collectivity of short-lived nuclei far from β stability (the so-called exotic nuclei), providing a particularly stringent test of modern theoretical nuclear structure models. This review gives an introduction to the experimental techniques related to low-energy Coulomb excitation with radioactive ion beams and summarizes the results that were obtained over the last 10 years for a wide variety of exotic nuclei at various laboratories employing the isotope separation on-line technique.

  1. Nucleon-content effect on the fission lifetime of excited nuclei

    SciTech Connect

    Gontchar, I. I.; Ponomarenko, N. A.

    2007-12-15

    It was shown previously that the fission lifetime of a nucleus excited to about 100 MeV depends strongly and nonmonotonically on the initial value of its angular momentum L{sub 0}. This result was obtained on the basis of a refined version of the combined dynamical and statistical model. The present study is devoted to a theoretical analysis of the dependence of the fission time on the nucleonic composition of the nucleus involved. The respective calculations were performed within the same model. The dependence of the average fission time on the initial fissility parameter (Z{sup 2}/A){sub 0} appears to be of a resonance type and is similar to its dependence on L{sub 0}. This dependence of the average fission time on (Z{sup 2}/A){sub 0} stems both from statistical calculations and from a dynamical simulation of the fission mode with allowance for friction. The conditions under which the average fission time reaches a maximum are specified. The dependence of the average fission time on (Z{sup 2}/A){sub 0} remains nonmonotonic in the fusion-fission reaction as well, in which case the distribution of compound nuclei with respect to the initial angular momentum is broad.

  2. Fission rate and transient time of highly excited nuclei in multi-dimensional stochastic calculations

    SciTech Connect

    Anischenko, Yu. A.; Gegechkori, A. E.; Nadtochy, P. N.; Adeev, G. D.

    2010-04-30

    The influence of the dynamical model dimensionality in use on the fission rates studied within the stochastic approach to fission dynamics [1]. Time dependence of the fission rate was calculated with the use of multidimensional Langevin equation. Particle evaporation was not taken into account. One-, two- and three-dimensional cases were considered on the basis of the left bracec, h, alpharight brace-parametrization of the nuclear surface shape. Calculations were performed for the large number of compound nuclei with Z{sup 2}/A parameter in the range 20excitation energy 200 MeV. A considerable increase of the stationary fission rate in the transition from one-dimensional to three-dimensional case was revealed [2]. This increase is about two times for the nuclei around {sup 224}Th and about 10{sup 2} for the light nuclei near the Businaro-Gallone point. The influence of the dissipation mechanism on the transient time is studied for multidimensional systems. It was shown that the ratios of the stationary fission rates obtained in the calculations with the different dimensionalities: R{sup 3D}{sub st}/R{sup 1D}{sub st} and R{sup 2D}{sub st}/R{sup 1D}{sub st} remain almost the same for different dissipation mechanisms. Thus we conclude that the fission rate is mostly determined by the structure of the potential energy surface of the system. For one-body dissipation mechanism it was shown that the transient time tau{sub tr} is about 5 or 6 times greater at k{sub s} = 1.0 than at k{sub s} = 0.25. Two-body dissipation mechanism leads to the smaller tau{sub tr} values in comparison with the one-body dissipation mechanism at k{sub s} = 0.25. The transient time does not change significantly in the dynamical calculations with the different dimensionality. We also compared the dynamically calculated stationary fission rate to the Kramers rate.

  3. Excited states of deformable odd {sup 157,159}Tb nuclei: Nonconservation of the angular momentum of external nucleon

    SciTech Connect

    Sharipov, Sh.; Ermamatov, M. J.

    2009-01-15

    The previously developed rotationally single-particle and vibrational model of the triaxial deformable odd nuclei is extended to the case where the total angular momentum of an external nucleon is not conserved. The calculated ratios of the excitation energies of the {sup 157,159}Tb nuclei are compared with the existing experimental data. The ratios of E2-transition probabilities and those of quadrupole moments of the above nuclei are calculated using parameters determined from the spectra of these nuclei.

  4. Open-shell nuclei and excited states from multireference normal-ordered Hamiltonians

    NASA Astrophysics Data System (ADS)

    Gebrerufael, Eskendr; Calci, Angelo; Roth, Robert

    2016-03-01

    We discuss the approximate inclusion of three-nucleon (3 N ) interactions into ab initio nuclear structure calculations using a multireference formulation of normal ordering and Wick's theorem. Following the successful application of single-reference normal ordering for the study of ground states of closed-shell nuclei, e.g., in coupled-cluster theory, multireference normal ordering opens a path to open-shell nuclei and excited states. Based on different multideterminantal reference states we benchmark the truncation of the normal-ordered Hamiltonian at the two-body level in no-core shell-model calculations for p -shell nuclei, including 6Li,12C, and 10B. We find that this multireference normal-ordered two-body approximation is able to capture the effects of the 3 N interaction with sufficient accuracy, both for ground-state and excitation energies, at the computational cost of a two-body Hamiltonian. It is robust with respect to the choice of reference states and has a multitude of applications in ab initio nuclear structure calculations of open-shell nuclei and their excitations as well as in nuclear reaction studies.

  5. Emission of charged particles from excited compound nuclei

    SciTech Connect

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2010-10-15

    The process of complex fragment emission is studied within the dinuclear system model. Cross sections of complex fragment emission are calculated and compared with experimental data for the reactions {sup 3}He+{sup nat}Ag, {sup 78,86}Kr+{sup 12}C, and {sup 63}Cu+{sup 12}C. The mass distributions of the products of these reactions, isotopic distributions for the {sup 3}He+{sup nat}Ag and {sup 78}Kr+{sup 12}C reactions, and average total kinetic energies of the products of the {sup 78}Kr+{sup 12}C reaction are predicted.

  6. Theoretical Investigation of the Angular-Momentum Dependence of the Mean Fission Lifetime of Excited Nuclei

    SciTech Connect

    Gontchar, I.I.; Ponomarenko, N.A.; Turkin, V.V.; Litnevsky, L.A.

    2004-11-01

    Mean fission lifetimes of nuclei excited to energies of 80 to 400 MeV were recently measured at the GANIL accelerator by the crystal-blocking technique. Those experiments served as a motivation for us to perform systematic calculations of the time distributions of fission events and the mean fission lifetimes versus the angular momentum, the initial excitation energy, and the fissility of a primary excited nucleus. The mean fission lifetimes are given as a function of the angular momentum L. The calculations were performed within the refined version of the combined dynamical-statistical model. It turned out that, if the height of the fission barrier at L = 0 is sizably greater than the neutron binding energy, the L dependence of the mean fission lifetimes has a resonance character. Such behavior of the mean fission lifetimes is obtained both from statistical calculations and from a dynamical simulation of the fission process with allowance for friction. It is shown that the maximum in the L dependence of is due to the fission of nuclei that lost a considerable part of the initial excitation energy through the emission of neutrons. The majority of the calculations were performed for {sup 190}Pt at an initial excitation energy of 150 eV. It is shown that the resonance behavior disappears with increasing fissility, but that it survives over a broad range of initial excitation energies. Systematic experimental studies are required for confirming or disproving our theoretical predictions.

  7. Excited State Lifetime Measurements in Rare Earth Nuclei with Fast Electronics

    NASA Astrophysics Data System (ADS)

    Werner, V.; Cooper, N.; Bonett-Matiz, M.; Williams, E.; Régis, J.-M.; Rudigier, M.; Ahn, T.; Anagnostatou, V.; Berant, Z.; Bunce, M.; Elvers, M.; Heinz, A.; Ilie, G.; Jolie, J.; Radeck, D.; Savran, D.; Smith, M.

    2011-09-01

    We investigated the collectivity of the lowest excited 2+ states of even-even rare earth nuclei. The B(E2) excitation strengths of these nuclei should directly correlate to the size of the valence space, and maximize at mid-shell. The previously identified saturation of B(E2) strength in well-deformed rotors at mid-shell is put to a high precision test in this series of measurements. Lifetimes of the 2+1 states in 168Hf and 174W have been measured using the newly developed LaBr3 scintillation detectors. The excellent energy resolution in conjunction with superb time properties of the new material allows for reliable handling of background, which is a source of systematic error in such experiments. Preliminary lifetime values are obtained and discussed in the context of previous and ongoing work.

  8. Interplay of projectile breakup and target excitation in reactions induced by weakly bound nuclei

    NASA Astrophysics Data System (ADS)

    Gómez-Ramos, M.; Moro, A. M.

    2017-03-01

    Background: Reactions involving weakly bound nuclei require formalisms able to deal with continuum states. The majority of these formalisms struggle to treat collective excitations of the systems involved. For continuum-discretized coupled channels (CDCC), extensions to include target excitation have been developed but have only been applied to a small number of cases. Purpose: In this work, we reexamine the extension of the CDCC formalism to include target excitation and apply it to a variety of reactions to study the effect of breakup on inelastic cross sections. Methods: We use a transformed oscillator basis to discretize the continuum of the projectiles in the different reactions and use the extended CDCC method developed in this work to solve the resulting coupled differential equations. A new code has been developed to perform the calculations. Results: Reactions 58Ni(d ,d )*58Ni , 24Mg(d ,d )*24Mg , 144Sm(6Li,6Li)*144Sm , and 9Be(6Li,6Li)*9Be are studied. Satisfactory agreement is found between experimental data and extended CDCC calculations. Conclusions: The studied CDCC method has proven to be an accurate tool to describe target excitation in reactions with weakly bound nuclei. Moderate effects of breakup on inelastic observables are found for the reactions studied. Cross-section magnitudes are not modified much, but angular distributions present smoothing when opposed to calculations without breakup.

  9. Compound-Nucleus Formation Following Direct Interactions to Highly-Excited Final States

    SciTech Connect

    Dietrich, F. S.

    2008-04-17

    When direct reactions populate highly excited, unbound configurations in the residual nucleus, the nucleus may further evolve into a compound nucleus. Alternatively, the residual system may decay by emitting particles into the continuum. Understanding the relative weights of these two processes as a function of the angular momentum and parity deposited in the nucleus is important for the surrogate-reaction technique. A particularly interesting case is compound-nucleus formation via the (d,p) reaction, which may be a useful tool for forming compound nuclei off the valley of stability in inverse-kinematics experiments. We present here a study of the compound formation probability for a closely-related direct reaction, direct-semidirect radiative neutron capture.

  10. Excitation energies of double isobar-analog states in heavy nuclei

    SciTech Connect

    Poplavskii, I. V.

    1988-12-01

    Several new relationships are established for isomultiplets on the basis of a theory in which the Coulomb coupling constant (CCC) is allowed to be complex. In particular, the following rule is formulated: the energies for fission or decay of members of an isomultiplet into a charged cluster and members of the corresponding daughter isomultiplet are equidistant. This relationship is well satisfied for isomultiplets with /ital A/less than or equal to60. By extrapolating the rule for fission and decay energies to the region of heavy nuclei, the excitation energies /ital E//sub /ital x// of double isobar-analog states (DIASs) are found for the nuclei /sup 197,199/Hg, /sup 205/Pb, /sup 205 - -209/Po, /sup 209/At, and /sup 238/Pu. A comparison of the computed energies /ital E//sub /ital x// with the experimentally measured values for /sup 208/Po attest to the reliability and good accuracy of the method proposed here when used to determine the excitation energies of DIASs in heavy nuclei.

  11. Fragmentation of mixed-symmetry excitations in stable even-even tellurium nuclei

    SciTech Connect

    Hicks, S. F.; Vanhoy, J. R.; Yates, S. W.

    2008-11-15

    The lowest six excited 2{sup +} levels of the even-even {sup 122-130}Te nuclei have been investigated using {gamma}-ray spectroscopy following inelastic neutron scattering. These levels have been identified and their decay properties have been characterized from {gamma}-ray excitation functions and {gamma}-ray angular distributions; additionally, lifetimes of these levels have been deduced using the Doppler-shift attenuation method. Electromagnetic transition rates and E2/M1 multipole mixing ratios from the 2{sub x}{sup +}[x=2-6]{yields}2{sub 1}{sup +} transitions have been examined to identify the lowest mixed-symmetry states in these nuclei. In each nucleus, the mixed-symmetry strength appears to be fragmented between more than one level. The summed M1 strength from the 2{sub x}{sup +}[x=2-6] states to the 2{sub 1}{sup +} level agrees rather well with neutron-proton interacting boson model predictions in the U(5) or O(6) limits for these Te nuclei.

  12. Microscopic description of low-lying M1 excitations in odd-mass actinide nuclei

    NASA Astrophysics Data System (ADS)

    Tabar, Emre; Yakut, Hakan; Kuliev, Ali Akbar

    2017-01-01

    A restoration method of a broken symmetry which allows self-consistent determination of the separable effective restoration forces is now adapted to odd-mass nuclei in order to restore violated rotational invariance (RI-) of the Quasiparticle Phonon Nuclear Model (QPNM) Hamiltonian. Because of the self-consistency of the method, these effective forces contain no arbitrary parameters. Within RI-QPNM, the properties of the low-lying magnetic dipole excitations in odd-mass deformed 229-233Th and 233-239U nuclei have been investigated for the first time. It has been shown that computed fragmentation of the M1 strengths below 4 MeV in these nuclei is much stronger than that in neighboring doubly even 228-232Th and 232-238U nuclei. For 235U the summed M1 strength in the energy range 1.5-2.8 MeV is in agreement with the relevant experimental data where the missing strength was extracted by means of a fluctuation analysis.

  13. Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN

    NASA Astrophysics Data System (ADS)

    Aalto, S.; Martín, S.; Costagliola, F.; González-Alfonso, E.; Muller, S.; Sakamoto, K.; Fuller, G. A.; García-Burillo, S.; van der Werf, P.; Neri, R.; Spaans, M.; Combes, F.; Viti, S.; Mühle, S.; Armus, L.; Evans, A.; Sturm, E.; Cernicharo, J.; Henkel, C.; Greve, T. R.

    2015-12-01

    We present high resolution (0.̋4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (ν2 = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r< 17-70 pc) nuclei that have very high implied mid-infrared surface brightness > 5 × 1013 L⊙ kpc-2. These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, ν2 = 1, lines of HCN are excited by intense 14 μm mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H2 column densities exceed 1024 cm-2. It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (ν = 0), J = 3-2and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self- and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions - possibly in the form of in- or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback. Based on observations carried out with the IRAM Plateau de Bure and ALMA Interferometers. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). ALMA is a partnership of ESO (representing its member states

  14. Dipole Excitation of Soft and Giant Resonances in 132Sn and neighboring unstable nuclei

    NASA Astrophysics Data System (ADS)

    Boretzky, Konstanze

    2006-04-01

    The evolution of dipole-strength distributions above the one-neutron threshold was investigated for exotic neutron-rich nuclei in a series of experiments using the electromagnetic projectile excitation at beam energies around 500 MeV/u. For halo nuclei, the large observed dipole strength (shown here for 11Be) is explained within the direct-breakup model to be of non-collective character. For neutron-rich oxygen isotopes, the origin of the observed low-lying strength is concluded to be due to single-particle transitions on theoretical grounds. The dipole strength spectra for 130,132Sn exhibit resonance-like structures observed at energies around 10 MeV exhausting a few percent of the Thomas-Reiche-Kuhn (TRK) sum rule, separated clearly from the dominant Giant Dipole Resonance (GDR). The data agree with predictions for a new dipole mode related to the oscillation of excess neutrons versus the core nucleons ("pygmy resonance").

  15. Study of ground and excited state decays in N ≈ Z Ag nuclei

    NASA Astrophysics Data System (ADS)

    Moschner, K.; Blazhev, A.; Warr, N.; Boutachkov, P.; Davies, P.; Wadsworth, R.; Ameil, F.; Baba, H.; Bäck, T.; Dewald, M.; Doornenbal, P.; Faestermann, T.; Gengelbach, A.; Gerl, J.; Gernhäuser, R.; Go, S.; Górska, M.; Grawe, H.; Gregor, E.; Hotaka, H.; Isobe, T.; Jenkins, D. G.; Jolie, J.; Jung, H. S.; Kojouharov, I.; Kurz, N.; Lewitowicz, M.; Lorusso, G.; Merchan, E.; Naqvi, F.; Nishibata, H.; Nishimura, D.; Nishimura, S.; Pietralla, N.; Schaffner, H.; Söderström, P.-A.; Steiger, K.; Sumikama, T.; Taprogge, J.; Thöle, P.; Watanabe, H.; Werner, V.; Xu, Z. Y.; Yagi, A.; Yoshinaga, K.; Zhu, Y.

    2015-05-01

    A decay spectroscopy experiment was performed within the EURICA campaign at RIKEN in 2012. It aimed at the isomer and particle spectroscopy of excited states and ground states in the mass region below the doubly magic 100Sn. The N = Z nuclei 98In, 96Cd and 94Ag were of particular interest for the present study. Preliminary results on the neutron deficient nuclei 93Ag and 94Ag are presented. In 94Ag a more precise value for the half-life of the ground state's superallowed Fermi transition was deduced. In addition the energy spectra of the mentioned decay could be reproduced through precise Geant4 simulations of the used active stopper SIMBA. This will enable us to extract Qβ values from the measured data. The decay of 93Ag is discussed based on the observed implantation-decay correlation events.

  16. Excited-State Deactivation of Branched Phthalocyanine Compounds.

    PubMed

    Zhu, Huaning; Li, Yang; Chen, Jun; Zhou, Meng; Niu, Yingli; Zhang, Xinxing; Guo, Qianjin; Wang, Shuangqing; Yang, Guoqiang; Xia, Andong

    2015-12-21

    The excited-state relaxation dynamics and chromophore interactions in two phthalocyanine compounds (bis- and trisphthalocyanines) are studied by using steady-state and femtosecond transient absorption spectral measurements, where the excited-state energy-transfer mechanism is explored. By exciting phthalocyanine compounds to their second electronically excited states and probing the subsequent relaxation dynamics, a multitude of deactivation pathways are identified. The transient absorption spectra show the relaxation pathway from the exciton state to excimer state and then back to the ground state in bisphthalocyanine (bis-Pc). In trisphthalocyanine (tris-Pc), the monomeric and dimeric subunits are excited and the excitation energy transfers from the monomeric vibrationally hot S1 state to the exciton state of a pre-associated dimer, with subsequent relaxation to the ground state through the excimer state. The theoretical calculations and steady-state spectra also show a face-to-face conformation in bis-Pc, whereas in tris-Pc, two of the three phthalocyanine branches form a pre-associated face-to-face dimeric conformation with the third one acting as a monomeric unit; this is consistent with the results of the transient absorption experiments from the perspective of molecular structure. The detailed structure-property relationships in phthalocyanine compounds is useful for exploring the function of molecular aggregates in energy migration of natural photosynthesis systems.

  17. Thorium silicate compound as a solid-state target for production of isomeric thorium-229 nuclei by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Borisyuk, P. V.; Vasilyev, O. S.; Lebedinskii, Y. Y.; Krasavin, A. V.; Tkalya, E. V.; Troyan, V. I.; Habibulina, R. F.; Chubunova, E. V.; Yakovlev, V. P.

    2016-09-01

    In this paper, we discuss an idea of the experiment for excitation of the isomeric transition in thorium-229 nuclei by irradiating with electron beam targets with necessary physical characteristics. The chemical composition and bandgap of ThSi10O22 were determined by X-ray photoelectron spectroscopy and reflection electron energy loss spectroscopy. It was found that the energy gap is equal to 7.7 eV and does not change when the target is exposed to a medium energy electron beam for a long time. This indicates that the compound possesses high electron-beam resistance. A quantitative estimation of the output function of isomeric thorium-229 nuclei generated by interaction of nuclei with the secondary electron flow formed by irradiating the solid-state ThSi10O22-based target is given. The estimation shows that ThSi10O22 is a promising thorium-containing target for investigating excitation of the nuclear low-lying isomeric transition in the thorium-229 isotope using medium-energy electrons.

  18. Low lying electric dipole excitations in nuclei of the rare earth region

    SciTech Connect

    von Brentano, P.; Zilges, A.; Herzberg, R.D.; Zamfir, N.V.; Kneissl, U.; Heil, R.D.; Pitz, H.H.; Wesselborg, C.

    1992-10-01

    From many experiments with low energy photon scattering on deformed rare earth nuclei we have obtained detailed information about the distribution of electric dipole strength below 4 MeV. Apart from some weaker transitions between 2 and 4 MeV we observed one, and sometimes two, very strong El-groundstate transitions around 1.5 MeV in all examined nuclei. They arise from the de-excitation of the bandheads of the (J{sup {pi}},K)=(l{sup {minus}},0) and (J{sup {pi}},K)=(l{sup {minus}},1) octupole vibrational bands. It is shown that the decay branching ratios and the absolute transition strengths of these states can be reproduced rather well with an improved T(El)-operator in the sdf-Interacting Boson Model. Another class of octupole states has been investigated in the region of the semimagic nucleus {sup 142}Nd. Here a quintuplet of collective excitations around 3.5 MeV is expected due to the coupling of the 3{minus}-octupole vibration with the 2+-quadrupole vibration. We performed photon scattering experiments on the odd A neighboring nucleus {sup 141}Pr and found first evidence for the existence of 3{sup {minus}}{circle_times}2+{circle_times}particle-states.

  19. Precise Coulomb excitation B(E2) measurements for first 2+states of projectile nuclei near the doubly magic nuclei 78Ni and 132Sn

    NASA Astrophysics Data System (ADS)

    Galindo-Uribarri, A.

    2012-09-01

    Coulomb excitation is a very precise tool to measure excitation probabilities and provide insight on the collectivity of nuclear excitations and in particular on nuclear shapes. In the last few years radioactive ion beam facilities such as HRIBF opened unique opportunities to explore the structure of nuclei in the regions near the doubly magic nuclei 78Ni (Z=28 and N=50) and 132Sn (Z=50 and N=82). For this purpose we have developed specialized methods and instrumentation to measure various observables. There is also the opportunity to perform precision experiments with stable beams using exactly the same state-of-the-art instrumentation and techniques as with their radioactive ion beam counterpart. I describe some of the recent efforts at HRIBF to do more precise measurements using particle-gamma techniques.

  20. The scissors mode and other magnetic and electric dipole excitations in the transitional nuclei 178,180Hf

    NASA Astrophysics Data System (ADS)

    Pietralla, N.; Beck, O.; Besserer, J.; von Brentano, P.; Eckert, T.; Fischer, R.; Fransen, C.; Herzberg, R.-D.; Jäger, D.; Jolos, R. V.; Kneissl, U.; Krischok, B.; Margraf, J.; Maser, H.; Nord, A.; Pitz, H. H.; Rittner, M.; Schiller, A.; Zilges, A.

    1997-02-01

    Photon scattering experiments have been performed on the heavy deformed nuclei 178,180Hf using an Eγ < 4 MeV bremsstrahlung beam as a continuous energy photon source. Numerous dipole excitations have been identified from the spectra of high-resolution Ge γ detectors. Spins, K quantum numbers, dipole excitation strengths, and level widths, have been extracted from the scattering cross sections. From the measured level widths lifetimes of 67 levels can be deduced. The excitation strength of the scissors mode is discussed and extends the systematics from the neighboring rare earth nuclei. Besides the ΔK = 1 excitations other dipole excitations have been observed that are distinguished from the scissors mode states by their different decay behavior.

  1. Fission-fragment mass yields of highly excited nuclei with 119 ≤ A ≤ 218 produced in various reactions

    NASA Astrophysics Data System (ADS)

    Denisov, V. Yu.; Sedykh, I. Yu.

    2017-07-01

    The characteristics of fission fragments of various highly-excited nuclei with 119 ≤ A ≤ 218, which are formed by γ- and α-captures, and by fusion-fission reactions, are discussed in details. The yields of fission fragments of these nuclei are related to the number of states of the two-fragment systems at the two-body saddle points. The various experimental distributions of fission fragments are well described in the model.

  2. Multipole excitations in hot nuclei within the finite temperature quasiparticle random phase approximation framework

    NASA Astrophysics Data System (ADS)

    Yüksel, E.; Colò, G.; Khan, E.; Niu, Y. F.; Bozkurt, K.

    2017-08-01

    The effect of temperature on the evolution of the isovector dipole and isoscalar quadrupole excitations in 68Ni and 120Sn nuclei is studied within the fully self-consistent finite temperature quasiparticle random phase approximation framework, based on the Skyrme-type SLy5 energy density functional. The new low-energy excitations emerge due to the transitions from thermally occupied states to the discretized continuum at finite temperatures, whereas the isovector giant dipole resonance is not strongly impacted by the increase of temperature. The radiative dipole strength at low energies is also investigated for the 122Sn nucleus, becoming compatible with the available experimental data when the temperature is included. In addition, both the isoscalar giant quadrupole resonance and low-energy quadrupole states are sensitive to the temperature effect: while the centroid energies decrease in the case of the isoscalar giant quadrupole resonance, the collectivity of the first 2+ state is quenched and the opening of new excitation channels fragments the low-energy strength at finite temperatures.

  3. Contribution of excited states to stellar weak-interaction rates in odd-A nuclei

    NASA Astrophysics Data System (ADS)

    Sarriguren, P.

    2016-05-01

    Weak-interaction rates, including β decay and electron capture, are studied in several odd-A nuclei in the p f -shell region at various densities and temperatures of astrophysical interest. Special attention is paid to the relative contribution to these rates of thermally populated excited states in the decaying nucleus. The nuclear structure involved in the weak processes is studied within a quasiparticle random-phase approximation with residual interactions in both particle-hole and particle-particle channels on top of a deformed Skyrme Hartree-Fock mean field with pairing correlations. In the range of densities and temperatures considered, it is found that the total rates do not differ much from the rates of the ground state fully populated. In any case, the changes are not larger than the uncertainties due to the nuclear-model dependence of the rates.

  4. A statistical model for simulating the emission of light particles from excited nuclei

    NASA Astrophysics Data System (ADS)

    Sannikov, A. V.; Savitskaya, E. N.

    2016-05-01

    The algorithms and basic equations of a novel evaporation model that have been implemented in the program package EVAP15 are detailed. The level density of an excited nucleus is described by the composite Gilbert-Cameron formula with parameter values as suggested by the IAEA working group RIPL-3. Special attention is paid to the cross sections of inverse reactions and, in particular, to those for the interactions of low-energy neutrons with nuclei and for crossing of the Coulomb barrier by low-energy charged particles. The model predictions are compared with a large volume of experimental data on the spectra of particles emitted in the reactions ( n, xn), ( n, xp), and ( n, xα) induced by neutrons with energy near 14 MeV and on the four spectra for the reaction ( p, xp) induced by 62-MeV protons.

  5. Emission of charged particles from excited compound nucleus

    SciTech Connect

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.

    2010-11-24

    The formation and decay of excited compound nucleus are studied within the dinuclear system model[1]. The cross sections of complex fragment emission are calculated and compared with experimental data for the reactions {sup 3}He+{sup 108}Ag, {sup 78,82}Kr+{sup 12}C. Angular momentum dependence of cluster emission in {sup 78}Kr+{sup 12}C and {sup 40}Ca+{sup 78}Kr reactions is demonstrated.

  6. Coulomb Excitation of n-rich nuclei along the N = 50 shell closure

    NASA Astrophysics Data System (ADS)

    Padilla-Rodal, E.; Galindo-Uribarri, A.; Batchelder, J. C.; Beene, J. R.; Bingham, C.; Brown, B. A.; Lagergren, K. B.; Mueller, P. E.; Radford, D. C.; Stracener, D. W.; Urrego-Blanco, J. P.; Varner, R. L.; Yu, C.-H.

    2008-04-01

    Recently, we have been investigating characteristics of nuclear states around the neutron-rich mass A=80 region [1]. Using the Radioactive Ion Beams (RIBs) produced at HRIBF, we have successfully measured the B(E2) values for ^78,80,82Ge , using Coulomb excitation in inverse kinematics. For the germanium isotopes, these data allow a study of the systematic trend between the subshell N= 40 and the N=50 shell. Using the same technique, we have measured the B(E2) value of various nuclei along the N=50 shell including the radioactive nucleus ^84Se. This value together with our previously measured ^82Ge, and the recent result on ^80Zn from ISOLDE [2] are providing basic experimental information needed for a better understanding of the neutron-rich nuclei around A˜80. We report the new results and compare with shell model calculations. [1] E. Padilla-Rodal et al., Phys. Rev. Lett. 94 (2005) 122501. [2] J. Van de Walle et al., Phys. Rev. Lett. 99 (2007) 142501.

  7. Aqueous reactions of triplet excited states with allylic compounds

    NASA Astrophysics Data System (ADS)

    Kaur, R.; Anastasio, C.; Hudson, B. M.; Tantillo, D. J.

    2016-12-01

    Triplet excited states of dissolved organic matter react with several classes of aromatic organics such as phenols, anilines, sulfonamide antibiotics and phenylurea herbicides. Aqueous triplets appear to be among the most important oxidants for atmospheric phenols in regions with biomass burning, with phenol lifetimes on the order of a few hours to a day. However, little is known of the reactions of triplets with other classes of organic compounds. Recent work from our group shows that triplets react rapidly with several biogenic volatile organic compounds (BVOCs), such as methyl jasmonate, cis-3-hexenyl acetate, and cis-3-hexen-1-ol. However, there are only a few rate constants for aqueous reactions between alkenes such as these and triplet excited states. For our work, we refer to these and similar alkenes which have hydrogen(s) attached to a carbon adjacent to the double bond, as allylic compounds. To better assess the importance of triplets as aqueous oxidants, we measured second-order rate constants (kAC+3BP*) for a number of allylic compounds (ACs) with the triplet state of benzophenone; then established a quantitative structure-activity relationship (QSAR) between kAC+3BP* and computed oxidation potential of the ACs (R2 =0.65). Using the QSAR, we estimated the rate constants for triplets with some allylic isoprene and limonene oxidation products that have high Henry's law constants (KH>103 M atm-1). Hydroxylated limonene products and the delta-isomers of isoprene hydroxyhydroperoxides (δ4ISOPOOH) and hydroxynitrates (δ4ISONO2) were faster with predicted kAC+3BP* values ranging between (0.5-3.5) x 109 M-1-s-1 whereas the beta-isomers of ISOPOOH and ISONO2 were slower (kAC+3BP* < 0.5 x 109 M-1s-1). We scaled the predicted kAC+3BP* to represent less reactive atmospheric triplets that have been measured in fog drops, and compared to gas and aqueous hydroxyl radical and ozone, triplets in fog could account for up to 20 % of the measured loss of these compounds

  8. Excitation of discrete levels of {sup 63}Cu and {sup 65}Cu nuclei in (e, e') reactions

    SciTech Connect

    Denyak, V. V. Khvastunov, V. M.; Paschuk, S. A.; Schelin, H. R.; Khomich, A. A.; Shevchenko, N. G.

    2010-03-15

    Inelastic electron scattering on {sup 63}Cu and {sup 65}Cu nuclei at excitation energies of up to 5 MeV was studied. Information about the reduced probability and multipolarity of transitions was obtained for 11 low-lying levels and groups of levels of the {sup 63}Cu nucleus and for 17 such levels and groups of levels of the {sup 65}Cu nucleus. It was shown that the experimental form factors for inelastic scattering accompanied by the excitation of discrete levels and group of levels of these nuclei with a nonzero spin can be described in terms of a single multipolarity, even though the law of angular-momentum conservation admits the existence of several more multipolarities yielding the same parity of an excited state.

  9. Theoretical study of different features of the fission process of excited nuclei in the framework of the modified statistical model and four-dimensional dynamical model

    NASA Astrophysics Data System (ADS)

    Eslamizadeh, H.

    2017-02-01

    Evaporation residue cross section, fission probability, anisotropy of fission fragment angular distribution, mass and energy distributions of fission fragments and the pre-scission neutron multiplicity for the excited compound nuclei {}168{{Y}}{{b}}, {}172{{Y}}{{b}}, {}178{{W}} and {}227{{P}}{{a}} produced in fusion reactions have been calculated in the framework of the modified statistical model and multidimensional dynamical model. In the dynamical calculations, the dynamics of fission of excited nuclei has been studied by solving three- and four-dimensional Langevin equations with dissipation generated through the chaos-weighted wall and window friction formula. Three collective shape coordinates plus the projection of total spin of the compound nucleus to the symmetry axis, K, were considered in the four-dimensional dynamical model. A non-constant dissipation coefficient of K, {γ }k, was applied in the four-dimensional dynamical calculations. A comparison of the results of the three- and four-dimensional dynamical models with the experimental data showed that the results of the four-dimensional dynamical model for the evaporation residue cross section, fission probability, anisotropy of fission fragment angular distribution, mass and energy distributions of fission fragments and the pre-scission neutron multiplicity are in better agreement with the experimental data. It was also shown that the modified statistical model can reproduce the above-mentioned experimental data by choosing appropriate values of the temperature coefficient of the effective potential, λ , and the scaling factor of the fission-barrier height, {r}s.

  10. THE Fe II EMISSION IN ACTIVE GALACTIC NUCLEI: EXCITATION MECHANISMS AND LOCATION OF THE EMITTING REGION

    SciTech Connect

    Marinello, M.; Rodríguez-Ardila, A.; Garcia-Rissmann, A.; Sigut, T. A. A.; Pradhan, A. K.

    2016-04-01

    We present a study of Fe ii emission in the near-infrared region (NIR) for 25 active galactic nuclei (AGNs) to obtain information about the excitation mechanisms that power it and the location where it is formed. We employ an NIR Fe ii template derived in the literature and find that it successfully reproduces the observed Fe ii spectrum. The Fe ii bump at 9200 Å detected in all objects studied confirms that Lyα fluorescence is always present in AGNs. The correlation found between the flux of the 9200 Å bump, the 1 μm lines, and the optical Fe ii implies that Lyα fluorescence plays an important role in Fe ii production. We determined that at least 18% of the optical Fe ii is due to this process, while collisional excitation dominates the production of the observed Fe ii. The line profiles of Fe ii λ10502, O i λ11287, Ca ii λ8664, and Paβ were compared to gather information about the most likely location where they are emitted. We found that Fe ii, O i and Ca ii have similar widths and are, on average, 30% narrower than Paβ. Assuming that the clouds emitting the lines are virialized, we show that the Fe ii is emitted in a region twice as far from the central source than Paβ. The distance, though, strongly varies: from 8.5 light-days for NGC 4051 to 198.2 light-days for Mrk 509. Our results reinforce the importance of the Fe ii in the NIR to constrain critical parameters that drive its physics and the underlying AGN kinematics, as well as more accurate models aimed at reproducing this complex emission.

  11. The Fe II Emission in Active Galactic Nuclei: Excitation Mechanisms and Location of the Emitting Region

    NASA Astrophysics Data System (ADS)

    Marinello, M.; Rodríguez-Ardila, A.; Garcia-Rissmann, A.; Sigut, T. A. A.; Pradhan, A. K.

    2016-04-01

    We present a study of Fe ii emission in the near-infrared region (NIR) for 25 active galactic nuclei (AGNs) to obtain information about the excitation mechanisms that power it and the location where it is formed. We employ an NIR Fe ii template derived in the literature and find that it successfully reproduces the observed Fe ii spectrum. The Fe ii bump at 9200 Å detected in all objects studied confirms that Lyα fluorescence is always present in AGNs. The correlation found between the flux of the 9200 Å bump, the 1 μm lines, and the optical Fe ii implies that Lyα fluorescence plays an important role in Fe ii production. We determined that at least 18% of the optical Fe ii is due to this process, while collisional excitation dominates the production of the observed Fe ii. The line profiles of Fe ii λ10502, O i λ11287, Ca ii λ8664, and Paβ were compared to gather information about the most likely location where they are emitted. We found that Fe ii, O i and Ca ii have similar widths and are, on average, 30% narrower than Paβ. Assuming that the clouds emitting the lines are virialized, we show that the Fe ii is emitted in a region twice as far from the central source than Paβ. The distance, though, strongly varies: from 8.5 light-days for NGC 4051 to 198.2 light-days for Mrk 509. Our results reinforce the importance of the Fe ii in the NIR to constrain critical parameters that drive its physics and the underlying AGN kinematics, as well as more accurate models aimed at reproducing this complex emission.

  12. Crossover from skin mode to proton-neutron mode in E1 excitations of neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Nakada, H.; Inakura, T.; Sawai, H.

    2013-03-01

    The character of the low-energy E1 excitations is investigated by analyzing transition densities obtained from the RPA calculations in the doubly magic nuclei. We propose a decomposition method of the E1 excitations into the pn mode (i.e., oscillation between protons and neutrons) and the skin mode (i.e., oscillation of the neutron skin against the inner core) via the transition densities, by which their mixing is handled in a straightforward manner. Crossover behavior of the E1 excitations is found, from the skin mode at low energy to the pn mode at higher energy. The ratio of the skin-mode strength to the full strength turns out to be insensitive to the nuclides and to the effective interactions in the energy region of the crossover. Depending on the excitation energy, the observed low-energy E1 excitations are not necessarily dominated by the skin mode, as exemplified for 90Zr.

  13. A new differentially pumped plunger device to measure excited-state lifetimes in proton emitting nuclei

    NASA Astrophysics Data System (ADS)

    Taylor, M. J.; Cullen, D. M.; Smith, A. J.; McFarlane, A.; Twist, V.; Alharshan, G. A.; Procter, M. G.; Braunroth, T.; Dewald, A.; Ellinger, E.; Fransen, C.; Butler, P. A.; Scheck, M.; Joss, D. T.; Saygi, B.; McPeake, C. G.; Grahn, T.; Greenlees, P. T.; Jakobsson, U.; Jones, P.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Nieminen, P.; Pakarinen, J.; Peura, P.; Rahkila, P.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Sorri, J.; Stolze, S.; Uusitalo, J.

    2013-04-01

    A new plunger device has been designed and built to measure the lifetimes of unbound states in exotic nuclei beyond the proton drip-line. The device has been designed to work in both vacuum and dilute-gas environments made possible through the introduction of a low-voltage stepping motor. DPUNS will be used in conjunction with the gas-filled separator RITU and the vacuum separator MARA at the accelerator laboratory of the University of Jyväskylä, Finland, to measure the lifetimes of excited states with low population cross-sections. This is achieved by eliminating the need for a carbon foil to isolate the helium gas of RITU from the beam line thus reducing the background from beam-foil reactions. The inclusion of a high-sampling rate data acquisition card increases further the sensitivity of the device. The plunger will be used to address many key facets of nuclear structure physics with particular emphasis on the effect of deformation on proton emission rates.

  14. Do nuclei go pear-shaped? Coulomb excitation of 220Rn and 224Ra at REX-ISOLDE (CERN)

    NASA Astrophysics Data System (ADS)

    Scheck, M.; Gaffney, L. P.; Butler, P. A.; Hayes, A. B.; Wenander, F.; Albers, M.; Bastin, B.; Bauer, C.; Blazhev, A.; Boenig, S.; Bree, N.; Cederkall, J.; Chupp, T.; Cline, D.; Cocolios, T. E.; Davinson, T.; De Witte, H.; Diriken, J.; Grahn, T.; Herzan, A.; Huyse, M.; Jenkins, D. G.; Joss, D. T.; Kesteloot, N.; Konki, J.; Kowalczyk, M.; Kroell, Th.; Kwan, E.; Lutter, R.; Moschner, K.; Napiorkowski, P.; Pakarinen, J.; Pfeiffer, M.; Radeck, D.; Reiter, P.; Reynders, K.; Rigby, S. V.; Robledo, L. M.; Rudigier, M.; Sambi, S.; Seidlitz, M.; Siebeck, B.; Stora, T.; Thoele, P.; Van Duppen, P.; Vermeulen, M. J.; von Schmid, M.; Voulot, D.; Warr, N.; Wimmer, K.; Wrzosek-Lipska, K.; Wu, C. Y.; Zielinska, M.

    2015-05-01

    The IS475 collaboration conducted Coulomb-excitation experiments with post-accelerated radioactive 220Rn and 224Ra beams at the REX-ISOLDE facility. The beam particles (Ebeam: 2.83 MeV/u) were Coulomb excited using 60Ni, 114Cd, and 120Sn scattering targets. De-excitation γ-rays were detected employing the Miniball array and scattered particles were detected in a silicon detector. Exploiting the Coulomb-excitation code GOSIA for each nucleus several matrix elements could be obtained from the measured γ-ray yields. The extracted ‹3-||E3||0+› matrix element allows for the conclusion that, while 220Rn represents an octupole vibrational system, 224Ra has already substantial octupole correlations in its ground state. This finding has implications for the search of CP-violating Schiff moments in the atomic systems of the adjacent odd-mass nuclei.

  15. Nuclear structure effects of the nuclei {sup 152,154,156}Dy at high excitation energy and large angular momentum

    SciTech Connect

    Martin, V.; Egido, J.L.

    1995-06-01

    Using the finite-temperature Hartree-Fock-Bogoliubov formalism we analyze the properties of the nuclei {sup 152,154,156}Dy at the quasicontinuum region from {ital I}=0{h_bar} to 70{h_bar} and excitation energy up to approximately 16 MeV. We discuss energy gaps, shapes, moments of inertia, and entropy among others. The role of shape fluctuations is studied in the frame of classical statistics and we find large effects on several observables. A very rich structure is found in terms of excitation energy and angular momentum.

  16. Investigation of the energy-averaged double transition density of isoscalar monopole excitations in medium-heavy mass spherical nuclei

    NASA Astrophysics Data System (ADS)

    Gorelik, M. L.; Shlomo, S.; Tulupov, B. A.; Urin, M. H.

    2016-11-01

    The particle-hole dispersive optical model, developed recently, is applied to study properties of high-energy isoscalar monopole excitations in medium-heavy mass spherical nuclei. The energy-averaged strength functions of the isoscalar giant monopole resonance and its overtone in 208Pb are analyzed. In particular, we analyze the energy-averaged isoscalar monopole double transition density, the key quantity in the description of the hadron-nucleus inelastic scattering, and studied the validity of the factorization approximation using semi classical and microscopic one body transition densities, respectively, in calculating the cross sections for the excitation of isoscalar giant resonances by inelastic alpha scattering.

  17. Monopole effects, isomeric states, and cross-shell excitations in the A =129 hole nuclei near 132Sn

    NASA Astrophysics Data System (ADS)

    Wang, Han-Kui; Kaneko, Kazunari; Sun, Yang; He, Yi-Qi; Li, Shao-Feng; Li, Jian

    2017-01-01

    We present results of large-scale shell-model calculations for the A =129 hole nuclei below 132Sn. We discuss structures of 129Sn, 129In, and 129Cd with emphasis on the monopole effects and excitations across the neutron N =82 shell gap, and further predict low-lying levels for the more exotic 129Ag. It is demonstrated that the monopole corrections in the Hamiltonian, which dynamically affect occupations of relevant orbits, can lead to interesting consequences for the shell evolution. It is found especially that the monopole terms, previously introduced to reproduce the cross-shell excitations of the 17 /2+ and 21 /2+ states in 131In, shows more pronounced effects on the A =129 nuclei. In 129In, the cross-shell excitations of 17 /2+ and 21 /2+ are pushed down significantly by the monopole terms, and in 129Cd, the same monopole terms reverse the order of the single-hole states of ν d3 /2 and ν h11 /2 , causing 11/2 - as the ground state for this nucleus. The structure of isomeric states in the A =129 nuclei is also discussed.

  18. Giant dipole resonance built on hot rotating nuclei produced during evaporation of light particles from the 88Mo compound nucleus

    NASA Astrophysics Data System (ADS)

    Ciemała, M.; Kmiecik, M.; Maj, A.; Mazurek, K.; Bracco, A.; Kravchuk, V. L.; Casini, G.; Barlini, S.; Baiocco, G.; Bardelli, L.; Bednarczyk, P.; Benzoni, G.; Bini, M.; Blasi, N.; Brambilla, S.; Bruno, M.; Camera, F.; Carboni, S.; Cinausero, M.; Chbihi, A.; Chiari, M.; Corsi, A.; Crespi, F. C. L.; D'Agostino, M.; Degerlier, M.; Fornal, B.; Giaz, A.; Gramegna, F.; Krzysiek, M.; Leoni, S.; Marchi, T.; Matejska-Minda, M.; Mazumdar, I.; Meczyński, W.; Million, B.; Montanari, D.; Morelli, L.; Myalski, S.; Nannini, A.; Nicolini, R.; Pasquali, G.; Piantelli, S.; Prete, G.; Roberts, O. J.; Schmitt, Ch.; Styczeń, J.; Szpak, B.; Valdré, S.; Wasilewska, B.; Wieland, O.; Wieleczko, J. P.; Ziebliński, M.; Dudek, J.; Dinh Dang, N.

    2015-05-01

    High-energy giant dipole resonance (GDR) γ rays were measured following the decay of the hot, rotating compound nucleus of 88Mo, produced at excitation energies of 124 and 261 MeV. The reaction 48Ti + 40Ca at 300 and 600 MeV bombarding energies has been used. The data were analyzed using the statistical model Monte Carlo code gemini++. It allowed extracting the giant dipole resonance parameters by fitting the high-energy γ -ray spectra. The extracted GDR widths were compared with the available data at lower excitation energy and with theoretical predictions based on (i) The Lublin-Strasbourg drop macroscopic model, supplemented with thermal shape fluctuations analysis, and (ii) The phonon damping model. The theoretical predictions were convoluted with the population matrices of evaporated nuclei from the statistical model gemini++. Also a comparison with the results of a phenomenological expression based on the existing systematics, mainly for lower temperature data, is presented and discussed. A possible onset of a saturation of the GDR width was observed around T =3 MeV.

  19. Formation of Heavy Compound Nuclei, Their Survival and Correlation with Longtime-Scale Fission

    SciTech Connect

    Karamian, S. A.; Yakushev, A.-B.

    2007-05-22

    Fusion of two massive nuclei with formation of super-heavy compound nucleus (CN) is driven by the potential energy gradient, as follows from the analysis of nuclear reaction cross-sections. The conservative energy of the system is deduced in simple approximation using regularized nuclear mass and interaction barrier values. Different reaction for the synthesis of Zc (110-118) nuclei are compared and the favourable conditions are found for fusion of the stable (W-Pt) isotopes with radioactive fission fragment projectiles, like 94Kr or 100Sr. Thus, the cold fusion method can be extended for a synthesis of elements with Z > 113. Survival of the evaporation residue is defined by the neutron-to-fission probability ratio and by the successful emission of gammas at final step of the reaction. Numerical estimates are presented. Fixation of evaporation residue products must correlate with longtime-scale fission and available experimental results are discussed.

  20. Coulomb Excitation and One-Neutron Transfer Studies of Stable and Radioactive Nuclei at HRIBF-ORNL

    SciTech Connect

    Allmond, James M

    2015-01-01

    Several stable and radioactive nuclei ranging from $A=58$ to 208 were recently studied in inverse kinematics by Coulomb excitation and heavy-ion induced one-neutron transfer at the Holifield Radioactive Ion Beam Facility of Oak Ridge National Laboratory. These studies used a CsI-HPGe detector array to detect scattered charged particles and emitted $\\gamma$ rays from the in-beam reactions. A Bragg-curve detector was used to measure the energy loss of the various beams through the targets and to measure the radioactive beam compositions. Stable nickel, strontium, zirconium, molybdenum, tin, tellurium, and lead isotopes and neutron-rich radioactive tin and tellurium isotopes were among the nuclei recently studied. Coulomb excitation was used to measure the electromagnetic moments of the first excited states and heavy-ion induced one-neutron transfer was used to measure the absolute cross sections and lifetimes of the excited single-particle states. A sample of these results are presented here with an emphasis on the tin isotopes. In particular, a survey of the Bragg-curve measurements, Doppler corrections, and inconclusive $i_{13/2}$ candidate in $^{133}$\\textrm{Sn} are presented.

  1. Interplay of collective and single-particle properties of excited states of deformable odd nuclei {sup 155}Eu and {sup 161}Tm

    SciTech Connect

    Sharipov, Sh.; Ermamatov, M. J. Bayimbetova, J. K.

    2008-02-15

    The properties of excited states of two deformable odd nuclei are investigated within the nonadiabatic model previously developed by the present authors. The results of relevant calculations are compared with available experimental data.

  2. X-ray excited Auger transitions of Pu compounds

    SciTech Connect

    Nelson, Art J. Grant, William K.; Stanford, Jeff A.; Siekhaus, Wigbert J.; Allen, Patrick G.; McLean, William

    2015-05-15

    X-ray excited Pu core–valence–valence and core–core–valence Auger line-shapes were used in combination with the Pu 4f photoelectron peaks to characterize differences in the oxidation state and local electronic structure for Pu compounds. The evolution of the Pu 4f core-level chemical shift as a function of sputtering depth profiling and hydrogen exposure at ambient temperature was quantified. The combination of the core–valence–valence Auger peak energies with the associated chemical shift of the Pu 4f photoelectron line defines the Auger parameter and results in a reliable method for definitively determining oxidation states independent of binding energy calibration. Results show that PuO{sub 2}, Pu{sub 2}O{sub 3}, PuH{sub 2.7}, and Pu have definitive Auger line-shapes. These data were used to produce a chemical state (Wagner) plot for select plutonium oxides. This Wagner plot allowed us to distinguish between the trivalent hydride and the trivalent oxide, which cannot be differentiated by the Pu 4f binding energy alone.

  3. Superdeformed nuclei: Shells-vs-liquid drop, pairing-vs-thermal excitations, triaxial-vs-octupole shapes, super-superdeformation

    SciTech Connect

    Dudek, J.

    1987-01-01

    Mechanisms influencing the behavior of superdeformed nuclei are studied using several well established nuclear structure techniques. In particular: pairing, thermal excitation, shell and liquid-drop mechanisms are considered. The effects of quadrupole and hexadecapole (both axial and non-axial), and octupole deformation degrees of freedom are studied. Most of the results are illustrated using the case of /sup 152/Dy nucleus in which a superdeformed band extending up to I approx. 60 h-bar has been found in experiment. Some comparisons between /sup 152/Dy and the nuclei in the neighborhood are given. Calculations show that pairing ''de-aligns'' typically 6 to 8 units of angular momentum, as compared to the corresponding rigid rotation. This takes place for spins extending up to the highest limit, and thus diminishes the effective moments of inertia. Predicted octupole shape susceptibility is extremely large, significantly stronger than the susceptibilities known in the ground-states of many Actinide nuclei. Consequences of this result for the near-constancy of the dynamical moments of inertia are pointed out. Nuclear level densities calculated in function of spin, excitation energy and deformation explain the ''unusual'' side feeding pattern of the /sup 152/Dy superdeformed states. Predictions of super-superdeformed nuclear states (axis ratio varying between 2:1 and 3:1 or more) are given and exemplified for Erbium nuclei. Finally, the problem of superdeformation stability and the influence of increased collective inertia on a barrier penetration are examined. An analytical expression for the effective inertia parameter is obtained and its derivation outlined. 35 refs., 9 figs.

  4. The reduced transition probabilities for excited states of rare-earths and actinide even-even nuclei

    SciTech Connect

    Ghumman, S. S.

    2015-08-28

    The theoretical B(E2) ratios have been calculated on DF, DR and Krutov models. A simple method based on the work of Arima and Iachello is used to calculate the reduced transition probabilities within SU(3) limit of IBA-I framework. The reduced E2 transition probabilities from second excited states of rare-earths and actinide even–even nuclei calculated from experimental energies and intensities from recent data, have been found to compare better with those calculated on the Krutov model and the SU(3) limit of IBA than the DR and DF models.

  5. Comparison of DD, DT and Cf-252 neutron excitation of light and medium mass nuclei for field PGNAA applications

    NASA Astrophysics Data System (ADS)

    Seabury, E. H.; Blackburn, B. W.; Chichester, D. L.; Wharton, C. J.; Caffrey, A. J.

    2007-08-01

    Prompt Gamma Ray Neutron activation analysis can offer significant cost and safety advantages in the identification of explosives and toxic chemicals. As an example, the US military examined over a thousand suspect chemical munitions with Idaho National Laboratory's PINS Chemical Assay System last year. PGNAA requires, of course, a neutron source to excite the atomic nuclei of the item under test via neutron capture and inelastic neutron scattering reactions and the choice of neutron source can drastically affect PGNAA system performance. We have carried out Monte Carlo and laboratory experiments comparing DD, DT and Cf-252 neutrons incident on light and medium mass chemical elements, toward optimizing the design of future neutron-generator-based PGNAA systems for field use. We report the excitation of (n, γ) and (n, n‧) gamma rays from these elements by each type of neutron source.

  6. Excitation functions for complete-fusion and transfer reactions in {sup 4}He interaction with {sup 197}Au nuclei

    SciTech Connect

    Kulko, A. A.; Demekhina, N. A.; Kalpakchieva, R.; Muzychka, Yu. A.; Penionzhkevich, Yu. E.; Rassadov, D. N.; Skobelev, N. K.; Testov, D. A.

    2007-04-15

    Excitation functions are measured for the fusion reactions {sup 197}Au({sup 4}He, xn){sup 201-xn}Tl that are induced by alpha-particle interaction with gold nuclei in the energy range 14-36 MeV and in which x neutrons (0 {<=} x {<=} 3) are evaporated. The stack-activation technique was used to record and separate reaction products. Experimental data on the fusion reactions followed by evaporation of one to three neutrons agree with results of previous studies. For the radiative-capture reaction {sup 197}Au({sup 4}He,{gamma}){sup 201}Tl, the upper limit on the cross section proved to be much lower. The excitation functions for the reactions subjected to measurements are compared with the results of calculations based on the statistical model and with the results of an experiment performed previously in a {sup 6}He beam.

  7. Excitation functions for complete-fusion and transfer reactions in 4He interaction with 197Au nuclei

    NASA Astrophysics Data System (ADS)

    Kulko, A. A.; Demekhina, N. A.; Kalpakchieva, R.; Muzychka, Yu. A.; Penionzhkevich, Yu. E.; Rassadov, D. N.; Skobelev, N. K.; Testov, D. A.

    2007-04-01

    Excitation functions are measured for the fusion reactions 197Au(4He, xn)201-xn Tl that are induced by alpha-particle interaction with gold nuclei in the energy range 14 36 MeV and in which x neutrons (0 ≤ x ≤ 3) are evaporated. The stack-activation technique was used to record and separate reaction products. Experimental data on the fusion reactions followed by evaporation of one to three neutrons agree with results of previous studies. For the radiative-capture reaction 197Au(4He,γ)201Tl, the upper limit on the cross section proved to be much lower. The excitation functions for the reactions subjected to measurements are compared with the results of calculations based on the statistical model and with the results of an experiment performed previously in a 6He beam.

  8. Evolution of collectivity near mid-shell from excited-state lifetime measurements in rare earth nuclei

    NASA Astrophysics Data System (ADS)

    Werner, V.; Cooper, N.; Régis, J.-M.; Rudigier, M.; Williams, E.; Jolie, J.; Cakirli, R. B.; Casten, R. F.; Ahn, T.; Anagnostatou, V.; Berant, Z.; Bonett-Matiz, M.; Elvers, M.; Heinz, A.; Ilie, G.; Radeck, D.; Savran, D.; Smith, M. K.

    2016-03-01

    The B (E 2 ) excitation strength of the first excited 2+ state in even-even nuclei should directly correlate with the size of the valence space and maximize at mid-shell. A previously found saturation of B (E 2 ) strengths in well-deformed rotors at mid-shell is tested through high-precision measurements of the lifetimes of the lowest-lying 2+ states of the 168Hf and 174W rare earth isotopes. Measurements were performed using fast LaBr3 scintillation detectors. Combined with the recently remeasured B (E 2 ;21+→01+) values for Hf and W isotopes the new data remove discrepancies observed in the differentials of B (E 2 ) values for these isotopes.

  9. Unitary version of the single-particle dispersive optical model and single-hole excitations in medium-heavy spherical nuclei

    NASA Astrophysics Data System (ADS)

    Kolomiytsev, G. V.; Igashov, S. Yu.; Urin, M. H.

    2017-07-01

    A unitary version of the single-particle dispersive optical model was proposed with the aim of applying it to describing high-energy single-hole excitations in medium-heavy mass nuclei. By considering the example of experimentally studied single-hole excitations in the 90Zr and 208Pb parent nuclei, the contribution of the fragmentation effect to the real part of the optical-model potential was estimated quantitatively in the framework of this version. The results obtained in this way were used to predict the properties of such excitations in the 132Sn parent nucleus.

  10. Dynamical Model for the Decay of Hot and Rotating Compound Nuclei

    SciTech Connect

    Gupta, Raj K.; Singh, Dalip; Arun, Sham K.; Niyti; Kumar, Raj

    2009-03-04

    As an alternative to the well known Hauser-Feshbach analysis and statistical fission model, a dynamical collective clusterization model, called the dynamical cluster-decay model (DCM), is developed for the decay of hot and rotating compound nuclei (CN) formed in the low-energy heavy ion reactions. The model is a non-statistical description for the decay of a CN to light particles (LPs), intermediate mass fragments (IMFs), fusion-fission (FF) and quasi-fission (QF)(equivalently, capture) processes. The model considers all decay products as dynamical mass motions of preformed fragments or clusters through the interaction barrier, thereby including structure effects of the CN, and is applicable to CN from different mass regions.

  11. A more detailed calculation of particle evaporation and fission of compound nuclei

    NASA Astrophysics Data System (ADS)

    Strumberger, E.; Dietrich, K.; Pomorski, K.

    1991-07-01

    We consider particle evaporation and fission of an ensemble of hot, rotating compound nuclei as a stochastic process. We derive a set of coupled differential equations formed by a Fokker-Planck equation describing fission, and master equations for calculating particle evaporation. From these equations, we are able to determine multiplicities of prefission neutrons, protons and α-particles, their energy spectra and their angular momentum distributions. A comparison of our results with experimental data provides us with information regarding the reduced friction coefficient β, the fission barrier height and the level density parameter. For different iridium isotopes, ( 181,185,187Ir), 185Os and 158Er, we obtain as an upper limit β⩽8.0×10 21s-1.

  12. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE PAGES

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Kohler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. Furthermore, the model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  13. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict the effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid-liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.

  14. Analysis of some modes of multibody decays of low excited actinide nuclei

    NASA Astrophysics Data System (ADS)

    Pyatkov, Yu V.; Kamanin, D. V.; Alexandrov, A. A.; Alexandrova, I. A.; Goryainova, Z. I.; Lavrova, J. E.; Mkaza, N.; Malaza, V.; Kuznetsova, E. A.; Strekalovsky, A. O.; Strekalovsky, O. V.; Zhuchko, V. E.

    2017-01-01

    Careful studies of the fission fragments mass correlation distributions let us to reveal specific linear structures in the region of a big missing mass. It became possible due to applying of effective cleaning of this region from the background linked with scattered fragments. One of the most pronounced structure looks like a rectangle bounded by the magic nuclei. The fission events aggregated in the rectangle show a very low total kinetic energy. We propose possible scenario of forming and decay of the multi-cluster prescission configuration decisive for the experimental findings. This approach is valid as well for treating of another rare decay modes discovered in the past.

  15. Statistical properties of excited nuclei in the mass range 47 ⩽ A ⩽ 59

    NASA Astrophysics Data System (ADS)

    Zhuravlev, B. V.; Lychagin, A. A.; Titarenko, N. N.; Demenkov, V. G.; Trykova, V. I.

    2012-09-01

    Level densities and their energy dependences for nuclei in the mass range of 47 ≤ A ≤ 59 were determined from the results obtained by measuring neutron-evaporation spectra in respective ( p, n) reactions. The spectra of neutrons originating from the ( p, n) reactions on 47Ti, 48Ti, 49Ti, 53Cr, 54Cr, 57Fe, and 59Co nuclei were measured in the proton-energy range of 7-11 MeV. These measurements were performed with the aid of a fast-neutron spectrometer by the time-of-flight method over the base of the EGP-15 pulsed tandem accelerator installed at the Institute for Physics and Power Engineering (Obninsk, Russia). A high resolution of the spectrometer and its stability in the time of flight made it possible to identify reliably discrete low-lying levels along with the continuum part of neutron spectra. Our measured data were analyzed within the statistical equilibrium and preequilibrium models of nuclear reactions. The respective calculations were performed with the aid of the Hauser-Feshbach formalismof statistical theory supplemented with the generalized model of a superfluid nucleus, the back-shifted Fermi gas model, and the Gilbert-Cameron composite formula for nuclear level densities. Nuclear level densities for 47V, 48V, 49V, 53Mn, 54Mn, 57Co, and 59Ni and their energy dependences were determined. The results are discussed and compared with available experimental data and with recommendations of model-based systematics.

  16. Excited State Properties in Neutron-rich Nuclei near N = 40

    NASA Astrophysics Data System (ADS)

    Crider, B. P.; Prokop, C. J.; Liddick, S. N.; Chiara, C. J.; Ayangeakaa, A. D.; Carroll, J. J.; Chen, J.; David, H. M.; Go, S.; Grzywacz, R.; Harker, J.; Janssens, R. V. F.; Lauritsen, T.; Seweryniak, D.; Walters, W. B.

    2015-10-01

    The neutron-rich nuclei near N = 40 have recently been the focus of many experimental and theoretical efforts. In this region, the competing energy cost for promoting pairs of nucleons across either Z = 28 or N = 40 and the energy gain from residual nucleon-nucleon interactions gives rise to several low-energy 0+ states and is a hallmark of shape coexistence. Low-energy 0+ states have been observed in 68Ni, and predicted for other nuclei in the region. Recent theoretical calculations are able to reproduce the energies of known states in 68Ni and stress the importance of the tensor component of the monopole interaction. Yet, while energies of the levels are a useful comparison, a more stringent test is the reproduction of level lifetimes, where the predicted half-lives can vary by several orders of magnitude depending on the interaction. To further benchmark theoretical calculations in this region, a setup designed to measure level lifetimes has been constructed. A description of the array and preliminary results will be presented. This work was supported by the DOE NNSA Award No. DE-NA0000979, NSF Contract No. PHY1102511, DOE SC NP Contract No. DE-AC-06CH11357 and Grant No. DE-FG02-94ER40834.

  17. Isospin Symmetry of Odd-Odd Mirror Nuclei: Identification of Excited States in N=Z-2 {sup 48}Mn

    SciTech Connect

    Bentley, M. A.; Taylor, M. J.; Brown, J. R.; Chandler, C.; Hammond, G.; Carpenter, M. P.; Davids, C.; Janssens, R. V. F.; Lister, C. J.; Seweryniak, D.; Ekman, J.; Rietz, R. du; Freeman, S. J.; Garrett, P. E.; Lenzi, S. M.

    2006-09-29

    Excited states have been observed in the N=Z-2 odd-odd nucleus {sup 48}Mn for the first time. Through comparison with the structure of {sup 48}V, a first high-spin study of an odd-odd mirror pair has been achieved. Differences between the T=1 analogue states in this pair have been interpreted in terms of Coulomb effects, with the aid of shell-model calculations in the full pf valence space. Unlike other mirror pairs, the energy differences have been interpreted almost entirely as due to a monopole effect associated with smooth changes in radius (or deformation) as a function of angular momentum. In addition, the large energy shift between analogue negative-parity states is interpreted in terms of the electromagnetic spin-orbit interaction in nuclei.

  18. Charge-changing particle-hole excitation of 16N and 16F nuclei

    NASA Astrophysics Data System (ADS)

    Taqi Al-Bayati, Ali H.; Darwesh, Sarah S.

    2013-12-01

    The nuclear structure of 16N (closed shell + ν - π) and 16F (closed shell + π - ν) nuclei is studied using particle-hole proton-neutron Tamm-Dancoff Approximation pn TDA and particle-hole proton-neutron Random Phase Approximation pn RPA. The particle-hole Hamiltonian of PSD model space is to be diagonalized in the presence of the PSDMWKPN interaction: for P-space the Cohen-Kurath interaction, for SD-space the Wildenthal Interaction, for the coupling matrix elements between P- and SD-spaces the Millener-Kurath interaction is used, spurious components were eliminated with CM contribution. The results containing energy level schemes and electromagnetic transition strength are compared with the available experimental data.

  19. Mean-field calculation of compressed finite nuclei with {Delta} excitations

    SciTech Connect

    Hasan, Mahmoud A.; Vary, James P. Lee, T.-S.H. Vary, James P.

    1997-12-01

    The energies and matter densities of finite nuclei under radial compression are predicted by using a constrained Hartree-Fock method with the {Delta} degree of freedom included. The results are presented for {sup 90}Zr in a calculation within a model space of seven major oscillator shells. The main feature of this calculation is that the effective baryon-baryon interactions associated with the {Delta} are evaluated within a G-matrix approach based on a coupled-channel NN{circle_plus}N{Delta}{circle_plus}{pi}NN model that can describe the NN data up to 1 GeV. It is found that as the nucleus is compressed to about 2{endash}3 times of the ordinary nuclear density, the {Delta} component is sharply increased to about 10{percent} of all baryons in the system. This result is consistent with the values extracted from relativistic heavy-ion collisions. {copyright} {ital 1997} {ital The American Physical Society}

  20. Charge-changing particle-hole excitation of {sup 16}N and {sup 16}F nuclei

    SciTech Connect

    Taqi Al-Bayati, Ali H.; Darwesh, Sarah S.

    2013-12-16

    The nuclear structure of {sup 16}N (closed shell + ν − π) and {sup 16}F (closed shell + π − ν) nuclei is studied using particle-hole proton-neutron Tamm-Dancoff Approximation pn TDA and particle-hole proton-neutron Random Phase Approximation pn RPA. The particle-hole Hamiltonian of PSD model space is to be diagonalized in the presence of the PSDMWKPN interaction: for P-space the Cohen-Kurath interaction, for SD-space the Wildenthal Interaction, for the coupling matrix elements between P- and SD-spaces the Millener-Kurath interaction is used, spurious components were eliminated with CM contribution. The results containing energy level schemes and electromagnetic transition strength are compared with the available experimental data.

  1. Effect of the initial excitation energy on the average fission lifetime of nuclei

    SciTech Connect

    Gontchar, I. I. Ponomarenko, N. A. Litnevsky, A. L.

    2008-07-15

    The dependence of the fission time on the initial nuclear excitation energy E{sub tot0}* is studied on the basis of a refined combined dynamical and statistical model. It is shown that this dependence may be nonmonotonic, in which case it features a broad maximum. It turns out that the form of the average fission time as a function of E{sub tot0}* depends greatly on the orbital angular momentum L{sub n} carried away by prescission neutrons.

  2. Charge-exchange modes of excitation in deformed neutron-rich nuclei

    SciTech Connect

    Yoshida, Kenichi

    2015-10-15

    Gamow-Teller (GT) mode of excitation and β-decay properties of deformed neutron-rich even-N Zr isotopes are investigated in a self-consistent Skyrme energy-density-functional approach, in which the Hartree-Fock-Bogoliubov equation is solved in the coordinate space and the proton-neutron Quasiparticle-RPA equation is solved in the quasiparticle basis. It is found that a stronger collectivity is generated for the GT giant resonance as an increase in the neutron number. Furthermore, we find that the T = 0 pairing enhances the low-lying GT strengths cooperatively with the T = 1 pairing correlation depending on the microscopic structure of the low-lying mode and the shell structure around the Fermi levels, and that the enhanced strength shortens the β-decay half-lives by at most an order of magnitude.

  3. Deformation increase of high-spin core-excited isomers in the astatine nuclei

    SciTech Connect

    Scheveneels, G.; Hardeman, F.; Neyens, G.; Coussement, R. )

    1991-06-01

    Quadrupole moments of six high-spin isomers in the At isotopes have been measured with the level-mixing-spectroscopy method: {sup 208}At(16{sup {minus}}), {sup 209}At(29/2{sup +}), {sup 210}At(19{sup +},15{sup {minus}}), {sup 211}At(39/2{sup {minus}},29/2{sup +}). The results show that level mixing spectroscopy is a promising technique to determine quadrupole moments of isomers that are difficult to measure by other in-beam hyperfine interaction methods. A large increase of the quadrupole moment is observed if neutrons are excited across or removed from the {ital N}=126 shell closure. This behavior is explained in terms of an enhanced core softness for fewer core neutrons; the aligned valence particles, moving in equatorial orbits, then easily polarize the core towards oblate deformation.

  4. Excitation functions for the production of superheavy nuclei in cold fusion reactions

    SciTech Connect

    Smolanczuk, Robert

    2000-01-01

    Excitation energy dependence of the cross sections of the reactions {sup 208}Pb{sub 126}({sup 50}Ti{sub 28},1n){sup 257}Rf{sub 153} and {sup 208}Pb{sub 126}({sup 58}Fe{sub 32},1n){sup 265}Hs{sub 157} is calculated and compared with the experimental data measured at GSI-Darmstadt. Such a dependence is also calculated for the reaction {sup 208}Pb{sub 126}({sup 86}Kr{sub 50},1n){sup 293}118{sub 175} reported recently by the Berkeley group, and for reactions which may lead to the synthesis of element 119 and production of its odd-Z descendants. Recommendations for future experiments based on the present study are presented. (c) 1999 The American Physical Society.

  5. Possible conservation of the K-quantum number in excited rotating nuclei

    SciTech Connect

    Bracco, A.; Bosetti, P.; Leoni, S. |

    1996-12-31

    The {gamma}-cascades feeding into low-K and high-K bands in the nucleus {sup 163}Er are investigated by analyzing variances and covariances of the spectrum fluctuations. The study of the covariance between pairs of gated spectra reveals that the cascades feeding into the low-K bands are completely different from those feeding the high-K bands. In addition, the number of decay paths obtained analyzing the ridge and the valley in spectra gated by high-K transitions is different than that deduced from the total spectrum. This result is well reproduced with microscopic calculations of strongly interacting bands. It is concluded that the K-selection rules are effective for the excited rotational bands within the angular momentum region probed by the experiment, 30{Dirac_h} {le} I {le} 40{Dirac_h}.

  6. Role of nuclear couplings in the inelastic excitation of weakly-bound neutron-rich nuclei

    SciTech Connect

    Dasso, C.H.; Lenzi, S.M.; Vitturi, A.

    1996-12-31

    Much effort is presently devoted to the study of nuclear systems far from the stability line. Particular emphasis has been placed in light systems such as {sup 11}Li, {sup 8}B and others, where the very small binding energy of the last particles causes their density distribution to extend considerably outside of the remaining nuclear core. Some of the properties associated with this feature are expected to characterize also heavier systems in the vicinity of the proton or neutron drip lines. It is by now well established that low-lying concentrations of multipole strength arise from pure configurations in which a peculiar matching between the wavelength of the continuum wavefunction of the particles and the range of the weakly-bound hole states occurs. To this end the authors consider the break-up of a weakly-bound system in a heavy-ion collision and focus attention in the inelastic excitation of the low-lying part of the continuum. They make use of the fact that previous investigations have shown that the multipole response in this region is not of a collective nature and describe their excited states as pure particle-hole configurations. Since the relevant parameter determining the strength distributions is the binding energy of the last bound orbital they find it most convenient to use single-particle wavefunctions generated by a sperical square-well potential with characteristic nuclear dimensions and whose depth has been adjusted to give rise to a situation in which the last occupied neutron orbital is loosely-bound. Spin-orbit couplings are, for the present purpose, ignored. The results of this investigation clearly indicate that nuclear couplings have the predominant role in causing projectile dissociation in many circumstances, even at bombarding energies remarkably below the Coulomb barrier.

  7. Characterization of the multifragment decay channel in highly excited nuclei. [Indiana Univ. , Bloomington, Indiana

    SciTech Connect

    de Souza, R.T.

    1992-10-01

    Characteristics of multifragment decay in heavy-ion induced reactions at intermediate energies are explored. Evolution of the timescale for emission of intermediate mass fragments (IMF: 3[le]Z[le]20) is investigated. Fragments associated with central collisions in the reactions [sup 36]Ar + [sup 197]Au at E/A = 50, 80, and 110 MeV are emitted on an extremely fast timescale, [tau] [le] 75 fm/c, comparable to the transit time of the projectile past the target nucleus. With increasing incident energy, mean fragment emission times decrease, consistent with statistical decay from highly excited systems or fast dynamical processes. To examine the importance of expansion effects in multifragmentation, the transverse kinetic energy of fragments was investigated. Evidence for expansion effects in the system [sup 36]Ar + [sup 197]Au at E/A = 50, 80, and 110 MeV was indicated by the charge dependence of the mean isotropic kinetic energy. At the highest incident energy the data suggest the onset of volume emission. Construction and performance of low-threshold high-resolution detector telescopes is discussed. Three-body Coulomb trajectory calculations are being used to probe kinematical correlations associated with neck emission of IMFs during fission. Initial design and testing of position sensitive parallel plate avalanche counters for upcoming ternary fission experiments is discussed.

  8. A visual Fortran 90 program for the two-particle or two-hole excitations of nuclei: The PPRPA program

    NASA Astrophysics Data System (ADS)

    Taqi, Ali H.

    Random Phase Approximation (RPA) is one of the main approximation tools in studying nuclear structure. Here, we present a graphical user interface (GUI) Fortran code: Particle-Particle Random Phase Approximation (PPRPA) version 1, 2015. The code performs Tamm-Dancoff approximation (TDA) and Random Phase Approximation (RPA) calculations of nuclear structure of nuclei having A ± 2 nucleons in the total angular momenta and isospin (JT) scheme. The Hamiltonian is diagonalized with a given input model space, single-particle energies and interaction. Space function has been expanded to include orbits s, p, d, f, g and h. The current version of the code allows the user to test 20 orbits only. All possible eigenvalues and amplitudes within a model space are calculated. The single-particle density, charge distribution density and transition density are calculated in the basis of the harmonic oscillator potential. The primary utility of the PPRPA code is providing a visual tool to implementation and understanding of the collective excitation techniques TDA and RPA. Impact of the program includes all students, researchers and all those interested in knowing the facts about the structure of the atom nucleus and about the success of approximation methods in different branches of science.

  9. Monitor RNA synthesis in live cell nuclei by using two-photon excited fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Lin, Danying; Wang, Yan; Qi, Jing; Yan, Wei; Qu, Junle

    2015-03-01

    Probing of local molecular environment in cells is of significant value in creating a fundamental understanding of cellular processes and molecular profiles of diseases, as well as studying drug cell interactions. In order to investigate the dynamically changing in subcellular environment during RNA synthesis, we applied two-photon excited fluorescence lifetime imaging microscopy (FLIM) method to monitor the green fluorescent protein (GFP) fused nuclear protein ASF/SF2. The fluorescence lifetime of fluorophore is known to be in inverse correlation with a local refractive index, and thus fluorescence lifetimes of GFP fusions provide real-time information of the molecular environment of ASF/SF2- GFP. The FLIM results showed continuous and significant fluctuations of fluorescence lifetimes of the fluorescent protein fusions in live HeLa cells under physiological conditions. The fluctuations of fluorescence lifetime values indicated the variations of activities of RNA polymerases. Moreover, treatment with pharmacological drugs inhibiting RNA polymerase activities led to irreversible decreases of fluorescence lifetime values. In summary, our study of FLIM imaging of GFP fusion proteins has provided a sensitive and real-time method to investigate RNA synthesis in live cell nuclei.

  10. Photoluminescence of Traces of Aromatic Compounds in Aqueous Solutions Upon Excitation by a Repetitively Pulsed Laser

    NASA Astrophysics Data System (ADS)

    Agal'Tsov, A. M.; Gorelik, V. S.; Moro, R. A.

    2000-06-01

    A method is suggested for quantitative and qualitative analysis of aromatic compounds in water at extremely low concentrations (<1 ng/l). The method is based on excitation of luminescence by short (20 ns) UV laser pulses with a peak power of 104 W at 255.3 nm and a pulse repetition rate of 10 kHz. The shape of luminescence spectra of benzene, benzoic acid, saccharin, aspirin, and L-tryptophan at low concentrations in water is analyzed. The luminescence kinetics of these compounds is studied at short delay times (10 20 ns). The lifetimes of the electronic excited states of the aromatic compounds are measured. The applications of the method for studies of low-concentration aqueous solutions of biological and medicine compounds are analyzed.

  11. First spectroscopic information from even-even nuclei in the region "southeast" of 132Sn: Neutron-excitation dominance of the 21+ state in 132Cd

    NASA Astrophysics Data System (ADS)

    Wang, H.; Aoi, N.; Takeuchi, S.; Matsushita, M.; Motobayashi, T.; Steppenbeck, D.; Yoneda, K.; Baba, H.; Dombrádi, Zs.; Kobayashi, K.; Kondo, Y.; Lee, J.; Liu, H.; Minakata, R.; Nishimura, D.; Otsu, H.; Sakurai, H.; Sohler, D.; Sun, Y.; Tian, Z.; Tanaka, R.; Vajta, Zs.; Yang, Z.; Yamamoto, T.; Ye, Y.; Yokoyama, R.

    2016-11-01

    The neutron-rich nucleus 132Cd has been studied at the RIKEN Radioactive Isotope Beam Factory using in-beam γ -ray spectroscopy with two-proton removal reactions from 134Sn. A γ -ray transition was observed at 618(8) keV and was assigned to the 21+→0g.s . + decay. The 21+ state provides the first spectroscopic information from the even-even nuclei located in the region "southeast" of the doubly magic nucleus 132Sn. By comparing with the 21+ excitation energies in the semimagic nuclei 134Sn and 130Cd, it is found that neutron excitations dominate the 21+ state in 132Cd, in a similar manner to 136Te. The results are discussed in terms of proton-neutron configuration mixing.

  12. Study of two-photon excitation spectra of organic compounds absorbing in the UV region

    SciTech Connect

    Babenko, V A; Sychev, Andrei A

    2004-12-31

    A method is proposed for recording two-photon excitation (TPE) spectra of organic compounds with the help of picosecond pulses from a dye laser tunable in the range from 550 to 640 nm. The TPE spectra are obtained for organic scintillators and drugs: paraterphenyl in liquid and solid phases, stilbene single crystal and Streptocid powder, having a one-photon absorption band in the region from 270 to 350 nm. It is shown that the vibronic structure in the TPE spectra of these compounds is independent of their aggregate state and is an individual characteristic of each of the compounds. (active media)

  13. Excitation of Fe and Cu sputtered from compounds holding different electronic core configurations

    NASA Astrophysics Data System (ADS)

    Gade, D.; Larsen, K. B.; Palle, K. T.; Veje, E.

    Some chemical compounds of either copper or iron have been bombarded with 80 keV Ar + ions, and the excitation of sputtered particles has been studied with the use of optical spectrometry. The scope was primarily to study whether the initial charge state (i.e. valence) of the metal element in the undisturbed compound influences the excitation process. All data have been taken at dynamic equilibrium conditions. It is found that the relative line intensities of different core configurations depend only weakly on the valence of the metal in the undisturbed compound. As an example, for sputtering of excited, neutral Cu, the relative distribution of excitation among levels of core configurations 3d 9 and 3d 10 does not depend on whether the copper atoms initially have core configuration 3d 9 (i.e. divalent as e.g. in CuCl 2) or 3d 10 (monovalent as in CuCl). Actually, for both cases the relative line intensitive are very close to those obtained with a pure, elemental Cu target. The results are compatible with previous findings, that when a composite targe is bombarded for such a long time that steady-state conditions are reached, the surface region of the target will be so depleted in the electronegative element that it is almost metallic.

  14. Measurement of γ-emission branching ratios for ^{154,156,158}Gd compound nuclei: Tests of surrogate nuclear reaction approximations for (n,γ) cross sections

    NASA Astrophysics Data System (ADS)

    Scielzo, N. D.; Escher, J. E.; Allmond, J. M.; Basunia, M. S.; Beausang, C. W.; Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Clark, R. M.; Dietrich, F. S.; Fallon, P.; Gibelin, J.; Goldblum, B. L.; Lesher, S. R.; McMahan, M. A.; Norman, E. B.; Phair, L.; Rodriquez-Vieitez, E.; Sheets, S. A.; Thompson, I. J.; Wiedeking, M.

    2010-03-01

    The surrogate nuclear reaction method can be used to determine neutron-induced reaction cross sections from measured decay properties of a compound nucleus created using a different reaction and calculated formation cross sections. The reliability of (n,γ) cross sections determined using the Weisskopf-Ewing and ratio approximations are explored for the Gd155,157(n,γ) reactions. Enriched gadolinium targets were bombarded with 22-MeV protons and γ rays were detected in coincidence with scattered protons using the Silicon Telescope Array for Reaction Studies/Livermore-Berkeley Array for Collaborative Experiments (STARS/LiBerACE) silicon and germanium detector arrays. The γ-emission probabilities for the Gd154,156,158 compound nuclei were measured at excitation energies up to 12 MeV. It is found that the approximations yield results that deviate from directly measured Gd155,157(n,γ) cross sections at low energies. To extract reliable cross sections, a more sophisticated analysis should be developed that takes into account angular-momentum differences between the neutron-induced and surrogate reactions.

  15. Nucleus Z=126 with magic neutron number N=184 may be related to the measured Maruhn-Greiner maximum at A/2=155 from compound nuclei at low energy nuclear reactions

    NASA Astrophysics Data System (ADS)

    Prelas, M. A.; Hora, H.; Miley, G. H.

    2014-07-01

    Evaluation of nuclear binding energies from theory close to available measurements of a very high number of superheavy elements (SHE) based on α-decay energies Qα, arrived at a closing shell with a significant neutron number 184. Within the option of several discussed magic numbers for protons of around 120, Bagge's numbers 126 and 184 fit well and are supported by the element generation measurements by low energy nuclear reactions (LENR) discovered in deuterium loaded host metals. These measurements were showing a Maruhn-Greiner maximum from fission of compound nuclei in an excited state with double magic numbers for mutual confirmation.

  16. Singlet-Triplet Excitations in the Unconventional Spin-Peierls TiOBr Compound

    NASA Astrophysics Data System (ADS)

    Clancy, J. P.; Gaulin, B. D.; Adams, C. P.; Granroth, G. E.; Kolesnikov, A. I.; Sherline, T. E.; Chou, F. C.

    2011-03-01

    We have performed time-of-flight neutron scattering measurements on powder samples of the unconventional spin-Peierls compound TiOBr using the fine-resolution Fermi chopper spectrometer (SEQUOIA) at the Spallation Neutron Source at Oak Ridge National Laboratory. These measurements reveal two branches of magnetic excitations within the commensurate and incommensurate spin-Peierls phases, which we associate with n=1 and n=2 triplet excitations out of the singlet ground state. These results represent the first direct measurement of the singlet-triplet energy gap in TiOBr, which has a value of Eg=21.2±1.0meV.

  17. What lurks in ULIRGs?—Probing the chemistry and excitation of molecular gas in the nuclei of Arp 220 and NGC 6240

    NASA Astrophysics Data System (ADS)

    Manohar, Swarnima; Scoville, Nick

    2017-02-01

    We have imaged the dense star-forming regions of Arp 220 and NGC 6240 in the 3 mm band transitions of CO, HCN, HCO+, HNC, and CS at 0.″5–0.″8 resolution using CARMA. Our data set images all these lines at similar resolutions and high sensitivity, and can be used to derive line ratios of faint high excitation lines. In both the nuclei of Arp 220, the HCN/HNC ratios suggest chemistry of X-ray Dominated Regions (XDRs)—a likely signature of an active galactic nucleus. In NGC 6240, there is no evidence of XDR type chemistry, but there the bulk of the molecular gas is concentrated between the nuclei rather than on them. We calculated molecular H2 densities from excitation analysis of each of the molecular species. It appears that the abundances of HNC and HCO+ in Ultra Luminous Infrared Galaxies may be significantly different from those in galactic molecular clouds. The derived H2 volume densities are ∼5 × 104 cm‑3 in the Arp 220 nuclei and ∼104 cm‑3 in NGC 6240.

  18. Triplet-state energies and substituent effects of excited aroyl compounds in the gas phase.

    PubMed

    Lin, Z P; Aue, W A

    2000-01-01

    Triplet-state energy values obtained from the gas phase are still scarce. In this study, the triplet-state energies of 58 aroyl compounds, introduced as gas chromatographic peaks at atmospheric pressure and typically 473 K, have been determined from the 0-0 bands of their n --> pi* type phosphorescence spectra in excited nitrogen. Correlations of those gas-phase triplet-state energies with Hammett constants could be observed for substituted acetophenones, benzaldehydes and benzophenones.

  19. Non-toxic, water-soluble photocalorimetric reference compounds for UV and visible excitation

    NASA Astrophysics Data System (ADS)

    Abbruzzetti, Stefania; Viappiani, Cristiano; Murgida, Daniel H.; Erra-Balsells, Rosa; Bilmes, Gabriel M.

    1999-04-01

    A set of non-toxic, water-soluble photocalorimetric reference compounds has been characterized. These compounds are brilliant blue G, brilliant black BN, new coccine, indigo carmine, and tartrazine. Neutral aqueous solutions of all compounds are photochemically stable under UV-visible excitation ( λ>300 nm). None of these dyes are fluorescent or show optical transients detectable by laser flash photolysis on the nano- to microsecond time scale. The relationship between the amplitude of the photoacoustic signal and the laser fluence is linear up to at least 350 J/m 2. The fraction of absorbed energy delivered to the medium as heat within the integration time of the instrument ( α) is equal to 1 for all of the samples, within the experimental error (±0.05). With the exception of tartrazine, no photoinduced structural volume changes were detected for any of the dyes.

  20. Direct detection of radical generation in rat liver nuclei on treatment with tumour-promoting hydroperoxides and related compounds.

    PubMed

    Greenley, T L; Davies, M J

    1994-04-12

    EPR spin trapping has been employed to directly detect radical production in isolated rat liver nuclei on exposure to a variety of hydroperoxides and related compounds which are known, or suspect, tumour promoters. The hydroperoxides, in the absence of reducing equivalents, undergo oxidative cleavage, generating peroxyl radicals. In the presence of NADPH (and to a lesser extent NADH) reductive cleavage of the O-O bond generates alkoxyl radicals. These radicals undergo subsequent rearrangements and reactions (dependent on the structure of the alkoxyl radical), generating carbon-centred radicals. Acyl peroxides and peracids appear to undergo only reductive cleavage of the O-O bond. With peracids this cleavage can generate aryl carboxyl (RCO2.) or hydroxyl radicals (HO.); with acyl peroxides, aryl carboxyl radicals are formed and, in the case of t-butyl peroxybenzoate, alkoxyl radicals (RO.). The radicals detected with each peroxide are similar in type to those detected in the rat liver microsomal fraction, although the extent of radical production is lower. The subsequent reactions of the initially generated radicals are similar to those determined in homogeneous chemical systems, suggesting that they are in free solution. Experiments with NADPH/NADH, heat denaturation of the nuclei and various inhibitors suggest that radical generation is an enzymatic process catalysed by haemoproteins, in particular cytochrome P-450, and that NADPH/cytochrome P-450 reductase is involved in the reductive cleavage of the O-O bond. The generation of these radicals by the rat liver nuclear fraction is potentially highly damaging for the cell due to the proximity of the generating source to DNA. Several previous studies have shown that some of the radicals detected in this study, such as aryl carboxyl and aryl radicals, can damage DNA, via various reactions which result in the generation of strand breaks and adducts to DNA bases: these processes are suggested to play an important role

  1. Decay analysis of compound nuclei with masses A ≈30 - 200 formed in reactions involving loosely bound projectiles

    NASA Astrophysics Data System (ADS)

    Kaur, Mandeep; Singh, BirBikram; Sharma, Manoj K.; Gupta, Raj K.

    2015-08-01

    The dynamics of compound nuclei formed in the reactions using loosely bound projectiles are analyzed within the framework of the dynamical cluster-decay model (DCM) of Gupta and Collaborators. We have considered the reactions with neutron-rich and neutron-deficient projectiles, respectively, as 7Li , 9Be , and 7Be , on various targets at three different Elab energies, forming compound nuclei in the mass region A ˜30 - 200. For these reactions, the contributions of light-particle (LP, A ≤4 ) cross sections σLP, energetically favored intermediate-mass-fragment (IMF, 5 ≤A2≤20 ) cross sections σIMF, as well as the fusion-fission ff cross sections σff constitute the σfus(=σLP+σIMF+σff ), i.e., the contributions of the emitted LPs, IMFs, and ff fragments are added for all the angular momenta up to the ℓmax value for the respective reactions. Interestingly, we find that the empirically fitted neck-length parameter Δ Remp , the only parameter of the DCM, is uniquely fixed to address σfus for all the reactions having the same loosely bound projectile at a chosen incident laboratory energy. It may be noted that, in DCM, the dynamical collective mass motion of preformed LPs, IMFs, and ff fragments or clusters, through the modified interaction potential barrier, are treated on parallel footing. The modification of the barrier is due to nonzero Δ Remp , and the values of corresponding modified interaction-barrier heights Δ VBemp for such reactions are almost of the same order, specifically at the respective ℓmax value.

  2. Physics of Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Khoa, Dao Tien; Egelhof, Peter; Gales, Sydney; Giai, Nguyen Van; Motobayashi, Tohru

    2008-04-01

    Studies at the RIKEN RI beam factory / T. Motobayashi -- Dilute nuclear states / M. Freer -- Studies of exotic systems using transfer reactions at GANIL / D. Beaumel et al. -- First results from the Magnex large-acceptance spectrometer / A. Cunsolo et al. -- The ICHOR project and spin-isospin physics with unstable beams / H. Sakai -- Structure and low-lying states of the [symbol]He exotic nucleus via direct reactions on proton / V. Lapoux et al. -- Shell gap below [symbol]Sn based on the excited states in [symbol]Cd and [symbol]In / M. Górska -- Heavy neutron-rich nuclei produced in the fragmentation of a [symbol]Pb beam / Zs. Podolyák et al. -- Breakup and incomplete fusion in reactions of weakly-bound nuclei / D.J. Hinde et al. -- Excited states of [symbol]B and [symbol]He and their cluster aspect / Y. Kanada-En'yo et al. -- Nuclear reactions with weakly-bound systems: the treatment of the continuum / C. H. Dasso, A. Vitturi -- Dynamic evolution of three-body decaying resonances / A. S. Jensen et al. -- Prerainbow oscillations in [symbol]He scattering from the Hoyle state of [symbol]C and alpha particle condensation / S. Ohkubo, Y. Hirabayashi -- Angular dispersion behavior in heavy ion elastic scattering / Q. Wang et al. -- Microscopic optical potential in relativistic approach / Z.Yu. Ma et al. -- Exotic nuclei studied in direct reactions at low momentum transfer - recent results and future perspectives at fair / P. Egelhof -- Isotopic temperatures and symmetry energy in spectator fragmentation / M. De Napoli et al. -- Multi-channel algebraic scattering theory and the structure of exotic compound nuclei / K. Amos et al. -- Results for the first feasibility study for the EXL project at the experimental storage ring at GSI / N. Kalantar-Nayestanaki et al. -- Coulomb excitation of ISOLDE neutron-rich beams along the Z = 28 chain / P. Van Duppen -- The gamma decay of the pygmy resonance far from stability and the GDR at finite temperature / G. Benzoni et al

  3. Interweaving of elementary modes of excitation in superfluid nuclei through particle-vibration coupling: Quantitative account of the variety of nuclear structure observables

    NASA Astrophysics Data System (ADS)

    Idini, A.; Potel, G.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2015-09-01

    A complete characterization of the structure of nuclei can be obtained by combining information arising from inelastic scattering, Coulomb excitation, and γ -decay, together with one- and two-particle transfer reactions. In this way it is possible to probe both the single-particle and collective components of the nuclear many-body wave function resulting from the coupling of these modes and, as a result, diagonalizing the low-energy Hamiltonian. We address the question of how accurately such a description can account for experimental observations in the case of superfluid nuclei. Our treatment goes beyond the traditional approach, in which these properties are calculated separately, and most often for systems near closed shells, based on perturbative approximations (weak coupling). It is concluded that renormalizing empirically and on equal footing bare single-particle and collective motion of open-shell nuclei in terms of self-energy (mass) and vertex corrections (screening), as well as particle-hole and pairing interactions through particle-vibration coupling (PVC), leads to a detailed, quantitative account of the data, constraining the possible values of the k mass, of the 1S0 bare N N interaction, and of the PVC strengths within a rather narrow window.

  4. Dynamical simulation of the fission process and anisotropy of the fission fragment angular distributions of excited nuclei produced in fusion reactions

    NASA Astrophysics Data System (ADS)

    Eslamizadeh, H.

    2016-10-01

    Abstract. A stochastic approach based on four-dimensional Langevin equations was applied to calculate the anisotropy of fission fragment angular distributions, average prescission neutron multiplicity, and the fission probability in a wide range of fissile parameters for the compound nuclei 197Tl,225Pa,248Cf , and 264Rf produced in fusion reactions. Three collective shape coordinates plus the projection of total spin of the compound nucleus to the symmetry axis K were considered in the four-dimensional dynamical model. In the dynamical calculations, nuclear dissipation was generated through the chaos-weighted wall and window friction formula. Furthermore, in the dynamical calculations the dissipation coefficient of K ,γk was considered as a free parameter, and its magnitude inferred by fitting measured data on the anisotropy of fission fragment angular distributions for the compound nuclei 197Tl,225Pa,248Cf , and 264Rf. Comparison of the calculated results for the anisotropy of fission fragment angular distributions with the experimental data showed that the results of the calculations are in good agreement with the experimental data by using values of the dissipation coefficient of K equal to (0.185-0.205), (0.175-0.192), (0.077-0.090), and (0.075-0.085) (MeVzs ) -1 /2 for the compound nuclei 197Tl,225Pa,248Cf , and 264Rf, respectively. It was also shown that the influence of the dissipation coefficient of K on the results of the calculations of the prescission neutron multiplicity and fission probability is small.

  5. Mass yields and kinetic energy of fragments from fission of highly-excited nuclei with A≲220

    NASA Astrophysics Data System (ADS)

    Denisov, V. Yu.; Margitych, T. O.; Sedykh, I. Yu.

    2017-02-01

    It is shown that the potential energy surface of the two separated fragments has the saddle point, which takes place at small distance between the surfaces of well-deformed fragments. The height of this two-body saddle point is larger than the height of one-body fission barrier for nuclei with A ≲ 220. The mass yields of the fission fragments, which are appearing at the fission of nuclei with A ≲ 220, are related to the number of states of the two-fragment systems at the two-body saddle points. The characteristics of kinetic energy of fragments are described by using the trajectory motion equations with the dissipation terms. The Gaussian distribution of the final kinetic energy around the classical value of this energy induced by the stochastic fluctuations is taken into account at an evaluation of the total kinetic energy distributions of the fission fragments.

  6. Evidence for Cation-Controlled Excited-State Localization in a Ruthenium Polypyridyl Compound.

    PubMed

    Beauvilliers, Evan E; Meyer, Gerald J

    2016-08-01

    The visible absorption and photoluminescence (PL) properties of the four neutral ruthenium diimine compounds [Ru(bpy)2(dcb)] (B2B), [Ru(dtb)2(dcb)] (D2B), [Ru(bpy)2(dcbq)] (B2Q), and [Ru(dtb)2(dcbq)] (D2Q), where bpy is 2,2'-bipyridine, dcb is 4,4'-(CO2(-))2-bpy, dtb is 4,4'-(tert-butyl)2-bpy, and dcbq is 4,4'-(CO2(-))2-2,2'-biquinoline, are reported in the presence of Lewis acidic cations present in fluid solutions at room temperature. In methanol solutions, the measured spectra were insensitive to the presence of these cations, while in acetonitrile a significant red shift in the PL spectra (≤1400 cm(-1)) was observed consistent with stabilization of the metal-to-ligand charge transfer (MLCT) excited state through Lewis acid-base adduct formation. No significant spectral changes were observed in control experiments with the tetrabutylammonium cation. Titration data with Li(+), Na(+), Mg(2+), Ca(2+), Zn(2+), Al(3+), Y(3+), and La(3+) showed that the extent of stabilization saturated at high cation concentration with magnitudes that scaled roughly with the cation charge-to-size ratio. The visible absorption spectra of D2Q was particularly informative due to the presence of two well-resolved MLCT absorption bands: (1) Ru → bpy, λmax ≈ 450 nm; and (2) Ru → dcbq, λmax ≈ 540 nm. The higher-energy band blue-shifted and the lower-energy band red-shifted upon cation addition. The PL intensity and lifetime of the excited state of B2B first increased with cation addition without significant shifts in the measured spectra, behavior attributed to a cation-induced change in the localization of the emissive excited state from bpy to dcb. The importance of excited-state localization and stabilization for solar energy conversion is discussed.

  7. Inelastic electron scattering form factors involving the second excited 2+ levels in the nuclei 48Ti and 50Cr

    NASA Astrophysics Data System (ADS)

    Mukherjee, G.; Sharma, S. K.

    1985-02-01

    A microscopic description of the recent data on the Coulomb form factors for the 0g.s.+-->2+2 transitions in the nuclei 48Ti and 50Cr is attempted in terms of the prolate and oblate intrinsic states resulting from realistic effective interactions operating in the 2p-1f shell. The results for the higher momentum-transfer region show significant improvements compared to the form factor estimates obtained in some recent shell model calculations involving the fn7/2+fn-17/2p3/2 configurations.

  8. Calculation of core-level excitation in some MAX-phase compounds

    NASA Astrophysics Data System (ADS)

    Wang, Liaoyuan; Rulis, Paul; Ching, W. Y.

    2013-07-01

    We report first-principles spectroscopic calculation of core level excitations in five MAX-phase compounds. The spectra of Ti-K edges in Ti2AlC and Ti2AlN, C-K edge in Ti2AlC, N-K edge in Ti2AlN, and Nb-K edge in Nb2AlC are calculated and found to be in good agreement with reported experimental measurements. Based on this agreement, the Al-K and Al-L3 edges in the same five phases plus the Cr-K and C-K edges in Cr2AlC and the C-K edge in Nb2AlC are calculated as theoretical predictions. We further analyze the anisotropy in the calculated spectra to gain additional insights on the structure-properties relationships in these MAX-phase compounds. These results are further discussed in the context of the local atomic environments of the M, A, and X elements in MAX-phase compounds and in relation to their fundamental electronic structures.

  9. Ionization, excitation, and electron transfer in MeV-energy collisions between light nuclei and C{sup 5+}(1s) ions studied with a Sturmian basis

    SciTech Connect

    Winter, Thomas G.

    2004-04-01

    Cross sections have been determined for direct excitation, ionization, and electron transfer in collisions between H, He, Li, and Be nuclei and C{sup 5+}(1s) target ions at nuclear energies 1-24 MeV/nucleon, extending earlier work [Phys. Rev. A 56, 2903 (1997)] to higher energies. Coupled Sturmian pseudostates of principal quantum number at least up to 30 have been included for each angular momentum s, p, d, and f centered on the C nucleus, as well as a 1s state centered on the projectile. Detailed basis-convergence studies have been carried out. Cross sections have been compared with the corresponding Born results, and scaling rules have also been examined.

  10. Ab initio molecular dynamics study on the excitation dynamics of psoralen compounds

    NASA Astrophysics Data System (ADS)

    Nakai, H.; Yamauchi, Y.; Nakata, A.; Baba, T.; Takahashi, H.

    2003-08-01

    Ab initio molecular dynamics (AIMD) simulations are performed for studying the S0→T1 excitation dynamics of psoralen compounds; namely, nonsubstituted psoralen, 5-methoxypsoralen (5-MOP), and 8-methoxypsoralen (8-MOP). The density functional theory calculations at the B3LYP/D95V level are used for evaluating the atomic forces in every AIMD step. The specific behavior of 8-MOP in the T1 state, which has been reported by the experimental study, is found to be due to a unique open-ring structure, which leads to a different spin distribution in comparison with the cases of psoralen and 5-MOP and further to a crossing between the S0 and T1 states.

  11. Primary photochemistry of nitrated aromatic compounds: excited-state dynamics and NO· dissociation from 9-nitroanthracene.

    PubMed

    Plaza-Medina, Eddy F; Rodríguez-Córdoba, William; Morales-Cueto, Rodrigo; Peon, Jorge

    2011-02-10

    We report results of femtosecond-resolved ex-periments which elucidate the time scale for the primary photoinduced events in the model nitroaromatic compound 9-nitroanthracene. Through time-resolved fluorescence measurements, we observed the ultrafast decay of the initially excited singlet state, and through transient absorption experiments, we observed the spectral evolution associated with the formation of the relaxed phosphorescent T(1) state. Additionally, we have detected for the first time the accumulation of the anthryloxy radical which results from the nitro-group rearrangement and NO(•) dissociation from photoexcited 9-nitroanthracene, a photochemical channel which occurs in parallel with the formation of the phosphorescent state. The spectral evolution in this molecule is highly complex since both channels take place in similar time ranges of up to a few picoseconds. Despite this complexity, our experiments provide the general time scales in which the primary products are formed. In addition, we include calculations at the time-dependent density functional level of theory which distinguish the molecular orbitals responsible for the n-π* character of the "receiver" vibronic triplet states that couple with the first singlet state and promote the ultrafast transfer of population between the two manifolds. Comparisons with the isoelectronic compounds anthracene-9-carboxylic acid and its conjugated base, which are highly fluorescent, show that in these two compounds the near-isoenergeticity of the S(1) with an appropriate "receiver" triplet state is disrupted, providing support to the idea that a specific energy coincidence is important for the ultrafast population of the triplet manifold, prevalent in polycyclic nitrated aromatic compounds.

  12. High-precision excited state lifetime measurements in rare earth nuclei using LaBr3(Ce) detectors

    NASA Astrophysics Data System (ADS)

    Williams, E.; Cooper, N.; Bonett-Matiz, M.; Werner, V.; Régis, J.-M.; Rudigier, M.; Ahn, T.; Anagnostatou, V.; Berant, Z.; Bunce, M.; Elvers, M.; Heinz, A.; Ilie, G.; Jolie, J.; Radeck, D.; Savran, D.; Smith, M.

    2012-10-01

    To study how collective nuclear structure evolves towards mid-shell and test next-generation LaBr3(Ce) scintillation detectors, measurements of the lifetimes of 21+ states in 168Hf and 174W were conducted at the Wright Nuclear Structure Laboratory. Preliminary results indicate that the excellent time and energy resolution of LaBr3 detectors make them well suited to fast timing measurements, allowing for improved background subtraction and peak resolution in comparison to BaF2 detectors. Preliminary analysis shows an order of magnitude reduction in the statistical error of the 2+ lifetimes in comparison to literature values for both nuclei. In the case of 174W, a substantial reduction of the observed lifetime hints at the possibility of new physics in the region.

  13. Excitation Functions for Complete Fusion and Transfer Reactions in the Interaction of 4He Nuclei with 197Au

    NASA Astrophysics Data System (ADS)

    Kulko, A. A.; Demekhina, N. A.; Kalpakchieva, R.; Muzychka, Yu. A.; Penionzhkevich, Yu. E.; Rassadov, D. N.; Skobelev, N. K.; Testov, D. A.

    2007-05-01

    Excitation functions have been measured for the fusion reaction 197Au(αxn)201-xnTl with the evaporation of x neutrons (0⩽x⩽3) in the energy range 14-36 MeV. The induced-activation method was used for registration and identification of the reaction products. The experimental cross sections for the (1-3)-neutron evaporation residues are in good agreement with the results known from literature. For the radiation capture reaction 197Au(α,γ)201Tl, the upper limit was obtained essentially lower. The excitation functions for the measured reactions are compared with calculations in the frame of the statistical model, as well as with formerly measured similar data with a 6He beam.

  14. Excitation Functions for Complete Fusion and Transfer Reactions in the Interaction of 4He Nuclei with 197Au

    SciTech Connect

    Kulko, A. A.; Demekhina, N. A.; Kalpakchieva, R.; Muzychka, Yu. A.; Penionzhkevich, Yu. E.; Rassadov, D. N.; Skobelev, N. K.; Testov, D. A.

    2007-05-22

    Excitation functions have been measured for the fusion reaction 197Au({alpha}xn)201-xnTl with the evaporation of x neutrons (0{<=}x{<=}3) in the energy range 14-36 MeV. The induced-activation method was used for registration and identification of the reaction products. The experimental cross sections for the (1-3)-neutron evaporation residues are in good agreement with the results known from literature. For the radiation capture reaction 197Au({alpha},{gamma})201Tl, the upper limit was obtained essentially lower. The excitation functions for the measured reactions are compared with calculations in the frame of the statistical model, as well as with formerly measured similar data with a 6He beam.

  15. Competing analysis of α and 2p2n-emission from compound nuclei formed in neutron induced reactions

    NASA Astrophysics Data System (ADS)

    Kaur, Amandeep; Sharma, Manoj K.

    2017-01-01

    The decay mechanism of compound system 61Ni* formed in fast neutron induced reactions is explored within the collective clusterization approach of the Dynamical Cluster-decay Model (DCM) in reference to a recent experiment over an energy spread of En = 1- 100 MeV. The excitation functions for the decay of the compound nucleus 61Ni* formed in the n +60Ni reaction show a double humped variation with incident beam energy where the peak at lower energy corresponds to α-emission while the one at higher energy originates from 2 p 2 n-emission. The experimentally observed transmutation of α-emission at lower energy into 2 p 2 n-emission at higher incident energies is explained on the basis of temperature dependence of the binding energies used within the framework of DCM. The cross-sections for the formation of the daughter nucleus 57Fe after emission of α-cluster from the 61Ni* nucleus are addressed by employing the neck length parameter (ΔR), finding decent agreement with the available experimental data. The calculations are done for non-sticking choice of moment of inertia (INS) in the centrifugal potential term, which forms the essential ingredient in DCM based calculations. In addition to this, the effect of mass (and charge) of the compound nucleus is exercised in view of α and 2 p 2 n emission and comparative study of the decay profiles of compound systems with mass A = 17-93 is employed to get better description of decay patterns.

  16. Scattering of α-particles and 3He on 16O nuclei and its excitation mechanism at energies near 50MeV

    NASA Astrophysics Data System (ADS)

    Burtebayev, N.; Duysebayev, A.; Duysebayev, B. A.; Burtebayeva, J.; Nassurlla, M.; Sadykov, B.; Zholdybayev, T. K.; Saduev, N.; Sakuta, S. B.; Spitaleri, C.; Novatsky, B. G.; Stepanov, D. N.; Sadykov, T. Kh.

    Elastic and inelastic scattering of α-particles at 48.1MeV and 3He at 60MeV on 16O nuclei has been measured with excitation of states at 6.05 (0+)-6.13 (3-)MeV, 6.92 (2+)-7.12 (1-)MeV and 8.87 (2-)MeV. The center-of-mass beam momenta are the same for these two strongly absorbed particles. Analysis of angular distributions was performed in the frameworks of the optical model, the coupled channels method and the Distorted Wave Born Approximation (DWBA). A good description of experimental data was obtained over the full angular range without taking into account the spin-orbit interaction and the cluster transfer mechanism with real potentials that have volume integrals of about 400MeV fm3. Collective and microscopic models were used in the analysis of the inelastic scattering. The values of the octupole deformation lengths were extracted. It is shown that nuclear rainbow effects appear not only in the elastic, but also in the inelastic scattering with excitation of the 3- state of 16O.

  17. The investigation of dipole excitations in double-even 184W nuclei at the spectroscopic energy region

    NASA Astrophysics Data System (ADS)

    Zenginerler, Zemine; Ertugral, Filiz; Guiyev, Ekber; Kuliev, Ali Ekber

    2014-03-01

    The dipole excitations of double-even nucleus 184W are studied using the QRPA model with rotational, translational and Galilean invariant Hamilonian. This approach not only gives opportunity to test for the validity of the present theory and it also allows for the interpretation of the experimentally spin unknown states. The analysis of calculation shows that M1 strength, mainly an orbital character predicted from calculations of orbit-to-spin ratio, has a relative contribution, rougly 63% with summed M1 widths ΣΓ0red (M 1) = 5 . 3meV between 2<ωi<3.7 MeV, to summed ground-state decay widths of dipole mode. The experimental summed widths in the same energy interval is ΣΓored (exp) = 4.73 +/- 1.28 meV. On the other hand, several well pronounced electric dipole K = 1 excitation in spectroscopic region where mainly fulled with M1 dipole states is predicted. The total E1 widths with K = 1 is ΣΓ0red (E 1) = 2 . 62meV (30% of the summed widths), quite close to the experimental value with K = 0 ΣΓored (exp) = 2.09 +/- 0.59 meV. The theory also indicates a few positive (ΣΓ0red (M 1) = 0 . 24meV) and negative parity ΣΓ0red (E 1) = 0 . 34meV with K = 0 states with summed widths, respectively.

  18. Theoretical and experimental study on the intramolecular charge transfer excited state of the new highly fluorescent terpyridine compound

    NASA Astrophysics Data System (ADS)

    Song, Peng; Sun, Shi-Guo; Liu, Jian-Yong; Xu, Yong-Qian; Han, Ke-Li; Peng, Xiao-Jun

    2009-10-01

    Experimental and theoretical methods have been used to investigate the relaxation dynamics and photophysical properties of the donor-acceptor compound 4'-(4-N,N-diphenylaminophenyl)-2,2':6',2″-terpyridine (DPAPT), a compound which is found to exhibit efficient intramolecular charge transfer emission in polar solvents with relatively large Stokes shifts and strong solvatochromism. The difference between the ground and excited state dipole moments (Δ μ) is estimated to be 13.7 D on the basis of Lippert-Mataga models. To gain insight into the relaxation dynamics of DPAPT in the excited state, the potential energy curves for conformational relaxation are calculated. From the frontier molecular orbital (MO) pictures at the geometry of the twisted ICT excited state, the intramolecular charger transfer mainly takes place from HOMO (triphenylamine) to LUMO (terpyridine) in this donor-acceptor system.

  19. Characterization of the multifragment decay channel in highly excited nuclei. Progress report, March 15, 1992--September 14, 1993

    SciTech Connect

    de Souza, R.T.

    1992-10-01

    Characteristics of multifragment decay in heavy-ion induced reactions at intermediate energies are explored. Evolution of the timescale for emission of intermediate mass fragments (IMF: 3{le}Z{le}20) is investigated. Fragments associated with central collisions in the reactions {sup 36}Ar + {sup 197}Au at E/A = 50, 80, and 110 MeV are emitted on an extremely fast timescale, {tau} {le} 75 fm/c, comparable to the transit time of the projectile past the target nucleus. With increasing incident energy, mean fragment emission times decrease, consistent with statistical decay from highly excited systems or fast dynamical processes. To examine the importance of expansion effects in multifragmentation, the transverse kinetic energy of fragments was investigated. Evidence for expansion effects in the system {sup 36}Ar + {sup 197}Au at E/A = 50, 80, and 110 MeV was indicated by the charge dependence of the mean isotropic kinetic energy. At the highest incident energy the data suggest the onset of volume emission. Construction and performance of low-threshold high-resolution detector telescopes is discussed. Three-body Coulomb trajectory calculations are being used to probe kinematical correlations associated with neck emission of IMFs during fission. Initial design and testing of position sensitive parallel plate avalanche counters for upcoming ternary fission experiments is discussed.

  20. Formation of superheavy nuclei in cold fusion reactions

    SciTech Connect

    Feng Zhaoqing; Jin Genming; Li Junqing; Scheid, Werner

    2007-10-15

    Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus, and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118, and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.

  1. Nebular excitation in z ∼ 2 star-forming galaxies from the SINS and LUCI surveys: The influence of shocks and active galactic nuclei

    SciTech Connect

    Newman, Sarah F.; Genzel, Reinhard; Buschkamp, Peter; Förster Schreiber, Natascha M.; Kurk, Jaron; Rosario, David; Davies, Ric; Eisenhauer, Frank; Lutz, Dieter; Sternberg, Amiel; Gnat, Orly; Mancini, Chiara; Renzini, Alvio; Lilly, Simon J.; Carollo, C. Marcella; Burkert, Andreas; Cresci, Giovanni; Genel, Shy; Shapiro Griffin, Kristen; Hicks, Erin K. S.; and others

    2014-01-20

    Based on high-resolution, spatially resolved data of 10 z ∼ 2 star-forming galaxies from the SINS/zC-SINF survey and LUCI data for 12 additional galaxies, we probe the excitation properties of high-z galaxies and the impact of active galactic nuclei (AGNs), shocks, and photoionization. We explore how these spatially resolved line ratios can inform our interpretation of integrated emission line ratios obtained at high redshift. Many of our galaxies fall in the 'composite' region of the z ∼ 0 [N II]/Hα versus [O III]/Hβ diagnostic (BPT) diagram, between star-forming galaxies and those with AGNs. Based on our resolved measurements, we find that some of these galaxies likely host an AGN, while others appear to be affected by the presence of shocks possibly caused by an outflow or from an enhanced ionization parameter as compared with H II regions in normal, local star-forming galaxies. We find that the Mass-Excitation (MEx) diagnostic, which separates purely star-forming and AGN hosting local galaxies in the [O III]/Hβ versus stellar mass plane, does not properly separate z ∼ 2 galaxies classified according to the BPT diagram. However, if we shift the galaxies based on the offset between the local and z ∼ 2 mass-metallicity relation (i.e., to the mass they would have at z ∼ 0 with the same metallicity), we find better agreement between the MEx and BPT diagnostics. Finally, we find that metallicity calibrations based on [N II]/Hα are more biased by shocks and AGNs at high-z than the [O III]/Hβ/[N II]/Hα calibration.

  2. Complex fragment emission at low and high excitation energy

    SciTech Connect

    Moretto, L.G.

    1986-08-01

    Complex fragment emission has been certified as a compound nucleus process at low energies. An extension of the measurements to heavy ion reactions up to 50 MeV/u shows that most complex fragments are emitted by highly excited compound nuclei formed in incomplete fusion reactions. 12 refs., 26 figs.

  3. Measurement of the entry-spin distribution imparted to the high excitation continuum region of gadolinium nuclei via (p,d) and (p,t) reactions

    NASA Astrophysics Data System (ADS)

    Ross, T. J.; Beausang, C. W.; Hughes, R. O.; Allmond, J. M.; Angell, C. T.; Basunia, M. S.; Bleuel, D. L.; Burke, J. T.; Casperson, R. J.; Escher, J. E.; Fallon, P.; Hatarik, R.; Munson, J.; Paschalis, S.; Petri, M.; Phair, L.; Ressler, J. J.; Scielzo, N. D.; Thompson, I. J.

    2012-05-01

    Over the last several years, the surrogate reaction technique has been successfully employed to extract (n,f) and (n,γ) cross sections in the actinide region to a precision of ˜5% and ˜20%, respectively. However, attempts to apply the technique in the rare earth region have shown large (factors of 2-3) discrepancies between the directly measured (n,γ) and extracted surrogate cross sections. One possible origin of this discrepancy lies in differences between the initial spin-parity population distribution in the neutron induced and surrogate reactions. To address this issue, the angular momentum transfer to the high excitation energy quasicontinuum region in Gd nuclei has been investigated. The (p,d) and (p,t) reactions on 154,158Gd at a beam energy of 25 MeV were utilized. Assuming a single dominant angular momentum transfer component, the measured angular distribution for the (p,d) reactions is well reproduced by distorted-wave Born approximation (DWBA) calculations for ΔL=4 ℏ transfer, whereas the (p,t) reactions are better characterized by ΔL=5 ℏ. A linear combination of DWBA calculations, weighted according to a distribution of L transfers (peaking around ΔL=4-5 ℏ), is in excellent agreement with the experimental angular distributions.

  4. Radiations from hot nuclei

    NASA Technical Reports Server (NTRS)

    Malik, F. Bary

    1993-01-01

    The investigation indicates that nuclei with excitation energy of a few hundred MeV to BeV are more likely to radiate hot nuclear clusters than neutrons. These daughter clusters could, furthermore, de-excite emitting other hot nuclei, and the chain continues until these nuclei cool off sufficiently to evaporate primarily neutrons. A few GeV excited nuclei could radiate elementary particles preferentially over neutrons. Impact of space radiation with materials (for example, spacecraft) produces highly excited nuclei which cool down emitting electromagnetic and particle radiations. At a few MeV excitation energy, neutron emission becomes more dominant than gamma-ray emission and one often attributes the cooling to take place by successive neutron decay. However, a recent experiment studying the cooling process of 396 MeV excited Hg-190 casts some doubt on this thinking, and the purpose of this investigation is to explore the possibility of other types of nuclear emission which might out-compete with neutron evaporation.

  5. Temperature and Excitation Power-Density Dependences of the Photoluminescence of BaZrO2.9 Compound

    NASA Astrophysics Data System (ADS)

    Dhahri, Kh.; Bejar, M.; Dhahri, E.; Graça, M. F. P.

    2017-02-01

    Temperature- and excitation density-dependent photoluminescence are presented and discussed in detail for the BaZrO2.9 compound prepared from the non-luminescent BaZrO3 sample. The thermal-quenching behavior of the photoluminescence peak intensity is described with two activation energies, E a1 = 185 and E a2 = 139 meV. The variation of the integrated photoluminescence intensity with the excitation density shows a linear behavior with the slope close to α = 1.06, indicating that the PL signal is attributed to the excitonic recombination.

  6. Electron delocalization and aromaticity in low-lying excited states of archetypal organic compounds.

    PubMed

    Feixas, Ferran; Vandenbussche, Jelle; Bultinck, Patrick; Matito, Eduard; Solà, Miquel

    2011-12-14

    Aromaticity is a property usually linked to the ground state of stable molecules. Although it is well-known that certain excited states are unquestionably aromatic, the aromaticity of excited states remains rather unexplored. To move one step forward in the comprehension of aromaticity in excited states, in this work we analyze the electron delocalization and aromaticity of a series of low-lying excited states of cyclobutadiene, benzene, and cyclooctatetraene with different multiplicities at the CASSCF level by means of electron delocalization measures. While our results are in agreement with Baird's rule for the aromaticity of the lowest-lying triplet excited state in annulenes having 4nπ-electrons, they do not support Soncini and Fowler's generalization of Baird's rule pointing out that the lowest-lying quintet state of benzene and septet state of cyclooctatetraene are not aromatic.

  7. Non-coplanar compact configurations of nuclei and non-compound-nucleus contribution in the fusion cross section of the 12C+93Nb reaction

    NASA Astrophysics Data System (ADS)

    Chopra, Sahila; Hemdeep, Kaur, Arshdeep; Gupta, Raj K.

    2016-02-01

    Background: In our earlier study of the 12C+93Nb→*105Ag reaction at three near- and below-barrier energies (Ec .m .=41.097 , 47.828, and 54.205 MeV), using the dynamical cluster-decay model (DCM) with various nuclear interaction potentials (the Blocki et al. pocket formula and others derived from the Skyrme energy density formalism) for compact, coplanar (Φc=00 ) nuclei, we found a large non-compound-nucleus (nCN) contribution in the measured fusion cross section of this reaction. Purpose: In the present work, we look for the effect of using non-coplanar, compact configurations (Φc≠00 ), in the Blocki et al. pocket formula of the nuclear proximity potential, on the non-compound-nucleus (nCN) contribution, using the DCM. Methods: Allowing the Φ degree of freedom in the DCM formalism, we calculate the compound-nucleus (CN) and nCN cross sections. The only parameter of the DCM is the neck-length parameter Δ R , which also fits the empirically determined nCN cross section nearly exactly, under the assumption of considering it like a quasifission process where the fragment preformation factor P0=1 . Results: With the Φ degree of freedom included, at the higher two energies the nCN cross section gets enhanced, and hence the pure CN cross section is decreased, since the calculated (total) fusion cross section is fitted to experimental data. The parameter Δ R for the nCN contribution is smaller, and hence the reaction time larger, than for the CN decay process. Also, the contributing angular momentum ℓmax value increases in going from Φc=00 to Φc≠00 for both the CN and nCN processes. The intermediate mass fragments (IMFs), measured up to mass 13 in this reaction, are shown extended up to mass 16, and the fusion-fission (f f ) region is identified as A /2 ±16 , the same as for the Φc=00 case. Conclusions: As a result of enhanced nCN cross section due to Φc≠00 , the CN fusion probability PCN for *105Ag changes its behavior from an increasing to a

  8. Nebular Excitation in z ~ 2 Star-forming Galaxies from the SINS and LUCI Surveys: The Influence of Shocks and Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Newman, Sarah F.; Buschkamp, Peter; Genzel, Reinhard; Förster Schreiber, Natascha M.; Kurk, Jaron; Sternberg, Amiel; Gnat, Orly; Rosario, David; Mancini, Chiara; Lilly, Simon J.; Renzini, Alvio; Burkert, Andreas; Carollo, C. Marcella; Cresci, Giovanni; Davies, Ric; Eisenhauer, Frank; Genel, Shy; Shapiro Griffin, Kristen; Hicks, Erin K. S.; Lutz, Dieter; Naab, Thorsten; Peng, Yingjie; Tacconi, Linda J.; Wuyts, Stijn; Zamorani, Gianni; Vergani, Daniela; Weiner, Benjamin J.

    2014-01-01

    Based on high-resolution, spatially resolved data of 10 z ~ 2 star-forming galaxies from the SINS/zC-SINF survey and LUCI data for 12 additional galaxies, we probe the excitation properties of high-z galaxies and the impact of active galactic nuclei (AGNs), shocks, and photoionization. We explore how these spatially resolved line ratios can inform our interpretation of integrated emission line ratios obtained at high redshift. Many of our galaxies fall in the "composite" region of the z ~ 0 [N II]/Hα versus [O III]/Hβ diagnostic (BPT) diagram, between star-forming galaxies and those with AGNs. Based on our resolved measurements, we find that some of these galaxies likely host an AGN, while others appear to be affected by the presence of shocks possibly caused by an outflow or from an enhanced ionization parameter as compared with H II regions in normal, local star-forming galaxies. We find that the Mass-Excitation (MEx) diagnostic, which separates purely star-forming and AGN hosting local galaxies in the [O III]/Hβ versus stellar mass plane, does not properly separate z ~ 2 galaxies classified according to the BPT diagram. However, if we shift the galaxies based on the offset between the local and z ~ 2 mass-metallicity relation (i.e., to the mass they would have at z ~ 0 with the same metallicity), we find better agreement between the MEx and BPT diagnostics. Finally, we find that metallicity calibrations based on [N II]/Hα are more biased by shocks and AGNs at high-z than the [O III]/Hβ/[N II]/Hα calibration. Based on observations at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs 073.B-9018, 076.A-0527, 079.A-0341, 080.A-0330, 080.A-0339, 080.A-0635, 083.A-0781,084.A-0853, 087.A-0081, 091.A.-0126) and at the Large Binocular Telescope (LBT) on Mt. Graham in Arizona.

  9. Measurements of the hygroscopic and deliquescence properties of organic compounds of different solubilities in water and their relationship with cloud condensation nuclei activities.

    PubMed

    Chan, Man Nin; Kreidenweis, Sonia M; Chan, Chak K

    2008-05-15

    The initial phase (solid or aqueous droplet) of aerosol particles prior to activation is among the critical factors in determining their cloud condensation nuclei (CCN) activity. Single-particle levitation in an electrodynamic balance (EDB)was used to measure the phase transitions and hygroscopic properties of aerosol particles of 11 organic compounds with different solubilities (10(-1) to 102 g solute/100 g water). We use these data and other literature data to relate the CCN activity and hygroscopicity of organic compounds with different solubilities. The EDB data show that glyoxylic acid, 4-methylphthalic acid, monosaccharides (fructose and mannose), and disaccharides (maltose and lactose) did not crystallize and existed as metastable droplets at low relative humidity (RH). Hygroscopic data from this work and in the literature support earlier studies showing that the CCN activities of compounds with solubilities down to the order of 10(-1) g solute/100 g water can be predicted by standard Köhler theory with the assumption of complete dissolution of the solute at activation. We also demonstrate the use of evaporation data (or efflorescence data), which provides information on the water contents of metastable solutions below the compound deliquescence RH that can be extrapolated to higher dilutions, to predict the CCN activity of organic particles, particularly for sparingly soluble organic compounds that do not deliquesce at RH achievable in the EDB and in the hygroscopic tandem differential mobility analyzer.

  10. Triplet excited states of cyclic disulfides and related compounds: electronic structures, geometries, energies, and decay.

    PubMed

    Ginagunta, Saroja; Bucher, Götz

    2011-02-03

    We have performed a computational study on the properties of a series of heterocycles bearing two adjacent heteroatoms, focusing on the structures and electronic properties of their first excited triplet states. If the heteroatoms are both heavy chalcogens (S, Se, or Te) or isoelectronic species, then the lowest excited triplet state usually has (π*, σ*) character. The triplet energies are fairly low (30-50 kcal mol(-1)). The (π*, σ*) triplet states are characterized by a significantly lengthened bond between the two heteroatoms. Thus, in 1,2-dithiolane (1b), the S-S bond length is calculated to be 2.088 Å in the singlet ground state and 2.568 Å in the first triplet excited state. The spin density is predicted to be localized almost exclusively on the sulfur atoms. Replacing one heavy chalcogen atom by an oxygen atom or an NR group results in a significant destabilization of the (π*, σ*) triplet excited state, which then no longer is lower in energy than an open-chain biradical. The size of the heterocyclic ring also contributes to the stability of the (π*, σ*) triplet state, with five-membered rings being more favorable than six-membered rings. Benzoannulation, finally, usually lowers the energy of the (π*, σ*) triplet excited states. If one of the heteroatoms is an oxygen or nitrogen atom, however, the corresponding lowest triplet states are better described as σ,π-biradicals.

  11. Electronic excitation transport in photosynthesis and crystal and molecular structures of porphyrin compounds

    SciTech Connect

    Yang, Shumei.

    1991-04-22

    The excitation energy transfer in three photosynthetic organism samples, Bacteriochlorophyll a-protein from Prosthecochloris aestuarii, and enriched photosystem I particles from spinach chloroplasts, have been investigated by pump-probe ultrafast spectroscopy. The isotropic photobleaching profiles were best described by two exponential decay components in one Bchl a-protein complex, and three exponential decay components in another. The experimental results from the three samples show that nonrandom chromophore orientations exist and Sauer's pebble mosaic'' model is an appropriate one for excitation transfer in these samples. The polarized pump-probe transients have been analyzed in terms of an exciton hopping model that incorporates the known geometry of the Bchl a-protein. The crystal and molecular structures of four metalloporphyrins have been determined by X-ray diffraction and molecular mechanics. 207 refs., 44 figs., 15 tabs.

  12. Tamoxifen and related compounds protect against lipid peroxidation in isolated nuclei: relevance to the potential anticarcinogenic benefits of breast cancer prevention and therapy with tamoxifen?

    PubMed

    Wiseman, H; Halliwell, B

    1994-11-01

    Tamoxifen, 4-hydroxytamoxifen, nafoxidine, 17 beta-oestradiol and ICI 164,384 were all found to protect rat liver nuclei against Fe(III)-ascorbate dependent lipid peroxidation. The order of effectiveness of these compounds was 4-hydroxytamoxifen > 17 beta-oestradiol > nafoxidine > tamoxifen > ICI 164,384. This protection by tamoxifen against the formation of the genotoxic reactive-intermediates and products of lipid peroxidation in the nuclear membrane could be important in the prevention of nuclear DNA damage and thus carcinogenesis. This possible anticarcinogenic benefit of tamoxifen treatment could be important in long-term therapy with tamoxifen (and future derivatives) and in its proposed use in the prevention of breast cancer.

  13. Joint gamma generation and radiation heat regime (GG&RH) theory for gamma laser screening in the first approach of soft prompt transplantation of excited nuclei

    NASA Astrophysics Data System (ADS)

    Karyagin, Stanislav V.

    2001-03-01

    Joint theory of gamma-generation and radiation-heat regime in active medium of (gamma) -laser (GL) was created and applied for the analyses of the total world experience in the GL-problem in order to choose those nuclei-candidates, active media, GL-schemes which are indeed actual for the GL- creation.

  14. DFT spin-orbit coupling between singlet and triplet excited states: A case of psoralen compounds

    NASA Astrophysics Data System (ADS)

    Chiodo, Sandro G.; Russo, Nino

    2010-04-01

    We present a computational protocol in which our method is used to compute spin-orbit (SO) matrix elements on time-dependent-density functional theory (TD-DFT). These SO contributions, computed employing our SO program package, MolSOC, have been expressed, in turn, in terms of weighted coefficients and SO matrix elements between singlet and triplet wave functions arising from a given one-electron transition. The protocol has been applied to study psoralen compound and its derivatives obtained from the replacement of one oxygen with sulfur or selenium. The obtained results have been compared with those reported in literature.

  15. Properties of nuclei probed by laser light

    NASA Astrophysics Data System (ADS)

    Neugart, Rainer

    2017-03-01

    Viewing objects as small as atomic nuclei by visible light sounds quite unrealistic. However, nuclei usually appear as constituents of atoms whose excitations are indeed associated with the absorption and emission of light. Nuclei can thus interact with light via the atomic system as a whole.

  16. Excitation Wavelength Dependent O2 Release from Copper(II)-Superoxide Compounds: Laser Flash-Photolysis Experiments and Theoretical Studies

    PubMed Central

    Saracini, Claudio; Liakos, Dimitrios G.; Zapata Rivera, Jhon E.; Neese, Frank; Meyer, Gerald J.; Karlin, Kenneth D.

    2014-01-01

    Irradiation of the copper(II)-superoxide synthetic complexes [(TMG3tren)CuII(O2)]+ (1) and [(PV-TMPA)CuII(O2)]+ (2) with visible light resulted in direct photo-generation of O2 gas at low temperature (from −40 °C to −70°C for 1 and from −125 °C to −135 °C for 2) in 2-methyltetrahydrofuran (MeTHF) solvent. The yield of O2 release was wavelength dependent: λexc = 436 nm, ϕ = 0.29 (for 1), ϕ = 0.11 (for 2), and λexc = 683 nm, ϕ = 0.035 (for 1), ϕ = 0.078 (for 2), which was followed by fast O2-recombination with [(TMG3tren)CuI]+ (3) and [(PV-TMPA)CuI]+ (4). Enthalpic barriers for O2 re-binding to the copper(I) center (~ 10 kJ mol−1) and for O2 dissociation from the superoxide compound 1 (45 kJ mol−1) were determined. TD-DFT studies, carried out for 1, support the experimental results confirming the dissociative character of the excited states formed upon blue or red light laser excitation. PMID:24428309

  17. Excitation wavelength dependent O2 release from copper(II)-superoxide compounds: laser flash-photolysis experiments and theoretical studies.

    PubMed

    Saracini, Claudio; Liakos, Dimitrios G; Zapata Rivera, Jhon E; Neese, Frank; Meyer, Gerald J; Karlin, Kenneth D

    2014-01-29

    Irradiation of the copper(II)-superoxide synthetic complexes [(TMG3tren)Cu(II)(O2)](+) (1) and [(PV-TMPA)Cu(II)(O2)](+) (2) with visible light resulted in direct photogeneration of O2 gas at low temperature (from -40 °C to -70 °C for 1 and from -125 to -135 °C for 2) in 2-methyltetrahydrofuran (MeTHF) solvent. The yield of O2 release was wavelength dependent: λexc = 436 nm, ϕ = 0.29 (for 1), ϕ = 0.11 (for 2), and λexc = 683 nm, ϕ = 0.035 (for 1), ϕ = 0.078 (for 2), which was followed by fast O2-recombination with [(TMG3tren)Cu(I)](+) (3) and [(PV-TMPA)Cu(I)](+) (4). Enthalpic barriers for O2 rebinding to the copper(I) center (∼10 kJ mol(-1)) and for O2 dissociation from the superoxide compound 1 (45 kJ mol(-1)) were determined. TD-DFT studies, carried out for 1, support the experimental results confirming the dissociative character of the excited states formed upon blue- or red-light laser excitation.

  18. Dirac-Hartree-Bogoliubov calculation for spherical and deformed hot nuclei: Temperature dependence of the pairing energy and gaps, nuclear deformation, nuclear radii, excitation energy, and entropy

    NASA Astrophysics Data System (ADS)

    Lisboa, R.; Malheiro, M.; Carlson, B. V.

    2016-02-01

    Background: Unbound single-particle states become important in determining the properties of a hot nucleus as its temperature increases. We present relativistic mean field (RMF) for hot nuclei considering not only the self-consistent temperature and density dependence of the self-consistent relativistic mean fields but also the vapor phase that takes into account the unbound nucleon states. Purpose: The temperature dependence of the pairing gaps, nuclear deformation, radii, binding energies, entropy, and caloric curves of spherical and deformed nuclei are obtained in self-consistent RMF calculations up to the limit of existence of the nucleus. Method: We perform Dirac-Hartree-Bogoliubov (DHB) calculations for hot nuclei using a zero-range approximation to the relativistic pairing interaction to calculate proton-proton and neutron-neutron pairing energies and gaps. A vapor subtraction procedure is used to account for unbound states and to remove long range Coulomb repulsion between the hot nucleus and the gas as well as the contribution of the external nucleon gas. Results: We show that p -p and n -n pairing gaps in the S10 channel vanish for low critical temperatures in the range Tcp≈0.6 -1.1 MeV for spherical nuclei such as 90Zr, 124Sn, and 140Ce and for both deformed nuclei 150Sm and 168Er. We found that superconducting phase transition occurs at Tcp=1.03 Δp p(0 ) for 90Zr, Tcp=1.16 Δp p(0 ) for 140Ce, Tcp=0.92 Δp p(0 ) for 150Sm, and Tcp=0.97 Δp p(0 ) for 168Er. The superfluidity phase transition occurs at Tcp=0.72 Δn n(0 ) for 124Sn, Tcp=1.22 Δn n(0 ) for 150Sm, and Tcp=1.13 Δn n(0 ) for 168Er. Thus, the nuclear superfluidity phase—at least for this channel—can only survive at very low nuclear temperatures and this phase transition (when the neutron gap vanishes) always occurs before the superconducting one, where the proton gap is zero. For deformed nuclei the nuclear deformation disappear at temperatures of about Tcs=2.0 -4.0 MeV , well above the

  19. IV INTERNATIONAL CONFERENCE ON ATOM AND MOLECULAR PULSED LASERS (AMPL'99): Radiative and photochemical properties of organic compounds excited by high-power XeCl laser radiation

    NASA Astrophysics Data System (ADS)

    Kopylova, T. N.; Kuznetsova, Rimma T.; Svetlichnyi, Valerii A.; Sergeev, A. K.; Tel'minov, E. N.; Filinov, D. N.

    2000-06-01

    Radiative and photochemical properties of a number of laser dyes excited by focused radiation of a XeCl laser with intensity up to 200 MW cm-2 were studied. A method for measuring the gain of organic molecules under high-power excitation is proposed. The dependence of the dye transmittance for the pump radiation on its intensity was studied. It is shown that changes in energy, spectral, and time characteristics of radiation and the photostability of compounds under high-power excitation are associated with the formation of superluminescence.

  20. Search for Superheavy Nuclei

    NASA Astrophysics Data System (ADS)

    Hamilton, J. H.; Hofmann, S.; Oganessian, Y. T.

    2013-10-01

    We describe the discoveries of new superheavy nuclei (a) with Z=107-112 produced in cold fusion reactions between 208Pb and 209Bi and beams of A > 50 and (b) with Z=113-118 in hot fusion reactions between actinide nuclei and 48Ca. We also discuss the facilities used in these measurements. We compare the behavior of the β-decay energies and half-lives, spontaneous fission half-lives, cross sections, and excitation functions with expectations from theoretical calculations. Finally, we outline future research directions, including studies of the detailed properties of nuclei synthesized at higher yields, searches for new elements with Z=119 and 120, and developments of new facilities.

  1. Nuclear spectroscopy above isomers in {sub 67}{sup 148}Ho{sub 81} and {sub 67}{sup 149}Ho{sub 82} nuclei: Search for core-excited states in {sup 149}Ho

    SciTech Connect

    Kownacki, J.; Napiorkowski, P. J.; Zielinska, M.; Kordyasz, A.; Srebrny, J.; Droste, Ch.; Morek, T.; Grodner, E.; Ruchowska, E.; Korman, A.; Czarnacki, W.; Kisielinski, M.; Kowalczyk, M.; Wrzosek-Lipska, K.; Hadynska-KlePk, K.; Mierzejewski, J.; Lieder, R. M.; Perkowski, J.; Andrzejewski, J.; Krol, A.

    2010-04-15

    The excited states of {sup 148}Ho and {sup 149}Ho isotopes are studied using gamma-ray and electron spectroscopy in off-beam and in-beam modes following {sup 112,114}Sn({sup 40}Ar,xnyp) reactions. Experiments include measurements of single gamma-rays and conversion electron spectra as well as gamma-gamma, electron-gamma, gamma-t, and gamma-gamma-t coincidences with the use of the OSIRIS-II 12-HPGe array and conversion electron spectrometer. Based on the present results, the level schemes of {sup 148}Ho and {sup 149}Ho are revised and significantly extended, up to about 4 and 5 MeV of excitation energy, respectively. Spin and parity of 5{sup -} are assigned to the 9.59-s isomer in {sup 148}Ho based on conversion electron results. Previously unobserved gamma rays feeding the 10{sup +} isomer in {sup 148}Ho and the 27/2{sup -} isomer in {sup 149}Ho nuclei are proposed. Shell-model calculations are performed. Possible core-excited states in {sup 149}Ho are discussed.

  2. Exotic Orbital Modes in Nuclei

    NASA Astrophysics Data System (ADS)

    von Neumann-Cosel, P.

    2003-06-01

    Experimental evidence for two types of collective excitations in nuclei generated by orbital motion is discussed, viz. a magnetic quadrupole twist mode observed in 180° electron scattering experiments and a toroidal electric dipole mode. The latter may be a source of low-energy pygmy dipole resonances observed in many nuclei. This is discussed in detail for the example of 208Pb based on the recent finding of a resonance at particle threshold in a high-resolution (γ, γ') experiment.

  3. Photoresponse of 60Ni below 10-MeV excitation energy: Evolution of dipole resonances in fp-shell nuclei near N=Z

    NASA Astrophysics Data System (ADS)

    Scheck, M.; Ponomarev, V. Yu.; Fritzsche, M.; Joubert, J.; Aumann, T.; Beller, J.; Isaak, J.; Kelley, J. H.; Kwan, E.; Pietralla, N.; Raut, R.; Romig, C.; Rusev, G.; Savran, D.; Schorrenberger, L.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zilges, A.; Zweidinger, M.

    2013-10-01

    Background: Within the last decade, below the giant dipole resonance the existence of a concentration of additional electric dipole strength has been established. This accumulation of low-lying E1 strength is commonly referred to as pygmy dipole resonance (PDR).Purpose: The photoresponse of 60Ni has been investigated experimentally and theoretically to test the evolution of the PDR in a nucleus with only a small neutron excess. Furthermore, the isoscalar and isovector M1 resonances were investigated.Method: Spin-1 states were excited by exploiting the (γ,γ') nuclear resonance fluorescence technique with unpolarized continuous bremsstrahlung as well as with fully linearly polarized, quasimonochromatic, Compton-backscattered laser photons in the entrance channel of the reaction.Results: Up to 10 MeV a detailed picture of J=1 levels was obtained. For the preponderant number of the individual levels spin and parity were firmly assigned. Furthermore, branching ratios, transition widths, and reduced B(E1) or B(M1) excitation probability were calculated from the measured scattering cross sections. A comparison with theoretical results obtained within the quasiparticle phonon model allows an insight into the microscopic structure of the observed states.Conclusions: Below 10 MeV the directly observed E1 strength [∑B(E1)↑=(153.8±9.5) e2(fm)2] exhausts 0.5% of the Thomas-Reiche-Kuhn sum rule. This value increases to 0.8% of the sum rule [∑B(E1)↑=(250.9±31.1) e2(fm)2] when indirectly observed branches to lower-lying levels are considered. Two accumulations of M1 excited spin-1 states near 8 and 9 MeV excitation energy are identified as isoscalar and isovector M1 resonances dominated by proton and neutron f7/2→f5/2 spin-flip excitations. The B(M1)↑ strength of these structures accumulates to 3.94(27)μN2.

  4. Fission barriers for Po nuclei produced in complete fusion reactions with heavy ions

    SciTech Connect

    Sagaidak, R. N.; Andreyev, A. N.

    2009-05-15

    Evaporation residues and fission excitation functions obtained in complete fusion reactions leading to Po compound nuclei have been analyzed in the framework of the standard statistical model. Macroscopic fission barriers deduced from the cross-section data analysis are compared with the predictions of various theoretical models and available data. A drop in the Po barriers with the decrease in a neutron number was found, which is stronger than predicted by any theory. The presence of entrance channel effects and collective excitations in the compound nucleus decay is considered as a possible reason for the barrier reduction.

  5. Superdeformed nuclei

    SciTech Connect

    Janssens, R.V.F.; Khoo, Teng Lek.

    1991-01-01

    This paper reviews the most recent advances in the understanding of the physics of superdeformed nuclei from the point of view of the experimentalists. It covers among other subjects the following topics: (1) the discovery of a new region of superdeformed nuclei near A=190, (2) the surprising result of the occurrence of bands with identical transition energies in neighboring superdeformed nuclei near A=150 and A=190, (3) the importance of octupole degrees of freedom at large deformation and (4) the properties associated with the feeding and the decay of superdeformed bands. The text presented hereafter will appear as a contribution to the Annual Review of Nuclear and Particle Science, Volume 41. 88 refs., 11 figs.

  6. Application of the Broad Energy Germanium detector: A technique for elucidating β-decay schemes which involve daughter nuclei with very low energy excited states

    NASA Astrophysics Data System (ADS)

    Venhart, M.; Wood, J. L.; Boston, A. J.; Cocolios, T. E.; Harkness-Brennan, L. J.; Herzberg, R.-D.; Joss, D. T.; Judson, D. S.; Kliman, J.; Matoušek, V.; Motyčák, Š.; Page, R. D.; Patel, A.; Petrík, K.; Sedlák, M.; Veselský, M.

    2017-03-01

    A technique for elucidating β-decay schemes of isotopes with a large density of states at low excitation energy has been developed, in which a Broad Energy Germanium (BEGe) detector is used in conjunction with coaxial hyper-pure germanium detectors. The power of this technique is demonstrated using the example of 183Hg decay. Mass-separated samples of 183Hg were produced by a deposition of the low-energy radioactive-ion beam delivered by the ISOLDE facility at CERN. The excellent energy resolution of the BEGe detector allowed γ-ray energies to be determined with a precision of a few tens of eV, which was sufficient for the analysis of the Rydberg-Ritz combinations (in conjunction with γ-γ coincidences) in the level scheme. The timestamped structure of the data was used for unambiguous separation of γ rays arising from the decay of 183Hg from those due to the daughter decays.

  7. Label-free fluorescence detection of aromatic compounds in chip electrophoresis applying two-photon excitation and time-correlated single-photon counting.

    PubMed

    Beyreiss, Reinhild; Geißler, David; Ohla, Stefan; Nagl, Stefan; Posch, Tjorben Nils; Belder, Detlev

    2013-09-03

    In this study, we introduce time-resolved fluorescence detection with two-photon excitation at 532 nm for label-free analyte determination in microchip electrophoresis. In the developed method, information about analyte fluorescence lifetimes is collected by time-correlated single-photon counting, improving reliable peak assignment in electrophoretic separations. The determined limits of detection for serotonin, propranolol, and tryptophan were 51, 37, and 280 nM, respectively, using microfluidic chips made of fused silica. Applying two-photon excitation microchip separations and label-free detection could also be performed in borosilicate glass chips demonstrating the potential for label-free fluorescence detection in non-UV-transparent devices. Microchip electrophoresis with two-photon excited fluorescence detection was then applied for analyses of active compounds in plant extracts. Harmala alkaloids present in methanolic plant extracts from Peganum harmala could be separated within seconds and detected with on-the-fly determination of fluorescence lifetimes.

  8. One electron oxidation potential as a predictor of rate constants of N-containing compounds with carbonate radical and triplet excited state organic matter.

    PubMed

    Arnold, William A

    2014-04-01

    Photo-generated transient species, such as the carbonate radical and triplet excited state natural organic matter, mediate the oxidation of pollutants in various sunlit or artificially irradiated systems. In this work, one-electron oxidation potentials for 70 nitrogen-containing compounds were computed, and literature data were used to develop quantitative structure-activity relationships (QSARs) for prediction of the second order reaction rate constants with these two oxidants. For carbonate radical, separate QSARs were necessary for compounds with and without resonance stabilization of the resulting radical, and predicted rate constants were, on average, within a factor of three of experimental values. With the limited data set available, results suggest that one-electron oxidation potential is also a viable descriptor variable for predictions of rate constants with triplet excited states.

  9. Cosmogenic nuclei

    NASA Technical Reports Server (NTRS)

    Raisbeck, G. M.

    1986-01-01

    Cosmogenic nuclei, nuclides formed by nuclear interactions of galactic and solar cosmic rays with extraterrestrial or terrestrial matter are discussed. Long lived radioactive cosmogenic isotopes are focused upon. Their uses in dating, as tracers of the interactions of cosmic rays with matter, and in obtaining information on the variation of primary cosmic ray flux in the past are discussed.

  10. Excited-state intramolecular hydrogen bonding of compounds based on 2-(2-hydroxyphenyl)-1,3-benzoxazole in solution: A TDDFT study

    NASA Astrophysics Data System (ADS)

    Li, Hui; Liu, Yufang; Yang, Yonggang; Yang, Dapeng; Sun, Jinfeng

    2014-12-01

    The excited-state properties of intramolecular hydrogen bonding in the compounds based on 2-(2-hydroxyphenyl)-1,3-benzoxazole (6 and its tautomers 6a and 6b) have been investigated using theoretical methods. According to the geometric optimization and IR spectra in the ground and excited states calculated by density functional theory (DFT) and time-dependent DFT (TD-DFT) methods respectively, the type of intramolecular hydrogen bonding N⋯Hsbnd O in 6 and 6a is demonstrated to be significantly strengthened, while Nsbnd H⋯O in the tautomers 6a and 6b are proved to be sharply weakened upon excitation to excited state S1. The calculated absorption peaks of 6 are in good accordance with the experimental results. Moreover, other compounds based on 6 that R1 and R2 are both substituted as well as that only R1 is substituted are investigated to understand the effect of substituent on intramolecular hydrogen bonding. It is found that the hydrogen bond strength can be controlled by the inductive field effect of the substituent. In addition, the intramolecular charge transfers (ICT) of the S1 state for 6 and its tautomers 6a and 6b were theoretically investigated by analyses of molecular orbital.

  11. Study of near-stability nuclei populated as fission fragments in heavy-ion fusion reactions

    SciTech Connect

    Fotiadis, Nikolaos; Nelson, Ronald O; Devlin, Matthew; Cizewski, Jolie A; Krucken, Reiner; Clark, R M; Fallon, Paul; Lee, I Yang; Macchiavelli, Agusto O; Becker, John A; Younes, Walid

    2010-01-01

    Examples are presented to illustrate the power of prompt {gamma}-ray spectroscopy of fission fragments from compound nuclei with A {approx} 200 formed in fusion-evaporation reactions in experiments using the Gammasphere Ge-detector array. Complementary methods, such as Coulomb excitation and deep-inelastic processes, are also discussed. In other cases (n, xn{gamma}) reactions on stable isotopes have been used to establish neutron excitation functions for {gamma}-rays using a pulsed 'white'-neutron source, coupled to a high-energy-resolution germanium-detector array. The excitation functions can unambiguously assign {gamma}-rays to a specific reaction product. Results from all these methods bridge the gaps in the systematics of high-spin states between the neutron-deficient and neutron-rich nuclei. Results near shell closures should motivate new shell model calculations.

  12. Fusion probability in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Banerjee, Tathagata; Nath, S.; Pal, Santanu

    2015-03-01

    Background: Fusion between two massive nuclei is a very complex process and is characterized by three stages: (a) capture inside the potential barrier, (b) formation of an equilibrated compound nucleus (CN), and (c) statistical decay of the CN leading to a cold evaporation residue (ER) or fission. The second stage is the least understood of the three and is the most crucial in predicting yield of superheavy elements (SHE) formed in complete fusion reactions. Purpose: A systematic study of average fusion probability, , is undertaken to obtain a better understanding of its dependence on various reaction parameters. The study may also help to clearly demarcate onset of non-CN fission (NCNF), which causes fusion probability, PCN, to deviate from unity. Method: ER excitation functions for 52 reactions leading to CN in the mass region 170-220, which are available in the literature, have been compared with statistical model (SM) calculations. Capture cross sections have been obtained from a coupled-channels code. In the SM, shell corrections in both the level density and the fission barrier have been included. for these reactions has been extracted by comparing experimental and theoretical ER excitation functions in the energy range ˜5 %-35% above the potential barrier, where known effects of nuclear structure are insignificant. Results: has been shown to vary with entrance channel mass asymmetry, η (or charge product, ZpZt ), as well as with fissility of the CN, χCN. No parameter has been found to be adequate as a single scaling variable to determine . Approximate boundaries have been obtained from where starts deviating from unity. Conclusions: This study quite clearly reveals the limits of applicability of the SM in interpreting experimental observables from fusion reactions involving two massive nuclei. Deviation of from unity marks the beginning of the domain of dynamical models of fusion. Availability of precise ER cross

  13. Shell effects in fusion of heavy nuclei

    SciTech Connect

    Moeller, P.; Nix, J.R.

    1997-12-31

    The spontaneous-fission properties of Fm isotopes undergo dramatic changes between {sup 256}Fm and {sup 258} Fm. The fission fragments of the former isotope are mass asymmetric with kinetic energies of about 200 MeV, whereas the fission fragments of the latter isotope are symmetric with kinetic energies of about 235 MeV. This rapid change occurs because the division into nearly doubly magic fragments near {sup 132}Sn becomes possible and opens up new valleys in the fission potential-energy surface. In the cold-fusion reactions leading to the heaviest elements, the nearly doubly magic targets and/or projectiles may give rise to important features associated with this magicity. Cold fusion is thought to favor heavy-element formation because it leads to low excitation energies of the compound nuclei. We investigate how near-magic targets and projectiles may lead to persistent survivability of the shells in the fusion valley as the ions merge, in addition to their effect on the compound-nucleus excitation energy.

  14. Magnetic excitations in the S =1/2 antiferromagnetic-ferromagnetic chain compound BaCu2V2O8 at zero and finite temperature

    NASA Astrophysics Data System (ADS)

    Klyushina, E. S.; Tiegel, A. C.; Fauseweh, B.; Islam, A. T. M. N.; Park, J. T.; Klemke, B.; Honecker, A.; Uhrig, G. S.; Manmana, S. R.; Lake, B.

    2016-06-01

    Unlike most quantum systems which rapidly become incoherent as temperature is raised, strong correlations persist at elevated temperatures in S =1/2 dimer magnets, as revealed by the unusual asymmetric line shape of their excitations at finite temperatures. Here, we quantitatively explore and parametrize the strongly correlated magnetic excitations at finite temperatures using high-resolution inelastic neutron scattering of the model compound BaCu2V2O8 which we show to be an alternating antiferromagnetic-ferromagnetic spin -1/2 chain. Comparison to state of the art computational techniques shows excellent agreement over a wide temperature range. Our findings hence demonstrate the possibility to quantitatively predict coherent behavior at elevated temperatures in quantum magnets.

  15. Exotic Nuclei

    SciTech Connect

    Galindo-Uribarri, Alfredo {nmn}

    2010-01-01

    Current experimental developments on the study of exotic nuclei far from the valley of stability are discussed. I start with general aspects related to the production of radioactive beams followed by the description of some of the experimental tools and specialized techniques for studies in reaction spectroscopy, nuclear structure research and nuclear applications with examples from selected topical areas with which I have been involved. I discuss some of the common challenges faced in Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beam (RIB) science.

  16. Estimates of fission barrier heights for neutron-deficient Po to Ra nuclei produced in fusion reactions

    NASA Astrophysics Data System (ADS)

    Sagaidak, Roman

    2017-09-01

    The cross section data for fission and evaporation residue production in fusion reactions leading to nuclei from Po to Ra have been considered in a systematic way in the framework of the conventional barrier-passing (fusion) model coupled with the statistical model. The cross section data obtained in very asymmetric projectile-target combinations can be described within these models rather well with the adjusted model parameters. In particular, one can scale and fix the macroscopic (liquid-drop) fission barrier heights (FBHs) for nuclei involved in the de-excitation of compound nuclei produced in the reactions. The macroscopic FBHs for nuclei from Po to Ra have been derived in the framework of such analysis and compared with the predictions of various theoretical models.

  17. Intramolecular photoassociation and photoinduced charge transfer in bridged diaryl compounds. 7. A semiempirical MO study of intramolecular charge transfer in the excited singlet states of dinaphthylamines

    SciTech Connect

    Chen, D.; Sadygov, R.; Lim, E.C. )

    1994-02-24

    A semiempirical MO study of the intramolecular charge transfer (CT) in the excited singlet states of dinaphthylamines has been carried out with the program systems MOPAC and ARGUS. The excited-state energies for various conformations of the molecules were obtained, in both the absence and the presence of a polarizable medium, by adding the transition energies calculated with the INDO I/S method to the ground-state energies calculated by means of the AM1 method. The CT state corresponds to a twisted geometry in which one naphthalene moiety is conjugated with the amino bridge, while the other moiety is perpendicular to the first. The gas-phase energy of this twisted intramolecular CT (TICT) state is only slightly greater than that of the lowest excited singlet (S[sub 1]) state of smaller dipole moment. In solvent of large dielectric constant, the TICT state is therefore predicted to be the lowest excited singlet state of the module. The computed oscillator strength of the absorption to the TICT state is much smaller than that to the lowest-energy excited state of an isolated molecule, so that the increase CT character of the S[sub 1] state in polar solvents is expected to lead to a decrease in the radiative decay rate of the state. These results are consistent with the experimental observation of a large fluorescence Stokes shift, and a reduction in the S[sub 1] radiative decay rate, of the compounds in polar solvents relative to nonpolar solvents. 14 refs., 9 figs., 4 tabs.

  18. Magnetic excitations from an S=1/2 diamond-shaped tetramer compound Cu2PO4OH

    DOE PAGES

    Matsuda, Masaaki; Dissanayake, Sachith E.; Abernathy, Douglas L.; ...

    2015-11-30

    Inelastic neutron scattering experiments have been carried out on a powder sample of Cu2PO4OH, which consists of diamond-shaped tetramer spin units with S=1/2. We have observed two nearly dispersionless magnetic excitations at E1 ~2 and E2 ~0 meV, whose energy width are broader than the instrumental resolution. The simplest square tetramer model with one dominant interaction, which predicts two sharp excitation peaks at E1 and E2(=2E1), does not explain the experimental result. We found that two diagonal intratetramer interactions compete with the main interaction and weak intertetramer interactions connect the tetramers. The main intratetramer interaction is found to split intomore » two inequivalent ones due to a structural distortion below 160 K. Cu2PO4OH is considered to be a good material to study the S=1/2 Heisenberg tetramer system.« less

  19. {gamma}-vibrational states in superheavy nuclei

    SciTech Connect

    Sun Yang; Long Guilu; Al-Khudair, Falih; Sheikh, Javid A.

    2008-04-15

    Recent experimental advances have made it possible to study excited structure in superheavy nuclei. The observed states have often been interpreted as quasiparticle excitations. We show that in superheavy nuclei collective vibrations systematically appear as low-energy excitation modes. By using the microscopic Triaxial Projected Shell Model, we make a detailed prediction on {gamma}-vibrational states and their E2 transition probabilities to the ground state band in fermium and nobelium isotopes where active structure research is going on, and in {sup 270}Ds, the heaviest isotope where decay data have been obtained for the ground-state and for an isomeric state.

  20. Heating of Nuclei with Energetic Antiprotons

    SciTech Connect

    Goldenbaum, F.; Bohne, W.; Eades, J.; Egidy, T.v.; Figuera, P.; Fuchs, H.; Galin, J.; Golubeva, Y.S.; Gulda, K.; Hilscher, D.; Iljinov, A.S.; Jahnke, U.; Jastrzebski, J.; Kurcewicz, W.; Lott, B.; Morjean, M.; Pausch, G.; Peghaire, A.; Pienkowski, L.; Polster, D.; Proschitzki, S.; Quednau, B.; Rossner, H.; Schmid, S.; Schmid, W.; Ziem, P. |||||||

    1996-08-01

    The annihilation of energetic (1.2 GeV) antiprotons is exploited to deposit maximum thermal excitation (up to 1000 MeV) in massive nuclei (Cu, Ho, Au, and U) while minimizing the contribution from collective excitation such as rotation, shape distortion, and compression. Excitation energy distributions {ital d}{sigma}/{ital dE}{asterisk} are deduced from eventwise observation of the whole nuclear evaporation chain with two 4{pi} detectors for neutrons and charged particles. The nuclei produced in this way are found to decay predominantly statistically, i.e., by evaporation. {copyright} {ital 1996 The American Physical Society.}

  1. Excited states of selected hydrazo-compounds on the example of 5-nitro-2-(2-phenylhydrazinyl)pyridine and its 3-, 4- or 6-methyl isomers

    NASA Astrophysics Data System (ADS)

    Michalski, J.; Kucharska, E.; Sąsiadek, W.; Lorenc, J.; Hanuza, J.

    2016-11-01

    Syntheses of 5-nitro-2-(2-phenylhydrazinyl)pyridine (5-nitro-2-phenylhydrazopyridine), 3-methyl-5-nitro-2-(2-phenylhydrazinyl)pyridine (3-methyl-5-nitro-2-phenylhydrazopyridine), 4-methyl-5-nitro-2-(2-phenylhydrazinyl)pyridine (4-methyl-5-nitro-2-phenylhydrazopyridine) and 6-methyl-5-nitro-2-(2-phenylhydrazinyl)pyridine (6-methyl-5-nitro-2-phenylhydrazo-pyridine) have been described. Electronic absorption and emission spectra of the compounds in the solid state and in various solvents have been measured at room temperature and discussed in terms of DFT quantum chemical calculations. The molecular structures and energy sequences of the singlet and triplet states have been determined in the B3LYP/6-311G(2d,2p) approximations. The Mulliken analysis and non-bonding orbital approach have been used in characterization of the studied compounds. It has been shown that the HOMO-LUMO transition of the studied compounds is observed in the range 23,900 ÷ 29,300 cm-1 and in this excitation the π-electrons of phenyl ring are transferred to nitro group of pyridine ring. In such a transition the hydrazo-bridge should take part as a mediator. The luminescence of the studied hydrazo-compounds is weak, not measureable in the solid state but measureable in solution.

  2. Optical Model Potentials for {alpha}-Particles Scattering around the Coulomb Barrier on Medium-Mass Nuclei

    SciTech Connect

    Avrigeanu, M.; Roman, F.L.; Avrigeanu, V.

    2005-05-24

    Following a semi-microscopic and phenomenological analyses of {alpha}-particle elastic scattering on A{approx}100 nuclei at energies below 32 MeV, a regional optical potential is involved in (n,{alpha}) reaction cross-sections analysis for the stable Mo isotopes. Focus on the uncertainties in the OMP parameters found to describe the {alpha}-particle emission from excited compound residual nuclei is thus obtained, looking for understanding of the related questions on the basis of microscopic models.

  3. Excited state localization and internuclear interactions in asymmetric ruthenium(II) and osmium(II) bpy/tpy based dinuclear compounds.

    PubMed

    Halpin, Yvonne; Dini, Danilo; Ahmed, Hamid M Younis; Cassidy, Lynda; Browne, Wesley R; Vos, Johannes G

    2010-03-15

    The synthesis of two asymmetric dinuclear complexes with the formula [M(bpy)(2)(bpt)Ru(tpy)Cl](2+), where M = Ru (1a), Os(2a); bpy = 2,2'-bipyridyl; Hbpt = 3,5-bis(pyridin-2-yl)1,2,4-triazole and tpy = 2,2',6',2''-terpyridine, is reported. The compounds obtained are characterized by mass spectrometry, (1)H NMR, UV/vis/NIR absorption, luminescence, and resonance Raman spectroscopy. Deuterium isotope labeling facilitates assignment of the (1)H NMR and resonance Raman spectra. The interaction between the two metal centers, mediated by the bridging 1,2,4-triazolato moiety in the mixed valent state, is assigned as type II based on the observation of metal to metal charge transfer absorption bands at 7090 and 5990 cm(-1) for 1a and 2a, respectively. The extent of localization of the emissive excited state was determined by transient resonance Raman and emission spectroscopy. Both 1a and 2a show phosphorescence at the same wavelengths; however, whereas for compound 1a the emission is based on the Ru(tpy)Cl- center, for 2a the emissive state is localized on the Os(bpy)(2)- unit. This indicates that also in the excited state there is efficient interaction between the two metal centers.

  4. Specific features of magnetic order in a multiferroic compound CuCrO2 determined using NMR and NQR data for 63, 65Cu nuclei

    NASA Astrophysics Data System (ADS)

    Smol'nikov, A. G.; Ogloblichev, V. V.; Verkhovskii, S. V.; Mikhalev, K. N.; Yakubovskii, A. Yu.; Furukawa, Y.; Piskunov, Yu. V.; Sadykov, A. F.; Barilo, S. N.; Shiryaev, S. V.

    2017-02-01

    Results of studying the paramagnetic and ordered phases of a CuCrO2 single crystal using nuclear magnetic and nuclear quadrupole resonances on 63,65Cu nuclei are presented. The measurements have been carried out in wide ranges of temperature ( T = 4.2-300 K) and magnetic-field strength ( H = 0-94 kOe), with the magnetic fields being directed along a and c axes of the crystal. The components of the electric-field gradient tensor and the magnetic-shift tensor ( K a,c) have been determined. The temperature dependences K a( H || a) and K c( H || c) for the paramagnetic phase are described by the Curie-Weiss law and reproduce the behavior of the magnetic susceptibility (χa,c). The hyperfine field on a copper nucleus has been determined, which is equal to h hf a,c = 33 kOe/μB. Below the temperature T N = 23.6 K, nuclear magnetic resonance and nuclear quadrupole resonance spectra for 63,65Cu nuclei have been recorded typical of helical magnetic structures, which are incommensurable with the lattice period.

  5. Compound

    NASA Astrophysics Data System (ADS)

    Suzumura, Akitoshi; Watanabe, Masaki; Nagasako, Naoyuki; Asahi, Ryoji

    2014-06-01

    Recently, Cu-based chalcogenides such as Cu3SbSe4, Cu2Se, and Cu2SnSe3 have attracted much attention because of their high thermoelectric performance and their common feature of very low thermal conductivity. However, for practical use, materials without toxic elements such as selenium are preferable. In this paper, we report Se-free Cu3SbS4 thermoelectric material and improvement of its figure of merit ( ZT) by chemical substitutions. Substitutions of 3 at.% Ag for Cu and 2 at.% Ge for Sb lead to significant reductions in the thermal conductivity by 37% and 22%, respectively. These substitutions do not sacrifice the power factor, thus resulting in enhancement of the ZT value. The sensitivity of the thermal conductivity to chemical substitutions in these compounds is discussed in terms of the calculated phonon dispersion and previously proposed models for Cu-based chalcogenides. To improve the power factor, we optimize the hole carrier concentration by substitution of Ge for Sb, achieving a power factor of 16 μW/cm K2 at 573 K, which is better than the best reported for Se-based Cu3SbSe4 compounds.

  6. Effect of Ge substitution for Si on the magnetic hyperfine field in LaMn2Si2 compound measured by perturbed angular correlation spectroscopy with 140Ce as probe nuclei

    NASA Astrophysics Data System (ADS)

    Bosch-Santos, B.; Carbonari, A. W.; Cabrera-Pasca, G. A.; Costa, M. S.; Saxena, R. N.

    2013-05-01

    The effect of substitution of Ge for Si in LaMn2Si2 compound on the magnetic hyperfine field (Bhf) has been investigated by perturbed γ -γ angular correlation (PAC) spectroscopy using 140La(140Ce) as probe nuclei. This compound exhibits antiferromagnetism followed by a ferromagnetic ordering when temperature decreases. The behavior of the ferromagnetic transition when Ge gradually replaces Si, with concentrations of 20%, 40%, 80%, and 100% is discussed. PAC measurements were carried out in the temperature range from 15 K to 325 K. Results for LaMn2Si2 compound showed that the dependence of Bhf with temperature follows the expected behavior for the host magnetization and could be fitted by a Brillouin function for JMn = 5/2. However, the temperature dependence of Bhf for compounds when Si is gradually replaced by Ge showed a deviation from such a behavior, which gradually increases up to a strong deviation observed for LaMn2Ge2. This striking behavior was ascribed to the hybridization of d band of the host and f band of the Ce impurities, which is stronger when the unit cell volume increase as Si ions are substituted by Ge atoms.

  7. Excitation of compound states in subsystems as an indirect tool in nuclear astrophysics. The theory of the Trojan Horse method

    SciTech Connect

    Mukhamedzhanov, A. M.

    2010-03-01

    Astrophysical reactions proceeding through compound states represent one of the crucial part of nuclear astrophysics. However, due to the presence of the Coulomb barrier, it is often very difficult or even impossible to obtain the astrophysical S(E) factor from measurements in the laboratory at astrophysically relevant energies. The Trojan Horse method (THM) provides a unique tool to obtain the information about resonant astrophysical reactions at astrophysical energies. Here the theory and application of the THM for the resonant reactions is addressed.

  8. Skyrmions and Nuclei

    NASA Astrophysics Data System (ADS)

    Battye, R. A.; Manton, N. S.; Sutcliffe, P. M.

    We review recent work on the modelling of atomic nuclei as quantised Skyrmions, using Skyrme's original model with pion fields only. Skyrmions are topological soliton solutions, whose conserved topological charge B is identified with the baryon number of a nucleus. Apart from an energy and length scale, the Skyrme model has just one dimensionless parameter m, proportional to the pion mass. It has been found that a good fit to experimental nuclear data requires m to be of order 1. The Skyrmions for B up to 7 have been known for some time, and are qualitatively insensitive to whether m is zero or of order 1. However, for baryon numbers B = 8 and above, the Skyrmions have quite a compact structure for m of order 1, rather than the hollow polyhedral structure found when m = 0. One finds for baryon numbers which are multiples of four, that the Skyrmions are composed of B = 4 sub-units, as in the α-particle model of nuclei. The rational map ansatz gives a useful approximation to the Skyrmion solutions for all baryon numbers when m = 0. For m of order 1, it gives a good approximation for baryon numbers up to 7, and generalisations of this ansatz are helpful for higher baryon numbers. We briefly review the work from the 1980s and 90s on the semiclassical rigidbody quantisation of Skyrmions for B = 1, 2, 3 and 4. We then discuss more recent work extending this method to B = 6, 7, 8, 10 and 12. We determine the quantum states of the Skyrmions, finding their spins, isospins and parities, and compare with the experimental data on the ground and excited states of nuclei up to mass number 12.

  9. Photonics of a conjugated organometallic Pt-Ir polymer and its model compounds exhibiting hybrid CT excited states.

    PubMed

    Soliman, Ahmed M; Fortin, Daniel; Zysman-Colman, Eli; Harvey, Pierre D

    2012-04-13

    Trans- dichlorobis(tri-n-butylphosphine)platinum(II) reacts with bis(2- phenylpyridinato)-(5,5'-diethynyl-2,2'-bipyridine)iridium(III) hexafluorophosphate to form the luminescent conjugated polymer poly[trans-[(5,5'-ethynyl-2,2'-bipyridine)bis(2- phenylpyridinato)-iridium(III)]bis(tri-n-butylphosphine)platinum(II)] hexafluorophosphate ([Pt]-[Ir])n. Gel permeation chromatography indicates a degree of polymerization of 9 inferring the presence of an oligomer. Comparison of the absorption and emission band positions and their temperature dependence, emission quantum yields, and lifetimes with those for models containing only the [Pt] or the [Ir] units indicates hybrid excited states including features from both chromophores.

  10. Properties of fission fragments for Z =112 -116 superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Kaur, Gurjit; Sandhu, Kirandeep; Sharma, Manoj K.

    2016-07-01

    The dynamical cluster decay model (DCM) is applied to understand the dynamics of 48Ca+238U,244Pu,248Cm reactions at comparable excitation energies across the barrier. To understand the capture stage of *286112 ,*292114 , and *296116 nuclei, the compound nucleus formation probability is calculated. The indication of PC N<1 in the DCM framework demonstrates the fact that some competing process such as quasifission may occur at the capture stage of the 48Ca induced reactions. To understand this further, the comparative decay analysis of *286112 ,*292114 and *296116 , nuclei is carried out using β2 i deformations within hot optimum orientation criteria, and the calculated fission cross sections find nice agreement with available data. The fission mass distribution shows a double humped structure where a symmetric peak observed around the Sn region appears to find its genesis in a symmetric quasifission component. On the other hand, the emergence of peaks around Pb in the decay of Z =112 , 114, and 116 nuclei signify the possible presence of asymmetric quasifission. Higher and broader asymmetric quasifission peaks are observed for *296116 and *292114 nuclei as compared to *286112 nucleus. Beside this, the total kinetic energy (TKE) distribution of the decay fragments is also explored by using different proximity potentials, such as Prox-77, Prox-88, and Prox-00. Prox-88 seems to perform better and the calculated TKE values find relatively better comparison at lower angular momentum states. The possible role of different radii of the decaying nuclei is also exercised to understand the TKE ¯ dynamics of 48Ca+238U,244Pu,248Cm reactions.

  11. Localization and clustering in atomic nuclei

    NASA Astrophysics Data System (ADS)

    Ebran, J.-P.; Khan, E.; Nikšić, T.; Vretenar, D.

    2017-10-01

    Nucleon localization, and formation of clusters in nucleonic matter and finite nuclei are explored in a framework based on nuclear energy density functionals. The liquid-cluster transition is investigated and different measures of localization are discussed. The formation and evolution of α-clusters in excited states of both N = Z and neutron-rich nuclei are analysed. The effects of spin-orbit coupling are discussed in relation to the confining potential.

  12. A compilation of information on the {sup 31}P(p,{alpha}){sup 28}Si reaction and properties of excited levels in the compound nucleus {sup 32}S

    SciTech Connect

    Miller, R.E.; Smith, D.L.

    1997-11-01

    This report documents a survey of the literature, and provides a compilation of data contained therein, for the {sup 31}P(p,{alpha}){sup 28}Si reaction. Attention is paid here to resonance states in the compound-nuclear system {sup 32}S formed by {sup 31}P + p, with emphasis on the alpha-particle decay channels, {sup 28}Si + {alpha} which populate specific levels in {sup 28}Si. The energy region near the proton separation energy for {sup 32}S is especially important in this context for applications in nuclear astrophysics. Properties of the excited states in {sup 28}Si are also considered. Summaries of all the located references are provided and numerical data contained in them are compiled in EXFOR format where applicable.

  13. Synthesis of wurtzite-zincblende Cu2ZnSnS4 and Cu2ZnSnSe4 nanocrystals: insight into the structural selection of quaternary and ternary compounds influenced by binary nuclei

    NASA Astrophysics Data System (ADS)

    Li, Yingwei; Han, Qifeng; Kim, Tae Whan; Shi, Wangzhou

    2014-03-01

    Nearly monodispersed wurtzite-dominant Cu2ZnSnS4 and zincblende-dominant Cu2ZnSnSe4 nanocrystals were successfully synthesized by mixing metal salts with heated thiourea or selenourea in oleylamine. A perspective of the structural relationship between quaternary and ternary semiconductors was investigated through the application of different anion sources to prepare Cu2SnS3 and Cu2SnSe3 nanocrystals. Investigations on copper-based binary compounds found that CuSe (or CuS) and Cu2Se (or Cu1.96S, Cu9S5) nuclei were primarily responsible for the formation of zincblende or wurtzite structures, respectively. Further management over these binary intermediates corresponded to slight structural transformations of the quaternary nanocrystals which could be observed not only in XRD patterns, but from optical and electrical properties as well. According to these results, Cu2ZnGeS4 nanocrystals with wurtzite-dominant structures were first reported using SC(NH2)2, which also verified that the binary semiconductors are the determinative factors.Nearly monodispersed wurtzite-dominant Cu2ZnSnS4 and zincblende-dominant Cu2ZnSnSe4 nanocrystals were successfully synthesized by mixing metal salts with heated thiourea or selenourea in oleylamine. A perspective of the structural relationship between quaternary and ternary semiconductors was investigated through the application of different anion sources to prepare Cu2SnS3 and Cu2SnSe3 nanocrystals. Investigations on copper-based binary compounds found that CuSe (or CuS) and Cu2Se (or Cu1.96S, Cu9S5) nuclei were primarily responsible for the formation of zincblende or wurtzite structures, respectively. Further management over these binary intermediates corresponded to slight structural transformations of the quaternary nanocrystals which could be observed not only in XRD patterns, but from optical and electrical properties as well. According to these results, Cu2ZnGeS4 nanocrystals with wurtzite-dominant structures were first reported

  14. The Peculiarities of the Production and Decay of Superheavy Nuclei

    NASA Astrophysics Data System (ADS)

    Itkis, M. G.; Beghini, S.; Behera, B. R.; Bogachev, A. A.; Bouchat, V.; Corradi, L.; Dorvaux, O.; Fioretto, E.; Hanappe, F.; Itkis, I. M.; Jandel, M.; Kliman, J.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Latina, A.; Materna, T.; Montagnoli, G.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Prokhorova, E. V.; Rowley, N.; Rusanov, A. Ya.; Sagaidak, R. N.; Scarlassara, F.; Schmitt, C.; Stefanini, A. M.; Stuttge, L.; Szilner, S.; Trotta, M.

    2006-08-01

    The interest in the study of the fission process of superheavy nuclei mainly deals with the opportunity to obtain information about the cross-section of the compound nucleus (CN) formation at excitation energies E*≈15-30 MeV. It allows one to estimate the survival probability of the superheavy composite system after evaporation of 1-3 neutrons, i.e. in "cold" or "warm" fusion reactions. However, in order to solve this problem deeper understanding of the coalescence processes between colliding nuclei, the competition between fusion-fission and quasi-fission processes is needed. The characteristics of both processes, their manifestation in the experimental observables and the relative contribution to the capture cross-section in dependence on the excitation energies, reaction entrance channel etc were investigated for a wide range of target-projectile combinations. Results of the experiments devoted to the study of the fusion-fission and quasi-fission processes in the reactions of the formation of the superheavy nuclei with Z = 102-122 are presented. The heavy ions 26Mg, 48Ca, 50Ti, 58Fe and 64Ni were used as projectiles. The choice of the reactions with 48Ca and actinide-targets was inspired by the experiments on the production of the isotopes 283112, 289114 and 283116 in Dubna using the same reactions. The 50Ti, 58Fe and 64Ni projectiles were chosen since the corresponding projectile-target combinations lead to the synthesis of even heavier elements. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia) and the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy) using the time-of-flight spectrometer of fission fragments CORSET. The role of the shell effects, the influence of the entrance channel asymmetry and the deformations of colliding nuclei on the mechanism of the fusion-fission and the competitive process of quasi-fission are discussed. The recent results on synthesis of

  15. Quantum Monte Carlo calculations for light nuclei

    SciTech Connect

    Wiringa, R.B.

    1997-10-01

    Quantum Monte Carlo calculations of ground and low-lying excited states for nuclei with A {le} 8 have been made using a realistic Hamiltonian that fits NN scattering data. Results for more than two dozen different (J{sup {pi}}, T) p-shell states, not counting isobaric analogs, have been obtained. The known excitation spectra of all the nuclei are reproduced reasonably well. Density and momentum distributions and various electromagnetic moments and form factors have also been computed. These are the first microscopic calculations that directly produce nuclear shell structure from realistic NN interactions.

  16. Isospin influence on the decay modes of compound nuclei produced in the 78, 86Kr + 40, 48Ca at 10 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Pirrone, S.; Politi, G.; Wieleczko, J. P.; Gnoffo, B.; De Filippo, E.; La Commara, M.; Russotto, P.; Trimarchi, M.; Vigilante, M.; Ademard, G.; Auditore, L.; Beck, C.; Bercenau, I.; Bonnet, E.; Borderie, B.; Cardella, G.; Chibihi, A.; Colonna, M.; D'Onofrio, A.; Frankland, J. D.; Lanzalone, G.; Lautesse, P.; Lebhertz, D.; Le Neidre, N.; Lombardo, I.; Mazurek, K.; Pagano, A.; Pagano, E. V.; Papa, M.; Piasecki, E.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Spadaccini, G.; Trifirò, A.; Verde, G.

    2017-09-01

    The study of the decay modes competition of the compound systems produced in the collisions ^{78}{Kr} + ^{40}{Ca} and ^{86}{Kr} + ^{48}{Ca} at 10MeV/A is presented. In particular, the N / Z entrance channel influence on the decay paths of the compound systems, directly connected to the isospin influence, is investigated. The experiment was performed at the INFN Laboratori Nazionali del Sud (LNS) in Catania by using the 4 π multi-detector CHIMERA. Charge, mass, angular distributions and kinematical features of the reaction products were studied. The analysis shows some differences in the contribution arising from the various reaction mechanisms for the neutron-poor and neutron-rich systems.

  17. α versus non-α cluster decays of the excited compound nucleus *124Ce using various formulations of the nuclear proximity potential

    NASA Astrophysics Data System (ADS)

    Kaur, Arshdeep; Chopra, Sahila; Gupta, Raj K.

    2015-06-01

    The earlier study of *124Ce formed in the 32S+92Mo reaction at an above barrier beam energy of 150 MeV, using the pocket formula of Blocki et al. for the nuclear proximity potential in the dynamical cluster-decay model (DCM), is extended to the use of other nuclear interaction potentials derived from the Skyrme energy density functional (SEDF) based on the semiclassical extended Thomas Fermi (ETF) approach under the frozen density approximation. The Skyrme forces used are the old SII, SIII, SIV, SKa, SkM, and SLy4 and new GSkI and KDE0(v1), given for both normal and isospin-rich nuclei. It is found that the α -nucleus structure, over the non-α nucleus structure, is preferred for only two Skyrme forces, the SIII and KDE0(v1). An extended intermediate mass fragments (IMFs) window, along with the new decay region of heavy mass fragments (HMFs) and the near-symmetric and symmetric fission fragments which, on adding the complementary heavy fragments, corresponds to (A /2 )±12 mass region of the fusion-fission (ff) process, are predicted by considering cross sections of orders observed in the experiment under study. For the predicted (total) fusion cross section, the survival probability Psurv of the compound nucleus (CN) against fission is shown to be very small because of the very large predicted ff component. On the other hand, the CN formation probability PCN is found to be nearly equal to 1, and hence the decay under study is a pure CN decay for all the nuclear potentials considered, since the estimated noncompound nucleus (nCN) content is almost negligible. We have also applied the extended-Wong model of Gupta and collaborators, and find that the ℓmax values and total fusion cross sections are of the same order as for the DCM. Thus, the extended-Wong model, which describes only the total fusion cross section in terms of the barrier characteristics of the entrance channel nuclei, could be useful for initial experimental studies to be fully treated using the DCM

  18. Decay of the excited compound system *56Ni formed through various channels using deformed Coulomb and deformed nuclear proximity potentials

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Subha, P. V.

    2017-06-01

    The total cross section, the intermediate mass fragment (IMF) production cross section, and the cross section for the formation of light particles (LPs) for the decay of compound system *56Ni formed through the entrance channel 32S+24Mg have been evaluated by taking the scattering potential as the sum of deformed Coulomb and deformed nuclear proximity potentials, for various Ec .m . values. The computed results have been compared with the available experimental data of total cross section corresponding to Ec .m .=60.5 and 51.6 MeV for the entrance channel 32S+24Mg , which were found to be in good agreement. The experimental values for the LP production cross section and IMF cross section for the channel 32S+24Mg were also found to agree with our calculations. Hence we have extended our studies and have thus computed the total cross section, IMF cross section, and LP cross section for the decay of *56Ni formed through the other three entrance channels 36Ar+20Ne,40Ca+16O , and 28Si+28Si with different Ec .m . values. Hence, we hope that our predictions on the evaluations of the IMF cross sections and the LP cross sections for the decay of *56Ni formed through these three channels can be used for further experimental studies.

  19. Purification and Quantification of an Isomeric Compound in a Mixture by Collisional Excitation in Multistage Mass Spectrometry Experiments.

    PubMed

    Jeanne Dit Fouque, Dany; Maroto, Alicia; Memboeuf, Antony

    2016-11-15

    The differentiation, characterization, and quantification of isomers and/or isobars in mixtures is a recurrent problem in mass spectrometry and more generally in analytical chemistry. Here we present a new strategy to assess the purity of a compound that is susceptible to be contaminated with another isomeric side-product in trace levels. Providing one of the isomers is available as pure sample, this new strategy allows the detection of isomeric contamination. This is done thanks to a "gas-phase collisional purification" inside an ion trap mass spectrometer paving the way for an improved analysis of at least similar samples. This strategy consists in using collision induced dissociation (CID) multistage mass spectrometry (MS(2) and MS(3)) experiments and the survival yield (SY) technique. It has been successfully applied to mixtures of cyclic poly(L-lactide) (PLA) with increasing amounts of its linear topological isomer. Purification in gas phase of PLA mixtures was established based on SY curves obtained in MS(3) mode: all samples gave rise to the same SY curve corresponding then to the pure cyclic component. This new strategy was sensitive enough to detect traces of linear PLA (<3%) in a sample of cyclic PLA that was supposedly pure according to other characterization techniques ((1)H NMR, MALDI-HRMS, and size-exclusion chromatography). Moreover, in this case, the presence of linear isomer was undetectable according to MS/MS or MS/MS/MS analysis only as fragment ions are also of the same m/z values. This type of approach could easily be implemented in hyphenated mass spectrometric techniques to improve the structural and quantitative analysis of complex samples.

  20. Theoretical study of the nuclear spin-molecular rotation coupling for relativistic electrons and non-relativistic nuclei. II. Quantitative results in HX (X = H,F,Cl,Br,I) compounds.

    PubMed

    Aucar, I Agustín; Gómez, Sergio S; Melo, Juan I; Giribet, Claudia C; Ruiz de Azúa, Martín C

    2013-04-07

    In the present work, numerical results of the nuclear spin-rotation (SR) tensor in the series of compounds HX (X = H,F,Cl,Br,I) within relativistic 4-component expressions obtained by Aucar et al. [J. Chem. Phys. 136, 204119 (2012)] are presented. The SR tensors of both the H and X nuclei are discussed. Calculations were carried out within the relativistic Linear Response formalism at the Random Phase Approximation with the DIRAC program. For the halogen nucleus X, correlation effects on the non-relativistic values are shown to be of similar magnitude and opposite sign to relativistic effects. For the light H nucleus, by means of the linear response within the elimination of the small component approach it is shown that the whole relativistic effect is given by the spin-orbit operator combined with the Fermi contact operator. Comparison of "best estimate" calculated values with experimental results yield differences smaller than 2%-3% in all cases. The validity of "Flygare's relation" linking the SR tensor and the NMR nuclear magnetic shielding tensor in the present series of compounds is analyzed.

  1. Compton scattering by nuclei

    NASA Astrophysics Data System (ADS)

    Hütt, M.-Th.; L'vov, A. I.; Milstein, A. I.; Schumacher, M.

    2000-01-01

    The concept of Compton scattering by even-even nuclei from giant-resonance to nucleon-resonance energies and the status of experimental and theoretical researches in this field are outlined. The description of Compton scattering by nuclei starts from different complementary approaches, namely from second-order S-matrix and from dispersion theories. Making use of these, it is possible to incorporate into the predicted nuclear scattering amplitudes all the information available from other channels, viz. photon-nucleon and photon-meson channels, and to efficiently make use of models of the nucleon, the nucleus and the nucleon-nucleon interaction. The total photoabsorption cross section constrains the nuclear scattering amplitude in the forward direction. The specific information obtained from Compton scattering therefore stems from the angular dependence of the nuclear scattering amplitude, providing detailed insight into the dynamics of the nuclear and nucleon degrees of freedom and into the interplay between them. Nuclear Compton scattering in the giant-resonance energy-region provides information on the dynamical properties of the in-medium mass of the nucleon. Most prominently, the electromagnetic polarizabilities of the nucleon in the nuclear medium can be extracted from nuclear Compton scattering data obtained in the quasi-deuteron energy-region. In our description of this latter process special emphasis is laid upon the exploration of many-body and two-body effects entering into the nuclear dynamics. Recent results are presented for two-body effects due to the mesonic seagull amplitude and due to the excitation of nucleon internal degrees of freedom accompanied by meson exchanges. Due to these studies the in-medium electromagnetic polarizabilities are by now well understood, whereas the understanding of nuclear Compton scattering in the Δ-resonance range is only at the beginning. Furthermore, phenomenological methods how to include retardation effects in the

  2. Production of new superheavy Z=108-114 nuclei with U238, Pu244, and Cm248,250 targets

    NASA Astrophysics Data System (ADS)

    Feng, Zhao-Qing; Jin, Gen-Ming; Li, Jun-Qing

    2009-11-01

    Within the framework of the dinuclear system (DNS) model, production cross sections of new superheavy nuclei with charged numbers Z=108-114 are analyzed systematically. Possible combinations based on the actinide nuclides U238, Pu244, and Cm248,250 with the optimal excitation energies and evaporation channels are pointed out to synthesize new isotopes that lie between the nuclides produced in the cold fusion reactions and the Ca48-induced fusion reactions experimentally, which are feasible to be constructed experimentally. It is found that the production cross sections of superheavy nuclei decrease drastically with the charged numbers of compound nuclei. Larger mass asymmetries of the entrance channels enhance the cross sections in 2n-5n channels.

  3. Collisions of deformed nuclei and superheavy-element production

    SciTech Connect

    Iwamoto, Akira; Moeller, P. |||; Nix, J.R.; Sagawa, Hiroyuki, Sagawa

    1995-09-01

    A detailed understanding of complete fusion cross sections in heavy-ion collisions requires a consideration of the effects of the deformation of the projectile and target. The aim here is to show that deformation and orientation of the colliding nuclei have a very significant effect on the fusion-barrier height and on the compactness of the touching configuration. To facilitate discussions of fusion configurations of deformed nuclei, the authors develop a classification scheme and introduce a notation convention for these configurations. They discuss particular deformations and orientations that lead to compact touching configurations and to fusion-barrier heights that correspond to fairly low excitation energies of the compound systems. Such configurations should be the most favorable for producing superheavy elements. They analyze a few projectile-target combinations whose deformations allow favorable entrance-channel configurations and whose proton and neutron numbers lead to compound systems in a part of the superheavy region where a half-lives are calculated to be observable, that is, longer than 1 {micro}s.

  4. Breakup Densities of Hot Nuclei

    NASA Astrophysics Data System (ADS)

    Viola, V. E.; Kwiatkowski, K.; Natowitz, J. B.; Yennello, S. J.

    2004-09-01

    Breakup densities of hot 197Au-like residues have been deduced from the systematic trends of Coulomb parameters required to fit intermediate-mass-fragment kinetic-energy spectra. The results indicate emission from nuclei near normal nuclear density below an excitation energy E*/A≲2 MeV, followed by a gradual decrease to a near-constant value of ρ/ρ0˜0.3 for E*/A≳5 MeV. Temperatures derived from these data with a density-dependent Fermi-gas model yield a nuclear caloric curve that is generally consistent with those derived from isotope ratios.

  5. Superdeformation in the mercury nuclei

    SciTech Connect

    Janssens, R.V.F.; Carpenter, M.P.; Fernandez, P.B.; Moore, E.F.; Ahmad, I.; Khoo, T.L.; Wolfs, F.L.H. ); Drigert, M.W. ); Ye, D.; Beard, K.B.; Garg, U.; Reviol, W. ); Bearden, I.G.; Benet, P.; Daly, P.J.; Grabowski, Z.W. )

    1990-01-01

    We shall first summarize the present experimental situation concerning {sup 192}Hg, the nucleus regarded as the analog of {sup 152}Dy for this superdeformation (SD) region in that gaps are calculated to occur at large deformation for Z = 80 and N = 112. Proton and neutron excitations out of the {sup 192}Hg core will then be reviewed with particular emphasis on {sup 191}Hg and {sup 193}Tl. The presentation will conclude with a brief discussion on limits of the SD region for neutron deficient Hg nuclei. 26 refs., 10 figs.

  6. The role of magnetic excitations in magnetoresistance and Hall effect of slightly TM-substituted BaFe2As2 compounds (TM = Mn, Cu, Ni)

    NASA Astrophysics Data System (ADS)

    Peña, J. P.; Piva, M. M.; Jesus, C. B. R.; Lesseux, G. G.; Garitezi, T. M.; Tobia, D.; Rosa, P. F. S.; Grant, T.; Fisk, Z.; Adriano, C.; Urbano, R. R.; Pagliuso, P. G.; Pureur, P.

    2016-12-01

    We report on electrical resistivity, magnetoresistance (MR) and Hall effect measurements in four non-superconducting BaFe2-xTMxAs2 (TM = Mn, Cu and Ni) single crystals with small values of the chemical substitution x. The spin density wave (SDW) ordering that occurs in these systems at temperatures T ∼ (120-140) K, in close vicinity to a tetragonal/orthorhombic transition, produces significant modifications in their magneto-transport properties. While in the magnetically ordered phase the MR is positive and its magnitude increases with decreasing temperatures, in the paramagnetic regime the MR becomes vanishingly small. Above the spin density wave transition temperature (TSDW) the Hall coefficient RH is negative, small and weakly temperature dependent, but a remarkable change of slope occurs in the RH versus T curves at T =TSDW . The Hall coefficient amplitude, while remaining negative, increases steadily and significantly as the temperature is decreased below TSDW and down to T = 20 K. The qualitative behavior of both MR and Hall coefficient is weakly dependent on the chemical substitution in the studied limit. The experiments provide strong evidence that scattering of charge carriers by magnetic excitations has to be taken into account to explain the behavior of the resistivity, magnetoresistance and Hall effect in the ordered phase of the studied compounds. Effects of multiple band conduction also must be considered for a complete interpretation of the results.

  7. Resonant inelastic X-ray scattering study of spin-wave excitations in the cuprate parent compound Ca2CuO2Cl2

    DOE PAGES

    Lebert, B. W.; Dean, M.; Nicolaou, A.; ...

    2017-04-07

    By means of resonant inelastic x-ray scattering at the Cu L3 edge, we measured the spin wave dispersion along <100> and <110> in the undoped cuprate Ca2CuO2Cl2. The data yields a reliable estimate of the superexchange parameter J = 135 ± 4 meV using a classical spin-1/2 2D Heisenberg model with nearest-neighbor interactions and including quantum fluctuations. Including further exchange interactions increases the estimate to J = 141 meV. The 40 meV dispersion between the magnetic Brillouin zone boundary points (1/2, 0) and (1/4, 1/4) indicates that next-nearest neighbor interactions in this compound are intermediate between the values found inmore » La2CuO4 and Sr2CuO2Cl2. Here by owing to the low-Z elements composing Ca2CuOCl2, the present results may enable a reliable comparison with the predictions of quantum many-body calculations, which would improve our understanding of the role of magnetic excitations and of electronic correlations in cuprates.« less

  8. Electronic structure, transport properties, and excited states in CoTiSb, CoZrSb, and CoHfSb half-Heusler compounds

    NASA Astrophysics Data System (ADS)

    Janotti, Anderson; Gui, Zhigang; Kawasaki, Jason; Palmstrom, Chris; Himmetoglu, Burak

    CoTiSb is a member of a large family of half-Heusler compounds with 18 valence electrons. CoTiSb is semiconductor material with a band gap a little over 1 eV, and it has been considered promising for thermoelectric applications. It can be grown on conventional III-V semiconductors, and could potentially be integrated in III-V devices. Here we present results of first-principles calculations of electronic structure, transport properties, and excited states in CoTiSb, as well as CoZrSb and CoHfSb. Electronic structures are studied using density functional theory within the local density approximation, hybrid functional and quasiparticle GW methods. Both room-temperature Seebeck coefficient and carrier mobility are calculated from first-principles. We also determine the band alignments to III-V semiconductors, and all the results are presented and discussed in the light of available experimental data. This work was supported by the DOE.

  9. Resonant inelastic x-ray scattering study of spin-wave excitations in the cuprate parent compound Ca2CuO2Cl2

    NASA Astrophysics Data System (ADS)

    Lebert, B. W.; Dean, M. P. M.; Nicolaou, A.; Pelliciari, J.; Dantz, M.; Schmitt, T.; Yu, R.; Azuma, M.; Castellan, J.-P.; Miao, H.; Gauzzi, A.; Baptiste, B.; d'Astuto, M.

    2017-04-01

    By means of resonant inelastic x-ray scattering at the Cu L3 edge, we measured the spin-wave dispersion along <100 > and <110 > in the undoped cuprate Ca2CuO2Cl2 . The data yield a reliable estimate of the superexchange parameter J =135 ±4 meV using a classical spin-1/2 two-dimensional Heisenberg model with nearest-neighbor interactions and including quantum fluctuations. Including further exchange interactions increases the estimate to J =141 meV. The 40 meV dispersion between the magnetic Brillouin zone boundary points (1/2, 0) and (1/4, 1/4) indicates that next-nearest-neighbor interactions in this compound are intermediate between the values found in La2CuO4 and Sr2CuO2Cl2 . Due to the low-Z elements composing Ca2CuO2Cl2 , the present results may enable a reliable comparison with the predictions of quantum many-body calculations, which would improve our understanding of the role of magnetic excitations and of electronic correlations in cuprates.

  10. Star formation around active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Keel, William C.

    1987-01-01

    Active galactic nuclei (Seyfert nuclei and their relatives) and intense star formation can both deliver substantial amounts of energy to the vicinity of a galactic nucleus. Many luminous nuclei have energetics dominated by one of these mechanisms, but detailed observations show that some have a mixture. Seeing both phenomena at once raises several interesting questions: (1) Is this a general property of some kinds of nuclei? How many AGNs have surround starbursts, and vice versa? (2) As in 1, how many undiscovered AGNs or starbursts are hidden by a more luminous instance of the other? (3) Does one cause the other, and by what means, or do both reflect common influences such as potential well shape or level of gas flow? (4) Can surrounding star formation tell us anything about the central active nuclei, such as lifetimes, kinetic energy output, or mechanical disturbance of the ISM? These are important points in the understanding of activity and star formation in galactic nuclei. Unfortunately, the observational ways of addressing them are as yet not well formulated. Some preliminary studies are reported, aimed at clarifying the issues involved in study of the relationships between stellar and nonstellar excitement in galactic nuclei.

  11. Excited-state electronic coupling and photoinduced multiple electron transfer in two related ligand-bridged hexanuclear mixed-valence compounds.

    PubMed

    Pfennig, Brian W; Mordas, Carolyn J; McCloskey, Alex; Lockard, Jenny V; Salmon, Patty M; Cohen, Jamie L; Watson, David F; Bocarsly, Andrew B

    2002-08-26

    The synthesis, characterization, electrochemical, photophysical, and photochemical properties of two hexanuclear mixed-valence compounds are reported. Each supramolecular species consists of two cyano-bridged [(NC)(5)Fe(II)-CN-Pt(IV)(NH(3))(3)L-NC-Fe(II)(CN)(5)] triads that are linked to each other through a Pt(IV)-L-Pt(IV) bridge, where L = 4,4'-dipyridyl (bpy) or 3,3'-dimethyl-4,4'-dipyridyl (dmb). The major difference between the two compounds is the electronic nature of the bridging ligand between the two Pt atoms. Both species exhibit a broad Fe(II) --> Pt(IV) intervalent (IT) absorption band at 421 nm with an oscillator strength that is approximately four times that for [(NC)(5)Fe(II)-CN-Pt(IV)(NH(3))(5)] and twice that for [(NC)(5)Fe(II)-CN-Pt(IV)(NH(3))(4)-NC-Fe(II)(CN)(5)].(4-) When L = bpy, the resonance Raman spectrum obtained by irradiating the IT band at 488 nm exhibits several dipyridyl ring modes at 1604, 1291, and 1234 cm(-1) which are not present in the spectrum when L = dmb. In addition, femtosecond pump-probe spectroscopy performed at 400 nm yields a transient bleach of the IT absorption band with a single exponential decay of 3.5 ps for L = bpy, compared with only 1.8 ps for L = dmb and 2.1 ps for [(NC)(5)Fe(II)-CN-Pt(IV)(NH(3))(4)-NC-Fe(II)(CN)(5)].(4-) Last, prolonged irradiation of the complexes at 488 nm leads to the formation of 4 equiv of ferricyanide with a quantum efficiency of 0.0014 for L = bpy and 0.0011 for L = dmb. The transient absorption, resonance Raman, and photochemical data suggest that the degree of excited electronic coupling in these compounds is tunable by changing the electronic nature of the Pt-L-Pt bridging ligand.

  12. Synthesis of wurtzite-zincblende Cu2ZnSnS4 and Cu2ZnSnSe4 nanocrystals: insight into the structural selection of quaternary and ternary compounds influenced by binary nuclei.

    PubMed

    Li, Yingwei; Han, Qifeng; Kim, Tae Whan; Shi, Wangzhou

    2014-04-07

    Nearly monodispersed wurtzite-dominant Cu2ZnSnS4 and zincblende-dominant Cu2ZnSnSe4 nanocrystals were successfully synthesized by mixing metal salts with heated thiourea or selenourea in oleylamine. A perspective of the structural relationship between quaternary and ternary semiconductors was investigated through the application of different anion sources to prepare Cu2SnS3 and Cu2SnSe3 nanocrystals. Investigations on copper-based binary compounds found that CuSe (or CuS) and Cu2Se (or Cu1.96S, Cu9S5) nuclei were primarily responsible for the formation of zincblende or wurtzite structures, respectively. Further management over these binary intermediates corresponded to slight structural transformations of the quaternary nanocrystals which could be observed not only in XRD patterns, but from optical and electrical properties as well. According to these results, Cu2ZnGeS4 nanocrystals with wurtzite-dominant structures were first reported using SC(NH2)2, which also verified that the binary semiconductors are the determinative factors.

  13. Low-energy particle production and residual nuclei production from high-energy hadron-nucleus collisions

    SciTech Connect

    Alsmiller, F.S.; Alsmiller, R.G. Jr.; Hermann, O.W.

    1987-01-01

    The high-energy hadron-nucleus collision model, EVENTQ, has been modified to include a calculation of the excitation and kinetic energy of the residual compound nucleus. The specific purpose of the modification is to make it possible to use the model in the high-energy radiation transport code, HETC, which, in conjunction with MORSE, is used to transport the low energy particles. It is assumed that the nucleons in the nucleus move in a one-dimensional potential well and have the momentum distribution of a degenerate Fermi gas. The low energy particles produced by the deexcitation of the residual compound nucleus, and the final residual nucleus, are determined from an evaporation model. Comparisons of multiplicities and residual nuclei distributions with experimental data are given. The ''grey'' particles, i.e., charged particles with 0.25 < ..beta.. < 0.7, are in good agreement with experimental data but the residual nuclei distributions are not. 12 refs., 3 figs.

  14. Nuclei at High Angular Momentum

    SciTech Connect

    Diamond, R. M.; Stephens, F. S.

    1980-12-01

    It appears that most nuclei show a compromise between purely collective and purely non-collective behavior at very high spins.non~collective behavior in nuclei has been seen only as high as 36 or 37{bar h}, at which point a more collective structure seems to develop. The concepts underlying the study of high angular momentum states are discussed. The factors that limit angular momentum in nuclei are considered. The currently emerging state of physics of very high spin states is reviewed. The detailed calculations currently made for high spin states are described, focusing not on the calculations themselves, but on the physical input to them and results that come out. Production of high-spin states using heavy-ion reactions is reviewed. Studies of {gamma}-rays de-exciting the evaporation residues from heavy-ion reactions are covered. Two types of {gamma} rays occur: those that cool the nucleus to or toward the yrast line, called "statistical," and those that are more or less parallel to the yrast line and remove the angular momentum, called "yrast~like." Collective rotation, in simplest form the motion of a deformed nucleus around an axis perpendicular to its symmetry axis, is also covered.

  15. Onset of quenching of the giant dipole resonance at high excitation energies

    NASA Astrophysics Data System (ADS)

    Santonocito, D.; Blumenfeld, Y.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Delaunay, F.; Del Zoppo, A.; Finocchiaro, P.; Hongmei, F.; Lima, V.; Maiolino, C.; Migneco, E.; Piattelli, P.; Sapienza, P.; Scarpaci, J. A.; Wieland, O.

    2014-11-01

    The evolution of the giant dipole resonance (GDR) properties in nuclei of mass A =120 to 132 has been investigated in an excitation energy range between 150 and 270 MeV through the study of complete and nearly complete fusion reactions using 116Sn beams at 17 A and 23 A MeV from the cyclotron of the Laboratorio Nazionale del Sud impinging on 12C and 24Mg targets. γ rays and light charged particles were detected using the multi-element detector array MEDEA in coincidence with evaporation residues detected by using mass and charge identification spectrometry with telescope (MACISTE). Light-charged-particle energy spectra were analyzed within the framework of a multiple-source-emission scenario by using a fitting procedure to determine the amount of pre-equilibrium emission and deduce the excitation energies reached in the compound nuclei. A detailed analysis of the γ -ray spectra and their comparison with statistical model calculations is presented. Evidence of a quenching of the GDR gamma yield was found at 270 MeV excitation energy. The quenching effect becomes progressively more important with increasing excitation energy, as observed when the comparison is extended to data from the reaction 36Ar+96Mo at 37 A MeV where hot nuclei were populated up to 430 MeV excitation energy. A coherent scenario emerges indicating the existence of a limiting excitation energy for the collective motion of about E*/A =2.1 MeV for systems of mass A =105 to 111 while a slightly lower value was observed for nuclei of mass A ˜132 . The existence of a possible link between GDR disappearance and the liquid-gas phase transition is discussed.

  16. Synthesis of superheavy elements and dinuclear-system concept of compound-nucleus formation

    SciTech Connect

    Antonenko, N.V.; Adamian, G.G.; Cherepanov, E.A.

    1996-12-31

    Dinuclear system concept is applied to the analysis of reactions used for the synthesis of elements with Z = 110, 112, 114, and 116. The inner fusion barriers obtained for these reactions are in good agreement with the experimental estimations resulted from the excitation energies of compound nuclei. A model is suggested for the calculation of the competition between complete fusion and quasifission in reactions with heavy nuclei. The fusion rate through the inner fusion barrier in mass asymmetry is found by using the multidimensional Kramers-type stationary solution of the Fokker-Planck equation. The influence of dissipative effects on the dynamics of nuclear fusion is considered.

  17. Production of new superheavy Z=108-114 nuclei with {sup 238}U, {sup 244}Pu, and {sup 248,250}Cm targets

    SciTech Connect

    Feng Zhaoqing; Jin Genming; Li Junqing

    2009-11-15

    Within the framework of the dinuclear system (DNS) model, production cross sections of new superheavy nuclei with charged numbers Z=108-114 are analyzed systematically. Possible combinations based on the actinide nuclides {sup 238}U, {sup 244}Pu, and {sup 248,250}Cm with the optimal excitation energies and evaporation channels are pointed out to synthesize new isotopes that lie between the nuclides produced in the cold fusion reactions and the {sup 48}Ca-induced fusion reactions experimentally, which are feasible to be constructed experimentally. It is found that the production cross sections of superheavy nuclei decrease drastically with the charged numbers of compound nuclei. Larger mass asymmetries of the entrance channels enhance the cross sections in 2n-5n channels.

  18. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  19. Is Fusion Inhibited for Weakly Bound Nuclei?

    SciTech Connect

    Takahashi, J.; Munhoz, M.; Szanto, E.M.; Carlin, N.; Added, N.; Suaide, A.A.; de Moura, M.M.; Liguori Neto, R.; Szanto de Toledo, A.; Canto, L.F.

    1997-01-01

    Complete fusion of light radioactive nuclei is predicted to be hindered at near-barrier energies. This feature is investigated in the case of the least bound stable nuclei. Evaporation residues resulting from the {sup 6,7}Li+{sup 9}Be and {sup 6,7}Li+{sup 12}C fusion reactions have been measured in order to study common features in reactions involving light weakly bound nuclei. The experimental excitation functions revealed that the fusion cross section is significantly smaller than the total reaction cross section and also smaller than the fusion cross section expected from the available systematics. A clear correlation between the fusion probability and nucleon (cluster) separation energy has been established.The results suggest that the breakup process has a strong influence on the hindrance of the fusion cross section. {copyright} {ital 1996} {ital The American Physical Society}

  20. Invariant mass spectroscopy of halo nuclei

    SciTech Connect

    Nakamura, Takashi

    2008-11-11

    We have applied the invariant mass spectroscopy to explore the low-lying exited states of halo nuclei at intermediate energies around 70 MeV/nucleon at RIKEN. As examples, we show here the results of Coulomb breakup study for {sup 11}Li using the Pb target, as well as breakup reactions of {sup 14}Be with p and C targets. The former study revealed a strong Coulomb breakup cross section reflecting the large enhancement of E1 strength at low excitation energies (soft E1 excitation). The latter revealed the observation of the first 2{sup +} state in {sup 14}Be.

  1. Quantum Monte Carlo calculations for light nuclei.

    SciTech Connect

    Wiringa, R. B.

    1998-10-23

    Quantum Monte Carlo calculations of ground and low-lying excited states for nuclei with A {le} 8 are made using a realistic Hamiltonian that fits NN scattering data. Results for more than 40 different (J{pi}, T) states, plus isobaric analogs, are obtained and the known excitation spectra are reproduced reasonably well. Various density and momentum distributions and electromagnetic form factors and moments have also been computed. These are the first microscopic calculations that directly produce nuclear shell structure from realistic NN interactions.

  2. Quantum Monte Carlo calculations for light nuclei

    SciTech Connect

    Wiringa, R.B.

    1998-08-01

    Quantum Monte Carlo calculations of ground and low-lying excited states for nuclei with A {le} 8 are made using a realistic Hamiltonian that fits NN scattering data. Results for more than 30 different (j{sup {prime}}, T) states, plus isobaric analogs, are obtained and the known excitation spectra are reproduced reasonably well. Various density and momentum distributions and electromagnetic form factors and moments have also been computed. These are the first microscopic calculations that directly produce nuclear shell structure from realistic NN interactions.

  3. Isolation of Nuclei.

    PubMed

    Nabbi, Arash; Riabowol, Karl

    2015-08-03

    The isolation of nuclei is often the first step in studying processes such as nuclear-cytoplasmic shuttling, subcellular localization of proteins, and protein-chromatin or nuclear protein-protein interactions in response to diverse stimuli. Therefore, rapidly obtaining nuclei from cells with relatively high purity and minimal subcellular contamination, protein degradation, or postharvesting modification is highly desirable. Historically, the isolation of nuclei involved a homogenization step followed by centrifugation through high-density glycerol or sucrose. Although clean nuclei with little cytoplasmic contamination can be prepared using this method, it is typically time consuming and can allow protein degradation, protein modification, and leaching of components from the nuclei to occur. We have developed a rapid and simple fractionation method that is based on the selective dissolution of the cytoplasmic membrane (but not the nuclear membrane) using a low concentration of a nonionic detergent and rapid centrifugation steps. Here we describe important considerations when isolating nuclei from cells, introduce our rapid method, and compare this method to a more traditional protocol for isolating nuclei, noting the strengths and limitations of each approach.

  4. Breakup Densities of Hot Nuclei.

    NASA Astrophysics Data System (ADS)

    Viola, Vic

    2006-04-01

    Breakup densities of hot ^197Au-like residues have been deduced from the systematic trends of Coulomb parameters required to fit intermediate-mass-fragment kinetic-energy spectra. The results indicate emission from nuclei near normal nuclear density below an excitation energy E*/A .3ex<˜x 2 MeV, followed by a gradual decrease to a near-constant value of ρ/ρ0˜ 3 for E*/A .3ex>˜x 5 MeV. Temperatures derived from these data with a density-dependent Fermi-gas model yield a nuclear caloric curve that is generally consistent with those derived from isotope ratios.

  5. Changes in the structure of nuclei between the magic neutron numbers 50 and 82 as indicated by a rotating-cluster analysis of the energy values of the first 2j excited states of isotopes of cadmium

    SciTech Connect

    Pauling, L.

    1981-09-01

    Values of R, the radius of rotation of the rotating cluster, are calculated from the observed values of the energy of the lowest 2/sup +/ states of the even isotopes of Cd, Sn, and Te with the assumption that the cluster is ..cap alpha.., pb, and ..cap alpha.., respectively. R shows a maximum at approx. N = 58, a minimum at approx. N = 62, and a second maximum at approx. N = 70. The increase to the first maximum is interpreted as resulting from the overcrowding of spherons (alphas and tritons) in the mantle (outer layer) of the nuclei, causing the cluster to change from rotating in the mantle to skimming over its surface; the decrease to the minimum results from the addition of three dineutrons to the core, expanding the mantle and permitting the rotating cluster to begin to drop back into it; and the increase to the second maximum results from the overcrowding of the larger mantle surrounding the core containing the semimagic number 14 of neutrons rather than the magic numbers 8 for N = 50. The decrease after the second maximum results from the further increase in the number of core neutrons to 20, corresponding to the magic number 82. Some additional evidence for the change to an intermediate structure between N = 50 and N = 82 is also discussed.

  6. Light element production by low energy nuclei from massive stars

    NASA Technical Reports Server (NTRS)

    Vangioni-Flam, E.; Casse, M.; Ramaty, R.

    1997-01-01

    The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.

  7. Modeling level structures of odd-odd deformed nuclei

    SciTech Connect

    Hoff, R.W.; Kern, J.; Piepenbring, R.; Boisson, J.P.

    1985-01-15

    A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei has been applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation were derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings were used. Calculated and experimental level structures for /sup 238/Np, /sup 244/Am, and /sup 250/Bk are compared, as well as those for several nuclei in the rare-earch region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Corresponding average deviations for five rare-earth nuclei are 47 keV and 7%. Several applications of this modeling technique are discussed.

  8. Modeling level structures of odd-odd deformed nuclei

    SciTech Connect

    Hoff, R.W.; Kern, J.; Piepenbring, R.; Boisson, J.P.

    1984-09-07

    A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei has been applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation were derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings were used. Calculated and experimental level structures for /sup 238/Np, /sup 244/Am, and /sup 250/Bk are compared, as well as those for several nuclei in the rare-earth region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Corresponding average deviations for five rare-earth nuclei are 47 keV and 7%. Several applications of this modeling technique are discussed. 18 refs., 5 figs., 4 tabs.

  9. Light element production by low energy nuclei from massive stars

    NASA Technical Reports Server (NTRS)

    Vangioni-Flam, E.; Casse, M.; Ramaty, R.

    1997-01-01

    The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.

  10. Cryogenic exciter

    DOEpatents

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  11. Exotic Light Nuclei

    ERIC Educational Resources Information Center

    Cerny, Joseph; Poskanzer, Arthur M.

    1978-01-01

    Among the light elements, nuclei with unequal numbers of protons and neutrons are highly unstable. Some survive just long enough to be detected and exhibit unusual regimes of radioactive decay. ( Autor/MA)

  12. Exotic Light Nuclei

    ERIC Educational Resources Information Center

    Cerny, Joseph; Poskanzer, Arthur M.

    1978-01-01

    Among the light elements, nuclei with unequal numbers of protons and neutrons are highly unstable. Some survive just long enough to be detected and exhibit unusual regimes of radioactive decay. ( Autor/MA)

  13. Observations of cometary nuclei

    NASA Astrophysics Data System (ADS)

    A'Hearn, M. F.

    Attempts to observe cometary nuclei and to determine fundamental physical parameters relevant to the relationship between comets and asteroids are reviewed. It has been found that cometary nuclei, at least of periodic comets, are bigger and blacker than generally thought as recently as five years ago. Geometric albedos may be typically three percent and typical radii are probably of order 5 km. Nuclei of periodic comets are probably highly prolate unless they are both oblate and rotating about one of the major axes. P/Halley images provide convincing evidence of the existence of mantles discussed in many models. Numerous pieces of evidence suggest a connection between cometary nuclei and A-A asteroids of types D and C.

  14. The Elusive Excited Quintet [superscript 5]D of Tb(III): A Source of Luminescence and Resonance Energy Transfer in Terbium Compounds

    ERIC Educational Resources Information Center

    Klier, Kamil

    2010-01-01

    The understanding of electronic structure of atomic and molecular term states involved in spectroscopic transitions is aided by projecting combinations of micro-configurations to multi-electron states with "good" quantum numbers of angular momenta. In rare-earth (RE) compounds, atomic term labels are justifiably carried over to compounds, because…

  15. The Elusive Excited Quintet [superscript 5]D of Tb(III): A Source of Luminescence and Resonance Energy Transfer in Terbium Compounds

    ERIC Educational Resources Information Center

    Klier, Kamil

    2010-01-01

    The understanding of electronic structure of atomic and molecular term states involved in spectroscopic transitions is aided by projecting combinations of micro-configurations to multi-electron states with "good" quantum numbers of angular momenta. In rare-earth (RE) compounds, atomic term labels are justifiably carried over to compounds, because…

  16. Alternating-parity collective states of yrast and nonyrast bands in lanthanide and actinide nuclei

    SciTech Connect

    Nadirbekov, M. S. Yuldasheva, G. A.; Denisov, V. Yu.

    2015-03-15

    Excited collective states of even-even nuclei featuring quadrupole and octupole deformations are studied within a nonadiabatic collective model with a Gaussian potential energy. Rotational states of the yrast band and vibrational-rotational states of nonyrast bands are considered in detail. The energies of alternating-parity excited states of the yrast band in the {sup 164}Er, {sup 220}Ra, and {sup 224}Th nuclei; the yrast and first nonyrast bands in the {sup 154}Sm and {sup 160}Gd nuclei; and the yrast, first nonyrast, and second nonyrast bands in the {sup 224}Ra and {sup 240}Pu nuclei are described well on the basis of the proposed model.

  17. Single particle versus collectivity, shapes of exotic nuclei

    NASA Astrophysics Data System (ADS)

    Jungclaus, Andrea

    2016-03-01

    In this article some selected topics of nuclear structure research will be discussed as illustration of the progress reached in this field during the last thirty years. These examples evidence the improvement of our understanding of the atomic nucleus reached on the basis of countless experiments, performed to study both exotic nuclei (nuclei far-off the valley of stability) as well as nuclei under exotic conditions (high excitation energy/temperature or large angular momentum/rotational frequency), using stable and radioactive ion beams. The experimental progress, in parallel to the advancement of modern theoretical descriptions, led us to a much richer view of this fundamental many-body system.

  18. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    DOE PAGES

    Nishio, K.; Andreyev, A. N.; Chapman, R.; ...

    2015-06-30

    Mass distributions of fission fragments from the compound nuclei 180Hg and 190 Hg formed in fusion reactions 36Ar + 144 Smand 36Ar + 154Sm, respectively, were measured at initial excitation energies of E*(180Hg) = 33-66 MeV and E*(190Hg) = 48-71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses more » $$\\overline{A}_L$$/$$\\overline{A}_H$$ = 79/101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+/EC-delayed fission of 180Tl, from our earlier ISOLDE(CERN) experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of$$\\overline{A}_L$$/$$\\overline{A}_H$$ = 83/107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. In conclusion, this behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.« less

  19. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    NASA Astrophysics Data System (ADS)

    Nishio, K.; Andreyev, A. N.; Chapman, R.; Derkx, X.; Düllmann, Ch. E.; Ghys, L.; Heßberger, F. P.; Hirose, K.; Ikezoe, H.; Khuyagbaatar, J.; Kindler, B.; Lommel, B.; Makii, H.; Nishinaka, I.; Ohtsuki, T.; Pain, S. D.; Sagaidak, R.; Tsekhanovich, I.; Venhart, M.; Wakabayashi, Y.; Yan, S.

    2015-09-01

    Mass distributions of fission fragments from the compound nuclei 180Hg and 190Hg formed in fusion reactions 36Ar + 144Sm and 36Ar + 154Sm, respectively, were measured at initial excitation energies of E* (180Hg) = 33- 66 MeV and E* (190Hg) = 48- 71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses AbarL /AbarH = 79 / 101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+ / EC -delayed fission of 180Tl, from our earlier ISOLDE(CERN) experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of AbarL /AbarH = 83 / 107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. This behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.

  20. Fission of actinide nuclei using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Léguillon, Romain; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Makii, Hiroyuki; Nishinaka, Ichiro; Ishii, Tetsuro; Tsukada, Kazuaki; Asai, Masato; Chiba, Satoshi; Ohtsuki, Tsutomu; Araki, Shohei; Watanabe, Yukinobu; Tatsuzawa, Ryotaro; Takaki, Naoyuki

    2014-09-01

    We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. Present study is supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  1. Disappearance of Collective Motion in Hot Nuclei

    NASA Astrophysics Data System (ADS)

    Santonocito, D.; Blumenfeld, Y.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Delaunay, F.; Del Zoppo, A.; Finocchiaro, P.; Frascaria, N.; Hongmei, F.; Lima, V.; Maiolino, C.; Migneco, E.; Piattelli, P.; Sapienza, P.; Scarpaci, J. A.

    2005-12-01

    The evolution of the GDR γ yield as a function of excitation energy has been investigated in nuclei of mass A ≈ 126 - 136 through the reactions 116Sn + 12C at 17 and 23A MeV and the reaction 116Sn + 24Mg at 17A MeV. Hot nuclei produced in incomplete fusion reactions span an excitation energy range between 160 and 290 MeV. Gamma-rays were detected with MEDEA array in coincidence with residues detected in MACISTE. The evolution of the GDR parameters has been investigated as a function of the linear momentum transferred to the fused system. The analysis of the γ spectra and their comparison with CASCADE calculations is presented. A comparison with the gamma spectra measured in the reaction 36Ar + 98Mo at 37A MeV at higher excitation energy is presented. A progressive reduction of γ multiplicity with respect to predictions for 100% of the Energy Weighted Sum Rule is observed above 200 MeV excitation energy.

  2. Static and Statistical Properties of Hot Rotating Nuclei in a Macroscopic Temperature-Dependent Finite-Range Model

    SciTech Connect

    Ryabov, E.G.; Adeev, G.D.

    2005-09-01

    A macroscopic temperature-dependent model that takes into account nuclear forces of finite range is used to calculate the static and statistical properties of hot rotating compound nuclei. The level-density parameter is approximated by an expression of the leptodermous type. The resulting expansion coefficients are in good agreement with their counterparts proposed previously by A.V. Ignatyuk and his colleagues. The effect of taking simultaneously into account the temperature of a nucleus and its angular momentum on the quantities under study, such as the heights and positions of fission barriers and the effective moments of inertia of nuclei at the barrier, is considered, and the importance of doing this is demonstrated. The fissility parameter (Z{sup 2}/A){sub crit} and the position of the Businaro-Gallone point are studied versus temperature. It is found that, with increasing temperature, both parameters are shifted to the region of lighter nuclei. It is shown that the inclusion of temperature leads to qualitatively the same effects as the inclusion of the angular momentum of a nucleus, but, quantitatively, thermal excitation leads to smaller effects than rotational excitation.

  3. Effective Interactions for Light Nuclei

    NASA Astrophysics Data System (ADS)

    Caldwell, Bryan R.

    The G-matrix technique in which one is able to easily calculate ground and excited states of many-body systems is used to calculate the ground state energies and some excited levels of ^3H and ^4He. Energy independent effective interactions are obtained for these nuclei using the technique of Suzuki and Lee which requires the G-matrix and its derivatives with respect to starting energy. It is found that accurate energy derivatives of the G-matrix are necessary to obtain energy independence and thus analytic expressions are presented for these derivatives in both center-of-mass/relative and shell model coordinate systems. Several rules of thumb are given pertaining to the convergence criteria in both coordinate systems. Further, since the G-matrix includes only intra -channel two-body correlations outside the active space, we explore the effect on the binding energies when the active space is enlarged to include several major shells. By enlarging the active space, we hope to include the most important many-body correlations explicitly. It is found that when the active space includes more than 2 major shells, the effective interaction is well approximated by the G-matrix. Our results essentially agree with exact Faddeev calculations for ^3 H but underbind by about.5 MeV in ^4 He as compared to exact Yabukovsky and Green function Monte Carlo calculations. A possible reason for this underbinding, the inclusion of unlinked diagrams in the energy expansion, is studied. The energy independent G-matrix technique is then applied to the p-shell (^5He, ^6Li and ^7Li) where the active space includes all excitations up to 2 hbaromega. Zero, one, two and three -body effective interactions are extracted and it is found that a schematic two-parameter three-body potential can be used to approximate the effective three-body potential that results from the truncation of the active space.

  4. Giant dipole resonance in very hot nuclei of mass A~=115

    NASA Astrophysics Data System (ADS)

    Suomijärvi, T.; Blumenfeld, Y.; Piattelli, P.; Le Faou, J. H.; Agodi, C.; Alamanos, N.; Alba, R.; Auger, F.; Bellia, G.; Chomaz, Ph.; Coniglione, R.; del Zoppo, A.; Finocchiaro, P.; Frascaria, N.; Gaardhøje, J. J.; Garron, J. P.; Gillibert, A.; Lamehi-Rachti, M.; Liguori-Neto, R.; Maiolino, C.; Migneco, E.; Russo, G.; Roynette, J. C.; Santonocito, D.; Sapienza, P.; Scarpaci, J. A.; Smerzi, A.

    1996-05-01

    Gamma rays, light charged particles, and evaporation residues emitted from hot nuclei formed in the 36Ar+90Zr reaction at 27 MeV/nucleon have been measured at the GANIL facility with the 4π barium fluoride multidetector MEDEA. The combination of the residue and particle measurements shows that nuclei with masses around 115 and excitation energies between 350 and 550 MeV are produced. The γ spectra measured in coincidence with the evaporation residues exhibit three components: a low-energy statistical component, a high-energy contribution due to nucleon-nucleon bremsstrahlung during the initial stages of the collision, and a contribution from the decay of the giant dipole resonance built on highly excited states. The characteristics of the bremsstrahlung component are in agreement with previously published systematics. The γ yield from the decay of the giant dipole resonance remains constant over the excitation energy range studied. A comparison with other experiments shows that the N/Z asymmetry in the entrance channel does not affect the γ yield. Statistical calculations performed using the code CASCADE and supposing a fixed width and full sum rule strength for the dipole resonance strongly overpredict the data. The hypothesis of a continuously increasing width of the resonance with temperature gives a better agreement with experiment near the centroid of the resonance but overpredicts the γ spectra at higher energies. The best account of the data is given by assuming a cutoff of γ emission from the resonance above an excitation energy of approximately 250 MeV. This cutoff is discussed in terms of the time necessary to equilibrate the dipole oscillations with the hot compound nucleus. Finally, some evidence is given for a possible new low-energy component of the dipole strength at very high temperatures.

  5. Excitation energy and nuclear dissipation probed with evaporation-residue cross sections

    SciTech Connect

    Ye, W.

    2011-04-15

    Using a Langevin equation coupled with a statistical decay model, we calculate the excess of evaporation-residue cross sections over its standard statistical-model value as a function of nuclear dissipation strength for {sup 200}Hg compound nuclei (CNs) under two distinct types of initial conditions for populated CNs: (i) high excitation energy but low angular momentum (produced via proton-induced spallation reactions at GeV energies and via peripheral heavy-ion collisions at relativistic energies) and (ii) high angular momentum but low excitation energy (produced through fusion mechanisms). We find that the conditions of case (ii) not only amplify the effect of dissipation on the evaporation residues, but also substantially increase the sensitivity of this excess to nuclear dissipation. These results suggest that, in experiments, to obtain accurate information of presaddle nuclear dissipation strength by measuring evaporation-residue cross sections, it is best to choose the heavy-ion-induced fusion reaction approach to yield excited compound nuclei.

  6. Scattering Of Light Nuclei

    SciTech Connect

    Quaglioni, S; Navratil, P; Roth, R

    2009-12-15

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches.We present a new ab initio many-body approach which derives from the combination of the ab initio no-core shell model with the resonating-group method [4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on sand light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment of more complex reactions.

  7. Particle entropy and depairing in hot nuclei

    NASA Astrophysics Data System (ADS)

    Saranya, J. Dhivya; Boomadevi, N.; Rajasekaran, T. R.

    2016-11-01

    The nuclear level densities and single particle entropies are predicted for nuclei in the mass region 50 < A < 74 within a framework of statistical theory of hot nuclei method. In this method, particle-number and energy conservation as well as nuclear pairing correlations are included in the partition function of grand canonical ensemble. The suppression of pairing correlations is distinctly noticed in temperature dependence of entropies between the critical temperatures TC ≈ 0.7 MeV and TC ≈ 1.0 MeV for 50,51V, 61,62Ni and 73,74Ge isotopes of the elements. These structural thermodynamic entropies are interpreted as a remarkable signature of the superfluid to normal phase transition connected to the vanishing of pairing gap. The calculated level densities are compared with recent experimental values. In addition, the single particle entropy of intermediate-mass nuclei is depicted as half of the entropy of mid-shell nuclei in the rare-earth region. As a consequence, the N = 28 shell closure of 51V carries low entropy at low excitation energy presents an interesting analogy to the Z = 28 shell closure of 61Ni. Merely, in the case of odd-even 73Ge has higher entropy than the even-even 74Ge nucleus.

  8. Measurement of fusion excitation functions in the system {sup 78}Kr + {sup 100}Mo

    SciTech Connect

    Rehm, K.E.; Jiang, C.L.; Esbensen, H.

    1995-08-01

    Earlier measurements of fusion reactions involving {sup 78}Kr and {sup 100}Mo projectiles and Ni-targets showed surprisingly large fusion yields at low energies which could not be explained by coupled-channels calculations. The main difference to similar measurements involving the neighboring {sup 86}Kr and {sup 92}Mo isotopes was the different slope of the excitation functions at sub-barrier energies. An analysis of a variety of experiments showed a correlation between the nuclear structure and the slope of the excitation functions, with the {open_quotes}soft{close_quotes} transitional nuclei ({sup 78}Kr, {sup 100}Mo) exhibiting shallower slopes than the {open_quotes}stiff{close_quotes} nuclei ({sup 86}Kr, {sup 92}Mo) measured at the same energies with respect to the barrier. In this experiment we studied the fusion excitation function involving two transitional nuclei {sup 78}Kr + {sup 100}Mo. The measurements were performed with {sup 78}Kr beams from the ECR source at energies between 285-370 MeV. Separation of the evaporation nucleus from the elastically scattered particles was achieved by measuring time-of-flight and magnetic rigidity in the gas-filled spectrograph. The data were completely analyzed. A comparison of the cross sections with measurements for the system {sup 86}Kr + {sup 92}Mo populating the same compound nucleus {sup 178}Pt. It shows good agreement at the highest energies, but quite different falloffs of the excitation functions toward lower energies. Coupled-channels calculations, including multi-phonon excitation for the two systems, are being performed.

  9. The shapes of nuclei

    NASA Astrophysics Data System (ADS)

    Bertsch, G. F.

    Gerry Brown initiated some early studies on the coexistence of different nuclear shapes. The subject has continued to be of interest and is crucial for understanding nuclear fission. We now have a very good picture of the potential energy surface with respect to shape degrees of freedom in heavy nuclei, but the dynamics remain problematic. In contrast, the early studies on light nuclei were quite successful in describing the mixing between shapes. Perhaps a new approach in the spirit of the old calculations could better elucidate the character of the fission dynamics and explain phenomena that current theory does not model well.

  10. Disintegration of comet nuclei

    NASA Astrophysics Data System (ADS)

    Ksanfomality, Leonid V.

    2012-02-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies.

  11. Sharp change-over from compound nuclear fission to quasifission

    SciTech Connect

    Ghosh, T. K.; Banerjee, K.; Bhattacharya, C.; Bhattacharya, S.; Kundu, S.; Mali, P.; Meena, J. K.; Mukherjee, G.; Mukhopadhyay, S.; Rana, T. K.; Bhattacharya, P.; Golda, K. S.

    2009-05-15

    Fission fragment mass distributions have been measured from the decay of the compound nucleus {sup 246}Bk that has been populated via two entrance channels. These entrance channels have a slight difference in their mass asymmetries that puts them on either side of the Businaro Gallone mass asymmetry parameter. Both target nuclei were deformed. Near the Coulomb barrier, at similar excitation energies, the width of the fission fragment mass distribution was found to be drastically different for the {sup 14}N+{sup 232}Th reaction compared to the {sup 11}B+{sup 235}U reaction. The entrance channel mass asymmetry was found to affect the fusion process sharply.

  12. Chirp excitation

    NASA Astrophysics Data System (ADS)

    Khaneja, Navin

    2017-09-01

    The paper describes the design of broadband chirp excitation pulses. We first develop a three stage model for understanding chirp excitation in NMR. We then show how a chirp π pulse can be used to refocus the phase of the chirp excitation pulse. The resulting magnetization still has some phase dispersion in it. We show how a combination of two chirp π pulses instead of one can be used to eliminate this dispersion, leaving behind a small residual phase dispersion. The excitation pulse sequence presented here allows exciting arbitrary large bandwidths without increasing the peak rf-amplitude. Experimental excitation profiles for the residual HDO signal in a sample of 99.5 % D2O are displayed as a function of resonance offset. Although methods presented in this paper have appeared elsewhere, we present complete analytical treatment that elucidates the working of these methods.

  13. Mathematical simulation of the amplification of 1790-nm laser radiation in a nuclear-excited He – Ar plasma containing nanoclusters of uranium compounds

    SciTech Connect

    Kosarev, V A; Kuznetsova, E E

    2014-02-28

    The possibility of applying dusty active media in nuclearpumped lasers has been considered. The amplification of 1790-nm radiation in a nuclear-excited dusty He – Ar plasma is studied by mathematical simulation. The influence of nanoclusters on the component composition of the medium and the kinetics of the processes occurring in it is analysed using a specially developed kinetic model, including 72 components and more than 400 reactions. An analysis of the results indicates that amplification can in principle be implemented in an active laser He – Ar medium containing 10-nm nanoclusters of metallic uranium and uranium dioxide. (lasers)

  14. Mathematical simulation of the amplification of 1790-nm laser radiation in a nuclear-excited He - Ar plasma containing nanoclusters of uranium compounds

    NASA Astrophysics Data System (ADS)

    Kosarev, V. A.; Kuznetsova, E. E.

    2014-02-01

    The possibility of applying dusty active media in nuclearpumped lasers has been considered. The amplification of 1790-nm radiation in a nuclear-excited dusty He - Ar plasma is studied by mathematical simulation. The influence of nanoclusters on the component composition of the medium and the kinetics of the processes occurring in it is analysed using a specially developed kinetic model, including 72 components and more than 400 reactions. An analysis of the results indicates that amplification can in principle be implemented in an active laser He - Ar medium containing 10-nm nanoclusters of metallic uranium and uranium dioxide.

  15. A new non-microscopic study of cluster structures in light alpha-conjugate nuclei

    NASA Astrophysics Data System (ADS)

    Zoghi-Foumani, Niloufar; Shojaei, Mohammad Reza; Rajabi, Ali Akbar

    2017-01-01

    In this paper, the alpha-cluster state in light alpha-conjugate nuclei is studied and a new suitable local potential model for the α-cluster phase of these nuclei is suggested. Using the generalized Nikiforov-Uvarov (NU) method, the clusterization energy for 8Be, 12C, 16O and 20Ne nuclei is calculated. Based on the obtained results, the clustering phenomenon is more probable at energies among excited levels and it happens neither at ground state nor at excited states of light alpha-conjugate nuclei. It is found that the presented formulation for clustering phenomenon reproduces the results of previous experimental and theoretical attempts for the mentioned nuclei. The consistency of the obtained results with the previous experimental and theoretical predictions indicates the reliability of this formulation for various types of alpha-conjugate, nuclei.

  16. The Onset of Deformation in Neutron-Deficient At Nuclei

    SciTech Connect

    Smith, M.B.; Chapman, R.; Cocks, J.F.C.; Dorvaux, O.; Helariutta, K.; Jones, P.M.; Julin, R.; Juutinen, S.; Kankaanpaa, H.; Kettunen, H.; Kuusiniemi, P.; Le Coz, Y.; Leino, M.; Middleton, D.J.; Muikku, M.; Nieminen, P.; Rahkila, P.; Savelius, A.; Spohr, K.-M.

    1999-12-31

    Excited states in the {sup 197}At nucleus have been identified for the first time using the recoil-decay-tagging technique. The excitation energy of these states is found to be consistent with the systematics of neutron-deficient At nuclei and with calculations indicating that the nucleus may be deformed in its ground state. A more recent experiment, to study states in {sup 195}At, is discussed.

  17. The onset of deformation in neutron-deficient At nuclei

    SciTech Connect

    Smith, M. B.; Chapman, R.; Middleton, D. J.; Spohr, K.-M.; Cocks, J. F. C.; Dorvaux, O.; Helariutta, K.; Jones, P. M.; Julin, R.; Juutinen, S.; Kankaanpaeae, H.; Kettunen, H.; Kuusiniemi, P.; Leino, M.; Muikku, M.; Nieminen, P.; Rahkila, P.; Savelius, A.; Coz, Y. Le

    1999-11-16

    Excited states in the {sup 197}At nucleus have been identified for the first time using the recoil-decay-tagging technique. The excitation energy of these states is found to be consistent with the systematics of neutron-deficient. At nuclei and with calculations indicating that the nucleus may be deformed in its ground state. A more recent experiment, to study states in {sup 195}At, is discussed.

  18. Exciter switch

    NASA Technical Reports Server (NTRS)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  19. Neutron-halo nuclei in cold synthesis and cluster decay of heavy nuclei: {ital Z}=104 nucleus as an example

    SciTech Connect

    Gupta, R.K.; Singh, S.; Muenzenberg, G.; Scheid, W. ||

    1995-05-01

    Nuclei at the neutron-drip line are studied. The light neutron-halo nuclei are found to play an important role for both cold fusion reactions and exotic cluster decay studies of heavy nuclei at the neutron-drip line. For cold fusion reactions, beams of neutron-halo nuclei are shown to occur as natural extensions of the conventional lighter beams but with the corresponding target nuclei as the heavy neutron-rich radioactive nuclei. Thus, in synthesizing the various isotopes of a neutron-rich cool compound nucleus, both the target and projectile nuclei have to be richer in neutrons, with their proton numbers remaining the same. On the other hand, neutron-halo (cluster) decays are favored for a relatively less neutron-rich parent nucleus. Possible consequences of this work for the shell structure effects in neutron-rich heavy nuclei are also pointed out. This follows from the fact that the so far observed phenomena of both cold fusion and cluster radioactivity are associated with closed or nearly closed shell nuclei. Calculations are made for {sup 274,288}104, using the quantum mechanical fragmentation theory for cold fusion reaction studies and a performed cluster model for cluster decay studies.

  20. Magnetic excitations from an S=1/2 diamond-shaped tetramer compound Cu2PO4OH

    SciTech Connect

    Matsuda, Masaaki; Dissanayake, Sachith E.; Abernathy, Douglas L.; Totsuka, K.; Belik, A. A.

    2015-11-30

    Inelastic neutron scattering experiments have been carried out on a powder sample of Cu2PO4OH, which consists of diamond-shaped tetramer spin units with S=1/2. We have observed two nearly dispersionless magnetic excitations at E1 ~2 and E2 ~0 meV, whose energy width are broader than the instrumental resolution. The simplest square tetramer model with one dominant interaction, which predicts two sharp excitation peaks at E1 and E2(=2E1), does not explain the experimental result. We found that two diagonal intratetramer interactions compete with the main interaction and weak intertetramer interactions connect the tetramers. The main intratetramer interaction is found to split into two inequivalent ones due to a structural distortion below 160 K. Cu2PO4OH is considered to be a good material to study the S=1/2 Heisenberg tetramer system.

  1. Effects of solvent induced modulation of energy gaps on electronic relaxation of excited hydrogen bonded complexes of some aromatic carbonyl compounds

    NASA Astrophysics Data System (ADS)

    van der Burgt, M. J.; Jansen, L. M. G.; Huizer, A. H.; Varma, C. A. G. O.

    1995-12-01

    A detailed study of the influence of solvent polarity and temperature dependence ( T ≤ 300 K) on the radiationless transitions of hydrogen bonded complexes of 2-naphthaldehyde ( 1), 2-acetonaphthone ( 2), methyl 2-naphthoate ( 3) and 1,2-dihydro-3H-benz[ e]inden-3-one ( 4) is presented. The hydrogen bonded complexes are strongly fluorescent. The energy gaps between S 1 and S 0 and between S 1 and T 1 could be varied by using various 1,4-dioxane/water mixtures as the solvent. In the case of the complex of 1 intersystem crossing and internal conversion from S 1 have both been found to proceed through a direct process as well as by way of a proces involving thermal excitation to S 2. The conversion of S 1 to T 1 proceeds only through thermal excitation to S 2 in the case of 2 and 4, whereas in the case of 3 a contribution from a thermally activated process could not be detected. An inverse exponential energy gap law has been found for the temperature independent intersystem crossing from S 1 in the case of the complexes of 1 and 3. This is shown theoretically to be in accordance with a nuclear tunneling process. The tunneling appears to proceed along the C-O stretching mode. The internal conversion from the state S 1 of the complex of 3 satisfies the regular exponential energy gap law.

  2. Exotic atomic nuclei

    NASA Astrophysics Data System (ADS)

    Hamilton, J. H.; Maruhn, J. A.

    1986-07-01

    From the study of nuclei with abundances of neutrons and protons (N numbers and Z numbers) quite different from those found in nature, it has been possible to gain new views of motions and structures within nuclear matter. Based on the spherical shell model of the nucleus proposed by Mayer and Jensen in 1949 and the collective model of nuclear deformation proposed in 1952 by Bohr and Mottelson, it has come to be possible to decide what shape or shapes a nucleus must have for a given set of N and Z numbers. It turns out that not only spherical nuclei are possible but also prolate and oblate spheroids (football and discus shaped), triaxial (like a partially deflated football), and even pear- or peanut-shaped. A significant experimental tool in such studies is the ISOL or Isotope-Separator, On-Line, which makes possible the construction of energy level diagrams from the study of exotic nuclei created when particles from accelerators strike various kinds of foil. The significance of magic numbers and super-magic numbers (particular combinations of N and Z) for the stability of various exotic nuclei is considered. International facilities engaged in such studies are noted.

  3. Physics with Polarized Nuclei.

    ERIC Educational Resources Information Center

    Thompson, William J.; Clegg, Thomas B.

    1979-01-01

    Discusses recent advances in polarization techniques, specifically those dealing with polarization of atomic nuclei, and how polarized beams and targets are produced. These techniques have greatly increased the scope of possible studies, and provided the tools for testing fundamental symmetries and the spin dependence of nuclear forces. (GA)

  4. στ+ strength in nuclei

    NASA Astrophysics Data System (ADS)

    Cha, D.

    1983-05-01

    The στ+ strength function is studied with the quasiparticle random phase approximation. The residual interaction modifies the pairing theory strength function in two ways. The particle-hole interaction reduces the overall strength by about a factor of 2, without shifting strength between different levels. The particle-particle interaction does not affect the overall strength, but shifts part of the strength from the lowest excitation to a higher excitation energy region. By comparing the theory with the observed (ft) values of the β+ decay in medium heavy nuclei, we find that an additional quenching is required for the στ+ mode, similar in magnitude to the additional quenching present in other isovector spin-flip transitions. Finally, we predict that there is a large concentration of the στ+ strength at higher excitation energy which cannot be observed by the β+ decay. NUCLEAR STRUCTURE στ+ states in odd-odd mass nuclei between A=100-150. QP-RPA calculation with zero-range interaction. Calculated (ft).

  5. Transition from collective to noncollective rotation at high spin in N approx. = 87 nuclei

    SciTech Connect

    Baktash, C.

    1982-01-01

    The systematics of the (E2) ..gamma.. ray transition energies and the available lifetime data are used to characterize the excitation modes of the light rare-earth nuclei (N greater than or equal to 82) at different spins. The results, which include our recently obtained data on /sup 149/Gd, /sup 154/Ho, /sup 155/Er, /sup 157/Yb and /sup 158/Yb nuclei, indicate that, at low spins, the nuclear excitation mode (shapes) change from single-particle excitations (weakly oblate) in N less than or equal to 85 nuclei to quasi-vibrational (soft triaxial) in N = 86, weakly rotational (prolate) in N = 87, and rotational (prolate) in the N greater than or equal to 88 systems. At higher angular momenta, all these nuclei show a general tendency to traverse the (epsilon,..gamma..) plane towards the oblate axis, and to eventually adopt the aligned coupling mode of excitation.

  6. Cluster aspects of p-shell and sd-shell nuclei

    SciTech Connect

    Kanada-En'yo, Y.; Kobayashi, F.; Suhara, T.; Kimura, M.; Taniguchi, Y.

    2011-05-06

    We report some topics on cluster structures studied by using a theoretical method of antisymmetrized molecular dynamics(AMD). Cluster features of p-shell and sd-shell nuclei are discussed. In particular, three alpha cluster structures in the excited states of {sup 12}C and {sup 14}C are focused. Dineutron correlations in neutron-rich nuclei are also discussed.

  7. Borromean halo, Tango halo, and halo isomers in atomic nuclei

    NASA Astrophysics Data System (ADS)

    Izosimov, Igor

    2016-01-01

    Structure of the ground and excited states in halo-like nuclei is discussed. Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei.Structure of the halo may be different for the different levels and resonances in atomic nuclei. Isobar analog, double isobar analog, configuration, and double configuration states can simultaneously have n-n, n-p, and p-p halo components in their wave functions. When the halo structure of the excited state differs from that of the ground state, or the ground state has non-halo structure, the γ-transition from the excited state to the ground state can be essentially hindered, i.e. the formation of a specific type of isomers (halo isomers) becomes possible. B(Mγ) and B(Eγ) values for γ-transitions in 6,7,8Li, 8,9,10Be, 8,10,11B, 10,11,12,13,14C, 13,14,15,16,17N, 15,16,17,19O, and 17F are analyzed. Special attention is given to nuclei which ground state does not exhibit halo structure but the excited state (halo isomer) may have one.

  8. Open s d -shell nuclei from first principles

    NASA Astrophysics Data System (ADS)

    Jansen, G. R.; Schuster, M. D.; Signoracci, A.; Hagen, G.; Navrátil, P.

    2016-07-01

    We extend the ab initio coupled-cluster effective interaction (CCEI) method to open-shell nuclei with protons and neutrons in the valence space and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei 20Ne and 24Mg, we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory for deformed nuclei, thereby demonstrating that collective phenomena in s d -shell nuclei emerge from complex ab initio calculations.

  9. Scissors mode of Gd nuclei studied from resonance neutron capture

    SciTech Connect

    Kroll, J.; Baramsai, B.; Becker, J. A.; and others

    2012-10-20

    Spectra of {gamma} rays following the neutron capture at isolated resonances of stable Gd nuclei were measured. The objectives were to get new information on photon strength of {sup 153,155-159}Gd with emphasis on the role of the M1 scissors-mode vibration. An analysis of the data obtained clearly indicates that the scissors mode is coupled not only to the ground state, but also to all excited levels of the nuclei studied. The specificity of our approach ensures unbiasedness in estimating the sumed scissors-mode strength {Sigma}B(M1){up_arrow}, even for odd product nuclei, for which conventional nuclear resonance fluorescence measurements yield only limited information. Our analysis indicates that for these nuclei the sum {Sigma}B(M1){up_arrow} increases with A and for {sup 157,159}Gd it is significantly higher compared to {sup 156,158}Gd.

  10. Open sd-shell nuclei from first principles

    SciTech Connect

    Jansen, Gustav R.; Signoracci, Angelo J.; Hagen, Gaute; Navratil, Petr

    2016-07-05

    We extend the ab initio coupled-cluster effective interaction (CCEI) method to open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei 20Ne and 24Mg we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory for deformed nuclei, thereby demonstrating that collective phenomena in sd-shell nuclei emerge from complex ab initio calculations.

  11. Open sd-shell nuclei from first principles

    DOE PAGES

    Jansen, Gustav R.; Signoracci, Angelo J.; Hagen, Gaute; ...

    2016-07-05

    We extend the ab initio coupled-cluster effective interaction (CCEI) method to open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei 20Ne and 24Mg we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory formore » deformed nuclei, thereby demonstrating that collective phenomena in sd-shell nuclei emerge from complex ab initio calculations.« less

  12. Structure and symmetries of odd-odd triaxial nuclei

    NASA Astrophysics Data System (ADS)

    Palit, R.; Bhat, G. H.; Sheikh, J. A.

    2017-05-01

    Rotational spectra of odd-odd Rh and Ag isotopes are investigated with the primary motivation to search for the spontaneous chiral symmetry breaking phenomenon in these nuclei. The experimental results obtained on the degenerate dipole bands of some of these isotopes using a large array of gamma detectors are discussed and studied using the triaxial projected shell (TPSM) approach. It is shown that, first of all, to reproduce the odd-even staggering of the known yrast bands of these nuclei, large triaxial deformation is needed. This large triaxial deformation also gives rise to doublet band structures in many of these studied nuclei. The observed doublet bands in these isotopes are shown to be reproduced reasonably well by the TPSM calculations. Further, the TPSM calculations for neutron-rich nuclei indicate that the ideal manifestation of the chirality can be realised in 106Rh and 112Ag , where the doublet bands have similar electromagnetic properties along with small differences in excitation energies.

  13. Open sd-shell nuclei from first principles

    SciTech Connect

    Jansen, Gustav R.; Signoracci, Angelo J.; Hagen, Gaute; Navratil, Petr

    2016-07-05

    We extend the ab initio coupled-cluster effective interaction (CCEI) method to open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei 20Ne and 24Mg we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory for deformed nuclei, thereby demonstrating that collective phenomena in sd-shell nuclei emerge from complex ab initio calculations.

  14. Evaporation of particles from hot nuclei

    NASA Astrophysics Data System (ADS)

    Zejun, He; Jianshi, Wu; Wolfgang, Nörenberg

    1988-11-01

    For particle evaporation from hot nuclei a model is proposed which is applicable to high excitation energies where the mean free path of nucleons becomes comparable to or smaller than the size of the nucleus. The formalism allows to calculate the time evolution of the emitting system and the evaporation rates and spectra of the emitted particles. The nucleus 133Cs with an initial temperature of 18 MeV is studied as an example. Implications for intermediate-energy heavy-ion collisions are indicated.

  15. The Structure of Nuclei Far from Stability

    SciTech Connect

    Zganjar, E.F.

    1999-02-25

    From among a number of important nuclear structure results that have emerged from our research program during the past few years, two stand out as being of extra significance. These are: (a) the identification of a diabatic coexisting structure in {sup 187}Au which arises solely from differences in proton occupation of adjacent oscillator shells, and (b) the realization of a method for estimating EO strength in nuclei and the resulting prediction that the de-excitation of superdeformed bands may proceed, in some cases, by strong EO transitions.

  16. Statistical (?) decay of light hot nuclei

    NASA Astrophysics Data System (ADS)

    Baiocco, G.; Bruno, M.; D'Agostino, M.; Morelli, L.

    2012-07-01

    The reaction 12C+12C at 95 MeV beam energy has been measured using the GARFIELD+RCo apparatuses at Laboratori Nazionali di Legnaro LNL - INFN, Italy, in the framework of an experimental campaign proposed by the NUCL-EX collaboration. The aim is to progress in the understanding of statistical properties of light nuclei at excitation energies above particle emission thresholds, by measuring exclusive fusion-evaporation data. A theoretical study of the system, performed with a newly developed Monte Carlo Hauser-Feshbach code, is shown, together with preliminary results of the data analysis.

  17. Energetic Nuclei, Superdensity and Biomedicine

    ERIC Educational Resources Information Center

    Baldin, A. M.

    1977-01-01

    High-energy, relativistic nuclei were first observed in cosmic rays. Studing these nuclei has provided an opportunity for analyzing the composition of cosmic rays and for experimentally verifying principles governing the behavior of nuclear matter at high and super-high temperatures. Medical research using accelerated nuclei is suggested.…

  18. Energetic Nuclei, Superdensity and Biomedicine

    ERIC Educational Resources Information Center

    Baldin, A. M.

    1977-01-01

    High-energy, relativistic nuclei were first observed in cosmic rays. Studing these nuclei has provided an opportunity for analyzing the composition of cosmic rays and for experimentally verifying principles governing the behavior of nuclear matter at high and super-high temperatures. Medical research using accelerated nuclei is suggested.…

  19. Exotic phenomena in nuclei

    NASA Astrophysics Data System (ADS)

    Neff, Thomas; Feldmeier, Hans; Roth, Robert

    2006-10-01

    In the Fermionic Molecular Dynamics (FMD) model the nuclear many-body system is described using Slater determinants with Gaussian wave-packets as single-particle states. The flexibility of the FMD wave functions allows for a consistent description of shell model like structures, deformed states, cluster structures as well as halos. An effective interaction derived from the realistic Argonne V18 interaction using the Unitary Correlation Operator Method is used for all nuclei. Results for nuclei in the p-shell will be presented. Halo features are present in the Helium isotopes, cluster structures are studied in Beryllium and Carbon isotopes. The interplay between shell structure and cluster structures in the ground and the Hoyle state in ^12C will be discussed.

  20. Nuclei and Fundamental Symmetries

    NASA Astrophysics Data System (ADS)

    Haxton, Wick

    2016-09-01

    Nuclei provide marvelous laboratories for testing fundamental interactions, often enhancing weak processes through accidental degeneracies among states, and providing selection rules that can be exploited to isolate selected interactions. I will give an overview of current work, including the use of parity violation to probe unknown aspects of the hadronic weak interaction; nuclear electric dipole moment searches that may shed light on new sources of CP violation; and tests of lepton number violation made possible by the fact that many nuclei can only decay by rare second-order weak interactions. I will point to opportunities in both theory and experiment to advance the field. Based upon work supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics and SciDAC under Awards DE-SC00046548 (Berkeley), DE-AC02-05CH11231 (LBNL), and KB0301052 (LBNL).

  1. Introducing the working group on excited baryons at the CEBAF 1986 workshop

    SciTech Connect

    Mukhopadhyay, N.C.

    1986-01-01

    Several important issues related to excited baryons are outlined. These include the questions of why to study electromagnetic excitation of baryons, which excited baryons to study, and what new physics to expect. Also considered are amplitude ambiguities for ..gamma..BB* and theoretical problems of extracting the resonant amplitude. Excited baryons in nuclei and future experiments are considered. (LEW)

  2. Depopulation of highly excited singlet states of DNA model compounds: quantum yields of 193 and 245 nm photoproducts of pyrimidine monomers and dinucleoside monophosphates.

    PubMed

    Gurzadyan, G G; Görner, H

    1996-02-01

    Formation of uracil and orotic acid photodimers, uridine and 5'-UMP photohydrates, TpT photodimers and (6-4)photoproducts, dCpT photohydrates and (6-4)photoproducts and UpU, CpC and CpU photohydrates were studied in neutral deoxygenated aqueous solution at room temperature upon irradiation at either 193 or 254 nm. The photoproducts were identified and quantified and the contribution from photoionization to substrate decomposition, using lambda irr = 193 nm, was separated. The ratio of the quantum yields of respective stable products, eta = phi 193/phi 254, is indicative of the yield of internal conversion from the second to the first excited singlet state, S2-->S1. For the observed photodimers eta decreases from 0.94 for uracil to 0.7 for TpT and further to 0.55 for orotic acid. For the (6-4)photoproducts of TpT and dCpT eta = 0.5-0.8 and for the photohydrates in the cases of UpU, CpC, CpU and dCpT eta ranges from 0.55 to 1.

  3. Gapped Spin-1/2 Spinon Excitations in a New Kagome Quantum Spin Liquid Compound Cu3Zn(OH)6FBr

    NASA Astrophysics Data System (ADS)

    Feng, Zili; Li, Zheng; Meng, Xin; Yi, Wei; Wei, Yuan; Zhang, Jun; Wang, Yan-Cheng; Jiang, Wei; Liu, Zheng; Li, Shiyan; Liu, Feng; Luo, Jianlin; Li, Shiliang; Zheng, Guo-qing; Meng, Zi Yang; Mei, Jia-Wei; Shi, Youguo

    2017-06-01

    We report a new kagome quantum spin liquid candidate Cu3Zn(OH)6FBr, which does not experience any phase transition down to 50 mK, more than three orders lower than the antiferromagnetic Curie-Weiss temperature (∼200 K). A clear gap opening at low temperature is observed in the uniform spin susceptibility obtained from 19F nuclear magnetic resonance measurements. We observe the characteristic magnetic field dependence of the gap as expected for fractionalized spin-1/2 spinon excitations. Our experimental results provide firm evidence for spin fractionalization in a topologically ordered spin system, resembling charge fractionalization in the fractional quantum Hall state. Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0300502, 2016YFA0300503, 2016YFA0300604, 2016YF0300300 and 2016YFA0300802, the National Natural Science Foundation of China under Grant Nos 11421092, 11474330, 11574359, 11674406, 11374346 and 11674375, the National Basic Research Program of China (973 Program) under Grant No 2015CB921304, the National Thousand-Young-Talents Program of China, the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant Nos XDB07020000, XDB07020200 and XDB07020300. The work in Utah is supported by DOE-BES under Grant No DE-FG02-04ER46148.

  4. Elastic dipole response of spherical nuclei

    SciTech Connect

    Bastrukov, S.I.

    1992-10-01

    Within the framework of the nuclear fluid-dynamics the isoscalar dipole response of spherical nuclei is studied. Two kinds of elastic-like transverse oscillations of incompressible nucleus are found to be result in E1, T = 0 and M1, T = 0 spin-independent resonances. The isoscalar electric mode is accompanied by excitation in the nucleus volume of the torus-like current structure, known in the continuum theory as a poloidal dipole or spherical vortex of Hill. The dipole magnetic resonance belongs to the excitation of axially symmetric differential rotations. These motions are described by the toroidal dipole field harmonic in time. The estimates of energies and PWBA-computed form-factors for these modes are presented. 28 refs., 3 figs.

  5. The scission point configuration of fissioning nuclei

    NASA Astrophysics Data System (ADS)

    Ivanyuk, Fedir

    2016-06-01

    We define the optimal shape which fissioning nuclei attain just before the scission and calculate the deformation energy as function of the mass asymmetry at the scission point. The calculated deformation energy is used in quasi-static approximation for the estimation of mass distribution, total kinetic and excitation energy of fission fragments, and the total number of prompt neutrons. The calculated results reproduce rather well the experimental data on the position of the peaks in the mass distribution of fission fragments, the total kinetic and excitation energy of fission fragments. The calculated value of neutron multiplicity is somewhat larger than experimental results. The saw-tooth structure of neutron multiplicity is qualitatively reproduced.

  6. Exciting Pools

    ERIC Educational Resources Information Center

    Wright, Bradford L.

    1975-01-01

    Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)

  7. Coulomb excitation of radioactive nuclear beams in inverse kinematics

    SciTech Connect

    Zamfir, N.V. |||; Barton, C.J.; Brenner, D.S.; Casten, R.F. |; Gill, R.L.; Zilges, A. |

    1996-12-31

    Techniques for the measurement of B (E2:0{sub 1}{sup +} {r_arrow} 2{sub 1}{sup +}) values by Coulomb excitation of Radioactive Nuclear Beams in inverse kinematics are described. Using a thin, low Z target, the Coulomb excited beam nuclei will decay in flight downstream of the target. For long lifetimes (nanosecond range) these nuclei decay centimeters downstream of the target and for shorter lifetimes (picoseconds or less) they decay near the target. Corresponding to these two lifetime regimes two methods have been developed to measure {gamma} rays from the Coulomb excited nuclei: the lifetime method in which the lifetime of the excited state is deduced from the decay curve and the integral method in which the B(E2) value is extracted from the measured total Coulomb excitation cross section.

  8. Measuring the collectivity of neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Görgen, Andreas

    2012-10-01

    Measuring the lifetimes of excited nuclear states provides direct information on electromagnetic transition rates and on the collectivity of nuclear excitations. The recoil distance Doppler-shift (RDDS) method is a well-established technique for measuring picosecond lifetimes of excited states, which has been extensively used in combination with fusion-evaporation reactions to measure lifetimes in neutron-deficient nuclei. Here we discuss novel ways of combining the RDDS technique with multi-nucleon transfer and fusion-fission reactions, which allow measurement of picosecond lifetimes in neutron-rich nuclei. Experiments were performed at both GANIL and Legnaro National Laboratories (LNL) with the goal to investigate the onset of collectivity around 68Ni and the evolution of shapes and shape coexistence in medium-heavy fission fragments.

  9. Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei

    SciTech Connect

    Wang Ning; Scheid, Werner; Wu Xizhen; Liu Min; Li Zhuxia

    2006-10-15

    The Skyrme energy-density functional approach has been extended to study massive heavy-ion fusion reactions. Based on the potential barrier obtained and the parametrized barrier distribution the fusion (capture) excitation functions of a lot of heavy-ion fusion reactions are studied systematically. The average deviations of fusion cross sections at energies near and above the barriers from experimental data are less than 0.05 for 92% of 76 fusion reactions with Z{sub 1}Z{sub 2}<1200. For the massive fusion reactions, for example, the {sup 238}U-induced reactions and {sup 48}Ca+{sup 208}Pb, the capture excitation functions have been reproduced remarkably well. The influence of structure effects in the reaction partners on the capture cross sections is studied with our parametrized barrier distribution. By comparing the reactions induced by double-magic nucleus {sup 48}Ca and by {sup 32}S and {sup 35}Cl, the ''threshold-like'' behavior in the capture excitation function for {sup 48}Ca-induced reactions is explored and an optimal balance between the capture cross section and the excitation energy of the compound nucleus is studied. Finally, the fusion reactions with {sup 36}S, {sup 37}Cl, {sup 48}Ca, and {sup 50}Ti bombarding {sup 248}Cm, {sup 247,249}Bk, {sup 250,252,254}Cf, and {sup 252,254}Es, as well as the reactions leading to the same compound nucleus with Z=120 and N=182, are studied further. The calculation results for these reactions are useful for searching for the optimal fusion configuration and suitable incident energy in the synthesis of superheavy nuclei.

  10. Photodisintegration of 7Li with progeny nuclei in excited states

    NASA Astrophysics Data System (ADS)

    Wurtz, W. A.; Pywell, R. E.; Norum, B. E.; Kucuker, S.; Sawatzky, B. D.; Weller, H. R.; Stave, S.; Ahmed, M. W.

    2015-10-01

    We study the reaction channels 7Li+γ →n +6Li (2.19 ) , 7Li+γ →n +6Li(3.56 ) , and 7Li+γ →d +5He(1.27 )→n +d +4He by detecting neutrons produced by photodisintegration events. We find absolute cross sections and angular dependence for 7Li+γ →n +6Li(2.19 ) at photon energies 13 and 15 MeV and for 7Li+γ →n +6

  11. Metastable Interactions: Dissociative Excitation.

    DTIC Science & Technology

    1985-05-01

    participate. The mercuric halide compounds HgBr2 , HgCl 2 , and HgI2 are of recent interest because of laser output achieved on the B2 E - X2 E transition in...the * respective mercuric halide radicals in the range of 400-600 nm. Population inversion has been obtained by photodissociation and electron impact...excitation in mixtures o the mercuric - halide compounds and the rare gases. Chang and -* Burnham (3) have noted Improved laser efficiency and improved

  12. Pygmy Dipole Strength and Neutron Skins in Exotic Nuclei

    NASA Astrophysics Data System (ADS)

    Klimkiewicz, A.; Paar, N.; Adrich, P.; Fallot, M.; Boretzky, K.; Aumann, T.; Cortina-Gil, D.; Pramanik, U. Datta; Elze, Th. W.; Emling, H.; Geissel, H.; Hellström, M.; Jones, K. L.; Kratz, J. V.; Kulessa, R.; Nociforo, C.; Palit, R.; Simon, H.; Surówka, G.; Sümmerer, K.; Vretenar, D.; Waluś, W.

    2008-05-01

    Dipole strength distributions were determined for the neutron-rich nuclei 129-132Sn and 133,134Sb from electromagnetic excitation in an experiment using the FRS-LAND setup. For all nuclei, a sizeable fraction of ``pygmy'' dipole strength at excitation energies well below the giant dipole resonance was observed. The integrated low-lying dipole strength of the nuclei with low neutron separation energies can be compared to results for stable nuclei (e.g. N = 82 isotopes) determined for the energy regime of 5-9 MeV. A clear increase of the dipole strength with increasing asymmetry of the nuclei is observed. Comparing the ratio of the low-lying dipole over the giant dipole strength to recent relativistic mean field calculations, values for the parameters a4 and p0 of the symmetry energy and for the neutron skin thickness are derived. Averaged over 130Sn and 132Sn we extract a4 = 31.8+/-1.3 MeV and p0 = 2.2+/-0.5 MeV/fm3. The neutron skin sizes are determined to Rn-Rp = 0.23+/-0.03 fm and 0.24+/-0.03 fm for 130Sn and 132Sn, respectively. For 208Pb a neutron skin thickness of Rn-Rp = 0.18+/-0.035 fm follows, when applying the same method and using earlier published experimental findings on the dipole strength.

  13. Properties of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Rahe, J.; Vanysek, V.; Weissman, P. R.

    1994-01-01

    Active long- and short-period comets contribute about 20 to 30 % of the major impactors on the Earth. Cometary nuclei are irregular bodies, typically a few to ten kilometers in diameter, with masses in the range 10(sup 15) to 10(sup 18) g. The nuclei are composed of an intimate mixture of volatile ices, mostly water ice and hydrocarbon and silicate grains. The composition is the closest to solar composition of any known bodies in the solar system. The nuclei appear to be weakly bonded agglomerations of smaller icy planetesimals, and material strengths estimated from observed tidal disruption events are fairly low, typically 10(sup 2) to 10(sup 4) N m(sup -2). Density estimates range between 0.2 and 1.2 g cm(sup -3) but are very poorly determined, if at all. As comets age they develop nonvolitile crusts on their surfaces which eventually render them inactive, similar in appearance to carbonaceous asteroids. However, dormant comets may continue to show sporadic activity and outbursts for some time before they become truly extinct. The source of the long-period comets is the Oort cloud, a vast spherical cloud of perhaps 10(sup 12) to 10(sup 13) comets surrounding the solar system and extending to interstellar distances. The likely source for short-period comets is the Kuiper belt. a ring of perhaps 10(sup 8) to 10(sup 10) remnant icy planetesimals beyond the orbit of Neptune, though some short-period comets may also be long-period comets from the Oort cloud which have been perturbed into short-period orbits.

  14. Total photoabsorption in nuclei

    SciTech Connect

    Bianchi, N.

    1992-06-01

    The Frascati-Genova collaboration proposes to measure the total photonuclear cross section on a wide range of nuclei between 500 MeV and 2 GeV, to obtain informations on the interaction of baryon resonances with nucleons and on the onset of the shadowing effect. The experiment could be performed in the Hall B as soon as the tagging facility will be ready and before the end of the installation of the CLAS spectrometer. The requirements for the photon beam, like maximum energy, intensity and beam definition, are not so strong so that the experiment would also be a good first test of the tagged photon facility.

  15. Electroproduction of Strange Nuclei

    SciTech Connect

    E.V. Hungerford

    2002-06-01

    The advent of high-energy, CW-beams of electrons now allows electro-production and precision studies of nuclei containing hyperons. Previously, the injection of strangeness into a nucleus was accomplished using secondary beams of mesons, where beam quality and target thickness limited the missing mass resolution. We review here the theoretical description of the (e, e'K+) reaction mechanism, and discuss the first experiment demonstrating that this reaction can be used to precisely study the spectra of light hypernuclei. Future experiments based on similar techniques, are expected to attain even better resolutions and rates.

  16. Lattice QCD for nuclei

    NASA Astrophysics Data System (ADS)

    Beane, Silas

    2016-09-01

    Over the last several decades, theoretical nuclear physics has been evolving from a very-successful phenomenology of the properties of nuclei, to a first-principles derivation of the properties of visible matter in the Universe from the known underlying theories of Quantum Chromodynamics (QCD) and Electrodynamics. Many nuclear properties have now been calculated using lattice QCD, a method for treating QCD numerically with large computers. In this talk, some of the most recent results in this frontier area of nuclear theory will be reviewed.

  17. Predictions for Superheavy Nuclei

    NASA Astrophysics Data System (ADS)

    Kumar, Krishna

    1990-01-01

    The Dynamic Deformation Model has been extended to the problem of fission in such a way that several thousand channels including particle-decay, α-decay, heavy-ion-emission, asymmetric fission, and symmetric fission can be taken into account. The model also includes a Kinetic Shell Correction which was ignored in previous predictions for Superheavy nuclei. This model is in better agreement with experimental life-times. A new location of the Superheavy peak is predicted at Z = 116 (eka-Polonium), A = 300, total half-life = 1079 years. New heavy-ion-fusion experiments and the means of identifying the Superheavy Elements are suggested.

  18. Isotopic dependence of the cross section for the induced fission of heavy nuclei

    SciTech Connect

    Bolgova, O. N.; Adamian, G. G.; Antonenko, N. V.; Zubov, A. S.; Ivanova, S. P.; Scheid, W.

    2009-06-15

    The cross sections for the induced fission of {sup 211-223}Ra, {sup 203-211}Rn, and {sup 221-231}Th nuclei undergoing peripheral collisions with {sup 208}Pb nuclei are calculated on the basis of the statistical model. The role of the N = 126 neutron shell is studied. The level density in excited nuclei is determined within the Fermi gas model and a model that takes into account the collective enhancement of the level density. The inclusion of a particle-hole excitation in addition to a collective Coulomb excitation makes it possible to obtain a satisfactory description of experimental cross sections for the fission of radium isotopes. The calculated ratios of the cross sections for the induced fission of {sup 236}U ({sup 237}U) and {sup 238}U ({sup 239}U) nuclei agree with experimental data.

  19. D mesic nuclei

    NASA Astrophysics Data System (ADS)

    García-Recio, C.; Nieves, J.; Tolos, L.

    2010-06-01

    The energies and widths of several D0 meson bound states for different nuclei are obtained using a D-meson selfenergy in the nuclear medium, which is evaluated in a selfconsistent manner using techniques of unitarized coupled-channel theory. The kernel of the meson-baryon interaction is based on a model that treats heavy pseudoscalar and heavy vector mesons on equal footing, as required by heavy quark symmetry. We find D0 bound states in all studied nuclei, from 12C up to 208Pb. The inclusion of vector mesons is the keystone for obtaining an attractive D-nucleus interaction that leads to the existence of D0-nucleus bound states, as compared to previous studies based on SU(4) flavor symmetry. In some cases, the half widths are smaller than the separation of the levels, what makes possible their experimental observation by means of a nuclear reaction. This can be of particular interest for the future P¯ANDA@FAIR physics program. We also find a D+ bound state in 12C, but it is too broad and will have a significant overlap with the energies of the continuum.

  20. Structure evolution and phase transition in odd-mass nuclei

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Zamfir, N. V.

    2017-01-01

    The evolution of level structures due to the unique parity orbitals g9 /2, h11 /2, and i13 /2 in odd-mass nuclei from Zn to Am is studied within a unified framework, by correlations between ratios of excitation energies in both odd-mass nuclei and their even-even core nuclei. These plots reveal regularities that can be understood in terms of the particle-plus-rotor model, as evolutions along its three limiting coupling schemes: weak coupling, decoupling, and strong coupling, and transitions between them. Peculiar transitions between the decoupling and strong coupling schemes are found in both i13 /2 structures of neutron-odd nuclei and h11 /2 structures of proton-odd nuclei, at neutron numbers around 90 and 70, respectively. These are correlated with the critical shape phase transitions from vibrator to rotor from the even-even nuclei in the same regions and are characterized as critical phase transitions too. This behavior is corroborated with a nonmonotonic behavior of the differential variation of the two-neutron separation energies in the same nuclear regions.

  1. Heavy and Superheavy Atomic Nuclei

    NASA Astrophysics Data System (ADS)

    Sobiczewski, Adam

    2008-10-01

    The appearance and development of the concept of super-heavy atomic nuclei are described. The concept appeared during the studies of the limits of the nuclear chart and of the periodic table of the chemical elements. The article concentrates on theoretical studies of the properties of heaviest nuclei. Results of these studies are illustrated and discussed. Prospects for a nearest future of the research of heaviest nuclei are outlined.

  2. Limiting Temperatures for Collective Motion: The Giant Dipole Resonance in Very Hot Nuclei

    NASA Astrophysics Data System (ADS)

    Piattelli, P.; Blumenfeld, Y.; Le Faou, J. H.; Suomijärvi, T.; Agodi, C.; Alamanos, N.; Alba, R.; Auger, F.; Bellia, G.; Chomaz, Ph.; Coniglione, R.; Del Zoppo, A.; Finocchiaro, P.; Frascaria, N.; Gaardhøje, J. J.; Garron, J. P.; Gillibert, A.; Lamehi-Rachti, M.; Liguori-Neto, R.; Loukachine, K.; Maiolino, C.; Migneco, E.; Roynette, J. C.; Santonocito, D.; Sapienza, P.; Scarpaci, J. A.

    1996-02-01

    The study of the Giant Dipole Resonance (GDR) excited in hot nuclei allows to follow the evolution of collective motion with increasing nuclear temperature. A brief review of the characteristics of the GDR excited in nuclei with excitation energies up to ˜ 500 MeV is given. The results of recent experiments in which very hot nuclei have been studied with a nearly 4π detector are presented. Gamma-rays, light charged particles and evaporation residues emitted from hot nuclei of mass around 115 and excitation energies above 300 MeV, formed in the 36Ar + 90Zr at 27 MeV/u and 36Ar + 98Mo at 37 MeV/u reactions, have been measured with the MEDEA multidetector. The γ-ray yield from the decay of the Giant Dipole Resonance in these nuclei has been found to be independent of excitation energy and bombarding energy. The measured γ-ray spectra are compared with statistical calculations encompassing several recent theoretical models for the quenching of gamma-ray emission from the dipole resonance at very high temperatures. The best agreement with the data is obtained by assuming a cut-off of the resonance γ-emission above an excitation energy of 250 MeV.

  3. Selective estrogen receptor-beta (SERM-beta) compounds modulate raphe nuclei tryptophan hydroxylase-1 (TPH-1) mRNA expression and cause antidepressant-like effects in the forced swim test.

    PubMed

    Clark, J A; Alves, S; Gundlah, C; Rocha, B; Birzin, E T; Cai, S-J; Flick, R; Hayes, E; Ho, K; Warrier, S; Pai, L; Yudkovitz, J; Fleischer, R; Colwell, L; Li, S; Wilkinson, H; Schaeffer, J; Wilkening, R; Mattingly, E; Hammond, M; Rohrer, S P

    2012-11-01

    Estrogen acts through two molecularly distinct receptors termed estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) which bind estradiol with similar affinities and mediate the effects of estrogen throughout the body. ERα plays a major role in reproductive physiology and behavior, and mediates classic estrogen signaling in such tissues as the uterus, mammary gland, and skeleton. ERβ, however, modulates estrogen signaling in the ovary, the immune system, prostate, gastrointestinal tract, and hypothalamus, and there is some evidence that ERβ can regulate ERα activity. Moreover, ERβ knockout studies and receptor distribution analyses in the CNS suggest that this receptor may play a role in the modulation of mood and cognition. In recent years several ERβ-specific compounds (selective estrogen receptor beta modulators; SERM-beta) have become available, and research suggests potential utility of these compounds in menopausal symptom relief, breast cancer prevention, diseases that have an inflammatory component, osteoporosis, cardiovascular disease, and inflammatory bowel disease, as well as modulation of mood, and anxiety. Here we demonstrate an antidepressant-like effect obtained using two SERM-beta compounds, SERM-beta1 and SERM-beta2. These compounds exhibit full agonist activity at ERβ in a cell based estrogen response element (ERE) transactivation assay. SERM-beta1 and 2 are non-proliferative with respect to breast as determined using the MCF-7 breast cancer cell-based assay and non-proliferative in the uterus as determined by assessing the effects of SERM-beta compounds on immature rat uterine weight and murine uterine weight. In vivo SERM-beta1 and 2 are brain penetrant and display dose dependent efficacy in the murine dorsal raphe assays for induction of tryptophan hydroxylase mRNA and progesterone receptor protein. These compounds show activity in the murine forced swim test and promote hippocampal neurogenesis acutely in rats. Taken

  4. Shell Model Description of the Odd-Odd Co and Cu Nuclei

    SciTech Connect

    Medina, N. H.; Allegro, P. R. P.; Oliveira, J. R. B. de; Ribas, R. V.; Seale, W. A.; Toufen, D. L.; Silveira, M. A. G.

    2007-10-26

    The known excited states of the odd-odd nuclei {sup 54,56,58,60}Co and 60,62,64,66Cu were interpreted in the framework of the large scale shell model (LSSM), using several effective interactions and configuration spaces. For the description of the negative parity states, we have allowed one particle excitation to the g{sub 9/2} orbital. The LSSM using the GXPF1 effective interaction reproduces well the first excited states in all of these nuclei.

  5. Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei.

    PubMed

    Yao, Da-Kang; Chen, Ruimin; Maslov, Konstantin; Zhou, Qifa; Wang, Lihong V

    2012-05-01

    In order to image noninvasively cell nuclei in vivo without staining, we have developed ultraviolet photoacoustic microscopy (UV-PAM), in which ultraviolet light excites nucleic acids in cell nuclei to produce photoacoustic waves. Equipped with a tunable laser system, the UV-PAM was applied to in vivo imaging of cell nuclei in small animals. We found that 250 nm was the optimal wavelength for in vivo photoacoustic imaging of cell nuclei. The optimal wavelength enables UV-PAM to image cell nuclei using as little as 2 nJ laser pulse energy. Besides the optimal wavelength, application of a wavelength between 245 and 275 nm can produce in vivo images of cell nuclei with specific, positive, and high optical contrast.

  6. Exotic nuclei in astrophysics

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.

    2012-07-01

    Recently the academic community has marked several anniversaries connected with discoveries that played a significant role in the development of astrophysical investigations. The year 2009 was proclaimed by the United Nations the International Year of Astronomy. This was associated with the 400th anniversary of Galileo Galilei's discovery of the optical telescope, which marked the beginning of regular research in the field of astronomy. An important contribution to not only the development of physics of the microcosm, but also to the understanding of processes occurring in the Universe, was the discovery of the atomic nucleus made by E. Rutherford 100 years ago. Since then the investigations in the fields of physics of particles and atomic nuclei have helped to understand many processes in the microcosm. Exactly 80 years ago, K. Yanski used a radio-telescope in order to receive the radiation from cosmic objects for the first time, and at the present time this research area of physics is the most efficient method for studying the properties of the Universe. Finally, the April 12, 1961 (50 years ago) launching of the first sputnik into space with a human being onboard, the Russian cosmonaut Yuri Gagarin, marked the beginning of exploration of the Universe with the direct participation of man. All these achievements considerably extended our ideas about the Universe. This work is an attempt to present some problems on the evolution of the Universe: the nucleosynthesis and cosmochronology from the standpoint of physics of particles and nuclei, in particular with the use of the latest results, obtained by means of radioactive nuclear beams. The comparison is made between the processes taking place in the Universe and the mechanisms of formation and decay of nuclei, as well as of their interaction at different energies. Examples are given to show the capabilities of nuclear-physics methods for studying cosmic objects and properties of the Universe. The results of

  7. Nucleomorphs: enslaved algal nuclei.

    PubMed

    Cavalier-Smith, T

    2002-12-01

    Nucleomorphs of cryptomonad and chlorarachnean algae are the relict, miniaturised nuclei of formerly independent red and green algae enslaved by separate eukaryote hosts over 500 million years ago. The complete 551 kb genome sequence of a cryptomonad nucleomorph confirms that cryptomonads are eukaryote-eukaryote chimeras and greatly illuminates the symbiogenetic event that created the kingdom Chromista and their alveolate protozoan sisters. Nucleomorph membranes may, like plasma membranes, be more enduring after secondary symbiogenesis than are their genomes. Partial sequences of chlorarachnean nucleomorphs indicate that genomic streamlining is limited by the mutational difficulty of removing useless introns. Nucleomorph miniaturisation emphasises that selection can dramatically reduce eukaryote genome size and eliminate most non-functional nuclear non-coding DNA. Given the differential scaling of nuclear and nucleomorph genomes with cell size, it follows that most non-coding nuclear DNA must have a bulk-sequence-independent function related to cell volume.

  8. Pulsars:. Gigantic Nuclei

    NASA Astrophysics Data System (ADS)

    Xu, Renxin

    What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the gigantic nucleus speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction.

  9. Allowance for the shell structure of colliding nuclei in the fusion-fission process

    SciTech Connect

    Litnevsky, V. L.; Kosenko, G. I.; Ivanyuk, F. A.; Pashkevich, V. V.

    2011-07-15

    The motion of two nuclei toward each other in fusion-fission reactions is considered. The state of the system of interacting nuclei is specified in terms of three collective coordinates (parameters). These are the distance between the centers of mass of the nuclei and the deformation parameter for each of them (the nose-to-nose orientation of the nuclei is assumed). The evolution of collective degrees of freedom of the system is described by Langevin equations. The energies of the Coulomb and nuclear (Gross-Kalinovsky potential) interactions of nuclei are taken into account in the potential energy of the system along with the deformation energy of each nucleus with allowance for shell effects. The motion of nuclei toward each other are calculated for two reaction types: reactions involving nuclei that are deformed ({sub 42}{sup 100}Mo + {sub 42}{sup 100}Mo {yields} {sub 84}{sup 200}Po) and those that are spherical ({sub 82}{sup 208}Pb + {sub 8}{sup 18}O {yields} {sub 90}{sup 226}Th) in the ground state. It is shown that the shell structure of interacting nuclei affects not only the fusion process as a whole (fusionbarrier height and initial-reaction-energy dependence of the probability that the nuclei involved touch each other) but also the processes occurring in each nucleus individually (shape of the nuclei and their excitation energies at the point of touching).

  10. Excited Delirium

    PubMed Central

    Takeuchi, Asia; Ahern, Terence L.; Henderson, Sean O.

    2011-01-01

    Excited (or agitated) delirium is characterized by agitation, aggression, acute distress and sudden death, often in the pre-hospital care setting. It is typically associated with the use of drugs that alter dopamine processing, hyperthermia, and, most notably, sometimes with death of the affected person in the custody of law enforcement. Subjects typically die from cardiopulmonary arrest, although the cause is debated. Unfortunately an adequate treatment plan has yet to be established, in part due to the fact that most patients die before hospital arrival. While there is still much to be discovered about the pathophysiology and treatment, it is hoped that this extensive review will provide both police and medical personnel with the information necessary to recognize and respond appropriately to excited delirium. PMID:21691475

  11. Effective field theory for vibrations in odd-mass nuclei

    NASA Astrophysics Data System (ADS)

    Coello Pérez, E. A.; Papenbrock, T.

    2016-11-01

    Heavy even-even nuclei exhibit low-energy collective excitations that are separated in scale from the microscopic (fermion) degrees of freedom. This separation of scale allows us to approach nuclear vibrations within an effective field theory (EFT). In odd-mass nuclei collective and single-particle properties compete at low energies, and this makes their description more challenging. In this article we describe spherical odd-mass nuclei with ground-state spin I =1/2 by means of an EFT that couples a fermion to the collective degrees of freedom of an even-even core. The EFT relates observables such as energy levels, electric quadrupole transition strengths, and magnetic dipole moments of the odd-mass nucleus to those of its even-even neighbor and allows us to quantify theoretical uncertainties. For isotopes of rhodium and silver the theoretical description is consistent with data within experimental and theoretical uncertainties. Several testable predictions are made.

  12. Surface direct nuclear photoeffect in heavy deformed nuclei

    NASA Astrophysics Data System (ADS)

    Ishkhanov, B. S.; Orlin, V. N.; Stopani, K. A.

    2016-11-01

    A mechanism of photon-induced direct knockout of a nucleon from the nuclear surface without formation of intermediate excited nuclear state is described. The effect plays an important role at least for the (γ ,p ) reaction on heavy nuclei in the energy region centered at about 30 MeV where the probability of formation of the giant dipole resonance is already small but quasideuteron photoabsorption still does not prevail. A compact model of the surface direct nuclear photoeffect (SDNP) in heavy deformed nuclei that can be used to calculate the differential d σ (Eγ,ϑ )/d Ω and total σ (Eγ) cross sections of the SDNP under adiabatic approximation is formulated. The model is applied to calculation of the (γ ,p ) reaction cross sections on 160Gd and W,186184. The importance of the SDNP effect for these nuclei at Eγ˜30 MeV is demonstrated.

  13. Voiced Excitations

    DTIC Science & Technology

    2004-12-01

    for purposes of vocoding in high noise environments: Task 1: Estimation of voiced excitation functions using skin surface vibration...High Noise Environments. The work on “ Voiced Excitations” shows that the surface vibrations of neck skin, during voicing , carry a great deal of...5 in this report). For field use, it may be better to obtain data from another location on the neck or face. A pressure function of voiced speech is

  14. Excited baryons

    SciTech Connect

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)

  15. Quarks in Few Body Nuclei

    NASA Astrophysics Data System (ADS)

    Holt, Roy J.

    2016-03-01

    Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  16. Spectroscopy of neutron-deficient nuclei around 36Ca

    SciTech Connect

    Buerger, A.; Azaiez, F.; Bourgeois, Ch.; Franchoo, S.; Ibrahim, F.; Verney, D.; Dombradi, Zs.; Algora, A.; Fueloep, Zs.; Sohler, D.; Al-Khatib, A.; Bringel, P.; Engelhardt, C.; Huebel, H.; Bastin, B.; Benzoni, G.; Borcea, R.; Rotaru, F.; Sorlin, O.

    2006-04-26

    An experiment was performed to extend the knowledge of excited states in neutron-deficient Ca isotopes. In particular, excited states in 36Ca were searched for to allow for a comparison with its stable mirror nucleus, 36S. Secondary beams of 37Ca and 36Ca were produced by fragmentation of a primary 40Ca beam with an energy of 95 {center_dot} A MeV on the SISSI target at GANIL. A variety of nuclei around 36Ca has been produced in a secondary Be target by neutron and proton-removal at beam energies around 61 {center_dot} A MeV. The produced nuclei were identified using the spectrometer SPEG, and prompt {gamma} rays were measured with the Chateau de Cristal. A preliminary value for the energy of the first 2+ state of 36Ca has been determined.

  17. Evolution Of Shapes And Collectivity In Exotic Nuclei

    SciTech Connect

    Goergen, Andreas; Ljungvall, Joa

    2010-04-30

    The coexistence of prolate and oblate shapes in light selenium and krypton isotopes has been investigated using the complementary techniques of low-energy Coulomb excitation with radioactive ions beams and lifetime measurements of excited states after fusion-evaporation reactions. The resulting B(E2) values and spectroscopic quadrupole moments represent a sensitive test for configuration mixing calculations going beyond the mean-field approach. The onset of collectivity for neutron-rich nuclei near {sup 68}Ni has been investigated using a new technique to measure lifetimes with the recoil distance Doppler shift method after multi-nucleon transfer reactions.

  18. Decay of {sup 118,122}Ba* compound nuclei formed in {sup 78,82}Kr+{sup 40}Ca reactions using the dynamical cluster-decay model of preformed clusters

    SciTech Connect

    Kumar, Raj; Gupta, Raj K.

    2009-03-15

    Application of the preformed clusters based dynamical cluster-decay model (DCM) is made to the recent data on decay of the compound systems {sup 118,122}Ba* at a relatively low bombarding energy of 5.5 MeV/A. The same model has been applied earlier to the intermediate mass fragment (IMF) data of {sup 116}Ba*, observed at medium and higher incident energies. For the heavier {sup 118,122}Ba* systems, however, a complete mass fragmentation spectrum is observed experimentally. Except for a small narrow region of heavier mass fragments (8{<=}Z{sub L}{<=}15), the DCM gives an overall reasonable description of the observed data on both the intermediate mass fragments and the fusion-fission cross-sections, whereas the statistical model calculations based on BUSCO and GEMINI codes describe the intermediate mass fragment data and the heavier mass fragment and fusion-fission data, respectively. Within the DCM (with preformation factor P{sub 0}=1), the possibility of non-compound-nucleus decay contributing to the region 8{<=}Z{sub L}{<=}15 of heavier mass fragments is also explored. All three models use the maximum angular momentum l{sub max} as a fitting parameter, which in the DCM is fixed via a neck-length parameter for the penetrability P{yields}1.

  19. Correlations of collective observables and the phonon structure of nuclei

    SciTech Connect

    Casten, R.F.; Zamfir, N.V. ||

    1994-07-01

    A ``horizontal`` view of nuclear structures is described in which various observables are correlated over broad mass ranges. This approach leads to a number of remarkable correlations, to new understanding of the evolution of structure, to a challenge to microscopic theories, and to new signatures of structure that will be especially useful with radioactive beam experiments. In particular, this and other evidence suggests a nearly universal and pervasive role of phonon and multi-phonon excitations in nuclei.

  20. Cluster Features of Normal-, Super- and Hyperdeformed nuclei

    SciTech Connect

    Adamian, G.G.; Antonenko, N.V.; Kuklin, S.N.

    2005-11-21

    It is shown that an important mode of nuclear excitations in different processes like as cluster radioactivity, parity splitting in normal deformed bands, decay out phenomenon of the yrast superdeformed states in the heavy nuclei and formation of super- and hyper-deformed states in induced fission and heavy ion reactions is related to the motion in charge (mass) asymmetry coordinate. With the suggested cluster model one can try to unify all phenomena mentioned above.

  1. Shape Evolution in Neutron-Rich Ru Nuclei

    NASA Astrophysics Data System (ADS)

    Söderström, P.-A.; Lorusso, G.; Watanabe, H.; Nishimura, S.; Doornenbal, P.; Browne, F.; Bruce, A. M.; Daido, R.; Fang, Y.; Gey, G.; Jung, H. S.; Nishizuka, I.; Patel, Z.; Rice, S.; Sinclair, L.; Sumikama, T.; Taprogge, J.; Vajta, Zs.; Wu, J.; Xu, Z. Y.; Baba, H.; Benzoni, G.; Carroll, R. J.; Chae, K. Y.; Crespi, F. C. L.; Fukuda, N.; Gernhäuser, R.; Ideguchi, E.; Inabe, N.; Isobe, T.; Jungclaus, A.; Kameda, D.; Kim, G. D.; Kim, Y.-K.; Kojouharov, I.; Kondev, F. G.; Kubo, T.; Kurz, N.; Kwon, Y. K.; Lalkovski, S.; Lane, G. J.; Li, Z.; Lozeva, R.; Montaner-Piza, A.; Moschner, K.; Naqvi, F.; Niikura, M.; Nishibata, H.; Odahara, A.; Orlandi, R.; Podolyak, Zs.; Regan, P. H.; Roberts, O. J.; Sakurai, H.; Schaffner, H.; Simpson, G. S.; Steiger, K.; Suzuki, H.; Takeda, H.; Tanaka, M.; Wendt, A.; Werner, V.; Wieland, O.; Yagi, A.; Yoshinaga, K.

    Recent experimental work has been carried out at the RIBF using the EURICA HPGe detector array. In this contribution, we discuss the recently published results on the shape evolution of the even-even isotopes 116,118Ru and present an outlook of β-delayed γ-ray spectroscopy of the odd-neutron nuclei and possibilities for life-time measurements of excited states.

  2. Prospects for electron scattering on unstable, exotic nuclei

    NASA Astrophysics Data System (ADS)

    Suda, Toshimi; Simon, Haik

    2017-09-01

    Electron scattering off radioactive ions becomes feasible for the first time due to advances in storage ring and trapping techniques in conjunction with intense secondary beams from novel beam facilities. Using a point-like purely leptonic probe enables the investigation of charge distributions and electromagnetic excitations in β-unstable exotic nuclei with an enhanced overshoot in proton and neutron numbers and the use of QED, one of the most precisely studied theories, for describing the scattering process.

  3. Projectile target combination to synthesis superheavy nuclei Z = 126

    NASA Astrophysics Data System (ADS)

    Manjunatha, H. C.; Sridhar, K. N.

    2017-06-01

    We have studied the fusion cross section, survival cross section, fission cross section, compound nucleus formation probability (PCN) and survival probability (PSurv) of superheavy nuclei 307126, 318126, 319126, and 320126. Hence, we have identified the most probable projectile-target combination to synthesis these superheavy nuclei. From the detail study of these parameters, it is clear that for the superheavy nuclei 307126, the projectile target combinations such as 54Fe + 253Fm and 58Ni + 249Cf are most probable projectile target combination for synthesis. The projectile target combinations such as 64Ni + 254Cf and 80Se + 238U are most probable projectile target combination for the synthesis of 318126. The projectile target combinations such as 72Zn + 247Cm and 66Ni + 253Cf are most probable projectile target combination for synthesis the superheavy nuclei 319126. The projectile target combinations such as 66Ni + 254Cf and 82Se + 238U are most probable projectile target combination for synthesis the superheavy nuclei 320126. Thus, we hope that our predictions may be guide for the future experiments in the synthesis of superheavy nuclei Z = 126.

  4. Parity violation in nuclei

    SciTech Connect

    Robertson, R.G.H.

    1980-01-01

    A summary of parity violating effects in nuclei is given. Thanks to vigorous experimental and theoretical effort, it now appears that a reasonably well-defined value for the weak isovector ..pi..-nucleon coupling constant can be obtained. There is one major uncertainty in the analysis, namely the M2/E1 mixing ratio for the 2.79 MeV transition in /sup 21/Ne. This quantity is virtually impossible to calculate reliably and must be measured. If it turns out to be much larger than 1, then a null result in /sup 21/Ne is expected no matter what the weak interaction, so an experimental determination is urgently needed. The most promising approach is perhaps a measurement of the pair internal conversion coefficient. Of course, a direct measurement of a pure isovector case is highly desirable, and it is to be hoped that the four ..delta..T = 1 experiments will be pushed still further, and that improved calculations will be made for the /sup 6/Li case. Nuclear parity violation seems to be rapidly approaching an interesting and useful synthesis.

  5. Gluon density in nuclei

    SciTech Connect

    Ayala, A.L.; Ducati, M.B.G.; Levin, E.M.

    1996-10-01

    In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab.

  6. Adiabatic-nuclei calculations of positron scattering from molecular hydrogen

    DOE PAGES

    Zammit, Mark Christian; Fursa, Dmitry V.; Savage, Jeremy S.; ...

    2017-02-06

    The single-center adiabatic-nuclei convergent close-coupling method is used to investigate positron collisions with molecular hydrogen (H2) in the ground and first vibrationally excited states. Cross sections are presented over the energy range from 1 to 1000 eV for elastic scattering, vibrational excitation, total ionization, and the grand total cross section. The present adiabatic-nuclei positron- H2 scattering length is calculated as A = $-$ 2.70 a0 for the ground state and A = $-$ 3.16 a0 for the first vibrationally excited state. The present elastic differential cross sections are also used to “correct” the low-energy grand total cross-section measurements of themore » Trento group [A. Zecca et al., Phys. Rev. A 80, 032702 (2009)] for the forward-angle-scattering effect. In general, the comparison with experiment is good. In conclusion, by performing convergence studies, we estimate that our Rm = 1.448 a0 fixed-nuclei results are converged to within ± 5 % for the major scattering integrated cross sections.« less

  7. Adiabatic-nuclei calculations of positron scattering from molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Zammit, Mark C.; Fursa, Dmitry V.; Savage, Jeremy S.; Bray, Igor; Chiari, Luca; Zecca, Antonio; Brunger, Michael J.

    2017-02-01

    The single-center adiabatic-nuclei convergent close-coupling method is used to investigate positron collisions with molecular hydrogen (H2) in the ground and first vibrationally excited states. Cross sections are presented over the energy range from 1 to 1000 eV for elastic scattering, vibrational excitation, total ionization, and the grand total cross section. The present adiabatic-nuclei positron-H2 scattering length is calculated as A =-2.70 a0 for the ground state and A =-3.16 a0 for the first vibrationally excited state. The present elastic differential cross sections are also used to "correct" the low-energy grand total cross-section measurements of the Trento group [A. Zecca et al., Phys. Rev. A 80, 032702 (2009), 10.1103/PhysRevA.80.032702] for the forward-angle-scattering effect. In general, the comparison with experiment is good. By performing convergence studies, we estimate that our Rm=1.448 a0 fixed-nuclei results are converged to within ±5 % for the major scattering integrated cross sections.

  8. Mean field and collisions in hot nuclei

    SciTech Connect

    K /umlt o/hler, H.S.

    1989-06-01

    Collisions between heavy nuclei produce nuclear matter of high density and excitation. Brueckner methods are used to calculate the momentum and temperature dependent mean field for nucleons propagating through nuclear matter during these collisions. The mean field is complex and the imaginary part is related to the ''two-body'' collision, while the real part relates to ''one-body'' collisions. A potential model for the N-N interactions is avoided by calculating the Reaction matrix directly from the T-matrix (i.e., N-N phase shifts) using a version of Brueckner theory previously published by the author. Results are presented for nuclear matter at normal and twice normal density and for temperatures up to 50 MeV. 23 refs., 7 figs.

  9. Microscopic analysis of pear-shaped nuclei

    NASA Astrophysics Data System (ADS)

    Nomura, K.

    2015-10-01

    We analyze the quadrupole-octupole collective states based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the sd f interacting boson model (IBM), that is, onto the energy expectation value in the boson coherent state, the Hamiltonian parameters are determined. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in nuclei characteristic for octupole deformation and collectivity. Consistently with the empirical trend, the microscopic calculation based on the systematics of β2 - β3 energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition between stable octupole deformation and octupole vibrations characteristic for β3-soft potentials.

  10. Single-particle states in transcurium nuclei.

    SciTech Connect

    Ahmad, I.

    1999-09-30

    Identification of single-particle states in the heaviest known nuclei is important because their energies can be used to test the single-particle potential in these high-Z elements. These states can be identified by studying the decay schemes of very heavy odd-mass nuclides. For neutrons, the heaviest odd-mass nuclide available in milliCurie quantities is the 20-h {sup 255}Fm and for protons the heaviest nuclide available is the 20-d {sup 253}Es. These two isotopes were obtained from the Transplutonium Element Production Program at Oak Ridge and their spectra were measured with high-resolution germanium spectrometers. From the results of these measurements we have identified states in {sup 251}Cf and {sup 249}Bk up to 1 MeV excitation energy.

  11. Quarks and gluons in hadrons and nuclei

    SciTech Connect

    Close, F.E. Tennessee Univ., Knoxville, TN )

    1989-12-01

    These lectures discuss the particle-nuclear interface -- a general introduction to the ideas and application of colored quarks in nuclear physics, color, the Pauli principle, and spin flavor correlations -- this lecture shows how the magnetic moments of hadrons relate to the underlying color degree of freedom, and the proton's spin -- a quark model perspective. This lecture reviews recent excitement which has led some to claim that in deep inelastic polarized lepton scattering very little of the spin of a polarized proton is due to its quarks. This lecture discusses the distribution functions of quarks and gluons in nucleons and nuclei, and how knowledge of these is necessary before some quark-gluon plasma searches can be analyzed. 56 refs., 2 figs.

  12. Spin Modes in Nuclei and Nuclear Forces

    SciTech Connect

    Suzuki, Toshio; Otsuka, Takaharu

    2011-05-06

    Spin modes in stable and unstable exotic nuclei are studied and important roles of tensor and three-body forces on nuclear structure are discussed. New shell model Hamiltonians, which have proper tensor components, are shown to explain shell evolutions toward drip-lines and spin properties of both stable and exotic nuclei, for example, Gamow-Teller transitions in {sup 12}C and {sup 14}C and an anomalous M1 transition in {sup 17}C. The importance and the necessity of the repulsive monopole corrections in isospin T = 1 channel to the microscopic two-body interactions are pointed out. The corrections are shown to lead to the proper shell evolutions in neutron-rich isotopes. The three-body force, in particular the Fujita-Miyazawa force induced by {Delta} excitations, is pointed out to be responsible for the repulsive corrections among the valence neutrons. The important roles of the three-body force on the energies and transitions in exotic oxygen and calcium isotopes are demonstrated.

  13. Anisotropic multicluster model in light nuclei

    NASA Astrophysics Data System (ADS)

    Gijón, A.; Gálvez, F. J.; Arias de Saavedra, F.; Buendía, E.

    2016-06-01

    Multicluster models consider that the nucleons can be moving around different centers in the nuclei. These models have been widely used to describe light nuclei but always considering that the mean field is composed of isotropic harmonic oscillators with different centers. In this work, we propose an extension of these models by using anisotropic harmonic oscillators. The strengths of these oscillators, the distance among the different centers and the disposition of the nucleons inside every cluster are free parameters which have been fixed using the variational criterion. All the one-body and two-body matrix elements have been analytically calculated. Only a numerical integration on the Euler angles is needed to carry out the projection on the values of the total spin of the state and its third component. We have studied the ground state and the first excited states of 8Be, 12C and 10Be getting good results for the energies. The disposition of the nucleons in the different clusters have also been analyzed by using projection on the different Cartesian planes getting much more information than when the radial one-body density is used.

  14. Clusters and Halos in Light Nuclei

    SciTech Connect

    Neff, Thomas; Feldmeier, Hans

    2009-08-26

    The structure of light nuclei in the p- and sd-shell features exotic phenomena like halos and clustering. In the Fermionic Molecular Dynamics (FMD) approach we aim at a consistent microscopic description of well bound nuclei and of loosely bound exotic systems. This is possible due to the flexibility of the single-particle basis states using Gaussian wave-packets localized in phase space. Many-body basis states are Slater determinants projected on parity, angular and total linear momentum.The structure of {sup 12}C is discussed. Here the ground state band can be well described within a shell model picture but excited states above the three-{alpha} threshold, including the famous Hoyle state, show a pronounced cluster structure. As another example we study the structure of the Neon isotopes {sup 17-22}Ne. In {sup 17}Ne we find a large s{sup 2} occupation related to a large charge radius. The charge radius decreases for {sup 18}Ne but gets again very large for {sup 19}Ne and {sup 20}Ne which is explained by significant admixtures of {sup 3}He and {sup 4}He cluster components into to the ground state wave functions.

  15. Clusters and Halos in Light Nuclei

    NASA Astrophysics Data System (ADS)

    Neff, Thomas; Feldmeier, Hans

    2009-08-01

    The structure of light nuclei in the p- and sd-shell features exotic phenomena like halos and clustering. In the Fermionic Molecular Dynamics (FMD) approach we aim at a consistent microscopic description of well bound nuclei and of loosely bound exotic systems. This is possible due to the flexibility of the single-particle basis states using Gaussian wave-packets localized in phase space. Many-body basis states are Slater determinants projected on parity, angular and total linear momentum. The structure of 12C is discussed. Here the ground state band can be well described within a shell model picture but excited states above the three-α threshold, including the famous Hoyle state, show a pronounced cluster structure. As another example we study the structure of the Neon isotopes 17-22Ne. In 17Ne we find a large s2 occupation related to a large charge radius. The charge radius decreases for 18Ne but gets again very large for 19Ne and 20Ne which is explained by significant admixtures of 3He and 4He cluster components into to the ground state wave functions.

  16. Isospin-symmetry-breaking effects in A˜70 nuclei within beyond-mean-field approach

    NASA Astrophysics Data System (ADS)

    Petrovici, A.; Andrei, O.

    2015-02-01

    Particular isospin-symmetry-breaking probes including Coulomb energy differences (CED), mirror energy differences (MED), and triplet energy differences (TED) manifest anomalies in the A˜70 isovector triplets of nuclei. The structure of proton-rich nuclei in the A˜70 mass region suggests shape coexistence and competition between pairing correlations in different channels. Recent results concerning the interplay between isospin-mixing and shape-coexistence effects on exotic phenomena in A˜70 nuclei obtained within the beyond-mean-field complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction in a relatively large model space are presented. Excited Vampir predictions concerning the Gamow-Teller β decay to the odd-odd N=Z 66As and 70Br nuclei correlated with the pair structure analysis in the T=1 and T=0 channel of the involved wave functions are discussed.

  17. Isospin-symmetry-breaking effects in A∼70 nuclei within beyond-mean-field approach

    SciTech Connect

    Petrovici, A.; Andrei, O.

    2015-02-24

    Particular isospin-symmetry-breaking probes including Coulomb energy differences (CED), mirror energy differences (MED), and triplet energy differences (TED) manifest anomalies in the A∼70 isovector triplets of nuclei. The structure of proton-rich nuclei in the A∼70 mass region suggests shape coexistence and competition between pairing correlations in different channels. Recent results concerning the interplay between isospin-mixing and shape-coexistence effects on exotic phenomena in A∼70 nuclei obtained within the beyond-mean-field complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction in a relatively large model space are presented. Excited Vampir predictions concerning the Gamow-Teller β decay to the odd-odd N=Z {sup 66}As and {sup 70}Br nuclei correlated with the pair structure analysis in the T=1 and T=0 channel of the involved wave functions are discussed.

  18. Experimental level-structure determination in odd-odd actinide nuclei

    SciTech Connect

    Hoff, R.W.

    1985-04-04

    The status of experimental determination of level structure in odd-odd actinide nuclei is reviewed. A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei is applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation are derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings are used. Calculated and experimental level structures for /sup 238/Np, /sup 244/Am, and /sup 250/Bk are compared, as well as those for several nuclei in the rare-earth region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Applications of this modeling technique are discussed.

  19. Constrained Hartree-Fock Theory and Study of Deformed Structures of Closed Shell Nuclei

    NASA Astrophysics Data System (ADS)

    Praharaj, Choudhury

    2016-03-01

    We have studied some N or Z = 50 nuclei in a microscopic model with effective interaction in a reasonably large shell model space. Excitation of particles across 50 shell closure leads to well-deformed excited prolate configurations. The potential energy surfaces of nuclei are studied using Hartree-Fock theory with quadrupole constraint to explore the various deformed configurations of N = 50 nuclei 82Ge , 84Se and 86Kr . Energy spectra are calculated from various intrinsic states using Peierls-Yoccoz angular momentum projection technique. Results of spectra and electromagnetic moments and transitions will be presented for N = 50 nuclei and for Z = 50 114Sn nucleus. Supported by Grant No SB/S2/HEP-06/2013 of DST.

  20. Sexual excitement.

    PubMed

    Stoller, R J

    1976-08-01

    Sexual excitement depends on a scenario the person to be aroused has been writing since childhood. The story is an adventure, an autobiography disguised as fiction, in which the hero/heroine hides crucial intrapsychic conflicts, mysteries, screen memories of actual traumatic events and the resolution of these elements into a happy ending, best celebrated by orgasm. The function of the fantasy is to take these painful experiences and convert them to pleasure-triumph. In order to sharpen excitement-the vibration between the fear of original traumas repeating and the hope of a pleasurable conclusion this time-one introduces into the story elements of risk (approximations of the trauma) meant to prevent boredom and safety factors (sub-limnal signals to the storyteller that the risk are not truly dangerous). Sexual fantasy can be studied by means of a person's daydreams (including those chosen in magazines, books, plays, television, movies, and outright pornography), masturbatory behavior, object choice, foreplay, techniques of intercourse, or postcoital behavior.

  1. Population of isomeric states in fusion and transfer reactions in beams of loosely bound nuclei near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Skobelev, N. K.

    2015-07-01

    The influence of the mechanisms of nuclear reactions on the population of 195 m Hg and 197 m Hg(7/2-), 198 m Tl and 196 m Tl(7+), and 196 m Au and 198 m Au(12-) isomeric nuclear states obtained in reactions induced by beams of 3He, 6Li, and 6He weakly bound nuclei is studied. The behavior of excitation functions and high values of isomeric ratios ( δ m/ δ g) for products of nuclear reactions proceeding through a compound nucleus and involving neutron evaporation are explained within statistical models. Reactions in which the emission of charged particles occurs have various isomeric ratios depending on the reaction type. The isomeric ratio is lower in direct transfer reactions involving charged-particle emission than in reactions where the evaporation of charged particles occurs. Reactions accompanied by neutron transfer usually have a lower isomeric ratio, which behaves differently for different direct-reaction types (stripping versus pickup reactions).

  2. Pre-equilibrium Emission and α-clustering in Nuclei

    NASA Astrophysics Data System (ADS)

    Gramegna, F.; Fabris, D.; Marchi, T.; Degerlier, M.; Fotina, O. V.; Kravchuk, V. L.; D'Agostino, M.; Morelli, L.; Appannababu, S.; Baiocco, G.; Barlini, S.; Bini, M.; Brondi, A.; Bruno, M.; Casini, G.; Cinausero, M.; Gelli, N.; Moro, R.; Olmi, A.; Pasquali, G.; Piantelli, S.; Poggi, G.; Valdrè, S.; Vardaci, E.

    2015-02-01

    The study of nuclear states built on clusters bound by valence neutrons in their molecular configurations is a field of large interest, which is being renewed by the availability of exotic beams: clustering is, in fact, predicted to become very important at the drip-line, where weakly bound systems will prevail. Although for light nuclei at an excitation energy close to the particle separation value there are experimental evidences of such structure effects, this is still not the case for heavier nuclear systems. Many attempts have been done using preformation alpha clustering models, but there is still a lack of experimental data capable to give a direct feedback. In particular, searching for alpha clustering effects in medium mass systems is still a challenge, which can give new hints in this subject. In the past we have studied the reactions 250, 192 and 130 MeV 16O + 116Sn, observing a significant increase in the fast emitted α-particle yield. This effect was ascribed to the presence of preformed a-clusters in the 16O projectile nucleus. In order to investigate these aspects, in a model independent way, a new experimental campaign has been performed with the GARFIELD + RCo set up, to compare results from two different reactions: a double magic a-cluster (16O) and a non-magic α-cluster projectile (19F) at the same beam velocity (16AMeV) have been chosen, impinging respectively on 65Cu and 62Ni targets, thus leading to the same 81Rb* compound nucleus. The angular distributions and the light charged particles emission spectra in coincidence with evaporation residues have been measured and analyzed. The preliminary results of the data analysis and the main features of the theoretical model used for their interpretation are presented.

  3. Stem cell mechanics: Auxetic nuclei

    NASA Astrophysics Data System (ADS)

    Wang, Ning

    2014-06-01

    The nuclei of naive mouse embryonic stem cells that are transitioning towards differentiation expand when the cells are stretched and contract when they are compressed. What drives this auxetic phenotype is, however, unclear.

  4. Generalized parton distributions in nuclei

    SciTech Connect

    Vadim Guzey

    2009-12-01

    Generalized parton distributions (GPDs) of nuclei describe the distribution of quarks and gluons in nuclei probed in hard exclusive reactions, such as e.g. deeply virtual Compton scattering (DVCS). Nuclear GPDs and nuclear DVCS allow us to study new aspects of many traditional nuclear effects (nuclear shadowing, EMC effect, medium modifications of the bound nucleons) as well as to access novel nuclear effects. In my talk, I review recent theoretical progress in the area of nuclear GPDs.

  5. The nature of comet nuclei

    NASA Technical Reports Server (NTRS)

    Sykes, Mark V.; Walker, Russell G.

    1992-01-01

    The icy-conglomerate model of comet nuclei has dominated all others since its introduction. It provided a basis for understanding the non-gravitational motions of comets which had perplexed dynamicists up to that time, and provided a focus for understanding cometary composition and origin. The image of comets as dirty snowballs was quickly adopted. Comet nuclei including their trail mass loss rates and refractory to volatile mass ratios are described.

  6. Excitation of nuclear isomers by X rays from laser plasma

    SciTech Connect

    Andreev, Aleksandr A; Karpeshin, F; Trzhaskovskaya, M B; Platonov, Konstantin Yu; Rozhdestvenskii, Yu V

    2010-06-23

    The possibility of obtaining isomer nuclei is studied by the example of the molybdenum isomer {sup 93}Mo upon irradiation of a niobium {sup 93}Nb target by {approx}50-J, 100-fs laser pulses. It is shown that the modern laser technique allows production of isomer nuclei by accelerated protons and radiative de-excitation of isomer nuclear states by thermal or line X-rays from laser plasma. (interaction of laser radiation with matter. laser plasma)

  7. Structure of Kr,9190 nuclei: Solving the puzzle of their population in fission

    NASA Astrophysics Data System (ADS)

    RzÄ ca-Urban, T.; Sieja, K.; Urban, W.; Czerwiński, M.; Blanc, A.; Jentschel, M.; Mutti, P.; Köster, U.; Soldner, T.; de France, G.; Simpson, G. S.; Ur, C. A.

    2017-06-01

    Excited states of Kr,9190 nuclei have been populated following the cold-neutron-induced fission of a 235U target. The γ rays emitted following fission reactions were measured using the highly efficient array of high-purity Ge detectors, EXILL, at the Institute-Laue-Langevin, Grenoble. The surprisingly low population of 91Kr reported in the spontaneous fission of 252Cf measurement has been explained and new level schemes of Kr,9190 nuclei were established. Moderate γ collectivity is observed in both nuclei. Large-scale shell-model calculations support the experimental picture of the Z =36 , Kr isotopes forming a border line between lower-Z nuclei showing moderate γ collectivity and the heavier-Z nuclei, where distinct shape changes are observed.

  8. Alternative method for evaluating the pair energy of nucleons in nuclei

    SciTech Connect

    Nurmukhamedov, A. M.

    2015-12-15

    An alternative method for determining the odd–even effect parameter related to special features of the Casimir operator in Wigner’s mass formula for nuclei is proposed. A procedure for calculating this parameter is presented. The proposed method relies on a geometric interpretation of the Casimir operator, experimental data concerning the contribution of spin–orbit interaction to the nuclear mass for even–even and odd–odd nuclei, and systematics of energy gaps in the spectra of excited states of even–even nuclei.

  9. Isotopic Dependence of the Shape of Se Nuclei in the Collective-Model Representation

    SciTech Connect

    Davidovskaya, O.I.; Kashuba, I.E.; Porodzinsky, Yu.V.

    2005-06-01

    The energy structure of low-lying excited states in the nuclei of even selenium isotopes is considered on the basis of a soft-nucleus model. The nuclei are treated as nonaxial rotors, longitudinal and transverse vibrations of their surface being taken into account in the quadrupole-deformation approximation featuring an admixture of an octupole deformation. The parameters of a phenomenological collective model for the {sup 72,74,76,78,80,82}Se nuclei are found both in the case of {beta} vibrations (longitudinal vibrations) and in the presence of additional {gamma} vibrations (transverse vibrations) of the nuclear surface.

  10. Hybrid configuration mixing model for odd nuclei

    NASA Astrophysics Data System (ADS)

    Colò, G.; Bortignon, P. F.; Bocchi, G.

    2017-03-01

    In this work, we introduce a new approach which is meant to be a first step towards complete self-consistent low-lying spectroscopy of odd nuclei. So far, we essentially limit ourselves to the description of a double-magic core plus an extra nucleon. The model does not contain any free adjustable parameter and is instead based on a Hartree-Fock (HF) description of the particle states in the core, together with self-consistent random-phase approximation (RPA) calculations for the core excitations. We include both collective and noncollective excitations, with proper care of the corrections due to the overlap between them (i.e., due to the nonorthonormality of the basis). As a consequence, with respect to traditional particle-vibration coupling calculations in which one can only address single-nucleon states and particle-vibration multiplets, we can also describe states of shell-model types like 2 particle-1 hole. We will report results for 49Ca and 133Sb and discuss future perspectives.

  11. Coulomb excitation of radioactive {sup 79}Pb

    SciTech Connect

    Lister, C.J.; Blumenthal, D.; Davids, C.N.

    1995-08-01

    The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.

  12. Systematics of the στ- strength in nuclei

    NASA Astrophysics Data System (ADS)

    Bertsch, G.; Cha, D.; Toki, H.

    1981-08-01

    The structure of the στ- strength function is studied with a zero range interaction. The systematics of the giant Gamow-Teller state requires an interaction strength for Vστ of about 200-240 MeV fm3. While most of the strength goes to a state at high excitation, we find that ~20-30% of the strength remains at low excitation energy. The L=1 states show considerable J splitting, with a major peak at ≅20 MeV excitation. This peak contains components of J=0,1, and 2. Comparison with the experimental L=1 energy shows that the momentum dependence of the στ interaction is small. [NUCLEAR STRUCTURE. Gamow-Teller states and L=1 states in adjacent odd-odd mass nuclei of double closed shells. TDA and RPA calculation with zero range interaction.

  13. Tunneling from super- to normal-deformed minima in nuclei.

    SciTech Connect

    Khoo, T. L.

    1998-01-08

    An excited minimum, or false vacuum, gives rise to a highly elongated superdeformed (SD) nucleus. A brief review of superdeformation is given, with emphasis on the tunneling from the false to the true vacuum, which occurs in the feeding and decay of SD bands. During the feeding process the tunneling is between hot states, while in the decay it is from a cold to a hot state. The {gamma} spectra connecting SD and normal-deformed (ND) states provide information on several physics issues: the decay mechanism; the spin/parity quantum numbers, energies and microscopic structures of SD bands; the origin of identical SD bands; the quenching of pairing with excitation energy; and the chaoticity of excited ND states at 2.5-5 MeV. Other examples of tunneling in nuclei, which are briefly described, include the possible role of tunneling in {Delta}I = 4 bifurcation in SD bands, sub-barrier fusion and proton emitters.

  14. Toward open-shell nuclei with coupled-cluster theory

    SciTech Connect

    Jansen, G. R.; Hjorth-Jensen, M.; Hagen, G.; Papenbrock, T.

    2011-05-15

    We develop a method based on equation-of-motion coupled-cluster theory to describe properties of open-shell nuclei with A{+-}2 nucleons outside a closed shell. We perform proof-of-principle calculations for the ground states of the helium isotopes {sup 3-6}He and the first excited 2{sup +} state in {sup 6}He. The comparison with exact results from matrix diagonalization in small model spaces demonstrates the accuracy of the coupled-cluster methods. Three-particle-one-hole excitations of {sup 4}He play an important role for the accurate description of {sup 6}He. For the open-shell nucleus {sup 6}He, the computational cost of the method is comparable with the coupled-cluster singles-and-doubles approximation while its accuracy is similar to the coupled-cluster with singles, doubles, and triples excitations.

  15. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    SciTech Connect

    Schroeder, W. Udo

    2016-07-28

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.

  16. Cavitation inception from bubble nuclei.

    PubMed

    Mørch, K A

    2015-10-06

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes.

  17. Cavitation inception from bubble nuclei

    PubMed Central

    Mørch, K. A.

    2015-01-01

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure–time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes. PMID:26442138

  18. Reflection asymmetric shapes in nuclei

    SciTech Connect

    Ahmad, I.; Carpenter, M.P.; Emling, H.; Holzmann, R.; Janssens, R.V.F.; Khoo, T.L.; Moore, E.F.; Morss, L.R.; Durell, J.L.; Fitzgerald, J.B.; Mowbary, A.S.; Hotchkiss, M.A.; Phillips, W.R.; Drigert, M.W.; Ye, D.; Benet, P.; Manchester Univ. . Dept. of Physics; EG and G Idaho, Inc., Idaho Falls, ID; Notre Dame Univ., IN; Purdue Univ., Lafayette, IN )

    1989-01-01

    Experimental data show that there is no even-even nucleus with a reflection asymmetric shape in its ground state. Maximum octupole- octupole correlations occur in nuclei in the mass 224 (N{approximately}134, Z{approximately}88) region. Parity doublets, which are the characteristic signature of octupole deformation, have been observed in several odd mass Ra, Ac and Pa nuclei. Intertwined negative and positive parity levels have been observed in several even-even Ra and Th nuclei above spin {approximately}8{Dirac h}. In both cases, the opposite parity states are connected by fast El transitions. In some medium-mass nuclei intertwined negative and positive parity levels have also been observed above spin {approximately}7{Dirac h}. The nuclei which exhibit octupole deformation in this mass region are {sup 144}Ba, {sup 146}Ba and {sub 146}Ce; {sup 142}Ba, {sup 148}Ce, {sup 150}Ce and {sup 142}Xe do not show these characteristics. No case of parity doublet has been observed in the mass 144 region. 32 refs., 16 figs., 1 tab.

  19. NUCLEI SEGMENTATION VIA SPARSITY CONSTRAINED CONVOLUTIONAL REGRESSION

    PubMed Central

    Zhou, Yin; Chang, Hang; Barner, Kenneth E.; Parvin, Bahram

    2017-01-01

    Automated profiling of nuclear architecture, in histology sections, can potentially help predict the clinical outcomes. However, the task is challenging as a result of nuclear pleomorphism and cellular states (e.g., cell fate, cell cycle), which are compounded by the batch effect (e.g., variations in fixation and staining). Present methods, for nuclear segmentation, are based on human-designed features that may not effectively capture intrinsic nuclear architecture. In this paper, we propose a novel approach, called sparsity constrained convolutional regression (SCCR), for nuclei segmentation. Specifically, given raw image patches and the corresponding annotated binary masks, our algorithm jointly learns a bank of convolutional filters and a sparse linear regressor, where the former is used for feature extraction, and the latter aims to produce a likelihood for each pixel being nuclear region or background. During classification, the pixel label is simply determined by a thresholding operation applied on the likelihood map. The method has been evaluated using the benchmark dataset collected from The Cancer Genome Atlas (TCGA). Experimental results demonstrate that our method outperforms traditional nuclei segmentation algorithms and is able to achieve competitive performance compared to the state-of-the-art algorithm built upon human-designed features with biological prior knowledge. PMID:28101301

  20. New results on the structure of exotic nuclei

    NASA Astrophysics Data System (ADS)

    Sakurai, Hiroyoshi

    2015-04-01

    `Exotic nuclei' far from the stability line are unique objects of many-body quantum system, where ratios of neutron number to proton number are much larger or much smaller than those of nuclei found in nature. Their exotic properties and phenomena emerge from their large isospin asymmetry, and even affect scenarios of nucleosynthesis in universe. One of the exotic emergences is shell evolution. The magic numbers of stable nuclei are known; 2, 8, 20, 28, 50, 82 and 126. However the numbers 8, 20 and 28 have been found no more magic in a neutron-rich region, and new magic numbers such as 6, 16, 32 and 34 have been discovered. To access nuclei far from the stability line, especially neutron-rich nuclei, a large heavy-ion accelerator facility `Radioactive Isotope Beam Factory (RIBF)' was constructed at RIKEN, Japan in 2007. The facility is highly optimized for inflight production of fission fragments via a U beam. The accelerator complex delivers an intense 345 MeV/u U beam. The U nuclide is converted at a target to fission fragments. The fragments of interest are collected and separated at an inflight separator, and are delivered to several experimental devices. The shell evolution programs at RIBF have been conducted with two methods; in-beam gamma spectroscopy and decay spectroscopy. A standard setup of in-beam gamma spectroscopy is combination of a NaI gamma detector array `DALI2' and a beam line spectrometer `ZeroDegree Spectrometer (ZDS)'. Coincidence measurements of de-excitation gamma rays at DALI2 and of reaction products at ZDS make it possible to select reaction channels event-by-event and to observe excited states of exotic nuclei in a specific reaction channel. Recently, a French-made thick liquid hydrogen target system `MINOS' has been introduced to access more neutron-rich nuclei. Isomer and beta-delayed gamma spectroscopy is organized with a Euroball germanium cluster array system `EURICA' and an active silicon stopper In this talk, I would like to

  1. Spectroscopy of Actinide Nuclei - Perspectives with Position Sensitive HPGe Detectors

    NASA Astrophysics Data System (ADS)

    Reiter, P.; Birkenbach, B.; Kotthaus, T.

    Recent advances in in-beam gamma-ray spectroscopy of actinide nuclei are based on highly efficient arrays of escape-suppressed spectrometers. The sensitivity of these detector arrays is greatly enhanced by the combination with powerful mass separators or particle detector systems. This technique is demonstrated by an experiment to investigate excited states in 234U after the one-neutron-transfer reaction 235U(d,t). In coincidence with the outgoing tritons, γ-rays were detected with the highly efficient MINIBALL spectrometer. In the near future an even enhanced sensitivity will be achieved by utilizing position sensitive HPGe detectors which will exploit the novel detection method of gamma-ray energy tracking in electrically segmented germanium detectors. An example for this novel approach is the investigation neutron-rich actinide Th and U nuclei after multi nucleon transfer reactions employing the AGATA demonstrator and PRISMA setup at LNL, Italy. A primary 136Xe beam hitting a 238U target was used to produce the nuclei of interest. Beam-like reaction products after neutron transfer were selected by the PRISMA spectrometer. Coincident γ-rays from excited states in beam and target like particles were measured with the position sensitive AGATA HPGe detectors. Improved Doppler correction and quality of the γ-spectra is based on the novel γ-ray tracking technique, which was successfully exploited in this region.

  2. Microscopic structure of high-spin vibrational states in superdeformed A=190 nuclei

    SciTech Connect

    Nakatsukasa, Takashi; Matsuyanagi, Kenichi; Mizutori, Shoujirou

    1996-12-31

    Microscopic RPA calculations based on the cranked shell model are performed to investigate the quadrupole and octupole correlations for excited superdeformed (SD) bands in even-even A=190 nuclei. The K = 2 octupole vibrations are predicted to be the lowest excitation modes at zero rotational frequency. The Coriolis coupling at finite frequency produces different effects depending on the neutron and proton number of nucleus. The calculations also indicate that some collective excitations may produce moments of inertia almost identical to those of the yrast SD band. An interpretation of the observed excited bands invoking the octupole vibrations is proposed, which suggests those octupole vibrations may be prevalent in even-even SD A=190 nuclei.

  3. Saturation with chiral interactions and consequences for finite nuclei

    NASA Astrophysics Data System (ADS)

    Simonis, J.; Stroberg, S. R.; Hebeler, K.; Holt, J. D.; Schwenk, A.

    2017-07-01

    We explore the impact of nuclear matter saturation on the properties and systematics of finite nuclei across the nuclear chart. By using the ab initio in-medium similarity renormalization group (IM-SRG), we study ground-state energies and charge radii of closed-shell nuclei from 4He to 78Ni based on a set of low-resolution two- and three-nucleon interactions that predict realistic saturation properties. We first investigate in detail the convergence properties of these Hamiltonians with respect to model-space truncations for both two- and three-body interactions. We find one particular interaction that reproduces well the ground-state energies of all closed-shell nuclei studied. As expected from their saturation points relative to this interaction, the other Hamiltonians underbind nuclei but lead to a remarkably similar systematics of ground-state energies. Extending our calculations to complete isotopic chains in the s d and p f shells with the valence-space IM-SRG, the same interaction reproduces not only experimental ground states but two-neutron-separation energies and first-excited 2+ states. We also extend the valence-space IM-SRG to calculate radii. Since this particular interaction saturates at too high density, charge radii are still too small compared with experiment. Except for this underprediction, the radius systematics is, however, well reproduced. Our results highlight the renewed importance of nuclear matter as a theoretical benchmark for the development of next-generation chiral interactions.

  4. Octupole shapes in heavy nuclei

    SciTech Connect

    Ahmad, I.

    1994-08-01

    Theoretical calculations and measurements show the presence of strong octupole correlations in thecyround states and low-lying states of odd-mass and odd-odd nuclei in the RaPa region. Evidence for octupole correlations is provided by the observation of parity doublets and reductions in M1 matrix elements, decoupling parameters, and Coriolis matrix elements Involving high-j states. Enhancement of E1 transition rates has also been observed for some of the octupole deformed nuclei. The most convincing argument for octupole deformation is provided by the similarities of the reduced alpha decay rates to the two members of parity doublets.

  5. Chromatin structure in barley nuclei.

    PubMed

    Mithieux, G; Roux, B

    1983-10-03

    In order to study the chromatin structure of a higher plant we used a high-yield method, which allows one to obtain up to 10(9) nuclei/kg fresh barley leaves. Significant amounts of low-ionic-strength-soluble chromatin can be extracted from these nuclei. Physicochemical properties were examined and discussed. Electric birefringence allowed us to observe the same transition in electro-optical properties as has been observed for animal chromatin, and suggested the existence of a symetrical structure occurring for approximately six nucleosomes. Circular dichroism showed that barley oligonucleosomes exhibit a higher molar ellipticity at 282 nm than total soluble chromatin and than their animal counterparts.

  6. Electrostatic Tuning of Cellular Excitability

    PubMed Central

    Börjesson, Sara I.; Parkkari, Teija; Hammarström, Sven; Elinder, Fredrik

    2010-01-01

    Abstract Voltage-gated ion channels regulate the electric activity of excitable tissues, such as the heart and brain. Therefore, treatment for conditions of disturbed excitability is often based on drugs that target ion channels. In this study of a voltage-gated K channel, we propose what we believe to be a novel pharmacological mechanism for how to regulate channel activity. Charged lipophilic substances can tune channel opening, and consequently excitability, by an electrostatic interaction with the channel's voltage sensors. The direction of the effect depends on the charge of the substance. This was shown by three compounds sharing an arachidonyl backbone but bearing different charge: arachidonic acid, methyl arachidonate, and arachidonyl amine. Computer simulations of membrane excitability showed that small changes in the voltage dependence of Na and K channels have prominent impact on excitability and the tendency for repetitive firing. For instance, a shift in the voltage dependence of a K channel with −5 or +5 mV corresponds to a threefold increase or decrease in K channel density, respectively. We suggest that electrostatic tuning of ion channel activity constitutes a novel and powerful pharmacological approach with which to affect cellular excitability. PMID:20141752

  7. Four-Quasiparticle High-K States in Neutron-Deficient Lead and Polonium Nuclei

    NASA Astrophysics Data System (ADS)

    Shi, Yue; Xu, Furong

    2012-06-01

    Configuration-constrained potential energy surface calculations have been performed to investigate four-quasiparticle high-K configurations in neutron-deficient lead and polonium isotopes. A good agreement between the calculations and the experimental data has been found for the excitation energy of the observed Kπ = 19- state in 188Pb. Several lowly excited high-K states are predicted, and the large oblate deformation and low energy indicate high-K isomerism in these nuclei.

  8. Unstable nuclei in dissociation of light stable and radioactive nuclei in nuclear track emulsion

    NASA Astrophysics Data System (ADS)

    Artemenkov, D. A.; Zaitsev, A. A.; Zarubin, P. I.

    2017-01-01

    A role of the unstable nuclei 6Be, 8Be and 9B in the dissociation of relativistic nuclei 7,9Be, 10B and 10,11C is under study on the basis of nuclear track emulsion exposed to secondary beams of the JINR Nuclotron. Contribution of the configuration 6Be + n to the 7Be nucleus structure is 8 ± 1% which is near the value for the configuration 6Li + p. Distributions over the opening angle of α-particle pairs indicate to a simultaneous presence of virtual 8Beg.s. and 8Be2+ states in the ground states of the 9Be and 10C nuclei. The core 9B is manifested in the 10C nucleus with a probability of 30 ± 4%. Selection of the 10C "white" stars accompanied by 8Beg.s. (9B) leads to appearance in the excitation energy distribution of 2α2 p "quartets" of the distinct peak with a maximum at 4.1 ± 0.3 MeV. 8Beg.s. decays are presented in 24 ± 7% of 2He + 2H events of the 11C coherent dissociation and 27 ± 11% of the 3He ones. The channel 9B + H amounts 14 ± 3%. The 8Bg.s. nucleus is manifested in the coherent dissociation 10B → 2He + H with a probability of 25 ± 5% including 13 ± 3% of 9B decays. A probability ratio of the mirror channels 9B + n and 9Be + p is estimated to be 10 ± 1.

  9. Excitation energies of superdeformed states in the Pb isotopes

    SciTech Connect

    Wilson, A. N.; Byrne, A. P.; Dracoulis, G. D.; Davidson, P. M.; Lane, G. J.; Huebel, H.; Rossbach, D.; Schonwasser, G.; Korichi, A.; Hannachi, F.; Lopez-Martens, A.; Clark, R. M.; Fallon, P.; Macchiavelli, A. O.; Ward, D.

    2006-04-26

    Measurements of the excitation energies of superdeformed states via the observation of single-step linking transitions have now been made in three even-A Pb nuclei, with a quasicontinuum analysis providing a limit in a fourth, odd-A case. These results allow us to take the first steps towards establishing systematic trends in excitation energies and binding energies in the second minimum in Pb isotopes.

  10. Studies of the Shapes of Heavy Nuclei at ISOLDE

    NASA Astrophysics Data System (ADS)

    Butler, Peter A.

    For certain combinations of protons and neutrons there is a theoretical expectation that the shape of nuclei can assume octupole deformation, which would give rise to reflection asymmetry or a "pear-shape" in the intrinsic frame, either dynamically (octupole vibrations) or statically (permanent octupole deformation). In this talk I will briefly review the historic evidence for reflection asymmetry in nuclei and describe how recent experiments carried out at REX-ISOLDE have constrained nuclear theory and how they contribute to tests of extensions of the Standard Model. I will also discuss future prospects for measuring nuclear shapes from Coulomb Excitation: experiments are being planned that will exploit beams from HIE-ISOLDE that are cooled in the TSR storage ring and injected into a solenoidal spectrometer similar to the HELIOS device developed at the Argonne National Laboratory.

  11. Perspectives of Physics of Exotic Nuclei Beyond the Shell Evolution

    NASA Astrophysics Data System (ADS)

    Otsuka, Takaharu

    2015-11-01

    I present one of the possible paradigm shifts with exotic nuclei. This is the shell evolution due to nuclear forces, such as tensor, central and three-nucleon forces. I shall present major points with the N=34 magic number confirmed in 54Ca by RIBF of RIKEN very recently, after the theoretical prediction made in 2001. The shell evolution has been generalized to phenomena caused by massive particle-hole excitations, being referred to as Type II Shell Evolution. This can be found in 68,70Ni. In particular, the shape coexistence of spherical, oblate and prolate shapes is suggested theoretically. Thus, the perspectives of physics with exotic nuclei is being expanded further from single-particle aspects to shapes/deformation, changing the landscape of nuclear structure.

  12. Ultra-High Spin Spectroscopy In Er Nuclei

    SciTech Connect

    Simpson, J.

    2008-11-11

    The discoveries observed in the ongoing conflict between collective and single-particle nuclear behaviour with increasing angular momentum have driven the field of nuclear spectroscopy for many decades and have given rise to new nuclear phenomena. Recently a new frontier of {gamma} spectroscopy at ultra-high spin has been opened in the rare-earth region with rotational bands that bypass the classic band-terminating states that appear at spin 45({Dirac_h}/2{pi}) in the N 90 Er nuclei. These weakly populated rotational structures have characteristics of triaxial strongly-deformed bands. Such structures have been observed in {sup 157,158,160}Er, following a series of experiments using the Gammasphere spectrometer. These observations herald a return to collective excitations at spins of about 50 to 65({Dirac_h}/2{pi}). This talk reviews the status of the spectroscopy and understanding of the observed structures in these Er and neighbouring nuclei.

  13. Probing the Evolution of the Shell Structures in Exotic Nuclei

    SciTech Connect

    De Angelis, Giacomo

    2008-11-11

    Magic numbers are a key feature in finite Fermion systems since they are strongly related to the underlying mean field. The size of the shell gaps and their evolution far from stability can be linked to the shape and symmetry of the nuclear mean field. Moreover the study of nuclei with large neutron/proton ratio allow to probe the density dependence of the effective interaction. Changes of the nuclear density and size in nuclei with increasing N/Z ratios are expected to lead to different nuclear symmetries and excitations. In this contribution I will discuss some selected examples which show the big potential of stable beams and of binary reactions for the study of the properties of the neutron-rich nuclear many body systems.

  14. Beta-Delayed Neutron Emission in Neutron-Rich Nuclei

    NASA Astrophysics Data System (ADS)

    Marketin, Tomislav; Sieverding, André; Wu, Meng-Ru; Paar, Nils; Martínez-Pinedo, Gabriel

    β-delayed neutron emission is the process of emission of one or more neutrons, after β-decay, from the excited daughter nucleus. The probabilities of emission are an important physical quantity in a variety of nuclear physics applications, from the simulations of heavy element nucleosynthesis to control of reactor power levels and nuclear waste management. However, it is relatively difficult to measure and much less data is available than for β-decay, particularly for nuclei that are expected to take part in the r-process. In this work we will present a calculation of β-decay half-lives and β-delayed neutron emission probabilities in neutron-rich nuclei using the transition strength obtained with a microscopic model combined with a statistical calculation of level densities. We explore the effect of altered emission probabilities, with respect to the simple calculation, on the r-process.

  15. Coulomb Excitation of 78,80Se and the radioactive 84Se (N = 50) isotopes

    NASA Astrophysics Data System (ADS)

    Galindo-Uribarri, A.; Padilla-Rodal, E.; Garcia-Ruiz, R. F.; Allmond, J. M.; Batchelder, J. C.; Beene, J. R.; Lagergren, K. B.; Mueller, P. E.; Radford, D. C.; Stracener, D. W.; Urrego-Blanco, J. P.; Varner, R. L.; Yu, C.-H.

    2011-10-01

    Coulomb excitation is a purely electromagnetic excitation process of nuclear states due to the Coulomb field of two colliding nuclei. It is a very precise tool to measure excitation probabilities and provide insight on the collectivity of nuclear excitations and in particular on nuclear shapes. We have measured the B(E2) value of various nuclei in the mass A ~ 80 region using particle-gamma coincidences with the HyBall and Clarion arrays at HRIBF. The Coulomb excitation of various projectile-target combinations (ASe on 12C, 24Mg, 27Al and 50Ti) allow the use of consistency cross checks and the systematic study of isotopic and isotonic chains using both stable and radioactive nuclei under almost identical experimental conditions.We present new results for 78Se, 80Se and the radioactive nucleus 84Se (N = 50). Research sponsored by the Office of Nuclear Physics, U.S. Department of Energy and CONACyT Grant 103366.

  16. International Symposium on Exotic Nuclei

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.; Cherepanov, E. A.

    Methods of production of light exotic nuclei and study of their ptoperties -- Superheavy elements. Syhnthesis and properties -- Nuclear fission -- Nuclear reactions -- rare processes, decay and nuclear structure -- Experimental set-ups and future projects -- Radioactive beams. Production and research programmes -- Public relations.

  17. Proton Distribution in Heavy Nuclei

    DOE R&D Accomplishments Database

    Johnson, M. H; Teller, E.

    1953-11-13

    It is reasoned that, from considerations connected with beta-decay stability and Coulomb repulsion forces, a neutron excess is developed on the surface of heavy nuclei. Several consequences of this qualitative analysis in nucleon interactions are briefly noted. (K.S.)

  18. Chiral electroweak currents in nuclei

    DOE PAGES

    Riska, D. O.; Schiavilla, R.

    2017-01-10

    Here, the development of the chiral dynamics based description of nuclear electroweak currents is reviewed. Gerald E. (Gerry) Brown’s role in basing theoretical nuclear physics on chiral Lagrangians is emphasized. Illustrative examples of the successful description of electroweak observables of light nuclei obtained from chiral effective field theory are presented.

  19. Electromagnetic structure of light nuclei

    SciTech Connect

    Pastore, Saori

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  20. Transitional nuclei near shell closures

    SciTech Connect

    Mukherjee, G.

    2014-08-14

    High spin states in Bismuth and Thallium nuclei near the Z = 82 shell closure and Cesium nuclei near the N = 82 shell closure in A = 190 and A = 130 regions, respectively, have been experimentally investigated using heavy-ion fusion evaporation reaction and by detecting the gamma rays using the Indian National Gamma Array (INGA). Interesting shape properties in these transitional nuclei have been observed. The results were compared with the neighboring nuclei in these two regions. The total Routhian surface (TRS) calculations have been performed for a better understanding of the observed properties. In mass region A = 190, a change in shape from spherical to deformed has been observd around neutron number N = 112 for the Bi (Z = 83) isotopes with proton number above the magic gap Z = 82, whereas, the shape of Tl (Z = 81) isotopes with proton number below the magic gap Z = 82 remains stable as a function of neutron number. An important transition from aplanar to planar configuration of angular momentum vectors leading to the occurance of nuclar chirality and magnetic rotation, respectively, has been proposed for the unique parity πh{sub 11/2}⊗νh{sub 11/2} configuration in Cs isotopes in the mass region A ∼ 130 around neutron number N = 79. These results are in commensurate with the TRS calculations.

  1. Electromagnetic structure of light nuclei

    DOE PAGES

    Pastore, Saori

    2016-03-25

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  2. Octupole correlation effects in nuclei

    SciTech Connect

    Chasman, R.R.

    1992-01-01

    Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions.

  3. Octupole correlation effects in nuclei

    SciTech Connect

    Chasman, R.R.

    1992-08-01

    Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions.

  4. Understanding nuclei: progress and challenges

    SciTech Connect

    Dean, D. J.

    2008-04-17

    Nuclear theory today aims for a comprehensive theoretical framework that can describe all nuclei. I discuss recent progress in this pursuit and the associated challenges as we move forward, paying particular attention to progress in the applications of coupled-cluster theory to the challenges.

  5. Nuclei and propeller cavitation inception

    SciTech Connect

    Gindroz, B.; Billet, M.L.

    1994-12-31

    Propeller cavitation inception tests were conducted in the Grand Tunnel Hydrodynamique (GTH) of the Bassin d`Essaid des Carenes. Both acoustic and visual cavitation inception were determined for leading-edge sheet, travelling bubble, and tip vortex. These data were obtained for specific water quality conditions. The water quality was determined from cavitation susceptibility meter measurements for degassed water (maximum liquid tension, few nuclei), low injection rate of microbubbles (medium liquid tension, low nuclei concentration), medium injection rate of microbubbles (medium liquid tension, high nuclei concentration) and high injection rate of microbubbles (minimum liquid tension, high nuclei concentration). Results clearly demonstrate a different influence of water quality for each type of cavitation. Little variation in cavitation inception index for a significant increase in liquid tension and microbubble size distribution was found for leading-edge sheet; however, tip vortex cavitation inception index decreased significantly for an increase in liquid tension. In addition, a dependency on event rate was determined for tip vortex cavitation inception.

  6. Soft Dipole Modes of Neutron-Rich Nuclei

    NASA Astrophysics Data System (ADS)

    Csoto, A.; Gibson, B. F.; Afnan, I. R.

    1996-10-01

    We explore the open question of whether valance neutrons in ``halo nuclei'' can oscillate against the core to create a ``soft dipole'' mode. It has been suggested that such a dipole state would be situated at a few MeV of excitation energy, in contrast to usual dipole excitations at higher energies. The existence of a soft dipole mode, at least in ^11Li, appears to be supported by certain theoretical models and experimental data.footnote A. C. Hayes, Comments in Nuclear and Particle Physics 22, 27 (1996) However, this conclusion is based upon the behavior of specific observables at real energies. To clearly establish the existence of such resonant states, one should locate the corresponding complex poles of the S-matrix. We study ^6He and ^11Li in a three-body model based upon separable potentials that describe the known physics of the underlying two-body interactions. We solve the resulting Faddeev equations, continued into the complex energy plane, to search for the low lying excited states of these neutron-rich light nuclei.

  7. Quantum Monte Carlo calculations of A=8 nuclei

    NASA Astrophysics Data System (ADS)

    Wiringa, R. B.; Pieper, Steven C.; Carlson, J.; Pandharipande, V. R.

    2000-07-01

    We report quantum Monte Carlo calculations of ground and low-lying excited states for A=8 nuclei using a realistic Hamiltonian containing the Argonne v18 two-nucleon and Urbana IX three-nucleon potentials. The calculations begin with correlated eight-body wave functions that have a filled α-like core and four p-shell nucleons LS coupled to the appropriate (JπT) quantum numbers for the state of interest. After optimization, these variational wave functions are used as input to a Green's function Monte Carlo calculation made with a new constrained path algorithm. We find that the Hamiltonian produces a 8Be ground state that is within 2 MeV of the experimental resonance, but the other eight-body energies are progressively worse as the neutron-proton asymmetry increases. The 8Li ground state is stable against breakup into subclusters, but the 8He ground state is not. The excited state spectra are in fair agreement with experiment, with both the single-particle behavior of 8He and 8Li and the collective rotational behavior of 8Be being reproduced. We also examine energy differences in the T=1,2 isomultiplets and isospin-mixing matrix elements in the excited states of 8Be. Finally, we present densities, momentum distributions, and studies of the intrinsic shapes of these nuclei, with 8Be exhibiting a definite 2α cluster structure.

  8. Phase coexistence in nuclei

    NASA Astrophysics Data System (ADS)

    Gulminelli, F.

    2004-11-01

    In this work the general theory of first order phase transitions in finite systems is discussed, with a special emphasis to the conceptual problems linked to a thermodynamic description for small, short-lived systems de-exciting in the vacuum as nuclear samples coming from heavy ion collisions. After a short review of the general theory of phase transitions in the framework of information theory, we will present the different possible extensions to the field of finite systems. The concept of negative heat capacity, developed in the early seventies in the context of self-gravitating systems, will be reinterpreted in the general framework of convexity anomalies of thermostatistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. A careful study of the thermodynamic limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. In the second part of the paper we will apply the theoretical ideas developed in the first part to the possible observation of a liquid-to-gas-like phase transition in heavy ion collisions. The applicability of equilibrium concepts in a dynamical collisional process without boundary conditions will first be critically discussed. The observation of abnormally large partial energy fluctuations in carefully selected samples of collisions detected with the MULTICS-Miniball and INDRA array will then be reported as a strong evidence of a first order phase transition with negative heat capacity in the nuclear equation of state. Coexistence de phase dans les noyaux Ce papier présente une revue de la théorie générale des transitions de phase du premier ordre dans les petits systèmes, avec une attention particulière aux probl

  9. Parity-projected shell model Monte Carlo level densities for medium-mass nuclei

    SciTech Connect

    Oezen, C.; Langanke, K.; Martinez-Pinedo, G.; Dean, D. J.

    2008-11-11

    We investigate the effects of single-particle structure and pairing on the equilibration of positive and negative-parity level densities for the even-even nuclei {sup 58,62,66}Fe and {sup 58}Ni and the odd-A nuclei {sup 59}Ni and {sup 65}Fe. Calculations are performed using the shell model Monte Carlo method in the complete fp-gds shell-model space using a pairing+quadrupole type residual interaction. We find for the even-even nuclei that the positive-parity states dominate at low excitation energies due to strong pairing correlations. At excitation energies at which pairs are broken, single-particle structure of these nuclei is seen to play the decisive role for the energy dependence of the ratio of negative-to-positive parity level densities. We also find that equilibration energies are noticeably lower for the odd-A nuclei {sup 59}Ni and {sup 65}Fe than for the neighboring even-even nuclei {sup 58}Ni and {sup 66}Fe.

  10. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    SciTech Connect

    Nishio, K.; Andreyev, A. N.; Chapman, R.; Derkx, X.; Düllmann, Ch. E.; Ghys, L.; Heßberger, F. P.; Hirose, K.; Ikezoe, H.; Khuyagbaatar, J.; Kindler, B.; Lommel, B.; Makii, H.; Nishinaka, I.; Ohtsuki, T.; Pain, S. D.; Sagaidak, R.; Tsekhanovich, I.; Venhart, M.; Wakabayashi, Y.; Yan, S.

    2015-06-30

    Mass distributions of fission fragments from the compound nuclei 180Hg and 190 Hg formed in fusion reactions 36Ar + 144 Smand 36Ar + 154Sm, respectively, were measured at initial excitation energies of E*(180Hg) = 33-66 MeV and E*(190Hg) = 48-71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses $\\overline{A}_L$/$\\overline{A}_H$ = 79/101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+/EC-delayed fission of 180Tl, from our earlier ISOLDE(CERN) experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of$\\overline{A}_L$/$\\overline{A}_H$ = 83/107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. In conclusion, this behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.

  11. Towards Superheavies: Spectroscopy of 94 < Z < 98, 150 < N < 154 Nuclei

    NASA Astrophysics Data System (ADS)

    Chowdhury, P.; Hota, S. S.; Qiu, Y.; Ahmad, I.; Carpenter, M. P.; Greene, J. P.; Janssens, R. V. F.; Khoo, T. L.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Zhu, S.

    2016-09-01

    The heaviest nuclei where excitations above the ground state can be studied lie near Z ~ 100. These nuclear structure studies are important testing grounds for theoretical models that aim to describe superheavy nuclei. To study the highest neutron orbitals (150 ≤ N ≤ 154), we have populated high angular momentum states in a series of Pu (Z = 94), Cm (Z = 96) and Cf (Z = 98) nuclei, via inelastic and transfer reactions, with heavy beams on long-lived radioactive actinide targets. Multiple collective excitation modes and structures were identified, and their configurations deduced. Quasiparticle alignments are mapped, with odd-A band structures helping identify specific orbital contributions via blocking arguments. Higher-order multipole shapes are observed to play a significant role in disentangling competing neutron and proton alignments. The N > 152 data provide new perspectives on physics beyond the N = 152 sub-shell gap.

  12. Magnetic moments of neutron deficient yttrium nuclei

    SciTech Connect

    Berks; El Hajjaji, O.; Fahad, M.; Hassani, R.; Giroux, J.; Marest, G.; Marguier, G.; Stone, N.J.; Rikovska, J.; Green, V.R.; and others

    1987-12-10

    This paper describes recent low temperature nulcear orientation (LTNO) work on neutron deficient /sup 85m,86,86m/Y nuclei. Results are compared with experimental systematics of neighbouring nuclei and particle core coupling calculations.

  13. Precision investigations of nuclei and nucleons with the (e, e'. gamma. ) reaction

    SciTech Connect

    Papanicolas, C.N.; Ammons, E.A.; Cardman, L.S.; Deininger, J.R.; Dolfini, S.M.; Mandeville, J.B.; Mueller, P.E.; Williamson, S.E.

    1988-11-20

    Recent theoretical and experimental investigations of the (e, e'..gamma..) reaction show that it provides a probe of unparalleled precision and selectivity. Experiments aimed towards the isolation of multipole form factors in mixed transitions, the study of continuum excitations in nuclei, and the measurement of the response of the proton are underway at several laboratories.

  14. Bands and Isomers in Neutron-Rich Rare-Earth Nuclei in PHF Model

    NASA Astrophysics Data System (ADS)

    Praharaj, C. R.; Ghorui, S. K.; Naik, Z.; Sahu, B. B.

    Rotational structures of neutron-rich Gd and Dy nuclei in the REE peak region are studied with deformed Hartee-Fock (HF) and angular momentum (J) projection model. Spectra of ground band and a few more excited, positive and negative parity bands have been studied up to high spin values. Some 4-quasiparticle K-isomeric bands and their electromagnetic properties are predicted.

  15. Exact diagonalization of the Bohr Hamiltonian for rotational nuclei: Dynamical {gamma} softness and triaxiality

    SciTech Connect

    Caprio, M. A.

    2011-06-15

    Detailed quantitative predictions are obtained for phonon and multiphonon excitations in well-deformed rotor nuclei within the geometric framework, by exact numerical diagonalization of the Bohr Hamiltonian in an SO(5) basis. Dynamical {gamma} deformation is found to significantly influence the predictions through its coupling to the rotational motion. Basic signatures for the onset of rigid triaxial deformation are also obtained.

  16. Vibrational excitation and vibrationally resolved electronic excitation cross sections of positron-H2 scattering

    NASA Astrophysics Data System (ADS)

    Zammit, Mark; Fursa, Dmitry; Savage, Jeremy; Bray, Igor

    2016-09-01

    Vibrational excitation and vibrationally resolved electronic excitation cross sections of positron-H2 scattering have been calculated using the single-centre molecular convergent close-coupling (CCC) method. The adiabatic-nuclei approximation was utilized to model the above scattering processes and obtain the vibrationally resolved positron-H2 scattering length. As previously demonstrated, the CCC results are converged and accurately account for virtual and physical positronium formation by coupling basis functions with large orbital angular momentum. Here vibrationally resolved integrated and differential cross sections are presented over a wide energy range and compared with previous calculations and available experiments. Los Alamos National Laboratory and Curtin University.

  17. Favored configurations for four-quasiparticle K isomerism in the heaviest nuclei

    NASA Astrophysics Data System (ADS)

    Liu, H. L.; Walker, P. M.; Xu, F. R.

    2014-04-01

    Configuration-constrained potential-energy-surface calculations are performed including β6 deformation to investigate high-K isomeric states in nuclei around 254No and 270Ds, the heaviest nuclei where there have been some observations of two-quasiparticle isomers, while data for four-quasiparticle isomers are scarce. We predict the prevalent occurrence of four-quasiparticle isomeric states in these nuclei, together with their favored configurations. The most notable examples, among others, are Kπ=20+ states in 266,268Ds and 268,270Cn having very high K value, relatively low excitation energy, and well-deformed axially symmetric shape. The predicted isomeric states, with hindered spontaneous fission and α decay, could play a significant role in the future study of superheavy nuclei.

  18. MCNP6 Simulation of Light and Medium Nuclei Fragmentation at Intermediate Energies

    SciTech Connect

    Mashnik, Stepan Georgievich; Kerby, Leslie Marie

    2015-08-24

    Fragmentation reactions induced on light and medium nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the Los Alamos transport code MCNP6 and with its CEM03.03 and LAQGSM03.03 event generators. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to sup>4He from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes.

  19. Probing collectivity in the vicinity of neutron deficient Pb nuclei

    SciTech Connect

    Grahn, T.; Page, R. D.; Petts, A.; Dewald, A.; Jolie, J.; Melon, B.; Pissulla, Th.; Hornillos, M. B. Gomez; Greenlees, P. T.; Jones, P.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Nyman, M.; Rahkila, P.; Saren, J.; Scholey, C.; Sorri, J.; Uusitalo, J.

    2008-05-12

    A series of recoil distance Doppler-shift lifetime measurements have been carried out to probe collectivity and configuration mixing of different shapes in the vicinity of neutron mid-shell Pb nuclei. Lifetime measurements of {sup 186}Pb and {sup 194}Po, the first ever utilizing the recoil-decay tagging method, probed the collectivity of coexisting prolate and oblate shapes in this region. Futher lifetime measurements of excited states in {sup 180}Hg, {sup 182}Hg and {sup 196}Po have been carried out.

  20. From Homochiral Clusters to Racemate Crystals: Viable Nuclei in 2D Chiral Crystallization.

    PubMed

    Seibel, Johannes; Parschau, Manfred; Ernst, Karl-Heinz

    2015-07-01

    The quest for enantiopure compounds raises the question of which factors favor conglomerate crystallization over racemate crystallization. Studying nucleation and crystal growth at surfaces with submolecular-resolution scanning tunneling microscopy is a suitable approach to better understand intermolecular chiral recognition. Racemic heptahelicene on the Ag(100) surface shows a transition from homochiral nuclei to larger racemic motifs, although the extended homochiral phase exhibits higher density. The homochiral-heterochiral transition is explained by the higher stability of growing nuclei due to a better match of the molecular lattice to the substrate surface. Our observations are direct visual proof of viable nuclei.

  1. Evolution of pre-collective nuclei: Structural signatures near the drip lines

    SciTech Connect

    Casten, R.F.; Zamfir, N.V. ||

    1994-10-01

    Recent studies have shown that the phenomenology of single-magic and near-magic nuclei has universal characteristics analogous to those of collective nuclei and that, moreover, this phenomenology attaches smoothly to that describing collective nuclei. This has led to a number of new signatures of structure as well as to a new, tripartite, classification of nuclear structure that embraces the gamut of structures from magic, through pre-collective, to fully collective and rotational nuclei. Aside from the natural appeal of simple global correlations of collective observables, these results have particular significance for soon-to-be accessible exotic nuclei near the drip lines since they rely on only the simplest-to-obtain data, in particular, the energies of just the first two excited states, E(4{sub 1}{sup +}) and E(2{sub 1}{sup +}), of even-even nuclei, and the B(E2:2{sub 1}{sup +}{yields}0{sub 1}{sup +}) value. Indeed, without the need for more extensive level schemes, these basic data alone can reveal information about the goodness of seniority, about the validity of pair-addition mode relationships of adjacent even-even nuclei, about underlying shell structure (validity of magic numbers) and even about the shell model potential itself (e.g., the strengths of the l{center_dot} and l{sup 2} terms).

  2. Physical processing of cometary nuclei

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Stern, S. Alan

    1989-01-01

    Cometary nuclei were formed far from the Sun in the colder regions of the solar nebula, and have been stored in distant orbits in the Oort cloud over most of the history of the solar system. It had been thought that this benign environment would preserve comets in close to their original pristine state. However, recent studies have identified a number of physical processes that have likely acted to modify cometary nuclei in a variety of significant ways. It is important to consider all of these possible processes, both in deciding on a site on the nucleus for collection of cometary samples, and in interpreting the results of analyses of returned cometary samples. Although it can no longer be said that comets are pristine samples of original solar nebula material, they are still the best obtainable samples of that unique period in the formation of the planetary system.

  3. Radio characteristics of galactic nuclei

    NASA Astrophysics Data System (ADS)

    Condon, J. J.

    1986-02-01

    Radio characteristics of galactic nuclei, providing such unique information as spectral data on source variability, and the long-term history of the central engine and its duration of activity and total energy, are reviewed. The compact radio source characteristics are complicated by orientation-dependent relativistic beaming and by refractive focusing in the interstellar medium. Incoherent synchrotron radiation is thought to be the emission mechanism, with the result that synchrotron self-absorption in compact sources hides the central engine from direct radio observation. However, the history revealed by the extended jets and lobes of radio galaxies and quasars favors a single massive object not supported by radiation pressure, either a spinar or a black hole, as the energy source in radio-galaxy nuclei.

  4. Nuclear structure/nuclei far from stability

    SciTech Connect

    Casten, R.F.; Garrett, J.D.; Moller, P.; Bauer, W.W.; Brenner, D.S.; Butler, G.W.; Crawford, J.E.; Davids, C.N.; Dyer, P.L.; Gregorich, K.; Hagbert, E.G.; Hamilton, W.D.; Harar, S.; Haustein, P.E.; Hayes, A.C.; Hoffman, D.C.; Hsu, H.H.; Madland, D.G.; Myers, W.D.; Penttila, H.T.; Ragnarsson, I.; Reeder, P.L.; Robertson, G.H.; Rowley, N.; Schreiber, F.; Seifert, H.L.; Sherrill, B.M.; Siciliano, E.R.; Sprouse, G.D.; Stephens, F

    1990-01-01

    This report outlines some of the nuclear structure topics discussed at the Los Alamos Workshop on the Science of Intense Radioactive Ion Beams (RIB). In it we also tried to convey some of the excitement of the participants for utilizing RIBs in their future research. The introduction of radioactive beams promises to be a major milestone for nuclear structure perhaps even more important than the last such advance in beams based on the advent of heavy-ion accelerators in the 1960's. RIBs not only will allow a vast number of new nuclei to be studies at the extremes of isospin, but the variety of combinations of exotic proton and neutron configurations should lead to entirely new phenomena. A number of these intriguing new studies and the profound consequences that they promise for understanding the structure of the atomic nucleus, nature's only many-body, strongly-inteacting quantum system, are discussed in the preceeding sections. However, as with any scientific frontier, the most interesting phenomena probably will be those that are not anticipated--they will be truly new.

  5. Geometric symmetries in light nuclei

    NASA Astrophysics Data System (ADS)

    Bijker, R.

    2017-06-01

    The algebraic cluster model is is applied to study cluster states in the nuclei12C and16O. The observed level sequences can be understood in terms of the underlying discrete symmetry that characterizes the geometrical configuration of the α-particles, i.e. an equilateral triangle for12C, and a regular tetrahedron for16O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of α-particles.

  6. Direct Reactions with Exotic Nuclei

    SciTech Connect

    Baur, G.; Typel, S.

    2005-10-14

    We discuss recent work on Coulomb dissociation and an effective-range theory of low-lying electromagnetic strength of halo nuclei. We propose to study Coulomb dissociation of a halo nucleus bound by a zero-range potential as a homework problem. We study the transition from stripping to bound and unbound states and point out in this context that the Trojan-Horse method is a suitable tool to investigate subthreshold resonances.

  7. Simultaneous two-photon excitation of photodynamic therapy agents

    SciTech Connect

    Wachter, E.A.; Fisher, W.G. |; Partridge, W.P.; Dees, H.C.; Petersen, M.G.

    1998-01-01

    The spectroscopic and photochemical properties of several photosensitive compounds are compared using conventional single-photon excitation (SPE) and simultaneous two-photon excitation (TPE). TPE is achieved using a mode-locked titanium:sapphire laser, the near infrared output of which allows direct promotion of non-resonant TPE. Excitation spectra and excited state properties of both type 1 and type 2 photodynamic therapy (PDT) agents are examined.

  8. RESONANT CAVITY EXCITATION SYSTEM

    DOEpatents

    Baker, W.R.; Kerns, Q.A.; Riedel, J.

    1959-01-13

    An apparatus is presented for exciting a cavity resonator with a minimum of difficulty and, more specifically describes a sub-exciter and an amplifier type pre-exciter for the high-frequency cxcitation of large cavities. Instead of applying full voltage to the main oscillator, a sub-excitation voltage is initially used to establish a base level of oscillation in the cavity. A portion of the cavity encrgy is coupled to the input of the pre-exciter where it is amplified and fed back into the cavity when the pre-exciter is energized. After the voltage in the cavity resonator has reached maximum value under excitation by the pre-exciter, full voltage is applied to the oscillator and the pre-exciter is tunned off. The cavity is then excited to the maximum high voltage value of radio frequency by the oscillator.

  9. Separation of U-238 and Np-237 nuclei by gamma-quanta intermediate energies

    NASA Astrophysics Data System (ADS)

    Kazakov, A. A.; Kezerashvili, G. Y.; Lazareva, T. Y.; Nedorezov, V. G.; Skrinskiy, A. N.; Sudov, A. S.; Tumaykin, G. M.; Shatunov, Y. M.

    1986-01-01

    A system employing a beam of backscattered Compton quanta based on the e(+)e(-) accumulating complex and an LTI-701 solid state laser is employed to measure the average photoseparation and separability cross sections of U234 and Np237 nuclei at energies ranging from 150 to 170 MeV. The findings contradict the predictions of existing models based on photon-meson nuclear excitation, and suggest that one of the most probable mechanisms underlying the excitation of nuclei by gamma quanta with intermediate energies, in addition to the photogeneration of pions, is the generation of e(+)e(-) pairs in the field of the nucleus: the gamma quanta wavelength energies in this region becomes comparable to the nucleon dimension, so that collective nuclear excitations are generally suppressed.

  10. Predicting the growth of nanoscale nuclei by histotripsy pulses

    PubMed Central

    Bader, Kenneth B; Holland, Christy K

    2016-01-01

    Histotripsy is a focused ultrasound therapy that ablates tissue through the mechanical action of cavitation. Histotripsy-initiated cavitation activity is generated from shocked ultrasound pulses that scatter from incidental nuclei (shock scattering histotripsy), or purely tensile ultrasound pulses (microtripsy). The Yang/Church model was numerically integrated to predict the behavior of the cavitation nuclei exposed to measured shock scattering histotripsy pulses. The bubble motion exhibited expansion only behavior, suggesting that the ablative action of a histotripsy pulse is related to the maximum size of the bubble. The analytic model of Holland and Apfel was extended to predict the maximum size of cavitation nuclei for both shock scattering histotripsy and microtripsy excitations. The predictions of the analytic model and the numerical model agree within 2% for fully developed shock scattering histotripsy pulses (>72 MPa peak positive pressure). For shock scattering histotripsy pulses that are not fully developed (<72 MPa), the analytic model underestimated the maximum size by less than 5%. The analytic model was also used to predict bubble growth nucleated from microtripsy insonations, and was found to be consistent with experimental observations. Based on the extended analytic model, metrics were developed to predict the extent of the treatment zone from histotripsy pulses. PMID:26988374

  11. Note on spin orbit interactions in nuclei and hypernuclei

    NASA Astrophysics Data System (ADS)

    Kaiser, N.; Weise, W.

    2008-05-01

    A detailed comparison is made between the spin-orbit interactions in Λ hypernuclei and ordinary nuclei. We argue that there are three major contributions to the spin-orbit interaction: (1) a short-range component involving scalar and vector mean fields; (2) a "wrong-sign" spin-orbit term generated by the pion exchange tensor force in second order; and (3) a three-body term induced by two-pion exchange with excitation of virtual Δ (1232)-isobars (à la Fujita-Miyazawa). For nucleons in nuclei the long-range pieces related to the pion-exchange dynamics tend to cancel, leaving room dominantly for spin-orbit mechanisms of short-range origin (parametrized, e.g., in terms of relativistic scalar and vector mean fields terms). In contrast, the absence of an analogous 2π-exchange three-body contribution for Λ hyperons in hypernuclei leads to an almost complete cancellation between the short-range (relativistic mean-field) component and the "wrong-sign" spin-orbit interaction generated by second order π-exchange with an intermediate Σ hyperon. These different balancing mechanisms between short- and long-range components are able to explain simultaneously the very strong spin-orbit interaction in ordinary nuclei and the remarkably weak spin-orbit splitting in Λ hypernuclei.

  12. Cosmochemical implications of the physical processing of cometary nuclei

    SciTech Connect

    McSween, H.Y. Jr. ); Weissman, P.R. )

    1989-12-01

    Comets are not necessarily pristine nebular and interstellar material, despite a common perception to that effect. Alteration processes may occur during comet formation in the outer planet region, during their dispersal to or residence within the Oort cloud, and after their return to the planetary region. Processes that may have significantly modified cometary nuclei include heating, impacts, and irradiation. Possible consequences include phase changes in ices, hydration reactions in silicates, synthesis of organic compounds, collisional disruption and re-accretion, shock and irradiation effects in minerals and ices, cosmogenic nuclide formation, redistribution or loss of volatiles, and formation of a refractory veneer. A model of cometary nuclei that emerges from these considerations provides a framework for understanding observations of comets and future samples.

  13. "Fast Excitation" CID in Quadrupole Ion Trap Mass Spectrometer

    SciTech Connect

    Murrell, J.; Despeyroux, D.; Lammert, Stephen {Steve} A; Stephenson Jr, James {Jim} L; Goeringer, Doug

    2003-01-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. ''Fast excitation'' CID deposits (as determined by the intensity ratio of the a{sub 4}/b{sub 4} ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with ''fast excitation'' CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for ''fast excitation'' CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H){sup 17+} of horse heart myoglobin is also shown to illustrate the application of ''fast excitation'' CID to proteins.

  14. Ground states of larger nuclei

    SciTech Connect

    Pieper, S.C.; Wiringa, R.B.; Pandharipande, V.R.

    1995-08-01

    The methods used for the few-body nuclei require operations on the complete spin-isospin vector; the size of this vector makes such methods impractical for nuclei with A > 8. During the last few years we developed cluster expansion methods that do not require operations on the complete vector. We use the same Hamiltonians as for the few-body nuclei and variational wave functions of form similar to the few-body wave functions. The cluster expansions are made for the noncentral parts of the wave functions and for the operators whose expectation values are being evaluated. The central pair correlations in the wave functions are treated exactly and this requires the evaluation of 3A-dimensional integrals which are done with Monte Carlo techniques. Most of our effort was on {sup 16}O, other p-shell nuclei, and {sup 40}Ca. In 1993 the Mathematics and Computer Science Division acquired a 128-processor IBM SP which has a theoretical peak speed of 16 Gigaflops (GFLOPS). We converted our program to run on this machine. Because of the large memory on each node of the SP, it was easy to convert the program to parallel form with very low communication overhead. Considerably more effort was needed to restructure the program from one oriented towards long vectors for the Cray computers at NERSC to one that makes efficient use of the cache of the RS6000 architecture. The SP made possible complete five-body cluster calculations of {sup 16}O for the first time; previously we could only do four-body cluster calculations. These calculations show that the expectation value of the two-body potential is converging less rapidly than we had thought, while that of the three-body potential is more rapidly convergent; the net result is no significant change to our predicted binding energy for {sup 16}O using the new Argonne v{sub 18} potential and the Urbana IX three-nucleon potential. This result is in good agreement with experiment.

  15. Thermal evolution of cometary nuclei

    NASA Technical Reports Server (NTRS)

    Prialnik, Dina

    1989-01-01

    The long-term thermal evolution in models of comet nuclei is examined. Models of the nucleus surface and interior are discussed and the equations of comet nucleus evolution are analyzed. The thermal evolution of a nucleus in Comet P/Halley's orbit is outlined. The effects of temperature, composition, and orbital parameters on the evolutionary course are examined. Consideration is given to the implications of the assumption that new comets are pristine objects which have undergone little alteration and constitute a source of original solar nebula material.

  16. Threshold photoneutron angular distribution and polarization studies of nuclei

    SciTech Connect

    Holt, R.J.

    1980-01-01

    The photoneutron method was applied to the study of: (1) deuteron photodisintegration; (2) giant magnetic dipole resonances in heavy nuclei; (3) mechanism of radiative capture in light nuclei; and (4) isospin splitting of the giant dipole resonance in /sup 60/Ni. These studies were performed with the pulsed bremsstrahlung beam and high-resolution spectrometer available at the Argonne high-current electron linac. A threshold photoneutron polarization method was developed in order to search for the giant M1 resonance in heavy nuclei. A surprisingly small amount of M1 strength was found in /sup 208/Pb. Furthermore, the M1 strength for the 5.08-MeV excitation in /sup 17/O, the best example of a single-particle M1 resonance in nuclei, was found to be strongly quenched. In addition, the /sup 17/O(..gamma..,n/sub 0/)/sup 16/O reaction was found to provide an ideal example of the Lane-Lynn theory of radiative capture. The interplay among the three components of the theory, internal, channel and potential capture, were evident from the data. An electron beam transport system was developed which allows the bremsstrahlung to impinge on the photoneutron target on an axis perpendicular to the usual reaction plane. This system provides an accurate method for the measurement of relative angular distributions in (..gamma..,n) reactions. This system was applied to a high-accuracy measurement of the relative angular distribution for the D(..gamma..,n)H reaction. The question of isospin-splitting of the giant dipole resonance in /sup 60/Ni was studied by using the unique pico-pulse from the accelerator and the newly installed 25-m, neutron flight paths. The results provide clear evidence for the effect of isospin splitting.

  17. Lifetime and g-factor measurements of excited states using Coulomb excitation and alpha transfer reactions

    SciTech Connect

    Guevara, Z. E. Torres, D. A.

    2016-07-07

    In this contribution the challenges in the use of a setup to simultaneously measure lifetimes and g-factor values will be presented. The simultaneous use of the transient field technique and the Doppler Shift Attenuation Method, to measure magnetic moments and lifetimes respectively, allows to obtain a complete characterization of the currents of nucleons and the deformation in excited states close to the ground state. The technique is at the moment limited to Coulomb excitation and alpha-transfer reactions, what opens an interesting perspective to consider this type of experiments with radioactive beams. The use of deep-inelastic and fusion-evaporation reactions will be discussed. An example of a setup that makes use of a beam of {sup 106}Cd to study excited states of {sup 110}Sn and the beam nuclei itself will be presented.

  18. Lifetime and g-factor measurements of excited states using Coulomb excitation and alpha transfer reactions

    NASA Astrophysics Data System (ADS)

    Guevara, Z. E.; Torres, D. A.

    2016-07-01

    In this contribution the challenges in the use of a setup to simultaneously measure lifetimes and g-factor values will be presented. The simultaneous use of the transient field technique and the Doppler Shift Attenuation Method, to measure magnetic moments and lifetimes respectively, allows to obtain a complete characterization of the currents of nucleons and the deformation in excited states close to the ground state. The technique is at the moment limited to Coulomb excitation and alpha-transfer reactions, what opens an interesting perspective to consider this type of experiments with radioactive beams. The use of deep-inelastic and fusion-evaporation reactions will be discussed. An example of a setup that makes use of a beam of 106Cd to study excited states of 110Sn and the beam nuclei itself will be presented.

  19. Portable vibration exciter

    NASA Technical Reports Server (NTRS)

    Beecher, L. C.; Williams, F. T.

    1970-01-01

    Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.

  20. Excited charmed mesons

    SciTech Connect

    Butler, J.N.; Shukla, S.

    1995-05-01

    The experimental status of excited charmed mesons is reviewed and is compared to theoretical expectations. Six states have been observed and their properties are consistent with those predicted for excited charmed states with orbital angular momentum equal to one.

  1. Time-dependent Hartree-Fock Study of Octupole Vibrations in doubly magic nuclei

    NASA Astrophysics Data System (ADS)

    Simenel, C.; Buete, J.; Vo-Phuoc, K.

    2016-09-01

    Octupole vibrations are studied in some doubly magic nuclei using the time-dependent Hartree-Fock (TDHF) theory with a Skyrme energy density functional. Through the use of the linear response theory, the energies and transition amplitudes of the low-lying vibrational modes for each of the nuclei were determined. Energies were found to be close to experimental results. However, transition amplitudes, quantified by the deformation parameter β3, are underestimated by TDHF. A comparison with single-particle excitations on the Hartree-Fock ground-state shows that the collective octupole vibrations have their energy lowered due to attractive RPA residual interaction.

  2. Crossings in alternating-parity bands of neutron-rich Ba nuclei

    SciTech Connect

    Urban, W.; Jones, M.A.; Durell, J.L.

    1995-07-22

    {sup 144}Ba and {sup 146}Ba nuclei produced in the spontaneous fission of {sup 248}Cm have been studied using the EUROGRAM II array. Spins and parities of excited levels have been deduced from triple-{gamma} angular correlation and direction-polarization correlation measurements, which is the first use of these techniques in studies of fission product nuclei. Ground-state, alternating-parity bands have been extended significantly and crossing in these bands has been found in both isotopes. For the first time alternating-parity band termination by particle alignment has been observed.

  3. Spreading widths of giant resonances in spherical nuclei: Damped transient response

    NASA Astrophysics Data System (ADS)

    Severyukhin, A. P.; Åberg, S.; Arsenyev, N. N.; Nazmitdinov, R. G.

    2017-06-01

    We propose a general approach to describe spreading widths of monopole, dipole, and quadrupole giant resonances in heavy and superheavy spherical nuclei. Our approach is based on the ideas of the random matrix distribution of the coupling between one-phonon and two-phonon states generated in the random-phase approximation. We use the Skyrme interaction SLy4 as our model Hamiltonian to create a single-particle spectrum and to analyze excited states of the doubly magic nuclei 132Sn, 208Pb, and 310126. Our results demonstrate that the approach enables to us to describe a gross structure of the spreading widths of the giant resonances considered.

  4. Model-space approach to parity violation in heavy nuclei

    SciTech Connect

    Johnson, M.B.

    1996-06-01

    The model-space approach is the basis of both shell model and statistical spectroscopy analyses of nuclear phenomena. The goal of this session is to bring out the main theoretical issues involved in its application to parity violation in the compound nucleus. Section 1 of the current paper sets the stage for the session, and Sect. 2 introduces and explores the model-space formulation as it underlies quantitative connections that are being made between the mean-square matrix element M{sup 2} measured in polarized neutron scattering from compound nuclei and the underlying parity violating interaction. This is followed in the paper by Tomsovic by a description of how statistical spectroscopy is applied to this problem, and in the paper by Hayes by a discussion of shell-model aspects of parity violation in the compound nucleus.

  5. Transcription in Isolated Wheat Nuclei

    PubMed Central

    Luthe, Dawn Sywassink; Quatrano, Ralph S.

    1980-01-01

    Nuclei free of RNase activity were isolated from 3-hour-imbibed wheat (var. Yamhill) embryos by centrifugation through a discontinuous gradient of Percoll. The maximum rate of RNA synthesis observed in these nuclei was approximately 5 picomoles [3H]UTP per milligram DNA per minute. Two monovalent cation optima were found when measured in the presence of 15 millimolar MgCl2 or 2 millimolar MnCl2; 15 and 75 millimolar (NH4)2SO4. At the high monovalent cation optimum, the rate of RNA synthesis was linear for the first 10 to 15 minutes of incubation and still increasing after 3 hours. RNA synthesized in vitro (30-minute pulse followed by a 30-minute chase) showed distinct 18 and 26S RNA peaks comprising 13 and 17% of the total radioactivity, respectively. The over-all pattern of RNA synthesized in vitro was similar to the in vivo pattern. Approximately 40 to 50% of the RNA synthesized was inhibited by α-amanitin at 4 micrograms per milliliter. The newly synthesized 6 to 10S RNA appeared to be selectively inhibited by α-amanitin. PMID:16661179

  6. Selfconsistent calculations for hyperdeformed nuclei

    SciTech Connect

    Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D.

    1996-12-31

    Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.

  7. Physical Processing of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Stern, S. Alan

    1997-01-01

    Cometary nuclei preserve a cosmo-chemical record of conditions and processes in the primordial solar nebula, and possibly even the interstellar medium. However, that record is not perfectly preserved over the age of the solar system due to a variety of physical processes which act to modify cometary surfaces and interiors. Possible structural and/or internal processes include: collisional accretion, disruption, and reassembly during formation; internal heating by long and short-lived radionuclides; amorphous to crystalline phase transitions, and thermal stresses. Identified surface modification processes include: irradiation by galactic cosmic rays, solar protons, UV photons, and the Sun's T Tauri stage mass outflow; heating by passing stars and nearby supernovae; gardening by debris impacts; the accretion of interstellar dust and gas and accompanying erosion by hypervelocity dust impacts and sputtering; and solar heating with accompanying crust formation. These modification processes must be taken into account in both the planning and the interpretation of the results of a Comet Nucleus Sample Return Mission. Sampling of nuclei should be done at as great a depth below the surface crust as technically feasible, and at vents or fissures leading to exposed volatiles at depth. Samples of the expected cometary crust and near-surface layers also need to be returned for analysis to achieve a better understanding of the effects of these physical processes. We stress that comets are still likely less modified dm any other solar system bodies, but the degree of modification can vary greatly from one comet to the next.

  8. Physical Processing of Cometary Nuclei

    NASA Astrophysics Data System (ADS)

    Weissman, Paul R.; Stern, S. Alan

    1997-12-01

    Cometary nuclei preserve a cosmo-chemical record of conditions and processes in the primordial solar nebula, and possibly even the interstellar medium. However, that record is not perfectly preserved over the age of the solar system due to a variety of physical processes which act to modify cometary surfaces and interiors. Possible structural and/or internal processes include: collisional accretion, disruption, and reassembly during formation; internal heating by long and short-lived radionuclides; amorphous to crystalline phase transitions, and thermal stresses. Identified surface modification processes include: irradiation by galactic cosmic rays, solar protons, UV photons, and the Sun's T Tauri stage mass outflow; heating by passing stars and nearby supernovae; gardening by debris impacts; the accretion of interstellar dust and gas and accompanying erosion by hypervelocity dust impacts and sputtering; and solar heating with accompanying crust formation. These modification processes must be taken into account in both the planning and the interpretation of the results of a Comet Nucleus Sample Return Mission. Sampling of nuclei should be done at as great a depth below the surface crust as technically feasible, and at vents or fissures leading to exposed volatiles at depth. Samples of the expected cometary crust and near-surface layers also need to be returned for analysis to achieve a better understanding of the effects of these physical processes. We stress that comets are still likely less modified dm any other solar system bodies, but the degree of modification can vary greatly from one comet to the next.

  9. ISOLATION OF SKELETAL MUSCLE NUCLEI

    PubMed Central

    Edelman, Jean C.; Edelman, P. Michael; Knigge, Karl M.; Schwartz, Irving L.

    1965-01-01

    A method employing aqueous media for isolation of nuclei from rat skeletal muscle is described. The technique involves (a) mincing and then homogenizing in a 0.32 M sucrose-salt solution with a Potter-Elvehjem type homogenizer using a Delrin (an acetal resin) pestle and a carefully controlled, relatively large pestle-to-glass clearance, (b) filtering through fiberglass and stainless steel screens of predetermined mesh size to remove myofibrils and connective tissue, and (c) centrifuging in a 2.15 M sucrose-salt solution containing 0.7 mM ATP. Electron and phase-contrast microscopic observations show that the nuclei are intact, unencumbered by cytoplasmic tags, and possess well preserved distinct nucleoli, nucleoplasm, and nuclear membranes. Cytoplasmic contamination is minimal and mainly mitochondrial. Chemical assays of the nuclear fraction show that the DNA/protein and RNA/DNA ratios are comparable to those obtained in other tissues. These ratios, as well as the low specific activity obtained for cytochrome c oxidase and the virtual absence of myofibrillar ATPase, indicate a high degree of purity with minimal mitochondrial and myofibrillar contamination. The steps comprising the technique and the reasons for their selection are discussed. PMID:4287141

  10. Mass-23 nuclei in astrophysics

    NASA Astrophysics Data System (ADS)

    Fraser, P. R.; Amos, K.; Canton, L.; Karataglidis, S.; Svenne, J. P.; van der Kniff, D.

    2015-09-01

    The formation of mass-23 nuclei by radiative capture is of great interest in astrophysics. A topical problem associated with these isobars is the so-called 22Na puzzle of ONe white dwarf novae, where the abundance of 22Na observed is not as is predicted by current stellar models, indicating there is more to learn about how the distribution of elements in the universe occurred. Another concerns unexplained variations in elements abundance on the surface of aging red giant stars. One method for theoretically studying nuclear scattering is the Multi-Channel Algebraic Scattering (MCAS) formalism. Studies to date have used a simple collective-rotor prescription to model the target states which couple to projectile nucleons. While, in general, the target states considered all belong to the ground state rotor band, for some systems it is necessary to include coupling to states outside of this band. Herein we discuss an extension of MCAS to allow coupling of different strengths between such states and the ground state band. This consideration is essential when studying the scattering of neutrons from 22Ne, a necessary step in studying the mass-23 nuclei mentioned above.

  11. Entropy Driven Excitation Energy Sorting in Superfluid Fission Dynamics

    SciTech Connect

    Schmidt, Karl-Heinz; Jurado, Beatriz

    2010-05-28

    It is shown that the constant-temperature behavior of nuclei in the superfluid regime leads to an energy-sorting process if two nuclei are in thermal contact, as is the case in the fission process. This effect explains why an increase of the initial excitation energy leads an increase of the number of emitted neutrons from the heavy fission fragment, only. The observed essentially complete energy sorting may be seen as a new counterintuitive manifestation of quantum-mechanical properties of microscopic systems.

  12. α -decay spectra of odd nuclei using the effective Skyrme interaction

    NASA Astrophysics Data System (ADS)

    Ward, D. E.; Carlsson, B. G.; Åberg, S.

    2015-07-01

    Background: For nuclei heavier than 208Pb α decay is a dominating decay mode. α decay of odd nuclei can give spectroscopic information because different states in the daughter nucleus can be populated in the decay. Purpose: To explore and test microscopic descriptions of α decay of odd nuclei based on self-consistent models with effective nuclear interactions. To predict the hindrance of α decay of odd-A superheavy nuclei. Methods: We apply the method of our previous work [15e D. E. Ward, B. G. Carlsson, and S. Åberg, Phys. Rev. C 88, 064316 (2013), 10.1103/PhysRevC.88.064316] to the case of odd-A near-spherical nuclei. The Skyrme effective interaction SLy4 is used. Starting from the obtained Hartree-Fock-Bogoliubov vacuum and quasiparticle excitations, the α -particle formation amplitude is calculated giving the decay rates and hindrance of different α -decay channels. Result: The calculated relative decay rates show good agreement with available data. The hindrance of decay channels where the odd nucleon changes orbital is reasonably described by the microscopic calculation. Several hindered ground-state decays of superheavy nuclei are predicted, implying possible α -γ coincidences. Conclusions: The approach offers a practical method of making quantitative predictions for the relative hindrance of different α -decay channels.

  13. Study of Complete Fusion Reactions Leading to the Production of Heavy and Superheavy Nuclei

    SciTech Connect

    Roman N. Sagaidak

    1999-12-31

    Cross section values for heavy evaporation residues (ER) produced in complete fusion reactions induced by heavy ions on spherical and deformed target nuclei are analyzed in the framework of barrier penetration and statistical model approximations. For the reactions leading to Rn-Pa nuclei, a strong influence of the entrance channel on the measured cross section values is observed for nearly symmetric projectile-target combinations. In order to reproduce the observed excitation functions in such combinations we had to introduce the quantity of fusion probability. Considering the asymmetric reactions leading to the heaviest nuclei we also had to use the fusion probability to reproduce the cross section values obtained for cold fusion reactions induced by {sup 50}Ti and heavier projectiles on the Pb and Bi target nuclei, and also the values obtained for hot fusion reactions induced by {sup 34}S on actinide target nuclei. The scaling of fusion probabilities derived for both the reactions allowed us to predict the values of cross sections for superheavy elements (SHE) produced in the {sup 48}Ca induced reactions on actinide target nuclei and in the cold fusion reactions induced by the Zn and heavier projectiles.

  14. Study of complete fusion reactions leading to the production of heavy and superheavy nuclei

    SciTech Connect

    Sagaidak, Roman N.

    1999-11-16

    Cross section values for heavy evaporation residues (ER) produced in complete fusion reactions induced by heavy ions on spherical and deformed target nuclei are analyzed in the framework of barrier penetration and statistical model approximations. For the reactions leading to Rn-Pa nuclei, a strong influence of the entrance channel on the measured cross section values is observed for nearly symmetric projectile-target combinations. In order to reproduce the observed excitation functions in such combinations we had to introduce the quantity of fusion probability. Considering the asymmetric reactions leading to the heaviest nuclei we also had to use the fusion probability to reproduce the cross section values obtained for cold fusion reactions induced by {sup 50}Ti and heavier projectiles on the Pb and Bi target nuclei, and also the values obtained for hot fusion reactions induced by {sup 34}S on actinide target nuclei. The scaling of fusion probabilities derived for both the reactions allowed us to predict the values of cross sections for superheavy elements (SHE) produced in the {sup 48}Ca induced reactions on actinide target nuclei and in the cold fusion reactions induced by the Zn and heavier projectiles.

  15. Review of metastable states in heavy nuclei

    SciTech Connect

    Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.

    2016-05-31

    Here, the structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A ≳ 150. The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

  16. PHYSICAL STUDIES OF ISOLATED EUCARYOTIC NUCLEI

    PubMed Central

    Olins, Donald E.; Olins, Ada L.

    1972-01-01

    The degree of chromatin condensation in isolated rat liver nuclei and chicken erythrocyte nuclei was studied by phase-contrast microscopy as a function of solvent pH, K+ and Mg++ concentrations Data were represented as "phase" maps, and standard solvent conditions selected that reproducibly yield granular, slightly granular, and homogeneous nuclei Nuclei in these various states were examined by ultraviolet absorption and circular dichroism (CD) spectroscopy, low-angle X-ray diffraction, electron microscopy, and binding capacity for ethidium bromide Homogeneous nuclei exhibited absorption and CD spectra resembling those of isolated nucleohistone. Suspensions of granular nuclei showed marked turbidity and absorption flattening, and a characteristic blue-shift of a crossover wavelength in the CD spectra. In all solvent conditions studied, except pH < 2 3, low-angle X-ray reflections characteristic of the native, presumably superhelical, nucleohistone were observed from pellets of intact nuclei. Threads (100–200 A diameter) were present in the condensed and dispersed phases of nuclei fixed under the standard solvent conditions, and examined in the electron microscope after thin sectioning and staining Nuclei at neutral pH, with different degrees of chromatin condensation, exhibited similar binding capacities for ethidium bromide. These data suggest a model that views chromatin condensation as a close packing of superhelical nucleohistone threads but still permits condensed chromatin to respond rapidly to alterations in solvent environment. PMID:4554987

  17. Review of metastable states in heavy nuclei

    DOE PAGES

    Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.

    2016-05-31

    Here, the structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A ≳ 150. The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

  18. Review of metastable states in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.

    2016-07-01

    The structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A≳ 150 . The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

  19. Valence excitation energies of alkenes, carbonyl compounds, and azabenzenes by time-dependent density functional theory: linear response of the ground state compared to collinear and noncollinear spin-flip TDDFT with the Tamm-Dancoff approximation.

    PubMed

    Isegawa, Miho; Truhlar, Donald G

    2013-04-07

    Time-dependent density functional theory (TDDFT) holds great promise for studying photochemistry because of its affordable cost for large systems and for repeated calculations as required for direct dynamics. The chief obstacle is uncertain accuracy. There have been many validation studies, but there are also many formulations, and there have been few studies where several formulations were applied systematically to the same problems. Another issue, when TDDFT is applied with only a single exchange-correlation functional, is that errors in the functional may mask successes or failures of the formulation. Here, to try to sort out some of the issues, we apply eight formulations of adiabatic TDDFT to the first valence excitations of ten molecules with 18 density functionals of diverse types. The formulations examined are linear response from the ground state (LR-TDDFT), linear response from the ground state with the Tamm-Dancoff approximation (TDDFT-TDA), the original collinear spin-flip approximation with the Tamm-Dancoff (TD) approximation (SF1-TDDFT-TDA), the original noncollinear spin-flip approximation with the TDA approximation (SF1-NC-TDDFT-TDA), combined self-consistent-field (SCF) and collinear spin-flip calculations in the original spin-projected form (SF2-TDDFT-TDA) or non-spin-projected (NSF2-TDDFT-TDA), and combined SCF and noncollinear spin-flip calculations (SF2-NC-TDDFT-TDA and NSF2-NC-TDDFT-TDA). Comparing LR-TDDFT to TDDFT-TDA, we observed that the excitation energy is raised by the TDA; this brings the excitation energies underestimated by full linear response closer to experiment, but sometimes it makes the results worse. For ethylene and butadiene, the excitation energies are underestimated by LR-TDDFT, and the error becomes smaller making the TDA. Neither SF1-TDDFT-TDA nor SF2-TDDFT-TDA provides a lower mean unsigned error than LR-TDDFT or TDDFT-TDA. The comparison between collinear and noncollinear kernels shows that the noncollinear kernel

  20. Valence excitation energies of alkenes, carbonyl compounds, and azabenzenes by time-dependent density functional theory: Linear response of the ground state compared to collinear and noncollinear spin-flip TDDFT with the Tamm-Dancoff approximation

    NASA Astrophysics Data System (ADS)

    Isegawa, Miho; Truhlar, Donald G.

    2013-04-01

    Time-dependent density functional theory (TDDFT) holds great promise for studying photochemistry because of its affordable cost for large systems and for repeated calculations as required for direct dynamics. The chief obstacle is uncertain accuracy. There have been many validation studies, but there are also many formulations, and there have been few studies where several formulations were applied systematically to the same problems. Another issue, when TDDFT is applied with only a single exchange-correlation functional, is that errors in the functional may mask successes or failures of the formulation. Here, to try to sort out some of the issues, we apply eight formulations of adiabatic TDDFT to the first valence excitations of ten molecules with 18 density functionals of diverse types. The formulations examined are linear response from the ground state (LR-TDDFT), linear response from the ground state with the Tamm-Dancoff approximation (TDDFT-TDA), the original collinear spin-flip approximation with the Tamm-Dancoff (TD) approximation (SF1-TDDFT-TDA), the original noncollinear spin-flip approximation with the TDA approximation (SF1-NC-TDDFT-TDA), combined self-consistent-field (SCF) and collinear spin-flip calculations in the original spin-projected form (SF2-TDDFT-TDA) or non-spin-projected (NSF2-TDDFT-TDA), and combined SCF and noncollinear spin-flip calculations (SF2-NC-TDDFT-TDA and NSF2-NC-TDDFT-TDA). Comparing LR-TDDFT to TDDFT-TDA, we observed that the excitation energy is raised by the TDA; this brings the excitation energies underestimated by full linear response closer to experiment, but sometimes it makes the results worse. For ethylene and butadiene, the excitation energies are underestimated by LR-TDDFT, and the error becomes smaller making the TDA. Neither SF1-TDDFT-TDA nor SF2-TDDFT-TDA provides a lower mean unsigned error than LR-TDDFT or TDDFT-TDA. The comparison between collinear and noncollinear kernels shows that the noncollinear kernel

  1. New photocalorimetric references for UV excitation

    NASA Astrophysics Data System (ADS)

    Murgida, D. H.; Erra-Balsells, R.; Bilmes, G. M.

    1996-02-01

    A set of calorimetric references for excitation at λ = 266 nm in acetonitrile solutions is proposed. Theophylline and several purinic compounds (purine, 6-methylpurine, 6-methoxypurine, 6-chloropurine, and 6-aminopurine) were investigated using pulsed laser optoacoustic spectroscopy with resolution times between 150 ns and 1 μs and compared with 2-hydroxybenzophenone. At room temperature, all these compounds show no fluorescence, good stability and no photochemical processes as photodegradation or multiphotonic effects below fluences of 1000 J/m 2.

  2. Anomalous Neutron Capture and Plastic Deformation of cu and pd Cathodes during Electrolysis in a Weak Thermalized Neutron Field:. Evidence of Nuclei-Lattice Exchange

    NASA Astrophysics Data System (ADS)

    Lipson, A. G.; Miley, G. H.; Lipson, A. G.

    2006-02-01

    Anomalous neutron capture and plastic deformation in the hardened Cu and Pd cathodes has been established under combined action of electrolysis and a weak thermalized neutron field (WTNF) with a flux in the range of 180-400 n/s cm2. Experiments with these cathodes showed ~7.0% decrease in the 2224 keV n-D gamma peak accompanying thermalized neutron capture inside the PE cavity during electrolysis vs. experiments with annealed Cu and Pd as well as with the background runs (i.e., no electrolysis). The anomalous neutron capture and plastic deformation of Cu and Pd cathodes under combined action of electrolysis and WTNF may be explained energetically by assuming a selective radiationless thermalized neutron capture at high-internal strain concentration sites in the hardened cathodes. The results of these experiments provide straightforward (avoids the Coulomb barrier penetration issue) evidence that nuclei-lattice energy exchange can result in an increase in neutron capture probability and radiationless de-excitation of the resulting compound nuclei.

  3. Acoustically excited heated jets. 1: Internal excitation

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Salikuddin, M.; Morris, P. J.

    1988-01-01

    The effects of relatively strong upstream acoustic excitation on the mixing of heated jets with the surrounding air are investigated. To determine the extent of the available information on experiments and theories dealing with acoustically excited heated jets, an extensive literature survey was carried out. The experimental program consisted of flow visualization and flowfield velocity and temperature measurements for a broad range of jet operating and flow excitation conditions. A 50.8-mm-diam nozzle was used for this purpose. Parallel to the experimental study, an existing theoretical model of excited jets was refined to include the region downstream of the jet potential core. Excellent agreement was found between theory and experiment in moderately heated jets. However, the theory has not yet been confirmed for highly heated jets. It was found that the sensitivity of heated jets to upstream acoustic excitation varies strongly with the jet operating conditions and that the threshold excitation level increases with increasing jet temperature. Furthermore, the preferential Strouhal number is found not to change significantly with a change of the jet operating conditions. Finally, the effects of the nozzle exit boundary layer thickness appear to be similar for both heated and unheated jets at low Mach numbers.

  4. Determination of the compound nucleus survival probability Psurv for various "hot" fusion reactions based on the dynamical cluster-decay model

    NASA Astrophysics Data System (ADS)

    Chopra, Sahila; Kaur, Arshdeep; Gupta, Raj K.

    2015-03-01

    After a successful attempt to define and determine recently the compound nucleus (CN) fusion/ formation probability PCN within the dynamical cluster-decay model (DCM), we introduce and estimate here for the first time the survival probability Psurv of CN against fission, again within the DCM. Calculated as the dynamical fragmentation process, Psurv is defined as the ratio of the evaporation residue (ER) cross section σER and the sum of σER and fusion-fission (ff) cross section σff, the CN formation cross section σCN, where each contributing fragmentation cross section is determined in terms of its formation and barrier penetration probabilities P0 and P . In DCM, the deformations up to hexadecapole and "compact" orientations for both in-plane (coplanar) and out-of-plane (noncoplanar) configurations are allowed. Some 16 "hot" fusion reactions, forming a CN of mass number ACN˜100 to superheavy nuclei, are analyzed for various different nuclear interaction potentials, and the variation of Psurv on CN excitation energy E*, fissility parameter χ , CN mass ACN, and Coulomb parameter Z1Z2 is investigated. Interesting results are that three groups, namely, weakly fissioning, radioactive, and strongly fissioning superheavy nuclei, are identified with Psurv, respectively, ˜1 ,˜10-6 , and ˜10-10 . For the weakly fissioning group (100 nuclei also Psurv is a decreasing function of E*. Furthermore, of particular interest are the cases of 105Ag* , isotopes of Pt*, and 213 ,215 ,217Fr

  5. Neutron halo in deformed nuclei

    SciTech Connect

    Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang

    2010-07-15

    Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus {sup 44}Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.

  6. Single Pion production from Nuclei

    SciTech Connect

    Singh, S. K.; Athar, M. Sajjad; Ahmed, S.

    2007-12-21

    We have studied charged current one pion production induced by {nu}{sub {mu}}({nu}-bar{sub {mu}}) from some nuclei. The calculations have been done for the incoherent pion production processes from these nuclear targets in the {delta} dominance model and take into account the effect of Pauli blocking, Fermi motion and renormalization of {delta} properties in the nuclear medium. The effect of final state interactions of pions has also been taken into account. The numerical results have been compared with the recent results from the MiniBooNE experiment for the charged current 1{pi} production, and also with some of the older experiments in Freon and Freon-Propane from CERN.

  7. The Physics of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1997-01-01

    The recent developments in cometary studies suggest rather low mean densities and weak structures for the nuclei. They appear to be accumulations of fairly discrete units loosely bound together, as deduced from the observations of Comet Shoemaker-Levy 9 during its encounter with Jupiter. The compressive strengths deduced from comet splitting by Opik and Sekanina are extremely low. These values are confirmed by theory developed here. assuming that Comet P/Holmes had a companion that collided with it in 1892. There follows a short discussion that suggests that the mean densities of comets should increase with comet dimensions. The place of origin of short-period comets may relate to these properties.

  8. Inclusive breakup of Borromean nuclei

    NASA Astrophysics Data System (ADS)

    Hussein, M. S.; Carlson, B. V.; Frederico, T.

    2017-06-01

    We derive the inclusive breakup cross section of a three-fragment projectile nuclei, a = b + x 1 +x 2, in the spectator model. The resulting four-body cross section for observing b, is composed of the elastic breakup cross section which contains information about the correlation between the two participant fragments, and the inclusive non-elastic breakup cross section. This latter cross section is found to be a non-trivial four-body generalization of the Austern formula [1], which is proportional to a matrix element of the form, . The new feature here is the three-body absorption, represented by the imaginary potential, W 3b . We analyze this type of absorption and supply ideas of how to calculate its contribution.

  9. Quasifree kaon photoproduction on nuclei

    SciTech Connect

    Frank Lee; T. MART; Cornelius Bennhold; Lester Wright

    2001-12-01

    Investigations of the quasifree reaction A({gamma}, K Y)B are presented in the distorted wave impulse approximation (DWIA). For this purpose, we present a revised tree-level model of elementary kaon photoproduction that incorporates hadronic form factors consistent with gauge invariance, uses SU(3) values for the Born couplings and uses resonances consistent with multi-channel analyses. The potential of exclusive quasifree kaon photoproduction on nuclei to reveal details of the hyperon-nucleus interaction is examined. Detailed predictions for the coincidence cross section, the photon asymmetry, and the hyperon polarization and their sensitivities to the ingredients of the model are obtained for all six production channels. Under selected kinematics these observables are found to be sensitive to the hyperon-nucleus final state interaction. Some polarization observables are found to be insensitive to distortion effects, making them ideal tools to search for possible medium modifications of the elementary amplitude.

  10. Reaction theory for exotic nuclei

    SciTech Connect

    Bonaccorso, Angela

    2014-05-09

    Exotic nuclei are usually defined as those with unusual N/Z ratios. They can be found in the crust of neutron stars enbedded in a sea of electrons or created in laboratory by fragmentation of a primary beam (in-flight method) or of the target (ISOL method). They are extremely important for nuclear astrophysics, see for example Ref.[1]. Furthermore by studying them we can check the limits of validity of nuclear reaction and structure models. This contribution will be devoted to the understanding of how by using reaction theory and comparing to the data we can extract structure information. We shall discuss the differences between the mechanisms of transfer and breakup reactions, an we will try to explain how nowadays it is possible to do accurate spectroscopy in extreme conditions.

  11. Proton emission from triaxial nuclei

    SciTech Connect

    Delion, D.S.; Wyss, R.; Karlgren, D.; Liotta, R.J.

    2004-12-01

    Proton decay from triaxially deformed nuclei is investigated. The deformation parameters corresponding to the mother nucleus are determined microscopically and the calculated decay widths are used to probe the mean-field wave function. The proton wave function in the mother nucleus is described as a resonant state in a coupled-channel formalism. The decay width, as well as the angular distribution of the decaying particle, are evaluated and their dependence upon the triaxial deformation parameters is studied in the decay of {sup 161}Re and {sup 185}Bi. It is found that the decay width is very sensitive to the parameters defining the triaxial deformation while the angular distribution is a universal function which does not depend upon details of the nuclear structure.

  12. Towards the exact calculation of medium nuclei

    SciTech Connect

    Gandolfi, Stefano; Carlson, Joseph Allen; Lonardoni, Diego; Wang, Xiaobao

    2016-12-19

    The prediction of the structure of light and medium nuclei is crucial to test our knowledge of nuclear interactions. The calculation of the nuclei from two- and three-nucleon interactions obtained from rst principle is, however, one of the most challenging problems for many-body nuclear physics.

  13. Ice nuclei emissions from biomass burning

    Treesearch

    Markus D. Petters; Matthew T. Parsons; Anthony J. Prenni; Paul J. DeMott; Sonia M. Kreidenweis; Christian M. Carrico; Amy P. Sullivan; Gavin R. McMeeking; Ezra Levin; Cyle E. Wold; Jeffrey L. Collett; Hans Moosmuller

    2009-01-01

    Biomass burning is a significant source of carbonaceous aerosol in many regions of the world. When present, biomass burning particles may affect the microphysical properties of clouds through their ability to function as cloud condensation nuclei or ice nuclei. We report on measurements of the ice nucleation ability of biomass burning particles performed on laboratory-...

  14. Thalamic nuclei after human blunt head injury.

    PubMed

    Maxwell, William L; MacKinnon, Mary Anne; Smith, Douglas H; McIntosh, Tracy K; Graham, David I

    2006-05-01

    Paraffin-embedded blocks from the thalamus of 9 control patients, 9 moderately disabled, 12 severely disabled, and 10 vegetative head-injured patients assessed using the Glasgow Outcome Scale and identified from the Department of Neuropathology archive. Neurons, astrocytes, macrophages, and activated microglia were differentiated by Luxol fast blue/cresyl violet, GFAP, CD68, and CR3/43 staining and stereological techniques used to estimate cell number in a 28-microm-thick coronal section. Counts were made in subnuclei of the mediodorsal, lateral posterior, and ventral posterior nuclei, the intralaminar nuclei, and the related internal lamina. Neuronal loss occurred from mediodorsal parvocellularis, rostral center medial, central lateral and paracentral nuclei in moderately disabled patients; and from mediodorsal magnocellularis, caudal center medial, rhomboid, and parafascicular nuclei in severely disabled patients; and all of the above and the centre median nucleus in vegetative patients. Neuronal loss occurred primarily from cognitive and executive function nuclei, a lesser loss from somatosensory nuclei and the least loss from limbic motor nuclei. There was an increase in the number of reactive astrocytes, activated microglia, and macrophages with increasing severity of injury. The study provides novel quantitative evidence for differential neuronal loss, with survival after human head injury, from thalamic nuclei associated with different aspects of cortical activation.

  15. Bridging the nuclear structure gap between stable and super heavy nuclei.

    SciTech Connect

    Seweryniak, D.; Khoo, T. L.; Ahmad, I.; Kondev, F. G.; Robinson, A.; Back, B. B.; Carpenter, M. P.; Davids, C. N.; Greene, J. P.; Gros, S.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Peterson, D.; Zhu, S. F.; Physics; Univ. of York; Univ. of Massachusetts at Lowell; Japan Atomic Energy Agency; Univ. of Jyvaskyla; CSNSM Orsay; Yale Univ.; Univ. of Liverpool; RIKEN; Univ. of Maryland; Univ. of Notre Dame

    2010-01-01

    Due to recent advances in detection techniques, excited states in several trans-fermium nuclei were studied in many laboratories worldwide, shedding light on the evolution of nuclear structure between stable nuclei and the predicted island of stability centered around spherical magic numbers. In particular, studies of K-isomers around the Z=100 and N=152 deformed shell closures extended information on the energies of Nilsson orbitals at the Fermi surface. Some of these orbitals originate from spherical states, which are relevant to the magic gaps in super-heavy nuclei. The single-particle energies can be used to test various theoretical predictions and aid in extrapolations towards heavier systems. So far, the Woods-Saxon potential reproduces the data best, while self-consistent approaches miss some of the observed features, indicating a need to modify the underlying effective nucleon-nucleon interactions.

  16. Bridging the nuclear structure gap between stable and super heavy nuclei

    NASA Astrophysics Data System (ADS)

    Seweryniak, D.; Khoo, T. L.; Ahmad, I.; Kondev, F. G.; Robinson, A.; Tandel, S. K.; Asai, M.; Back, B. B.; Carpenter, M. P.; Chowdhury, P.; Davids, C. N.; Eeckhaudt, S.; Greene, J. P.; Greenlees, P. T.; Gros, S.; Hauschild, K.; Heinz, A.; Herzberg, R.-D.; Janssens, R. V. F.; Jenkins, D. G.; Jones, G. D.; Ketelhut, S.; Lauritsen, T.; Lister, C. J.; Lopez-Martens, A.; Marley, P.; McCutchan, E. A.; Nakatsukasa, T.; Papadakis, P.; Peterson, D.; Qian, J.; Rostron, D.; Stefanescu, I.; Tandel, U. S.; Wang, X. F.; Zhu, S. F.

    2010-03-01

    Due to recent advances in detection techniques, excited states in several trans-fermium nuclei were studied in many laboratories worldwide, shedding light on the evolution of nuclear structure between stable nuclei and the predicted island of stability centered around spherical magic numbers. In particular, studies of K-isomers around the Z=100 and N=152 deformed shell closures extended information on the energies of Nilsson orbitals at the Fermi surface. Some of these orbitals originate from spherical states, which are relevant to the magic gaps in super-heavy nuclei. The single-particle energies can be used to test various theoretical predictions and aid in extrapolations towards heavier systems. So far, the Woods-Saxon potential reproduces the data best, while self-consistent approaches miss some of the observed features, indicating a need to modify the underlying effective nucleon-nucleon interactions.

  17. Coupled cluster calculation for ground state properties of closed-shell nuclei and single hole states.

    NASA Astrophysics Data System (ADS)

    Mihaila, Bogdan; Heisenberg, Jochen

    2000-04-01

    We continue the investigations of ground state properties of closed-shell nuclei using the Argonne v18 realistic NN potential, together with the Urbana IX three-nucleon interaction. The ground state wave function is used to calculate the charge form factor and charge density. Starting with the ground state wave function of the closed-shell nucleus, we use the equation of motion technique to calculate the ground state and excited states of a neighboring nucleus. We then generate the corresponding magnetic form factor. We correct for distortions due to the interaction between the electron probe and the nuclear Coulomb field using the DWBA picture. We compare our results with the available experimental data. Even though our presentation will focus mainly on the ^16O and ^15N nuclei, results for other nuclei in the p and s-d shell will also be presented.

  18. High spin spectroscopy of near spherical nuclei: Role of intruder orbitals

    SciTech Connect

    Bhattacharyya, S.; Bhattacharjee, T.; Mukherjee, G.; Banerjee, D.; Das, S. K.; Guin, R.; Gupta, S. Das

    2014-08-14

    High spin states of nuclei in the vicinity of neutron shell closure N = 82 and proton shell closure Z = 82 have been studied using the Clovere Ge detectors of Indian National Gamma Array. The shape driving effects of proton and neutron unique parity intruder orbitals for the structure of nuclei around the above shell closures have been investigated using light and heavy ion beams. Lifetime measurements of excited states in {sup 139}Pr have been done using pulsed-beam-γ coincidence technique. The prompt spectroscopy of {sup 207}Rn has been extended beyond the 181μs 13/2{sup +} isomer. Neutron-rich nuclei around {sup 132}Sn have been produced from proton induced fission of {sup 235}U and lifetime measurement of low-lying states of odd-odd {sup 132}I have been performed from offline decay.

  19. Nuclear structure studies of medium-mass nuclei using large Ge arrays

    SciTech Connect

    Baktash, C.

    1996-12-31

    The advent of large Ge arrays and their ancillary detectors has greatly advanced spectroscopic studies of the medium-mass nuclei. These nuclei undergo rapid shape changes as a function of spin, excitation energy and particle number and, thus, provide a unique laboratory to test and refine a variety of theoretical models. Following a brief review of the physics motivation, some of the highlights of the experimental results obtained with the help of these powerful detector systems will be discussed. Among results presented here are the newly-discovered island of superdeformation in the A{approximately}80 mass region, and the high-spin band structures in the N{approximately}Z nuclei. These band structures may be understood in the framework of the conventional cranking models, without the introduction of additional T=0 neutron-proton pairing correlations.

  20. Systematics of Scissors Mode in Gd Nuclei from Experiments with the DANCE Detector

    NASA Astrophysics Data System (ADS)

    Kroll, J.; Agvaanluvsan, U.; Baramsai, B.; Becker, J. A.; Bečvář, F.; Bredeweg, T. A.; Chyzh, A.; Couture, A.; Dashdorj, D.; Haight, R. C.; Jandel, M.; Keksis, A. L.; Krtička, M.; Mitchell, G. E.; O'Donnell, J. M.; Parker, W.; Rundberg, R. S.; Ullmann, J. L.; Valenta, S.; Vieira, D. J.; Walker, C. L.; Wilhelmy, J. B.; Wouters, J. M.; Wu, C. Y.

    2014-05-01

    Multi-step cascade γ-ray spectra from neutron capture at isolated resonances of 152,154-158Gd nuclei were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The main objective of these experiments was to obtain new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. An analysis of the data obtained shows that the scissors mode plays a significant role in the ground state transitions, as well as in the transitions populating all excited states of the studied nuclei. The estimates of the scissors mode strength indicate that for 157,159Gd this strength is significantly higher than in neighboring even-even nuclei 156,158Gd. The results are compared with the (γ,γ‧) data for the ground-state scissors mode and the results from 3He-induced reactions.

  1. Odd-Z Transactinide Compound Nucleus Reactions Including the Discovery of 260Bh

    SciTech Connect

    Nelson, Sarah L.

    2008-01-01

    Several reactions producing odd-Z transactinide compound nuclei were studiedwith the 88-Inch Cyclotron and the Berkeley Gas-Filled Separator at the Lawrence Berkeley National Laboratory. The goal was to produce the same compound nucleus ator near the same excitation energy with similar values of angular momentum via differentnuclear reactions. In doing so, it can be determined if there is a preference in entrancechannel, because under these experimental conditions the survival portion of Swiatecki, Siwek-Wilcznska, and Wilczynski's"Fusion By Diffusion" model is nearly identical forthe two reactions. Additionally, because the same compound nucleus is produced, theexit channel is the same. Four compound nuclei were examined in this study: 258Db, 262Bh, 266Mt, and 272Rg. These nuclei were produced by using very similar heavy-ion induced-fusion reactions which differ only by one proton in the projectile or target nucleus (e.g.: 50Ti + 209Bi vs. 51V + 208Pb). Peak 1n exit channel cross sections were determined for each reaction in each pair, and three of the four pairs' cross sections were identical within statistical uncertainties. This indicates there is not an obvious preference of entrancechannel in these paired reactions. Charge equilibration immediately prior to fusionleading to a decreased fusion barrier is the likely cause of this phenomenon. In addition to this systematic study, the lightest isotope of element 107, bohrium, was discovered in the 209Bi(52Cr,n) reaction. 260Bh was found to decay by emission of a 10.16 MeV alpha particle with a half-life of 35$+19\\atop{-9}$ ms. The cross section is 59 pb at an excitation energy of 15.0 MeV. The effect of the N = 152 shell is also seen in this isotope's alpha particle energy, the first evidence of such an effect in Bh. All reactions studied are also compared to model predictions by Swiatecki

  2. Excitation of interstellar hydrogen chloride

    NASA Technical Reports Server (NTRS)

    Neufild, David A.; Green, Sheldon

    1994-01-01

    We have computed new rate coefficients for the collisional excitation of HCl by He, in the close-coupled formalism and using an interaction potential determined recently by Willey, Choong, & DeLucia. Results have been obtained for temperatures between 10 K and 300 K. With the use of the infinite order sudden approximation, we have derived approximate expressions of general applicability which may be used to estimate how the rate constant for a transition (J to J prime) is apportioned among the various hyperfine states F prime of the final state J prime. Using these new rate coefficients, we have obtained predictions for the HCl rotational line strengths expected from a dense clump of interstellar gas, as a function of the HCl fractional abundance. Over a wide range of HCl abundances, we have found that the line luminosities are proportional to abundance(exp 2/3), a general result which can be explained using a simple analytical approximation. Our model for the excitation of HCl within a dense molecular cloud core indicates that the J = 1 goes to 0 line strengths measured by Blake, Keene, & Phillips toward the Orion Molecular Cloud (OMC-1) imply a fractional abundance n(HCl)/n(H2) approximately 2 x 10(exp -9), a value which amounts to only approximately 0.3% of the cosmic abundance of chlorine nuclei. Given a fractional abundance of 2 x 10(exp -9), the contribution of HCl emission to the total radiative cooling of a dense clump is small. For Orion, we predict a flux approximately 10(exp -19) W/sq cm for the HCl J = 3 goes to 2 line near 159.8 micrometers, suggesting that the strength of this line could be measured using the Infrared Space Observatory.

  3. Covariant density functional theory: Global performance and rotating nuclei

    NASA Astrophysics Data System (ADS)

    Ray, Debisree

    Covariant density functional theory (CDFT) is a modern theoretical tool for the description of nuclear structure physics. Here different physical properties of the ground and excited states in atomic nuclei have been investigated within the CDFT framework employing three major classes of the state-of-the-art covariant energy density functionals. The global performance of CEDFs for even-even nuclei are investigated and the systematic theoretical uncertainties are estimated within the set of four CEDFs in known regions of the nuclear chart and their propagation towards the neutron drip line. Large-scale axial relativistic Hartree-Bogoliubov (RHB) calculations are performed for even-even nuclei to calculate different ground state observables. The predictions for the two-neutron drip line are also compared in a systematic way with the non-relativistic results. CDFT has been applied for systematic study of extremely deformed, rotating N ˜ Z nuclei of the A ˜ 40 mass region. At spin zero such structures are located at high energies which prevents their experimental observation. The rotation acts as a tool to bring these exotic shapes down to the yrast line so that their observation could become possible with a future generation detectors such as GRETA or AGATA. The major physical observables of such structures, the underlying single-particle structure and the spins at which they become yrast or near yrast are defined. The search for the fingerprints of clusterization and molecular structures is performed and the configurations with such features are discussed. CDFT has been applied to study fission barriers of superheavy nuclei and related systematic theoretical uncertainties in the predictions of inner fission barrier heights in super- heavy elements. Systematic uncertainties are substantial in superheavy elements and their behavior as a function of proton and neutron numbers contains a large random component. The benchmarking of the functionals to the experimental

  4. 76 FR 63702 - In the Matter of the Designation of Conspiracy of Fire Nuclei, aka Conspiracy of the Nuclei of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Conspiracy of Fire Nuclei, aka Conspiracy of the Nuclei of Fire, aka Conspiracy of Cells of Fire, aka Synomosia of Pyrinon Tis Fotias, aka Thessaloniki-Athens Fire Nuclei Conspiracy, as a Specially Designated... that the organization known as Conspiracy of Fire Nuclei, also known as Conspiracy of the Nuclei...

  5. Production of actinide nuclei by multi-nucleon transfer

    SciTech Connect

    Lauritsen, T.; Ahmad, I.; Carpenter, M.P.

    1995-08-01

    Multi-nucleon transfers have increasingly allowed us to reach parts of the nuclear chart where regular compound nuclear reactions are prohibited. The interesting region of Ra and Rn, where a rich tapestry of nuclear structure manifests itself, is now accessible using this technique of deep inelastic scattering. In particular, these nuclei are predicted to lie at the onset of octupole deformation and the region is rich in examples of shape coexistence. There are several theoretical predictions of nuclear structure of these nuclei that have not been experimentally tested. Moreover, there is serious disagreement among these theories. We used a beam of {sup 136}Xe at 720 MeV from ATLAS on a target of {sup 232}Th to produce a range of Rn isotopes, with a mass from 220 to 224, and Ra isotopes with masses greater than 222. The beam energy, target and beam were selected carefully to enhance the cross-section for production of these nuclei and reduce the Doppler broadening of the gamma rays that were observed in the Argonne Notre Dame gamma-ray facility. The 12 germanium detectors of this array allowed the observation of gamma-gamma coincidences. The inner ball of 50 BGO detectors allowed us to record the multiplicity and sum-energy information for each event. The latter should permit us to determine the entry region in the products of the transfer reaction. We had four successful days of beam-time, when we collected in excess of 8 x 10{sup 7} events. Data analysis is in progress at the University of Liverpool. A complete set of spectroscopic information on the yrast structure of the many nuclei produced in this reaction is being extracted.

  6. Cluster-transfer reactions with radioactive beams: A spectroscopic tool for neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Bottoni, S.; Leoni, S.; Fornal, B.; Raabe, R.; Rusek, K.; Benzoni, G.; Bracco, A.; Crespi, F. C. L.; Morales, A. I.; Bednarczyk, P.; Cieplicka-Oryńczak, N.; Królas, W.; Maj, A.; Szpak, B.; Callens, M.; Bouma, J.; Elseviers, J.; De Witte, H.; Flavigny, F.; Orlandi, R.; Reiter, P.; Seidlitz, M.; Warr, N.; Siebeck, B.; Hellgartner, S.; Mücher, D.; Pakarinen, J.; Vermeulen, M.; Bauer, C.; Georgiev, G.; Janssens, R. V. F.; Balabanski, D.; Sferrazza, M.; Kowalska, M.; Rapisarda, E.; Voulot, D.; Lozano Benito, M.; Wenander, F.

    2015-08-01

    An exploratory experiment performed at REX-ISOLDE to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier as a mechanism to explore the structure of exotic neutron-rich nuclei. The reactions 7Li(98Rb,α xn ) and 7Li(98Rb,t xn ) were studied through particle-γ coincidence measurements, and the results are presented in terms of the observed excitation energies and spins. Moreover, the reaction mechanism is qualitatively discussed as a transfer of a clusterlike particle within a distorted-wave Born approximation framework. The results indicate that cluster-transfer reactions can be described well as a direct process and that they can be an efficient method to investigate the structure of neutron-rich nuclei at medium-high excitation energies and spins.

  7. Cluster-transfer reactions with radioactive beams: A spectroscopic tool for neutron-rich nuclei

    DOE PAGES

    Bottoni, S.; Leoni, S.; Fornal, B.; ...

    2015-08-27

    An exploratory experiment performed at REX-ISOLDE to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier as a mechanism to explore the structure of exotic neutron-rich nuclei. The reactions 7Li(98Rb,αxn) and 7Li(98Rb,txn) were studied through particle-γ coincidence measurements, and the results are presented in terms of the observed excitation energies and spins. Moreover, the reaction mechanism is qualitatively discussed as a transfer of a clusterlike particle within a distorted-wave Born approximation framework. The results indicate that cluster-transfer reactions can be describedmore » well as a direct process and that they can be an efficient method to investigate the structure of neutron-rich nuclei at medium-high excitation energies and spins.« less

  8. Results for p-shell nuclei at LO, NLO, and N2LO in chiral EFT

    NASA Astrophysics Data System (ADS)

    Maris, Pieter; Vary, James

    2016-09-01

    We present results for p-shell nuclei using interactions derived from chiral effective field theory up to N2LO. The many-body calculations are performed order-by-order in the chiral expansion. We show the dependence of the ground state energies on the chiral order; we also present excitation energies of narrow excited states and other observables such as magnetic and quadrupole moments of selected ground states. We discuss both the theoretical uncertainties due to the truncation of the chiral expansion, as well as the numerical uncertainties associated with the many-body method. Supported by the US DOE Grants DESC0008485 (SciDAC/NUCLEI) and DE-FG02-87ER40371. Computational resources provided by NERSC, supported under US DOE Contract DE-AC02-05CH11231, and by the ALCF, supported under US DOE Contract DE-AC02-06CH11357.

  9. Emergence of rotational bands in ab initio no-core configuration interaction calculations of light nuclei

    NASA Astrophysics Data System (ADS)

    Caprio, Mark A.; Maris, Pieter; Vary, James P.

    2014-03-01

    The emergence of rotational bands has recently been observed in no-core configuration interaction (NCCI) calculations for p-shell nuclei, as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. Yrast and low-lying excited bands are found. The results demonstrate the possibility of well-developed rotational structure in NCCI calculations, using realistic nucleon-nucleon interactions, and within finite, computationally-accessible configuration spaces. This talk will focus on results for rotation in both the even-mass and odd-mass Be isotopes (7 <= A <= 12). Supported by US DOE (DE-FG02-95ER-40934, DESC0008485 SciDAC/NUCLEI, DE-FG02-87ER40371), US NSF (0904782), and Research Corporation for Science Advancement (Cottrell Scholar Award). Computational resources provided by NERSC (US DOE DE-AC02-05CH11231).

  10. Dynamical coupling of electrons and nuclei for Coulomb explosion of argon trimers in intense laser fields

    NASA Astrophysics Data System (ADS)

    Xie, Xiguo; Wu, Chengyin; Yuan, Zongqiang; Ye, Difa; Wang, Peng; Deng, Yongkai; Fu, Libin; Liu, Jie; Liu, Yunquan; Gong, Qihuang

    2015-08-01

    We have experimentally and theoretically studied the fragmentation dynamics of argon trimer (A r3) in intense laser fields. By coincidently measuring the momentum vectors, we obtained the emission geometry of the three fragmental ions produced in the three-body fragmentation process. In addition to the direct Coulomb explosion channels, we observed the indirect Coulomb explosion channels with Rydberg excitation. We have further developed a classical polyatomic molecular ensemble model, in which all interactions among electrons and nuclei are fully included, to simulate the fragmentation dynamics of argon trimer in intense laser fields. The experimental observations have been reproduced by the model calculation. The simulations show that the Rydberg excitation modifies the kinetic energy release as well as the emission geometry of fragmental ions during the explosion process. The study provides insight into the correlation dynamics of electrons and nuclei of many-body physics driven by intense laser fields.

  11. Diverse precerebellar neurons share similar intrinsic excitability

    PubMed Central

    Kolkman, Kristine E.; McElvain, Lauren E.; du Lac, Sascha

    2011-01-01

    The cerebellum dedicates a majority of the brain’s neurons to processing a wide range of sensory, motor, and cognitive signals. Stereotyped circuitry within the cerebellar cortex suggests that similar computations are performed throughout the cerebellum, but little is known about whether diverse precerebellar neurons are specialized for the nature of the information they convey. In vivo recordings indicate that firing responses to sensory or motor stimuli vary dramatically across different precerebellar nuclei, but whether this reflects diverse synaptic inputs or differentially tuned intrinsic excitability has not been determined. We targeted whole-cell patch clamp recordings to neurons in 8 precerebellar nuclei which were retrogradely labeled from different regions of the cerebellum in mice. Intrinsic physiology was compared across neurons in the medial vestibular, external cuneate, lateral reticular, prepositus hypoglossi, supragenual, Roller/intercalatus, reticularis tegmenti pontis (NRTP), and pontine nuclei. Within the firing domain, precerebellar neurons were remarkably similar. Firing faithfully followed temporally modulated inputs, could be sustained at high rates, and was a linear function of input current over a wide range of inputs and firing rates. Pharmacological analyses revealed common expression of Kv3 currents, which were essential for a wide linear firing range, and of SK currents, which were essential for a wide linear input range. In contrast, membrane properties below spike threshold varied considerably within and across precerebellar nuclei, as evidenced by variability in postinhibitory rebound firing. Our findings indicate that diverse precerebellar neurons perfom similar scaling computations on their inputs but may be differentially tuned to synaptic inhibition. PMID:22090493

  12. Pairing in spherical nuclei: Quasiparticle random-phase approximation calculations with the Gogny interaction

    NASA Astrophysics Data System (ADS)

    De Donno, V.; Co', G.; Anguiano, M.; Lallena, A. M.

    2017-05-01

    We investigate the effects of the pairing in spherical nuclei. We use the same finite-range interaction of Gogny type in the three steps of our approach, Hartree-Fock, Bardeen, Cooper, and Schrieffer, and quasiparticle random-phase-approximation calculations. We study electric- and magnetic-dipole and quadrupole and octupole excitations in oxygen and calcium isotopes and also in isotones with 20 neutrons. We investigate the pairing effects on single-particle energies and occupation probabilities, on the excitation energies, B values, and collectivity of low-lying states including the isoscalar electric-dipole and magnetic-dipole excitations, and also the giant resonances. The inclusion of the pairing increases the values of the excitation energies in all the cases that we have studied. In general, the effects of the pairing are too small to noticeably improve the agreement with the available experimental data.

  13. Survivability and Fusability in Reactions Leading to Heavy Nuclei in the Vicinity of the N = 126 Closed Shell

    SciTech Connect

    Sagaidak, Roman N.

    2009-08-26

    The macroscopic component of fission barriers for Po to Th nuclei around the N = 126 closed neutron shell has been derived within the framework of the analysis of available fission and evaporation residues excitation functions using the conventional barrier passing (fusion) model coupled with the standard statistical model and compared with the predictions of various theoretical models.

  14. One- and two neutron decay of light neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Thoennessen, Michael

    2014-09-01

    Direct reactions with radioactive beams have been used very successfully to populate and measure nuclei beyond the neutron dripline and neutron unbound excited states of nuclei close to the neutron dripline. The use of different reactions (for example neutron removal and proton removal) to populate the same final nucleus can be used to selectively populate different states. Recent results from the MoNA-LISA setup at the NSCL, including 10He, 10,11Li, and 12,13Be will be presented. Direct reactions with radioactive beams have been used very successfully to populate and measure nuclei beyond the neutron dripline and neutron unbound excited states of nuclei close to the neutron dripline. The use of different reactions (for example neutron removal and proton removal) to populate the same final nucleus can be used to selectively populate different states. Recent results from the MoNA-LISA setup at the NSCL, including 10He, 10,11Li, and 12,13Be will be presented. This work was supported in part by the NSF, Grant PHY-11-02511.

  15. Fragmentation of two-phonon {gamma}-vibrational strength in deformed nuclei

    SciTech Connect

    Wu, C.Y.; Cline, D.

    1996-12-31

    Rotational and vibrational modes of collective motion. are very useful in classifying the low-lying excited states in deformed nuclei. The rotational mode of collective motion is characterized by rotational bands having correlated level energies and strongly-enhanced E2 matrix elements. The lowest intrinsic excitation with I,K{sup {pi}} = 2,2{sup +} in even-even deformed nuclei, typically occurring at {approx}1 MeV, is classified as a one-phonon {gamma}-vibration state. In a pure harmonic vibration limit, the expected two-phonon {gamma}-vibration states with I,K{sup {pi}} = 0,0{sup +} and 4,4{sup +} should have excitation energies at twice that of the I,K{sup {pi}} = 2,2{sup +} excitation, i.e. {approx}2 MeV, which usually is above the pairing gap leading to possible mixing with two-quasiparticle configurations. Therefore, the question of the localization of two-phonon {gamma}-vibration strength has been raised because mixing may lead to fragmentation of the two-phonon strength over a range of excitation energy. For several well-deformed nuclei, an assignment of I,K{sup {pi}}=4,4{sup +} states as being two-phonon vibrational excitations has been suggested based on the excitation energies and the predominant {gamma}-ray decay to the I,K{sup {pi}}=2,2{sup +} state. However, absolute B(E2) values connecting the presumed two- and one-phonon states are the only unambiguous measure of double phonon excitation. Such B(E2) data are available for {sup 156}Gd, {sup 160}Dy, {sup 168}Er, {sup 232}Th, and {sup 186,188,190,192}Os. Except for {sup 160}Dy, the measured B(E2) values range from 2-3 Weisskopf units in {sup 156}Gd to 10-20 Weisskopf units in osmium nuclei; enhancement that is consistent with collective modes of motion.

  16. Applications of Energy Density Functional Theory to Skin Nuclei and Astrophysical Reactions

    NASA Astrophysics Data System (ADS)

    Tsoneva, N.; Lenske, H.

    2013-03-01

    A theoretical method based on energy-density-functional theory and quasiparticle-phonon model is applied for investigations of low-energy excitations of different multipolarities in stable and exotic nuclei. Of special interest is the possible relation of these modes to neutron or proton skins. From investigations of low-energy dipole and quadrupole states new modes of excitations related to pygmy dipole and pygmy quadrupole resonances of neutron or proton character are identified. The astrophysical relevance of the pygmy resonances is discussed.

  17. Coulomb excitation of states in 238U

    NASA Astrophysics Data System (ADS)

    McGowan, F. K.; Milner, W. T.

    1994-05-01

    Twenty-two states in 238U have been observed with 18 MeV 4He ions on a thick target. Eight 2 + states between 966 and 1782 keV and three 3 - states are populated by direct E2 and E3, respectively. The remaining states are either weakly excited by multiple Coulomb excitation and /or populated by the γ-ray decay of the directly excited states. Spin assignments are based on γ-ray angular distributions. Reduced transition probabilities have been deduced from the γ-ray yields. The B(E2) values for excitation of the 2 + states range from 0.10 to 3.0 W.u. (281 W.u. for the first 2 + state). For the 3 states, the B(E3, 0 → 3 -) values are 7.1, 7.8, and 24.2 W.u. Several of the 2 + states have decay branches to the one-phonon states with B(E2) values between 27 and 56 W.u. which are an order of magnitude larger than the B(E2) values between the one- and zero-phonon states. This disagrees with our present understanding of collectivity in nuclei if these 2 + states are considered to be collective two-phonon excitations. However, the excitation energies of these 2 + states with respect to the one-phonon states are only 1.3 to 1.6. The B(E1) values for 17 transitions between the positive- and negative-parity states range between 10 -3 and 10 -7 W.u. The B(E1) branching ratios for many of these transitions have large deviations from the Alaga-rule predictions. These deviations can be understood by the strong Coriolis coupling between the states of the one-phonon octupole quadruplet in deformed nuclei. The general features of the experimental results for the B(E3) values are reproduced by the microscopic calculations of Neergård and Vogel when the Coriolis coupling between the states of the octupole quadruplet is included.

  18. Coulomb excitation of states in 232Th

    NASA Astrophysics Data System (ADS)

    McGowan, F. K.; Milner, W. T.

    1993-09-01

    Twenty-five states in 232Th have been observed with 18 MeV 4He ions on a thick target. Eleven 2 + states between 774 and 1554 keV and three 3 - states are populated by direct E2 and E3, respectively. The remaining states are either weakly excited by multiple Coulomb excitation and/or populated by the decay of the directly excited states. Spin assignments are based on γ-ray angular distributions. Reduced transition probabilities have been deduced from the γ-ray yields. The B(E2) values for excitation of the 2 + states range from 0.024 to 3.5 W.u. (222 W.u. for the first 2 + state). For the 3 - states, the B(E3,0 → 3 -) values are 1.7, 11, and 24 W.u. A possible two-phonon state at 1554 keV, which is nearly harmonic, decays to four members of the one-phonon states, to the ground-state band, and to the K = 0 - octupole band. The B(E2) value for excitation of this state is 0.66 ± 0.05 W.u. and the B(E1) values for decay of this state are (2 and 6)×10 -4 W.u. The B(E2) values between two- and one-phonon vibrational states range between 16 and 53 W.u. which are an order of magnitude larger than the B(E2) values between the one- and zero-phonon states. This disagrees with our present understanding of collectivity in nuclei if this 2 + state is considered to be a collective two-phonon excitation. The 2 + states at 1477 and 1387 keV, which are also nearly harmonic, are possible candidates with two-phonon structure. The agreement between the experimental results and the microscopic calculations by Neergård and Vogel of the B(E3,0 → 3) for the 3 - members of the one-phonon octupole quadruplet is satisfactory when the Coriolis coupling between the states with K and K ± 1 is included. The B(E1) branching ratios for transitions from the 3 - and 1 - states to the ground-state band have large deviations from the Alaga-rule predictions. These deviations can be understood by the strong Coriolis coupling between the states of the octupole quadruplet in deformed nuclei.

  19. Ice Nuclei from Birch Trees

    NASA Astrophysics Data System (ADS)

    Felgitsch, Laura; Seifried, Teresa; Winkler, Philipp; Schmale, David, III; Grothe, Hinrich

    2017-04-01

    While the importance of heterogeneous ice nucleation in the atmosphere is known, we still know very little about the substances triggering these freezing events. Recent findings support the theory that biological ice nuclei (IN) exhibit the ability to play an important role in these processes. Huffman et al. (2013) showed a burst of biological IN over woodlands triggered by rain events. Birch pollen are known to release a high number of efficient IN if incubated in water (Pummer et al. 2012). Therefore birches are of interest in our research on this topic. Plants native to the timberline, such as birch trees, have to cope with very cold climatic conditions, rendering freezing avoidance impossible. These plants trigger freezing in their extracellular spaces to control the freezing process and avoid intracellular freezing, which would have lethal consequences. The plants hereby try to freeze at a temperature well above homogeneous freezing temperatures but still at temperatures low enough to not be effected by brief night frosts. To achieve this, IN are an important tool. The specific objective of our work was to study the potential sources and distribution of IN in birch trees. We collected leaves, fruit, bark, and trunk cores from a series of mature birch trees in Tyrol, Austria at different altitudes and sampling sites. We also collected samples from a birch tree in an urban park in Vienna, Austria. Our data show a sampling site dependence and the distribution of IN throughout the tree. Our data suggest that leaves, bark, and wood of birch can function as a source of IN, which are easily extracted with water. The IN are therefore not restricted to pollen. Hence, the amount of IN, which can be released from birch trees, is tremendous and has been underrated so far. Future work aims to elucidate the nature, contribution, and potential ecological roles of IN from birch trees in different habitats. Huffman, J.A., Prenni, A.J., DeMott, P.J., Pöhlker, C., Mason, R

  20. Synthesis of the lightest nuclei

    NASA Astrophysics Data System (ADS)

    Kneller, James Patrick

    The lightest nuclei are principally synthesized either during the first moments of the Universe or as fragments from the spallation of heavier nuclei when Cosmic Rays interact with the Interstellar Medium and this dissertation investigates each in turn. In the first half the predictions from Big Bang Nucleosynthesis are studied when the requirements of only three relativistic neutrino flavors and a small electron neutrino chemical potential are relaxed. The hope that a small, acceptable region for each can be identified is shown to be unfounded because of a degeneracy amongst the parameters. Additional information is required and this may be obtained from the anisotropies in the Cosmic Microwave Background. The estimates of the baryon to photon ratio are shown to be consistent and a relatively well identified value for the number of relativistic neutrino species can be found but with a variance that exhibits a dependency upon the prior assumptions. By imposing a constraint upon the age of the Universe the number of relativistic neutrino species is shown to be <=6 which then yields an limit to the electron neutrino chemical potential of <=0.3. The second is concerned with the kinetics and evolution of Galactic Cosmic Ray Nucleosynthesis. Two approximations are frequently employed in calculations of the production rates: the termination of the reaction expansion at the `One-Step' term and the Straight-Ahead Approximation for the fragment energies. Relaxing the Straight-Ahead Approximation produces minor differences of order 5% but changes of order 10-50% are found when the Two-Step terms in the reaction expansion are included. The two proposed solutions capable of reconciling the theoretical predictions of the evolution of the abundances of these elements with the observations: the possibility of an enriched cosmic ray composition and a modified Oxygen to Iron relation. From the analysis of a simple model it is found that an enriched component greater than >~ 70% is

  1. alpha-clustering and molecular-orbital states in sd-shell nuclei

    SciTech Connect

    Kimura, M.; Furutachi, N.

    2010-05-12

    The alpha-clustering and molecular-orbitals of {sup 22}Ne and F isotopes are investigated based on antisymmetrized molecular dynamics (AMD). The observed candidates for the alpha cluster state of {sup 22}Ne are understood as the molecular-orbital states and alpha+{sup 18}O di-nuclei states. The presence of the molecular-orbital states in the O and F isotopes and the drastic reduction of their excitation energy near the neutron-drip line are predicted.

  2. Fluxes and spectra of quasimonochromatic annihilation photons for studying E1 giant resonances in nuclei

    SciTech Connect

    Dzhilavyan, L. Z.

    2014-12-15

    The fluxes and spectra of quasimonochromatic photons originating from the in-flight annihilation of positrons interacting with electrons of targets are analyzed in the energy region characteristic of the excitation of E1 giant resonances in nuclei. Targets of small thickness and low atomic number are used. The dependences of the spectra on the energy and angle (and their scatter) for positrons incident to the target, on the collimation angle for photons, and on the target thickness are studied.

  3. The first unbound states of mirror 9Be and 9B nuclei

    NASA Astrophysics Data System (ADS)

    Odsuren, Myagmarjav; Kikuchi, Yuma; Myo, Takayuki; Aikawa, Masayuki; Katō, Kiyoshi

    2017-09-01

    The structures of the first excited states of mirror 9Be and 9B nuclei are studied by using the α + α + N three-body model and the complex scaling method. The resonance energy with a decay width of the 1/2+ state of 9B is calculated by taking into account the consistency with photodisintegration cross sections of 9Be into the 1/2+ state. We also compare the results with the measured data and other theories.

  4. Effect of nuclear-reaction mechanisms on the population of excited nuclear states and isomeric ratios

    SciTech Connect

    Skobelev, N. K.

    2016-07-15

    Experimental data on the cross sections for channels of fusion and transfer reactions induced by beams of radioactive halo nuclei and clustered and stable loosely bound nuclei were analyzed, and the results of this analysis were summarized. The interplay of the excitation of single-particle states in reaction-product nuclei and direct reaction channels was established for transfer reactions. Respective experiments were performed in stable ({sup 6}Li) and radioactive ({sup 6}He) beams of the DRIBs accelerator complex at the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, and in deuteron and {sup 3}He beams of the U-120M cyclotron at the Nuclear Physics Institute, Academy Sciences of Czech Republic (Řež and Prague, Czech Republic). Data on subbarrier and near-barrier fusion reactions involving clustered and loosely bound light nuclei ({sup 6}Li and {sup 3}He) can be described quite reliably within simple evaporation models with allowance for different reaction Q-values and couple channels. In reactions involving halo nuclei, their structure manifests itself most strongly in the region of energies below the Coulomb barrier. Neutron transfer occurs with a high probability in the interactions of all loosely bound nuclei with light and heavy stable nuclei at positive Q-values. The cross sections for such reactions and the respective isomeric ratios differ drastically for nucleon stripping and nucleon pickup mechanisms. This is due to the difference in the population probabilities for excited single-particle states.

  5. Effect of nuclear-reaction mechanisms on the population of excited nuclear states and isomeric ratios

    NASA Astrophysics Data System (ADS)

    Skobelev, N. K.

    2016-07-01

    Experimental data on the cross sections for channels of fusion and transfer reactions induced by beams of radioactive halo nuclei and clustered and stable loosely bound nuclei were analyzed, and the results of this analysis were summarized. The interplay of the excitation of single-particle states in reaction-product nuclei and direct reaction channels was established for transfer reactions. Respective experiments were performed in stable (6Li) and radioactive (6He) beams of the DRIBs accelerator complex at the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, and in deuteron and 3He beams of the U-120M cyclotron at the Nuclear Physics Institute, Academy Sciences of Czech Republic (Řež and Prague, Czech Republic). Data on subbarrier and near-barrier fusion reactions involving clustered and loosely bound light nuclei (6Li and 3He) can be described quite reliably within simple evaporation models with allowance for different reaction Q-values and couple channels. In reactions involving halo nuclei, their structure manifests itself most strongly in the region of energies below the Coulomb barrier. Neutron transfer occurs with a high probability in the interactions of all loosely bound nuclei with light and heavy stable nuclei at positive Q-values. The cross sections for such reactions and the respective isomeric ratios differ drastically for nucleon stripping and nucleon pickup mechanisms. This is due to the difference in the population probabilities for excited single-particle states.

  6. Excitation Energy Deposition and the Fission Process in the Reactions COPPER-63 + MOLYBDENUM-92, 100 AT 10, 17, 25 and 35 Amev and NEON-20 + SAMARIUM-144, 148, 154 AT 20 Amev.

    NASA Astrophysics Data System (ADS)

    Lou, Yunian

    Excitation energy deposition and light particle emission for fissioning nuclei with excitation energies from 2 to 6 MeV/nucleon are studied for the reaction of 20 AMeV ^{20}Ne with ^{144,148,154}Sm and 10, 17, 25 and 35 AMeV ^{63}Cu with ^{92,100}Mo using the Texas A&M Neutron Ball detector. Linear momentum transfers (LMT) are determined from fission fragment folding angle measurements and used to estimate excitation energies. The associated multiplicities of neutrons, protons and alpha particles are obtained, together with their average energies. These data are used to reconstruct the initial excitation energies of the compound nucleus. With increasing beam energy, an increasing discrepancy between the excitation energy derived from the LMT measurements and the reconstructed one is observed attributed to intermediate mass fragment (IMF) emission. The measured neutron multiplicities show a strong increase with increasing neutron to proton ratio of composite system, as well as increasing beam energy. The experimental data for particle multiplicities are compared with calculations using the statistical model GEMINI. The effect of the dynamic fission delay on the light particle multiplicities is explored. The neutron multiplicities are relatively insensitive to the dynamic fission delay. The calculated charged particle multiplicities are more sensitive, but the comparisons between the calculation and experiment indicate that the light charged particle multiplicity data are not a good measure of dynamic fission delay.

  7. Quasielastic knockout of light fragments from {sup 12}C and {sup 16}O nuclei by intermediate-energy pions

    SciTech Connect

    Abramov, B. M.; Borodin, Yu. A.; Bulychjov, S. A.; Dukhovskoy, I. A.; Krutenkova, A. P.; Kulikov, V. V. Martemianov, M. A.; Matsuk, M. A.; Tarasov, V. E.; Turdakina, E. N.; Khanov, A. I.

    2007-07-15

    Quasielastic deuteron and triton knockout from {sup 12}C and {sup 16}O nuclei has been studied infull kinematics using a 0.72-GeV/c pion beam. The momentum distributions of the intranuclear quasideuteron motion, excitation-energy spectra of the residual nuclei, and the effective numbers N{sub d}{sup eff} of quasideuterons are determined. The parameters of the quasideuteron intranuclear motion are in reasonable agreement with the results obtained in other beams. The N{sub d}{sup eff} in the nuclei from {sup 6}Li to {sup 16}O measured in full kinematics are virtually independent of the atomic number in contrast to the analogous values in the inclusive deuteron-knockout reaction induced by protons. The phenomenon of triton knockout from these nuclei is observed, which makes possible estimation of the cross section of backward pion-triton elastic scattering in yet unexplored regions of energy and momentum transfer.

  8. Evolution of the giant dipole resonance properties with excitation energy

    NASA Astrophysics Data System (ADS)

    Santonocito, D.; Blumenfeld, Y.

    2006-10-01

    The studies of the evolution of the hot Giant Dipole Resonance (GDR) properties as a function of excitation energy are reviewed. The discussion will mainly focus on the A ˜ 100-120 mass region where a large amount of data concerning the width and the strength evolution with excitation energy are available. Models proposed to interpret the main features and trends of the experimental results will be presented and compared to the available data in order to extract a coherent scenario on the limits of the development of the collective motion in nuclei at high excitation energy. Experimental results on the GDR built in hot nuclei in the mass region A ˜ 60-70 will be also shown, allowing to investigate the mass dependence of the main GDR features. The comparison between limiting excitation energies for the collective motion and critical excitation energies extracted from caloric curve studies will suggest a possible link between the disappearance of collective motion and the liquid-gas phase transition.

  9. Photoconversion of DAPI following UV or violet excitation can cause DAPI to fluoresce with blue or cyan excitation.

    PubMed

    Piterburg, M; Panet, H; Weiss, A

    2012-04-01

    4'-6-Diamidino-2-phenylindole is a fluorescent dye commonly used to visualize deoxyribonucleic acid or cell nuclei in fixed cell preparations, and is often used together with fluorescein or green fluorescent protein, which can be excited without exciting 4'-6-Diamidino-2-phenylindole. It is assumed that when using typical fluorescein or green fluorescent protein filter cubes, 4'-6-Diamidino-2-phenylindole will not be observed. In this paper, we show that following observation of 4'-6-Diamidino-2-phenylindole using UV or violet excitation, it may become sensitive to the blue/cyan excitation used in fluorescein/green fluorescent protein filter cubes. This has serious implications for the use of 4'-6-Diamidino-2-phenylindole together with widely used green fluorophores in double labelling experiments.

  10. Chemical complexity in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Martin-Pintado, Jesus

    2007-12-01

    In recent years our knowledge of the chemical complexity in the nuclei of galaxies has dramatically changed. Recent observations of the nucleus of the Milky Way, of the starburst galaxy NGC253 and of the ultraluminous infrared galaxy (ULIRG) Arp220 have shown large abundance of complex organic molecules believed to be formed on grains. The Galactic center appears to be the largest repository of complex organic molecule like aldehydes and alcohols in the galaxy. We also measure large abundance of methanol in starburst galaxies and in ULIRGs suggesting that complex organic molecules are also efficiently produced in the central region of galaxies with strong star formation activity. From the systematic observational studies of molecular abundance in regions dominated by different heating processes like shocks, UV radiation, X-rays and cosmic rays in the center of the Milky Way, we are opening the possibility of using chemistry as a diagnostic tool to study the highly obscured regions of galactic centers. The templates found in the nucleus of the Milky Way will be used to establish the main mechanisms driving the heating and the chemistry of the molecular clouds in galaxies with different type of activity. The role of grain chemistry in the chemical complexity observed in the center of galaxies will be also briefly discussed.

  11. Neurotransmitters of the suprachiasmatic nuclei

    PubMed Central

    Reghunandanan, Vallath; Reghunandanan, Rajalaxmy

    2006-01-01

    There has been extensive research in the recent past looking into the molecular basis and mechanisms of the biological clock, situated in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. Neurotransmitters are a very important component of SCN function. Thorough knowledge of neurotransmitters is not only essential for the understanding of the clock but also for the successful manipulation of the clock with experimental chemicals and therapeutical drugs. This article reviews the current knowledge about neurotransmitters in the SCN, including neurotransmitters that have been identified only recently. An attempt was made to describe the neurotransmitters and hormonal/diffusible signals of the SCN efference, which are necessary for the master clock to exert its overt function. The expression of robust circadian rhythms depends on the integrity of the biological clock and on the integration of thousands of individual cellular clocks found in the clock. Neurotransmitters are required at all levels, at the input, in the clock itself, and in its efferent output for the normal function of the clock. The relationship between neurotransmitter function and gene expression is also discussed because clock gene transcription forms the molecular basis of the clock and its working. PMID:16480518

  12. Molecular outflows in starburst nuclei

    NASA Astrophysics Data System (ADS)

    Roy, Arpita; Nath, Biman B.; Sharma, Prateek; Shchekinov, Yuri

    2016-12-01

    Recent observations have detected molecular outflows in a few nearby starburst nuclei. We discuss the physical processes at work in such an environment in order to outline a scenario that can explain the observed parameters of the phenomenon, such as the molecular mass, speed and size of the outflows. We show that outflows triggered by OB associations, with NOB ≥ 105 (corresponding to a star formation rate (SFR)≥1 M⊙ yr-1 in the nuclear region), in a stratified disc with mid-plane density n0 ˜ 200-1000 cm-3 and scaleheight z0 ≥ 200(n0/102 cm-3)-3/5 pc, can form molecules in a cool dense and expanding shell. The associated molecular mass is ≥107 M⊙ at a distance of a few hundred pc, with a speed of several tens of km s-1. We show that an SFR surface density of 10 ≤ ΣSFR ≤ 50 M⊙ yr-1 kpc-2 favours the production of molecular outflows, consistent with observed values.

  13. The morphology of cometary nuclei

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Jorda, L.

    comets display residual activity or clouds of dust grains around their nuclei. Taking the residual signal into account (mostly using simple models for the brightness distribution) the size estimates of the nuclei could be improved. The (nuclear) magnitude of a comet depends on the product of its albedo and cross-section. Only in a few cases could the albedo and size of a cometary nucleus be separated by additional observation of its thermal emission at infrared wavelengths. By comparison with outer Solar System asteroids Cruikshank et al. (1985) derived a surprisingly low albedo of about 0.04. A value in clear contradiction to the perception of an icy surface but fully confirmed by the first resolved images of a cometary nucleus during the flybys of the Vega and Giotto spacecraft of comet Halley (Sagdeev et al. 1986, Keller et al. 1986). The improvements of radar techniques led to the detection of reflected signals and finally to the derivation of nuclear dimensions and rotation rates. The observations, however, are also model dependent (rotation and size are similarly interwoven as are albedo and size) and sensitive to large dust grains in the vicinity of a nucleus. As an example, Kamoun et al. (1982) determined the radius of comet Encke to 1.5 (2.3, 1.0) km using the spin axis determination of Whipple and Sekanina (1979). The superb spatial resolution of the Hubble Space Telescope (HST) is not quite sufficient to resolve a cometary nucleus. The intensity distribution of the inner coma, however, can be observed and extrapolated toward the nucleus based on models of the dust distribution. If this contribution is subtracted from the central brightness the signal of the nucleus can be derived and hence its product of albedo times cross-section (Lamy and Toth 1995, Rembor 1998, Keller and Rembor 1998; Section 4.3). It has become clear that cometary nuclei are dark, small, often irregular bodies with dimensions ranging from about a kilometre (comet Wirtanen, the target of

  14. Production of proton-rich nuclei around Z = 84-90 in fusion-evaporation reactions

    NASA Astrophysics Data System (ADS)

    Chen, Peng-Hui; Feng, Zhao-Qing; Niu, Fei; Guo, Ya-Fei; Zhang, Hong-Fei; Li, Jun-Qing; Jin, Gen-Ming

    2017-05-01

    Within the framework of the dinuclear system model, production cross sections of proton-rich nuclei with charged numbers of Z = 84-90 are investigated systematically. Possible combinations with the 28Si, 32S, 40Ar bombarding the target nuclides 165Ho, 169Tm, 170-174Yb, 175,176Lu, 174, 176-180Hf and 181Ta are analyzed thoroughly. The optimal excitation energies and evaporation channels are proposed to produce the proton-rich nuclei. The systems are feasible to be constructed in experiments. It is found that the neutron shell closure of N = 126 is of importance during the evaporation of neutrons. The experimental excitation functions in the 40Ar induced reactions can be nicely reproduced. The charged particle evaporation is comparable with neutrons in cooling the excited proton-rich nuclei, in particular for the channels with α and proton evaporation. The production cross section increases with the mass asymmetry of colliding systems because of the decrease of the inner fusion barrier. The channels with pure neutron evaporation depend on the isotopic targets. But it is different for the channels with charged particles and more sensitive to the odd-even effect.

  15. The low-energy dipole structure of 232Th , 236U and 238U actinide nuclei

    NASA Astrophysics Data System (ADS)

    Kuliev, A. A.; Guliyev, E.; Ertugral, F.; Özkan, S.

    2010-03-01

    In this study, ensuremath I^{π} = 1+ and ensuremath I^{π} = 1- dipole mode excitations are systematically investigated within the rotational and translational + Galilean invariant quasiparticle random-phase approximation for 232Th , 236U , and 238U actinide nuclei. It is shown that the investigated nuclei reach a B( M1) strength structure, which corresponds to the scissors mode. The calculated mean excitation energies as well as the summed B( M1) value of the scissors mode excitations are consistent with the available experimental data. The results of calculations indicate large differences to the rare-earth nuclei as is the case for the experiment: a doubling of the observed dipole strengths and a shift of the energy centroid to the lower energies by about 800keV. The calculations indicate the presence of a few prominent negative-parity ensuremath K^{π} = 1- states in the 2.0-4.0MeV energy interval. The occurrence of the negative-parity dipole states with the rather high B( E1) value less than 4MeV shows the necessity of explicit parity measurements for the correct determination of the scissors mode strength in 232Th , 236U , and 238U isotopes.

  16. Antagonistic otolith-visual units in cat vestibular nuclei

    NASA Technical Reports Server (NTRS)

    Daunton, Nancy G.; Christensen, Carol A.

    1992-01-01

    The nature of neural coding of visual (Vis) and vestibular (Vst) information on translational motion in the region of the vestibular nuclei was investigated using extracellular single-unit recordings in alert adult cats. Responses were recorded and averaged over 60 cycles of stimulation in the vertical and horizontal planes, which included the Vst (movement of the animal in the dark), Vis (movement within lighted visual surround), and combined Vis and Vst (movement of the animal within the lighted stationary visual surround). Data are reported on responses to stimulations along the axis showing maximal sensitivity. A small number of units were identified that showed an antagonistic relationship between their Vis and Vst responses (since they were maximally excited by Vis and by Vst stimulations in the same direction). Results suggest that antagonistic units may belong to an infrequently encountered, but functionally distinct, class of neurons.

  17. On spectroscopic factors of magic and semimagic nuclei

    SciTech Connect

    Saperstein, E. E.; Gnezdilov, N. V.; Tolokonnikov, S. V.

    2014-10-15

    Single-particle spectroscopic factors (SF) of magic and semimagic nuclei are analyzed within the self-consistent theory of finite Fermi systems. The the in-volume energy dependence of the mass operator Σ is taken into account in addition to the energy dependence induced by the surface-phonon coupling effects which is commonly considered. It appears due to the effect of high-lying collective and non-collective particle-hole excitations and persists in nuclear matter. The self-consistent basis of the energy density functional method by Fayans et al. is used. Both the surface and in-volume contributions to the SFs turned out to be of comparable magnitude. Results for magic {sup 208}Pb nucleus and semimagic lead isotopes are presented.

  18. Systematic study of iodine nuclei in A∼125 mass region

    SciTech Connect

    Sharma, H. P.; Chakraborty, S.; Kumar, A.; Banerjee, P.; Ganguly, S.; Muralithar, S.; Singh, R. P.; Kumar, A.; Kaur, N.; Kumar, S.; Chaturvedi, L.; Jain, A. K.; Laxminarayan, S.

    2014-08-14

    Excited states of {sup 127}I were populated via {sup 124}Sn({sup 7}Li,{sup 4}nγ){sup 127}I fusion-evaporation reaction at beam energy of 33 MeV. Multipolarities of several transitions were determined and spins of corresponding states have been confirmed. The band-head spin and parity of an already reported band at 2901.2 keV has been confirmed. Based on the observed characteristic features and by comparing with the systematics of odd mass iodine nuclei, a πg{sub 7/2}⊗νh{sub 11/2}{sup 2} configuration has been proposed for this band. The experimental B(M1)/B(E2) values for πg{sub 7/2} band were compared with the theoretical results of semi classical model of Frauendorf and Donau and found in well agreement.

  19. Systematic study of iodine nuclei in A˜125 mass region

    NASA Astrophysics Data System (ADS)

    Sharma, H. P.; Chakraborty, S.; Banerjee, P.; Ganguly, S.; Muralithar, S.; Singh, R. P.; Kumar, A.; Kaur, N.; Kumar, S.; Kumar, A.; Chaturvedi, L.; Jain, A. K.; Laxminarayan, S.

    2014-08-01

    Excited states of 127I were populated via 124Sn(7Li,4nγ)127I fusion-evaporation reaction at beam energy of 33 MeV. Multipolarities of several transitions were determined and spins of corresponding states have been confirmed. The band-head spin and parity of an already reported band at 2901.2 keV has been confirmed. Based on the observed characteristic features and by comparing with the systematics of odd mass iodine nuclei, a πg7/2⊗νh11/22 configuration has been proposed for this band. The experimental B(M1)/B(E2) values for πg7/2 band were compared with the theoretical results of semi classical model of Frauendorf and Donau and found in well agreement.

  20. Low-energy dipole modes in unstable nuclei

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Sagawa, H.

    2001-01-01

    Enhancement of electric dipole (E1) strength at low energy is investigated in light neutron and proton drip-line nuclei with halo or skin by large scale shell model calculations. Large E1 strength are found in low excitation energy region below 5 MeV in 11Li, 12Be and 13O. Both the effects of extended halo or skin wave functions and the coherence in the transition amplitudes are important to enhance the E1 strength. The particle (hole)- vibration coupling model is shown to explain the splitting of the low energy E1 strength in 11Li and 13O. Melting of the shell magicity at N=8 and Z=8 is pointed out. Pigmy resonances in oxygen isotopes are also studied. The pigmy strength below E x = 15 MeV are shown to have about 10 % of the Thomas- Reiche-Kuhn (TRK) sum rule and more than 40 % of the cluster sum rule.