Science.gov

Sample records for excited state intramolecular

  1. Ultrafast excited-state intramolecular proton transfer of aloesaponarin I.

    PubMed

    Nagaoka, Shin-ichi; Uno, Hidemitsu; Huppert, Dan

    2013-04-25

    Time-resolved emission of aloesaponarin I was studied with the fluorescence up-conversion and time-correlated single-photon-counting techniques. The rates of the excited-state intramolecular proton transfer, of the solvent and molecular rearrangements, and of the decay from the excited proton-transferred species were determined and interpreted in the light of time-dependent density functional calculations. These results were discussed in conjunction with UV protection and singlet-oxygen quenching activity of aloe.

  2. Ratiometric fluorescent/colorimetric cyanide-selective sensor based on excited-state intramolecular charge transfer-excited-state intramolecular proton transfer switching.

    PubMed

    Lin, Wei-Chi; Fang, Sin-Kai; Hu, Jiun-Wei; Tsai, Hsing-Yang; Chen, Kew-Yu

    2014-05-20

    A novel salicylideneaniline-based fluorescent sensor, SB1, with a unique excited-state intramolecular charge transfer-excited-state intramolecular proton transfer (ESICT-ESIPT) coupled system was synthesized and demonstrated to fluorescently sense CN(-) with specific selectivity and high sensitivity in aqueous media based on ESICT-ESIPT switching. A large blue shift (96 nm) was also observed in the absorption spectra in response to CN(-). The bleaching of the color could be clearly observed by the naked eye. Moreover, SB1-based test strips were easily fabricated and low-cost, and could be used in practical and efficient CN(-) test kits. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations further support the cyanide-induced ESICT-ESIPT switching mechanism. The results provide the proof of concept that the colorimetric and ratiometric fluorescent cyanide-selective chemodosimeter can be created based on an ESICT-ESIPT coupled system.

  3. Ultrafast excited state dynamics of fucoxanthin: excitation energy dependent intramolecular charge transfer dynamics.

    PubMed

    Kosumi, Daisuke; Kusumoto, Toshiyuki; Fujii, Ritsuko; Sugisaki, Mitsuru; Iinuma, Yoshiro; Oka, Naohiro; Takaesu, Yuki; Taira, Tomonori; Iha, Masahiko; Frank, Harry A; Hashimoto, Hideki

    2011-06-14

    Carotenoids containing a carbonyl group in conjugation with their polyene backbone are naturally-occurring pigments in marine organisms and are essential to the photosynthetic light-harvesting function in aquatic algae. These carotenoids exhibit spectral characteristics attributed to an intramolecular charge transfer (ICT) state that arise in polar solvents due to the presence of the carbonyl group. Here, we report the spectroscopic properties of the carbonyl carotenoid fucoxanthin in polar (methanol) and nonpolar (cyclohexane) solvents studied by steady-state absorption and femtosecond pump-probe measurements. Transient absorption associated with the optically forbidden S(1) (2(1)A) state and/or the ICT state were observed following one-photon excitation to the optically allowed S(2) (1(1)B) state in methanol. The transient absorption measurements carried out in methanol showed that the ratio of the ICT-to-S(1) state formation increased with decreasing excitation energy. We also showed that the ICT character was clearly visible in the steady-state absorption in methanol based on a Franck-Condon analysis. The results suggest that two spectroscopic forms of fucoxanthin, blue and red, exist in the polar environment. This journal is © the Owner Societies 2011

  4. Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters.

    PubMed

    Padalkar, Vikas S; Seki, Shu

    2016-01-07

    Solid state emitters based on excited state intramolecular proton transfer (ESIPT) have been attracting considerable interest since the past few years in the field of optoelectronic devices because of their desirable unique photophysical properties. The photophysical properties of the solid state ESIPT fluorophores determine their possible applicability in functional materials. Less fluorescence quantum efficiencies and short fluorescence lifetime in the solid state are the shortcomings of the existing ESIPT solid state emitters. Designing of ESIPT chromophores with high fluorescence quantum efficiencies and a long fluorescence lifetime in the solid state is a challenging issue because of the unclear mechanism of the solid state emitters in the excited state. Reported design strategies, detailed photophysical properties, and their applications will help in assisting researchers to overcome existing challenges in designing novel solid state ESIPT fluorophores for promising applications. This review highlights recently developed solid state ESIPT emitters with focus on molecular design strategies and their photophysical properties, reported in the last five years.

  5. Internal Stark effect mediates intramolecular excited-state proton transfer in 3-hydroxyflavone derivatives

    NASA Astrophysics Data System (ADS)

    Klymchenko, Andriy S.; Demchenko, Alexander P.

    2002-12-01

    Internal Stark effect in electronic spectra is the effect that is observed when the electronic bands shift udner the influence of promixal charges. In order to study the possible involvement of this effect in modulating the intramolecular proton transfer reactions in the excited state, we designed and studied several derivatives of 3-hydroxyflavone. They include the species containing neutral and positively charged substituents in 6 position of chromone ring. These compounds were studied in solvents of different polarities. In these experiments the shifts of both normal and tautomer flurosence bands are clearly observed in a manner predicted by Stark effect theory. In addition, a dramatic effect of suppression by introduced charge of intramolecular excited-state proton transfer was observed.

  6. Molecular dynamics of excited state intramolecular proton transfer: 3-hydroxyflavone in solution

    SciTech Connect

    Bellucci, Michael A.; Coker, David F.

    2012-05-21

    The ultrafast enol-keto photoisomerization in the lowest singlet excited state of 3-hydroxyflavone is investigated using classical molecular dynamics in conjunction with empirical valence bond (EVB) potentials for the description of intramolecular interactions, and a molecular mechanics and variable partial charge model, dependent on transferring proton position, for the description of solute-solvent interactions. A parallel multi-level genetic program was used to accurately fit the EVB potential energy surfaces to high level ab initio data. We have studied the excited state intramolecular proton transfer (ESIPT) reaction in three different solvent environments: methylcyclohexane, acetonitrile, and methanol. The effects of the environment on the proton transfer time and the underlying mechanisms responsible for the varied time scales of the ESIPT reaction rates are analyzed. We find that simulations with our EVB potential energy surfaces accurately reproduce experimentally determined reaction rates, fluorescence spectra, and vibrational frequency spectra in all three solvents. Furthermore, we find that the ultrafast ESIPT process results from a combination of ballistic transfer, and intramolecular vibrational redistribution, which leads to the excitation of a set of low frequency promoting vibrational modes. From this set of promoting modes, we find that an O-O in plane bend and a C-H out of plane bend are present in all three solvents, indicating that they are fundamental to the ultrafast proton transfer. Analysis of the slow proton transfer trajectories reveals a solvent mediated proton transfer mechanism, which is diffusion limited.

  7. Ground and excited state intramolecular proton transfer controlled intramolecular charge separation and recombination: A new type of charge and proton transfer reaction

    NASA Astrophysics Data System (ADS)

    Nie, Daobo; Bian, Zuqiang; Yu, Anchi; Chen, Zhuqi; Liu, Zhiwei; Huang, Chunhui

    2008-06-01

    A novel β-diketone 1-(4-(9-carbazol)phenyl)-3-phenyl-1,3-propanedione (CDBM) has been synthesized. When excited at 380 nm, this molecule shows single fluorescence. However, when excited at 338 nm, it shows dual fluorescence. A Al 3+ complex Al(CDBM) 3 has been synthesized to investigate the dual fluorescence of CDBM. It is found that this complex shows single fluorescence under all excitation. This result indicated that the dual fluorescence of CDBM may relate to the intramolecular proton transfer reaction. Based on the experimental and theoretical studies of CDBM, N-(4-cyanophenyl)carbazole (CBN) and Al(CDBM) 3, a "ground and excited state intramolecular proton transfer controlled intramolecular charge separation and recombination" mechanism is proposed to explain the unusual excitation-dependent dual fluorescence of CDBM.

  8. Highly Efficient Thermally Activated Delayed Fluorescence from an Excited-State Intramolecular Proton Transfer System

    PubMed Central

    2017-01-01

    Thermally activated delayed fluorescence (TADF) materials have shown great potential for highly efficient organic light-emitting diodes (OLEDs). While the current molecular design of TADF materials primarily focuses on combining donor and acceptor units, we present a novel system based on the use of excited-state intramolecular proton transfer (ESIPT) to achieve efficient TADF without relying on the well-established donor–acceptor scheme. In an appropriately designed acridone-based compound with intramolecular hydrogen bonding, ESIPT leads to separation of the highest occupied and lowest unoccupied molecular orbitals, resulting in TADF emission with a photoluminescence quantum yield of nearly 60%. High external electroluminescence quantum efficiencies of up to 14% in OLEDs using this emitter prove that efficient triplet harvesting is possible with ESIPT-based TADF materials. This work will expand and accelerate the development of a wide variety of TADF materials for high performance OLEDs. PMID:28776019

  9. Intramolecular charge transfer in the excited state of 4-dimethylaminobenzaldehyde and 4-dimethylaminoacetophenone

    NASA Astrophysics Data System (ADS)

    Fujiwara, Takashige; Lee, Jae-Kwang; Zgierski, Marek Z.; Lim, Edward C.

    2009-10-01

    TDDFT calculations and time-resolved transient absorption (TA) studies of the low-lying excited states of 4-dimethylaminobenzaldehyde (4-DMABA) and 4-dimethylaminoacetophenone (4-DMAAP) have been carried out to probe the mechanism of photoinduced intramolecular charge transfer (ICT). In polar acetonitrile, where dual fluorescence appears, both 4-DMABA and 4-DMAAP exhibit a TA band at about 510 nm and 490 nm, which correspond to the absorption spectra of the twisted ICT (TICT) state, with spectral characteristics that correspond to the radical anion absorptions of benzaldehyde or acetophenone. The decay time of the TICT-state absorption corresponds to that of the ICT fluorescence, indicating that the fluorescent ICT state is the TICT states.

  10. Ab initio study on an excited-state intramolecular proton-transfer reaction in ionic liquid.

    PubMed

    Hayaki, Seigo; Kimura, Yoshifumi; Sato, Hirofumi

    2013-06-06

    An excited-state intramolecular proton transfer (ESIPT) reaction of 4'-N,N-dimethylamino-3-hydroxyflavone in room temperature ionic liquid is theoretically investigated using RISM-SCF-SEDD, which is a hybrid method of molecular liquid theory and ab initio molecular orbital theory. The photo-excitation and proton-transfer processes are computed by considering the solvent fluctuation. The calculated absorption and emission energy are in good agreement with the experiments. The changes in the dipole moment indicate that the drastic solvation relaxation is accompanied by the excitation and an ESIPT process, which is consistent with the remarkable dynamic Stokes shift observed in the experiments. We calculated the nonequilibrium free-energy contour as a function of the proton coordinate and the solvation coordinate. We conclude that although immediately after the excitation the barrier height of the ESIPT process is relatively small, the barrier becomes larger as the solvation relaxation to the excited normal state proceeds. The solvation relaxation process is also investigated on the basis of microscopic solvation structure obtained by RISM calculations.

  11. Excited-state intramolecular proton transfer to carbon atoms: nonadiabatic surface-hopping dynamics simulations.

    PubMed

    Xia, Shu-Hua; Xie, Bin-Bin; Fang, Qiu; Cui, Ganglong; Thiel, Walter

    2015-04-21

    Excited-state intramolecular proton transfer (ESIPT) between two highly electronegative atoms, for example, oxygen and nitrogen, has been intensely studied experimentally and computationally, whereas there has been much less theoretical work on ESIPT to other atoms such as carbon. We have employed CASSCF, MS-CASPT2, RI-ADC(2), OM2/MRCI, DFT, and TDDFT methods to study the mechanistic photochemistry of 2-phenylphenol, for which such an ESIPT has been observed experimentally. According to static electronic structure calculations, irradiation of 2-phenylphenol populates the bright S1 state, which has a rather flat potential in the Franck-Condon region (with a shallow enol minimum at the CASSCF level) and may undergo an essentially barrierless ESIPT to the more stable S1 keto species. There are two S1/S0 conical intersections that mediate relaxation to the ground state, one in the enol region and one in the keto region, with the latter one substantially lower in energy. After S1 → S0 internal conversion, the transient keto species can return back to the S0 enol structure via reverse ground-state hydrogen transfer in a facile tautomerization. This mechanistic scenario is verified by OM2/MRCI-based fewest-switches surface-hopping simulations that provide detailed dynamic information. In these trajectories, ESIPT is complete within 118 fs; the corresponding S1 excited-state lifetime is computed to be 373 fs in vacuum. Most of the trajectories decay to the ground state via the S1/S0 conical intersection in the keto region (67%), and the remaining ones via the enol region (33%). The combination of static electronic structure computations and nonadiabatic dynamics simulations is expected to be generally useful for understanding the mechanistic photophysics and photochemistry of molecules with intramolecular hydrogen bonds.

  12. Excited-state intramolecular proton transfer and photoswitching in hydroxyphenyl-imidazopyridine derivatives: A theoretical study

    NASA Astrophysics Data System (ADS)

    Omidyan, Reza; Iravani, Maryam

    2016-11-01

    The MP2/CC2 and CASSCF theoretical approaches have been employed to determine the excited state proton transfer and photophysical nature of the four organic compounds, having the main frame of hydroxyphenyl-imidzaopyridine (HPIP). The nitrogen insertion effect, in addition to amine (-NH2) substitution has been investigated extensively by following the transition energies and deactivation pathways of resulted HPIP derivatives. It has been predicted that the excited state intramolecular proton transfer with or without small barrier is the most important feature of these compounds. Also, for all of the considered HPIP derivatives, a conical intersection (CI) between ground and the S1 excited state has been predicted. The strong non-adiabatic coupling in the CI (S1/S0), drives the system back to the ground state in which the proton may either return to the phenoxy unit and thus close the photocycle, or the system can continue the twisting motion that results in formation of a γ-photochromic species. This latter species can be responsible for photochromism of HPIP derivative systems.

  13. A novel non-fluorescent excited state intramolecular proton transfer phenomenon induced by intramolecular hydrogen bonds: an experimental and theoretical investigation

    NASA Astrophysics Data System (ADS)

    Yin, Hang; Li, Hui; Xia, Guomin; Ruan, Chengyan; Shi, Ying; Wang, Hongming; Jin, Mingxing; Ding, Dajun

    2016-01-01

    Two molecules, 1-hydroxypyrene-2-carbaldehyde (HP) and 1-methoxypyrene-2-carbaldehyde (MP) were explored. We investigated their photophysical properties, using experimental transient absorption and theoretical density functional theory/time-dependent density functional theory (DFT/TDDFT). HP and MP have similar geometric conformations but exhibit entirely different photophysical properties upon excitation into the S1 state. In contrast to traditional excited state intramolecular proton transfer (ESIPT) in molecules that exhibit either single or dual fluorescence, HP has an unusual non-fluorescent property. Specifically, the ultrafast ESIPT process occurs in 158 fs and is followed by an intersystem crossing (ISC) component of 11.38 ps. In contrast to HP, MP undergoes only an 8 ps timescale process, which was attributed to interactions between solute and solvent. We concluded that this difference arises from intramolecular hydrogen bonds (IMHBs), which induce drastic structural alterntion upon excitation.

  14. Recent experimental advances on excited-state intramolecular proton coupled electron transfer reaction.

    PubMed

    Hsieh, Cheng-Chih; Jiang, Chang-Ming; Chou, Pi-Tai

    2010-10-19

    Proton-coupled electron transfer reactions form the basis of many important chemical processes including much of the energy conversion that occurs within living cells. However, much of the physical chemistry that underlies these reaction mechanisms remains poorly understood. In this Account, we report on recent progress in the understanding of excited-state intramolecular proton-coupled electron transfer (PCET) reactions. The strategic design and synthesis of various types of PCET molecules, along with steady-state and femtosecond time-resolved spectroscopy, have uncovered the mechanisms of several excited-state PCET reactions in solution. These experimental advancements correlate well with current theoretical models, in which the proton has quantum motion with a high probability of tunneling. In addition, the rate of proton transfer is commonly incorporated within the rate of rearrangement of solvent molecules. As a result, the reaction activation free energy is essentially governed by the solvent reorganization because the charge redistribution is considered based on a solvent polarity-induced barrier instead of the height of the proton migration barrier. In accord with this theoretical basis, we can rationalize the observation that the proton transfer for many excited-state PCET systems occurs during the solvent relaxation time scale of 1-10 ps: the highly exergonic reaction takes place before the system reaches its equilibrium polarization. Also, we have used various derivatives of proton transfer molecules, especially those of 3-hydroxyflavone to clearly demonstrate how researchers can tune the dynamics of excited-state PCET through changes in the magnitude or direction of the dipole vector within the reaction. Subsequently, using 2-(2'-hydroxyphenyl)benzoxazole as the parent model, we then report on methods for the development of an ideal system for probing PCET reaction. Because future biomedical applications of such systems will likely occur in aqueous

  15. Intramolecular interactions in the triplet excited states of benzophenone-thymine dyads.

    PubMed

    Belmadoui, Noureddine; Encinas, Susana; Climent, Maria J; Gil, Salvador; Miranda, Miguel A

    2005-12-23

    Time-resolved and product studies on the synthesized dyads 1 and 2 have provided evidence that the benzophenone-to-thymine orientation strongly influences intramolecular photophysical and photochemical processes. The prevailing reaction mechanism has been established as a Paterno-Büchi cycloaddition to give oxetanes 3-6; however, the ability of benzophenone to achieve a formal hydrogen abstraction from the methyl group of thymidine has also been evidenced by the formation of photoproducts 7 and 8. These processes have been observed only in the case of the cisoid dyad 1. Adiabatic photochemical cycloreversion of the oxetane ring is achieved upon direct photolysis to give the starting dyad 1 in its excited triplet state. The photobiological implications of the above results are discussed with respect to benzophenone-photosensitized damage of thymidine.

  16. An excited-state intramolecular photon transfer fluorescence probe for localizable live cell imaging of cysteine

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Chen, Wen; Liu, Si-Jia; Jiang, Jian-Hui

    2017-03-01

    Small molecule probes suitable for selective and specific fluorescence imaging of some important but low-concentration intracellular reactive sulfur species such as cysteine (Cys) pose a challenge in chemical biology. We present a readily available, fast-response fluorescence probe CHCQ-Ac, with 2-(5‧-chloro-2-hydroxyl-phenyl)-6-chloro-4(3 H)-quinazolinone (CHCQ) as the fluorophore and acrylate group as the functional moiety, that enables high-selectivity and high-sensitivity for detecting Cys in both solution and biological system. After specifically reacted with Cys, the probe undergoes a seven-membered intramolecular cyclization and released the fluorophore CHCQ with excited-state intramolecular photon transfer effect. A highly fluorescent, insoluble aggregate was then formed to facilitate high-sensitivity and high-resolution imaging. The results showed that probe CHCQ-Ac affords a remarkably large Stokes shift and can detect Cys under physiological pH condition with no interference from other analytes. Moreover, this probe was proved to have excellent chemical stability, low cytotoxicity and good cell permeability. Our design of this probe provides a novel potential tool to visualize and localize cysteine in bioimaging of live cells that would greatly help to explore various Cys-related physiological and pathological cellular processes in cell biology and diagnostics.

  17. Donor-Acceptor Conjugated Linear Polyenes: A Study of Excited State Intramolecular Charge Transfer, Photoisomerization and Fluorescence Probe Properties.

    PubMed

    Hota, Prasanta Kumar; Singh, Anil Kumar

    2014-07-27

    Numerous studies of donor-acceptor conjugated linear polyenes have been carried out with the goal to understand the exact nature of the excited state electronic structure and dynamics. In this article we discuss our endeavours with regard to the excited state intramolecular charge transfer, photoisomerization and fluorescence probe properties of various donor-acceptor substituted compounds of diphenylpolyene [Ar(CH = CH) n Ar] series and ethenylindoles.

  18. Intramolecular excited-state proton transfer in 3-hydroxyflavone. Hydrogen-bonding solvent perturbations

    SciTech Connect

    McMorrow, D.; Kasha, M.

    1984-01-01

    The phenomenon of excited-state proton transfer in 3-hydroxyflavone is shown to depend sensitively on traces of H-bonding impurities in hydrocarbon solvents. In extremely dry and highly purified hydrocarbon solvents, a unique tautomer yellow-green fluorescence (region I) is observed from 298 to 77 K, independent of solvent temperature and viscosity, in contradiction to the results of previous research. With traces of water present, three regions of fluorescence of 3-hydroxyflavone of 3-hydoxyflavone (2.0 x 10/sup -5/ M in methylcyclohexane (MCH)) can be observed, the tautomer yellow-green fluorescence (maximum at 523 nm) (region I), another green fluorescence (maximum at 497 nm) (region II) attributed to the solute anion, and a blue-violet fluorescence (maximum at 400 nm) (region III) attributed to the normal electromer of 3-hydroflavone. Excitation spectroscopy confirms the presence of a series of ground-state solvates which are correlated with the diverse luminescence behavior observed with water, alcohol, and ether both as trace impurities and as pure solvents. Potential energy curves for the various molecular species studied, and for various solvation modes, are used to reinterpret laser kinetic studies previously published. In particular the reported biexponential normal molecule fluorescence (III) decay, and tautomer fluorescence (I) rise time, are shown to represent a slow solvent-reorganization step from the polysolvated 3-hydroxyflavone and an ultrarapid intrinsic portion-transfer step for the intramolecularly H-bonded 3-hydroxyflavone.

  19. Amplified excited state intramolecular proton transfer fluorescence of butterfly-shaped bis-2,6-dibenzothiazolylphenol

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Ma, Wei-Wei

    2017-06-01

    A butterfly-shaped benzothiazole derivative, bis-2,6-dibenzothiazolylphenol (2), was synthesized via 4-methylene bridging two 2,6-dibenzothiazolylphenol (1) molecules, and the excited-state intramolecular proton transfer (ESIPT) fluorescence of 1 and 2 were comparably investigated by steady-state spectroscopic experiments with the aid of theoretical simulations for structure and energy. It was found that 2 showed similar ESIPT emissions to those of 1 in solution and solid states, but the ESIPT fluorescence quantum yield was substantially amplified in the case of the more ‘integrated’ 2. In both tetrahydrofuran (THF) and CHCl3 solvents, ESIPT occurred and orange emissions at 580-590 nm from keto tautomers were observed, where the absolute fluorescence quantum yield was measured to be 0.28 and 0.41 for 1, as well as 0.41 and 0.59 for 2, respectively. In the solid state, 2 showed an ESIPT emission at 570 nm with an absolute fluorescence quantum yield of 0.38, which is substantially shorter and larger than the corresponding values of 1 (592 nm and 0.26) respectively. Furthermore, both 2 and 1 showed strongly blue-shifted green emissions around 520 nm from the deprotonated anion species in N,N-dimethyl formamide (DMF). A similar blue-shifted green emission was also found with the addition of fluoride in the THF solution of 2 or 1, suggesting that the competitive deprotonation makes the ESIPT impossible.

  20. Excited-state intramolecular proton transfer of 2-acetylindan-1,3-dione studied by ultrafast absorption and fluorescence spectroscopy

    PubMed Central

    Verma, Pramod Kumar; Steinbacher, Andreas; Schmiedel, Alexander; Nuernberger, Patrick; Brixner, Tobias

    2015-01-01

    We employ transient absorption from the deep-UV to the visible region and fluorescence upconversion to investigate the photoinduced excited-state intramolecular proton-transfer dynamics in a biologically relevant drug molecule, 2-acetylindan-1,3-dione. The molecule is a ß-diketone which in the electronic ground state exists as exocyclic enol with an intramolecular H-bond. Upon electronic excitation at 300 nm, the first excited state of the exocyclic enol is initially populated, followed by ultrafast proton transfer (≈160 fs) to form the vibrationally hot endocyclic enol. Subsequently, solvent-induced vibrational relaxation takes place (≈10 ps) followed by decay (≈390 ps) to the corresponding ground state. PMID:26798837

  1. Intramolecular photoassociation and photoinduced charge transfer in bridged diaryl compounds. 7. A semiempirical MO study of intramolecular charge transfer in the excited singlet states of dinaphthylamines

    SciTech Connect

    Chen, D.; Sadygov, R.; Lim, E.C. )

    1994-02-24

    A semiempirical MO study of the intramolecular charge transfer (CT) in the excited singlet states of dinaphthylamines has been carried out with the program systems MOPAC and ARGUS. The excited-state energies for various conformations of the molecules were obtained, in both the absence and the presence of a polarizable medium, by adding the transition energies calculated with the INDO I/S method to the ground-state energies calculated by means of the AM1 method. The CT state corresponds to a twisted geometry in which one naphthalene moiety is conjugated with the amino bridge, while the other moiety is perpendicular to the first. The gas-phase energy of this twisted intramolecular CT (TICT) state is only slightly greater than that of the lowest excited singlet (S[sub 1]) state of smaller dipole moment. In solvent of large dielectric constant, the TICT state is therefore predicted to be the lowest excited singlet state of the module. The computed oscillator strength of the absorption to the TICT state is much smaller than that to the lowest-energy excited state of an isolated molecule, so that the increase CT character of the S[sub 1] state in polar solvents is expected to lead to a decrease in the radiative decay rate of the state. These results are consistent with the experimental observation of a large fluorescence Stokes shift, and a reduction in the S[sub 1] radiative decay rate, of the compounds in polar solvents relative to nonpolar solvents. 14 refs., 9 figs., 4 tabs.

  2. Theoretical and experimental study on the intramolecular charge transfer excited state of the new highly fluorescent terpyridine compound

    NASA Astrophysics Data System (ADS)

    Song, Peng; Sun, Shi-Guo; Liu, Jian-Yong; Xu, Yong-Qian; Han, Ke-Li; Peng, Xiao-Jun

    2009-10-01

    Experimental and theoretical methods have been used to investigate the relaxation dynamics and photophysical properties of the donor-acceptor compound 4'-(4-N,N-diphenylaminophenyl)-2,2':6',2″-terpyridine (DPAPT), a compound which is found to exhibit efficient intramolecular charge transfer emission in polar solvents with relatively large Stokes shifts and strong solvatochromism. The difference between the ground and excited state dipole moments (Δ μ) is estimated to be 13.7 D on the basis of Lippert-Mataga models. To gain insight into the relaxation dynamics of DPAPT in the excited state, the potential energy curves for conformational relaxation are calculated. From the frontier molecular orbital (MO) pictures at the geometry of the twisted ICT excited state, the intramolecular charger transfer mainly takes place from HOMO (triphenylamine) to LUMO (terpyridine) in this donor-acceptor system.

  3. Planarized and Twisted Intramolecular Charge Transfer: A Concept for Fluorophores Showing Two Independent Rotations in Excited State.

    PubMed

    Haberhauer, Gebhard

    2017-07-12

    TICT (twisted intramolecular charge transfer) compounds are characterized by showing a rotation around a single bond in the excited state: starting from an almost planar geometry in the ground state, a twisted system is formed in the electronic excited state. The previously reported PLICT (planarized intramolecular charge transfer) compounds show inverse behavior: starting from a twisted geometry in the electronic ground state, a planarized system is formed in the excited state by rotation around a single bond. Here, a concept for planarized and twisted intramolecular charge transfer (PLATICT) states is presented which amalgamates both (TICT and PLICT) effects. Due to an intramolecular charge transfer, both a twisting around one single bond and a planarization around another one occurs. In sum, the PLATICT system shows two independent rotations around different axes in the excited state. By means of quantum chemical calculations (TD-cam-B3LYP and CC2) and experimental studies, it is demonstrated that N-aryl-substituted 1-aminoindoles are able to form photoinduced PLATICT states. In the fluorescence spectra of N-aryl-substituted 1-aminoindoles with a methoxycarbonyl or a cyano group as substituent in the aryl ring, very large Stokes shifts (ca. 18 000 cm(-1) ; >250 nm) are observed. The two independent rotations in the excited state, the very large Stokes shifts and their easy availability starting from indoline, make them very attractive for use as optical switches and motors in various fields of chemistry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A TDDFT study on the excited-state intramolecular proton transfer (ESIPT): excited-state equilibrium induced by electron density swing.

    PubMed

    Zhang, Mingzhen; Yang, Dapeng; Ren, Baiping; Wang, Dandan

    2013-07-01

    One important issue of current interest is the excited-state equilibrium for some ESITP dyes. However, so far, the information about the driving forces for excited-state equilibrium is very limited. In this work, the time-dependent density functional theory (TDDFT) method was employed to investigate the nature of the excited-state intramolecular proton transfer (ESIPT). The geometric structures, vibrational frequencies, frontier molecular orbitals (MOs) and the potential-energy curves for 1-hydroxy-11H-benzo[b]fluoren-11-one (HHBF) in the ground and the first singlet excited state were calculated. Analysis of the results shows that the intramolecular hydrogen bond of HHBF is strengthened from E to E*. Moreover, it is found that electron density swing between the proton acceptor and donor provides the driving forces for the forward and backward ESIPT, enabling the excited-state equilibrium to be established. Furthermore, we proposed that the photoexcitation and the interchange of position for electron-donating and electron-withdrawing groups are the main reasons for the electron density swing. The potential-energy curves suggest that the forward ESIPT and backward ESIPT may happen on the similar timescale, which is faster than the fluorescence decay of both E* and K* forms.

  5. A ratiometric fluorescent probe for alkaline phosphatase via regulation of excited-state intramolecular proton transfer.

    PubMed

    Fan, Chunlei; Luo, Shengxu; Qi, Haiping

    2016-03-01

    A ratiometric fluorescent probe 2-(benzimidazol-2-yl)phenyl phosphoric acid (1) for alkaline phosphatase (ALP) is designed and synthesized. The method employs the modulation of the excited-state intramolecular proton transfer (ESIPT) process of 2-(2'-hydroxyphenyl)benzimidazole (HPBI) through the hydroxyl group protection/deprotection reaction. Upon phosphorylated with POCl3 , HPBI shows only an emission peak at 363 nm due to the blockage of ESIPT. However, once selective enzymatic hydrolysis with alkaline phosphatase (ALP) in Tris-HCl buffer occurs, the probe 1 is returned to HPBI and the ESIPT process is switched on, which results in a decrease in the emission band at 363 nm and an increase in a new fluorescence peak around 430 nm. The fluorescence intensity ratio at 430 and 360 nm (I430/I360) increases linearly with the activity of ALP up to 0.050 U/mL and the detection limit is 0.0013 U/mL. The proposed probe shows excellent specificity toward ALP.

  6. Donor-acceptor substituted phenylethynyltriphenylenes – excited state intramolecular charge transfer, solvatochromic absorption and fluorescence emission

    PubMed Central

    Nandy, Ritesh

    2010-01-01

    Summary Several 2-(phenylethynyl)triphenylene derivatives bearing electron donor and acceptor substituents on the phenyl rings have been synthesized. The absorption and fluorescence emission properties of these molecules have been studied in solvents of different polarity. For a given derivative, solvent polarity had minimal effect on the absorption maxima. However, for a given solvent the absorption maxima red shifted with increasing conjugation of the substituent. The fluorescence emission of these derivatives was very sensitive to solvent polarity. In the presence of strongly electron withdrawing (–CN) and strongly electron donating (–NMe2) substituents large Stokes shifts (up to 130 nm, 7828 cm−1) were observed in DMSO. In the presence of carbonyl substituents (–COMe and –COPh), the largest Stokes shift (140 nm, 8163 cm−1) was observed in ethanol. Linear correlation was observed for the Stokes shifts in a Lippert–Mataga plot. Linear correlation of Stokes shift was also observed with E T(30) scale for protic and aprotic solvents but with different slopes. These results indicate that the fluorescence emission arises from excited state intramolecular charge transfer in these molecules where the triphenylene chromophore acts either as a donor or as an acceptor depending upon the nature of the substituent on the phenyl ring. HOMO–LUMO energy gaps have been estimated from the electrochemical and spectral data for these derivatives. The HOMO and LUMO surfaces were obtained from DFT calculations. PMID:21085512

  7. Excited-state intramolecular proton transfer in 3-hyroxyflavone isolated in solid argon: fluorescence and fluorescence-excitation spectra and tautomer fluorescence rise time

    SciTech Connect

    Dick, B.; Ernsting, N.P.

    1987-07-30

    The fluorescence properties of 3-hydroxyflavone isolated in solid argon at 15 K have been investigated. Upon electronic excitation the molecules undergo rapid intramolecular proton transfer. No fluorescence from the excited state of the normal form of the molecule could be detected. Perturbations due to hydrogen-bonding impurities which produce serious experimental problems in hydrocarbon glasses are largely suppressed in argon matrices. The rise of the green fluorescence of the tautomer was studied with excitation pulses of 230-fs duration and streak camera detection. An apparent tautomer fluorescence rise time of 2.7 ps was obtained by deconvolution. A comparative measurement of the dye coumarine 6 yielded an apparent fluorescence rise time of 2.5 ps, which can be entirely attributed to the group velocity dispersion of the streak camera optics. This indicates a rate constant for excited-state intramolecular proton transfer in 3-hydroxyflavone of greater than 10/sup 12/ s/sup -1/.

  8. Excited state intramolecular charge transfer reaction in nonaqueous electrolyte solutions: Temperature dependence

    NASA Astrophysics Data System (ADS)

    Pradhan, Tuhin; Gazi, Harun Al Rasid; Biswas, Ranjit

    2009-08-01

    Temperature dependence of the excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) in ethyl acetate (EA), acetonitrile (ACN), and ethanol at several concentrations of lithium perchlorate (LiClO4) has been investigated by using the steady state and time resolved fluorescence spectroscopic techniques. The temperature range considered is 267-343 K. The temperature dependent spectral peak shifts and reaction driving force (-ΔGr) in electrolyte solutions of these solvents can be explained qualitatively in terms of interaction between the reactant molecule and ion-atmosphere. Time resolved studies indicate that the decay kinetics of P4C is biexponential, regardless of solvents, LiClO4 concentrations, and temperatures considered. Except at higher electrolyte concentrations in EA, reaction rates in solutions follow the Arrhenius-type temperature dependence where the estimated activation energy exhibits substantial electrolyte concentration dependence. The average of the experimentally measured activation energies in these three neat solvents is found to be in very good agreement with the predicted value based on data in room temperature solvents. While the rate constant in EA shows a electrolyte concentration induced parabolic dependence on reaction driving force (-ΔGr), the former in ethanol and ACN increases only linearly with the increase in driving force (-ΔGr). The data presented here also indicate that the step-wise increase in solvent reorganization energy via sequential addition of electrolyte induces the ICT reaction in weakly polar solvents to crossover from the Marcus inverted region to the normal region.

  9. Excited state intramolecular charge transfer reaction in nonaqueous electrolyte solutions: temperature dependence.

    PubMed

    Pradhan, Tuhin; Gazi, Harun Al Rasid; Biswas, Ranjit

    2009-08-07

    Temperature dependence of the excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) in ethyl acetate (EA), acetonitrile (ACN), and ethanol at several concentrations of lithium perchlorate (LiClO(4)) has been investigated by using the steady state and time resolved fluorescence spectroscopic techniques. The temperature range considered is 267-343 K. The temperature dependent spectral peak shifts and reaction driving force (-DeltaG(r)) in electrolyte solutions of these solvents can be explained qualitatively in terms of interaction between the reactant molecule and ion-atmosphere. Time resolved studies indicate that the decay kinetics of P4C is biexponential, regardless of solvents, LiClO(4) concentrations, and temperatures considered. Except at higher electrolyte concentrations in EA, reaction rates in solutions follow the Arrhenius-type temperature dependence where the estimated activation energy exhibits substantial electrolyte concentration dependence. The average of the experimentally measured activation energies in these three neat solvents is found to be in very good agreement with the predicted value based on data in room temperature solvents. While the rate constant in EA shows a electrolyte concentration induced parabolic dependence on reaction driving force (-DeltaG(r)), the former in ethanol and ACN increases only linearly with the increase in driving force (-DeltaG(r)). The data presented here also indicate that the step-wise increase in solvent reorganization energy via sequential addition of electrolyte induces the ICT reaction in weakly polar solvents to crossover from the Marcus inverted region to the normal region.

  10. Evidence for excited-state intramolecular proton transfer in 4-chlorosalicylic acid from combined experimental and computational studies: Quantum chemical treatment of the intramolecular hydrogen bonding interaction

    NASA Astrophysics Data System (ADS)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2012-07-01

    The photophysical study of a pharmaceutically important chlorine substituted derivative of salicylic acid viz., 4-chlorosalicylic acid (4ClSA) has been carried out by steady-state absorption, emission and time-resolved emission spectroscopy. A large Stokes shifted emission band with negligible solvent polarity dependence marks the spectroscopic signature of excited-state intramolecular proton transfer (ESIPT) reaction in 4ClSA. Theoretical calculation by ab initio and Density Functional Theory methods yields results consistent with experimental findings. Theoretical potential energy surfaces predict the occurrence of proton transfer in S1-state. Geometrical and energetic criteria, Atoms-In-Molecule topological parameters, Natural Bond Orbital population analysis have been exploited to evaluate the intramolecular hydrogen bond (IMHB) interaction and to explore its directional nature. The inter-correlation between aromaticity and resonance assisted H-bond is also discussed in this context. Our results unveil that the quantum chemical treatment is a more accurate tool to assess hydrogen bonding interaction in comparison to geometrical criteria.

  11. Intramolecular excited-state proton-transfer studies on flavones in different environments

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Jain, Sapan K.; Sharma, Neera; Rastogi, Ramesh C.

    2001-02-01

    The absorption and fluorescence spectra of some biologically active flavones have been studied as a function of the acidity (pH/H 0) of the solution. Dissociation constants have been determined for the ground and first excited singlet states. The results are compared with those obtained from Forster-Weller calculations. The acidity constants obtained by fluorimetric titration method are in complete agreement (in most of the systems) with ground state data indicating a excited state deactivation prior to prototropic equilibration. Compared to umbelliferones, flavones are only weakly fluorescent in alkaline solution. This behaviour is explained by the small energy difference between the singlet excited state and triplet excited state giving rise to more efficient intersystem crossing. Most of the flavones studied here undergo adiabatic photodissociation in the singlet excited state indicating the formation of an exciplex or a phototautomer.

  12. Anomalous excited-state dynamics of lucifer yellow CH in solvents of high polarity: evidence for an intramolecular proton transfer.

    PubMed

    Panda, Debashis; Mishra, Padmaja P; Khatua, Saumyakanti; Koner, Apurba L; Sunoj, Raghavan B; Datta, Anindya

    2006-05-04

    The photophysics of the fluorescent probe Lucifer yellow CH has been investigated using fluorescence spectroscopic and computational techniques. The nonradiative rate is found to pass through a minimum in solvents of intermediate empirical polarity. This apparently anomalous behavior is rationalized by considering the possibility of predominance of different kinds of nonradiative processes, viz. intersystem crossing (ISC) and excited-state proton transfer (ESPT), in solvents of low and high empirical polarity, respectively. The feasibility of the proton transfer is examined by the structure determined by the density functional theory (DFT) calculations. The predicted energy levels based on the time-dependent density functional theory (TD-DFT) method in the gas phase identifies the energy gap between the S(1) and nearest triplet state to be close enough to facilitate ISC. Photophysical investigation in solvent mixtures and in deuterated solvents clearly indicates the predominance of the solvent-mediated intramolecular proton transfer in the excited state of the fluorophore in protic solvents.

  13. Low-threshold wavelength-switchable organic nanowire lasers based on excited-state intramolecular proton transfer.

    PubMed

    Zhang, Wei; Yan, Yongli; Gu, Jianmin; Yao, Jiannian; Zhao, Yong Sheng

    2015-06-08

    Coherent light signals generated at the nanoscale are crucial to the realization of photonic integrated circuits. Self-assembled nanowires from organic dyes can provide both a gain medium and an effective resonant cavity, which have been utilized for fulfilling miniaturized lasers. Excited-state intramolecular proton transfer (ESIPT), a classical molecular photoisomerization process, can be used to build a typical four-level system, which is more favorable for population inversion. Low-power driven lasing in proton-transfer molecular nanowires with an optimized ESIPT energy-level process has been achieved. With high gain and low loss from the ESIPT, the wires can be applied as effective FP-type resonators, which generated single-mode lasing with a very low threshold. The lasing wavelength can be reversibly switched based on a conformation conversion of the excited keto form in the ESIPT process.

  14. Photostability versus photodegradation in the excited-state intramolecular proton transfer of nitro enamines: competing reaction paths and conical intersections.

    PubMed

    Migani, Annapaola; Bearpark, Michael J; Olivucci, Massimo; Robb, Michael A

    2007-03-28

    The phototautomerization mechanism of a model nitro enamine (NEA) chromophore (incorporated in the structure of a highly photolabile pesticide, tetrahydro-2-(nitromethylene)-2H-1,3-thiazine) has been studied using complete active space self-consistent field reaction path computations. The optically accessible 1pipi* excited state of NEA involves separation of charge and correlates diabatically with the ground state of the tautomerized acinitro imine (ANI) form. For optimum photostabilization, the 1pipi* state of NEA should be S1: in this case, the tautomer would be efficiently formed via a diabatic intramolecular proton-transfer pathway passing through an S1/S0 conical intersection, followed by a facile thermal back proton-transfer reaction. However, in NEA itself the lowest excited states correspond to nitro group 1npi* states, and there are additional surface crossings that provide a mechanism for populating the 1npi* manifold. The above results indicate that the high photolability observed for the pesticide [Kleier, D.; Holden, I.; Casida, J. E.; Ruzo, L. O. J. Agric. Food Chem. 1985, 33, 998-1000] has to be ascribed to photochemistry originating on the 1npi* manifold of states, populated indirectly from the 1pipi* state.

  15. TDDFT study of twisted intramolecular charge transfer and intermolecular double proton transfer in the excited state of 4‧-dimethylaminoflavonol in ethanol solvent

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Shi, Ying; Cong, Lin; Li, Hui

    2015-02-01

    Time-dependent density functional theory method at the def-TZVP/B3LYP level was employed to investigate the intramolecular and intermolecular hydrogen bonding dynamics in the first excited (S1) state of 4‧-dimethylaminoflavonol (DMAF) monomer and in ethanol solution. In the DMAF monomer, we demonstrated that the intramolecular charge transfer (ICT) takes place in the S1 state. This excited state ICT process was followed by intramolecular proton transfer. Our calculated results are in good agreement with the mechanism proposed in experimental work. For the hydrogen-bonded DMAF-EtOH complex, it was demonstrated that the intermolecular hydrogen bonds can induce the formation of the twisted intramolecular charge transfer (TICT) state and the conformational twisting is along the C3-C4 bond. Moreover, the intermolecular hydrogen bonds can also facilitate the intermolecular double proton transfer in the TICT state. A stepwise intermolecular double proton transfer process was revealed. Therefore, the intermolecular hydrogen bonds can alter the mechanism of intramolecular charge transfer and proton transfer in the excited state for the DMAF molecule.

  16. Theoretical insight into the excited-state intramolecular proton transfer mechanisms of three amino-type hydrogen-bonding molecules

    NASA Astrophysics Data System (ADS)

    An, Beibei; Yuan, Huijuan; Zhu, Qiuling; Li, Yuanyuan; Guo, Xugeng; Zhang, Jinglai

    2017-03-01

    Excited-state intramolecular proton transfer (ESIPT) dynamics of the amino-type hydrogen-bonding compound 2-(2‧-aminophenyl)benzothiazole (PBT-NH2) as well as its two derivatives 2-(5‧-cyano-2‧-aminophenyl)benzothiazole (CN-PBT-NH2) and 2-(5‧-cyano-2‧-tosylaminophenyl)benzothiazole (CN-PBT-NHTs) were studied by the time-dependent density functional theory (TD-DFT) approach with the B3LYP density functional, and their absorption and emission spectra were also explored at the same level of theory. A good agreement is observed between the theoretical simulations and experimental spectra, indicating that the present calculations are reasonably reliable. In addition, it is also found that the energy barriers of the first excited singlet state of the three targeted molecules along the ESIPT reaction are computed to be 0.38, 0.34 and 0.12 eV, respectively, showing the trend of gradual decrease, which implies that the introduction of the electron-withdrawing cyano or tosyl group can facilitate the occurrence of the ESIPT reaction of these amino-type H-bonding systems. Following the ESIPT, both CN-PBT-NH2 and CN-PBT-NHTs dye molecules can undergo the cis-trans isomerization reactions in the ground-state and excited-state potential energy curves along the C2-C3 bond between benzothiazole and phenyl moieties, where the energy barriers of the trans-tautomer → cis-tautomer isomerizations in the ground states are calculated to be 0.83 and 0.34 eV, respectively. According to our calculations, it is plausible that there may exist the long-lived trans-tautomer species in the ground states of CN-PBT-NH2 and CN-PBT-NHTs.

  17. Excited-state intramolecular hydrogen bonding of compounds based on 2-(2-hydroxyphenyl)-1,3-benzoxazole in solution: A TDDFT study

    NASA Astrophysics Data System (ADS)

    Li, Hui; Liu, Yufang; Yang, Yonggang; Yang, Dapeng; Sun, Jinfeng

    2014-12-01

    The excited-state properties of intramolecular hydrogen bonding in the compounds based on 2-(2-hydroxyphenyl)-1,3-benzoxazole (6 and its tautomers 6a and 6b) have been investigated using theoretical methods. According to the geometric optimization and IR spectra in the ground and excited states calculated by density functional theory (DFT) and time-dependent DFT (TD-DFT) methods respectively, the type of intramolecular hydrogen bonding N⋯Hsbnd O in 6 and 6a is demonstrated to be significantly strengthened, while Nsbnd H⋯O in the tautomers 6a and 6b are proved to be sharply weakened upon excitation to excited state S1. The calculated absorption peaks of 6 are in good accordance with the experimental results. Moreover, other compounds based on 6 that R1 and R2 are both substituted as well as that only R1 is substituted are investigated to understand the effect of substituent on intramolecular hydrogen bonding. It is found that the hydrogen bond strength can be controlled by the inductive field effect of the substituent. In addition, the intramolecular charge transfers (ICT) of the S1 state for 6 and its tautomers 6a and 6b were theoretically investigated by analyses of molecular orbital.

  18. Excited-state intramolecular proton transfer molecules bearing o-hydroxy analogues of green fluorescent protein chromophore.

    PubMed

    Chuang, Wei-Ti; Hsieh, Cheng-Chih; Lai, Chin-Hung; Lai, Cheng-Hsuan; Shih, Chun-Wei; Chen, Kew-Yu; Hung, Wen-Yi; Hsu, Yu-Hsiang; Chou, Pi-Tai

    2011-10-21

    o-Hydroxy analogues, 1a-g, of the green fluorescent protein chromophore have been synthesized. Their structures and electronic properties were investigated by X-ray single-crystal analyses, electrochemistry, and luminescence properties. In solid and nonpolar solvents 1a-g exist mainly as Z conformers that possess a seven-membered-ring hydrogen bond and undergo excited-state intramolecular proton transfer (ESIPT) reactions, resulting in a proton-transfer tautomer emission. Fluorescence upconversion dynamics have revealed a coherent type of ESIPT, followed by a fast vibrational/solvent relaxation (<1 ps) to a twisted (regarding exo-C(5)-C(4)-C(3) bonds) conformation, from which a fast population decay of a few to several tens of picoseconds was resolved in cyclohexane. Accordingly, the proton-transfer tautomer emission intensity is moderate (0.08 in 1e) to weak (∼10(-4) in 1a) in cyclohexane. The stronger intramolecular hydrogen bonding in 1g suppresses the rotation of the aryl-alkene bond, resulting in a high yield of tautomer emission (Φ(f) ≈ 0.2). In the solid state, due to the inhibition of exo-C(5)-C(4)-C(3) rotation, intense tautomer emission with a quantum yield of 0.1-0.9 was obtained for 1a-g. Depending on the electronic donor or acceptor strength of the substituent in either the HOMO or LUMO site, a broad tuning range of the emission from 560 (1g) to 670 nm (1a) has been achieved.

  19. Fluorescent amino acid undergoing excited state intramolecular proton transfer for site-specific probing and imaging of peptide interactions.

    PubMed

    Sholokh, Marianna; Zamotaiev, Oleksandr M; Das, Ranjan; Postupalenko, Viktoriia Y; Richert, Ludovic; Dujardin, Denis; Zaporozhets, Olga A; Pivovarenko, Vasyl G; Klymchenko, Andrey S; Mély, Yves

    2015-02-12

    Fluorescent amino acids bearing environment-sensitive fluorophores are highly valuable tools for site-selective probing of peptide/ligand interactions. Herein, we synthesized a fluorescent l-amino acid bearing the 4'-methoxy-3-hydroxyflavone fluorophore (M3HFaa) that shows dual emission, as a result of an excited state intramolecular proton transfer (ESIPT). The dual emission of M3HFaa was found to be substantially more sensitive to hydration as compared to previous analogues. By replacing the Ala30 and Trp37 residues of a HIV-1 nucleocapsid peptide, M3HFaa was observed to preserve the peptide structure and functions. Interaction of the labeled peptides with nucleic acids and lipid vesicles produced a strong switch in their dual emission, favoring the emission of the ESIPT product. This switch was associated with the appearance of long-lived fluorescence lifetimes for the ESIPT product, as a consequence of the rigid environment in the complexes that restricted the relative motions of the M3HFaa aromatic moieties. The strongest restriction and thus the longest fluorescence lifetimes were observed at position 37 in complexes with nucleic acids, where the probe likely stacks with the nucleobases. Based on the dependence of the lifetime values on the nature of the ligand and the labeled position, two-photon fluorescence lifetime imaging was used to identify the binding partners of the labeled peptides microinjected into living cells. Thus, M3HFaa appears as a sensitive tool for monitoring site selectively peptide interactions in solution and living cells.

  20. Environment-sensitive quinolone demonstrating long-lived fluorescence and unusually slow excited-state intramolecular proton transfer kinetics

    NASA Astrophysics Data System (ADS)

    Zamotaiev, O. M.; Shvadchak, V.; Sych, T. P.; Melnychuk, N. A.; Yushchenko, D.; Mely, Y.; Pivovarenko, V. G.

    2016-09-01

    A new small fluorescent dye based on 3-hydroxybenzo[g]quinolone, a benzo-analogue of Pseudomonas quinolone signal species, has been synthesized. The dye demonstrates interesting optical properties, with absorption in the visible region, two band emission due to an excited-state intramolecular proton transfer (ESIPT) reaction and high fluorescence quantum yield in both protic and aprotic media. Time-resolved fluorescence spectroscopy shows that the ESIPT reaction time is unusually long (up to 8 ns), indicating that both forward and backward ESIPT reactions are very slow in comparison to other 3-hydroxyquinolones. In spite of these slow rate constants, the ESIPT reaction was found to show a reversible character as a result of the very long lifetimes of both N* and T* forms (up to 16 ns). The ESIPT reaction rate is mainly controlled by the hydrogen bond donor ability in protic solvents and the polarity in aprotic solvents. Using large unilamellar vesicles and giant unilamellar vesicles of different lipid compositions, the probe was shown to preferentially label liquid disordered phases.

  1. Deactivation of 6-Aminocoumarin Intramolecular Charge Transfer Excited State through Hydrogen Bonding

    PubMed Central

    Krystkowiak, Ewa; Dobek, Krzysztof; Maciejewski, Andrzej

    2014-01-01

    This paper presents results of the spectral (absorption and emission) and photophysical study of 6-aminocoumarin (6AC) in various aprotic hydrogen-bond forming solvents. It was established that solvent polarity as well as hydrogen-bonding ability influence solute properties. The hydrogen-bonding interactions between S1-electronic excited solute and solvent molecules were found to facilitate the nonradiative deactivation processes. The energy-gap dependence on radiationless deactivation in aprotic solvents was found to be similar to that in protic solvents. PMID:25244014

  2. Aggregation induced enhanced and exclusively highly Stokes shifted emission from an excited state intramolecular proton transfer exhibiting molecule.

    PubMed

    Behera, Santosh Kumar; Murkherjee, Anwesha; Sadhuragiri, G; Elumalai, Palani; Sathiyendiran, M; Kumar, Manishekhar; Mandal, Biman B; Krishnamoorthy, G

    2017-02-01

    The inner filter effect due to self-quenching dominates the normal emission of dyes at higher concentrations, which would limit their applications. Since normal emission was also observed with aggregation induced emission enhancement (AIEE) active excited state intramolecular proton transfer (ESIPT) exhibiting molecules, two new molecules are synthesized and studied to obtain normal emission free AIEE. The molecules are 4-(3-(benzo[d]thiazol-2-yl)-5-tert-butyl-4-hydroxybenzyl)-2-(benzo[d]thiazol-2-yl)-6-tert-butyl phenol (bis-HPBT) and its oxazole analogue (bis-HPBO). Of these molecules, bis-HPBT, which is weakly fluorescent in tetrahydrofuran solution, shows a sudden high enhancement in fluorescence upon addition of 70% water due to the formation of aggregates. Though the normal emission is also observed in tetrahydrofuran, it is completely eliminated in the aggregates, and the aggregates display exclusive tautomer emission. However, bis-HPBO does not emit such an exclusive tautomer emission in the water/tetrahydrofuran mixture. The enhancement in the fluorescence quantum yield of bis-HPBT in 70% water is ∼300 times higher than that in tetrahydrofuran. The modulated molecular structure of bis-HPBT is the cause of this outstanding AIEE. The observation of almost exclusive tautomer emission is a new additional advantage of AIEE from bis-HPBT over other ESIPT molecules. Since the tautomer emission is highly Stokes shifted, no overlap with the absorption spectrum occurs and therefore, the inner filter effect is averted. The aggregated structure acts as a good fluorescence chemosensor for metal ions as well as anions. The aggregated structure is cell permeable and can be used for cell imaging.

  3. Temperature dependent fluorescence spectra arise from change in excited-state intramolecular proton transfer potential of 4‧-N,N-dimethylamino-3-hydroxyflavone-doped acetonitrile crystals

    NASA Astrophysics Data System (ADS)

    Furukawa, Kazuki; Yamamoto, Norifumi; Hino, Kazuyuki; Sekiya, Hiroshi

    2016-01-01

    The effect of intermolecular interaction on excited-state intramolecular proton transfer (ESIPT) in 4‧-N,N-dimethylamino-3-hydroxyflavone (DMHF) doped in acetonitrile crystals was investigated by measuring the temperature dependence of fluorescence excitation and fluorescence spectra. A solid/solid phase transition of DMHF-doped acetonitrile crystals occurred in the temperature between 210 and 218 K. Significant differences in the spectral profiles and shifts in the fluorescence spectra were observed in the low- and high-temperature regions of the phase transition. The temperature dependence of the ESIPT potential of DMHF is discussed.

  4. Excited-state intramolecular proton transfer (ESIPT) emission of hydroxyphenylimidazopyridine: computational study on enhanced and polymorph-dependent luminescence in the solid state.

    PubMed

    Shigemitsu, Yasuhiro; Mutai, Toshiki; Houjou, Hirohiko; Araki, Koji

    2012-12-13

    Although 2-(2'-hydroxyphenyl)imidazo[1,2-a]pyridine (HPIP) is only weakly fluorescent in solution, two of its crystal polymorphs in which molecules are packed as stacked pairs and in nearly coplanar conformation exhibit bright excited-state intramolecular proton transfer (ESIPT) luminescence of different colors (blue-green and yellow). In order to clarify the enhanced and polymorph-dependent luminescence of HPIP in the solid state, the potential energy surfaces (PESs) of HPIP in the ground (S(0)) and excited (S(1)) states were analyzed computationally by means of ab initio quantum chemical calculations. The calculations reproduced the experimental photophysical properties of HPIP in solution, indicating that the coplanar keto form in the first excited (S(1)) state smoothly approaches the S(0)/S(1) conical intersection (CI) coupled with the twisting motion of the central C-C bond. The S(1)-S(0) energy gap of the keto form became sufficiently small at the torsion angle of 60°, and the corresponding CI point was found at 90°. Since a minor role of the proximity effect was indicated experimentally and theoretically, the observed emission enhancement of the HPIP crystals was ascribed to the following two factors: (1) suppression of efficient radiationless decay via the CI by fixing the torsion angle at the nearly coplanar conformation of the molecules in the crystals and (2) inhibition of excimer formation resulting from the lower excited level of the S(1)-keto state compared to the S(0)-S(1) excitation energy in the enol form. However, the fluorescence color difference between the two crystal polymorphs having slightly different torsion angles was not successfully reproduced, even at the MS-CASPT2 level of theory.

  5. Water- and acid-mediated excited-state intramolecular proton transfer and decarboxylation reactions of ketoprofen in water-rich and acidic aqueous solutions.

    PubMed

    Li, Ming-De; Yeung, Chi Shun; Guan, Xiangguo; Ma, Jiani; Li, Wen; Ma, Chensheng; Phillips, David Lee

    2011-09-19

    We present an investigation of the decarboxylation reaction of ketoprofen (KP) induced by triplet excited-state intramolecular proton transfer in water-rich and acidic solutions. Nanosecond time-resolved resonance Raman spectroscopy results show that the decarboxylation reaction is facile in aqueous solutions with high water ratios (water/acetonitrile ≥50%) or acidic solutions with moderate and strong acid concentration. These experimental results are consistent with results from density functional theory calculations in which 1) the activation energy barriers for the triplet-state intramolecular proton transfer and associated decarboxylation process become lower when more water molecules (from one up to four molecules) are involved in the reaction system and 2) perchloric acid, sulfuric acid, and hydrochloric acid can shuttle a proton from the carboxyl to carbonyl group through an initial intramolecular proton transfer of the triplet excited state, which facilitates the cleavage of the C-C bond, thus leading to the decarboxylation reaction of triplet state KP. During the decarboxylation process, the water molecules and acid molecules may act as bridges to mediate intramolecular proton transfer for the triplet state KP when KP is irradiated by ultraviolet light in water-rich or acidic aqueous solutions and subsequently it generates a triplet-protonated carbanion biradical species. The faster generation of triplet-protonated carbanion biradical in acidic solutions than in water-rich solutions with a high water ratio is also supported by the lower activation energy barrier calculated for the acid-mediated reactions versus those of water-molecule-assisted reactions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Insight into the Amino-Type Excited-State Intramolecular Proton Transfer Cycle Using N-Tosyl Derivatives of 2-(2'-Aminophenyl)benzothiazole.

    PubMed

    Chen, Chi-Lin; Tseng, Huan-Wei; Chen, Yi-An; Liu, Jun-Qi; Chao, Chi-Min; Liu, Kuan-Miao; Lin, Tzu-Chieh; Hung, Cheng-Hsien; Chou, Yen-Lin; Lin, Ta-Chun; Chou, Pi-Tai

    2016-02-25

    Studies have been carried out to gain insight in to an overall excited-state proton transfer cycle for a series of N-tosyl derivatives of 2-(2'-aminophenyl)benzothiazole. The results indicate that followed by ultrafast (<150 fs) excited-state intramolecular proton transfer (ESIPT), the titled compounds undergo rotational isomerization along the C1-C1' bond. For the model compound 2-(2'-tosylaminophenyl)benzothiazole (PBT-NHTs) the subsequent cis-trans isomerization process in both triplet and ground states are probed by nanosecond transient absorption (TA) and two-step laser-induced fluorescence (TSLIF) spectroscopy. Both TA and TSLIF results indicate the existence of a long-lived trans-tautomer species in the ground state with a lifetime of few microseconds. The experimental results correlate well with the theoretical approach, which suggests that PBT-NHTs proton transfer tautomer generated in the excited state undergoes intramolecular C1-C1' rotation to ∼100° between benzothiazole and phenyl moieties in which the energetics for the S1 and T1 states are nearly identical. As a result, the intersystem crossing between S1 and T1 states serves as a fast deactivation pathway for the excited-state cis-tautomer to channel into both cis- and trans-tautomer in their respective T1 states, followed by the dominant T1-S0 radiationless deactivation to populate the trans-tautomer in the ground state. The trans-tautomer species in the S0 state proceeds with intermolecular double proton transfer to regenerate the cis-normal form. An overall proton-transfer cycle describing the amino-type ESIPT and the subsequent isomerization processes is thus depicted in detail.

  7. External Electric Field Effects on Excited-State Intramolecular Proton Transfer in 4'-N,N-Dimethylamino-3-hydroxyflavone in Poly(methyl methacrylate) Films.

    PubMed

    Furukawa, Kazuki; Hino, Kazuyuki; Yamamoto, Norifumi; Awasthi, Kamlesh; Nakabayashi, Takakazu; Ohta, Nobuhiro; Sekiya, Hiroshi

    2015-09-17

    The external electric field effects on the steady-state electronic spectra and excited-state dynamics were investigated for 4'-N,N-(dimethylamino)-3-hydroxyflavone (DMHF) in a poly(methyl methacrylate) (PMMA) film. In the steady-state spectrum, dual emission was observed from the excited states of the normal (N*) and tautomer (T*) forms. Application of an external electric field of 1.0 MV·cm(-1) enhanced the N* emission and reduced the T* emission, indicating that the external electric field suppressed the excited-state intramolecular proton transfer (ESIPT). The fluorescence decay profiles were measured for the N* and T* forms. The change in the emission intensity ratio N*/T* induced by the external electric field is dominated by ESIPT from the Franck-Condon excited state of the N* form and vibrational cooling in potential wells of the N* and T* forms occurring within tens of picoseconds. Three manifolds of fluorescent states were identified for both the N* and T* forms. The excited-state dynamics of DMHF in PMMA films has been found to be very different from that in solution due to intermolecular interactions in a rigid environment.

  8. Site-specific electronic couplings in dyads with MLCT excited states. Intramolecular energy transfer in isomeric Ru(II)-Ru(II) cyclometalated complexes.

    PubMed

    Polson, Matthew; Chiorboli, Claudio; Fracasso, Sandro; Scandola, Franco

    2007-04-01

    The rod-like binuclear complexes [(ttpy)Ru(tpy-ph(2)-phbpy)Ru(ttpy)](4+) and [(ttpy)Ru(tpy-ph(2)-tpy)Ru(phtbpy)](4+) (for abbreviations, see text) have been synthesized and characterized. In both complexes, the polypyridine Ru(II) centers have (N--N--N)Ru(N--N--N) and (N--N--N)Ru(C--N--N) coordination environment. The two isomeric species differ in whether the cyclometalating carbon resides on the bridging or on the terminal ligand. The two complexes have virtually identical energy levels, but MLCT excited states of different (bridging or terminal) ligand localization. They are thus ideally suited to investigate possible effects of excited-state localization on intramolecular energy transfer kinetics. In fact, ultrafast spectroscopic measurements yield different energy transfer time constants for the two isomers, with the bridge-cyclometalated complex (2.7 ps) being faster than the terminal-cyclometalated one (8.0 ps). This difference can be explained in terms of different electronic factors for Dexter energy transfer. The study highlights the peculiar intricacies of intramolecular energy transfer in inorganic dyads involving MLCT excited states.

  9. The theoretical study of excited-state intramolecular proton transfer of 2,5-bis(benzoxazol-2-yl)thiophene-3,4-diol

    NASA Astrophysics Data System (ADS)

    Lan, Rui-Fang; Yang, Yun-Fan; Ma, Yan-Zhen; Li, Yong-Qing

    2017-08-01

    The symmetrical structures 2,5-bis(benzoxazol-2-yl)thiophene-3,4-diol (BBTD) can take shape two intramolecular hydrogen bonds in chloroform. In order to research the molecular dynamic behavior of BBTD upon photo-induced process, we utilize density functional theory (DFT) and time-dependent density functional theory (TDDFT) to complete theoretical calculation. Through the comparison of bond length, bond angle, IR spectra, and frontier molecular orbitals between ground state (S0) and first excited state (S1), it clearly indicates that photoexcitation have slightly influence for intensity of hydrogen bond. For the sake of understanding the mechanism of excited state intramolecular proton transfer (ESIPT) of BBTD in chloroform, potential energy surfaces have been scanned along with the orientation of O1-H2 and O4-H5 in S0 and S1 state, respectively. A intrigued hydrogen bond dynamic phenomenon has been found that ESIPT of BBTD is not a synergetic double proton transfer process, but a stepwise single proton transfer process BBTD → BBTD-S → BBTD-D. Moreover, the proton transfer process of BBTD-S → BBTD-D is easier to occur than that of BBTD → BBTD-S in S1 state.

  10. Excited-state intramolecular proton transfer and conformational relaxation in 4'-N,N-dimethylamino-3-hydroxyflavone doped in acetonitrile crystals.

    PubMed

    Furukawa, Kazuki; Yamamoto, Norifumi; Hino, Kazuyuki; Sekiya, Hiroshi

    2016-10-19

    The effect of intermolecular interactions on excited-state intramolecular proton transfer (ESIPT) in 4'-N,N-dimethylamino-3-hydroxyflavone (DMHF) doped in acetonitrile crystals was investigated by measuring its temperature dependence of steady-state fluorescence excitation and fluorescence spectra and picosecond time-resolved spectra. The relative intensity of emission from the excited state of the normal form (N*) to that from the excited state of the tautomer form (T*) and spectral features changed markedly with temperature. Unusual changes in the spectral shift and spectral features were observed in the fluorescence spectra measured between 200 and 218 K, indicating that a solid-solid phase transition of DMHF-doped acetonitrile crystals occurred. Time-resolved fluorescence spectra suggested conformational relaxation of the N* state competed with ESIPT after photoexcitation and the ESIPT rate increased with temperature in the low-temperature phase of acetonitrile. However, the intermolecular interaction of N* with acetonitrile in the high-temperature phase markedly stabilized the potential minimum of the fluorescent N* state and slowed the ESIPT. This stabilization can be explained by reorganization of acetonitrile originating from the strong electric dipole-dipole interaction between DMHF and acetonitrile molecules.

  11. A novel chalcone-analogue as an optical sensor based on ground and excited states intramolecular charge transfer: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Fayed, Tarek A.

    2006-05-01

    Steady-state absorption and emission spectroscopic techniques as well as semiempirical quantum calculations at the AM1 and ZINDO/S levels have been used to investigate the intramolecular charge transfer (ICT) behaviour of a novel chalcone namely; 1-(2-pyridyl)-5-(4-dimethylaminophenyl)-penta-2,4-diene-1-one, DMAC. The ground state DMAC has a significant ICT character and a great sensitivity to the hydrogen bond donating ability of the medium as reflected from the change of the absorption spectra in pure and mixed organic solvents. On the other hand, its excited singlet state exhibits high ICT characters as manifested by the drastic solvatochromic effects. These results are consistent with the data of charge density calculations in both the ground and excited state, which indicates enhancement of the charge transfer from the dimethyl-amino group to the carbonyl oxygen upon excitation. Also, the dipole moment calculations indicates a highly dipolar excited singlet state (Δ μeg = 15.5 D). The solvent dependence of the fluorescence quantum yield of DMAC was interpreted on the basis of positive and negative solvatokinetic as well as the hydrogen bonding effects. Incorporation of the 2-pyridyl group in the chemical structure of the present DMAC led to design of a potential optical sensor for probing acidity of the medium and metal cations such as Zn 2+, Cd 2+ and Hg 2+. This was concluded from the high acidochromic and metallochromic behaviour of DMAC on adding such cations to its acetonitrile solutions.

  12. A p-Hydroxyphenacyl-Benzothiazole-Chlorambucil Conjugate as a Real-Time-Monitoring Drug-Delivery System Assisted by Excited-State Intramolecular Proton Transfer.

    PubMed

    Barman, Shrabani; Mukhopadhyay, Sourav K; Biswas, Sandipan; Nandi, Surajit; Gangopadhyay, Moumita; Dey, Satyahari; Anoop, Anakuthil; Pradeep Singh, N D

    2016-03-18

    Among the well-known phototriggers, the p-hydroxyphenacyl (pHP) group has consistently enabled the very fast, efficient, and high-conversion release of active molecules. Despite this unique behavior, the pHP group has been ignored as a delivery agent, particularly in the area of theranostics, because of two major limitations: Its excitation wavelength is below 400 nm, and it is nonfluorescent. We have overcome these limitations by incorporating a 2-(2'-hydroxyphenyl)benzothiazole (HBT) appendage capable of rapid excited-state intramolecular proton transfer (ESIPT). The ESIPT effect also provided two unique advantages: It assisted the deprotonation of the pHP group for faster release, and it was accompanied by a distinct fluorescence color change upon photorelease. In vitro studies showed that the p-hydroxyphenacyl-benzothiazole-chlorambucil conjugate presents excellent properties, such as real-time monitoring, photoregulated drug delivery, and biocompatibility.

  13. Synthesis, spectral behaviour and photophysics of donor-acceptor kind of chalcones: Excited state intramolecular charge transfer and fluorescence quenching studies

    NASA Astrophysics Data System (ADS)

    Pannipara, Mehboobali; Asiri, Abdullah M.; Alamry, Khalid A.; Arshad, Muhammad N.; El-Daly, Samy A.

    2015-02-01

    The spectral and photophysical properties of two chalcones containing electron donating and accepting groups with intramolecular charge transfer characteristics were synthesized and characterized by 1H NMR, 13C NMR and X-ray crystallography. Both compounds show very strong solvent polarity dependent changes in their photophysical characteristics, namely, remarkable red shift in the emission spectra with increasing solvent polarity, large change in Stokes shift, significant reduction in the fluorescence quantum yield; indicating that the fluorescence states of these compounds are of intramolecular charge transfer (ICT) character. The solvent effect on the photophysical parameters such as singlet absorption, molar absorptivity, oscillator strength, dipole moment, fluorescence spectra, and fluorescence quantum yield of both compounds have been investigated comprehensively. For both dyes, Lippert-Mataga and Reichardt's correlations were used to estimate the difference between the excited and ground state dipole moments (Δμ). The interactions of dyes with colloidal silver nanoparticles (Ag NPs) were also studied in ethanol using steady state fluorescence quenching measurements. The fluorescence quenching data reveal that dynamic quenching and energy transfer play a major role in the fluorescence quenching of dyes by Ag NPs.

  14. Ab initio studies on excited state intramolecular electron transfer in 4-amino-N-methylphthalimide and 3-amino-N-methylphthalimide

    NASA Astrophysics Data System (ADS)

    Sen, Kakali; Basu, Samita; Bhattacharyya, Dhananjay

    The molecules 4-amino-N-methylphthalimide (4AMP) and 3-amino-N-methylphthalimide (3AMP) are bichromophoric compounds composed of both electron donors and acceptor groups. They undergo intramolecular electron transfer (ET), and these types of compounds are frequently used to probe microenvironments in proteins, micelles, membranes, polymer, surfaces, etc. Ab initio calculations using restricted Hartree-Fock (RHF), Møller-Plesset second-order perturbation theory (MP2) and the multi-configurational self-consistent field (MCSCF) methods with the 6-31G** basis set have been performed to characterize the intermediates of the ET process. Analysis of geometrical and electronic parameters, e.g., changes in bond lengths, angles, dihedrals, and charge density, generally used to predict the ET pathway, is not always sufficient to understand the through-bond intramolecular charge-transfer (ICT) process. Hence we have attempted to support the predicted ET pathway in a very unique way by analyzing normal modes of vibrations for molecules in both the ground and excited states. Our results predict a planar ICT model that exhibits a conformational change of the amino nitrogen from nearly sp3 in the ground state to approximately sp2 type in the ICT state. A through-bond ET occurs from the amino group of both molecules to the proximal carbonyl group in 4AMP and to the distant carbonyl group in 3AMP. Besides ET, the proximal carbonyl group in 3AMP also takes part in hydrogen bonding with the same amino group especially in excited state, which may also contribute toward ET. Such a hydrogen bond, which demands a planar amino group, is not observed in ground-state 3AMP. These results indicate that nonplanar amino group geometry in the vicinity of a conjugated system is favored, rather than the conventional planar geometry, even in the presence of a suitable hydrogen bond acceptor.

  15. Theoretical investigation of 2-(iminomethyl)phenol in the gas phase as a prototype of ultrafast excited-state intramolecular proton transfer

    NASA Astrophysics Data System (ADS)

    Daengngern, Rathawat; Prommin, Chanatkran; Rungrotmongkol, Thanyada; Promarak, Vinich; Wolschann, Peter; Kungwan, Nawee

    2016-07-01

    Photophysical properties of the smallest o-hydroxy Schiff base, 2-(iminomethyl)phenol (IMP), were elucidated using B3LYP and RI-ADC(2) methods. Cis-enol is the most stable conformation in ground state. Potential energy profiles show that enol-keto tautomerization occurs with a small barrier. However, isomerization from cis- to trans-keto is not possible because of a high barrier. The trans-keto tautomer is only accessible through a conical intersection (CI) after excited-state intramolecular proton transfer (ESIPT). Dynamics results show that cis-enol undergoes ultrafast ESIPT to give cis-keto. Regions of CI may be initiated to yield keto forms through radiativeless process with torsion twist of about 40-50°.

  16. Theoretical study on the excited-state intramolecular proton transfer in the aromatic schiff base salicylidene methylamine: an electronic structure and quantum dynamical approach.

    PubMed

    Ortiz-Sanchez, Juan Manuel; Gelabert, Ricard; Moreno, Miquel; Lluch, José M

    2006-04-13

    The proton-transfer dynamics in the aromatic Schiff base salicylidene methylamine has been theoretically analyzed in the ground and first singlet (pi,pi) excited electronic states by density functional theory calculations and quantum wave-packet dynamics. The potential energies obtained through electronic calculations that use the time-dependent density functional theory formalism, which predict a barrierless excited-state intramolecular proton transfer, are fitted to a reduced three-dimensional potential energy surface. The time evolution in this surface is solved by means of the multiconfiguration time-dependent Hartree algorithm applied to solve the time-dependent Schrödinger equation. It is shown that the excited-state proton transfer occurs within 11 fs for hydrogen and 25 fs for deuterium, so that a large kinetic isotope effect is predicted. These results are compared to those of the only previous theoretical work published on this system [Zgierski, M. Z.; Grabowska, A. J. Chem. Phys. 2000, 113, 7845], reporting a configuration interaction singles barrier of 1.6 kcal mol(-1) and time reactions of 30 and 115 fs for the hydrogen and deuterium transfers, respectively, evaluated with the semiclassical instanton approach.

  17. Intersystem crossing-branched excited-state intramolecular proton transfer for o-nitrophenol: An ab initio on-the-fly nonadiabatic molecular dynamic simulation

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Yu, Le; Zhu, Chaoyuan; Yu, Jianguo; Cao, Zexing

    2016-05-01

    The 6SA-CASSCF(10, 10)/6-31G (d, p) quantum chemistry method has been applied to perform on-the-fly trajectory surface hopping simulation with global switching algorithm and to explore excited-state intramolecular proton transfer reactions for the o-nitrophenol molecule within low-lying electronic singlet states (S0 and S1) and triplet states (T1 and T2). The decisive photoisomerization mechanisms of o-nitrophenol upon S1 excitation are found by three intersystem crossings and one conical intersection between two triplet states, in which T1 state plays an essential role. The present simulation shows branch ratios and timescales of three key processes via T1 state, non-hydrogen transfer with ratio 48% and timescale 300 fs, the tunneling hydrogen transfer with ratios 36% and timescale 10 ps, and the direct hydrogen transfer with ratios 13% and timescale 40 fs. The present simulated timescales might be close to low limit of the recent experiment results.

  18. Intersystem crossing-branched excited-state intramolecular proton transfer for o-nitrophenol: An ab initio on-the-fly nonadiabatic molecular dynamic simulation

    PubMed Central

    Xu, Chao; Yu, Le; Zhu, Chaoyuan; Yu, Jianguo; Cao, Zexing

    2016-01-01

    The 6SA-CASSCF(10, 10)/6-31G (d, p) quantum chemistry method has been applied to perform on-the-fly trajectory surface hopping simulation with global switching algorithm and to explore excited-state intramolecular proton transfer reactions for the o-nitrophenol molecule within low-lying electronic singlet states (S0 and S1) and triplet states (T1 and T2). The decisive photoisomerization mechanisms of o-nitrophenol upon S1 excitation are found by three intersystem crossings and one conical intersection between two triplet states, in which T1 state plays an essential role. The present simulation shows branch ratios and timescales of three key processes via T1 state, non-hydrogen transfer with ratio 48% and timescale 300 fs, the tunneling hydrogen transfer with ratios 36% and timescale 10 ps, and the direct hydrogen transfer with ratios 13% and timescale 40 fs. The present simulated timescales might be close to low limit of the recent experiment results. PMID:27221650

  19. Role of nitrogen substitution in phenyl ring on excited state intramolecular proton transfer and rotamerism of 2-(2'-hydroxyphenyl)benzimidazole: a theoretical study.

    PubMed

    Chipem, Francis A S; Dash, Nihar; Krishnamoorthy, G

    2011-03-14

    A comparative study of 2-(2'-hydroxy-3'-pyridyl)benzimidazole (2',3'-HPyBI), 2-(3'-hydroxy-4'-pyridyl)benzimidazole (3',4'-HPyBI), 2-(4'-hydroxy-3'-pyridyl)benzimidazole (4',3'-HPyBI), 2-(3'-hydroxy-2'-pyridyl)benzimidazole (3',2'-HPyBI), and 2-(5'-hydroxy-4'-pyrimidinyl)benzimidazole (5',4'-HPymBI) with 2-(2'-hydroxyphenyl)benzimidazole (HPBI) was performed theoretically to evaluate the effect of nitrogen substitution in the phenolic ring on the photophysics and rotamerism of HPBI. Density functional theory (DFT) and configuration interaction singles (CIS) combined with time-dependent DFT were employed for ground and excited state studies, respectively. Different possible molecular forms were considered for each molecule viz., cis-enol, trans-enol, open-enol, and keto forms. The computational results revealed that cis-enol is the most stable form in the ground state for all the molecules except in 2',3'-HPyBI. In 2',3'-HPyBI, K-2 keto is the most stable form. Water molecule assisted interconversions between different forms of 2',3'-HPyBI were examined theoretically. Excitation and emission energies for all the forms have been calculated theoretically and the values are in good agreement with the available experimental data. The calculations show that intramolecular proton transfer (ESIPT) is endothermic in the ground state while it is exothermic in the first excited singlet state (except 5',4'-HPymBI). The barrier for the excited state ESIPT reaction increases with nitrogen substitution. Torsional rotation between the benzimidazole and the pyridinyl∕pyrimidinyl rings in the S(1) state depicts that twisted-keto structures involve charge transfer from the hydroxypyridinyl∕hydoxypyrimidinyl to the benzimidazole ring. However, the formation of twisted-keto is not energetically favored in these systems.

  20. An excited state intramolecular proton transfer dye based fluorescence turn-on probe for fast detection of thiols and its applications in bioimaging

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Xue, Yuanyuan; Li, Haoyang; Zhu, Ruitao; Ren, Yuehong; Shi, Qinghua; Wang, Song; Guo, Wei

    2017-03-01

    In this study, a new fluorescent probe 2-(2‧-hydroxy-5‧-N-maleimide phenyl)-benzothiazole (probe 1), was designed and synthesized by linking the excited state intramolecular proton transfer (ESIPT) fluorophore to the maleimide group for selective detection of thiols in aqueous solution. The fluorescence of probe 1 is strongly quenched by maleimide group through the photo-induced electron transfer (PET) mechanism, but after reaction with thiol, the fluorescence of ESIPT fluorophore is restored, affording a large Stokes shifts. Upon addition of cysteine (Cys), probe 1 exhibited a fast response time (complete within 30 s) and a high signal-to-noise ratio (up to 23-fold). It showed a high selectivity and excellent sensitivity to thiols over other relevant biological species, with a detection limit of 3.78 × 10- 8 M (S/N = 3). Moreover, the probe was successfully applied to the imaging of thiols in living cells.

  1. Large Fluorescence Response by Alcohol from a Bis(benzoxazole)-Zinc(II) Complex: The Role of Excited State Intramolecular Proton Transfer

    PubMed Central

    Wang, Junfeng; Chu, Qinghui; Liu, Xiumin; Wesdemiotis, Chrys

    2013-01-01

    The formation of a bis(HBO) anion is known to turn-on the fluorescence to give red emission, via controlling the excited-state intramolecular proton transfer (ESIPT). The poor stability of the formed anion, however, hampered its application. The anion stability is found to be greatly improved by attaching the anion to Zn2+ cation (i.e. forming zinc complex), whose emission is at λem ≈ 550 and 760 nm. Interestingly, addition of methanol to the zinc complex induces a remarkable red fluorescence (λem ≈ 630 nm, ϕfl ≈ 0.8). With the aid of spectroscopic studies (1H NMR, UV-vis, fluorescence, and mass spectra), the structures of the zinc complexes are characterized. The emission species is identified as a dimer-like structure. The study thus reveals an effective fluorescence switching mechanism that could further advance the application of ESIPT-based sensors. PMID:23514312

  2. Intramolecular hydrogen bonding and excited state proton transfer in hydroxyanthraquinones as studied by electronic spectra, resonance Raman scattering, and transform analysis

    NASA Astrophysics Data System (ADS)

    Marzocchi, Mario P.; Mantini, Anna R.; Casu, Maurizio; Smulevich, Giulietta

    1998-01-01

    The scheme of energy levels previously proposed to describe dual excitation and emission associated to excited state intramolecular proton transfer (ESIPT) of some hydroxyanthraquinones (HAQ's) has been made more quantitative in the present paper. The zero-point energy and the frequency of the νOH mode for the HAQ's have been calculated on the basis of the Lippincott-Schroeder double-minimum potential for the O-H⋯O hydrogen bond. The second derivative absorption (D2) spectra show that the vibrational structures of the electronic excited state of HAQ's giving rise to ESIPT are characterized by the progression of the νOH stretching mode. The νOH mode in the ground state is observed as a very strong band in the vibrational structure of the short wavelength emission for HAQ's showing ESIPT. The combined resonance Raman band assignment of four hydroxyanthraquinones and transform analysis show that the visible transition involves the hydrogen bonded cycle and induces proton transfer in the excited state in most cases. On the basis of the isotopic effects, some vibrations of the hydrogen bonded cycle, namely the νC=O, δC=O, νCOH, and δOH modes, have been identified. The transform method, including the combined analysis of the absorption and D2 spectra in terms of sum-over-states, was checked by directly deriving the displacement parameters (Franck-Condon factors) of 1,4-DHAQ from the high resolution free-jet spectrum. The values of the displacement parameters of the νOH mode are quite large for the HAQ's showing ESIPT, while are negligible for 1,4-DHAQ. High values of the displacement parameters for the other vibrations of the hydrogen bonded cycle were found for all HAQ's.

  3. Matching-pursuit split-operator Fourier-transform simulations of excited-state intramolecular proton transfer in 2-(2'-hydroxyphenyl)-oxazole

    NASA Astrophysics Data System (ADS)

    Wu, Yinghua; Batista, Victor S.

    2006-06-01

    The excited-state intramolecular proton-transfer dynamics associated with the ketoenolic tautomerization reaction in 2-(2'-hydroxyphenyl)-oxazole is simulated according to a numerically exact quantum-dynamics propagation method and a full-dimensional excited-state potential energy surface, based on an ab initio reaction surface Hamiltonian. The reported simulations involve the propagation of 35-dimensional wave packets according to the recently developed matching-pursuit/split-operator-Fourier-transform (MP/SOFT) method by Wu and Batista, [J. Chem. Phys. 121, 1676 (2004)]. The underlying propagation scheme recursively applies the time-evolution operator as defined by the Trotter expansion to second order accuracy in dynamically adaptive coherent-state expansions. Computations of time-dependent survival amplitudes, photoabsorption cross sections, and time-dependent reactant(product) populations are compared to the corresponding calculations based on semiclassical approaches, including the Herman-Kluk semiclassical initial value representation method. The reported results demonstrate the capabilities of the MP/SOFT method as a valuble computational tool to study ultrafast reaction dynamics in polyatomic systems as well as to validate semiclassical simulations of complex (nonintegrable) quantum dynamics in multidimensional model systems.

  4. Vibrational overtone spectra of N-H stretches and intramolecular dynamics on the ground and electronically excited states of methylamine

    SciTech Connect

    Marom, Ran; Zecharia, Uzi; Rosenwaks, Salman; Bar, Ilana

    2008-04-21

    The vibrational pattern and energy flow in the N-H stretch manifolds and the dissociation dynamics of methylamine (CH{sub 3}NH{sub 2}) were investigated via vibrationally mediated photodissociation. Action spectra and Doppler profiles, reflecting the yield of the ensuing H photofragments, versus near infrared/visible vibrational excitation and UV excitation, respectively, were measured. The jet-cooled action spectra and the simultaneously measured room temperature photoacoustic spectra of the first to third N-H stretching overtones exhibit broad features, somewhat narrower in the former, consisting of barely recognized multiple bands. Two phases of fitting of the spectroscopic data were performed. In the first phase, the raw data were analyzed to obtain band positions, types, intensities, and transition linewidths. In the second, the information derived from the first phase was then used as data in a fit to joint local mode/normal mode (LM/NM) and NM Hamiltonian parameters. The derived parameters predicted well band positions and allowed band assignment. The LM/NM Hamiltonian and the extracted Lorentzian linewidths enabled the determination of the initial pathways for energy redistribution and the overall temporal behavior of the N-H stretch and doorway states, as a result of Fermi couplings and interactions with bath states. The results indicate a nonstatistical energy flow in the V=2 manifold region, pointing to the dependence of the coupling on specific low order resonances rather than on the total density of bath states. The Doppler profiles suggest lower average translational energies for the released H photofragments, in particular, for V=3 and 4 as compared to V=1 and 2, implying a change in the mechanism for bond cleavage.

  5. Theoretical investigation of highly excited vibrational states in DFCO: Calculation of the out-of-plane bending states and simulation of the intramolecular vibrational energy redistribution

    NASA Astrophysics Data System (ADS)

    Pasin, Gauthier; Iung, Christophe; Gatti, Fabien; Meyer, Hans-Dieter

    2007-01-01

    A previously developed modified Davidson scheme [C. Iung and F. Ribeiro, J. Chem. Phys. 121, 174105 (2005)] is applied to compute and analyze highly excited (ν2,ν6) eigenstates in DFCO. The present paper is also devoted to the simulations of the intramolecular vibrational energy redistribution (IVR) initiated by an excitation of the out-of-plane bending vibration (nν6, n =2,4,6,…,18, and 20). The multiconfiguration time-dependent Hartree method is exploited to propagate the corresponding six-dimensional wave packets. A comprehensive comparison with experimental data as well as with previous simulations of IVR in HFCO [G. Pasin et al. J. Chem. Phys. 124, 194304 (2006)] is presented.

  6. Enhancing excited state intramolecular proton transfer in 2-(2'-hydroxyphenyl)benzimidazole and its nitrogen-substituted analogues by β-cyclodextrin: the effect of nitrogen substitution.

    PubMed

    Chipem, Francis A S; Behera, Santosh Kumar; Krishnamoorthy, G

    2013-05-23

    Excited state intramolecular proton transfer (ESIPT) in nitrogen-substituted analogues of 2-(2'-hydroxyphenyl)benzimidazole (HPBI), 2-(2'-hydroxyphenyl)-3H-imidazo[4,5-b]pyridine (HPIP-b), and 2-(2'-hydroxyphenyl)-3H-imidazo[4,5-c]pyridine (HPIP-c) have been investigated in a β-cyclodextrin (β-CD) nanocavity and compared with that of HPBI. The stoichiometry and the binding constants of the complexes were determined by tautomer emissions. Both pKa and NMR experiments were employed to determine the orientation of the molecules inside of the β-CD cavity. Huge enhancement in the tautomer emission of HPIP-b and HPIP-c compared to that of HPBI in β-CD suggests that not only is the ESIPT favored inside of the cavity, but also, the environment reduces the nonradiative decay through the formation of an intramolecular charge-transfer (ICT) state. Unlike HPBI, the tautomer emission to normal emission ratio of HPIP-b increases from 0.9 to 2.6, and that of HPIP-c increases from 4.9 to 7.4 in 15 mM β-CD. The effect of dimethylsulfoxide (DMSO) on complexation was also investigated for all three guest molecules. In DMSO, HPBI is present in neutral form, but the nitrogen-substituted analogues are present in both neutral and monoanionic forms. However, in DMSO upon encapsulation by β-CD, all three molecules are present in both neutral and monoanionic forms in the nanocavity. The monoanion is stabilized more inside of the β-CD cavity. The studies revealed that the ESIPT of nitrogen-substituted analogues is more susceptible to the environment than HPBI, and therefore, they are more promising probes.

  7. Intramolecular vibrational redistribution in the non-radiative excited state decay of uracil in the gas phase: an ab initio molecular dynamics study.

    PubMed

    Carbonniere, Philippe; Pouchan, Claude; Improta, Roberto

    2015-05-07

    We report a study of intramolecular vibrational distribution (IVR) occurring in the electronic ground state of uracil (S0) in the gas phase, following photoexcitation in the lowest energy bright excited state (Sπ) and decay through the ethylene-like Sπ/S0 Conical Intersection (CI-0π). To this aim we have performed 20 independent ab initio molecular dynamics simulations starting from CI-0π (ten of them with 1 eV kinetic energy randomly distributed over the different molecular degrees of freedom) and 10 starting from the ground state minimum (Franck-Condon, FC, point), with the excess kinetic energy equal to the energy gap between CI-0π and the FC point. The simulations, exploiting PBE0/6-31G(d) calculations, were performed over an overall period of 10 ps. A thorough statistical analysis of the variation of the geometrical parameters of uracil during the simulation time and of the distribution of the kinetic energy among the different vibrational degrees of freedom provides a consistent picture of the IVR process. In the first 0-200 fs the structural dynamics involve mainly the recovery of the average planarity. In the 200-600 fs time range, a substantial activation of CO and NH degrees of freedom is observed. After 500-600 fs most of the geometrical parameters reach average values similar to those found after 10 ps, though the system cannot be considered to be in equilibrium yet.

  8. A new type of excited-state intramolecular proton transfer: proton transfer from phenol OH to a carbon atom of an aromatic ring observed for 2-phenylphenol.

    PubMed

    Lukeman, Matthew; Wan, Peter

    2002-08-14

    The photochemical deuterium incorporation at the 2'- and 4'-positions of 2-phenylphenol (4) and equivalent positions of related compounds has been studied in D(2)O (CH(3)OD)-CH(3)CN solutions with varying D(2)O (CH(3)OD) content. Predominant exchange was observed at the 2'-position with an efficiency that is independent of D(2)O (MeOD) content. Exchange at the 2'-position (but not at the 4'-position) was also observed when crystalline samples of 4-OD were irradiated. Data are presented consistent with a mechanism of exchange that involves excited-state intramolecular proton transfer (ESIPT) from the phenol to the 2'-carbon position of the benzene ring not containing the phenol, to generate the corresponding keto tautomer (an o-quinone methide). This is the first explicit example of a new class of ESIPT in which an acidic phenolic proton is transferred to an sp(2)-hybridized carbon of an aromatic ring. The complete lack of exchange observed for related substrates 6-9 and for planar 4-hydroxyfluorene (10) is consistent with a mechanism of ESIPT that requires an initial hydrogen bonding interaction between the phenol proton and the benzene pi-system. Similar exchange was observed for 2,2'-biphenol (5), suggesting that this new type of ESIPT is a general reaction for unconstrained 2'-aryl-substituted phenols and other related hydroxyarenes.

  9. Synthesis, structural, and photophysical studies of π-fused acenaphtho[1,2-d]imidazole-based excited-state intramolecular proton transfer molecules

    NASA Astrophysics Data System (ADS)

    Somasundaram, Sivaraman; Kamaraj, Eswaran; Hwang, Su Jin; Jung, Sooyoung; Choi, Moon Gun; Park, Sanghyuk

    2017-06-01

    Orange-red fluorescent molecules are promising materials for use in a new generation of displays, light sources, and chemosensors because conventional red-emitters have lower fluorescence quantum efficiencies. In this work, a set of orange-emitting fused imidazole series 2-(7-(4-fluorophenyl)-7H-acenaphtho[1,2-d]imidazol-8-yl)phenol (AHPI-F), 2-(7-(4-chlorophenyl)-7H-acenaphtho[1,2-d]imidazol-8-yl)phenol (AHPI-Cl), and 2-(7-(4-bromophenyl)-7H-acenaphtho[1,2-d]imidazol-8-yl)phenol (AHPI-Br) have been synthesized via multicomponent reaction method with high yield. Synthesized molecules were fully characterized by 1H NMR, 13C NMR, GC-Mass, UV-vis. absorption, PL, and TGA-DSC. The compounds AHPI-F, AHPI-Cl, AHPI-Br showed large Stokes' shifted emission due to excited-state intramolecular proton transfer (ESIPT) process, and they effectively formed large single crystals. The crystal structure of each compound was identified by X-ray crystallographic analysis. To elucidate the photophysical properties of the molecule, theoretical calculation were performed by density functional theory (DFT) with B3LYP 6-31G(d,p) basis sets using the identified molecular conformations from X-ray analysis. Calculated electronic properties including HOMO-LUMO levels were compared with the experimental results. As a result of ESIPT process, extended conjugation length through acenaphto[1,2-d]imidazole, and charge transfer characteristics by the introduction of halogen atoms, all of the materials showed orange ESIPT emission with no spatial overlap between absorption (λmax,abs = 325 nm) and emission (λmax,ems = 578 nm).

  10. Intramolecular charge transfer with the planarized 4-cyanofluorazene and its flexible counterpart 4-cyano-N-phenylpyrrole. Picosecond fluorescence decays and femtosecond excited-state absorption.

    PubMed

    Druzhinin, Sergey I; Kovalenko, Sergey A; Senyushkina, Tamara A; Demeter, Attila; Machinek, Reinhard; Noltemeyer, Mathias; Zachariasse, Klaas A

    2008-09-11

    The fluorescence spectrum of the rigidified 4-cyanofluorazene (FPP4C) in n-hexane consists of a dual emission from a locally excited (LE) and an intramolecular charge-transfer (ICT) state, with an ICT/LE fluorescence quantum yield ratio of Phi'(ICT)/Phi(LE) = 3.3 at 25 degrees C. With the flexible 4-cyano- N-phenylpyrrole (PP4C) in n-hexane, such an ICT reaction also takes place, with Phi'(ICT)/Phi(LE) = 1.5, indicating that for this reaction, a perpendicular twist of the pyrrole and benzonitrile moieties is not required. The ICT emission band of FPP4C and PP4C in n-hexane has vibrational structure, but a structureless band is observed in all other solvents more polar than the alkanes. The enthalpy difference Delta H of the LE --> ICT reaction in n-hexane, -11 kJ/mol for FPP4C and -7 kJ/mol for PP4C, is determined by analyzing the temperature dependence of Phi'(ICT)/Phi(LE). Using these data, the energy E(FC,ICT) of the Franck-Condon ground state populated by the ICT emission is calculated, 41 (FPP4C) and 40 kJ/mol (PP4C). These large values for E(FC,ICT) lead to the conclusion that with FPP4C and PP4C, direct ICT excitation, bypassing LE, does not take place. FPP4C has an ICT dipole moment of 15 D, similar to that of PP4C (16 D). Picosecond fluorescence decays allow the determination of the ICT lifetime, from which the radiative rate constant k'(f)(ICT) is derived, with comparable values for FPP4C and PP4C. This shows that an argument for a twisted ICT state of PP4C cannot come from k'(f)(ICT). After correction for the solvent refractive index and the energy of the emission maximum nu(max)(ICT), it appears that k'(f)(ICT) is solvent-polarity-independent. Femtosecond transient absorption with FPP4C and PP4C in n-hexane reveals that the ICT state is already nearly fully present at 100 fs after excitation, in rapid equilibrium with LE. In MeCN, the ICT state of FPP4C and PP4C is likewise largely developed at this delay time, and the reaction is limited by dielectric

  11. Intramolecular Charge-Transfer Excited-State Processes in 4-(N,N-Dimethylamino)benzonitrile: The Role of Twisting and the πσ* State

    PubMed Central

    2015-01-01

    The structural processes leading to dual fluorescence of 4-(dimethylamino)benzonitrile in the gas phase and in acetonitrile solvent were investigated using a combination of multireference configuration interaction (MRCI) and the second-order algebraic diagrammatic construction (ADC(2)) methods. Solvent effects were included on the basis of the conductor-like screening model. The MRCI method was used for computing the nonadiabatic interaction between the two lowest excited ππ* states (S2(La, CT) and S1(Lb, LE)) and the corresponding minimum on the crossing seam (MXS) whereas the ADC(2) calculations were dedicated to assessing the role of the πσ* state. The MXS structure was found to have a twisting angle of ∼50°. The branching space does not contain the twisting motion of the dimethylamino group and thus is not directly involved in the deactivation process from S2 to S1. Polar solvent effects are not found to have a significant influence on this situation. Applying Cs symmetry restrictions, the ADC(2) calculations show that CCN bending leads to a strong stabilization and to significant charge transfer (CT). Nevertheless, this structure is not a minimum but converts to the local excitation (LE) structure on releasing the symmetry constraint. These findings suggest that the main role in the dynamics is played by the nonadiabatic interaction of the LE and CT states and that the main source for the dual fluorescence is the twisted internal charge-transfer state in addition to the LE state. PMID:25989536

  12. Intramolecular Charge-Transfer Excited-State Processes in 4-(N,N-Dimethylamino)benzonitrile: The Role of Twisting and the πσ* State.

    PubMed

    Georgieva, Ivelina; Aquino, Adélia J A; Plasser, Felix; Trendafilova, Natasha; Köhn, Andreas; Lischka, Hans

    2015-06-18

    The structural processes leading to dual fluorescence of 4-(dimethylamino)benzonitrile in the gas phase and in acetonitrile solvent were investigated using a combination of multireference configuration interaction (MRCI) and the second-order algebraic diagrammatic construction (ADC(2)) methods. Solvent effects were included on the basis of the conductor-like screening model. The MRCI method was used for computing the nonadiabatic interaction between the two lowest excited ππ* states (S2(La, CT) and S1(Lb, LE)) and the corresponding minimum on the crossing seam (MXS) whereas the ADC(2) calculations were dedicated to assessing the role of the πσ* state. The MXS structure was found to have a twisting angle of ∼50°. The branching space does not contain the twisting motion of the dimethylamino group and thus is not directly involved in the deactivation process from S2 to S1. Polar solvent effects are not found to have a significant influence on this situation. Applying Cs symmetry restrictions, the ADC(2) calculations show that CCN bending leads to a strong stabilization and to significant charge transfer (CT). Nevertheless, this structure is not a minimum but converts to the local excitation (LE) structure on releasing the symmetry constraint. These findings suggest that the main role in the dynamics is played by the nonadiabatic interaction of the LE and CT states and that the main source for the dual fluorescence is the twisted internal charge-transfer state in addition to the LE state.

  13. What determines the rate of excited-state intramolecular electron-transfer reaction of 4-(N,N'-dimethylamino)benzonitrile in room temperature ionic liquids? A study in [bmim][PF6].

    PubMed

    Santhosh, Kotni; Samanta, Anunay

    2012-05-14

    The kinetics of excited-state intramolecular electron-transfer reaction and dynamics of solvation of the intramolecular charge transfer (ICT) state of 4-(N,N'-dimethylamino)benzonitrile (DMABN) was studied in 1-butyl-3-methylimidazloium hexafluorophosphate, [bmim][PF(6)], by monitoring the dual fluorescence of the system. The picosecond time-resolved emission spectra (TRES) of DMABN exhibit decay of the locally excited (LE) emission intensity and shift of the ICT emission peak position with time, thus capturing the kinetics of evolution of the ICT state from the LE state and solvent relaxation of the ICT state. These results show that the LE→ICT transformation rate is determined not by the slow dynamics of solvation in ionic liquid, but is controlled mainly by the rate of structural reorganization of the molecule, which accompanies the electron-transfer process in this polar viscous medium. Even though both solvent reorganization around photo-excited DMABN and structural rearrangement of the molecule are dependent on the viscosity of the medium, it is the latter process that contributes to the viscosity dependence of the LE→ICT transformation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Modulation of the excited state intramolecular electron transfer reaction and dual fluorescence of crystal violet lactone in room temperature ionic liquids.

    PubMed

    Santhosh, Kotni; Samanta, Anunay

    2010-07-22

    The influence of polarity, viscosity, and hydrogen bond donating ability of the medium on the fluorescence behavior of crystal violet lactone (CVL), which undergoes excited state electron transfer reaction and exhibits dual fluorescence from two different electronic states, termed as CT(A) and CT(B), has been studied in six different room temperature ionic liquids (ILs) using steady state and time-resolved emission techniques. It is shown that the excited state CT(A) --> CT(B) transformation and dual fluorescence of CVL can be controlled by appropriate choice of the ILs. While dual fluorescence of CVL is clearly observed in pyrrolidinium IL, the molecule exhibits a single fluorescence band in ammonium IL. While the second emission from the CT(B) state can barely be seen in 1,3-dialkylimidazolium ILs, dual fluorescence is quite prominent in 1-butyl-2,3-dimethylimidazolium IL, [bmMim][Tf(2)N]. These contrasting results have been explained taking into account the hydrogen bonding interactions of the 1,3-dialkylimidazolium ions (mediated through the C(2)-hydrogen) with CVL and the viscosity of the ILs. The excited state CT(A) --> CT(B) reaction kinetics has been studied in IL by monitoring the time-evolution of the CT(B) emission in [bmMim][Tf(2)N]. The solvation dynamics in this IL has been studied by following the dynamic fluorescence Stokes shift of C153, which is used as a probe molecule. A comparison of the excited state reaction time and solvation time suggests that the rate of the CT(A) --> CT(B) reaction in moderately viscous ILs is primarily dictated by the rate of solvation. Very little or negligible excitation wavelength dependence of the emission behavior of CVL can be observed in these ILs.

  15. Coherent nuclear wavepacket motions in ultrafast excited-state intramolecular proton transfer: sub-30-fs resolved pump-probe absorption spectroscopy of 10-hydroxybenzo[h]quinoline in solution.

    PubMed

    Takeuchi, Satoshi; Tahara, Tahei

    2005-11-17

    The dynamics of the excited-state intramolecular proton transfer of 10-hydroxybenzo[h]quinoline (10-HBQ) and the associated coherent nuclear motion were investigated in solution by femtosecond absorption spectroscopy. Sub-picosecond transient absorption measurements revealed spectral features of the stimulated emission and absorption of the keto excited state (the product of the reaction). The stimulated emission band appeared in the 600-800-nm region, corresponding to the wavelength region of the steady-state keto fluorescence. It showed successive temporal changes with time constants of 350 fs and 8.3 ps and then disappeared with the lifetime of the keto excited state (260 ps). The spectral feature of the stimulated emission changed in the 350-fs dynamics, which was likely assignable to the intramolecular vibrational energy redistribution in the keto excited state. The 8.3-ps change caused a spectral blue shift and was attributed to the vibrational cooling process. The excited-state absorption was observed in the 400-600-nm region, and it also showed temporal changes characterized by the 350-fs and 8.3-ps components. To examine the coherent nuclear dynamics (nuclear wavepacket motion) in excited-state 10-HBQ, we carried out pump-probe measurements of the stimulated emission and absorption signals with time resolution as good as 27 fs. The obtained data showed substantially modulated signals due to the excited-state vibrational coherence up to a delay time of several picoseconds after photoexcitation. This means that the vibrational coherence created by photoexcitation in the enol excited state is transferred to the product. Fourier transform analysis indicated that four frequency components in the 200-700-cm(-1) region contribute to the oscillatory signal, corresponding to the coherent nuclear motions in excited-state 10-HBQ. Especially, the lowest-frequency mode at 242 cm(-1) is dephased significantly faster than the other three modes. This observation was

  16. Intramolecular charge transfer in aminobenzonitriles and tetrafluoro counterparts: fluorescence explained by competition between low lying excited states and radiationless deactivation. Part II: influence of substitution on luminescence patterns.

    PubMed

    Segado, Mireia; Mercier, Yannick; Gómez, Isabel; Reguero, Mar

    2016-03-07

    In this paper, we study the mechanisms of charge transfer, luminescence and radiationless decay of three derivatives of 4-aminobenzonitrile (ABN): dimethyl-ABN (DMABN) and the tetrafluorinated derivatives, ABN-4F and DMABN-4F. Our CASSCF/CASPT2 computations explain the different luminescence patterns observed in these three compounds and in comparison with the parent system, ABN, in spite of their similar architecture. We have found that the modifications made by the different substitutions in ABN tune the relative energies of the locally excited (LE) and charge transfer (CT) excited states due to electronic and structural factors. In all cases, the only potentially emitting species of CT character is the twisted-ICT. The increasing stabilization of this later species in the series formed by ABN-4F, DMABN and DMABN-4F explains the increasing intensity of the anomalous emission band in these compounds. Nevertheless, other factors like probability of emission vs. nonradiative decay must have also been taken into account. In fact fluoro-substitution increases the accessibility to conical intersections of the excited states with the ground state, opening an internal conversion channel that decreases the fluorescence quantum yield in the fluorinated derivatives. Our results also show that the involvement of the π-σ* state in the CT process is only possible in ABN-4F, but even in this case it is not probable.

  17. Photophysical and excited-state intramolecular proton transfer of 2-(1-(3,5-dimethylphenyl)-1H-phenanthro[9,10-d]imidazol-2-yl)phenol: DFT analysis

    NASA Astrophysics Data System (ADS)

    Jayabharathi, J.; Vimal, K.; Thanikachalam, V.; Kalaiarasi, V.

    Fluorescent phenenthrimidazole derivatives have been synthesized and characterized by 1H, 13C NMR and mass spectral analyses. Synthesized compounds have been. The solvent effect on the absorption and fluorescence bands has been analyzed and supplement by computational studies. Phenenthrimidazole containing hydroxy group shows a single prominent absorption and emission in polar solvents and dual emission in non-polar solvents due to excited state intramolecular proton transfer (ESIPT). The ESIPT of 2-(1-(3,5-dimethylphenyl)-1H-phenanthro[9,10-d]imidazol-2-yl)phenol was cross validated by the analysis of optimized geometry parameters, potential energy surface (PES), mulliken’s charge distribution on the heavy atoms and molecular orbitals of its tautomers. Nonviability of ground state electron transfer was explained by HOMO-LUMO analysis. The intramolecular hydrogen bonding (IMHB) interaction has been explored by the calculation of electron density ρ(r) and the Laplacian Δ2ρ(r) at the bond critical point (BCP) using atoms-in-molecule (AIM) method and by calculation of hyper conjugative interaction between N17 lone pair and σ*(O53⋯H54) using natural bond orbital (NBO) analysis.

  18. Photophysical and excited-state intramolecular proton transfer of 2-(1-(3,5-dimethylphenyl)-1H-phenanthro[9,10-d]imidazol-2-yl)phenol: DFT analysis.

    PubMed

    Jayabharathi, J; Vimal, K; Thanikachalam, V; Kalaiarasi, V

    2014-05-05

    Fluorescent phenenthrimidazole derivatives have been synthesized and characterized by (1)H, (13)C NMR and mass spectral analyses. Synthesized compounds have been. The solvent effect on the absorption and fluorescence bands has been analyzed and supplement by computational studies. Phenenthrimidazole containing hydroxy group shows a single prominent absorption and emission in polar solvents and dual emission in non-polar solvents due to excited state intramolecular proton transfer (ESIPT). The ESIPT of 2-(1-(3,5-dimethylphenyl)-1H-phenanthro[9,10-d]imidazol-2-yl)phenol was cross validated by the analysis of optimized geometry parameters, potential energy surface (PES), mulliken's charge distribution on the heavy atoms and molecular orbitals of its tautomers. Nonviability of ground state electron transfer was explained by HOMO-LUMO analysis. The intramolecular hydrogen bonding (IMHB) interaction has been explored by the calculation of electron density ρ(r) and the Laplacian Δ(2)ρ(r) at the bond critical point (BCP) using atoms-in-molecule (AIM) method and by calculation of hyper conjugative interaction between N17 lone pair and σ*(O53⋯H54) using natural bond orbital (NBO) analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Spiroconjugated intramolecular charge-transfer emission in non-typical spiroconjugated molecules: the effect of molecular structure upon the excited-state configuration.

    PubMed

    Zhu, Linna; Zhong, Cheng; Liu, Cui; Liu, Zhongyin; Qin, Jingui; Yang, Chuluo

    2013-04-02

    A set of terfluorenes and terfluorene-like molecules with different pendant substitutions or side groups were designed and synthesized, their photophysical properties and the excited-state geometries were studied. Dual fluorescence emissions were observed in compounds with rigid pendant groups bearing electron-donating N atoms. According to our earlier studies, in this set of terfluorenes, the blue emission is from the local π-π* transition, while the long-wavelength emission is attributed to a spiroconjugation-like through-space charge-transfer process. Herein, we probe further into how the molecular structures (referring to the side groups, the type of linkage between central fluorene and the 2,2'-azanediyldiethanol units, and-most importantly-the amount of pendant groups), as well as the excited-state geometries, affect the charge-transfer process of these terfluorenes or terfluorene-like compounds. 9-(9,9,9'',9''-tetrahexyl-9H,9'H,9''H-[2,2':7',2''-terfluoren]-9'-yl)-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolone (TFPJH), with only one julolidine pendant group, was particularly synthesized, which exhibits complete "perpendicular" conformation between julolidine and the central fluorene unit in the excited state, thus typical spiroconjugation could be achieved. Notably, its photophysical behaviors resemble those of TFPJ with two pendant julolidines. This study proves that spiroconjugation does happen in these terfluorene derivatives, although their structures are not in line with the typical orthogonal π fragments. The spiroconjugation charge-transfer emission closely relates to the electron-donating N atoms on the pendant groups, and to the rigid connection between the central fluorene and the N atoms, whereas the amount of pendant groups and the nature of the side chromophores have little effect. These findings may shed light on the understanding of the through-space charge-transfer properties and the emission color tuning of fluorene derivatives.

  20. Excited state intramolecular proton transfer (ESIPT) in the Photoresponsive Prototropic Schiff-Base N‧-(2-hydroxybenzylidene)-4-hydroxybenzohydrazide: Computational Modeling Study

    NASA Astrophysics Data System (ADS)

    Abdel-Mottaleb, M. S. A.

    2017-09-01

    Computations within Density Functional Theory (DFT) and its Time-Dependent (TD) extension at the B3LYP/6-31G(d) level are performed for both S0 and S1 states to obtain the optimum molecular geometry of the keto-enol photochromic material of the title molecule and to explain the photo-induced ESIPT to generate the corresponding enol tautomer. The choice of the compound is interesting, and deserves attention due to geometrical changes in the electronic structure of the Nsbnd N linkage during the proton transfer (PT) reaction coordinate. In particular, PT path is followed by relaxed scan technique for computing potential energy surface (PES) to identify the transition state and to obtain barrier heights in S0 and S1 states. The photoresponsive H-transfer tautomerism is discussed in terms of different computational parameters including enthalpies and free energies. Both electronic reactivity as well as the thermodynamic stability plays together to facilitate proton transfer in the excited- and ground states of the tautomeric forms.

  1. Ultrafast Non-Förster Intramolecular Donor-Acceptor Excitation Energy Transfer.

    PubMed

    Athanasopoulos, Stavros; Alfonso Hernandez, Laura; Beljonne, David; Fernandez-Alberti, Sebastian; Tretiak, Sergei

    2017-04-06

    Ultrafast intramolecular electronic energy transfer in a conjugated donor-acceptor system is simulated using nonadiabatic excited-state molecular dynamics. After initial site-selective photoexcitation of the donor, transition density localization is monitored throughout the S2 → S1 internal conversion process, revealing an efficient unidirectional donor → acceptor energy-transfer process. Detailed analysis of the excited-state trajectories uncovers several salient features of the energy-transfer dynamics. While a weak temperature dependence is observed during the entire electronic energy relaxation, an ultrafast initially temperature-independent process allows the molecular system to approach the S2-S1 potential energy crossing seam within the first ten femtoseconds. Efficient energy transfer occurs in the absence of spectral overlap between the donor and acceptor units and is assisted by a transient delocalization phenomenon of the excited-state wave function acquiring Frenkel-exciton character at the moment of quantum transition.

  2. Intramolecular Charge Transfer States in the Condensed Phase

    NASA Astrophysics Data System (ADS)

    Williams, C. F.; Herbert, J. M.

    2009-06-01

    Time-Dependent Density Functional Theory (TDDFT) with long range corrected functionals can give accurate results for the energies of electronically excited states involving Intramolecular Charge Transfer (ICT) in large molecules. If this is combined with a Molecular Mechanics (MM) representation of the surrounding solvent this technique can be used to interpret the results of condensed phase UV-Vis Spectroscopy. Often the MM region is represented by a set of point charges, however this means that the solvent cannot repolarize to adapt to the new charge distribution as a result of ICT and so the excitation energies to ICT states are overestimated. To solve this problem an algorithm that interfaces TDDFT with the polarizable force-field AMOEBA is presented; the effect of solvation on charge transfer in species such as 4,4'dimethylaminobenzonitrile (DMABN) is discussed. M.A. Rohrdanz, K.M. Martins, and J.M. Herbert, J. Chem. Phys. 130 034107 (2008).

  3. Theoretical investigation of intramolecular vibrational energy redistribution in highly excited HFCO

    NASA Astrophysics Data System (ADS)

    Pasin, Gauthier; Gatti, Fabien; Iung, Christophe; Meyer, Hans-Dieter

    2006-05-01

    The present paper is devoted to the simulations of the intramolecular vibrational energy redistribution (IVR) in HFCO initiated by an excitation of the out-of-plane bending vibration [nν6=2,4,6,…,18,20]. Using a full six-dimensional ab initio potential energy, the multiconfiguration time-dependent Hartree (MCTDH) method was exploited to propagate the corresponding six-dimensional wave packets. This study emphasizes the stability of highly excited states of the out-of-plane bending mode which exist even above the dissociation threshold. More strikingly, the structure of the IVR during the first step of the dynamics is very stable for initial excitations ranging from 2ν6 to 20ν6. This latter result is consistent with the analysis of the eigenstates obtained, up to 10ν6, with the aid of the Davidson algorithm in a foregoing paper [Iung and Ribeiro, J. Chem. Phys. 121, 174105 (2005)]. The present study can be considered as complementary to this previous investigation. This paper also shows how MCTDH can be used to predict the dynamical behavior of a strongly excited system and to determine the energies of the corresponding highly excited states.

  4. Laser photolysis studies on Cu I complexes of thia-calix[3]pyridine. Phosphorescence from the intramolecular charge-transfer excited state

    NASA Astrophysics Data System (ADS)

    Kinoshita, Isamu; Hamazawa, Akihisa; Nishioka, Takanori; Adachi, Haruna; Suzuki, Hiroyuki; Miyazaki, Yoshio; Tsuboyama, Akira; Okada, Shinjiro; Hoshino, Mikio

    2003-04-01

    Copper(I) complexes of thia-calix[3]pyridine in dichloromethane exhibit phosphorescence from the MLCT triplet states at room temperature. The phosphorescence spectrum shifts to red on going from 300 to 180 K. The laser photolysis study carried out in the temperature range 300-180 K reveals that phosphorescence originates from the two triplet states, TH and TL, which are in thermal equilibrium with the energy difference of ca. 5 kcal mol -1.

  5. Unique photophysical behavior of 2,2'-bipyridine-3,3'-diol in DMSO-water binary mixtures: potential application for fluorescence sensing of Zn2+ based on the inhibition of excited-state intramolecular double proton transfer.

    PubMed

    Mandal, Sarthak; Ghosh, Surajit; Banerjee, Chiranjib; Kuchlyan, Jagannath; Sarkar, Nilmoni

    2013-10-10

    In this work we have investigated the anomalous behavior of DMSO-water binary mixtures using 2,2'-bipyridine-3,3'-diol (BP(OH)2) as a microenvironment-sensitive excited-state-intramolecular-double-proton-transfer (ESIDPT) probe. Here we present results on the UV-vis absorption and fluorescence properties of BP(OH)2 in the binary solutions. DMSO-water binary mixtures at various compositions are an intriguing hydrogen bonded system, where DMSO acts to diminish the hydrogen bonding ability of water with the dissolved solutes. As a result, we observe unusual changes in the photophysical properties of BP(OH)2 with increasing DMSO content in complete correlation with the prior simulation and experimental results on the solvent structures and dynamics. The fluorescence quantum yield and fluorescence lifetime of BP(OH)2 depend strongly on the DMSO content and become maximum at very low mole fraction (∼0.12) of DMSO. The anomalous behavior at this particular region likely arises from the enhanced pair hydrophobicity of the medium as demonstrated by Bagchi and co-workers (Banerjee, S.; Roy, S.; Bagchi, B. J. Phys. Chem. B 2010, 114, 12875-12882). In addition we have also shown the utilization of BP(OH)2 as a potential Zn(2+)-selective fluorescent sensor in a 1:1 DMSO-water binary mixture useful for biological applications. We observed highly enhanced fluorescence emission of BP(OH)2 selectively for binding with the Zn(2+) metal ion. Moreover, the fluorescence emission maximum of BP(OH)2-Zn(2+) is significantly blue-shifted with a reduced Stokes shift due to the inhibition of the ESIDPT process of BP(OH)2 through strong coordination.

  6. Vibrational energy flow in highly excited molecules: Role of intramolecular vibrational redistribution

    SciTech Connect

    Nesbitt, D.J. |; Field, R.W.

    1996-08-01

    A pedagogical overview of intramolecular vibrational redistribution (IVR) phenomena in vibrationally excited molecules is presented. In the interest of focus and simplicity, the topics covered deal primarily with IVR in the ground electronic state, relying on examples from the literature to illustrate key points. The experimental topics discussed attempt to sample systematically three different energy regimes on the full potential surface corresponding to (i) `low`, e.g., moderate- to high-resolution vibrational spectroscopies, (ii) `intermediate`, e.g., stimulated emission pumping and high overtone spectroscopies, and (iii) `high`, e.g., photofragment/predissociation dynamical spectroscopies. The interplay between experiment and theory is highlighted here because it has facilitated enormous advances in the field over the past decade. 183 refs., 13 figs., 2 tabs.

  7. Failures of TDDFT in describing the lowest intramolecular charge-transfer excitation in para-nitroaniline

    NASA Astrophysics Data System (ADS)

    Eriksen, Janus J.; Sauer, Stephan P. A.; Mikkelsen, Kurt V.; Christiansen, Ove; Jensen, Hans Jørgen Aa.; Kongsted, Jacob

    2013-07-01

    We investigate the failure of time-dependent density functional theory (TDDFT) with the CAM-B3LYP exchange-correlation (xc) functional coupled to the polarisable embedding (PE) scheme (PE-CAM-B3LYP) in reproducing the solvatochromic shift of the lowest intense charge-transfer excitation in para-nitroaniline (pNA) in water by comparing with results obtained with the coupled cluster singles and doubles (CCSD) model also coupled to the polarisable embedding scheme (PE-CCSD). We determine the amount of charge separation in the ground and excited charge-transfer state with both methods by calculating the electric dipole moments in the gas phase and for 100 solvent configurations. We find that CAM-B3LYP overestimates the amount of charge separation inherent in the ground state and TDDFT/CAM-B3LYP drastically underestimates this amount in the excited charge-transfer state. As the errors in the solvatochromatic shift are found to be inverse proportional to the change in dipole moment upon excitation, we conclude that the flaws in the description of the solvatochromic shift of this excitation are related to TDDFT itself and how it responds to the solvent effects modelled by the PE scheme. We recommend therefore to benchmark results of TDDFT calculations with CAM-B3LYP for intramolecular charge-transfer excitations in molecular systems similar to pNA against higher level ab initio wave function methods, like, e.g. CCSD, prior to their use. Using the calculated change in dipole moment upon excitation as a measure for charge-transfer character, we furthermore confirm that the difference between excitation energies calculated with TDDFT and with the Tamm-Dancoff approximation (TDA) to TDDFT is indeed correlated with the charge-transfer character of a given electronic transition both in vacuo and in solution. This is supported by a corresponding correlation between the change in dipole moment and the size of the Λ index diagnostic for the investigated CT excitation.

  8. Intramolecular Dynamics: A Study of Molecules at High Levels of Vibrational Excitation.

    DTIC Science & Technology

    1988-05-27

    molecular modes , which occurs in molecules that are excited above the dissociation threshold,.- however, causes the course and rate of laser-induced...8217 mode -selective’ or ’bond-specific’ photochemistry, despite the high selectivity _ of infrared excitation. Whereas the equilibration of energy for...atoms. Most of these molecules have more than one Raman active mode and thus allow direct observation of the intramolecular U distribution of

  9. Intermolecular electron transfer from intramolecular excitation and coherent acoustic phonon generation in a hydrogen-bonded charge-transfer solid

    NASA Astrophysics Data System (ADS)

    Rury, Aaron S.; Sorenson, Shayne; Dawlaty, Jahan M.

    2016-03-01

    Organic materials that produce coherent lattice phonon excitations in response to external stimuli may provide next generation solutions in a wide range of applications. However, for these materials to lead to functional devices in technology, a full understanding of the possible driving forces of coherent lattice phonon generation must be attained. To facilitate the achievement of this goal, we have undertaken an optical spectroscopic study of an organic charge-transfer material formed from the ubiquitous reduction-oxidation pair hydroquinone and p-benzoquinone. Upon pumping this material, known as quinhydrone, on its intermolecular charge transfer resonance as well as an intramolecular resonance of p-benzoquinone, we find sub-cm-1 oscillations whose dispersion with probe energy resembles that of a coherent acoustic phonon that we argue is coherently excited following changes in the electron density of quinhydrone. Using the dynamical information from these ultrafast pump-probe measurements, we find that the fastest process we can resolve does not change whether we pump quinhydrone at either energy. Electron-phonon coupling from both ultrafast coherent vibrational and steady-state resonance Raman spectroscopies allows us to determine that intramolecular electronic excitation of p-benzoquinone also drives the electron transfer process in quinhydrone. These results demonstrate the wide range of electronic excitations of the parent of molecules found in many functional organic materials that can drive coherent lattice phonon excitations useful for applications in electronics, photonics, and information technology.

  10. Effect of Intramolecular High-Frequency Vibrational Mode Excitation on Ultrafast Photoinduced Charge Transfer and Charge Recombination Kinetics.

    PubMed

    Nazarov, Alexey E; Barykov, Vadim Yu; Ivanov, Anatoly I

    2016-03-31

    A model of photoinduced ultrafast charge separation and ensuing charge recombination into the ground state has been developed. The model includes explicit description of the formation and evolution of nonequilibrium state of both the intramolecular vibrations and the surrounding medium. An effect of the high-frequency intramolecular vibrational mode excitation by a pumping pulse on ultrafast charge separation and charge recombination kinetics has been investigated. Simulations, in accord with experiment, have shown that the effect may be both positive (the vibrational mode excitation increases the charge-transfer rate constant) and negative (opposite trend). The effect on charge separation kinetics is predicted to be bigger than that on the charge recombination rate but nevertheless the last is large enough to be observable. The amplitude of both effects falls with decreasing vibrational relaxation time constant, but the effects are expected to be observable up to the time constants as short as 200 fs. Physical interpretation of the effects has been presented. Comparisons with the experimental data have shown that the simulations, in whole, provide results close to that obtained in the experiment. The reasons of the deviations have been discussed.

  11. TDDFT study on the excited-state proton transfer of 8-hydroxyquinoline: key role of the excited-state hydrogen-bond strengthening.

    PubMed

    Lan, Sheng-Cheng; Liu, Yu-Hui

    2015-03-15

    Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations have been employed to study the excited-state intramolecular proton transfer (ESIPT) reaction of 8-hydroxyquinoline (8HQ). Infrared spectra of 8HQ in both the ground and the lowest singlet excited states have been calculated, revealing a red-shift of the hydroxyl group (-OH) stretching band in the excited state. Hence, the intramolecular hydrogen bond (O-H···N) in 8HQ would be significantly strengthened upon photo-excitation to the S1 state. As the intramolecular proton-transfer reaction occurs through hydrogen bonding, the ESIPT reaction of 8HQ is effectively facilitated by strengthening of the electronic excited-state hydrogen bond (O-H···N). As a result, the intramolecular proton-transfer reaction would occur on an ultrafast timescale with a negligible barrier in the calculated potential energy curve for the ESIPT reaction. Therefore, although the intramolecular proton-transfer reaction is not favorable in the ground state, the ESIPT process is feasible in the excited state. Finally, we have identified that radiationless deactivation via internal conversion (IC) becomes the main dissipative channel for 8HQ by analyzing the energy gaps between the S1 and S0 states for the enol and keto forms.

  12. Intramolecular vibrational redistribution in Ne-Br2: the signature of intermediate resonances in the excitation spectrum.

    PubMed

    García-Vela, A

    2007-03-28

    Quantum-mechanical simulations of the Ne-Br(2)(B,v') excitation spectra produced after vibrational predissociation in the v'=20-35 range are reported. The aim is to investigate the signature in the excitation spectra of intermediate resonances lying in the lower vintramolecular vibrational redistribution (IVR) mechanisms in Ne-Br(2). By increasing v('), the energy position of the Ne-Br(2)(B,v') initial state probes the whole range of the spectrum of v'-1 intermediate resonances, from the continuum resonance states above the Ne+Br(2)(B,v'-1) dissociation threshold to the resonances below that threshold. In general, the results show that the Ne-Br(2)(B,v') initial state couples more strongly to the energetically nearby v'-1 resonances, although coupling to farther away resonances also occurs with appreciable intensity. The excitation spectra reveal a strong overlapping between spectral features, indicating that the intermediate resonances are coupled and interfere between themselves. This coupling generates an interconnected network of intermediate resonances, through which an efficient flow of the initial population leading to IVR takes place. It is found that the density of continuum resonances reaches a maximum in the region just above the Ne+Br(2)(B,v'-1) threshold, and it decreases gradually with increasing energy above this threshold, as suggested in a previous work. An upper energy limit for the spectrum of v'-1 continuum resonances has been estimated to be about 23-29 cm(-1) above the v'-1 dissociation threshold. The excitation spectra reflect that coupling of the initial state with intermediate resonances lying below the Ne+Br(2)(B,v'-1) threshold can occur in a remarkably wide range of the resonance spectrum.

  13. Quantum dynamics study of fulvene double bond photoisomerization: The role of intramolecular vibrational energy redistribution and excitation energy

    SciTech Connect

    Blancafort, Lluis; Gatti, Fabien; Meyer, Hans-Dieter

    2011-10-07

    The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.

  14. Electronic and nuclear factors in intramolecular charge and excitation transfer processes. [Annual report], October 1992--September 1993

    SciTech Connect

    Piotrowiak, P.

    1993-12-31

    A qualitative discussion is given of initial work on the following topics: intramolecular triplet excitation transfer bands, donor-- bridge--acceptor systems with a tethered ion, and depolarization of transient microwave conductivity. A number of special compounds were synthesized, such as spiranes, 2,6-diamino-dihydroanthracene precursor, and para-amino-nitro-biphenyl and -terphenyl.

  15. Optically excited states in positronium

    NASA Technical Reports Server (NTRS)

    Howell, R. H.; Ziock, Klaus P.; Magnotta, F.; Dermer, Charles D.; Failor, R. A.; Jones, K. M.

    1990-01-01

    Optical excitation are reported of the 1 3S-2 3P transition in positronium, and a second excitation from n=2 to higher n states. The experiment used light from two pulsed dye lasers. Changes in the positronium annihilation rate during and after the laser pulse were used to deduce the excited state populations. The n=2 level was found to be saturable and excitable to a substantial fraction of n=2 positronium to higher levels. Preliminary spectroscopic measurements were performed on n=14 and n=15 positronium.

  16. Strategies to enhance the excitation energy-transfer efficiency in a light-harvesting system using the intra-molecular charge transfer character of carotenoids.

    PubMed

    Yukihira, Nao; Sugai, Yuko; Fujiwara, Masazumi; Kosumi, Daisuke; Iha, Masahiko; Sakaguchi, Kazuhiko; Katsumura, Shigeo; Gardiner, Alastair T; Cogdell, Richard J; Hashimoto, Hideki

    2017-03-15

    Fucoxanthin is a carotenoid that is mainly found in light-harvesting complexes from brown algae and diatoms. Due to the presence of a carbonyl group attached to polyene chains in polar environments, excitation produces an excited intra-molecular charge transfer. This intra-molecular charge transfer state plays a key role in the highly efficient (∼95%) energy-transfer from fucoxanthin to chlorophyll a in the light-harvesting complexes from brown algae. In purple bacterial light-harvesting systems the efficiency of excitation energy-transfer from carotenoids to bacteriochlorophylls depends on the extent of conjugation of the carotenoids. In this study we were successful, for the first time, in incorporating fucoxanthin into a light-harvesting complex 1 from the purple photosynthetic bacterium, Rhodospirillum rubrum G9+ (a carotenoidless strain). Femtosecond pump-probe spectroscopy was applied to this reconstituted light-harvesting complex in order to determine the efficiency of excitation energy-transfer from fucoxanthin to bacteriochlorophyll a when they are bound to the light-harvesting 1 apo-proteins.

  17. One- and two-photon pump-probe optical spectroscopic measurements reveal the S 1 and intramolecular charge transfer states are distinct in fucoxanthin

    NASA Astrophysics Data System (ADS)

    Kosumi, Daisuke; Kusumoto, Toshiyuki; Fujii, Ritsuko; Sugisaki, Mitsuru; Iinuma, Yoshiro; Oka, Naohiro; Takaesu, Yuki; Taira, Tomonori; Iha, Masahiko; Frank, Harry A.; Hashimoto, Hideki

    2009-11-01

    The ultrafast relaxation kinetics of fucoxanthin in polar and non-polar solvents have been studied by femtosecond dispersed one- and two-photon pump-probe spectroscopies. Transient absorption kinetics of the lowest singlet S 1 (2 1Ag-) state and/or intramolecular charge transfer (ICT) state after excitation to the optically allowed S 2(11Bu+) state depend strongly on solvent polarity. Transient absorption spectra and the kinetics of absorbance changes after direct two-photon excitation to S 1/ICT depend strongly on excitation energy in non-polar solvent. The results suggest that the ICT state is a distinct state from S 1 in polar solvent.

  18. The intramolecular charge transfer state in carbonyl-containing polyenes and carotenoids.

    PubMed

    Enriquez, Miriam M; Fuciman, Marcel; LaFountain, Amy M; Wagner, Nicole L; Birge, Robert R; Frank, Harry A

    2010-09-30

    Numerous femtosecond time-resolved optical spectroscopic experiments have reported that the lifetime of the low-lying S(1) state of carbonyl-containing polyenes and carotenoids decreases with increasing solvent polarity. The effect becomes even more pronounced as the number of double bonds in the conjugated π-electron system decreases. The effect has been attributed to an intramolecular charge transfer (ICT) state coupled to S(1), but it is still not clear what the precise molecular nature of this state is, and how it is able to modulate the spectral and dynamic properties of polyenes and carotenoids. In this work, we examine the nature of the ICT state in three substituted polyenes: crocetindial, which contains two terminal, symmetrically substituted carbonyl groups in conjugation with the π-electron system, 8,8'-diapocarotene-8'-ol-8-al, which has one terminal conjugated carbonyl group and one hydroxyl group, and 8,8'-diapocarotene-8,8'-diol, which has two terminal, symmetrically positioned, hydroxyl groups but no carbonyls. Femtosecond time-resolved optical spectroscopic experiments on these molecules reveal that only the asymmetrically substituted 8,8'-diapocarotene-8'-ol-8-al exhibits any substantial effect of solvent on the excited state spectra and dynamics. The data are interpreted using molecular orbital theory which shows that the ICT state develops via mixing of the low-lying S(1) (2(1)A(g)-like) and S(2) (1(1)B(u)-like) excited singlet states to form a resultant state that preferentially evolves in polar solvent and exhibits a very large (∼25 D) dipole moment. Molecular dynamics calculations demonstrate that the features of the ICT state are present in ∼20 fs.

  19. Roles of viscosity, polarity, and hydrogen-bonding ability of a pyrrolidinium ionic liquid and its binary mixtures in the photophysics and rotational dynamics of the potent excited-state intramolecular proton-transfer probe 2,2'-bipyridine-3,3'-diol.

    PubMed

    Mandal, Sarthak; Ghosh, Surajit; Banerjee, Chiranjib; Kuchlyan, Jagannath; Sarkar, Nilmoni

    2013-06-06

    The room-temperature ionic liquid [C3mpyr][Tf2N] and its binary mixtures with methanol and acetonitrile provide microenvironments of varying viscosity, polarity, and hydrogen-bonding ability. The present work highlights their effects on the photophysics and rotational dynamics of a potent excited-state intramolecular double-proton-transfer (ESIDPT) probe, 2,2'-bipyridine-3,3'-diol [BP(OH)2]. The rotational diffusion of the proton-transferred diketo (DK) tautomer in [C3mpyr][Tf2N] ionic liquid was analyzed for the first time from the experimentally obtained temperature-dependent fluorescence anisotropy data using Stokes-Einstein-Debye (SED) hydrodynamic theory and Gierer-Wirtz quasihydrodynamic theory (GW-QHT). It was found that the rotation of the DK tautomer in neat ionic liquid is governed solely by the viscosity of the medium, as the experimentally observed boundary-condition parameter, Cobs, was very close to the GW boundary-condition parameter (CGW). On the basis of photophysical studies of BP(OH)2 in IL-cosolvent binary mixtures, we suggest that methanol molecules form hydrogen bonds with the cationic counterpart of the DK tautomers, as evidenced by the greater extent of the decrease in the fluorescence lifetime of BP(OH)2 upon addition of methanol compared to acetonitrile. It is also possible for the methanol molecules to form hydrogen bonds with the constituents of the RTIL, which is supported by the lesser extent of the decrease in the viscosity of the medium upon addition of methanol, leading to a less effective decrease in the rotational relaxation time compared to that observed upon acetonitrile addition.

  20. Dynamics of excited molecular states

    NASA Astrophysics Data System (ADS)

    Meyer, Hans-Dieter

    2005-01-01

    The photo-excitation or photo-ionization of a polyatomic molecule is typically accompanied by a strong excitation of the vibrational modes. In particular when a conical intersection of the electronic potential energy surfaces involved lies within or close to the Frank-Condon zone, the nuclear motion becomes very complicated, often chaotic, and the spectra become irregular and dense. An accurate simulation of the dynamics of such excited molecules requires firstly that the multi-dimensional and multi-state potential energy surface - or a reliable model thereof - can be determined. Secondly, the multi-dimensional quantum dynamics have to be solved. This is a very difficult task, because of the high dimensionality of the problem (6 to 30 degrees of freedom, say). The multi-configuration time-dependent Hartree (MCTDH) method has proven to be very useful for the study of such problems. In fact, an accurate treatment of the quantal dynamics of molecules like the allene cation (C3 H+4, 15D), the butatriene cation (C4 H+4, 18D), or the pyrazine molecule (C4N2H4, 24D) in their full dimensionality, is - up to date - only possible with MCTDH. (The acronym n D denotes the dimensionality.) The construction of the vibronic model Hamiltonian and the MCTDH method will be briefly discussed. After this, the excited state dynamics of the butatriene and pyrazine molecules will be discussed.

  1. Tuning the role of charge-transfer states in intramolecular singlet exciton fission through side-group engineering.

    PubMed

    Lukman, Steven; Chen, Kai; Hodgkiss, Justin M; Turban, David H P; Hine, Nicholas D M; Dong, Shaoqiang; Wu, Jishan; Greenham, Neil C; Musser, Andrew J

    2016-12-07

    Understanding the mechanism of singlet exciton fission, in which a singlet exciton separates into a pair of triplet excitons, is crucial to the development of new chromophores for efficient fission-sensitized solar cells. The challenge of controlling molecular packing and energy levels in the solid state precludes clear determination of the singlet fission pathway. Here, we circumvent this difficulty by utilizing covalent dimers of pentacene with two types of side groups. We report rapid and efficient intramolecular singlet fission in both molecules, in one case via a virtual charge-transfer state and in the other via a distinct charge-transfer intermediate. The singlet fission pathway is governed by the energy gap between singlet and charge-transfer states, which change dynamically with molecular geometry but are primarily set by the side group. These results clearly establish the role of charge-transfer states in singlet fission and highlight the importance of solubilizing groups to optimize excited-state photophysics.

  2. Tuning the role of charge-transfer states in intramolecular singlet exciton fission through side-group engineering

    NASA Astrophysics Data System (ADS)

    Lukman, Steven; Chen, Kai; Hodgkiss, Justin M.; Turban, David H. P.; Hine, Nicholas D. M.; Dong, Shaoqiang; Wu, Jishan; Greenham, Neil C.; Musser, Andrew J.

    2016-12-01

    Understanding the mechanism of singlet exciton fission, in which a singlet exciton separates into a pair of triplet excitons, is crucial to the development of new chromophores for efficient fission-sensitized solar cells. The challenge of controlling molecular packing and energy levels in the solid state precludes clear determination of the singlet fission pathway. Here, we circumvent this difficulty by utilizing covalent dimers of pentacene with two types of side groups. We report rapid and efficient intramolecular singlet fission in both molecules, in one case via a virtual charge-transfer state and in the other via a distinct charge-transfer intermediate. The singlet fission pathway is governed by the energy gap between singlet and charge-transfer states, which change dynamically with molecular geometry but are primarily set by the side group. These results clearly establish the role of charge-transfer states in singlet fission and highlight the importance of solubilizing groups to optimize excited-state photophysics.

  3. Excited state dipole moments of 4-(dimethylamino)benzaldehyde

    NASA Astrophysics Data System (ADS)

    Kawski, A.; Kukliński, B.; Bojarski, P.

    2007-11-01

    The effect of various polar solvents on the location of absorption and dual fluorescence (short wavelength emission, SE, and long wavelength emission, LE) of 4-(dimethylamino)benzaldehyde (DMABA) at room temperature was investigated. It was found that the fluorescence intensities ratio LE/SE is constant for concentrations ranging from 10 -5 M to 10 -1 M, which evidences that the LE-band is not of excimer origin. Based on the batochromic shift of electronic spectra of DMABA and Bilot-Kawski theory the values of excited state dipole moments in SE: μeSE=7.6D and the Onsager radius a = 4.3 Å were found using the known from literature value of ground state dipole moment μg = 5.6 D. For the emitting twisted intramolecular charge transfer (TICT) excited state the value of μeLE=12D was found.

  4. Excited states in 129I

    NASA Astrophysics Data System (ADS)

    Deleanu, D.; Balabanski, D. L.; Venkova, Ts.; Bucurescu, D.; Mărginean, N.; Ganioǧlu, E.; Căta-Danil, Gh.; Atanasova, L.; Căta-Danil, I.; Detistov, P.; Filipescu, D.; Ghiţă, D.; Glodariu, T.; Ivaşcu, M.; Mărginean, R.; Mihai, C.; Negret, A.; Pascu, S.; Sava, T.; Stroe, L.; Suliman, G.; Zamfir, N. V.

    2013-01-01

    Excited states in 129I were populated with the 124Sn(7Li,2n) reaction at 23 MeV. In-beam measurements of γ-ray coincidences were performed with an array of eight HPGe detectors and five LaBr3(Ce) scintillation detectors. Based on the γγ coincidence data, a positive parity band structure built on the 7/2+ ground state was established and the πg7/2 configuration at oblate deformation was assigned to it. The results are compared to interacting Boson-Fermion model (IBFM) and total Routhian surface (TRS) calculations.

  5. Excited state conformational dynamics in carotenoids: dark intermediates and excitation energy transfer.

    PubMed

    Beck, Warren F; Bishop, Michael M; Roscioli, Jerome D; Ghosh, Soumen; Frank, Harry A

    2015-04-15

    A consideration of the excited state potential energy surfaces of carotenoids develops a new hypothesis for the nature of the conformational motions that follow optical preparation of the S2 (1(1)Bu(+)) state. After an initial displacement from the Franck-Condon geometry along bond length alternation coordinates, it is suggested that carotenoids pass over a transition-state barrier leading to twisted conformations. This hypothesis leads to assignments for several dark intermediate states encountered in femtosecond spectroscopic studies. The Sx state is assigned to the structure reached upon the onset of torsional motions near the transition state barrier that divides planar and twisted structures on the S2 state potential energy surface. The X state, detected recently in two-dimensional electronic spectra, corresponds to a twisted structure well past the barrier and approaching the S2 state torsional minimum. Lastly, the S(∗) state is assigned to a low lying S1 state structure with intramolecular charge transfer character (ICT) and a pyramidal conformation. It follows that the bent and twisted structures of carotenoids that are found in photosynthetic light-harvesting proteins yield excited-state structures that favor the development of an ICT character and optimized energy transfer yields to (bacterio)chlorophyll acceptors.

  6. Theoretical studies of electronically excited states

    SciTech Connect

    Besley, Nicholas A.

    2014-10-06

    Time-dependent density functional theory is the most widely used quantum chemical method for studying molecules in electronically excited states. However, excited states can also be computed within Kohn-Sham density functional theory by exploiting methods that converge the self-consistent field equations to give excited state solutions. The usefulness of single reference self-consistent field based approaches for studying excited states is demonstrated by considering the calculation of several types of spectroscopy including the infrared spectroscopy of molecules in an electronically excited state, the rovibrational spectrum of the NO-Ar complex, core electron binding energies and the emission spectroscopy of BODIPY in water.

  7. Ultrafast excited state hydrogen atom transfer in salicylideneaniline driven by changes in aromaticity.

    PubMed

    Gutiérrez-Arzaluz, Luis; Cortés-Guzmán, Fernando; Rocha-Rinza, Tomás; Peón, Jorge

    2015-12-21

    We investigated two important unresolved issues on excited state intramolecular proton transfer (ESIPT) reactions, i.e., their driving force and the charge state of the transferred species by means of quantum chemical topology. We related changes in the aromaticity of a molecule after electron excitation to reaction dynamics in an excited state. Additionally, we found that the conveyed particle has a charge intermediate between that of a bare proton and a neutral hydrogen atom. We anticipate that the analysis presented in this communication will yield valuable insights into ESIPT and other similar photochemical reactions.

  8. Anomalously slow intramolecular vibrational redistribution in the acetylene X~ 1Σg+ state above 10 000 cm-1 of internal energy

    NASA Astrophysics Data System (ADS)

    Jacobson, Matthew P.; O'Brien, Jonathan P.; Field, Robert W.

    1998-09-01

    We have identified, in dispersed fluorescence spectra of acetylene à 1Au→X˜ 1Σg+ emission, a series of bright states between 10 000 and 15 000 cm-1 of internal energy which display anomalously slow intramolecular vibrational redistribution. That is, these bright states display virtually no fractionation at internal energies at which the majority of other observed bright states are fractionated over several hundred cm-1 in a complicated fashion. The anomalous bright states are distinguished from the other nearly isoenergetic bright states only by the way in which the vibrational excitation is distributed among the CC stretch and trans bend modes; specifically, the anomalous bright states have relatively low excitation in the trans bend mode (v4⩽8), with the remainder of the vibrational excitation in the CC stretch mode (v2⩽6). A refinement of the acetylene global effective Hamiltonian permits detailed insight into the mechanism of the anomalously slow intramolecular vibrational redistribution, and reveals that the relatively simple fractionation patterns of these bright states can be adequately described in terms of a system of 4 interacting zero-order states which are coupled by Darling-Dennison bending resonances, vibrational l-resonance, and an anharmonic "3,245" resonance. The refined effective Hamiltonian also permits the assignment of similar, minimally perturbed bright states up to at least 17 500 cm-1 of internal energy.

  9. Single determinant calculations of excited state polarizabilities

    NASA Astrophysics Data System (ADS)

    Jonsson, Dan; Norman, Patrick; Ågren, Hans

    1997-12-01

    We apply response theory to simulate excited state polarizabilities emphasizing the possibility to do so by means of optimization of a ground state single determinant only. The excited state polarizabilities are given by the double residues of the cubic response functions. A set of molecules with varying ground state configurations and properties have been considered: water, ozone, formaldehyde, ethylene, butadiene, cyclobutadiene, pyridine, pyrazine and s-tetrazine. The results have been compared to excited state experiments where available and with linear response calculations of the multi-determinant optimized excited state. It is shown that calculations of excited state polarizabilities based on a ground state optimized single determinant work well for most of the cases investigated. This contention is exemplified by the fact the gas phase value from an electrochromism experiment for the polarizability of the 1 1B2 excited state of formaldehyde is better reproduced by ground state cubic response theory than by the corresponding separate state linear response function calculation, and by that the calculations call for an experimental reinvestigation of the excited state polarizabilities of s-tetrazine. A few prerequisites are given: The excited state should be isolated in energy, the ordering of the main contributing states should be reproduced, and the geometric conformation of the excited state in question should not be very different from the ground state geometry. The computational and formal advantages of the approach are discussed.

  10. Resource Paper: Molecular Excited State Relaxation Processes.

    ERIC Educational Resources Information Center

    Rhodes, William

    1979-01-01

    Develops the concept of oscillatory v dissipative limits as it applies to electronic excited state processes in molecular systems. Main emphasis is placed on the radiative and nonradiative dynamics of the excited state of a molecule prepared by interaction with light or some other excitation source. (BT)

  11. Bimodal intramolecular excitation energy transfer in a multichromophore photosynthetic model system: hybrid fusion proteins comprising natural phycobilin- and artificial chlorophyll-binding domains.

    PubMed

    Zeng, Xiao-Li; Tang, Kun; Zhou, Nan; Zhou, Ming; Hou, Harvey J M; Scheer, Hugo; Zhao, Kai-Hong; Noy, Dror

    2013-09-11

    The phycobilisomes of cyanobacteria and red-algae are highly efficient peripheral light-harvesting complexes that capture and transfer light energy in a cascade of excitation energy transfer steps through multiple phycobilin chromophores to the chlorophylls of core photosystems. In this work, we focus on the last step of this process by constructing simple functional analogs of natural phycobilisome-photosystem complexes that are based on bichromophoric protein complexes comprising a phycobilin- and a chlorophyll- or porphyrin-binding domain. The former is based on ApcE(1-240), the N-terminal chromophore-binding domain of the phycobilisome's L(CM) core-membrane linker, and the latter on HP7, a de novo designed four-helix bundle protein that was originally planned as a high-affinity heme-binding protein, analogous to b-type cytochromes. We fused a modified HP7 protein sequence to ApcEΔ, a water-soluble fragment of ApcE(1-240) obtained by excising a putative hydrophobic loop sequence of residues 77-153. HP7 was fused either to the N- or the C-terminus of ApcEΔ or inserted between residues 76 and 78, thereby replacing the native hydrophobic loop domain. We describe the assembly, spectral characteristics, and intramolecular excitation energy transfer of two unique systems: in the first, the short-wavelength absorbing zinc-mesoporphyrin is bound to the HP7 domain and serves as an excitation-energy donor to the long-wavelength absorbing phycocyanobilin bound to the ApcE domain; in the second, the short-wavelength absorbing phycoerythrobilin is bound to the ApcE domain and serves as an excitation energy donor to the long-wavelength absorbing zinc-bacteriochlorophyllide bound to the HP7 domain. All the systems that were constructed and tested exhibited significant intramolecular fluorescence resonance energy transfer with yields ranging from 21% to 50%. This confirms that our modular, covalent approach for studying EET between the cyclic and open chain tetrapyrroles is

  12. Raman spectra, electrochemical redox potentials and intramolecular reorganization due to ionization and excitation of benzodifuranone chromophore

    NASA Astrophysics Data System (ADS)

    Luňák, Stanislav; Frumarová, Božena; Mikysek, Tomáš; Vyňuchal, Jan

    2013-05-01

    Experimental Raman spectrum of 3,7-diphenyl substituted benzodifuranone (BDF) was assigned based on the density functional theory. The first electrochemical redox potentials in acetonitrile relate well with DFT adiabatic HOMO and LUMO energies, computed by polarized continuum model including solvent effect. DFT computed changes of bond lengths of central para-benzoquinodimethane (BQM) core upon ionization correspond to the most intense stretching modes. Simple algebraic relations between the bond lengths of BQM core in neutral, ionized and excited species were found.

  13. Intramolecular fluorine migration via four-member cyclic transition states

    PubMed

    Nguyen; Mayer; Morton

    2000-11-17

    Gaseous CF(3)(+) interchanges F(+) for O with simple carbonyl compounds. CF(3)(+) reacts with propionaldehyde in the gas phase to produce (CH(3))(2)CF(+) via two competing pathways. Starting with 1-(13)C-propionaldehyde, the major pathway (80%) produces (CH(3))(2)CF(+) with the carbon label in one of the methyl groups. The minor pathway (20%) produces (CH(3))(2)CF(+) with the carbon label in the central position. The relative proportions of these two pathways are measured by (19)F NMR analysis of the neutral CH(3)CF=CH(2) produced by deprotonation of (CH(3))(2)CF(+) at <10(-)(3) Torr in an electron bombardment flow (EBFlow) reactor. Formation of alkene in which carbon is directly bonded to fluorine means that (in the minor product, at least) an F(+) for O transposition occurs via adduct formation followed by 1,3-atom transfer and then isomerization of CH(3)CH(2)CHF(+) to the more stable (CH(3))(2)CF(+). Use of CF(4) as a chemical ionization (CI) reagent gas leads to CF(3)(+) adduct ions for a variety of ketones, in addition to isoelectronic transposition of F(+) for O. Metastable ion decompositions of the adduct ions yield the metathesis products. Decompositions of fluorocycloalkyl cations formed in this manner give evidence for the same kinds of rearrangements as take place in CH(3)CH(2)CHF(+). Density functional calculations confirm that F(+) for O metathesis takes place via addition of CF(3)(+) to the carbonyl oxygen followed by transposition via a four-member cyclic transition state. A computational survey of the effects of different substituents in a series of aldehydes and acyclic ketones reveals no systematic variation of the energy of the transition state as a function of thermochemistry, but the Hammond postulate does appear to be obeyed in terms of progress along the reaction coordinate. Bond lengths corresponding to the central barrier correlate with overall thermochemistry of the F(+) for O interchange, but in a sense opposite to what might have been

  14. Multimode optical fibers: steady state mode exciter.

    PubMed

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  15. High-energy non-Franck-Condon vibrational excitation of CH4 by intramolecular photoelectron diffraction

    NASA Astrophysics Data System (ADS)

    Argenti, L.; Plésiat, E.; Kukk, E.; Ueda, K.; Decleva, P.; Martín, F.

    2012-11-01

    Distinct oscillations in vibrationally resolved cross section ratios for the photoionization of CH4 from the C 1s orbital at photon energies as high as 1keV are predicted. The oscillations are attributed to the different relative vibrational excitation due to the scattering of the photoelectron by the peripheral hydrogen atoms. The latter effect is also responsible for the well known EXAFS oscillations in the integrated photoelectron spectrum. The calculations are performed with an ab-initio DFT method [1], as well as with a single-particle semi-analytical model, which incorporate both the effect of the nuclear recoil and of the Coulomb corrections.

  16. Intramolecular excited proton transfer of 1-(1-phenyl-1H-phenanthro[9,10-d]imidazol-2-yl)naphthalen-2-ol - A combined experimental and quantum chemical studies

    NASA Astrophysics Data System (ADS)

    Jayabharathi, J.; Thanikachalam, V.; Ramanathan, P.; Arunpandiyan, A.

    2014-03-01

    Synthesis of the 1-(1-phenyl-1H-phenanthro[9,10-d]imidazol-2-yl)naphthalen-2-ol [PPIN] is reported, spectral and fluorescent properties of the title compound are investigated. The feasibility of excited state intramolecular proton transfer (ESIPT) has been argued from the changeover of relative stability of the enol and the keto forms on photoexcitation from the S0-PES to the S1-PES. Critical evaluation on the modulations of geometrical parameters other than the proton transfer reaction coordinate has also been undertaken. The intramolecular hydrogen bonding (IMHB) interaction in PPIN has been explored by calculation of the hyperconjugative charge transfer interaction from the lone electron pair of ring nitrogen atom to the σ∗ orbital of O-H bond, under the provision of Natural Bond Orbital (NBO) analysis. However, DFT calculations together with the experimental results reveal that the excited species with the intramolecular N⋯HO hydrogen bond type undergoes rapid radiationless deactivation. This leads to a conclusion that the low-intensity dual-band fluorescence of the title compound in solution originates from the traces of the conformation with the -OH bond to azomethine nitrogen atom (ESIPT).

  17. Intramolecular excited proton transfer of 1-(1-phenyl-1H-phenanthro[9,10-d]imidazol-2-yl)naphthalen-2-ol--a combined experimental and quantum chemical studies.

    PubMed

    Jayabharathi, J; Thanikachalam, V; Ramanathan, P; Arunpandiyan, A

    2014-01-01

    Synthesis of the 1-(1-phenyl-1H-phenanthro[9,10-d]imidazol-2-yl)naphthalen-2-ol [PPIN] is reported, spectral and fluorescent properties of the title compound are investigated. The feasibility of excited state intramolecular proton transfer (ESIPT) has been argued from the changeover of relative stability of the enol and the keto forms on photoexcitation from the S0-PES to the S1-PES. Critical evaluation on the modulations of geometrical parameters other than the proton transfer reaction coordinate has also been undertaken. The intramolecular hydrogen bonding (IMHB) interaction in PPIN has been explored by calculation of the hyperconjugative charge transfer interaction from the lone electron pair of ring nitrogen atom to the σ(∗) orbital of O-H bond, under the provision of Natural Bond Orbital (NBO) analysis. However, DFT calculations together with the experimental results reveal that the excited species with the intramolecular N⋯HO hydrogen bond type undergoes rapid radiationless deactivation. This leads to a conclusion that the low-intensity dual-band fluorescence of the title compound in solution originates from the traces of the conformation with the -OH bond to azomethine nitrogen atom (ESIPT). Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Dynamics of ground and excited state vibrational relaxation and energy transfer in transition metal carbonyls.

    PubMed

    Delor, Milan; Sazanovich, Igor V; Towrie, Michael; Spall, Steven J; Keane, Theo; Blake, Alexander J; Wilson, Claire; Meijer, Anthony J H M; Weinstein, Julia A

    2014-10-09

    Nonlinear vibrational spectroscopy provides insights into the dynamics of vibrational energy transfer in and between molecules, a crucial phenomenon in condensed phase physics, chemistry, and biology. Here we use frequency-domain 2-dimensional infrared (2DIR) spectroscopy to investigate the vibrational relaxation (VR) and vibrational energy transfer (VET) rates in different solvents in both the electronic ground and excited states of Re(Cl)(CO)3(4,4'-diethylester-2,2'-bipyridine), a prototypical transition metal carbonyl complex. The strong C≡O and ester C═O stretch infrared reporters, located on opposite sides of the molecule, were monitored in the 1600-2100 cm(-1) spectral region. VR in the lowest charge transfer triplet excited state ((3)CT) is found to be up to eight times faster than in the ground state. In the ground state, intramolecular anharmonic coupling may be solvent-assisted through solvent-induced frequency and charge fluctuations, and as such VR rates are solvent-dependent. In contrast, VR rates in the solvated (3)CT state are surprisingly solvent-insensitive, which suggests that predominantly intramolecular effects are responsible for the rapid vibrational deactivation. The increased VR rates in the excited state are discussed in terms of intramolecular electrostatic interactions helping overcome structural and thermodynamic barriers for this process in the vicinity of the central heavy atom, a feature which may be of significance to nonequilibrium photoinduced processes observed in transition metal complexes in general.

  19. Theoretical studies of excited state 1,3 dipolar cycloadditions

    NASA Astrophysics Data System (ADS)

    Belluccci, Michael A.

    The 1,3 dipolar photocycloaddition reaction between 3-hydroxy-4',5,7-trimethoxyflavone (3-HTMF) and methyl cinnamate is investigated in this work. Since its inception in 2004 [JACS, 124, 13260 (2004)], this reaction remains at the forefront in the synthetic design of the rocaglamide natural products. The reaction is multi-faceted in that it involves multiple excited states and is contingent upon excited state intramolecular proton transfer (ESIPT) in 3-HTMF. Given the complexity of the reaction, there remain many questions regarding the underlying mechanism. Consequently, throughout this work we investigate the mechanism of the reaction along with a number of other properties that directly influence it. To investigate the photocycloaddition reaction, we began by studying the effects of different solvent environments on the ESIPT reaction in 3-hydroxyflavone since this underlying reaction is sensitive to the solvent environment and directly influences the cycloaddition. To study the ESIPT reaction, we developed a parallel multi-level genetic program to fit accurate empirical valence bond (EVB) potentials to ab initio data. We found that simulations with our EVB potentials accurately reproduced experimentally determined reaction rates, fluorescence spectra, and vibrational frequency spectra in all solvents. Furthermore, we found that the ultrafast ESIPT process results from a combination of ballistic transfer and intramolecular vibrational redistribution. To investigate the cycloaddition reaction mechanism, we utilized the string method to obtain minimum energy paths on the ab initio potential. These calculations demonstrated that the reaction can proceed through formation of an exciplex in the S1 state, followed by a non-adiabatic transition to the ground state. In addition, we investigated the enantioselective catalysis of the reaction using alpha,alpha,alpha',alpha'-tetraaryl-1,3-dioxolan-4,5-dimethanol alcohol (TADDOL). We found that TADDOL lowered the energy

  20. Excited-to-excited-state scattering using weak measurements

    NASA Astrophysics Data System (ADS)

    U, Satya Sainadh; Narayanan, Andal

    2015-11-01

    Weak measurements are a subset of measurement processes in quantum mechanics wherein the system, which is being measured, interacts very weakly with the measuring apparatus. Measurement values of observables undergoing a weak interaction and their amplification are concepts that have sharpened our understanding of interaction processes in quantum mechanics. Recent experiments show that naturally occurring processes such as resonance fluorescence from excited states of an atom can exhibit weak value amplification effect. In this paper we theoretically analyze the process of elastic resonance fluorescence from a V -type three-level atomic system, using the well-known Weiskopff-Wigner (WW) theory of spontaneous emission. Within this theory we show that a weak interaction regime can be identified and for suitable choices of initial and final excited states the mean scattering time between these states show an amplification effect during interaction with the vacuum bath modes of the electromagnetic field. We thus show that a system-bath interaction can show weak value amplification. Using our theory we reproduce the published experimental results carried out in such a system. More importantly, our theory can calculate scattering time scales in elastic resonance scattering between multiple excited states of a single atom or between common excited state configurations of interacting multiatom systems.

  1. Excited States of Non-Isolated Chromophores

    NASA Astrophysics Data System (ADS)

    Matsika, S.; Kozak, C.; Kistler, K.

    2009-06-01

    The photophysical and photochemical behavior of nucleobases is very important because of their biological role as the building blocks in DNA and RNA. Great progress has been made in understanding the excited-state properties of single bases. In order to understand the photophysical properties of nucleobases in complex environments we have investigated their excited states (a) in aqueous solutions and (b) as π-stacked dimers in DNA. The solvatochromic shifts of the excited states of pyrimidine nucleobases in aqueous solution have been investigated using a combined QM/MM procedure where the quantum mechanical solute is described using high level multireference configuration interaction methods while molecular dynamics simulations are used to obtain the structure of the solvent around the solute in an average way. The excited states of π-stacked nucleobases have also been investigated using various ab initio methods. The effect of the environment on the excited states and conical intersections is investigated.

  2. Substituent and Solvent Effects on Excited State Charge Transfer Behavior of Highly Fluorescent Dyes Containing Thiophenylimidazole-Based Aldehydes

    NASA Technical Reports Server (NTRS)

    Santos, Javier; Bu, Xiu R.; Mintz, Eric A.

    2001-01-01

    The excited state charge transfer for a series of highly fluorescent dyes containing thiophenylimidazole moiety was investigated. These systems follow the Twisted Intramolecular Charge Transfer (TICT) model. Dual fluorescence was observed for each substituted dye. X-ray structures analysis reveals a twisted ground state geometry for the donor substituted aryl on the 4 and 5 position at the imidazole ring. The excited state charge transfer was modeled by a linear solvation energy relationship using Taft's pi and Dimroth's E(sub T)(30) as solvent parameters. There is linear relation between the energy of the fluorescence transition and solvent polarity. The degree of stabilization of the excited state charge transfer was found to be consistent with the intramolecular molecular charge transfer. Excited dipole moment was studied by utilizing the solvatochromic shift method.

  3. The geometrical change and intramolecular energy transfer upon S1←S0 excitation in cyclopentanone

    NASA Astrophysics Data System (ADS)

    Wang, Yanmei; Liu, Zhiming; Xu, Yanqi; Zhang, Bing

    2015-08-01

    The ultrafast dynamics in vibrationally hot S1 electronic excited state in cyclopentanone molecule was discovered with time resolved spectroscopy. Investigation of the geometry change upon the S1←S0 excitation and D0←S1 ionization has shown that the dihedral angle between the C=O bond and the plane given by the carbonyl and the α-carbons is 180° either in S0 or D0 state and is reduced to 145.8° by out-out-plane deformation of the oxygen in S1 state according to the theoretical calculation. The time domain experiments with femtosecond resolution have given rich insights into the energy transfer of the cyclopentanone molecule. The molecules are excited to the vibrationally hot S1 (n, π∗) state following absorption of one 267-nm photon. It is found that the population of the S1 (n, π∗) state undergoes ultrafast internal conversion to the highly vibrationally hot S0 state within 80 fs and nonradiative deactivation by intersystem crossing to triplet T1 (n, π*) state occurring in 3.14 ps. Several Rydberg states have worked as stepping stones during the ionization. The available energy was distributed in the symmetric methylene group wagging and the symmetric skeletal ring breathing modes in D0 state.

  4. The geometrical change and intramolecular energy transfer upon S1←S0 excitation in cyclopentanone.

    PubMed

    Wang, Yanmei; Liu, Zhiming; Xu, Yanqi; Zhang, Bing

    2015-08-14

    The ultrafast dynamics in vibrationally hot S1 electronic excited state in cyclopentanone molecule was discovered with time resolved spectroscopy. Investigation of the geometry change upon the S1←S0 excitation and D0←S1 ionization has shown that the dihedral angle between the C=O bond and the plane given by the carbonyl and the α-carbons is 180° either in S0 or D0 state and is reduced to 145.8° by out-out-plane deformation of the oxygen in S1 state according to the theoretical calculation. The time domain experiments with femtosecond resolution have given rich insights into the energy transfer of the cyclopentanone molecule. The molecules are excited to the vibrationally hot S1 (n,  π(∗)) state following absorption of one 267-nm photon. It is found that the population of the S1 (n, π(∗)) state undergoes ultrafast internal conversion to the highly vibrationally hot S0 state within 80 fs and nonradiative deactivation by intersystem crossing to triplet T1 (n, π(*)) state occurring in 3.14 ps. Several Rydberg states have worked as stepping stones during the ionization. The available energy was distributed in the symmetric methylene group wagging and the symmetric skeletal ring breathing modes in D0 state.

  5. Local pair natural orbitals for excited states

    NASA Astrophysics Data System (ADS)

    Helmich, Benjamin; Hättig, Christof

    2011-12-01

    We explore how in response calculations for excitation energies with wavefunction based (e.g., coupled cluster) methods the number of double excitation amplitudes can be reduced by means of truncated pair natural orbital (PNO) expansions and localized occupied orbitals. Using the CIS(D) approximation as a test model, we find that the number of double excitation amplitudes can be reduced dramatically with minor impact on the accuracy if the excited state wavefunction is expanded in state-specific PNOs generated from an approximate first-order guess wavefunction. As for ground states, the PNO truncation error can also for excitation energies be controlled by a single threshold related to generalized natural occupation numbers. The best performance is found with occupied orbitals which are localized by the Pipek-Mezey localization. For a large test set of excited states we find with this localization that already a PNO threshold of 10-8-10-7, corresponding to an average of only 40-80 PNOs per pair, is sufficient to keep the PNO truncation error for vertical excitation energies below 0.01 eV. This is a significantly more rapid convergence with the number doubles amplitudes than in domain-based local response approaches. We demonstrate that the number of significant excited state PNOs scales asymptotically linearly with the system size in the worst case of completely delocalized excitations and sub-linearly whenever the chromophore does not increase with the system size. Moreover, we observe that the flexibility of state-specific PNOs to adapt to the character of an excitation allows for an almost unbiased treatment of local, delocalized and charge transfer excited states.

  6. Local pair natural orbitals for excited states.

    PubMed

    Helmich, Benjamin; Hättig, Christof

    2011-12-07

    We explore how in response calculations for excitation energies with wavefunction based (e.g., coupled cluster) methods the number of double excitation amplitudes can be reduced by means of truncated pair natural orbital (PNO) expansions and localized occupied orbitals. Using the CIS(D) approximation as a test model, we find that the number of double excitation amplitudes can be reduced dramatically with minor impact on the accuracy if the excited state wavefunction is expanded in state-specific PNOs generated from an approximate first-order guess wavefunction. As for ground states, the PNO truncation error can also for excitation energies be controlled by a single threshold related to generalized natural occupation numbers. The best performance is found with occupied orbitals which are localized by the Pipek-Mezey localization. For a large test set of excited states we find with this localization that already a PNO threshold of 10(-8)-10(-7), corresponding to an average of only 40-80 PNOs per pair, is sufficient to keep the PNO truncation error for vertical excitation energies below 0.01 eV. This is a significantly more rapid convergence with the number doubles amplitudes than in domain-based local response approaches. We demonstrate that the number of significant excited state PNOs scales asymptotically linearly with the system size in the worst case of completely delocalized excitations and sub-linearly whenever the chromophore does not increase with the system size. Moreover, we observe that the flexibility of state-specific PNOs to adapt to the character of an excitation allows for an almost unbiased treatment of local, delocalized and charge transfer excited states.

  7. Tuning the role of charge-transfer states in intramolecular singlet exciton fission through side-group engineering

    PubMed Central

    Lukman, Steven; Chen, Kai; Hodgkiss, Justin M.; Turban, David H. P.; Hine, Nicholas D. M.; Dong, Shaoqiang; Wu, Jishan; Greenham, Neil C.; Musser, Andrew J.

    2016-01-01

    Understanding the mechanism of singlet exciton fission, in which a singlet exciton separates into a pair of triplet excitons, is crucial to the development of new chromophores for efficient fission-sensitized solar cells. The challenge of controlling molecular packing and energy levels in the solid state precludes clear determination of the singlet fission pathway. Here, we circumvent this difficulty by utilizing covalent dimers of pentacene with two types of side groups. We report rapid and efficient intramolecular singlet fission in both molecules, in one case via a virtual charge-transfer state and in the other via a distinct charge-transfer intermediate. The singlet fission pathway is governed by the energy gap between singlet and charge-transfer states, which change dynamically with molecular geometry but are primarily set by the side group. These results clearly establish the role of charge-transfer states in singlet fission and highlight the importance of solubilizing groups to optimize excited-state photophysics. PMID:27924819

  8. Hydrogen Bonds in Excited State Proton Transfer

    NASA Astrophysics Data System (ADS)

    Horke, D. A.; Watts, H. M.; Smith, A. D.; Jager, E.; Springate, E.; Alexander, O.; Cacho, C.; Chapman, R. T.; Minns, R. S.

    2016-10-01

    Hydrogen bonding interactions between biological chromophores and their surrounding protein and solvent environment significantly affect the photochemical pathways of the chromophore and its biological function. A common first step in the dynamics of these systems is excited state proton transfer between the noncovalently bound molecules, which stabilizes the system against dissociation and principally alters relaxation pathways. Despite such fundamental importance, studying excited state proton transfer across a hydrogen bond has proven difficult, leaving uncertainties about the mechanism. Through time-resolved photoelectron imaging measurements, we demonstrate how the addition of a single hydrogen bond and the opening of an excited state proton transfer channel dramatically changes the outcome of a photochemical reaction, from rapid dissociation in the isolated chromophore to efficient stabilization and ground state recovery in the hydrogen bonded case, and uncover the mechanism of excited state proton transfer at a hydrogen bond, which follows sequential hydrogen and charge transfer processes.

  9. Rotational Dependence of Intramolecular Dynamics in Acetylene at Low Vibrational Excitation as Deduced from High Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Perry, David S.; Miller, Anthony; Amyay, B.; Fayt, A.; Herman, M.

    2010-06-01

    The link between energy-resolved spectra and time-resolved dynamics is explored quantitatively for acetylene (12C2H2), X1Σg+ with up to 8,600 wn of vibrational energy. This comparison is based on the extensive knowledge of the vibration-rotation energy levels and on the model Hamiltonian used to fit them to high precision. Simulated intensity borrowing features in high resolution absorption spectra and predicted survival probabilities for intramolecular vibrational redistribution (IVR) are first investigated for the ν4+ν5 and ν3 bright states, for J = 2, 30 and 100. The dependence of the results on the rotational quantum number and on the choice of vibrational bright state reflects the interplay of three kinds of off-diagonal resonances: anharmonic, rotational l-type, and Coriolis. The dynamical quantities used to characterize the calculated time-dependent dynamics are the dilution factor φd, the IVR lifetime τIVR, and the recurrence time τrec. For the two bright states ν3+2ν4 and 7ν4, the collisionless dynamics for thermally averaged rotational distributions at T = 27, 270 and 500 K were calculated from the available spectroscopic data. For the 7ν4 bright state, an apparent irreversible decay of is found. In all cases, the model Hamiltonian allows a detailed calculation of the energy flow among all of the coupled zeroth-order vibration-rotation states. B. Amyay, S. Robert, M. Herman, A. Fayt, B. Raghavendra, A. Moudens, J. Thiévin, B. Rowe, and R. Georges, J. Chem. Phys., 131, 114301 (2009).

  10. Ground- and excited-state tautomerism in 2-(3{prime}-hydroxy-2{prime}-pyridyl)benzimidazole

    SciTech Connect

    Prieto, F.R.; Rodriguez, M.C.R.; Gonzalez, M.M.; Fernandez, M.A.R.

    1994-09-01

    Ground-state HPyBI is determined to have keto-enol equilibrium in water, and the enol form predominates in nonaqueous solutions. The keto form is the only excited form in all the solvents considered. Ultrafast intramolecular proton transfer creates the enol form from the keto form. 47 refs., 6 figs., 3 tabs.

  11. The geometrical change and intramolecular energy transfer upon S{sub 1}←S{sub 0} excitation in cyclopentanone

    SciTech Connect

    Wang, Yanmei Liu, Zhiming; Xu, Yanqi; Zhang, Bing

    2015-08-14

    The ultrafast dynamics in vibrationally hot S{sub 1} electronic excited state in cyclopentanone molecule was discovered with time resolved spectroscopy. Investigation of the geometry change upon the S{sub 1}←S{sub 0} excitation and D{sub 0}←S{sub 1} ionization has shown that the dihedral angle between the C=O bond and the plane given by the carbonyl and the α-carbons is 180° either in S{sub 0} or D{sub 0} state and is reduced to 145.8° by out-out-plane deformation of the oxygen in S{sub 1} state according to the theoretical calculation. The time domain experiments with femtosecond resolution have given rich insights into the energy transfer of the cyclopentanone molecule. The molecules are excited to the vibrationally hot S{sub 1} (n,  π{sup ∗}) state following absorption of one 267-nm photon. It is found that the population of the S{sub 1} (n, π{sup ∗}) state undergoes ultrafast internal conversion to the highly vibrationally hot S{sub 0} state within 80 fs and nonradiative deactivation by intersystem crossing to triplet T{sub 1} (n, π{sup *}) state occurring in 3.14 ps. Several Rydberg states have worked as stepping stones during the ionization. The available energy was distributed in the symmetric methylene group wagging and the symmetric skeletal ring breathing modes in D{sub 0} state.

  12. Excited-state dynamics in nitro-naphthalene derivatives: intersystem crossing to the triplet manifold in hundreds of femtoseconds.

    PubMed

    Vogt, R Aaron; Reichardt, Christian; Crespo-Hernández, Carlos E

    2013-08-01

    Femtosecond transient absorption experiments and density functional calculations are presented for 2-methyl-1-nitronaphthalene, 2-nitronaphthalene, and 1-nitronaphthalene in cyclohexane and acetonitrile solutions. Excitation of 2-methyl-1-nitronaphthalene at 340 nm populates the Franck-Condon singlet state, which bifurcates into two barrierless decay channels with sub-200-fs lifetimes. The primary decay channel connects the Franck-Condon singlet excited state with a receiver triplet state, whereas the second, minor channel involves conformational relaxation to populate an intramolecular charge-transfer state, as previously reported for 1-nitronaphthalene (J. Chem. Phys. 2009, 113, 224518). Conversely, the experimental and computational data for 2-nitronaphthalene shows that almost the entire Franck-Condon singlet excited-state population intersystem crosses to the triplet state in less than 200 fs due to a sizable energy barrier of ca. 5 kcal/mol that must be surmounted to access the intramolecular charge-transfer state. Our results lend support to the idea that the probability of population transfer to the triplet manifold in these nitronaphthalene derivatives is controlled not only by the small energy gap between the Franck-Condon singlet excited state and the receiver triplet state but also by the region of configuration space sampled in the singlet excited-state potential energy surface at the time of excitation. It is proposed that the ultrafast intersystem crossing dynamics in these nitronaphthalene molecules most likely occurs between nonequilibrated excited states in the strongly nonadiabatic regime.

  13. Inhibition of intramolecular electron transfer in ascorbate oxidase by Ag+: redox state dependent binding.

    PubMed

    Santagostini, Laura; Gullotti, Michele; Hazzard, James T; Maritano, Silvana; Tollin, Gordon; Marchesini, Augusto

    2005-02-01

    Intramolecular electron transfer within zucchini squash ascorbate oxidase is inhibited in a novel manner in the presence of an equimolar concentration of Ag(+). At pH 5.5 in acetate buffer reduction of the enzyme by laser flash photolytically generated 5-deazariboflavin semiquinone occurs at the Type I Cu with a rate constant of 5 x 10(8) M(-1)s(-1). Subsequent to this initial reduction step, equilibration of the reducing equivalent between the Type I Cu and the trinuclear Type II, III copper cluster (TNC) occurs with rate constant of 430 s(-1). The 41% of the reduced Type I Cu is oxidized by this intramolecular electron transfer reaction. When these reactions are performed in the presence of Ag(+) equimolar to dimeric AO, the bimolecular reduction of the enzyme by the 5-deazariboflavin semiquinone is not affected. As in the case of the native enzyme, intramolecular electron transfer between the Type I Cu and the TNC occurs, which continues until 25% of the reducing equivalent has been transferred. At that point, the reducing equivalent is observed to more slowly return to the Type I Cu, resulting a second reduction phase whose rate constant (100 s(-1)) is protein and Ag(+) concentration independent. The data suggest that partial reduction of the TNC results in Ag(+) binding to the enzyme which causes the apparent midpoint potential of the TNC as a whole to decrease thereby reversing the direction of electron flow. These results are consistent with the inhibitory effect of Ag(+) on the steady-state activity of ascorbate oxidase [S. Maritano, E. Malusa, A. Marchesini, presented at The Meeting on Metalloproteins, SERC Daresbury Laboratory, Warrington, England, 1992; A. Marchesini, XIX Convegno Nazionale SICA, Italian Society of Agricultural Chemistry, Reggio Calabria, Italy, September 2001.].

  14. Nonadiabatic Photo-Process Involving the πσ* State in Intramolecular Charge Transfer: a Concerted Spectroscopic and Computational Study 4-(DIMETHYLAMINO)BENZETHYNE and 4-(DIMETHYLAMINO)BENZONITRILE.

    NASA Astrophysics Data System (ADS)

    Fujiwara, Takashige; Segarra-Martí, Javier; Coto, Pedro B.

    2014-06-01

    The ubiquitous nature of the low-lying πσ* state in the photo-excited aromatic molecules or biomolecules is widely recognized to play an important role in nonadiabatic photo-process such as photodissociation or intramolecular charge transfer (ICT). For instance, the O--H elimination channel in phenol is attributed to the state-cross of the repulsive πσ* state that exhibits a conical intersection with the lowest bright ππ* state and with the ground state, leading to ultrafast electronic deactivation. A similar decay pathway has been found in the ICT formation of 4-(dialkylamino)benzonitriles in a polar environment, where an initially photoexcited Frank-Condon state bifurcates in the presence of a dark intermediate πσ* state that crosses the fluorescent ππ* state, followed by a conical intersection with the twisted intramolecular charge transfer (TICT) state. We proposed such a two-fold decay mechanism that πσ*-state highly mediates intramolecular charge transfer in 4-(dialkylamino)benzonitriles, which is supported from both our high-level ab initio calculations and ultrafast laser spectroscopies in the previous study. 4-(Dimethylamino)benzethyne (DMABE) is isoelectronic with 4-(dimethylamino)benzonitrile (DMABN), and the electronic structures and electronic spectra of the two molecules bear very close resemblance. However, DMABN does show the ICT formation in a polar environment, whereas DMABE does not. To probe the photophysical differences among the low-lying excited-state configurations, we performed concerted time-resolved laser spectroscopies and high level ab initio multireference perturbation theory quantum-chemical (CASPT2//CASSCF) computations on the two molecules. In this paper we demonstrate the importance of the bound excited-state of a πσ* configuration that induce highly πσ*-state mediated intramolecular charge transfer in 4-(dialkylamino)benzonitriles.

  15. Targeting individual excited states in DMRG.

    NASA Astrophysics Data System (ADS)

    Dorando, Jonathan; Hachmann, Johannes; Kin-Lic Chan, Garnet

    2007-03-01

    The low-lying excited states of π-conjugated molecules are important for the development of novel devices such as lasers, light-emitting diodes, photovoltaic cells, and field-effect transistors [1,2]. The ab-intio Density Matrix Renormalization Group (DMRG) provides a powerful way to explore the electronic structure of quasi-one-dimensional systems such as conjugated organic oligomers. However, DMRG is limited to targeting only low-lying excited states through state-averaged DMRG (SDMRG). There are several drawbacks; state-averaging degrades the accuracy of the excited states and is limited to at most a few of the low-lying states [3]. In this study, we present a new method for targeting higher individual excited states. Due to progress in the field of numerical analysis presented by Van Der Horst and others [4], we are able to target individual excited states of the Hamiltonian. This is accomplished by modifying the Jacobi-Davidson algorithm via a ``Harmonic Ritz'' procedure. We will present studies of oligoacenes and polyenes that compare the accuracy of SDMRG and Harmonic Davidson DMRG. [1] Burroughes, et al. , Nature 347, 539 (1990). [2] Shirota, J. Mater. Chem. 10, 1, (2000). [3] Ramasesha, Pati, Krishnamurthy, Shuai, Bredas, Phys. Rev. B. 54, 7598, (1997). [4] Bai, Demmel, Dongarra, Ruhe, Van Der Horst, Templates for the Solution of Algebraic Eigenvalue Problems, SIAM, 2000.

  16. Electronic Ground and Excited State Spectral Diffusion of a Photocatalyst

    NASA Astrophysics Data System (ADS)

    Kiefer, Laura M.; King, John T.; Kubarych, Kevin J.

    2014-06-01

    Re(bpy)(CO)_3Cl is a well studied CO_2 reduction catalyst, known for its ability as both a photosensitizer and a catalyst with a high quantum yield and product selectivity. The catalysis reaction is initiated by a 400 nm excitation, followed by an intersystem crossing (ISC) and re-equilibration in the lowest triplet state. We utilize the quasi-equilibrium nature of this long-lived triplet metal-to-ligand charge-transfer (3MLCT) state to completely characterize the solvent dynamics using the technique of transient two-dimensional infrared (t-2DIR) spectroscopy to extract observables such as the frequency-frequency correlation function (FFCF), an equilibrium function. The electronic ground state solvent dynamics are characterized using equilibrium two-dimensional infrared spectroscopy (2D IR). Our technique allows us to independently observe the solvent dynamics of different electronic states and compare them. In this study, three carbonyl stretching modes were utilized to probe both the intramolecular and solvent environments in each electronic state. In the electronic ground state, the totally symmetric mode exhibits pure homogeneous broadening and a lack of spectral dynamics, while the two other modes have similar FFCF decay times of ˜ 1.5 ps. In the 3MLCT, however, all three modes experience similar spectral dynamics and have a FFCF decay time of ˜ 4.5 ps, three times slower than in the electronic ground state. Our technique allows us to directly observe the differences in spectral dynamics of the ground and excited electronic states and allows us to attribute the differences to specific origins such as solvent-solute coupling and molecular flexibility.

  17. Charmonium excited state spectrum in lattice QCD

    SciTech Connect

    Jozef Dudek; Robert Edwards; Nilmani Mathur; David Richards

    2008-02-01

    Working with a large basis of covariant derivative-based meson interpolating fields we demonstrate the feasibility of reliably extracting multiple excited states using a variational method. The study is performed on quenched anisotropic lattices with clover quarks at the charm mass. We demonstrate how a knowledge of the continuum limit of a lattice interpolating field can give additional spin-assignment information, even at a single lattice spacing, via the overlap factors of interpolating field and state. Excited state masses are systematically high with respect to quark potential model predictions and, where they exist, experimental states. We conclude that this is most likely a result of the quenched approximation.

  18. Elucidation of the relationships between H-bonding patterns and excited state dynamics in cyclovalone.

    PubMed

    Lamperti, Marco; Maspero, Angelo; Tønnesen, Hanne H; Bondani, Maria; Nardo, Luca

    2014-08-28

    Cyclovalone is a synthetic curcumin derivative in which the keto-enolic system is replaced by a cyclohexanone ring. This modification of the chemical structure might in principle result in an excited state that is more stable than that of curcumin, which in turn should produce an enhanced phototoxicity. Indeed, although curcumin exhibits photosensitized antibacterial activity, this compound is characterized by very fast excited-state dynamics which limit its efficacy as a photosensitizer. In previous works we showed that the main non-radiative decay pathway of keto-enolic curcuminoids is through excited-state transfer of the enolic proton to the keto-oxygen. Another effective deactivation pathway involves an intermolecular charge transfer mechanism occurring at the phenyl rings, made possible by intramolecular H-bonding between the methoxy and the hydroxyl substituent. In this paper we present UV-Vis and IR absorption spectra data with the aim of elucidating the intramolecular charge distribution of this compound and its solvation patterns in different environments, with particular focus on solute-solvent H-bonding features. Moreover, we discuss steady state and time-resolved fluorescence data that aim at characterizing the excited-state dynamics of cyclovalone, and we compare its decay photophysics to that of curcumin. Finally, because during the characterization procedures we found evidence of very fast photodegradation of cyclovalone, its photostability in four organic solvents was studied by HPLC and the corresponding relative degradation rates were calculated.

  19. Coulomb excitation of states in 232Th

    NASA Astrophysics Data System (ADS)

    McGowan, F. K.; Milner, W. T.

    1993-09-01

    Twenty-five states in 232Th have been observed with 18 MeV 4He ions on a thick target. Eleven 2 + states between 774 and 1554 keV and three 3 - states are populated by direct E2 and E3, respectively. The remaining states are either weakly excited by multiple Coulomb excitation and/or populated by the decay of the directly excited states. Spin assignments are based on γ-ray angular distributions. Reduced transition probabilities have been deduced from the γ-ray yields. The B(E2) values for excitation of the 2 + states range from 0.024 to 3.5 W.u. (222 W.u. for the first 2 + state). For the 3 - states, the B(E3,0 → 3 -) values are 1.7, 11, and 24 W.u. A possible two-phonon state at 1554 keV, which is nearly harmonic, decays to four members of the one-phonon states, to the ground-state band, and to the K = 0 - octupole band. The B(E2) value for excitation of this state is 0.66 ± 0.05 W.u. and the B(E1) values for decay of this state are (2 and 6)×10 -4 W.u. The B(E2) values between two- and one-phonon vibrational states range between 16 and 53 W.u. which are an order of magnitude larger than the B(E2) values between the one- and zero-phonon states. This disagrees with our present understanding of collectivity in nuclei if this 2 + state is considered to be a collective two-phonon excitation. The 2 + states at 1477 and 1387 keV, which are also nearly harmonic, are possible candidates with two-phonon structure. The agreement between the experimental results and the microscopic calculations by Neergård and Vogel of the B(E3,0 → 3) for the 3 - members of the one-phonon octupole quadruplet is satisfactory when the Coriolis coupling between the states with K and K ± 1 is included. The B(E1) branching ratios for transitions from the 3 - and 1 - states to the ground-state band have large deviations from the Alaga-rule predictions. These deviations can be understood by the strong Coriolis coupling between the states of the octupole quadruplet in deformed nuclei.

  20. Excited-state imaging of cold atoms

    NASA Astrophysics Data System (ADS)

    Sheludko, David V.; Bell, Simon C.; Vredenbregt, Edgar J. D.; Scholten, Robert E.

    2007-09-01

    We have investigated state-selective diffraction contrast imaging (DCI) of cold 85Rb atoms in the first excited (52P3/2) state. Excited-state DCI requires knowledge of the complex refractive index of the atom cloud, which was calculated numerically using a semi-classical model. The Autler-Townes splitting predicted by the model was verified experimentally, showing excellent agreement. 780 nm lasers were used to cool and excite atoms within a magneto-optical trap, and the atoms were then illuminated by a 776 nm imaging laser. Several excited-state imaging techniques, including blue cascade fluorescence, on-resonance absorption, and DCI have been demonstrated. Initial results show that improved signal-to-noise ratio (SNR) will be required to accurately determine the excited state fraction. We have demonstrated magnetic field gradient compression of the cold atom cloud, and expect that further progress on compression and additional cooling will achieve sufficient diffraction contrast for quantitative state-selective imaging.

  1. Do fluorescence and transient absorption probe the same intramolecular charge transfer state of 4-(dimethylamino)benzonitrile?

    SciTech Connect

    Gustavsson, Thomas; Fujiwara, Takashige; Lim, Edward C.

    2009-07-21

    We present here the results of time-resolved absorption and emission experiments for 4-(dimethylamino)benzonitrile in solution, which suggest that the fluorescent intramolecular charge transfer (ICT) state may differ from the twisted ICT (TICT) state observed in transient absorption.

  2. Intramolecular and nonlinear dynamics

    SciTech Connect

    Davis, M.J.

    1993-12-01

    Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.

  3. Electron excitation from ground state to first excited state: Bohmian mechanics method

    NASA Astrophysics Data System (ADS)

    Yang, Song; Shuang, Zhao; Fu-Ming, Guo; Yu-Jun, Yang; Su-Yu, Li

    2016-03-01

    The excitation process of electrons from the ground state to the first excited state via the resonant laser pulse is investigated by the Bohmian mechanics method. It is found that the Bohmian particles far away from the nucleus are easier to be excited and are excited firstly, while the Bohmian particles in the ground state is subject to a strong quantum force at a certain moment, being excited to the first excited state instantaneously. A detailed analysis for one of the trajectories is made, and finally we present the space and energy distribution of 2000 Bohmian particles at several typical instants and analyze their dynamical process at these moments. Project supported by the Doctoral Research Start-up Funding of Northeast Dianli University, China (Grant No. BSJXM-201332), the National Natural Science Foundation of China (Grant Nos. 11547114, 11534004, 11474129, 11274141, 11447192, and 11304116), and the Graduate Innovation Fund of Jilin University, China (Grant No. 2015091).

  4. Mechanism of the intramolecular charge transfer state formation in all-trans-β-apo-8'-carotenal: influence of solvent polarity and polarizability.

    PubMed

    Ragnoni, Elena; Di Donato, Mariangela; Iagatti, Alessandro; Lapini, Andrea; Righini, Roberto

    2015-01-15

    In this work we analyzed the infrared and visible transient absorption spectra of all-trans-β-apo-8'-carotenal in several solvents, differing in both polarity and polarizability at different excitation wavelengths. We correlate the solvent dependence of the kinetics and the band shape changes in the infrared with that of the excited state absorption bands in the visible, and we show that the information obtained in the two spectral regions is complementary. All the collected time-resolved data can be interpreted in the frame of a recently proposed relaxation scheme, according to which the major contributor to the intramolecular charge transfer (ICT) state is the bright 1Bu(+) state, which, in polar solvents, is dynamically stabilized through molecular distortions and solvent relaxation. A careful investigation of the solvent effects on the visible and infrared excited state bands demonstrates that both solvent polarity and polarizability have to be considered in order to rationalize the excited state relaxation of trans-8'-apo-β-carotenal and clarify the role and the nature of the ICT state in this molecule. The experimental observations reported in this work can be interpreted by considering that at the Franck-Condon geometry the wave functions of the S1 and S2 excited states have a mixed ionic/covalent character. The degree of mixing depends on solvent polarity, but it can be dynamically modified by the effect of polarizability. Finally, the effect of different excitation wavelengths on the kinetics and spectral dynamics can be interpreted in terms of photoselection of a subpopulation of partially distorted molecules.

  5. Mechanism and dynamics of intramolecular triplet state decay of 1-propyl-4-thiouracil and its α-methyl-substituted derivatives studied in perfluoro-1,3-dimethylcyclohexane.

    PubMed

    Wenska, Grazyna; Taras-Goślińska, Katarzyna; Łukaszewicz, Adam; Burdziński, Gotard; Koput, Jacek; Maciejewski, Andrzej

    2011-08-01

    The absorption, phosphorescence and phosphorescence excitation spectra, phosphorescence quantum yields, and T(1) excited state lifetimes of four 4-thiouracil derivatives were measured for the first time in chemically inert and very weakly interacting perfluoro-1,3-dimethylcyclohexane at room temperature. The set of the 4-thiouracil derivatives comprises 1-propyl-4-thiouracil (PTU) and the related compounds having a methyl substituent at the position α to the thiocarbonyl group, namely 1-propyl-4-thiothymine (PTT), 1,3-dimethyl-4-thiouracil (DMTU), and 1-methyl-3-trideuteriomethyl-4-thiouracil ([D(3)]DMTU). Quantitative information on the intramolecular decay of the T(1) excited state of the four 4-thiouracil derivatives is presented, and the mechanism and dynamics of this process are discussed. In the absence of self quenching and solvent induced deactivation, the T(1) decay of the four 4-thiouracil derivatives was dominated by intramolecular nonradiative processes (NR). The values of the rate constant k(NR) in DMTU and [D(3)]DMTU are about 4 times larger than that in PTT and about 3 times larger than that in PTU. The reasons for the enhanced nonradiative rate constant in DMTU are discussed. It is concluded that the faster rate of the nonradiative processes in DMTU is related to a larger contribution from mixing of the T(2) (nπ*) state into the lowest energy T(1) (ππ*) state, as compared to the analogous coupling in PTU and PTT. This conclusion is supported by ab initio calculations performed at the EOM-CC2/aug-cc-pVDZ level of theory. The energy spacing between the T(2) (nπ*) and T(1) (ππ*) states is estimated to be about 500, 1100, and 2000 cm(-1) for DMTU, PTU, and PTT, respectively. Among the three compounds in question, the predicted energy spacing is thus the smallest for DMTU. This journal is © The Royal Society of Chemistry and Owner Societies 2011

  6. Coulomb excitation of states in 238U

    NASA Astrophysics Data System (ADS)

    McGowan, F. K.; Milner, W. T.

    1994-05-01

    Twenty-two states in 238U have been observed with 18 MeV 4He ions on a thick target. Eight 2 + states between 966 and 1782 keV and three 3 - states are populated by direct E2 and E3, respectively. The remaining states are either weakly excited by multiple Coulomb excitation and /or populated by the γ-ray decay of the directly excited states. Spin assignments are based on γ-ray angular distributions. Reduced transition probabilities have been deduced from the γ-ray yields. The B(E2) values for excitation of the 2 + states range from 0.10 to 3.0 W.u. (281 W.u. for the first 2 + state). For the 3 states, the B(E3, 0 → 3 -) values are 7.1, 7.8, and 24.2 W.u. Several of the 2 + states have decay branches to the one-phonon states with B(E2) values between 27 and 56 W.u. which are an order of magnitude larger than the B(E2) values between the one- and zero-phonon states. This disagrees with our present understanding of collectivity in nuclei if these 2 + states are considered to be collective two-phonon excitations. However, the excitation energies of these 2 + states with respect to the one-phonon states are only 1.3 to 1.6. The B(E1) values for 17 transitions between the positive- and negative-parity states range between 10 -3 and 10 -7 W.u. The B(E1) branching ratios for many of these transitions have large deviations from the Alaga-rule predictions. These deviations can be understood by the strong Coriolis coupling between the states of the one-phonon octupole quadruplet in deformed nuclei. The general features of the experimental results for the B(E3) values are reproduced by the microscopic calculations of Neergård and Vogel when the Coriolis coupling between the states of the octupole quadruplet is included.

  7. Spectroscopic Investigation of Peridinin Analogues having Different π-electron Conjugated Chain Lengths: Exploring the Nature of the Intramolecular Charge Transfer State

    PubMed Central

    Niedzwiedzki, Dariusz M.; Chatterjee, Nirmalya; Enriquez, Miriam M.; Kajikawa, Takayuki; Hasegawa, Shinji; Katsumura, Shigeo; Frank, Harry A.

    2009-01-01

    The lifetime of the lowest excited singlet (S1) state of peridinin and many other carbonyl-containing carotenoids and polyenes has been reported depend on the polarity of the solvent. This effect has been attributed to the presence of an intramolecular charge transfer (ICT) state in the manifold of excited states for these molecules. The nature of this ICT state has yet to be elucidated. In the present work, steady-state and ultrafast time-resolved optical spectroscopy have been performed on peridinin and three synthetic analogues, C33-peridinin, C35-peridinin, and C39-peridinin which have different numbers of conjugated carbon-carbon double bonds. Otherwise, the molecules are structurally similar in that they posses the same functional groups. The trends in the positions of the steady-state and transient spectral profiles for this systematic series of molecules allow an assignment of the spectral features to transitions involving the S0, S1, S2 and ICT states. A kinetics analysis reveals the lifetimes of the excited states and the dynamics of their excited state deactivation pathways. The most striking observation in the data is that the lifetime of the ICT state converges to the same value of 10.0 ± 2.0 ps in the polar solvent, methanol, for all the peridinin analogues regardless of the extent of π-electron conjugation. This suggests that the ICT state is highly localized on the lactone ring which is a common structural feature in all the molecules. The data further suggest that the S1 and ICT states behave independently and that the ICT state is populated both from both S1 and S2, the rate and efficiency from S1 being dependent on the length of the π-electron chain of the carotenoid and the solvent polarity. PMID:19775150

  8. Computing correct truncated excited state wavefunctions

    NASA Astrophysics Data System (ADS)

    Bacalis, N. C.; Xiong, Z.; Zang, J.; Karaoulanis, D.

    2016-12-01

    We demonstrate that, if a wave function's truncated expansion is small, then the standard excited states computational method, of optimizing one "root" of a secular equation, may lead to an incorrect wave function - despite the correct energy according to the theorem of Hylleraas, Undheim and McDonald - whereas our proposed method [J. Comput. Meth. Sci. Eng. 8, 277 (2008)] (independent of orthogonality to lower lying approximants) leads to correct reliable small truncated wave functions. The demonstration is done in He excited states, using truncated series expansions in Hylleraas coordinates, as well as standard configuration-interaction truncated expansions.

  9. Molecular Seesaw: How Increased Hydrogen Bonding Can Hinder Excited-State Proton Transfer.

    PubMed

    Welsch, Ralph; Driscoll, Eric; Dawlaty, Jahan M; Miller, Thomas F

    2016-09-15

    A previously unexplained effect in the relative rate of excited-state intramolecular proton transfer (ESIPT) in related indole derivatives is investigated using both theory and experiment. Ultrafast spectroscopy [ J. Phys. Chem. A, 2015, 119, 5618-5625 ] found that although the diol 1,3-bis(2-pyridylimino)-4,7-dihydroxyisoindole exhibits two equivalent intramolecular hydrogen bonds, the ESIPT rate associated with tautomerization of either hydrogen bond is a factor of 2 slower than that of the single intramolecular hydrogen bond in the ethoxy-ol 1,3-bis(2-pyridylimino)-4-ethoxy-7-hydroxyisoindole. Excited-state electronic structure calculations suggest a resolution to this puzzle by revealing a seesaw effect in which the two hydrogen bonds of the diol are both longer than the single hydrogen bond in the ethoxy-ol. Semiclassical rate theory recovers the previously unexplained trends and leads to clear predictions regarding the relative H/D kinetic isotope effect (KIE) for ESIPT in the two systems. The theoretical KIE predictions are tested using ultrafast spectroscopy, confirming the seesaw effect.

  10. Intramolecular vibrations in low-frequency normal modes of amino acids: L-alanine in the neat solid state.

    PubMed

    Zhang, Feng; Wang, Houng-Wei; Tominaga, Keisuke; Hayashi, Michitoshi

    2015-03-26

    This paper presents a theoretical analysis of the low-frequency phonons of L-alanine by using the solid-state density functional theory at the Γ point. We are particularly interested in the intramolecular vibrations accessing low-frequency phonons via harmonic coupling with intermolecular vibrations. A new mode-analysis method is introduced to quantify the vibrational characteristics of such intramolecular vibrations. We find that the torsional motions of COO(-) are involved in low-frequency phonons, although COO(-) is conventionally assumed to undergo localized torsion. We also find the broad distributions of intramolecular vibrations relevant to important functional groups of amino acids, e.g., the COO(-) and NH3(+) torsions, in the low-frequency phonons. The latter finding is illustrated by the concept of frequency distribution of vibrations. These findings may lead to immediate implications in other amino acid systems.

  11. Large excited state two photon absorptions in the near infrared region of surprisingly stable radical cations of (ferrocenyl)indenes.

    PubMed

    Orian, Laura; Scuppa, Stefano; Santi, Saverio; Meneghetti, Moreno

    2013-08-21

    Multiphoton absorptions are important non-linear optical processes which allow us to explore excited states with low energy photons giving rise to new possibilities for photoinduced processes. Among these processes, multiphoton absorptions from excited states are particularly interesting because of the large susceptibilities characteristic of excited states. Here we explore the nonlinear transmission measurements recorded with 9 ns laser pulses at 1064 nm of the radical cations of (2-ferrocenyl)indene and of (2-ferrocenyl)-hexamethylindene, two interesting very stable molecules. The non-linear transmission data can be interpreted with a multiphoton sequence of three photon absorptions, the first being a one photon absorption related to the intramolecular charge transfer and the second a two photon absorption from the excited state created with the first process. The two photon absorption cross section is found to be several orders of magnitude larger than those usually found for two photon absorbing systems excited from the ground state.

  12. Intramolecular Paternò-Büchi reaction of atropisomeric α-oxoamides in solution and in the solid-state.

    PubMed

    Raghunathan, Ramya; Kumarasamy, Elango; Iyer, Akila; Ugrinov, Angel; Sivaguru, J

    2013-10-07

    Atropisomeric α-oxoamides were synthesized and employed for intramolecular Paternò-Büchi reaction leading to very high enantio- and diastereoselectivity in the bicyclic oxetane photoproduct. A reversal of product selectivity was observed in solution and in the solid-state.

  13. Towards understanding the unbound state of drug compounds: Implications for the intramolecular reorganization energy upon binding.

    PubMed

    Foloppe, Nicolas; Chen, I-Jen

    2016-05-15

    There has been an explosion of structural information for pharmaceutical compounds bound to biological targets, but the conformations and dynamics of compounds free in solution are poorly characterized, if at all. Yet, knowledge of the unbound state is essential to understand the fundamentals of molecular recognition, including the much debated conformational intramolecular reorganization energy of a compound upon binding (ΔEReorg). Also, dependable observation of the unbound compounds is important for ligand-based drug discovery, e.g. with pharmacophore modelling. Here, these questions are addressed with long (⩾0.5μs) state-of-the-art molecular dynamics (MD) simulations of 26 compounds (including 7 approved drugs) unbound in explicit solvent. These compounds were selected to be chemically diverse, with a range of flexibility, and good quality bioactive X-ray structures. The MD-simulated free compounds are compared to their bioactive structure and conformers generated with ad hoc sampling in vacuo or with implicit generalized Born (GB) aqueous solvation models. The GB conformational models clearly depart from those obtained in explicit solvent, and suffer from conformational collapse almost as severe as in vacuo. Thus, the global energy minima in vacuo or with GB are not suitable representations of the unbound state, which can instead be extensively sampled by MD simulations. Many, but not all, MD-simulated compounds displayed some structural similarity to their bioactive structure, supporting the notion of conformational pre-organization for binding. The ligand-protein complexes were also simulated in explicit solvent, to estimate ΔEReorg as an enthalpic difference ΔHReorg between the intramolecular energies in the bound and unbound states. This fresh approach yielded ΔHReorg values⩽6kcal/mol for 18 out of 26 compounds. For three particularly polar compounds 15⩽ΔHReorg⩽20kcal/mol, supporting the notion that ΔHReorg can be substantial. Those large

  14. Synthesis, crystal structure and DFT studies of a dual fluorescent ketamine: Structural changes in the ground and excited states

    NASA Astrophysics Data System (ADS)

    Latha, V.; Balakrishnan, C.; Neelakantan, M. A.

    2015-07-01

    A fluorescent probe 2Z,2‧Z-3,3‧-(4,4‧-methylenebis(4,1-phenylene) bis(azanediyl))bis (1,3-diphenylprop-2-en-1-one) (L) was synthesized and characterized by IR, 1H NMR, ESI-mass, UV-visible and fluorescence spectral techniques. The single crystal analysis illustrates the existence of L in ketamine form. The crystal structure is stabilized by intramolecular and intermolecular hydrogen bonding. The thermal stability of L was studied by TG analysis. The fluorescence spectrum of L shows dual emission, and is due to excited state intramolecular proton transfer (ESIPT) process. This is supported by the high Stokes shift value. Electronic structure calculations of L in the ground and excited state have been carried out using DFT and TD-DFT at B3LYP/6-31G (d,p) level, respectively. The vibrational spectrum was computed at this level and compared with experimental values. Major orbital contributions for the electronic transitions were assigned with the help of TD-DFT. The changes in the Mulliken charge, bond lengths and bond angles between the ground and excited states of the tautomers demonstrate that twisted intramolecular charge transfer (TICT) process occurs along with ESIPT in the excited state.

  15. Paramagnetic excited vortex states in superconductors

    NASA Astrophysics Data System (ADS)

    Gomes, Rodolpho Ribeiro; Doria, Mauro M.; Romaguera, Antonio R. de C.

    2016-06-01

    We consider excited vortex states, which are vortex states left inside a superconductor once the external applied magnetic field is switched off and whose energy is lower than of the normal state. We show that this state is paramagnetic and develop here a general method to obtain its Gibbs free energy through conformal mapping. The solution for any number of vortices in any cross-section geometry can be read off from the Schwarz-Christoffel mapping. The method is based on the first-order equations used by Abrikosov to discover vortices.

  16. Excited triplet state spectroscopy in the infrared

    NASA Astrophysics Data System (ADS)

    Baiardo, Joseph; Mukherjee, Ranajit; Vala, Martin

    1982-03-01

    A new method for the investigation of the infrared spectra of metastable excitedelectronic states is presented. With a Fourier Transform infrared spectrometer as the probe and a CW Xe lamp source as the pump, the infrared spectrum of the lowest triplet state of triphenylene isolated in a N 2 matrix at 15K has been examined. CH out-of-plane wagging modes are prominent and shifted from their ground state frequencies. It is expected that when fully developed this method will provide important information on excited state force constants and potential energy surfaces.

  17. On the Electronically Excited States of Uracil

    SciTech Connect

    Epifanovsky, Evgeny; Kowalski, Karol; Fan, Peng-Dong; Valiev, Marat; Matsika, Spiridoula; Krylov, Anna

    2008-10-09

    Vertical excitation energies in uracil in the gas phase and in water solution are investigated by the equation-of-motion coupled-cluster and multi-reference configuration interaction methods. Basis set effects are found to be important for converged results. The analysis of electronic wave functions reveals that the lowest singlet states are predominantly of a singly excited character and are therefore well described by single-reference equation-of-motion methods augmented by a perturbative triples correction to account for dynamical correlation. Our best estimates for the vertical excitation energies for the lowest singlet n and are 5.0±0.1 eV and 5.3±0.1 eV, respectively. The solvent effects for these states are estimated to be +0.5 eV and ±0.1 eV, respectively. We attribute the difference between the computed vertical excitations and the maximum of the experimental absorption to strong vibronic interaction between the lowest A00 and A0 states leading to intensity borrowing by the forbidden transition.

  18. STIRAP on helium: Excitation to Rydberg states

    NASA Astrophysics Data System (ADS)

    Yuan, Deqian

    Research in optically induced transitions between dierent atomic levels has a long history. For transitions between states driven by a coherent optical eld, the theoretical eciency could be ideally high as 100% but there could be many factors preventing this. In the three state helium atom excitation process, i.e. 23S→33P→nL , the stimulated emission from intermediate state makes it hard to achieve ecient population transfer to the nal state through an intuitive excitation order. One technique to achieve a higher eciency is Stimulated Raman Adiabatic Passage (STIRAP) which is being studied and under research in our lab. Unlike traditional three level excitation processes, STIRAP actually uses a counter intuitive pulsed laser beams timing arrangement. The excitation objects are metastable helium atoms traveling in a vacuum system with a longitudinal velocity of ~ 1070 m/s. We are using a 389 nm UV laser to connect the 23S and the 33P state and a frequency tunable ~790 nm IR laser to connect the 33P state and the dierent Rydberg states. A third 1083 nm wavelength laser beam drives the 23S → 23P transition to transversely separate the residual metastable atoms and the Rydberg atoms for eciency measurements. The data is taken by a stainless steel detector in the vacuum system. As the Rydberg atoms will get ionized by blackbody radiation under room temperature, we can utilize this for their detection. An ion detector sitting on the eld plate is capable to collect the ion signals of the Rydberg atoms for detection. So far the whole system has not been ready for data collection and measurement, so here we are using data and results from previous theses for discussions. The highest transition frequency that has ever been achieved in our lab is around 70% after corrections.

  19. Accelerating slow excited state proton transfer

    PubMed Central

    Stewart, David J.; Concepcion, Javier J.; Brennaman, M. Kyle; Binstead, Robert A.; Meyer, Thomas J.

    2013-01-01

    Visible light excitation of the ligand-bridged assembly [(bpy)2RuaII(L)RubII(bpy)(OH2)4+] (bpy is 2,2′-bipyridine; L is the bridging ligand, 4-phen-tpy) results in emission from the lowest energy, bridge-based metal-to-ligand charge transfer excited state (L−•)RubIII-OH2 with an excited-state lifetime of 13 ± 1 ns. Near–diffusion-controlled quenching of the emission occurs with added HPO42− and partial quenching by added acetate anion (OAc−) in buffered solutions with pH control. A Stern–Volmer analysis of quenching by OAc− gave a quenching rate constant of kq = 4.1 × 108 M−1⋅s−1 and an estimated pKa* value of ∼5 ± 1 for the [(bpy)2RuaII(L•−)RubIII(bpy)(OH2)4+]* excited state. Following proton loss and rapid excited-state decay to give [(bpy)2RuaII(L)RubII(bpy)(OH)3+] in a H2PO4−/HPO42− buffer, back proton transfer occurs from H2PO4− to give [(bpy)2RuaII(L)Rub(bpy)(OH2)4+] with kPT,2 = 4.4 × 108 M−1⋅s−1. From the intercept of a plot of kobs vs. [H2PO4−], k = 2.1 × 106 s−1 for reprotonation by water providing a dramatic illustration of kinetically limiting, slow proton transfer for acids and bases with pKa values intermediate between pKa(H3O+) = −1.74 and pKa(H2O) = 15.7. PMID:23277551

  20. The investigation of excited state proton transfer mechanism in water-bridged 7-azaindole.

    PubMed

    Zhang, Yong-Jia; Zhao, Jin-Feng; Li, Yong-Qing

    2016-01-15

    Based on the time-dependent density functional theory (TDDFT), the excited-state intermolecular proton transfer (ESIPT) mechanism of water-bridged 7-azaindole has been investigated theoretically. The calculations of primary bond lengths and the IR vibrational spectra between the S0 state and the S1 state that verified the intramolecular hydrogen bond were strengthened. The fact that reproduced experimental absorbance and fluorescence emission spectra well theoretically demonstrate that the TDDFT theory we adopted is reasonable and effective. In addition, intramolecular charge transfer based on the frontier molecular orbitals demonstrated the indication of the ESIPT reaction. The constructed potential energy curves of ground state and the first excited state based on keeping the H2···O3 and H6···N7 distances fixed at a series of values have been used to illustrate the ESIPT process. A relative lower barrier of 5.94 kcal/mol in the S1 state potential energy curve for type II (lower than that of 9.82 kcal/mol in the S1 state for type I) demonstrates that type II ESIPT process occurs firstly in 7Al-2H2O complex.

  1. Intramolecular structure and dynamics of mequinol and guaiacol in the gas phase: Rotationally resolved electronic spectra of their S1 states.

    PubMed

    Ruiz-Santoyo, José Arturo; Rodríguez-Matus, Marcela; Cabellos, José Luis; Yi, John T; Pratt, David W; Schmitt, Michael; Merino, Gabriel; Álvarez-Valtierra, Leonardo

    2015-09-07

    The molecular structures of guaiacol (2-methoxyphenol) and mequinol (4-methoxyphenol) have been studied using high resolution electronic spectroscopy in a molecular beam and contrasted with ab initio computations. Mequinol exhibits two low frequency bands that have been assigned to electronic origins of two possible conformers of the molecule, trans and cis. Guaiacol also shows low frequency bands, but in this case, the bands have been assigned to the electronic origin and vibrational modes of a single conformer of the isolated molecule. A detailed study of these bands indicates that guaiacol has a vibrationally averaged planar structure in the ground state, but it is distorted along both in-plane and out-of-plane coordinates in the first electronically excited state. An intramolecular hydrogen bond involving the adjacent   -OH and   -OCH3 groups plays a major role in these dynamics.

  2. Intramolecular structure and dynamics of mequinol and guaiacol in the gas phase: Rotationally resolved electronic spectra of their S{sub 1} states

    SciTech Connect

    Ruiz-Santoyo, José Arturo; Rodríguez-Matus, Marcela; Álvarez-Valtierra, Leonardo E-mail: gmerino@mda.cinvestav.mx; Cabellos, José Luis; Merino, Gabriel E-mail: gmerino@mda.cinvestav.mx; Yi, John T.; Pratt, David W.; Schmitt, Michael

    2015-09-07

    The molecular structures of guaiacol (2-methoxyphenol) and mequinol (4-methoxyphenol) have been studied using high resolution electronic spectroscopy in a molecular beam and contrasted with ab initio computations. Mequinol exhibits two low frequency bands that have been assigned to electronic origins of two possible conformers of the molecule, trans and cis. Guaiacol also shows low frequency bands, but in this case, the bands have been assigned to the electronic origin and vibrational modes of a single conformer of the isolated molecule. A detailed study of these bands indicates that guaiacol has a vibrationally averaged planar structure in the ground state, but it is distorted along both in-plane and out-of-plane coordinates in the first electronically excited state. An intramolecular hydrogen bond involving the adjacent   –OH and   –OCH{sub 3} groups plays a major role in these dynamics.

  3. Photoionization of aligned molecular excited states

    NASA Astrophysics Data System (ADS)

    Appling, J. R.; White, M. G.; Kessler, W. J.; Fernandez, R.; Poliakoff, E. D.

    1988-02-01

    Photoelectron angular distributions of several excited states of NO have been measured in an effort to better elucidate the role of alignment in resonant multiphoton excitation processes of molecules. In contrast to previous molecular REMPI measurements on NO, (2+1) angular distributions taken for low rotational levels of the E 2Σ+ (4sσ) Rydberg state of NO exhibit complex angular behavior which is characteristic of strong spatial alignment of the optically prepared levels. Photoelectron angular distributions were also found to be strongly branch and J dependent with the lowest rotational levels of the R21+S11 branch exhibiting the full anisotropy expected for an overall three-photon process. Fluorescence anisotropies extracted from complementary two-photon fluorescence angular distribution measurements reveal small, but nonzero alignment in all rotational levels with J>1/2, in contrast to the photoelectron results. Additional photoelectron angular distributions taken for (1+1) REMPI via the A 2Σ+ (3sσ), v=0 state exhibit near ``cos2θ'' distributions characteristic of photoionization of unaligned target states. The observed photoelectron data are qualitatively interpreted on the basis of the angular momentum constraints of the excitation-induced alignment and photoionization dynamics which determine the observable moments in the angular distribution.

  4. Two states are not enough: quantitative evaluation of the valence-bond intramolecular charge-transfer model and its use in predicting bond length alternation effects.

    PubMed

    Jarowski, Peter D; Mo, Yirong

    2014-12-15

    The structural weights of the canonical resonance contributors used in the Two-state valence-bond charge-transfer model, neutral (N, R1) and ionic (VB-CT, R2), to the ground states and excited states of a series of linear dipolar intramolecular charge-transfer chromophores containing a buta-1,3-dien-1,4-diyl bridge have been computed by using the block-localized wavefunction (BLW) method at the B3LYP/6-311+G(d) level to provide the first quantitative assessment of this simple model. Ground- and excited-state analysis reveals surprisingly low ground-state structural weights for the VB-CT resonance form using either this Two-state model or an expanded Ten-state model. The VB-CT state is found to be more prominent in the excited state. Individual resonance forms were structurally optimized to understand the origins of the bond length alternation (BLA) of the bridging unit. Using a Wheland energy-based weighting scheme, the weighted average of the optimized bond lengths with the Two-state model was unable to reproduce the BLA features with values 0.04 to 0.02 Å too large compared to the fully delocalized (FD) structure (BLW: ca. -0.13 to -0.07 Å, FD: ca. -0.09 to -0.05 Å). Instead, an expanded Ten-state model fit the BLA values of the FD structure to within only 0.001 Å of FD. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Dual fluorescence and ultrafast intramolecular charge transfer with 6-N,N-dialkylaminopurines. A two-state model.

    PubMed

    Demeter, Attila; Druzhinin, Sergey I; Kovalenko, Sergey A; Senyushkina, Tamara A; Zachariasse, Klaas A

    2011-03-10

    6-N,N-Dimethyl-9-methyladenine (DMPURM) and 6-N,N-dimethyladenine (DMPURH) show dual fluorescence from a locally excited (LE) and an intramolecular charge transfer (ICT) state in solvents of different polarity over extended temperature ranges. The fluorescence quantum yields are very small, in particular those of LE. For DMPURM in acetonitrile (MeCN) at 25 °C, for example, Φ'(ICT) = 3.2 × 10(-3) and Φ(LE) = 1.6 × 10(-4). The large value of Φ'(ICT)/Φ(LE) indicates that the forward LE → ICT reaction is much faster than the back reaction. The data obtained for the intersystem crossing yield Φ(ISC) show that internal conversion (IC) is the dominant deactivation channel from LE directly to the ground state S(0). For DMPURM in MeCN with Φ(ISC) = 0.22, Φ(IC) = 1 - Φ(ISC) - Φ'(ICT) - Φ(LE) = 0.78, whereas in cyclohexane an even larger Φ(IC) of 0.97 is found. The dipole moment gradually increases upon excitation, from 2.5 D (S(0)), via 6 D (LE) to 9 D (ICT) for DMPURM and from 2.3 D (S(0)), via 7 D (LE) to 8 D (ICT) for DMPURH. From the temperature dependence of Φ'(ICT)/Φ(LE), a reaction enthalpy -ΔH of 11 kJ/mol is obtained for DMPURM in n-hexane (ε(25) = 1.88), increasing to 17 kJ/mol in the more polar solvent di-n-butyl ether (ε(25) = 3.05). With DMPURM in diethyl ether, an activation energy of 8.3 kJ/mol is determined for the LE → ICT reaction (k(a)). The femtosecond excited state absorption spectra at 22 °C undergo an ultrafast decay: 1.0 ps in CHX and 0.63 ps in MeCN for DMPURM, still shorter (0.46 ps) for DMPURH in MeCN. With DMPURM in n-hexane, the LE fluorescence decay time τ(2) increases upon cooling from 2.6 ps at -45 °C to 6.9 ps at -95 °C. The decay involves ICT and IC as the two main pathways: 1/τ(2) ≅ k(a) + k(IC). As a model compound (no ICT) is not available, its lifetime τ(0)(LE) ∼ 1/k(IC) is not known, which prevents a separate determination of k(a). The excited state reactions of DMPURM and DMPURH are treated with a two-state

  6. Intermediate Excited States in Rhodopsin Photochemistry

    NASA Astrophysics Data System (ADS)

    Rothberg, L. J.; Yan, M.; Jedju, T. M.; Callender, R. H.; Chao, H.; Alfano, R. R.

    1996-03-01

    Recent work by Wang et.al. footnote Q. Wang et.al., Science 266, 422 (1994) reports rapid coherent photoisomerization in rhodopsin. The bathorhodopsin photoproduct appears in 200 fs and exhibits torsional oscillations which remain synchronized with the initial photoexcitation. We report transient absorption experiments which suggest that the fraction of excited rhodopsin molecules which does not isomerize in this fashion (approximately 1/3) remains in an electronically excited state, probably the twisted state described by Birge and Hubbard,footnote R. R. Birge and L. M. Hubbard, J. Am. Chem. Soc. 102, 2195 (1980) for ~ 3 ps and then reforms rhodopsin. This picture explains the long bleaching recovery time for rhodopsin and the controversial spectral dynamics which are observed in the red.

  7. Stretched-State Excitations with the

    NASA Astrophysics Data System (ADS)

    Garcia, Luis Alberto Casimiro

    Neutron time-of-fight spectra were obtained for the ^{14}C(p,n) ^{14}N, ^{18 }O(p,n)^{18}F, and ^{30}Si(p,n) ^{30}P reactions at 135 MeV with the beam-swinger system at the Indiana University Cyclotron Facility. Excitation-energy spectra and the differential cross sections for the observed excitations in these reactions were extracted over the momentum transfer range from 0 to 2.7 fm^{-1}. The primary goal of this work was to obtain the strengths and distributions for the "stretched" states. The identification of these states was based on comparisons of the theoretical differential cross sections, performed in a DWIA formalism, with the experimental cross sections. Isospin assignments were based primarily on comparisons of the measured (p,n) and (e,e^') spectroscopic strengths. Candidate (pid_ {5/2},nu{rm p}_sp {3/2}{-1}), J^ pi = 4 ^- T = 0, 1 and 2, 1 hbaromega states, were identified at E_{x} = 8.5, 13.8, 19.5, and 26.7 MeV in the ^{14}C(p,n) ^{14}N reaction, and the corresponding isovector strengths were extracted. The observed 4^--state excitation energies and the strengths are in good agreement with the analog T = 1 and 2, 4^--states observed in the (e,e^') reaction. Large -basis shell-model calculations were found to predict reasonably well the excitation energies; however, these calculations overpredict the strength by a factor of 2, for the T = 1 and 2 components. In the ^{18}O(p,n) ^{18}F reaction at 135 MeV, (pi d_{5/2},nu {rm d}_sp{5/2}{-1 }) 5^+ T = 0 0hbaromega strength was observed, concentrated in a single state, at E_{x} = 1.1 MeV, with 75% of the extreme-single-particle-model (ESPM) strength, in good agreement with a shell-model calculation. No 6^- 1hbaromega strength was observed in this reaction. Candidate (pi {rm d}_{5/2},nu p _sp{3/2}{-1}) J ^pi = 4^- T = 0, 1 and 2, 1hbaromega states, were identified at E_{x} = 3.9, 9.4, 10.2, 11.4, 12.0, 14.4, 15.3, 17.3, 18.0, 19.7, 21.4, and 23.4 MeV. The observed 4^- T = 2 state excitation energies and

  8. Excited state baryon spectroscopy from lattice QCD

    DOE PAGES

    Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; ...

    2011-10-31

    Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting ofmore » levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.« less

  9. Excited state baryon spectroscopy from lattice QCD

    SciTech Connect

    Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; Wallace, Stephen J.

    2011-10-31

    Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting of levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.

  10. Excited-state solvation and proton transfer dynamics of DAPI in biomimetics and genomic DNA.

    PubMed

    Banerjee, Debapriya; Pal, Samir Kumar

    2008-08-14

    The fluorescent probe DAPI (4',6-diamidino-2-phenylindole) is an efficient DNA binder. Studies on the DAPI-DNA complexes show that the probe exhibits a wide variety of interactions of different strengths and specificities with DNA. Recently the probe has been used to report the environmental dynamics of a DNA minor groove. However, the use of the probe as a solvation reporter in restricted environments is not straightforward. This is due to the presence of two competing relaxation processes (intramolecular proton transfer and solvation stabilization) in the excited state, which can lead to erroneous interpretation of the observed excited-state dynamics. In this study, the possibility of using DAPI to unambiguously report the environmental dynamics in restricted environments including DNA is explored. The dynamics of the probe is studied in bulk solvents, biomimetics like micelles and reverse micelles, and genomic DNA using steady-state and picosecond-resolved fluorescence spectroscopies.

  11. Radiative and Excited State Charmonium Physics

    SciTech Connect

    Jozef Dudek

    2007-07-30

    Renewed interest in the spectroscopy of charmonium has arisen from recent unexpected observations at $e^+e^-$ colliders. Here we report on a series of works from the previous two years examining the radiative physics of charmonium states as well as the mass spectrum of states of higher spin and internal excitation. Using new techniques applied to Domain-Wall and Clover quark actions on quenched isotropic and anisotropic lattices, radiative transitions and two-photon decays are considered for the first time. Comparisons are made with experimental results and with model approaches. Forthcoming application to the light-quark sector of relevance to experiments like Jefferson Lab's GlueX is discussed.

  12. Excited state wavepacket dynamics in NO2 probed by strong-field ionization

    NASA Astrophysics Data System (ADS)

    Forbes, Ruaridh; Boguslavskiy, Andrey E.; Wilkinson, Iain; Underwood, Jonathan G.; Stolow, Albert

    2017-08-01

    We present an experimental femtosecond time-resolved study of the 399 nm excited state dynamics of nitrogen dioxide using channel-resolved above threshold ionization (CRATI) as the probe process. This method relies on photoelectron-photoion coincidence and covariance to correlate the strong-field photoelectron spectrum with ionic fragments, which label the channel. In all ionization channels observed, we report apparent oscillations in the ion and photoelectron yields as a function of pump-probe delay. Further, we observe the presence of a persistent, time-invariant above threshold ionization comb in the photoelectron spectra associated with most ionization channels at long time delays. These observations are interpreted in terms of single-pump-photon excitation to the first excited electronic X ˜2A1 state and multi-pump-photon excitations to higher-lying states. The short time delay (<100 fs) dynamics in the fragment channels show multi-photon pump signatures of higher-lying neutral state dynamics, in data sets recorded with higher pump intensities. As expected for pumping NO2 at 399 nm, non-adiabatic coupling was seen to rapidly re-populate the ground state following excitation to the first excited electronic state, within 200 fs. Subsequent intramolecular vibrational energy redistribution results in the spreading of the ground state vibrational wavepacket into the asymmetric stretch coordinate, allowing the wavepacket to explore nuclear geometries in the asymptotic region of the ground state potential energy surface. Signatures of the vibrationally "hot" ground state wavepacket were observed in the CRATI spectra at longer time delays. This study highlights the complex and sometimes competing phenomena that can arise in strong-field ionization probing of excited state molecular dynamics.

  13. Ensemble density functional theory method correctly describes bond dissociation, excited state electron transfer, and double excitations

    SciTech Connect

    Filatov, Michael; Huix-Rotllant, Miquel; Burghardt, Irene

    2015-05-14

    State-averaged (SA) variants of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, SA-REKS and state-interaction (SI)-SA-REKS, implement ensemble density functional theory for variationally obtaining excitation energies of molecular systems. In this work, the currently existing version of the SA-REKS method, which included only one excited state into the ensemble averaging, is extended by adding more excited states to the averaged energy functional. A general strategy for extension of the REKS-type methods to larger ensembles of ground and excited states is outlined and implemented in extended versions of the SA-REKS and SI-SA-REKS methods. The newly developed methods are tested in the calculation of several excited states of ground-state multi-reference systems, such as dissociating hydrogen molecule, and excited states of donor–acceptor molecular systems. For hydrogen molecule, the new method correctly reproduces the distance dependence of the lowest excited state energies and describes an avoided crossing between the doubly excited and singly excited states. For bithiophene–perylenediimide stacked complex, the SI-SA-REKS method correctly describes crossing between the locally excited state and the charge transfer excited state and yields vertical excitation energies in good agreement with the ab initio wavefunction methods.

  14. Reaction mechanism and isotope effects derived from centroid transition state theory in intramolecular proton transfer reactions

    NASA Astrophysics Data System (ADS)

    Iftimie, Radu; Schofield, Jeremy

    2001-10-01

    In this article the tautomerization reaction of the enol form of malonaldehyde is used to investigate the magnitude and origin of changes in centroid transition state theory proton transfer reaction rate predictions caused by the quantum dispersion of heavy nuclei. Using an empirical valence bond method to construct the potential energy surface, it is found that quantization of the nuclear degrees of freedom of the carbon atoms significantly influences the centroid potential of mean force used to describe the proton transfer reaction. In contrast, an ab initio simulation carried out using a recently developed molecular mechanics based importance sampling method [J. Chem. Phys. 114, 6763 (2001)] in combination with an accurate density functional theory evaluation of the electronic energies shows a substantially smaller influence of the quantum nuclear degrees of freedom of the secondary atoms on the centroid potential of mean force. A detailed analysis of the different influence of quantization of the nuclear degrees of freedom of secondary atoms observed in the ab initio and empirical valence bond centroid potential of mean force was carried out. It is shown that for the empirical valence bond potential, a significant decrease of the centroid potential of mean force arises through the quantum tunneling of carbon atoms in the molecular backbone. Furthermore, it is demonstrated that in molecular mechanics potentials aimed to describe intramolecular proton transfer reactions, the functional form of the potential energy terms coupling the primary and secondary atom motions as the reaction proceeds as well as the mass of the primary particle can significantly influence the centroid transition state theory predictions of secondary kinetic isotope effects. Finally, the dependence of the reaction rate predictions and isotope effects on the choice of reaction coordinate is investigated and the validity of calculating kinetic isotope effects using the centroid transition

  15. Excited state electron affinity calculations for aluminum

    NASA Astrophysics Data System (ADS)

    Hussein, Adnan Yousif

    2017-08-01

    Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.

  16. The Role of πσ* State in Intramolecular Charge Transfer of 4-(DIMETHYLAMINO){-}BENZONITRILE and Related Molecules

    NASA Astrophysics Data System (ADS)

    Fujiwara, Takashige; Zgierski, Marek Z.; Lim, Edward C.

    2011-06-01

    The solvent-polarity dependence and temporal characteristics of the transient absorption of 4-(dimethylamino)-benzonitrile, DMABN, and 4-(dimethylamino)benzethyne, DMABE, demonstrate the presence of the πσ*-state absorption at about 700 nm and the ππ* (LE)-state absorption at about 520 nm and 450 nm. The rise and decay times of the πσ*-state transient differ from those of the ππ*-state transients in both compounds. Moreover, the peak position of the πσ*-state absorption is blue-shifted and more intense in acetonitrile as compared to n-hexane, whereas the band positions of the ππ*-state absorptions are essentially the same in the two solvents. For DMABN in acetonitrile, the rise time (˜ 4.3 ps) of the twisted intramolecular charge transfer (TICT)-state transient at 330 nm is identical to the decay time of the πσ*-state transient. The 4.8 ns decay time of the TICT-state absorption of DMABN is longer than the 2.9 ns decay time of the intramolecular charge-transfer (ICT) fluorescence, indicating that the fluorescent ICT state differs from the TICT state observed in transient absorption. These results are consistent with the presence of a low-lying πσ* state in DMABN (and DMABE), and the role the πσ* state plays in the formation of the TICT state of DMABN.

  17. The role of the πσ* state in intramolecular charge transfer of 4-(dimethylamino)benzonitrile.

    PubMed

    Fujiwara, Takashige; Zgierski, Marek Z; Lim, Edward C

    2011-04-21

    The solvent-polarity dependence and temporal characteristics of the transient absorption of 4-(dimethylamino)benzonitrile, DMABN, and 4-(dimethylamino)benzethyne, DMABE, demonstrate the presence of the πσ*-state absorption at about 700 nm and the ππ* (LE)-state absorption at about 520 nm and 450 nm. The rise and decay times of the πσ*-state transient differ from those of the ππ*-state transients in both compounds. Moreover, the peak position of the πσ*-state absorption is blue-shifted and more intense in acetonitrile as compared to n-hexane, whereas the band positions of the ππ*-state absorptions are essentially the same in the two solvents. For DMABN in acetonitrile, the rise time (∼4.3 ps) of the twisted intramolecular charge transfer (TICT)-state transient at 330 nm is identical to the decay time of the πσ*-state transient. The 4.8 ns decay time of the TICT-state absorption of DMABN is longer than the 2.9 ns decay time of the intramolecular charge-transfer (ICT) fluorescence, indicating that the fluorescent ICT state differs from the TICT state observed in transient absorption. These results are consistent with the presence of a low-lying πσ* state in DMABN (and DMABE), and the role the πσ* state plays in the formation of the TICT state of DMABN.

  18. Excited States of {sup 11}Be

    SciTech Connect

    Cappuzzello, F.; Cunsolo, A.; Fortier, S.; Foti, A.; Laurent, H.; Lenske, H.; Maison, J.M.; Melita, A.L.; Nociforo, C.; Rosier, L.; Stephan, C.; Tassan-Got, L.; Winfield, J.S.; Wolter, H.H.

    2000-12-31

    The {sup 11}B({sup 7}Li,{sup 7}Be){sup 11}Be reaction at 57 MeV incident energy was used to explore the {sup 11}Be excitation energy spectrum at forward angles. Angular distributions were extracted for the transitions to the ground and to the states of {sup 11}Be at excitation energies of E*=0.32, 1.78, 2.69, 3.41, 3.89, 3.96, 6.05 MeV combined with the ground and the first excited state of {sup 7}Be. Also the SDR [1][2] oscillation mode was observed at E*=9.5 MeV and FWHM{approx}9 MeV and a new peak at E*=6.05 MeV and FWHM{approx}0.3 MeV was observed. QRPA calculations in the G-matrix representation are in progress in order to describe the continuum structure of {sup 11}Be. DWBA calculations have been started to evaluate transferred angular momenta both in the one step and in the two steps dynamical framework.

  19. Dilute Excited States in Light Nuclei

    NASA Astrophysics Data System (ADS)

    Demyanova, A. S.; Ogloblin, A. A.; Danilov, A. N.; Goncharov, S. A.; Belyaeva, T. L.; Trzaska, W. H.

    2015-11-01

    A review of measurements of the radii of 11B, 12C and 13C nuclei in some excited states, whose structure recently attracted a lot of attention, is presented. The differential cross-sections of the inelastic α-scattering were measured. The radii values were extracted from the date using the Modified Diffraction Model (MDM). The evidence that the famous Hoyle state (0+, 7.65 MeV) in 12C has the enhanced dimensions and is the head of a new rotational band (besides the known band based on the 12C ground state) was obtained. The radius of the second 2+ member state (E* = 9.8 or 9.6 MeV) was seen to be similar to that of the Hoyle state (~3.0 fm). A 4+ state was identified at E* = 13.75 MeV. The radii of the 8.86 MeV, 1/2- state in 13C and 8.56 MeV, 3/2- state in 11B are found to be close to that of the Hoyle state and these states can be considered as analogues of the latter. Comparison of the data with the predictions of some theoretical models, e.g., alpha condensation, has been made. The obtained results show that one may speak only about rudimentary manifestation of the condensate effects.

  20. Computational study of thioflavin T torsional relaxation in the excited state.

    PubMed

    Stsiapura, Vitali I; Maskevich, Alexander A; Kuzmitsky, Valery A; Turoverov, Konstantin K; Kuznetsova, Irina M

    2007-06-07

    Quantum-chemical calculations of the Thioflavin T (ThT) molecule in the ground S0 and first excited singlet S1 states were carried out. It has been established that ThT in the ground state has a noticeable nonplanar conformation: the torsion angle phi between the benzthiazole and the dimethylaminobenzene rings has been found to be approximately 37 degrees. The energy barriers of the intramolecular rotation appearing at phi = 0 and 90 degrees are quite low: semiempirical AM1 and PM3 methods predict values approximately 700 cm-1 and ab initio methods approximately 1000-2000 cm(-1). The INDO/S calculations of vertical transitions to the S1(abs) excited state have revealed that energy ES1(abs) is minimal for the twisted conformation with phi = 90 degrees and that the intramolecular charge-transfer takes place upon the ThT fragments' rotation from phi = 0 to 90 degrees. Ab initio CIS/RHF calculations were performed to find optimal geometries in the excited S1 state for a series of conformers having fixed phi values. The CIS calculations have predicted a minimum of the S1 state energy at phi approximately 21 degrees; however, the energy values are 1.5 times overestimated in comparison to experimental data. Excited state energy dependence on the torsion angle phi, obtained by the INDO/S method, reveals that ES1(fluor) is minimal at phi = approximately 80-100 degrees, and a plateau is clearly observed for torsion angles ranging from 20 to 50 degrees. On the basis of the calculation results, the following scheme of photophysical processes in the excited S1 state of the ThT is suggested. According to the model, a twisted internal charge-transfer (TICT) process takes place for the ThT molecule in the excited singlet state, resulting in a transition from the fluorescent locally excited (LE) state to the nonfluorescent TICT state, accompanied by torsion angle phi growth from 37 to 90 degrees. The TICT process effectively competes with radiative transition from the LE state and

  1. Excited state properties of the chromophore of the asFP595 chromoprotein: 2D and 3D theoretical analyses

    NASA Astrophysics Data System (ADS)

    Sun, Mengtao

    The ground and excited state properties (e.g., the intramolecular charge and energy transfer, and electron-hole coherence) of the chromophore of the asFP595 chromoprotein from Anemonia sulcata in the neutral and anionic forms are theoretically studied with quantum chemistry methods. The ground-state properties of the asFP595 in the neutral and anionic forms, such as the alternations of the bond lengths and the Mulliken charge distributions, are compared. The calculated transition energies of the asFP595 in the neutral and anionic form are consistent with the experimental results. To study the excited state properties of the asFP595 chromophore, the energies and densities of highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs), as well as the CI main coefficients, are compared between the two forms. The intramolecular charge and energy transfer in the neutral and anionic forms are investigated and compared with the three-dimensional (3D) real-space analysis methods, including the strength and orientation of the transition dipoles with transition density, and the orientation and result of the intramolecular charge transfer with charge difference density. The electron-hole coherence and delocalization on the excitation are studied with the 2D real-space analysis method of the transition density matrix. In all, the calculated results are remain in good agreement with the experimental data, and the theoretical analysis results supported the proposed models in the experiment.

  2. Post-transition State Dynamics for Propene Ozonolysis: Intramolecular and Unimolecular Dynamics of Molozonide

    SciTech Connect

    Vayner, Grigoriy; Addepalli, Srirangam V.; Song, Kihyung; Hase, William L.

    2006-07-07

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. A direct chemical dynamics simulation, at the B3LYP/6-31G(d) level of theory, was used to study the post-transition state intramolecular and unimolecular dynamics for the O₃+propene reaction. Comparisons of B3LYP/6-31G(d) with CCSD(T)/cc-pVTZ and other levels of theory show that the former gives accurate structures and energies for the reaction’s stationary points. The direct dynamics simulations are initiated at the anti and syn O₃+propene transition states (TSs) and the TS symmetries are preserved in forming the molozonide intermediates. Anti↔syn molozonide isomerization has a very low barrier of 2–3 kcal/mol and its Rice-Ramsperger-Kassel-Marcus (RRKM) lifetime is 0.3 ps. However, the trajectory isomerization is slower and it is unclear whether this anti↔syn equilibration is complete when the trajectories are terminated at 1.6 ps. The syn (anti) molozonides dissociate to CH₃CHO+H₂COO and H₂CO+syn (anti) CH₃CHOO. The kinetics for the latter reactions are in overall good agreement with RRKM theory, but there is a symmetry preserving non-RRKM dynamical constraint for the former. Dissociation of anti molozonide to CH₃CHO+H₂COO is enhanced and suppressed, respectively, for the trajectory ensembles initiated at the anti and syn O₃+propene TSs. The dissociation of syn molozonide to CH₃CHO+H₂COO may also be enhanced for trajectories initiated at the syn O₃+propene TS. At the time the trajectories are terminated at 1.6 ps, the ratio of the trajectory and RRKM values of the CH₃CHO+H₂COO product yield is 1.6 if the symmetries of the initiation and dissociation TSs are the same and 0.6 if their symmetries are different. There are coherences in the

  3. Semiclassical quantization of highly excited scar states

    NASA Astrophysics Data System (ADS)

    Vergini, Eduardo G.

    2017-04-01

    The semiclassical quantization of Hamiltonian systems with classically chaotic dynamics is restricted to low excited states, close to the ground state, because the number of required periodic orbits grows exponentially with energy. Nevertheless, here we demonstrate that it is possible to find eigenenergies of highly excited states scarred by a short periodic orbit. Specifically, by using 18146 homoclinic orbits (HO)s of the shortest periodic orbit of the hyperbola billiard, we find eigenenergies of the strongest scars over a range which includes 630 even eigenfunctions. The analysis of data reveals that the used semiclassical formula presents two regimes. First, when all HOs with excursion time smaller than the Heisenberg time t H are included, the error is around 3.3% of the mean level spacing. Second, in the energy region defined by \\tilde{t}/ tH > 0.13 , where \\tilde{t} is the maximum excursion time included in the calculation, the error is around 15% of the mean level spacing.

  4. Lifetimes of Bound Excited States of Si^-

    NASA Astrophysics Data System (ADS)

    O'Malley, Steven M.; Beck, Donald R.

    2003-05-01

    The bound excited states of Si^- lie 6955 cm-1 (^2D_3/2), 6969 cm-1 (M. Scheer et al, Phys. Rev. Lett. 80), 2562 (1998). (^2D_5/2), and 10 977 cm-1 (A. Kasden et al, J. Chem. Phys. 62), 541 (1975). (^2P_1/2) above the ^4S_3/2 ground state. Transitions from each of the bottom three levels to the ^2P_1/2 level are LS allowed (both E2 and M1) and thus relatively uncomplicated calculations, resulting in a lifetime for the ^2P_1/2 level of ˜25 s. The ^4S/^2D/^2P mixing is critical for the ^4S arrow ^2D LS forbidden transitions, and LS purity is greater than 99.5% for such a light (nonrelativistic) system. At the Dirac-Fock level we find the most important factor in the ^4S_3/2 arrow ^2D_3/2 transition is the amount of ^4S mixing in the ^2D_3/2 level. With no such ^4S component in the ^2D_5/2 level, its lifetime is over 100 000 s. Important correlation configurations which act to lower the ^2D_3/2 lifetime include the valence excitations 3p arrow p and 3p^2 arrow p^2 and the core-valence 3s,3p and 2p,3p pair excitations. Our current ^2D_3/2 lifetime in an ongoing series of calculations is ˜200 s.

  5. The polaron: Ground state, excited states, and far from equilibrium

    SciTech Connect

    Trugman, S.A.; Bonca, J. |

    1998-12-01

    The authors describe a variational approach for solving the Holstein polaron model with dynamical quantum phonons on an infinite lattice. The method is simple, fast, extremely accurate, and gives ground and excited state energies and wavefunctions at any momentum k. The method can also be used to calculate coherent quantum dynamics for inelastic tunneling and for strongly driven polarons far from equilibrium.

  6. Excited state quenching via "unsuccessful" chemical reactions.

    PubMed

    Sinicropi, Adalgisa; Nau, Werner M; Olivucci, Massimo

    2002-08-01

    We discuss the results of recent photochemical reaction path computations on 1n,pi* azoalkanes interacting with a single quencher molecule. We provide computational and experimental evidence that there are two basic mechanisms for the true quenching of 1n,pi* states both based on unsuccessful chemical reactions. The first mechanism is based upon an unsuccessful hydrogen atom transfer and may occur through two different (direct and stepwise) routes. The second mechanism is based on an unsuccessful charge transfer reaction that occurs exclusively in a direct fashion. We show that the efficiency of the two quenching mechanisms is substantially due to the existence of two different types of conical intersections between the excited and ground state potential energy surfaces of the reacting bimolecular system.

  7. Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

    SciTech Connect

    Van Tassle, Aaron Justin

    2006-01-01

    This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.

  8. A treatment of excited states in nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjib Shankar

    2002-10-01

    Many isotopes of importance to nucleosynthesis have metastable states whose decay to the ground state is strongly inhibited by a high angular momentum difference. Traditionally, excited states of a nucleus have been treated by assuming attainment of thermal equilibrium; a Hauser-Feshbach calculation is then performed on the whole nucleus to determine nuclear reaction rates. A description of the nucleus when it is not in equilibrium, and a method for computing reaction rates that does not presume thermalization are presented in this work. In nucleosynthesis calculations, we may characterize the internal electromagnetic transitions of a nucleus as a Markov process. This allows us to decompose the interaction of radiation with nucleons into effective interactions between ensembles. Rather than consider a single isotope, we construct the canonical ensembles which are the true nuclear species of interest. We are then in a position to specify nonequilibrium occupations of the ensembles by discretizing the Nuclear Level Density function. The generality of the stochastic process identified at the outset now permits the description of nucleosynthesis as Markov flows in networks of suitably populated ensembles. This allows us to use as many excited states as we wish in nucleosyn thesis while tracking their nonequilibrium evolution as substochastic processes. A website utilizing these principles is discussed in some detail. It accesses the theoretical NLD database from the Brussels Intitute of Astrophysics to supplement adopted experimental data from the ENSDF database (maintained by Brookhaven National Laboratories). The composite is processed by a CGI (Common Gateway Interface) application to dynamically obtain plots and tables of rates on a specified temperature grid. Beta-decay rates are discussed for an isotope important to nuclear astrophysics ( 180TA) as a test-bed for the techniques implemented.

  9. Solvent effects on the excited-state processes of protochlorophyllide: a femtosecond time-resolved absorption study.

    PubMed

    Dietzek, B; Kiefer, W; Hermann, G; Popp, J; Schmitt, M

    2006-03-09

    The excited-state dynamics of protochlorophyllide a, a porphyrin-like compound and, as substrate of the NADPH/protochlorophyllide oxidoreductase, a precursor of chlorophyll biosynthesis, is studied by femtosecond absorption spectroscopy in a variety of solvents, which were chosen to mimic different environmental conditions in the oxidoreductase complex. In the polar solvents methanol and acetonitrile, the excited-state dynamics differs significantly from that in the nonpolar solvent cyclohexane. In methanol and acetonitrile, the relaxation dynamics is multiexponential with three distinguishable time scales of 4.0-4.5 ps for vibrational relaxation and vibrational energy redistribution of the initially excited S1 state, 22-27 ps for the formation of an intermediate state, most likely with a charge transfer character, and 200 ps for the decay of this intermediate state back to the ground state. In the nonpolar solvent cyclohexane, only the 4.5 ps relaxational process can be observed, whereas the intermediate intramolecular charge transfer state is not populated any longer. In addition to polarity, solvent viscosity also affects the excited-state processes. Upon increasing the viscosity by adding up to 60% glycerol to a methanolic solution, a deceleration of the 4 and 22 ps decay rates from the values in pure methanol is found. Apparently not only vibrational cooling of the S1 excited state is slowed in the more viscous surrounding, but the formation rate of the intramolecular charge transfer state is also reduced, suggesting that nuclear motions along a reaction coordinate are involved in the charge transfer. The results of the present study further specify the model of the excited-state dynamics in protochlorophyllide a as recently suggested (Chem. Phys. Lett. 2004, 397, 110).

  10. Comparing the performance of TD-DFT and SAC-CI methods in the description of excited states potential energy surfaces: An excited state proton transfer reaction as case study.

    PubMed

    Savarese, Marika; Raucci, Umberto; Fukuda, Ryoichi; Adamo, Carlo; Ehara, Masahiro; Rega, Nadia; Ciofini, Ilaria

    2017-05-30

    The performances, in the description of excited state potential energy surfaces, of several density functional approximations representative of the currently most applied exchange correlation functionals' families have been tested with respect to post Hartree-Fock references (here Symmetry Adapted Cluster-Configuration Interaction results). An experimentally well-characterized intermolecular proton transfer reaction has been considered as test case. The computed potential energy profiles were analyzed both in the gas phase and in toluene solution, here represented as a polarizable continuum model. The presence of intermolecular (dark) and intramolecular (bright) charge transfer excited states, whose polarity strongly differs along the reaction pathway, makes clear that only subtle compensation between spurious electronic effects-related to the incorrect asymptotic behavior of the functional-and solvent stabilization of polar states leads to the overall correct description of this excited state reaction when using global hybrids with low percentage of Hartree Fock exchange. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Controlling Excited State Single versus Double Proton Transfer for 2,2'-Bipyridyl-3,3'-diol: Solvent Effect.

    PubMed

    Zhao, Jinfeng; Liu, Xiaoyan; Zheng, Yujun

    2017-05-25

    In this work, we theoretically investigate the sequential excited state double proton transfer (ESDPT) mechanism of a representative intramolecular hydroxyl (OH)-type hydrogen molecule 2,2'-bipyridyl-3,3'-diol (BP(OH)2). We mainly adopt three kinds of different polar solvents (nonpolar cyclohexane (CYH), polar acetonitrile (ACN), and moderate chloroform (CHCl3)) to explore solvent effects on this system. Two intramolecular hydrogen bonds of BP(OH)2 are testified to be strengthened in the S1 state, which provides possibility for ESDPT process. Explorations of charge redistribution and potential energy surfaces (PESs) reveal ESDPT process. Searching transition state (TS) structures in different polar aprotic solvents, we successfully regulate and control the stepwise ESDPT behaviors of BP(OH)2 through solvent polarity.

  12. Vibrational dynamics of aniline (N2)1 clusters in their first excited singlet state

    NASA Astrophysics Data System (ADS)

    Hineman, M. F.; Kim, S. K.; Bernstein, E. R.; Kelley, D. F.

    1992-04-01

    The first excited singlet state S1 vibrational dynamics of aniline(N2)1 clusters are studied and compared to previous results on aniline(CH4)1 and aniline(Ar)1. Intramolecular vibrational energy redistribution (IVR) and vibrational predissociation (VP) rates fall between the two extremes of the CH4 (fast IVR, slow VP) and Ar (slow IVR, fast VP) cluster results as is predicted by a serial IVR/VP model using Fermi's golden rule to describe IVR processes and a restricted Rice-Ramsperger-Kassel-Marcus (RRKM) theory to describe unimolecular VP rates. The density of states is the most important factor determining the rates. Two product states, 00 and 10b1, of bare aniline and one intermediate state ˜(00) in the overall IVR/VP process are observed and time resolved measurements are obtained for the 000 and ˜(000) transitions. The results are modeled with the serial mechanism described above.

  13. How much double excitation character do the lowest excited states of linear polyenes have?

    NASA Astrophysics Data System (ADS)

    Starcke, Jan Hendrik; Wormit, Michael; Schirmer, Jochen; Dreuw, Andreas

    2006-10-01

    Doubly excited states play important roles in the low-energy region of the optical spectra of polyenes and their investigation has been subject of theoretical and experimental studies for more than 30 years now and still is in the focus of ongoing research. In this work, we address the question why doubly excited states play a role in the low-energy region of the optical spectrum of molecular systems at all, since from a naive point of view one would expect their excitation energy approximately twice as large as the one of the corresponding single excitation. Furthermore, we show that extended-ADC(2) is well suited for the balanced calculation of the low-lying excited 21Ag-, 11Bu- and 11Bu+ states of long all- trans polyenes, which are known to possess substantial double excitation character. A careful re-investigation of the performance of TDDFT calculations for these states reveals that the previously reported good performance for the 21Ag- state relies heavily on fortuitous cancellation of errors. Finally, the title question is answered such that for short polyenes the lowest excited 21Ag- and 11Bu- states can clearly be classified as doubly excited, whereas the 11Ag- ground state is essentially represented by the (ground-state) HF determinant. For longer polyenes, in addition to increasing double excitation contributions in the 21Ag- and 11Bu- states, the ground state itself aquires substantial double excitation character (45% in C 22H 24), so that the transition from the ground state to these excited states should not be addressed as the excitation of two electrons relative to the 11Ag- ground state.

  14. Excited State Quantum-Classical Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag

    2005-05-01

    The development of a new theoretical, algorithmic, and computational framework is reported describing the corresponding excited state many-body dynamics by applying multiphysics described by classical equations of motion for nuclei and Hartree-Fock/Multi-Configuration Hartree-Fock and multiresolution techniques for solving the quantum part of the problem (i.e. the motion of the electrons). We primarily have in mind reactive and electron-transition dynamics which involves molecular clusters, containing hundreds of atoms, perturbed by a slow ionic/atomic/molecular projectile, with possible applications in plasma-surface interactions, cluster physics, chemistry and biotechnology. The validation of the developed technique is performed at three-body systems. Application to the transition dynamics in small carbon clusters and hydrocarbons perturbed by slow carbon ions resolves some long-standing issues in the ion-surface interactions in fusion tokamaks.

  15. Excited-State Proton Transfer in Indigo.

    PubMed

    Pina, J; Sarmento, Daniela; Accoto, Marco; Gentili, Pier Luigi; Vaccaro, Luigi; Galvão, Adelino; Seixas de Melo, J Sérgio

    2017-03-16

    Excited-state proton transfer (ESPT) in Indigo and its monohexyl-substituted derivative (Ind and NHxInd, respectively) in solution was investigated experimentally as a function of solvent viscosity, polarity, and temperature, and theoretically by time-dependent density functional theory (TDDFT) calculations. Although a single emission band is observed, the fluorescence decays (collected at different wavelengths along the emission band using time-correlated single photon counting (TCSPC)) are biexponential, with two identical decay times but different pre-exponential factors, which is consistent with the existence of excited-state keto and enol species. The femtosecond (fs)-transient absorption data show that two similar decay components are present, in addition to a shorter (<3 ps) component associated with vibrational relaxation. From TDDFT calculations it was shown that with both Ind and NHxInd, the reaction proceeds through a single ESPT mechanism driven by an Arrhenius-type activation through a saddle point, which is enhanced by tunneling through the barrier. From the temperature dependence of the steady-state and time-resolved fluorescence data, the activation energy for the process was found to be ∼11 kJ mol(-1) for Ind and ∼5 kJ mol(-1) for NHxInd, in close agreement with the values calculated by TDDFT: 12.3 kJ mol(-1) (Ind) and 3.1 kJ mol(-1) (NHxInd). From time-resolved data, the rate constants for the ESPT process in dimethyl sulfoxide were found to be 9.24 × 10(10) s(-1) (Ind) and 7.12 × 10(10) s(-1) (NHxInd). The proximity between the two values suggests that the proton transfer mechanism in indigo is very similar to that found in NHxInd, where a single proton is involved. In addition, with NHxInd, the TDDFT calculations, together with the viscosity dependence of the fast component, and differences in the activation energy values between the steady-state and time-resolved data indicate that an additional nonradiative process is involved, which

  16. Highly efficient electrochemical generation of fluorescent intramolecular charge-transfer states

    NASA Astrophysics Data System (ADS)

    Kapturkiewicz, Andrzej; Herbich, Jerzy; Nowacki, Jacek

    1997-08-01

    The electrochemically generated chemiluminescence of 4-(3,6-di-tert-butylcarbazol-9-yl)-benzonitrile (CBP) and 3,6-di-tert-butylcarbazol-9-yl- terephthalonitrile (CTO) was studied using the triple-potential-step method. In the electrogenerated emission spectra the charge-transfer (CT) bands (the same as in photoluminescence) were observed. The Feldberg plot analysis indicates that the 1,3CT states are formed directly by the electron transfer between the radical anion and cation. High emission efficiencies (0.027 for CBP and 0.011 for CTO) were found with population yields of the fluorescent state markedly different for both compounds (0.066 for CBP and unusually large, 0.64 for CTO). Evidence is also presented that at low temperatures the efficiency of the fluorescent state formation (for CTO) is still higher, approaching unity. This finding is interpreted in terms of the different electronic structure of the lowest excited triplet states of the two compounds.

  17. Ultrafast Excited State Dynamics in Molecular Motors: Coupling of Motor Length to Medium Viscosity.

    PubMed

    Conyard, Jamie; Stacko, Peter; Chen, Jiawen; McDonagh, Sophie; Hall, Christopher R; Laptenok, Sergey P; Browne, Wesley R; Feringa, Ben L; Meech, Stephen R

    2017-03-16

    Photochemically driven molecular motors convert the energy of incident radiation to intramolecular rotational motion. The motor molecules considered here execute four step unidirectional rotational motion. This comprises a pair of successive light induced isomerizations to a metastable state followed by thermal helix inversions. The internal rotation of a large molecular unit required in these steps is expected to be sensitive to both the viscosity of the medium and the volume of the rotating unit. In this work, we describe a study of motor motion in both ground and excited states as a function of the size of the rotating units. The excited state decay is ultrafast, highly non-single exponential, and is best described by a sum of three exponential relaxation components. The average excited state decay time observed for a series of motors with substituents of increasing volume was determined. While substitution does affect the lifetime, the size of the substituent has only a minor effect. The solvent polarity dependence is also slight, but there is a significant solvent viscosity effect. Increasing the viscosity has no effect on the fastest of the three decay components, but it does lengthen the two slower decay times, consistent with them being associated with motion along an intramolecular coordinate displacing a large solvent volume. However, these slower relaxation times are again not a function of the size of the substituent. We conclude that excited state decay arises from motion along a coordinate which does not necessarily require complete rotation of the substituents through the solvent, but is instead more localized in the core structure of the motor. The decay of the metastable state to the ground state through a helix inversion occurs 14 orders of magnitude more slowly than the excited state decay, and was measured as a function of substituent size, solvent viscosity and temperature. In this case neither substituent size nor solvent viscosity influences

  18. Excited State Dynamics in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshiyuki

    2004-03-01

    Carbon nanotube, one of the most promising materials for nano-technology, still suffers from its imperfection in crystalline structure that will make performance of nanotube behind theoretical limit. From the first-principles simulations, I propose efficient methods to overcome the imperfection. I show that photo-induced ion dynamics can (1) identify defects in nanotubes, (2) stabilize defected nanotubes, and (3) purify contaminated nanotubes. All of these methods can be alternative to conventional heat treatments and will be important techniques for realizing nanotube-devices. Ion dynamics under electronic excitation has been simulated with use of the computer code FPSEID (First-Principles Simulation tool for Electron Ion Dynamics) [1], which combines the time-dependent density functional method [2] to classical molecular dynamics. This very challenging approach is time-consuming but can automatically treat the level alternation of differently occupied states, and can observe initiation of non-adiabatic decay of excitation. The time-dependent Kohn-Sham equation has been solved by using the Suzuki-Trotter split operator method [3], which is a numerically stable method being suitable for plane wave basis, non-local pseudopotentials, and parallel computing. This work has been done in collaboration with Prof. Angel Rubio, Prof. David Tomanek, Dr. Savas Berber and Mina Yoon. Most of present calculations have been done by using the SX5 Vector-Parallel system in the NEC Fuchu-plant, and the Earth Simulator in Yokohama Japan. [1] O. Sugino and Y. Miyamoto, Phys. Rev. B59, 2579 (1999); ibid, B66 089901(E) (2001) [2] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984). [3] M. Suzuki, J. Phys. Soc. Jpn. 61, L3015 (1992).

  19. Excited State Properties of Hybrid Perovskites.

    PubMed

    Saba, Michele; Quochi, Francesco; Mura, Andrea; Bongiovanni, Giovanni

    2016-01-19

    Metal halide perovskites have come to the attention of the scientific community for the progress achieved in solar light conversion. Energy sustainability is one of the priorities of our society, and materials advancements resulting in low-cost but efficient solar cells and large-area lighting devices represent a major goal for applied research. From a basic point of view, perovskites are an exotic class of hybrid materials combining some merits of organic and inorganic semiconductors: large optical absorption, large mobilities, and tunable band gap together with the possibility to be processed in solution. When a novel class of promising semiconductors comes into the limelight, lively discussions ensue on the photophysics of band-edge excitations, because just the states close to the band edge are entailed in energy/charge transport and light emission. This was the case several decades ago for III-V semiconductors, it has been up to 10 years ago for organics, and it is currently the case for perovskites. Our aim in this Account is to rationalize the body of experimental evidence on perovskite photophysics in a coherent theoretical framework, borrowing from the knowledge acquired over the years in materials optoelectronics. A crucial question is whether photon absorption leads to a population of unbound, conductive free charges or instead excitons, neutral and insulating bound states created by Coulomb interaction just below the energy of the band gap. We first focus on the experimental estimates of the exciton binding energy (Eb): at room temperature, Eb is comparable to the thermal energy kBT in MAPbI3 and increases up to values 2-3kBT in wide band gap MAPbBr3 and MAPbCl3. Statistical considerations predict that these values, even though comparable to or larger than thermal energy, let free carriers prevail over bound excitons for all levels of excitation densities relevant for devices. The analysis of photophysics evidence confirms that all hybrid halide

  20. Electron-acceptor-dependent light absorption, excited-state relaxation, and charge generation in triphenylamine dye-sensitized solar cells.

    PubMed

    Li, Renzhi; Zhang, Min; Yan, Cancan; Yao, Zhaoyang; Zhang, Jing; Wang, Peng

    2015-01-01

    By choosing a simple triphenylamine electron donor, we herein compare the influence of electron acceptors benzothiadiazole benzoic acid (BTBA) and cyanoacrylic acid (CA), on energy levels, light absorption, and dynamics of excited-state evolution and electron injection. DFT and time-dependent DFT calculations disclosed remarkable intramolecular conformational changes for the excited states of these two donor-acceptor dyes. Photoinduced dihedral angle variation occurs to the triphenylamine unit in the CA dye and backbone planarization happens to conjugated aromatic blocks in the BTBA dye. Femtosecond spectroscopic measurements suggested the crucial role of having a long excited-state lifetime in maintaining a high electron-injection yield because a reduced driving force for a low energy-gap dye can result in slower electron-injection dynamics.

  1. Computing electronic structures: A new multiconfiguration approach for excited states

    NASA Astrophysics Data System (ADS)

    Cancès, Éric; Galicher, Hervé; Lewin, Mathieu

    2006-02-01

    We present a new method for the computation of electronic excited states of molecular systems. This method is based upon a recent theoretical definition of multiconfiguration excited states [due to one of us, see M. Lewin, Solutions of the multiconfiguration equations in quantum chemistry, Arch. Rat. Mech. Anal. 171 (2004) 83-114]. Our algorithm, dedicated to the computation of the first excited state, always converges to a stationary state of the multiconfiguration model, which can be interpreted as an approximate excited state of the molecule. The definition of this approximate excited state is variational. An interesting feature is that it satisfies a non-linear Hylleraas-Undheim-MacDonald type principle: the energy of the approximate excited state is an upper bound to the true excited state energy of the N-body Hamiltonian. To compute the first excited state, one has to deform paths on a manifold, like this is usually done in the search for transition states between reactants and products on potential energy surfaces. We propose here a general method for the deformation of paths which could also be useful in other settings. We also compare our method to other approaches used in Quantum Chemistry and give some explanation of the unsatisfactory behaviours which are sometimes observed when using the latters. Numerical results for the special case of two-electron systems are provided: we compute the first singlet excited state potential energy surface of the H2 molecule.

  2. Computing electronic structures: A new multiconfiguration approach for excited states

    SciTech Connect

    Cances, Eric . E-mail: cances@cermics.enpc.fr; Galicher, Herve . E-mail: galicher@cermics.enpc.fr; Lewin, Mathieu . E-mail: lewin@cermic.enpc.fr

    2006-02-10

    We present a new method for the computation of electronic excited states of molecular systems. This method is based upon a recent theoretical definition of multiconfiguration excited states [due to one of us, see M. Lewin, Solutions of the multiconfiguration equations in quantum chemistry, Arch. Rat. Mech. Anal. 171 (2004) 83-114]. Our algorithm, dedicated to the computation of the first excited state, always converges to a stationary state of the multiconfiguration model, which can be interpreted as an approximate excited state of the molecule. The definition of this approximate excited state is variational. An interesting feature is that it satisfies a non-linear Hylleraas-Undheim-MacDonald type principle: the energy of the approximate excited state is an upper bound to the true excited state energy of the N-body Hamiltonian. To compute the first excited state, one has to deform paths on a manifold, like this is usually done in the search for transition states between reactants and products on potential energy surfaces. We propose here a general method for the deformation of paths which could also be useful in other settings. We also compare our method to other approaches used in Quantum Chemistry and give some explanation of the unsatisfactory behaviours which are sometimes observed when using the latter. Numerical results for the special case of two-electron systems are provided: we compute the first singlet excited state potential energy surface of the H {sub 2} molecule.

  3. Conserved Intramolecular Interactions Maintain Myosin Interacting-Heads Motifs Explaining Tarantula Muscle Super-Relaxed State Structural Basis.

    PubMed

    Alamo, Lorenzo; Qi, Dan; Wriggers, Willy; Pinto, Antonio; Zhu, Jingui; Bilbao, Aivett; Gillilan, Richard E; Hu, Songnian; Padrón, Raúl

    2016-03-27

    Tarantula striated muscle is an outstanding system for understanding the molecular organization of myosin filaments. Three-dimensional reconstruction based on cryo-electron microscopy images and single-particle image processing revealed that, in a relaxed state, myosin molecules undergo intramolecular head-head interactions, explaining why head activity switches off. The filament model obtained by rigidly docking a chicken smooth muscle myosin structure to the reconstruction was improved by flexibly fitting an atomic model built by mixing structures from different species to a tilt-corrected 2-nm three-dimensional map of frozen-hydrated tarantula thick filament. We used heavy and light chain sequences from tarantula myosin to build a single-species homology model of two heavy meromyosin interacting-heads motifs (IHMs). The flexibly fitted model includes previously missing loops and shows five intramolecular and five intermolecular interactions that keep the IHM in a compact off structure, forming four helical tracks of IHMs around the backbone. The residues involved in these interactions are oppositely charged, and their sequence conservation suggests that IHM is present across animal species. The new model, PDB 3JBH, explains the structural origin of the ATP turnover rates detected in relaxed tarantula muscle by ascribing the very slow rate to docked unphosphorylated heads, the slow rate to phosphorylated docked heads, and the fast rate to phosphorylated undocked heads. The conservation of intramolecular interactions across animal species and the presence of IHM in bilaterians suggest that a super-relaxed state should be maintained, as it plays a role in saving ATP in skeletal, cardiac, and smooth muscles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Excited-State Proton-Transfer-Induced Trapping Enhances the Fluorescence Emission of a Locked GFP Chromophore

    PubMed Central

    2016-01-01

    The chemical locking of the central single bond in core chromophores of green fluorescent proteins (GFPs) influences their excited-state behavior in a distinct manner. Experimentally, it significantly enhances the fluorescence quantum yield of GFP chromophores with an ortho-hydroxyl group, while it has almost no effect on the photophysics of GFP chromophores with a para-hydroxyl group. To unravel the underlying physical reasons for this different behavior, we report static electronic structure calculations and nonadiabatic dynamics simulations on excited-state intramolecular proton transfer, cis–trans isomerization, and excited-state deactivation in a locked ortho-substituted GFP model chromophore (o-LHBI). On the basis of our previous and present results, we find that the S1 keto species is responsible for the fluorescence emission of the unlocked o-HBI and the locked o-LHBI species. Chemical locking does not change the parts of the S1 and S0 potential energy surfaces relevant to enol–keto tautomerization; hence, in both chromophores, there is an ultrafast excited-state intramolecular proton transfer that takes only 35 fs on average. However, the locking effectively hinders the S1 keto species from approaching the keto S1/S0 conical intersections so that most of trajectories are trapped in the S1 keto region for the entire 2 ps simulation time. Therefore, the fluorescence quantum yield of o-LHBI is enhanced compared with that of unlocked o-HBI, in which the S1 excited-state decay is efficient and ultrafast. In the case of the para-substituted GFP model chromophores p-HBI and p-LHBI, chemical locking hardly affects their efficient excited-state deactivation via cis–trans isomerization; thus, the fluorescence quantum yields in these chromophores remain very low. The insights gained from the present work may help to guide the design of new GFP chromophores with improved fluorescence emission and brightness. PMID:26744782

  5. Excited-State Proton-Transfer-Induced Trapping Enhances the Fluorescence Emission of a Locked GFP Chromophore.

    PubMed

    Liu, Xiang-Yang; Chang, Xue-Ping; Xia, Shu-Hua; Cui, Ganglong; Thiel, Walter

    2016-02-09

    The chemical locking of the central single bond in core chromophores of green fluorescent proteins (GFPs) influences their excited-state behavior in a distinct manner. Experimentally, it significantly enhances the fluorescence quantum yield of GFP chromophores with an ortho-hydroxyl group, while it has almost no effect on the photophysics of GFP chromophores with a para-hydroxyl group. To unravel the underlying physical reasons for this different behavior, we report static electronic structure calculations and nonadiabatic dynamics simulations on excited-state intramolecular proton transfer, cis-trans isomerization, and excited-state deactivation in a locked ortho-substituted GFP model chromophore (o-LHBI). On the basis of our previous and present results, we find that the S1 keto species is responsible for the fluorescence emission of the unlocked o-HBI and the locked o-LHBI species. Chemical locking does not change the parts of the S1 and S0 potential energy surfaces relevant to enol-keto tautomerization; hence, in both chromophores, there is an ultrafast excited-state intramolecular proton transfer that takes only 35 fs on average. However, the locking effectively hinders the S1 keto species from approaching the keto S1/S0 conical intersections so that most of trajectories are trapped in the S1 keto region for the entire 2 ps simulation time. Therefore, the fluorescence quantum yield of o-LHBI is enhanced compared with that of unlocked o-HBI, in which the S1 excited-state decay is efficient and ultrafast. In the case of the para-substituted GFP model chromophores p-HBI and p-LHBI, chemical locking hardly affects their efficient excited-state deactivation via cis-trans isomerization; thus, the fluorescence quantum yields in these chromophores remain very low. The insights gained from the present work may help to guide the design of new GFP chromophores with improved fluorescence emission and brightness.

  6. Structure of excited states and properties of organic dyes

    NASA Astrophysics Data System (ADS)

    Klessinger, M.

    1992-03-01

    Optimized geometries and charge distributions for the ground state and the first allowed π,π* excited singlet state are reported for some polyenes, polyene aldehydes, merocyanines and cyanines, which may be considered as representatives of conjugated chain chromophores of organic dyes. The dependence of excited state properties on molecular structure is discussed in relation to spectroscopic properties of these systems.

  7. Vibronic coupling in the excited-states of carotenoids

    SciTech Connect

    Miki, Takeshi; Buckup, Tiago; Krause, Marie S.; Southall, June; Cogdell, Richard J.; Motzkus, Marcus

    2016-01-01

    The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S2to the optically dark state S1.

  8. Photophysical studies of dipolar organic dyes that feature a 1,3-cyclohexadiene conjugated linkage: the implication of a twisted intramolecular charge-transfer state on the efficiency of dye-sensitized solar cells.

    PubMed

    Chen, Kuan-Fu; Chang, Che-Wei; Lin, Ju-Ling; Hsu, Ying-Chan; Yeh, Ming-Chang P; Hsu, Chao-Ping; Sun, Shih-Sheng

    2010-11-15

    A detailed study of the synthesis and photophysical properties of a new series of dipolar organic photosensitizers that feature a 1,3-cyclohexadiene moiety integrated into the π-conjugated structural backbone has been carried out. Dye-sensitized solar cells (DSSCs) based on these structurally simple dyes have shown appreciable photo-to-electrical energy conversion efficiency, with the highest one up to 4.03 %. Solvent-dependent fluorescence studies along with the observation of dual emission on dye 4 b and single emission on dyes 4 a and 32 suggest that dye 4 b possesses a highly polar emissive excited state located at a lower-energy position than at the normal emissive excited state. A detailed photophysical investigation in conjunction with computational studies confirmed the twisted intramolecular charge-transfer (TICT) state to be the lowest emissive excited state for dye 4 b in polar solvents. The relaxation from higher-charge-injection excited states to the lowest TICT state renders the back-electron transfer process a forbidden one and significantly retards the charge recombination to boost the photocurrent. The electrochemical impedance under illumination and transient photovoltage decay studies showed smaller charge resistance and longer electron lifetime in 4 b-based DSSC compared to the DSSCs with reference dyes 4 a and 32, which further illustrates the positive influence of the TICT state on the performance of DSSCs.

  9. Excited-State Effective Masses in Lattice QCD

    SciTech Connect

    George Fleming, Saul Cohen, Huey-Wen Lin

    2009-10-01

    We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.

  10. Excited-State Effective Masses in Lattice QCD

    SciTech Connect

    Fleming, George; Cohen, Saul; Lin, Huey-Wen

    2009-01-01

    We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.

  11. Chemical bonding in excited states: Energy transfer and charge redistribution from a real space perspective.

    PubMed

    Jara-Cortés, Jesús; Guevara-Vela, José Manuel; Martín Pendás, Ángel; Hernández-Trujillo, Jesús

    2017-05-15

    This work provides a novel interpretation of elementary processes of photophysical relevance from the standpoint of the electron density using simple model reactions. These include excited states of H2 taken as a prototype for a covalent bond, excimer formation of He2 to analyze non-covalent interactions, charge transfer by an avoided crossing of electronic states in LiF and conical interesections involved in the intramolecular scrambling in C2 H4 . The changes of the atomic and interaction energy components along the potential energy profiles are described by the interacting quantum atoms approach and the quantum theory of atoms in molecules. Additionally, the topological analysis of one- and two-electron density functions is used to explore basic reaction mechanisms involving excited and degenerate states in connection with the virial theorem. This real space approach allows to describe these processes in a unified way, showing its versatility and utility in the study of chemical systems in excited states. © 2017 Wiley Periodicals, Inc.

  12. Properties of electronically excited states of four squaraine dyes and their complexes with fullerene C70: A theoretical investigation.

    PubMed

    Zhang, Jian; Li, Tingyu

    2017-09-05

    Solar cells sensitized by polypyridyl Ru(II) complexes exhibit relatively high efficiency, however those photo-sensitizers did not absorb the photons in the far-red and near-infrared region. At present, squaraine dyes have received considerable attention as their attractively intrinsic red light absorption and unusual high molar extinction coefficient. Here we applied density functional theory and time dependent density functional theory to investigate the properties of electronically excited states of four squaraine dyes and their complexes with fullerene C70. The influences of different functionals, basis sets and solvent effects are evaluated. To understand the photophysical properties, the investigations are basing on a classification method which splits the squaraine dyes and their complexes with fullerene C70 into two units to characterize the intramolecular density distribution. We present the signatures of their electronically excited states which are characterized as local excitation or charge-transfer excitation. The relationship between open-circuit voltage and the number of intramolecular hydrogen bonds in squaraine dyes are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Properties of electronically excited states of four squaraine dyes and their complexes with fullerene C70: A theoretical investigation

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Li, Tingyu

    2017-09-01

    Solar cells sensitized by polypyridyl Ru(II) complexes exhibit relatively high efficiency, however those photo-sensitizers did not absorb the photons in the far-red and near-infrared region. At present, squaraine dyes have received considerable attention as their attractively intrinsic red light absorption and unusual high molar extinction coefficient. Here we applied density functional theory and time dependent density functional theory to investigate the properties of electronically excited states of four squaraine dyes and their complexes with fullerene C70. The influences of different functionals, basis sets and solvent effects are evaluated. To understand the photophysical properties, the investigations are basing on a classification method which splits the squaraine dyes and their complexes with fullerene C70 into two units to characterize the intramolecular density distribution. We present the signatures of their electronically excited states which are characterized as local excitation or charge-transfer excitation. The relationship between open-circuit voltage and the number of intramolecular hydrogen bonds in squaraine dyes are discussed.

  14. The low-energy, charge-transfer excited states of 4-amino-4-prime-nitrodiphenyl sulfide

    NASA Technical Reports Server (NTRS)

    O'Connor, Donald B.; Scott, Gary W.; Tran, Kim; Coulter, Daniel R.; Miskowski, Vincent M.; Stiegman, Albert E.; Wnek, Gary E.

    1992-01-01

    Absorption and emission spectra of 4-amino-4-prime-nitrodiphenyl sulfide in polar and nonpolar solvents were used to characterize and assign the low-energy excited states of the molecule. Fluorescence-excitation anisotropy spectra and fluorescence quantum yields were also used to characterize the photophysics of these states. The lowest-energy fluorescent singlet state was determined to be an intramolecular charge transfer (ICT) state involving transfer of a full electron charge from the amino to the nitro group yielding a dipole moment of about 50 D. A low-energy, intense absorption band is assigned as a transition to a different ICT state involving a partial electron charge transfer from sulfur to the nitro group.

  15. Experimental and computational exploration of ground and excited state properties of highly strained ruthenium terpyridine complexes.

    PubMed

    Vallett, Paul J; Damrauer, Niels H

    2013-08-01

    Dissociative electron transfer reactions are prevalent in one-electron reduced aryl halides; however, calculations applied to charge-transfer excited states of metal complexes suggest that this reaction would be strongly endergonic unless attention is paid to specific structural details. In this current study, we explore the effect of introducing intramolecular strain into a series of halogenated ruthenium(II) polypyridyls. Parent [Ru(tpy)2](2+) (1) (tpy = 2,2':6',2″-terpyridine) is compared with two complexes, [Ru(6,6″-Br2-tpy)(tpy)](2+) (2) and [Ru(6,6″-Br2-tpy)2](2+) (3) (6,6″-Br2-tpy = 6,6″-dibromo-tpy) that incorporate interligand van der Waals strain derived from the large halogen substituents. DFT calculations and the crystal structure of 3 show how this strain distorts the geometry of 3 as compared to 1. Time-dependent DFT calculations are used to explain the effect of this strain on electronic absorption spectra where, in particular, a transition observed in 3 is attenuated in 2 and absent in 1 and heralds interligand charge transfer mediated by the halogen substituent. Ultrafast transient absorption spectroscopy reveals coherent vibrational dynamics particularly in 3 but also in 2 that is interpreted as reflecting heavy-atom motion. Surprisingly, in spite of the additional strain, the excited-state lifetime of 3 is observed to be approximately a factor of 6 longer than 2. Constrained-DFT calculations show that while the excited behavior of 2 is similar to 1, the strain-induced geometric distortions in 3 cause a nesting of excited state triplet surfaces resulting in a longer excited state lifetime. This may afford the additional time needed to engage in photochemistry, and kinetic evidence is observed for the breaking of a C-Br bond in 3 and formation of a contact ion pair state.

  16. Visible light excitable Zn2+ fluorescent sensor derived from an intramolecular charge transfer fluorophore and its in vitro and in vivo application.

    PubMed

    Qian, Fang; Zhang, Changli; Zhang, Yumin; He, Weijiang; Gao, Xiang; Hu, Ping; Guo, Zijian

    2009-02-04

    The UV- and sensor-induced interferences to living systems pose a barrier for in vivo Zn(2+) imaging. In this work, an intramolecular charge transfer (ICT) fluorophore of smaller aromatic plane, 4-amino-7-nitro-2,1,3-benzoxadiazole, was adopted to construct visible light excited fluorescent Zn(2+) sensor, NBD-TPEA. This sensor demonstrates a visible ICT absorption band, a large Stokes shift, and biocompatibility. It emits weakly (Phi = 0.003) without pH dependence at pH 7.1-10.1, and the lambda(ex) and lambda(em) are 469 (epsilon(469) = 2.1 x 10(4) M(-1) cm(-1)) and 550 nm, respectively. The NBD-TPEA displays distinct selective Zn(2+)-amplified fluorescence (Phi = 0.046, epsilon(469) = 1.4 x 10(4) M(-1) cm(-1)) with emission shift from 550 to 534 nm, which can be ascribed to the synergic Zn(2+) coordination by the outer bis(pyridin-2-ylmethyl)amine (BPA) and 4-amine. The Zn(2+) binding ratio of NBD-TPEA is 1:1. By comparison with its analogues NBD-BPA and NBD-PMA, which have no Zn(2+) affinity, the outer BPA in NBD-TPEA should be responsible for the Zn(2+)-induced photoinduced electron transfer blockage as well as for the enhanced Zn(2+) binding ability of 4-amine. Successful intracellular Zn(2+) imaging on living cells with NBD-TPEA staining exhibited a preferential accumulation at lysosome and Golgi with dual excitability at either 458 or 488 nm. The intact in vivo Zn(2+) fluorescence imaging on zebrafish embryo or larva stained with NBD-TPEA revealed two zygomorphic luminescent areas around its ventricle which could be related to the Zn(2+) storage for the zebrafish development. Moreover, high Zn(2+) concentration in the developing neuromasters of zebrafish can be visualized by confocal fluorescence imaging. This study demonstrates a novel strategy to construct visible light excited Zn(2+) fluorescent sensor based on ICT fluorophore other than xanthenone analogues. Current data show that NBD-TPEA staining can be a reliable approach for the intact in vivo Zn(2

  17. Excited electronic states and spectroscopy of unsymmetrically substituted polyenes

    NASA Astrophysics Data System (ADS)

    Itoh, Takao

    2013-09-01

    α-Methyl-ω-phenylpolyenes, Me-(CH=CH)N-Ph, (MPPNs) with N = 2, 3, and 4 were synthesized. Fluorescence, absorption, and excitation spectra of MPPNs have been measured under different conditions along with those of β-methylstyrene. It is shown that there is a forbidden singlet (π, π*) excited state located at energies below the absorbing state for MPPNs with N = 3 and 4. Excitation energies of these polyenes are determined as a function of N. Quantitative analysis of the temperature dependence of the relative intensity of the fluorescence spectrum and its solvent shift behavior extract estimates of the various physical parameters that characterize excitation energies and excited-state dynamical behavior of MPPN with N = 3. The singlet excited states of the MPPNs were compared with those of the α,ω-diphenylpolyenes and α,ω-dimethylpolyenes.

  18. Excited electronic states and spectroscopy of unsymmetrically substituted polyenes.

    PubMed

    Itoh, Takao

    2013-09-07

    α-Methyl-ω-phenylpolyenes, Me-(CH=CH)N-Ph, (MPPNs) with N = 2, 3, and 4 were synthesized. Fluorescence, absorption, and excitation spectra of MPPNs have been measured under different conditions along with those of β-methylstyrene. It is shown that there is a forbidden singlet (π, π∗) excited state located at energies below the absorbing state for MPPNs with N = 3 and 4. Excitation energies of these polyenes are determined as a function of N. Quantitative analysis of the temperature dependence of the relative intensity of the fluorescence spectrum and its solvent shift behavior extract estimates of the various physical parameters that characterize excitation energies and excited-state dynamical behavior of MPPN with N = 3. The singlet excited states of the MPPNs were compared with those of the α,ω-diphenylpolyenes and α,ω-dimethylpolyenes.

  19. Fluorescent molecular probes based on excited state prototropism in lipid bilayer membrane

    NASA Astrophysics Data System (ADS)

    Mohapatra, Monalisa; Mishra, Ashok K.

    2012-03-01

    Excited state prototropism (ESPT) is observed in molecules having one or more ionizable protons, whose proton transfer efficiency is different in ground and excited states. The interaction of various ESPT molecules like naphthols and intramolecular ESPT (ESIPT) molecules like hydroxyflavones etc. with different microheterogeneous media have been studied in detail and excited state prototropism as a probe concept has been gaining ground. The fluorescence of different prototropic forms of such molecules, on partitioning to an organized medium like lipid bilayer membrane, often show sensitive response to the local environment with respect to the local structure, physical properties and dynamics. Our recent work using 1-naphthol as an ESPT fluorescent molecular probe has shown that the incorporation of monomeric bile salt molecules into lipid bilayer membranes composed from dipalmitoylphosphatidylcholine (DPPC, a lung surfactant) and dimyristoylphosphatidylcholine (DMPC), in solid gel and liquid crystalline phases, induce appreciable wetting of the bilayer up to the hydrocarbon core region, even at very low (<= 1 mM) concentrations of the bile salts. The incorporation and location of fisetin, an ESIPT molecule having antioxidant properties, in lipid bilayer membrane has been sensitively monitored from its intrinsic fluorescence behaviour.

  20. Excited state properties and quadratic optical nonlinearities in charged organic chromophores: theoretical analysis.

    PubMed

    Inerbaev, Talgat M; Saito, Shigeki; Belosludov, Rodion V; Mizuseki, Hiroshi; Takahashi, Masae; Kawazoe, Yoshiyuki

    2006-12-21

    As it has been found experimentally [K. Clays and B. Coe, Chem. Mater. 15, 642 (2003); B. J. Coe et al., 126, 10418 (2004)], elongation of the conjugation path length and N-arylation in stilbazolium chromophores both lead to substantial enhancement of the molecular optical nonlinearities. In the present contribution the authors perform a quantum chemical analysis of the excited state properties and quadratic nonlinear optical responses of a series of this type of dyes. Nonlinear optical responses are estimated by both finite-field and two-state model approaches that demonstrate an excellent qualitative mutual agreement. Time-dependent density functional theory calculations on the isolated cations predict redshift in the energy of the intramolecular charge transfer transition that is overestimated for cations with the longer conjugation path length. At the same time, in comparison with the Stark spectroscopy measurements the differences between the excited and ground state dipole moments are grossly underestimated for all compounds. The inclusion of solvent effect by polarizable continuum model affords a better agreement with experiment for these quantities. The authors' calculations demonstrate the crucial dependence of the electronic excitation properties on the way of the investigated compound geometry optimization. The origin of such dependence is discussed.

  1. Excited state properties and quadratic optical nonlinearities in charged organic chromophores: Theoretical analysis

    NASA Astrophysics Data System (ADS)

    Inerbaev, Talgat M.; Saito, Shigeki; Belosludov, Rodion V.; Mizuseki, Hiroshi; Takahashi, Masae; Kawazoe, Yoshiyuki

    2006-12-01

    As it has been found experimentally [K. Clays and B. Coe, Chem. Mater. 15, 642 (2003); B. J. Coe et al., 126, 10418 (2004)], elongation of the conjugation path length and N-arylation in stilbazolium chromophores both lead to substantial enhancement of the molecular optical nonlinearities. In the present contribution the authors perform a quantum chemical analysis of the excited state properties and quadratic nonlinear optical responses of a series of this type of dyes. Nonlinear optical responses are estimated by both finite-field and two-state model approaches that demonstrate an excellent qualitative mutual agreement. Time-dependent density functional theory calculations on the isolated cations predict redshift in the energy of the intramolecular charge transfer transition that is overestimated for cations with the longer conjugation path length. At the same time, in comparison with the Stark spectroscopy measurements the differences between the excited and ground state dipole moments are grossly underestimated for all compounds. The inclusion of solvent effect by polarizable continuum model affords a better agreement with experiment for these quantities. The authors' calculations demonstrate the crucial dependence of the electronic excitation properties on the way of the investigated compound geometry optimization. The origin of such dependence is discussed.

  2. Ratiometric fluorescent chemosensor for fluoride ion based on inhibition of excited state intramolecular proton transfer

    NASA Astrophysics Data System (ADS)

    Gupta, Akul Sen; Paul, Kamaldeep; Luxami, Vijay

    2015-03-01

    ESIPT based benzimidazole derivative has been synthesized and investigated their photophysical behavior towards various anions. The probe 2 has been used for selective estimation of F- ions as compared to other anions and signaled the binding event through formation of new absorption band at 360 nm and emission band at 420 nm. The probe 2 showed fluorescence behavior towards fluoride ions through hydrogen bonding interactions and restricted the ESIPT emission at 540 nm from OH to nitrogen of benzimidazole moiety to release its enol emission at 420 nm.

  3. A novel and facile decay path of Criegee intermediates by intramolecular insertion reactions via roaming transition states

    SciTech Connect

    Nguyen, Trong-Nghia; Putikam, Raghunath; Lin, M. C.

    2015-03-28

    We have discovered a new and highly competitive product channel in the unimolecular decay process for small Criegee intermediates, CH{sub 2}OO and anti/syn-CH{sub 3}C(H)OO, occurring by intramolecular insertion reactions via a roaming-like transition state (TS) based on quantum-chemical calculations. Our results show that in the decomposition of CH{sub 2}OO and anti-CH{sub 3}C(H)OO, the predominant paths directly produce cis-HC(O)OH and syn-CH{sub 3}C(O)OH acids with >110 kcal/mol exothermicities via loose roaming-like insertion TSs involving the terminal O atom and the neighboring C–H bonds. For syn-CH{sub 3}C(H)OO, the major decomposition channel occurs by abstraction of a H atom from the CH{sub 3} group by the terminal O atom producing CH{sub 2}C(H)O–OH. At 298 K, the intramolecular insertion process in CH{sub 2}OO was found to be 600 times faster than the commonly assumed ring-closing reaction.

  4. A design strategy for intramolecular singlet fission mediated by charge-transfer states in donor-acceptor organic materials.

    PubMed

    Busby, Erik; Xia, Jianlong; Wu, Qin; Low, Jonathan Z; Song, Rui; Miller, John R; Zhu, X-Y; Campos, Luis M; Sfeir, Matthew Y

    2015-04-01

    The ability to advance our understanding of multiple exciton generation (MEG) in organic materials has been restricted by the limited number of materials capable of singlet fission. A particular challenge is the development of materials that undergo efficient intramolecular fission, such that local order and strong nearest-neighbour coupling is no longer a design constraint. Here we address these challenges by demonstrating that strong intrachain donor-acceptor interactions are a key design feature for organic materials capable of intramolecular singlet fission. By conjugating strong-acceptor and strong-donor building blocks, small molecules and polymers with charge-transfer states that mediate population transfer between singlet excitons and triplet excitons are synthesized. Using transient optical techniques, we show that triplet populations can be generated with yields up to 170%. These guidelines are widely applicable to similar families of polymers and small molecules, and can lead to the development of new fission-capable materials with tunable electronic structure, as well as a deeper fundamental understanding of MEG.

  5. A novel and facile decay path of Criegee intermediates by intramolecular insertion reactions via roaming transition states

    NASA Astrophysics Data System (ADS)

    Nguyen, Trong-Nghia; Putikam, Raghunath; Lin, M. C.

    2015-03-01

    We have discovered a new and highly competitive product channel in the unimolecular decay process for small Criegee intermediates, CH2OO and anti/syn-CH3C(H)OO, occurring by intramolecular insertion reactions via a roaming-like transition state (TS) based on quantum-chemical calculations. Our results show that in the decomposition of CH2OO and anti-CH3C(H)OO, the predominant paths directly produce cis-HC(O)OH and syn-CH3C(O)OH acids with >110 kcal/mol exothermicities via loose roaming-like insertion TSs involving the terminal O atom and the neighboring C-H bonds. For syn-CH3C(H)OO, the major decomposition channel occurs by abstraction of a H atom from the CH3 group by the terminal O atom producing CH2C(H)O-OH. At 298 K, the intramolecular insertion process in CH2OO was found to be 600 times faster than the commonly assumed ring-closing reaction.

  6. Direct excitation of microwave-spin dressed states using a laser-excited resonance Raman interaction

    NASA Astrophysics Data System (ADS)

    Shahriar, M. S.; Hemmer, P. R.

    1990-10-01

    We have used a laser-induced resonance Raman transition between the ground-state hyperfine sublevels in a sodium atomic beam to excite individual dressed states of the microwave-spin hyperfine transition. In addition, we have used the microwave interaction to excite the Raman trapped state. Extension of this technique to mm waves or to the far infrared may lead to applications such as mm-wave-beam steering and holographic image conversion.

  7. Experimental Investigation of Excited-State Lifetimes in Atomic Ytterbium

    SciTech Connect

    Bowers, C.J.; Budker, D.; Commins, E.D.; DeMille, D.; Freedman, S.J.; Nguyen, A.-T.; Shang, S.-Q.; Zolotorev, M.; /SLAC

    2011-11-15

    Lifetimes of 21 excited states in atomic Yb were measured using time-resolved fluorescence detection following pulsed laser excitation. The lifetime of the 4f{sup 14}5d6s {sup 3}D{sub 1} state, which is of particular importance for a proposed study of parity nonconservation in atoms, was measured to be 380(30) ns.

  8. Engineering the Excited-State Dynamics of 3-Aminoquinoline by Chemical Modification and Temperature Variation.

    PubMed

    Singh, Avinash Kumar; Ghosh, Srijon; Kancherla, Rajesh; Datta, Anindya

    2016-12-22

    The role of the amino group in the excited-state dynamics of 3-aminoquinoline (3AQ) has been investigated by comparison with its synthetic derivative 3-(piperidin-1-yl)quinoline (3PQ). The absence of amino hydrogen atoms in 3PQ eliminates, to a large extent, the complexity of the excited-state processes observed in 3AQ. The polarity of the medium is found to be the most important determinant in the nonradiative rate constants of 3PQ, unlike in 3AQ where hydrogen bonding plays the most significant role. The nonradiative rate constants decrease with increase in micropolarity. This trend is opposite to what is usually observed with dipolar states. Temperature dependence of the fluorescence spectra and lifetime has been studied to understand this unexpected observation. An unusual redshift in the emission of 3AQ and 3PQ is observed in nonpolar media at low temperatures. This is surprising, as a process involving a barrier is expected to be hindered at low temperatures and be manifested in a blueshift of the spectra, due to the predominance of the locally excited (LE) state. Moreover, the variation of emission maxima of 3AQ with temperature is sigmoidal in nature, indicating the involvement of two distinct states. The counterintuitive observation of the predominance of the state with comparatively lower emission energy, at low temperatures, establishes the following: the photophysics in 3AQ is dominated by a LE state at room temperature in nonpolar media. This state is associated with rapid flip-flop of the amino group, which provides an efficient nonradiative channel of deactivation. At low temperatures, this flip-flop is hindered and the molecule can undergo intramolecular charge transfer (ICT), whereby the lower energy state is populated. In the case of 3PQ, the ICT state is the only one present, owing to the tertiary amino group.

  9. Role of Excited States In High-order Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Beaulieu, S.; Camp, S.; Descamps, D.; Comby, A.; Wanie, V.; Petit, S.; Légaré, F.; Schafer, K. J.; Gaarde, M. B.; Catoire, F.; Mairesse, Y.

    2016-11-01

    We investigate the role of excited states in high-order harmonic generation by studying the spectral, spatial, and temporal characteristics of the radiation produced near the ionization threshold of argon by few-cycle laser pulses. We show that the population of excited states can lead either to direct extreme ultraviolet emission through free induction decay or to the generation of high-order harmonics through ionization from these states and recombination to the ground state. By using the attosecond lighthouse technique, we demonstrate that the high-harmonic emission from excited states is temporally delayed by a few femtoseconds compared to the usual harmonics, leading to a strong nonadiabatic spectral redshift.

  10. Role of Excited States In High-order Harmonic Generation.

    PubMed

    Beaulieu, S; Camp, S; Descamps, D; Comby, A; Wanie, V; Petit, S; Légaré, F; Schafer, K J; Gaarde, M B; Catoire, F; Mairesse, Y

    2016-11-11

    We investigate the role of excited states in high-order harmonic generation by studying the spectral, spatial, and temporal characteristics of the radiation produced near the ionization threshold of argon by few-cycle laser pulses. We show that the population of excited states can lead either to direct extreme ultraviolet emission through free induction decay or to the generation of high-order harmonics through ionization from these states and recombination to the ground state. By using the attosecond lighthouse technique, we demonstrate that the high-harmonic emission from excited states is temporally delayed by a few femtoseconds compared to the usual harmonics, leading to a strong nonadiabatic spectral redshift.

  11. Nonadiabatic excited-state molecular dynamics: On-the-fly limiting of essential excited states

    NASA Astrophysics Data System (ADS)

    Nelson, Tammie; Naumov, Artem; Fernandez-Alberti, Sebastian; Tretiak, Sergei

    2016-12-01

    The simulation of nonadiabatic dynamics in extended molecular systems involving hundreds of atoms and large densities of states is particularly challenging. Nonadiabatic coupling terms (NACTs) represent a significant numerical bottleneck in surface hopping approaches. Rather than using unreliable NACT cutting schemes, here we develop "on-the-fly" state limiting methods to eliminate states that are no longer essential for the non-radiative relaxation dynamics as a trajectory proceeds. We propose a state number criteria and an energy-based state limit. The latter is more physically relevant by requiring a user-imposed energy threshold. For this purpose, we introduce a local kinetic energy gauge by summing contributions from atoms within the spatial localization of the electronic wavefunction to define the energy available for upward hops. The proposed state limiting schemes are implemented within the nonadiabatic excited-state molecular dynamics framework to simulate photoinduced relaxation in poly-phenylene vinylene (PPV) and branched poly-phenylene ethynylene (PPE) oligomers for benchmark evaluation.

  12. Vibration-rotation alchemy in acetylene (12C2H2), ? at low vibrational excitation: from high resolution spectroscopy to fast intramolecular dynamics

    NASA Astrophysics Data System (ADS)

    Perry, David S.; Miller, Anthony; Amyay, Badr; Fayt, André; Herman, Michel

    2010-04-01

    The link between energy-resolved spectra and time-resolved dynamics is explored quantitatively for acetylene (12C2H2), ? with up to 8600 cm-1 of vibrational energy. This comparison is based on the extensive and reliable knowledge of the vibration-rotation energy levels and on the model Hamiltonian used to fit them to high precision [B. Amyay, S. Robert, M. Herman, A. Fayt, B. Raghavendra, A. Moudens, J. Thiévin, B. Rowe, and R. Georges, J. Chem. Phys. 131, 114301 (2009)]. Simulated intensity borrowing features in high resolution absorption spectra and predicted survival probabilities in intramolecular vibrational redistribution (IVR) are first investigated for the v 4 + v 5 and v 3 bright states, for J = 2, 30 and 100. The dependence of the results on the rotational quantum number and on the choice of vibrational bright state reflects the interplay of three kinds of off-diagonal resonances: anharmonic, rotational l-type, and Coriolis. The dynamical quantities used to characterize the calculated time-dependent dynamics are the dilution factor φ d, the IVR lifetime τ IVR , and the recurrence time τ rec. For the two bright states v 3 + 2v 4 and 7v 4, the collisionless dynamics for thermally averaged rotational distributions at T = 27, 270 and 500 K were calculated from the available spectroscopic data. For the 7v 4 bright state, an apparent irreversible decay of is found. In all cases, the model Hamiltonian allows a detailed calculation of the energy flow among all of the coupled zeroth-order vibration-rotation states.

  13. Charge-displacement analysis for excited states

    SciTech Connect

    Ronca, Enrico Tarantelli, Francesco; Pastore, Mariachiara Belpassi, Leonardo; De Angelis, Filippo; Angeli, Celestino; Cimiraglia, Renzo

    2014-02-07

    We extend the Charge-Displacement (CD) analysis, already successfully employed to describe the nature of intermolecular interactions [L. Belpassi et al., J. Am. Chem. Soc. 132, 13046 (2010)] and various types of controversial chemical bonds [L. Belpassi et al., J. Am. Chem. Soc. 130, 1048 (2008); N. Salvi et al., Chem. Eur. J. 16, 7231 (2010)], to study the charge fluxes accompanying electron excitations, and in particular the all-important charge-transfer (CT) phenomena. We demonstrate the usefulness of the new approach through applications to exemplary excitations in a series of molecules, encompassing various typical situations from valence, to Rydberg, to CT excitations. The CD functions defined along various spatial directions provide a detailed and insightful quantitative picture of the electron displacements taking place.

  14. Charge-displacement analysis for excited states

    NASA Astrophysics Data System (ADS)

    Ronca, Enrico; Pastore, Mariachiara; Belpassi, Leonardo; De Angelis, Filippo; Angeli, Celestino; Cimiraglia, Renzo; Tarantelli, Francesco

    2014-02-01

    We extend the Charge-Displacement (CD) analysis, already successfully employed to describe the nature of intermolecular interactions [L. Belpassi et al., J. Am. Chem. Soc. 132, 13046 (2010)] and various types of controversial chemical bonds [L. Belpassi et al., J. Am. Chem. Soc. 130, 1048 (2008); N. Salvi et al., Chem. Eur. J. 16, 7231 (2010)], to study the charge fluxes accompanying electron excitations, and in particular the all-important charge-transfer (CT) phenomena. We demonstrate the usefulness of the new approach through applications to exemplary excitations in a series of molecules, encompassing various typical situations from valence, to Rydberg, to CT excitations. The CD functions defined along various spatial directions provide a detailed and insightful quantitative picture of the electron displacements taking place.

  15. Excited-State Deactivation of Branched Phthalocyanine Compounds.

    PubMed

    Zhu, Huaning; Li, Yang; Chen, Jun; Zhou, Meng; Niu, Yingli; Zhang, Xinxing; Guo, Qianjin; Wang, Shuangqing; Yang, Guoqiang; Xia, Andong

    2015-12-21

    The excited-state relaxation dynamics and chromophore interactions in two phthalocyanine compounds (bis- and trisphthalocyanines) are studied by using steady-state and femtosecond transient absorption spectral measurements, where the excited-state energy-transfer mechanism is explored. By exciting phthalocyanine compounds to their second electronically excited states and probing the subsequent relaxation dynamics, a multitude of deactivation pathways are identified. The transient absorption spectra show the relaxation pathway from the exciton state to excimer state and then back to the ground state in bisphthalocyanine (bis-Pc). In trisphthalocyanine (tris-Pc), the monomeric and dimeric subunits are excited and the excitation energy transfers from the monomeric vibrationally hot S1 state to the exciton state of a pre-associated dimer, with subsequent relaxation to the ground state through the excimer state. The theoretical calculations and steady-state spectra also show a face-to-face conformation in bis-Pc, whereas in tris-Pc, two of the three phthalocyanine branches form a pre-associated face-to-face dimeric conformation with the third one acting as a monomeric unit; this is consistent with the results of the transient absorption experiments from the perspective of molecular structure. The detailed structure-property relationships in phthalocyanine compounds is useful for exploring the function of molecular aggregates in energy migration of natural photosynthesis systems.

  16. Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer

    NASA Astrophysics Data System (ADS)

    Gil, Michał; Kijak, Michał; Piwoński, Hubert; Herbich, Jerzy; Waluk, Jacek

    2017-03-01

    Fluorescence studies of tautomerization have been carried out for various systems that exhibit single and double proton or hydrogen translocation in various environments, such as liquid and solid condensed phases, ultracold supersonic jets, and finally, polymer matrices with single emitters. We focus on less explored areas of application of fluorescence for tautomerization studies, using porphycene, a porphyrin isomer, as an example. Fluorescence anisotropy techniques allow investigations of self-exchange reactions, where the reactant and product are formally identical. Excitation with polarized light makes it possible to monitor tautomerization in single molecules and to detect their three-dimensional orientation. Analysis of fluorescence from single vibronic levels of jet-isolated porphycene not only demonstrates coherent tunneling of two internal protons, but also indicates that the process is vibrational mode-specific. Next, we present bifunctional proton donor-acceptor systems, molecules that are able, depending on the environment, to undergo excited state single intramolecular or double intermolecular proton transfer. For molecules that have donor and acceptor groups located in separate moieties linked by a single bond, excited state tautomerization can be coupled to mutual twisting of the two subunits.

  17. Influence of different environments on the excited-state proton transfer and dual fluorescence of fisetin

    NASA Astrophysics Data System (ADS)

    Guharay, Jayanti; Dennison, S. Moses; Sengupta, Pradeep K.

    1999-05-01

    The influence of different protic and aprotic solvent environments on the excited-state intramolecular proton transfer (ESIPT) leading to a dual fluorescence behaviour of a biologically important, naturally occurring, polyhydroxyflavone, fisetin (3,3',4',7-tetrahydroxyflavone), has been investigated. The normal fluorescence band, in particular, is extremely sensitive to solvent polarity with νmax shifting from 24 510 cm -1 in dioxane ( ET(30)=36.0) to 20 790 cm -1 in methanol ( ET(30)=55.5). This is rationalized in terms of solvent dipolar relaxation process, which also accounts for the red edge excitation shifts (REES) observed in viscous environments such as glycerol at low temperatures. Significant solvent dependence of the tautomer fluorescence properties ( νmax, yield and decay kinetics) reveals the influence of external hydrogen bonding perturbation on the internal hydrogen bond of the molecule. These excited-state relaxation phenomena and their relevant parameters have been used to probe the microenvironment of fisetin in a membrane mimetic system, namely AOT reverse micelles in n-heptane at different water/surfactant molar ratio ( w0).

  18. Competition between ultrafast relaxation and photoionization in excited prefluorescent states of tryptophan and indole

    NASA Astrophysics Data System (ADS)

    Sherin, P. S.; Snytnikova, O. A.; Tsentalovich, Yu. P.; Sagdeev, R. Z.

    2006-10-01

    The quantum yield of photoionization of TrpH and IndH from the nonrelaxed prefluorescent state S* increases with the temperature decrease. This effect is attributed to the competition between temperature independent ionization and ultrafast thermal relaxation S*→S1. The rate constant of the relaxation does not depend on the solvent and on the presence of the amino acid side chain: the temperature dependences of photoionization quantum yield, obtained for TrpH and IndH in different solvents, practically coincide. The activation energy for the relaxation rate constant Er≈4.5kJ/mol probably corresponds to intramolecular process or to the formation of the vibronically excited transient complex between photoexcited molecule and solvent molecules.

  19. Optimal control of peridinin excited-state dynamics

    NASA Astrophysics Data System (ADS)

    Dietzek, Benjamin; Chábera, Pavel; Hanf, Robert; Tschierlei, Stefanie; Popp, Jürgen; Pascher, Torbjörn; Yartsev, Arkady; Polívka, Tomáš

    2010-07-01

    Optimal control is applied to study the excited-state relaxation of the carbonyl-carotenoid peridinin in solution. Phase-shaping of the excitation pulses is employed to influence the photoinduced reaction dynamics of peridinin. The outcome of various control experiments using different experimentally imposed fitness parameters is discussed. Furthermore, the effects of pump-wavelength and different solvents on the control efficiency are presented. The data show that excited-state population within either the S 1 or the ICT state can be reduced significantly by applying optimal control, while the efficiency of control decreases upon excitation into the low-energy side of the absorption band. However, we are unable to alter the ratio of S 1 and ICT population or increase the population of either state compared to excitation with a transform-limited pulse. We compare the results to various control mechanisms and argue that characteristic low-wavenumber modes are relevant for the photochemistry of peridinin.

  20. Kinetics of intra- and intermolecular excited-state proton transfer of ω -(2-hydroxynaphthyl-1)-decanoic acid in homogeneous and micellar solutions

    NASA Astrophysics Data System (ADS)

    Solntsev, Kyril M.; Popov, Alexander V.; Solovyeva, Vera A.; Abou Al-Ainain, Sami; Il'ichev, Yuri V.; Hernandez, Rigoberto; Kuzmin, Michael G.

    2016-03-01

    The bifunctional photoacid ω-(2-hydroxynaphthyl-1)-decanoic acid (1S2N) takes part both in intramolecular excited-state proton transfer (ESPT) to the anion of a fatty acid and in intermolecular ESPT in the presence of a water solvent. Excited-state intra- and intermolecular proton transfer of 1S2N was investigated in homogeneous ethanol/water solution and in micellar solutions of various surfactants. The interfacial potential of micelles was changed by using cationic (CTAB), non-ionic (Brij-35) and anionic (SDS) surfactants. With the decrease of the interfacial potential, the protolytic photodissociation of naphthol and the diffusion-controlled intramolecular ESPT to carboxylic anion were suppressed.

  1. Multicolored-fluorescence switching of ICT-type organic solids with clear color difference: mechanically controlled excited state.

    PubMed

    Zhang, Yujian; Wang, Kai; Zhuang, Guilin; Xie, Zengqi; Zhang, Cheng; Cao, Feng; Pan, Guoxiang; Chen, Haifeng; Zou, Bo; Ma, Yuguang

    2015-02-02

    A donor-acceptor-type fluorophore containing a twisted diphenylacrylonitrile and triphenylamine has been developed by using the Suzuki reaction. The system indicates typical intramolecular charge-transfer properties. Upon mechanical grinding or hydrostatic pressure, the fluorophore reveals a multicolored fluorescence switching. Interestingly, a fluorescence color transition from green to red was clearly observed, and the change of photoluminescent (PL) wavelength gets close to 111 nm. The mechanisms of high-contrast mechanochromic behavior are fully investigated by techniques including powder XRD, PL lifetime, high-pressure PL lifetime, and Raman spectra analysis. The tremendous PL wavelength shift is attributed to gradual transition of excited states from the local excited state to the charge-transfer state. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mechanistic photodecarboxylation of pyruvic acid: Excited-state proton transfer and three-state intersection

    SciTech Connect

    Chang, Xue-Ping; Fang, Qiu Cui, Ganglong

    2014-10-21

    Photodissociation dynamics of pyruvic acid experimentally differs from that of commonly known ketones. We have employed the complete active space self-consistent field and its multi-state second-order perturbation methods to study its photodissociation mechanism in the S{sub 0}, T{sub 1}, and S{sub 1} states. We have uncovered four nonadiabatic photodecarboxylation paths. (i) The S{sub 1} system relaxes via an excited-state intramolecular proton transfer (ESIPT) to a hydrogen-transferred tautomer, near which an S{sub 1}/S{sub 0} conical intersection funnels the S{sub 1} to S{sub 0} state. Then, some trajectories continue completing the decarboxylation reaction in the S{sub 0} state; the remaining trajectories via a reverse hydrogen transfer return to the S{sub 0} minimum, from which a thermal decarboxylation reaction occurs. (ii) Due to a small S{sub 1} −T{sub 1} energy gap and a large S{sub 1}/T{sub 1} spin-orbit coupling, an efficient S{sub 1} → T{sub 1} intersystem crossing process happens again near this S{sub 1}/S{sub 0} conical intersection. When decaying to T{sub 1} state, a direct photodecarboxylation proceeds. (iii) Prior to ESIPT, the S{sub 1} system first decays to the T{sub 1} state via an S{sub 1} → T{sub 1} intersystem crossing; then, the T{sub 1} system evolves to a hydrogen-transferred tautomer. Therefrom, an adiabatic T{sub 1} decarboxylation takes place due to a small barrier of 7.7 kcal/mol. (iv) Besides the aforementioned T{sub 1} ESIPT process, there also exists a comparable Norrish type I reaction in the T{sub 1} state, which forms the ground-state products of CH{sub 3}CO and COOH. Finally, we have found that ESIPT plays an important role. It closes the S{sub 1}-T{sub 1} and S{sub 1}-S{sub 0} energy gaps, effecting an S{sub 1}/T{sub 1}/S{sub 0} three-state intersection region, and mediating nonadiabatic photodecarboxylation reactions of pyruvic acid.

  3. Time-resolved photoelectron imaging of excited state relaxation dynamics in phenol, catechol, resorcinol, and hydroquinone

    NASA Astrophysics Data System (ADS)

    Livingstone, Ruth A.; Thompson, James O. F.; Iljina, Marija; Donaldson, Ross J.; Sussman, Benjamin J.; Paterson, Martin J.; Townsend, Dave

    2012-11-01

    Time-resolved photoelectron imaging was used to investigate the dynamical evolution of the initially prepared S1 (ππ*) excited state of phenol (hydroxybenzene), catechol (1,2-dihydroxybenzene), resorcinol (1,3-dihydroxybenzene), and hydroquinone (1,4-dihydroxybenzene) following excitation at 267 nm. Our analysis was supported by ab initio calculations at the coupled-cluster and CASSCF levels of theory. In all cases, we observe rapid (<1 ps) intramolecular vibrational redistribution on the S1 potential surface. In catechol, the overall S1 state lifetime was observed to be 12.1 ps, which is 1-2 orders of magnitude shorter than in the other three molecules studied. This may be attributed to differences in the H atom tunnelling rate under the barrier formed by a conical intersection between the S1 state and the close lying S2 (πσ*) state, which is dissociative along the O-H stretching coordinate. Further evidence of this S1/S2 interaction is also seen in the time-dependent anisotropy of the photoelectron angular distributions we have observed. Our data analysis was assisted by a matrix inversion method for processing photoelectron images that is significantly faster than most other previously reported approaches and is extremely quick and easy to implement.

  4. Time-resolved photoelectron imaging of excited state relaxation dynamics in phenol, catechol, resorcinol, and hydroquinone.

    PubMed

    Livingstone, Ruth A; Thompson, James O F; Iljina, Marija; Donaldson, Ross J; Sussman, Benjamin J; Paterson, Martin J; Townsend, Dave

    2012-11-14

    Time-resolved photoelectron imaging was used to investigate the dynamical evolution of the initially prepared S(1) (ππ*) excited state of phenol (hydroxybenzene), catechol (1,2-dihydroxybenzene), resorcinol (1,3-dihydroxybenzene), and hydroquinone (1,4-dihydroxybenzene) following excitation at 267 nm. Our analysis was supported by ab initio calculations at the coupled-cluster and CASSCF levels of theory. In all cases, we observe rapid (<1 ps) intramolecular vibrational redistribution on the S(1) potential surface. In catechol, the overall S(1) state lifetime was observed to be 12.1 ps, which is 1-2 orders of magnitude shorter than in the other three molecules studied. This may be attributed to differences in the H atom tunnelling rate under the barrier formed by a conical intersection between the S(1) state and the close lying S(2) (πσ*) state, which is dissociative along the O-H stretching coordinate. Further evidence of this S(1)/S(2) interaction is also seen in the time-dependent anisotropy of the photoelectron angular distributions we have observed. Our data analysis was assisted by a matrix inversion method for processing photoelectron images that is significantly faster than most other previously reported approaches and is extremely quick and easy to implement.

  5. Excited State Mass Spectra of Ω0 c Baryon

    NASA Astrophysics Data System (ADS)

    Shah, Z.; Thakkar, K.; Rai, A. K.; Vinodkumar, P. C.

    2016-10-01

    We have calculated the radial and orbital excited states of singly charmed baryon Oc using the Hypercentral Constituent Quark Model (hCQM). The confinement potential is assumed as coulomb plus power potential (CPP V ). The ground state and excited state masses are determined with and with out first order correction to the potential. Furthermore, we plot graph between Mass(M) → Potential Index(v). Our calculated results are in good agreement with experimental and other theoretical predictions.

  6. Time-Resolved Signatures across the Intramolecular Response in Substituted Cyanine Dyes

    NASA Astrophysics Data System (ADS)

    Nairat, Muath; Webb, Morgan; Esch, Michael; Lozovoy, Vadim V.; Levine, Benjamin G.; Dantus, Marcos

    2017-06-01

    The optically populated excited state wave packet propagates along multidimensional intramolecular coordinates soon after photoexcitation. This action occurs alongside an intermolecular response from the surrounding solvent. Disentangling the multidimensional convoluted signal enables the possibility to separate and understand the initial intramolecular relaxation pathways over the excited state potential energy surface. Here we track the initial excited state dynamics by measuring the fluorescence yield from the first excited state as a function of time delay between two color femtosecond pulses for several cyanine dyes, having different electronic configurations. We find that when the high frequency pulse precedes the low frequency one and for timescales up to 200 fs, the excited state can be depleted through stimulated emission with efficiency that is dependent on the molecular electronic structure. A similar observation at even shorter times was made by scanning the chirp (frequencies ordering) of a femtosecond pulse. These changes reflect the rate at which the nuclear coordinates of the excited state leave the Franck-Condon (FC) region and progress towards achieving equilibrium. Through functional group substitution, we explore these dynamic changes as a function of dipolar change following photoexcitation. We show that with proper knowledge and control over the phase of the excitation pulses, we can extract the relative energy relaxation rates through which the early intramolecular modes are populated at the FC geometry soon after excitation

  7. Study of intermediates from transition metal excited-state electron-transfer reactions. Final report, August 4, 1986--August 31, 1997

    SciTech Connect

    Hoffman, M.Z.

    1997-12-31

    The techniques of continuous photolysis and pulsed laser flash photolysis, continuous and pulse radiolysis, fast-scan cyclic voltammetry, and time-resolved fluorimetry have been used to examine intramolecular electron transfer within the solvent quenching cage, photodynamics of quenching of the excited states of transition-metal photosensitizers, the properties of excites states and one-electron reduced forms, ground- and excited-state interactions with solutes, and photoinduced oxidations of organic solutes in aqueous solution. The following specific areas were examined: (1) the parameters that govern the yields of redox products from excited-state electron-transfer quenching reactions; (2) the mediation of the properties of excited states and one-electron reduced forms by the ligands and the solution medium; (3) the effect of the interactions between the ground state of the complex and the solution components on the behavior of the excited state; (4) the yields of singlet oxygen from excited-state energy-transfer quenching by O{sub 2}; and (5) the oxidations of solutes by singlet oxygen, excited-state electron-transfer quenching, and free radicals. This report contains the abstracts of 50 publications describing the studies.

  8. Red and blue shift of liquid water's excited states: A many body perturbation study

    NASA Astrophysics Data System (ADS)

    Ziaei, Vafa; Bredow, Thomas

    2016-08-01

    In the present paper, accurate optical absorption spectrum of liquid H2O is calculated in the energy range of 5-20 eV to probe the nature of water's excited states by means of many body perturbation approach. Main features of recent inelastic X-ray measurements are well reproduced, such as a bound excitonic peak at 7.9 eV with a shoulder at 9.4 eV as well as the absorption maximum at 13.9 eV, followed by a broad shoulder at 18.4 eV. The spectrum is dominated by excitonic effects impacting the structures of the spectrum at low and higher energy regimes mixed by single particle effects at high energies. The exciton distribution of the low-energy states, in particular of S1, is highly anisotropic and localized mostly on one water molecule. The S1 state is essentially a HOCO-LUCO (highest occupied crystal orbital - lowest unoccupied crystal orbital) transition and of intra-molecular type, showing a localized valence character. Once the excitation energy is increased, a significant change in the character of the electronically excited states occurs, characterized through emergence of multiple quasi-particle peaks at 7.9 eV in the quasi-particle (QP) transition profile and in the occurring delocalized exciton density distribution, spread over many more water molecules. The exciton delocalization following a change of the character of excited states at around 7.9 eV causes the blue shift of the first absorption band with respect to water monomer S1. However, due to reduction of the electronic band gap from gas to liquid phase, following enhanced screening upon condensation, the localized S1 state of liquid water is red-shifted with respect to S1 state of water monomer. For higher excitations, near vertical ionization energy (11 eV), quasi-free electrons emerge, in agreement with the conduction band electron picture. Furthermore, the occurring red and blue shift of the excited states are independent of the coupling of resonant and anti-resonant contributions to the

  9. Excited State Dynamics of DNA and RNA bases

    NASA Astrophysics Data System (ADS)

    Hudock, Hanneli; Levine, Benjamin; Martinez, Todd

    2007-03-01

    Recent ultrafast spectroscopic experiments have reported excited state lifetimes for DNA and RNA bases and assigned these lifetimes to various electronic states. We have used theoretical and simulation methods to describe the excited state dynamics of these bases in an effort to provide a mechanistic explanation for the observed lifetimes. Our simulations are based on ab initio molecular dynamics, where the electronic and nuclear Schrodinger equations are solved simultaneously. The results are further verified by comparison to high-level ab initio electronic structure methods, including dynamic electron correlation effects through multireference perturbation theory, at important points along the dynamical pathways. Our results provide an explanation of the photochemical mechanism leading to nonradiative decay of the electronic excited states and some suggestions as to the origin of the different lifetimes. Comparisons between pyrimidines illustrate how chemical differences impact excited state dynamics and may play a role in explaining the propensity for dimer formation in thymine.

  10. Two-Photon Excitation of Conjugated Molecules in Solution: Spectroscopy and Excited-State Dynamics

    NASA Astrophysics Data System (ADS)

    Elles, Christopher G.; Houk, Amanda L.; de Wergifosse, Marc; Krylov, Anna

    2017-06-01

    We examine the two-photon absorption (2PA) spectroscopy and ultrafast excited-state dynamics of several conjugated molecules in solution. By controlling the relative wavelength and polarization of the two photons, the 2PA measurements provide a more sensitive means of probing the electronic structure of a molecule compared with traditional linear absorption spectra. We compare experimental spectra of trans-stilbene, cis-stilbene, and phenanthrene in solution with the calculated spectra of the isolated molecules using EOM-EE-CCSD. The calculated spectra show good agreement with the low-energy region of the experimental spectra (below 6 eV) after suppressing transitions with strong Rydberg character and accounting for solvent and method-dependent shifts of the valence transitions. We also monitor the excited state dynamics following two-photon excitation to high-lying valence states of trans-stilbene up to 6.5 eV. The initially excited states rapidly relax to the lowest singlet excited state and then follow the same reaction path as observed following direct one-photon excitation to the lowest absorption band at 4.0 eV.

  11. Cyclopropyl Group: An Excited-State Aromaticity Indicator?

    PubMed

    Ayub, Rabia; Papadakis, Raffaello; Jorner, Kjell; Zietz, Burkhard; Ottosson, Henrik

    2017-07-06

    The cyclopropyl (cPr) group, which is a well-known probe for detecting radical character at atoms to which it is connected, is tested as an indicator for aromaticity in the first ππ* triplet and singlet excited states (T1 and S1 ). Baird's rule says that the π-electron counts for aromaticity and antiaromaticity in the T1 and S1 states are opposite to Hückel's rule in the ground state (S0 ). Our hypothesis is that the cPr group, as a result of Baird's rule, will remain closed when attached to an excited-state aromatic ring, enabling it to be used as an indicator to distinguish excited-state aromatic rings from excited-state antiaromatic and nonaromatic rings. Quantum chemical calculations and photoreactivity experiments support our hypothesis; calculated aromaticity indices reveal that openings of cPr substituents on [4n]annulenes ruin the excited-state aromaticity in energetically unfavorable processes. Yet, polycyclic compounds influenced by excited-state aromaticity (e.g., biphenylene), as well as 4nπ-electron heterocycles with two or more heteroatoms represent limitations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Excited-State Dynamics in Folic Acid and 6-CARBOXYPTERIN upon Uva Excitation

    NASA Astrophysics Data System (ADS)

    Huang, Huijuan; Vogt, R. Aaron; Crespo-Hernandez, Carlos E.

    2013-06-01

    The excited-state dynamics of folic acid (FA) and 6-carboxypterin (6CP) are poorly understood and work is needed to uncover the relaxation pathways that ultimately lead to their oxidative damage of DNA. In our approach, broad-band transient absorption spectroscopy was used to monitor the evolution of the excited states in FA and 6CP in basic aqueous solution upon excitation at 350 nm. In addition, quantum-chemical calculations were performed to assist in the interpretation of the experimental results and in the postulation of kinetic mechanisms. The combined experimental and computational results support a kinetic model where excitation of FA results in ultrafast charge separation (τ = 0.6 ps), which decays back to the ground state primarily by charge recombination with a lifetime of 2.2 ps. A small fraction of the charge transfer state undergoes intersystem crossing to populate the lowest-energy triplet state with a lifetime of 200 ps. On the other hand, a large fraction of the initially excited singlet state in 6CP decays by fluorescence emission with a lifetime of 100 ps, while intersystem crossing to the triplet state occurs with a lifetime of 4.4 ns. The potential implications of these results to the oxidative damage of DNA by FA and 6CP will be discussed. Funding from the National Science Foundation is gratefully acknowledged (CHE-1255084).

  13. Estimation of Ground-State and Singlet Excited-State Dipole Moments of Substituted Schiff Bases Containing Oxazolidin-2-one Moiety through Solvatochromic Methods.

    PubMed

    Kumari, Rekha; Varghese, Anitha; George, Louis

    2017-01-01

    Absorption and fluorescence studies on novel Schiff bases (E)-4-(4-(4-nitro benzylideneamino)benzyl)oxazolidin-2-one (NBOA) and (E)-4-(4-(4-chlorobenzylidene amino)benzyl)oxazolidin-2-one (CBOA) were recorded in a series of twelve solvents upon increasing polarity at room temperature. Large Stokes shift indicates bathochromic fluorescence band for both the molecules. The photoluminescence properties of Schiff bases containing electron withdrawing and donating substituents were analyzed. Intramolecular charge transfer behavior can be studied based on the influence of different substituents in Schiff bases. Changes in position and intensity of absorption and fluorescence spectra are responsible for the stabilization of singlet excited-states of Schiff base molecules with different substituents, in polar solvents. This is attributed to the Intramolecular charge transfer (ICT) mechanism. In case of electron donating (-Cl) substituent, ICT contributes largely to positive solvatochromism when compared to electron withdrawing (-NO2) substituent. Ground-state and singlet excited-state dipole moments of NBOA and CBOA were calculated experimentally using solvent polarity function approaches given by Lippert-Mataga, Bakhshiev, Kawskii-Chamma-Viallet and Reichardt. Due to considerable π- electron density redistribution, singlet excited-state dipole moment was found to be greater than ground-state dipole moment. Ground-state dipole moment value which was determined by quantum chemical method was used to estimate excited-state dipole moment using solvatochromic correlations. Kamlet-Abboud-Taft and Catalan multiple linear regression approaches were used to study non-specific solute-solvent interaction and hydrogen bonding interactions in detail. Optimized geometry and HOMO-LUMO energies of NBOA and CBOA have been determined by DFT and TD-DFT/PCM (B3LYP/6-311G (d, p)). Mulliken charges and molecular electrostatic potential have also been evaluated from DFT calculations.

  14. Effect of charged and excited states on the decomposition of 1,1-diamino-2,2-dinitroethylene molecules

    SciTech Connect

    Kimmel, Anna V.; Sushko, Peter V.; Shluger, Alexander L.; Kuklja, Maija M.

    2007-06-21

    The authors have calculated the electronic structure of individual 1,1-diamino-2,2-dinitroethylene molecules (FOX-7) in the gas phase by means of density functional theory with the hybrid B3LYP functional and 6-31+G(d,p) basis set and considered their dissociation pathways. Positively and negatively charged states as well as the lowest excited states of the molecule were simulated. They found that charging and excitation can not only reduce the activation barriers for decomposition reactions but also change the dominating chemistry from endo- to exothermic type. In particular, they found that there are two competing primary initiation mechanisms of FOX-7 decomposition: C-NO{sub 2} bond fission and C-NO{sub 2} to CONO isomerization. Electronic excitation or charging of FOX-7 disfavors CONO formation and, thus, terminates this channel of decomposition. However, if CONO is formed from the neutral FOX-7 molecule, charge trapping and/or excitation results in spontaneous splitting of an NO group accompanied by the energy release. Intramolecular hydrogen transfer is found to be a rare event in FOX-7 unless free electrons are available in the vicinity of the molecule, in which case HONO formation is a feasible exothermic reaction with a relatively low energy barrier. The effect of charged and excited states on other possible reactions is also studied. Implications of the obtained results to FOX-7 decomposition in condensed state are discussed.

  15. Effect of charged and excited states on the decomposition of 1,1-diamino-2,2-dinitroethylene molecules.

    PubMed

    Kimmel, Anna V; Sushko, Peter V; Shluger, Alexander L; Kuklja, Maija M

    2007-06-21

    The authors have calculated the electronic structure of individual 1,1-diamino-2,2-dinitroethylene molecules (FOX-7) in the gas phase by means of density functional theory with the hybrid B3LYP functional and 6-31+G(d,p) basis set and considered their dissociation pathways. Positively and negatively charged states as well as the lowest excited states of the molecule were simulated. They found that charging and excitation can not only reduce the activation barriers for decomposition reactions but also change the dominating chemistry from endo- to exothermic type. In particular, they found that there are two competing primary initiation mechanisms of FOX-7 decomposition: C-NO2 bond fission and C-NO2 to CONO isomerization. Electronic excitation or charging of FOX-7 disfavors CONO formation and, thus, terminates this channel of decomposition. However, if CONO is formed from the neutral FOX-7 molecule, charge trapping and/or excitation results in spontaneous splitting of an NO group accompanied by the energy release. Intramolecular hydrogen transfer is found to be a rare event in FOX-7 unless free electrons are available in the vicinity of the molecule, in which case HONO formation is a feasible exothermic reaction with a relatively low energy barrier. The effect of charged and excited states on other possible reactions is also studied. Implications of the obtained results to FOX-7 decomposition in condensed state are discussed.

  16. Effect of charged and excited states on the decomposition of 1,1-diamino-2,2-dinitroethylene molecules

    NASA Astrophysics Data System (ADS)

    Kimmel, Anna V.; Sushko, Peter V.; Shluger, Alexander L.; Kuklja, Maija M.

    2007-06-01

    The authors have calculated the electronic structure of individual 1,1-diamino-2,2-dinitroethylene molecules (FOX-7) in the gas phase by means of density functional theory with the hybrid B3LYP functional and 6-31+G(d,p) basis set and considered their dissociation pathways. Positively and negatively charged states as well as the lowest excited states of the molecule were simulated. They found that charging and excitation can not only reduce the activation barriers for decomposition reactions but also change the dominating chemistry from endo- to exothermic type. In particular, they found that there are two competing primary initiation mechanisms of FOX-7 decomposition: C -NO2 bond fission and C -NO2 to CONO isomerization. Electronic excitation or charging of FOX-7 disfavors CONO formation and, thus, terminates this channel of decomposition. However, if CONO is formed from the neutral FOX-7 molecule, charge trapping and/or excitation results in spontaneous splitting of an NO group accompanied by the energy release. Intramolecular hydrogen transfer is found to be a rare event in FOX-7 unless free electrons are available in the vicinity of the molecule, in which case HONO formation is a feasible exothermic reaction with a relatively low energy barrier. The effect of charged and excited states on other possible reactions is also studied. Implications of the obtained results to FOX-7 decomposition in condensed state are discussed.

  17. CH stretch excitation causes conformational interconversion in ground state methyl vinyl ether but not in methyl nitrite

    NASA Astrophysics Data System (ADS)

    Ruoff, Rodney S.; Kulp, Thomas J.; McDonald, J. D.

    1984-11-01

    Molecules exhibiting conformational isomerism have been studied by spectrally resolving the infrared laser induced fluorescence from CH stretch fundamental excitation of methyl vinyl ether and from CH stretch fundamental and N=O overtone excitation of methyl nitrite. By comparison of the resolved fluorescence spectra of methyl vinyl ether with its absorbance spectrum, we have observed the first case of state selected ground electronic state intramolecular conformational interconversion in an isolated molecule. The distribution of conformers is altered drastically by the deposition of energy. The cis/trans ratio of the laser excited molecules may also be sensitive to the laser excitation frequency. Excitation of the N=O overtones of both cis methyl nitrite and trans methyl nitrite, which are well separated in frequency, gives resolved fluorescence spectra which mimic the absorbance spectra for cis methyl nitrite and trans methyl nitrite, respectively, thereby placing a lower bound for the conformational interconversion energy barrier from trans to cis of 3325 cm-1. The experiments were performed by exciting either molecule cooled in a pulsed nozzle expansion with light from an infrared optical parametric oscillator. The fluorescence spectra were recorded with a cryogenic Michelson interferometer.

  18. Local Control Theory in Trajectory Surface Hopping Dynamics Applied to the Excited-State Proton Transfer of 4-Hydroxyacridine.

    PubMed

    Curchod, Basile F E; Penfold, Thomas J; Rothlisberger, Ursula; Tavernelli, Ivano

    2015-07-20

    The application of local control theory combined with nonadiabatic ab initio molecular dynamics to study the photoinduced intramolecular proton transfer reaction in 4-hydroxyacridine was investigated. All calculations were performed within the framework of linear-response time-dependent density functional theory. The computed pulses revealed important information about the underlying excited-state nuclear dynamics highlighting the involvement of collective vibrational modes that would normally be neglected in a study performed on model systems constrained to a subset of the full configuration space. This study emphasizes the strengths of local control theory for the design of pulses that can trigger chemical reactions associated with the population of a given molecular excited state. In addition, analysis of the generated pulses can help to shed new light on the photophysics and photochemistry of complex molecular systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ultrafast excited state relaxation in long-chain polyenes

    NASA Astrophysics Data System (ADS)

    Antognazza, Maria Rosa; Lüer, Larry; Polli, Dario; Christensen, Ronald L.; Schrock, Richard R.; Lanzani, Guglielmo; Cerullo, Giulio

    2010-07-01

    We present a comprehensive study, by femtosecond pump-probe spectroscopy, of excited state dynamics in a polyene that approaches the infinite chain limit. By excitation with sub-10-fs pulses resonant with the 0-0 S 0 → S 2 transition, we observe rapid loss of stimulated emission from the bright excited state S 2, followed by population of the hot S 1 state within 150 fs. Vibrational cooling of S 1 takes place within 500 fs and is followed by decay back to S 0 with 1 ps time constant. By excitation with excess vibrational energy we also observe the ultrafast formation of a long-living absorption, that is assigned to the triplet state generated by singlet fission.

  20. The examination of berberine excited state by laser flash photolysis

    NASA Astrophysics Data System (ADS)

    Cheng, Lingli; Wang, Mei; Zhao, Ping; Zhu, Hui; Zhu, Rongrong; Sun, Xiaoyu; Yao, Side; Wang, Shilong

    2009-07-01

    The property of the excited triplet state of berberine (BBR) was investigated by using time-resolved laser flash photolysis of 355 nm in acetonitrile. The transient absorption spectra of the excited triplet BBR were obtained in acetonitrile, which have an absorption maximum at 420 nm. And the ratio of excitation to ionization of BBR in acetonitrile solvent was calculated. The self-decay and self-quenching rate constants, and the absorption coefficient of 3BBR* were investigated and the excited state quantum yield was determined. Furthermore utilizing the benzophenone (BEN) as a triplet sensitizer, and the β-carotene (Car) as an excited energy transfer acceptor, the assignment of 3BBR* was further confirmed and the related energy transfer rate constants were also determined.

  1. Probing metal ion complexation with salicylic acid and its derivatives with excited state proton transfer and luminescence anisotropy

    SciTech Connect

    Wang, Z.; Friedrich, D.M.; Ainsworth, C.C.

    1996-10-01

    Salicylic acid and its derivatives in which the phenolic proton is preserved show a characteristic dual fluorescence: one band in the UV, due to a {open_quotes}normal{close_quotes} excited state emission, and the other in the visible range, is assigned to excited state intramolecular proton transfer (ESIPT). The transition energy, quantum yield and fluorescence lifetime as well as fluorescence anisotropy are sensitive to the solvent environment, temperature and properties of the substituents (complexation) at the phenolic and carboxylic oxygens. The ESIPT band disappears in molecules in which the intramolecular hydrogen bond between phenolic hydrogen and the carbonyl oxygen is prohibited. In this work, the complexation of Na(I), Ca(II), Al(III) and La(III) with salicylic acid, 3-hydroxybenzoic acid, methylsalicylate and anisic acid in both aqueous and non-aqueous solvents has been studied by absorption and steady state luminescence spectroscopy, picosecond to nanosecond luminescence lifetimes and luminescence anisotropy measurements in a range of solvent and in ethanol at 77 K. Speciation in these complex systems, binding characteristics between the metal ion and the ligand, and ligand-centered energetics are discussed in terms of the spectroscopic properties, luminescence and anisotropy decay kinetics.

  2. Peroxyacetyl radical: Electronic excitation energies, fundamental vibrational frequencies, and symmetry breaking in the first excited state

    SciTech Connect

    Copan, Andreas V.; Wiens, Avery E.; Nowara, Ewa M.; Schaefer, Henry F.; Agarwal, Jay

    2015-02-07

    Peroxyacetyl radical [CH{sub 3}C(O)O{sub 2}] is among the most abundant peroxy radicals in the atmosphere and is involved in OH-radical recycling along with peroxyacetyl nitrate formation. Herein, the ground (X{sup ~}) and first (A{sup ~}) excited state surfaces of cis and trans peroxyacetyl radical are characterized using high-level ab initio methods. Geometries, anharmonic vibrational frequencies, and adiabatic excitation energies extrapolated to the complete basis-set limit are reported from computations with coupled-cluster theory. Excitation of the trans conformer is found to induce a symmetry-breaking conformational change due to second-order Jahn-Teller interactions with higher-lying excited states. Additional benchmark computations are provided to aid future theoretical work on peroxy radicals.

  3. Intramolecular Vibrational Energy Redistribution in 2-Thiocytosine: SH Rotamerization Induced by Near-IR Selective Excitation of NH2 Stretching Overtone.

    PubMed

    Halasa, Anna; Lapinski, Leszek; Rostkowska, Hanna; Nowak, Maciej J

    2015-09-03

    Near-IR-induced transformations, converting one amino-thiol conformer of 2-thiocytosine into another, were observed for monomers of the compound isolated in Ne, Ar, and N2 low-temperature matrixes. The two conformers involved in this phototransformation differ from each other by 180° rotation of the SH group. To induce the conversion, conformers of 2-thiocytosine were selectively excited to the overtone (or combination) NH2 stretching vibrational states, using very narrowband (fwhm <1 MHz) near-IR light generated in a tunable diode laser. The conformational changes were monitored by IR spectroscopy. The conformational transformation observed in the current work provides a clear evidence of the vibrational energy redistribution from the initially excited NH2 moiety to the remote SH group that changes its orientation.

  4. Investigation into chromophore excited-state coupling in allophycocyanin

    NASA Astrophysics Data System (ADS)

    Zheng, Xiguang; Zhao, Fuli; Wang, He Z.; Gao, Zhaolan; Yu, Zhenxin; Zhu, Jinchang; Xia, Andong; Jiang, Lijin

    1994-08-01

    Both theoretical and experimental studies are presented on chromophore excited-state coupling in linker-free allophycocyanin (APC), one of the antenna phycobiliproteins in algal photosynthesis. A three-site-coupling model has been introduced to describe the exciton interaction mechanism amoung the excited (beta) chromophore in APC, and the exciton energy splitting is estimated. Picosecond polarized fluorescence experiments both on monomeric and trimeric APC isolated from alga Spirulina platensis have been performed. The experimental results show that APC monomer and trimer exhibit remarkedly different spectropic characteristics, and satisfy the suggestion of strong excited- state coupling among chromophores in APC.

  5. Photoacoustic imaging of the excited state lifetime of fluorophores

    NASA Astrophysics Data System (ADS)

    Märk, Julia; Schmitt, Franz-Josef; Laufer, Jan

    2016-05-01

    Photoacoustic (PA) imaging using pump-probe excitation has been shown to allow the detection and visualization of fluorescent contrast agents. The technique relies upon inducing stimulated emission using pump and probe pulses at excitation wavelengths that correspond to the absorption and fluorescence spectra. By changing the time delay between the pulses, the excited state lifetime of the fluorophore is modulated to vary the amount of thermalized energy, and hence PA signal amplitude, to provide fluorophore-specific PA contrast. In this study, this approach was extended to the detection of differences in the excited state lifetime of fluorophores. PA waveforms were measured in solutions of a near-infrared fluorophore using simultaneous and time-delayed pump-probe excitation. The lifetime of the fluorophore solutions was varied by using different solvents and quencher concentrations. By calculating difference signals and by plotting their amplitude as a function of pump-probe time delay, a correlation with the excited state lifetime of the fluorophore was observed. The results agreed with the output of a forward model of the PA signal generation in fluorophores. The application of this method to tomographic PA imaging of differences in the excited state lifetime was demonstrated in tissue phantom experiments.

  6. Electron-impact excitation and ionization cross sections for ground state and excited helium atoms

    SciTech Connect

    Ralchenko, Yu. Janev, R.K.; Kato, T.; Fursa, D.V.; Bray, I.; Heer, F.J. de

    2008-07-15

    Comprehensive and critically assessed cross sections for the electron-impact excitation and ionization of ground state and excited helium atoms are presented. All states (atomic terms) with n{<=}4 are treated individually, while the states with n{>=}5 are considered degenerate. For the processes involving transitions to and from n{>=}5 levels, suitable cross section scaling relations are presented. For a large number of transitions, from both ground and excited states, convergent close coupling calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions, which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in graphical form.

  7. Excited-state proton and charge transfer in protonated amino and methylated derivatives of 2-(2'-hydroxyphenyl)benzimidazole.

    PubMed

    Ríos Vázquez, Sonia; Pérez Lustres, J Luis; Rodríguez-Prieto, Flor; Mosquera, Manuel; Ríos Rodríguez, M Carmen

    2015-02-12

    We studied the excited-state behavior of a family of mono- and diprotonated derivatives of 2-phenylbenzimidazole in different solvents, using steady-state and time-resolved fluorescence spectroscopy. The species investigated were 2-(4'-amino-2'-hydroxyphenyl)benzimidazole (1), the diethylamino analogue 2-(4'-N,N-diethylamino-2'-hydroxyphenyl)benzimidazole (2) and its N-methylated derivative 1-methyl-2-(4'-N,N-diethylamino-2'-hydroxyphenyl)benzimidazole (3). The O-methoxy derivatives of 2 and 3 (2-OMe and 3-OMe), and the simpler models 2-phenylbenzimidazole (4) and its 4'-amino (5) and 4'-dimethylamino (6) derivatives were also studied. We found that the dications of 1, 2, and 3 (protonated at the benzimidazole N3 and at the amino group) were strong photoacids, which were deprotonated at the hydroxyl group upon excitation in aqueous solution (totally for 2 and 3) to give a tautomer of the ground-state monocation. In contrast, no photodissociation was observed for the monocations of these species. Instead, some of the monocations studied behaved as molecular rotors, for which electronic excitation led to a twisted intramolecular charge transfer (TICT) state. The monocations of 2, 3, 2-OMe, 3-OMe, and 6, protonated at the benzimidazole N3, experienced a polarity- and viscosity-dependent radiationless deactivation associated with a large-amplitude rotational motion. We propose that this process is connected to an intramolecular charge transfer from the dimethylaminophenyl or diethylaminophenyl moiety (donor) to the protonated benzimidazole group (acceptor) of the excited monocation, which yields a twisted charge-transfer species. No fluorescence from this species was detected except for 3 and 3-OMe in low-viscosity solvents.

  8. Long-lived excited states in metal clusters.

    PubMed

    Koop, Alexander; Gantefoer, Gerd; Kim, Young Dok

    2017-08-16

    Bare metal clusters have properties that make them interesting for applications in photochemistry and photovoltaics. Long-lived excited states are a prerequisite for such applications, because in them the energy of the photon can be stored. Clusters have a low density of states and long-lived excited states should therefore occur frequently. However, in fact, such states are a rarity, as indicated by time-resolved photoelectron data of mass-selected cluster anions. And there is another puzzling observation: only clusters with narrow peaks in their photoelectron spectra exhibit long-lived excited states. Both findings can be explained if internal conversion, i.e. the conversion of electronic excitation energy into vibrational excitations, is the major relaxation mechanism in clusters. It becomes more likely, if a change of the electronic configuration results in a large geometry change, which is probably the case for most clusters. Only clusters with a weak coupling between geometric and electronic structure may have long-lived excited states and narrow peaks.

  9. Characterizing RNA Excited States using NMR Relaxation Dispersion

    PubMed Central

    Xue, Yi; Kellogg, Dawn; Kimsey, Isaac J; Sathyamoorthy, Bharathwaj; Stein, Zachary W; McBrairty, Mitchell; Al-Hashimi, Hashim M.

    2016-01-01

    Changes in RNA secondary structure play fundamental roles in the cellular functions of a growing number of non-coding RNAs. This chapter describes NMR-based approaches for characterizing microsecond-to-millisecond changes in RNA secondary structure that are directed toward short-lived and low-populated species often referred to as “excited states”. Compared to larger-scale changes in RNA secondary structure, transitions towards excited states do not require assistance from chaperones, are often orders of magnitude faster, and are localized to a small number of nearby base pairs in and around non-canonical motifs. Here we describe a procedure for characterizing RNA excited states using off-resonance R1ρ NMR relaxation dispersion utilizing low-to-high spin-lock fields (25–3000 Hz). R1ρ NMR relaxation dispersion experiments are used to measure carbon and nitrogen chemical shifts in base and sugar moieties of the excited state. The chemical shift data is then interpreted with the aid of secondary structure prediction to infer potential excited states that feature alternative secondary structures. Candidate structures are then tested by using mutations, single-atom substitutions, or by changing physiochemical conditions, such as pH and temperature, to either stabilize or destabilize the candidate excited state. The resulting chemical shifts of the mutants or under different physiochemical conditions are then compared to those of the ground and excited state. Application is illustrated with a focus on the transactivation response element (TAR) from the human immune deficiency virus type 1 (HIV-1), which exists in dynamic equilibrium with at least two distinct excited states. PMID:26068737

  10. Rubrene: The Interplay between Intramolecular and Intermolecular Interactions Determines the Planarization of Its Tetracene Core in the Solid State.

    PubMed

    Sutton, Christopher; Marshall, Michael S; Sherrill, C David; Risko, Chad; Brédas, Jean-Luc

    2015-07-15

    Rubrene is one of the most studied molecular semiconductors; its chemical structure consists of a tetracene backbone with four phenyl rings appended to the two central fused rings. Derivatization of these phenyl rings can lead to two very different solid-state molecular conformations and packings: One in which the tetracene core is planar and there exists substantive overlap among neighboring π-conjugated backbones; and another where the tetracene core is twisted and the overlap of neighboring π-conjugated backbones is completely disrupted. State-of-the-art electronic structure calculations show for all isolated rubrene derivatives that the twisted conformation is more favorable (by -1.7 to -4.1 kcal mol(-1)), which is a consequence of energetically unfavorable exchange-repulsion interactions among the phenyl side groups. Calculations based on available crystallographic structures reveal that planar conformations of the tetracene core in the solid state result from intermolecular interactions that can be tuned through well-chosen functionalization of the phenyl side groups and lead to improved intermolecular electronic couplings. Understanding the interplay of these intramolecular and intermolecular interactions provides insight into how to chemically modify rubrene and similar molecular semiconductors to improve the intrinsic materials electronic properties.

  11. Excited state geometry optimizations by analytical energy gradient of long-range corrected time-dependent density functional theory.

    PubMed

    Chiba, Mahito; Tsuneda, Takao; Hirao, Kimihiko

    2006-04-14

    An analytical excitation energy gradient of long-range corrected time-dependent density functional theory (LC-TDDFT) is presented. This is based on a previous analytical TDDFT gradient formalism, which avoids solving the coupled-perturbed Kohn-Sham equation for each nuclear degree of freedom. In LC-TDDFT, exchange interactions are evaluated by combining the short-range part of a DFT exchange functional with the long-range part of the Hartree-Fock exchange integral. This LC-TDDFT gradient was first examined by calculating the excited state geometries and adiabatic excitation energies of small typical molecules and a small protonated Schiff base. As a result, we found that long-range interactions play a significant role even in valence excited states of small systems. This analytical LC-TDDFT gradient was also applied to the investigations of small twisted intramolecular charge transfer (TICT) systems. By comparing with calculated ab initio multireference perturbation theory and experimental results, we found that LC-TDDFT gave much more accurate absorption and fluorescence energies of these systems than those of conventional TDDFTs using pure and hybrid functionals. For optimized excited state geometries, LC-TDDFT provided fairly different twisting and wagging angles of these small TICT systems in comparison with conventional TDDFT results.

  12. Targeting excited states in all-trans polyenes with electron-pair states.

    PubMed

    Boguslawski, Katharina

    2016-12-21

    Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.

  13. Targeting excited states in all-trans polyenes with electron-pair states

    NASA Astrophysics Data System (ADS)

    Boguslawski, Katharina

    2016-12-01

    Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.

  14. Excited state proton transfer in di-(2-hydroxy-3-formyl-5-tert butyl phenyl) methane and solvent effect

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, M.; Banerjee, D.; Mukherjee, S.

    2006-05-01

    The proton transfer reaction and the spectroscopic properties of di-(2-hydroxy-3-formyl-5-tert butyl phenyl) methane (HFPM) have been examined in different nonpolar and polar solvents at room temperature and 77 K, by means of absorption, emission and time resolved fluorescence spectroscopy. In the ground state, the primary closed form has been identified in all the nonpolar and polar solvents and the anion is detected only in presence of base in some of the polar solvents. After photoexcitation, the excited state intramolecular proton transfer (ESIPT) is indicated by a large Stokes shifted emission (˜10,600 cm -1) in all the nonpolar and polar solvents used, except in water and ethylene glycol (EG). The ESIPT band is likely to be originated from the enol tautomer of the HFPM. Two types of anion and H-bonded complex have been detected in the excited state. In water and EG, only anion and H-bonded complex have been detected in the excited state. At 77 K, HFPM shows phosphorescence in pure ethanol, and in n-hexane in presence of triethylamine. It has been suggested that the appearance of phosphorescence is due to the rotation of the formyl group. The measured nonradiative decay rates have always been found to dominate in the decay processes of the excited state of HFPM. Some semiempirical calculations have been undertaken to rationalize the experimental findings.

  15. Excited state proton transfer in di-(2-hydroxy-3-formyl-5-tert butyl phenyl) methane and solvent effect.

    PubMed

    Mukhopadhyay, M; Banerjee, D; Mukherjee, S

    2006-05-15

    The proton transfer reaction and the spectroscopic properties of di-(2-hydroxy-3-formyl-5-tert butyl phenyl) methane (HFPM) have been examined in different nonpolar and polar solvents at room temperature and 77 K, by means of absorption, emission and time resolved fluorescence spectroscopy. In the ground state, the primary closed form has been identified in all the nonpolar and polar solvents and the anion is detected only in presence of base in some of the polar solvents. After photoexcitation, the excited state intramolecular proton transfer (ESIPT) is indicated by a large Stokes shifted emission (approximately 10,600 cm-1) in all the nonpolar and polar solvents used, except in water and ethylene glycol (EG). The ESIPT band is likely to be originated from the enol tautomer of the HFPM. Two types of anion and H-bonded complex have been detected in the excited state. In water and EG, only anion and H-bonded complex have been detected in the excited state. At 77 K, HFPM shows phosphorescence in pure ethanol, and in n-hexane in presence of triethylamine. It has been suggested that the appearance of phosphorescence is due to the rotation of the formyl group. The measured nonradiative decay rates have always been found to dominate in the decay processes of the excited state of HFPM. Some semiempirical calculations have been undertaken to rationalize the experimental findings.

  16. A visible light excitable fluorescent sensor for triphosphate/pyrophosphate based on a diZn2+ complex bearing an intramolecular charge transfer fluorophore.

    PubMed

    Su, Guangyu; Liu, Zhipeng; Xie, Zhijun; Qian, Fang; He, Weijiang; Guo, Zijian

    2009-10-14

    Triphosphate or pyrophosphate can be recognised by a diZn(2+) complex of bis(BPEA)-appended intramolecular charge transfer fluorophore 4-amino-7-aminosulfonyl-2,1,3-benzoxadiazole, displaying a 5-6 fold fluorescent enhancement at 576 nm.

  17. Electronic spectra and excited-state dynamics of acridine and its hydrated clusters

    NASA Astrophysics Data System (ADS)

    Harthcock, Colin; Zhang, Jie; Kong, Wei; Mitsui, Masaaki; Ohshima, Yasuhiro

    2017-04-01

    We combine results from several different experiments to investigate the photophysics of acridine (Ac) and its hydrated clusters in the gas phase. Our findings are also compared with results from condensed phase studies. Similar to measurements of Ac dissolved in hydrocarbons, the lifetime of the first electronically excited state of isolated Ac in vacuum is too short for typical resonantly enhanced multiphoton ionization (REMPI) and laser induced fluorescence (LIF) experiments, hence no signal from REMPI and LIF can be attributed to monomeric Ac. Instead, sensitized phosphorescence emission spectroscopy is more successful in revealing the electronic states of Ac. Upon clustering with water, on the other hand, the lifetimes of the excited states are substantially increased to the nanosecond scale, and with two water molecules attached to Ac, the lifetime of the hydrated cluster is essentially the same as that of Ac in aqueous solutions. Detailed REMPI and ultraviolet-ultraviolet hole-burning experiments are then performed to reveal the structural information of the hydrated clusters. Although the formation of hydrogen bonds results in energy level reversal and energy separation between the first two excited states of Ac, its effect on the internal geometry of Ac is minimal, and all clusters with 1-3 water molecules demonstrate consistent intramolecular vibrational modes. Theoretical calculations reveal just one stable structure for each cluster under supersonic molecular beam conditions. Furthermore, different from mono- and di-water clusters, tri-water clusters consist of a linear chain of three water molecules attached to Ac. Consequently, the fragmentation pattern in the REMPI spectrum of tri-water clusters seems to be dominated by water trimer elimination, since the REMPI spectrum of Ac+.W3 is largely reproduced in the Ac+ mass channel, but not in the Ac+.W1 or Ac+.W2 channel.

  18. Lifetime and g-factor measurements of excited states using Coulomb excitation and alpha transfer reactions

    SciTech Connect

    Guevara, Z. E. Torres, D. A.

    2016-07-07

    In this contribution the challenges in the use of a setup to simultaneously measure lifetimes and g-factor values will be presented. The simultaneous use of the transient field technique and the Doppler Shift Attenuation Method, to measure magnetic moments and lifetimes respectively, allows to obtain a complete characterization of the currents of nucleons and the deformation in excited states close to the ground state. The technique is at the moment limited to Coulomb excitation and alpha-transfer reactions, what opens an interesting perspective to consider this type of experiments with radioactive beams. The use of deep-inelastic and fusion-evaporation reactions will be discussed. An example of a setup that makes use of a beam of {sup 106}Cd to study excited states of {sup 110}Sn and the beam nuclei itself will be presented.

  19. Lifetime and g-factor measurements of excited states using Coulomb excitation and alpha transfer reactions

    NASA Astrophysics Data System (ADS)

    Guevara, Z. E.; Torres, D. A.

    2016-07-01

    In this contribution the challenges in the use of a setup to simultaneously measure lifetimes and g-factor values will be presented. The simultaneous use of the transient field technique and the Doppler Shift Attenuation Method, to measure magnetic moments and lifetimes respectively, allows to obtain a complete characterization of the currents of nucleons and the deformation in excited states close to the ground state. The technique is at the moment limited to Coulomb excitation and alpha-transfer reactions, what opens an interesting perspective to consider this type of experiments with radioactive beams. The use of deep-inelastic and fusion-evaporation reactions will be discussed. An example of a setup that makes use of a beam of 106Cd to study excited states of 110Sn and the beam nuclei itself will be presented.

  20. Direct observation of photoinduced bent nitrosyl excited-state complexes

    SciTech Connect

    Sawyer, Karma R.; Steele, Ryan P.; Glascoe, Elizabeth A.; Cahoon, James F.; Schlegel, Jacob P.; Head-Gordon, Martin; Harris, Charles B.

    2008-06-28

    Ground state structures with side-on nitrosyl ({eta}{sup 2}-NO) and isonitrosyl (ON) ligands have been observed in a variety of transition-metal complexes. In contrast, excited state structures with bent-NO ligands have been proposed for years but never directly observed. Here we use picosecond time-resolved infrared spectroscopy and density functional theory (DFT) modeling to study the photochemistry of Co(CO){sub 3}(NO), a model transition-metal-NO compound. Surprisingly, we have observed no evidence for ON and {eta}{sup 2}-NO structural isomers, but have observed two bent-NO complexes. DFT modeling of the ground and excited state potentials indicates that the bent-NO complexes correspond to triplet excited states. Photolysis of Co(CO){sub 3}(NO) with a 400-nm pump pulse leads to population of a manifold of excited states which decay to form an excited state triplet bent-NO complex within 1 ps. This structure relaxes to the ground triplet state in ca. 350 ps to form a second bent-NO structure.

  1. The excited state antiaromatic benzene ring: a molecular Mr Hyde?

    PubMed

    Papadakis, Raffaello; Ottosson, Henrik

    2015-09-21

    The antiaromatic character of benzene in its first ππ* excited triplet state (T1) was deduced more than four decades ago by Baird using perturbation molecular orbital (PMO) theory [J. Am. Chem. Soc. 1972, 94, 4941], and since then it has been confirmed through a range of high-level quantum chemical calculations. With focus on benzene we now first review theoretical and computational studies that examine and confirm Baird's rule on reversal in the electron count for aromaticity and antiaromaticity of annulenes in their lowest triplet states as compared to Hückel's rule for the ground state (S0). We also note that the rule according to quantum chemical calculations can be extended to the lowest singlet excited state (S1) of benzene. Importantly, Baird, as well as Aihara [Bull. Chem. Soc. Jpn. 1978, 51, 1788], early put forth that the destabilization and excited state antiaromaticity of the benzene ring should be reflected in its photochemical reactivity, yet, today these conclusions are often overlooked. Thus, in the second part of the article we review photochemical reactions of a series of benzene derivatives that to various extents should stem from the excited state antiaromatic character of the benzene ring. We argue that benzene can be viewed as a molecular "Dr Jekyll and Mr Hyde" with its largely unknown excited state antiaromaticity representing its "Mr Hyde" character. The recognition of the "Jekyll and Hyde" split personality feature of the benzene ring can likely be useful in a range of different areas.

  2. Controlling chimera states: The influence of excitable units

    NASA Astrophysics Data System (ADS)

    Isele, Thomas; Hizanidis, Johanne; Provata, Astero; Hövel, Philipp

    2016-02-01

    We explore the influence of a block of excitable units on the existence and behavior of chimera states in a nonlocally coupled ring-network of FitzHugh-Nagumo elements. The FitzHugh-Nagumo system, a paradigmatic model in many fields from neuroscience to chemical pattern formation and nonlinear electronics, exhibits oscillatory or excitable behavior depending on the values of its parameters. Until now, chimera states have been studied in networks of coupled oscillatory FitzHugh-Nagumo elements. In the present work, we find that introducing a block of excitable units into the network may lead to several interesting effects. It allows for controlling the position of a chimera state as well as for generating a chimera state directly from the synchronous state.

  3. Excited state correlations of the finite Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Pozsgay, Balázs

    2017-02-01

    We consider short range correlations in excited states of the finite XXZ and XXX Heisenberg spin chains. We conjecture that the known results for the factorized ground state correlations can be applied to the excited states too, if the so-called physical part of the construction is changed appropriately. For the ground state we derive simple algebraic expressions for the physical part; the formulas only use the ground state Bethe roots as an input. We conjecture that the same formulas can be applied to the excited states as well, if the exact Bethe roots of the excited states are used instead. In the XXZ chain the results are expected to be valid for all states (except certain singular cases where regularization is needed), whereas in the XXX case they only apply to singlet states or group invariant operators. Our conjectures are tested against numerical data from exact diagonalization and coordinate Bethe Ansatz calculations, and perfect agreement is found in all cases. In the XXX case we also derive a new result for the nearest-neighbour correlator < σ 1zσ 2z> , which is valid for non-singlet states as well. Our results build a bridge between the known theory of factorized correlations, and the recently conjectured TBA-like description for the building blocks of the construction.

  4. The preparation of nickel nanoparticles through a novel solid-state intramolecular reaction of polynuclear nickel(II) complex

    NASA Astrophysics Data System (ADS)

    Kahani, Seyed Abolghasem; Khedmati, Massumeh

    2014-08-01

    A novel solid-state reaction involving [Ni6(N2H4)6(SO4)4(OH)2(H2O)8](SO4)(H2O)10 has been used to prepare nickel nanoparticles. The reaction of [Ni6(N2H4)6(SO4)4(OH)2(H2O)8](SO4)(H2O)10 via NaOH, KOH, and/or Na2CO3 as a reactant was carried out in the solid state. The complex undergoes an intramolecular two-electron oxidation-reduction reaction at room temperature, producing metallic nickel nanoparticles (Ni1, Ni2 and Ni3). The aforementioned complex contains nickel(II) that is an oxidizing agent and also hydrazine ligand as a reducing agent. Other products produced include sodium azide and ammonia gas. The nickel metal nanoparticles were characterized using X-ray powder diffraction, scanning electron microscopy, and vibrating sample magnetometer. The synthesized nickel nanoparticles have similar morphologies; however, their particle size distributions are different.

  5. Excited-State OH Masers and Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Pihlström, Ylva M.; Fish, Vincent L.; Sjouwerman, Loránt O.; Zschaechner, Laura K.; Lockett, Philip B.; Elitzur, Moshe

    2008-03-01

    The collisionally pumped, ground-state 1720 MHz maser line of OH is widely recognized as a tracer for shocked regions and observed in star-forming regions and supernova remnants. Whereas some lines of excited states of OH have been detected and studied in star-forming regions, the subject of excited-state OH in supernova remnants—where high collision rates are to be expected—is only recently being addressed. Modeling of collisional excitation of OH demonstrates that 1720, 4765, and 6049 MHz masers can occur under similar conditions in regions of shocked gas. In particular, the 6049 and 4765 MHz masers become more significant at increased OH column densities where the 1720 MHz masers begin to be quenched. In supernova remnants, the detection of excited-state OH line maser emission could therefore serve as a probe of regions of higher column densities. Using the Very Large Array, we searched for excited-state OH in the 4.7, 7.8, 8.2, and 23.8 GHz lines in four well-studied supernova remnants with strong 1720 MHz maser emission (Sgr A East, W28, W44 and IC 443). No detections were made, at typical detection limits of around 10 mJy beam-1. The search for the 6 GHz lines were done using Effelsberg since the VLA receivers did not cover those frequencies, and are reported on in an accompanying letter (Fish and coworkers). We also cross-correlated the positions of known supernova remnants with the positions of 1612 MHz maser emission obtained from blind surveys. No probable associations were found, perhaps except in the Sgr A East region. The lack of detections of excited-state OH indicates that the OH column densities suffice for 1720 MHz inversion but not for inversion of excited-state transitions, consistent with the expected results for C-type shocks.

  6. Nature of ground and electronic excited states of higher acenes

    PubMed Central

    Yang, Yang; Yang, Weitao

    2016-01-01

    Higher acenes have drawn much attention as promising organic semiconductors with versatile electronic properties. However, the nature of their ground state and electronic excited states is still not fully clear. Their unusual chemical reactivity and instability are the main obstacles for experimental studies, and the potentially prominent diradical character, which might require a multireference description in such large systems, hinders theoretical investigations. Here, we provide a detailed answer with the particle–particle random-phase approximation calculation. The 1Ag ground states of acenes up to decacene are on the closed-shell side of the diradical continuum, whereas the ground state of undecacene and dodecacene tilts more to the open-shell side with a growing polyradical character. The ground state of all acenes has covalent nature with respect to both short and long axes. The lowest triplet state 3B2u is always above the singlet ground state even though the energy gap could be vanishingly small in the polyacene limit. The bright singlet excited state 1B2u is a zwitterionic state to the short axis. The excited 1Ag state gradually switches from a double-excitation state to another zwitterionic state to the short axis, but always keeps its covalent nature to the long axis. An energy crossing between the 1B2u and excited 1Ag states happens between hexacene and heptacene. Further energetic consideration suggests that higher acenes are likely to undergo singlet fission with a low photovoltaic efficiency; however, the efficiency might be improved if a singlet fission into multiple triplets could be achieved. PMID:27528690

  7. Nature of ground and electronic excited states of higher acenes.

    PubMed

    Yang, Yang; Davidson, Ernest R; Yang, Weitao

    2016-08-30

    Higher acenes have drawn much attention as promising organic semiconductors with versatile electronic properties. However, the nature of their ground state and electronic excited states is still not fully clear. Their unusual chemical reactivity and instability are the main obstacles for experimental studies, and the potentially prominent diradical character, which might require a multireference description in such large systems, hinders theoretical investigations. Here, we provide a detailed answer with the particle-particle random-phase approximation calculation. The (1)Ag ground states of acenes up to decacene are on the closed-shell side of the diradical continuum, whereas the ground state of undecacene and dodecacene tilts more to the open-shell side with a growing polyradical character. The ground state of all acenes has covalent nature with respect to both short and long axes. The lowest triplet state (3)B2u is always above the singlet ground state even though the energy gap could be vanishingly small in the polyacene limit. The bright singlet excited state (1)B2u is a zwitterionic state to the short axis. The excited (1)Ag state gradually switches from a double-excitation state to another zwitterionic state to the short axis, but always keeps its covalent nature to the long axis. An energy crossing between the (1)B2u and excited (1)Ag states happens between hexacene and heptacene. Further energetic consideration suggests that higher acenes are likely to undergo singlet fission with a low photovoltaic efficiency; however, the efficiency might be improved if a singlet fission into multiple triplets could be achieved.

  8. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    SciTech Connect

    Theophilou, Iris; Tassi, M.; Thanos, S.

    2014-04-28

    Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations.

  9. Lifetimes and Structure of Excited States of 73AS

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Căta-Danil, I.; Ivaşcu, M.; Mărginean, N.; Stroe, L.; Ur, C. A.; Dinu, N.

    The lifetimes of twelve low spin excited states in 73As, below 2 MeV excitation, have been measured with the DSA method in the 73Ge(p,nγ) reaction. The existing data (energy levels, electromagnetic moments, transition probabilities and branching ratios, one-nucleon transfer spectroscopic factors) are discussed in the frame of multi-shell interacting boson-fermion model calculations. A good agreement is obtained for a large number of levels.

  10. Observation of Excited State Spin Ordering under Pulsed Magnetic Field

    NASA Astrophysics Data System (ADS)

    Amaya, Kiichi; Karaki, Yoshitomo; Yamada, Norikatsu; Haseda, Taiichiro

    1981-10-01

    Spin ordering among excited levels in NaNi Acac3\\cdotbenzene is observed in the course of pulsed adiabatic magnetization with sweep rate of 105 T/sec. For initial temperatures below 1 K, dM/dt signals give the characteristic double peaks around the field of 2.11 T where the excited singlet and the upper state of the ground doublet crosses.

  11. Excitation energies of superdeformed states in the Pb isotopes

    SciTech Connect

    Wilson, A. N.; Byrne, A. P.; Dracoulis, G. D.; Davidson, P. M.; Lane, G. J.; Huebel, H.; Rossbach, D.; Schonwasser, G.; Korichi, A.; Hannachi, F.; Lopez-Martens, A.; Clark, R. M.; Fallon, P.; Macchiavelli, A. O.; Ward, D.

    2006-04-26

    Measurements of the excitation energies of superdeformed states via the observation of single-step linking transitions have now been made in three even-A Pb nuclei, with a quasicontinuum analysis providing a limit in a fourth, odd-A case. These results allow us to take the first steps towards establishing systematic trends in excitation energies and binding energies in the second minimum in Pb isotopes.

  12. Excited states of Ne isoelectronic ions: SAC-CI study

    NASA Astrophysics Data System (ADS)

    Das, A. K.; Ehara, M.; Nakatsuji, H.

    2001-01-01

    Excited states of the s, p, and d symmetries up to principal quantum number n = 4 are studied for the first eight members of Ne isoelectronic sequence (Ne to Cl7+) by the SAC-CI (symmetry-adapted-cluster configuration-interaction) method. The valence STO basis sets of Clementi et al. and the optimized excited STO are used by the STO-6G expansion method. The calculated transition energies agree well with the experimental values wherever available.

  13. Two-neutron decay of excited states of 11Li

    NASA Astrophysics Data System (ADS)

    Smith, Jenna; MoNA Collaboration

    2013-10-01

    One prominent example of a Borromean nucleus is the two-neutron halo nucleus, 11Li. All excited states of this nucleus are unbound to two-neutron decay. Many theories propose that the two valence neutrons exhibit dineutron behavior in the ground state, but it is unclear what effect such a structure would have on the decay of the excited states. We have recently completed an experiment designed to study the decay of one of these excited states. Unbound 11Li was populated via a two-proton knockout from 13B. The two emitted neutrons were detected with the Modular Neutron Array (MoNA) and the Large-area multi-Institutional Scintillator Array (LISA) in coincidence with the daughter fragment, 9Li. Preliminary results will be discussed.

  14. Dynamics and spectroscopy of CH₂OO excited electronic states.

    PubMed

    Kalinowski, Jaroslaw; Foreman, Elizabeth S; Kapnas, Kara M; Murray, Craig; Räsänen, Markku; Gerber, R Benny

    2016-04-28

    The excited states of the Criegee intermediate CH2OO are studied in molecular dynamics simulations using directly potentials from multi-reference perturbation theory (MR-PT2). The photoexcitation of the species is simulated, and trajectories are propagated in time on the excited state. Some of the photoexcitation events lead to direct fragmentation of the molecule, but other trajectories describe at least several vibrations in the excited state, that may terminate by relaxation to the ground electronic state. Limits on the role of non-adiabatic contributions to the process are estimated by two different simulations, one that forces surface-hopping at potential crossings, and another that ignores surface hopping altogether. The effect of non-adiabatic transitions is found to be small. Spectroscopic implications and consequences for the interpretation of experimental results are discussed.

  15. The Chemical Production of Excited State Moleculea.

    DTIC Science & Technology

    2014-09-26

    reverse side It necessary and identify by block number) dioxetanes chemilumuniscence amino peroxides ’jto Most of e search deals with the effect of...n, state (vs carbonyl formation and attempts to trap the proposed 1,4-dioxybiradica intermediate from thermolysis of dioxetanes. Some amino peroxides ...ring peroxide in order to distinguish between concerted vs stepwise decomposition routes. This study was pertinent to the mechanism of dioxetane (a

  16. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    NASA Astrophysics Data System (ADS)

    Ramon, John Glenn Santos

    The potential for using conducting polymers as the active material in optoelectronic devices has come to fruition in the past few years. Understanding the fundamental photophysics behind their operations points to the significant role played by the polymer interface in their performance. Current device architectures involve the use of bulk heterojunctions which intimately blend the donor and acceptor polymers to significantly increase not only their interfacial surface area but also the probability of exciton formation within the vicinity of the interface. In this dissertation, we detail the role played by the interface on the behavior and performance of bulk heterojunction systems. First, we explore the relation between the exciton binding energy to the band offset in determining device characteristics. As a general rule, when the exciton binding energy is greater than the band offset, the exciton remains the lowest energy excited state leading to efficient light-emitting properties. On the other hand, if the offset is greater than the binding energy, charge separation becomes favorable leading to better photovoltaic behavior. Here, we use a Wannier function, configuration interaction based approach to examine the essential excited states and predict the vibronic absorption and emission spectra of the PPV/BBL, TFB/F8BT and PFB/F8BT heterojunctions. Our results underscore the role of vibrational relaxation in the formation of charge-transfer states following photoexcitation. In addition, we look at the relaxation dynamics that occur upon photoexcitation. For this, we adopt the Marcus-Hush semiclassical method to account for lattice reorganization in the calculation of the interconversion rates in TFB/F8BT and PFB/F8BT. We find that, while a tightly bound charge-transfer state (exciplex) remains the lowest excited state, a regeneration pathway to the optically active lowest excitonic state in TFB/F8BT is possible via thermal repopulation from the exciplex. Finally

  17. Circularly polarized luminescence spectroscopy reveals low-energy excited states and dynamic localization of vibronic transitions in CP43.

    PubMed

    Hall, Jeremy; Renger, Thomas; Picorel, Rafael; Krausz, Elmars

    2016-01-01

    Circularly polarized luminescence (CPL) spectroscopy is an established but relatively little-used technique that monitors the chirality of an emission. When applied to photosynthetic pigment assemblies, we find that CPL provides sensitive and detailed information on low-energy exciton states, reflecting the interactions, site energies and geometries of interacting pigments. CPL is the emission analog of circular dichroism (CD) and thus spectra explore the optical activity only of fluorescent states of the pigment-protein complex and consequently the nature of the lowest-energy excited states (trap states), whose study is a critical area of photosynthesis research. In this work, we develop the new approach of temperature-dependent CPL spectroscopy, over the 2-120 K temperature range, and apply it to the CP43 proximal antenna protein of photosystem II. Our results confirm strong excitonic interactions for at least one of the two well-established emitting states of CP43 named "A" and "B". Previous structure-based models of CP43 spectra are evaluated in the light of the new CPL data. Our analysis supports the assignments of Shibata et al. [Shibata et al. J. Am. Chem. Soc. 135 (2013) 6903-6914], particularly for the highly-delocalized B-state. This state dominates CPL spectra and is attributed predominantly to chlorophyll a's labeled Chl 634 and Chl 636 (alternatively labeled Chl 43 and 45 by Shibata et al.). The absence of any CPL intensity in intramolecular vibrational sidebands associated with the delocalized "B" excited state is attributed to the dynamic localization of intramolecular vibronic transitions.

  18. Lifetime of the Excited State In Vivo

    PubMed Central

    Mar, T.; Govindjee; Singhal, G. S.; Merkelo, H.

    1972-01-01

    Using a mode-locked laser (λ, 632.8 nm), fluorescence decay of chlorophyll (Chl) a in the green alga Chlorella pyrenoidosa, the red alga Porphyridium cruentum, and the blue-green alga Anacystis nidulans was measured by the phase-shift method under conditions when photosynthesis was not operative (3-(3,4-dichlorophenyl)-1,1-dimethylurea [DCMU] poisoning, or cooling to 77°K). In the presence of 10-5 M DCMU, the lifetime of Chl a fluorescence (τ) at room temperature is about 1.7 nsec in Chlorella, 1.0 nsec in Porphyridium, and 0.7 nsec in Anacystis. At 77°K, τ is 1.4 nsec (for fluorescence at about 685 nm, F-685) and 2.3 nsec (for F-730) in Chlorella, 0.9 nsec (F-685) and 1.2 nsec (F-730) in Porphyridium, and 0.8 nsec (F-685 and F-730) in Anacystis. From the above measurement, and the assumption that τ0 (the intrinsic fluorescence lifetime) for Chl a in all three algae is 15.2 nsec, we have calculated the rate constants of radiationless transition (that includes energy transfer to weakly fluorescent system I) processes competing with fluorescence at room temperature to be about 5 × 108 sec-1 in Chlorella, 9 × 108 sec-1 in Porphyridium, and 13 × 108 sec-1 in Anacystis. At 77°K, this rate constant for Chl a that fluoresces at 685 nm remains, in the first approximation, the same as at room temperature. From the τ data, the rate constant for the trapping of excitation energy is calculated to be about 1.2 × 109 sec-1 for Chlorella, 2 × 109 sec-1 for Porphyridium, and 2 × 109 sec-1 for Anacystis. The efficiency of trapping is calculated to be about 66% (Chlorella), 68% (Porphyridium), and 60% (Anacystis). (It is recognized that variations in the above values are to be expected if algae grown under different conditions are used for experimentation.) The maximum quantum yield of Chl a fluorescence for system II (λ, 632.8 nm), calculated from τ measurements, is about 10% in Chlorella, 6-7% in Porhyridium, and 5% in Anacystis under conditions when photosynthesis

  19. Excited State Chemistry of Halogen Azides.

    DTIC Science & Technology

    1982-08-01

    a. CONTRACT OR GRANT "UMSERas A.T. Pritt, Jr. F49620-79-C-0053 S. PERF004IIN ORGANIZATION NAME AND ADDRESS 10. PROGRAM EL EMEN T. PROJECT. T ASK...intensities of transitions to the Q = 0+ and a = 1± states in NBr do not agree with calculations based on values of rotational and spin-rotational...and in our own laboratory.12 As is the case for other covalently bound azides, however, it is probable that the strongest absorptions in these

  20. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    SciTech Connect

    Niu, B.

    1992-09-01

    High resolution He I[alpha] photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a soft'' mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  1. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    SciTech Connect

    Niu, B.

    1992-09-01

    High resolution He I{alpha} photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a ``soft`` mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  2. SW Sextantis in an excited, low state

    NASA Astrophysics Data System (ADS)

    Groot, P. J.; Rutten, R. G. M.; van Paradijs, J.

    2001-03-01

    We present low-resolution spectrophotometric optical observations of the eclipsing nova-like cataclysmic variable SW Sex, the prototype of the SW Sex stars. We observed the system when it was in an unusual low state. The spectrum is characterized by the presence of strong Heii and Civ emission lines as well as the normal single peaked Balmer emission lines. The radial temperature profile of the disk follows the expected T~ R-3/4 only in the outer parts and flattens off inside 0.5 times the white dwarf Roche lobe radius. The single peaked emission lines originate in a region above the plane of the disk, at the position of the hot spot.

  3. Excited-state dynamics of astaxanthin aggregates

    NASA Astrophysics Data System (ADS)

    Fuciman, Marcel; Durchan, Milan; Šlouf, Václav; Keşan, Gürkan; Polívka, Tomáš

    2013-05-01

    Astaxanthin forms three types of aggregates in hydrated dimethyl sulfoxide (DMSO). In DMSO/water ratio of 1:1, a red-shifted J-aggregate with maximum at 570 nm is generated, while a ratio of 1:9 produces blue-shifted H-aggregates with peaks at 386 nm (H1) and 460 nm (H2). Monomeric astaxanthin in DMSO has an S1 lifetime of 5.3 ps, but a long-lived (33 ps) S∗ signal was also identified. Aggregation changes the S1 lifetimes to 17 ps (H1), 30 ps (H2), and 14 ps (J). Triplet state of astaxanthin, most likely generated via singlet homofission, was observed in H1 and H2 aggregates.

  4. Excited state entanglement in homogeneous fermionic chains

    NASA Astrophysics Data System (ADS)

    Ares, F.; Esteve, J. G.; Falceto, F.; Sánchez-Burillo, E.

    2014-06-01

    We study the Rényi entanglement entropy of an interval in a periodic fermionic chain for a general eigenstate of a free, translational invariant Hamiltonian. In order to analytically compute the entropy we use two technical tools. The first is used to logarithmically reduce the complexity of the problem and the second to compute the Rényi entropy of the chosen subsystem. We introduce new strategies to perform the computations, derive new expressions for the entropy of these general states and show the perfect agreement of the analytical computations and the numerical outcome. Finally we discuss the physical interpretation of our results and generalize them to compute the entanglement entropy for a fragment of a fermionic ladder.

  5. Quenching of excited triplet states by dissolved natural organic matter.

    PubMed

    Wenk, Jannis; Eustis, Soren N; McNeill, Kristopher; Canonica, Silvio

    2013-11-19

    Excited triplet states of aromatic ketones and quinones are used as proxies to assess the reactivity of excited triplet states of the dissolved organic matter ((3)DOM*) in natural waters. (3)DOM* are crucial transients in environmental photochemistry responsible for contaminant transformation, production of reactive oxygen species, and potentially photobleaching of DOM. In recent photochemical studies aimed at clarifying the role of DOM as an inhibitor of triplet-induced oxidations of organic contaminants, aromatic ketones have been used in the presence of DOM, and the question of a possible interaction between their excited triplet states and DOM has emerged. To clarify this issue, time-resolved laser spectroscopy was applied to measure the excited triplet state quenching of four different model triplet photosensitizers induced by a suite of DOM from various aquatic and terrestrial sources. While no quenching for the anionic triplet sensitizers 4-carboxybenzophenone (CBBP) and 9,10-anthraquinone-2,6-disulfonic acid (2,6-AQDS) was detected, second-order quenching rate constants with DOM for the triplets of 2-acetonaphthone (2AN) and 3-methoxyacetophenone (3MAP) in the range of 1.30-3.85 × 10(7) L mol(C)(-1) s(-1) were determined. On the basis of the average molecular weight of DOM molecules, the quenching for these uncharged excited triplet molecules is nearly diffusion-controlled, but significant quenching (>10%) in aerated water is not expected to occur below DOM concentrations of 22-72 mg(C) L(-1).

  6. Exploration of Excited State Deactivation Pathways of Adenine Monohydrates.

    PubMed

    Chaiwongwattana, Sermsiri; Sapunar, Marin; Ponzi, Aurora; Decleva, Piero; Došlić, Nađa

    2015-10-29

    Binding of a single water molecule has a dramatic effect on the excited state lifetime of adenine. Here we report a joint nonadiabatic dynamics and reaction paths study aimed at understanding the sub-100 fs lifetime of adenine in the monohydrates. Our nonadiabatic dynamics simulations, performed using the ADC(2) electronic structure method, show a shortening of the excited state lifetime in the monohydrates with respect to bare adenine. However, the computed lifetimes were found to be significantly longer that the observed one. By comparing the reaction pathways of several excited state deactivation processes in adenine and adenine monohydrates, we show that electron-driven proton transfer from water to nitrogen atom N3 of the adenine ring may be the process responsible for the observed ultrafast decay. The inaccessibility of the electron-driven proton transfer pathway to trajectory-based nonadiabatic dynamics simulation is discussed.

  7. Polymethine and squarylium molecules with large excited-state absorption

    NASA Astrophysics Data System (ADS)

    Lim, Jin Hong; Przhonska, Olga V.; Khodja, Salah; Yang, Sidney; Ross, T. S.; Hagan, David J.; Van Stryland, Eric W.; Bondar, Mikhail V.; Slominsky, Yuriy L.

    1999-07-01

    We study nonlinear absorption in a series of ten polymethine dyes and two squarylium dyes using Z-scan, pump-probe and optical limiting experiments. Both picosecond and nanosecond characterization were performed at 532 nm, while picosecond measurements were performed using an optical parametric oscillator (OPO) from 440 to 650 nm. The photophysical parameters of these dyes including cross sections and excited-state lifetimes are presented both in solution in ethanol and in an elastopolymeric material, polyurethane acrylate (PUA). We determine that the dominant nonlinearity in all these dyes is large excited-state absorption (ESA), i.e. reverse saturable absorption. For several of the dyes we measure a relatively large ground-state absorption cross section, σ01, which effectively populates an excited state that possesses an extremely large ESA cross section, σ12. The ratios of σ12/ σ01 are the largest we know of, up to 200 at 532 nm, and lead to very low thresholds for optical limiting. However, the lifetimes of the excited state are of the order of 1 ns in ethanol, which is increased to up to 3 ns in PUA. This lifetime is less than optimum for sensor protection applications for Q-switched inputs, and intersystem crossing times for these molecules are extremely long, so that triplet states are not populated. These parameters show a significant improvement over those of the first set of this class of dyes studied and indicate that further improvement of the photophysical parameters may be possible. From these measurements, correlations between molecular structure and nonlinear properties are made. We propose a five-level, all-singlet state model, which includes reorientation processes in the first excited state. This includes a trans- cis conformational change that leads to the formation of a new state with a new molecular configuration which is also absorbing but can undergo a light-induced degradation at high inputs.

  8. Two-Mode Excited Entangled Coherent State: Nonclassicality and Entanglement

    NASA Astrophysics Data System (ADS)

    Zhang, Hao-Liang; Wu, Jia-Ni; Liu, Cun-Jin; Hu, Yin-Quan; Hu, Li-Yun

    2017-03-01

    Two-mode excited entangled coherent states (TME-ECSs) are introduced by operating repeatedly the photon-excited operator on the ECSs. It is shown that the normalization constant is related to the product of two Laguerre polynomials. The influence of the operation on nonclassical behaviour of the ECSs is investigated in terms of cross-correlation function, anti-bunching effect and the negativity of Wigner function, which show that nonclassical properties can be enhanced. In addition, inseparability properties of the TME-ECSs are discussed by using Bell inequality and concurrence. It is found that the degree of quantum entanglement of even ECSs increases with the increase of the total excited photon number, and the violation of Bell inequality can be present for both even and odd case only when the total excited photon numbers are even and odd, respectively.

  9. State-Selective Excitation of Quantum Systems via Geometrical Optimization.

    PubMed

    Chang, Bo Y; Shin, Seokmin; Sola, Ignacio R

    2015-09-08

    We lay out the foundations of a general method of quantum control via geometrical optimization. We apply the method to state-selective population transfer using ultrashort transform-limited pulses between manifolds of levels that may represent, e.g., state-selective transitions in molecules. Assuming that certain states can be prepared, we develop three implementations: (i) preoptimization, which implies engineering the initial state within the ground manifold or electronic state before the pulse is applied; (ii) postoptimization, which implies engineering the final state within the excited manifold or target electronic state, after the pulse; and (iii) double-time optimization, which uses both types of time-ordered manipulations. We apply the schemes to two important dynamical problems: To prepare arbitrary vibrational superposition states on the target electronic state and to select weakly coupled vibrational states. Whereas full population inversion between the electronic states only requires control at initial time in all of the ground vibrational levels, only very specific superposition states can be prepared with high fidelity by either pre- or postoptimization mechanisms. Full state-selective population inversion requires manipulating the vibrational coherences in the ground electronic state before the optical pulse is applied and in the excited electronic state afterward, but not during all times.

  10. Accurate Excited State Geometries within Reduced Subspace TDDFT/TDA.

    PubMed

    Robinson, David

    2014-12-09

    A method for the calculation of TDDFT/TDA excited state geometries within a reduced subspace of Kohn-Sham orbitals has been implemented and tested. Accurate geometries are found for all of the fluorophore-like molecules tested, with at most all valence occupied orbitals and half of the virtual orbitals included but for some molecules even fewer orbitals. Efficiency gains of between 15 and 30% are found for essentially the same level of accuracy as a standard TDDFT/TDA excited state geometry optimization calculation.

  11. First-principles Calculation of Excited State Spectra in QCD

    SciTech Connect

    Jozef Dudek,Robert Edwards,Michael Peardon,David Richards,Christopher Thomas

    2011-05-01

    Recent progress at understanding the excited state spectra of mesons and baryons is described. I begin by outlining the application of the variational method to compute the spectrum of QCD, and then present results for the excited meson spectrum, with continuum quantum numbers of the states clearly delineated. I emphasise the need to extend the calculation to encompass multi-hadron contributions, and describe a recent calculation of the I=2 pion-pion energy-dependent phase shifts as a precursor to the study of channels with resonant behavior. I conclude with recent results for the low lying baryon spectrum, and the prospects for future calculations.

  12. 2{sup +} excitation of the {sup 12}C Hoyle state

    SciTech Connect

    Freer, M.; Fujita, H.; Carter, J.; Usman, I.; Buthelezi, Z.; Foertsch, S. V.; Neveling, R.; Perez, S. M.; Smit, F. D.; Fearick, R. W.; Papka, P.; Swartz, J. A.

    2009-10-15

    A high-energy-resolution magnetic spectrometer has been used to measure the {sup 12}C excitation energy spectrum to search for the 2{sup +} excitation of the 7.65 MeV, 0{sup +} Hoyle state. By measuring in the diffractive minimum of the angular distribution for the broad 0{sup +} background, evidence is found for a possible 2{sup +} state at 9.6(1) MeV with a width of 600(100) keV. The implications for the {sup 8}Be+{sup 4}He reaction rate in stellar environments are discussed.

  13. Resonant photoelectron imaging of deprotonated uracil anion via vibrational levels of a dipole-bound excited state

    NASA Astrophysics Data System (ADS)

    Huang, Dao-Ling; Liu, Hong-Tao; Ning, Chuan-Gang; Dau, Phuong Diem; Wang, Lai-Sheng

    2017-01-01

    We report both non-resonant and resonant high-resolution photoelectron imaging of cryogenically-cooled deprotonated uracil anions, N1[U-H]-, via vibrational levels of a dipole-bound excited state. Photodetachment spectroscopy of N1[U-H]- was reported previously (Liu et al., 2014), in which forty-six vibrational autodetachment resonances due to the excited dipole-bound state were observed. By tuning the detachment laser to the vibrational levels of the dipole-bound state, we obtained high-resolution resonant photoelectron spectra, which are highly non-Franck-Condon. The resonant photoelectron spectra reveal many Franck-Condon inactive vibrational modes, significantly expanding the capability of photoelectron spectroscopy. A total of twenty one fundamental vibrational frequencies for the N1[U-H]rad radical are obtained, including all eight low-frequency out-of-plane modes, which are forbidden in non-resonant photoelectron spectroscopy. Furthermore, the breakdown of the Δv = -1 propensity rule is observed for autodetachment from many vibrational levels of the dipole-bound state, due to anharmonic effects. In particular, we have observed intramolecular electron rescattering in a number of resonant photoelectron spectra, leading to excitations of low-frequency vibrational modes. Further theoretical study may be warranted, in light of the extensive experimental data and new observations, to provide further insight into the autodetachment dynamics and vibronic coupling in dipole-bound states, as well as electron molecule interactions.

  14. Effect of the solvent environment on the spectroscopic properties and dynamics of the lowest excited states of carotenoids

    SciTech Connect

    Frank, H.A.; Bautista, J.A.; Josue, J.; Pendon, Z.; Hiller, R.G.; Sharples, F.P.; Gosztola, D.; Wasielewski, M.R.

    2000-05-11

    The spectroscopic properties and dynamics of the lowest excited singlet states of peridinin, fucoxanthin, neoxanthin, uriolide acetate, spheroidene, and spheroidenone in several different solvents have been studied by steady-state absorption and fast-transient optical spectroscopic techniques. Peridinin, fucoxanthin, uriolide acetate, and spheroidenone, which contain carbonyl functional groups in conjugation with the carbon-carbon {pi}-electron system, display broader absorption spectral features and are affected more by the solvent environment than neoxanthin and spheroidene, which do not contain carbonyl functional groups. The possible sources of the spectral broadening are explored by examining the absorption spectra at 77 K in glassy solvents. Also, carotenoids which contain carbonyls have complex transient absorption spectra and show a pronounced dependence of the excited singlet state lifetime on the solvent environment. It is postulated that these effects are related to the presence of an intramolecular charge transfer state strongly coupled to the S{sub 1} (2{sup 1}A{sub g}) excited singlet state. Structural variations in the series of carotenoids studied here make it possible to focus on the general molecular features that control the spectroscopic and dynamic properties of carotenoids.

  15. Formation of metastable excited states during sputtering of transition metals

    SciTech Connect

    Wucher, A.; Sroubek, Z.

    1997-01-01

    We propose a simple model which treats the formation of metastable excited neutral atoms during sputtering of a transition metal as a two step process. First, the energy deposited into the electronic system of the solid by electronic energy losses of all moving particles in the collision cascade is considered to lead to a locally altered equilibrium electronic state of the solid. It is found that this step is dominated by collective interaction with the conduction band electrons rather than by electron promotion in binary atom-atom collisions. Second, sputtered excited atoms are assumed to be formed by resonant neutralization of excited ions (reflecting the altered equilibrium state) while crossing the surface. It is shown that this model explains the total as well as the velocity dependent excitation probability observed in recent experiments on sputtered neutral silver atoms, which cannot be understood in terms of existing theories describing the formation of excited states in sputtering. {copyright} {ital 1996} {ital The American Physical Society}

  16. Two-color excited-state absorption imaging of melanins

    NASA Astrophysics Data System (ADS)

    Fu, Dan; Ye, Tong; Matthews, Thomas E.; Yurtsever, Gunay; Hong, Lian; Simon, John D.; Warren, Warren S.

    2007-02-01

    We have demonstrated a new method for imaging melanin with two-color excited state absorption microscopy. If one of two synchronized mode-locked pulse trains at different colors is intensity modulated, the modulation transfers to the other pulse train when nonlinear absorption takes place in the medium. We can easily measure 10 -6 absorption changes caused by either instantaneous two-photon absorption or relatively long lived excited state absorption with a RF lock-in amplifier. Eumelanin and pheomelanin exhibit similar excited state dynamics. However, their difference in excited state absorption and ground state absorption leads to change in the phase of the transient absorption signal. Scanning microscopic imaging is performed with B16 cells, melanoma tissue to demonstrate the 3D high resolution imaging capability. Different melanosome samples are also imaged to illustrate the differences between eumelanin and pheomelanin signals. These differences could enable us to image their respective distribution in tissue samples and provide us with valuable information in diagnosing malignant transformation of melanocytes.

  17. Internal conversion from excited electronic states of 229Th ions

    NASA Astrophysics Data System (ADS)

    Bilous, Pavlo V.; Kazakov, Georgy A.; Moore, Iain D.; Schumm, Thorsten; Pálffy, Adriana

    2017-03-01

    The process of internal conversion from excited electronic states is investigated theoretically for the case of the vacuum-ultraviolet nuclear transition of 229Th. Due to the very low transition energy, the 229Th nucleus offers the unique possibility to open the otherwise forbidden internal conversion nuclear decay channel for thorium ions via optical laser excitation of the electronic shell. We show that this feature can be exploited to investigate the isomeric state properties via observation of internal conversion from excited electronic configurations of +Th and Th+2 ions. A possible experimental realization of the proposed scenario at the nuclear laser spectroscopy facility IGISOL in Jyväskylä, Finland, is discussed.

  18. Excited state tautomerization of 7-azaindole catalyzed by pyrazole

    NASA Astrophysics Data System (ADS)

    Karmakar, Shreetama; Mukherjee, Moitrayee; Chakraborty, Tapas

    2013-03-01

    Pyrazole, a five member cyclic azole, is reported here as an efficient catalyst for excited state tautomeric conversion of 7-azaindole. In hydrocarbon solution the two compounds efficiently form a doubly hydrogen-bonded 1:1 cyclic complex whose association constant value is found comparable with 7-azaindole dimerization constant, and according to B3LYP/6-311G++∗∗ calculation the binding energies of the complex and dimer are nearly same. In the excited state (S1), the TDDFT calculation predicts tautomer of the complex to be 13.4 kcal/mol more stable than normal form. Fluorescence spectra reveal that upon UV excitation the complex emits exclusively from the tautomeric form.

  19. Atomistic Study of Intramolecular Interactions in the Closed-State Channelrhodopsin Chimera, C1C2.

    PubMed

    VanGordon, Monika R; Gyawali, Gaurav; Rick, Steven W; Rempe, Susan B

    2017-03-14

    Channelrhodopsins (ChR1 and ChR2) are light-activated ion channels that enable photomobility of microalgae from the genus Chlamydomonas. Despite common use of ChR2 in optogenetics for selective control and monitoring of individual neurons in living tissue, the protein structures remain unresolved. Instead, a crystal structure of the ChR chimera (C1C2), an engineered combination of helices I-V from ChR1, without its C-terminus, and helices VI-VII from ChR2, is used as a template for ChR2 structure prediction. Surprisingly few studies have focused in detail on the chimera. Here, we present atomistic molecular dynamics studies of the closed-state, non-conducting C1C2 structure and protonation states. A new and comprehensive characterization of interactions in the vicinity of the gating region of the pore, namely between residues E90, E123, D253, N258, and the protonated Schiff base (SBH), as well as nearby residues K93, T127, and C128, indicates that the equilibrated C1C2 structure with both E123 and D253 deprotonated closely resembles the available crystal structure. In agreement with experimental studies on C1C2, no direct or water-mediated hydrogen bonding between an aspartate and a cysteine (D156-O…S-C128) that would define a direct-current gate in C1C2 was observed in our simulations. Finally, we show that a single hydrogen bond between a glutamic acid (E90) and an asparagine (N258) residue suffices to keep the gate of C1C2 closed and to disable free water and ion passage through the putative pore, in contrast to the double bond proposed earlier for ChR2. We anticipate that this work will provide context for studies of both the gating process and water and ion transport in C1C2, and will spark interest in further experimental studies on the chimera. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Solvent-dependent excited-state hydrogen transfer and intersystem crossing in 2-(2'-hydroxyphenyl)-benzothiazole.

    PubMed

    Aly, Shawkat M; Usman, Anwar; AlZayer, Maytham; Hamdi, Ghada A; Alarousu, Erkki; Mohammed, Omar F

    2015-02-12

    The excited-state intramolecular hydrogen transfer (ESIHT) of 2-(2'-hydroxyphenyl) benzothiazole (HBT) has been investigated in a series of nonpolar, polar aprotic, and polar protic solvents. A variety of state-of-the-art experimental methods were employed, including femto- and nanosecond transient absorption and fluorescence upconversion spectroscopy with broadband capabilities. We show that the dynamics and mechanism of ESIHT of the singlet excited HBT are strongly solvent-dependent. In nonpolar solvents, the data demonstrate that HBT molecules adopt a closed form stabilized by O-H···N chelated hydrogen bonds with no twisting angle, and the photoinduced H transfer occurs within 120 fs, leading to the formation of a keto tautomer. In polar solvents, owing to dipole-dipole cross talk and hydrogen bonding interactions, the H transfer process is followed by ultrafast nonradiative deactivation channels, including ultrafast internal conversion (IC) and intersystem crossing (ISC). This is likely to be driven by the twisting motion around the C-C bond between the hydroxyphenyl and thiazole moieties, facilitating the IC back to the enol ground state or to the keto triplet state. In addition, our femtosecond time-resolved fluorescence experiments indicate, for the first time, that the lifetime of the enol form in ACN is approximately 280 fs. This observation indicates that the solvent plays a crucial role in breaking the H bond and deactivating the excited state of the HBT. Interestingly, the broadband transient absorption and fluorescence up-conversion data clearly demonstrate that the intermolecular proton transfer from the excited HBT to the DMSO solvent is about 190 fs, forming the HBT anion excited state.

  1. Direct Lifetime Measurements of the Excited States in 72Ni

    NASA Astrophysics Data System (ADS)

    Kolos, K.; Miller, D.; Grzywacz, R.; Iwasaki, H.; Al-Shudifat, M.; Bazin, D.; Bingham, C. R.; Braunroth, T.; Cerizza, G.; Gade, A.; Lemasson, A.; Liddick, S. N.; Madurga, M.; Morse, C.; Portillo, M.; Rajabali, M. M.; Recchia, F.; Riedinger, L. L.; Voss, P.; Walters, W. B.; Weisshaar, D.; Whitmore, K.; Wimmer, K.; Tostevin, J. A.

    2016-03-01

    The lifetimes of the first excited 2+ and 4+ states in 72>Ni were measured at the National Superconducting Cyclotron Laboratory with the recoil-distance Doppler-shift method, a model-independent probe to obtain the reduced transition probability. Excited states in 72Ni were populated by the one-proton knockout reaction of an intermediate energy 73Cu beam. γ -ray-recoil coincidences were detected with the γ -ray tracking array GRETINA and the S800 spectrograph. Our results provide evidence of enhanced transition probability B (E 2 ;2+→0+) as compared to 68Ni, but do not confirm the trend of large B (E 2 ) values reported in the neighboring isotope 70Ni obtained from Coulomb excitation measurement. The results are compared to shell model calculations. The lifetime obtained for the excited 41+ state is consistent with models showing decay of a seniority ν =4 , 4+ state, which is consistent with the disappearance of the 8+ isomer in 72Ni.

  2. Tuning ground states and excitations in complex electronic materials

    SciTech Connect

    Bishop, A.R.

    1996-09-01

    Modern electronic materials are characterized by a great variety of broken-symmetry ground states and excitations. Their control requires understanding and tuning underlying driving forces of spin-charge-lattice coupling, critical to macroscopic properties and applications. We report representative model calculations which demonstrate some of the richness of the phenomena and the challenges for successful microscopic modeling.

  3. Suppression of excited-state absorption in laser crystals

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Elena; Kolesov, Roman; Kocharovskaya, Olga

    2004-10-01

    Currently, a lot of experimental effort in solid-state optics is devoted to searching for laser materials suitable for tunable lasing, primarily in UV and VUV spectral regions. Researchers mainly focus on optical crystals doped with either transition metal or rare-earth ions. The latter ones doped into wide bandgap dielectric crystals have spectrally broad vibronic emission bands associated with 4fn-15d â" 4fn interconfigurational transitions, whose energies lie mostly in UV and VUV regions of the spectrum. The transitions are electric-dipole-allowed, therefore have large absorption and emission cross-sections, and are promising for efficient tunable laser action. However, in almost all promising crystals laser action in UV and VUV is hindered or completely prohibited due to excited-state absorption (ESA), i.e. absorption from metastable laser levels to higher-energy states, which occurs at emission or/and pump wavelengths. A method of suppression of losses due to excited-state absorption (ESA) in laser crystals is proposed, based on a well-known phenomenon of electromagnetically induced transparency (EIT). Absorption from a populated excited electronic state can be reduced under the action of an additional driving coherent field, resonantly coupling the terminal state of ESA to some intermediate discrete state.

  4. Multiparticle configurations of excited states in 155Lu

    NASA Astrophysics Data System (ADS)

    Carroll, R. J.; Hadinia, B.; Qi, C.; Joss, D. T.; Page, R. D.; Uusitalo, J.; Andgren, K.; Cederwall, B.; Darby, I. G.; Eeckhaudt, S.; Grahn, T.; Gray-Jones, C.; Greenlees, P. T.; Jones, P. M.; Julin, R.; Juutinen, S.; Leino, M.; Leppänen, A.-P.; Nyman, M.; Pakarinen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Seweryniak, D.; Simpson, J.

    2016-12-01

    Excited states in the neutron-deficient N =84 nuclide 155Lu have been populated by using the 102Pd(58Ni,α p ) reaction. The 155Lu nuclei were separated by using the gas-filled recoil ion transport unit (RITU) separator and implanted into the Si detectors of the gamma recoil electron alpha tagging (GREAT) spectrometer. Prompt γ -ray emissions measured at the target position using the JUROGAM Ge detector array were assigned to 155Lu through correlations with α decays measured in GREAT. Structures feeding the (11 /2-) and (25 /2-)α -decaying states have been revised and extended. Shell-model calculations have been performed and are found to reproduce the excitation energies of several of the low-lying states observed to within an average of 71 keV. In particular, the seniority inversion of the 25 /2- and 27 /2- states is reproduced.

  5. Excited-state quantum phase transition in the Rabi model

    NASA Astrophysics Data System (ADS)

    Puebla, Ricardo; Hwang, Myung-Joong; Plenio, Martin B.

    2016-08-01

    The Rabi model, a two-level atom coupled to a harmonic oscillator, can undergo a second-order quantum phase transition (QPT) [M.-J. Hwang et al., Phys. Rev. Lett. 115, 180404 (2015), 10.1103/PhysRevLett.115.180404]. Here we show that the Rabi QPT accompanies critical behavior in the higher-energy excited states, i.e., the excited-state QPT (ESQPT). We derive analytic expressions for the semiclassical density of states, which show a logarithmic divergence at a critical energy eigenvalue in the broken symmetry (superradiant) phase. Moreover, we find that the logarithmic singularities in the density of states lead to singularities in the relevant observables in the system such as photon number and atomic polarization. We corroborate our analytical semiclassical prediction of the ESQPT in the Rabi model with its numerically exact quantum mechanical solution.

  6. Electronic spectra and excited-state dynamics of 4-fluoro-N,N-dimethylaniline

    NASA Astrophysics Data System (ADS)

    Fujiwara, Takashige; Reichardt, Christian; Aaron Vogt, R.; Crespo-Hernández, Carlos E.; Zgierski, Marek Z.; Lim, Edward C.

    2013-10-01

    Concerted ultrafast time-resolved spectroscopic experiments and ab initio computational (TDDFT) studies of the electronic transitions of 4-fluoro-N,N-dimethylaniline (FDMA) have been performed to investigate the mechanism of photo-induced intramolecular charge transfer (ICT). The compound FDMA shows dual fluorescence from a ππ∗ state and a closely-lying twisted intramolecular charge transfer (TICT) state in both n-hexane and acetonitrile. The very similar lifetimes observed for the two emission bands indicate that the ππ∗ and the TICT states are effectively in thermal equilibrium at room temperature.

  7. Direct excitation of butterfly states in Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Lippe, Carsten; Niederpruem, Thomas; Thomas, Oliver; Eichert, Tanita; Ott, Herwig

    2016-05-01

    Since their first theoretical prediction Rydberg molecules have become an increasing field of research. These exotic states originate from the binding of a ground state atom in the electronic wave function of a highly-excited Rydberg atom mediated by a Fermi contact type interaction. A special class of long-range molecular states, the butterfly states, were first proposed by Greene et al.. These states arise from a shape resonance in the p-wave scattering channel of a ground state atom and a Rydberg electron and are characterized by an electron wavefunction whose density distribution resembles the shape of a butterfly. We report on the direct observation of deeply bound butterfly states of Rydberg molecules of 87 Rb. The butterfly states are studied by high resolution spectroscopy of UV-excited Rydberg molecules. We find states bound up to - 50 GHz from the 25 P1/2 , F = 1 state, corresponding to binding lengths of 50a0 to 500a0 and with permanent electric dipole moments of up to 500 Debye. This distinguishes the observed butterfly states from the previously observed long range Rydberg molecules in rubidium.

  8. Excited States of the Diatomic Molecule CrHe

    NASA Astrophysics Data System (ADS)

    Pototschnig, Johann V.; Ratschek, Martin; Hauser, Andreas W.; Ernst, Wolfgang E.

    2013-06-01

    Chromium (Cr) atoms embedded in superfluid helium nanodroplets (He_N) have been investigated by laser induced fluorescence, beam depletion and resonant two-photon ionization spectroscopy in current experiments at our institute. Cr is found to reside inside the He_N in the a^7S ground state. Two electronically excited states, z^7P and y^7P, are involved in a photoinduced ejection process which allowed us to study Fano resonances in the photoionisation spectra The need for a better understanding of the experimental observations triggered a theoretical approach towards the computation of electronically excited states via high-level methods of computational chemistry. Two well-established, wave function-based methods, CASSCF and MRCI, are combined to calculate the potential energy curves for the three states involved. The character of the two excited states z^7P and y^7P turns out to be significantly different. Theory predicts the ejection of the Cr atom in the case of an y^7P excitation as was observed experimentally. The quasi-inert helium environment is expected to weaken spin selection rules, allowing a coupling between different spin states especially during the ejection process. We therefore extend our theoretical analysis to the lowest state in the triplet- and quintet- manifold. Most of these alternative states show very weak bonding of only a few wn. A. Kautsch, M. Hasewend, M. Koch and W. E. Ernst, Phys. Rev. A 86, 033428 (2012). A. Kautsch, M. Koch and W. E. Ernst, J. Phys. Chem. A, accepted, doi:10.1021/jp312336m}.

  9. Doubly Excited Resonance States of Helium Atom: Complex Entropies

    NASA Astrophysics Data System (ADS)

    Kuroś, Arkadiusz; Kościk, Przemysław; Saha, Jayanta K.

    2016-12-01

    We provide a diagonal form of a reduced density matrix of S-symmetry resonance states of two electron systems determined under the framework of the complex scaling method. We have employed the variational Hylleraas type wavefunction to estimate the complex entropies in doubly excited resonance states of helium atom. Our results are in good agreement with the corresponding ones determined under the framework of the stabilization method (Lin and Ho in Few-Body Syst 56:157, 2015).

  10. Encapsulation of 3-hydroxyflavone in γ-cyclodextrin nanocavities: Excited state proton transfer fluorescence and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Pahari, Biswapathik; Chakraborty, Sandipan; Sengupta, Pradeep K.

    2011-12-01

    Steady state and time resolved fluorescence spectroscopy have been used to explore the confinement of 3-hydroxyflavone (3HF), (a bioactive flavonol) in γ-cyclodextrin (γ-CDx) nanocavities in aqueous medium. With increasing concentrations of γ-CDx, dramatic enhancements occur in the intensity and anisotropy of the excited state intramolecular proton transfer (ESIPT) tautomer fluorescence of 3HF. These observations indicate that 3HF readily enters the relatively hydrophobic cavity of γ-CDx, where the chromone ring is well shielded from external H-bonding perturbation effects, thus facilitates the ESIPT process. Additionally, appearance of induced circular dichroism (ICD) bands is noted in the absorption region of 3HF, which further confirms the inclusion process. Docking calculations suggest that hydrogen bonding interactions are involved in the formation of the inclusion complex.

  11. Ground and Excited State Spectra of a Quantum Dot

    NASA Astrophysics Data System (ADS)

    Stewart, D. R.; Sprinzak, D.; Patel, S. R.; Marcus, C. M.; Duruoz, C. I.; Harris, J. S.

    1998-03-01

    We present linear and nonlinear magnetoconductance measurements of the ground and excited state spectra for successive electron occupancy in a gate defined lateral quantum dot. Previous measurementsfootnote D.R. Stewart, D. Sprinzak, C.M. Marcus, C.I. Duruoz and J.S. Harris Jr., Science 278, (1997). showed a direct correlation between the mth excited state of the N-electron system and the ground state of the (N+m)-electron system for m up to 4, consistent to a large degree with a single-particle picture. Here we report quantitative deviations of the excited state spectra from the spectrum of ground state magnetoconductances, attributed to many-body interactions in the finite system of N ~200 electrons. We also describe the behaviour of anticrossings in the ground state magnetoconductances. We acknowledge the support of JSEP (DAAH04-94-G-0058), ARO (DAAH04-95-1-0331), ONR-YIP (N00014-94-1-0622) and the NSF-PECASE program. D.S. acknowledges the support of MINERVA grant.

  12. On the excited-state multi-dimensionality in cyanines

    NASA Astrophysics Data System (ADS)

    Dietzek, Benjamin; Brüggemann, Ben; Persson, Petter; Yartsev, Arkady

    2008-03-01

    Vibrational coherences in a photoexcited cyanine dye are preserved for the time-scale of diffusive torsional motion to the bottom of the excited-state potential. The coherently excited modes are virtually unaffected by solvent friction and thus distinct from the bond-twisting motion, which is strongly coupled to the surrounding solvent. We correlate the modes apparent in the resonance Raman and the four-wave mixing signal of 1,1'-diethyl-2,2'-cyanine with the understanding of optimal control of isomerization. In turn, the experimental results illustrate that optimal control might be used to obtain vibrational information complementary to conventional spectroscopic data.

  13. Observation of Excited Quadrupole-Bound States in Cold Anions

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Zhu; Liu, Yuan; Wang, Lai-Sheng

    2017-07-01

    We report the first observation of an excited quadrupole-bound state (QBS) in an anion. High-resolution photoelectron imaging of cryogenically cooled 4-cyanophenoxide (4 CP- ) anions yields an electron detachment threshold of 24 927 cm-1 . The photodetachment spectrum reveals a resonant transition 20 cm-1 below the detachment threshold, which is attributed to an excited QBS of 4 CP- because neutral 4CP has a large quadrupole moment with a negligible dipole moment. The QBS is confirmed by observation of seventeen above-threshold resonances due to autodetachment from vibrational levels of the QBS.

  14. Highly Excited States of cs Atoms on Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Lackner, F.; Theisen, M.; Koch, M.; Ernst, W. E.

    2011-06-01

    Cs atoms on the surface of helium nanodroplets have been excited to high lying nS (n = 8-11), nP (n = 8-11), and nD (n = 6-10) levels. A two-step excitation scheme via the 62P1/2(2Π1/2) state using two cw lasers was applied. This intermediate state has the advantage that a large fraction of the excited Cs atoms does not desorb from the helium nanodroplets. An absorption spectrum was recorded by detecting laser induced fluorescence light from the 62P3/2→62S1/2 transition. The pseudo-diatomic model for helium nanodroplets doped with single alkali-metal atoms holds for the observed spectrum. An investigation of spectral trends shows that the n'2P(Π)←62P1/2(2Π1/2) and n'2D(Δ)←62P1/2(2Π1/2) (n' > 9) transitions are lower in energy than the corresponding free-atom transitions. This indicates that the Cs*--HeN potential becomes attractive for these highly excited states. Our results suggest a possibility of generating an artificial super-atom with a positive ion core inside a helium nanodroplet and the electron outside, which will be subject to future experiments. M. Theisen, F. Lackner, F. Ancilotto, C. Callegari, and W.E. Ernst, Eur. Phys. J. D 61, 403-408 (2011)

  15. Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation.

    PubMed

    Mondal, Sayan; Puranik, Mrinalini

    2016-05-18

    The photophysical properties of natural nucleobases and their respective nucleotides are ascribed to the sub-picosecond lifetime of their first singlet states in the UV-B region (260-350 nm). Electronic transitions of the ππ* type, which are stronger than those in the UV-B region, lie at the red edge of the UV-C range (100-260 nm) in all isolated nucleobases. The lowest energetic excited states in the UV-B region of nucleobases have been investigated using a plethora of experimental and theoretical methods in gas and solution phases. The sub-picosecond lifetime of these molecules is not a general attribute of all nucleobases but specific to the five primary nucleobases and a few xanthine and methylated derivatives. To determine the overall UV photostability, we aim to understand the effect of more energetic photons lying in the UV-C region on nucleobases. To determine the UV-C initiated photophysics of a nucleobase system, we chose a halogen substituted purine, 6-chloroguanine (6-ClG), that we had investigated previously using resonance Raman spectroscopy. We have performed quantitative measurements of the resonance Raman cross-section across the Bb absorption band (210-230 nm) and constructed the Raman excitation profiles. We modeled the excitation profiles using Lee and Heller's time-dependent theory of resonance Raman intensities to extract the initial excited state dynamics of 6-ClG within 30-50 fs after photoexcitation. We found that imidazole and pyrimidine rings of 6-ClG undergo expansion and contraction, respectively, following photoexcitation to the Bb state. The amount of distortions of the excited state structure from that of the ground state structure is reflected by the total internal reorganization energy that is determined at 112 cm(-1). The contribution of the inertial component of the solvent response towards the total reorganization energy was obtained at 1220 cm(-1). In addition, our simulation also yields an instantaneous response of the first

  16. Pentacyano-N,N-dimethylaniline in the excited state. Only locally excited state emission, in spite of the large electron affinity of the pentacyanobenzene subgroup.

    PubMed

    Zachariasse, Klaas A; Druzhinin, Sergey I; Galievsky, Victor A; Demeter, Attila; Allonas, Xavier; Kovalenko, Sergey A; Senyushkina, Tamara A

    2010-12-23

    Pentacyano-N,N-dimethylaniline (PCDMA) does not undergo an intramolecular charge transfer (ICT) reaction, even in the strongly polar solvent acetonitrile (MeCN), in clear contrast to 4-(dimethylamino)benzonitrile (DMABN). Within the twisted ICT (TICT) model, this is unexpected, as the electron affinity of the pentacyanobenzene moiety of PCDMA is much larger than that of the benzonitrile subgroup in DMABN. According to the TICT model, the energy of the ICT state of PCDMA would be 2.05 eV (∼16550 cm(-1)) lower than that of DMABN, on the basis of the reduction potentials E(A(-)/A) of pentacyanobenzene (-0.29 V vs saturated calomel electrode (SCE)) and benzonitrile (-2.36 V vs SCE), more than enough to compensate for the decrease in energy of the locally excited (LE) state of PCDMA (E(S(1)) = 19990 cm(-1)) relative to that of DMABN (E(S(1)) = 29990 cm(-1)). This absence of a LE → ICT reaction shows that the TICT hypothesis does not hold for PCDMA in the singlet excited state, similar to what was found for DMABN, N-phenylpyrrole, and their derivatives. In this connection, the six dicyano-substituted dimethylanilines are also discussed. The energy gap ΔE(S(1),S(2)) between the two lowest singlet excited states is, at 7170 cm(-1) for PCDMA in MeCN, considerably larger than that for DMABN (2700 cm(-1) in n-hexane, smaller in MeCN). The absence of ICT is therefore in accord with the planar ICT (PICT) model, which considers a sufficiently small ΔE(S(1),S(2)) to be an important condition determining whether an ICT reaction will take place. The fluorescence quantum yield of PCDMA is very small: Φ(LE) = 0.0006 in MeCN at 25 °C, predominantly due to LE → S(0) internal conversion (IC), as the intersystem crossing yield Φ(ISC) is practically zero (<0.01). From the LE fluorescence decay time of 27 ps for PCDMA in MeCN at 25 °C, a radiative rate constant k(f)(LE) = 2 × 10(7) s(-1) results, comparable to the k(f)(LE) of DMABN (6.5 × 10(7) s(-1)) and 2,4,6-tricyano

  17. Controlling the dissociation dynamics of acetophenone radical cation through excitation of ground and excited state wavepackets

    NASA Astrophysics Data System (ADS)

    Moore Tibbetts, Katharine; Tarazkar, Maryam; Bohinski, Timothy; Romanov, Dmitri A.; Matsika, Spiridoula; Levis, Robert J.

    2015-08-01

    Time-resolved measurements of the acetophenone radical cation prepared via adiabatic ionization with strong field 1270 nm excitation reveal coupled wavepacket dynamics that depend on the intensity of the 790 nm probe pulse. At probe intensities below 7× {10}11 W cm-2, out of phase oscillations between the parent molecular ion and the benzoyl fragment ion are shown to arise from a one-photon excitation from the ground D0 ionic surface to the D1 and/or D2 excited surfaces by the probe pulse. At higher probe intensities, a second set of wavepacket dynamics are observed that couple the benzoyl ion to the phenyl, butadienyl, and acylium fragment ions. Equation of motion coupled cluster calculations of the ten lowest lying ionic surfaces and the dipole couplings between the ground ionic surface D0 and the nine excited states enable elucidation of the dissociation pathways and deduction of potential dissociation mechanisms. The results can lead to improved control schemes for selective dissociation of the acetophenone radical cation.

  18. Electronically excited states of sodium-water clusters

    NASA Astrophysics Data System (ADS)

    Schulz, Claus Peter; Bobbert, Christiana; Shimosato, Taku; Daigoku, Kota; Miura, Nobuaki; Hashimoto, Kenro

    2003-12-01

    The lowest electronically excited state of small Na(H2O)n clusters has been investigated experimentally and theoretically. The excitation energy as determined by the depletion spectroscopy method drops from 16 950 cm-1 for the sodium atom down to 9670 cm-1 when only three water molecules are attached to the Na atom. For larger clusters the absorption band shifts back towards higher energies and reaches 10 880 cm-1 for n=12. The experimental data are compared to quantum-chemical calculations at the Møeller-Plesset second-order perturbation and multireference single and double excitation configuration interaction levels. We found that the observed size dependence of the transition energy is well reproduced by the interior structure where the sodium atom is surrounded by water molecules. The analysis of the radial charge distribution of the unpaired electron in these interior structures gives a new insight into the formation of the "solvated" electron.

  19. Photodissociation of FONO: an excited state nonadiabatic dynamics study.

    PubMed

    Hilal, Allaa R; Hilal, Rifaat

    2017-03-01

    The photo dissociation of nitrosyl fluorite, FONO, a potential source of atmospheric fluorine, underlies its active role in ozone depletion and other activities in the troposphere. In the present work, the electronic structure of FONO is revisited at high level of ab initio and density functional theory (DFT) theoretical levels. Several different post SCF methods were used to compute excited states, vertical excitation energies and intensities, namely configuration interaction with single excitations (CIS), equation of motion coupled cluster with single and double excitations (EOM-CCSD), and symmetry adopted cluster configuration interaction (SAC-CI) methods. The potential energy functions along two internal coordinates, namely the F-ONO bond and the FONO dihedral angle, have been computed on the ground state relaxed potential energy surface (PES) for the ground, 5A' and 5A″ excited states using the EOM-CCSD method. In the gas phase, the decay of the excited states of FONO was examined closely by calculating the UV photoabsorption cross-section spectrum and by nonadiabatic dynamics simulations. Nonadiabatic dynamics were simulated by sampling 300 trajectories in two spectral windows at 3.0 ± 0.25 and 4.5 ± 0.25 eV using the surface hopping method. Two different photodissociation reaction pathways with two main products, including multifragmentation (FO+NO) and atomic elimination (F) mechanisms were identified. For the cis-isomer, the main photochemical channel is F+NO2, representing 67% of all processes. For the trans-isomer, however, the main dissociation pathway is (FO+NO). Graphical Abstract Photodisscociation of nitrosyl fluorite (FONO) seems to underlie its active role in ozone depletion and other activities in the troposphere. The present research revisits the electronic structure of FONO at high level of ab initio and DFT theoretical levels. Cis-trans isomerization and dissociation in the ground and low lying excited states were examined

  20. Conformational analysis of N-methylformamide in ground S0 and excited S1 and T1 electronic states

    NASA Astrophysics Data System (ADS)

    Tukachev, N. V.; Bataev, V. A.; Godunov, I. A.

    2016-07-01

    For conformers of the N-methylformamide (HCONHCH3) molecule, calculations of equilibrium geometry parameters, harmonic vibration frequencies, energy differences and potential barriers to conformational transitions were performed in the ground (S0) and lowest excited singlet (S1) and triplet (T1) electronic states. In the S0 state, the molecule exists in trans and cis stable conformations (having Cs symmetry). Our calculations show that the electronic excitations T1←S0 and S1←S0 cause changes in the structure of conformers: both HCON and HNCC fragments become pyramidal and rotate around the CN bond. As a result, in each excited electronic state under consideration, there are 12 minima forming six pairs of equivalent conformers separated by relatively small potential barriers. One- and two-dimensional potential energy surface sections corresponding to different intramolecular large-amplitude motions were calculated using the MP2/aug-cc-pVTZ (S0) and CASPT2/cc-pVTZ (S1 and T1) methods. Anharmonic vibrational problems for large-amplitude motions were solved, and the corresponding frequencies were estimated.

  1. Basicity of coumarin derivatives in the ground and excited states

    SciTech Connect

    Ponomarev, O.A.; Mitina, V.G.; Vasina, E.R.; Yarmolenko, S.N.

    1985-07-01

    The acid-base properties of coumarin luminophores are widely used for widening the optical spectrum generated by lasers. The aim of this work was a quantitative study of the proton-acceptor capacity of a series of substituted coumarins at the H-complex formation stage and during protonation, and also to evaluate the basicity of these compounds in the first excited singlet state. The compounds chosen were the 4- and 7-substituted coumarins, most widely used in laser technology. In the ground state the sensitivity of the carbonyl group to the effect of a substituent was twice as great in position 4 as in position 7; for the excited state the effect was reversed.

  2. Optical nanoscopy with excited state saturation at liquid helium temperatures

    NASA Astrophysics Data System (ADS)

    Yang, B.; Trebbia, J.-B.; Baby, R.; Tamarat, Ph.; Lounis, B.

    2015-10-01

    Optical resolution of solid-state single quantum emitters at the nanometre scale is a challenging step towards the control of delocalized states formed by strongly and coherently interacting emitters. We have developed a simple super-resolution optical microscopy method operating at cryogenic temperatures, which is based on optical saturation of the excited state of single fluorescent molecules with a doughnut-shaped beam. Sub-10 nm resolution is achieved with extremely low excitation intensities, a million times lower than those used in room-temperature stimulated emission depletion microscopy. Compared with super-localization approaches, our technique offers a unique opportunity to super-resolve single molecules with overlapping optical resonance frequencies and paves the way to the study of coherent interactions between single emitters and to the manipulation of their degree of entanglement.

  3. Clustered chimera states in systems of type-I excitability

    NASA Astrophysics Data System (ADS)

    Vüllings, Andrea; Hizanidis, Johanne; Omelchenko, Iryna; Hövel, Philipp

    2014-12-01

    The chimera state is a fascinating phenomenon of coexisting synchronized and desynchronized behaviour that was discovered in networks of nonlocally coupled identical phase oscillators over ten years ago. Since then, chimeras have been found in numerous theoretical and experimental studies and more recently in models of neuronal dynamics as well. In this work, we consider a generic model for a saddle-node bifurcation on a limit cycle representative of neural excitability type I. We obtain chimera states with multiple coherent regions (clustered chimeras/multi-chimeras) depending on the distance from the excitability threshold, the range of nonlocal coupling and the coupling strength. A detailed stability diagram for these chimera states and other interesting coexisting patterns (like traveling waves) is presented.

  4. Relativistic calculations of excited states of molecular iodine

    NASA Astrophysics Data System (ADS)

    Teichteil, C.; Pelissier, M.

    1994-02-01

    An ab initio relativistic atomic pseudopotential method is used for the calculation of the 23 valence excited states of the I 2 molecule which dissociate into the 2Pj+ 2Pj' ( J, J' = 3/2, 1/2) atomic states. The vertical transition energies are in very good agreement with experimental results, and the deficiency of the dissociation energy is discussed. The potential energy curves are given without and with spin-orbit coupling, and a semi-empirical improvement is proposed. In this way, we obtain for the first time very reliable potential energy curves for these excited states. The quality of these curves is tested by a careful comparison with all the available experimental data.

  5. The Exotic Excited State Behavior of 3-PHENYL-2-PROPYNENITRILE

    NASA Astrophysics Data System (ADS)

    Jawad, Khadija M.; Viquez Rojas, Claudia I.; Slipchenko, Lyudmila V.; Zwier, Timothy S.

    2017-06-01

    3-phenyl-2-propynenitrile (Ph-C≡C-C≡N) is of interest to the study of Titan's atmosphere as it is a likely product of the photochemical reaction between two known species in that environment: benzene and cyanoacetylene. The gas phase jet-cooled resonant two-photon ionization, laser induced fluorescence, and preliminary dispersed fluorescence spectra were previously reported without firm assignments due to the scarcity of totally symmetric vibrations and the prevalence of strong bands of b2 and b1 symmetry vibrations. These had called into question the identity and geometry of the excited state(s) involved in the transitions. We will here present the completed set of dispersed fluorescence data along with an analysis of the potential energy surfaces and vibronic coupling characteristic of the close-lying excited states in this intriguing molecule.

  6. Characterising a configuration interaction excited state using natural transition geminals

    NASA Astrophysics Data System (ADS)

    Coe, J. P.; Paterson, M. J.

    2014-03-01

    We introduce natural transition geminals as a means to qualitatively understand a transition where double excitations are important. The first two A1 singlet states of the CH cation are used as an initial example. We calculate these states with configuration interaction singles and state-averaged Monte Carlo configuration interaction (SA-MCCI). For each method, we compare the important natural transition geminals with the dominant natural transition orbitals. We then compare SA-MCCI and full configuration interaction with regards to the natural transition geminals using the beryllium atom. We compare using the natural transition geminals with analysing the important configurations in the CI expansion to give the dominant transition for the beryllium atom and the carbon dimer. Finally, we calculate the natural transition geminals for two electronic excitations of formamide.

  7. Excited state dynamics of the astaxanthin radical cation

    NASA Astrophysics Data System (ADS)

    Amarie, Sergiu; Förster, Ute; Gildenhoff, Nina; Dreuw, Andreas; Wachtveitl, Josef

    2010-07-01

    Femtosecond transient absorption spectroscopy in the visible and NIR and ultrafast fluorescence spectroscopy were used to examine the excited state dynamics of astaxanthin and its radical cation. For neutral astaxanthin, two kinetic components corresponding to time constants of 130 fs (decay of the S 2 excited state) and 5.2 ps (nonradiative decay of the S 1 excited state) were sufficient to describe the data. The dynamics of the radical cation proved to be more complex. The main absorption band was shifted to 880 nm (D 0 → D 3 transition), showing a weak additional band at 1320 nm (D 0 → D 1 transition). We found, that D 3 decays to the lower-lying D 2 within 100 fs, followed by a decay to D 1 with a time constant of 0.9 ps. The D 1 state itself exhibited a dual behavior, the majority of the population is transferred to the ground state in 4.9 ps, while a small population decays on a longer timescale of 40 ps. Both transitions from D 1 were found to be fluorescent.

  8. Controlling excited-state contamination in nucleon matrix elements

    SciTech Connect

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joo, Balint; Lin, Huey -Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank

    2016-06-08

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1-flavor ensemble with lattices of size 323 × 64 generated using the rational hybrid Monte Carlo algorithm at a = 0.081 fm and with Mπ = 312 MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a 2-state fit to data at multiple values of the source-sink separation tsep. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost effectiveness. As a result, a detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of tsep needed to demonstrate convergence of the isovector charges of the nucleon to the tsep → ∞ estimates is presented.

  9. Controlling excited-state contamination in nucleon matrix elements

    DOE PAGES

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; ...

    2016-06-08

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1-flavor ensemble with lattices of size 323 × 64 generated using the rational hybrid Monte Carlo algorithm at a = 0.081 fm and with Mπ = 312 MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a 2-state fit to data at multiple values of the source-sink separation tsep. Wemore » show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost effectiveness. As a result, a detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of tsep needed to demonstrate convergence of the isovector charges of the nucleon to the tsep → ∞ estimates is presented.« less

  10. Controlling excited-state contamination in nucleon matrix elements

    SciTech Connect

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joo, Balint; Lin, Huey -Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank

    2016-06-08

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1-flavor ensemble with lattices of size 323 × 64 generated using the rational hybrid Monte Carlo algorithm at a = 0.081 fm and with Mπ = 312 MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a 2-state fit to data at multiple values of the source-sink separation tsep. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost effectiveness. As a result, a detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of tsep needed to demonstrate convergence of the isovector charges of the nucleon to the tsep → ∞ estimates is presented.

  11. Controlling excited-state contamination in nucleon matrix elements

    SciTech Connect

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank

    2016-06-01

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1 flavor ensemble with lattices of size $32^3 \\times 64$ generated using the rational hybrid Monte Carlo algorithm at $a=0.081$~fm and with $M_\\pi=312$~MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a two-state fit to data at multiple values of the source-sink separation $t_{\\rm sep}$. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost-effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of $t_{\\rm sep}$ needed to demonstrate convergence of the isovector charges of the nucleon to the $t_{\\rm sep} \\to \\infty $ estimates is presented.

  12. Embedding potentials for excited states of embedded species

    SciTech Connect

    Wesolowski, Tomasz A.

    2014-05-14

    Frozen-Density-Embedding Theory (FDET) is a formalism to obtain the upper bound of the ground-state energy of the total system and the corresponding embedded wavefunction by means of Euler-Lagrange equations [T. A. Wesolowski, Phys. Rev. A 77(1), 012504 (2008)]. FDET provides the expression for the embedding potential as a functional of the electron density of the embedded species, electron density of the environment, and the field generated by other charges in the environment. Under certain conditions, FDET leads to the exact ground-state energy and density of the whole system. Following Perdew-Levy theorem on stationary states of the ground-state energy functional, the other-than-ground-state stationary states of the FDET energy functional correspond to excited states. In the present work, we analyze such use of other-than-ground-state embedded wavefunctions obtained in practical calculations, i.e., when the FDET embedding potential is approximated. Three computational approaches based on FDET, that assure self-consistent excitation energy and embedded wavefunction dealing with the issue of orthogonality of embedded wavefunctions for different states in a different manner, are proposed and discussed.

  13. Embedding potentials for excited states of embedded species.

    PubMed

    Wesolowski, Tomasz A

    2014-05-14

    Frozen-Density-Embedding Theory (FDET) is a formalism to obtain the upper bound of the ground-state energy of the total system and the corresponding embedded wavefunction by means of Euler-Lagrange equations [T. A. Wesolowski, Phys. Rev. A 77(1), 012504 (2008)]. FDET provides the expression for the embedding potential as a functional of the electron density of the embedded species, electron density of the environment, and the field generated by other charges in the environment. Under certain conditions, FDET leads to the exact ground-state energy and density of the whole system. Following Perdew-Levy theorem on stationary states of the ground-state energy functional, the other-than-ground-state stationary states of the FDET energy functional correspond to excited states. In the present work, we analyze such use of other-than-ground-state embedded wavefunctions obtained in practical calculations, i.e., when the FDET embedding potential is approximated. Three computational approaches based on FDET, that assure self-consistent excitation energy and embedded wavefunction dealing with the issue of orthogonality of embedded wavefunctions for different states in a different manner, are proposed and discussed.

  14. Intramolecular Gas Phase Reactions of Synthetic Non-heme Oxoiron(IV) Ions: Proximity and Spin-State Reactivity Rules

    PubMed Central

    Mas-Ballesté, Rubén; McDonald, Aidan R.; Reed, Dana; Usharani, Dandamudi; Schyman, Patric; Milko, Petr

    2012-01-01

    The intramolecular gas phase reactivity of four oxoiron(IV) complexes supported by tetradentate N4 ligands (L) has been studied by means of tandem mass spectrometry measurements where the gas-phase ions [FeIV(O)(L)(OTf)]+ and [FeIV(O)(L)]2+ were isolated and then allowed to fragment by collision-induced decay (CID). CID fragmentation of cations derived from oxoiron(IV) complexes of TMC (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) and L8Py2 (N,N’-bis(2-pyridylmethyl)-1,5-diazacyclooctane) afforded the same predominant products irrespective of whether they were hexacoordinate or pentacoordinate. These products resulted from the loss of water by dehydrogenation of ethylene or propylene linkers on the tetradentate ligand. In contrast, CID fragmentation of ions derived from oxoiron(IV) complexes of linear tetradentate ligands BPMEN (N,N’-bis(2-pyridylmethyl)-1,2-diaminoethane) and BPMPN (N,N’-bis(2-pyridylmethyl)-1,3-diaminopropane) showed predominant oxidative N-dealkylation for the hexacoordinate [FeIV(O)(L)(OTf)]+ cations and predominant dehydrogenation of the diaminoethane/propane backbone for the pentacoordinate [FeIV(O)(L)]2+ cations. DFT calculations on [FeIV(O)(BPMEN)] ions showed that the experimentally observed preference for oxidative N-dealkylation versus dehydrogenation of the diaminoethane linker for the hexa- and pentacoordinate ions, respectively, is dictated by the proximity of the target C–H bond to the oxoiron(IV) moiety and the reactive spin state. Therefore, there must be a difference in ligand topology between the two ions. More importantly, despite the constraints on the geometries of the TSs that prohibit the usual upright σ-trajectory and prevent optimal σCH-σ*z2 overlap, all the reactions still proceed preferentially on the quintet (S = 2) state surface, which increases the number of exchange interactions in the d-block of iron and leads thereby to exchange enhanced reactivity (EER). As such, EER is responsible for the

  15. Electronically excited rubidium atom in helium clusters and films. II. Second excited state and absorption spectrum.

    PubMed

    Leino, Markku; Viel, Alexandra; Zillich, Robert E

    2011-01-14

    Following our work on the study of helium droplets and film doped with one electronically excited rubidium atom Rb(∗) ((2)P) [M. Leino, A. Viel, and R. E. Zillich, J. Chem. Phys. 129, 184308 (2008)], we focus in this paper on the second excited state. We present theoretical studies of such droplets and films using quantum Monte Carlo approaches. Diffusion and path integral Monte Carlo algorithms combined with a diatomics-in-molecule scheme to model the nonpair additive potential energy surface are used to investigate the energetics and the structure of Rb(∗)He(n) clusters. Helium films as a model for the limit of large clusters are also considered. As in our work on the first electronic excited state, our present calculations find stable Rb(∗)He(n) clusters. The structures obtained are however different with a He-Rb(∗)-He exciplex core to which more helium atoms are weakly attached, preferentially on one end of the core exciplex. The electronic absorption spectrum is also presented for increasing cluster sizes as well as for the film.

  16. Excitation and suppression of chimera states by multiplexing.

    PubMed

    Maksimenko, Vladimir A; Makarov, Vladimir V; Bera, Bidesh K; Ghosh, Dibakar; Dana, Syamal Kumar; Goremyko, Mikhail V; Frolov, Nikita S; Koronovskii, Alexey A; Hramov, Alexander E

    2016-11-01

    We study excitation and suppression of chimera states in an ensemble of nonlocally coupled oscillators arranged in a framework of multiplex network. We consider the homogeneous network (all identical oscillators) with different parametric cases and interlayer heterogeneity by introducing parameter mismatch between the layers. We show the feasibility to suppress chimera states in the multiplex network via moderate interlayer interaction between a layer exhibiting chimera state and other layers which are in a coherent or incoherent state. On the contrary, for larger interlayer coupling, we observe the emergence of identical chimera states in both layers which we call an interlayer chimera state. We map the spatiotemporal behavior in a wide range of parameters, varying interlayer coupling strength and phase lag in two and three multiplexing layers. We also prove the emergence of interlayer chimera states in a multiplex network via evaluation of a continuous model. Furthermore, we consider the two-layered network of Hindmarsh-Rose neurons and reveal that in such a system multiplex interaction between layers is capable of exciting not only the synchronous interlayer chimera state but also nonidentical chimera patterns.

  17. Excitation on the Coherent States of Pseudoharmonic Oscillator

    NASA Astrophysics Data System (ADS)

    Popov, Dusan; Pop, Nicolina; Sajfert, Vjekoslav

    2009-05-01

    In the last decades, much attention has been paid to the excitation on coherent states, especially for coherent states of the harmonic oscillator ([1] and references therein). But an interesting anharmonic oscillator with many potential applications is also the pseudoharmonic oscillator (PHO). So, in the present paper we have defined the excitation on the Klauder-Perelomov coherent states (E-KP-CSs) for the PHO. These states are obtained by repeatedly operating the raising operator K+ on a usual Klauder-Perelomov coherent state (KP-CS) of the PHO [2]. We have verified that really, the E-KP-CSs fulfill all the properties of the coherent states, as stated by Klauder [3]. We have examined the nonclassical properties of the E-KP-CSs, by using the density matrix formalism and examining the dependence of the Mandel parameter Qz,k;m(|z|2) on the |z|2 and on the m. It seems that these states can be used in optical communication field and in the physics of quantum information, as signal beams, due to the fact that in these fields the nonclassicality plays an important role.

  18. Excitation on the Coherent States of Pseudoharmonic Oscillator

    SciTech Connect

    Popov, Dusan; Pop, Nicolina; Sajfert, Vjekoslav

    2009-05-22

    In the last decades, much attention has been paid to the excitation on coherent states, especially for coherent states of the harmonic oscillator ([1] and references therein). But an interesting anharmonic oscillator with many potential applications is also the pseudoharmonic oscillator (PHO). So, in the present paper we have defined the excitation on the Klauder-Perelomov coherent states (E-KP-CSs) for the PHO. These states are obtained by repeatedly operating the raising operator K{sub +} on a usual Klauder-Perelomov coherent state (KP-CS) of the PHO [2]. We have verified that really, the E-KP-CSs fulfill all the properties of the coherent states, as stated by Klauder [3]. We have examined the nonclassical properties of the E-KP-CSs, by using the density matrix formalism and examining the dependence of the Mandel parameter Q{sub z,k;m}(|z|{sup 2}) on the |z|{sup 2} and on the m. It seems that these states can be used in optical communication field and in the physics of quantum information, as signal beams, due to the fact that in these fields the nonclassicality plays an important role.

  19. Excitation and suppression of chimera states by multiplexing

    NASA Astrophysics Data System (ADS)

    Maksimenko, Vladimir A.; Makarov, Vladimir V.; Bera, Bidesh K.; Ghosh, Dibakar; Dana, Syamal Kumar; Goremyko, Mikhail V.; Frolov, Nikita S.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2016-11-01

    We study excitation and suppression of chimera states in an ensemble of nonlocally coupled oscillators arranged in a framework of multiplex network. We consider the homogeneous network (all identical oscillators) with different parametric cases and interlayer heterogeneity by introducing parameter mismatch between the layers. We show the feasibility to suppress chimera states in the multiplex network via moderate interlayer interaction between a layer exhibiting chimera state and other layers which are in a coherent or incoherent state. On the contrary, for larger interlayer coupling, we observe the emergence of identical chimera states in both layers which we call an interlayer chimera state. We map the spatiotemporal behavior in a wide range of parameters, varying interlayer coupling strength and phase lag in two and three multiplexing layers. We also prove the emergence of interlayer chimera states in a multiplex network via evaluation of a continuous model. Furthermore, we consider the two-layered network of Hindmarsh-Rose neurons and reveal that in such a system multiplex interaction between layers is capable of exciting not only the synchronous interlayer chimera state but also nonidentical chimera patterns.

  20. Quantum correlations in excited coherent W-type state

    NASA Astrophysics Data System (ADS)

    Sathiyabama, R.; Ahmed, A. B. M.; Mohammed, S. Naina

    2017-06-01

    The tripartite W-state plays an important role in the quantum information science, due to its non vanishing bipartite correlations even after partially tracing one of the modes. The continuous variable extension of the W state is constructed using Glauber coherent states and excited using bosonic creation operators. The bipartite entanglement is measured through concurrence and tangle is also evaluated. The non classicality introduced in the three modes is measured in terms of quadrature squeezing and higher order squeezing. The influence of photon addition process on the entanglement and squeezing is derived, and from the result it is evident that the photon addition enhances the operational aspects of quantum correlation.

  1. Lifetimes and structure of excited states of 115Sb

    NASA Astrophysics Data System (ADS)

    Lobach, Yu. N.; Bucurescu, D.

    1998-06-01

    Lifetimes of excited states of 115Sb were measured by the Doppler shift attenuation method in the (α,2nγ) reaction at Eα = 27.2 MeV. The experimental level scheme and the electromagnetic transition probabilities have been interpreted in terms of the interacting boson-fermion model. A reasonable agreement with the experiment was obtained for the positive-parity states. The experimental data also show the applicability of the cluster-vibrational model for the mixing of two 9/2+ states having different intrinsic configurations.

  2. Direct lifetime measurements of the excited states in Ni72

    DOE PAGES

    Kolos, K.; Miller, D.; Grzywacz, R.; ...

    2016-03-22

    The lifetimes of the first excited 2+ and 4+ states in 72Ni were measured at the National Superconducting Cyclotron Laboratory with the recoil-distance Doppler-shift method, a model-independent probe to obtain the reduced transition probability. Excited states in 72Ni were populated by the one-proton knockout reaction of an intermediate energy 73Cu beam. γ-ray-recoil coincidences were detected with the γ-ray tracking array GRETINA and the S800 spectrograph. Our results provide evidence of enhanced transition probability B(E2;2+ → 0+) as compared to 68Ni, but do not confirm the trend of large B(E2) values reported in the neighboring isotope 70Ni obtained from Coulomb excitationmore » measurement. The results are compared to shell model calculations. Here, the lifetime obtained for the excited 4+1 state is consistent with models showing decay of a seniority ν = 4, 4+ state, which is consistent with the disappearance of the 8+ isomer in 72Ni.« less

  3. Signature of nonadiabatic coupling in excited-state vibrational modes.

    PubMed

    Soler, Miguel A; Nelson, Tammie; Roitberg, Adrian E; Tretiak, Sergei; Fernandez-Alberti, Sebastian

    2014-11-13

    Using analytical excited-state gradients, vibrational normal modes have been calculated at the minimum of the electronic excited-state potential energy surfaces for a set of extended conjugated molecules with different coupling between them. Molecular model systems composed of units of polyphenylene ethynylene (PPE), polyphenylenevinylene (PPV), and naphthacene/pentacene (NP) have been considered. In all cases except the NP model, the influence of the nonadiabatic coupling on the excited-state equilibrium normal modes is revealed as a unique highest frequency adiabatic vibrational mode that overlaps with the coupling vector. This feature is removed by using a locally diabatic representation in which the effect of NA interaction is removed. Comparison of the original adiabatic modes with a set of vibrational modes computed in the locally diabatic representation demonstrates that the effect of nonadiabaticity is confined to only a few modes. This suggests that the nonadiabatic character of a molecular system may be detected spectroscopically by identifying these unique state-specific high frequency vibrational modes.

  4. Self-Scattering for Dark Matter with an Excited State

    NASA Astrophysics Data System (ADS)

    Schutz, Katelin; Slatyer, Tracy

    2015-01-01

    Self-interacting dark matter scenarios have recently attracted much attention as a possible means to alleviate the tension between N-body simulations and observations of the dark matter distribution on galactic and sub-galactic scales. The presence of internal structure for the dark matter --- for example, a nearly-degenerate state in the spectrum that could decay, or be collisionally excited or de-excited --- has also been proposed as a possible means to address these discrepancies. Such internal structure can be a source of interesting signatures in direct and indirect dark matter searches, for example providing a novel explanation for the 3.5 keV line recently observed in galaxies and galaxy clusters. We analyze a simple model of dark matter self-scattering including a nearly-degenerate excited state, and develop an accurate analytic approximation for the elastic and inelastic s-wave cross sections, which is valid outside the perturbative regime provided the particle velocity is sufficiently low (this condition is also required for the s-wave to dominate over higher partial waves). We anticipate our results will be useful in incorporating inelastic self-scattering into N-body simulations, in order to study the quantitative impact of nearly-degenerate states in the dark matter spectrum on galactic structure and dynamics, and in computing the indirect signatures of multi-state dark matter.

  5. Controlling autoionization in strontium two-electron-excited states

    NASA Astrophysics Data System (ADS)

    Fields, Robert; Zhang, Xinyue; Dunning, F. Barry; Yoshida, Shuhei; Burgdörfer, Joachim

    2016-05-01

    One challenge in engineering long-lived two-electron-excited states, i.e., so-called planetary atoms, is autoionization. Autoionization, however, can be suppressed if the outermost electron is placed in a high- n, n ~ 300 - 600 , high- L state because such states have only a very small overlap with the inner electron, even when this is also excited to a state of relatively high n and hence of relatively long lifetime. Here the L-dependence of the autoionization rate for high- n strontium Rydberg atoms is examined during excitation of the core ion 5 s 2S1 / 2 - 5 p 2P3 / 2 transition. Measurements in which the angular momentum of the Rydberg electron is controlled using a pulsed electric field show that the autoionization rate decreases rapidly with increasing L and becomes very small for values larger than ~ 20 . The data are analyzed with the aid of calculations undertaken using complex scaling. Research supported by the NSF and Robert A. Welch Foundation.

  6. Lifetimes of the 7D excited states of francium

    NASA Astrophysics Data System (ADS)

    Grossman, J. S.; Fliller, R. P., III; Orozco, L. A.; Pearson, M. R.; Sprouse, G. D.

    2000-06-01

    We report our measurement of the lifetimes of the 7D_3/2 and 7D_5/2 levels of francium, using time-correlated single-photon counting techniques. We collect francium atoms in a magneto-optical trap (MOT) in the target room of the superconducting LINAC at Stony Brook. We use two-photon resonant excitation to reach either of the 7D levels. The trapping Ti:Sapph laser operating at 718 nm on the D2 line provides the first photon of the excitation. A second Ti:Sapph probe laser at 969 nm or 961 nm excites the second step to the 7D_3/2 or 7D_5/2 level, respectively. We chop the probe laser and monitor the fluorescent decay to the ground state via the 7P levels using a photomultiplier tube (PMT). The PMT photon-detection pulses are sent to a time to amplitude converter (TAC), and a histogram of the data gives the exponential decay of the fluorescence. Measurements of state lifetimes provide an important check of ab initio calculations of the structure of this simple, heavy atom. In this regard, the d states provide a stringent test that goes beyond the well understood s and p states. Work supported by the NSF.

  7. Direct measurements of rotation-specific, state-to-state vibrational energy transfer in highly vibrationally excited acetylene

    NASA Astrophysics Data System (ADS)

    Tobiason, J. D.; Utz, A. L.; Crim, F. F.

    1994-07-01

    Vibrational overtone excitation followed by laser-induced fluorescence detection allows the direct measurement of rotationally resolved vibrational energy transfer rates in highly vibrationally excited acetylene molecules. We detect transfer from the initial, even rotational states Ji=0-22 of 3ν3 (ν˜0=9640 cm-1) to the nearly isoenergetic final state Jf=4 of ν1+ν2+ν3+2ν4, l=0 (ν˜0=9668 cm-1). For these pathways, we observe changes in energy of up to ‖ΔE‖=530 cm-1 (≊2.5 kT) and in angular momentum quantum number of up to ‖ΔJ‖=18 in a single collision, and we measure state-to-state rate constants of about 0.1 μs-1Torr-1 (160 collisions). Measurements under single collision conditions ensure that the vibrational relaxation is free of any rotational equilibration. By applying detailed balance and summing the resulting reverse rate constants, we obtain a total rate constant of 1.3 μs-1Torr-1 (13 collisions) for transfer from ν1+ν2+ν3+2ν4, l=0, Jf=4 to all final rotational states in 3ν3. The energy transfer rate between two specific rovibrational states decreases exponentially with increasing energy difference. The vibrational relaxation does not have a strong angular momentum dependence in general, but transfer from the initial rotational states 3ν3, J=16, and J=20 is anomalously fast. The Fermi resonance of 3ν3 and ν1+ν2+ν3+2ν4, l=0 appears to enhance collisional transfer between the pair by a factor of 10 or more over that for uncoupled levels, and the anomalously fast transfer from initial states 3ν3, J=16 and 20 is probably due to their relatively strong, rotation-specific intramolecular coupling with other nearby, unobserved vibrational states.

  8. The electronic excited states of green fluorescent protein chromophore models

    NASA Astrophysics Data System (ADS)

    Olsen, Seth Carlton

    We explore the properties of quantum chemical approximations to the excited states of model chromophores of the green fluorescent protein of A. victoria. We calculate several low-lying states by several methods of quantum chemical calculation, including state-averaged complete active space SCF (CASSCF) methods, time dependent density functional theory (TDDFT), equation-of motion coupled cluster (EOM-CCSD) and multireference perturbation theory (MRPT). Amongst the low-lying states we identify the optically bright pipi* state of the molecules and examine its properties. We demonstrate that the state is dominated by a single configuration function. We calculate zero-time approximations to the resonance Raman spectrum of GFP chromophore models, and assign published spectra based upon these.

  9. Excited state proton transfer in the Cinchona alkaloid cupreidine.

    PubMed

    Qian, Junhong; Brouwer, Albert M

    2010-10-21

    Photophysical properties of the organocatalyst cupreidine (CPD) and its chromophoric building block 6-hydroxyquinoline (6HQ) in protic and nonprotic polar solvents (methanol and acetonitrile) were investigated by means of UV-vis absorption, and steady state and time resolved fluorescence spectroscopy. The effects of the catalytically relevant interactions with electrophilic and hydrogen bonding agents (p-toluene sulfonic acid and water) on their spectral characteristics were studied. In neutral CPD in acetonitrile, quenching of fluorescence occurs due to electron transfer from the quinuclidine nitrogen to the excited quinoline chromophore. Protonation suppresses this process, while complexation with water leads to enhanced excited state proton transfer from the 6'-OH group to the quinuclidine nitrogen, and emission occurs from the anionic form of the chromophore. The weakly emitting zwitterionic form of the hydroxyquinoline chromophore is readily formed in methanol, but not in acetonitrile.

  10. Theoretical Studies of Excited State Dynamics in Semiconductor Materials

    NASA Astrophysics Data System (ADS)

    Liu, Jin

    The motivation of this research work is to investigate excited state dynamics of semiconductor systems using quantum computational techniques. The detailed ultrafast photoinduced processes, such as charge recombination, charge relaxation, energy/charge transfer, etc., sometimes cannot be fully addressed by spectroscopy experiments. The nonadiabatic molecular dynamics (NAMD), on the other hand, provides critical insights into the complex processes. In this thesis, we apply the NAMD simulation method to various semiconductor systems, ranging from bulk crystals, nanoparticles to clusters, to study the electronic and optical properties of semiconductors. The first chapter outlines important concepts in excited states dynamics and semiconductor disciplinary. The second chapter explains the theoretical methodology related to the research work, including approximations, computational methods and simulation details, etc. Starting from chapter three to chapter six, we present a comprehensive study focusing on silicon clusters, cadmium selenide quantum dots, cycloparaphenylenes and perovskites. Potential applications include solar harvesting, photoluminescence, energy transfer, etc.

  11. Excited-state absorption measurements of Tm3+-doped crystals

    NASA Astrophysics Data System (ADS)

    Szela, J. W.; Mackenzie, J. I.

    2012-06-01

    High resolution, absolute excited-state absorption (ESA) spectra, at room temperature, from the long-lived 3F4 energy level of several crystals doped with trivalent thulium (Tm3+) ions have been measured employing high-brightness narrowband (FWHM <30 nm) light emitting diodes (LEDs) as a probe wavelength. The aim of this investigation was to determine the strength of ESA channels at wavelengths addressable by commercially available semiconductor laser diodes operating around 630-680 nm. The favourable lifetime of the 3F4 manifold and negligible ground-state absorption (GSA) for the red-wavelength second-step excitation, ensures a direct and efficient route for a dual-wavelength pumping scheme of the thulium ion, which will enable blue-green laser emission from its 1G4 upper-laser level.

  12. Excited states of the 150Pm odd-odd nucleus

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Drăgulescu, E.; Pascu, S.; Wirth, H.-F.; Filipescu, D.; Căta-Danil, G.; Căta-Danil, I.; Deleanu, D.; Eppinger, K.; Faestermann, T.; Ghiţă, D. G.; Glodariu, T.; Hertenberger, R.; Ivaşcu, M.; Krücken, R.; Mărginean, N.; Mărginean, R.; Mihai, C.; Negret, A.; Sava, T.; Stroe, L.; Wimmer, K.; Zamfir, N. V.

    2012-01-01

    The knowledge of excited states in the odd-odd 150Pm, completely unknown until recently, is important both for understanding double β decay of 150Nd and for nuclear structure studies in mass regions with a quantum phase transition. A large number of excited states have been determined for the first time in this nucleus by measuring spectra of the 152Sm(d,α) direct reaction at 25 MeV with the Munich Q3D spectrograph and by γ-ray spectroscopy with the (p,nγ) reaction at 7.1 MeV at the Bucharest tandem accelerator. Some of these levels correspond to peaks recently observed with the (3He,t) reaction at 140 MeV/u.

  13. Highly excited Rydberg states of pyrazine and their autoionization

    SciTech Connect

    Goto, A.; Fujii, M.; Ito, M.

    1987-04-23

    The two-color MPI spectra of jet-cooled pyrazine obtained via various vibrational levels in the S/sub 1/(n,..pi..*) state have been observed. A regularity was found in that the Rydberg series lying above the adiabatic ionization potential appear upon excitation of the S/sub 1/ vibronic level containing the nontotally symmetric vibration but they are apparently absent upon excitation of the S/sub 1/ vibronic level containing the totally symmetric vibration. The regularity is similar to that found by Hager et al. for aniline and can be explained as due to the interaction between a discrete level and an isoenergetic ionization continuum. The appearance or apparent absence of the Rydberg series results from the absorption cross section of the interacting ionization continuum in the transition from the S/sub 1/ vibronic level. The electronic structures of the Rydberg state and ion and the vibrational potentials of the ion are discussed.

  14. Electronic and Nuclear Factors in Charge and Excitation Transfer

    SciTech Connect

    Piotr Piotrowiak

    2004-09-28

    We report the and/or state of several subprojects of our DOE sponsored research on Electronic and Nuclear Factors in Electron and Excitation Transfer: (1) Construction of an ultrafast Ti:sapphire amplifier. (2) Mediation of electronic interactions in host-guest molecules. (3) Theoretical models of electrolytes in weakly polar media. (4) Symmetry effects in intramolecular excitation transfer.

  15. Excited State Absorption Measurements In Some Scintillator Dye Solutions

    NASA Astrophysics Data System (ADS)

    Dharamsi, A., N.; Jong, Shawpin; Hassam, A. B.

    1986-11-01

    Time-resolved excited state triplet-triplet absorption spectra were measured for solutions of 2,5 diphenyloxazole (PPO) and 2,1 napthyl, 5 phenyloxazole (aNPO) in several solvents. Concentration quenching effects due to excimer formation in nonaromatic solvents were observed. A numerical analysis of the experimental results yielded the rate constants for intersystem crossing, triplet quenching by 02, triplet self quenching and the formation of excimers.

  16. Temperature dependence of the excited state absorption of alexandrite

    SciTech Connect

    Shand, M.L.; Jenssen, H.P.

    1983-03-01

    The temperature dependence from 28 to 290/sup 0/C of the excited-state absorption cross section sigma /SUB 2a/ (E) in the gain wavelength region of alexandrite has been determined from the temperature dependence of the single pass gain (SPG) and of the fluorescence. sigma /SUB 2a/ (E) and the emission cross section increase with temperature at approximately the same rate.

  17. Excited singlet (S1) state interactions of calixarenes with chloroalkanes: A combination of concerted and stepwise dissociative electron transfer mechanism

    NASA Astrophysics Data System (ADS)

    Mohanty, J.; Pal, H.; Nayak, S. K.; Chattopadhyay, S.; Sapre, A. V.

    2002-12-01

    Both steady-state and time-resolved studies in acetonitrile (ACN) solutions show that the excited singlet (S1) states of calixarenes (CX) undergo quenching by chloroalkanes (CA). It has been revealed by characterizing the Cl ions in the photolyzed CX-CA systems in ACN solutions that the quenching occurs due to dissociative electron transfer (DET) mechanism, whereby a C-Cl bond of the CAs undergoes dissociation on acceptance of an electron from excited CX. The bimolecular quenching constants (kq) in the present systems were correlated with the free energy changes for the concerted DET reactions based on a suitable DET theory. Such a correlation results in the recovery of an intramolecular reorganization energy, which is substantially lower to account for the C-Cl bond dissociation energy of the CAs. Comparing present results with those of an another donor-acceptor system (e.g., biphenyldiol-CA systems) where a concerted DET mechanism is applicable, it is inferred that in CX-CA systems both concerted and stepwise DET mechanisms operate simultaneously. It is proposed that the interaction of excited CXs with encaged CAs follows the stepwise mechanism whereas that with the out of cage CAs follows the concerted mechanism.

  18. Excited State Biexcitons in Atomically Thin MoSe2.

    PubMed

    Pei, Jiajie; Yang, Jiong; Wang, Xibin; Wang, Fan; Mokkapati, Sudha; Lü, Tieyu; Zheng, Jin-Cheng; Qin, Qinghua; Neshev, Dragomir; Tan, Hark Hoe; Jagadish, Chennupati; Lu, Yuerui

    2017-07-25

    The tightly bound biexcitons found in atomically thin semiconductors have very promising applications for optoelectronic and quantum devices. However, there is a discrepancy between theory and experiment regarding the fundamental structure of these biexcitons. Therefore, the exploration of a biexciton formation mechanism by further experiments is of great importance. Here, we successfully triggered the emission of biexcitons in atomically thin MoSe2, via the engineering of three critical parameters: dielectric screening, density of trions, and excitation power. The observed binding energy and formation dynamics of these biexcitons strongly support the model that the biexciton consists of a charge attached to a trion (excited state biexciton) instead of four spatially symmetric particles (ground state biexciton). More importantly, we found that the excited state biexcitons not only can exist at cryogenic temperatures but also can be triggered at room temperature in a freestanding bilayer MoSe2. The demonstrated capability of biexciton engineering in atomically thin MoSe2 provides a route for exploring fundamental many-body interactions and enabling device applications, such as bright entangled photon sources operating at room temperature.

  19. Isolating excited states of the nucleon in lattice QCD

    SciTech Connect

    Mahbub, M. S.; Cais, Alan O.; Kamleh, Waseem; Lasscock, B. G.; Leinweber, Derek B.; Williams, Anthony G.

    2009-09-01

    We discuss a robust projection method for the extraction of excited-state masses of the nucleon from a matrix of correlation functions. To illustrate the algorithm in practice, we present results for the positive parity excited states of the nucleon in quenched QCD. Using eigenvectors obtained via the variational method, we construct an eigenstate-projected correlation function amenable to standard analysis techniques. The method displays its utility when comparing results from the fit of the projected correlation function with those obtained from the eigenvalues of the variational method. Standard nucleon interpolators are considered, with 2x2 and 3x3 correlation matrix analyses presented using various combinations of source-smeared, sink-smeared, and smeared-smeared correlation functions. Using these new robust methods, we observe a systematic dependency of the extracted nucleon excited-state masses on source- and sink-smearing levels. To the best of our knowledge, this is the first clear indication that a correlation matrix of standard nucleon interpolators is insufficient to isolate the eigenstates of QCD.

  20. A Synthetically Tunable System To Control MLCT Excited-State Lifetimes and Spin States in Iron(II) Polypyridines.

    PubMed

    Fatur, Steven M; Shepard, Samuel G; Higgins, Robert F; Shores, Matthew P; Damrauer, Niels H

    2017-03-29

    2,2':6',2″-Terpyridyl (tpy) ligands modified by fluorine (dftpy), chlorine (dctpy), or bromine (dbtpy) substitution at the 6- and 6″-positions are used to synthesize a series of bis-homoleptic Fe(II) complexes. Two of these species, [Fe(dctpy)2](2+) and [Fe(dbtpy)2](2+), which incorporate the larger dctpy and dbtpy ligands, assume a high-spin quintet ground state due to substituent-induced intramolecular strain. The smaller fluorine atoms in [Fe(dftpy)2](2+) enable spin crossover with a T1/2 of 220 K and a mixture of low-spin (singlet) and high-spin (quintet) populations at room temperature. Taking advantage of this equilibrium, dynamics originating from either the singlet or quintet manifold can be explored using variable wavelength laser excitation. Pumping at 530 nm leads to ultrafast nonradiative relaxation from the singlet metal-to-ligand charge transfer ((1)MLCT) excited state into a quintet metal centered state ((5)MC) as has been observed for prototypical low-spin Fe(II) polypyridine complexes such as [Fe(tpy)2](2+). On the other hand, pumping at 400 nm excites the molecule into the quintet manifold ((5)MLCT ← (5)MC) and leads to the observation of a greatly increased MLCT lifetime of 14.0 ps. Importantly, this measurement enables an exploration of how the lifetime of the (5)MLCT (or (7)MLCT, in the event of intersystem crossing) responds to the structural modifications of the series as a whole. We find that increasing the amount of steric strain serves to extend the lifetime of the (5,7)MLCT from 14.0 ps for [Fe(dftpy)2](2+) to the largest known value at 17.4 ps for [Fe(dbtpy)2](2+). These data support the design hypothesis wherein interligand steric interactions are employed to limit conformational dynamics and/or alter relative state energies, thereby slowing nonradiative loss of charge-transfer energy.

  1. Note: Excited State Studies of Ozone using State-Specific Multireference Coupled Cluster Methods

    SciTech Connect

    Bhaskaran-Nair, Kiran; Kowalski, Karol

    2012-12-07

    Vertical excitation energies obtained with state-specific multi-reference coupled cluster (MRCC) methods are reported for the ozone molecule. Using state-specific MRCC non-iterative methods with singles, doubles, and non-iterative triples (MRCCSD(T)) we obtain 4.40 eV for the challenging doubly excited 21A1 state when using a reliable model space. This estimate is in good agreement with experiment (4.5 eV). We also compare our MRCC results with the excitation energies obtained with high-order equation-of-motion coupled cluster methods

  2. Quantal density-functional theory of excited states: The state arbitrariness of the model noninteracting system

    SciTech Connect

    Slamet, Marlina; Singh, Ranbir; Sahni, Viraht; Massa, Lou

    2003-10-01

    The quantal density-functional theory (Q-DFT) of nondegenerate excited-states maps the pure state of the Schroedinger equation to one of noninteracting fermions such that the equivalent excited state density, energy, and ionization potential are obtained. The state of the model S system is arbitrary in that it may be in a ground or excited state. The potential energy of the model fermions differs as a function of this state. The contribution of correlations due to the Pauli exclusion principle and Coulomb repulsion to the potential and total energy of these fermions is independent of the state of the S system. The differences are solely a consequence of correlation-kinetic effects. Irrespective of the state of the S system, the highest occupied eigenvalue of the model fermions is the negative of the ionization potential. In this paper we demonstrate the state arbitrariness of the model system by application of Q-DFT to the first excited singlet state of the exactly solvable Hookean atom. We construct two model S systems: one in a singlet ground state (1s{sup 2}), and the other in a singlet first excited state (1s2s). In each case, the density and energy determined are equivalent to those of the excited state of the atom, with the highest occupied eigenvalues being the negative of the ionization potential. From these results we determine the corresponding Kohn-Sham density-functional theory (KS-DFT) 'exchange-correlation' potential energy for the two S systems. Further, based on the results of the model calculations, suggestions for the KS-DFT of excited states are made.

  3. Lattice QCD sprectrum of excited states of the nucleon

    NASA Astrophysics Data System (ADS)

    Wallace, Stephen

    2012-03-01

    Lattice QCD results are presented for the spectrum of excited states of the nucleon. Matrices of correlation functions are calculated using lattice operators that incorporate up to two covariant derivatives in combinations that transform according to SU(2) symmetry restricted to the lattice. Although the lattice has cubic symmetry, identification of continuum SU(2) spins is straightforward using such operators. Overlaps of the operators with the lattice QCD states obtained by diagonalizing matrices of correlation functions provide the link of continuum spins to lattice states. Spins up to 7/2 are identified clearly. Evidence for an approximate realization of rotational symmetry in the spectrum is presented, which helps to explain why the continuum spins can be identified. In lattice simulations with pion mass equal to 392 MeV, the low-lying excited states of lattice QCD are found to have the same spin quantum numbers as the states of SU(6)xO(3) symmetry. The lattice QCD spectra are inconsistent with either a quark-diquark model or parity doubling of states. They suggest that the Roper resonance may have a complex structure consisting of contributions from L=0, 1 and 2.

  4. Low-Lying ππ* States of Heteroaromatic Molecules: A Challenge for Excited State Methods.

    PubMed

    Prlj, Antonio; Sandoval-Salinas, María Eugenia; Casanova, David; Jacquemin, Denis; Corminboeuf, Clémence

    2016-06-14

    The description of low-lying ππ* states of linear acenes by standard electronic structure methods is known to be challenging. Here, we broaden the framework of this problem by considering a set of fused heteroaromatic rings and demonstrate that standard electronic structure methods do not provide a balanced description of the two (typically) lowest singlet state (La and Lb) excitations. While the Lb state is highly sensitive to correlation effects, La suffers from the same drawbacks as charge transfer excitations. We show that the comparison between CIS/CIS(D) can serve as a diagnostic for detecting the two problematic excited states. Standard TD-DFT and even its spin-flip variant lead to inaccurate excitation energies and interstate gaps, with only a double hybrid functional performing somewhat better. The complication inherent to a balanced description of these states is so important that even CC2 and ADC(2) do not necessarily match the ADC(3) reference.

  5. An incompressible state of a photo-excited electron gas

    PubMed Central

    Chepelianskii, Alexei D.; Watanabe, Masamitsu; Nasyedkin, Kostyantyn; Kono, Kimitoshi; Konstantinov, Denis

    2015-01-01

    Two-dimensional electrons in a magnetic field can form new states of matter characterized by topological properties and strong electronic correlations as displayed in the integer and fractional quantum Hall states. In these states, the electron liquid displays several spectacular characteristics, which manifest themselves in transport experiments with the quantization of the Hall resistance and a vanishing longitudinal conductivity or in thermodynamic equilibrium when the electron fluid becomes incompressible. Several experiments have reported that dissipationless transport can be achieved even at weak, non-quantizing magnetic fields when the electrons absorb photons at specific energies related to their cyclotron frequency. Here we perform compressibility measurements on electrons on liquid helium demonstrating the formation of an incompressible electronic state under these resonant excitation conditions. This new state provides a striking example of irradiation-induced self-organization in a quantum system. PMID:26007282

  6. Excited State Dynamics of Protonated Phenylalanine and Tyrosine: Photo-Induced Reactions Following Electronic Excitation.

    PubMed

    Féraud, Géraldine; Broquier, Michel; Dedonder, Claude; Jouvet, Christophe; Grégoire, Gilles; Soorkia, Satchin

    2015-06-11

    The electronic spectroscopy and the electronic excited state properties of cold protonated phenylalanine and protonated tyrosine have been revisited on a large spectral domain and interpreted by comparison with ab initio calculations. The protonated species are stored in a cryogenically cooled Paul trap, maintained at ∼10 K, and the parent and all the photofragment ions are mass-analyzed in a time-of-flight mass spectrometer, which allows detecting the ionic species with an improved mass resolution compared to what is routinely achieved with a quadrupole mass spectrometer. These new results emphasize the competition around the band origin between two proton transfer reactions from the ammonium group toward either the aromatic chromophore or the carboxylic acid group. These reactions are initiated by the coupling of the locally excited ππ* state with higher charge transfer states, the positions and coupling of which depend on the conformation of the protonated molecules. Each of these reaction processes gives rise to specific fragmentation channels that supports the conformer selectivity observed in the photofragmentation spectra of protonated tyrosine and phenylalanine.

  7. Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile

    NASA Astrophysics Data System (ADS)

    Kolesniková, L.; Alonso, E. R.; Mata, S.; Alonso, J. L.

    2017-04-01

    We report a detailed spectroscopic investigation of the interstellar aminoacetonitrile, a possible precursor molecule of glycine. Using a combination of Stark and frequency-modulation microwave and millimeter wave spectroscopies, we observed and analyzed the room-temperature rotational spectra of 29 excited states with energies up to 1000 cm‑1. We also observed the 13C isotopologues in the ground vibrational state in natural abundance (1.1%). The extensive data set of more than 2000 new rotational transitions will support further identifications of aminoacetonitrile in the interstellar medium.

  8. Leptonic partial widths of the excited {psi} states

    SciTech Connect

    Mo, X. H.; Yuan, C. Z.; Wang, P.

    2010-10-01

    The resonance parameters of the excited {psi}-family resonances, namely, the {psi}(4040), {psi}(4160), and {psi}(4415), were determined by fitting the R values measured by experiments. It is found that the previously reported leptonic partial widths of these states were merely one possible solution among a four-fold ambiguity. By fitting the most precise experimental data on the R values measured by the BES collaboration, this work presents all four sets of solutions. These results may affect the interpretation of the charmonium and charmonium-like states above 4 GeV/c{sup 2}.

  9. Probing charge transfer in benzodifuran-C60 dumbbell-type electron donor-acceptor conjugates: ground- and excited-state assays.

    PubMed

    Li, Hui; Schubert, Christina; Dral, Pavlo O; Costa, Rubén D; La Rosa, Andrea; Thüring, Jürg; Liu, Shi-Xia; Yi, Chenyi; Filippone, Salvatore; Martín, Nazario; Decurtins, Silvio; Clark, Timothy; Guldi, Dirk M

    2013-09-16

    Rigid electron donor-acceptor conjugates (1-3) that combine π-extended benzodifurans as electron donors and C60 molecules as electron acceptors with different linkers have been synthesized and investigated with respect to intramolecular charge-transfer events. Electrochemistry, fluorescence, and transient absorption measurements revealed tunable and structure-dependent charge-transfer processes in the ground and excited states. Our experimental findings are underpinned by density-functional theory calculations. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Solvent-dependent intramolecular charge transfer delocalization/localization in multibranched push-pull chromophores.

    PubMed

    Li, Yang; Zhou, Meng; Niu, Yingli; Guo, Qianjin; Xia, Andong

    2015-07-21

    The effect of the solvent polarity on excitation delocalization/localization in multibranched push-pull chromophores has been thoroughly explored by combining steady state absorption and fluorescence, as well as femtosecond transient spectral measurements. We found that the excited-state relaxations of the push-pull chromophores are highly dependent on both solvent polarity and the polar degree of the excited intramolecular charge transfer states. The symmetry of multibranched chromophores is preserved in less polar solvents, leading to excitation delocalization over all of the branches because of the negligible solvent reaction field. In contrast, symmetry is broken for multibranched chromophores in more polar solvents because of intense solvent reaction field, and the excitation is consequently localized on one of the dipolar molecular branches. The results provide a fundamental understanding of solvent-dependent excitation delocalization/localization properties of the multibranched chromophores for the potential applications in nonlinear optics and energy-harvesting applications.

  11. Intramolecular energy transfer in fullerene pyrazine dyads

    SciTech Connect

    Guldi, D.M.; Torres-Garcia, G.; Mattay, J.

    1998-11-26

    Excited-state properties of three different pyrazine derivatives 4--6 were probed by emission and transient absorption spectroscopy. They display emission maxima at 464 (4), 417 (5), and 515 nm (6) that are red-shifted with respect to their strong UV ground-state absorption and formed with overall quantum yields ({Phi}) of 0.156, 0.22, and 0.13, respectively. Once photoexcited, these triplet excited pyrazines undergo rapid intermolecular energy transfer to a monofunctionalized fullerene derivative (7) with bimolecular rate constants ranging from 3.64 {times} 10{sup 9} M{sup {minus}1} s{sup {minus}1} (6) to 1.1 {times} 10{sup 10} M{sup {minus}1} s{sup {minus}1} (4). The product of these bimolecular energy-transfer reactions is in all cases the fullerene triplet excited state. Functionalization of pristine C{sub 60} with the investigated pyrazine derivatives promotes the UV-vis absorption characteristics and, in turn, improves the light-harvesting efficiency of the resulting dyads 1--3 relative to pristine C{sub 60}. Photoexcitation of the pyrazine moieties in dyads 1--3 leads to the formation of their singlet excited states. In contrast to the pyrazine models, photoexcitation of dyad 1--3 is followed by rapid intramolecular deactivation processes of the latter via energy transfer to the fullerene ground state with half-lives between 37 and 100 ps. In turn, energy transfer transforms the short-lived and moderately redox-active singlet excited states of pyrazine into the highly reactive fullerene triplet excited state. The latter is found to produce effectively singlet oxygen ({sup 1}O{sub 2}) with quenching rate constants for 1--3 of (1--1.5) {times} 10{sup 9} M{sup {minus}1} s{sup {minus}1}. Similarly, reductive quenching of the triplet excited states in dyads 1--3 via electron transfer with diazabicyclooctane (DABCO) occurs with rate constants of 5.2--9.4 {times} 10{sup 7} M{sup {minus}1} s{sup {minus}1}.

  12. Excited states in 146Sm and 147Sm

    NASA Astrophysics Data System (ADS)

    Kownacki, J.; Sujkowski, Z.; Hammarén, E.; Liukkonen, E.; Piiparinen, M.; Lindblad, Th.; Ryde, H.; Paar, V.

    1980-03-01

    The 144, 146Nd(α, χn) and 146,148Nd( 3He, χn) reactions with Eα = 20-43 MeV and E3He , = 19-27 MeV are used to investigate excited states in the isotopes 146Sm and 147Sm. The experiments involve measurements of singles γ-ray spectra and conversion electron spectra, γ-ray angular distributions and three-parameter ( Eγ- Eγ-time) coincidences. From these experiments information is obtained for states with spin up to I = 13 +and I = {27}/{2}-, respectively. These states are interpreted within the framework of the cluster-vibration model (CVM) as well as the shell model. In the latter approach, the energies of several well established states, in both isotopes, are calculated using empirical singleparticle energies, empirical two-particle interaction matrix elements and angular momentum algebra. The average deviation between the calculated and the experimental energies is less than 100 keV. The CVM calculations involve the coupling of a three-particle neutron cluster to the quadrupole vibration of the core. For 147Sm, these calculations reproduce the observed sequence of states based on the I π = {7}/{2}- ground state, as well as the sequence of states based on the I π = {13}/{2}+ excited state. The CVM calculations also reproduce the ground band in 146Sm, while for the negative parity states based on the cluster (f {7}/{2}i {13}/{2}) 3 --10 - an additional shift in energy is expected due to the mixing with octupole phonons.

  13. Excited-State Properties of Molecular Solids from First Principles.

    PubMed

    Kronik, Leeor; Neaton, Jeffrey B

    2016-05-27

    Molecular solids have attracted attention recently in the context of organic (opto)electronics. These materials exhibit unique charge carrier generation and transport phenomena that are distinct from those of conventional semiconductors. Understanding these phenomena is fundamental to optoelectronics and requires a detailed description of the excited-state properties of molecular solids. Recent advances in many-body perturbation theory (MBPT) and density functional theory (DFT) have made such description possible and have revealed many surprising electronic and optical properties of molecular crystals. Here, we review this progress. We summarize the salient aspects of MBPT and DFT as well as various properties that can be described by these methods. These properties include the fundamental gap and its renormalization, hybridization and band dispersion, singlet and triplet excitations, optical spectra, and excitonic properties. For each, we present concrete examples, a comparison to experiments, and a critical discussion.

  14. Quantum entanglement of locally excited states in Maxwell theory

    NASA Astrophysics Data System (ADS)

    Nozaki, Masahiro; Watamura, Naoki

    2016-12-01

    In 4 dimensional Maxwell gauge theory, we study the changes of (Rényi) entanglement entropy which are defined by subtracting the entropy for the ground state from the one for the locally excited states, generated by acting with gauge invariant local operators on the state. The changes for the operators which we consider in this paper reflect the electric-magnetic duality. The late-time value of changes can be interpreted in terms of electromagnetic quasi-particles. When the operator constructed of both electric and magnetic fields acts on the ground state, it shows that the operator acts on the late-time structure of quantum entanglement differently from free scalar fields.

  15. Output power of a quantum dot laser: Effects of excited states

    SciTech Connect

    Wu, Yuchang; Jiang, Li Asryan, Levon V.

    2015-11-14

    A theory of operating characteristics of quantum dot (QD) lasers is discussed in the presence of excited states in QDs. We consider three possible situations for lasing: (i) ground-state lasing only; (ii) ground-state lasing at first and then the onset of also excited-state lasing with increasing injection current; (iii) excited-state lasing only. The following characteristics are studied: occupancies of the ground-state and excited-state in QDs, free carrier density in the optical confinement layer, threshold currents for ground- and excited-state lasing, densities of photons emitted via ground- and excited-state stimulated transitions, output power, internal and external differential quantum efficiencies. Under the conditions of ground-state lasing only, the output power saturates with injection current. Under the conditions of both ground- and excited-state lasing, the output power of ground-state lasing remains pinned above the excited-state lasing threshold while the power of excited-state lasing increases. There is a kink in the light-current curve at the excited-state lasing threshold. The case of excited-state lasing only is qualitatively similar to that for single-state QDs—the role of ground-state transitions is simply reduced to increasing the threshold current.

  16. Application of spectroscopy and super-resolution microscopy: Excited state

    SciTech Connect

    Bhattacharjee, Ujjal

    2016-02-19

    Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10-9 s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such as lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.

  17. Self-scattering for Dark Matter with an excited state

    SciTech Connect

    Schutz, Katelin; Slatyer, Tracy R. E-mail: tslatyer@mit.edu

    2015-01-01

    Self-interacting dark matter scenarios have recently attracted much attention, as a possible means to alleviate the tension between N-body simulations and observations of the dark matter distribution on galactic and sub-galactic scales. The presence of internal structure for the dark matter—for example, a nearly-degenerate state in the spectrum that could decay, or be collisionally excited or de-excited—has also been proposed as a possible means to address these discrepancies. Such internal structure can be a source of interesting signatures in direct and indirect dark matter searches, for example providing a novel explanation for the 3.5 keV line recently observed in galaxies and galaxy clusters. We analyze a simple model of dark matter self-scattering including a nearly-degenerate excited state, and develop an accurate analytic approximation for the elastic and inelastic s-wave cross sections, which is valid outside the perturbative regime provided the particle velocity is sufficiently low (this condition is also required for the s-wave to dominate over higher partial waves). We anticipate our results will be useful in incorporating inelastic self-scattering into N-body simulations, in order to study the quantitative impact of nearly-degenerate states in the dark matter spectrum on galactic structure and dynamics, and in computing the indirect signatures of multi-state dark matter.

  18. Ultra-Fast Excited State Dynamics in Green Fluorescent Protein: Multiple States and Proton Transfer

    NASA Astrophysics Data System (ADS)

    Chattoraj, Mita; King, Brett A.; Bublitz, Gerold U.; Boxer, Steven G.

    1996-08-01

    The green fluorescent protein (GFP) of the jellyfish Aequorea Victoria has attracted widespread interest since the discovery that its chromophore is generated by the autocatalytic, posttranslational cyclization and oxidation of a hexapeptide unit. This permits fusion of the DNA sequence of GFP with that of any protein whose expression or transport can then be readily monitored by sensitive fluorescence methods without the need to add exogenous fluorescent dyes. The excited state dynamics of GFP were studied following photo-excitation of each of its two strong absorption bands in the visible using fluorescence upconversion spectroscopy (about 100 fs time resolution). It is shown that excitation of the higher energy feature leads very rapidly to a form of the lower energy species, and that the excited state interconversion rate can be markedly slowed by replacing exchangeable protons with deuterons. This observation and others lead to a model in which the two visible absorption bands correspond to GFP in two ground-state conformations. These conformations can be slowly interconverted in the ground state, but the process is much faster in the excited state. The observed isotope effect suggests that the initial excited state process involves a proton transfer reaction that is followed by additional structural changes. These observations may help to rationalize and motivate mutations that alter the absorption properties and improve the photo stability of GFP.

  19. Excitation of Helium to Rydberg States Using STIRAP

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoxu

    2011-12-01

    Driving atoms from an initial to a final state of the same parity via an intermediate state of opposite parity is most efficiently done using STIRAP, because it does not populate the intermediate state. For optical transitions this requires appropriate pulses of light in the counter-intuitive order - first coupling the intermediate and final states. We populate Rydberg states of helium (n = 12 ˜ 30) in a beam of average velocity 1070 m/s by having the atoms cross two laser beams in a tunable dc electric field. The "red" light near lambda = 790 ~ 830 nm connects the 33P states to the Rydberg states and the "blue" beam of lambda = 389 nm connects the metastable 2 3S state atoms emitted by our source to the 33 P states. By varying the relative position of these beams we can vary both the order and the overlap encountered by the atoms. We vary either the dc electric field and fix the " red " laser frequency or vary the "red" laser frequency and fix the dc electric field to sweep across Stark states of the Rydberg manifolds. Several mm downstream of the interaction region we apply the very strong bichromatic force on the 23S → 2 3P transition at lambda = 1083 nm. It deflects the remaining 23S atoms out of the beam and the ratio of this signal measured with STIRAP beam on and off provides an absolute measure of the fraction of the atoms remaining in the 23 S state. Simple three-level models of STIRAP all predict 100% excitation probability, but our raw measurements are typically around half of this, and vary with both n and l of the Rydberg states selected for excitation by the laser frequency and electric field tuning on our Stark maps. For states with high enough Rabi frequency, after correction for the decay back to the metastable state before the deflection, the highest efficiencies are around 70%. An ion detector readily detects the presence of Rydberg atoms. We believe that the observed signals are produced by black-body ionization at a very low rate, but

  20. Ultrafast excited-state H-atom transfer in jet-cooled 2-(2'-hydroxyphenyl)-oxazole derivatives

    SciTech Connect

    Douhal, A.; Lahmani, F.; Zehnacker-Rentien, A.; Amat-Guerri, F.

    1996-04-01

    The fluorescence excitation and dispersed emission spectra of jet-cooled 2-(2'-hydroxyphenyl)- 4-phenyloxazole (HPPO) and its OH deuterated derivative, DPPO have been investigated. The dispersed fluorescence of both compounds exhibits an identical large Stokes shift. While the excitation spectrum of HPPO is composed of broad overlapping bands, the deuteration of the OH group induces a drastic narrowing of the vibronic structures which are well reproduced by Lorentzian lineshapes corresponding to an homogeneous width ranging from 24 to 30 cm{sup -1} for HPPO and from 3.6 to 9.7 cm{sup -1} for HPPO. The results are interpreted in terms of the occurrence of a fast (> or approx. 4.5x10{sup 12} s{sup -1}) excited-state intramolecular proton-tunnelling-transfer reaction in the enol form producing a keto tautomer through an asymmetric potential energy surface with a small energy barrier. The kinetic isotope effect observed here cannot be described in terms of a monodimensional tunnel effect and may rather involve a multidimensional coordinate involving low frequency motions. 2-(2'-hydroxyphenyl)-4-methyloxazole was also investigated and the influence of complexation on the proton transfer efficiency has been discussed.

  1. Ultrafast excited-state H-atom transfer in jet-cooled 2-(2'-hydroxyphenyl)-oxazole derivatives

    NASA Astrophysics Data System (ADS)

    Douhal, A.; Lahmani, F.; Zehnacker-Rentien, A.; Amat-Guerri, F.

    1996-04-01

    The fluorescence excitation and dispersed emission spectra of jet-cooled 2-(2'-hydroxyphenyl)- 4-phenyloxazole (HPPO) and its OH deuterated derivative, DPPO have been investigated. The dispersed fluorescence of both compounds exhibits an identical large Stokes shift. While the excitation spectrum of HPPO is composed of broad overlapping bands, the deuteration of the OH group induces a drastic narrowing of the vibronic structures which are well reproduced by Lorentzian lineshapes corresponding to an homogeneous width ranging from 24 to 30 cm-1 for HPPO and from 3.6 to 9.7 cm-1 for HPPO. The results are interpreted in terms of the occurrence of a fast (≳4.5×1012 s-1) excited-state intramolecular proton-tunnelling-transfer reaction in the enol form producing a keto tautomer through an asymmetric potential energy surface with a small energy barrier. The kinetic isotope effect observed here cannot be described in terms of a monodimensional tunnel effect and may rather involve a multidimensional coordinate involving low frequency motions. 2-(2'-hydroxyphenyl)-4-methyloxazole was also investigated and the influence of complexation on the proton transfer efficiency has been discussed.

  2. Spectroscopic properties of the S1 state of linear carotenoids after excess energy excitation

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Valentyna; Southall, June; Cogdell, Richard J.; Fuciman, Marcel; Polívka, Tomáš

    2017-09-01

    Properties of the S1 state of neurosporene, spheroidene and lycopene were studied after excess energy excitation in the S2 state. Excitation of carotenoids into higher vibronic levels of the S2 state generates excess vibrational energy in the S1 state. The vibrationally hot S1 state relaxes faster when carotenoid is excited into the S2 state with excess energy, but the S1 lifetime remains constant regardless of which vibronic level of the S2 state is excited. The S∗ signal depends on excitation energy only for spheroidene, which is likely due to asymmetry of the molecule, facilitating conformations responsible for the S∗ signal.

  3. Excited state mass spectra of doubly heavy Ξ baryons

    NASA Astrophysics Data System (ADS)

    Shah, Zalak; Rai, Ajay Kumar

    2017-02-01

    In this paper, the mass spectra are obtained for doubly heavy Ξ baryons, namely, Ξ _{cc}+, Ξ _{cc}^{++}, Ξ _{bb}-, Ξ _{bb}0, Ξ _{bc}0 and Ξ _{bc}+. These baryons consist of two heavy quarks ( cc, bb, and bc) with a light ( d or u) quark. The ground, radial, and orbital states are calculated in the framework of the hypercentral constituent quark model with Coulomb plus linear potential. Our results are also compared with other predictions, thus, the average possible range of excited states masses of these Ξ baryons can be determined. The study of the Regge trajectories is performed in ( n, M2) and ( J, M2) planes and their slopes and intercepts are also determined. Lastly, the ground state magnetic moments of these doubly heavy baryons are also calculated.

  4. TBA and TCSA with boundaries and excited states

    NASA Astrophysics Data System (ADS)

    Dorey, Patrick; Pocklington, A. J.; Tateo, Roberto; Watts, Gérard

    1998-08-01

    We study the spectrum of the scaling Lee-Yang model on a finite interval from two points of view: via a generalisation of the truncated conformal space approach to systems with boundaries, and via the boundary thermodynamic Bethe ansatz. This allows reflection factors to be matched with specific boundary conditions, and leads us to propose a new (and non-minimal) family of reflection factors to describe the one relevant boundary perturbation in the model. The equations proposed previously for the ground state on an interval must be revised in certain regimes, and we find the necessary modifications by analytic continuation. We also propose new equations to describe excited states, and check all equations against boundary truncated conformal space data. Access to the finite-size spectrum enables us to observe boundary flows when the bulk remains massless, and the formation of boundary bound states when the bulk is massive.

  5. Excited-state proton transfer of firefly dehydroluciferin.

    PubMed

    Presiado, Itay; Erez, Yuval; Simkovitch, Ron; Shomer, Shay; Gepshtein, Rinat; Pinto da Silva, Luís; Esteves da Silva, Joaquim C G; Huppert, Dan

    2012-11-08

    Steady-state and time-resolved emission techniques were used to study the protolytic processes in the excited state of dehydroluciferin, a nonbioluminescent product of the firefly enzyme luciferase. We found that the ESPT rate coefficient is only 1.1 × 10(10) s(-1), whereas those of d-luciferin and oxyluciferin are 3.7 × 10(10) and 2.1 × 10(10) s(-1), respectively. We measured the ESPT rate in water-methanol mixtures, and we found that the rate decreases nonlinearly as the methanol content in the mixture increases. The deprotonated form of dehydroluciferin has a bimodal decay with short- and long-time decay components, as was previously found for both D-luciferin and oxyluciferin. In weakly acidic aqueous solutions, the deprotonated form's emission is efficiently quenched. We attribute this observation to the ground-state protonation of the thiazole nitrogen, whose pK(a) value is ~3.

  6. Investigation of contrasting hydrogen bonding pattern of 3-(phenylamino)-cyclohexen-1-one with solvents in the ground and excited states

    NASA Astrophysics Data System (ADS)

    Misra, Ramprasad; Kar, Susmita

    2012-03-01

    In this paper, we report the contrasting pattern of hydrogen bonding between solvents and 3-(phenylamino)-cyclohexen-1-one (PACO), an intramolecular charge transfer (ICT) molecule in the ground and excited states. The uniqueness of this molecule has been revealed through linear free energy relationship based Kamlet-Taft analysis which indicates that the polarizability (π∗) and the hydrogen bond acceptor abilities (β) of the solvent are mainly responsible for the observed absorption spectra of the probe while polarizability (π∗) and the hydrogen bond donor abilities (α) of the solvents mainly determine its emitting profile. This investigation helps us to decipher the ground and excited state behavior of the hydrogen bonding sites present in PACO. These findings are also expected to be useful in understanding the nature of other molecules containing multiple H-bonding sites.

  7. Radiative Decays of Low-Lying Excited-State Hyperons

    SciTech Connect

    Taylor, Simon

    2000-05-01

    The quark wave-functions of the lower-lying excited-state hyperons Lambda(1405), Sigma(1385), and Lambda(1520) are not well understood. For example, the Lambda(1405) may not be a regular three-quark state but a $\\bar{K}$N molecule. Several competing models have been proposed, but none have been convincingly eliminated. Measuring radiative decays provides a means of discriminating between the models. The radiative branching of ratios are predicted to be small (~1%), but the radiative widths vary by factors of 2-10 from model to model. The existing experimental data is sparse and inconsistent; moreover, the radiative decay of the Sigma(1385) has never been observed before (except for one event). These lower-lying excited state hypersons were produced in a tagged photon-beam experiment in the CLAS detector at TJNAF in the reaction gamma p → K+ Y* for photon energies from threshold to 2.4 GeV. The radiative branching ration for the Sigma0(1385) relative to the Sigma0(1385) → Lambda pi0 channel was measured to be 0.021 ± 0.008$+0.004\\atop{-0.007}$, corresponding to a partial width of 640 ± 270$+130\\atop{-220}$ keV.

  8. New results on the excited states in ^32Mg

    NASA Astrophysics Data System (ADS)

    McGauley, A. J.; Mach, H.; Fraile, L. M.; Tengblad, O.; Boutami, R.; Jouliet, C.; Plociennik, W.; Yordanov, D. Z.; Stanoiu, M.

    2008-10-01

    ^32Mg is located at the center of a region known as the ``island of inversion,'' a region in which the classic picture of stable shell structure was shattered when the energy of the 2^+ state in ^32Mg was found to be only 885 keV, much lower than expected for a nucleus with a closed neutron shell. The collapse of the N=20 shell closure has been extensively studied, yet very little information exists on the excited states in ^32Mg, which is the critical nucleus. We have studied the levels in ^32Mg populated from the beta-decay of ^32Na at the ISOLDE facility at CERN. We have established a new level scheme which includes 9 excited states and 18 transitions based on the gamma-gamma coincidences. The statistics exceeded by about 2 orders of magnitude statistics collected in previous measurements of ^32Mg [1]. We do not confirm two levels previously proposed, while two new levels and five new transitions are included in the level scheme. [1] G. Klotz et al., Phys. Rev. C47, 2502 (1993), C.M. Mattoon et al., Phys. Rev. C75, 017302 (2007), and V. Tripathi et al., Phys. Rev C77, 034310 (2008).

  9. Nonlinear absorption properties and excited state dynamics of ferrocene.

    PubMed

    Scuppa, Stefano; Orian, Laura; Dini, Danilo; Santi, Saverio; Meneghetti, Moreno

    2009-08-20

    We report on the first observation of reverse saturable absorption by ferrocene (Fc) in toluene using nanosecond pulses at 532 nm. Pump and probe experiments in the visible spectral region show the existence of an excited triplet state with an intersystem crossing quantum yield S1 --> T1 of 0.085 and a molar extinction coefficient epsilon(Fc)(T) of 5650 L mol(-1) cm(-1) at 700 nm. The full understanding of the nonlinear optical behavior of Fc cannot be obtained, however, with a model that includes only the one-photon absorption from T1, but it is mandatory to consider also a simultaneous two-photon absorption from an excited singlet state of Fc (two-photon absorption cross section: 2.4 x 10(-41) cm4 s ph(-1) mol(-1)). The optical spectrum of the ground and triplet state of Fc are calculated within a TD-DFT approach considering several functionals (PBE, BLYP, LDA, OPBE) for the optimization of molecular geometry.

  10. Population shuffling between ground and high energy excited states.

    PubMed

    Sabo, T Michael; Trent, John O; Lee, Donghan

    2015-11-01

    Stochastic processes powered by thermal energy lead to protein motions traversing time-scales from picoseconds to seconds. Fundamental to protein functionality is the utilization of these dynamics for tasks such as catalysis, folding, and allostery. A hierarchy of motion is hypothesized to connect and synergize fast and slow dynamics toward performing these essential activities. Population shuffling predicts a "top-down" temporal hierarchy, where slow time-scale conformational interconversion leads to a shuffling of the free energy landscape for fast time-scale events. Until now, population shuffling was only applied to interconverting ground states. Here, we extend the framework of population shuffling to be applicable for a system interconverting between low energy ground and high energy excited states, such as the SH3 domain mutants G48M and A39V/N53P/V55L from the Fyn tyrosine kinase, providing another tool for accessing the structural dynamics of high energy excited states. Our results indicate that the higher energy gauche - rotameric state for the leucine χ2 dihedral angle contributes significantly to the distribution of rotameric states in both the major and minor forms of the SH3 domain. These findings are corroborated with unrestrained molecular dynamics (MD) simulations on both the major and minor states of the SH3 domain demonstrating high correlations between experimental and back-calculated leucine χ2 rotameric populations. Taken together, we demonstrate how fast time-scale rotameric side-chain population distributions can be extracted from slow time-scale conformational exchange data further extending the scope and the applicability of the population shuffling model.

  11. Population shuffling between ground and high energy excited states

    PubMed Central

    Sabo, T Michael; Trent, John O; Lee, Donghan

    2015-01-01

    Stochastic processes powered by thermal energy lead to protein motions traversing time-scales from picoseconds to seconds. Fundamental to protein functionality is the utilization of these dynamics for tasks such as catalysis, folding, and allostery. A hierarchy of motion is hypothesized to connect and synergize fast and slow dynamics toward performing these essential activities. Population shuffling predicts a “top-down” temporal hierarchy, where slow time-scale conformational interconversion leads to a shuffling of the free energy landscape for fast time-scale events. Until now, population shuffling was only applied to interconverting ground states. Here, we extend the framework of population shuffling to be applicable for a system interconverting between low energy ground and high energy excited states, such as the SH3 domain mutants G48M and A39V/N53P/V55L from the Fyn tyrosine kinase, providing another tool for accessing the structural dynamics of high energy excited states. Our results indicate that the higher energy gauche− rotameric state for the leucine χ2 dihedral angle contributes significantly to the distribution of rotameric states in both the major and minor forms of the SH3 domain. These findings are corroborated with unrestrained molecular dynamics (MD) simulations on both the major and minor states of the SH3 domain demonstrating high correlations between experimental and back-calculated leucine χ2 rotameric populations. Taken together, we demonstrate how fast time-scale rotameric side-chain population distributions can be extracted from slow time-scale conformational exchange data further extending the scope and the applicability of the population shuffling model. PMID:26316263

  12. Excited State Effects in Nucleon Matrix Element Calculations

    SciTech Connect

    Constantia Alexandrou, Martha Constantinou, Simon Dinter, Vincent Drach, Karl Jansen, Theodoros Leontiou, Dru B Renner

    2011-12-01

    We perform a high-statistics precision calculation of nucleon matrix elements using an open sink method allowing us to explore a wide range of sink-source time separations. In this way the influence of excited states of nucleon matrix elements can be studied. As particular examples we present results for the nucleon axial charge g{sub A} and for the first moment of the isovector unpolarized parton distribution x{sub u-d}. In addition, we report on preliminary results using the generalized eigenvalue method for nucleon matrix elements. All calculations are performed using N{sub f} = 2+1+1 maximally twisted mass Wilson fermions.

  13. Triaxiality near the 110Ru ground state from Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Doherty, D. T.; Allmond, J. M.; Janssens, R. V. F.; Korten, W.; Zhu, S.; Zielińska, M.; Radford, D. C.; Ayangeakaa, A. D.; Bucher, B.; Batchelder, J. C.; Beausang, C. W.; Campbell, C.; Carpenter, M. P.; Cline, D.; Crawford, H. L.; David, H. M.; Delaroche, J. P.; Dickerson, C.; Fallon, P.; Galindo-Uribarri, A.; Kondev, F. G.; Harker, J. L.; Hayes, A. B.; Hendricks, M.; Humby, P.; Girod, M.; Gross, C. J.; Klintefjord, M.; Kolos, K.; Lane, G. J.; Lauritsen, T.; Libert, J.; Macchiavelli, A. O.; Napiorkowski, P. J.; Padilla-Rodal, E.; Pardo, R. C.; Reviol, W.; Sarantites, D. G.; Savard, G.; Seweryniak, D.; Srebrny, J.; Varner, R.; Vondrasek, R.; Wiens, A.; Wilson, E.; Wood, J. L.; Wu, C. Y.

    2017-03-01

    A multi-step Coulomb excitation measurement with the GRETINA and CHICO2 detector arrays was carried out with a 430-MeV beam of the neutron-rich 110Ru (t1/2 = 12 s) isotope produced at the CARIBU facility. This represents the first successful measurement following the post-acceleration of an unstable isotope of a refractory element. The reduced transition probabilities obtained for levels near the ground state provide strong evidence for a triaxial shape; a conclusion confirmed by comparisons with the results of beyond-mean-field and triaxial rotor model calculations.

  14. Theoretical study on the excited states of HCN

    NASA Astrophysics Data System (ADS)

    Nayak, Malaya K.; Chaudhuri, Rajat K.; Krishnamachari, S. N. L. G.

    2005-05-01

    In the flash-photolysis of oxazole, iso-oxazole, and thiozole a transient band system was observed in the region 2500-3050 Å. This band system was attributed to a meta-stable form of HCN, i.e., either HNC or triplet HCN. Theoretical investigations have been carried out on the ground and excited states of HCN to characterize this and other experimentally observed transitions. The predicted geometries are compared with the experiment and earlier theoretical calculations. The present calculations show that the band system in the region 2500-3050 Å corresponds to the transition 43-A'←13-A' of HCN.

  15. Triaxiality near the 110Ru ground state from Coulomb excitation

    DOE PAGES

    Doherty, D. T.; Allmond, James M.; Janssens, R. V. F.; ...

    2017-01-20

    A multi-step Coulomb excitation measurement with the GRETINA and CHICO2 detector arrays was carried out with a 430-MeV beam of the neutron-rich 110Ru (t1/2 = 12 s) isotope produced at the CARIBU facility. This represents the first successful measurement following the post-acceleration of an unstable isotope of a refractory element. The reduced transition probabilities obtained for levels near the ground state provide strong evidence for a triaxial shape; a conclusion confirmed by comparisons with the results of beyond-mean-field and triaxial rotor model calculations.

  16. Ground- and excited-state impurity bands in quantum wells

    NASA Astrophysics Data System (ADS)

    Ghazali, A.; Gold, A.; Serre, J.

    1989-02-01

    The density of states and the spectral density of electrons in quantum wells with charged impurities are calculated with use of a multiple-scattering method. The impurity-density-dependent broadening and the gradual merging of the ground (1s) and excited (2p+/-,2s) impurity levels into impurity bands are investigated. At low density the shapes of the 1s, 2p+/-, and 2s spectral densities are found to be in excellent agreement with the analytical results obtained for the ideal two-dimensional Coulomb problem.

  17. Photosensitized Thymine Dimerization via Delocalized Triplet Excited States.

    PubMed

    Miro, Paula; Lhiaubet-Vallet, Virginie; Marin, M Luisa; Miranda, Miguel A

    2015-11-16

    A new mechanism of photosensitized formation of thymine (Thy) dimers is proposed, which involves generation of a delocalized triplet excited state as the key step. This is supported by chemical evidence obtained by combining one benzophenone and two Thy units with different degrees of freedom, whereby the photoreactivity is switched from a clean Paternò-Büchi reaction to a fully chemo-, regio-, and stereoselective [2+2] cycloaddition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Infrared spectroscopy of excited states and transients in photochemistry

    NASA Astrophysics Data System (ADS)

    Schaffner, Kurt; Grevels, Friedrich-Wilhelm

    Flash photolysis with time-resolved IR detection is used in investigations of the primary photoreactions of chromium, molybdenum, tungsten, manganese, iron, and osmium carbonyl complexes, and of the ensuing transformations of transient products in room temperature solution. The method bridges the gap to spectral data obtained at low temperatures. It provides information which has previously been inaccessible, such as detailed structural information, and kinetic data in cases where the UV-visible absorptions of the species of interest overlap. Finally, excited-state IR spectroscopy has now become feasible for many organic compounds with the most recent instrumental set-up which reaches a time resolution of ≥ 50 ns.

  19. Unveiling the excited state energy transfer pathways in peridinin-chlorophyll a-protein by ultrafast multi-pulse transient absorption spectroscopy.

    PubMed

    Redeckas, Kipras; Voiciuk, Vladislava; Zigmantas, Donatas; Hiller, Roger G; Vengris, Mikas

    2017-04-01

    Time-resolved multi-pulse methods were applied to investigate the excited state dynamics, the interstate couplings, and the excited state energy transfer pathways between the light-harvesting pigments in peridinin-chlorophyll a-protein (PCP). The utilized pump-dump-probe techniques are based on perturbation of the regular PCP energy transfer pathway. The PCP complexes were initially excited with an ultrashort pulse, resonant to the S0→S2 transition of the carotenoid peridinin. A portion of the peridinin-based emissive intramolecular charge transfer (ICT) state was then depopulated by applying an ultrashort NIR pulse that perturbed the interaction between S1 and ICT states and the energy flow from the carotenoids to the chlorophylls. The presented data indicate that the peridinin S1 and ICT states are spectrally distinct and coexist in an excited state equilibrium in the PCP complex. Moreover, numeric analysis of the experimental data asserts ICT→Chl-a as the main energy transfer pathway in the photoexcited PCP systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Excitation Energy Transfer Dynamics and Excited-State Structure in Chlorosomes of Chlorobium phaeobacteroides

    PubMed Central

    Pšenčík, Jakub; Ma, Ying-Zhong; Arellano, Juan B.; Hála, Jan; Gillbro, Tomas

    2003-01-01

    The excited-state relaxation within bacteriochlorophyll (BChl) e and a in chlorosomes of Chlorobium phaeobacteroides has been studied by femtosecond transient absorption spectroscopy at room temperature. Singlet-singlet annihilation was observed to strongly influence both the isotropic and anisotropic decays. Pump intensities in the order of 1011 photons × pulse−1 × cm−2 were required to obtain annihilation-free conditions. The most important consequence of applied very low excitation doses is an observation of a subpicosecond process within the BChl e manifold (∼200–500 fs), manifesting itself as a rise in the red part of the Qy absorption band of the BChl e aggregates. The subsequent decay of the kinetics measured in the BChl e region and the corresponding rise in the baseplate BChl a is not single-exponential, and at least two components are necessary to fit the data, corresponding to several BChl e→BChl a transfer steps. Under annihilation-free conditions, the anisotropic kinetics show a generally slow decay within the BChl e band (10–20 ps) whereas it decays more rapidly in the BChl a region (∼1 ps). Analysis of the experimental data gives a detailed picture of the overall time evolution of the energy relaxation and energy transfer processes within the chlorosome. The results are interpreted within an exciton model based on the proposed structure. PMID:12547796

  1. State-to-state kinetics and transport properties of electronically excited N and O atoms

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2016-11-01

    A theoretical model of transport properties in electronically excited atomic gases in the state-to-state approach is developed. Different models for the collision diameters of atoms in excited states are discussed, and it is shown that the Slater-like models can be applied for the state-resolved transport coefficient calculations. The influence of collision diameters of N and O atoms with electronic degrees of freedom on the transport properties is evaluated. Different distributions on the electronic energy are considered for the calculation of transport coefficients. For the Boltzmann-like distributions at temperatures greater than 15000 K, an important effect of electronic excitation on the thermal conductivity and viscosity coefficients is found; the coefficients decrease significantly when many electronic states are taken into account. It is shown that under hypersonic reentry conditions the impact of collision diameters on the transport properties is not really important since the populations of high levels behind the shock waves are low.

  2. Intramolecular photoinduced proton transfer in 2-(2‧-hydroxyphenyl)benzazole family: A TD-DFT quantum chemical study

    NASA Astrophysics Data System (ADS)

    Roohi, Hossein; Mohtamedifar, Nafiseh; Hejazi, Fahemeh

    2014-11-01

    In this work, intramolecular photoinduced proton transfer in 2-(2‧-hydroxyphenyl)benzazole family (HBO, HBI and HBT) was investigated using TD-DFT calculations at PBE1PBE/6-311++G(2d,2p) level of theory. The potential energy surfaces were employed to explore the proton transfer reactions in both states. In contrast to the ground state, photoexcitation from S0 state to S1 one encourages the operation of the excited-state intramolecular proton transfer process. Structural parameters, H-bonding energy, absorption and emission bands, vertical excitation and emission energies, oscillator strength, fluorescence rate constant, dipole moment, atomic charges and electron density at critical points were calculated. Molecular orbital analysis shows that vertical S0 → S1 transition in the studied molecules corresponds essentially to the excitation from HOMO (π) to LUMO (π∗). Our calculated results are in good agreement with the experimental observations.

  3. Excited-state characters and dynamics of [W(CO)(5)(4-cyanopyridine)] and [W(CO)(5)(piperidine)] studied by picosecond time-resolved IR and resonance Raman spectroscopy and DFT calculations: roles of W --> L and W --> CO MLCT and LF excited states revised.

    PubMed

    Zális, Stanislav; Busby, Michael; Kotrba, Tomás; Matousek, Pavel; Towrie, Mike; Vlcek, Antonín

    2004-03-08

    The characters, dynamics, and relaxation pathways of low-lying excited states of the complexes [W(CO)(5)L] [L = 4-cyanopyridine (pyCN) and piperidine (pip)] were investigated using theoretical and spectroscopic methods. DFT calculations revealed the delocalized character of chemically and spectroscopicaly relevant molecular orbitals and the presence of a low-lying manifold of CO pi-based unoccupied molecular orbitals. Traditional ligand-field arguments are not applicable. The lowest excited states of [W(CO)(5)(pyCN)] are W --> pyCN MLCT in character. They are closely followed in energy by W --> CO MLCT states. Excitation at 400 or 500 nm populates the (3)MLCT(pyCN) excited state, which was characterized by picosecond time-resolved IR and resonance Raman spectroscopy. Excited-state vibrations were assigned using DFT calculations. The (3)MLCT(pyCN) excited state is initially formed highly excited in low-frequency vibrations which cool with time constants between 1 and 20 ps, depending on the excitation wavelength, solvent, and particular high-frequency nu(CO) or nu(CN) mode. The lowest excited states of [W(CO)(5)(pip)] are W --> CO MLCT, as revealed by TD-DFT interpretation of a nanosecond time-resolved IR spectrum that was measured earlier in a low-temperature glass (Johnson, F. P. A.; George, M. W.; Morrison, S. L.; Turner, J. J. J. Chem. Soc., Chem. Commun. 1995, 391-393). MLCT(CO) excitation involves transfer of electron density from the W atom and, to a lesser extent, the trans CO to the pi orbitals of the four cis CO ligands. Optical excitation into MLCT(CO) transition of either complex in fluid solution triggers femtosecond dissociation of a W-N bond, producing [W(CO)(5)(solvent)]. It is initially vibrationally excited both in nu(CO) and anharmonicaly coupled low-frequency modes. Vibrational cooling occurs with time constants of 16-22 ps while the intramolecular vibrational energy redistribution from the v = 1 nu(CO) modes is much slower, 160-220 ps. No LF

  4. Solvent reorganizational red-edge effect in intramolecular electron transfer.

    PubMed Central

    Demchenko, A P; Sytnik, A I

    1991-01-01

    Polar solvents are characterized by statistical distributions of solute-solvent interaction energies that result in inhomogeneous broadening of the solute electronic spectra. This allows photoselection of the high interaction energy part of the distribution by excitation at the red (long-wavelength) edge of the absorption bands. We observe that intramolecular electron transfer in the bianthryl molecule from the locally excited (LE) to the charge-transfer (CT) state, which requires solvent relaxation and does not occur in vitrified polar solutions, is dramatically facilitated in low-temperature propylene glycol glass by the red-edge excitation. This allows one to obtain spectroscopically the pure CT form and observe its dependence upon the relaxational properties of the solvent. A qualitative potential model of this effect is presented. PMID:11607224

  5. The excited spin state of Comet 2P/Encke

    NASA Astrophysics Data System (ADS)

    Belton, Michael J. S.; Samarasinha, Nalin H.; Fernández, Yan R.; Meech, Karen J.

    2005-05-01

    Ways to rationalize the different periods (e.g., 15.08 h, Luu and Jewitt, 1990, Icarus 86, 69-81; 11.01 h, Fernández et al., 2004, Icarus, in this issue; Lowry et al., 2003, Lunar Planet. Sci. XXXIV, Abstract 2056) seen in near aphelion R-band light curves of Comet 2P/Encke are explored. We show that the comet is usually active at aphelion and it's observed light curves contain signal from both the nucleus and an unresolved coma. The coma contribution to the observed brightness is generally found to dominate with the nucleus providing from 28 to 87% of the total brightness. The amplitude of the observed variations cannot be explained by the nucleus alone and are due to coma activity. We show that some seven periodicities exist in the observed light curves at various times and that this is likely the result of an active nucleus spinning in an excited spin state. The changing periodicities are probably due to changes in the relative strengths of the active areas. We work out possible excited states based on experience with model light curves and by using an analogy to light curve observations of Comet 1P/Halley for which the spin state has been separately determined from spacecraft observations. There is a possibility of a fully relaxed principal axis spin state (0.538 d -1; P=44.6 h) but, because it provides a poorer fit to the observed periodicities than the best fit excited state together with the absence of a peak near 1.08 d -1 ( 2f) in the frequency spectrum of the Fernández et al. (2000, Icarus 147, 145-160) thermal IR lightcurve, we consider it unlikely. Both SAM and LAM excited states are allowed by the underlying periodicities and additional information is needed to choose between these. Our choice of a low excitation SAM state, i.e., one in which the instantaneous spin axis nutates around the total angular momentum vector in a motion that is characterized by limited angular oscillations around the long axis, is based on Sekanina's (1988, Astron J. 95

  6. Search for dilute excited states in 16O

    NASA Astrophysics Data System (ADS)

    Ogloblin, A. A.; Danilov, A. N.; Demyanova, A. S.; Goncharov, S. A.; Belyaeva, T. L.

    2016-11-01

    The root mean square radii of 16O in the short-lived 0+ excited states were experimentally deduced for the first time from the analyses of α +16O diffraction scattering. Differential cross sections of the elastic and inelastic α +16O and 16O+16O scattering in the incident energy range from a few MeV/nucleon up to 100 MeV/nucleon were analyzed by the modified diffraction model. No significant radius enhancement in any state in comparison with the ground state was observed. This concerns, in particular, the 15.1-MeV 06+ state of 16O, located in the vicinity of the four-α -particle complete dissociation threshold, for which we did not confirm the "gigantic" size predicted by the α -particle condensation model. This result does not support the idea that 16O in the 06+ state has a dilute structure and can be considered as an analog of the famous 7.65-MeV 02+ Hoyle state of 12C.

  7. Excited state absorption spectra and intersystem crossing kinetics in diazanaphthalenes

    NASA Astrophysics Data System (ADS)

    Scott, Gary W.; Talley, Larry D.; Anderson, Robert W.

    1980-05-01

    Picosecond time-resolved, excited state absorption spectra in the visible following excitation at 355 nm are discussed for room temperature solutions of four diazanaphthalenes (DN)—quinoxaline (1,4-DN), quinazoline (1,3-DN), cinnoline (1,2-DN), and phthalazine (2,3-DN). Kinetics of singlet state decay are obtained by monitoring the decay of Sn←S1 bands. The intersystem crossing rate constant (kisc) is found to vary as kisc(1,4-DN)≳kisc(1,3-DN)≳kisc(1,2-DN). The kisc in phthalazine could not be determined from the weak, visible Sn←S1 absorption. Assuming rapid singlet vibrational relaxation and only minor effects due to energy gap variations, these experimental results agree with statistical limit predictions for the relative nonradiative rate. Calculations of the spin-orbit coupling matrix element βel= , using INDO wave functions, give the ordering βel(1,4-DN)≳βel(2,3-DN)≳βel(1,3-DN) ≳βel(1,2-DN).

  8. Probing the Locality of Excited States with Linear Algebra.

    PubMed

    Etienne, Thibaud

    2015-04-14

    This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable.

  9. Excited-State Decay Paths in Tetraphenylethene Derivatives

    PubMed Central

    2017-01-01

    The photophysical properties of tetraphenylethene (TPE) compounds may differ widely depending on the substitution pattern, for example, with regard to the fluorescence quantum yield ϕf and the propensity to exhibit aggregation-induced emission (AIE). We report combined electronic structure calculations and nonadiabatic dynamics simulations to study the excited-state decay mechanisms of two TPE derivatives with four methyl substituents, either in the meta position (TPE-4mM, ϕf = 0.1%) or in the ortho position (TPE-4oM, ϕf = 64.3%). In both cases, two excited-state decay pathways may be relevant, namely, photoisomerization around the central ethylenic double bond and photocyclization involving two adjacent phenyl rings. In TPE-4mM, the barrierless S1 cyclization is favored; it is responsible for the ultralow fluorescence quantum yield observed experimentally. In TPE-4oM, both the S1 photocyclization and photoisomerization paths are blocked by non-negligible barriers, and fluorescence is thus feasible. Nonadiabatic dynamics simulations with more than 1000 surface hopping trajectories show ultrafast cyclization upon photoexcitation of TPE-4mM, whereas TPE-4oM remains unreactive during the 1 ps simulations. We discuss the chances for spectroscopic detection of the postulated cyclic photoproduct of TPE-4mM and the relevance of our findings for the AIE process. PMID:28318255

  10. The Microwave Spectroscopy of Aminoacetonitrile in the Vibrational Excited State

    NASA Astrophysics Data System (ADS)

    Fujita, Chiho; Ozeki, Hiroyuki; Kobayashi, Kaori

    2015-06-01

    Aminoacetonitrile (NH_2CH_2CN) is a potential precursor of the simplest amino acid, glycine and was detected toward SgrB2(N). It is expected that the strongest transitions will be found in the terahertz region so that we have extended measurements up to 1.3 THz. This study gave an accurate prediction of aminoacetonitrile up to 2 THz which is useful for astronomically search. This molecule has a few low-lying vibrational excited states and the pure rotational transitions in these vibrational excited states are expected to found. We found a series of transitions with intensity of about 30%. Eighty-eight spectral lines including both a-type and b-type transitions were recorded in the frequency region of 400 - 450 GHz, and centrifugal distortion constants up to the sextic term were determined. Perturbation was recognized. We will report the current status of the analysis. A. Belloche, K. M. Menten, C. Comito, H. S. P. Müller, P. Schilke, J. Ott, S. Thorwirth, and C. Hieret, 2008, Astronom. & Astrophys. 482, 179 (2008). Y. Motoki, Y. Tsunoda, H. Ozeki, and K. Kobayashi, Astrophys. J. Suppl. Ser. 209, 23 (2013). B. Bak, E. L. Hansen, F. M. Nicolaisen, and O. F. Nielsen, Can. J. Phys. 53, 2183 (1975).

  11. The Astrophysical Weeds: Rotational Transitions in Excited Vibrational States

    NASA Astrophysics Data System (ADS)

    Alonso, José L.; Kolesniková, Lucie; Alonso, Elena R.; Mata, Santiago

    2017-06-01

    The number of unidentified lines in the millimeter and submillimeter wave surveys of the interstellar medium has grown rapidly. The major contributions are due to rotational transitions in excited vibrational states of a relatively few molecules that are called the astrophysical weeds. necessary data to deal with spectral lines from astrophysical weeds species can be obtained from detailed laboratory rotational measurements in the microwave and millimeter wave region. A general procedure is being used at Valladolid combining different time and/or frequency domain spectroscopic tools of varying importance for providing the precise set of spectroscopic constants that could be used to search for this species in the ISM. This is illustrated in the present contribution through its application to several significant examples. Fortman, S. M., Medvedev, I. R., Neese, C.F., & De Lucia, F.C. 2010, ApJ,725, 1682 Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile, L. Kolesniková, E. R. Alonso, S. Mata, and J. L. Alonso, The Astrophysical Journal Supplement Series 2017, (in press).

  12. Excited state mass spectra of singly charmed baryons

    NASA Astrophysics Data System (ADS)

    Shah, Zalak; Thakkar, Kaushal; Kumar Rai, Ajay; Vinodkumar, P. C.

    2016-10-01

    Mass spectra of excited states of the singly charmed baryons are calculated using the hypercentral description of the three-body system. The baryons consist of a charm quark and light quarks ( u, d and s) are studied in the framework of QCD motivated constituent quark model. The form of the confinement potential is hyper-Coloumb plus power potential with potential index ν, varying from 0.5 to 2.0. The first-order correction to the confinement potential is also incorporated in this approach. The radial as well as orbital excited state masses of Σc^{++}, Σc+, Σc0, Ξc+, Ξc0, Λc+, Ωc0 baryons, are reported in this paper. We have incorporated spin-spin, spin-orbit and tensor interactions perturbatively in the present study. The semi-electronic decay of Ωc and Ξc are also calculated using the spectroscopic parameters of these baryons. The computed results are compared with other theoretical predictions as well as with the available experimental observations. We also construct the Regge trajectory in (nr, M2) and (J, M2) planes for these baryons.

  13. Excited-State Decay Paths in Tetraphenylethene Derivatives.

    PubMed

    Gao, Yuan-Jun; Chang, Xue-Ping; Liu, Xiang-Yang; Li, Quan-Song; Cui, Ganglong; Thiel, Walter

    2017-04-06

    The photophysical properties of tetraphenylethene (TPE) compounds may differ widely depending on the substitution pattern, for example, with regard to the fluorescence quantum yield ϕf and the propensity to exhibit aggregation-induced emission (AIE). We report combined electronic structure calculations and nonadiabatic dynamics simulations to study the excited-state decay mechanisms of two TPE derivatives with four methyl substituents, either in the meta position (TPE-4mM, ϕf = 0.1%) or in the ortho position (TPE-4oM, ϕf = 64.3%). In both cases, two excited-state decay pathways may be relevant, namely, photoisomerization around the central ethylenic double bond and photocyclization involving two adjacent phenyl rings. In TPE-4mM, the barrierless S1 cyclization is favored; it is responsible for the ultralow fluorescence quantum yield observed experimentally. In TPE-4oM, both the S1 photocyclization and photoisomerization paths are blocked by non-negligible barriers, and fluorescence is thus feasible. Nonadiabatic dynamics simulations with more than 1000 surface hopping trajectories show ultrafast cyclization upon photoexcitation of TPE-4mM, whereas TPE-4oM remains unreactive during the 1 ps simulations. We discuss the chances for spectroscopic detection of the postulated cyclic photoproduct of TPE-4mM and the relevance of our findings for the AIE process.

  14. Excited state dynamics of thulium ions in yttrium aluminum garnets

    NASA Technical Reports Server (NTRS)

    Armagan, G.; Buoncristiani, A. M.; Dibartolo, B.

    1991-01-01

    The processes that take place in the excited states of a trivalent Thulium (Tm) ion in an Yttrium Aluminum Garnet (YAG) crystal, being relevant to the use of this system for laser applications, have been the object of several studies. We have reexamined this system focusing our attention on the dynamics of Tm following its excitation in the H-3(sub 4) level. Under these conditions the system relaxes through a cross-relaxation process. H-3(sub 4) yields F-3(sub 4), H-3(sub 6) yields F-3(sub 4), whose rate depends upon both the concentration of the Tm ion and the temperature of the crystal. The excitation spectrum obtained by monitoring the 1.8 micron emission of Tm (due to the F-3(sub 4) yields H-3(sub 6) transition) indicates an increase in the contribution to this emission from the H-3(sub 4) level relative to the H-3(sub 5) level as the Tm concentration increases; this shows the increased role played by the H-3(sub 4) level in pumping the infrared emission. Correspondingly, the duration of the luminescence originating in the H-3(sub 4) level is shortened as the concentration of Tm increases. The concentration quenching of this lifetime can be fit to a model which assumes that the cross-relaxation is due to a dipole-dipole interaction; from this fit, the intrinsic Tm lifetime in the absence of cross relaxation can be derived. We have used this lifetime to calculate the rate of the cross-relaxation process. We have evaluated this rate as a function of the temperature and found it to be fastest at 77 K. We have also calculated the microscopic interaction parameters for the cross-relaxation process by using two independent experimental features: (1) the time evolution of the emission from the H-3(sub 4) level; and (2) the spectral overlap between the H-3(sub 4) yields F-3(sub 4) emission and the H-3(sub 6) yields F-3(sub 4) absorption. We have also considered the migration of excitation among the Tm ions in the F-3(sub 4) level and calculated the relevant

  15. Trapped electronic states in YAG crystal excited by femtosecond radiation

    NASA Astrophysics Data System (ADS)

    Zavedeev, E. V.; Kononenko, V. V.; Konov, V. I.

    2017-07-01

    The excitation of an electronic subsystem of an yttrium aluminum garnet by 800 nm femtosecond radiation was studied theoretically and experimentally. The spatio-temporal dynamics of the refractive index ( n) inside the beam waist was explored by means of the pump-probe interferometric technique with a submicron resolution. The observed increase in n indicated the formation of bound electronic states relaxed for {˜}150 ps. We showed that the experimental data agreed with the computational simulation based on the numerical solution of the nonlinear Schrödinger equation only if these transient states were considered to arise from a direct light-induced process but not from the decay of radiatively generated free-electron-hole pairs.

  16. Characterizing excited conformational states of RNA by NMR spectroscopy

    PubMed Central

    Zhao, Bo; Zhang, Qi

    2016-01-01

    Conformational dynamics is a hallmark of diverse non-coding RNA functions. During these functional processes, RNA molecules almost ubiquitously undergo conformational transitions that are tuned to meet distinct structural and kinetic requirements for proper function. A complete mechanistic understanding of RNA function requires comprehensive structural and dynamic knowledge of these complex transitions, which often involve alternative higher-energy conformational states that pose a major challenge for high-resolution structural study by conventional methods. In this review, we describe recent progress in RNA NMR that has started to unveil detailed structural, thermodynamic and kinetic insights into some of these excited conformational states of RNA and their functional roles in biology. PMID:25765780

  17. Benzonitrile: Electron affinity, excited states, and anion solvation.

    PubMed

    Dixon, Andrew R; Khuseynov, Dmitry; Sanov, Andrei

    2015-10-07

    We report a negative-ion photoelectron imaging study of benzonitrile and several of its hydrated, oxygenated, and homo-molecularly solvated cluster anions. The photodetachment from the unsolvated benzonitrile anion to the X̃(1)A1 state of the neutral peaks at 58 ± 5 meV. This value is assigned as the vertical detachment energy (VDE) of the valence anion and the upper bound of adiabatic electron affinity (EA) of benzonitrile. The EA of the lowest excited electronic state of benzonitrile, ã(3)A1, is determined as 3.41 ± 0.01 eV, corresponding to a 3.35 eV lower bound for the singlet-triplet splitting. The next excited state, the open-shell singlet Ã(1)A1, is found about an electron-volt above the triplet, with a VDE of 4.45 ± 0.01 eV. These results are in good agreement with ab initio calculations for neutral benzonitrile and its valence anion but do not preclude the existence of a dipole-bound state of similar energy and geometry. The step-wise and cumulative solvation energies of benzonitrile anions by several types of species were determined, including homo-molecular solvation by benzonitrile, hydration by 1-3 waters, oxygenation by 1-3 oxygen molecules, and mixed solvation by various combinations of O2, H2O, and benzonitrile. The plausible structures of the dimer anion of benzonitrile were examined using density functional theory and compared to the experimental observations. It is predicted that the dimer anion favors a stacked geometry capitalizing on the π-π interactions between the two partially charged benzonitrile moieties.

  18. Universal crossover from ground-state to excited-state quantum criticality

    NASA Astrophysics Data System (ADS)

    Kang, Byungmin; Potter, Andrew C.; Vasseur, Romain

    2017-01-01

    We study the nonequilibrium properties of a nonergodic random quantum chain in which highly excited eigenstates exhibit critical properties usually associated with quantum critical ground states. The ground state and excited states of this system belong to different universality classes, characterized by infinite-randomness quantum critical behavior. Using strong-disorder renormalization group techniques, we show that the crossover between the zero and finite energy density regimes is universal. We analytically derive a flow equation describing the unitary dynamics of this isolated system at finite energy density from which we obtain universal scaling functions along the crossover.

  19. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    NASA Astrophysics Data System (ADS)

    Egidi, Franco; Segado, Mireia; Koch, Henrik; Cappelli, Chiara; Barone, Vincenzo

    2014-12-01

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π*, π-π*, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  20. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    SciTech Connect

    Egidi, Franco Segado, Mireia; Barone, Vincenzo; Koch, Henrik; Cappelli, Chiara

    2014-12-14

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π{sup *}, π-π{sup *}, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  1. Excited state properties of the astaxanthin radical cation: A quantum chemical study

    NASA Astrophysics Data System (ADS)

    Dreuw, Andreas; Starcke, Jan Hendrik; Wachtveitl, Josef

    2010-07-01

    Using time-dependent density functional theory, the excited electronic states of the astaxanthin radical cation (AXT rad + ) are investigated. While the optically allowed excited D 1 and D 3 states are typical ππ∗ excited states, the D 2 and D 4 states are nπ∗ states. Special emphasis is put onto the influence of the carbonyl groups onto the excited states. For this objective, the excited states of four hypothetical carotenoids and zeaxanthin have been computed. Addition of a carbonyl group to a conjugated carbon double bond system does essentially not change the vertical excitation energies of the optically allowed ππ∗ states due to two counter-acting effects: the excitation energy should increase due to the -M-effect of the carbonyl group and at the same time decrease owing to the elongation of the conjugated double bond system by the carbonyl group itself.

  2. Ultrafast electronic relaxation of excited state vitamin B 12 in the gas phase

    NASA Astrophysics Data System (ADS)

    Shafizadeh, Niloufar; Poisson, Lionel; Soep, Benoıˆt

    2008-06-01

    The time evolution of electronically excited vitamin B 12 (cyanocobalamin) has been observed for the first time in the gas phase. It reveals an ultrafast decay to a state corresponding to metal excitation. This decay is interpreted as resulting from a ring to metal electron transfer. This opens the observation of the excited state of other complex biomimetic systems in the gas phase, the key to the characterisation of their complex evolution through excited electronic states.

  3. Neutron decay widths of excited states of {sup 11}Be

    SciTech Connect

    Haigh, P. J.; Freer, M.; Ashwood, N. I.; Bloxham, T.; Curtis, N.; McEwan, P.; Bohlen, H. G.; Dorsch, T.; Kokalova, Tz.; Schulz, Ch.; Wheldon, C.

    2009-01-15

    The two-neutron transfer reaction {sup 9}Be({sup 16}O, {sup 14}O){sup 11}Be[{sup 10}Be +n] has been used to measure the branching ratios for the neutron decay of excited states of {sup 11}Be. The {sup 14}O ejectile was detected by a Q3D spectrometer at forward angles. The energies and angles of the {sup 10}Be fragments of the decaying {sup 11}Be* recoil were measured in coincidence with the {sup 14}O ejectile using a double-sided silicon strip detector array at backward angles. This enabled a kinematic reconstruction of the reaction to be performed. Theoretical decay branch ratios were calculated using barrier penetrability factors and were compared to the measured ratios to provide information on the relative reduced widths of the states. The decay widths have been used to link states in {sup 11}Be with a common structure and structurally to states in the daughter nucleus {sup 10}Be. The 3/2{sup -} 8.82-MeV state was identified as a candidate for a molecular band head.

  4. Aqueous reactions of triplet excited states with allylic compounds

    NASA Astrophysics Data System (ADS)

    Kaur, R.; Anastasio, C.; Hudson, B. M.; Tantillo, D. J.

    2016-12-01

    Triplet excited states of dissolved organic matter react with several classes of aromatic organics such as phenols, anilines, sulfonamide antibiotics and phenylurea herbicides. Aqueous triplets appear to be among the most important oxidants for atmospheric phenols in regions with biomass burning, with phenol lifetimes on the order of a few hours to a day. However, little is known of the reactions of triplets with other classes of organic compounds. Recent work from our group shows that triplets react rapidly with several biogenic volatile organic compounds (BVOCs), such as methyl jasmonate, cis-3-hexenyl acetate, and cis-3-hexen-1-ol. However, there are only a few rate constants for aqueous reactions between alkenes such as these and triplet excited states. For our work, we refer to these and similar alkenes which have hydrogen(s) attached to a carbon adjacent to the double bond, as allylic compounds. To better assess the importance of triplets as aqueous oxidants, we measured second-order rate constants (kAC+3BP*) for a number of allylic compounds (ACs) with the triplet state of benzophenone; then established a quantitative structure-activity relationship (QSAR) between kAC+3BP* and computed oxidation potential of the ACs (R2 =0.65). Using the QSAR, we estimated the rate constants for triplets with some allylic isoprene and limonene oxidation products that have high Henry's law constants (KH>103 M atm-1). Hydroxylated limonene products and the delta-isomers of isoprene hydroxyhydroperoxides (δ4ISOPOOH) and hydroxynitrates (δ4ISONO2) were faster with predicted kAC+3BP* values ranging between (0.5-3.5) x 109 M-1-s-1 whereas the beta-isomers of ISOPOOH and ISONO2 were slower (kAC+3BP* < 0.5 x 109 M-1s-1). We scaled the predicted kAC+3BP* to represent less reactive atmospheric triplets that have been measured in fog drops, and compared to gas and aqueous hydroxyl radical and ozone, triplets in fog could account for up to 20 % of the measured loss of these compounds

  5. Excited state lifetime measurements of ytterbium in indium phosphide

    NASA Astrophysics Data System (ADS)

    Desrocher, David

    1989-12-01

    The AFIT Time Resolved Photoluminescence (TRPL) lab was disassembled, relocated and rebuilt with improvements to layout and performance. Excited state lifetime measurements of ytterbium implanted in indium phosphide were conducted using the new lab. Effects of sample temperature, rapid thermal annealing (RTA) time and RTA temperature on the lifetimes of the 1.002 microns Yb3+ line were examined. Lifetime measurements of Er, Pr and Tm in GaAs were also attempted. Ytterbium concentrations were 3 x 10(exp 13) ions/sq cm, implanted at an ion energy of 1 MeV in semi-insulating InP substrate. Sample temperatures ranged from 4.2 to 90K. Annealing times ranged from 1 to 25 seconds on samples annealed at 850 C. Annealing temperatures ranged from 400 to 850 C, with RTA times of 15 seconds. The excitation source was a nitrogen-pumped dye laser with primary wavelength at 580 nm. A germanium photodiode detector was selected to eliminate the long time constant associated with available S1 power supplies and to enable detection at the near infrared wavelengths of the other rare earths. Data acquisition was accomplished with a boxcar averager and a microcomputer equipped with acquisition hardware and software. Thermal quenching was clearly observed in lifetimes at increasing sample temperatures, most dramatically at above 50 C. The results would be very helpful in device fabrication/operation considerations, and some of the sample preparation parameters may be equally applicable for other RE doped III-V semiconductors.

  6. Time-dependent density functional theory study on the excited-state hydrogen-bonding characteristics of polyaniline in aqueous environment

    NASA Astrophysics Data System (ADS)

    Zhang, Yahong; Duan, Yuping; Liu, Jin

    2017-01-01

    A theoretical study was carried out to study the excited-state of hydrogen-bonding characteristics of polyaniline (PANI) in aqueous environment. The hydrogen-bonded PANI-H2O complexes were studied using first-principles calculations based on density functional theory (DFT). The electronic excitation energies and the corresponding oscillator strengths of the low-lying electronically excited states for hydrogen-bonded complexes were calculated by time-dependent density functional theory (TDDFT). The ground-state geometric structures were optimized, and it is observed that the intermolecular hydrogen bonds Csbnd N ⋯ Hsbnd O and Nsbnd H ⋯ Osbnd H were formed in PANI-H2O complexes. The formed hydrogen bonds influenced the bond lengths, the charge distribution, as well as the spectral characters of the groups involved. It was concluded that all the hydrogen-bonded PANI-H2O complexes were primarily excited to the S1 states with the largest oscillator strength. In addition, the orbital transition from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) involved intramolecular charge redistribution resulting to increase the electron density of the quinonoid rings.

  7. Excited-state intramolecular proton transfer as a fluorescence probe for protein binding-site static polarity.

    PubMed Central

    Sytnik, A; Kasha, M

    1994-01-01

    A fluorescence probe is introduced for protein conformation and binding-site monitoring as the proton-transfer (PT) tautomer fluorescence by using 4-hydroxy-5-azaphenanthrene (HAP) as a prototype. A typical grossly-wavelength-shifted PT fluorescence for HAP is observed in the 600-nm spectral region for this UV-absorbing molecule (absorption onset, 400 nm), for which case PT occurs even in protic solvents. It is shown that PT fluorescence of HAP can serve as a protein-binding-site static-polarity calibrator, shifting from a lambda max of 612 nm in cyclohexane to 585 nm in ethanol at 298 K, contrary to the usual dispersion red shift. A small mechanical solvent-cage effect is noted in ethanol at 77 K, but solvent dielectric relaxation is not apparent from the fluorescence spectrum. Thus, HAP serves to distinguish static solvent-cage polarity from dynamical solvent dielectric relaxation and other solvent-cage effects (mechanical restriction of molecular conformation). HAP as a PT-fluorescence probe is applied to human serum albumin (HSA) and beaver apomyoglobin. PMID:8078934

  8. Two-State Intramolecular Charge Transfer (ICT) with 3,5-Dimethyl-4-(dimethylamino)benzonitrile (MMD) and Its Meta-Isomer mMMD. Ground State Amino Twist Not Essential for ICT.

    PubMed

    Druzhinin, Sergey I; Galievsky, Victor A; Demeter, Attila; Kovalenko, Sergey A; Senyushkina, Tamara; Dubbaka, Srinivas R; Knochel, Paul; Mayer, Peter; Grosse, Christian; Stalke, Dietmar; Zachariasse, Klaas A

    2015-12-10

    From X-ray structure analysis, amino twist angles of 90.0° for 2,4-dimethyl-3-(dimethylamino)benzonitrile (mMMD), 82.7° for 4-(di-tert-butylamino)benzonitrile (DTABN), and 88.7° for 6-cyanobenzoquinuclidine (CBQ) are determined, all considerably larger than the 57.4° of 3,5-dimethyl-4-(dimethylamino)benzonitrile (MMD). This large twist leads to lengthening of the amino-phenyl bond, 143.5 pm (mMMD), 144.1 pm (DTABN), 144.6 pm (CBQ), and 141.4 pm (MMD), as compared with 136.5 pm for the planar 4-(dimethylamino)benzonitrile (DMABN). As a consequence, the electronic coupling between the amino and phenyl subgroups in mMMD, DTABN, CBQ, and MMD is much weaker than in DMABN, as seen from the strongly reduced molar absorption coefficients. The fluorescence spectrum of MMD in n-hexane at 25 °C consists of two emissions, from a locally excited (LE) and an intramolecular charge transfer (ICT) state, with a fluorescence quantum yield ratio Φ'(ICT)/Φ(LE) of 12.8. In MeCN, a single ICT emission is found. With mMMD in n-hexane, in contrast, only LE fluorescence is observed, whereas the spectrum in MeCN originates from the ICT state. These differences are also seen from the half-widths of the overall fluorescence bands, which in n-hexane are larger for MMD than for mMMD, decreasing with solvent polarity for MMD and increasing for mMMD, reflecting the disappearance of LE and the onset of ICT in the overall spectra, respectively. From solvatochromic measurements the dipole moments μe(ICT) of MMD (16 D) and mMMD (15 D) are obtained. Femtosecond excited state absorption (ESA) spectra at 22 °C, together with the dual (LE + ICT) fluorescence, reveal that MMD in n-hexane undergoes a reversible LE ⇄ ICT reaction, with LE as the precursor, with a forward rate constant ka = 5.6 × 10(12) s(-1) and a back-reaction kd ∼ 0.05 × 10(12) s(-1). With MMD in the strongly polar solvent MeCN, ICT is faster: ka = 10 × 10(12) s(-1). In the case of mMMD in n-hexane, the ESA spectra show

  9. Lowest singlet excited state and spectroscopy of α-carotene

    NASA Astrophysics Data System (ADS)

    Itoh, Takao

    2011-03-01

    Emission, excitation and absorption spectra of α-carotene have been measured in solvents with different polarizabilities. It is shown that in highly-polarized solvents α-carotene emits weak fluorescence from the S 1( π, π∗) state with the fluorescence origin observed at 14 800 ± 200 cm -1. The relative S 1/S 2 fluorescence intensity ratio tends to increase with increasing solvent polarizability or decreasing the S 1-S 2 energy separation. The obtained spectroscopic data include the Raman spectrum of α-carotene along with the vibrational analyses of the Raman spectrum based on the DFT calculation at the B3LYP/6-31G(d,p) level.

  10. Excited states and reduced transition probabilities in 168Os

    NASA Astrophysics Data System (ADS)

    Grahn, T.; Stolze, S.; Joss, D. T.; Page, R. D.; Sayǧı, B.; O'Donnell, D.; Akmali, M.; Andgren, K.; Bianco, L.; Cullen, D. M.; Dewald, A.; Greenlees, P. T.; Heyde, K.; Iwasaki, H.; Jakobsson, U.; Jones, P.; Judson, D. S.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Lumley, N.; Mason, P. J. R.; Möller, O.; Nomura, K.; Nyman, M.; Petts, A.; Peura, P.; Pietralla, N.; Pissulla, Th.; Rahkila, P.; Sapple, P. J.; Sarén, J.; Scholey, C.; Simpson, J.; Sorri, J.; Stevenson, P. D.; Uusitalo, J.; Watkins, H. V.; Wood, J. L.

    2016-10-01

    The level scheme of the neutron-deficient nuclide 168Os has been extended and mean lifetimes of excited states have been measured by the recoil distance Doppler-shift method using the JUROGAM γ -ray spectrometer in conjunction with the IKP Köln plunger device. The 168Osγ rays were measured in delayed coincidence with recoiling fusion-evaporation residues detected at the focal plane of the RITU gas-filled separator. The ratio of reduced transition probabilities B (E 2 ;41+→21+) /B (E 2 ;21+→01+) is measured to be 0.34(18), which is very unusual for collective band structures and cannot be reproduced by interacting boson model (IBM-2) calculations based on the SkM* energy-density functional.

  11. Chimera states and excitation waves in networks with complex topologies

    NASA Astrophysics Data System (ADS)

    Schöll, Eckehard

    2016-06-01

    Chimera patterns, which consist of coexisting spatial domains of coherent (synchronized) and incoherent (desyn- chronized) dynamics are studied in networks of FitzHugh-Nagumo systems with complex topologies. To test the robustness of chimera patterns with respect to changes in the structure of the network, we study the following network topologies: Regular ring topology with R nearest neigbors coupled to each side, small-world topology with additional long-range random links, and a hierarchical geometry in the connectivity matrix. We find that chimera states are generally robust with respect to these perturbations, but qualitative changes of the chimera patterns in form of nested coherent and incoherent regions can be induced by a hierarchical topology. The suppression of propagating excitation waves by a small-world topology is also reviewed.

  12. Theoretical study on the excited states of HCN

    SciTech Connect

    Nayak, Malaya K.; Chaudhuri, Rajat K.; Krishnamachari, S.N.L.G.

    2005-05-08

    In the flash-photolysis of oxazole, iso-oxazole, and thiozole a transient band system was observed in the region 2500-3050 A. This band system was attributed to a meta-stable form of HCN, i.e., either HNC or triplet HCN. Theoretical investigations have been carried out on the ground and excited states of HCN to characterize this and other experimentally observed transitions. The predicted geometries are compared with the experiment and earlier theoretical calculations. The present calculations show that the band system in the region 2500-3050 A corresponds to the transition 4 {sup 3}-A{sup '}<{sup -}1 {sup 3}-A{sup '} of HCN.

  13. Measurement of Atomic Oscillator Strength Distribution from the Excited States

    SciTech Connect

    Hussain, Shahid; Saleem, M.; Baig, M. A.

    2008-10-22

    Saturation technique has been employed to measure the oscillator strength distribution in spectra of helium lithium using an electrical discharge cell a thermionic diode ion detector respectively. The photoabsorption cross sections in the discrete or bound region (commonly known as f-values) have been determined form the Rydberg series accessed from a particular excited state calibrating it with the absolute value of the photoionization cross section measured at the ionization threshold. The extracted discrete f-values merge into the oscillator strength densities, estimated from the measured photoionization cross sections at different photon energies above the first ionization threshold. The experimental data on helium and lithium show continuity between the discrete and the continuous oscillator strengths across the ionization threshold.

  14. Excited state mass spectra and Regge trajectories of bottom baryons

    NASA Astrophysics Data System (ADS)

    Thakkar, Kaushal; Shah, Zalak; Rai, Ajay Kumar; C. Vinodkumar, P.

    2017-09-01

    We present the mass spectra of radial and orbital excited states of singly heavy bottom baryons; Σb+, Σb-, Ξb-, Ξb0, Λb0 and Ωb-. The QCD motivated hypercentral quark model is employed for the three body description of baryons and the form of confinement potential is hyper Coulomb plus linear. The first order correction to the confinement potential is also incorporated in this work. The semi-electronic decay of Ωb and Ξb are calculated using the spectroscopic parameters of the baryons. The computed results are compared with other theoretical predictions as well as with the available experimental observations. The Regge trajectories are plotted in (n ,M2) plane.

  15. Theoretical description of excited state dynamics in nanostructures

    NASA Astrophysics Data System (ADS)

    Rubio, Angel

    2009-03-01

    There has been much progress in the synthesis and characterization of nanostructures however, there remain immense challenges in understanding their properties and interactions with external probes in order to realize their tremendous potential for applications (molecular electronics, nanoscale opto-electronic devices, light harvesting and emitting nanostructures). We will review the recent implementations of TDDFT to study the optical absorption of biological chromophores, one-dimensional polymers and layered materials. In particular we will show the effect of electron-hole attraction in those systems. Applications to the optical properties of solvated nanostructures as well as excited state dynamics in some organic molecules will be used as text cases to illustrate the performance of the approach. Work done in collaboration with A. Castro, M. Marques, X. Andrade, J.L Alonso, Pablo Echenique, L. Wirtz, A. Marini, M. Gruning, C. Rozzi, D. Varsano and E.K.U. Gross.

  16. Masses of Ground- and Excited-State Hadrons

    NASA Astrophysics Data System (ADS)

    Roberts, Hannes L. L.; Chang, Lei; Cloët, Ian C.; Roberts, Craig D.

    2011-07-01

    We present the first Dyson-Schwinger equation calculation of the light hadron spectrum that simultaneously correlates the masses of meson and baryon ground- and excited-states within a single framework. At the core of our analysis is a symmetry-preserving treatment of a vector-vector contact interaction. In comparison with relevant quantities the root-mean-square-relative-error/degree-of freedom is 13%. Notable amongst our results is agreement between the computed baryon masses and the bare masses employed in modern dynamical coupled-channels models of pion-nucleon reactions. Our analysis provides insight into numerous aspects of baryon structure; e.g., relationships between the nucleon and Δ masses and those of the dressed-quark and diquark correlations they contain.

  17. The Ground and First Excited Torsional States of Acetic Acid.

    PubMed

    Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F.; Podnos, S. V.; Kleiner, I.; Margulès, L.; Wlodarczak, G.; Demaison, J.; Cosléou, J.; Maté, B.; Karyakin, E. N.; Golubiatnikov, G. Yu.; Fraser, G. T.; Suenram, R. D.; Hougen, J. T.

    2001-02-01

    A global fit of microwave and millimeter-wave rotational transitions in the ground and first excited torsional states (v(t) = 0 and 1) of acetic acid (CH(3)COOH) is reported, which combines older measurements from the literature with new measurements from Kharkov, Lille, and NIST. The fit uses a model developed initially for acetaldehyde and methanol-type internal rotor molecules. It requires 34 parameters to achieve a unitless weighted standard deviation of 0.84 for a total of 2518 data and includes A- and E-species transitions with J

  18. Direct time-resolved spectroscopic investigation of intramolecular hydrogen atom transfer of deoxyblebbistatin

    NASA Astrophysics Data System (ADS)

    Li, Ming-De; Zhu, Ruixue; Lee Phillips, David

    2017-09-01

    The photophysics and photochemistry of deoxyblebbistatin was investigated using femtosecond time-resolved transient absorption spectroscopy. An ultrafast intramolecular hydrogen atom transfer (IHAT) appears to take place via the first singlet excited state of deoxyblebbistatin within 8 ps. Absorption and fluorescence photochemical results indicate the IHAT process leads to mainly conversion of deoxyblebbistatin into an enol form final product which was observed and characterized by resonance Raman spectroscopy.

  19. Lasing due to the excited state in quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Abusaa, M.; Danckaert, J.; Viktorov, E. A.

    2017-07-01

    Quantum Dot Lasers (QDLs) are promising sources of light because of their favorable properties compared to other light sources. Emission in QDLs can access transitions in ground state (GS) and excited state (ES). Lasing due to the ES extends the spectral range and enables the laser to generate high output powers. Thus, lasing action due to the ES or to the dual lasing regime (GS and ES simultaneously) is expected to increase the applicability of QDLs in many future applications. We present a partially microscopic rate equation model that takes into account lasing action due to both the GS and the ES and distinguishes between both types of carriers (electrons and holes). Also, we present all possible steady-state solutions and we apply a stability analysis to the solutions to determine all stable lasing regimes (lasing due to the GS, lasing due to the ES and the dual lasing regime) to highlight the role of ES transitions. Specifically, we address the appearance of lasing due to the ES to the larger population of the ES and hence to the larger gain in higher injected current regimes.

  20. Ultrafast Spectroscopy of Delocalized Excited States of the Hydrated Electron

    SciTech Connect

    Paul F. Barbara

    2005-09-28

    Research under support of this grant has been focused on the understanding of highly delocalized ''conduction-band-like'' excited states of solvated electrons in bulk water, in water trapped in the core of reverse micelles, and in alkane solvents. We have strived in this work to probe conduction-band-like states by a variety of ultrafast spectroscopy techniques. (Most of which were developed under DOE support in a previous funding cycle.) We have recorded the optical spectrum of the hydrated electron for the first time. This was accomplished by applying a photo-detrapping technique that we had developed in a previous funding cycle, but had not yet been applied to characterize the actual spectrum. In the cases of reverse micelles, we have been investigating the potential role of conduction bands in the electron attachment process and the photoinduced detrapping, and have published two papers on this topic. Finally, we have been exploring solvated electrons in isooctane from various perspectives. All of these results strongly support the conclusion that optically accessible, highly delocalized electronic states exist in these various media.

  1. Watching ultrafast barrierless excited-state isomerization of pseudocyanine in real time.

    PubMed

    Dietzek, Benjamin; Yartsev, Arkady; Tarnovsky, Alexander N

    2007-05-03

    The photoinduced excited-state processes in 1,1'-diethyl-2,2'-cyanine iodine are investigated using femtosecond time-resolved pump-probe spectroscopy. Using a broad range of probe wavelengths, the relaxation of the initially prepared excited-state wavepacket can be followed down to the sink region. The data directly visualize the directed downhill motion along the torsional reaction coordinate and suggest a barrierless excited-state isomerization in the short chain cyanine dye. Additionally, ultrafast ground-state hole and excited-state hole replica broadening is observed. While the narrow excited-state wavepacket broadens during pump-probe overlap, the ground-state hole burning dynamics takes place on a significantly longer time-scale. The experiment reported can be considered as a direct monitoring of the shape and the position of the photoprepared wavepacket on the excited-state potential energy surface.

  2. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    SciTech Connect

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A.

    2014-05-14

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  3. Stability of quantum-dot excited-state laser emission under simultaneous ground-state perturbation

    SciTech Connect

    Kaptan, Y. Herzog, B.; Schöps, O.; Kolarczik, M.; Woggon, U.; Owschimikow, N.; Röhm, A.; Lingnau, B.; Lüdge, K.; Schmeckebier, H.; Arsenijević, D.; Bimberg, D.; Mikhelashvili, V.; Eisenstein, G.

    2014-11-10

    The impact of ground state amplification on the laser emission of In(Ga)As quantum dot excited state lasers is studied in time-resolved experiments. We find that a depopulation of the quantum dot ground state is followed by a drop in excited state lasing intensity. The magnitude of the drop is strongly dependent on the wavelength of the depletion pulse and the applied injection current. Numerical simulations based on laser rate equations reproduce the experimental results and explain the wavelength dependence by the different dynamics in lasing and non-lasing sub-ensembles within the inhomogeneously broadened quantum dots. At high injection levels, the observed response even upon perturbation of the lasing sub-ensemble is small and followed by a fast recovery, thus supporting the capacity of fast modulation in dual-state devices.

  4. Multifaceted ultrafast intramolecular charge transfer dynamics of 4-(dimethylamino)benzonitrile (DMABN).

    PubMed

    Park, Myeongkee; Kim, Chul Hoon; Joo, Taiha

    2013-01-17

    Intramolecular charge transfer (ICT) of DMABN has been the subject of extensive investigations. Through the measurements of highly time-resolved fluorescence spectra (TRFS) over the whole emission region, we have examined the ICT dynamics of DMABN in acetonitrile free from the solvation dynamics and vibronic relaxation. The ICT dynamics was found to be characterized by a broad range of time scales; nearly instantaneous (<30 fs), 160 fs, and 3.3 ps. TRFS revealed that an ICT state with partially twisted geometry, ICT(P), is formed within a few hundred femtoseconds either directly from the initial photoexcited state or via the locally excited (LE) state. The ICT(P) state undergoes further relaxation along the intramolecular nuclear coordinate to reach the twisted ICT (TICT) state with the time constant of 4.8 ps. A conformational diversity along the rotation of the dimethylamino group was speculated to account for the observed diffusive dynamics.

  5. Microwave Spectroscopy of the Excited Vibrational States of Methanol

    NASA Astrophysics Data System (ADS)

    Pearson, John; Daly, Adam M.; Bermúdez, Celina

    2015-06-01

    Methanol is the simplest molecule with a three-fold internal rotation and the observation of its νb{8} band served the primary catalyst for the development of internal rotation theory(a,b). The 75 subsequent years of investigation into the νb{8} band region have yielded a large number assignments, numerous high precision energy levels and a great deal of insight into the coupling of νb{t}=3 & 4 with νb{8}, νb{7}, νb{11} and other nearby states(c). In spite of this progress numerous assignment mysteries persist, the origin of almost half the far infrared laser lines remain unknown and all attempts to model the region quantum mechanically have had very limited success. The C3V internal rotation Hamiltonian has successfully modeled the νb{t}=0,1 & 2 states of methanol and other internal rotors(d). However, successful modeling of the coupling between torsional bath states and excited small amplitude motion remains problematic and coupling of multiple interacting excited small amplitude vibrations featuring large amplitude motions remains almost completely unexplored. Before such modeling can be attempted, identifying the remaining low lying levels of νb{7} and νb{11} is necessary. We present an investigation into the microwave spectrum of νb{7}, νb{8} and νb{11} along with the underlying torsional bath states in νb{t}=3 and νb{t}= 4. (a) A. Borden, E.F. Barker J. Chem. Phys., 6, 553 (1938). (b) J. S. Koehler and D. M. Dennison, Phys. Rev. 57, 1006 (1940). (c) R. M. Lees, Li-Hong Xu, J. W. C. Johns, B. P. Winnewisser, and M. Lock, J. Mol. Spectrosc. 243, 168 (2007). (d) L.-H. Xu, J. Fisher, R.M. Lees, H.Y. Shi, J.T. Hougen, J.C. Pearson, B.J. Drouin, G.A. Blake, R. Braakman J. Mol. Spectrosc., 251, 305 (2008).

  6. Coherence, Energy and Charge Transfers in De-Excitation Pathways of Electronic Excited State of Biomolecules in Photosynthesis

    NASA Astrophysics Data System (ADS)

    Bohr, Henrik G.; Malik, F. Bary

    2013-11-01

    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin-chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used Förster-Dexter theory, which does not allow for charge transfer, is a special case of B-A theory. The latter could, under appropriate circumstances, lead to excimers.

  7. Excitation energy dependence of excited states dynamics in all- trans-carotenes determined by femtosecond absorption and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Kosumi, Daisuke; Yanagi, Kazuhiro; Nishio, Tomohiro; Hashimoto, Hideki; Yoshizawa, Masayuki

    2005-06-01

    Ultrafast relaxation kinetics in β-carotene and lycopene has been investigated by femtosecond absorption and fluorescence spectroscopies using tunable excitation pulses. The transient signals induced by the photoexcitation with larger excess energy have broader bands and longer lifetimes both in the 11Bu+and21Ag- excited states. The excess vibrational energy remains longer than several picoseconds and slows the relaxation kinetics in carotenoids.

  8. Ground-state and excited-state structures of tungsten-benzylidyne complexes.

    PubMed

    Lovaasen, Benjamin M; Lockard, Jenny V; Cohen, Brian W; Yang, Shujiang; Zhang, Xiaoyi; Simpson, Cheslan K; Chen, Lin X; Hopkins, Michael D

    2012-05-21

    The molecular structure of the tungsten-benzylidyne complex trans-W(≡CPh)(dppe)(2)Cl (1; dppe = 1,2-bis(diphenylphosphino)ethane) in the singlet (d(xy))(2) ground state and luminescent triplet (d(xy))(1)(π*(WCPh))(1) excited state (1*) has been studied using X-ray transient absorption spectroscopy, X-ray crystallography, and density functional theory (DFT) calculations. Molecular-orbital considerations suggest that the W-C and W-P bond lengths should increase in the excited state because of the reduction of the formal W-C bond order and decrease in W→P π-backbonding, respectively, between 1 and 1*. This latter conclusion is supported by comparisons among the W-P bond lengths obtained from the X-ray crystal structures of 1, (d(xy))(1)-configured 1(+), and (d(xy))(2) [W(CPh)(dppe)(2)(NCMe)](+) (2(+)). X-ray transient absorption spectroscopic measurements of the excited-state structure of 1* reveal that the W-C bond length is the same (within experimental error) as that determined by X-ray crystallography for the ground state 1, while the average W-P/W-Cl distance increases by 0.04 Å in the excited state. The small excited-state elongation of the W-C bond relative to the M-E distortions found for M(≡E)L(n) (E = O, N) compounds with analogous (d(xy))(1)(π*(ME))(1) excited states is due to the π conjugation within the WCPh unit, which lessens the local W-C π-antibonding character of the π*(WCPh) lowest unoccupied molecular orbital (LUMO). These conclusions are supported by DFT calculations on 1 and 1*. The similar core bond distances of 1, 1(+), and 1* indicates that the inner-sphere reorganization energy associated with ground- and excited-state electron-transfer reactions is small.

  9. Ground-state and excited-state structures of tungsten-benzylidyne complexes

    SciTech Connect

    Lovaasen, B. M.; Lockard, J. V.; Cohen, B. W.; Yang, S.; Zhang, X.; Simpson, C. K.; Chen, L. X.; Hopkins, M. D.

    2012-01-01

    The molecular structure of the tungsten-benzylidyne complex trans-W({triple_bond}CPh)(dppe){sub 2}Cl (1; dppe = 1,2-bis(diphenylphosphino)ethane) in the singlet (d{sub xy}){sup 2} ground state and luminescent triplet (d{sub xy}){sup 1}({pi}*(WCPh)){sup 1} excited state (1*) has been studied using X-ray transient absorption spectroscopy, X-ray crystallography, and density functional theory (DFT) calculations. Molecular-orbital considerations suggest that the W-C and W-P bond lengths should increase in the excited state because of the reduction of the formal W-C bond order and decrease in W {yields} P {pi}-backbonding, respectively, between 1 and 1*. This latter conclusion is supported by comparisons among the W-P bond lengths obtained from the X-ray crystal structures of 1, (d{sub xy}){sup 1}-configured 1{sup +}, and (d{sub xy}){sup 2} [W(CPh)(dppe){sub 2}(NCMe)]{sup +} (2{sup +}). X-ray transient absorption spectroscopic measurements of the excited-state structure of 1* reveal that the W-C bond length is the same (within experimental error) as that determined by X-ray crystallography for the ground state 1, while the average W-P/W-Cl distance increases by 0.04 {angstrom} in the excited state. The small excited-state elongation of the W-C bond relative to the M-E distortions found for M({triple_bond}E)L{sub n} (E = O, N) compounds with analogous (d{sub xy}){sup 1}({pi}*(ME)){sup 1} excited states is due to the {pi} conjugation within the WCPh unit, which lessens the local W-C {pi}-antibonding character of the {pi}*(WCPh) lowest unoccupied molecular orbital (LUMO). These conclusions are supported by DFT calculations on 1 and 1*. The similar core bond distances of 1, 1{sup +}, and 1* indicates that the inner-sphere reorganization energy associated with ground- and excited-state electron-transfer reactions is small.

  10. Identification of excited-state energy transfer and relaxation pathways in the peridinin-chlorophyll complex: an ultrafast mid-infrared study.

    PubMed

    Bonetti, Cosimo; Alexandre, Maxime T A; van Stokkum, Ivo H M; Hiller, Roger G; Groot, Marie Louise; van Grondelle, Rienk; Kennis, John T M

    2010-08-28

    The peridinin chlorophyll-a protein (PCP) is a water-soluble, trimeric light harvesting complex found in marine dinoflagellates that binds peridinin and Chl-a in an unusual stoichiometric ratio of 4:1. In this paper, the pathways of excited-state energy transfer and relaxation in PCP were identified by means of femtosecond visible-pump, mid-infrared probe spectroscopy. In addition, excited-state relaxation of peridinin dissolved in organic solvent (CHCl(3) and MeOH) was investigated. For peridinin in solution, the transient IR signatures of the low-lying S(1) and intramolecular charge transfer (ICT) states were similar, in line with a previous ultrafast IR study. In PCP, excitation of the optically allowed S(2) state of peridinin results in ultrafast energy transfer to Chl-a, in competition with internal conversion to low-lying optically forbidden states of peridinin. After vibrational relaxation of the peridinin hot S(1) state in 150 fs, two separate low-lying peridinin singlet excited states are distinguished, assigned to an ICT state and to a slowly transferring, vibrationally relaxed S(1) state. These states exhibit different lactone bleaches, indicating that the ICT and S(1) states localize on distinct peridinins. Energy transfer from the peridinin ICT state to Chl-a constitutes the dominant energy transfer channel and occurs with a time constant of 2 ps. The peridinin S(1) state mainly decays to the ground state through internal conversion, in competition with slow energy transfer to Chl-a. The singlet excited state of Chl-a undergoes intersystem crossing (ISC) to the triplet state on the nanosecond timescale, followed by rapid triplet excitation energy transfer (TEET) from Chl-a to peridinin, whereby no Chl-a triplet is observed but rather a direct rise of the peridinin triplet. The latter contains some Chl-a features due to excitonic coupling of the pigments. The peridinin triplet state shows a lactone bleach mode at 1748 cm(-1), while that of the peridinin

  11. Excited-State Energetics and Dynamics of Large Molecules, Complexes and Clusters.

    DTIC Science & Technology

    1986-03-01

    aromatic hydrocarbons in outer space. 7.H Photoisomerization Dynamics of Trans- Stilbene and of Cis- Stilbene . Time-resolved fluorescence lifetimes...from photoselected states of trans- stilbene were recorded by the techniques of picosecond spec- troscopy in jets using a mode-locked dye laser and a fast...isomerization rates of alkyl stilbenes was obtained, providing information on the role of intramolecular vibrational distribu- tion on the photochemistry in an

  12. Excited state electron transfer after visible light absorption by the Co(I) state of vitamin B12.

    PubMed

    Achey, Darren; Brigham, Erinn C; DiMarco, Brian N; Meyer, Gerald J

    2014-11-11

    The first example of excited state electron transfer from cob(I)alamin is reported herein. Vitamin B12 was anchored to a mesoporous TiO2 thin film and electrochemically reduced to the cob(I)alamin form. Pulsed laser excitation resulted in rapid excited state electron transfer, ket > 10(8) s(-1), followed by microsecond interfacial charge recombination to re-form cob(I)alamin. The supernucleophilic cob(I)alamin was found to be a potent photoreductant. The yield of excited state electron transfer was found to be excitation wavelength dependent. The implications of this dependence are discussed.

  13. Ultrafast branching in the excited state of coumarin and umbelliferone.

    PubMed

    Krauter, Caroline M; Möhring, Jens; Buckup, Tiago; Pernpointner, Markus; Motzkus, Marcus

    2013-11-07

    In the present work we have explored the ultrafast relaxation network of coumarin and umbelliferone (7-hydroxy-coumarin) using time-resolved femtosecond spectroscopy and quantum chemical calculations. Despite the importance of the photophysical properties of coumarin derivatives for applications in biomedicine, the low fluorescence quantum yield of coumarin itself has not been fully understood so far. On the basis of our combined experimental and theoretical results we suggest a model for the ultrafast decay after photoexcitation incorporating two parallel radiationless relaxation pathways: one within the initially excited state via ring opening and the other one by transition into a dark state along the carbonyl stretching mode. The fluorescence quantum yield is determined by the position of the branching point relative to the Franck-Condon region which is strongly influenced by interactions with the environment and the substitution pattern. This model is finally capable of giving a comprehensive account of the striking differences observed in the photophysical behavior of coumarin as opposed to umbelliferone.

  14. Orbitally Excited States of Quarkonia in a Nonrelativistic Model

    NASA Astrophysics Data System (ADS)

    Bhaghyesh; Vijaya Kumar, K. B.; Ma, Yong-Liang

    Having succeeded in predicting the S wave spectra and decays of cbar {c} and bbar {b} mesons, Bhaghyesh, K. B. Vijaya Kumar and A. P. Monteiro, J. Phys. G: Nucl. Part. Phys. 38, 085001 (2011), in this article, we apply our nonrelativistic quark model to calculate the spectra and decays of the orbitally excited states (P- and D-waves) of heavy quarkonia. The full Qbar {Q} potential used in our model consists of a Hulthen potential and a confining linear potential. The spin hyperfine, spin-orbit and tensor interactions are introduced to obtain the masses of the P- and D-wave states. The three-dimensional harmonic oscillator wave function is employed as a trial wave function to obtain the mass spectra. The model parameters and the wave function that reproduce the mass spectra of cbar {c} and bbar {b} mesons are used to investigate their decay properties. The two-photon decay widths, two-gluon decay widths and E1 radiative decay widths are calculated. The obtained values are compared with the experimental results and those obtained from other theoretical models.

  15. Excited-state symmetry breaking of linear quadrupolar chromophores: A transient absorption study

    NASA Astrophysics Data System (ADS)

    Dozova, Nadia; Ventelon, Lionel; Clermont, Guillaume; Blanchard-Desce, Mireille; Plaza, Pascal

    2016-11-01

    The photophysical properties of two highly symmetrical quadrupolar chromophores were studied by both steady-state and transient absorption spectroscopy. Their excited-state behavior is dominated by the solvent-induced Stokes shift of the stimulated-emission band. The origin of this shift is attributed to symmetry breaking that confers a non-vanishing dipole moment to the excited state of both compounds. This dipole moment is large and constant in DMSO, whereas symmetry breaking appears significantly slower and leading to smaller excited-state dipole in toluene. Time-dependant increase of the excited-state dipole moment induced by weak solvation is proposed to explain the results in toluene.

  16. Ultrafast dynamics of hydrophilic carbonyl carotenoids - Relation between structure and excited-state properties in polar solvents

    NASA Astrophysics Data System (ADS)

    Chábera, Pavel; Fuciman, Marcel; Razi Naqvi, K.; Polívka, Tomáš

    2010-07-01

    We present a study of excited-state dynamics of water-soluble carbonyl carotenoids, crocin, norbixin, and astalysine in solvents with different polarity. While no polarity effects were observed in 2-propanol and methanol, polarity-induced lifetime shortening has been detected in water. For crocin and astalysine the S 1 lifetime decreases from 135 ps to 61 ps (crocin), and from 4 ps to 2.2 ps (astalysine) when going from methanol to water. The S 1 lifetime of norbixin is within the 15-18 ps range in all solvents, an effect attributed to its carboxylic group, which isolates the carbonyl group from the rest of conjugation. No spectral bands attributable to the intramolecular charge transfer (ICT) state have been found in any transient absorption spectra. The ICT-S n transition is made forbidden, we suggest, by the symmetric location of the conjugated carbonyl groups. In astalysine, we have found a clear signature of the S∗ state with a lifetime of 7 ps (methanol) and 6.1 ps (water).

  17. Calculation of excited-state properties using general coupled-cluster and configuration-interaction models.

    PubMed

    Kállay, Mihály; Gauss, Jürgen

    2004-11-15

    Using string-based algorithms excitation energies and analytic first derivatives for excited states have been implemented for general coupled-cluster (CC) models within CC linear-response (LR) theory which is equivalent to the equation-of-motion (EOM) CC approach for these quantities. Transition moments between the ground and excited states are also considered in the framework of linear-response theory. The presented procedures are applicable to both single-reference-type and multireference-type CC wave functions independently of the excitation manifold constituting the cluster operator and the space in which the effective Hamiltonian is diagonalized. The performance of different LR-CC/EOM-CC and configuration-interaction approaches for excited states is compared. The effect of higher excitations on excited-state properties is demonstrated in benchmark calculations for NH(2) and NH(3). As a first application, the stationary points of the S(1) surface of acetylene are characterized by high-accuracy calculations.

  18. Direct Observation and Control of Ultrafast Photoinduced Twisted Intramolecular Charge Transfer (TICT) in Triphenyl-Methane Dyes

    PubMed Central

    Li, Guifeng; Magana, Donny; Dyer, R. Brian

    2012-01-01

    Femtosecond time-resolved infrared spectroscopy was employed to study intramolecular charge transfer in triphenylmethane dyes, including malachite green (MG), malachite green carbinol base (MGCB), and leucomalachite green (LMG). A local excited state (LE) and a twisted intramolecular charge-transfer (TICT) state have been observed directly in MG. Furthermore, solvent-controlled TICT measurements in a series of linear alcohols indicate that the transition time (4–11 ps) from LE to TICT is strongly dependent on alcohol viscosity, which is due to rotational hindrance of dimethylaniline in high-viscosity solvents. For LMG, no TICT is observed due to steric hindrance caused by the sp3-hybridized central carbon atom. However, for MGCB, TICT is rescued by the addition of the electron-donating hydroxyl group to the bridge. These results for MG and its analogues provide new insight regarding the dynamics and mechanism of twisted intramolecular charge transfer (TICT) in triphenylmethane dyes. PMID:23009668

  19. Exploring ground states and excited states of spin-1 Bose-Einstein condensates by continuation methods

    SciTech Connect

    Chen, Jen-Hao; Chern, I-Liang; Wang Weichung

    2011-03-20

    A pseudo-arclength continuation method (PACM) is employed to compute the ground state and excited state solutions of spin-1 Bose-Einstein condensates (BEC). The BEC is governed by the time-independent coupled Gross-Pitaevskii equations (GPE) under the conservations of the mass and magnetization. The coupling constants that characterize the spin-independent and spin-exchange interactions are chosen as the continuation parameters. The continuation curve starts from a ground state or an excited state with very small coupling parameters. The proposed numerical schemes allow us to investigate the effect of the coupling constants and study the bifurcation diagrams of the time-independent coupled GPE. Numerical results on the wave functions and their corresponding energies of spin-1 BEC with repulsive/attractive and ferromagnetic/antiferromagnetic interactions are presented. Furthermore, we reveal that the component separation and population transfer between the different hyperfine states can only occur in excited states due to the spin-exchange interactions.

  20. Resonance Raman and photoluminescence excitation profiles and excited-state dynamics in CdSe nanocrystals

    NASA Astrophysics Data System (ADS)

    Baker, Joshua A.; Kelley, David F.; Kelley, Anne Myers

    2013-07-01

    Resonance Raman excitation profiles for the longitudinal optical (LO) phonon fundamental and its first overtone have been measured for organic ligand capped, wurtzite form CdSe nanocrystals of ˜3.2 nm diameter dissolved in chloroform. The absolute differential Raman cross-section for the fundamental is much larger when excited at 532 or 543 nm, on the high-frequency side of the lowest-wavelength absorption maximum, than for excitation in the 458-476 nm range although the absorbance is higher at the shorter wavelengths. That is, the quantum yield for resonance Raman scattering is reduced for higher-energy excitation. In contrast, the photoluminescence quantum yield is relatively constant with wavelength. The optical absorption spectrum and the resonance Raman excitation profiles and depolarization dispersion curves are reproduced with a model for the energies, oscillator strengths, electron-phonon couplings, and dephasing rates of the multiple low-lying electronic excitations. The Huang-Rhys factor for LO phonon in the lowest excitonic transition is found to lie in the range S = 0.04-0.14. The strong, broad absorption feature about 0.5 eV above the lowest excitonic peak, typically labeled as the 1P3/21Pe transition, is shown to consist of at least two significant components that vary greatly in the magnitude of their electron-phonon coupling.

  1. Nature of the lowest excited states of neutral polyenyl radicals and polyene radical cations

    NASA Astrophysics Data System (ADS)

    Starcke, Jan Hendrik; Wormit, Michael; Dreuw, Andreas

    2009-10-01

    Due to the close relation of the polyenyl radicals C2n+1H2n+3• and polyene radical cations C2nH2n+2•+ to the neutral linear polyenes, one may suspect their excited states to possess substantial double excitation character, similar to the famous S1 state of neutral polyenes and thus to be equally problematic for simple excited state theories. Using the recently developed unrestricted algebraic-diagrammatic construction scheme of second order perturbation theory and the equation-of-motion coupled-cluster method, the vertical excitation energies, their corresponding oscillator strengths, and the nature of the wave functions of the lowest excited electronic states of the radicals are calculated and analyzed in detail. For the polyenyl radicals two one-photon allowed states are found as D1 and D4 states, with two symmetry-forbidden D2 and D3 states in between, while in the polyene radical cations D1 and D2 are allowed and D3 is forbidden. The order of the states is conserved with increasing chain length. It is found that all low-lying excited states exhibit a significant but similar amount of doubly excited configuration in their wave functions of 15%-20%. Using extrapolation, predictions for the excitation energies of the five lowest excited states of the polyene radical cations are made for longer chain lengths.

  2. State-to-state chemistry and rotational excitation of CH+ in photon-dominated regions

    NASA Astrophysics Data System (ADS)

    Faure, A.; Halvick, P.; Stoecklin, T.; Honvault, P.; Epée Epée, M. D.; Mezei, J. Zs.; Motapon, O.; Schneider, I. F.; Tennyson, J.; Roncero, O.; Bulut, N.; Zanchet, A.

    2017-07-01

    We present a detailed theoretical study of the rotational excitation of CH+ due to reactive and non-reactive collisions involving C+(2P), H2, CH+, H and free electrons. Specifically, the formation of CH+ proceeds through the reaction between C+(2P) and H_2(ν _H_2 = 1, 2), while the collisional (de)excitation and destruction of CH+ is due to collisions with hydrogen atoms and free electrons. State-to-state and initial-state-specific rate coefficients are computed in the kinetic temperature range 10-3000 K for the inelastic, exchange, abstraction and dissociative recombination processes using accurate potential energy surfaces and the best scattering methods. Good agreement, within a factor of 2, is found between the experimental and theoretical thermal rate coefficients, except for the reaction of CH+ with H atoms at kinetic temperatures below 50 K. The full set of collisional and chemical data are then implemented in a radiative transfer model. Our non-LTE calculations confirm that the formation pumping due to vibrationally excited H2 has a substantial effect on the excitation of CH+ in photon-dominated regions. In addition, we are able to reproduce, within error bars, the far-infrared observations of CH+ towards the Orion Bar and the planetary nebula NGC 7027. Our results further suggest that the population of ν _H_2 = 2 might be significant in the photon-dominated region of NGC 7027.

  3. Excited-state one-neutron halo nuclei within a parallel momentum distribution analysis

    NASA Astrophysics Data System (ADS)

    Shubhchintak

    2017-08-01

    Using a fully quantum mechanical post-form finite-range distorted-wave Born approximation theory of Coulomb breakup, I study the parallel momentum distribution of the core in the Coulomb breakup of suggested excited-state one-neutron halo nuclei considered in their different bound excited states. Narrow momentum distributions obtained in the present calculations for some cases indicate the possibilities of the excited-state halo structure in the nuclei under consideration and therefore favor the previous predictions.

  4. Computational photochemistry of the azobenzene scaffold of Sudan I and Orange II dyes: excited-state proton transfer and deactivation via conical intersections.

    PubMed

    Guan, Pei-Jie; Cui, Ganglong; Fang, Qiu

    2015-03-16

    We employed the complete active space self-consistent field (CASSCF) and its multistate second-order perturbation (MS-CASPT2) methods to explore the photochemical mechanism of 2-hydroxyazobenzene, the molecular scaffold of Sudan I and Orange II dyes. It was found that the excited-state intramolecular proton transfer (ESIPT) along the bright diabatic (1) ππ* state is barrierless and ultrafast. Along this diabatic (1) ππ* relaxation path, the system can jump to the dark (1) nπ* state via the (1) ππ*/(1) nπ* crossing point. However, ESIPT in this dark state is largely inhibited owing to a sizeable barrier. We also found two deactivation channels that decay (1) ππ* keto and (1) nπ* enol species to the ground state via two energetically accessible S1 /S0 conical intersections. Finally, we encountered an interesting phenomenon in the excited-state hydrogen-bonding strength: it is reinforced in the (1) ππ* state, whereas it is reduced in the (1) nπ* state. The present work sets the stage for understanding the photophysics and photochemistry of Sudan I-IV, Orange II, Ponceau 2R, Ponceau 4R, and azo violet.

  5. Two-photon excitation into low-energy singlet states of anthracene in mixed crystals

    NASA Astrophysics Data System (ADS)

    Bree, A.; Leyderman, A.; Taliani, C.

    1985-08-01

    The two-photon excitation spectrum of the first excited state of anthracene in fluorene and biphenyl at 4.2 K has been measured. Intensity is induced into the origin by the static dipole moment of fluorene, and into b 1u vibrons through coupling to an A g state near 29400 cm -1; the nature of this A g state is discussed.

  6. Electron delocalization and aromaticity in low-lying excited states of archetypal organic compounds.

    PubMed

    Feixas, Ferran; Vandenbussche, Jelle; Bultinck, Patrick; Matito, Eduard; Solà, Miquel

    2011-12-14

    Aromaticity is a property usually linked to the ground state of stable molecules. Although it is well-known that certain excited states are unquestionably aromatic, the aromaticity of excited states remains rather unexplored. To move one step forward in the comprehension of aromaticity in excited states, in this work we analyze the electron delocalization and aromaticity of a series of low-lying excited states of cyclobutadiene, benzene, and cyclooctatetraene with different multiplicities at the CASSCF level by means of electron delocalization measures. While our results are in agreement with Baird's rule for the aromaticity of the lowest-lying triplet excited state in annulenes having 4nπ-electrons, they do not support Soncini and Fowler's generalization of Baird's rule pointing out that the lowest-lying quintet state of benzene and septet state of cyclooctatetraene are not aromatic.

  7. Study of the12C excited states above the Hoyle State.

    NASA Astrophysics Data System (ADS)

    López-Saavedra, E.; Acosta, L.; Araujo, V.; Favela, F.; Huerta, A.; Aspiazu, J.; Murillo, G.; Policroniades, R.; Santa Rita, P.; Varela, A.; Chávez, E.

    2017-07-01

    In this work we study the low-lying excited states of12C, especially above the Hoyle state (0+, 7,654 MeV) through the use of the14N(d,α)12C reaction. The EN-Tandem at ININ delivered deuteron beams between 2.5 and 7.5 MeV. Typical beam intensities were 20-50 nA. Two different compounds were used to produce thin films: Si3N4 (150 nm) and of C5H5N5 (10 μm). Angular distributions of emitted α-particles were measured at each energy. The first results of the analysis are presented including quantum number assignments (energy, spin and parity) of the excited states populated.

  8. Lifetimes and branching ratios of excited anion states

    NASA Astrophysics Data System (ADS)

    O'Malley, Steven M.; Beck, Donald R.

    2010-03-01

    Rel