Sample records for excited state model

  1. An Ab Initio Exciton Model Including Charge-Transfer Excited States.

    PubMed

    Li, Xin; Parrish, Robert M; Liu, Fang; Kokkila Schumacher, Sara I L; Martínez, Todd J

    2017-08-08

    The Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states [ Acc. Chem. Res. 2014 , 47 , 2857 - 2866 ]. However, our previous implementation excluded charge-transfer excited states, which can play an important role in light-harvesting systems and near-infrared optoelectronic materials. Recent studies have also emphasized the significance of charge-transfer in singlet fission, which mediates the coupling between the locally excited states and the multiexcitonic states. In this work, we report on an ab initio exciton model that incorporates charge-transfer excited states and demonstrate that the model provides correct charge-transfer excitation energies and asymptotic behavior. Comparison with TDDFT and EOM-CC2 calculations shows that our exciton model is robust with respect to system size, screening parameter, and different density functionals. Inclusion of charge-transfer excited states makes the exciton model more useful for studies of singly excited states and provides a starting point for future construction of a model that also includes double-exciton states.

  2. An Ab Initio Exciton Model Including Charge-Transfer Excited States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xin; Parrish, Robert M.; Liu, Fang

    Here, the Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states. However, our previous implementation excluded charge-transfer excited states, which can play an important role in light-harvesting systems and near-infrared optoelectronic materials. Recent studies have also emphasized the significance of charge-transfer in singlet fission, which mediates the coupling between the locally excited states and the multiexcitonic states. In this work, we report on an ab initio exciton model that incorporates charge-transfer excited statesmore » and demonstrate that the model provides correct charge-transfer excitation energies and asymptotic behavior. Comparison with TDDFT and EOM-CC2 calculations shows that our exciton model is robust with respect to system size, screening parameter, and different density functionals. Inclusion of charge-transfer excited states makes the exciton model more useful for studies of singly excited states and provides a starting point for future construction of a model that also includes double-exciton states.« less

  3. An Ab Initio Exciton Model Including Charge-Transfer Excited States

    DOE PAGES

    Li, Xin; Parrish, Robert M.; Liu, Fang; ...

    2017-06-15

    Here, the Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states. However, our previous implementation excluded charge-transfer excited states, which can play an important role in light-harvesting systems and near-infrared optoelectronic materials. Recent studies have also emphasized the significance of charge-transfer in singlet fission, which mediates the coupling between the locally excited states and the multiexcitonic states. In this work, we report on an ab initio exciton model that incorporates charge-transfer excited statesmore » and demonstrate that the model provides correct charge-transfer excitation energies and asymptotic behavior. Comparison with TDDFT and EOM-CC2 calculations shows that our exciton model is robust with respect to system size, screening parameter, and different density functionals. Inclusion of charge-transfer excited states makes the exciton model more useful for studies of singly excited states and provides a starting point for future construction of a model that also includes double-exciton states.« less

  4. Targeting excited states in all-trans polyenes with electron-pair states.

    PubMed

    Boguslawski, Katharina

    2016-12-21

    Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.

  5. Nonadiabatic excited-state molecular dynamics: modeling photophysics in organic conjugated materials.

    PubMed

    Nelson, Tammie; Fernandez-Alberti, Sebastian; Roitberg, Adrian E; Tretiak, Sergei

    2014-04-15

    To design functional photoactive materials for a variety of technological applications, researchers need to understand their electronic properties in detail and have ways to control their photoinduced pathways. When excited by photons of light, organic conjugated materials (OCMs) show dynamics that are often characterized by large nonadiabatic (NA) couplings between multiple excited states through a breakdown of the Born-Oppenheimer (BO) approximation. Following photoexcitation, various nonradiative intraband relaxation pathways can lead to a number of complex processes. Therefore, computational simulation of nonadiabatic molecular dynamics is an indispensable tool for understanding complex photoinduced processes such as internal conversion, energy transfer, charge separation, and spatial localization of excitons. Over the years, we have developed a nonadiabatic excited-state molecular dynamics (NA-ESMD) framework that efficiently and accurately describes photoinduced phenomena in extended conjugated molecular systems. We use the fewest-switches surface hopping (FSSH) algorithm to treat quantum transitions among multiple adiabatic excited state potential energy surfaces (PESs). Extended molecular systems often contain hundreds of atoms and involve large densities of excited states that participate in the photoinduced dynamics. We can achieve an accurate description of the multiple excited states using the configuration interaction single (CIS) formalism with a semiempirical model Hamiltonian. Analytical techniques allow the trajectory to be propagated "on the fly" using the complete set of NA coupling terms and remove computational bottlenecks in the evaluation of excited-state gradients and NA couplings. Furthermore, the use of state-specific gradients for propagation of nuclei on the native excited-state PES eliminates the need for simplifications such as the classical path approximation (CPA), which only uses ground-state gradients. Thus, the NA-ESMD methodology

  6. Nitric oxide excited under auroral conditions: Excited state densities and band emissions

    NASA Astrophysics Data System (ADS)

    Cartwright, D. C.; Brunger, M. J.; Campbell, L.; Mojarrabi, B.; Teubner, P. J. O.

    2000-09-01

    Electron impact excitation of vibrational levels in the ground electronic state and nine excited electronic states in NO has been simulated for an IBC II aurora (i.e., ˜10 kR in 3914 Å radiation) in order to predict NO excited state number densities and band emission intensities. New integral electron impact excitation cross sections for NO were combined with a measured IBC II auroral secondary electron distribution, and the vibrational populations of 10 NO electronic states were determined under conditions of statistical equilibrium. This model predicts an extended vibrational distribution in the NO ground electronic state produced by radiative cascade from the seven higher-lying doublet excited electronic states populated by electron impact. In addition to significant energy storage in vibrational excitation of the ground electronic state, both the a 4Π and L2 Φ excited electronic states are predicted to have relatively high number densities because they are only weakly connected to lower electronic states by radiative decay. Fundamental mode radiative transitions involving the lowest nine excited vibrational levels in the ground electronic state are predicted to produce infrared (IR) radiation from 5.33 to 6.05 μm with greater intensity than any single NO electronic emission band. Fundamental mode radiative transitions within the a 4Π electronic state, in the 10.08-11.37 μm region, are predicted to have IR intensities comparable to individual electronic emission bands in the Heath and ɛ band systems. Results from this model quantitatively predict the vibrational quantum number dependence of the NO IR measurements of Espy et al. [1988].

  7. Coulomb displacement energies of excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherr, R.; Bertsch, G.

    The Bansal--French--Zamick model is quite successful in accounting for the Coulomb displacement energies of excited particle--hole states in a variety of light nuclei. Level shifts are typically reproduced to within 50 keV. However, the model fails for certain excited 0$sup +$ states, and this remains a puzzle. (AIP)

  8. Nonadiabatic excited-state molecular dynamics modeling of photoinduced dynamics in conjugated molecules.

    PubMed

    Nelson, Tammie; Fernandez-Alberti, Sebastian; Chernyak, Vladimir; Roitberg, Adrian E; Tretiak, Sergei

    2011-05-12

    Nonadiabatic dynamics generally defines the entire evolution of electronic excitations in optically active molecular materials. It is commonly associated with a number of fundamental and complex processes such as intraband relaxation, energy transfer, and light harvesting influenced by the spatial evolution of excitations and transformation of photoexcitation energy into electrical energy via charge separation (e.g., charge injection at interfaces). To treat ultrafast excited-state dynamics and exciton/charge transport we have developed a nonadiabatic excited-state molecular dynamics (NA-ESMD) framework incorporating quantum transitions. Our calculations rely on the use of the Collective Electronic Oscillator (CEO) package accounting for many-body effects and actual potential energy surfaces of the excited states combined with Tully's fewest switches algorithm for surface hopping for probing nonadiabatic processes. This method is applied to model the photoinduced dynamics of distyrylbenzene (a small oligomer of polyphenylene vinylene, PPV). Our analysis shows intricate details of photoinduced vibronic relaxation and identifies specific slow and fast nuclear motions that are strongly coupled to the electronic degrees of freedom, namely, torsion and bond length alternation, respectively. Nonadiabatic relaxation of the highly excited mA(g) state is predicted to occur on a femtosecond time scale at room temperature and on a picosecond time scale at low temperature.

  9. Extended Lagrangian Excited State Molecular Dynamics.

    PubMed

    Bjorgaard, J A; Sheppard, D; Tretiak, S; Niklasson, A M N

    2018-02-13

    An extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both for the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. The XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree-Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).

  10. Extended Lagrangian Excited State Molecular Dynamics

    DOE PAGES

    Bjorgaard, Josiah August; Sheppard, Daniel Glen; Tretiak, Sergei; ...

    2018-01-09

    In this work, an extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born–Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both formore » the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. In conclusion, the XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree–Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).« less

  11. Extended Lagrangian Excited State Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjorgaard, Josiah August; Sheppard, Daniel Glen; Tretiak, Sergei

    In this work, an extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born–Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both formore » the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. In conclusion, the XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree–Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).« less

  12. Kinetics model for the wavelength-dependence of excited-state dynamics of hetero-FRET sensors

    NASA Astrophysics Data System (ADS)

    Schwarz, Jacob; Leighton, Ryan; Leopold, Hannah J.; Currie, Megan; Boersma, Arnold J.; Sheets, Erin D.; Heikal, Ahmed A.

    2017-08-01

    Foerster (or fluorescence) resonance energy transfer (FRET) is a powerful tool for investigating protein-protein interactions, in both living cells and in controlled environments. A typical hetero-FRET pair consists of a donor and acceptor tethered together with a linker. The corresponding energy transfer efficiency of a hetero-FRET pair probe depends upon the donor-acceptor distance, relative dipole orientation, and spectral overlap. Because of the sensitivity of the energy transfer efficiency on the donor-acceptor distance, FRET is often referred to as a "molecular ruler". Time-resolved fluorescence approach for measuring the excited-state lifetime of the donor and acceptor emissions is one of the most reliable approaches for quantitative assessment of the energy transfer efficiency in hetero-FRET pairs. In this contribution, we provide an analytical kinetics model that describes the excited-state depopulation of a FRET probe as a means to predicts the time-resolved fluorescence profile as a function of excitation and detection wavelengths. In addition, we used this developed kinetics model to simulate the time-dependence of the excited-state population of both the donor and acceptor. These results should serve as a guide for our ongoing studies of newly developed hetero-FRET sensors (mCerulean3-linker-mCitrine) that are designed specifically for in vivo studies of macromolecular crowding. The same model is applicable to other FRET pairs with the careful consideration of their steady-state spectroscopy and the experimental design for wavelength- dependence of the fluorescence lifetime measurements.

  13. Search for excited states in 25O

    NASA Astrophysics Data System (ADS)

    Jones, M. D.; Fossez, K.; Baumann, T.; DeYoung, P. A.; Finck, J. E.; Frank, N.; Kuchera, A. N.; Michel, N.; Nazarewicz, W.; Rotureau, J.; Smith, J. K.; Stephenson, S. L.; Stiefel, K.; Thoennessen, M.; Zegers, R. G. T.

    2017-11-01

    Background: Theoretical calculations suggest the presence of low-lying excited states in 25O. Previous experimental searches by means of proton knockout on 26F produced no evidence for such excitations. Purpose: We search for excited states in 25O using the 24O(d ,p ) 25O reaction. The theoretical analysis of excited states in unbound O,2725 is based on the configuration interaction approach that accounts for couplings to the scattering continuum. Method: We use invariant-mass spectroscopy to measure neutron-unbound states in 25O. For the theoretical approach, we use the complex-energy Gamow Shell Model and Density Matrix Renormalization Group method with a finite-range two-body interaction optimized to the bound states and resonances of O-2623, assuming a core of 22O. We predict energies, decay widths, and asymptotic normalization coefficients. Results: Our calculations in a large s p d f space predict several low-lying excited states in 25O of positive and negative parity, and we obtain an experimental limit on the relative cross section of a possible Jπ=1/2 + state with respect to the ground state of 25O at σ1 /2 +/σg .s .=0 .25-0.25+1.0 . We also discuss how the observation of negative parity states in 25O could guide the search for the low-lying negative parity states in 27O. Conclusion: Previous experiments based on the proton knockout of 26F suffered from the low cross sections for the population of excited states in 25O because of low spectroscopic factors. In this respect, neutron transfer reactions carry more promise.

  14. Two-dimensional Fano lineshapes: Excited-state absorption contributions

    NASA Astrophysics Data System (ADS)

    Finkelstein-Shapiro, Daniel; Pullerits, Tõnu; Hansen, Thorsten

    2018-05-01

    Fano interferences in nanostructures are influenced by dissipation effects as well as many-body interactions. Two-dimensional coherent spectroscopies have just begun to be applied to these systems where the spectroscopic signatures of a discrete-continuum structure are not known. In this article, we calculate the excited-state absorption contribution for different models of higher lying excited states. We find that the characteristic asymmetry of one-dimensional spectroscopies is recovered from the many-body contributions and that the higher lying excited manifolds have distorted lineshapes that are not anticipated from discrete-level Hamiltonians. We show that the Stimulated Emission cannot have contributions from a flat continuum of states. This work completes the Ground-State Bleach and Stimulated Emission signals that were calculated previously [D. Finkelstein-Shapiro et al., Phys. Rev. B 94, 205137 (2016)]. The model reproduces the observations reported for molecules on surfaces probed by 2DIR.

  15. Two-dimensional Fano lineshapes: Excited-state absorption contributions.

    PubMed

    Finkelstein-Shapiro, Daniel; Pullerits, Tõnu; Hansen, Thorsten

    2018-05-14

    Fano interferences in nanostructures are influenced by dissipation effects as well as many-body interactions. Two-dimensional coherent spectroscopies have just begun to be applied to these systems where the spectroscopic signatures of a discrete-continuum structure are not known. In this article, we calculate the excited-state absorption contribution for different models of higher lying excited states. We find that the characteristic asymmetry of one-dimensional spectroscopies is recovered from the many-body contributions and that the higher lying excited manifolds have distorted lineshapes that are not anticipated from discrete-level Hamiltonians. We show that the Stimulated Emission cannot have contributions from a flat continuum of states. This work completes the Ground-State Bleach and Stimulated Emission signals that were calculated previously [D. Finkelstein-Shapiro et al., Phys. Rev. B 94, 205137 (2016)]. The model reproduces the observations reported for molecules on surfaces probed by 2DIR.

  16. Evaluating excited state atomic polarizabilities of chromophores.

    PubMed

    Heid, Esther; Hunt, Patricia A; Schröder, Christian

    2018-03-28

    Ground and excited state dipoles and polarizabilities of the chromophores N-methyl-6-oxyquinolinium betaine (MQ) and coumarin 153 (C153) in solution have been evaluated using time-dependent density functional theory (TD-DFT). A method for determining the atomic polarizabilities has been developed; the molecular dipole has been decomposed into atomic charge transfer and polarizability terms, and variation in the presence of an electric field has been used to evaluate atomic polarizabilities. On excitation, MQ undergoes very site-specific changes in polarizability while C153 shows significantly less variation. We also conclude that MQ cannot be adequately described by standard atomic polarizabilities based on atomic number and hybridization state. Changes in the molecular polarizability of MQ (on excitation) are not representative of the local site-specific changes in atomic polarizability, thus the overall molecular polarizability ratio does not provide a good approximation for local atom-specific polarizability changes on excitation. Accurate excited state force fields are needed for computer simulation of solvation dynamics. The chromophores considered in this study are often used as molecular probes. The methods and data reported here can be used for the construction of polarizable ground and excited state force fields. Atomic and molecular polarizabilities (ground and excited states) have been evaluated over a range of functionals and basis sets. Different mechanisms for including solvation effects have been examined; using a polarizable continuum model, explicit solvation and via sampling of clusters extracted from a MD simulation. A range of different solvents have also been considered.

  17. Multiconfiguration pair-density functional theory for doublet excitation energies and excited state geometries: the excited states of CN.

    PubMed

    Bao, Jie J; Gagliardi, Laura; Truhlar, Donald G

    2017-11-15

    Multiconfiguration pair-density functional theory (MC-PDFT) is a post multiconfiguration self-consistent field (MCSCF) method with similar performance to complete active space second-order perturbation theory (CASPT2) but with greater computational efficiency. Cyano radical (CN) is a molecule whose spectrum is well established from experiments and whose excitation energies have been used as a testing ground for theoretical methods to treat excited states of open-shell systems, which are harder and much less studied than excitation energies of closed-shell singlets. In the present work, we studied the adiabatic excitation energies of CN with MC-PDFT. Then we compared this multireference (MR) method to some single-reference (SR) methods, including time-dependent density functional theory (TDDFT) and completely renormalized equation-of-motion coupled-cluster theory with singles, doubles and noniterative triples [CR-EOM-CCSD(T)]; we also compared to some other MR methods, including configuration interaction singles and doubles (MR-CISD) and multistate CASPT2 (MS-CASPT2). Through a comparison between SR and MR methods, we achieved a better appreciation of the need to use MR methods to accurately describe higher excited states, and we found that among the MR methods, MC-PDFT stands out for its accuracy for the first four states out of the five doublet states studied this paper; this shows its efficiency for calculating doublet excited states.

  18. Decay widths of ground-state and excited {Xi}{sub b} baryons in a nonrelativistic quark model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limphirat, Ayut; Thailand Center of Excellence in Physics; Department of Applied Physics, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000

    Decay processes of ground and excited bottom baryons are studied in the {sup 3}P{sub 0} nonrelativistic quark model with all model parameters fixed in the sector of light quarks. Using as an input the recent mass of {Xi}{sub b} and the theoretical masses of {Xi}{sub b}{sup *} and {Xi}{sub b}{sup '}, narrow decay widths are predicted for the ground-state bottom baryons {Xi}{sub b}{sup *} and {Xi}{sub b}{sup '}. The work predicts large decay widths, about 100 MeV for the {rho}-type orbital excitation states of {Xi}{sub b}.

  19. Theoretical studies of electronically excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besley, Nicholas A.

    2014-10-06

    Time-dependent density functional theory is the most widely used quantum chemical method for studying molecules in electronically excited states. However, excited states can also be computed within Kohn-Sham density functional theory by exploiting methods that converge the self-consistent field equations to give excited state solutions. The usefulness of single reference self-consistent field based approaches for studying excited states is demonstrated by considering the calculation of several types of spectroscopy including the infrared spectroscopy of molecules in an electronically excited state, the rovibrational spectrum of the NO-Ar complex, core electron binding energies and the emission spectroscopy of BODIPY in water.

  20. Vibronic relaxation dynamics of o-dichlorobenzene in its lowest excited singlet state

    NASA Astrophysics Data System (ADS)

    Liu, Benkang; Zhao, Haiyan; Lin, Xiang; Li, Xinxin; Gao, Mengmeng; Wang, Li; Wang, Wei

    2018-01-01

    Vibronic dynamics of o-dichlorobenzene in its lowest excited singlet state, S1, is investigated in real time by using femtosecond pump-probe method, combined with time-of-flight mass spectroscopy and photoelectron velocity mapping technique. Relaxation processes for the excitation in the range of 276-252 nm can be fitted by single exponential decay model, while in the case of wavelength shorter than 252 nm two-exponential decay model must be adopted for simulating transient profiles. Lifetime constants of the vibrationally excited S1 states change from 651 ± 10 ps for 276 nm excitation to 61 ± 1 ps for 242 nm excitation. Both the internal conversion from the S1 to the highly vibrationally excited ground state S0 and the intersystem crossing from the S1 to the triplet state are supposed to play important roles in de-excitation processes. Exponential fitting of the de-excitation rates on the excitation energy implies such de-excitation process starts from the highly vibrationally excited S0 state, which is validated, by probing the relaxation following photoexcitation at 281 nm, below the S1 origin. Time-dependent photoelectron kinetic energy distributions have been obtained experimentally. As the excitation wavelength changes from 276 nm to 242 nm, different cationic vibronic vibrations can be populated, determined by the Franck-Condon factors between the large geometry distorted excited singlet states and final cationic states.

  1. Non-adiabatic Excited State Molecule Dynamics Modeling of Photochemistry and Photophysics of Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Tammie Renee; Tretiak, Sergei

    2017-01-06

    Understanding and controlling excited state dynamics lies at the heart of all our efforts to design photoactive materials with desired functionality. This tailor-design approach has become the standard for many technological applications (e.g., solar energy harvesting) including the design of organic conjugated electronic materials with applications in photovoltaic and light-emitting devices. Over the years, our team has developed efficient LANL-based codes to model the relevant photophysical processes following photoexcitation (spatial energy transfer, excitation localization/delocalization, and/or charge separation). The developed approach allows the non-radiative relaxation to be followed on up to ~10 ps timescales for large realistic molecules (hundreds of atomsmore » in size) in the realistic solvent dielectric environment. The Collective Electronic Oscillator (CEO) code is used to compute electronic excited states, and the Non-adiabatic Excited State Molecular Dynamics (NA-ESMD) code is used to follow the non-adiabatic dynamics on multiple coupled Born-Oppenheimer potential energy surfaces. Our preliminary NA-ESMD simulations have revealed key photoinduced mechanisms controlling competing interactions and relaxation pathways in complex materials, including organic conjugated polymer materials, and have provided a detailed understanding of photochemical products and intermediates and the internal conversion process during the initiation of energetic materials. This project will be using LANL-based CEO and NA-ESMD codes to model nonradiative relaxation in organic and energetic materials. The NA-ESMD and CEO codes belong to a class of electronic structure/quantum chemistry codes that require large memory, “long-queue-few-core” distribution of resources in order to make useful progress. The NA-ESMD simulations are trivially parallelizable requiring ~300 processors for up to one week runtime to reach a meaningful restart point.« less

  2. Investigation into chromophore excited-state coupling in allophycocyanin

    NASA Astrophysics Data System (ADS)

    Zheng, Xiguang; Zhao, Fuli; Wang, He Z.; Gao, Zhaolan; Yu, Zhenxin; Zhu, Jinchang; Xia, Andong; Jiang, Lijin

    1994-08-01

    Both theoretical and experimental studies are presented on chromophore excited-state coupling in linker-free allophycocyanin (APC), one of the antenna phycobiliproteins in algal photosynthesis. A three-site-coupling model has been introduced to describe the exciton interaction mechanism amoung the excited (beta) chromophore in APC, and the exciton energy splitting is estimated. Picosecond polarized fluorescence experiments both on monomeric and trimeric APC isolated from alga Spirulina platensis have been performed. The experimental results show that APC monomer and trimer exhibit remarkedly different spectropic characteristics, and satisfy the suggestion of strong excited- state coupling among chromophores in APC.

  3. Charmonium excited state spectrum in lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozef Dudek; Robert Edwards; Nilmani Mathur

    2008-02-01

    Working with a large basis of covariant derivative-based meson interpolating fields we demonstrate the feasibility of reliably extracting multiple excited states using a variational method. The study is performed on quenched anisotropic lattices with clover quarks at the charm mass. We demonstrate how a knowledge of the continuum limit of a lattice interpolating field can give additional spin-assignment information, even at a single lattice spacing, via the overlap factors of interpolating field and state. Excited state masses are systematically high with respect to quark potential model predictions and, where they exist, experimental states. We conclude that this is most likelymore » a result of the quenched approximation.« less

  4. Low-lying excited states of model proteins: Performances of the CC2 method versus multireference methods

    NASA Astrophysics Data System (ADS)

    Ben Amor, Nadia; Hoyau, Sophie; Maynau, Daniel; Brenner, Valérie

    2018-05-01

    A benchmark set of relevant geometries of a model protein, the N-acetylphenylalanylamide, is presented to assess the validity of the approximate second-order coupled cluster (CC2) method in studying low-lying excited states of such bio-relevant systems. The studies comprise investigations of basis-set dependence as well as comparison with two multireference methods, the multistate complete active space 2nd order perturbation theory (MS-CASPT2) and the multireference difference dedicated configuration interaction (DDCI) methods. First of all, the applicability and the accuracy of the quasi-linear multireference difference dedicated configuration interaction method have been demonstrated on bio-relevant systems by comparison with the results obtained by the standard MS-CASPT2. Second, both the nature and excitation energy of the first low-lying excited state obtained at the CC2 level are very close to the Davidson corrected CAS+DDCI ones, the mean absolute deviation on the excitation energy being equal to 0.1 eV with a maximum of less than 0.2 eV. Finally, for the following low-lying excited states, if the nature is always well reproduced at the CC2 level, the differences on excitation energies become more important and can depend on the geometry.

  5. Low-lying excited states of model proteins: Performances of the CC2 method versus multireference methods.

    PubMed

    Ben Amor, Nadia; Hoyau, Sophie; Maynau, Daniel; Brenner, Valérie

    2018-05-14

    A benchmark set of relevant geometries of a model protein, the N-acetylphenylalanylamide, is presented to assess the validity of the approximate second-order coupled cluster (CC2) method in studying low-lying excited states of such bio-relevant systems. The studies comprise investigations of basis-set dependence as well as comparison with two multireference methods, the multistate complete active space 2nd order perturbation theory (MS-CASPT2) and the multireference difference dedicated configuration interaction (DDCI) methods. First of all, the applicability and the accuracy of the quasi-linear multireference difference dedicated configuration interaction method have been demonstrated on bio-relevant systems by comparison with the results obtained by the standard MS-CASPT2. Second, both the nature and excitation energy of the first low-lying excited state obtained at the CC2 level are very close to the Davidson corrected CAS+DDCI ones, the mean absolute deviation on the excitation energy being equal to 0.1 eV with a maximum of less than 0.2 eV. Finally, for the following low-lying excited states, if the nature is always well reproduced at the CC2 level, the differences on excitation energies become more important and can depend on the geometry.

  6. Modeling Protein Excited-state Structures from "Over-length" Chemical Cross-links.

    PubMed

    Ding, Yue-He; Gong, Zhou; Dong, Xu; Liu, Kan; Liu, Zhu; Liu, Chao; He, Si-Min; Dong, Meng-Qiu; Tang, Chun

    2017-01-27

    Chemical cross-linking coupled with mass spectroscopy (CXMS) provides proximity information for the cross-linked residues and is used increasingly for modeling protein structures. However, experimentally identified cross-links are sometimes incompatible with the known structure of a protein, as the distance calculated between the cross-linked residues far exceeds the maximum length of the cross-linker. The discrepancies may persist even after eliminating potentially false cross-links and excluding intermolecular ones. Thus the "over-length" cross-links may arise from alternative excited-state conformation of the protein. Here we present a method and associated software DynaXL for visualizing the ensemble structures of multidomain proteins based on intramolecular cross-links identified by mass spectrometry with high confidence. Representing the cross-linkers and cross-linking reactions explicitly, we show that the protein excited-state structure can be modeled with as few as two over-length cross-links. We demonstrate the generality of our method with three systems: calmodulin, enzyme I, and glutamine-binding protein, and we show that these proteins alternate between different conformations for interacting with other proteins and ligands. Taken together, the over-length chemical cross-links contain valuable information about protein dynamics, and our findings here illustrate the relationship between dynamic domain movement and protein function. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Signature of nonadiabatic coupling in excited-state vibrational modes.

    PubMed

    Soler, Miguel A; Nelson, Tammie; Roitberg, Adrian E; Tretiak, Sergei; Fernandez-Alberti, Sebastian

    2014-11-13

    Using analytical excited-state gradients, vibrational normal modes have been calculated at the minimum of the electronic excited-state potential energy surfaces for a set of extended conjugated molecules with different coupling between them. Molecular model systems composed of units of polyphenylene ethynylene (PPE), polyphenylenevinylene (PPV), and naphthacene/pentacene (NP) have been considered. In all cases except the NP model, the influence of the nonadiabatic coupling on the excited-state equilibrium normal modes is revealed as a unique highest frequency adiabatic vibrational mode that overlaps with the coupling vector. This feature is removed by using a locally diabatic representation in which the effect of NA interaction is removed. Comparison of the original adiabatic modes with a set of vibrational modes computed in the locally diabatic representation demonstrates that the effect of nonadiabaticity is confined to only a few modes. This suggests that the nonadiabatic character of a molecular system may be detected spectroscopically by identifying these unique state-specific high frequency vibrational modes.

  8. Excited state characteristics of acridine dyes: acriflavine and acridine orange.

    PubMed

    Sharma, Vijay K; Sahare, P D; Rastogi, Ramesh C; Ghoshal, S K; Mohan, D

    2003-06-01

    The magnitude of the Stokes shift (frequency shifts in absorption and fluorescence spectra) is observed on changing the solvents and further has been used to calculate experimentally the dipole moments (ground state and excited state) of acriflavine and acridine orange dye molecules. Theoretically, dipole moments are calculated using PM 3 Model. The dipole moments of excited states, for both molecules investigated here, are higher than the corresponding values in the ground states. The increase in the dipole moment has been explained in terms of the nature of the excited state. Acriflavine dye overcomes the non-lasing behaviour of acridine orange due to quaternization of the central nitrogen atom.

  9. Excited electronic state decomposition mechanisms and dynamics of nitramine energetic materials and model systems

    NASA Astrophysics Data System (ADS)

    Greenfield, Margo

    Energetic materials play an important role in aeronautics, the weapon industry, and the propellant industry due to their broad applications as explosives and fuels. RDX (1,3,5-trinitrohexahydro-s-triazine), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), and CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) are compounds which contain high energy density. Although RDX and HMX have been studied extensively over the past several decades a complete understanding of their decomposition mechanisms and dynamics is unknown. Time of flight mass spectroscopy (TOFMS) UV photodissociation (ns) experiments of gas phase RDX, HMX, and CL-20 generate the NO molecule as the initial decomposition product. Four different vibronic transitions of the initial decomposition product, the NO molecule, are observed: A2Sigma(upsilon'=0)←X 2pi(upsilon"=0,1,2,3). Simulations of the rovibronic intensities for the A←X transitions demonstrate that NO dissociated from RDX, HMX, and CL-20 is rotationally cold (˜20 K) and vibrationally hot (˜1800 K). Conversely, experiments on the five model systems (nitromethane, dimethylnitramine (DMNA), nitropyrrolidine, nitropiperidine and dinitropiperazine) produce rotationally hot and vibrationally cold spectra. Laser induced fluorescence (LIF) experiments are performed to rule out the possible decomposition product OH, generated along with NO, perhaps from the suggested HONO elimination mechanism. The OH radical is not observed in the fluorescence experiments, indicating the HONO decomposition intermediate is not an important pathway for the excited electronic state decomposition of cyclic nitramines. The NO molecule is also employed to measure the dynamics of the excited state decomposition. A 226 nm, 180 fs light pulse is utilized to photodissociate the gas phase systems. Stable ion states of DMNA and nitropyrrolidine are observed while the energetic materials and remaining model systems present the NO molecule as the only

  10. Excited State Atom-Ion Charge-Exchange

    NASA Astrophysics Data System (ADS)

    Li, Ming; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2017-04-01

    We theoretically investigate the exothermic charge-exchange reaction between an excited atom and a ground-state positive ion. In particular, we focus on MOT-excited Ca*(4s4p 1P) atoms colliding with ground-state Yb+ ions, which are under active study by the experimental group of E. Hudson at UCLA. Collisions between an excited atom and an ion are guided by two major contributions to the long-range interaction potentials, the induction C4 /R4 and charge-quadrupole C3 /R3 potentials, and their coupling by the electron-exchange interaction. Our model of these forces leads to close-coupling equations for multiple reaction channels. We find several avoided crossings between the potentials that couple to the nearby asymptotic limits of Yb*+Ca+, some of which can possibly provide large charge exchange rate coefficients above 10-10 cm3 / s. We acknowledge support from the US Army Research Office, MURI Grants W911NF-14-1-0378 and the US National Science Foundation, Grant PHY-1619788.

  11. Role of electronic excited N2 in vibrational excitation of the N2 ground state at high latitudes

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Cartwright, D. C.; Brunger, M. J.; Teubner, P. J. O.

    2006-09-01

    Vibrationally excited N2 is important in determining the ionospheric electron density and has also been proposed to play a role in the production of NO in disturbed atmospheres. We report here predictions of the absolute vibrational distributions in the ground electronic state of N2 produced by electron impact excitation, at noon and midnight under quiet geomagnetic conditions and disturbed conditions corresponding to the aurora IBCII+ and IBCIII+ at 60°N latitude and 0° longitude, at altitudes between 130 and 350 km. These predictions were obtained from a model which includes thermal excitation and direct electron impact excitation of the vibrational levels of the N2 ground state and its excited electronic states; radiative cascade from all excited electronic states to all vibrational levels of the ground electronic state; quenching by O, O2, and N2; molecular and ambipolar diffusion; and the dominant chemical reactions. Results from this study show that for both aurora and daytime electron environments: (1) cascade from the higher electronic states of N2 determines the population of the higher vibrational levels in the N2 ground state and (2) the effective ground state vibrational temperature for levels greater than 4 in N2 is predicted to be in the range 4000-13000 K for altitudes greater than 200 km. Correspondingly, the associated enhancement factor for the O+ reaction with vibrationally excited N2 to produce NO+ is predicted to increase with increasing altitude (up to a maximum at a height which increases with auroral strength) for both aurora and daytime environments and to increase with increasing auroral strength. The contribution of the cascade from the excited electronic states was evaluated and found to be relatively minor compared to the direct excitation process.

  12. Excited-State Deactivation of Branched Phthalocyanine Compounds.

    PubMed

    Zhu, Huaning; Li, Yang; Chen, Jun; Zhou, Meng; Niu, Yingli; Zhang, Xinxing; Guo, Qianjin; Wang, Shuangqing; Yang, Guoqiang; Xia, Andong

    2015-12-21

    The excited-state relaxation dynamics and chromophore interactions in two phthalocyanine compounds (bis- and trisphthalocyanines) are studied by using steady-state and femtosecond transient absorption spectral measurements, where the excited-state energy-transfer mechanism is explored. By exciting phthalocyanine compounds to their second electronically excited states and probing the subsequent relaxation dynamics, a multitude of deactivation pathways are identified. The transient absorption spectra show the relaxation pathway from the exciton state to excimer state and then back to the ground state in bisphthalocyanine (bis-Pc). In trisphthalocyanine (tris-Pc), the monomeric and dimeric subunits are excited and the excitation energy transfers from the monomeric vibrationally hot S1 state to the exciton state of a pre-associated dimer, with subsequent relaxation to the ground state through the excimer state. The theoretical calculations and steady-state spectra also show a face-to-face conformation in bis-Pc, whereas in tris-Pc, two of the three phthalocyanine branches form a pre-associated face-to-face dimeric conformation with the third one acting as a monomeric unit; this is consistent with the results of the transient absorption experiments from the perspective of molecular structure. The detailed structure-property relationships in phthalocyanine compounds is useful for exploring the function of molecular aggregates in energy migration of natural photosynthesis systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Excited states of neutral donor bound excitons in GaN

    NASA Astrophysics Data System (ADS)

    Callsen, G.; Kure, T.; Wagner, M. R.; Butté, R.; Grandjean, N.

    2018-06-01

    We investigate the excited states of a neutral donor bound exciton (D0X) in bulk GaN by means of high-resolution, polychromatic photoluminescence excitation (PLE) spectroscopy. The optically most prominent donor in our sample is silicon accompanied by only a minor contribution of oxygen—the key for an unambiguous assignment of excited states. Consequently, we can observe a multitude of Si0X-related excitation channels with linewidths down to 200 μeV. Two groups of excitation channels are identified, belonging either to rotational-vibrational or electronic excited states of the hole in the Si0X complex. Such identification is achieved by modeling the excited states based on the equations of motion for a Kratzer potential, taking into account the particularly large anisotropy of effective hole masses in GaN. Furthermore, several ground- and excited states of the exciton-polaritons and the dominant bound exciton are observed in the photoluminescence (PL) and PLE spectra, facilitating an estimate of the associated complex binding energies. Our data clearly show that great care must be taken if only PL spectra of D0X centers in GaN are analyzed. Every PL feature we observe at higher emission energies with regard to the Si0X ground state corresponds to an excited state. Hence, any unambiguous peak identification renders PLE spectra highly valuable, as important spectral features are obscured in common PL spectra. Here, GaN represents a particular case among the wide-bandgap, wurtzite semiconductors, as comparably low localization energies for common D0X centers are usually paired with large emission linewidths and the prominent optical signature of exciton-polaritons, making the sole analysis of PL spectra a challenging task.

  14. Excited-State Effective Masses in Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Fleming, Saul Cohen, Huey-Wen Lin

    2009-10-01

    We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.

  15. Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation.

    PubMed

    Mondal, Sayan; Puranik, Mrinalini

    2016-05-18

    The photophysical properties of natural nucleobases and their respective nucleotides are ascribed to the sub-picosecond lifetime of their first singlet states in the UV-B region (260-350 nm). Electronic transitions of the ππ* type, which are stronger than those in the UV-B region, lie at the red edge of the UV-C range (100-260 nm) in all isolated nucleobases. The lowest energetic excited states in the UV-B region of nucleobases have been investigated using a plethora of experimental and theoretical methods in gas and solution phases. The sub-picosecond lifetime of these molecules is not a general attribute of all nucleobases but specific to the five primary nucleobases and a few xanthine and methylated derivatives. To determine the overall UV photostability, we aim to understand the effect of more energetic photons lying in the UV-C region on nucleobases. To determine the UV-C initiated photophysics of a nucleobase system, we chose a halogen substituted purine, 6-chloroguanine (6-ClG), that we had investigated previously using resonance Raman spectroscopy. We have performed quantitative measurements of the resonance Raman cross-section across the Bb absorption band (210-230 nm) and constructed the Raman excitation profiles. We modeled the excitation profiles using Lee and Heller's time-dependent theory of resonance Raman intensities to extract the initial excited state dynamics of 6-ClG within 30-50 fs after photoexcitation. We found that imidazole and pyrimidine rings of 6-ClG undergo expansion and contraction, respectively, following photoexcitation to the Bb state. The amount of distortions of the excited state structure from that of the ground state structure is reflected by the total internal reorganization energy that is determined at 112 cm(-1). The contribution of the inertial component of the solvent response towards the total reorganization energy was obtained at 1220 cm(-1). In addition, our simulation also yields an instantaneous response of the first

  16. New excitations in the Thirring model

    NASA Astrophysics Data System (ADS)

    Cortés, J. L.; Gamboa, J.; Schmidt, I.; Zanelli, J.

    1998-12-01

    The quantization of the massless Thirring model in the light-cone using functional methods is considered. The need to compactify the coordinate x- in the light-cone spacetime implies that the quantum effective action for left-handed fermions contains excitations similar to abelian instantons produced by composite of left-handed fermions. Right-handed fermions don't have a similar effective action. Thus, quantum mechanically, chiral symmetry must be broken as a result of the topological excitations. The conserved charge associated to the topological states is quantized. Different cases with only fermionic excitations or bosonic excitations or both can occur depending on the boundary conditions and the value of the coupling.

  17. Dynamics and Steady States in Excitable Mobile Agent Systems

    NASA Astrophysics Data System (ADS)

    Peruani, Fernando; Sibona, Gustavo J.

    2008-04-01

    We study the spreading of excitations in 2D systems of mobile agents where the excitation is transmitted when a quiescent agent keeps contact with an excited one during a nonvanishing time. We show that the steady states strongly depend on the spatial agent dynamics. Moreover, the coupling between exposition time (ω) and agent-agent contact rate (CR) becomes crucial to understand the excitation dynamics, which exhibits three regimes with CR: no excitation for low CR, an excited regime in which the number of quiescent agents (S) is inversely proportional to CR, and, for high CR, a novel third regime, model dependent, where S scales with an exponent ξ-1, with ξ being the scaling exponent of ω with CR.

  18. Resource Paper: Molecular Excited State Relaxation Processes.

    ERIC Educational Resources Information Center

    Rhodes, William

    1979-01-01

    Develops the concept of oscillatory v dissipative limits as it applies to electronic excited state processes in molecular systems. Main emphasis is placed on the radiative and nonradiative dynamics of the excited state of a molecule prepared by interaction with light or some other excitation source. (BT)

  19. Full dyon excitation spectrum in extended Levin-Wen models

    NASA Astrophysics Data System (ADS)

    Hu, Yuting; Geer, Nathan; Wu, Yong-Shi

    2018-05-01

    In Levin-Wen (LW) models, a wide class of exactly solvable discrete models, for two-dimensional topological phases, it is relatively easy to describe only single-fluxon excitations, but not the charge and dyonic as well as many-fluxon excitations. To incorporate charged and dyonic excitations in (doubled) topological phases, an extension of the LW models is proposed in this paper. We first enlarge the Hilbert space with adding a tail on one of the edges of each trivalent vertex to describe the internal charge degrees of freedom at the vertex. Then, we study the full dyon spectrum of the extended LW models, including both quantum numbers and wave functions for dyonic quasiparticle excitations. The local operators associated with the dyonic excitations are shown to form the so-called tube algebra, whose representations (modules) form the quantum double (categoric center) of the input data (unitary fusion category). In physically relevant cases, the input data are from a finite or quantum group (with braiding R matrices), and we find that the elementary excitations (or dyon species), as well as any localized/isolated excited states, are characterized by three quantum numbers: charge, fluxon type, and twist. They provide a "complete basis" for many-body states in the enlarged Hilbert space. Concrete examples are presented and the relevance of our results to the electric-magnetic duality existing in the models is addressed.

  20. Mobile bound states of Rydberg excitations in a lattice

    NASA Astrophysics Data System (ADS)

    Letscher, Fabian; Petrosyan, David

    2018-04-01

    Spin-lattice models play a central role in the studies of quantum magnetism and nonequilibrium dynamics of spin excitations—-magnons. We show that a spin lattice with strong nearest-neighbor interactions and tunable long-range hopping of excitations can be realized by a regular array of laser-driven atoms, with an excited Rydberg state representing the spin-up state and a Rydberg-dressed ground state corresponding to the spin-down state. We find exotic interaction-bound states of magnons that propagate in the lattice via the combination of resonant two-site hopping and nonresonant second-order hopping processes. Arrays of trapped Rydberg-dressed atoms can thus serve as a flexible platform to simulate and study fundamental few-body dynamics in spin lattices.

  1. Excited state properties of peridinin: Observation of a solvent dependence of the lowest excited singlet state lifetime and spectral behavior unique among carotenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bautista, J.A.; Connors, R.E.; Raju, B.B.

    1999-10-14

    The spectroscopic properties and dynamic behavior of peridinin in several different solvents were studied by steady-state absorption, fluorescence, and transient optical spectroscopy. The lifetime of the lowest excited singlet state of peridinin is found to be strongly dependent on solvent polarity and ranges from 7 ps in the strongly polar solvent trifluoroethanol to 172 ps in the nonpolar solvents cyclohexane and benzene. The lifetimes show no obvious correlation with solvent polarizability, and hydrogen bonding of the solvent molecules to peridinin is not an important factor in determining the dynamic behavior of the lowest excited singlet state. The wavelengths of emissionmore » maxima, the quantum yields of fluorescence, and the transient absorption spectra are also affected by the solvent environment. A model consistent with the data and supported by preliminary semiempirical calculations invokes the presence of a charge transfer state in the excited state manifold of peridinin to account for the observations. The charge transfer state most probably results from the presence of the lactone ring in the {pi}-electron conjugation of peridinin analogous to previous findings on aminocoumarins and related compounds. The behavior of peridinin reported here is highly unusual for carotenoids, which generally show little dependence of the spectral properties and lifetimes of the lowest excited singlet state on the solvent environment.« less

  2. Categorical QSAR models for skin sensitization based on local lymph node assay measures and both ground and excited state 4D-fingerprint descriptors

    NASA Astrophysics Data System (ADS)

    Liu, Jianzhong; Kern, Petra S.; Gerberick, G. Frank; Santos-Filho, Osvaldo A.; Esposito, Emilio X.; Hopfinger, Anton J.; Tseng, Yufeng J.

    2008-06-01

    In previous studies we have developed categorical QSAR models for predicting skin-sensitization potency based on 4D-fingerprint (4D-FP) descriptors and in vivo murine local lymph node assay (LLNA) measures. Only 4D-FP derived from the ground state (GMAX) structures of the molecules were used to build the QSAR models. In this study we have generated 4D-FP descriptors from the first excited state (EMAX) structures of the molecules. The GMAX, EMAX and the combined ground and excited state 4D-FP descriptors (GEMAX) were employed in building categorical QSAR models. Logistic regression (LR) and partial least square coupled logistic regression (PLS-CLR), found to be effective model building for the LLNA skin-sensitization measures in our previous studies, were used again in this study. This also permitted comparison of the prior ground state models to those involving first excited state 4D-FP descriptors. Three types of categorical QSAR models were constructed for each of the GMAX, EMAX and GEMAX datasets: a binary model (2-state), an ordinal model (3-state) and a binary-binary model (two-2-state). No significant differences exist among the LR 2-state model constructed for each of the three datasets. However, the PLS-CLR 3-state and 2-state models based on the EMAX and GEMAX datasets have higher predictivity than those constructed using only the GMAX dataset. These EMAX and GMAX categorical models are also more significant and predictive than corresponding models built in our previous QSAR studies of LLNA skin-sensitization measures.

  3. State-selective optimization of local excited electronic states in extended systems

    NASA Astrophysics Data System (ADS)

    Kovyrshin, Arseny; Neugebauer, Johannes

    2010-11-01

    Standard implementations of time-dependent density-functional theory (TDDFT) for the calculation of excitation energies give access to a number of the lowest-lying electronic excitations of a molecule under study. For extended systems, this can become cumbersome if a particular excited state is sought-after because many electronic transitions may be present. This often means that even for systems of moderate size, a multitude of excited states needs to be calculated to cover a certain energy range. Here, we present an algorithm for the selective determination of predefined excited electronic states in an extended system. A guess transition density in terms of orbital transitions has to be provided for the excitation that shall be optimized. The approach employs root-homing techniques together with iterative subspace diagonalization methods to optimize the electronic transition. We illustrate the advantages of this method for solvated molecules, core-excitations of metal complexes, and adsorbates at cluster surfaces. In particular, we study the local π →π∗ excitation of a pyridine molecule adsorbed at a silver cluster. It is shown that the method works very efficiently even for high-lying excited states. We demonstrate that the assumption of a single, well-defined local excitation is, in general, not justified for extended systems, which can lead to root-switching during optimization. In those cases, the method can give important information about the spectral distribution of the orbital transition employed as a guess.

  4. Microwave-optical two-photon excitation of Rydberg states

    NASA Astrophysics Data System (ADS)

    Tate, D. A.; Gallagher, T. F.

    2018-03-01

    We report efficient microwave-optical two photon excitation of Rb Rydberg atoms in a magneto-optical trap. This approach allows the excitation of normally inaccessible states and provides a path toward excitation of high-angular-momentum states. The efficiency stems from the elimination of the Doppler width, the use of a narrow-band pulsed laser, and the enormous electric-dipole matrix element connecting the intermediate and final states of the transition. The excitation is efficient in spite of the low optical and microwave powers, of order 1 kW and 1 mW, respectively. This is an application of the large dipole coupling strengths between Rydberg states to achieve two-photon excitation of Rydberg atoms.

  5. Laser-induced transitions between triply excited hollow states

    NASA Astrophysics Data System (ADS)

    Madsen, L. B.; Schlagheck, P.; Lambropoulos, P.

    2000-12-01

    Using complex scaling and a correlated basis constructed in terms of B splines, we calculate the Li+ photoion yield in the presence of a laser-induced coupling between the triply excited 2s22p(2Po) and 2s2p2(2De) resonances in lithium, the first of which is assumed to be excited by synchrotron radiation from the ground state. The laser coupling between the triply excited states is shown to lead to a significant and readily measurable modification of the line profile which provides a unique probe of the dipole strength between highly correlated triply excited states. We also present results for some higher-lying triply excited states of 2Po symmetry.

  6. Multiparticle configurations of excited states in 155Lu

    NASA Astrophysics Data System (ADS)

    Carroll, R. J.; Hadinia, B.; Qi, C.; Joss, D. T.; Page, R. D.; Uusitalo, J.; Andgren, K.; Cederwall, B.; Darby, I. G.; Eeckhaudt, S.; Grahn, T.; Gray-Jones, C.; Greenlees, P. T.; Jones, P. M.; Julin, R.; Juutinen, S.; Leino, M.; Leppänen, A.-P.; Nyman, M.; Pakarinen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Seweryniak, D.; Simpson, J.

    2016-12-01

    Excited states in the neutron-deficient N =84 nuclide 155Lu have been populated by using the 102Pd(58Ni,α p ) reaction. The 155Lu nuclei were separated by using the gas-filled recoil ion transport unit (RITU) separator and implanted into the Si detectors of the gamma recoil electron alpha tagging (GREAT) spectrometer. Prompt γ -ray emissions measured at the target position using the JUROGAM Ge detector array were assigned to 155Lu through correlations with α decays measured in GREAT. Structures feeding the (11 /2-) and (25 /2-)α -decaying states have been revised and extended. Shell-model calculations have been performed and are found to reproduce the excitation energies of several of the low-lying states observed to within an average of 71 keV. In particular, the seniority inversion of the 25 /2- and 27 /2- states is reproduced.

  7. Excited-state dynamics of acetylene excited to individual rotational level of the V04K01 subband

    NASA Astrophysics Data System (ADS)

    Makarov, Vladimir I.; Kochubei, Sergei A.; Khmelinskii, Igor V.

    2006-01-01

    Dynamics of the IR emission induced by excitation of the acetylene molecule using the (32Ka0,1,2,ÃAu1←41la1,X˜Σg+1) transition was investigated. The observed IR emission was assigned to transitions between the ground-state vibrational levels. Acetylene fluorescence quenching induced by external electric and magnetic fields acting upon the system prepared using the (34Ka1,ÃAu1←00la0,X˜Σg+1) excitation was also studied. External electric field creates an additional radiationless pathway to the ground-state levels, coupling levels of the ÃAu1 excited state to the quasiresonant levels of the X˜Σg+1 ground state. The level density of the ground state in the vicinity of the excited state is very high, thus the electric-field-induced transition is irreversible, with the rate constant described by the Fermi rule. Magnetic field alters the decay profile without changing the fluorescence quantum yield in collisionless conditions. IR emission from the CCH transient was detected, and was also affected by the external electric and magnetic fields. Acetylene predissociation was demonstrated to proceed by the direct S1→S0 mechanism. The results were explained using the previously developed theoretical approach, yielding values of the relevant model parameters.

  8. Semiempirical modeling of Ag nanoclusters: New parameters for optical property studies enable determination of double excitation contributions to plasmonic excitation

    DOE PAGES

    Gieseking, Rebecca L.; Ratner, Mark A.; Schatz, George C.

    2016-06-03

    Quantum mechanical studies of Ag nanoclusters have shown that plasmonic behavior can be modeled in terms of excited states where collectivity among single excitations leads to strong absorption. However, new computational approaches are needed to provide understanding of plasmonic excitations beyond the single-excitation level. We show that semiempirical INDO/CI approaches with appropriately selected parameters reproduce the TD-DFT optical spectra of various closed-shell Ag clusters. The plasmon-like states with strong optical absorption comprise linear combinations of many singly excited configurations that contribute additively to the transition dipole moment, whereas all other excited states show significant cancellation among the contributions to themore » transition dipole moment. The computational efficiency of this approach allows us to investigate the role of double excitations at the INDO/SDCI level. The Ag cluster ground states are stabilized by slight mixing with doubly excited configurations, but the plasmonic states generally retain largely singly excited character. The consideration of double excitations in all cases improves the agreement of the INDO/CI absorption spectra with TD-DFT, suggesting that the SDCI calculation effectively captures some of the ground-state correlation implicit in DFT. Furthermore, these results provide the first evidence to support the commonly used assumption that single excitations are in many cases sufficient to describe the optical spectra of plasmonic excitations quantum mechanically.« less

  9. Interstate vibronic coupling constants between electronic excited states for complex molecules

    NASA Astrophysics Data System (ADS)

    Fumanal, Maria; Plasser, Felix; Mai, Sebastian; Daniel, Chantal; Gindensperger, Etienne

    2018-03-01

    In the construction of diabatic vibronic Hamiltonians for quantum dynamics in the excited-state manifold of molecules, the coupling constants are often extracted solely from information on the excited-state energies. Here, a new protocol is applied to get access to the interstate vibronic coupling constants at the time-dependent density functional theory level through the overlap integrals between excited-state adiabatic auxiliary wavefunctions. We discuss the advantages of such method and its potential for future applications to address complex systems, in particular, those where multiple electronic states are energetically closely lying and interact. We apply the protocol to the study of prototype rhenium carbonyl complexes [Re(CO)3(N,N)(L)]n+ for which non-adiabatic quantum dynamics within the linear vibronic coupling model and including spin-orbit coupling have been reported recently.

  10. Temperature dependence of the hydrated electron's excited-state relaxation. I. Simulation predictions of resonance Raman and pump-probe transient absorption spectra of cavity and non-cavity models

    NASA Astrophysics Data System (ADS)

    Zho, Chen-Chen; Farr, Erik P.; Glover, William J.; Schwartz, Benjamin J.

    2017-08-01

    We use one-electron non-adiabatic mixed quantum/classical simulations to explore the temperature dependence of both the ground-state structure and the excited-state relaxation dynamics of the hydrated electron. We compare the results for both the traditional cavity picture and a more recent non-cavity model of the hydrated electron and make definite predictions for distinguishing between the different possible structural models in future experiments. We find that the traditional cavity model shows no temperature-dependent change in structure at constant density, leading to a predicted resonance Raman spectrum that is essentially temperature-independent. In contrast, the non-cavity model predicts a blue-shift in the hydrated electron's resonance Raman O-H stretch with increasing temperature. The lack of a temperature-dependent ground-state structural change of the cavity model also leads to a prediction of little change with temperature of both the excited-state lifetime and hot ground-state cooling time of the hydrated electron following photoexcitation. This is in sharp contrast to the predictions of the non-cavity model, where both the excited-state lifetime and hot ground-state cooling time are expected to decrease significantly with increasing temperature. These simulation-based predictions should be directly testable by the results of future time-resolved photoelectron spectroscopy experiments. Finally, the temperature-dependent differences in predicted excited-state lifetime and hot ground-state cooling time of the two models also lead to different predicted pump-probe transient absorption spectroscopy of the hydrated electron as a function of temperature. We perform such experiments and describe them in Paper II [E. P. Farr et al., J. Chem. Phys. 147, 074504 (2017)], and find changes in the excited-state lifetime and hot ground-state cooling time with temperature that match well with the predictions of the non-cavity model. In particular, the experiments

  11. Spectral weight of excitations in Bose Hubbard model

    NASA Astrophysics Data System (ADS)

    Alavani, Bhargav K.; Pai, Ramesh V.

    2017-05-01

    We obtain excitation spectra in the superfluid and the Mott Insulator phases of Bose Hubbard model near unit filling within Random Phase Approximation (RPA) and calculate its spectral weight. This gives a transparent description of contribution of each excitation towards the total Density of States (DOS) which we calculate from these spectral weights.

  12. Two-Component Structure in the Entanglement Spectrum of Highly Excited States

    NASA Astrophysics Data System (ADS)

    Yang, Zhi-Cheng; Chamon, Claudio; Hamma, Alioscia; Mucciolo, Eduardo R.

    2015-12-01

    We study the entanglement spectrum of highly excited eigenstates of two known models that exhibit a many-body localization transition, namely the one-dimensional random-field Heisenberg model and the quantum random energy model. Our results indicate that the entanglement spectrum shows a "two-component" structure: a universal part that is associated with random matrix theory, and a nonuniversal part that is model dependent. The nonuniversal part manifests the deviation of the highly excited eigenstate from a true random state even in the thermalized phase where the eigenstate thermalization hypothesis holds. The fraction of the spectrum containing the universal part decreases as one approaches the critical point and vanishes in the localized phase in the thermodynamic limit. We use the universal part fraction to construct an order parameter for measuring the degree of randomness of a generic highly excited state, which is also a promising candidate for studying the many-body localization transition. Two toy models based on Rokhsar-Kivelson type wave functions are constructed and their entanglement spectra are shown to exhibit the same structure.

  13. Multimode optical fibers: steady state mode exciter.

    PubMed

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  14. Excited states of protonated DNA/RNA bases.

    PubMed

    Berdakin, Matias; Féraud, Géraldine; Dedonder-Lardeux, Claude; Jouvet, Christophe; Pino, Gustavo A

    2014-06-14

    The very fast relaxation of the excited states to the ground state in DNA/RNA bases is a necessary process to ensure the photostability of DNA and its rate is highly sensitive to the tautomeric form of the bases. Protonation of the bases plays a crucial role in many biochemical and mutagenic processes and it can result in alternative tautomeric structures, thus making important the knowledge of the properties of protonated DNA/RNA bases. We report here the photofragmentation spectra of the five protonated DNA/RNA bases. In most of the cases, the spectra exhibit well resolved vibrational structures, with broad bands associated with very short excited state lifetimes. The similarity between the electronic properties, e.g. excitation energy and very short excited state lifetimes for the canonical tautomers of protonated and neutral DNA bases, suggests that the former could also play an important role in the photostability mechanism of DNA.

  15. Polymethine and squarylium molecules with large excited-state absorption

    NASA Astrophysics Data System (ADS)

    Lim, Jin Hong; Przhonska, Olga V.; Khodja, Salah; Yang, Sidney; Ross, T. S.; Hagan, David J.; Van Stryland, Eric W.; Bondar, Mikhail V.; Slominsky, Yuriy L.

    1999-07-01

    We study nonlinear absorption in a series of ten polymethine dyes and two squarylium dyes using Z-scan, pump-probe and optical limiting experiments. Both picosecond and nanosecond characterization were performed at 532 nm, while picosecond measurements were performed using an optical parametric oscillator (OPO) from 440 to 650 nm. The photophysical parameters of these dyes including cross sections and excited-state lifetimes are presented both in solution in ethanol and in an elastopolymeric material, polyurethane acrylate (PUA). We determine that the dominant nonlinearity in all these dyes is large excited-state absorption (ESA), i.e. reverse saturable absorption. For several of the dyes we measure a relatively large ground-state absorption cross section, σ01, which effectively populates an excited state that possesses an extremely large ESA cross section, σ12. The ratios of σ12/ σ01 are the largest we know of, up to 200 at 532 nm, and lead to very low thresholds for optical limiting. However, the lifetimes of the excited state are of the order of 1 ns in ethanol, which is increased to up to 3 ns in PUA. This lifetime is less than optimum for sensor protection applications for Q-switched inputs, and intersystem crossing times for these molecules are extremely long, so that triplet states are not populated. These parameters show a significant improvement over those of the first set of this class of dyes studied and indicate that further improvement of the photophysical parameters may be possible. From these measurements, correlations between molecular structure and nonlinear properties are made. We propose a five-level, all-singlet state model, which includes reorientation processes in the first excited state. This includes a trans- cis conformational change that leads to the formation of a new state with a new molecular configuration which is also absorbing but can undergo a light-induced degradation at high inputs.

  16. Electron-driven excitation of O 2 under night-time auroral conditions: Excited state densities and band emissions

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Campbell, L.; Bottema, M. J.; Teubner, P. J. O.; Cartwright, D. C.; Newell, W. R.; Brunger, M. J.

    2006-01-01

    Electron impact excitation of vibrational levels in the ground electronic state and seven excited electronic states in O 2 have been simulated for an International Brightness Coefficient-Category 2+ (IBC II+) night-time aurora, in order to predict O 2 excited state number densities and volume emission rates (VERs). These number densities and VERs are determined as a function of altitude (in the range 80-350 km) in the present study. Recent electron impact excitation cross-sections for O 2 were combined with appropriate altitude dependent IBC II+ auroral secondary electron distributions and the vibrational populations of the eight O 2 electronic states were determined under conditions of statistical equilibrium. Pre-dissociation, atmospheric chemistry involving atomic and molecular oxygen, radiative decay and quenching of excited states were included in this study. This model predicts relatively high number densities for the X3Σg-(v'⩽4),a1Δandb1Σg+ metastable electronic states and could represent a significant source of stored energy in O 2* for subsequent thermospheric chemical reactions. Particular attention is directed towards the emission intensities of the infrared (IR) atmospheric (1.27 μm), Atmospheric (0.76 μm) and the atomic oxygen 1S→ 1D transition (5577 Å) lines and the role of electron-driven processes in their origin. Aircraft, rocket and satellite observations have shown both the IR atmospheric and Atmospheric lines are dramatically enhanced under auroral conditions and, where possible, we compare our results to these measurements. Our calculated 5577 Å intensity is found to be in good agreement with values independently measured for a medium strength IBC II+ aurora.

  17. Low-lying excited states by constrained DFT

    NASA Astrophysics Data System (ADS)

    Ramos, Pablo; Pavanello, Michele

    2018-04-01

    Exploiting the machinery of Constrained Density Functional Theory (CDFT), we propose a variational method for calculating low-lying excited states of molecular systems. We dub this method eXcited CDFT (XCDFT). Excited states are obtained by self-consistently constraining a user-defined population of electrons, Nc, in the virtual space of a reference set of occupied orbitals. By imposing this population to be Nc = 1.0, we computed the first excited state of 15 molecules from a test set. Our results show that XCDFT achieves an accuracy in the predicted excitation energy only slightly worse than linear-response time-dependent DFT (TDDFT), but without incurring into problems of variational collapse typical of the more commonly adopted ΔSCF method. In addition, we selected a few challenging processes to test the limits of applicability of XCDFT. We find that in contrast to TDDFT, XCDFT is capable of reproducing energy surfaces featuring conical intersections (azobenzene and H3) with correct topology and correct overall energetics also away from the intersection. Venturing to condensed-phase systems, XCDFT reproduces the TDDFT solvatochromic shift of benzaldehyde when it is embedded by a cluster of water molecules. Thus, we find XCDFT to be a competitive method among single-reference methods for computations of excited states in terms of time to solution, rate of convergence, and accuracy of the result.

  18. Low-lying excited states by constrained DFT.

    PubMed

    Ramos, Pablo; Pavanello, Michele

    2018-04-14

    Exploiting the machinery of Constrained Density Functional Theory (CDFT), we propose a variational method for calculating low-lying excited states of molecular systems. We dub this method eXcited CDFT (XCDFT). Excited states are obtained by self-consistently constraining a user-defined population of electrons, N c , in the virtual space of a reference set of occupied orbitals. By imposing this population to be N c = 1.0, we computed the first excited state of 15 molecules from a test set. Our results show that XCDFT achieves an accuracy in the predicted excitation energy only slightly worse than linear-response time-dependent DFT (TDDFT), but without incurring into problems of variational collapse typical of the more commonly adopted ΔSCF method. In addition, we selected a few challenging processes to test the limits of applicability of XCDFT. We find that in contrast to TDDFT, XCDFT is capable of reproducing energy surfaces featuring conical intersections (azobenzene and H 3 ) with correct topology and correct overall energetics also away from the intersection. Venturing to condensed-phase systems, XCDFT reproduces the TDDFT solvatochromic shift of benzaldehyde when it is embedded by a cluster of water molecules. Thus, we find XCDFT to be a competitive method among single-reference methods for computations of excited states in terms of time to solution, rate of convergence, and accuracy of the result.

  19. Analytical second derivatives of excited-state energy within the time-dependent density functional theory coupled with a conductor-like polarizable continuum model.

    PubMed

    Liu, Jie; Liang, WanZhen

    2013-01-14

    This work extends our previous works [J. Liu and W. Z. Liang, J. Chem. Phys. 135, 014113 (2011); J. Liu and W. Z. Liang, J. Chem. Phys. 135, 184111 (2011)] on analytical excited-state Hessian within the framework of time-dependent density functional theory (TDDFT) to couple with a conductor-like polarizable continuum model (CPCM). The formalism, implementation, and application of analytical first and second energy derivatives of TDDFT/CPCM excited state with respect to the nuclear and electric perturbations are presented. Their performances are demonstrated by the calculations of excitation energies, excited-state geometries, and harmonic vibrational frequencies for a number of benchmark systems. The calculated results are in good agreement with the corresponding experimental data or other theoretical calculations, indicating the reliability of the current computer implementation of the developed algorithms. Then we made some preliminary applications to calculate the resonant Raman spectrum of 4-hydroxybenzylidene-2,3-dimethyl-imidazolinone in ethanol solution and the infrared spectra of ground and excited states of 9-fluorenone in methanol solution.

  20. Excited state baryon spectroscopy from lattice QCD

    DOE PAGES

    Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; ...

    2011-10-31

    Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting ofmore » levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.« less

  1. Vibronic coupling in the excited-states of carotenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miki, Takeshi; Buckup, Tiago; Krause, Marie S.

    2016-01-01

    The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S 2to the optically dark state S 1.

  2. Vibronic coupling in the excited-states of carotenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miki, Takeshi; Buckup, Tiago; Krause, Marie S.

    The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S 2to the optically dark state S 1.

  3. A long-range-corrected density functional that performs well for both ground-state properties and time-dependent density functional theory excitation energies, including charge-transfer excited states.

    PubMed

    Rohrdanz, Mary A; Martins, Katie M; Herbert, John M

    2009-02-07

    We introduce a hybrid density functional that asymptotically incorporates full Hartree-Fock exchange, based on the long-range-corrected exchange-hole model of Henderson et al. [J. Chem. Phys. 128, 194105 (2008)]. The performance of this functional, for ground-state properties and for vertical excitation energies within time-dependent density functional theory, is systematically evaluated, and optimal values are determined for the range-separation parameter, omega, and for the fraction of short-range Hartree-Fock exchange. We denote the new functional as LRC-omegaPBEh, since it reduces to the standard PBEh hybrid functional (also known as PBE0 or PBE1PBE) for a certain choice of its two parameters. Upon optimization of these parameters against a set of ground- and excited-state benchmarks, the LRC-omegaPBEh functional fulfills three important requirements: (i) It outperforms the PBEh hybrid functional for ground-state atomization energies and reaction barrier heights; (ii) it yields statistical errors comparable to PBEh for valence excitation energies in both small and medium-sized molecules; and (iii) its performance for charge-transfer excitations is comparable to its performance for valence excitations. LRC-omegaPBEh, with the parameters determined herein, is the first density functional that satisfies all three criteria. Notably, short-range Hartree-Fock exchange appears to be necessary in order to obtain accurate ground-state properties and vertical excitation energies using the same value of omega.

  4. Observation of excited state charge transfer with fs/ps-CARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blom, Alex Jason

    2009-01-01

    Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4'-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using densitymore » functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4{prime}-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles.« less

  5. Three-photon Gaussian-Gaussian-Laguerre-Gaussian excitation of a localized atom to a highly excited Rydberg state

    NASA Astrophysics Data System (ADS)

    Mashhadi, L.

    2017-12-01

    Optical vortices are currently one of the most intensively studied topics in light-matter interaction. In this work, a three-step axial Doppler- and recoil-free Gaussian-Gaussian-Laguerre-Gaussian (GGLG) excitation of a localized atom to the highly excited Rydberg state is presented. By assuming a large detuning for intermediate states, an effective quadrupole excitation related to the Laguerre-Gaussian (LG) excitation to the highly excited Rydberg state is obtained. This special excitation system radially confines the single highly excited Rydberg atom independently of the trapping system into a sharp potential landscape into the so-called ‘far-off-resonance optical dipole-quadrupole trap’ (FORDQT). The key parameters of the Rydberg excitation to the highly excited state, namely the effective Rabi frequency and the effective detuning including a position-dependent AC Stark shift, are calculated in terms of the basic parameters of the LG beam and of the polarization of the excitation lasers. It is shown that the obtained parameters can be tuned to have a precise excitation of a single atom to the desired Rydberg state as well. The features of transferring the optical orbital and spin angular momentum of the polarized LG beam to the atom via quadrupole Rydberg excitation offer a long-lived and controllable qudit quantum memory. In addition, in contrast to the Gaussian laser beam, the doughnut-shaped LG beam makes it possible to use a high intensity laser beam to increase the signal-to-noise ratio in quadrupole excitation with minimized perturbations coming from stray light broadening in the last Rydberg excitation process.

  6. The triplet excited state of Bodipy: formation, modulation and application.

    PubMed

    Zhao, Jianzhang; Xu, Kejing; Yang, Wenbo; Wang, Zhijia; Zhong, Fangfang

    2015-12-21

    Boron dipyrromethene (Bodipy) is one of the most extensively investigated organic chromophores. Most of the investigations are focused on the singlet excited state of Bodipy, such as fluorescence. In stark contrast, the study of the triplet excited state of Bodipy is limited, but it is an emerging area, since the triplet state of Bodipy is tremendously important for several areas, such as the fundamental photochemistry study, photodynamic therapy (PDT), photocatalysis and triplet-triplet annihilation (TTA) upconversion. The recent developments in the study of the production, modulation and application of the triplet excited state of Bodipy are discussed in this review article. The formation of the triplet state of Bodipy upon photoexcitation, via the well known approach such as the heavy atom effect (including I, Br, Ru, Ir, etc.), and the new methods, such as using a spin converter (e.g. C60), charge recombination, exciton coupling and the doubly substituted excited state, are summarized. All the Bodipy-based triplet photosensitizers show strong absorption of visible or near IR light and the long-lived triplet excited state, which are important for the application of the triplet excited state in PDT or photocatalysis. Moreover, the methods for switching (or modulation) of the triplet excited state of Bodipy were discussed, such as those based on the photo-induced electron transfer (PET), by controlling the competing Förster-resonance-energy-transfer (FRET), or the intermolecular charge transfer (ICT). Controlling the triplet excited state will give functional molecules such as activatable PDT reagents or molecular devices. It is worth noting that switching of the singlet excited state and the triplet state of Bodipy may follow different principles. Application of the triplet excited state of Bodipy in PDT, hydrogen (H2) production, photoredox catalytic organic reactions and TTA upconversion were discussed. The challenges and the opportunities in these areas were

  7. Comprehensive investigation of the excited-state dynamics of push-pull triphenylamine dyes as models for photonic applications.

    PubMed

    Ishow, Eléna; Clavier, Gilles; Miomandre, Fabien; Rebarz, Mateusz; Buntinx, Guy; Poizat, Olivier

    2013-09-07

    A series of emitting push-pull triarylamine derivatives, models of their widely used homologues in photonics and organic electronics, was investigated by steady-state and time-resolved spectroscopy. Their structural originality stems from the sole change of the electron-withdrawing substituent X (-H: 1, -CN: 2, -NO2: 3, -CHC(CN)2: 4), giving rise to efficient emission tuning from blue to red upon increasing the X electron-withdrawing character. All compounds are highly fluorescent in alkanes. The more polar compounds 2-4 undergo considerable Stokes shift and emission quenching in polar solvents. Femtosecond transient absorption data allowed us to identify the nature of the emissive state which varies as a function of the compound and surrounding polarity. A long-lived ππ* excited state with weak charge transfer character was found for 1. This excited state evolves into a long-lived ICT state with red-shifted emission for 2 in polar solvents. For 3 and 4, the ICT state is directly populated in all solvents. Long-lived and emissive in n-hexane, it relaxes in toluene to a new ICT' conformation with stronger charge transfer character and enhanced Stokes shift. In more polar THF, ethanol, and nitrile solvents, ICT relaxes to a dark excited state ICT'' with viscosity-dependent kinetics (<10 ps). The ICT'' state lifetime drops with increasing solvent polarity (150 ps for 3 in THF, 8.5 ps in butyronitrile, 1.9 ps in acetonitrile), denoting an efficient radiationless deactivation to the ground state (back charge transfer). This result reveals a very small S0-S1 energy gap at the relaxed ICT'' geometry, with a possible close-lying S0-S1 conical intersection, which suggests that the ICT → ICT'' process results from a structural change involving a large-amplitude molecular distortion. This fast structural change can account for the strong fluorescence quenching observed for 3 and 4 in polar solvents. Finally, the magnitude of intersystem crossing between the singlet and

  8. Excitation of lowest electronic states of thymine by slow electrons

    NASA Astrophysics Data System (ADS)

    Chernyshova, I. V.; Kontros, E. J.; Markush, P. P.; Shpenik, O. B.

    2013-11-01

    Excitation of lowest electronic states of the thymine molecules in the gas phase is studied by elec- tron energy loss spectroscopy. In addition to dipole-allowed transitions to singlet states, transitions to the lowest triplet states were observed. The low-energy features of the spectrum at 3.66 and 4.61 eV are identified with the excitation of the first triplet states 13 A' (π → π*) and 13 A″ ( n → π*). The higher-lying features at 4.96, 5.75, 6.17, and 7.35 eV are assigned mainly to the excitation of the π → π* transitions to the singlet states of the molecule. The excitation dynamics of the lowest states is studied. It is found that the first triplet state 13 A'(π → π*) is most efficiently excited at a residual energy close to zero, while the singlet 21 A'(π → π*) state is excited with almost identical efficiency at different residual energies.

  9. Exotic and excited-state radiative transitions in charmonium from lattice QCD

    DOE PAGES

    Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.

    2009-05-01

    We compute, for the first time using lattice QCD methods, radiative transition rates involving excited charmonium states, states of high spin and exotics. Utilizing a large basis of interpolating fields we are able to project out various excited state contributions to three-point correlators computed on quenched anisotropic lattices. In the first lattice QCD calculation of the exoticmore » $$1^{-+}$$ $$\\eta_{c1}$$ radiative decay, we find a large partial width $$\\Gamma(\\eta_{c1} \\to J/\\psi \\gamma) \\sim 100 \\,\\mathrm{keV}$$. We find clear signals for electric dipole and magnetic quadrupole transition form factors in $$\\chi_{c2} \\to J/\\psi \\gamma$$, calculated for the first time in this framework, and study transitions involving excited $$\\psi$$ and $$\\chi_{c1,2}$$ states. We calculate hindered magnetic dipole transition widths without the sensitivity to assumptions made in model studies and find statistically significant signals, including a non-exotic vector hybrid candidate $Y_{\\mathrm{hyb?}} \\to \\et« less

  10. A general ansatz for constructing quasi-diabatic states in electronically excited aggregated systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenlan; Köhn, Andreas; InnovationLab GmbH, Speyerer St. 4, D-69115 Heidelberg

    2015-08-28

    We present a general method for analyzing the character of singly excited states in terms of charge transfer (CT) and locally excited (LE) configurations. The analysis is formulated for configuration interaction singles (CIS) singly excited wave functions of aggregate systems. It also approximately works for the second-order approximate coupled cluster singles and doubles and the second-order algebraic-diagrammatic construction methods [CC2 and ADC(2)]. The analysis method not only generates a weight of each character for an excited state, but also allows to define the related quasi-diabatic states and corresponding coupling matrix elements. In the character analysis approach, we divide the targetmore » system into domains and use a modified Pipek-Mezey algorithm to localize the canonical MOs on each domain, respectively. The CIS wavefunction is then transformed into the localized basis, which allows us to partition the wavefunction into LE configurations within domains and CT configuration between pairs of different domains. Quasi-diabatic states are then obtained by mixing excited states subject to the condition of maximizing the weight of one single LE or CT configuration (localization in configuration space). Different aims of such a procedure are discussed, either the construction of pure LE and CT states for analysis purposes (by including a large number of excited states) or the construction of effective models for dynamics calculations (by including a restricted number of excited states). Applications are given to LE/CT mixing in π-stacked systems, charge-recombination matrix elements in a hetero-dimer, and excitonic couplings in multi-chromophoric systems.« less

  11. Electronically excited and ionized states in condensed phase: Theory and applications

    NASA Astrophysics Data System (ADS)

    Sadybekov, Arman

    Predictive modeling of chemical processes in silico is a goal of XXI century. While robust and accurate methods exist for ground-state properties, reliable methods for excited states are still lacking and require further development. Electronically exited states are formed by interactions of matter with light and are responsible for key processes in solar energy harvesting, vision, artificial sensors, and photovoltaic applications. The greatest challenge to overcome on our way to a quantitative description of light-induced processes is accurate inclusion of the effect of the environment on excited states. All above mentioned processes occur in solution or solid state. Yet, there are few methodologies to study excited states in condensed phase. Application of highly accurate and robust methods, such as equation-of-motion coupled-cluster theory EOM-CC, is limited by a high computational cost and scaling precluding full quantum mechanical treatment of the entire system. In this thesis we present successful application of the EOM-CC family of methods to studies of excited states in liquid phase and build hierarchy of models for inclusion of the solvent effects. In the first part of the thesis we show that a simple gasphase model is sufficient to quantitatively analyze excited states in liquid benzene, while the latter part emphasizes the importance of explicit treatment of the solvent molecules in the case of glycine in water solution. In chapter 2, we use a simple dimer model to describe exciton formation in liquid and solid benzene. We show that sampling of dimer structures extracted from the liquid benzene is sufficient to correctly predict exited-state properties of the liquid. Our calculations explain experimentally observed features, which helped to understand the mechanism of the excimer formation in liquid benzene. Furthermore, we shed light on the difference between dimer configurations in the first solvation shell of liquid benzene and in unit cell of solid

  12. Bottom-up excited state dynamics of two cinnamate-based sunscreen filter molecules.

    PubMed

    Peperstraete, Yoann; Staniforth, Michael; Baker, Lewis A; Rodrigues, Natércia D N; Cole-Filipiak, Neil C; Quan, Wen-Dong; Stavros, Vasilios G

    2016-10-12

    Methyl-E-4-methoxycinnamate (E-MMC) is a model chromophore of the commonly used commercial sunscreen agent, 2-ethylhexyl-E-4-methoxycinnamate (E-EHMC). In an effort to garner a molecular-level understanding of the photoprotection mechanisms in operation with E-EHMC, we have used time-resolved pump-probe spectroscopy to explore E-MMC's and E-EHMC's excited state dynamics upon UV-B photoexcitation to the S 1 (1 1 ππ*) state in both the gas- and solution-phase. In the gas-phase, our studies suggest that the excited state dynamics are driven by non-radiative decay from the 1 1 ππ* to the S 3 (1 1 nπ*) state, followed by de-excitation from the 1 1 nπ* to the ground electronic state (S 0 ). Using both a non-polar-aprotic solvent, cyclohexane, and a polar-protic solvent, methanol, we investigated E-MMC and E-EHMC's photochemistry in a more realistic, 'closer-to-shelf' environment. A stark change to the excited state dynamics in the gas-phase is observed in the solution-phase suggesting that the dynamics are now driven by efficient E/Z isomerisation from the initially photoexcited 1 1 ππ* state to S 0 .

  13. Ultrafast excited-state dynamics of 2,5-dimethylpyrrole.

    PubMed

    Yang, Dongyuan; Min, Yanjun; Chen, Zhichao; He, Zhigang; Yuan, Kaijun; Dai, Dongxu; Yang, Xueming; Wu, Guorong

    2018-04-17

    The ultrafast excited-state dynamics of 2,5-dimethylpyrrole following excitation at wavelengths in the range of 265.7-216.7 nm is studied using the time-resolved photoelectron imaging method. It is found that excitation at longer wavelengths (265.7-250.2 nm) results in the population of the S1(1πσ*) state, which decays out of the photoionization window in about 90 fs. At shorter pump wavelengths (242.1-216.7 nm), the assignments are less clear-cut. We tentatively assign the initially photoexcited state(s) to the 1π3p Rydberg state(s) which has lifetimes of 159 ± 20, 125 ± 15, 102 ± 10 and 88 ± 10 fs for the pump wavelengths of 242.1, 238.1, 232.6 and 216.7 nm, respectively. Internal conversion to the S1(1πσ*) state represents at most a minor decay channel. The methyl substitution effects on the decay dynamics of the excited states of pyrrole are also discussed. Methyl substitution on the pyrrole ring seems to enhance the direct internal conversion from the 1π3p Rydberg state to the ground state, while methyl substitution on the N atom has less influence and the internal conversion to the S1(πσ*) state represents a main channel.

  14. Sensitivity tests on the rates of the excited states of positron decays during the rapid proton capture process of the one-zone X-ray burst model

    NASA Astrophysics Data System (ADS)

    Lau, Rita

    2018-02-01

    In this paper, we investigate the sensitivities of positron decays on a one-zone model of type-I X-ray bursts. Most existing studies have multiplied or divided entire beta decay rates (electron captures and beta decay rates) by 10. Instead of using the standard Fuller & Fowler (FFNU) rates, we used the most recently developed weak library rates [1], which include rates from Langanke et al.'s table (the LMP table) (2000) [2], Langanke et al.'s table (the LMSH table) (2003) [3], and Oda et al.'s table (1994) [4] (all shell model rates). We then compared these table rates with the old FFNU rates [5] to study differences within the final abundances. Both positron decays and electron capture rates were included in the tables. We also used pn-QRPA rates [6,7] to study the differences within the final abundances. Many of the positron rates from the nuclei's ground states and initial excited energy states along the rapid proton capture (rp) process have been measured in existing studies. However, because temperature affects the rates of excited states, these studies should have also acknowledged the half-lives of the nuclei's excited states. Thus, instead of multiplying or dividing entire rates by 10, we studied how the half-lives of sensitive nuclei in excited states affected the abundances by dividing the half-lives of the ground states by 10, which allowed us to set the half-lives of the excited states. Interestingly, we found that the peak of the final abundance shifted when we modified the rates from the excited states of the 105Sn positron decay rates. Furthermore, the abundance of 80Zr also changed due to usage of pn-QRPA rates instead of weak library rates (the shell model rates).

  15. THE PHOTOTOXOICITY OF POLYCYCLIC AROMATIC HYDROCARBONS: A THEORETICAL STUDY OF EXCITED STATES AND CORRELATION TO EXPERIMENT

    EPA Science Inventory



    Investigators using models to determine the phototoxic effects of sunlight on polycyclic aromatic hydrocarbons (PAHS) have invoked the excited states of the molecule as important in elucidating the mechanism of these reactions. Energies of actual excited states were calcu...

  16. Excited state correlations of the finite Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Pozsgay, Balázs

    2017-02-01

    We consider short range correlations in excited states of the finite XXZ and XXX Heisenberg spin chains. We conjecture that the known results for the factorized ground state correlations can be applied to the excited states too, if the so-called physical part of the construction is changed appropriately. For the ground state we derive simple algebraic expressions for the physical part; the formulas only use the ground state Bethe roots as an input. We conjecture that the same formulas can be applied to the excited states as well, if the exact Bethe roots of the excited states are used instead. In the XXZ chain the results are expected to be valid for all states (except certain singular cases where regularization is needed), whereas in the XXX case they only apply to singlet states or group invariant operators. Our conjectures are tested against numerical data from exact diagonalization and coordinate Bethe Ansatz calculations, and perfect agreement is found in all cases. In the XXX case we also derive a new result for the nearest-neighbour correlator < σ 1zσ 2z> , which is valid for non-singlet states as well. Our results build a bridge between the known theory of factorized correlations, and the recently conjectured TBA-like description for the building blocks of the construction.

  17. Search for dilute excited states in 16O

    NASA Astrophysics Data System (ADS)

    Ogloblin, A. A.; Danilov, A. N.; Demyanova, A. S.; Goncharov, S. A.; Belyaeva, T. L.

    2016-11-01

    The root mean square radii of 16O in the short-lived 0+ excited states were experimentally deduced for the first time from the analyses of α +16O diffraction scattering. Differential cross sections of the elastic and inelastic α +16O and 16O+16O scattering in the incident energy range from a few MeV/nucleon up to 100 MeV/nucleon were analyzed by the modified diffraction model. No significant radius enhancement in any state in comparison with the ground state was observed. This concerns, in particular, the 15.1-MeV 06+ state of 16O, located in the vicinity of the four-α -particle complete dissociation threshold, for which we did not confirm the "gigantic" size predicted by the α -particle condensation model. This result does not support the idea that 16O in the 06+ state has a dilute structure and can be considered as an analog of the famous 7.65-MeV 02+ Hoyle state of 12C.

  18. Spectrum of Elementary Excitations in Galilean-Invariant Integrable Models

    NASA Astrophysics Data System (ADS)

    Petković, Aleksandra; Ristivojevic, Zoran

    2018-04-01

    The spectrum of elementary excitations in one-dimensional quantum liquids is generically linear at low momenta. It is characterized by the sound velocity that can be related to the ground-state energy. Here we study the spectrum at higher momenta in Galilean-invariant integrable models. Somewhat surprisingly, we show that the spectrum at arbitrary momentum is fully determined by the properties of the ground state. We find general exact relations for the coefficients of several terms in the expansion of the excitation energy at low momenta and arbitrary interaction and express them in terms of the Luttinger liquid parameter. We apply the obtained formulas to the Lieb-Liniger model and obtain several new results.

  19. Computing correct truncated excited state wavefunctions

    NASA Astrophysics Data System (ADS)

    Bacalis, N. C.; Xiong, Z.; Zang, J.; Karaoulanis, D.

    2016-12-01

    We demonstrate that, if a wave function's truncated expansion is small, then the standard excited states computational method, of optimizing one "root" of a secular equation, may lead to an incorrect wave function - despite the correct energy according to the theorem of Hylleraas, Undheim and McDonald - whereas our proposed method [J. Comput. Meth. Sci. Eng. 8, 277 (2008)] (independent of orthogonality to lower lying approximants) leads to correct reliable small truncated wave functions. The demonstration is done in He excited states, using truncated series expansions in Hylleraas coordinates, as well as standard configuration-interaction truncated expansions.

  20. Excited States of the divacancy in SiC

    NASA Astrophysics Data System (ADS)

    Bockstedte, Michel; Garratt, Thomas; Ivady, Viktor; Gali, Adam

    2014-03-01

    The divacancy in SiC - a technologically mature material that fulfills the necessary requirements for hosting defect based quantum computing - is a good candidate for implementing a solid state quantum bit. Its ground state is isovalent to the NV center in diamond as demonstrated by density functional theory (DFT). Furthermore, coherent manipulation of divacancy spins in SiC has been demonstrated. The similarities to NV might indicate that the same inter system crossing (ICS) from the high to the low spin state is responsible for its spin-dependent fluorescent signal. By DFT and a DFT-based multi-reference hamiltonian we analyze the excited state spectrum of the defects. In contrast to the current picture of the spin dynamics of the NV center, we predict that a static Jahn-Teller effect in the first excited triplet states governs an ICS both with the excited and ground state of the divacancy.

  1. Excited-state dynamics of pentacene derivatives with stable radical substituents.

    PubMed

    Ito, Akitaka; Shimizu, Akihiro; Kishida, Noriaki; Kawanaka, Yusuke; Kosumi, Daisuke; Hashimoto, Hideki; Teki, Yoshio

    2014-06-23

    The excited-state dynamics of pentacene derivatives with stable radical substituents were evaluated in detail through transient absorption measurements. The derivatives showed ultrafast formation of triplet excited state(s) in the pentacene moiety from a photoexcited singlet state through the contributions of enhanced intersystem crossing and singlet fission. Detailed kinetic analyses for the transient absorption data were conducted to quantify the excited-state characteristics of the derivatives. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The Millimeter-Wave Spectrum of Methacrolein. Torsion-Rotation Effects in the Excited States

    NASA Astrophysics Data System (ADS)

    Zakharenko, Olena; Motiyenko, R. A.; Aviles Moreno, Juan-Ramon; Huet, T. R.

    2015-06-01

    Last year we reported the analysis of the rotational spectrum of s-trans conformer of methacrolein CH2=C(CH3)CHO in the ground vibrational state. In this talk we report the study of its low lying excited vibrational states. The study is based on room-temperature absorption spectra of methacrolein recorded in the frequency range 150 - 465 GHz using the spectrometer in Lille. The new results include assignment of the first excited torsional state (131 cm-1), and the joint analysis of the vt = 0 and vt = 1 states, that allowed us to improve the model in the frame of Rho-Axis-Method (RAM) Hamiltonian and to remove some strong correlations between parameters. Also we assigned the first excited vibrational state of the skeletal torsion mode (170 cm-1). The inverse sequence of A and E tunneling substates as well as anomalous A-E splittings observed for the rotational lines of vsk = 1 state clearly indicate a coupling between methyl torsion and skeletal torsion. However we were able to fit within experimental accuracy the rotational lines of vsk = 1 state using the RAM Hamiltonian. Because of the inversion of the A and E tunneling substates the rotational lines of the vsk = 1 states were assumed to belong to a virtual first excited torsional state. Finally, we assigned several low-Ka rotational transitions of the excited vibrational states above 200 cm-1 but their analysis is complicated by different rotation-vibration interactions. In particular there is an evidence of the Fermi-type resonance between the second excited torsional state and the first excited state of the in-plane skeletal bending mode (265 cm-1). Support from the French Laboratoire d'Excellence CaPPA (Chemical and Physical Properties of the Atmosphere) through contract ANR-10-LABX-0005 of the Programme d'Investissements d'Avenir is acknowledged. Zakharenko O. et al., 69th ISMS, 2014, TI01

  3. Wave-front propagation in a discrete model of excitable media

    NASA Astrophysics Data System (ADS)

    Feldman, A. B.; Chernyak, Y. B.; Cohen, R. J.

    1998-06-01

    We generalize our recent discrete cellular automata (CA) model of excitable media [Y. B. Chernyak, A. B. Feldman, and R. J. Cohen, Phys. Rev. E 55, 3215 (1997)] to incorporate the effects of inhibitory processes on the propagation of the excitation wave front. In the common two variable reaction-diffusion (RD) models of excitable media, the inhibitory process is described by the v ``controller'' variable responsible for the restoration of the equilibrium state following excitation. In myocardial tissue, the inhibitory effects are mainly due to the inactivation of the fast sodium current. We represent inhibition using a physical model in which the ``source'' contribution of excited elements to the excitation of their neighbors decreases with time as a simple function with a single adjustable parameter (a rate constant). We sought specific solutions of the CA state transition equations and obtained (both analytically and numerically) the dependence of the wave-front speed c on the four model parameters and the wave-front curvature κ. By requiring that the major characteristics of c(κ) in our CA model coincide with those obtained from solutions of a specific RD model, we find a unique set of CA parameter values for a given excitable medium. The basic structure of our CA solutions is remarkably similar to that found in typical RD systems (similar behavior is observed when the analogous model parameters are varied). Most notably, the ``turn-on'' of the inhibitory process is accompanied by the appearance of a solution branch of slow speed, unstable waves. Additionally, when κ is small, we obtain a family of ``eikonal'' relations c(κ) that are suitable for the kinematic analysis of traveling waves in the CA medium. We compared the solutions of the CA equations to CA simulations for the case of plane waves and circular (target) waves and found excellent agreement. We then studied a spiral wave using the CA model adjusted to a specific RD system and found good

  4. Status in calculating electronic excited states in transition metal oxides from first principles.

    PubMed

    Bendavid, Leah Isseroff; Carter, Emily Ann

    2014-01-01

    Characterization of excitations in transition metal oxides is a crucial step in the development of these materials for photonic and optoelectronic applications. However, many transition metal oxides are considered to be strongly correlated materials, and their complex electronic structure is challenging to model with many established quantum mechanical techniques. We review state-of-the-art first-principles methods to calculate charged and neutral excited states in extended materials, and discuss their application to transition metal oxides. We briefly discuss developments in density functional theory (DFT) to calculate fundamental band gaps, and introduce time-dependent DFT, which can model neutral excitations. Charged excitations can be described within the framework of many-body perturbation theory based on Green's functions techniques, which predominantly employs the GW approximation to the self-energy to facilitate a feasible solution to the quasiparticle equations. We review the various implementations of the GW approximation and evaluate each approach in its calculation of fundamental band gaps of many transition metal oxides. We also briefly review the related Bethe-Salpeter equation (BSE), which introduces an electron-hole interaction between GW-derived quasiparticles to describe accurately neutral excitations. Embedded correlated wavefunction theory is another framework used to model localized neutral or charged excitations in extended materials. Here, the electronic structure of a small cluster is modeled within correlated wavefunction theory, while its coupling to its environment is represented by an embedding potential. We review a number of techniques to represent this background potential, including electrostatic representations and electron density-based methods, and evaluate their application to transition metal oxides.

  5. Quantum mechanical identification of quadrupolar plasmonic excited states in silver nanorods

    DOE PAGES

    Gieseking, Rebecca L.; Ratner, Mark A.; Schatz, George C.

    2016-10-27

    Quadrupolar plasmonic modes in noble metal nanoparticles have gained interest in recent years for various sensing applications. Although quantum mechanical studies have shown that dipolar plasmons can be modeled in terms of excited states where several to many excitations contribute coherently to the transition dipole moment, new approaches are needed to identify the quadrupolar plasmonic states. We show that quadrupolar states in Ag nanorods can be identified using the semiempirical INDO/SCI approach by examining the quadrupole moment of the transition density. The main longitudinal quadrupolar states occur at higher energies than the longitudinal dipolar states, in agreement with previous classicalmore » electrodynamics results, and have collective plasmonic character when the nanorods are sufficiently long. In conclusion, the ability to identify these states will make it possible to evaluate the differences between dipolar and quadrupolar plasmons that are relevant for sensing applications.« less

  6. Total photoionization cross-sections of excited electronic states by the algebraic diagrammatic construction-Stieltjes-Lanczos method.

    PubMed

    Ruberti, M; Yun, R; Gokhberg, K; Kopelke, S; Cederbaum, L S; Tarantelli, F; Averbukh, V

    2014-05-14

    Here, we extend the L2 ab initio method for molecular photoionization cross-sections introduced in Gokhberg et al. [J. Chem. Phys. 130, 064104 (2009)] and benchmarked in Ruberti et al. [J. Chem. Phys. 139, 144107 (2013)] to the calculation of total photoionization cross-sections of molecules in electronically excited states. The method is based on the ab initio description of molecular electronic states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. The intermediate state representation of the dipole operator in the ADC basis is used to compute the transition moments between the excited states of the molecule. We compare the results obtained using different levels of the many-body theory, i.e., ADC(1), ADC(2), and ADC(2)x for the first two excited states of CO, N2, and H2O both at the ground state and the excited state equilibrium or saddle point geometries. We find that the single excitation ADC(1) method is not adequate even at the qualitative level and that the inclusion of double electronic excitations for description of excited state photoionization is essential. Moreover, we show that the use of the extended ADC(2)x method leads to a substantial systematic difference from the strictly second-order ADC(2). Our calculations demonstrate that a theoretical modelling of photoionization of excited states requires an intrinsically double excitation theory with respect to the ground state and cannot be achieved by the standard single excitation methods with the ground state as a reference.

  7. Total photoionization cross-sections of excited electronic states by the algebraic diagrammatic construction-Stieltjes-Lanczos method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruberti, M.; Yun, R.; Averbukh, V.

    2014-05-14

    Here, we extend the L{sup 2} ab initio method for molecular photoionization cross-sections introduced in Gokhberg et al. [J. Chem. Phys. 130, 064104 (2009)] and benchmarked in Ruberti et al. [J. Chem. Phys. 139, 144107 (2013)] to the calculation of total photoionization cross-sections of molecules in electronically excited states. The method is based on the ab initio description of molecular electronic states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. The intermediate state representation of the dipole operator in themore » ADC basis is used to compute the transition moments between the excited states of the molecule. We compare the results obtained using different levels of the many-body theory, i.e., ADC(1), ADC(2), and ADC(2)x for the first two excited states of CO, N{sub 2}, and H{sub 2}O both at the ground state and the excited state equilibrium or saddle point geometries. We find that the single excitation ADC(1) method is not adequate even at the qualitative level and that the inclusion of double electronic excitations for description of excited state photoionization is essential. Moreover, we show that the use of the extended ADC(2)x method leads to a substantial systematic difference from the strictly second-order ADC(2). Our calculations demonstrate that a theoretical modelling of photoionization of excited states requires an intrinsically double excitation theory with respect to the ground state and cannot be achieved by the standard single excitation methods with the ground state as a reference.« less

  8. Excited-state relaxation in PbSe quantum dots

    NASA Astrophysics Data System (ADS)

    An, Joonhee M.; Califano, Marco; Franceschetti, Alberto; Zunger, Alex

    2008-04-01

    In solids the phonon-assisted, nonradiative decay from high-energy electronic excited states to low-energy electronic excited states is picosecond fast. It was hoped that electron and hole relaxation could be slowed down in quantum dots, due to the unavailability of phonons energy matched to the large energy-level spacings ("phonon-bottleneck"). However, excited-state relaxation was observed to be rather fast (⩽1ps) in InP, CdSe, and ZnO dots, and explained by an efficient Auger mechanism, whereby the excess energy of electrons is nonradiatively transferred to holes, which can then rapidly decay by phonon emission, by virtue of the densely spaced valence-band levels. The recent emergence of PbSe as a novel quantum-dot material has rekindled the hope for a slow down of excited-state relaxation because hole relaxation was deemed to be ineffective on account of the widely spaced hole levels. The assumption of sparse hole energy levels in PbSe was based on an effective-mass argument based on the light effective mass of the hole. Surprisingly, fast intraband relaxation times of 1-7ps were observed in PbSe quantum dots and have been considered contradictory with the Auger cooling mechanism because of the assumed sparsity of the hole energy levels. Our pseudopotential calculations, however, do not support the scenario of sparse hole levels in PbSe: Because of the existence of three valence-band maxima in the bulk PbSe band structure, hole energy levels are densely spaced, in contradiction with simple effective-mass models. The remaining question is whether the Auger decay channel is sufficiently fast to account for the fast intraband relaxation. Using the atomistic pseudopotential wave functions of Pb2046Se2117 and Pb260Se249 quantum dots, we explicitly calculated the electron-hole Coulomb integrals and the P →S electron Auger relaxation rate. We find that the Auger mechanism can explain the experimentally observed P →S intraband decay time scale without the need to

  9. Electron-Impact Cross Sections for Ground State to np Excitations of Sodium and Potassium.

    PubMed

    Stone, Philip M; Kim, Yong-Ki

    2004-01-01

    Cross sections for electron impact excitation of atoms are important for modeling of low temperature plasmas and gases. While there are many experimental and theoretical results for excitation to the first excited states, little information is available for excitation to higher states. We present here calculations of excitations from the ground state to the np levels of sodium (n = 3 through 11) and potassium (n = 4 through 12). We also present a calculation for a transition from the excited sodium level 3p to 3d to show the generality of the method. Scaling formulas developed earlier by Kim [Phys. Rev. A 64, 032713 (2001)] for plane-wave Born cross sections are used. These formulas have been shown to be remarkably accurate yet simple to use. We have used a core polarization potential in a Dirac-Fock wave function code to calculate target atom wave functions and a matching form of the dipole transition operator to calculate oscillator strengths and Born cross sections. The scaled Born results here for excitation to the first excited levels are in very good agreement with experimental and other theoretical data, and the results for excitation to the next few levels are in satisfactory agreement with the limited data available. The present results for excitation to the higher levels are believed to be the only data available.

  10. Lifetimes of excited states in 196, 198Pt; Application of interacting boson approximation model to even Pt isotopes systematics

    NASA Astrophysics Data System (ADS)

    Bolotin, H. H.; Stuchbery, A. E.; Morrison, I.; Kennedy, D. L.; Ryan, C. G.; Sie, S. H.

    1981-11-01

    The lifetimes and lifetime limits of the low-lying excited states up to and including the 6 1+ levels in 196, 198Pt were determined by the recoil-distance method (RDM). Gamma-ray angular distributions in 198Pt were also measured. These states were populated by multiple Coulomb excitation using 220 MeV 58Ni ion beams and the measurements were carried out in coincidence with back-scattered projectiles. The measured mean lives of the states and B(E2) values inferred for the transitions between levels are presented. These specific findings, and the observed structure systematics obtained from the combination of the present results and those of prior workers for the even 194-198Pt isotopes, are critically compared with our structure calculations employing the interacting boson approximation (IBA) model incorporating a symmetry-breaking quadrupole force; evaluative comparisons are also made with boson expansion theory (BET) calculations.

  11. Excited state properties of the astaxanthin radical cation: A quantum chemical study

    NASA Astrophysics Data System (ADS)

    Dreuw, Andreas; Starcke, Jan Hendrik; Wachtveitl, Josef

    2010-07-01

    Using time-dependent density functional theory, the excited electronic states of the astaxanthin radical cation (AXT rad + ) are investigated. While the optically allowed excited D 1 and D 3 states are typical ππ∗ excited states, the D 2 and D 4 states are nπ∗ states. Special emphasis is put onto the influence of the carbonyl groups onto the excited states. For this objective, the excited states of four hypothetical carotenoids and zeaxanthin have been computed. Addition of a carbonyl group to a conjugated carbon double bond system does essentially not change the vertical excitation energies of the optically allowed ππ∗ states due to two counter-acting effects: the excitation energy should increase due to the -M-effect of the carbonyl group and at the same time decrease owing to the elongation of the conjugated double bond system by the carbonyl group itself.

  12. Blades Forced Vibration Under Aero-Elastic Excitation Modeled by Van der Pol

    NASA Astrophysics Data System (ADS)

    Pust, Ladislav; Pesek, Ludek

    This paper employs a new analytical approach to model the influence of aerodynamic excitation on the dynamics of a bladed cascade at the flutter state. The flutter is an aero-elastic phenomenon that is linked to the interaction of the flow and the traveling deformation wave in the cascade when only the damping of the cascade changes. As a case study the dynamic properties of the five-blade-bunch excited by the running harmonic external forces and aerodynamic self-excited forces are investigated. This blade-bunch is linked in the shroud by means of the viscous-elastic damping elements. The external running excitation depends on the ratio of stator and rotor blade numbers and corresponds to the real type of excitation in the steam turbine. The aerodynamic self-excited forces are modeled by two types of Van der Pol nonlinear models. The influence of the interaction of both types of self-excitation with the external running excitation is investigated on the response curves.

  13. 18Ne Excited States Two-Proton Decay

    NASA Astrophysics Data System (ADS)

    de Napoli, M.; Rapisarda, E.; Raciti, G.; Cardella, G.; Amorini, F.; Giacoppo, F.; Sfienti, C.

    2008-04-01

    Two-proton radioactivity studies have been performed on excited states of 18Ne produced by 20Ne fragmentation at the FRS of the Laboratori Nazionali del Sud and excited via Coulomb excitation on a 209Pb target. The 18Ne levels decay has been studied by complete kinematical reconstruction. In spite of the low statistic, the energy and angular correlations of the emitted proton pairs indicate the presence of 2He emission toghether with the democratic decay.

  14. Bound state and localization of excitation in many-body open systems

    NASA Astrophysics Data System (ADS)

    Cui, H. T.; Shen, H. Z.; Hou, S. C.; Yi, X. X.

    2018-04-01

    We study the exact bound state and time evolution for single excitations in one-dimensional X X Z spin chains within a non-Markovian reservoir. For the bound state, a common feature is the localization of single excitations, which means the spontaneous emission of excitations into the reservoir is prohibited. Exceptionally, the pseudo-bound state can be found, for which the single excitation has a finite probability of emission into the reservoir. In addition, a critical energy scale for bound states is also identified, below which only one bound state exists, and it is also the pseudo-bound state. The effect of quasirandom disorder in the spin chain is also discussed; such disorder induces the single excitation to locate at some spin sites. Furthermore, to display the effect of bound state and disorder on the preservation of quantum information, the time evolution of single excitations in spin chains is studied exactly. An interesting observation is that the excitation can stay at its initial location with high probability only when the bound state and disorder coexist. In contrast, when either one of them is absent, the information of the initial state can be erased completely or becomes mixed. This finding shows that the combination of bound state and disorder can provide an ideal mechanism for quantum memory.

  15. Substituent and Solvent Effects on Excited State Charge Transfer Behavior of Highly Fluorescent Dyes Containing Thiophenylimidazole-Based Aldehydes

    NASA Technical Reports Server (NTRS)

    Santos, Javier; Bu, Xiu R.; Mintz, Eric A.

    2001-01-01

    The excited state charge transfer for a series of highly fluorescent dyes containing thiophenylimidazole moiety was investigated. These systems follow the Twisted Intramolecular Charge Transfer (TICT) model. Dual fluorescence was observed for each substituted dye. X-ray structures analysis reveals a twisted ground state geometry for the donor substituted aryl on the 4 and 5 position at the imidazole ring. The excited state charge transfer was modeled by a linear solvation energy relationship using Taft's pi and Dimroth's E(sub T)(30) as solvent parameters. There is linear relation between the energy of the fluorescence transition and solvent polarity. The degree of stabilization of the excited state charge transfer was found to be consistent with the intramolecular molecular charge transfer. Excited dipole moment was studied by utilizing the solvatochromic shift method.

  16. Statistics of excitations in the electron glass model

    NASA Astrophysics Data System (ADS)

    Palassini, Matteo

    2011-03-01

    We study the statistics of elementary excitations in the classical electron glass model of localized electrons interacting via the unscreened Coulomb interaction in the presence of disorder. We reconsider the long-standing puzzle of the exponential suppression of the single-particle density of states near the Fermi level, by measuring accurately the density of states of charged and electron-hole pair excitations via finite temperature Monte Carlo simulation and zero-temperature relaxation. We also investigate the statistics of large charge rearrangements after a perturbation of the system, which may shed some light on the slow relaxation and glassy phenomena recently observed in a variety of Anderson insulators. In collaboration with Martin Goethe.

  17. Irreversible Markov chains in spin models: Topological excitations

    NASA Astrophysics Data System (ADS)

    Lei, Ze; Krauth, Werner

    2018-01-01

    We analyze the convergence of the irreversible event-chain Monte Carlo algorithm for continuous spin models in the presence of topological excitations. In the two-dimensional XY model, we show that the local nature of the Markov-chain dynamics leads to slow decay of vortex-antivortex correlations while spin waves decorrelate very quickly. Using a Fréchet description of the maximum vortex-antivortex distance, we quantify the contributions of topological excitations to the equilibrium correlations, and show that they vary from a dynamical critical exponent z∼ 2 at the critical temperature to z∼ 0 in the limit of zero temperature. We confirm the event-chain algorithm's fast relaxation (corresponding to z = 0) of spin waves in the harmonic approximation to the XY model. Mixing times (describing the approach towards equilibrium from the least favorable initial state) however remain much larger than equilibrium correlation times at low temperatures. We also describe the respective influence of topological monopole-antimonopole excitations and of spin waves on the event-chain dynamics in the three-dimensional Heisenberg model.

  18. Self-Consistent Optimization of Excited States within Density-Functional Tight-Binding.

    PubMed

    Kowalczyk, Tim; Le, Khoa; Irle, Stephan

    2016-01-12

    We present an implementation of energies and gradients for the ΔDFTB method, an analogue of Δ-self-consistent-field density functional theory (ΔSCF) within density-functional tight-binding, for the lowest singlet excited state of closed-shell molecules. Benchmarks of ΔDFTB excitation energies, optimized geometries, Stokes shifts, and vibrational frequencies reveal that ΔDFTB provides a qualitatively correct description of changes in molecular geometries and vibrational frequencies due to excited-state relaxation. The accuracy of ΔDFTB Stokes shifts is comparable to that of ΔSCF-DFT, and ΔDFTB performs similarly to ΔSCF with the PBE functional for vertical excitation energies of larger chromophores where the need for efficient excited-state methods is most urgent. We provide some justification for the use of an excited-state reference density in the DFTB expansion of the electronic energy and demonstrate that ΔDFTB preserves many of the properties of its parent ΔSCF approach. This implementation fills an important gap in the extended framework of DFTB, where access to excited states has been limited to the time-dependent linear-response approach, and affords access to rapid exploration of a valuable class of excited-state potential energy surfaces.

  19. Proton-hole and core-excited states in the semi-magic nucleus 131In82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taprogge, J.; Jungclaus, A.; Grawe, H.

    2016-11-01

    The decay of the N = 83 nucleus Cd-131 has been studied at the RIBF facility at the RIKEN Nishina Center. The main purpose of the study was to identify the position of the and proton-hole states and the energies of core-excited configurations in the semi-magic nucleus In-131. From the radiation emitted following the decay, a level scheme of In-131 was established and the feeding to each excited state determined. Similarities between the single-particle transitions observed in the decays of the N = 83 isotones In-132 and Cd-131 are discussed. Finally the excitation energies of several core-excited configurations in In-131more » are compared to QRPA and shell-model calculations.« less

  20. σ-SCF: A direct energy-targeting method to mean-field excited states.

    PubMed

    Ye, Hong-Zhou; Welborn, Matthew; Ricke, Nathan D; Van Voorhis, Troy

    2017-12-07

    The mean-field solutions of electronic excited states are much less accessible than ground state (e.g., Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF (self-consistent field), tend to fall into the lowest solution consistent with a given symmetry-a problem known as "variational collapse." In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states-ground or excited-are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H 2 , HF). We find that σ-SCF is very effective at locating excited states, including individual, high energy excitations within a dense manifold of excited states. Like all single determinant methods, σ-SCF shows prominent spin-symmetry breaking for open shell states and our results suggest that this method could be further improved with spin projection.

  1. Excited state conformational dynamics in carotenoids: dark intermediates and excitation energy transfer.

    PubMed

    Beck, Warren F; Bishop, Michael M; Roscioli, Jerome D; Ghosh, Soumen; Frank, Harry A

    2015-04-15

    A consideration of the excited state potential energy surfaces of carotenoids develops a new hypothesis for the nature of the conformational motions that follow optical preparation of the S2 (1(1)Bu(+)) state. After an initial displacement from the Franck-Condon geometry along bond length alternation coordinates, it is suggested that carotenoids pass over a transition-state barrier leading to twisted conformations. This hypothesis leads to assignments for several dark intermediate states encountered in femtosecond spectroscopic studies. The Sx state is assigned to the structure reached upon the onset of torsional motions near the transition state barrier that divides planar and twisted structures on the S2 state potential energy surface. The X state, detected recently in two-dimensional electronic spectra, corresponds to a twisted structure well past the barrier and approaching the S2 state torsional minimum. Lastly, the S(∗) state is assigned to a low lying S1 state structure with intramolecular charge transfer character (ICT) and a pyramidal conformation. It follows that the bent and twisted structures of carotenoids that are found in photosynthetic light-harvesting proteins yield excited-state structures that favor the development of an ICT character and optimized energy transfer yields to (bacterio)chlorophyll acceptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Constraining nuclear photon strength functions by the decay properties of photo-excited states

    NASA Astrophysics Data System (ADS)

    Isaak, J.; Savran, D.; Krtička, M.; Ahmed, M. W.; Beller, J.; Fiori, E.; Glorius, J.; Kelley, J. H.; Löher, B.; Pietralla, N.; Romig, C.; Rusev, G.; Scheck, M.; Schnorrenberger, L.; Silva, J.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zweidinger, M.

    2013-12-01

    A new approach for constraining the low-energy part of the electric dipole Photon Strength Function (E1-PSF) is presented. Experiments at the Darmstadt High-Intensity Photon Setup and the High Intensity γ→-Ray Source have been performed to investigate the decay properties of 130Te between 5.50 and 8.15 MeV excitation energy. In particular, the average γ-ray branching ratio to the ground state and the population intensity of low-lying excited states have been studied. A comparison to the statistical model shows that the latter is sensitive to the low-energy behavior of the E1-PSF, while the average ground state branching ratio cannot be described by the statistical model in the energy range between 5.5 and 6.5 MeV.

  3. Inhibition of Radiolytic Molecular Hydrogen Formation by Quenching of Excited State Water

    DOE PAGES

    Horne, Gregory P.; Pimblott, Simon M.; LaVerne, Jay A.

    2017-05-11

    Comparison of experimental measurements of the yield of molecular hydrogen produced in the gamma radiolysis of water and aqueous nitrate solutions with predictions of a Monte Carlo track chemistry model shows that the nitrate anion scavenging of the hydrated electron, its precursor, and hydrogen atom cannot account for the observed decrease in the yield at high nitrate anion concentrations. Inclusion of the quenching of excited states of water (formed by either direct excitation or reaction of the water radical cation with the precursor to the hydrated electron) by the nitrate anion into the reaction scheme provides excellent agreement between themore » stochastic calculations and experiment demonstrating the existence of this short-lived species and its importance in water radiolysis. Energy transfer from the excited states of water to the nitrate anion producing an excited state provides an additional pathway for the production of nitrogen containing products not accounted for in traditional radiation chemistry scenarios. Such reactions are of central importance in predicting the behavior of liquors common in the reprocessing of spent nuclear fuel and the storage of highly radioactive liquid waste prior to vitrification.« less

  4. Spin-isospin excitations from the ground-state of 64Ni

    NASA Astrophysics Data System (ADS)

    Popescu, L.; Adachi, T.; Bäumer, C.; Berg, G. P. A.; van den Berg, A. M.; von Brentano, P.; Frekers, D.; de Frenne, D.; Fujita, K.; Fujita, Y.; Grewe, E. W.; Haefner, P.; Hatanaka, K.; Hunyadi, M.; de Huu, M.; Jacobs, E.; Johansson, H.; Korff, A.; Negret, A.; Nakanishi, K.; von Neumann-Cosel, P.; Rakers, S.; Ryezayeva, N.; Sakemi, Y.; Shevchenko, A.; Shimbara, Y.; Shimizu, Y.; Simon, H.; Tameshige, Y.; Tamii, A.; Uchida, M.; Wörtche, H. J.; Yosoi, M.

    2006-03-01

    Spin-isospin (Gamow-Teller) excitations in 64Cu and 64Co have been studied using (3He,t) and (d,2He) charge-exchange reactions on 64Ni. As the isospin of the 64Ni ground-state is T0=4, states with T=3, 4 and 5 in 64Cu are excited via the (3He,t) reaction and states with T=5 in 64Co via (d,2He). If we assume that the nuclear interaction is charge symmetric, the T=5 states in 64Cu should appear at corresponding excitation energies (if corrected for the Coulomb displacement) and with similar strengths as the T=5 states in 64Co. As in the 64Cu spectrum the T=5 states are very weakly excited, only by combining the results of the two complementary experiments one can estimate the Gamow-Teller strength starting from 64Ni in a consistent way.

  5. Photocyclization Reactions of Diarylethenes via the Excited Triplet State.

    PubMed

    Murata, Ryutaro; Yago, Tomoaki; Wakasa, Masanobu

    2015-11-12

    Cyclization reactions of three diarylethene derivatives, 1,2-bis(2-methyl-3-benzothienyl)perfluorocyclopentene (BT), 1,2-bis(2-hexyl-3-benzothienyl)perfluorocyclopentene (BTHex), and 1,2-bis(2-isopropyl-3-benzothienyl)perfluorocyclopentene (BTiPr), via their excited triplet states were studied by means of steady-state and nanosecond transient absorption spectroscopy. The excited triplet states of BT, BTHex, and BTiPr were generated by energy transfer from the photoexcited triplet states of sensitizers such as xanthone, phenanthrene, and pyrene. The single-step quantum yields of the cyclization reactions from the excited triplet states of BT, BTHex, and BTiPr were determined to be 0.34, 0.53, and 0.65, respectively. The triplet energies of these three BTs were estimated to be 190-200 kJ mol(-1).

  6. Phase-dependent above-barrier ionization of excited-state electrons.

    PubMed

    Yang, Weifeng; Song, Xiaohong; Chen, Zhangjin

    2012-05-21

    The carrier-envelope phase (CEP)-dependent above-barrier ionization (ABI) has been investigated in order to probe the bound-state electron dynamics. It is found that when the system is initially prepared in the excited state, the ionization yield asymmetry between left and right sides can occur both in low-energy and high-energy parts of the photoelectron spectra. Moreover, in electron momentum map, a new interference effect along the direction perpendicular to the laser polarization is found. We show that this interference is related to the competition among different excited states. The interference effect is dependent on CEPs of few-cycle probe pulses, which can be used to trace the superposition information and control the electron wave packet of low excited states.

  7. Excited state dynamics of the astaxanthin radical cation

    NASA Astrophysics Data System (ADS)

    Amarie, Sergiu; Förster, Ute; Gildenhoff, Nina; Dreuw, Andreas; Wachtveitl, Josef

    2010-07-01

    Femtosecond transient absorption spectroscopy in the visible and NIR and ultrafast fluorescence spectroscopy were used to examine the excited state dynamics of astaxanthin and its radical cation. For neutral astaxanthin, two kinetic components corresponding to time constants of 130 fs (decay of the S 2 excited state) and 5.2 ps (nonradiative decay of the S 1 excited state) were sufficient to describe the data. The dynamics of the radical cation proved to be more complex. The main absorption band was shifted to 880 nm (D 0 → D 3 transition), showing a weak additional band at 1320 nm (D 0 → D 1 transition). We found, that D 3 decays to the lower-lying D 2 within 100 fs, followed by a decay to D 1 with a time constant of 0.9 ps. The D 1 state itself exhibited a dual behavior, the majority of the population is transferred to the ground state in 4.9 ps, while a small population decays on a longer timescale of 40 ps. Both transitions from D 1 were found to be fluorescent.

  8. Spin-isospin excitations from the ground-state of 64Ni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, L.; Frenne, D. de; Jacobs, E.

    2006-03-13

    Spin-isospin (Gamow-Teller) excitations in 64Cu and 64Co have been studied using (3He,t) and (d,2He) charge-exchange reactions on 64Ni. As the isospin of the 64Ni ground-state is T0=4, states with T=3, 4 and 5 in 64Cu are excited via the (3He,t) reaction and states with T=5 in 64Co via (d,2He). If we assume that the nuclear interaction is charge symmetric, the T=5 states in 64Cu should appear at corresponding excitation energies (if corrected for the Coulomb displacement) and with similar strengths as the T=5 states in 64Co. As in the 64Cu spectrum the T=5 states are very weakly excited, only bymore » combining the results of the two complementary experiments one can estimate the Gamow-Teller strength starting from 64Ni in a consistent way.« less

  9. Uncovering Highly-Excited State Mixing in Acetone Using Ultrafast VUV Pulses and Coincidence Imaging Techniques

    DOE PAGES

    Couch, David E.; Kapteyn, Henry C.; Murnane, Margaret M.; ...

    2017-03-17

    Here, understanding the ultrafast dynamics of highly-excited electronic states of small molecules is critical for a better understanding of atmospheric and astrophysical processes, as well as for designing coherent control strategies for manipulating chemical dynamics. In highly excited states, nonadiabatic coupling, electron-electron interactions, and the high density of states govern dynamics. However, these states are computationally and experimentally challenging to access. Fortunately, new sources of ultrafast vacuum ultraviolet pulses, in combination with electron-ion coincidence spectroscopies, provide new tools to unravel the complex electronic landscape. Here we report time-resolved photoelectron-photoion coincidence experiments using 8 eV pump photons to study the highlymore » excited states of acetone. We uncover for the first time direct evidence that the resulting excited state consists of a mixture of both n y → 3p and π → π* character, which decays with a time constant of 330 fs. In the future, this approach can inform models of VUV photochemistry and aid in designing coherent control strategies for manipulating chemical reactions.« less

  10. Uncovering Highly-Excited State Mixing in Acetone Using Ultrafast VUV Pulses and Coincidence Imaging Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couch, David E.; Kapteyn, Henry C.; Murnane, Margaret M.

    Here, understanding the ultrafast dynamics of highly-excited electronic states of small molecules is critical for a better understanding of atmospheric and astrophysical processes, as well as for designing coherent control strategies for manipulating chemical dynamics. In highly excited states, nonadiabatic coupling, electron-electron interactions, and the high density of states govern dynamics. However, these states are computationally and experimentally challenging to access. Fortunately, new sources of ultrafast vacuum ultraviolet pulses, in combination with electron-ion coincidence spectroscopies, provide new tools to unravel the complex electronic landscape. Here we report time-resolved photoelectron-photoion coincidence experiments using 8 eV pump photons to study the highlymore » excited states of acetone. We uncover for the first time direct evidence that the resulting excited state consists of a mixture of both n y → 3p and π → π* character, which decays with a time constant of 330 fs. In the future, this approach can inform models of VUV photochemistry and aid in designing coherent control strategies for manipulating chemical reactions.« less

  11. Excited-State Proton-Transfer-Induced Trapping Enhances the Fluorescence Emission of a Locked GFP Chromophore

    PubMed Central

    2016-01-01

    The chemical locking of the central single bond in core chromophores of green fluorescent proteins (GFPs) influences their excited-state behavior in a distinct manner. Experimentally, it significantly enhances the fluorescence quantum yield of GFP chromophores with an ortho-hydroxyl group, while it has almost no effect on the photophysics of GFP chromophores with a para-hydroxyl group. To unravel the underlying physical reasons for this different behavior, we report static electronic structure calculations and nonadiabatic dynamics simulations on excited-state intramolecular proton transfer, cis–trans isomerization, and excited-state deactivation in a locked ortho-substituted GFP model chromophore (o-LHBI). On the basis of our previous and present results, we find that the S1 keto species is responsible for the fluorescence emission of the unlocked o-HBI and the locked o-LHBI species. Chemical locking does not change the parts of the S1 and S0 potential energy surfaces relevant to enol–keto tautomerization; hence, in both chromophores, there is an ultrafast excited-state intramolecular proton transfer that takes only 35 fs on average. However, the locking effectively hinders the S1 keto species from approaching the keto S1/S0 conical intersections so that most of trajectories are trapped in the S1 keto region for the entire 2 ps simulation time. Therefore, the fluorescence quantum yield of o-LHBI is enhanced compared with that of unlocked o-HBI, in which the S1 excited-state decay is efficient and ultrafast. In the case of the para-substituted GFP model chromophores p-HBI and p-LHBI, chemical locking hardly affects their efficient excited-state deactivation via cis–trans isomerization; thus, the fluorescence quantum yields in these chromophores remain very low. The insights gained from the present work may help to guide the design of new GFP chromophores with improved fluorescence emission and brightness. PMID:26744782

  12. Nature of ground and electronic excited states of higher acenes

    PubMed Central

    Yang, Yang; Yang, Weitao

    2016-01-01

    Higher acenes have drawn much attention as promising organic semiconductors with versatile electronic properties. However, the nature of their ground state and electronic excited states is still not fully clear. Their unusual chemical reactivity and instability are the main obstacles for experimental studies, and the potentially prominent diradical character, which might require a multireference description in such large systems, hinders theoretical investigations. Here, we provide a detailed answer with the particle–particle random-phase approximation calculation. The 1Ag ground states of acenes up to decacene are on the closed-shell side of the diradical continuum, whereas the ground state of undecacene and dodecacene tilts more to the open-shell side with a growing polyradical character. The ground state of all acenes has covalent nature with respect to both short and long axes. The lowest triplet state 3B2u is always above the singlet ground state even though the energy gap could be vanishingly small in the polyacene limit. The bright singlet excited state 1B2u is a zwitterionic state to the short axis. The excited 1Ag state gradually switches from a double-excitation state to another zwitterionic state to the short axis, but always keeps its covalent nature to the long axis. An energy crossing between the 1B2u and excited 1Ag states happens between hexacene and heptacene. Further energetic consideration suggests that higher acenes are likely to undergo singlet fission with a low photovoltaic efficiency; however, the efficiency might be improved if a singlet fission into multiple triplets could be achieved. PMID:27528690

  13. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics

    NASA Astrophysics Data System (ADS)

    Neville, Simon P.; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2016-10-01

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L 2 method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  14. Electronic excitation of ground state atoms by collision with heavy gas particles

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1993-01-01

    point where the initial and final potentials cross, or at least come very close. Therefore, this mechanism would be applicable to the case where a gas is initially at very low temperature suddenly subjected to high energy heavy particle bombardment. This situation would model the measurement of excitation cross section by molecular beam techniques, for example. The purpose is to report values of cross sections and rate coefficients for collision excitation of ground state atoms estimated with the Landau-Zener transition theory and to compare results with measurement of excitation cross sections for a beam of Hydrogen atoms impacting Argon atom targets. Some very dubious approximations are used, and the comparison with measurement is found less than ideal, but results are at least consistent within order of magnitude. The same model is then applied to the case of N-N atom collisions, even though the approximations then become even more doubtful. Still the rate coefficients obtained are at least plausible in both magnitude and functional form, and as far as I am aware these are the only estimates available for such rate coefficients.

  15. σ-SCF: A direct energy-targeting method to mean-field excited states

    NASA Astrophysics Data System (ADS)

    Ye, Hong-Zhou; Welborn, Matthew; Ricke, Nathan D.; Van Voorhis, Troy

    2017-12-01

    The mean-field solutions of electronic excited states are much less accessible than ground state (e.g., Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF (self-consistent field), tend to fall into the lowest solution consistent with a given symmetry—a problem known as "variational collapse." In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states—ground or excited—are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H2, HF). We find that σ-SCF is very effective at locating excited states, including individual, high energy excitations within a dense manifold of excited states. Like all single determinant methods, σ-SCF shows prominent spin-symmetry breaking for open shell states and our results suggest that this method could be further improved with spin projection.

  16. Electron-helium S-wave model benchmark calculations. II. Double ionization, single ionization with excitation, and double excitation

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip L.; Stelbovics, Andris T.

    2010-02-01

    The propagating exterior complex scaling (PECS) method is extended to all four-body processes in electron impact on helium in an S-wave model. Total and energy-differential cross sections are presented with benchmark accuracy for double ionization, single ionization with excitation, and double excitation (to autoionizing states) for incident-electron energies from threshold to 500 eV. While the PECS three-body cross sections for this model given in the preceding article [Phys. Rev. A 81, 022715 (2010)] are in good agreement with other methods, there are considerable discrepancies for these four-body processes. With this model we demonstrate the suitability of the PECS method for the complete solution of the electron-helium system.

  17. Multiple spatially localized dynamical states in friction-excited oscillator chains

    NASA Astrophysics Data System (ADS)

    Papangelo, A.; Hoffmann, N.; Grolet, A.; Stender, M.; Ciavarella, M.

    2018-03-01

    Friction-induced vibrations are known to affect many engineering applications. Here, we study a chain of friction-excited oscillators with nearest neighbor elastic coupling. The excitation is provided by a moving belt which moves at a certain velocity vd while friction is modelled with an exponentially decaying friction law. It is shown that in a certain range of driving velocities, multiple stable spatially localized solutions exist whose dynamical behavior (i.e. regular or irregular) depends on the number of oscillators involved in the vibration. The classical non-repeatability of friction-induced vibration problems can be interpreted in light of those multiple stable dynamical states. These states are found within a "snaking-like" bifurcation pattern. Contrary to the classical Anderson localization phenomenon, here the underlying linear system is perfectly homogeneous and localization is solely triggered by the friction nonlinearity.

  18. Excitation of lowest electronic states of the uracil molecule by slow electrons

    NASA Astrophysics Data System (ADS)

    Chernyshova, I. V.; Kontros, J. E.; Markush, P. P.; Shpenik, O. B.

    2012-07-01

    The excitation of lowest electronic states of the uracil molecule in the gas phase has been studied by electron energy loss spectroscopy. Along with excitation of lowest singlet states, excitation of two lowest triplet states at 3.75 and 4.76 eV (±0.05 eV) and vibrational excitation of the molecule in two resonant ranges (1-2 and 3-4 eV) have been observed for the first time. The peak of the excitation band related to the lowest singlet state (5.50 eV) is found to be blueshifted by 0.4 eV in comparison with the optical absorption spectroscopy data. The threshold excitation spectra have been measured for the first time, with detection of electrons inelastically scattered by an angle of 180°. These spectra exhibit clear separation of the 5.50-eV-wide band into two bands, which are due to the excitation of the triplet 13 A″ and singlet 11 A' states.

  19. Vibrational spectroscopy of the electronically excited state. 4. Nanosecond and picosecond time-resolved resonance Raman spectroscopy of carotenoid excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dallinger, R.F.; Farquharson, S.; Woodruff, W.H.

    Resonance Raman and electronic absorption spectra are reported for the S/sub 0/ and T/sub 1/ states of the carotenoids ..beta..-carotene, zeaxanthin, echinenone, canthaxanthin, dihydroxylycopene, astaxanthin, decapreno(C/sub 50/)-..beta..-carotene, ..beta..-apo-8'-carotenal, and ethyl ..beta..-apo-8'-carotenoate. The results reveal qualitatively similar ground-state spectra and similar frequency shifts in all observed resonance Raman modes between S/sub 0/ and T/sub 1/, regardless of carotenoid structure. Examinations of the relationship of the putative C--C and C==C frequencies in S/sub 0/ and T/sub 1/ reveals anomalous shifts to lower frequency in the ''single-bond'' mode upon electronic excitation. These shifts may be due to molecular distortions in the excited statemore » which force changes in molecular motions comprising the observed modes. However, another possibility requiring no distortion is that the interaction (off-diagonal) force constants connecting the C--C and C==C modes change sign upon electronic excitation. This latter phenomenon may provide a unitary explanation for the ''anomalous'' frequency shifts in the C--C and C==C modes, both in the T/sub 1/ states of carotenoids and in the S/sub 1/ states of simpler polyenes, without postulating large, unpredicted structural changes upon excitation or general errors in existing vibrational or theoretical analyses. Resonance Raman and absorbance studies with 35-ps time resolution suggest that S/sub 1/ lifetime (of the /sup 1/B/sub u/ and/or the /sup 1/A/sub g/* states) of ..beta..-carotene in benzene is less than 1 ps.« less

  20. Torsion-inversion tunneling patterns in the CH-stretch vibrationally excited states of the G12 family of molecules including methylamine.

    PubMed

    Dawadi, Mahesh B; Bhatta, Ram S; Perry, David S

    2013-12-19

    Two torsion-inversion tunneling models (models I and II) are reported for the CH-stretch vibrationally excited states in the G12 family of molecules. The torsion and inversion tunneling parameters, h(2v) and h(3v), respectively, are combined with low-order coupling terms involving the CH-stretch vibrations. Model I is a group theoretical treatment starting from the symmetric rotor methyl CH-stretch vibrations; model II is an internal coordinate model including the local-local CH-stretch coupling. Each model yields predicted torsion-inversion tunneling patterns of the four symmetry species, A, B, E1, and E2, in the CH-stretch excited states. Although the predicted tunneling patterns for the symmetric CH-stretch excited state are the same as for the ground state, inverted tunneling patterns are predicted for the asymmetric CH-stretches. The qualitative tunneling patterns predicted are independent of the model type and of the particular coupling terms considered. In model I, the magnitudes of the tunneling splittings in the two asymmetric CH-stretch excited states are equal to half of that in the ground state, but in model II, they differ when the tunneling rate is fast. The model predictions are compared across the series of molecules methanol, methylamine, 2-methylmalonaldehyde, and 5-methyltropolone and to the available experimental data.

  1. Ultrafast Dynamics of 1,3-Cyclohexadiene in Highly Excited States

    DOE PAGES

    Bühler, Christine C.; Minitti, Michael P.; Deb, Sanghamitra; ...

    2011-01-01

    The ultrafast dynamics of 1,3-cyclohexadiene has been investigated via structurally sensitive Rydberg electron binding energies and shown to differ upon excitation to the 1B state and the 3p Rydberg state. Excitation of the molecule with 4.63 eV photons into the ultrashort-lived 1B state yields the well-known ring opening to 1,3,5-hexatriene, while a 5.99 eV photon lifts the molecule directly into the 3p-Rydberg state. Excitation to 3p does not induce ring opening. In both experiments, time-dependent shifts of the Rydberg electron binding energy reflect the structural dynamics of the molecular core. Structural distortions associated with 3p-excitation cause a dynamical shift in the -more » and -binding energies by 10 and 26 meV/ps, respectively, whereas after excitation into 1B, more severe structural transformations along the ring-opening coordinate produce shifts at a rate of 40 to 60 meV/ps. The experiment validates photoionization-photoelectron spectroscopy via Rydberg states as a powerful technique to observe structural dynamics of polyatomic molecules.« less

  2. Lifetime and g-factor measurements of excited states using Coulomb excitation and alpha transfer reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guevara, Z. E., E-mail: zjguevaram@unal.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co

    2016-07-07

    In this contribution the challenges in the use of a setup to simultaneously measure lifetimes and g-factor values will be presented. The simultaneous use of the transient field technique and the Doppler Shift Attenuation Method, to measure magnetic moments and lifetimes respectively, allows to obtain a complete characterization of the currents of nucleons and the deformation in excited states close to the ground state. The technique is at the moment limited to Coulomb excitation and alpha-transfer reactions, what opens an interesting perspective to consider this type of experiments with radioactive beams. The use of deep-inelastic and fusion-evaporation reactions will bemore » discussed. An example of a setup that makes use of a beam of {sup 106}Cd to study excited states of {sup 110}Sn and the beam nuclei itself will be presented.« less

  3. Fluorescence excitation and excited state intramolecular relaxation dynamics of jet-cooled methyl-2-hydroxy-3-naphthoate

    NASA Astrophysics Data System (ADS)

    McCarthy, Annemarie; Ruth, Albert A.

    2013-11-01

    Two distinct S0 → S1 fluorescence excitation spectra of methyl-2-hydroxy-3-napthoate (MHN23) have been obtained by monitoring fluorescence separately in the short (˜410 nm) and long (˜650 nm) wavelength emission bands. The short wavelength fluorescence is assigned to two MHN23 conformers which do not undergo excited state intramolecular proton transfer (ESIPT). Analysis of the 'long wavelength' fluorescence excitation spectrum, which arises from the proton transfer tautomer of MHN23 indicates an average lifetime of τ ⩾ 18 ± 2 fs for the initially excited states. Invoking the results of Catalan et al. [J. Phys. Chem. A, 1999, 103, 10921], who determined the N tautomer to decay predominantly via a fast non-radiative process, the limit of the rate of intramolecular excited proton transfer in MHN23 is calculated as, kpt ⩽ 1 × 1012 s-1.

  4. Excited state electron affinity calculations for aluminum

    NASA Astrophysics Data System (ADS)

    Hussein, Adnan Yousif

    2017-08-01

    Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.

  5. Excited-state absorption and fluorescence dynamics of Er3+:KY3F10

    NASA Astrophysics Data System (ADS)

    Labbé, C.; Doualan, J. L.; Moncorgé, R.; Braud, A.; Camy, P.

    2018-05-01

    We report here on a complete investigation of the excited-state absorption and fluorescence dynamics of Er3+ doped KY3F10 single crystals versus dopant concentrations and optical excitation conditions. Radiative and effective (including non-radiative relaxations) emission lifetimes and branching ratios are determined from a Judd-Ofelt analysis of the absorption spectra and via specific fluorescence experiments using wavelength selective laser excitations. Excited-state absorption and emission spectra are registered within seven spectral domains, i.e. 560 nm, 650 nm, 710 nm, 810 nm, 970 nm, 1550 nm and 2750 nm. A maximum gain cross-section of 0.93 × 10-21 cm2 is determined at the potential laser wavelength of 2.801 μm for a population ratio of 0.48. Saturation of fluorescence intensities and variations of population ratios versus pumping rates are registered and confronted with a rate equation model to derive the rates of the most important up-conversion and cross-relaxation energy transfers occurring at high dopant concentrations.

  6. Nested variant of the method of moments of coupled cluster equations for vertical excitation energies and excited-state potential energy surfaces.

    PubMed

    Kowalski, Karol

    2009-05-21

    In this article we discuss the problem of proper balancing of the noniterative corrections to the ground- and excited-state energies obtained with approximate coupled cluster (CC) and equation-of-motion CC (EOMCC) approaches. It is demonstrated that for a class of excited states dominated by single excitations and for states with medium doubly excited component, the newly introduced nested variant of the method of moments of CC equations provides mathematically rigorous way of balancing the ground- and excited-state correlation effects. The resulting noniterative methodology accounting for the effect of triples is tested using its parallel implementation on the systems, for which iterative CC/EOMCC calculations with full inclusion of triply excited configurations or their most important subset are numerically feasible.

  7. Controlling excited-state contamination in nucleon matrix elements

    DOE PAGES

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; ...

    2016-06-08

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1-flavor ensemble with lattices of size 32 3 × 64 generated using the rational hybrid Monte Carlo algorithm at a = 0.081 fm and with M π = 312 MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a 2-state fit to data at multiple values of the source-sink separationmore » t sep. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost effectiveness. As a result, a detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of t sep needed to demonstrate convergence of the isovector charges of the nucleon to the t sep → ∞ estimates is presented.« less

  8. Hydrological excitation of polar motion by different variables of the GLDAS models

    NASA Astrophysics Data System (ADS)

    Wińska, Małgorzata; Nastula, Jolanta

    Continental hydrological loading, by land water, snow, and ice, is an element that is strongly needed for a full understanding of the excitation of polar motion. In this study we compute different estimations of hydrological excitation functions of polar motion (Hydrological Angular Momentum - HAM) using various variables from the Global Land Data Assimilation System (GLDAS) models of land hydrosphere. The main aim of this study is to show the influence of different variables for example: total evapotranspiration, runoff, snowmelt, soil moisture to polar motion excitations in annual and short term scale. In our consideration we employ several realizations of the GLDAS model as: GLDAS Common Land Model (CLM), GLDAS Mosaic Model, GLDAS National Centers for Environmental Prediction/Oregon State University/Air Force/Hydrologic Research Lab Model (Noah), GLDAS Variable Infiltration Capacity (VIC) Model. Hydrological excitation functions of polar motion, both global and regional, are determined by using selected variables of these GLDAS realizations. First we compare a timing, spectra and phase diagrams of different regional and global HAMs with each other. Next, we estimate, the hydrological signal in geodetically observed polar motion excitation by subtracting the atmospheric -- AAM (pressure + wind) and oceanic -- OAM (bottom pressure + currents) contributions. Finally, the hydrological excitations are compared to these hydrological signal in observed polar motion excitation series. The results help us understand which variables of considered hydrological models are the most important for the polar motion excitation and how well we can close polar motion excitation budget in the seasonal and inter-annual spectral ranges.

  9. Energy of the ground and 2{sup +} excited states of {sub {lambda}}{sub {lambda}}{sup 10}Be: A partial ten-body model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoeb, Mohammad; Sonika

    2009-08-15

    The energies of the ground and excited 2{sup +} states of {sub {lambda}}{sub {lambda}}{sup 10}Be have been calculated variationally in the Monte Carlo framework. The hypernucleus is treated as a partial ten-body problem in the {lambda}{lambda}+{alpha}{alpha} model where nucleonic degrees of freedom of {alpha}'s are taken into consideration ignoring the antisymmetrization between two {alpha}'s. The central two-body {lambda}N and {lambda}{lambda} and the three-body dispersive and two-pion exchange {lambda}NN forces, constrained by the {lambda}p scattering data and the observed ground state energies of {sub {lambda}}{sup 5}He and {sub {lambda}}{sub {lambda}}{sup 6}He, are employed. The product-type trial wave function predicts binding energymore » for the ground state considerably less than for the event reported by Danysz et al.; however, it is consistent with the value deduced assuming a {gamma} ray of 3.04 MeV must have escaped undetected in the decay of the product {sub {lambda}}{sup 9}Be* {yields} {sub {lambda}}{sup 9}Be+{gamma} of the emulsion event {sub {lambda}}{sub {lambda}}{sup 10}Be{yields} {pi}{sup -}+p+{sub {lambda}}{sup 9}Be* and for the excited 2{sup +} state closer to the value measured in the Demachi-Yanagi event. The hypernucleus {sub {lambda}}{sub {lambda}}{sup 10}Be has an oblate shape in the excited state. These results are consistent with the earlier four-body {alpha} cluster model approach where {alpha}'s are assumed to be structureless entities.« less

  10. σ -SCF: A Direct Energy-targeting Method To Mean-field Excited States

    NASA Astrophysics Data System (ADS)

    Ye, Hongzhou; Welborn, Matthew; Ricke, Nathan; van Voorhis, Troy

    The mean-field solutions of electronic excited states are much less accessible than ground state (e.g. Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF, tend to fall into the lowest solution consistent with a given symmetry - a problem known as ``variational collapse''. In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states - ground or excited - are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H2, HF). This work was funded by a Grant from NSF (CHE-1464804).

  11. The examination of berberine excited state by laser flash photolysis

    NASA Astrophysics Data System (ADS)

    Cheng, Lingli; Wang, Mei; Zhao, Ping; Zhu, Hui; Zhu, Rongrong; Sun, Xiaoyu; Yao, Side; Wang, Shilong

    2009-07-01

    The property of the excited triplet state of berberine (BBR) was investigated by using time-resolved laser flash photolysis of 355 nm in acetonitrile. The transient absorption spectra of the excited triplet BBR were obtained in acetonitrile, which have an absorption maximum at 420 nm. And the ratio of excitation to ionization of BBR in acetonitrile solvent was calculated. The self-decay and self-quenching rate constants, and the absorption coefficient of 3BBR* were investigated and the excited state quantum yield was determined. Furthermore utilizing the benzophenone (BEN) as a triplet sensitizer, and the β-carotene (Car) as an excited energy transfer acceptor, the assignment of 3BBR* was further confirmed and the related energy transfer rate constants were also determined.

  12. State-specific transport properties of electronically excited Ar and C

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2018-05-01

    In the present study, a theoretical model of state-resolved transport properties in electronically excited atomic species developed earlier is applied to argon and carbon atomic species. It is shown that for Ar and C, similarly to the case of atomic nitrogen and oxygen, the Slater-like models can be applied to calculate diameters of electronically excited atoms. Using the Slater-like model it is shown that for half-filled N (2 px1py1pz1) and full-filled Ar (3 px2py2pz2) electronic shells the growth of atomic radius goes slowly compared to C (2 px1py1) and O (2 px2py1pz1). The effect of collision diameters on the transport properties of Ar and C is evaluated. The influence of accounted number of electronic levels on the transport coefficients is examined for the case of Boltzmann distributions over electronic energy levels. It is emphasized that in the temperature range 1000-14000 K, for Boltzmann-like distributions over electronic states the number of accounted electronic levels do not influence the transport coefficients. Contrary to this, for higher temperatures T > 14000 K this effect becomes of importance, especially for argon.

  13. "Bright" and "dark" excited states of an alternating at oligomer characterized by femtosecond broadband spectroscopy.

    PubMed

    Kwok, Wai-Ming; Ma, Chensheng; Phillips, David Lee

    2009-08-20

    The nature and dynamics of DNA excited states is of pivotal importance in determining both DNA ultraviolet photostability and its vulnerability toward photodamage. The complexity regarding the involvement of "bright" and "dark" excited states, their molecular origin, and the roles played by these states in the course of electronic energy relaxation constitute an active and contentious area in current research of DNA excited states. As a case study, we report here a combined broadband femtosecond time-resolved fluorescence (TRF) and transient absorption (TA) study on a self-complementary d(AT)(10) oligomer and a reference system of an equal molar mixture of the constituent bases represented by adenosine and thymidine (A+T). Comparison of the spectral character and temporal evolution of the TRF and TA data for 267 nm excited d(AT)(10) and A+T provides evidence for a base-localized excitation feature for an early (< approximately 50 fs) "bright" S(LE) state and its ensuing evolution within approximately 3 ps into a approximately 72 ps "dark" S(E) exciplex in d(AT)(10). Combined analysis of the d(AT)(10) TRF and TA results suggests the presence of a weakly fluorescent transient S(G) state that acts as a gateway to mediate the excitation transfer and energy elimination. A distinct base conformation-dependent model involving an ultrafast approximately 0.3 ps conversion of the S(LE) to S(G) that then evolves by approximately 3 ps into the S(E) has been proposed to account for the collective deactivation character of d(AT)(10). This presents a novel excited-state picture that can unify the seemingly conflicting time-resolved results reported previously for related AT DNAs. The direct spectral and dynamical data provided here contributes important photophysical parameters for the description of the excited states of AT oligomers. The possible connection between the energy transfer giving the S(E) and the photostability vs photodamage of A/T DNAs is briefly discussed.

  14. Decay, excitation, and ionization of lithium Rydberg states by blackbody radiation

    NASA Astrophysics Data System (ADS)

    Ovsiannikov, V. D.; Glukhov, I. L.

    2010-09-01

    Details of interaction between the blackbody radiation and neutral lithium atoms were studied in the temperature ranges T = 100-2000 K. The rates of thermally induced decays, excitations and ionization were calculated for S-, P- and D-series of Rydberg states in the Fues' model potential approach. The quantitative regularities for the states of the maximal rates of blackbody-radiation-induced processes were determined. Approximation formulas were proposed for analytical representation of the depopulation rates.

  15. Two-component Structure in the Entanglement Spectrum of Highly Excited States

    NASA Astrophysics Data System (ADS)

    Yang, Zhi-Cheng; Chamon, Claudio; Hamma, Alioscia; Mucciolo, Eduardo

    We study the entanglement spectrum of highly excited eigenstates of two known models which exhibit a many-body localization transition, namely the one-dimensional random-field Heisenberg model and the quantum random energy model. Our results indicate that the entanglement spectrum shows a ``two-component'' structure: a universal part that is associated to Random Matrix Theory, and a non-universal part that is model dependent. The non-universal part manifests the deviation of the highly excited eigenstate from a true random state even in the thermalized phase where the Eigenstate Thermalization Hypothesis holds. The fraction of the spectrum containing the universal part decreases continuously as one approaches the critical point and vanishes in the localized phase in the thermodynamic limit. We use the universal part fraction to construct a new order parameter for the many-body delocalized-to-localized transition. Two toy models based on Rokhsar-Kivelson type wavefunctions are constructed and their entanglement spectra are shown to exhibit the same structure.

  16. Photoionization of furan from the ground and excited electronic states.

    PubMed

    Ponzi, Aurora; Sapunar, Marin; Angeli, Celestino; Cimiraglia, Renzo; Došlić, Nađa; Decleva, Piero

    2016-02-28

    Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy.

  17. Selective bond breaking mediated by state specific vibrational excitation in model HOD molecule through optimized femtosecond IR pulse: a simulated annealing based approach.

    PubMed

    Shandilya, Bhavesh K; Sen, Shrabani; Sahoo, Tapas; Talukder, Srijeeta; Chaudhury, Pinaki; Adhikari, Satrajit

    2013-07-21

    The selective control of O-H/O-D bond dissociation in reduced dimensionality model of HOD molecule has been explored through IR+UV femtosecond pulses. The IR pulse has been optimized using simulated annealing stochastic approach to maximize population of a desired low quanta vibrational state. Since those vibrational wavefunctions of the ground electronic states are preferentially localized either along the O-H or O-D mode, the femtosecond UV pulse is used only to transfer vibrationally excited molecule to the repulsive upper surface to cleave specific bond, O-H or O-D. While transferring from the ground electronic state to the repulsive one, the optimization of the UV pulse is not necessarily required except specific case. The results so obtained are analyzed with respect to time integrated flux along with contours of time evolution of probability density on excited potential energy surface. After preferential excitation from [line]0, 0> ([line]m, n> stands for the state having m and n quanta of excitations in O-H and O-D mode, respectively) vibrational level of the ground electronic state to its specific low quanta vibrational state ([line]1, 0> or [line]0, 1> or [line]2, 0> or [line]0, 2>) by using optimized IR pulse, the dissociation of O-D or O-H bond through the excited potential energy surface by UV laser pulse appears quite high namely, 88% (O-H ; [line]1, 0>) or 58% (O-D ; [line]0, 1>) or 85% (O-H ; [line]2, 0>) or 59% (O-D ; [line]0, 2>). Such selectivity of the bond breaking by UV pulse (if required, optimized) together with optimized IR one is encouraging compared to the normal pulses.

  18. Thermality and excited state Rényi entropy in two-dimensional CFT

    NASA Astrophysics Data System (ADS)

    Lin, Feng-Li; Wang, Huajia; Zhang, Jia-ju

    2016-11-01

    We evaluate one-interval Rényi entropy and entanglement entropy for the excited states of two-dimensional conformal field theory (CFT) on a cylinder, and examine their differences from the ones for the thermal state. We assume the interval to be short so that we can use operator product expansion (OPE) of twist operators to calculate Rényi entropy in terms of sum of one-point functions of OPE blocks. We find that the entanglement entropy for highly excited state and thermal state behave the same way after appropriate identification of the conformal weight of the state with the temperature. However, there exists no such universal identification for the Rényi entropy in the short-interval expansion. Therefore, the highly excited state does not look thermal when comparing its Rényi entropy to the thermal state one. As the Rényi entropy captures the higher moments of the reduced density matrix but the entanglement entropy only the average, our results imply that the emergence of thermality depends on how refined we look into the entanglement structure of the underlying pure excited state.

  19. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    NASA Astrophysics Data System (ADS)

    Ramon, John Glenn Santos

    The potential for using conducting polymers as the active material in optoelectronic devices has come to fruition in the past few years. Understanding the fundamental photophysics behind their operations points to the significant role played by the polymer interface in their performance. Current device architectures involve the use of bulk heterojunctions which intimately blend the donor and acceptor polymers to significantly increase not only their interfacial surface area but also the probability of exciton formation within the vicinity of the interface. In this dissertation, we detail the role played by the interface on the behavior and performance of bulk heterojunction systems. First, we explore the relation between the exciton binding energy to the band offset in determining device characteristics. As a general rule, when the exciton binding energy is greater than the band offset, the exciton remains the lowest energy excited state leading to efficient light-emitting properties. On the other hand, if the offset is greater than the binding energy, charge separation becomes favorable leading to better photovoltaic behavior. Here, we use a Wannier function, configuration interaction based approach to examine the essential excited states and predict the vibronic absorption and emission spectra of the PPV/BBL, TFB/F8BT and PFB/F8BT heterojunctions. Our results underscore the role of vibrational relaxation in the formation of charge-transfer states following photoexcitation. In addition, we look at the relaxation dynamics that occur upon photoexcitation. For this, we adopt the Marcus-Hush semiclassical method to account for lattice reorganization in the calculation of the interconversion rates in TFB/F8BT and PFB/F8BT. We find that, while a tightly bound charge-transfer state (exciplex) remains the lowest excited state, a regeneration pathway to the optically active lowest excitonic state in TFB/F8BT is possible via thermal repopulation from the exciplex. Finally

  20. Solvent-dependent activation of intermediate excited states in the energy relaxation pathways of spheroidene.

    PubMed

    Maiuri, Margherita; Polli, Dario; Brida, Daniele; Lüer, Larry; LaFountain, Amy M; Fuciman, Marcel; Cogdell, Richard J; Frank, Harry A; Cerullo, Giulio

    2012-05-14

    In carotenoids internal conversion between the allowed (S(2)) and forbidden (S(1)) excited states occurs on a sub-picosecond timescale; the involvement of an intermediate excited state(s) (S(x)) mediating the process is controversial. Here we use high time resolution (sub-20 fs) broadband (1.2-2.5 eV) pump-probe spectroscopy to study the solvent dependence of excited state dynamics of spheroidene, a naturally-occurring carotenoid with ten conjugated double bonds. In the high polarizability solvent, CS(2), we find no evidence of an intermediate state, and the traditional three-level (S(0), S(1), S(2)) model fully accounts for the S(2)→ S(1) process. On the other hand, in the low polarizability solvent, cyclohexane, we find that rapid (~30 fs) relaxation to an intermediate state, S(x), lying between S(1) and S(2) is required to account for the data. We interpret these results as due to a shift of the S(2) energy, which positions the state above or below the energy of S(x) in response to changes in solvent polarizability. This journal is © the Owner Societies 2012

  1. Exploring Photoinduced Excited State Evolution in Heterobimetallic Ru(II)-Co(III) Complexes.

    PubMed

    Kuhar, Korina; Fredin, Lisa A; Persson, Petter

    2015-06-18

    Quantum chemical calculations provide detailed theoretical information concerning key aspects of photoinduced electron and excitation transfer processes in supramolecular donor-acceptor systems, which are particularly relevant to fundamental charge separation in emerging molecular approaches for solar energy conversion. Here we use density functional theory (DFT) calculations to explore the excited state landscape of heterobimetallic Ru-Co systems with varying degrees of interaction between the two metal centers, unbound, weakly bound, and tightly bound systems. The interplay between structural and electronic factors involved in various excited state relaxation processes is examined through full optimizations of multiple charge/spin states of each of the investigated systems. Low-energy relaxed heterobimetallic states of energy transfer and excitation transfer character are characterized in terms of energy, structure, and electronic properties. These findings support the notion of efficient photoinduced charge separation from a Ru(II)-Co(III) ground state, via initial optical excitation of the Ru-center, to low-energy Ru(III)-Co(II) states. The strongly coupled system has significant involvement of the conjugated bridge, qualitatively distinguishing it from the other two weakly coupled systems. Finally, by constructing potential energy surfaces for the three systems where all charge/spin state combinations are projected onto relevant reaction coordinates, excited state decay pathways are explored.

  2. Ground and excited states of CaSH through electron propagator calculations

    NASA Astrophysics Data System (ADS)

    Ortiz, J. V.

    1990-05-01

    Electron propagator calculations of electron affinities of CaSH + produce ground and excited state energies at the optimized, C s minimum of the neutral ground state and at a C ∞v geometry. Feynman-Dyson amplitudes (FDAs) describe the distribution of the least bound electron in various states. The neutral ground state differs from the cation by the occupation of a one-electron state dominated by Ca s functions. Described by FDAs with Ca-S π pseudosymmetry, corresponding excited states have unpaired electrons in orbitals displaying interference between Ca p and d functions. Above these lies a σ pseudosymmetry FDA with principal contributions from Ca d functions. Two FDAs with σ pseudosymmetry follow. Higher excited states exhibit considerable delocalization onto S.

  3. Efficient Predictions of Excited State for Nanomaterials Using Aces 3 and 4

    DTIC Science & Technology

    2017-12-20

    by first-principle methods in the software package ACES by using large parallel computers, growing tothe exascale. 15. SUBJECT TERMS Computer...modeling, excited states, optical properties, structure, stability, activation barriers first principle methods , parallel computing 16. SECURITY...2 Progress with new density functional methods

  4. Excited electronic states of the methyl radical. Ab initio molecular orbital study of geometries, excitation energies and vibronic spectra

    NASA Astrophysics Data System (ADS)

    Mebel, Alexander M.; Lin, Sheng-Hsien

    1997-03-01

    The geometries, vibrational frequencies and vertical and adiabatic excitation energies of the excited valence and Rydberg 3s, 3p, 3d, and 4s electronic states of CH 3 have been studied using ab initio molecular orbital multiconfigurational SCF (CASSCF), internally contracted multireference configuration interaction (MRCI) and equation-of-motion coupled cluster (EOM-CCSD) methods. The vibronic spectra are determined through the calculation of Franck-Condon factors. Close agreement between theory and experiment has been found for the excitation energies, vibrational frequencies and vibronic spectra. The adiabatic excitation energies of the Rydberg 3s B˜ 2A' 1 and 3p 2 2A″ 2 states are calculated to be 46435 and 60065 cm -1 compared to the experimental values of 46300 and 59972 cm -1, respectively. The valence 2A″ excited state of CH 3 has been found to have a pyramidal geometry within C s symmetry and to be adiabatically by 97 kcal/mol higher in energy than the ground state. The 2A″ state is predicted to be stable by 9 and 13 kcal/mol with respect to H 2 and H elimination.

  5. Excitation energies of particle-hole states in {sup 208}Pb and the surface delta interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heusler, A., E-mail: A.Heusler@mpi-hd.mpg.de; Jolos, R. V., E-mail: Jolos@theor.jinr.ru; Brentano, P. von, E-mail: Brentano@ikp.uni-koeln.de

    2013-07-15

    The schematic shell model without residual interaction (SSM) assumes the same excitation energy for all spins in each particle-hole configuration multiplet. In {sup 208}Pb, more than forty states are known to contain almost the full strength of a single particle-hole configuration. The experimental excitation energy for a state with a certain spin differs from the energy predicted by the SSM by -0.2 to +0.6 MeV. The multiplet splitting is calculated with the surface delta interaction; it corresponds to the diagonal matrix element of the residual interaction in the SSM. For states containing more than 90% strength of a certain configurationmore » and for the centroid of several completely observed configurations, the calculated multiplet splitting often approximates the experimental excitation energy within 30 keV. The strong mixing within some pairs of states containing the full strengths of two configurations is explained.« less

  6. Solvent effects on the excited-state double proton transfer mechanism in the 7-azaindole dimer: a TDDFT study with the polarizable continuum model.

    PubMed

    Yu, Xue-Fang; Yamazaki, Shohei; Taketsugu, Tetsuya

    2017-08-30

    Solvent effects on the excited-state double proton transfer (ESDPT) mechanism in the 7-azaindole (7AI) dimer were investigated using the time-dependent density functional theory (TDDFT) method. Excited-state potential energy profiles along the reaction paths in a locally excited (LE) state and a charge transfer (CT) state were calculated using the polarizable continuum model (PCM) to include the solvent effect. A series of non-polar and polar solvents with different dielectric constants were used to examine the polarity effect on the ESDPT mechanism. The present results suggest that in a non-polar solvent and a polar solvent with a small dielectric constant, ESDPT follows a concerted mechanism, similar to the case in the gas phase. In a polar solvent with a relatively large dielectric constant, however, ESDPT is likely to follow a stepwise mechanism via a stable zwitterionic intermediate in the LE state on the adiabatic potential energy surface, although inclusion of zero-point vibrational energy (ZPE) corrections again suggests the concerted mechanism. In the meantime, the stepwise reaction path involving the CT state with neutral intermediates is also examined, and is found to be less competitive than the concerted or stepwise path in the LE state in both non-polar and polar solvents. The present study provides a new insight into the experimental controversy of the ESDPT mechanism of the 7AI dimer in a solution.

  7. Molecular and excited state properties of isomeric scarlet disperse dyes

    NASA Astrophysics Data System (ADS)

    Lim, Jihye; Szymczyk, Malgorzata; Mehraban, Nahid; Ding, Yi; Parrillo-Chapman, Lisa; El-Shafei, Ahmed; Freeman, Harold S.

    2018-06-01

    This work was part of an investigation aimed at characterizing the molecular and excited state properties of currently available disperse dyes developed to provide stability to extensive sunlight exposures when adsorbed on poly(ethylene terephthalate) (PET) fibers. Having completed the characterization of yellow, magenta, and cyan disperse dyes for PET-based fabrics used outdoors, our attention turned to the colors designed to enhance the color gamut of a standard 4-member (cyan/yellow/magenta/black) color set. The present study pertained specifically to the characterization of commercially available scarlet dyes. In this regard, HPLC analysis showed that a scarlet product used for PET coloration was mainly a 70/30 mixture of dyes, and the use of HRMS and single crystal X-ray diffraction analyses indicated that these two dyes were azo compounds derived from isomeric pyridine-based couplers which differed in the location of the primary amino (sbnd NH2) and anilino (sbnd NHPh) groups attached to the pyridine ring. One dye structure has the sbnd NHPh group para to the azo group (Sc2), while the other has that group in the ortho position (Sc3). The presence of either ortho substituent provides photostabilization through intramolecular H-bonding with the azo moiety. Further, results from molecular modeling studies showed that the lower excited state oxidation potential of Sc3 relative to that of Sc2 allows Sc3 to function as an energy quencher for the excited state of Sc2 - through thermodynamically favorable electron transfer.

  8. Spectroscopic properties of the S1 state of linear carotenoids after excess energy excitation

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Valentyna; Southall, June; Cogdell, Richard J.; Fuciman, Marcel; Polívka, Tomáš

    2017-09-01

    Properties of the S1 state of neurosporene, spheroidene and lycopene were studied after excess energy excitation in the S2 state. Excitation of carotenoids into higher vibronic levels of the S2 state generates excess vibrational energy in the S1 state. The vibrationally hot S1 state relaxes faster when carotenoid is excited into the S2 state with excess energy, but the S1 lifetime remains constant regardless of which vibronic level of the S2 state is excited. The S∗ signal depends on excitation energy only for spheroidene, which is likely due to asymmetry of the molecule, facilitating conformations responsible for the S∗ signal.

  9. Population trapping in the excited states using vacuum-induced coherence and adiabatic process

    NASA Astrophysics Data System (ADS)

    Lal Kumawat, Babu; Kumar, Pardeep; Dasgupta, Shubhrangshu

    2018-02-01

    We theoretically investigate how population can be trapped in the closely spaced excited levels in presence of vacuum-induced coherence (VIC). We employ delayed pulses to transfer population from a meta-stable state to the excited states. Subsequently, spontaneous emission from these excited states builds coherence between them. This coherence can be probed by using chirping, which leads to the decoupling of the excited states from the ground state thereby ensuring population transfer via delayed pulses. Our results indicate that the existence of VIC leads to the generation of a mixed state in the excited state manifold, where trapping of the population occurs even in the presence of large decay. This trapping may be realized in molecular systems and can be interpreted as a sensitive probe of VIC. We present suitable numerical analysis to support our results.

  10. Minimal excitation states for heat transport in driven quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Vannucci, Luca; Ronetti, Flavio; Rech, Jérôme; Ferraro, Dario; Jonckheere, Thibaut; Martin, Thierry; Sassetti, Maura

    2017-06-01

    We investigate minimal excitation states for heat transport into a fractional quantum Hall system driven out of equilibrium by means of time-periodic voltage pulses. A quantum point contact allows for tunneling of fractional quasiparticles between opposite edge states, thus acting as a beam splitter in the framework of the electron quantum optics. Excitations are then studied through heat and mixed noise generated by the random partitioning at the barrier. It is shown that levitons, the single-particle excitations of a filled Fermi sea recently observed in experiments, represent the cleanest states for heat transport since excess heat and mixed shot noise both vanish only when Lorentzian voltage pulses carrying integer electric charge are applied to the conductor. This happens in the integer quantum Hall regime and for Laughlin fractional states as well, with no influence of fractional physics on the conditions for clean energy pulses. In addition, we demonstrate the robustness of such excitations to the overlap of Lorentzian wave packets. Even though mixed and heat noise have nonlinear dependence on the voltage bias, and despite the noninteger power-law behavior arising from the fractional quantum Hall physics, an arbitrary superposition of levitons always generates minimal excitation states.

  11. Identification of Excited States in the N=Z Nucleus 82Nb

    NASA Astrophysics Data System (ADS)

    Caceres, L. S.; Gorska, M.; Jungclaus, A.; Regan, P. H.; Garnsworthy, A. B.; Pietri, S.; Podolyak, Zs.; Rudolph, D.; Steer, S. J.; Grawe, H.; Balabanski, D. L.; Becker, F.; Bednarczyk, P.; Benzoni, G.; Blank, B.; Brandau, C.; Bruce, A. M.; Camera, F.; Catford, W. N.; Cullen, I. J.; Dombradi, Zs.; Doornenbal, P.; Estevez, E.; Geissel, H.; Gelletly, W.; Gerl, J.; Grebosz, J.; Heinz, A.; Hoischen, R.; Ilie, G.; Jolie, J.; Jones, G. A.; Kmiecik, M.; Kojouharov, I.; Kondev, F. G.; Kurtukian-Nieto, T.; Kurz, N.; Lalkowski, S.; Liu, L.; Maj, A.; Myalski, S.; Montes, F.; Pfuetzner, M.; Prokopowicz, W.; Saito, T.; Schaffner, H.; Schwertel, S.; Shizuma, T.; Simons, A. J.; Tashenov, S.; Walker, P. M.; Werner-Malento, E.; Wieland, O.; Wollersheim, H. J.

    2007-04-01

    Information on the first excited states in the N=Z=41 nucleus 82Nb sheds light on the competition of isospin T=0 and T=1 states in the A sim 80 region. The measurement was performed at the GSI laboratory using fragmentation of a 107Ag primary beam at 750 MeV/u on a 4 g/cm2 9Be target. The fragments were separated and identified unambiguously in the FRagment Separator. Three excited states were observed and the half-life estimate for the isomeric state was extracted. A tentative spin assignment based on the isobaric analogue states systematics in the Tz=1 nucleus 82Zr, and transition probabilities indicate T=1 character of the first two excited states, and T=0 for the isomeric state.

  12. UV excitation of single DNA and RNA strands produces high yields of exciplex states between two stacked bases

    PubMed Central

    Takaya, Tomohisa; Su, Charlene; de La Harpe, Kimberly; Crespo-Hernández, Carlos E.; Kohler, Bern

    2008-01-01

    Excited electronic states created by UV excitation of the diribonucleoside monophosphates ApA, ApG, ApC, ApU, and CpG were studied by the femtosecond transient-absorption technique. Bleach recovery signals recorded at 252 nm show that long-lived excited states are formed in all five dinucleosides. The lifetimes of these states exceed those measured in equimolar mixtures of the constituent mononucleotides by one to two orders of magnitude, indicating that electronic coupling between proximal nucleobases dramatically slows the relaxation of excess electronic energy. The decay rates of the long-lived states decrease with increasing energy of the charge-transfer state produced by transferring an electron from one base to another. The charge-transfer character of the long-lived states revealed by this analysis supports their assignment to excimer or exciplex states. Identical bleach recovery signals were seen for ApA, (A)4, and poly(A) at delay times >10 ps after photoexcitation. This indicates that excited states localized on a stack of just two bases are the common trap states independent of the number of stacked nucleotides. The fraction of initial excitations that decay to long-lived exciplex states is approximately equal to the fraction of stacked bases determined by NMR measurements. This supports a model in which excitations associated with two stacked bases decay to exciplex states, whereas excitations in unstacked bases decay via ultrafast internal conversion. These results establish the importance of charge transfer-quenching pathways for UV-irradiated RNA and DNA in room-temperature solution. PMID:18647840

  13. UV excitation of single DNA and RNA strands produces high yields of exciplex states between two stacked bases.

    PubMed

    Takaya, Tomohisa; Su, Charlene; de La Harpe, Kimberly; Crespo-Hernández, Carlos E; Kohler, Bern

    2008-07-29

    Excited electronic states created by UV excitation of the diribonucleoside monophosphates ApA, ApG, ApC, ApU, and CpG were studied by the femtosecond transient-absorption technique. Bleach recovery signals recorded at 252 nm show that long-lived excited states are formed in all five dinucleosides. The lifetimes of these states exceed those measured in equimolar mixtures of the constituent mononucleotides by one to two orders of magnitude, indicating that electronic coupling between proximal nucleobases dramatically slows the relaxation of excess electronic energy. The decay rates of the long-lived states decrease with increasing energy of the charge-transfer state produced by transferring an electron from one base to another. The charge-transfer character of the long-lived states revealed by this analysis supports their assignment to excimer or exciplex states. Identical bleach recovery signals were seen for ApA, (A)(4), and poly(A) at delay times >10 ps after photoexcitation. This indicates that excited states localized on a stack of just two bases are the common trap states independent of the number of stacked nucleotides. The fraction of initial excitations that decay to long-lived exciplex states is approximately equal to the fraction of stacked bases determined by NMR measurements. This supports a model in which excitations associated with two stacked bases decay to exciplex states, whereas excitations in unstacked bases decay via ultrafast internal conversion. These results establish the importance of charge transfer-quenching pathways for UV-irradiated RNA and DNA in room-temperature solution.

  14. Physical states and finite-size effects in Kitaev's honeycomb model: Bond disorder, spin excitations, and NMR line shape

    NASA Astrophysics Data System (ADS)

    Zschocke, Fabian; Vojta, Matthias

    2015-07-01

    Kitaev's compass model on the honeycomb lattice realizes a spin liquid whose emergent excitations are dispersive Majorana fermions and static Z2 gauge fluxes. We discuss the proper selection of physical states for finite-size simulations in the Majorana representation, based on a recent paper by F. L. Pedrocchi, S. Chesi, and D. Loss [Phys. Rev. B 84, 165414 (2011), 10.1103/PhysRevB.84.165414]. Certain physical observables acquire large finite-size effects, in particular if the ground state is not fermion-free, which we prove to generally apply to the system in the gapless phase and with periodic boundary conditions. To illustrate our findings, we compute the static and dynamic spin susceptibilities for finite-size systems. Specifically, we consider random-bond disorder (which preserves the solubility of the model), calculate the distribution of local flux gaps, and extract the NMR line shape. We also predict a transition to a random-flux state with increasing disorder.

  15. Variational theory of valence fluctuations: Ground states and quasiparticle excitations of the Anderson lattice model

    NASA Astrophysics Data System (ADS)

    Brandow, B. H.

    1986-01-01

    A variational study of ground states of the orbitally nondegenerate Anderson lattice model, using a wave function with one variational parameter per Bloch state k, has been extended to deal with essentially metallic systems having a nonintegral number of electrons per site. Quasiparticle excitations are obtained by direct appeal to Landau's original definition for interacting Fermi liquids, scrEqp(k,σ)=δEtotal/δn qp(k,σ). This approach provides a simple and explicit realization of the Luttinger picture of a periodic Fermi liquid. A close correspondence is maintained between the ``interacting'' (U=∞) system and the corresponding ``noninteracting'' (U=0) case, i.e., ordinary band theory; the result can be described as a renormalized band or renormalized hybridization theory. The occupation-number distribution for the conduction orbitals displays a finite discontinuity at the Fermi surface. If the d-f hybridization is nonzero throughout the Brillouin zone, the quasiparticle spectrum will always exhibit a gap, although this gap becomes exponentially small (i.e., of order TK) in the Kondo-lattice regime. In the ``ionic'' case with precisely two electrons per site, such a system may therefore exhibit an insulating (semiconducting) gap. The quasiparticle state density exhibits a prominent spike on each side of the spectral gap, just as in the elementary hybridization model (the U=0 case). For the metallic case, with a nonintegral number of electrons per site, the Fermi level falls within one of the two sharp density peaks. The effective mass at the Fermi surface tends to be very large; enhancements by a factor >~102 are quite feasible. The foregoing variational theory has also been refined by means of a trial wave function having two variational parameters per Bloch state k. The above qualitative features are all retained, with some quantitative differences, but there are also some qualitatively new features. The most interesting of these is the appearance, within

  16. Communication: Fragment-based Hamiltonian model of electronic charge-excitation gaps and gap closure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valone, Steven Michael; Pilania, Ghanshyam; Liu, Xiang-Yang

    Capturing key electronic properties such as charge excitation gaps within models at or above the atomic scale presents an ongoing challenge to understanding molecular, nanoscale, and condensed phase systems. One strategy is to describe the system in terms of properties of interacting material fragments, but it is unclear how to accomplish this for charge-excitation and charge-transfer phenomena. Hamiltonian models such as the Hubbard model provide formal frameworks for analyzing gap properties but are couched purely in terms of states of electrons, rather than the states of the fragments at the scale of interest. The recently introduced Fragment Hamiltonian (FH) modelmore » uses fragments in different charge states as its building blocks, enabling a uniform, quantum-mechanical treatment that captures the charge-excitation gap. These gaps are preserved in terms of inter-fragment charge-transferhopping integrals T and on-fragment parameters U (FH). The FH model generalizes the standard Hubbard model (a single intra-band hopping integral t and on-site repulsion U) from quantum states for electrons to quantum states for fragments. In this paper, we demonstrate that even for simple two-fragment and multi-fragment systems, gap closure is enabled once T exceeds the threshold set by U (FH), thus providing new insight into the nature of metal-insulator transitions. Finally, this result is in contrast to the standard Hubbard model for 1d rings, for which Lieb and Wu proved that gap closure was impossible, regardless of the choices for t and U.« less

  17. Communication: Fragment-based Hamiltonian model of electronic charge-excitation gaps and gap closure

    DOE PAGES

    Valone, Steven Michael; Pilania, Ghanshyam; Liu, Xiang-Yang; ...

    2015-11-13

    Capturing key electronic properties such as charge excitation gaps within models at or above the atomic scale presents an ongoing challenge to understanding molecular, nanoscale, and condensed phase systems. One strategy is to describe the system in terms of properties of interacting material fragments, but it is unclear how to accomplish this for charge-excitation and charge-transfer phenomena. Hamiltonian models such as the Hubbard model provide formal frameworks for analyzing gap properties but are couched purely in terms of states of electrons, rather than the states of the fragments at the scale of interest. The recently introduced Fragment Hamiltonian (FH) modelmore » uses fragments in different charge states as its building blocks, enabling a uniform, quantum-mechanical treatment that captures the charge-excitation gap. These gaps are preserved in terms of inter-fragment charge-transferhopping integrals T and on-fragment parameters U (FH). The FH model generalizes the standard Hubbard model (a single intra-band hopping integral t and on-site repulsion U) from quantum states for electrons to quantum states for fragments. In this paper, we demonstrate that even for simple two-fragment and multi-fragment systems, gap closure is enabled once T exceeds the threshold set by U (FH), thus providing new insight into the nature of metal-insulator transitions. Finally, this result is in contrast to the standard Hubbard model for 1d rings, for which Lieb and Wu proved that gap closure was impossible, regardless of the choices for t and U.« less

  18. Communication: Fragment-based Hamiltonian model of electronic charge-excitation gaps and gap closure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valone, S. M.; Pilania, G.; Liu, X. Y.

    2015-11-14

    Capturing key electronic properties such as charge excitation gaps within models at or above the atomic scale presents an ongoing challenge to understanding molecular, nanoscale, and condensed phase systems. One strategy is to describe the system in terms of properties of interacting material fragments, but it is unclear how to accomplish this for charge-excitation and charge-transfer phenomena. Hamiltonian models such as the Hubbard model provide formal frameworks for analyzing gap properties but are couched purely in terms of states of electrons, rather than the states of the fragments at the scale of interest. The recently introduced Fragment Hamiltonian (FH) modelmore » uses fragments in different charge states as its building blocks, enabling a uniform, quantum-mechanical treatment that captures the charge-excitation gap. These gaps are preserved in terms of inter-fragment charge-transfer hopping integrals T and on-fragment parameters U{sup (FH)}. The FH model generalizes the standard Hubbard model (a single intra-band hopping integral t and on-site repulsion U) from quantum states for electrons to quantum states for fragments. We demonstrate that even for simple two-fragment and multi-fragment systems, gap closure is enabled once T exceeds the threshold set by U{sup (FH)}, thus providing new insight into the nature of metal-insulator transitions. This result is in contrast to the standard Hubbard model for 1d rings, for which Lieb and Wu proved that gap closure was impossible, regardless of the choices for t and U.« less

  19. Controlling the excited-state dynamics of low band gap, near-infrared absorbers via proquinoidal unit electronic structural modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Yusong; Rawson, Jeff; Roget, Sean A.

    While the influence of proquinoidal character upon the linear absorption spectrum of low optical bandgap π-conjugated polymers and molecules is well understood, its impact upon excited-state relaxation pathways and dynamics remains obscure. We report the syntheses, electronic structural properties, and excited-state dynamics of a series of model highly conjugated near-infrared (NIR)-absorbing chromophores based on a (porphinato)metal(II)-proquinoidal spacer-(porphinato)metal(II) (PM-Sp-PM) structural motif. A combination of excited-state dynamical studies and time-dependent density functional theory calculations: (i) points to the cardinal role that excited-state configuration interaction (CI) plays in determining the magnitudes of S 1 → S 0 radiative (k r), S 1 → T 1 intersystem crossing (k ISC), and S 1 → S 0 internal conversion (k IC) rate constants in these PM-Sp-PM chromophores, and (ii) suggests that a primary determinant of CI magnitude derives from the energetic alignment of the PM and Sp fragment LUMOs (ΔE L). These insights not only enable steering of excited-state relaxation dynamics of high oscillator strength NIR absorbers to realize either substantial fluorescence or long-lived triplets (τmore » $$_ {T_1}$$ > μs) generated at unit quantum yield (Φ ISC = 100%), but also crafting of those having counter-intuitive properties: for example, while (porphinato)platinum compounds are well known to generate non-emissive triplet states (Φ ISC = 100%) upon optical excitation at ambient temperature, diminishing the extent of excited-state CI in these systems realizes long-wavelength absorbing heavy-metal fluorophores. In conclusion, this work highlights approaches to: (i) modulate low-lying singlet excited-state lifetime over the picosecond-to-nanosecond time domain, (ii) achieve NIR fluorescence with quantum yields up to 25%, (iii) tune the magnitude of S 1–T 1 ISC rate constant from 10 9 to 10 12 s -1 and (iv) realize T 1-state lifetimes that

  20. Controlling the excited-state dynamics of low band gap, near-infrared absorbers via proquinoidal unit electronic structural modulation

    DOE PAGES

    Bai, Yusong; Rawson, Jeff; Roget, Sean A.; ...

    2017-06-07

    While the influence of proquinoidal character upon the linear absorption spectrum of low optical bandgap π-conjugated polymers and molecules is well understood, its impact upon excited-state relaxation pathways and dynamics remains obscure. We report the syntheses, electronic structural properties, and excited-state dynamics of a series of model highly conjugated near-infrared (NIR)-absorbing chromophores based on a (porphinato)metal(II)-proquinoidal spacer-(porphinato)metal(II) (PM-Sp-PM) structural motif. A combination of excited-state dynamical studies and time-dependent density functional theory calculations: (i) points to the cardinal role that excited-state configuration interaction (CI) plays in determining the magnitudes of S 1 → S 0 radiative (k r), S 1 → T 1 intersystem crossing (k ISC), and S 1 → S 0 internal conversion (k IC) rate constants in these PM-Sp-PM chromophores, and (ii) suggests that a primary determinant of CI magnitude derives from the energetic alignment of the PM and Sp fragment LUMOs (ΔE L). These insights not only enable steering of excited-state relaxation dynamics of high oscillator strength NIR absorbers to realize either substantial fluorescence or long-lived triplets (τmore » $$_ {T_1}$$ > μs) generated at unit quantum yield (Φ ISC = 100%), but also crafting of those having counter-intuitive properties: for example, while (porphinato)platinum compounds are well known to generate non-emissive triplet states (Φ ISC = 100%) upon optical excitation at ambient temperature, diminishing the extent of excited-state CI in these systems realizes long-wavelength absorbing heavy-metal fluorophores. In conclusion, this work highlights approaches to: (i) modulate low-lying singlet excited-state lifetime over the picosecond-to-nanosecond time domain, (ii) achieve NIR fluorescence with quantum yields up to 25%, (iii) tune the magnitude of S 1–T 1 ISC rate constant from 10 9 to 10 12 s -1 and (iv) realize T 1-state lifetimes that

  1. Ultrafast Excited-State Dynamics of Cytosine Aza-Derivative and Analogues.

    PubMed

    Zhou, Zhongneng; Zhou, Xueyao; Wang, Xueli; Jiang, Bin; Li, Yongle; Chen, Jinquan; Xu, Jianhua

    2017-04-13

    Excited state dynamics of 5-azacytosine (5-AC), 2,4-diamino-1,3,5-triazine (2,4-DT), and 2-amino-1,3,5-triazine (2-AT) were comprehensively investigated by steady state absorption, fluorescence, and femtosecond transient absorption measurements. Time-dependent density functional theory (TDDFT) calculations were performed to help assign the absorption bands and understand the excited state decay mechanisms. The experimental results of excited singlet state dynamics for 5-AC, 2,4-DT, and 2-AT with femtosecond time resolution were reported for the first time. Two distinct decay pathways, with ∼1 ps and tens of picosecond lifetimes, were observed in 5-AC. Only one decay pathway with 17 ps lifetime was observed in 2,4-DT while an emissive state was found in 2-AT. TDDFT calculations suggest that 5-AC has a dark nπ* (S 1 ) state below the first allowed ππ* (S 2 ) state, which leads to the ultrafast decay of the ππ* state. In 2,4-DT, there is no dark nπ* state below the bright ππ* (S 1 ) state and the 17 ps lifetime is assigned to the relaxation from the ππ* (S 1 ) state to ground state. Two dark nπ* states (S 1 and S 2 ) were found in 2-AT, which exhibits much more complex excited state dynamics compared with the other two. Photoluminescence in 2-AT has been confirmed to be fluorescence emission from its bright ππ* (S 3 ) state. Our results strongly suggest that electronic structures are very sensitive to the substitution on the triazine ring and that the photophysical properties of nucleic acid analogues depend highly on their molecular structures.

  2. Ultrafast excited-state dynamics of RNA and DNA C tracts

    NASA Astrophysics Data System (ADS)

    Cohen, Boiko; Larson, Matthew H.; Kohler, Bern

    2008-06-01

    The excited-state dynamics of the RNA homopolymer of cytosine and of the 18-mer (dC) 18 were studied by steady-state and time-resolved absorption and emission spectroscopy. At pH 6.8, excitation of poly(rC) by a femtosecond UV pump pulse produces excited states that decay up to one order of magnitude more slowly than the excited states formed in the mononucleotide cytidine 5'-monophosphate under the same conditions. Even slower relaxation is observed for the hemiprotonated, self-associated form of poly(rC), which is stable at acidic pH. Transient absorption and time-resolved fluorescence signals for (dC) 18 at pH 6.8 are similar to ones observed for poly(rC) near pH 4, indicating that hemiprotonated structures are found in DNA C tracts at neutral pH. In both systems, there is evidence for two kinds of emitting states with lifetimes of ˜100 ps and slightly more than 1 ns. The former states are responsible for the bulk of emission from the hemiprotonated structures. Evidence suggests that slow electronic relaxation in these self-complexes is the result of vertical base stacking. The similar signals from RNA and DNA C tracts suggest a common base-stacked structure, which may be identical with that of i-motif DNA.

  3. Excitation of higher lying energy states in a rubidium DPAL

    NASA Astrophysics Data System (ADS)

    Wallerstein, A. J.; Perram, Glen; Rice, Christopher A.

    2018-02-01

    The spontaneous emission in a cw rubidium diode dumped alkali laser (DPAL) system was analyzed. The fluorescence from higher lying states decreases with additional buffer gas. The intermediate states (7S, 6P, 5D) decay more slowly with buffer gas and scale super-linearly with alkali density. A detailed kinetic model has been constructed, where the dominant mechanisms are energy pooling and single photon ionization. It also includes pumping into the non-Lorentzian wings of absorption profiles, fine structure mixing, collisional de-excitation, and Penning ionization. Effects of ionization in a high powered CW rubidium DPAL were assessed.

  4. Excited State Trends in Bidirectionally Expanded Closed-Shell PAH and PANH Anions

    PubMed Central

    Moore, Megan M.; Lee, Timothy J.

    2018-01-01

    Some anions are known to exhibit excited states independent of external forces such as dipole moments and induced polarizabilities. Such states exist simply as a result of the stabilization of valence accepting orbitals whereby the binding energy of the extra electron is greater than the valence excitation energy. Closed-shell anions are interesting candidates for such transitions since their ground-state, spin-paired nature makes the anions more stable from the beginning. Consequently, this work shows the point beyond which deprotonated, closed-shell polycyclic aromatic hydrocarbons (PAHs) and those PAHs containing nitrogen heteroatoms (PANHs) will exhibit valence excited states. This behavior has already been demonstrated in some PANHs and for anistropically-extended PAHs. This work establishes a general trend for PAHs/PANHs of arbitrary size and directional extension, whether in one dimension or two. Once seven six-membered rings make up a PAH/PANH, valence excited states are present. For most classes of PAHs/PANHs, this number is closer to four. Even though most of these excited states are weak absorbers, the sheer number of PAHs present in various astronomical environments should make them significant contributors to astronomical spectra. PMID:27585793

  5. Rotational excitation of the Hoyle state in 12C

    NASA Astrophysics Data System (ADS)

    Garg, R.; Barton, C.; Diget, C. Aa; Courtin, S.; Fruet, G.; Fynbo, H. O. U.; Howard, A.; Illana, A.; Jenkins, D. G.; Marroquin, I.; Kirsebom, O. S.; Lund, M. V.; Moore, I.; Perea, A.; Refsgaard, J.; Riley, J. E.; Rinta-Antila, S.; Sinclair, L.; Tengblad, O.; IGISOL Collaboration

    2018-01-01

    12C is synthesised in stars by fusion of three α particles. This process occurs through a resonance in the 12C nucleus, famously known as the Hoyle state. In this state, the 12C nucleus exists as a cluster of α particles. The state is the band-head for a rotational band with the 2+ rotational excitation predicted in the energy region 9 - 11 MeV. This rotational excitation can affect the triple-α process reaction rate by more than an order of magnitude at high temperatures (109 K). Depending on the energy of the resonance, the knowledge of the state can also help determine the structure of the Hoyle state. In the work presented here, the state of interest is populated by beta decay of radioactive 12N ion beam delivered by the IGISOL facility at JYFL, Jyväskylä.

  6. A theoretical and experimental benchmark study of core-excited states in nitrogen

    NASA Astrophysics Data System (ADS)

    Myhre, Rolf H.; Wolf, Thomas J. A.; Cheng, Lan; Nandi, Saikat; Coriani, Sonia; Gühr, Markus; Koch, Henrik

    2018-02-01

    The high resolution near edge X-ray absorption fine structure spectrum of nitrogen displays the vibrational structure of the core-excited states. This makes nitrogen well suited for assessing the accuracy of different electronic structure methods for core excitations. We report high resolution experimental measurements performed at the SOLEIL synchrotron facility. These are compared with theoretical spectra calculated using coupled cluster theory and algebraic diagrammatic construction theory. The coupled cluster singles and doubles with perturbative triples model known as CC3 is shown to accurately reproduce the experimental excitation energies as well as the spacing of the vibrational transitions. The computational results are also shown to be systematically improved within the coupled cluster hierarchy, with the coupled cluster singles, doubles, triples, and quadruples method faithfully reproducing the experimental vibrational structure.

  7. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    NASA Astrophysics Data System (ADS)

    Egidi, Franco; Segado, Mireia; Koch, Henrik; Cappelli, Chiara; Barone, Vincenzo

    2014-12-01

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π*, π-π*, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  8. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egidi, Franco, E-mail: franco.egidi@sns.it; Segado, Mireia; Barone, Vincenzo, E-mail: vincenzo.barone@sns.it

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π{sup *}, π-π{sup *}, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  9. Excitation on the Coherent States of Pseudoharmonic Oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popov, Dusan; Pop, Nicolina; Sajfert, Vjekoslav

    In the last decades, much attention has been paid to the excitation on coherent states, especially for coherent states of the harmonic oscillator ([1] and references therein). But an interesting anharmonic oscillator with many potential applications is also the pseudoharmonic oscillator (PHO). So, in the present paper we have defined the excitation on the Klauder-Perelomov coherent states (E-KP-CSs) for the PHO. These states are obtained by repeatedly operating the raising operator K{sub +} on a usual Klauder-Perelomov coherent state (KP-CS) of the PHO [2]. We have verified that really, the E-KP-CSs fulfill all the properties of the coherent states, asmore » stated by Klauder [3]. We have examined the nonclassical properties of the E-KP-CSs, by using the density matrix formalism and examining the dependence of the Mandel parameter Q{sub z,k;m}(|z|{sup 2}) on the |z|{sup 2} and on the m. It seems that these states can be used in optical communication field and in the physics of quantum information, as signal beams, due to the fact that in these fields the nonclassicality plays an important role.« less

  10. Model Calculations with Excited Nuclear Fragmentations and Implications of Current GCR Spectra

    NASA Astrophysics Data System (ADS)

    Saganti, Premkumar

    As a result of the fragmentation process in nuclei, energy from the excited states may also contribute to the radiation damage on the cell structure. Radiation induced damage to the human body from the excited states of oxygen and several other nuclei and its fragments are of a concern in the context of the measured abundance of the current galactic cosmic rays (GCR) environment. Nuclear Shell model based calculations of the Selective-Core (Saganti-Cucinotta) approach are being expanded for O-16 nuclei fragments into N-15 with a proton knockout and O-15 with a neutron knockout are very promising. In our on going expansions of these nuclear fragmentation model calculations and assessments, we present some of the prominent nuclei interactions from a total of 190 isotopes that were identified for the current model expansion based on the Quantum Multiple Scattering Fragmentation Model (QMSFRG) of Cucinotta. Radiation transport model calculations with the implementation of these energy level spectral characteristics are expected to enhance the understanding of radiation damage at the cellular level. Implications of these excited energy spectral calculations in the assessment of radiation damage to the human body may provide enhanced understanding of the space radiation risk assessment.

  11. The properties of 4'-N,N-dimethylaminoflavonol in the ground and excited states

    NASA Astrophysics Data System (ADS)

    Moroz, V. V.; Chalyi, A. G.; Roshal, A. D.

    2008-09-01

    The mechanism of protonation of 4-N,N-dimethylaminoflavonol and the structure of its protolytic forms in the ground and excited states were studied by electron absorption and fluorescence (steady-state and time-resolved) spectroscopy and with the use of the RM1 quantum-chemical method. A comparison of equilibrium constants and the theoretical enthalpies of formation showed that excitation should be accompanied by the inversion of the basicity of the electron acceptor groups of this compound and, as a consequence, changes in the structure of its monocationic form. An analysis of the spectral parameters of the protolytic 4-N,N-dimethylaminoflavonol forms, however, showed that their structure and the sequence of protonation in the excited state were the same as in the ground state. Changes in the structure of the monocation in the excited state were not observed because of the fast radiationless deactivation of this form and the occurrence of excited state intramolecular proton transfer in aprotic solvents.

  12. Population shuffling between ground and high energy excited states

    PubMed Central

    Sabo, T Michael; Trent, John O; Lee, Donghan

    2015-01-01

    Stochastic processes powered by thermal energy lead to protein motions traversing time-scales from picoseconds to seconds. Fundamental to protein functionality is the utilization of these dynamics for tasks such as catalysis, folding, and allostery. A hierarchy of motion is hypothesized to connect and synergize fast and slow dynamics toward performing these essential activities. Population shuffling predicts a “top-down” temporal hierarchy, where slow time-scale conformational interconversion leads to a shuffling of the free energy landscape for fast time-scale events. Until now, population shuffling was only applied to interconverting ground states. Here, we extend the framework of population shuffling to be applicable for a system interconverting between low energy ground and high energy excited states, such as the SH3 domain mutants G48M and A39V/N53P/V55L from the Fyn tyrosine kinase, providing another tool for accessing the structural dynamics of high energy excited states. Our results indicate that the higher energy gauche− rotameric state for the leucine χ2 dihedral angle contributes significantly to the distribution of rotameric states in both the major and minor forms of the SH3 domain. These findings are corroborated with unrestrained molecular dynamics (MD) simulations on both the major and minor states of the SH3 domain demonstrating high correlations between experimental and back-calculated leucine χ2 rotameric populations. Taken together, we demonstrate how fast time-scale rotameric side-chain population distributions can be extracted from slow time-scale conformational exchange data further extending the scope and the applicability of the population shuffling model. PMID:26316263

  13. Population shuffling between ground and high energy excited states.

    PubMed

    Sabo, T Michael; Trent, John O; Lee, Donghan

    2015-11-01

    Stochastic processes powered by thermal energy lead to protein motions traversing time-scales from picoseconds to seconds. Fundamental to protein functionality is the utilization of these dynamics for tasks such as catalysis, folding, and allostery. A hierarchy of motion is hypothesized to connect and synergize fast and slow dynamics toward performing these essential activities. Population shuffling predicts a "top-down" temporal hierarchy, where slow time-scale conformational interconversion leads to a shuffling of the free energy landscape for fast time-scale events. Until now, population shuffling was only applied to interconverting ground states. Here, we extend the framework of population shuffling to be applicable for a system interconverting between low energy ground and high energy excited states, such as the SH3 domain mutants G48M and A39V/N53P/V55L from the Fyn tyrosine kinase, providing another tool for accessing the structural dynamics of high energy excited states. Our results indicate that the higher energy gauche - rotameric state for the leucine χ2 dihedral angle contributes significantly to the distribution of rotameric states in both the major and minor forms of the SH3 domain. These findings are corroborated with unrestrained molecular dynamics (MD) simulations on both the major and minor states of the SH3 domain demonstrating high correlations between experimental and back-calculated leucine χ2 rotameric populations. Taken together, we demonstrate how fast time-scale rotameric side-chain population distributions can be extracted from slow time-scale conformational exchange data further extending the scope and the applicability of the population shuffling model. © 2015 The Protein Society.

  14. Stability of quantum-dot excited-state laser emission under simultaneous ground-state perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaptan, Y., E-mail: yuecel.kaptan@physik.tu-berlin.de; Herzog, B.; Schöps, O.

    2014-11-10

    The impact of ground state amplification on the laser emission of In(Ga)As quantum dot excited state lasers is studied in time-resolved experiments. We find that a depopulation of the quantum dot ground state is followed by a drop in excited state lasing intensity. The magnitude of the drop is strongly dependent on the wavelength of the depletion pulse and the applied injection current. Numerical simulations based on laser rate equations reproduce the experimental results and explain the wavelength dependence by the different dynamics in lasing and non-lasing sub-ensembles within the inhomogeneously broadened quantum dots. At high injection levels, the observedmore » response even upon perturbation of the lasing sub-ensemble is small and followed by a fast recovery, thus supporting the capacity of fast modulation in dual-state devices.« less

  15. Direct Electron Impact Excitation of Rydberg-Valence States of Molecular Nitrogen

    NASA Astrophysics Data System (ADS)

    Malone, C. P.; Johnson, P. V.; Liu, X.; Ajdari, B.; Muleady, S.; Kanik, I.; Khakoo, M. A.

    2012-12-01

    Collisions between electrons and neutral N2 molecules result in emissions that provide an important diagnostic probe for understanding the ionospheric energy balance and the effects of space weather in upper atmospheres. Also, transitions to singlet ungerade states cause N2 to be a strong absorber of solar radiation in the EUV spectral range where many ro-vibrational levels of these Rydberg-valence (RV) states are predissociative. Thus, their respective excitation and emission cross sections are important parameters for understanding the [N]/[N2] ratio in the thermosphere of nitrogen dominated atmospheres. The following work provides improved constraints on absolute and relative excitation cross sections of numerous RV states of N2, enabling more physically accurate atmospheric modeling. Here, we present recent integral cross sections (ICSs) for electron impact excitation of RV states of N2 [6], which were based on the differential cross sections (DCSs) derived from electron energy-loss (EEL) spectra of [5]. This work resulted in electronic excitation cross sections over the following measured vibrational levels: b 1Πu (v‧=0-14), c3 1Πu (v‧=0-3), o3 1Πu (v‧=0-3), b‧ 1Σu+ (v‧=0-10), c‧4 1Σu+ (v‧=0-3), G 3Πu (v‧=0-3), and F 3Πu (v‧=0-3). We further adjusted the cross sections of the RV states by extending the vibronic contributions to unmeasured v‧-levels via the relative excitation probabilities (REPs) as discussed in [6]. This resulted in REP-scaled ICSs over the following vibrational levels for the singlet ungerade states: b(0-19), c3(0-4), o3(0-4), b‧(0-16), and c‧4(0-8). Comparison of the ICSs of [6] with available EEL based measurements, theoretical calculations, and emission based work generally shows good agreement within error estimations, except with the recent reevaluation provided by [1]. Further, we have extended these results, using the recent EEL data of [3], to include the unfolding of better resolved features above ~13

  16. Spectroscopic Diagnosis of Excited-State Aromaticity: Capturing Electronic Structures and Conformations upon Aromaticity Reversal.

    PubMed

    Oh, Juwon; Sung, Young Mo; Hong, Yongseok; Kim, Dongho

    2018-03-06

    Aromaticity, the special energetic stability derived from cyclic [4 n + 2]π-conjugated electronic structures, has been the topic of intense interest in chemistry because it plays a critical role in rationalizing molecular stability, reactivity, and physical/chemical properties. Recently, the pioneering work by Colin Baird on aromaticity reversal, postulating that aromatic (antiaromatic) character in the ground state reverses to antiaromatic (aromatic) character in the lowest excited triplet state, has attracted much scientific attention. The completely reversed aromaticity in the excited state provides direct insight into understanding the photophysical/chemical properties of photoactive materials. In turn, the application of aromatic molecules to photoactive materials has led to numerous studies revealing this aromaticity reversal. However, most studies of excited-state aromaticity have been based on the theoretical point of view. The experimental evaluation of aromaticity in the excited state is still challenging and strenuous because the assessment of (anti)aromaticity with conventional magnetic, energetic, and geometric indices is difficult in the excited state, which practically restricts the extension and application of the concept of excited-state aromaticity. Time-resolved optical spectroscopies can provide a new and alternative avenue to evaluate excited-state aromaticity experimentally while observing changes in the molecular features in the excited states. Time-resolved optical spectroscopies take advantage of ultrafast laser pulses to achieve high time resolution, making them suitable for monitoring ultrafast changes in the excited states of molecular systems. This can provide valuable information for understanding the aromaticity reversal. This Account presents recent breakthroughs in the experimental assessment of excited-state aromaticity and the verification of aromaticity reversal with time-resolved optical spectroscopic measurements. To

  17. Excited-state thermionic emission in III-antimonides: Low emittance ultrafast photocathodes

    NASA Astrophysics Data System (ADS)

    Berger, Joel A.; Rickman, B. L.; Li, T.; Nicholls, A. W.; Andreas Schroeder, W.

    2012-11-01

    The normalized rms transverse emittance of an electron source is shown to be proportional to √m* , where m* is the effective mass of the state from which the electron is emitted, by direct observation of the transverse momentum distribution for excited-state thermionic emission from two III-V semiconductor photocathodes, GaSb and InSb, together with a control experiment employing two-photon emission from gold. Simulations of the experiment using an extended analytical Gaussian model of electron pulse propagation are in close agreement with the data.

  18. Deciphering excited state evolution in halorhodopsin with stimulated emission pumping.

    PubMed

    Bismuth, Oshrat; Komm, Pavel; Friedman, Noga; Eliash, Tamar; Sheves, Mordechai; Ruhman, Sanford

    2010-03-04

    The primary photochemical dynamics of Hb. pharaonis Halorhodopsin (pHR) are investigated by femtosecond visible pump-near IR dump-hyperspectral probe spectroscopy. The efficiency of excited state depletion is deduced from transient changes in absorption, recorded with and without stimulated emission pumping (SEP), as a function of the dump delay. The concomitant reduction of photocycle population is assessed by probing the "K" intermediate difference spectrum. Results show that the cross section for stimulating emission is nearly constant throughout the fluorescent state lifetime. Probing "K" demonstrates that dumping produces a proportionate reduction in photocycle yields. We conclude that, despite its nonexponential internal conversion (IC) kinetics, the fluorescent state in pHR constitutes a single intermediate in the photocycle. This contrasts with conclusions drawn from the study of primary events in the related chloride pump from Hb. salinarum (sHR), believed to produce the "K" intermediate from a distinct short-lived subpopulation in the excited state. Our discoveries concerning internal conversion dynamics in pHR are discussed in light of recent expectations for similar excited state dynamics in both proteins.

  19. Energy Dispersive XAFS: Characterization of Electronically Excited States of Copper(I) Complexes

    PubMed Central

    2013-01-01

    Energy dispersive X-ray absorption spectroscopy (ED-XAS), in which the whole XAS spectrum is acquired simultaneously, has been applied to reduce the real-time for acquisition of spectra of photoinduced excited states by using a germanium microstrip detector gated around one X-ray bunch of the ESRF (100 ps). Cu K-edge XAS was used to investigate the MLCT states of [Cu(dmp)2]+ (dmp =2,9-dimethyl-1,10-phenanthroline) and [Cu(dbtmp)2]+ (dbtmp =2,9-di-n-butyl-3,4,7,8-tetramethyl-1,10-phenanthroline) with the excited states created by excitation at 450 nm (10 Hz). The decay of the longer lived complex with bulky ligands, was monitored for up to 100 ns. DFT calculations of the longer lived MLCT excited state of [Cu(dbp)2]+ (dbp =2,9-di-n-butyl-1,10-phenanthroline) with the bulkier diimine ligands, indicated that the excited state behaves as a Jahn–Teller distorted Cu(II) site, with the interligand dihedral angle changing from 83 to 60° as the tetrahedral coordination geometry flattens and a reduction in the Cu–N distance of 0.03 Å. PMID:23718738

  20. Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging.

    PubMed

    Levy, Elizabeth S; Tajon, Cheryl A; Bischof, Thomas S; Iafrati, Jillian; Fernandez-Bravo, Angel; Garfield, David J; Chamanzar, Maysamreza; Maharbiz, Michel M; Sohal, Vikaas S; Schuck, P James; Cohen, Bruce E; Chan, Emory M

    2016-09-27

    Near infrared (NIR) microscopy enables noninvasive imaging in tissue, particularly in the NIR-II spectral range (1000-1400 nm) where attenuation due to tissue scattering and absorption is minimized. Lanthanide-doped upconverting nanocrystals are promising deep-tissue imaging probes due to their photostable emission in the visible and NIR, but these materials are not efficiently excited at NIR-II wavelengths due to the dearth of lanthanide ground-state absorption transitions in this window. Here, we develop a class of lanthanide-doped imaging probes that harness an energy-looping mechanism that facilitates excitation at NIR-II wavelengths, such as 1064 nm, that are resonant with excited-state absorption transitions but not ground-state absorption. Using computational methods and combinatorial screening, we have identified Tm(3+)-doped NaYF4 nanoparticles as efficient looping systems that emit at 800 nm under continuous-wave excitation at 1064 nm. Using this benign excitation with standard confocal microscopy, energy-looping nanoparticles (ELNPs) are imaged in cultured mammalian cells and through brain tissue without autofluorescence. The 1 mm imaging depths and 2 μm feature sizes are comparable to those demonstrated by state-of-the-art multiphoton techniques, illustrating that ELNPs are a promising class of NIR probes for high-fidelity visualization in cells and tissue.

  1. Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Tassle, Aaron Justin

    This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer statemore » and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.« less

  2. Characterization of Different Types of Excitability in Large Somatosensory Neurons and Its Plastic Changes in Pathological Pain States

    PubMed Central

    Xie, Rou-Gang; Chu, Wen-Guang; Hu, San-Jue; Luo, Ceng

    2018-01-01

    Sensory neuron types have been distinguished by distinct morphological and transcriptional characteristics. Excitability is the most fundamental functional feature of neurons. Mathematical models described by Hodgkin have revealed three types of neuronal excitability based on the relationship between firing frequency and applied current intensity. However, whether natural sensory neurons display different functional characteristics in terms of excitability and whether this excitability type undergoes plastic changes under pathological pain states have remained elusive. Here, by utilizing whole-cell patch clamp recordings, behavioral and pharmacological assays, we demonstrated that large dorsal root ganglion (DRG) neurons can be classified into three classes and four subclasses based on their excitability patterns, which is similar to mathematical models raised by Hodgkin. Analysis of hyperpolarization-activated cation current (Ih) revealed different magnitude of Ih in different excitability types of large DRG neurons, with higher Ih in Class 2-1 than that in Class 1, 2-2 and 3. This indicates a crucial role of Ih in the determination of excitability type of large DRG neurons. More importantly, this pattern of excitability displays plastic changes and transition under pathological pain states caused by peripheral nerve injury. This study sheds new light on the functional characteristics of large DRG neurons and extends functional classification of large DRG neurons by integration of transcriptomic and morphological characteristics. PMID:29303989

  3. A theoretical and experimental benchmark study of core-excited states in nitrogen

    DOE PAGES

    Myhre, Rolf H.; Wolf, Thomas J. A.; Cheng, Lan; ...

    2018-02-14

    The high resolution near edge X-ray absorption fine structure spectrum of nitrogen displays the vibrational structure of the core-excited states. This makes nitrogen well suited for assessing the accuracy of different electronic structure methods for core excitations. We report high resolution experimental measurements performed at the SOLEIL synchrotron facility. These are compared with theoretical spectra calculated using coupled cluster theory and algebraic diagrammatic construction theory. The coupled cluster singles and doubles with perturbative triples model known as CC3 is shown to accurately reproduce the experimental excitation energies as well as the spacing of the vibrational transitions. In conclusion, the computationalmore » results are also shown to be systematically improved within the coupled cluster hierarchy, with the coupled cluster singles, doubles, triples, and quadruples method faithfully reproducing the experimental vibrational structure.« less

  4. A theoretical and experimental benchmark study of core-excited states in nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myhre, Rolf H.; Wolf, Thomas J. A.; Cheng, Lan

    The high resolution near edge X-ray absorption fine structure spectrum of nitrogen displays the vibrational structure of the core-excited states. This makes nitrogen well suited for assessing the accuracy of different electronic structure methods for core excitations. We report high resolution experimental measurements performed at the SOLEIL synchrotron facility. These are compared with theoretical spectra calculated using coupled cluster theory and algebraic diagrammatic construction theory. The coupled cluster singles and doubles with perturbative triples model known as CC3 is shown to accurately reproduce the experimental excitation energies as well as the spacing of the vibrational transitions. In conclusion, the computationalmore » results are also shown to be systematically improved within the coupled cluster hierarchy, with the coupled cluster singles, doubles, triples, and quadruples method faithfully reproducing the experimental vibrational structure.« less

  5. Di-lepton yield from the decay of excited 28Si states

    NASA Astrophysics Data System (ADS)

    Bacelar, J. C.; Buda, A.; Bałanda, A.; Krasznahorkay, A.; van der Ploeg, H.; Sujkowski, Z.; van der Woude, A.

    1994-03-01

    The first dilepton yield measurements from excited nuclear states obtained with a new Positron-Electron Pair Spectroscopic Instrument (PEPSI) are reported. Nuclear states in 28Si, with an initial excitation energy E∗ = 50 MeV, were populated via the isospin T = 0 reaction 4He + 24Mg and the mixed-isospin 3He + 25Mg reaction. In both reactions the dilepton (e +e -) and photon decay yields were measured concurrently. An excess of counts in the e +e - spectrum, over the converted photon yield, is observed in the energy region above 15 MeV. An analyses is discussed whereby the observed excess counts are assumed to represent the isoscalar E0 strength in excited nuclear states.

  6. Branching ratios of α-decay to ground and excited states of Fm, Cf, Cm and Pu

    NASA Astrophysics Data System (ADS)

    Hassanabadi, H.; Hosseini, S. S.

    2018-06-01

    We use the well-known Wentzel-Kramers-Brillouin (WKB) barrier penetration probability to calculate α-decay branching ratios for ground and excited states of heavy even-even nuclei of Fermium (248-254Fm), Californium (244-252Cf), Curium (238-248Cm) and Plutonium (234-244Pu) with 94 ≤Zp ≤100. We obtained the branching ratios for the excited states of daughter nucleus by the α-decay energy (Qα), the angular momentum of α-particle (ℓα), and the excitation probability of the daughter nucleus with the excitation energy of state ℓ in the daughter nucleus (i.e. Eℓ*). α-Decay half-lives have been evaluated by using the proximity potential model for the heavy even-even nuclei. We have reported the half-lives and compared the results with the experimental data. The theoretical branching ratios of α-transitions in our calculation are found to agree with the available experimental data well for 0+→ 0+, 0+→ 2+, 0+→ 4+, 0+→ 6+ and 0+ → 8+α-transitions.

  7. Optical properties of an inhomogeneously broadened ΛV-system with multiple excited states

    NASA Astrophysics Data System (ADS)

    Kaur, Paramjit; Bharti, Vineet; Wasan, Ajay

    2014-09-01

    We present a theoretical model using a density matrix approach to show the influence of multiple excited states on the optical properties of an inhomogeneously broadened ?V-system of the ?Rb D2 line. These closely spaced multiple excited states cause asymmetry in absorption and dispersion profiles. We observe the reduced absorption profiles, due to dressed state interactions of the applied electromagnetic fields, which results the Mollow sideband-like transparency windows. In a room temperature vapor, we obtain a narrow enhanced absorption and steep positive dispersion at the line center when the strengths of control and pump fields are equal. Here, we show how the probe transmittance varies when it passes through the atomic medium. We also discuss the transient behavior of our system which agrees well with the corresponding absorption and dispersion profiles. This study has potential applications in controllability of group velocity, and for optical and quantum information processing.

  8. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  9. The excited spin-triplet state of a charged exciton in quantum dots.

    PubMed

    Molas, M R; Nicolet, A A L; Piętka, B; Babiński, A; Potemski, M

    2016-09-14

    We report on spectroscopic studies of resonances related to ladder of states of a charged exciton in single GaAlAs/AlAs quantum dot structures. Polarization-resolved photoluminescence, photoluminescence excitation and photon-correlation measurements were performed at low (T  =  4.2 K) temperature also in magnetic field applied in Faraday configuration. The investigated resonances are assigned to three different configurations of a positively charged exciton. Together with a singlet ground state and a conventional triplet state (involving an electron from the ground state electronic s-shell), an excited triplet state, which involved an electron from the excited electronic p-shell was identified in single dots. The appearance of an emission line related to the latter complex is due to a partially suppressed electron relaxation in the investigated dots. An analysis of this emission line allows us to scrupulously determine properties of the excited triplet state and compare them with those of the conventional triplet state. Both triplets exhibit similar patterns of anisotropic fine structure and Zeeman splitting, however their amplitudes significantly differ for those two states. Presented results emphasize the role of the symmetry of the electronic state on the properties of the triplet states of two holes  +  electron excitonic complex.

  10. Ultrafast excited-state deactivation of 9-methylhypoxanthine in aqueous solution: A QM/MM MD study.

    PubMed

    Guo, Xugeng; Yuan, Huijuan; An, Beibei; Zhu, Qiuling; Zhang, Jinglai

    2016-04-21

    Photoinduced ultrafast non-adiabatic decay of 9-methylhypoxanthine (9MHPX) in aqueous solution was investigated by ab initio surface-hopping dynamics calculations using a combined quantum mechanical/molecular mechanical approach. The absorption spectra of 9MHPX in aqueous solution were also explored by the hybrid cluster-continuum model at the level of time-dependent density functional theory along with the polarizable continuum model (PCM). The static electronic-structure calculations indicate that the absorption spectra of 9MHPX simulated by TD-B3LYP/PCM and TD-X3LYP/PCM can reproduce very well the experimental findings, with the accuracy of about 0.20 eV. According to dynamics simulations, irradiation of 9MHPX populates the bright excited singlet S1 state, which may undergo an ultrafast non-radiative deactivation to the S0 state. The lifetime of the S1 state of 9MHPX in aqueous solution is predicted to be 115.6 fs, slightly longer than that in the gas phase (88.8 fs), suggesting that the solventwater has no significant influence on the excited-state lifetime of 9MHPX. Such a behavior in 9MHPX is distinctly different from its parent hypoxanthine keto-N9H tautomer in which the excited-state lifetime of the latter in watersolution was remarkably enhanced as compared to the gas phase. The significant difference of the photodynamical behaviors between 9MHPX and keto-N9H can be ascribed to their different hydrogen bond environment in aqueous solution.

  11. Real-time ab initio simulations of excited-state dynamics in nanostructures

    NASA Astrophysics Data System (ADS)

    Tomanek, David

    2007-03-01

    Combining time-dependent ab initio density functional calculations for electrons with molecular dynamics simulations for ions, we investigate the effect of excited-state dynamics in nanostructures. In carbon nanotubes, we find electronic excitations to last for a large fraction of a picosecond. The de-excitation process is dominated by coupling to other electronic degrees of freedom during the first few hundred femtoseconds. Later, the de-excitation process becomes dominated by coupling to ionic motion. The onset point and damping rate in that regime change with initial ion velocities, a manifestation of temperature dependent electron-phonon coupling. Considering the fact that the force field in the electronically excited state differs significantly from the ground state, as reflected in the Franck-Condon effect, atomic bonds can easily be broken or restored during the relatively long lifetime of electronic excitations. This effect can be utilized in a ``photo-surgery" of nanotubes, causing structural self-healing at vacancy sites or selective de-oxidation processes induced by photo-absorption. Also, electronic excitations are a key ingredient for the understanding of sputtering processes in nanostructures, induced by energetic collisions with ions. Yoshiyuki Miyamoto, Angel Rubio, and David Tomanek, Phys. Rev. Lett. 97, 126104 (2006). Yoshiyuki Miyamoto, Savas Berber, Mina Yoon, Angel Rubio, and David Tomanek, Chem. Phys. Lett. 392, 209 (2004). Yoshiyuki Miyamoto, Noboru Jinbo, Hisashi Nakamura, Angel Rubio, and David Tomanek, Phys. Rev. B 70, 233408 (2004). Yoshiyuki Miyamoto, Arkady Krasheninnikov, and David Tomanek (in preparation).

  12. Jahn-Teller distortion in the phosphorescent excited state of three-coordinate Au(I) phosphine complexes.

    PubMed

    Barakat, Khaldoon A; Cundari, Thomas R; Omary, Mohammad A

    2003-11-26

    DFT calculations were used to optimize the phosphorescent excited state of three-coordinate [Au(PR3)3]+ complexes. The results indicate that the complexes rearrange from their singlet ground-state trigonal planar geometry to a T-shape in the lowest triplet luminescent excited state. The optimized structure of the exciton contradicts the structure predicted based on the AuP bonding properties of the ground-state HOMO and LUMO. The rearrangement to T-shape is a Jahn-Teller distortion because an electron is taken from the degenerate e' (5dxy, 5dx2-y2) orbital upon photoexcitation of the ground-state D3h complex. The calculated UV absorption and visible emission energies are consistent with the experimental data and explain the large Stokes' shifts while such correlations are not possible in optimized models that constrained the exciton to the ground-state trigonal geometry.

  13. Refinements in the description of excited VRT states of the water dimer

    NASA Astrophysics Data System (ADS)

    Harker, H. A.; Keutsch, F. N.; Leforestier, C.; Scribano, Y.; Han, J.-X.; Saykally, R. J.

    2007-03-01

    Extensive new spectroscopic measurements are combined with a global analysis of the ground state data in order to re-examine and to refine the description of the excited vibration rotation tunneling (VRT) states of the water dimer. Notably, six new 'donor torsion' subbands are analytically identified, current vibrational assignments of the Ka = 1 stacks are reassessed, the previously reported (H2O)2 donor torsion overtone (DT)2 and hydrogen bond stretch (S) data sets are augmented, and four new (S) subbands have been measured. Unusually large Coriolis effects are predicted, excited state E2 ↔ E1 assignments are reinforced, and possibilities of experimentally determining ground state AS splitting in (H2O)2 from excited state data are discussed.

  14. Watson-Crick base pairing controls excited-state decay in natural DNA.

    PubMed

    Bucher, Dominik B; Schlueter, Alexander; Carell, Thomas; Zinth, Wolfgang

    2014-10-13

    Excited-state dynamics are essential to understanding the formation of DNA lesions induced by UV light. By using femtosecond IR spectroscopy, it was possible to determine the lifetimes of the excited states of all four bases in the double-stranded environment of natural DNA. After UV excitation of the DNA duplex, we detected a concerted decay of base pairs connected by Watson-Crick hydrogen bonds. A comparison of single- and double-stranded DNA showed that the reactive charge-transfer states formed in the single strands are suppressed by base pairing in the duplex. The strong influence of the Watson-Crick hydrogen bonds indicates that proton transfer opens an efficient decay path in the duplex that prohibits the formation or reduces the lifetime of reactive charge-transfer states. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. An efficient implementation of semiempirical quantum-chemical orthogonalization-corrected methods for excited-state dynamics

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Thiel, Walter

    2018-04-01

    We present an efficient implementation of configuration interaction with single excitations (CIS) for semiempirical orthogonalization-corrected OMx methods and standard modified neglect of diatomic overlap (MNDO)-type methods for the computation of vertical excitation energies as well as analytical gradients and nonadiabatic couplings. This CIS implementation is combined with Tully's fewest switches algorithm to enable surface hopping simulations of excited-state nonadiabatic dynamics. We introduce an accurate and efficient expression for the semiempirical evaluation of nonadiabatic couplings, which offers a significant speedup for medium-size molecules and is suitable for use in long nonadiabatic dynamics runs. As a pilot application, the semiempirical CIS implementation is employed to investigate ultrafast energy transfer processes in a phenylene ethynylene dendrimer model.

  16. An efficient implementation of semiempirical quantum-chemical orthogonalization-corrected methods for excited-state dynamics.

    PubMed

    Liu, Jie; Thiel, Walter

    2018-04-21

    We present an efficient implementation of configuration interaction with single excitations (CIS) for semiempirical orthogonalization-corrected OMx methods and standard modified neglect of diatomic overlap (MNDO)-type methods for the computation of vertical excitation energies as well as analytical gradients and nonadiabatic couplings. This CIS implementation is combined with Tully's fewest switches algorithm to enable surface hopping simulations of excited-state nonadiabatic dynamics. We introduce an accurate and efficient expression for the semiempirical evaluation of nonadiabatic couplings, which offers a significant speedup for medium-size molecules and is suitable for use in long nonadiabatic dynamics runs. As a pilot application, the semiempirical CIS implementation is employed to investigate ultrafast energy transfer processes in a phenylene ethynylene dendrimer model.

  17. Search for excited states of light and heavy flavor quarks in the $$\\gamma$$+jet final state in proton-proton collisions at $$\\sqrt{s} =$$ 13 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    A search is presented for excited quarks of light and heavy flavor that decay tomore » $$\\gamma$$+jet final states. The analysis is based on data corresponding to an integrated luminosity of 35.9 fb$$^{-1}$$ collected by the CMS experiment in proton-proton collisions at $$\\sqrt{s}=$$ 13 TeV at the LHC. A signal would appear as a resonant contribution to the invariant mass spectrum of the $$\\gamma$$+jet system, above the background expected from standard model processes. No resonant excess is found, and upper limits are set on the product of the excited quark cross section and its branching fraction as a function of its mass. These are the most stringent limits to date in the $$\\gamma$$+jet final state, and exclude excited light quarks with masses below 5.5 TeV and excited b quarks with masses below 1.8 TeV, assuming standard model couplings.« less

  18. Carbon nanorings with inserted acenes: Breaking symmetry in excited state dynamics

    DOE PAGES

    Franklin-Mergarejo, R.; Alvarez, D. Ondarse; Tretiak, S.; ...

    2016-08-10

    Conjugated cycloparaphenylene rings have unique electronic properties being the smallest segments of carbon nanotubes. Their conjugated backbones support delocalized electronic excitations, which dynamics is strongly influenced by cyclic geometry. Here we present a comparative theoretical study of the electronic and vibrational energy relaxation and redistribution in photoexcited cycloparaphenylene carbon nanorings with inserted naphthalene, anthracene, and tetracene units using non-adiabatic excited-state molecular dynamics simulations. Calculated excited state structures reflect modifications of optical selection rules and appearance of low-energy electronic states localized on the acenes due to gradual departure from a perfect circular symmetry. After photoexcitation, an ultrafast electronic energy relaxation tomore » the lowest excited state is observed on the time scale of hundreds of femtoseconds in all molecules studied. Concomitantly, the efficiency of the exciton trapping in the acene raises when moving from naphthalene to anthracene and to tetracene, being negligible in naphthalene, and ~60% and 70% in anthracene and tetracene within the first 500 fs after photoexcitation. Observed photoinduced dynamics is further analyzed in details using induced molecular distortions, delocatization properties of participating electronic states and non-adiabatic coupling strengths. Lastly, our results provide a number of insights into design of cyclic molecular systems for electronic and light-harvesting applications.« less

  19. Emergence of nontrivial magnetic excitations in a spin-liquid state of kagomé volborthite

    PubMed Central

    Watanabe, Daiki; Sugii, Kaori; Shimozawa, Masaaki; Suzuki, Yoshitaka; Yajima, Takeshi; Ishikawa, Hajime; Hiroi, Zenji; Shibauchi, Takasada; Matsuda, Yuji; Yamashita, Minoru

    2016-01-01

    When quantum fluctuations destroy underlying long-range ordered states, novel quantum states emerge. Spin-liquid (SL) states of frustrated quantum antiferromagnets, in which highly correlated spins fluctuate down to very low temperatures, are prominent examples of such quantum states. SL states often exhibit exotic physical properties, but the precise nature of the elementary excitations behind such phenomena remains entirely elusive. Here, we use thermal Hall measurements that can capture the unexplored property of the elementary excitations in SL states, and report the observation of anomalous excitations that may unveil the unique features of the SL state. Our principal finding is a negative thermal Hall conductivity κxy which the charge-neutral spin excitations in a gapless SL state of the 2D kagomé insulator volborthite Cu3V2O7(OH)2⋅2H2O exhibit, in much the same way in which charged electrons show the conventional electric Hall effect. We find that κxy is absent in the high-temperature paramagnetic state and develops upon entering the SL state in accordance with the growth of the short-range spin correlations, demonstrating that κxy is a key signature of the elementary excitation formed in the SL state. These results suggest the emergence of nontrivial elementary excitations in the gapless SL state which feel the presence of fictitious magnetic flux, whose effective Lorentz force is found to be less than 1/100 of the force experienced by free electrons. PMID:27439874

  20. Characterization of the excited states of a squaraine molecule with quadratic electroabsorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Poga, C.; Brown, T. M.; Kuzyk, M. G.; Dirk, Carl W.

    1995-04-01

    We apply quadratic electroabsorption spectroscopy (QES) to thin-film solid solutions of squarylium dye molecules in poly(methyl methacrylate) polymer to study the dye's electronic excited states and to investigate the importance of these states with regard to their contribution to the third-order nonlinear-optical susceptibility. We first show that the room-temperature tensor ratio a= chi (3)3333/ chi (3)1133 \\approximately 3 throughout most of the visible region to establish that the electronic mechanism dominates. Because QES is a third-order nonlinear-optical susceptibility measurement, it can be used to identify two photon states. By obtaining good agreement between the quadratic electroabsorption spectrum and a three level model, we conclude that there are two dominant states that contribute to the near-resonant and a two-photon state that are separated by less than 0.2 eV in energy. QES is thus shown to be a versatile tool for measuring the nature of excited states in a molecule. Furthermore, by applying a Kramers-Kronig transformation to determine the real part of the response, we are able to assess the two-photon all-optical device figure of merit of these materials. Such an

  1. Spin-vibronic quantum dynamics for ultrafast excited-state processes.

    PubMed

    Eng, Julien; Gourlaouen, Christophe; Gindensperger, Etienne; Daniel, Chantal

    2015-03-17

    . Counterintuitively, singlet excited-state lifetime increases on going from Cl (85 fs) to Br (128 fs) and to I (152 fs). Moreover, correlation between the Re-X stretching mode and the rate of ISC is observed. In this Account, we emphasize on the role of spin-vibronic coupling on the mechanism of ultrafast ISC put in evidence in [Re(Br)(CO)3(bpy)]. For this purpose, we have developed a model Hamiltonian for solving an 11 electronic excited states multimode problem including vibronic and SO coupling within the linear vibronic coupling (LVC) approximation and the assumption of harmonic potentials. The presence of a central metal atom coupled to rigid ligands, such as α-diimine, ensures nuclear motion of small amplitudes and a priori justifies the use of the LVC model. The simulation of the ultrafast dynamics by wavepacket propagations using the multiconfiguration time-dependent Hartree (MCTDH) method is based on density functional theory (DFT), and its time-dependent extension to excited states (TD-DFT) electronic structure data. We believe that the interplay between time-resolved experiments and these pioneering simulations covering the first picoseconds and including spin-vibronic coupling will promote a number of quantum dynamical studies that will contribute to a better understanding of ultrafast processes in a wide range of organic and inorganic chromophores easily incorporated in biosystems or supramolecular devices for specific functions.

  2. Nuclear equation of state from ground and collective excited state properties of nuclei

    NASA Astrophysics Data System (ADS)

    Roca-Maza, X.; Paar, N.

    2018-07-01

    This contribution reviews the present status on the available constraints to the nuclear equation of state (EoS) around saturation density from nuclear structure calculations on ground and collective excited state properties of atomic nuclei. It concentrates on predictions based on self-consistent mean-field calculations, which can be considered as an approximate realization of an exact energy density functional (EDF). EDFs are derived from effective interactions commonly fitted to nuclear masses, charge radii and, in many cases, also to pseudo-data such as nuclear matter properties. Although in a model dependent way, EDFs constitute nowadays a unique tool to reliably and consistently access bulk ground state and collective excited state properties of atomic nuclei along the nuclear chart as well as the EoS. For comparison, some emphasis is also given to the results obtained with the so called ab initio approaches that aim at describing the nuclear EoS based on interactions fitted to few-body data only. Bridging the existent gap between these two frameworks will be essential since it may allow to improve our understanding on the diverse phenomenology observed in nuclei. Examples on observations from astrophysical objects and processes sensitive to the nuclear EoS are also briefly discussed. As the main conclusion, the isospin dependence of the nuclear EoS around saturation density and, to a lesser extent, the nuclear matter incompressibility remain to be accurately determined. Experimental and theoretical efforts in finding and measuring observables specially sensitive to the EoS properties are of paramount importance, not only for low-energy nuclear physics but also for nuclear astrophysics applications.

  3. Electronic Excitations in Solution: The Interplay between State Specific Approaches and a Time-Dependent Density Functional Theory Description.

    PubMed

    Guido, Ciro A; Jacquemin, Denis; Adamo, Carlo; Mennucci, Benedetta

    2015-12-08

    We critically analyze the performances of continuum solvation models when coupled to time-dependent density functional theory (TD-DFT) to predict solvent effects on both absorption and emission energies of chromophores in solution. Different polarization schemes of the polarizable continuum model (PCM), such as linear response (LR) and three different state specific (SS) approaches, are considered and compared. We show the necessity of introducing a SS model in cases where large electron density rearrangements are involved in the excitations, such as charge-transfer transitions in both twisted and quadrupolar compounds, and underline the very delicate interplay between the selected polarization method and the chosen exchange-correlation functional. This interplay originates in the different descriptions of the transition and ground/excited state multipolar moments by the different functionals. As a result, the choice of both the DFT functional and the solvent polarization scheme has to be consistent with the nature of the studied electronic excitation.

  4. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    DOE PAGES

    Zhang, Wenkai; Kjaer, Kasper S.; Alonso-Mori, Roberto; ...

    2016-08-25

    Developing light-harvesting and photocatalytic molecules made with iron could provide a cost effective, scalable, and environmentally benign path for solar energy conversion. To date these developments have been limited by the sub-picosecond metal-to-ligand charge transfer (MLCT) electronic excited state lifetime of iron based complexes due to spin crossover – the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand iron complexes with four cyanide (CN –) ligands and one 2,2'-bipyridine (bpy) ligand. This enablesmore » MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN) 4(bpy)] 2–. The two experimental techniques are highly complementary; the time-resolved UV-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kβ fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. Here, we conclude that the MLCT excited state of [Fe(CN) 4(bpy)] 2– decays with roughly a 20 ps lifetime without undergoing spin crossover, exceeding the MLCT excited state lifetime of [Fe(2,2'-bipyridine) 3] 2+ by more than two orders of magnitude.« less

  5. Excited-state dynamics of the medicinal pigment curcumin in a hydrogel.

    PubMed

    Harada, Takaaki; Lincoln, Stephen F; Kee, Tak W

    2016-10-12

    Curcumin is a yellow polyphenol with multiple medicinal effects. These effects, however, are limited due to its poor aqueous stability and solubility. A hydrogel of 3% octadecyl randomly substituted polyacrylate (PAAC18) has been shown to provide high aqueous stability for curcumin under physiological conditions, offering a route for photodynamic therapy. In this study, the excited-state photophysics of curcumin in the PAAC18 hydrogel is investigated using a combination of femtosecond transient absorption and fluorescence upconversion spectroscopy. The transient absorption results reveal a multiexponential decay in the excited-state kinetics with fast (1 ps & 15 ps) and slow (110 ps & ≈5 ns) components. The fast decay component exhibits a deuterium isotope effect with D 2 O in the hydrogel, indicating that the 15 ps decay component is attributable to excited-state intramolecular hydrogen atom transfer of curcumin in the PAAC18 hydrogel. In addition, solvent reorganisation of excited-state curcumin is investigated using multiwavelength femtosecond fluorescence upconversion spectroscopy. The results show that the dominant solvation response (τ = 0.08 ps) is a fast inertial motion owing to the presence of bulk-like water in the vicinity of the hydrophobic octadecyl substituents of the PAAC18 hydrogel. The results also show an additional response with longer time constants of 1 and 6 ps, which is attributable to translational diffusion of confined water molecules in the three-dimensional, cross-linking network of the octadecyl substituents of PAAC18. Overall, we show that excited-state intramolecular hydrogen atom transfer and solvent reorganisation are major photophysical events for curcumin in the PAAC18 hydrogel.

  6. Many-electron aspects of molecular promotion in ion-atom collisions - Production of core-excited states of Li in Li/+/-He collisions

    NASA Technical Reports Server (NTRS)

    Elston, S. B.; Vane, C. R.; Schumann, S.

    1979-01-01

    Production of core-excited autoionizing states of neutral Li having configurations of the form 1snln(prime)l(prime) has been observed over the impact-energy range from 10-50 keV. Although the results for production of all such states is remarkably consistent with a quasi-molecular-excitation model proposed by Stolterfoht and Leithaeuser (1976), production of individual lines in the observed spectra exhibits collision-velocity dependencies indicative of considerably more complex processes, including processes which appear to be inherently two-electron in nature. Excitation functions are presented for (1s2s/2/)/2/S, 1s(2s2p/3/P)/2/P, 1s(2s2p/1/P)/2/P, and (1s2p/2/)/2/D core-excited state of Li and for total core excitation.

  7. Resolving the excited state equilibrium of peridinin in solution.

    PubMed

    Papagiannakis, Emmanouil; Larsen, Delmar S; van Stokkum, Ivo H M; Vengris, Mikas; Hiller, Roger G; van Grondelle, Rienk

    2004-12-14

    The carotenoid peridinin is abundant in the biosphere, as it is the main pigment bound by the light-harvesting complexes of dinoflagellates, where it collects blue and green sunlight and transfers energy to chlorophyll a with high efficiency. Its molecular structure is particularly complex, giving rise to an intricate excited state manifold, which includes a state with charge-transfer character. To disentangle the excited states of peridinin and understand their function in vivo, we applied dispersed pump-probe and pump-dump-probe spectroscopy. The preferential depletion of population from the intramolecular charge transfer state by the dump pulse demonstrates that the S(1) and this charge transfer state are distinct entities. The ensuing dump-induced dynamics illustrates the equilibration of the two states which occurs on the time scale of a few picoseconds. Additionally, the dump pulse populates a short-lived ground state intermediate, which is suggestive of a complex relaxation pathway, probably including structural reorientation or solvation of the ground state. These findings indicate that the unique intramolecular charge transfer state of peridinin is an efficient energy donor to chlorophyll a in the peridinin-chlorophyll-protein complex and thus plays a significant role in global light harvesting.

  8. Heat of formation determination of the ground and excited state of cyanomethylene (HCCN) radical

    NASA Technical Reports Server (NTRS)

    Francisco, Joseph S.

    1994-01-01

    Ab initio electronic structure theory has been used to characterize the structure of the ground triplet and lowest singlet excited states of cyanomethylene. The geometries, vibrational frequencies, and heats of formation have been determined using second-order Moller-Plesset perturbation, single and double excitation configuration interaction, and quadratic configuration interaction theory. The heat of formation is predicted with isodesmic reaction and Gaussian-2 theory (G2) for the ground triplet and first excited singlet states of cyanomethylene. For the ground state Delta-H(sub 0)(sup f,0) is 114.8+/-2 kcal/mol while for the excited single state it is 126.5+/-2 kcal/mol.

  9. Using narrowband excitation to confirm that the S∗ state in carotenoids is not a vibrationally-excited ground state species

    NASA Astrophysics Data System (ADS)

    Jailaubekov, Askat E.; Song, Sang-Hun; Vengris, Mikas; Cogdell, Richard J.; Larsen, Delmar S.

    2010-02-01

    The hypothesis that S∗ is a vibrationally-excited ground-state population is tested and discarded for two carotenoid samples: β-carotene in solution and rhodopin glucoside embedded in the light harvesting 2 protein from Rhodopseudomonas acidophila. By demonstrating that the transient absorption signals measured in both systems that are induced by broadband (1000 cm -1) and narrowband (50 cm -1) excitation pulses are near identical and hence bandwidth independent, the impulsive stimulated Raman scattering mechanism proposed as the primary source for S∗ generation is discarded. To support this conclusion, previously published multi-pulse pump-dump-probe signals [17] are revisited to discard secondary mechanisms for S∗ formation.

  10. Time-resolved and steady-state fluorescence studies of excited-state proton-transfer reactions of proflavine

    NASA Astrophysics Data System (ADS)

    De Silvestri, S.; Laporta, P.

    1984-01-01

    Time-resolved and steady-state fluorescence studies of proflavine in aqueous solution are presented. The observation of a monoexponential fluorescence decay with a time constant decreasing with increasing pH and the presence of an anomalous red-shift in the fluorescence spectrum as a function of pH indicate the existence of a complex proton-transfer mechanism in the excited state. A reaction scheme is proposed and the corresponding proton-transfer rates are evaluated. An excited-state pK value of 12.85 is obtained for the equilibrium between the cationic form of proflavine and the same form dissociated at an amino group.

  11. Mechanism for the Excited-State Multiple Proton Transfer Process of Dihydroxyanthraquinone Chromophores.

    PubMed

    Zhou, Qiao; Du, Can; Yang, Li; Zhao, Meiyu; Dai, Yumei; Song, Peng

    2017-06-22

    The single and dual cooperated proton transfer dynamic process in the excited state of 1,5-dihydroxyanthraquinone (1,5-DHAQ) was theoretically investigated, taking solvent effects (ethanol) into account. The absorption and fluorescence spectra were simulated, and dual fluorescence exhibited, which is consistent with previous experiments. Analysis of the calculated IR and Raman vibration spectra reveals that the intramolecular hydrogen bonding interactions (O 20 -H 21 ···O 24 and O 22 -H 23 ···O 25 ) are strengthened following the excited proton transfer process. Finally, by constructing the potential energy surfaces of the ground state, first excited singlet state, and triplet state, the mechanism of the intramolecular proton transfer of 1,5-DHAQ can be revealed.

  12. Vibronic structure and coupling of higher excited electronic states in carotenoids

    NASA Astrophysics Data System (ADS)

    Krawczyk, Stanisław; Luchowski, Rafał

    2013-03-01

    Absorption spectra of all-trans carotenoids (lycopene, violaxanthin, ζ-carotene) at low temperature exhibit peculiar features in the UV range. The transition to the 11Ag+ state ('cis-band') weakens on cooling, indicating that it is induced by thermal deformations of the conjugated chain. The higher energy band has unique vibrational structure indicating the vibronic coupling of nBu with another electronic state. The electroabsorption spectra point to the electric field-induced mixing of the nBu state with the vibrational continuum of a lower-lying excited state (Fano effect). These observations widen the basis for elucidation of the vibronic coupling effects in the lower excited states.

  13. Experimental validation of a theoretical model of dual wavelength photoacoustic (PA) excitation in fluorophores

    NASA Astrophysics Data System (ADS)

    Märk, Julia; Theiss, Christoph; Schmitt, Franz-Josef; Laufer, Jan

    2015-03-01

    Fluorophores, such as exogenous dyes and genetically expressed proteins, exhibit radiative relaxation with long excited state lifetimes. This can be exploited for PA detection based on dual wavelength excitation using pump and probe wavelengths that coincide with the absorption and emission spectra, respectively. While the pump pulse raises the fluorophore to a long-lived excited state, simultaneous illumination with the probe pulse reduces the excited state lifetime due to stimulated emission (SE).This leads to a change in thermalized energy, and hence PA signal amplitude, compared to single wavelength illumination. By introducing a time delay between pump and probe pulses, the change in PA amplitude can be modulated. Since the effect is not observed in endogenous chromophores, it provides a contrast mechanism for the detection of fluorophores via PA difference imaging. In this study, a theoretical model of the PA signal generation in fluorophores was developed and experimentally validated. The model is based on a system of coupled rate equations, which describe the spatial and temporal changes in the population of the molecular energy levels of a fluorophore as a function of pump-probe energy and concentration. This allows the prediction of the thermalized energy distribution, and hence the time-resolved PA signal amplitude. The model was validated by comparing its predictions to PA signals measured in solutions of rhodamine 6G, a well-known laser dye, and Atto680, a NIR fluorophore.

  14. Electronic Excited States of Tungsten(0) Arylisocyanides.

    PubMed

    Kvapilová, Hana; Sattler, Wesley; Sattler, Aaron; Sazanovich, Igor V; Clark, Ian P; Towrie, Michael; Gray, Harry B; Záliš, Stanislav; Vlček, Antonín

    2015-09-08

    W(CNAryl)6 complexes containing 2,6-diisopropylphenyl isocyanide (CNdipp) are powerful photoreductants with strongly emissive long-lived excited states. These properties are enhanced upon appending another aryl ring, e.g., W(CNdippPh(OMe2))6; CNdippPh(OMe2) = 4-(3,5-dimethoxyphenyl)-2,6-diisopropylphenylisocyanide (Sattler et al. J. Am. Chem. Soc. 2015, 137, 1198-1205). Electronic transitions and low-lying excited states of these complexes were investigated by time-dependent density functional theory (TDDFT); the lowest triplet state was characterized by time-resolved infrared spectroscopy (TRIR) supported by density functional theory (DFT). The intense absorption band of W(CNdipp)6 at 460 nm and that of W(CNdippPh(OMe2))6 at 500 nm originate from transitions of mixed ππ*(C≡N-C)/MLCT(W → Aryl) character, whereby W is depopulated by ca. 0.4 e(-) and the electron-density changes are predominantly localized along two equatorial molecular axes. The red shift and intensity rise on going from W(CNdipp)6 to W(CNdippPh(OMe2))6 are attributable to more extensive delocalization of the MLCT component. The complexes also exhibit absorptions in the 300-320 nm region, owing to W → C≡N MLCT transitions. Electronic absorptions in the spectrum of W(CNXy)6 (Xy = 2,6-dimethylphenyl), a complex with orthogonal aryl orientation, have similar characteristics, although shifted to higher energies. The relaxed lowest W(CNAryl)6 triplet state combines ππ* excitation of a trans pair of C≡N-C moieties with MLCT (0.21 e(-)) and ligand-to-ligand charge transfer (LLCT, 0.24-0.27 e(-)) from the other four CNAryl ligands to the axial aryl and, less, to C≡N groups; the spin density is localized along a single Aryl-N≡C-W-C≡N-Aryl axis. Delocalization of excited electron density on outer aryl rings in W(CNdippPh(OMe2))6 likely promotes photoinduced electron-transfer reactions to acceptor molecules. TRIR spectra show an intense broad bleach due to ν(C≡N), a prominent transient

  15. Ultrafast excited-state deactivation of 9-methylhypoxanthine in aqueous solution: A QM/MM MD study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xugeng, E-mail: xgguo@henu.edu.cn, E-mail: zhangjinglai@henu.edu.cn; Yuan, Huijuan; An, Beibei

    Photoinduced ultrafast non-adiabatic decay of 9-methylhypoxanthine (9MHPX) in aqueous solution was investigated by ab initio surface-hopping dynamics calculations using a combined quantum mechanical/molecular mechanical approach. The absorption spectra of 9MHPX in aqueous solution were also explored by the hybrid cluster-continuum model at the level of time-dependent density functional theory along with the polarizable continuum model (PCM). The static electronic-structure calculations indicate that the absorption spectra of 9MHPX simulated by TD-B3LYP/PCM and TD-X3LYP/PCM can reproduce very well the experimental findings, with the accuracy of about 0.20 eV. According to dynamics simulations, irradiation of 9MHPX populates the bright excited singlet S{sub 1}more » state, which may undergo an ultrafast non-radiative deactivation to the S{sub 0} state. The lifetime of the S{sub 1} state of 9MHPX in aqueous solution is predicted to be 115.6 fs, slightly longer than that in the gas phase (88.8 fs), suggesting that the solvent water has no significant influence on the excited-state lifetime of 9MHPX. Such a behavior in 9MHPX is distinctly different from its parent hypoxanthine keto-N9H tautomer in which the excited-state lifetime of the latter in water solution was remarkably enhanced as compared to the gas phase. The significant difference of the photodynamical behaviors between 9MHPX and keto-N9H can be ascribed to their different hydrogen bond environment in aqueous solution.« less

  16. Photonics of a conjugated organometallic Pt-Ir polymer and its model compounds exhibiting hybrid CT excited states.

    PubMed

    Soliman, Ahmed M; Fortin, Daniel; Zysman-Colman, Eli; Harvey, Pierre D

    2012-04-13

    Trans- dichlorobis(tri-n-butylphosphine)platinum(II) reacts with bis(2- phenylpyridinato)-(5,5'-diethynyl-2,2'-bipyridine)iridium(III) hexafluorophosphate to form the luminescent conjugated polymer poly[trans-[(5,5'-ethynyl-2,2'-bipyridine)bis(2- phenylpyridinato)-iridium(III)]bis(tri-n-butylphosphine)platinum(II)] hexafluorophosphate ([Pt]-[Ir])n. Gel permeation chromatography indicates a degree of polymerization of 9 inferring the presence of an oligomer. Comparison of the absorption and emission band positions and their temperature dependence, emission quantum yields, and lifetimes with those for models containing only the [Pt] or the [Ir] units indicates hybrid excited states including features from both chromophores. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The molecular and electronic structure of s-tetrazine in the ground and first excited state: A theoretical investigation

    NASA Astrophysics Data System (ADS)

    Schütz, Martin; Hutter, Jürg; Lüthi, Hans Peter

    1995-10-01

    The ground- and first excited state of s-tetrazine arising from a π*←n excitation (1Ag,1B3u) have been studied using the complete active space (CASSCF) and the second order multiconfiguration perturbation theory (CASPT2) ab initio methods. The focus of this study is on the effect of the electronic excitation on the molecular structure and on those electronic properties which are important to model the solvatochromatic behavior of the molecule in polymer matrices as used in permanent hole burning experiments. Since the accurate computation of excited state molecular properties represents a major challenge for today's numerical quantum chemistry, some technical aspects are also considered. The present study shows that the change in geometry upon electronic excitation is small. This is in partial contradiction with the experimental studies which however disagree among themselves [see K. K. Innes, I. G. Ross, and W. R. Moomaw, J. Mol. Spectrosc. 132, 492 (1988), and R. E. Smalley, L. Wharton, and D. H. Levi, ibid. 66, 375 (1977)]. This study also confirms that the first excited state equilibrium structure is of D2h symmetry. In an earlier theoretical study it was found that the D2h symmetry structure may represent a saddle point rather than a minimum on the excited state potential surface [see A. C. Scheiner and H. F. Schaefer III, J. Chem. Phys. 87, 3539 (1987)]. In the first excited state, we observe an increase of the mean polarizability of s-tetrazine along with an enhanced anisotropy. The change in the polarizability is almost exclusively in the ``in-plane'' components of the tensor; the polarizability in the vertical direction is nearly unchanged. This observation questions recent experimental results reported for this molecule [see S. Heitz, D. Weidnauer, and A. Hese, J. Chem. Phys. 95, 7952 (1991)].

  18. Multiple hydrogen bonding in excited states of aminopyrazine in methanol solution: time-dependent density functional theory study.

    PubMed

    Chai, Shuo; Yu, Jie; Han, Yong-Chang; Cong, Shu-Lin

    2013-11-01

    Aminopyrazine (AP) and AP-methanol complexes have been theoretically studied by using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The excited-state hydrogen bonds are discussed in detail. In the ground state the intermolecular multiple hydrogen bonds can be formed between AP molecule and protic solvents. The AP monomer and hydrogen-bonded complex of AP with one methanol are photoexcited initially to the S2 state, and then transferred to the S1 state via internal conversion. However the complex of AP with two methanol molecules is directly excited to the S1 state. From the calculated electronic excited energies and simulated absorption spectra, we find that the intermolecular hydrogen bonds are strengthened in the electronic excited states. The strengthening is confirmed by the optimized excited-state geometries. The photochemical processes in the electronic excited states are significantly influenced by the excited-state hydrogen bond strengthening. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Evidence for excited state intramolecular charge transfer in benzazole-based pseudo-stilbenes.

    PubMed

    Santos, Fabiano da Silveira; Descalzo, Rodrigo Roceti; Gonçalves, Paulo Fernando Bruno; Benvenutti, Edilson Valmir; Rodembusch, Fabiano Severo

    2012-08-21

    Two azo compounds were obtained through the diazotization reaction of aminobenzazole derivatives and N,N-dimethylaniline using clay montmorillonite KSF as catalyst. The synthesized dyes were characterized using elemental analysis, Fourier transform infrared spectroscopy, and (13)C and (1)H NMR spectroscopy in solution. Their photophysical behavior was studied using UV-vis and steady-state fluorescence in solution. These dyes present intense absorption in the blue region. The spectral features of the azo compounds can be related to the pseudo-stilbene type as well as the E isomer of the dyes. Excitation at the absorption maxima does not produce emissive species in the excited state. However, excitation around 350 nm allowed dual emission of fluorescence, from both a locally excited (LE, short wavelength) and an intramolecular charge transfer (ICT, long wavelength) state, which was corroborated by a linear relation of the fluorescence maximum (ν(max)) versus the solvent polarity function (Δf) from the Lippert-Mataga correlation. Evidence of TICT in these dyes was discussed from the viscosity dependence of the fluorescence intensity in the ICT emission band. Theoretical calculations were also performed in order to study the geometry and charge distribution of the dyes in their ground and excited electronic states. Using DFT methods at the theoretical levels BLYP/Aug-cc-pVDZ, for geometry optimizations and frequency calculations, and B3LYP/6-311+G(2d), for single-point energy evaluations, the calculations revealed that the least energetic and most intense photon absorption leads to a very polar excited state that relaxes non-radioactively, which can be associated with photochemical isomerization.

  20. Perturbation-Induced False Starts as a Test of the Jirsa–Kelso Excitator Model

    PubMed Central

    Fink, Philip W.; Kelso, J. A. Scott; Jirsa, Viktor K.

    2009-01-01

    One difference between the excitator model and other theoretical models of coordination is the mechanism of discrete movement initiation. In addition to an imperative signal common to all discrete movement initiation, the excitator model proposes that movements are initiated when a threshold element in state space, the so-called separatrix, is crossed as a consequence of stimulation or random fluctuations. The existence of a separatrix predicts that false starts will be caused by mechanical perturbations and that they depend on the perturbation's direction. The authors tested this prediction in a reaction-time task to an auditory stimulus. Participants applied perturbations in the direction of motion (i.e., index finger flexion) or opposed to the motion prior to the stimulus on 1/4 of the trials. The authors found false starts in 34% and 9% of trials following flexion perturbations and extension perturbations, respectively, as compared with only 2% of trials without perturbations, confirming a unique prediction of the excitator model. PMID:19201685

  1. Hydrogen bond strengthening between o-nitroaniline and formaldehyde in electronic excited states: A theoretical study

    NASA Astrophysics Data System (ADS)

    Yang, Juan; Li, An Yong

    2018-06-01

    To study the hydrogen bonds upon photoexcited, the time dependent density function method (TD DFT) was performed to investigate the excited state hydrogen bond properties of between o-nitroaniline (ONA) and formaldehyde (CH2O). The optimized structures of the complex and the monomers both in the ground state and the electronically excited states are calculated using DFT and TD DFT method respectively. Quantum chemical calculations of the electronic and vibrational absorption spectra are also carried out by TD DFT method at the different level. The complex ONA⋯CH2O forms the intramolecular hydrogen bond and intermolecular hydrogen bonds. Since the strength of hydrogen bonds can be measured by studying the vibrational absorption spectra of the characteristic groups on the hydrogen bonding acceptor and donor, it evidently confirms that the hydrogen bonds is strengthened in the S1/S2/T1 excited states upon photoexcitation. As a result, the hydrogen bonds cause that the CH stretch frequency of the proton donor CH2O has a blue shift, and the electron excitations leads to a frequency red shift of Ndbnd O and Nsbnd H stretch modes in the o-nitroaniline(ONA) and a small frequency blue shift of CH stretch mode in the formaldehyde(CH2O) in the S1 and S2 excited states. The excited states S1, S2 and T1 are locally excited states where only the ONA moiety is excited, but the CH2O moiety remains in its ground state.

  2. Selective two-photon excitation of a vibronic state by correlated photons.

    PubMed

    Oka, Hisaki

    2011-03-28

    We theoretically investigate the two-photon excitation of a molecular vibronic state by correlated photons with energy anticorrelation. A Morse oscillator having three sets of vibronic states is used, as an example, to evaluate the selectivity and efficiency of two-photon excitation. We show that a vibrational mode can be selectively excited with high efficiency by the correlated photons, without phase manipulation or pulse-shaping techniques. This can be achieved by controlling the quantum correlation so that the photon pair concurrently has two pulse widths, namely, a temporally narrow width and a spectrally narrow width. Though this concurrence is seemingly contradictory, we can create such a photon pair by tailoring the quantum correlation between two photons.

  3. Influence of solvent and substituent on excited state characteristics of laser grade coumarin dyes.

    PubMed

    Sharma, Vijay K; Saharo, P D; Sharma, Neera; Rastogi, Ramesh C; Ghoshal, S K; Mohan, D

    2003-04-01

    Absorption and fluorescence emission of 4 and 7 substituted coumarins viz. C 440, C 490, C 485 and C 311 have been studied in various polar and non-polar organic solvents. These coumarin dyes are substituted with alkyl, amine and fluorine groups at 4- and 7-positions. They give different absorption and emission spectra in different solvents. The study leads to a possible assignment of energy level scheme for such coumarins including the effect on ground state and excited state dipole moments due to substitutions. Excited state dipole moments of these dyes are calculated by solvetochromic data experimentally and theoretically these are calculated by PM 3 method. The dipole moments in excited state, for all molecules investigated here, are higher than the corresponding values in the ground state. The increase in dipole moment has been explained in terms of the nature of excited state and resonance structure.

  4. Dynamic study of excited state hydrogen-bonded complexes of harmane in cyclohexane-toluene mixtures.

    PubMed

    Carmona, Carmen; Balón, Manuel; Galán, Manuel; Guardado, Pilar; Muñoz, María A

    2002-09-01

    Photoinduced proton transfer reactions of harmane or 1-methyl-9H-pyrido[3,4-b]indole (HN) in the presence of the proton donor hexafluoroisopropanol (HFIP) in cyclohexane-toluene mixtures (CY-TL; 10% vol/vol of TL) have been studied. Three excited state species have been identified: a 1:2 hydrogen-bonded proton transfer complex (PTC), between the pyridinic nitrogen of the substrate and the proton donor, a hydrogen-bonded cation-like exciplex (CL*) with a stoichiometry of at least 1:3 and a zwitterionic exciplex (Z*). Time-resolved fluorescence measurements evidence that upon excitation of ground state PTC, an excited state equilibrium is established between PTC* and the cationlike exciplex, CL*, lambdaem approximately/= 390 nm. This excited state reaction is assisted by another proton donor molecule. Further reaction of CL* with an additional HFIP molecule produces the zwitterionic species, Z*, lambda(em) approximately/= 500 nm. From the analysis of the multiexponential decays, measured at different emission wavelengths and as a function of HFIP concentration, the mechanism of these excited state reactions has been established. Thus, three rate constants and three reciprocal lifetimes have been determined. The simultaneous study of 1,9-dimethyl-9H-pyrido[3,4-b]indole (MHN) under the same experimental conditions has helped to understand the excited state kinetics of these processes.

  5. Trapping Dynamics in Photosystem I-Light Harvesting Complex I of Higher Plants Is Governed by the Competition Between Excited State Diffusion from Low Energy States and Photochemical Charge Separation.

    PubMed

    Molotokaite, Egle; Remelli, William; Casazza, Anna Paola; Zucchelli, Giuseppe; Polli, Dario; Cerullo, Giulio; Santabarbara, Stefano

    2017-10-26

    The dynamics of excited state equilibration and primary photochemical trapping have been investigated in the photosystem I-light harvesting complex I isolated from spinach, by the complementary time-resolved fluorescence and transient absorption approaches. The combined analysis of the experimental data indicates that the excited state decay is described by lifetimes in the ranges of 12-16 ps, 32-36 ps, and 64-77 ps, for both detection methods, whereas faster components, having lifetimes of 550-780 fs and 4.2-5.2 ps, are resolved only by transient absorption. A unified model capable of describing both the fluorescence and the absorption dynamics has been developed. From this model it appears that the majority of excited state equilibration between the bulk of the antenna pigments and the reaction center occurs in less than 2 ps, that the primary charge separated state is populated in ∼4 ps, and that the charge stabilization by electron transfer is completed in ∼70 ps. Energy equilibration dynamics associated with the long wavelength absorbing/emitting forms harbored by the PSI external antenna are also characterized by a time mean lifetime of ∼75 ps, thus overlapping with radical pair charge stabilization reactions. Even in the presence of a kinetic bottleneck for energy equilibration, the excited state dynamics are shown to be principally trap-limited. However, direct excitation of the low energy chlorophyll forms is predicted to lengthen significantly (∼2-folds) the average trapping time.

  6. Ab initio study of the ground and excited electronic states of the methyl radical

    PubMed Central

    Zanchet, A.; Bañares, L.; Senent, M. L.; García-Vela, A.

    2016-01-01

    The ground and some excited electronic states of the methyl radical have been characterized by means of highly correlated ab intio techniques. The specific excited states investigated are those involved in the dissociation of the radical, namely the 3s and 3pz Rydberg states, and the A1 and B1 valence states crossing them, respectively. The C-H dissociative coordinate and the HCH bending angle were considered in order to generate the first two-dimensional ab initio representation of the potential surfaces of the above electronic states of CH3, along with the nonadiabatic couplings between them. Spectroscopic constants and frequencies calculated for the ground and bound excited states agree well with most of the available experimental data. Implications of the shape of the excited potential surfaces and couplings for the dissociation pathways of CH3 are discussed in the light of recent experimental results for dissociation from low-lying vibrational states of CH3. Based on the ab initio data some predictions are made regarding methyl photodissociation from higher initial vibrational states. PMID:27892569

  7. Coherence, Energy and Charge Transfers in De-Excitation Pathways of Electronic Excited State of Biomolecules in Photosynthesis

    NASA Astrophysics Data System (ADS)

    Bohr, Henrik G.; Malik, F. Bary

    2013-11-01

    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin-chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used Förster-Dexter theory, which does not allow for charge transfer, is a special case of B-A theory. The latter could, under appropriate circumstances, lead to excimers.

  8. Effect of xenon on the excited states of phototropic receptor flavin in corn seedlings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vierstra, R.D.; Poff, K.L.; Walker, E.B.

    1981-05-01

    The chemically inert, water-soluble heavy atom gas, xenon, at millimolar concentrations specifically quenches the triplet excited state of flavin in solution without quenching the flavin singlet excited state. The preferential quenching of the flavin triplet over the singlet excited state by Xe has been established by showing that the flavin triplet-sensitized photooxidation of NADH is inhibited while the fluorescence intensity and lifetime of flavin are not affected by Xe. No significant inhibition of phototropism and geotropism by Xe was observed, suggesting that a flavin singlet state is more likely involved than the triplet state in the primary photoprocess of phototropismmore » in corn.« less

  9. Theoretical Study of Tautomerization Reactions for the Ground and First Excited Electronic States of Adenine

    NASA Technical Reports Server (NTRS)

    Salter, Latasha M.; Chaban, Galina M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest singlet excited state potential energy surfaces are studied. Four tautomeric forms are considered, and their energetic order is found to be different on the ground and the excited state potential energy surfaces. Minimum energy reaction paths are obtained for hydrogen atom transfer (tautomerization) reactions in the ground and the lowest excited electronic states. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic states, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. This tautomerization process should become possible in the presence of water or other polar solvent molecules and should play an important role in the photochemistry of adenine.

  10. Protolytic dissociation of cyano derivatives of naphthol, biphenyl and phenol in the excited state: A review

    NASA Astrophysics Data System (ADS)

    Szczepanik, Beata

    2015-11-01

    The excited state proton transfer (ESPT) has been extensively studied for hydroxyarenes, phenols, naphthols, hydroxystilbenes, etc., which undergo large enhancement of acidity upon electronic excitation, thus classified as photoacids. The changes of acidic character in the excited state of cyano-substituted derivatives of phenol, hydroxybiphenyl and naphthol are reviewed in this paper. The acidity constants pKa in the ground state (S0), pKa∗ in the first singlet excited state (S1) and the change of the acidity constant in the excited state ΔpKa for the discussed compounds are summarized and compared. The results of the acidity studies show, that the "electro-withdrawing" CN group in the molecules of naphthol, hydroxybiphenyl and phenol causes dramatic increase of their acidity in the excited state in comparison to the ground state. This effect is greatest for the cyanonaphthols (the doubly substituted CN derivatives are almost as strong as a mineral acid in the excited state), comparable for cyanobiphenyls, and smaller for phenol derivatives. The increase of acidity enables proton transfer to various organic solvents, and the investigation of ESPT can be extended to a variety of solvents besides water. The results of theoretical investigations were also presented and used for understanding the protolytic equilibria of cyano derivatives of naphthol, hydroxybiphenyl and phenol.

  11. Exact finite volume expectation values of local operators in excited states

    NASA Astrophysics Data System (ADS)

    Pozsgay, B.; Szécsényi, I. M.; Takács, G.

    2015-04-01

    We present a conjecture for the exact expression of finite volume expectation values in excited states in integrable quantum field theories, which is an extension of an earlier conjecture to the case of general diagonal factorized scattering with bound states and a nontrivial bootstrap structure. The conjectured expression is a spectral expansion which uses the exact form factors and the excited state thermodynamic Bethe Ansatz as building blocks. The conjecture is proven for the case of the trace of the energy-moment tensor. Concerning its validity for more general operators, we provide numerical evidence using the truncated conformal space approach. It is found that the expansion fails to be well-defined for small values of the volume in cases when the singularity structure of the TBA equations undergoes a non-trivial rearrangement under some critical value of the volume. Despite these shortcomings, the conjectured expression is expected to be valid for all volumes for most of the excited states, and as an expansion above the critical volume for the rest.

  12. Excited-State Charge Separation in the Photochemical Mechanism of the Light-Driven Enzyme Protochlorophyllide Oxidoreductase**

    PubMed Central

    Heyes, Derren J; Hardman, Samantha J O; Hedison, Tobias M; Hoeven, Robin; Greetham, Greg M; Towrie, Michael; Scrutton, Nigel S

    2015-01-01

    The unique light-driven enzyme protochlorophyllide oxidoreductase (POR) is an important model system for understanding how light energy can be harnessed to power enzyme reactions. The ultrafast photochemical processes, essential for capturing the excitation energy to drive the subsequent hydride- and proton-transfer chemistry, have so far proven difficult to detect. We have used a combination of time-resolved visible and IR spectroscopy, providing complete temporal resolution over the picosecond–microsecond time range, to propose a new mechanism for the photochemistry. Excited-state interactions between active site residues and a carboxyl group on the Pchlide molecule result in a polarized and highly reactive double bond. This so-called “reactive” intramolecular charge-transfer state creates an electron-deficient site across the double bond to trigger the subsequent nucleophilic attack of NADPH, by the negatively charged hydride from nicotinamide adenine dinucleotide phosphate. This work provides the crucial, missing link between excited-state processes and chemistry in POR. Moreover, it provides important insight into how light energy can be harnessed to drive enzyme catalysis with implications for the design of light-activated chemical and biological catalysts. PMID:25488797

  13. Excited-state charge separation in the photochemical mechanism of the light-driven enzyme protochlorophyllide oxidoreductase.

    PubMed

    Heyes, Derren J; Hardman, Samantha J O; Hedison, Tobias M; Hoeven, Robin; Greetham, Greg M; Towrie, Michael; Scrutton, Nigel S

    2015-01-26

    The unique light-driven enzyme protochlorophyllide oxidoreductase (POR) is an important model system for understanding how light energy can be harnessed to power enzyme reactions. The ultrafast photochemical processes, essential for capturing the excitation energy to drive the subsequent hydride- and proton-transfer chemistry, have so far proven difficult to detect. We have used a combination of time-resolved visible and IR spectroscopy, providing complete temporal resolution over the picosecond-microsecond time range, to propose a new mechanism for the photochemistry. Excited-state interactions between active site residues and a carboxyl group on the Pchlide molecule result in a polarized and highly reactive double bond. This so-called "reactive" intramolecular charge-transfer state creates an electron-deficient site across the double bond to trigger the subsequent nucleophilic attack of NADPH, by the negatively charged hydride from nicotinamide adenine dinucleotide phosphate. This work provides the crucial, missing link between excited-state processes and chemistry in POR. Moreover, it provides important insight into how light energy can be harnessed to drive enzyme catalysis with implications for the design of light-activated chemical and biological catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Excited-state dynamics of mononucleotides and DNA strands in a deep eutectic solvent.

    PubMed

    Zhang, Yuyuan; de La Harpe, Kimberly; Hariharan, Mahesh; Kohler, Bern

    2018-04-17

    The photophysics of several mono- and oligonucleotides were investigated in a deep eutectic solvent for the first time. The solvent glyceline, prepared as a 1 : 2 mole ratio mixture of choline chloride and glycerol, was used to study excited-state deactivation in a non-aqueous solvent by the use of steady-state and time-resolved spectroscopy. DNA strands in glyceline retain the secondary structures that are present in aqueous solution to some degree, thus enabling a study of the effects of solvent properties on the excited states of stacked bases and stacked base pairs. The excited-state lifetime of the mononucleotide 5'-AMP in glyceline is 630 fs, or twice as long as in aqueous solution. Even slower relaxation is seen for 5'-TMP in glyceline, and a possible triplet state with a lifetime greater than 3 ns is observed. Circular dichroism spectra show that the single strand (dA)18 and the duplex d(AT)9·d(AT)9 adopt similar structures in glyceline and in aqueous solution. Despite having similar conformations in both solvents, femtosecond transient absorption experiments reveal striking changes in the dynamics. Excited-state decay and vibrational cooling generally take place more slowly in glyceline than in water. Additionally, the fraction of long-lived excited states in both oligonucleotide systems is lower in glyceline than in aqueous solution. For a DNA duplex, water is suggested to favor decay pathways involving intrastrand charge separation, while the deep eutectic solvent favors interstrand deactivation channels involving neutral species. Slower solvation dynamics in the viscous deep eutectic solvent may also play a role. These results demonstrate that the dynamics of excitations in stacked bases and stacked base pairs depend not only on conformation, but are also highly sensitive to the solvent.

  15. Experimental and Theoretical Investigations of Doubly-excited Sextet States in

    NASA Astrophysics Data System (ADS)

    Lin, Bin; Berry, H. Gordon; Livingston, A. Eugene; Garnir, Henri-Pierre; Bastin, Thierry; Désesquelles, J.

    2002-05-01

    The energies and wave functions of the highly doubly-excited sextet states of boron-like O IV, F V and Ne VI are calculated with the Multi-Configuration Hartree-Fock (MCHF) plus the hydrogen-like QED effects and higher-order corrections method. The highly doubly-excited sextet states of boron-like O IV, F V and Ne VI are well above several ionization levels and metastable, and possible candidates for XUV- and soft x-ray laser and energy storage. Three doubly-excited sextet configurations (1s2s2p3 6So, 1s2s2p23s 6P and 1s2p33s 6So) are studied. The wavelengths of electric dipole transitions from the inner-shell excited terms 1s2s2p23s 6P-1s2p33s 6So are investigated by the beam-foil spectroscopy in the XUV spectral region. The predicted transition wavelengths agree with the experiment to 0.08Å. The higher-order corrections and fine structures are found to be critically important in these comparisons.

  16. Application of spectroscopy and super-resolution microscopy: Excited state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, Ujjal

    Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10 -9 s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such asmore » lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.« less

  17. Analysis about modeling MEC7000 excitation system of nuclear power unit

    NASA Astrophysics Data System (ADS)

    Liu, Guangshi; Sun, Zhiyuan; Dou, Qian; Liu, Mosi; Zhang, Yihui; Wang, Xiaoming

    2018-02-01

    Aiming at the importance of accurate modeling excitation system in stability calculation of nuclear power plant inland and lack of research in modeling MEC7000 excitation system,this paper summarize a general method to modeling and simulate MEC7000 excitation system. Among this method also solve the key issues of computing method of IO interface parameter and the conversion process of excitation system measured model to BPA simulation model. At last complete the simulation modeling of MEC7000 excitation system first time in domestic. By used No-load small disturbance check, demonstrates that the proposed model and algorithm is corrective and efficient.

  18. Electronic excitations in long polyenes revisited

    NASA Astrophysics Data System (ADS)

    Schmidt, Maximilian; Tavan, Paul

    2012-03-01

    We apply the valence shell model OM2 [W. Weber and W. Thiel, Theor. Chem. Acc. 103, 495, (2000), 10.1007/s002149900083] combined with multireference configuration interaction (MRCI) to compute the vertical excitation energies and transition dipole moments of the low-energy singlet excitations in the polyenes with 4 ⩽ N ⩽ 22π-electrons. We find that the OM2/MRCI descriptions closely resemble those of Pariser-Parr-Pople (PPP) π-electron models [P. Tavan and K. Schulten, Phys. Rev. B 36, 4337, (1987)], if equivalent MRCI procedures and regularly alternating model geometries are used. OM2/MRCI optimized geometries are shown to entail improved descriptions particularly for smaller polyenes (N ⩽ 12), for which sizeable deviations from the regular model geometries are found. With configuration interaction active spaces covering also the σ- in addition to the π-electrons, OM2/MRCI excitation energies turn out to become smaller by at most 0.35 eV for the ionic and 0.15 eV for the covalent excitations. The particle-hole (ph) symmetry, which in Pariser-Parr-Pople models arises from the zero-differential overlap approximation, is demonstrated to be only weakly broken in OM2 such that the oscillator strengths of the covalent 1B_u^- states, which artificially vanish in ph-symmetric models, are predicted to be very small. According to OM2/MRCI and experimental data the 1B_u^- state is the third excited singlet state for N < 12 and becomes the second for N ⩾ 14. By comparisons with results of other theoretical approaches and experimental evidence we argue that deficiencies of the particular MRCI method employed by us, which show up in a poor size consistency of the covalent excitations for N > 12, are caused by its restriction to at most doubly excited references.

  19. New Theoretical Developments in Exploring Electronically Excited States: Including Localized Configuration Interaction Singles and Application to Large Helium Clusters

    NASA Astrophysics Data System (ADS)

    Closser, Kristina Danielle

    This thesis presents new developments in excited state electronic structure theory. Contrasted with the ground state, the electronically excited states of atoms and molecules often are unstable and have short lifetimes, exhibit a greater diversity of character and are generally less well understood. The very unusual excited states of helium clusters motivated much of this work. These clusters consist of large numbers of atoms (experimentally 103--109 atoms) and bands of nearly degenerate excited states. For an isolated atom the lowest energy excitation energies are from 1s → 2s and 1s → 2 p transitions, and in clusters describing the lowest energy band minimally requires four states per atom. In the ground state the clusters are weakly bound by van der Waals interactions, however in the excited state they can form well-defined covalent bonds. The computational cost of quantum chemical calculations rapidly becomes prohibitive as the size of the systems increase. Standard excited-state methods such as configuration interaction singles (CIS) and time-dependent density functional theory (TD-DFT) can be used with ≈100 atoms, and are optimized to treat only a few states. Thus, one of our primary aims is to develop a method which can treat these large systems with large numbers of nearly degenerate excited states. Additionally, excited states are generally formed far from their equilibrium structures. Vertical excitations from the ground state induce dynamics in the excited states. Thus, another focus of this work is to explore the results of these forces and the fate of the excited states. Very little was known about helium cluster excited states when this work began, thus we first investigated the excitations in small helium clusters consisting of 7 or 25 atoms using CIS. The character of these excited states was determined using attachment/detachment density analysis and we found that in the n = 2 manifold the excitations could generally be interpreted as

  20. On the origin of ultrafast nonradiative transitions in nitro-polycyclic aromatic hydrocarbons: Excited-state dynamics in 1-nitronaphthalene.

    PubMed

    Reichardt, Christian; Vogt, R Aaron; Crespo-Hernández, Carlos E

    2009-12-14

    The electronic energy relaxation of 1-nitronaphthalene was studied in nonpolar, aprotic, and protic solvents in the time window from femtoseconds to microseconds. Excitation at 340 or 360 nm populates the Franck-Condon S(1)(pipi( *)) state, which is proposed to bifurcate into two essentially barrierless nonradiative decay channels with sub-200 fs lifetimes. The first main decay channel connects the S(1) state with a receiver T(n) state that has considerable npi( *) character. The receiver T(n) state undergoes internal conversion to populate the vibrationally excited T(1)(pipi( *)) state in 2-4 ps. It is shown that vibrational cooling dynamics in the T(1) state depends on the solvent used, with average lifetimes in the range from 6 to 12 ps. Furthermore, solvation dynamics competes effectively with vibrational cooling in the triplet manifold in primary alcohols. The relaxed T(1) state undergoes intersystem crossing back to the ground state within a few microseconds in N(2)-saturated solutions in all the solvents studied. The second minor channel involves conformational relaxation of the bright S(1) state (primarily rotation of the NO(2)-group) to populate a dissociative singlet state with significant charge-transfer character and negligible oscillator strength. This dissociative channel is proposed to be responsible for the observed photochemistry in 1-nitronaphthalene. Ground- and excited-state calculations at the density functional level of theory that include bulk and explicit solvent effects lend support to the proposed mechanism where the fluorescent S(1) state decays rapidly and irreversibly to dark excited states. A four-state kinetic model is proposed that satisfactorily explains the origin of the nonradiative electronic relaxation pathways in 1-nitronaphthalene.

  1. Properties of excited states in organic light emitting diodes and lasers

    NASA Astrophysics Data System (ADS)

    Giebink, Noel C.

    The field of organic semiconductors has grown rapidly over the past decade with the development of light emitting diodes, solar cells, and lasers that promise a new generation of low-cost, flexible optoelectronic devices. In each case, the behavior of molecular excited states, or excitons, is of fundamental importance. The present study explores the nature and interactions of such excited states in the attempt to develop an electrically pumped organic semiconductor laser, and to improve the performance and operational stability of organic light emitting diodes. We begin by investigating intrinsic loss processes in optically pumped organic semiconductor lasers and demonstrate that exciton annihilation implies a fundamental limit that will prevent lasing by electrical injection in currently known materials. Searching for an alternative approach to reach threshold leads us to study metastable geminate charge pairs, where we find that optically generated excitons can be accumulated over time in an external electric field via these intermediate states. Upon field turn-off, the excitons are immediately restored, leading to a sudden burst of excitation density over 30 times higher than that generated by the pump alone. Unfortunately, we identify limitations that have thus far prevented reaching laser threshold with this technique. In a parallel push toward high power density, we investigate the origins of quantum efficiency roll-off in organic light emitting diodes (OLEDs) and find that it is dominated by loss of charge balance in the majority of fluorescent and phosphorescent devices. The second major theme of this work involves understanding the intrinsic modes of OLED operational degradation. Based on extensive modeling and supported directly by experimental evidence, we identify exciton-charge carrier annihilation reactions as a principle degradation pathway. Exploiting the diffusion of triplet excitons, we show that fluorescence and phosphorescence can be combined to

  2. Structures and Binding Energies of the Naphthalene Dimer in Its Ground and Excited States.

    PubMed

    Dubinets, N O; Safonov, A A; Bagaturyants, A A

    2016-05-05

    Possible structures of the naphthalene dimer corresponding to local energy minima in the ground and excited (excimer) electronic states are comprehensively investigated using DFT-D and TDDFT-D methods with a special accent on the excimer structures. The corresponding binding and electronic transition energies are calculated, and the nature of the electronic states in different structures is analyzed. Several parallel (stacked) and T-shaped structures were found in both the ground and excited (excimer) states in a rather narrow energy range. The T-shaped structure with the lowest energy in the excited state exhibits a marked charge transfer from the upright molecule to the base one.

  3. Excitation energy dependence of excited states dynamics in all- trans-carotenes determined by femtosecond absorption and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Kosumi, Daisuke; Yanagi, Kazuhiro; Nishio, Tomohiro; Hashimoto, Hideki; Yoshizawa, Masayuki

    2005-06-01

    Ultrafast relaxation kinetics in β-carotene and lycopene has been investigated by femtosecond absorption and fluorescence spectroscopies using tunable excitation pulses. The transient signals induced by the photoexcitation with larger excess energy have broader bands and longer lifetimes both in the 11Bu+and21Ag- excited states. The excess vibrational energy remains longer than several picoseconds and slows the relaxation kinetics in carotenoids.

  4. Driven similarity renormalization group for excited states: A state-averaged perturbation theory

    NASA Astrophysics Data System (ADS)

    Li, Chenyang; Evangelista, Francesco A.

    2018-03-01

    The multireference driven similarity renormalization group (MRDSRG) approach [C. Li and F. A. Evangelista, J. Chem. Theory Comput. 11, 2097 (2015)] is generalized to treat quasi-degenerate electronic excited states. The new scheme, termed state-averaged (SA) MRDSRG, is a state-universal approach that considers an ensemble of quasi-degenerate states on an equal footing. Using the SA-MRDSRG framework, we implement second- (SA-DSRG-PT2) and third-order (SA-DSRG-PT3) perturbation theories. These perturbation theories can treat a manifold of near-degenerate states at the cost of a single state-specific computation. At the same time, they have several desirable properties: (1) they are intruder-free and size-extensive, (2) their energy expressions can be evaluated non-iteratively and require at most the three-body density cumulant of the reference states, and (3) the reference states are allowed to relax in the presence of dynamical correlation effects. Numerical benchmarks on the potential energy surfaces of lithium fluoride, ammonia, and the penta-2,4-dieniminium cation reveal that the SA-DSRG-PT2 method yields results with accuracy similar to that of other second-order quasi-degenerate perturbation theories. The SA-DSRG-PT3 results are instead consistent with those from multireference configuration interaction with singles and doubles (MRCISD). Finally, we compute the vertical excitation energies of (E,E)-1,3,5,7-octatetraene. The ordering of the lowest three states is predicted to be 2 1Ag-<1 1Bu+<1 1Bu- by both SA-DSRG-PT2 and SA-DSRG-PT3, in accordance with MRCISD plus Davidson correction.

  5. Two-photon excitation of 2,5-diphenyloxazole using a low power green solid state laser

    NASA Astrophysics Data System (ADS)

    Luchowski, Rafal

    2011-01-01

    This Letter concerns two-photon excitation of 2,5-diphenyloxazole (PPO) upon illumination from a pulsed 532 nm solid state laser, with an average power of 30 mW, and a repetition rate of 20 MHz. A very agreeable emission spectrum position and shape has been achieved for PPO receiving one- and two-photon excitation, which suggests that the same excited state is involved for both excitation modes. Also, a perfect quadratic dependence of laser power in the emission intensity function has been recorded. We tested the application of a small solid state green laser to two-photon induced time-resolved fluorescence, revealing the emission anisotropy of PPO to be considerably higher for two-photon than for one-photon excitation.

  6. Gyromagnetic ratios of excited states in 198Pt; measurements and interacting boson approximation model calculations

    NASA Astrophysics Data System (ADS)

    Stuchbery, A. E.; Ryan, C. G.; Bolotin, H. H.; Morrison, I.; Sie, S. H.

    1981-07-01

    The enhanced transient hyperfine field manifest at the nuclei of swiftly recoiling ions traversing magnetized ferromagnetic materials was utilized to measure the gyromagnetic ratios of the 2 +1, 2 +2 and 4 +1 states in 198Pt by the thin-foil technique. The states of interest were populated by Coulomb excitation using a beam of 220 MeV 58Ni ions. The results obtained were: g(2 +1) = 0.324 ± 0.026; g(2 +2) = 0.34 ± 0.06; g(4 +1) = 0.34 ± 0.06. In addition, these measurements served to discriminate between the otherwise essentially equally probable values previously reported for the E2/M1 ratio of the 2 +2 → 2 +1 transition in 198Pt. We also performed interacting boson approximation (IBA) model-based calculations in the O(6) limit symmetry, with and without inclusion of a small degree of symmetry breaking, and employed the M1 operator in both first- and second-order to obtain M1 selection rules and to calculate gyromagnetic ratios of levels. When O(6) symmetry is broken, there is a predicted departure from constancy of the g-factors which provides a good test of the nuclear wave function. Evaluative comparisons are made between these experimental and predicted g-factors.

  7. Ab initio excited states from the in-medium similarity renormalization group

    NASA Astrophysics Data System (ADS)

    Parzuchowski, N. M.; Morris, T. D.; Bogner, S. K.

    2017-04-01

    We present two new methods for performing ab initio calculations of excited states for closed-shell systems within the in-medium similarity renormalization group (IMSRG) framework. Both are based on combining the IMSRG with simple many-body methods commonly used to target excited states, such as the Tamm-Dancoff approximation (TDA) and equations-of-motion (EOM) techniques. In the first approach, a two-step sequential IMSRG transformation is used to drive the Hamiltonian to a form where a simple TDA calculation (i.e., diagonalization in the space of 1 p 1 h excitations) becomes exact for a subset of eigenvalues. In the second approach, EOM techniques are applied to the IMSRG ground-state-decoupled Hamiltonian to access excited states. We perform proof-of-principle calculations for parabolic quantum dots in two dimensions and the closed-shell nuclei 16O and 22O. We find that the TDA-IMSRG approach gives better accuracy than the EOM-IMSRG when calculations converge, but it is otherwise lacking the versatility and numerical stability of the latter. Our calculated spectra are in reasonable agreement with analogous EOM-coupled-cluster calculations. This work paves the way for more interesting applications of the EOM-IMSRG approach to calculations of consistently evolved observables such as electromagnetic strength functions and nuclear matrix elements, and extensions to nuclei within one or two nucleons of a closed shell by generalizing the EOM ladder operator to include particle-number nonconserving terms.

  8. Excited level populations and excitation kinetics of nonequilibrium ionizing argon discharge plasma of atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akatsuka, Hiroshi

    2009-04-15

    Population densities of excited states of argon atoms are theoretically examined for ionizing argon plasma in a state of nonequilibrium under atmospheric pressure from the viewpoint of elementary processes with collisional radiative model. The dependence of excited state populations on the electron and gas temperatures is discussed. Two electron density regimes are found, which are distinguished by the population and depopulation mechanisms for the excited states in problem. When the electron impact excitation frequency for the population or depopulation is lower than the atomic impact one, the electron density of the plasma is considered as low to estimate the populationmore » and depopulation processes. Some remarkable characteristics of population and depopulation mechanisms are found for the low electron density atmospheric plasma, where thermal relaxation by atomic collisions becomes the predominant process within the group of close-energy states in the ionizing plasma of atmospheric pressure, and the excitation temperature is almost the same as the gas temperature. In addition to the collisional relaxation by argon atoms, electron impact excitation from the ground state is also an essential population mechanism. The ratios of population density of the levels pairs, between which exists a large energy gap, include information on the electron collisional kinetics. For high electron density, the effect of atomic collisional relaxation becomes weak. For this case, the excitation mechanism is explained as electron impact ladderlike excitation similar to low-pressure ionizing plasma, since the electron collision becomes the dominant process for the population and depopulation kinetics.« less

  9. Effect of Turbulence Modeling on an Excited Jet

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Hixon, Ray

    2010-01-01

    The flow dynamics in a high-speed jet are dominated by unsteady turbulent flow structures in the plume. Jet excitation seeks to control these flow structures through the natural instabilities present in the initial shear layer of the jet. Understanding and optimizing the excitation input, for jet noise reduction or plume mixing enhancement, requires many trials that may be done experimentally or computationally at a significant cost savings. Numerical simulations, which model various parts of the unsteady dynamics to reduce the computational expense of the simulation, must adequately capture the unsteady flow dynamics in the excited jet for the results are to be used. Four CFD methods are considered for use in an excited jet problem, including two turbulence models with an Unsteady Reynolds Averaged Navier-Stokes (URANS) solver, one Large Eddy Simulation (LES) solver, and one URANS/LES hybrid method. Each method is used to simulate a simplified excited jet and the results are evaluated based on the flow data, computation time, and numerical stability. The knowledge gained about the effect of turbulence modeling and CFD methods from these basic simulations will guide and assist future three-dimensional (3-D) simulations that will be used to understand and optimize a realistic excited jet for a particular application.

  10. The laser versus the lamp: Reactivity of the diphenyl ketyl radical in the ground and excited states

    NASA Astrophysics Data System (ADS)

    Baumann, H.; Merckel, C.; Timpe, H.-J.; Graness, A.; Kleinschmidt, J.; Gould, I. R.; Turro, N. J.

    1984-01-01

    The diphenyl ketyl radical which is formed upon photolysis of α-phenyl benzoin is produced in its excited state upon intense pulsed laser irradiation. Using the techniques of time-resolved absorption and emission spectroscopy, reaction rate constants for the ground and excited states of this radical were obtained. For the radical quenchers employed, the excited state reactivity is found to be typically several orders of magnitude greater than that of the ground state. It is concluded that the excited state of diphenyl ketyl radical reacts predominantly by electron transfer processes.

  11. Observation of Excited Quadrupole-Bound States in Cold Anions

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Zhu; Liu, Yuan; Wang, Lai-Sheng

    2017-07-01

    We report the first observation of an excited quadrupole-bound state (QBS) in an anion. High-resolution photoelectron imaging of cryogenically cooled 4-cyanophenoxide (4 CP- ) anions yields an electron detachment threshold of 24 927 cm-1 . The photodetachment spectrum reveals a resonant transition 20 cm-1 below the detachment threshold, which is attributed to an excited QBS of 4 CP- because neutral 4CP has a large quadrupole moment with a negligible dipole moment. The QBS is confirmed by observation of seventeen above-threshold resonances due to autodetachment from vibrational levels of the QBS.

  12. Ab Initio Calculations of Singlet and Triplet Excited States of Chlorine Nitrate and Nitric Acid

    NASA Technical Reports Server (NTRS)

    Grana, Ana M.; Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    Ab initio calculations of vertical excitations to singlet and triplet excited states of chlorine nitrate and nitric acid are reported. The nature of the electronic transitions are examined by decomposing the difference density into the sum of detachment and attachment densities. Counterparts for the three lowest singlet excited states of nitric acid survive relatively unperturbed in chlorine nitrate, while other low-lying singlet states of chlorine nitrate appear to be directly dissociative in the ClO chromophore. These results suggest an assignment of the two main peaks in the experimental chlorine nitrate absorption spectrum. In addition, triplet vertical excitations and the lowest optimized triplet geometries of both molecules are studied.

  13. Doping evolution of spin and charge excitations in the Hubbard model

    DOE PAGES

    Kung, Y. F.; Nowadnick, E. A.; Jia, C. J.; ...

    2015-11-05

    We shed light on how electronic correlations vary across the phase diagram of the cuprate superconductors, examining the doping evolution of spin and charge excitations in the single-band Hubbard model using determinant quantum Monte Carlo (DQMC). In the single-particle response, we observe that the effects of correlations weaken rapidly with doping, such that one may expect the random phase approximation (RPA) to provide an adequate description of the two-particle response. In contrast, when compared to RPA, we find that significant residual correlations in the two-particle excitations persist up to 40% hole and 15% electron doping (the range of dopings achievedmore » in the cuprates). Ultimately, these fundamental differences between the doping evolution of single- and multi-particle renormalizations show that conclusions drawn from single-particle processes cannot necessarily be applied to multi-particle excitations. Eventually, the system smoothly transitions via a momentum-dependent crossover into a weakly correlated metallic state where the spin and charge excitation spectra exhibit similar behavior and where RPA provides an adequate description.« less

  14. Excitation Dynamics in Phycoerythrin 545: Modeling of Steady-State Spectra and Transient Absorption with Modified Redfield Theory

    PubMed Central

    Novoderezhkin, Vladimir I.; Doust, Alexander B.; Curutchet, Carles; Scholes, Gregory D.; van Grondelle, Rienk

    2010-01-01

    Abstract We model the spectra and excitation dynamics in the phycobiliprotein antenna complex PE545 isolated from the unicellular photosynthetic cryptophyte algae Rhodomonas CS24. The excitonic couplings between the eight bilins are calculated using the CIS/6-31G method. The site energies are extracted from a simultaneous fit of the absorption, circular dichroism, fluorescence, and excitation anisotropy spectra together with the transient absorption kinetics using the modified Redfield approach. Quantitative fit of the data enables us to assign the eight exciton components of the spectra and build up the energy transfer picture including pathways and timescales of energy relaxation, thus allowing a visualization of excitation dynamics within the complex. PMID:20643051

  15. Excited-state decay processes of binuclear rhodium(I) isocyanide complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskowski, V.M.; Rice, S.F.; Gray, H.B.

    1993-04-29

    Emission lifetimes, quantum yields, and polarized excitation spectra of Rh[sub 2]b[sub 4][sup 2+] and Rh[sub 2](TMB)[sub 4][sup 2+] (b = 1,3-diisocyanopropane; TMB = 2,5-diisocyano-2,5-dimethylhexane) have been determined. The singlet and triplet d[sigma]* [yields] p[sigma]([sup 1,3]A[sub 2u]) excited states are luminescent with radiative rates of ca. 10[sup 8] and 10[sup 4] s[sup [minus

  16. Excited states and electrochromism of radical cation of the carotenoid astaxanthin

    NASA Astrophysics Data System (ADS)

    Krawczyk, Stanisław

    1998-09-01

    Radical cations of the carotenoid astaxanthin were generated by chemical oxidation with Fe(Cl) 3, and their absorption and electroabsorption (Stark) spectra at temperatures about 150 K were recorded in the spectral range from 5900 to 26000 cm -1 (380 to 1700 nm), covering two absorptive electronic transitions from D 0 (ground) to D 1 and D 2 excited states. The changes in static polarizability are negative and equal -40±10 A 3 for D 0→D 1 and -105±15 A 3 for D 0→D 2, pointing that dominant contribution to polarizabilities results from the coupling of D 1 and D 2 with the ground state. An approximate localization of the next excited state with ground-state parity is estimated based on arguments from perturbation theory.

  17. Solvent control of charge transfer excited state relaxation pathways in [Fe(2,2'-bipyridine)(CN) 4] 2-

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kjær, Kasper S.; Kunnus, Kristjan; Harlang, Tobias C. B.

    The excited state dynamics of solvated [Fe(bpy)(CN) 4] 2-, where bpy = 2,2'-bipyridine, show significant sensitivity to the solvent Lewis acidity. Using a combination of optical absorption and X-ray emission transient spectroscopies, we have previously shown that the metal to ligand charge transfer (MLCT) excited state of [Fe(bpy)(CN) 4] 2- has a 19 picosecond lifetime and no discernable contribution from metal centered (MC) states in weak Lewis acid solvents, such as dimethyl sulfoxide and acetonitrile. Here, in the present work, we use the same combination of spectroscopic techniques to measure the MLCT excited state relaxation dynamics of [Fe(bpy)(CN) 4] 2-more » in water, a strong Lewis acid solvent. The charge-transfer excited state is now found to decay in less than 100 femtoseconds, forming a quasi-stable metal centered excited state with a 13 picosecond lifetime. We find that this MC excited state has triplet ( 3MC) character, unlike other reported six-coordinate Fe(II)-centered coordination compounds, which form MC quintet ( 5MC) states. The solvent dependent changes in excited state non-radiative relaxation for [Fe(bpy)(CN) 4] 2- allows us to infer the influence of the solvent on the electronic structure of the complex. Lastly, the robust characterization of the dynamics and optical spectral signatures of the isolated 3MC intermediate provides a strong foundation for identifying 3MC intermediates in the electronic excited state relaxation mechanisms of similar Fe-centered systems being developed for solar applications.« less

  18. Solvent control of charge transfer excited state relaxation pathways in [Fe(2,2'-bipyridine)(CN) 4] 2-

    DOE PAGES

    Kjær, Kasper S.; Kunnus, Kristjan; Harlang, Tobias C. B.; ...

    2018-01-19

    The excited state dynamics of solvated [Fe(bpy)(CN) 4] 2-, where bpy = 2,2'-bipyridine, show significant sensitivity to the solvent Lewis acidity. Using a combination of optical absorption and X-ray emission transient spectroscopies, we have previously shown that the metal to ligand charge transfer (MLCT) excited state of [Fe(bpy)(CN) 4] 2- has a 19 picosecond lifetime and no discernable contribution from metal centered (MC) states in weak Lewis acid solvents, such as dimethyl sulfoxide and acetonitrile. Here, in the present work, we use the same combination of spectroscopic techniques to measure the MLCT excited state relaxation dynamics of [Fe(bpy)(CN) 4] 2-more » in water, a strong Lewis acid solvent. The charge-transfer excited state is now found to decay in less than 100 femtoseconds, forming a quasi-stable metal centered excited state with a 13 picosecond lifetime. We find that this MC excited state has triplet ( 3MC) character, unlike other reported six-coordinate Fe(II)-centered coordination compounds, which form MC quintet ( 5MC) states. The solvent dependent changes in excited state non-radiative relaxation for [Fe(bpy)(CN) 4] 2- allows us to infer the influence of the solvent on the electronic structure of the complex. Lastly, the robust characterization of the dynamics and optical spectral signatures of the isolated 3MC intermediate provides a strong foundation for identifying 3MC intermediates in the electronic excited state relaxation mechanisms of similar Fe-centered systems being developed for solar applications.« less

  19. Protein Structural Deformation Induced Lifetime Shortening of Photosynthetic Bacteria Light-Harvesting Complex LH2 Excited State

    PubMed Central

    Chen, Xing-Hai; Zhang, Lei; Weng, Yu-Xiang; Du, Lu-Chao; Ye, Man-Ping; Yang, Guo-Zhen; Fujii, Ritsuko; Rondonuwu, Ferdy S.; Koyama, Yasushi; Wu, Yi-Shi; Zhang, J. P.

    2005-01-01

    Photosynthetic bacterial light-harvesting antenna complex LH2 was immobilized on the surface of TiO2 nanoparticles in the colloidal solution. The LH2/TiO2 assembly was investigated by the time-resolved spectroscopic methods. The excited-state lifetimes for carotenoid-containing and carotenoidless LH2 have been measured, showing a decrease in the excited-state lifetime of B850 when LH2 was immobilized on TiO2. The possibility that the decrease of the LH2 excited-state lifetime being caused by an interfacial electron transfer reaction between B850 and the TiO2 nanoparticle was precluded experimentally. We proposed that the observed change in the photophysical properties of LH2 when assembled onto TiO2 nanoparticles is arising from the interfacial-interaction-induced structural deformation of the LH2 complex deviating from an ellipse of less eccentric to a more eccentric ellipse, and the observed phenomenon can be accounted by an elliptical exciton model. Experiment by using photoinactive SiO2 nanoparticle in place of TiO2 and core complex LH1 instead of LH2 provide further evidence to the proposed mechanism. PMID:15821161

  20. Protein structural deformation induced lifetime shortening of photosynthetic bacteria light-harvesting complex LH2 excited state.

    PubMed

    Chen, Xing-Hai; Zhang, Lei; Weng, Yu-Xiang; Du, Lu-Chao; Ye, Man-Ping; Yang, Guo-Zhen; Fujii, Ritsuko; Rondonuwu, Ferdy S; Koyama, Yasushi; Wu, Yi-Shi; Zhang, J P

    2005-06-01

    Photosynthetic bacterial light-harvesting antenna complex LH2 was immobilized on the surface of TiO(2) nanoparticles in the colloidal solution. The LH2/TiO(2) assembly was investigated by the time-resolved spectroscopic methods. The excited-state lifetimes for carotenoid-containing and carotenoidless LH2 have been measured, showing a decrease in the excited-state lifetime of B850 when LH2 was immobilized on TiO(2). The possibility that the decrease of the LH2 excited-state lifetime being caused by an interfacial electron transfer reaction between B850 and the TiO(2) nanoparticle was precluded experimentally. We proposed that the observed change in the photophysical properties of LH2 when assembled onto TiO(2) nanoparticles is arising from the interfacial-interaction-induced structural deformation of the LH2 complex deviating from an ellipse of less eccentric to a more eccentric ellipse, and the observed phenomenon can be accounted by an elliptical exciton model. Experiment by using photoinactive SiO(2) nanoparticle in place of TiO(2) and core complex LH1 instead of LH2 provide further evidence to the proposed mechanism.

  1. Optimised effective potential for ground states, excited states, and time-dependent phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, E.K.U.

    1996-12-31

    (1) The optimized effective potential method is a variant of the traditional Kohn-Sham scheme. In this variant, the exchange-correlation energy E{sub xc} is an explicit functional of single-particle orbitals. The exchange-correlation potential, given as usual by the functional derivative v{sub xc} = {delta}E{sub xc}/{delta}{rho}, then satisfies as integral equation involving the single-particle orbitals. This integral equation in solved semi-analytically using a scheme recently proposed by Krieger, Li and Iafrate. If the exact (Fock) exchange-energy functional is employed together with the Colle-Salvetti orbital functional for the correlation energy, the mean absolute deviation of the resulting ground-state energies from the exact nonrelativisticmore » values is CT mH for the first-row atoms, as compared to 4.5 mH in a state-of-the-art CI calculation. The proposed scheme is thus significantly more accurate than the conventional Kohn-Sham method while the numerical effort involved is about the same as for an ordinary Hanree-Fock calculation. (2) A time-dependent generalization of the optimized-potential method is presented and applied to the linear-response regime. Since time-dependent density functional theory leads to a formally exact representation of the frequency-dependent linear density response and since the latter, as a function of frequency, has poles at the excitation energies of the fully interacting system, the formalism is suitable for the calculation of excitation energies. A simple additive correction to the Kohn-Sham single-particle excitation energies will be deduced and first results for atomic and molecular singlet and triplet excitation energies will be presented. (3) Beyond the regime of linear response, the time-dependent optimized-potential method is employed to describe atoms in strong emtosecond laser pulses. Ionization yields and harmonic spectra will be presented and compared with experimental data.« less

  2. Role of excited state solvent fluctuations on time-dependent fluorescence Stokes shift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tanping, E-mail: tanping@lsu.edu, E-mail: revatik@lsu.edu; Kumar, Revati, E-mail: tanping@lsu.edu, E-mail: revatik@lsu.edu

    2015-11-07

    We explore the connection between the solvation dynamics of a chromophore upon photon excitation and equilibrium fluctuations of the solvent. Using molecular dynamics simulations, fluorescence Stokes shift for the tryptophan in Staphylococcus nuclease was examined using both nonequilibrium calculations and linear response theory. When the perturbed and unperturbed surfaces exhibit different solvent equilibrium fluctuations, the linear response approach on the former surface shows agreement with the nonequilibrium process. This agreement is excellent when the perturbed surface exhibits Gaussian statistics and qualitative in the case of an isomerization induced non-Gaussian statistics. However, the linear response theory on the unperturbed surface breaksmore » down even in the presence of Gaussian fluctuations. Experiments also provide evidence of the connection between the excited state solvent fluctuations and the total fluorescence shift. These observations indicate that the equilibrium statistics on the excited state surface characterize the relaxation dynamics of the fluorescence Stokes shift. Our studies specifically analyze the Gaussian fluctuations of the solvent in the complex protein environment and further confirm the role of solvent fluctuations on the excited state surface. The results are consistent with previous investigations, found in the literature, of solutes dissolved in liquids.« less

  3. Excited state TBA and renormalized TCSA in the scaling Potts model

    NASA Astrophysics Data System (ADS)

    Lencsés, M.; Takács, G.

    2014-09-01

    We consider the field theory describing the scaling limit of the Potts quantum spin chain using a combination of two approaches. The first is the renormalized truncated conformal space approach (TCSA), while the second one is a new thermodynamic Bethe Ansatz (TBA) system for the excited state spectrum in finite volume. For the TCSA we investigate and clarify several aspects of the renormalization procedure and counter term construction. The TBA system is first verified by comparing its ultraviolet limit to conformal field theory and the infrared limit to exact S matrix predictions. We then show that the TBA and the renormalized TCSA match each other to a very high precision for a large range of the volume parameter, providing both a further verification of the TBA system and a demonstration of the efficiency of the TCSA renormalization procedure. We also discuss the lessons learned from our results concerning recent developments regarding the low-energy scattering of quasi-particles in the quantum Potts spin chain.

  4. Excited State Charge Transfer reaction with dual emission from 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile: Spectral measurement and theoretical density functional theory calculation

    NASA Astrophysics Data System (ADS)

    Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil

    2011-07-01

    The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.

  5. Characterizing Plasmonic Excitations of Quasi-2D Chains

    NASA Astrophysics Data System (ADS)

    Townsend, Emily; Bryant, Garnett

    A quantum description of the optical response of nanostructures and other atomic-scale systems is desirable for modeling systems that use plasmons for quantum information transfer, or coherent transport and interference of quantum states, as well as systems small enough for electron tunneling or quantum confinement to affect the electronic states of the system. Such a quantum description is complicated by the fact that collective and single-particle excitations can have similar energies and thus will mix. We seek to better understand the excitations of nanosystems to identify which characteristics of the excitations are most relevant to modeling their behavior. In this work we use a quasi 2-dimensional linear atomic chain as a model system, and exact diagonalization of the many-body Hamiltonian to obtain its excitations. We compare this to previous work in 1-d chains which used a combination of criteria involving a many-body state's transfer dipole moment, balance, transfer charge, dynamical response, and induced-charge distribution to identify which excitations are plasmonic in character.

  6. Describing excited state relaxation and localization in TiO 2 nanoparticles using TD-DFT

    DOE PAGES

    Berardo, Enrico; Hu, Han -Shi; van Dam, Hubertus J. J.; ...

    2014-02-26

    We have investigated the description of excited state relaxation in naked and hydrated TiO 2 nanoparticles using Time-Dependent Density Functional Theory (TD-DFT) with three common hybrid exchange-correlation (XC) potentials; B3LYP, CAM-B3LYP and BHLYP. Use of TD-CAM-B3LYP and TD-BHLYP yields qualitatively similar results for all structures, which are also consistent with predictions of coupled cluster theory for small particles. TD-B3LYP, in contrast, is found to make rather different predictions; including apparent conical intersections for certain particles that are not observed with TD-CAM-B3LYP nor with TD-BHLYP. In line with our previous observations for vertical excitations, the issue with TD-B3LYP appears to bemore » the inherent tendency of TD-B3LYP, and other XC potentials with no or a low percentage of Hartree-Fock Like Exchange, to spuriously stabilize the energy of charge-transfer (CT) states. Even in the case of hydrated particles, for which vertical excitations are generally well described with all XC potentials, the use of TD-B3LYP appears to result in CT-problems for certain particles. We hypothesize that the spurious stabilization of CT-states by TD-B3LYP even may drive the excited state optimizations to different excited state geometries than those obtained using TD-CAM-B3LYP or TD-BHLYP. In conclusion, focusing on the TD-CAM-B3LYP and TD-BHLYP results, excited state relaxation in naked and hydrated TiO 2 nanoparticles is predicted to be associated with a large Stokes’ shift.« less

  7. Describing excited state relaxation and localization in TiO 2 nanoparticles using TD-DFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berardo, Enrico; Hu, Han -Shi; van Dam, Hubertus J. J.

    We have investigated the description of excited state relaxation in naked and hydrated TiO 2 nanoparticles using Time-Dependent Density Functional Theory (TD-DFT) with three common hybrid exchange-correlation (XC) potentials; B3LYP, CAM-B3LYP and BHLYP. Use of TD-CAM-B3LYP and TD-BHLYP yields qualitatively similar results for all structures, which are also consistent with predictions of coupled cluster theory for small particles. TD-B3LYP, in contrast, is found to make rather different predictions; including apparent conical intersections for certain particles that are not observed with TD-CAM-B3LYP nor with TD-BHLYP. In line with our previous observations for vertical excitations, the issue with TD-B3LYP appears to bemore » the inherent tendency of TD-B3LYP, and other XC potentials with no or a low percentage of Hartree-Fock Like Exchange, to spuriously stabilize the energy of charge-transfer (CT) states. Even in the case of hydrated particles, for which vertical excitations are generally well described with all XC potentials, the use of TD-B3LYP appears to result in CT-problems for certain particles. We hypothesize that the spurious stabilization of CT-states by TD-B3LYP even may drive the excited state optimizations to different excited state geometries than those obtained using TD-CAM-B3LYP or TD-BHLYP. In conclusion, focusing on the TD-CAM-B3LYP and TD-BHLYP results, excited state relaxation in naked and hydrated TiO 2 nanoparticles is predicted to be associated with a large Stokes’ shift.« less

  8. Early-Time Excited-State Relaxation Dynamics of Iridium Compounds: Distinct Roles of Electron and Hole Transfer.

    PubMed

    Liu, Xiang-Yang; Zhang, Ya-Hui; Fang, Wei-Hai; Cui, Ganglong

    2018-06-28

    Excited-state and photophysical properties of Ir-containing complexes have been extensively studied because of their potential applications as organic light-emitting diode emitting materials. However, their early time excited-state relaxation dynamics are less explored computationally. Herein we have employed our recently implemented TDDFT-based generalized surface-hopping dynamics method to simulate excited-state relaxation dynamics of three Ir(III) compounds having distinct ligands. According to our multistate dynamics simulations including five excited singlet states i.e., S n ( n = 1-5) and ten excited triplet states, i.e., T n ( n = 1-10), we have found that the intersystem crossing (ISC) processes from the S n to T n are very efficient and ultrafast in these three Ir(III) compounds. The corresponding ISC rates are estimated to be 65, 81, and 140 fs, which are reasonably close to the experimentally measured ca. 80, 80, and 110 fs. In addition, the internal conversion (IC) processes within respective singlet and triplet manifolds are also ultrafast. These ultrafast IC and ISC processes are caused by large nonadiabatic and spin-orbit couplings, respectively, as well as small energy gaps. Importantly, although these Ir(III) complexes share similar macroscopic phenomena, i.e., ultrafast IC and ISC, their microscopic excited-state relaxation mechanism and dynamics are qualitatively distinct. Specifically, the dynamical behaviors of electron and hole and their roles are variational in modulating the excited-state relaxation dynamics of these Ir(III) compounds. In other words, the electronic properties of the ligands that are coordinated with the central Ir(III) atom play important roles in regulating the microscopic excited-state relaxation dynamics. These gained insights could be useful for rationally designing Ir(III) compounds with excellent photoluminescence.

  9. Excited states in polydiacetylene chains: A density matrix renormalization group study

    NASA Astrophysics Data System (ADS)

    Barcza, Gergely; Barford, William; Gebhard, Florian; Legeza, Örs

    2013-06-01

    We study theoretically polydiacetylene chains diluted in their monomer matrix. We employ the density matrix renormalization group method on finite chains to calculate the ground state and low-lying excitations of the corresponding Peierls-Hubbard-Ohno Hamiltonian which is characterized by the electron transfer amplitude t0 between nearest neighbors, by the electron-phonon coupling constant α, by the Hubbard interaction U, and by the long-range interaction V. We treat the lattice relaxation in the adiabatic limit, i.e., we calculate the polaronic lattice distortions for each excited state. Using chains with up to 102 lattice sites, we can safely perform the extrapolation to the thermodynamic limit for the ground-state energy and conformation, the single-particle gap, and the energies of the singlet exciton, the triplet ground state, and the optical excitation of the triplet ground state. The corresponding gaps are known with high precision from experiments. We determine a coherent parameter set (t0*=2.4eV,α*=3.4eV/Å,U*=6eV,V*=3eV) from a fit of the experimental gap energies to the theoretical values which we obtain for 81 parameter points in the four-dimensional search space (t0,α,U,V). We identify dark in-gap states in the singlet and triplet sectors as seen in experiments. Using a fairly stiff spring constant, the length of our unit cell is about 1% larger than its experimental value.

  10. Chemical modulation of electronic structure at the excited state

    NASA Astrophysics Data System (ADS)

    Li, F.; Song, C.; Gu, Y. D.; Saleem, M. S.; Pan, F.

    2017-12-01

    Spin-polarized electronic structures are the cornerstone of spintronics, and have thus attracted a significant amount of interest; in particular, researchers are looking into how to modulate the electronic structure to enable multifunctional spintronics applications, especially in half-metallic systems. However, the control of the spin polarization has only been predicted in limited two-dimensional systems with spin-polarized Dirac structures and is difficult to achieve experimentally. Here, we report the modulation of the electronic structure in the light-induced excited state in a typical half-metal, L a1 /2S r1 /2Mn O3 -δ . According to the spin-transport measurements, there appears a light-induced increase in magnetoresistance due to the enhanced spin scattering, which is closely associated with the excited spin polarization. Strikingly, the light-induced variation can be enhanced via alcohol processing and reduced by oxygen annealing. X-ray photoelectron spectroscopy measurements show that in the chemical process, a redox reaction occurs with a change in the valence of Mn. Furthermore, first-principles calculations reveal that the change in the valence of Mn alters the electronic structure and consequently modulates the spin polarization in the excited state. Our findings thus report a chemically tunable electronic structure, demonstrating interesting physics and the potential for multifunctional applications and ultrafast spintronics.

  11. Tetracarboxy-phthalocyanines: From excited state dynamics to photodynamic inactivation against Bovine herpesvirus type 1.

    PubMed

    Cocca, Leandro H Z; Oliveira, Taise M A; Gotardo, Fernando; Teles, Amanda V; Menegatti, Ricardo; Siqueira, Jonathas P; Mendonça, Cleber R; Bataus, Luiz A M; Ribeiro, Anderson O; Souza, Thalita F M; Souza, Guilherme R L; Gonçalves, Pablo J; De Boni, Leonardo

    2017-10-01

    Herein we present the excited state dynamic of zinc and aluminum tetracarboxy-phthalocyanines (ZnPc and AlPc) and its application in the photodynamic inactivation (PDI) of Bovine herpesvirus type 1 (BoHV-1) in vitro. The excited state dynamic provides valuable data to describe the excited state properties of potential optical limiters and/or photosensitizers (PSs), such as: the excited state cross-sections, fluorescence lifetime and triplet state quantum yield. The excited state characterization was performed using three different Z-scan techniques: Single Pulse, White Light Continuum and Pulse Train. Considering the photodynamic inactivation of BoHV-1, an initial viral suspension containing 10 5.75 TCID 50 /mL was incubated with the PSs for 1h at 37°C under agitation and protected from light. The samples were placed in microtiter plates and irradiated (180mW/cm 2 ). During irradiation, a sample was taken every 15min and the viability of the virus was evaluated. The results show that both phthalocyanines were efficient against viruses. However, a higher photodynamic efficiency was observed by ZnPc, which can be attributed to its higher triplet and singlet quantum yields. The results presented here are important for animal health (treatment of BoHV-1) and also open up a field of studies to use AlPc and ZnPc as potential agents against a wide range of microorganisms of veterinary interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Ionic wave propagation and collision in an excitable circuit model of microtubules

    NASA Astrophysics Data System (ADS)

    Guemkam Ghomsi, P.; Tameh Berinyoh, J. T.; Moukam Kakmeni, F. M.

    2018-02-01

    In this paper, we report the propensity to excitability of the internal structure of cellular microtubules, modelled as a relatively large one-dimensional spatial array of electrical units with nonlinear resistive features. We propose a model mimicking the dynamics of a large set of such intracellular dynamical entities as an excitable medium. We show that the behavior of such lattices can be described by a complex Ginzburg-Landau equation, which admits several wave solutions, including the plane waves paradigm. A stability analysis of the plane waves solutions of our dynamical system is conducted both analytically and numerically. It is observed that perturbed plane waves will always evolve toward promoting the generation of localized periodic waves trains. These modes include both stationary and travelling spatial excitations. They encompass, on one hand, localized structures such as solitary waves embracing bright solitons, dark solitons, and bisolitonic impulses with head-on collisions phenomena, and on the other hand, the appearance of both spatially homogeneous and spatially inhomogeneous stationary patterns. This ability exhibited by our array of proteinic elements to display several states of excitability exposes their stunning biological and physical complexity and is of high relevance in the description of the developmental and informative processes occurring on the subcellular scale.

  13. Ionic wave propagation and collision in an excitable circuit model of microtubules.

    PubMed

    Guemkam Ghomsi, P; Tameh Berinyoh, J T; Moukam Kakmeni, F M

    2018-02-01

    In this paper, we report the propensity to excitability of the internal structure of cellular microtubules, modelled as a relatively large one-dimensional spatial array of electrical units with nonlinear resistive features. We propose a model mimicking the dynamics of a large set of such intracellular dynamical entities as an excitable medium. We show that the behavior of such lattices can be described by a complex Ginzburg-Landau equation, which admits several wave solutions, including the plane waves paradigm. A stability analysis of the plane waves solutions of our dynamical system is conducted both analytically and numerically. It is observed that perturbed plane waves will always evolve toward promoting the generation of localized periodic waves trains. These modes include both stationary and travelling spatial excitations. They encompass, on one hand, localized structures such as solitary waves embracing bright solitons, dark solitons, and bisolitonic impulses with head-on collisions phenomena, and on the other hand, the appearance of both spatially homogeneous and spatially inhomogeneous stationary patterns. This ability exhibited by our array of proteinic elements to display several states of excitability exposes their stunning biological and physical complexity and is of high relevance in the description of the developmental and informative processes occurring on the subcellular scale.

  14. Pressure dependence of excited-state charge-carrier dynamics in organolead tribromide perovskites

    NASA Astrophysics Data System (ADS)

    Liu, X. C.; Han, J. H.; Zhao, H. F.; Yan, H. C.; Shi, Y.; Jin, M. X.; Liu, C. L.; Ding, D. J.

    2018-05-01

    Excited-state charge-carrier dynamics governs the performance of organometal trihalide perovskites (OTPs) and is strongly influenced by the crystal structure. Characterizing the excited-state charge-carrier dynamics in OTPs under high pressure is imperative for providing crucial insights into structure-property relations. Here, we conduct in situ high-pressure femtosecond transient absorption spectroscopy experiments to study the excited-state carrier dynamics of CH3NH3PbBr3 (MAPbBr3) under hydrostatic pressure. The results indicate that compression is an effective approach to modulate the carrier dynamics of MAPbBr3. Across each pressure-induced phase, carrier relaxation, phonon scattering, and Auger recombination present different pressure-dependent properties under compression. Responsiveness is attributed to the pressure-induced variation in the lattice structure, which also changes the electronic band structure. Specifically, simultaneous prolongation of carrier relaxation and Auger recombination is achieved in the ambient phase, which is very valuable for excess energy harvesting. Our discussion provides clues for optimizing the photovoltaic performance of OTPs.

  15. Multiconfiguration Pair-Density Functional Theory Outperforms Kohn-Sham Density Functional Theory and Multireference Perturbation Theory for Ground-State and Excited-State Charge Transfer.

    PubMed

    Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura

    2015-08-11

    The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.

  16. Ab initio study of excited state electronic circular dichroism. Two prototype cases: methyl oxirane and R-(+)-1,1'-bi(2-naphthol).

    PubMed

    Rizzo, Antonio; Vahtras, Olav

    2011-06-28

    A computational approach to the calculation of excited state electronic circular dichroism (ESECD) spectra of chiral molecules is discussed. Frequency dependent quadratic response theory is employed to compute the rotatory strength for transitions between excited electronic states, by employing both a magnetic gauge dependent and a (velocity-based) magnetic gauge independent approach. Application is made to the lowest excited states of two prototypical chiral molecules, propylene oxide, also known as 1,2-epoxypropane or methyl oxirane, and R-(+)-1,1'-bi(2-naphthol), or BINOL. The dependence of the rotatory strength for transitions between the lowest three excited states of methyl oxirane upon the quality and extension of the basis set is analyzed, by employing a hierarchy of correlation consistent basis sets. Once established that basis sets of at least triple zeta quality, and at least doubly augmented, are sufficient to ensure sufficiently converged results, at least at the Hartree-Fock self-consistent field (HF-SCF) level, the rotatory strengths for all transitions between the lowest excited electronic states of methyl oxirane are computed and analyzed, employing HF-SCF, and density functional theory (DFT) electronic structure models. For DFT, both the popular B3LYP and its recently highly successful CAM-B3LYP extension are exploited. The strong dependence of the spectra upon electron correlation is highlighted. A HF-SCF and DFT study is carried out also for BINOL, a system where excited states show the typical pairing structure arising from the interaction of the two monomeric moieties, and whose conformational changes following photoexcitation were studied recently with via time-resolved CD.

  17. Structure Effect of Squarylium Cyanine Dyes on Third-Order Optical Nonlinearities in Ground and Excited States

    NASA Astrophysics Data System (ADS)

    Liu, Xu-chun; Xu, Gang; Si, Jin-hai; Ye, Pei-xian; Lin, Tong; Peng, Bi-xian

    1999-08-01

    A series of squarylium cyanine dyes with different substituents were synthesized and the third-order optical nonlinearities of their ground and excited states were investigated by backward degenerate four-wave-mixing. For the ground state, the molecular hyperpolarizability γg increases with the red-shift of the absorption peak λmaxab of the squaraine with different substituents, whereas for the excited-state molecular hyperpolarizability γe, the nonlinear enhancement γe/γg decreases, which may indicate that in the excited state the electron accepting-donating ability of different substituents changes in the reverse order compared with the order in the ground state.

  18. Red and blue shift of liquid water's excited states: A many body perturbation study

    NASA Astrophysics Data System (ADS)

    Ziaei, Vafa; Bredow, Thomas

    2016-08-01

    In the present paper, accurate optical absorption spectrum of liquid H2O is calculated in the energy range of 5-20 eV to probe the nature of water's excited states by means of many body perturbation approach. Main features of recent inelastic X-ray measurements are well reproduced, such as a bound excitonic peak at 7.9 eV with a shoulder at 9.4 eV as well as the absorption maximum at 13.9 eV, followed by a broad shoulder at 18.4 eV. The spectrum is dominated by excitonic effects impacting the structures of the spectrum at low and higher energy regimes mixed by single particle effects at high energies. The exciton distribution of the low-energy states, in particular of S1, is highly anisotropic and localized mostly on one water molecule. The S1 state is essentially a HOCO-LUCO (highest occupied crystal orbital - lowest unoccupied crystal orbital) transition and of intra-molecular type, showing a localized valence character. Once the excitation energy is increased, a significant change in the character of the electronically excited states occurs, characterized through emergence of multiple quasi-particle peaks at 7.9 eV in the quasi-particle (QP) transition profile and in the occurring delocalized exciton density distribution, spread over many more water molecules. The exciton delocalization following a change of the character of excited states at around 7.9 eV causes the blue shift of the first absorption band with respect to water monomer S1. However, due to reduction of the electronic band gap from gas to liquid phase, following enhanced screening upon condensation, the localized S1 state of liquid water is red-shifted with respect to S1 state of water monomer. For higher excitations, near vertical ionization energy (11 eV), quasi-free electrons emerge, in agreement with the conduction band electron picture. Furthermore, the occurring red and blue shift of the excited states are independent of the coupling of resonant and anti-resonant contributions to the

  19. Excitation wavelength dependence of excited state intramolecular proton transfer reaction of 4'-N,N-diethylamino-3-hydroxyflavone in room temperature ionic liquids studied by optical Kerr gate fluorescence measurement.

    PubMed

    Suda, Kayo; Terazima, Masahide; Sato, Hirofumi; Kimura, Yoshifumi

    2013-10-17

    Excited state intramolecular proton transfer reactions (ESIPT) of 4'-N,N-diethylamino-3-hydroxyflavone (DEAHF) in ionic liquids have been studied by steady-state and time-resolved fluorescence measurements at different excitation wavelengths. Steady-state measurements show the relative yield of the tautomeric form to the normal form of DEAHF decreases as excitation wavelength is increased from 380 to 450 nm. The decrease in yield is significant in ionic liquids that have cations with long alkyl chains. The extent of the decrease is correlated with the number of carbon atoms in the alkyl chains. Time-resolved fluorescence measurements using optical Kerr gate spectroscopy show that ESIPT rate has a strong excitation wavelength dependence. There is a large difference between the spectra at a 200 ps delay from different excitation wavelengths in each ionic liquid. The difference is pronounced in ionic liquids having a long alkyl chain. The equilibrium constant in the electronic excited state obtained at a 200 ps delay and the average reaction rate are also correlated with the alkyl chain length. Considering the results of the steady-state fluorescence and time-resolved measurements, the excitation wavelength dependence of ESIPT is explained by state selective excitation due to the difference of the solvation, and the number of alkyl chain carbon atoms is found to be a good indicator of the effect of inhomogeneity for this reaction.

  20. Optical spectroscopy of excited exciton states in MoS2 monolayers in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Robert, C.; Semina, M. A.; Cadiz, F.; Manca, M.; Courtade, E.; Taniguchi, T.; Watanabe, K.; Cai, H.; Tongay, S.; Lassagne, B.; Renucci, P.; Amand, T.; Marie, X.; Glazov, M. M.; Urbaszek, B.

    2018-01-01

    The optical properties of MoS2 monolayers are dominated by excitons, but for spectrally broad optical transitions in monolayers exfoliated directly onto SiO2 substrates detailed information on excited exciton states is inaccessible. Encapsulation in hexagonal boron nitride (hBN) allows approaching the homogenous exciton linewidth, but interferences in the van der Waals heterostructures make direct comparison between transitions in optical spectra with different oscillator strength more challenging. Here we reveal in reflectivity and in photoluminescence excitation spectroscopy the presence of excited states of the A exciton in MoS2 monolayers encapsulated in hBN layers of calibrated thickness, allowing us to extrapolate an exciton binding energy of ≈220 meV. We theoretically reproduce the energy separations and oscillator strengths measured in reflectivity by combining the exciton resonances calculated for a screened two-dimensional Coulomb potential with transfer matrix calculations of the reflectivity for the van der Waals structure. Our analysis shows a very different evolution of the exciton oscillator strength with principal quantum number for the screened Coulomb potential as compared to the ideal two-dimensional hydrogen model.

  1. 2νββ decay of 76Ge into excited states with GERDA phase I

    NASA Astrophysics Data System (ADS)

    GERDA Collaboration; Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Mi, Y.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schneider, B.; Schreiner, J.; Schulz, O.; Schwingenheuer, B.; Schönert, S.; Schütz, A.-K.; Selivanenko, O.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Ur, C. A.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2015-11-01

    Two neutrino double beta decay of {}76{Ge} to excited states of {}76{Se} has been studied using data from Phase I of the GERDA experiment. An array composed of up to 14 germanium detectors including detectors that have been isotopically enriched in {}76{Ge} was deployed in liquid argon. The analysis of various possible transitions to excited final states is based on coincidence events between pairs of detectors where a de-excitation γ ray is detected in one detector and the two electrons in the other. No signal has been observed and an event counting profile likelihood analysis has been used to determine Frequentist 90% C.L. bounds for three transitions: {0}{{g}.{{s}}.}+-{2}1+: {T}1/22ν \\gt 1.6× {10}23 yr, {0}{{g}.{{s}}.}+-{0}1+: {T}1/22ν \\gt 3.7× {10}23 yr and {0}{{g}.{{s}}.}+-{2}2+: {T}1/22ν \\gt 2.3× {10}23 yr. These bounds are more than two orders of magnitude larger than those reported previously. Bayesian 90% credibility bounds were extracted and used to exclude several models for the {0}{{g}.{{s}}.}+-{0}1+ transition.

  2. Pushing the limits of excited-state g-factor measurements

    NASA Astrophysics Data System (ADS)

    Stuchbery, Andrew E.; McCormick, Brendan P.; Gray, Timothy J.; Coombes, Ben J.

    2018-05-01

    Current developments in excited-state g-factor measurements are discussed with an emphasis on cases where the experimental methodology is being extended into new regimes. The transient-field technique, the recoil in vacuum method, and moment measurements with LaBr3 detectors are discussed.

  3. Excited-State Dynamics of the Thiopurine Prodrug 6-Thioguanine: Can N9-Glycosylation Affect Its Phototoxic Activity?

    PubMed

    Ashwood, Brennan; Jockusch, Steffen; Crespo-Hernández, Carlos E

    2017-02-28

    6-Thioguanine, an immunosuppressant and anticancer prodrug, has been shown to induce DNA damage and cell death following exposure to UVA radiation. Its metabolite, 6-thioguanosine, plays a major role in the prodrug's overall photoreactivity. However, 6-thioguanine itself has proven to be cytotoxic following UVA irradiation, warranting further investigation into its excited-state dynamics. In this contribution, the excited-state dynamics and photochemical properties of 6-thioguanine are studied in aqueous solution following UVA excitation at 345 nm in order to provide mechanistic insight regarding its photochemical reactivity and to scrutinize whether N9-glycosylation modulates its phototoxicity in solution. The experimental results are complemented with time-dependent density functional calculations that include solvent dielectric effects by means of a reaction-field solvation model. UVA excitation results in the initial population of the S₂(ππ*) state, which is followed by ultrafast internal conversion to the S₁(nπ*) state and then intersystem crossing to the triplet manifold within 560 ± 60 fs. A small fraction (ca. 25%) of the population that reaches the S₁(nπ*) state repopulates the ground state. The T₁(ππ*) state decays to the ground state in 1.4 ± 0.2 μs under N₂-purged conditions, using a 0.2 mM concentration of 6-thioguanine, or it can sensitize singlet oxygen in 0.21 ± 0.02 and 0.23 ± 0.02 yields in air- and O₂-saturated solution, respectively. This demonstrates the efficacy of 6-thioguanine to act as a Type II photosensitizer. N9-glycosylation increases the rate of intersystem crossing from the singlet to triplet manifold, as well as from the T₁(ππ*) state to the ground state, which lead to a ca. 40% decrease in the singlet oxygen yield under air-saturated conditions. Enhanced vibronic coupling between the singlet and triplet manifolds due to a higher density of vibrational states is proposed to be responsible for the observed

  4. Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes

    DOE PAGES

    Lee, Jaesang; Jeong, Changyeong; Batagoda, Thilini; ...

    2017-05-31

    Since their introduction over 15 years ago, the operational lifetime of blue phosphorescent organic light-emitting diodes (PHOLEDs) has remained insufficient for their practical use in displays and lighting. Their short lifetime results from annihilation between high-energy excited states, producing energetically hot states (46.0 eV) that lead to molecular dissociation. We introduce a strategy to avoid dissociative reactions by including a molecular hot excited state manager within the device emission layer. Hot excited states transfer to the manager and rapidly thermalize before damage is induced on the dopant or host. As a consequence, the managed blue PHOLED attains T80=334±5 h (timemore » to 80% of the 1,000 cd m -2 initial luminance) with a chromaticity coordinate of (0.16, 0.31), corresponding to 3.6±0.1 times improvement in a lifetime compared to conventional, unmanaged devices. We believe that, this significant improvement results in the longest lifetime for such a blue PHOLED.« less

  5. Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jaesang; Jeong, Changyeong; Batagoda, Thilini

    Since their introduction over 15 years ago, the operational lifetime of blue phosphorescent organic light-emitting diodes (PHOLEDs) has remained insufficient for their practical use in displays and lighting. Their short lifetime results from annihilation between high-energy excited states, producing energetically hot states (46.0 eV) that lead to molecular dissociation. We introduce a strategy to avoid dissociative reactions by including a molecular hot excited state manager within the device emission layer. Hot excited states transfer to the manager and rapidly thermalize before damage is induced on the dopant or host. As a consequence, the managed blue PHOLED attains T80=334±5 h (timemore » to 80% of the 1,000 cd m -2 initial luminance) with a chromaticity coordinate of (0.16, 0.31), corresponding to 3.6±0.1 times improvement in a lifetime compared to conventional, unmanaged devices. We believe that, this significant improvement results in the longest lifetime for such a blue PHOLED.« less

  6. Core excitations across the neutron shell gap in 207Tl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, E.; Podolyák, Zs.; Grawe, H.

    2015-05-05

    The single closed-neutron-shell, one proton–hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations usingmore » two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states.« less

  7. Photodissociation Efficiency Spectroscopy Study of the Rydberg Excited Ion-Pair States of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Feng, Qiang; Xu, Yun-Feng; Sun, Jin-Da; Tian, Shan-Xi; Shan, Xiao-Bin; Liu, Fu-Yi; Sheng, Liu-Si

    2009-10-01

    Photodissociation efficiency spectrum of anionic oxygen atom produced via ion-pair dissociations of carbon dioxide is recorded by means of the synchrotron radiation excitation (XUV photon energy 17.40-20.00 eV). The present spectrum is assigned as the Rydberg-like excited ion-pair states, i.e., Tanaka-Ogawa and Henning series, tilde C2Σg+ (CO+2) vibrational ground-state and excitation series. Three Rydberg series, npσu, npπu, and nfu, converging to tilde C2Σg+ (0, 0, 0), show the higher cross sections.

  8. Calculation of Vibrational and Electronic Excited-State Absorption Spectra of Arsenic-Water Complexes Using Density Functional Theory

    DTIC Science & Technology

    2016-06-03

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--16-9681 Calculation of Vibrational and Electronic Excited-State Absorption Spectra...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Calculation of Vibrational and Electronic Excited-State Absorption Spectra of Arsenic-Water Complexes Using...Unclassified Unlimited Unclassified Unlimited 59 Samuel G. Lambrakos (202) 767-2601 Calculations are presented of vibrational and electronic excited-state

  9. An excited state underlies gene regulation of a transcriptional riboswitch

    PubMed Central

    Zhao, Bo; Guffy, Sharon L.; Williams, Benfeard; Zhang, Qi

    2017-01-01

    Riboswitches control gene expression through ligand-dependent structural rearrangements of the sensing aptamer domain. However, we found that the Bacillus cereus fluoride riboswitch aptamer adopts identical tertiary structures in solution with and without ligand. Using chemical exchange saturation transfer (CEST) NMR spectroscopy, we revealed that the structured ligand-free aptamer transiently accesses a low-populated (~1%) and short-lived (~3 ms) excited conformational state that unravels a conserved ‘linchpin’ base pair to signal transcription termination. Upon fluoride binding, this highly localized fleeting process is allosterically suppressed to activate transcription. We demonstrated that this mechanism confers effective fluoride-dependent gene activation over a wide range of transcription rates, which is essential for robust toxicity response across diverse cellular conditions. These results unveil a novel switching mechanism that employs ligand-dependent suppression of an aptamer excited state to coordinate regulatory conformational transitions rather than adopting distinct aptamer ground-state tertiary architectures, exemplifying a new mode of ligand-dependent RNA regulation. PMID:28719589

  10. A simple model of solvent-induced symmetry-breaking charge transfer in excited quadrupolar molecules

    NASA Astrophysics Data System (ADS)

    Ivanov, Anatoly I.; Dereka, Bogdan; Vauthey, Eric

    2017-04-01

    A simple model has been developed to describe the symmetry-breaking of the electronic distribution of AL-D-AR type molecules in the excited state, where D is an electron donor and AL and AR are identical acceptors. The origin of this process is usually associated with the interaction between the molecule and the solvent polarization that stabilizes an asymmetric and dipolar state, with a larger charge transfer on one side than on the other. An additional symmetry-breaking mechanism involving the direct Coulomb interaction of the charges on the acceptors is proposed. At the same time, the electronic coupling between the two degenerate states, which correspond to the transferred charge being localised either on AL or AR, favours a quadrupolar excited state with equal amount of charge-transfer on both sides. Because of these counteracting effects, symmetry breaking is only feasible when the electronic coupling remains below a threshold value, which depends on the solvation energy and the Coulomb repulsion energy between the charges located on AL and AR. This model allows reproducing the solvent polarity dependence of the symmetry-breaking reported recently using time-resolved infrared spectroscopy.

  11. Search for two-neutrino double-β decay of 96Zr to excited states of 96Mo

    NASA Astrophysics Data System (ADS)

    Finch, S. W.; Tornow, W.

    2015-10-01

    Background: Double-β decay is a rare second-order nuclear decay. The importance of this decay stems from the possibility of neutrinoless double-β decay and its applications to neutrino physics. Purpose: A search was conducted for the 2 ν β β decay of 96Zr to excited final states of the daughter nucleus, 96Mo. Measurements of this decay are important to test nuclear matrix element calculations, which are necessary to extract the neutrino mass from a measurement of the neutrinoless double-β decay half-life. Method: Two coaxial high-purity germanium detectors were used in coincidence to detect γ rays produced by the daughter nucleus as it de-excited to the ground state. The experiment was carried out at the Kimballton Underground Research Facility and produced 685.7 d of data with a 17.91 g enriched sample. Results: No counts were seen above background. For the decay to the first excited 0+ state, a limit of T1 /2>3.1 ×1020 yr was produced. Limits to higher excited states are also reported. Conclusion: The new limits on double-β decay are an improvement over previous experiments by a factor of 2 to 5 for the various excited states. The nuclear matrix element for the double-β decay to the first excited 0+ state is found to be <0.13 .

  12. Search for excited B c + states

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Atzeni, M.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M. O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bizzeti, A.; Bjørn, M.; Blake, T.; Blanc, F.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bordyuzhin, I.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Chapman, M. G.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chitic, S.-G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Ciambrone, P.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Da Silva, C. L.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Durham, J. M.; Dutta, D.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Lopes, L.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fontana, M.; Fontanelli, F.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T. H.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Hasse, C.; Hatch, M.; He, J.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hopchev, P. H.; Hu, W.; Huang, W.; Huard, Z. C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kazeev, N.; Kecke, M.; Keizer, F.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Kress, F.; Krokovny, P.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, P.-R.; Li, T.; Li, Y.; Li, Z.; Liang, X.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Lisovskyi, V.; Liu, X.; Loh, D.; Loi, A.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Mackowiak, P.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malecki, B.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M.-N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Mombächer, T.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Pereima, D.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pietrzyk, G.; Pikies, M.; Pinci, D.; Pisani, F.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Qin, J.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Robbe, P.; Robert, A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubiger, M.; Schune, M. H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepulveda, E. S.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stepanova, M.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, J.; Sun, L.; Swientek, K.; Syropoulos, V.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Usachov, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Walsh, J.; Wang, J.; Wang, Y.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Weisser, C.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wyllie, K.; Xie, Y.; Xu, M.; Xu, Q.; Xu, Z.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.

    2018-01-01

    A search is performed in the invariant mass spectrum of the B c + π+π- system for the excited B c + states B c (21 S 0)+ and B c (23 S 1)+ using a data sample of pp collisions collected by the LHCb experiment at the centre-of-mass energy of √{s}=8 TeV, corresponding to an integrated luminosity of 2 fb-1. No evidence is seen for either state. Upper limits on the ratios of the production cross-sections of the B c (21 S 0)+ and B c (23 S 1)+ states times the branching fractions of B c (21 S 0)+ → B c + π+π- and B c (23 S 1)+ → B c * +π+π- over the production cross-section of the B c + state are given as a function of their masses. They are found to be between 0.02 and 0.14 at 95% confidence level for B c (21 S 0)+ and B c (23 S 1)+ in the mass ranges [6830 , 6890] MeV /c 2 and [6795 , 6890] MeV /c 2, respectively. [Figure not available: see fulltext.

  13. Defect States in Copper Indium Gallium Selenide Solar Cells from Two-Wavelength Excitation Photoluminescence Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Soren A.; Dippo, Patricia; Mansfield, Lorelle M.

    2016-11-21

    We use two-wavelength excitation photoluminescence spectroscopy to probe defect states in CIGS thin films. Above-Eg excitation is combined with a tunable IR bias light that modulates the population of the defect states. We find that IR illumination in the range of 1400-2000 nm (0.62-0.89 eV) causes a reduction of the PL intensity, the magnitude of which scales linearly with IR power. Further, KF post deposition treatment has only a modest influence on the effect of the IR excitation. Initial data suggest that we have developed an optical characterization tool for band-gap defect states.

  14. Self-Exciting Point Process Modeling of Conversation Event Sequences

    NASA Astrophysics Data System (ADS)

    Masuda, Naoki; Takaguchi, Taro; Sato, Nobuo; Yano, Kazuo

    Self-exciting processes of Hawkes type have been used to model various phenomena including earthquakes, neural activities, and views of online videos. Studies of temporal networks have revealed that sequences of social interevent times for individuals are highly bursty. We examine some basic properties of event sequences generated by the Hawkes self-exciting process to show that it generates bursty interevent times for a wide parameter range. Then, we fit the model to the data of conversation sequences recorded in company offices in Japan. In this way, we can estimate relative magnitudes of the self excitement, its temporal decay, and the base event rate independent of the self excitation. These variables highly depend on individuals. We also point out that the Hawkes model has an important limitation that the correlation in the interevent times and the burstiness cannot be independently modulated.

  15. Determination of differential cross sections for electron-impact excitation of electronic states of molecular oxygen

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Green, M. A.; Brunger, M. J.; Teubner, P. J.; Cartwright, D. C.

    2000-02-01

    The development and initial results of a method for the determination of differential cross sections for electron scattering by molecular oxygen are described. The method has been incorporated into an existing package of computer programs which, given spectroscopic factors, dissociation energies and an energy-loss spectrum for electron-impact excitation, determine the differential cross sections for each electronic state relative to that of the elastic peak. Enhancements of the original code were made to deal with particular aspects of electron scattering from O2, such as the overlap of vibrational levels of the ground state with transitions to excited states, and transitions to levels close to and above the dissocation energy in the Herzberg and Schumann-Runge continua. The utility of the code is specifically demonstrated for the ``6-eV states'' of O2, where we report absolute differential cross sections for their excitation by 15-eV electrons. In addition an integral cross section, derived from the differential cross section measurements, is also reported for this excitation process and compared against available theoretical results. The present differential and integral cross sections for excitation of the ``6-eV states'' of O2 are the first to be reported in the literature for electron-impact energies below 20 eV.

  16. Compilation of giant electric dipole resonances built on excited states

    NASA Astrophysics Data System (ADS)

    Schiller, A.; Thoennessen, M.

    2007-07-01

    Giant Electric Dipole Resonance (GDR) parameters for γ decay to excited states with finite spin and temperature are compiled. Over 100 original works have been reviewed and from some 70 of them, about 350 sets of hot GDR parameters for different isotopes, excitation energies, and spin regions have been extracted. All parameter sets have been brought onto a common footing by calculating the equivalent Lorentzian parameters. The current compilation is complementary to an earlier compilation by Samuel S. Dietrich and Barry L. Berman (At. Data Nucl. Data Tables 38 (1988) 199-338) on ground-state photo-neutron and photo-absorption cross sections and their Lorentzian parameters. A comparison of the two may help shed light on the evolution of GDR parameters with temperature and spin. The present compilation is current as of July 2006.

  17. Ultrafast 25-fs relaxation in highly excited states of methyl azide mediated by strong nonadiabatic coupling.

    PubMed

    Peters, William K; Couch, David E; Mignolet, Benoit; Shi, Xuetao; Nguyen, Quynh L; Fortenberry, Ryan C; Schlegel, H Bernhard; Remacle, Françoise; Kapteyn, Henry C; Murnane, Margaret M; Li, Wen

    2017-12-26

    Highly excited electronic states are challenging to explore experimentally and theoretically-due to the large density of states and the fact that small structural changes lead to large changes in electronic character with associated strong nonadiabatic dynamics. They can play a key role in astrophysical and ionospheric chemistry, as well as the detonation chemistry of high-energy density materials. Here, we implement ultrafast vacuum-UV (VUV)-driven electron-ion coincidence imaging spectroscopy to directly probe the reaction pathways of highly excited states of energetic molecules-in this case, methyl azide. Our data, combined with advanced theoretical simulations, show that photoexcitation of methyl azide by a 10-fs UV pulse at 8 eV drives fast structural changes and strong nonadiabatic coupling that leads to relaxation to other excited states on a surprisingly fast timescale of 25 fs. This ultrafast relaxation differs from dynamics occurring on lower excited states, where the timescale required for the wavepacket to reach a region of strong nonadiabatic coupling is typically much longer. Moreover, our theoretical calculations show that ultrafast relaxation of the wavepacket to a lower excited state occurs along one of the conical intersection seams before reaching the minimum energy conical intersection. These findings are important for understanding the unique strongly coupled non-Born-Oppenheimer molecular dynamics of VUV-excited energetic molecules. Although such observations have been predicted for many years, this study represents one of the few where such strongly coupled non-Born-Oppenheimer molecular dynamics of VUV-excited energetic molecules have been conclusively observed directly, making it possible to identify the ultrafast reaction pathways.

  18. Capture of a neutron to excited states of a {sup 9}Be nucleus taking into account resonance at 622 keV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubovichenko, S. B., E-mail: dubovichenko@gmail.com

    2013-10-15

    Radiative capture of a neutron to the ground and excited states of the 9Be nucleus is considered using the potential cluster model with forbidden states and with classification of cluster states by the Young schemes taking into account resonance at 622 keV for thermal and astrophysical energies.

  19. Vibrational frequencies and dephasing times in excited electronic states by femtosecond time-resolved four-wave mixing

    NASA Astrophysics Data System (ADS)

    Joo, Taiha; Albrecht, A. C.

    1993-06-01

    Time-resolved degenerate four-wave mixing (TRDFWM) for an electronically resonant system in a phase-matching configuration that measures population decay is reported. Because the spectral width of input light exceeds the vibrational Bohr frequency of a strong Raman active mode, the vibrational coherence produces strong oscillations in the TRDFWM signal together with the usual population decay from the excited electronic state. The data are analyzed in terms of a four-level system: ground and excited electronic states each split by a vibrational quantum of a Raman active mode. Absolute frequencies and their dephasing times of the vibrational modes at ≈590 cm -1 are obtained for the excited as well as the ground electronic state. The vibrational dephasing rate in the excited electronic state is about an order of magnitude faster than that in the ground state, the origin of which is speculated upon.

  20. Excited states from quantum Monte Carlo in the basis of Slater determinants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humeniuk, Alexander; Mitrić, Roland, E-mail: roland.mitric@uni-wuerzburg.de

    2014-11-21

    Building on the full configuration interaction quantum Monte Carlo (FCIQMC) algorithm introduced recently by Booth et al. [J. Chem. Phys. 131, 054106 (2009)] to compute the ground state of correlated many-electron systems, an extension to the computation of excited states (exFCIQMC) is presented. The Hilbert space is divided into a large part consisting of pure Slater determinants and a much smaller orthogonal part (the size of which is controlled by a cut-off threshold), from which the lowest eigenstates can be removed efficiently. In this way, the quantum Monte Carlo algorithm is restricted to the orthogonal complement of the lower excitedmore » states and projects out the next highest excited state. Starting from the ground state, higher excited states can be found one after the other. The Schrödinger equation in imaginary time is solved by the same population dynamics as in the ground state algorithm with modified probabilities and matrix elements, for which working formulae are provided. As a proof of principle, the method is applied to lithium hydride in the 3-21G basis set and to the helium dimer in the aug-cc-pVDZ basis set. It is shown to give the correct electronic structure for all bond lengths. Much more testing will be required before the applicability of this method to electron correlation problems of interesting size can be assessed.« less

  1. Determination of ground and excited state dipole moments via electronic Stark spectroscopy: 5-methoxyindole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilke, Josefin; Wilke, Martin; Schmitt, Michael, E-mail: mschmitt@uni-duesseldorf.de

    2016-01-28

    The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurationsmore » improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54{sup ∘} showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed.« less

  2. Ground and excited states of zinc phthalocyanine, zinc tetrabenzoporphyrin, and azaporphyrin analogs using DFT and TDDFT with Franck-Condon analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theisen, Rebekah F., E-mail: rtheisen@asu.edu; Huang, Liang; Fleetham, Tyler

    2015-03-07

    The electronic structure of eight zinc-centered porphyrin macrocyclic molecules are investigated using density functional theory for ground-state properties, time-dependent density functional theory (TDDFT) for excited states, and Franck-Condon (FC) analysis for further characterization of the UV-vis spectrum. Symmetry breaking was utilized to find the lowest energy of the excited states for many states in the spectra. To confirm the theoretical modeling, the spectroscopic result from zinc phthalocyanine (ZnPc) is used to compare to the TDDFT and FC result. After confirmation of the modeling, five more planar molecules are investigated: zinc tetrabenzoporphyrin (ZnTBP), zinc tetrabenzomonoazaporphyrin (ZnTBMAP), zinc tetrabenzocisdiazaporphyrin (ZnTBcisDAP), zinc tetrabenzotransdiazaporphyrinmore » (ZnTBtransDAP), and zinc tetrabenzotriazaporphyrin (ZnTBTrAP). The two latter molecules are then compared to their phenylated sister molecules: zinc monophenyltetrabenzotriazaporphyrin (ZnMPTBTrAP) and zinc diphenyltetrabenzotransdiazaporphyrin (ZnDPTBtransDAP). The spectroscopic results from the synthesis of ZnMPTBTrAP and ZnDPTBtransDAP are then compared to their theoretical models and non-phenylated pairs. While the Franck-Condon results were not as illuminating for every B-band, the Q-band results were successful in all eight molecules, with a considerable amount of spectral analysis in the range of interest between 300 and 750 nm. The π-π{sup ∗} transitions are evident in the results for all of the Q bands, while satellite vibrations are also visible in the spectra. In particular, this investigation finds that, while ZnPc has a D{sub 4h} symmetry at ground state, a C{sub 4v} symmetry is predicted in the excited-state Q band region. The theoretical results for ZnPc found an excitation energy at the Q-band 0-0 transition of 1.88 eV in vacuum, which is in remarkable agreement with published gas-phase spectroscopy, as well as our own results of ZnPc in solution

  3. Note: Observation of a new electronically excited state of cobalt monoxide

    NASA Astrophysics Data System (ADS)

    Zang, Jianzheng; Zhang, Qun; Qin, Chengbing; Gu, Zhong; Bai, Xilin; Chen, Yang

    2012-11-01

    The laser-induced fluorescence excitation spectra of jet-cooled CoO molecules have been recorded in the energy region of 21 800—25 000 cm-1. Apart from the seven vibronic bands assigned to the known G4Φ9/2(υ') - X4Δ7/2(υ″ = 0) progression [M. Barnes, D. J. Clouthier, P. G. Hajigeorgiou, G. Huang, C. T. Kingston, A. J. Merer, G. F. Metha, J. R. D. Peers, and S. J. Rixon, J. Mol. Spectrosc. 186, 374 (1997), 10.1006/jmsp.1997.7456], we observed a new band system assignable to the [22.95]4Δ7/2(υ' = 0 - 4) - X4Δ7/2(υ″ = 0) progression. Extensive perturbations among these vibronic bands have been revealed by means of reduced energy plots. The new electronically excitedstate has been determined to be most likely of an electronic configuration (2pπ)3(4sσ)2(3dδ)3(3dπ)3 based on the charge-transferred promotion model.

  4. Excited states with internally contracted multireference coupled-cluster linear response theory.

    PubMed

    Samanta, Pradipta Kumar; Mukherjee, Debashis; Hanauer, Matthias; Köhn, Andreas

    2014-04-07

    In this paper, the linear response (LR) theory for the variant of internally contracted multireference coupled cluster (ic-MRCC) theory described by Hanauer and Köhn [J. Chem. Phys. 134, 204211 (2011)] has been formulated and implemented for the computation of the excitation energies relative to a ground state of pronounced multireference character. We find that straightforward application of the linear-response formalism to the time-averaged ic-MRCC Lagrangian leads to unphysical second-order poles. However, the coupling matrix elements that cause this behavior are shown to be negligible whenever the internally contracted approximation as such is justified. Hence, for the numerical implementation of the method, we adopt a Tamm-Dancoff-type approximation and neglect these couplings. This approximation is also consistent with an equation-of-motion based derivation, which neglects these couplings right from the start. We have implemented the linear-response approach in the ic-MRCC singles-and-doubles framework and applied our method to calculate excitation energies for a number of molecules ranging from CH2 to p-benzyne and conjugated polyenes (up to octatetraene). The computed excitation energies are found to be very accurate, even for the notoriously difficult case of doubly excited states. The ic-MRCC-LR theory is also applicable to systems with open-shell ground-state wavefunctions and is by construction not biased towards a particular reference determinant. We have also compared the linear-response approach to the computation of energy differences by direct state-specific ic-MRCC calculations. We finally compare to Mk-MRCC-LR theory for which spurious roots have been reported [T.-C. Jagau and J. Gauss, J. Chem. Phys. 137, 044116 (2012)], being due to the use of sufficiency conditions to solve the Mk-MRCC equations. No such problem is present in ic-MRCC-LR theory.

  5. The reduced transition probabilities for excited states of rare-earths and actinide even-even nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghumman, S. S.

    The theoretical B(E2) ratios have been calculated on DF, DR and Krutov models. A simple method based on the work of Arima and Iachello is used to calculate the reduced transition probabilities within SU(3) limit of IBA-I framework. The reduced E2 transition probabilities from second excited states of rare-earths and actinide even–even nuclei calculated from experimental energies and intensities from recent data, have been found to compare better with those calculated on the Krutov model and the SU(3) limit of IBA than the DR and DF models.

  6. Analytical excited state forces for the time-dependent density-functional tight-binding method.

    PubMed

    Heringer, D; Niehaus, T A; Wanko, M; Frauenheim, Th

    2007-12-01

    An analytical formulation for the geometrical derivatives of excitation energies within the time-dependent density-functional tight-binding (TD-DFTB) method is presented. The derivation is based on the auxiliary functional approach proposed in [Furche and Ahlrichs, J Chem Phys 2002, 117, 7433]. To validate the quality of the potential energy surfaces provided by the method, adiabatic excitation energies, excited state geometries, and harmonic vibrational frequencies were calculated for a test set of molecules in excited states of different symmetry and multiplicity. According to the results, the TD-DFTB scheme surpasses the performance of configuration interaction singles and the random phase approximation but has a lower quality than ab initio time-dependent density-functional theory. As a consequence of the special form of the approximations made in TD-DFTB, the scaling exponent of the method can be reduced to three, similar to the ground state. The low scaling prefactor and the satisfactory accuracy of the method makes TD-DFTB especially suitable for molecular dynamics simulations of dozens of atoms as well as for the computation of luminescence spectra of systems containing hundreds of atoms. (c) 2007 Wiley Periodicals, Inc.

  7. Search for excited quarks of light and heavy flavor in γ + jet final states in proton-proton collisions at √{ s } = 13TeV

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Marchesini, I.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, J.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Segura Delgado, M. A.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; El-khateeb, E.; Elgammal, S.; Ellithi Kamel, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Khvedelidze, A.; Tsamalaidze, Z.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baselga, M.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Faltermann, N.; Freund, B.; Friese, R.; Giffels, M.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Gianneios, P.; Katsoulis, P.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Tsitsonis, D.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Ravera, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Beschi, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Lacaprara, S.; Lujan, P.; Margoni, M.; Maron, G.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Torassa, E.; Ventura, S.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Eysermans, J.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Alexakhin, V.; Bunin, P.; Golunov, A.; Golutvin, I.; Gorbounov, N.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sosnov, D.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Danilov, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Godizov, A.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Bachiller, I.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Chang, Y. H.; Cheng, K. y.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bakirci, M. N.; Bat, A.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Tok, U. G.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Köseoglu, I.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Linacre, J.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Teodorescu, L.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Karapostoli, G.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; Golf, F.; Gouskos, L.; Heller, R.; Incandela, J.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Hiltbrand, J.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Freer, C.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wamorkar, T.; Wang, B.; Wisecarver, A.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Bucci, R.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Li, W.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Siddireddy, P.; Smith, G.; Taroni, S.; Wayne, M.; Wightman, A.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Kalogeropoulos, A.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xiao, R.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2018-06-01

    A search is presented for excited quarks of light and heavy flavor that decay to γ +jet final states. The analysis is based on data corresponding to an integrated luminosity of 35.9fb-1 collected by the CMS experiment in proton-proton collisions at √{ s } = 13TeV at the LHC. A signal would appear as a resonant contribution to the invariant mass spectrum of the γ +jet system, above the background expected from standard model processes. No resonant excess is found, and upper limits are set on the product of the excited quark cross section and its branching fraction as a function of its mass. These are the most stringent limits to date in the γ + jet final state, and exclude excited light quarks with masses below 5.5 TeV and excited b quarks with masses below 1.8 TeV, assuming standard model like coupling strengths.

  8. Active control of the lifetime of excited resonance states by means of laser pulses.

    PubMed

    García-Vela, A

    2012-04-07

    Quantum control of the lifetime of a system in an excited resonance state is investigated theoretically by creating coherent superpositions of overlapping resonances. This control scheme exploits the quantum interference occurring between the overlapping resonances, which can be controlled by varying the width of the laser pulse that creates the superposition state. The scheme is applied to a realistic model of the Br(2)(B)-Ne predissociation decay dynamics through a three-dimensional wave packet method. It is shown that extensive control of the system lifetime is achievable, both enhancing and damping it remarkably. An experimental realization of the control scheme is suggested.

  9. Self-pulsations and excitability in optically injected quantum-dot lasers: Impact of the excited states and spontaneous emission noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olejniczak, Lukasz; SUPELEC, OPTEL, and LMOPS EA 4423; Panajotov, Krassimir

    2010-08-15

    We study the dynamics of an optically injected quantum-dot laser accounting for excited states. Mapping of the bifurcations in the plane frequency detuning vs. injection strength shows that the relaxation rate scales the regions of locking and single- and double-period solutions, while the capture rate has a minor effect. Within the regions of time-periodic solutions, close to the saddle-node bifurcation boundary, we identify subregions where the output signal resembles excitable pulses as a result of the bottleneck phenomenon. We show that such emission is determined mainly by fluctuations in the occupation of the excited states. The interpulse time follows anmore » inverse square root scaling law as a function of the detuning. In a deterministic system the pulses are periodic regardless of the detuning, but in the presence of noise, close to the locking region, the interpulse time follows a positively skewed normal distribution. For a fixed frequency detuning, increasing the noise strength can shift the mean of the interpulse time distribution and make the pulsations more periodic.« less

  10. Vibrational dynamics of aniline (N2)1 clusters in their first excited singlet state

    NASA Astrophysics Data System (ADS)

    Hineman, M. F.; Kim, S. K.; Bernstein, E. R.; Kelley, D. F.

    1992-04-01

    The first excited singlet state S1 vibrational dynamics of aniline(N2)1 clusters are studied and compared to previous results on aniline(CH4)1 and aniline(Ar)1. Intramolecular vibrational energy redistribution (IVR) and vibrational predissociation (VP) rates fall between the two extremes of the CH4 (fast IVR, slow VP) and Ar (slow IVR, fast VP) cluster results as is predicted by a serial IVR/VP model using Fermi's golden rule to describe IVR processes and a restricted Rice-Ramsperger-Kassel-Marcus (RRKM) theory to describe unimolecular VP rates. The density of states is the most important factor determining the rates. Two product states, 00 and 10b1, of bare aniline and one intermediate state ˜(00) in the overall IVR/VP process are observed and time resolved measurements are obtained for the 000 and ˜(000) transitions. The results are modeled with the serial mechanism described above.

  11. The separation of vibrational coherence from ground- and excited-electronic states in P3HT film

    NASA Astrophysics Data System (ADS)

    Song, Yin; Hellmann, Christoph; Stingelin, Natalie; Scholes, Gregory D.

    2015-06-01

    Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets ( S ( λ 1 , T ˜ 2 , λ 3 ) ) along the population time ( T ˜ 2 ) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps ( S ( λ 1 , ν ˜ 2 , λ 3 ) ). We found that the vibrational coherence from pure excited electronic states appears at positive frequency ( + ν ˜ 2 ) in the rephasing beating map and at negative frequency ( - ν ˜ 2 ) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems.

  12. Mapping the Excited State Potential Energy Surface of a Retinal Chromophore Model with Multireference and Equation-of-Motion Coupled-Cluster Methods.

    PubMed

    Gozem, Samer; Melaccio, Federico; Lindh, Roland; Krylov, Anna I; Granovsky, Alexander A; Angeli, Celestino; Olivucci, Massimo

    2013-10-08

    The photoisomerization of the retinal chromophore of visual pigments proceeds along a complex reaction coordinate on a multidimensional surface that comprises a hydrogen-out-of-plane (HOOP) coordinate, a bond length alternation (BLA) coordinate, a single bond torsion and, finally, the reactive double bond torsion. These degrees of freedom are coupled with changes in the electronic structure of the chromophore and, therefore, the computational investigation of the photochemistry of such systems requires the use of a methodology capable of describing electronic structure changes along all those coordinates. Here, we employ the penta-2,4-dieniminium (PSB3) cation as a minimal model of the retinal chromophore of visual pigments and compare its excited state isomerization paths at the CASSCF and CASPT2 levels of theory. These paths connect the cis isomer and the trans isomer of PSB3 with two structurally and energetically distinct conical intersections (CIs) that belong to the same intersection space. MRCISD+Q energy profiles along these paths provide benchmark values against which other ab initio methods are validated. Accordingly, we compare the energy profiles of MRPT2 methods (CASPT2, QD-NEVPT2, and XMCQDPT2) and EOM-SF-CC methods (EOM-SF-CCSD and EOM-SF-CCSD(dT)) to the MRCISD+Q reference profiles. We find that the paths produced with CASSCF and CASPT2 are topologically and energetically different, partially due to the existence of a "locally excited" region on the CASPT2 excited state near the Franck-Condon point that is absent in CASSCF and that involves a single bond, rather than double bond, torsion. We also find that MRPT2 methods as well as EOM-SF-CCSD(dT) are capable of quantitatively describing the processes involved in the photoisomerization of systems like PSB3.

  13. Derivation of the RPA (Random Phase Approximation) Equation of ATDDFT (Adiabatic Time Dependent Density Functional Ground State Response Theory) from an Excited State Variational Approach Based on the Ground State Functional.

    PubMed

    Ziegler, Tom; Krykunov, Mykhaylo; Autschbach, Jochen

    2014-09-09

    The random phase approximation (RPA) equation of adiabatic time dependent density functional ground state response theory (ATDDFT) has been used extensively in studies of excited states. It extracts information about excited states from frequency dependent ground state response properties and avoids, thus, in an elegant way, direct Kohn-Sham calculations on excited states in accordance with the status of DFT as a ground state theory. Thus, excitation energies can be found as resonance poles of frequency dependent ground state polarizability from the eigenvalues of the RPA equation. ATDDFT is approximate in that it makes use of a frequency independent energy kernel derived from the ground state functional. It is shown in this study that one can derive the RPA equation of ATDDFT from a purely variational approach in which stationary states above the ground state are located using our constricted variational DFT (CV-DFT) method and the ground state functional. Thus, locating stationary states above the ground state due to one-electron excitations with a ground state functional is completely equivalent to solving the RPA equation of TDDFT employing the same functional. The present study is an extension of a previous work in which we demonstrated the equivalence between ATDDFT and CV-DFT within the Tamm-Dancoff approximation.

  14. Integrative Systems Models of Cardiac Excitation Contraction Coupling

    PubMed Central

    Greenstein, Joseph L.; Winslow, Raimond L.

    2010-01-01

    Excitation-contraction coupling in the cardiac myocyte is mediated by a number of highly integrated mechanisms of intracellular Ca2+ transport. The complexity and integrative nature of heart cell electrophysiology and Ca2+-cycling has led to an evolution of computational models that have played a crucial role in shaping our understanding of heart function. An important emerging theme in systems biology is that the detailed nature of local signaling events, such as those that occur in the cardiac dyad, have important consequences at higher biological scales. Multi-scale modeling techniques have revealed many mechanistic links between micro-scale events, such as Ca2+ binding to a channel protein, and macro-scale phenomena, such as excitation-contraction coupling gain. Here we review experimentally based multi-scale computational models of excitation-contraction coupling and the insights that have been gained through their application. PMID:21212390

  15. Spectroscopy at the two-proton drip line: Excited states in 158W

    NASA Astrophysics Data System (ADS)

    Joss, D. T.; Page, R. D.; Herzán, A.; Donosa, L.; Uusitalo, J.; Carroll, R. J.; Darby, I. G.; Andgren, K.; Cederwall, B.; Eeckhaudt, S.; Grahn, T.; Greenlees, P. T.; Hadinia, B.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Leino, M.; Leppanen, A.-P.; Nyman, M.; O'Donnell, D.; Pakarinen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Seweryniak, D.; Simpson, J.; Sorri, J.

    2017-09-01

    Excited states have been identified in the heaviest known even-Z N = 84 isotone 158W, which lies in a region of one-proton emitters and the two-proton drip line. The observation of γ-ray transitions feeding the ground state establishes the excitation energy of the yrast 6+ state confirming the spin-gap nature of the α-decaying 8+ isomer. The 8+ isomer is also expected to be unbound to two-proton emission but no evidence for this decay mode was observed. An upper limit for the two-proton decay branch has been deduced as b2p ≤ 0.17% at the 90% confidence level. The possibility of observing two-proton emission from multiparticle isomers in nearby nuclides is considered.

  16. Localized excitations in hydrogen-bonded molecular crystals

    NASA Astrophysics Data System (ADS)

    Alexander, D. M.; Krumhansl, J. A.

    1986-05-01

    Localized excitations analogous to the small Holstein polaron, to localized modes in alkali halides, and to localized excitonic states, are postulated for a set of internal vibrational modes in crystalline acetanilide. The theoretical framework in which one can describe the characteristics of the ir and Raman spectroscopy peaks associated with these localized states is adequately provided by the Davydov model (formally equivalent to the Holstein polaron model). The possible low-lying excitations arising from this model are determined using a variational approach. Hence, the contribution to the spectral function due to each type of excitation can be calculated. The internal modes of chief concern here are the amide-I (CO stretch) and the N-H stretch modes for which we demonstrate consistency of the theoretical model with the available ir data. Past theoretical approaches will be discussed and reasons why one should prefer one description over another will be examined.

  17. Attosecond XUV absorption spectroscopy of doubly excited states in helium atoms dressed by a time-delayed femtosecond infrared laser

    NASA Astrophysics Data System (ADS)

    Yang, Z. Q.; Ye, D. F.; Ding, Thomas; Pfeifer, Thomas; Fu, L. B.

    2015-01-01

    In the present paper, we investigate the time-resolved transient absorption spectroscopy of doubly excited states of helium atoms by solving the time-dependent two-electron Schrödinger equation numerically based on a one-dimensional model. The helium atoms are subjected to an extreme ultraviolet (XUV) attosecond pulse and a time-delayed infrared (IR) few-cycle laser pulse. A superposition of doubly excited states populated by the XUV pulse is identified, which interferes with the direct ionization pathway leading to Fano resonance profiles in the photoabsorption spectrum. In the presence of an IR laser, however, the Fano line profiles are strongly modified: A shifting, splitting, and broadening of the original absorption lines is observed when the XUV attosecond pulse and infrared few-cycle laser pulse overlap in time, which is in good agreement with recent experimental results. At certain time delays, we observe symmetric Lorentz, inverted Fano profiles, and even negative absorption cross sections indicating that the XUV light can be amplified during the interaction with atoms. We further prove that the above pictures are general for different doubly excited states by suitably varying the frequency of the IR field to coherently couple the corresponding states.

  18. Electronic excitation of molecules in solution calculated using the symmetry-adapted cluster–configuration interaction method in the polarizable continuum model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuda, Ryoichi, E-mail: fukuda@ims.ac.jp; Ehara, Masahiro; Elements Strategy Initiative for Catalysts and Batteries

    2015-12-31

    The effects from solvent environment are specific to the electronic states; therefore, a computational scheme for solvent effects consistent with the electronic states is necessary to discuss electronic excitation of molecules in solution. The PCM (polarizable continuum model) SAC (symmetry-adapted cluster) and SAC-CI (configuration interaction) methods are developed for such purposes. The PCM SAC-CI adopts the state-specific (SS) solvation scheme where solvent effects are self-consistently considered for every ground and excited states. For efficient computations of many excited states, we develop a perturbative approximation for the PCM SAC-CI method, which is called corrected linear response (cLR) scheme. Our test calculationsmore » show that the cLR PCM SAC-CI is a very good approximation of the SS PCM SAC-CI method for polar and nonpolar solvents.« less

  19. Infrared vibrational spectroscopy of [Ru(bpy)2(bpm)]2+ and [Ru(bpy)3]2+ in the excited triplet state.

    PubMed

    Mukuta, Tatsuhiko; Fukazawa, Naoto; Murata, Kei; Inagaki, Akiko; Akita, Munetaka; Tanaka, Sei'ichi; Koshihara, Shin-ya; Onda, Ken

    2014-03-03

    This work involved a detailed investigation into the infrared vibrational spectra of ruthenium polypyridyl complexes, specifically heteroleptic [Ru(bpy)2(bpm)](2+) (bpy = 2,2'-bipyridine and bpm = 2,2'-bipyrimidine) and homoleptic [Ru(bpy)3](2+), in the excited triplet state. Transient spectra were acquired 500 ps after photoexcitation, corresponding to the vibrational ground state of the excited triplet state, using time-resolved infrared spectroscopy. We assigned the observed bands to specific ligands in [Ru(bpy)2(bpm)](2+) based on the results of deuterium substitution and identified the corresponding normal vibrational modes using quantum-chemical calculations. Through this process, the more complex vibrational bands of [Ru(bpy)3](2+) were assigned to normal vibrational modes. The results are in good agreement with the model in which excited electrons are localized on a single ligand. We also found that the vibrational bands of both complexes associated with the ligands on which electrons are little localized appear at approximately 1317 and 1608 cm(-1). These assignments should allow the study of the reaction dynamics of various photofunctional systems including ruthenium polypyridyl complexes.

  20. Electronic excitations in finite and infinite polyenes

    NASA Astrophysics Data System (ADS)

    Tavan, Paul; Schulten, Klaus

    1987-09-01

    We study electronic excitations in long polyenes, i.e., in one-dimensional strongly correlated electron systems which are neither infinite nor small. The excitations are described within Hubbard and Pariser-Parr-Pople (PPP) models by means of a multiple-reference double-excitation expansion [P. Tavan and K. Schulten, J. Chem. Phys. 85, 6602 (1986)]. We find that quantized ``transition'' momenta can be assigned to electronic excitations in finite chains. These momenta link excitation energies of finite chains to dispersion relations of infinite chains, i.e., they bridge the gap between finite and infinite systems. A key result is the following: Excitation energies E in polyenes with N carbon atoms are described very accurately by the formula Eβ=ΔEβ0+αβk(N)q, q=1,2,..., where β denotes the excitation class, ΔEβ0 the energy gap in the infinite system [αβk(N)>0], and k(N) the elementary transition momentum. The parameters ΔEβ0 and αβ are determined for covalent and ionic excitations in alternating and nonalternating polyenes. The covalent excitations are combinations of triplet excitations T, i.e., T, TT, TTT, . . . . The lowest singlet excitations in the infinite polyene, e.g., in polyacetylene or polydiacetylene, are TT states. Available evidence proves that these states can dissociate into separate triplets. The bond structure of TT states is that of a neutral soliton-antisoliton pair. The level density of TT states in long polyenes is high enough to allow dissociation into separate solitons.

  1. Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunnus, Kristjan; Josefsson, Ida; Rajkovic, Ivan

    Here, ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbitalmore » and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)5 in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given—which will be covered experimentally by upcoming transform-limited x-ray sources.« less

  2. Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics

    DOE PAGES

    Kunnus, Kristjan; Josefsson, Ida; Rajkovic, Ivan; ...

    2016-10-07

    Here, ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbitalmore » and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)5 in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given—which will be covered experimentally by upcoming transform-limited x-ray sources.« less

  3. Description of ground and excited electronic states by ensemble density functional method with extended active space

    DOE PAGES

    Filatov, Michael; Martínez, Todd J.; Kim, Kwang S.

    2017-08-14

    An extended variant of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, the REKS(4,4) method, designed to describe the ground electronic states of strongly multireference systems is modified to enable calculation of excited states within the time-independent variational formalism. The new method, the state-interaction state-averaged REKS(4,4), i.e., SI-SA-REKS(4,4), is capable of describing several excited states of a molecule involving double bond cleavage, polyradical character, or multiple chromophoric units.We demonstrate that the newmethod correctly describes the ground and the lowest singlet excited states of a molecule (ethylene) undergoing double bond cleavage. The applicability of the new method for excitonic states is illustrated withmore » π stacked ethylene and tetracene dimers. We conclude that the new method can describe a wide range of multireference phenomena.« less

  4. Description of ground and excited electronic states by ensemble density functional method with extended active space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filatov, Michael; Martínez, Todd J.; Kim, Kwang S.

    An extended variant of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, the REKS(4,4) method, designed to describe the ground electronic states of strongly multireference systems is modified to enable calculation of excited states within the time-independent variational formalism. The new method, the state-interaction state-averaged REKS(4,4), i.e., SI-SA-REKS(4,4), is capable of describing several excited states of a molecule involving double bond cleavage, polyradical character, or multiple chromophoric units.We demonstrate that the newmethod correctly describes the ground and the lowest singlet excited states of a molecule (ethylene) undergoing double bond cleavage. The applicability of the new method for excitonic states is illustrated withmore » π stacked ethylene and tetracene dimers. We conclude that the new method can describe a wide range of multireference phenomena.« less

  5. Promoting Singlet/triplet Exciton Transformation in Organic Optoelectronic Molecules: Role of Excited State Transition Configuration.

    PubMed

    Chen, Runfeng; Tang, Yuting; Wan, Yifang; Chen, Ting; Zheng, Chao; Qi, Yuanyuan; Cheng, Yuanfang; Huang, Wei

    2017-07-24

    Exciton transformation, a non-radiative process in changing the spin multiplicity of an exciton usually between singlet and triplet forms, has received much attention recently due to its crucial effects in manipulating optoelectronic properties for various applications. However, current understanding of exciton transformation mechanism does not extend far beyond a thermal equilibrium of two states with different multiplicity and it is a significant challenge to probe what exactly control the transformation between the highly active excited states. Here, based on the recent developments of three types of purely organic molecules capable of efficient spin-flipping, we perform ab initio structure/energy optimization and similarity/overlap extent analysis to theoretically explore the critical factors in controlling the transformation process of the excited states. The results suggest that the states having close energy levels and similar exciton characteristics with same transition configurations and high heteroatom participation are prone to facilitating exciton transformation. A basic guideline towards the molecular design of purely organic materials with facile exciton transformation ability is also proposed. Our discovery highlights systematically the critical importance of vertical transition configuration of excited states in promoting the singlet/triplet exciton transformation, making a key step forward in excited state tuning of purely organic optoelectronic materials.

  6. Laser-muon spin spectroscopy in liquids - a technique to study the excited state chemistry of transients.

    PubMed

    Ghandi, Khashayar; Clark, Ian P; Lord, James S; Cottrell, Stephen P

    2007-01-21

    This study introduces laser-muon spin spectroscopy in the liquid phase, which extends muonium chemistry in liquids to the realm of excited states and enables the detection of muoniated molecules by their spin evolution after laser excitation. This leads to new opportunities to study the Kinetic Isotope Effects (KIEs) of muonium/atomic hydrogen reactions and to probe transient chemistry in radiolysis processes involved in muonium formation, as well as muoniated intermediates in excited states.

  7. Ultrafast Excited-state Deactivation of Flavins Bound to Dodecin*

    PubMed Central

    Staudt, Heike; Oesterhelt, Dieter; Grininger, Martin; Wachtveitl, Josef

    2012-01-01

    Dodecins, a group of flavin-binding proteins with a dodecameric quaternary structure, are able to incorporate two flavins within each of their six identical binding pockets building an aromatic tetrade with two tryptophan residues. Dodecin from the archaeal Halobacterium salinarum is a riboflavin storage device. We demonstrate that unwanted side reactions induced by reactive riboflavin species and degradation of riboflavin are avoided by ultrafast depopulation of the reactive excited state of riboflavin. Intriguingly, in this process, the staggered riboflavin dimers do not interact in ground and photoexcited states. Rather, within the tetrade assembly, each riboflavin is kept under the control of the respective adjacent tryptophan, which suggests that the stacked arrangement is a matter of optimizing the flavin load. We further identify an electron transfer in combination with a proton transfer as a central element of the effective excited state depopulation mechanism. Structural and functional comparisons of the archaeal dodecin with bacterial homologs reveal diverging evolution. Bacterial dodecins bind the flavin FMN instead of riboflavin and exhibit a clearly different binding pocket design with inverse incorporations of flavin dimers. The different adoption of flavin changes photochemical properties, making bacterial dodecin a comparably less efficient quencher of flavins. This supports a functional role different for bacterial and archaeal dodecins. PMID:22451648

  8. The Astrophysical Weeds: Rotational Transitions in Excited Vibrational States

    NASA Astrophysics Data System (ADS)

    Alonso, José L.; Kolesniková, Lucie; Alonso, Elena R.; Mata, Santiago

    2017-06-01

    The number of unidentified lines in the millimeter and submillimeter wave surveys of the interstellar medium has grown rapidly. The major contributions are due to rotational transitions in excited vibrational states of a relatively few molecules that are called the astrophysical weeds. necessary data to deal with spectral lines from astrophysical weeds species can be obtained from detailed laboratory rotational measurements in the microwave and millimeter wave region. A general procedure is being used at Valladolid combining different time and/or frequency domain spectroscopic tools of varying importance for providing the precise set of spectroscopic constants that could be used to search for this species in the ISM. This is illustrated in the present contribution through its application to several significant examples. Fortman, S. M., Medvedev, I. R., Neese, C.F., & De Lucia, F.C. 2010, ApJ,725, 1682 Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile, L. Kolesniková, E. R. Alonso, S. Mata, and J. L. Alonso, The Astrophysical Journal Supplement Series 2017, (in press).

  9. Benzonitrile: Electron affinity, excited states, and anion solvation

    NASA Astrophysics Data System (ADS)

    Dixon, Andrew R.; Khuseynov, Dmitry; Sanov, Andrei

    2015-10-01

    We report a negative-ion photoelectron imaging study of benzonitrile and several of its hydrated, oxygenated, and homo-molecularly solvated cluster anions. The photodetachment from the unsolvated benzonitrile anion to the X ˜ 1 A 1 state of the neutral peaks at 58 ± 5 meV. This value is assigned as the vertical detachment energy (VDE) of the valence anion and the upper bound of adiabatic electron affinity (EA) of benzonitrile. The EA of the lowest excited electronic state of benzonitrile, a ˜ 3 A 1 , is determined as 3.41 ± 0.01 eV, corresponding to a 3.35 eV lower bound for the singlet-triplet splitting. The next excited state, the open-shell singlet A ˜ 1 A 1 , is found about an electron-volt above the triplet, with a VDE of 4.45 ± 0.01 eV. These results are in good agreement with ab initio calculations for neutral benzonitrile and its valence anion but do not preclude the existence of a dipole-bound state of similar energy and geometry. The step-wise and cumulative solvation energies of benzonitrile anions by several types of species were determined, including homo-molecular solvation by benzonitrile, hydration by 1-3 waters, oxygenation by 1-3 oxygen molecules, and mixed solvation by various combinations of O2, H2O, and benzonitrile. The plausible structures of the dimer anion of benzonitrile were examined using density functional theory and compared to the experimental observations. It is predicted that the dimer anion favors a stacked geometry capitalizing on the π-π interactions between the two partially charged benzonitrile moieties.

  10. Integral cross sections for electron impact excitation of electronic states of N2

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Brunger, M. J.; Nolan, A. M.; Kelly, L. J.; Wedding, A. B.; Harrison, J.; Teubner, P. J. O.; Cartwright, D. C.; McLaughlin, B.

    2001-04-01

    We report integral cross sections (ICSs) for electron impact excitation of the A 3Σ+u, B 3Πg, W 3Δu, B' 3Σ-u, a' 1Σ-u, a 1Πg, ω1Δu, C 3Πu, E 3Σ+g and a'' 1Σ+g electronic states of N2. The present data, for each state, were derived at five incident electron energies in the range 15-50 eV, from the earlier crossed-beam differential cross section (DCS) measurements of our group. This was facilitated by using a molecular phase shift analysis technique to extrapolate the measured DCSs to 0° and 180°, before performing the integration. A comprehensive comparison of the present ICSs with the results of earlier experimental studies, both crossed beam and electron swarm, and theoretical calculations is provided. This comparison clearly indicates that some of the previous estimates for these excited electronic-state cross sections need to be reassessed. In addition, we have used the present ICSs in a Monte Carlo simulation for modelling the behaviour of an electron swarm in the bulk of a low current N2 discharge. The macroscopic transport parameters determined from this simulation are compared against those measured from independent swarm-based experiments and the self-consistency of our ICSs evaluated.

  11. Two-polariton bound states in the Jaynes-Cummings-Hubbard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Max T. C.; Law, C. K.

    2011-05-15

    We examine the eigenstates of the one-dimensional Jaynes-Cummings-Hubbard model in the two-excitation subspace. We discover that two-excitation bound states emerge when the ratio of vacuum Rabi frequency to the tunneling rate between cavities exceeds a critical value. We determine the critical value as a function of the quasimomentum quantum number, and indicate that the bound states carry a strong correlation in which the two polaritons appear to be spatially confined together.

  12. Role of excited N2 in the production of nitric oxide

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Cartwright, D. C.; Brunger, M. J.

    2007-08-01

    Excited N2 plays a role in a number of atmospheric processes, including auroral and dayglow emissions, chemical reactions, recombination of free electrons, and the production of nitric oxide. Electron impact excitation of N2 is followed by radiative decay through a series of excited states, contributing to auroral and dayglow emissions. These processes are intertwined with various chemical reactions and collisional quenching involving the excited and ground state vibrational levels. Statistical equilibrium and time step atmospheric models are used to predict N2 excited state densities and emissions (as a test against previous models and measurements) and to investigate the role of excited nitrogen in the production of nitric oxide. These calculations predict that inclusion of the reaction N2[A3Σu +] + O, to generate NO, produces an increase by a factor of up to three in the calculated NO density at some altitudes.

  13. Steady-state entanglement in levitated optomechanical systems coupled to a higher order excited atomic ensemble

    NASA Astrophysics Data System (ADS)

    Chen, Aixi; Nie, Wenjie; Li, Ling; Zeng, Wei; Liao, Qinghong; Xiao, Xianbo

    2017-11-01

    We investigate the steady-state entanglement in an optomechanical system with a levitated dielectric nanosphere and a higher order excited atomic ensemble. The single nanosphere is trapped by an external harmonic dipole trap and coupled to the single-mode cavity field by the effective optomechanical coupling, which depends on the steady-state position of the nanosphere. We show that the steady-state optomechanical entanglement can be generated via the effective optomechanical interaction between the mechanical motion and the cavity mode. Further, these exist an optimal effective cavity detuning that maximizes the optomechanical entanglement. We also analyze in detail the influences of the excitation number of atoms, the radius of the nanosphere and the thermal noise strength on the steady-state optomechanical entanglement. It is found that the steady-state entanglement can be enhanced by increasing the excitation number of atoms and the radius of the nanosphere.

  14. Electron Excitation Rate Coefficients for Transitions from the IS21S Ground State to the 1S2S1,3S and 1S2P1,3P0 Excited States of Helium

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Kingston, A. E.; McDowell, M. R. C.

    1984-03-01

    The available experimental and theoretical electron impact excitation cross section data for the transitions from the 1s2 1S ground state to the 1s2s 1,3S and 1s2p 1,3P0 excited states of helium are assessed. Based on this assessed data, excitation rate coefficients are calculated over a wide electron temperature range below 3.0×106K. A comparison with other published results suggests that the rates used should be lower by a factor of 2 or more.

  15. Electronic and Structural Elements That Regulate the Excited-State Dynamics in Purine Nucleobase Derivatives

    PubMed Central

    2015-01-01

    The excited-state dynamics of the purine free base and 9-methylpurine are investigated using experimental and theoretical methods. Femtosecond broadband transient absorption experiments reveal that excitation of these purine derivatives in aqueous solution at 266 nm results primarily in ultrafast conversion of the S2(ππ*) state to the vibrationally excited 1nπ* state. Following vibrational and conformational relaxation, the 1nπ* state acts as a doorway state in the efficient population of the triplet manifold with an intersystem crossing lifetime of hundreds of picoseconds. Experiments show an almost 2-fold increase in the intersystem crossing rate on going from polar aprotic to nonpolar solvents, suggesting that a solvent-dependent energy barrier must be surmounted to access the singlet-to-triplet crossing region. Ab initio static and surface-hopping dynamics simulations lend strong support to the proposed relaxation mechanism. Collectively, the experimental and computational results demonstrate that the accessibility of the nπ* states and the topology of the potential energy surfaces in the vicinity of conical intersections are key elements in controlling the excited-state dynamics of the purine derivatives. From a structural perspective, it is shown that the purine chromophore is not responsible for the ultrafast internal conversion in the adenine and guanine monomers. Instead, C6 functionalization plays an important role in regulating the rates of radiative and nonradiative relaxation. C6 functionalization inhibits access to the 1nπ* state while simultaneously facilitating access to the 1ππ*(La)/S0 conical intersection, such that population of the 1nπ* state cannot compete with the relaxation pathways to the ground state involving ring puckering at the C2 position. PMID:25763596

  16. Fluorescent molecular probes based on excited state prototropism in lipid bilayer membrane

    NASA Astrophysics Data System (ADS)

    Mohapatra, Monalisa; Mishra, Ashok K.

    2012-03-01

    Excited state prototropism (ESPT) is observed in molecules having one or more ionizable protons, whose proton transfer efficiency is different in ground and excited states. The interaction of various ESPT molecules like naphthols and intramolecular ESPT (ESIPT) molecules like hydroxyflavones etc. with different microheterogeneous media have been studied in detail and excited state prototropism as a probe concept has been gaining ground. The fluorescence of different prototropic forms of such molecules, on partitioning to an organized medium like lipid bilayer membrane, often show sensitive response to the local environment with respect to the local structure, physical properties and dynamics. Our recent work using 1-naphthol as an ESPT fluorescent molecular probe has shown that the incorporation of monomeric bile salt molecules into lipid bilayer membranes composed from dipalmitoylphosphatidylcholine (DPPC, a lung surfactant) and dimyristoylphosphatidylcholine (DMPC), in solid gel and liquid crystalline phases, induce appreciable wetting of the bilayer up to the hydrocarbon core region, even at very low (<= 1 mM) concentrations of the bile salts. The incorporation and location of fisetin, an ESIPT molecule having antioxidant properties, in lipid bilayer membrane has been sensitively monitored from its intrinsic fluorescence behaviour.

  17. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2'-bipyridine) 2(CN) 2

    DOE PAGES

    Kjaer, Kasper S.; Zhang, Wenkai; Alonso-Mori, Roberto; ...

    2017-07-06

    Here, we have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy) 2(CN) 2], where bpy=2,2'-bipyridine, initiated by metal-to-ligand charge transfer (MLCT) excitation. The excited-state absorption in the transient UV-visible spectra, associated with the 2,2'-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state of [Fe(bpy) 2(CN) 2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a shortmore » lived metal-centered triplet transient species. These measurements of [Fe(bpy) 2(CN) 2] complement prior measurement performed on [Fe(bpy) 3] 2+ and [Fe(bpy)(CN) 4] 2– in dimethylsulfoxide solution and help complete the chemical series [Fe(bpy) N(CN) 6–2N] 2N-4, where N = 1–3. The measurements confirm that simple ligand modifications can significantly change the relaxation pathways and excited state lifetimes and support the further investigation of light harvesting and photocatalytic applications of 3 d transition metal complexes.« less

  18. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2'-bipyridine) 2(CN) 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kjaer, Kasper S.; Zhang, Wenkai; Alonso-Mori, Roberto

    Here, we have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy) 2(CN) 2], where bpy=2,2'-bipyridine, initiated by metal-to-ligand charge transfer (MLCT) excitation. The excited-state absorption in the transient UV-visible spectra, associated with the 2,2'-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state of [Fe(bpy) 2(CN) 2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a shortmore » lived metal-centered triplet transient species. These measurements of [Fe(bpy) 2(CN) 2] complement prior measurement performed on [Fe(bpy) 3] 2+ and [Fe(bpy)(CN) 4] 2– in dimethylsulfoxide solution and help complete the chemical series [Fe(bpy) N(CN) 6–2N] 2N-4, where N = 1–3. The measurements confirm that simple ligand modifications can significantly change the relaxation pathways and excited state lifetimes and support the further investigation of light harvesting and photocatalytic applications of 3 d transition metal complexes.« less

  19. Parametric scaling of neutral and ion excited state densities in an argon helicon source

    NASA Astrophysics Data System (ADS)

    McCarren, D.; Scime, E.

    2016-04-01

    We report measurements of the absolute density and temperature of ion and neutral excited states in an argon helicon source. The excited ion state density, which depends on ion density, electron density, and electron temperature, increases sharply with increasing magnetic field in the source. The neutral argon metastable density measurements are consistent with an increasing ionization fraction with increasing magnetic field strength. The ion temperature shows no evidence of increased heating with increasing magnetic field strength (which has only been observed in helicon sources operating at driving frequencies close to the lower hybrid frequency). The measurements were obtained through cavity ring down spectroscopy, a measurement technique that does not require the target excited state to be metastable or part of a fluorescence scheme; and is therefore applicable to any laser accessible atomic or ionic transition in a plasma.

  20. Long-Lived Triplet Excited States of Bent-Shaped Pentacene Dimers by Intramolecular Singlet Fission.

    PubMed

    Sakuma, Takao; Sakai, Hayato; Araki, Yasuyuki; Mori, Tadashi; Wada, Takehiko; Tkachenko, Nikolai V; Hasobe, Taku

    2016-03-24

    Intramolecular singlet fission (ISF) is a promising photophysical process to construct more efficient light energy conversion systems as one excited singlet state converts into two excited triplet states. Herein we synthesized and evaluated bent-shaped pentacene dimers as a prototype of ISF to reveal intrinsic characters of triplet states (e.g., lifetimes of triplet excited states). In this study, meta-phenylene-bridged TIPS-pentacene dimer (PcD-3Ph) and 2,2'-bipheynyl bridged TIPS-pentacene dimer (PcD-Biph) were newly synthesized as bent-shaped dimers. In the steady-state spectroscopy, absorption and emission bands of these dimers were fully characterized, suggesting the appropriate degree of electronic coupling between pentacene moieties in these dimers. In addition, the electrochemical measurements were also performed to check the electronic interaction between two pentacene moieties. Whereas the successive two oxidation peaks owing to the delocalization were observed in a directly linked-pentacene dimer (PcD) by a single bond, the cyclic voltammograms in PcD-Biph and PcD-3Ph implied the weaker interaction compared to that of p-phenylene-bridged TIPS-pentacene dimer (PcD-4Ph) and PcD. The femtosecond and nanosecond transient absorption spectra clearly revealed the slower ISF process in bent-shaped pentacene dimers (PcD-Biph and PcD-3Ph), more notably, the slower relaxation of the excited triplet states in PcD-Biph and PcD-3Ph. Namely, the quantum yields of triplet states (ΦT) by ISF approximately remain constant (ca. 180-200%) in all dimer systems, whereas the lifetimes of the triplet excited states became much longer (up to 360 ns) in PcD-Biph as compared to PcD-4Ph (15 ns). Additionally, the lifetimes of the corresponding triplet states in PcD-Biph and PcD-3Ph were sufficiently affected by solvent viscosity. In particular, the lifetimes of PcD-Biph triplet state in THF/paraffin (1.0 μs) increased up to approximately three times as compared to that in THF

  1. High-order harmonic generation from highly excited states in acetylene

    NASA Astrophysics Data System (ADS)

    Mulholland, Peter; Dundas, Daniel

    2018-04-01

    High-order harmonic generation (HHG) from aligned acetylene molecules interacting with mid infra-red (IR), linearly polarized laser pulses is studied theoretically using a mixed quantum-classical approach in which the electrons are described using time-dependent density-functional theory while the ions are treated classically. We find that for molecules aligned perpendicular to the laser polarization axis, HHG arises from the highest-occupied molecular orbital (HOMO), while for molecules aligned along the laser polarization axis, HHG is dominated by the HOMO-1. In the parallel orientation we observe a double plateau with an inner plateau that is produced by ionization from and recombination back to an autoionizing state. Two pieces of evidence support this idea. First, by choosing a suitably tuned vacuum ultraviolet pump pulse that directly excites the autoionizing state we observe a dramatic enhancement of all harmonics in the inner plateau. Second, in certain circumstances, the position of the inner plateau cutoff does not agree with the classical three-step model. We show that this discrepancy can be understood in terms of a minimum in the dipole recombination matrix element from the continuum to the autoionizing state.

  2. Effective mass of elementary excitations in Galilean-invariant integrable models

    DOE PAGES

    Matveev, K. A.; Pustilnik, M.

    2016-09-27

    Here, we study low-energy excitations of one-dimensional Galilean-invariant models integrable by Bethe ansatz and characterized by nonsingular two-particle scattering phase shifts. We also prove that the curvature of the excitation spectra is described by the recently proposed phenomenological expression for the effective mass. These results apply to such models as the repulsive Lieb-Liniger model and the hyperbolic Calogero-Sutherland model.

  3. The low-energy, charge-transfer excited states of 4-amino-4-prime-nitrodiphenyl sulfide

    NASA Technical Reports Server (NTRS)

    O'Connor, Donald B.; Scott, Gary W.; Tran, Kim; Coulter, Daniel R.; Miskowski, Vincent M.; Stiegman, Albert E.; Wnek, Gary E.

    1992-01-01

    Absorption and emission spectra of 4-amino-4-prime-nitrodiphenyl sulfide in polar and nonpolar solvents were used to characterize and assign the low-energy excited states of the molecule. Fluorescence-excitation anisotropy spectra and fluorescence quantum yields were also used to characterize the photophysics of these states. The lowest-energy fluorescent singlet state was determined to be an intramolecular charge transfer (ICT) state involving transfer of a full electron charge from the amino to the nitro group yielding a dipole moment of about 50 D. A low-energy, intense absorption band is assigned as a transition to a different ICT state involving a partial electron charge transfer from sulfur to the nitro group.

  4. Intruder configurations of excited states in the neutron-rich isotopes 33P and 34P

    NASA Astrophysics Data System (ADS)

    Lubna, R. S.; Tripathi, Vandana; Tabor, S. L.; Tai, P.-L.; Kravvaris, K.; Bender, P. C.; Volya, A.; Bouhelal, M.; Chiara, C. J.; Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; McCutchan, E. A.; Zhu, S.; Clark, R. M.; Fallon, P.; Macchiavelli, A. O.; Paschalis, S.; Petri, M.; Reviol, W.; Sarantites, D. G.

    2018-04-01

    Excited states in the neutron-rich isotopes 33P and 34P were populated by the 18O+18O fusion-evaporation reaction at Elab=24 MeV. The Gammasphere array was used along with the Microball particle detector array to detect γ transitions in coincidence with the charged particles emitted from the compound nucleus 36S. The use of Microball enabled the selection of the proton emission channel. It also helped in determining the exact position and energy of the emitted proton; this was later employed in kinematic Doppler corrections. 16 new transitions and 13 new states were observed in 33P and 21 γ rays and 20 energy levels were observed in 34P for the first time. The nearly 4 π geometry of Gammasphere allowed the measurement of γ -ray angular distributions leading to spin assignments for many states. The experimental observations for both isotopes were interpreted with the help of shell-model calculations using the (0+1)ℏ ω PSDPF interaction. The calculations accounted for both the 0p-0h and 1p-1h states reasonably well and indicated that 2p-2h excitations might dominate the higher-spin configurations in both 33P and 34P.

  5. Producing coherent excitations in pumped Mott antiferromagnetic insulators

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Claassen, Martin; Moritz, B.; Devereaux, T. P.

    2017-12-01

    Nonequilibrium dynamics in correlated materials has attracted attention due to the possibility of characterizing, tuning, and creating complex ordered states. To understand the photoinduced microscopic dynamics, especially the linkage under realistic pump conditions between transient states and remnant elementary excitations, we performed nonperturbative simulations of various time-resolved spectroscopies. We used the Mott antiferromagnetic insulator as a model platform. The transient dynamics of multiparticle excitations can be attributed to the interplay between Floquet virtual states and a modification of the density of states, in which interactions induce a spectral weight transfer. Using an autocorrelation of the time-dependent spectral function, we show that resonance of the virtual states with the upper Hubbard band in the Mott insulator provides the route towards manipulating the electronic distribution and modifying charge and spin excitations. Our results link transient dynamics to the nature of many-body excitations and provide an opportunity to design nonequilibrium states of matter via tuned laser pulses.

  6. Producing coherent excitations in pumped Mott antiferromagnetic insulators

    DOE PAGES

    Wang, Yao; Claassen, Martin; Moritz, B.; ...

    2017-12-15

    Nonequilibrium dynamics in correlated materials has attracted attention due to the possibility of characterizing, tuning, and creating complex ordered states. To understand the photoinduced microscopic dynamics, especially the linkage under realistic pump conditions between transient states and remnant elementary excitations, we performed nonperturbative simulations of various time-resolved spectroscopies. We used the Mott antiferromagnetic insulator as a model platform. The transient dynamics of multi-particle excitations can be attributed to the interplay between Floquet virtual states and a modification of the density of states, in which interactions induce a spectral weight transfer. Using an autocorrelation of the time-dependent spectral function, we showmore » that resonance of the virtual states with the upper Hubbard band in the Mott insulator provides the route towards manipulating the electronic distribution and modifying charge and spin excitations. In conclusion, our results link transient dynamics to the nature of many-body excitations and provide an opportunity to design nonequilibrium states of matter via tuned laser pulses.« less

  7. Excited-state redox properties of ruthenium(II) phthalocyanine from electron-transfer quenching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, D.R.; Ferraudi, G.

    1982-09-30

    Electron-transfer reactions between the lowest-lying triplet state, /sup 3/..pi pi../sup */, of ruthenium (phthalocyanine)(pyridine)/sub 2/ and various nitroaromatic compounds have been studied by laser and conventional flash photolysis. Quenching rate constants determined for the oxidation of the excited state have been treated according to the Marcus-Hush theory. A self-exchange rate constant K approx. 10/sup 7/ M/sup -1/ x/sup -1/ was determined for the self-exchange reaction between the /sup 3/..pi pi../sup */ and radical cation, Ru(ph)(py)/sub 2//sup +/. Such a value indicates that the major component to the Franck-Condon reorganizational energy is the outer-sphere contribution. The photochemical properties of the phthalocyaninesmore » are discussed in terms of the redox potentials estimate for various excited states.« less

  8. Observation of excited state absorption in the V-Cr Prussian blue analogue

    NASA Astrophysics Data System (ADS)

    Hedley, Luke; Horbury, Michael D.; Liedy, Florian; Johansson, J. Olof

    2017-11-01

    We present femtosecond transient transmission measurements of thin films of the VII/III-CrIII Prussian blue analogue (V-Cr PBA) in the spectral range 330-675 nm after exciting the ligand-to-metal charge-transfer transition (LMCT) at 400 nm. A global analysis including three decay-times of τ1 = 230 fs, τ2 = 1.38 ps and τ3 ≫ 2 ns could satisfactory describe the data. We observed an excited state absorption (ESA) at 345 nm, which was attributed to a charge-transfer transition from the 2E state on the Cr ions after fast intersystem crossing from the quartet manifold. An additional weak and short-lived ESA at 455 nm was also observed and was tentatively attributed to the initially populated 4LMCT state.

  9. Probing defect states in polycrystalline GaN grown on Si(111) by sub-bandgap laser-excited scanning tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Hsiao, F.-M.; Schnedler, M.; Portz, V.; Huang, Y.-C.; Huang, B.-C.; Shih, M.-C.; Chang, C.-W.; Tu, L.-W.; Eisele, H.; Dunin-Borkowski, R. E.; Ebert, Ph.; Chiu, Y.-P.

    2017-01-01

    We demonstrate the potential of sub-bandgap laser-excited cross-sectional scanning tunneling microscopy and spectroscopy to investigate the presence of defect states in semiconductors. The characterization method is illustrated on GaN layers grown on Si(111) substrates without intentional buffer layers. According to high-resolution transmission electron microscopy and cathodoluminescence spectroscopy, the GaN layers consist of nanoscale wurtzite and zincblende crystallites with varying crystal orientations and hence contain high defect state densities. In order to discriminate between band-to-band excitation and defect state excitations, we use sub-bandgap laser excitation. We probe a clear increase in the tunnel current at positive sample voltages during sub-bandgap laser illumination for the GaN layer with high defect density, but no effect is found for high quality GaN epitaxial layers. This demonstrates the excitation of free charge carriers at defect states. Thus, sub-bandgap laser-excited scanning tunneling spectroscopy is a powerful complimentary characterization tool for defect states.

  10. Relaxed structure of typical nitro explosives in the excited state: Observation, implication and application

    NASA Astrophysics Data System (ADS)

    Chu, Genbai; Yang, Zuhua; Xi, Tao; Xin, Jianting; Zhao, Yongqiang; He, Weihua; Shui, Min; Gu, Yuqiu; Xiong, Ying; Xu, Tao

    2018-04-01

    Understanding the structural, geometrical, and chemical changes that occur after an electronic excitation is essential to elucidate the inherent mechanism of nitro explosives. Herein, relaxed structures of typical nitro explosives in the lowest singlet excited state are investigated using time-dependent density functional theory. During the excitation process, the nitro group is activated and relaxes via geometrical change. The five explosives RDX, HMX, CL-20, PETN, and LLM-105 exhibit similar relaxed structures, and the impact sensitivity is related to their excitation energy. High-sensitivity δ-HMX has a lower excitation energy for relaxed structure than β-HMX. This study offers novel insight into energetic materials.

  11. Role of intermediate state in the excited state dynamics of highly efficient TADF molecules

    NASA Astrophysics Data System (ADS)

    Hosokai, Takuya; Matsuzaki, Hiroyuki; Furube, Akihiro; Tokumaru, Katsumi; Tsutsui, Tetsuo; Nakanotani, Hajime; Yahiro, Masayuki; Adachi, Chihaya

    2016-09-01

    We hereby report the results of our direct investigation into the excited-state dynamics of thermally activated delayed fluorescence (TADF) molecules in solution using pump-probe transient absorption spectroscopy (TAS). We found that the charge-transfer (CT) state commonly stated for TADF molecules encompasses two forms: localized and delocalized CT states. A highly efficient TADF molecule, 4CzIPN [Uoyama et al., Nature, 492, 234-238 (2012)], showed both the localized and delocalized CT states, while an inefficient TADF molecule, 2CzPN, exhibited only a localized CT state. By analyzing the time profile of triplet species observed in TAS, we propose that the reverse intersystem crossing (RISC) of 4CzIPN occurs via a mutual interaction in multiple energy levels of localized neutral and CT states, and delocalized CT states.

  12. Excitation spectrum and staggering transformations in lattice quantum models.

    PubMed

    Faria da Veiga, Paulo A; O'Carroll, Michael; Schor, Ricardo

    2002-08-01

    We consider the energy-momentum excitation spectrum of diverse lattice Hamiltonian operators: the generator of the Markov semigroup of Ginzburg-Landau models with Langevin stochastic dynamics, the Hamiltonian of a scalar quantum field theory, and the Hamiltonian associated with the transfer matrix of a classical ferromagnetic spin system at high temperature. The low-lying spectrum consists of a one-particle state and a two-particle band. The two-particle spectrum is determined using a lattice version of the Bethe-Salpeter equation. In addition to the two-particle band, depending on the lattice dimension and on the attractive or repulsive character of the interaction between the particles of the system, there is, respectively, a bound state below or above the two-particle band. We show how the existence or nonexistence of these bound states can be understood in terms of a nonrelativistic single-particle lattice Schrödinger Hamiltonian with a delta potential. A staggering transformation relates the spectra of the attractive and the repulsive cases.

  13. Importance of considering helium excited states in He+ scattering by an aluminum surface

    NASA Astrophysics Data System (ADS)

    Iglesias-García, A.; García, Evelina A.; Goldberg, E. C.

    2014-11-01

    The He+/Al system is a very interesting projectile-surface combination which was thought initially as an example of a pure Auger neutralization mechanism. Then, because of the measured reionization explained by the antibonding interaction of the projectile state with the core target states, the resonant charge exchange with the band states was considered as another important contribution to the neutralization. Nevertheless, by only considering the neutralization to the ground state of helium, the measured ion survival probability is still overestimated. On the other hand, measurements of electron emission from an Al surface bombarded by He positive ions suggested the possibility of occupied excited states of helium due to the ion-surface collision. In this work, we also include the excited states of He within the time-dependent scattering process in which both neutralization mechanisms, resonant and Auger, are simultaneously contemplated. Our starting point is a multiorbital Anderson Hamiltonian projected over the selected space of ground and excited atomic configurations. An extra term related to the Auger mechanism is added to this Hamiltonian. A difference with previous works is that this approach includes the electron spin and, therefore, the spin fluctuation statistics in the charge-exchange process is correctly taken into account. We find a notable improvement in the agreement with the experiments and also that the interference between both mechanisms is not dramatic.

  14. Spin-isospin excitation of 3He with three-proton final state

    NASA Astrophysics Data System (ADS)

    Ishikawa, Souichi

    2018-01-01

    Spin-isospin excitation of the {}^3He nucleus by a proton-induced charge exchange reaction, {}^3He(p,n)ppp, at forward neutron scattering angle is studied in a plane wave impulse approximation (PWIA). In PWIA, cross sections of the reaction are written in terms of proton-neutron scattering amplitudes and response functions of the transition from {}3He to the three-proton state by spin-isospin transition operators. The response functions are calculated with realistic nucleon-nucleon potential models using a Faddeev three-body method. Calculated cross sections agree with available experimental data in substance. Possible effects arising from the uncertainty of proton-neutron amplitudes and three-nucleon interactions in the three-proton system are examined.

  15. Orientation-dependent imaging of electronically excited quantum dots

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc; Goings, Joshua J.; Nguyen, Huy A.; Lyding, Joseph; Li, Xiaosong; Gruebele, Martin

    2018-02-01

    We previously demonstrated that we can image electronic excitations of quantum dots by single-molecule absorption scanning tunneling microscopy (SMA-STM). With this technique, a modulated laser beam periodically saturates an electronic transition of a single nanoparticle, and the resulting tunneling current modulation ΔI(x0, y0) maps out the SMA-STM image. In this paper, we first derive the basic theory to calculate ΔI(x0, y0) in the one-electron approximation. For near-resonant tunneling through an empty orbital "i" of the nanostructure, the SMA-STM signal is approximately proportional to the electron density |φi) (x0,y0)|excited orbital in the tunneling region. Thus, the SMA-STM signal is approximated by an orbital density map (ODM) of the resonantly excited orbital at energy Ei. The situation is more complex for correlated electron motion, but either way a slice through the excited electronic state structure in the tunneling region is imaged. We then show experimentally that we can nudge quantum dots on the surface and roll them, thus imaging excited state electronic structure of a single quantum dot at different orientations. We use density functional theory to model ODMs at various orientations, for qualitative comparison with the SMA-STM experiment. The model demonstrates that our experimentally observed signal monitors excited states, localized by defects near the surface of an individual quantum dot. The sub-nanometer super-resolution imaging technique demonstrated here could become useful for mapping out the three-dimensional structure of excited states localized by defects within nanomaterials.

  16. Orientation-dependent imaging of electronically excited quantum dots.

    PubMed

    Nguyen, Duc; Goings, Joshua J; Nguyen, Huy A; Lyding, Joseph; Li, Xiaosong; Gruebele, Martin

    2018-02-14

    We previously demonstrated that we can image electronic excitations of quantum dots by single-molecule absorption scanning tunneling microscopy (SMA-STM). With this technique, a modulated laser beam periodically saturates an electronic transition of a single nanoparticle, and the resulting tunneling current modulation ΔI(x 0 , y 0 ) maps out the SMA-STM image. In this paper, we first derive the basic theory to calculate ΔI(x 0 , y 0 ) in the one-electron approximation. For near-resonant tunneling through an empty orbital "i" of the nanostructure, the SMA-STM signal is approximately proportional to the electron density φ i x 0 ,y 0 2 of the excited orbital in the tunneling region. Thus, the SMA-STM signal is approximated by an orbital density map (ODM) of the resonantly excited orbital at energy E i . The situation is more complex for correlated electron motion, but either way a slice through the excited electronic state structure in the tunneling region is imaged. We then show experimentally that we can nudge quantum dots on the surface and roll them, thus imaging excited state electronic structure of a single quantum dot at different orientations. We use density functional theory to model ODMs at various orientations, for qualitative comparison with the SMA-STM experiment. The model demonstrates that our experimentally observed signal monitors excited states, localized by defects near the surface of an individual quantum dot. The sub-nanometer super-resolution imaging technique demonstrated here could become useful for mapping out the three-dimensional structure of excited states localized by defects within nanomaterials.

  17. Coulomb scattering rates of excited states in monolayer electron-doped germanene

    NASA Astrophysics Data System (ADS)

    Shih, Po-Hsin; Chiu, Chih-Wei; Wu, Jhao-Ying; Do, Thi-Nga; Lin, Ming-Fa

    2018-05-01

    Excited conduction electrons, conduction holes, and valence holes in monolayer electron-doped germanene exhibit unusual Coulomb decay rates. The deexcitation processes are studied using the screened exchange energy. They might utilize the intraband single-particle excitations (SPEs), the interband SPEs, and the plasmon modes, depending on the quasiparticle states and the Fermi energies. The low-lying valence holes can decay through the undamped acoustic plasmon, so that they present very fast Coulomb deexcitations, nonmonotonous energy dependence, and anisotropic behavior. However, the low-energy conduction electrons and holes are similar to those in a two-dimensional electron gas. The higher-energy conduction states and the deeper-energy valence ones behave similarly in the available deexcitation channels and have a similar dependence of decay rate on the wave vector k .

  18. Dissociative excitation of the N(+)(5S) state by electron impact on N2 - Excitation function and quenching

    NASA Technical Reports Server (NTRS)

    Erdman, P. W.; Zipf, E. C.

    1986-01-01

    Metastable N(+)(5S) ions were produced in the laboratory by dissociative excitation of N2 with energetic electrons. The resulting radiative decay of the N(+)(5S) state was observed with sufficient resolution to completely resolve the doublet from the nearby N2 molecular radiation. The excitation function was measured from threshold to 500 eV. The cross section peaks at a high electron energy and also exhibits a high threshold energy both of which are typical of dissociative excitation-ionization processes. This finding complicates the explanation of electron impact on N2 as the mechanism for the source of the 2145 A 'auroral mystery feature' by further increasing the required peak cross section. It is suggested that the apparent N(+)(5S) quenching in auroras may be an artifact due to the softening of the electron energy spectrum in the auroral E region.

  19. Monte Carlo wave-packet approach to trace nuclear dynamics in molecular excited states by XUV-pump-IR-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Jing, Qingli; Bello, Roger Y.; Martín, Fernando; Palacios, Alicia; Madsen, Lars Bojer

    2018-04-01

    Recent research interests have been raised in uncovering and controlling ultrafast dynamics in excited neutral molecules. In this work we generalize the Monte Carlo wave packet (MCWP) approach to XUV-pump-IR-probe schemes to simulate the process of dissociative double ionization of H2 where singly excited states in H2 are involved. The XUV pulse is chosen to resonantly excite the initial ground state of H2 to the lowest excited electronic state of 1Σu + symmetry in H2 within the Franck-Condon region. The delayed intense IR pulse couples the excited states of 1Σu + symmetry with the nearby excited states of 1Σg + symmetry. It also induces the first ionization from H2 to H2 + and the second ionization from H2 + to H++H+. To reduce the computational costs in the MCWP approach, a sampling method is proposed to determine in time the dominant ionization events from H2 to H2+. By conducting a trajectory analysis, which is a unique possibility within the MCWP approach, the origins of the characteristic features in the nuclear kinetic energy release spectra are identified for delays ranging from 0 to 140 fs and the nuclear dynamics in the singly excited states in H2 is mapped out.

  20. Real-time electron dynamics for massively parallel excited-state simulations

    NASA Astrophysics Data System (ADS)

    Andrade, Xavier

    The simulation of the real-time dynamics of electrons, based on time dependent density functional theory (TDDFT), is a powerful approach to study electronic excited states in molecular and crystalline systems. What makes the method attractive is its flexibility to simulate different kinds of phenomena beyond the linear-response regime, including strongly-perturbed electronic systems and non-adiabatic electron-ion dynamics. Electron-dynamics simulations are also attractive from a computational point of view. They can run efficiently on massively parallel architectures due to the low communication requirements. Our implementations of electron dynamics, based on the codes Octopus (real-space) and Qball (plane-waves), allow us to simulate systems composed of thousands of atoms and to obtain good parallel scaling up to 1.6 million processor cores. Due to the versatility of real-time electron dynamics and its parallel performance, we expect it to become the method of choice to apply the capabilities of exascale supercomputers for the simulation of electronic excited states.

  1. Early events associated with the excited state proton transfer in 2-(2{sup '}-pyridyl)benzimidazole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burai, Tarak Nath; Mukherjee, Tushar Kanti; Lahiri, Priyanka

    2009-07-21

    2-(2{sup '}-pyridyl)benzimidazole (2PBI) undergoes excited state proton transfer (ESPT) in acidic solutions, leading to a tautomer emission at 460 nm. This photoprocess has been studied using ultrafast fluorescence spectroscopic techniques in acidic neat aqueous solutions, in viscous mixtures of glycerol with water, as well as in sucrose solutions. The tautomer is found to be stabilized in the more viscous medium, leading to a greater relative quantum yield as well as lifetime. The long rise time in tautomer emission is not affected by viscosity though. Rather, it appears to have the same value as the long component of the decay ofmore » the cationic excited state (C*). In addition to the subnanosecond lifetime reported earlier, C* is found to exhibit a decay time of 2 ps. This is assigned to its protonation to form the nonfluorescent dication in its excited state (D*) considering the ground and excited state pK{sub a} values reported earlier. An additional rising component of 100 ps is observed in the region of C* emission. This is likely to arise from a structural change or charge redistribution in C* immediately after its creation and before the phototautomerization.« less

  2. Relative energies and collisional kinetics of the B(. cap omega. = 1/2) and C(. cap omega. = 3/2) excited states of xenon fluoride as studied by laser-induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gedanken, A.; Smith, A.L.

    1981-09-17

    A pulsed nitrogen laser photodissociated F/sub 2/ in the presence of Xe, and the resulting ground-state XeF was excited by a second pulsed, tunable dye laser in the 0,4 and 0,5 bands of the B(1/2)-X(1/2) transition. Both dispersed fluorescence spectra and tunable laser excitation spectra, taken by using a gated detection system, show that the C state is lower in energy than the lowest vibrational level of the B state. The ratio of fluorescence intensities in the C-A and B-X transitions was measured as a function of xenon and argon pressure. An analytical model was developed for the time dependencemore » of the B and C state concentrations after instantaneous excitation and in the presence of intersystem crossing, quenching, and radiative decay. Published rate constants for the excited state kinetics of XeF(B) and XeF(C) are reviewed, and model calculations of the measured intensity ratio are used to assess these rate constants.« less

  3. The electronically excited states of LH2 complexes from Rhodopseudomonas acidophila strain 10050 studied by time-resolved spectroscopy and dynamic Monte Carlo simulations. II. Homo-arrays of LH2 complexes reconstituted into phospholipid model membranes.

    PubMed

    Pflock, Tobias J; Oellerich, Silke; Krapf, Lisa; Southall, June; Cogdell, Richard J; Ullmann, G Matthias; Köhler, Jürgen

    2011-07-21

    We performed time-resolved spectroscopy on homoarrays of LH2 complexes from the photosynthetic purple bacterium Rhodopseudomonas acidophila. Variations of the fluorescence transients were monitored as a function of the excitation fluence and the repetition rate of the excitation. These parameters are directly related to the excitation density within the array and to the number of LH2 complexes that still carry a triplet state prior to the next excitation. Comparison of the experimental observations with results from dynamic Monte Carlo simulations for a model cluster of LH2 complexes yields qualitative agreement without the need for any free parameter and reveals the mutual relationship between energy transfer and annihilation processes.

  4. Red and blue shift of liquid water’s excited states: A many body perturbation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziaei, Vafa, E-mail: ziaei@thch.uni-bonn.de; Bredow, Thomas, E-mail: bredow@thch.uni-bonn.de

    In the present paper, accurate optical absorption spectrum of liquid H{sub 2}O is calculated in the energy range of 5–20 eV to probe the nature of water’s excited states by means of many body perturbation approach. Main features of recent inelastic X-ray measurements are well reproduced, such as a bound excitonic peak at 7.9 eV with a shoulder at 9.4 eV as well as the absorption maximum at 13.9 eV, followed by a broad shoulder at 18.4 eV. The spectrum is dominated by excitonic effects impacting the structures of the spectrum at low and higher energy regimes mixed by singlemore » particle effects at high energies. The exciton distribution of the low-energy states, in particular of S{sub 1}, is highly anisotropic and localized mostly on one water molecule. The S{sub 1} state is essentially a HOCO-LUCO (highest occupied crystal orbital - lowest unoccupied crystal orbital) transition and of intra-molecular type, showing a localized valence character. Once the excitation energy is increased, a significant change in the character of the electronically excited states occurs, characterized through emergence of multiple quasi-particle peaks at 7.9 eV in the quasi-particle (QP) transition profile and in the occurring delocalized exciton density distribution, spread over many more water molecules. The exciton delocalization following a change of the character of excited states at around 7.9 eV causes the blue shift of the first absorption band with respect to water monomer S{sub 1}. However, due to reduction of the electronic band gap from gas to liquid phase, following enhanced screening upon condensation, the localized S{sub 1} state of liquid water is red-shifted with respect to S{sub 1} state of water monomer. For higher excitations, near vertical ionization energy (11 eV), quasi-free electrons emerge, in agreement with the conduction band electron picture. Furthermore, the occurring red and blue shift of the excited states are independent of the coupling of

  5. A multireference perturbation method using non-orthogonal Hartree-Fock determinants for ground and excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yost, Shane R.; Kowalczyk, Tim; Van Voorhis, Troy, E-mail: tvan@mit.edu

    2013-11-07

    In this article we propose the ΔSCF(2) framework, a multireference strategy based on second-order perturbation theory, for ground and excited electronic states. Unlike the complete active space family of methods, ΔSCF(2) employs a set of self-consistent Hartree-Fock determinants, also known as ΔSCF states. Each ΔSCF electronic state is modified by a first-order correction from Møller-Plesset perturbation theory and used to construct a Hamiltonian in a configuration interactions like framework. We present formulas for the resulting matrix elements between nonorthogonal states that scale as N{sub occ}{sup 2}N{sub virt}{sup 3}. Unlike most active space methods, ΔSCF(2) treats the ground and excited statemore » determinants even-handedly. We apply ΔSCF(2) to the H{sub 2}, hydrogen fluoride, and H{sub 4} systems and show that the method provides accurate descriptions of ground- and excited-state potential energy surfaces with no single active space containing more than 10 ΔSCF states.« less

  6. Evidence for Cation-Controlled Excited-State Localization in a Ruthenium Polypyridyl Compound.

    PubMed

    Beauvilliers, Evan E; Meyer, Gerald J

    2016-08-01

    The visible absorption and photoluminescence (PL) properties of the four neutral ruthenium diimine compounds [Ru(bpy)2(dcb)] (B2B), [Ru(dtb)2(dcb)] (D2B), [Ru(bpy)2(dcbq)] (B2Q), and [Ru(dtb)2(dcbq)] (D2Q), where bpy is 2,2'-bipyridine, dcb is 4,4'-(CO2(-))2-bpy, dtb is 4,4'-(tert-butyl)2-bpy, and dcbq is 4,4'-(CO2(-))2-2,2'-biquinoline, are reported in the presence of Lewis acidic cations present in fluid solutions at room temperature. In methanol solutions, the measured spectra were insensitive to the presence of these cations, while in acetonitrile a significant red shift in the PL spectra (≤1400 cm(-1)) was observed consistent with stabilization of the metal-to-ligand charge transfer (MLCT) excited state through Lewis acid-base adduct formation. No significant spectral changes were observed in control experiments with the tetrabutylammonium cation. Titration data with Li(+), Na(+), Mg(2+), Ca(2+), Zn(2+), Al(3+), Y(3+), and La(3+) showed that the extent of stabilization saturated at high cation concentration with magnitudes that scaled roughly with the cation charge-to-size ratio. The visible absorption spectra of D2Q was particularly informative due to the presence of two well-resolved MLCT absorption bands: (1) Ru → bpy, λmax ≈ 450 nm; and (2) Ru → dcbq, λmax ≈ 540 nm. The higher-energy band blue-shifted and the lower-energy band red-shifted upon cation addition. The PL intensity and lifetime of the excited state of B2B first increased with cation addition without significant shifts in the measured spectra, behavior attributed to a cation-induced change in the localization of the emissive excited state from bpy to dcb. The importance of excited-state localization and stabilization for solar energy conversion is discussed.

  7. Excited-state structure and isomerization dynamics of the retinal chromophore in rhodopsin from resonance Raman intensities.

    PubMed Central

    Loppnow, G R; Mathies, R A

    1988-01-01

    Resonance Raman excitation profiles have been measured for the bovine visual pigment rhodopsin using excitation wavelengths ranging from 457.9 to 647.1 nm. A complete Franck-Condon analysis of the absorption spectrum and resonance Raman excitation profiles has been performed using an excited-state, time-dependent wavepacket propagation technique. This has enabled us to determine the change in geometry upon electronic excitation of rhodopsin's 11-cis-retinal protonated Schiff base chromophore along 25 normal coordinates. Intense low-frequency Raman lines are observed at 98, 135, 249, 336, and 461 cm-1 whose intensities provide quantitative, mode-specific information about the excited-state torsional deformations that lead to isomerization. The dominant contribution to the width of the absorption band in rhodopsin results from Franck-Condon progressions in the 1,549 cm-1 ethylenic normal mode. The lack of vibronic structure in the absorption spectrum is shown to be caused by extensive progressions in low-frequency torsional modes and a large homogeneous linewidth (170 cm-1 half-width) together with thermal population of low-frequency modes and inhomogeneous site distribution effects. The resonance Raman cross-sections of rhodopsin are unusually weak because the excited-state wavepacket moves rapidly (approximately 35 fs) and permanently away from the Franck-Condon geometry along skeletal stretching and torsional coordinates. PMID:3416032

  8. Investigation of excited states populations density of Hall thruster plasma in three dimensions by laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Krivoruchko, D. D.; Skrylev, A. V.

    2018-01-01

    The article deals with investigation of the excited states populations distribution of a low-temperature xenon plasma in the thruster with closed electron drift at 300 W operating conditions were investigated by laser-induced fluorescence (LIF) over the 350-1100 nm range. Seven xenon ions (Xe II) transitions were analyzed, while for neutral atoms (Xe I) just three transitions were explored, since the majority of Xe I emission falls into the ultraviolet or infrared part of the spectrum and are difficult to measure. The necessary spontaneous emission probabilities (Einstein coefficients) were calculated. Measurements of the excited state distribution were made for points (volume of about 12 mm3) all over the plane perpendicular to thruster axis in four positions on it (5, 10, 50 and 100 mm). Measured LIF signal intensity have differences for each location of researched point (due to anisotropy of thruster plume), however the structure of states populations distribution persisted at plume and is violated at the thruster exit plane and cathode area. Measured distributions show that for describing plasma of Hall thruster one needs to use a multilevel kinetic model, classic model can be used just for far plume region or for specific electron transitions.

  9. Excited-state intramolecular proton transfer and photoswitching in hydroxyphenyl-imidazopyridine derivatives: A theoretical study.

    PubMed

    Omidyan, Reza; Iravani, Maryam

    2016-11-14

    The MP2/CC2 and CASSCF theoretical approaches have been employed to determine the excited state proton transfer and photophysical nature of the four organic compounds, having the main frame of hydroxyphenyl-imidzaopyridine (HPIP). The nitrogen insertion effect, in addition to amine (-NH 2 ) substitution has been investigated extensively by following the transition energies and deactivation pathways of resulted HPIP derivatives. It has been predicted that the excited state intramolecular proton transfer with or without small barrier is the most important feature of these compounds. Also, for all of the considered HPIP derivatives, a conical intersection (CI) between ground and the S 1 excited state has been predicted. The strong non-adiabatic coupling in the CI (S 1 /S 0 ), drives the system back to the ground state in which the proton may either return to the phenoxy unit and thus close the photocycle, or the system can continue the twisting motion that results in formation of a γ-photochromic species. This latter species can be responsible for photochromism of HPIP derivative systems.

  10. Excited-state intramolecular proton transfer and photoswitching in hydroxyphenyl-imidazopyridine derivatives: A theoretical study

    NASA Astrophysics Data System (ADS)

    Omidyan, Reza; Iravani, Maryam

    2016-11-01

    The MP2/CC2 and CASSCF theoretical approaches have been employed to determine the excited state proton transfer and photophysical nature of the four organic compounds, having the main frame of hydroxyphenyl-imidzaopyridine (HPIP). The nitrogen insertion effect, in addition to amine (-NH2) substitution has been investigated extensively by following the transition energies and deactivation pathways of resulted HPIP derivatives. It has been predicted that the excited state intramolecular proton transfer with or without small barrier is the most important feature of these compounds. Also, for all of the considered HPIP derivatives, a conical intersection (CI) between ground and the S1 excited state has been predicted. The strong non-adiabatic coupling in the CI (S1/S0), drives the system back to the ground state in which the proton may either return to the phenoxy unit and thus close the photocycle, or the system can continue the twisting motion that results in formation of a γ-photochromic species. This latter species can be responsible for photochromism of HPIP derivative systems.

  11. Spin-orbit splitted excited states using explicitly-correlated equation-of-motion coupled-cluster singles and doubles eigenvectors

    NASA Astrophysics Data System (ADS)

    Bokhan, Denis; Trubnikov, Dmitrii N.; Perera, Ajith; Bartlett, Rodney J.

    2018-04-01

    An explicitly-correlated method of calculation of excited states with spin-orbit couplings, has been formulated and implemented. Developed approach utilizes left and right eigenvectors of equation-of-motion coupled-cluster model, which is based on the linearly approximated explicitly correlated coupled-cluster singles and doubles [CCSD(F12)] method. The spin-orbit interactions are introduced by using the spin-orbit mean field (SOMF) approximation of the Breit-Pauli Hamiltonian. Numerical tests for several atoms and molecules show good agreement between explicitly-correlated results and the corresponding values, calculated in complete basis set limit (CBS); the highly-accurate excitation energies can be obtained already at triple- ζ level.

  12. Temporal mapping of photochemical reactions and molecular excited states with carbon specificity

    NASA Astrophysics Data System (ADS)

    Wang, K.; Murahari, P.; Yokoyama, K.; Lord, J. S.; Pratt, F. L.; He, J.; Schulz, L.; Willis, M.; Anthony, J. E.; Morley, N. A.; Nuccio, L.; Misquitta, A.; Dunstan, D. J.; Shimomura, K.; Watanabe, I.; Zhang, S.; Heathcote, P.; Drew, A. J.

    2017-04-01

    Photochemical reactions are essential to a large number of important industrial and biological processes. A method for monitoring photochemical reaction kinetics and the dynamics of molecular excitations with spatial resolution within the active molecule would allow a rigorous exploration of the pathway and mechanism of photophysical and photochemical processes. Here we demonstrate that laser-excited muon pump-probe spin spectroscopy (photo-μSR) can temporally and spatially map these processes with a spatial resolution at the single-carbon level in a molecule with a pentacene backbone. The observed time-dependent light-induced changes of an avoided level crossing resonance demonstrate that the photochemical reactivity of a specific carbon atom is modified as a result of the presence of the excited state wavefunction. This demonstrates the sensitivity and potential of this technique in probing molecular excitations and photochemistry.

  13. Experimental and computational studies on the electronic excited states of nitrobenzene

    NASA Astrophysics Data System (ADS)

    Krishnakumar, Sunanda; Das, Asim Kumar; Singh, Param Jeet; Shastri, Aparna; Rajasekhar, B. N.

    2016-11-01

    The gas phase electronic absorption spectrum of nitrobenzene (C6H5NO2) in the 4.5-11.2 eV region is recorded using synchrotron radiation with a view to comprehend the nature of the excited states. Electronic excited states of nitrobenzene are mainly classified as local excitations within the benzene ring or nitro group and charge transfer excitations between the benzene and nitro group, with some transitions showing percentage from both. The nature of molecular orbitals, their orderings and energies are obtained from density functional theory calculations which help in assigning partially assigned/unassigned features in earlier photoelectron spectroscopy studies. Optimized geometry of ionic nitrobenzene predicts redistribution of charge density in the benzene ring rather than the nitro group resulting in stabilization of the benzene ring π orbitals in comparison to the neutral molecule. Time dependent density functional theory computations are found to describe the experimental spectra well with respect to energies, relative intensities and nature of the observed transitions in terms of valence, Rydberg or charge transfer type. New insights into the interpretation of 1B2u←1A1g and 1B1u←1A1g shifted benzene transitions in light of the present computational calculations are presented. The first few members of the ns, np and nd type Rydberg series in nitrobenzene, converging to the first six ionization potentials, identified in the spectra as weak but sharp peaks are reported for the first time. In general, transitions to the lowest three unoccupied molecular orbitals 4b1, 3a2 and 5b1 are valence or charge transfer in nature, while excitations to higher orbitals are predominantly Rydberg in nature. This work presents a consolidated experimental study and theoretical interpretation of the electronic absorption spectrum of nitrobenzene.

  14. Probing the Locality of Excited States with Linear Algebra.

    PubMed

    Etienne, Thibaud

    2015-04-14

    This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable.

  15. Charmonium ground and excited states at finite temperature from complex Borel sum rules

    NASA Astrophysics Data System (ADS)

    Araki, Ken-Ji; Suzuki, Kei; Gubler, Philipp; Oka, Makoto

    2018-05-01

    Charmonium spectral functions in vector and pseudoscalar channels at finite temperature are investigated through the complex Borel sum rules and the maximum entropy method. Our approach enables us to extract the peaks corresponding to the excited charmonia, ψ‧ and ηc‧ , as well as those of the ground states, J / ψ and ηc, which has never been achieved in usual QCD sum rule analyses. We show the spectral functions in vacuum and their thermal modification around the critical temperature, which leads to the almost simultaneous melting (or peak disappearance) of the ground and excited states.

  16. Picosecond excite-and-probe absorption measurement of the 4T2 state nonradiative lifetime in ruby

    NASA Technical Reports Server (NTRS)

    Gayen, S. K.; Wang, W. B.; Petricevic, V.; Dorsinville, R.; Alfano, R. R.

    1985-01-01

    In a picosecond excite-and-probe absorption measurement, a 527-nm picosecond pulse excites the 4T2 state of the Cr(3+) ion in ruby and a 3.4-micron picosecond probe pulse monitors the growth and decay of population in the 2E state as a function of pump-probe delay. From the growth of population in the metastable 2E state, an upper limit of 7 ps for the nonradiative lifetime of the 4T2 state is determined.

  17. Triplet excited state spectra and dynamics of carotenoids from the thermophilic purple photosynthetic bacterium Thermochromatium tepidum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niedzwiedzki, Dariusz; Kobayashi, Masayuki; Blankenship, R. E.

    Light-harvesting complex 2 from the anoxygenic phototrophic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption, fluorescence and flash photolysis spectroscopy. Steady-state absorption and fluorescence measurements show that carotenoids play a negligible role as supportive energy donors and transfer excitation to bacteriochlorophyll-a with low energy transfer efficiency of ~30%. HPLC analysis determined that the dominant carotenoids in the complex are rhodopin and spirilloxanthin. Carotenoid excited triplet state formation upon direct (carotenoid) or indirect (bacteriochlorophyll-a Q{sub x} band) excitation shows that carotenoid triplets are mostly localized on spirilloxanthin. In addition, no triplet excitation transfer between carotenoids was observed. Suchmore » specific carotenoid composition and spectroscopic results strongly suggest that this organism optimized carotenoid composition in the light-harvesting complex 2 in order to maximize photoprotective capabilities of carotenoids but subsequently drastically suppressed their supporting role in light-harvesting process.« less

  18. An incompressible state of a photo-excited electron gas

    PubMed Central

    Chepelianskii, Alexei D.; Watanabe, Masamitsu; Nasyedkin, Kostyantyn; Kono, Kimitoshi; Konstantinov, Denis

    2015-01-01

    Two-dimensional electrons in a magnetic field can form new states of matter characterized by topological properties and strong electronic correlations as displayed in the integer and fractional quantum Hall states. In these states, the electron liquid displays several spectacular characteristics, which manifest themselves in transport experiments with the quantization of the Hall resistance and a vanishing longitudinal conductivity or in thermodynamic equilibrium when the electron fluid becomes incompressible. Several experiments have reported that dissipationless transport can be achieved even at weak, non-quantizing magnetic fields when the electrons absorb photons at specific energies related to their cyclotron frequency. Here we perform compressibility measurements on electrons on liquid helium demonstrating the formation of an incompressible electronic state under these resonant excitation conditions. This new state provides a striking example of irradiation-induced self-organization in a quantum system. PMID:26007282

  19. Multisite constrained model of trans-4-(N,N-dimethylamino)-4'-nitrostilbene for structural elucidation of radiative and nonradiative excited states.

    PubMed

    Lin, Cheng-Kai; Wang, Yu-Fu; Cheng, Yuan-Chung; Yang, Jye-Shane

    2013-04-18

    A constrained model compound of trans-4-(N,N-dimethylamino)-4'-nitrostilbene (DNS), namely, compound DNS-B3 that is limited to torsions about the phenyl-nitro C-N bond and the central C═C bond, was prepared to investigate the structural nature of the radiative and nonradiative states of electronically excited DNS. The great similarities in solvent-dependent electronic spectra, fluorescence decay times, and quantum yields for fluorescence (Φf) and trans → cis photoisomerization (Φtc) between DNS and DNS-B3 indicate that the fluorescence is from a planar charge-transfer state and torsion of the nitro group is sufficient to account for the nonradiative decay of DNS. This conclusion is supported by TDDFT calculations on DNS-B3 in dichloromethane. The structure at the conical intersection for internal conversion is associated with not only a twisting but also a pyramidalization of the nitro group. The mechanism of the NO2 torsion is discussed in terms of the effects of solvent polarity, the substituents, and the volume demand. The differences and analogies of the NO2- vs amino-twisted intramolecular charge-transfer (TICT) state of trans-aminostilbenes are also discussed.

  20. Singlet versus Triplet Excited State Mediated Photoinduced Dehalogenation Reactions of Itraconazole in Acetonitrile and Aqueous Solutions.

    PubMed

    Zhu, Ruixue; Li, Ming-de; Du, Lili; Phillips, David Lee

    2017-04-06

    Photoinduced dehalogenation of the antifungal drug itraconazole (ITR) in acetonitrile (ACN) and ACN/water mixed solutions was investigated using femtosecond and nanosecond time-resolved transient absorption (fs-TA and ns-TA, respectively) and nanosecond time-resolved resonance Raman spectroscopy (ns-TR 3 ) experiments. An excited resonance energy transfer is found to take place from the 4-phenyl-4,5-dihydro-3H-1,2,4-triazol-3-one part of the molecule to the 1,3-dichlorobenzene part of the molecule when ITR is excited by ultraviolet light. This photoexcitation is followed by a fast carbon-halogen bond cleavage that leads to the generation of radical intermediates via either triplet and/or singlet excited states. It is found that the singlet excited state-mediated carbon-halogen cleavage is the predominant dehalogenation process in ACN solvent, whereas a triplet state-mediated carbon-halogen cleavage prefers to occur in the ACN/water mixed solutions. The singlet-to-triplet energy gap is decreased in the ACN/water mixed solvents and this helps facilitate an intersystem crossing process, and thus, the carbon-halogen bond cleavage happens mostly through an excited triplet state in the aqueous solutions examined. The ns-TA and ns-TR 3 results also provide some evidence that radical intermediates are generated through a homolytic carbon-halogen bond cleavage via predominantly the singlet excited state pathway in ACN but via mainly the triplet state pathway in the aqueous solutions. In strong acidic solutions, protonation at the oxygen and/or nitrogen atoms of the 1,2,4-triazole-3-one group appears to hinder the dehalogenation reactions. This may offer the possibility that the phototoxicity of ITR due to the generation of aryl or halogen radicals can be reduced by protonation of certain moieties in suitably designed ITR halogen-containing derivatives.

  1. Calculation of ground state rotational populations for kinetic gas homonuclear diatomic molecules including electron-impact excitation and wall collisions.

    PubMed

    Farley, David R

    2010-09-07

    A model has been developed to calculate the ground state rotational populations of homonuclear diatomic molecules in kinetic gases, including the effects of electron-impact excitation, wall collisions, and gas feed rate. The equations are exact within the accuracy of the cross sections used and of the assumed equilibrating effect of wall collisions. It is found that the inflow of feed gas and equilibrating wall collisions can significantly affect the rotational distribution in competition with nonequilibrating electron-impact effects. The resulting steady-state rotational distributions are generally Boltzmann for N≥3, with a rotational temperature between the wall and feed gas temperatures. The N=0,1,2 rotational level populations depend sensitively on the relative rates of electron-impact excitation versus wall collision and gas feed rates.

  2. The Microwave Spectroscopy of Aminoacetonitrile in the Vibrational Excited States 2

    NASA Astrophysics Data System (ADS)

    Fujita, Chiho; Higurashi, Haruka; Ozeki, Hiroyuki; Kobayashi, Kaori

    2016-06-01

    Aminoacetonitrile (NH_2CH_2CN) is a potential precursor of the simplest amino acid, glycine in the interstellar space and was detected toward SgrB2(N). We have extended measurements up to 1.3 THz so that the strongest transitions that may be found in the terahertz region should be covered. Aminoacetonitrile has a few low-lying vibrational excited states and indeed the pure rotational transitions in these vibrational excited states were found. The pure rotational transitions in six vibrational excited states in the 80-180 GHz range have been assigned and centrifugal distortion constants up to the sextic terms were determined. Based on spectral intensities and the vibrational information from Bak et al., They were assigned to the 3 low-lying fundamentals, 1 overtone and 2 combination bands. In the submillimeter wavelength region, perturbations were recognized and some of the lines were off by more than a few MHz. At this moment, these perturbed transitions are not included in our analysis. A. Belloche, K. M. Menten, C. Comito, H. S. P. Müller, P. Schilke, J. Ott, S. Thorwirth, and C. Hieret, 2008, Astronom. & Astrophys. 482, 179 (2008). Y. Motoki, Y. Tsunoda, H. Ozeki, and K. Kobayashi, Astrophys. J. Suppl. Ser. 209, 23 (2013). B. Bak, E. L. Hansen, F. M. Nicolaisen, and O. F. Nielsen, Can. J. Phys. 53, 2183 (1975) C. Fujita, H. Ozeki, and K. Kobayashi, 70th International Symposium on Molecular Spectroscopy (2015), MH14.

  3. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2′-bipyridine)2(CN)2

    PubMed Central

    Kjær, Kasper S.; Zhang, Wenkai; Alonso-Mori, Roberto; Bergmann, Uwe; Chollet, Matthieu; Hadt, Ryan G.; Hartsock, Robert W.; Harlang, Tobias; Kroll, Thomas; Kubiček, Katharina; Lemke, Henrik T.; Liang, Huiyang W.; Liu, Yizhu; Nielsen, Martin M.; Robinson, Joseph S.; Solomon, Edward I.; Sokaras, Dimosthenis; van Driel, Tim B.; Weng, Tsu-Chien; Zhu, Diling; Persson, Petter; Wärnmark, Kenneth; Sundström, Villy; Gaffney, Kelly J.

    2017-01-01

    We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy)2(CN)2], where bpy=2,2′-bipyridine, initiated by metal-to-ligand charge transfer (MLCT) excitation. The excited-state absorption in the transient UV-visible spectra, associated with the 2,2′-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state of [Fe(bpy)2(CN)2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a short lived metal-centered triplet transient species. These measurements of [Fe(bpy)2(CN)2] complement prior measurement performed on [Fe(bpy)3]2+ and [Fe(bpy)(CN)4]2− in dimethylsulfoxide solution and help complete the chemical series [Fe(bpy)N(CN)6–2N]2N-4, where N = 1–3. The measurements confirm that simple ligand modifications can significantly change the relaxation pathways and excited state lifetimes and support the further investigation of light harvesting and photocatalytic applications of 3d transition metal complexes. PMID:28653021

  4. Laser-induced breakup of helium 3S 1s2s with intermediate doubly excited states

    NASA Astrophysics Data System (ADS)

    Simonsen, A. S.; Bachau, H.; Førre, M.

    2014-02-01

    Solving the time-dependent Schrödinger equation in full dimensionality for two electrons, it is found that in the XUV regime the two-photon double ionization dynamics of He(1s2s) is predominantly dictated by the process of resonance enhanced multiphoton ionization via doubly excited states (DESs). We have studied a pump-probe scenario where the full laser-driven breakup of the 3S 1s2s metastable state is dominated by intermediate quasiresonant excitation to doubly excited (autoionizing) states in the 3Po series. Clear evidence of multipath interference effects is revealed in the resulting angular distributions of the ejected electrons in cases where more than one intermediate DES is populated in the process.

  5. Gentlest ascent dynamics for calculating first excited state and exploring energy landscape of Kohn-Sham density functionals.

    PubMed

    Li, Chen; Lu, Jianfeng; Yang, Weitao

    2015-12-14

    We develop the gentlest ascent dynamics for Kohn-Sham density functional theory to search for the index-1 saddle points on the energy landscape of the Kohn-Sham density functionals. These stationary solutions correspond to excited states in the ground state functionals. As shown by various examples, the first excited states of many chemical systems are given by these index-1 saddle points. Our novel approach provides an alternative, more robust way to obtain these excited states, compared with the widely used ΔSCF approach. The method can be easily generalized to target higher index saddle points. Our results also reveal the physical interest and relevance of studying the Kohn-Sham energy landscape.

  6. M1 excitation in Sm isotopes and the proton-neutron sdg interacting boson model

    NASA Astrophysics Data System (ADS)

    Mizusaki, Takahiro; Otsuka, Takaharu; Sugita, Michiaki

    1991-10-01

    The magnetic-dipole scissors mode in spherical to deformed Sm isotopes is studied in terms of the proton-neutron sdg interacting boson model, providing a good agreement with recent experiment by Ziegler et al. The present calculation correctly reproduces the increase of M1 excitation strength in going from spherical to deformed nuclei. It is suggested that there may be 1+ states which do not correspond to the scissors mode but absorb certain M1 strength from the ground state.

  7. Non-Adiabatic Effects on Excited States of Vinylidene Observed with Slow Photoelectron Velocity-Map Imaging.

    PubMed

    DeVine, Jessalyn A; Weichman, Marissa L; Zhou, Xueyao; Ma, Jianyi; Jiang, Bin; Guo, Hua; Neumark, Daniel M

    2016-12-21

    High-resolution slow photoelectron velocity-map imaging spectra of cryogenically cooled X̃ 2 B 2 H 2 CC - and D 2 CC - in the region of the vinylidene triplet excited states are reported. Three electronic bands are observed and, with the assistance of electronic structure calculations and quantum dynamics on ab initio-based near-equilibrium potential energy surfaces, are assigned as detachment to the [Formula: see text] 3 B 2 (T 1 ), b̃ 3 A 2 (T 2 ), and à 1 A 2 (S 1 ) excited states of neutral vinylidene. This work provides the first experimental observation of the à singlet excited state of H 2 CC. While regular vibrational structure is observed for the ã and à electronic bands, a number of irregular features are resolved in the vicinity of the b̃ band vibrational origin. High-level ab initio calculations suggest that this anomalous structure arises from a conical intersection between the ã and b̃ triplet states near the b̃ state minimum, which strongly perturbs the vibrational levels in the two electronic states through nonadiabatic coupling. Using the adiabatic electron affinity of H 2 CC previously measured to be 0.490(6) eV by Ervin and co-workers [J. Chem. Phys. 1989, 91, 5974], term energies for the excited neutral states of H 2 CC are found to be T 0 (ã 3 B 2 ) = 2.064(6), T 0 (b̃ 3 A 2 ) = 2.738(6), and T 0 (à 1 A 2 ) = 2.991(6) eV.

  8. A Study of Power Systems Stability Enhancement Effects by Excitation Control of Superconducting Generator with High Response Excitation based on Detailed Excitation Circuit Model

    NASA Astrophysics Data System (ADS)

    Wu, Guohong; Shirato, Hideyuki

    SCG (Superconducting Generator) has a superconducting field winding, which leads to many advantages such as small size, high generation efficiency, low impedance, and so on, and be considered as one of the candidates to meet the needs of high stability and high efficiency in the future power system networks. SCG with high response excitation is especially expected to be able to enhance the transient stability of power system by its SMES (Superconducting Magnetic Energy System) effect. The SMES effect of SCG is recognized that its behaviors are dominated by the structures and controls of its excitation system. For this reason, in order to verify exactly how the SMES effect of SCG influences on the power system stability, the electrical circuits of SCG high response excitation are modeled in detail for conducting digital simulation, and its influence on excitation voltage and active power output of SCG are discussed as well. The simulation results with a typical one machine - infinite bus power system model shows that the SMES effect can be certainly obtained when its exciting power is supplied from SCG terminal bus and may considerably lead to an improvement of power system transient stability.

  9. Theoretical Studies of Possible Synthetic Routes for the High Energy Density Material Td N4: Excited Electronic States

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.

    2001-01-01

    Vertical electronic excitation energies for single states have been computed for the high energy density material (HEDM) Td N4 in order to assess possible synthetic routes that originate from excited electronic states of N2 molecules. Several ab initio theoretical approaches have been used, including complete active space self-consistent field (CASSCF), state averaged CASSCF (SA-CASSCF), singles configuration interaction (CIS), CIS with second-order and third-order correlation corrections [CIS(D)) and CIS(3)], and linear response singles and doubles coupled-cluster (LRCCSD), which is the highest level of theory employed. Standard double zeta polarized (DZP) and triple zeta double polarized (TZ2P) one-particle basis sets were used. The CASSCF calculations are found to overestimate the excitation energies, while the SA-CASSCF approach rectifies this error to some extent, but not completely. The accuracy of the CIS calculations varied depending on the particular state, while the CIS(D), CIS(3), and LRCCSD results are in generally good agreement. Based on the LRCCSD calculations, the lowest six excited singlet states are 9.35(l(sup)T1), 10.01(l(sup)T2), 10.04(1(sup)A2), 10.07(1(sup)E), 10.12(2(sup)T1), and 10.42(2(sup)T2) eV above the ground state, respectively. Comparison of these excited state energies with the energies of possible excited states of N2+N2 fragments, leads us to propose that the most likely synthetic route for Td N4 involving this mechanism arises from combination of two bound quintet states of N2.

  10. Electron affinity and excited states of methylglyoxal

    NASA Astrophysics Data System (ADS)

    Dauletyarov, Yerbolat; Dixon, Andrew R.; Wallace, Adam A.; Sanov, Andrei

    2017-07-01

    Using photoelectron imaging spectroscopy, we characterized the anion of methylglyoxal (X2A″ electronic state) and three lowest electronic states of the neutral methylglyoxal molecule: the closed-shell singlet ground state (X1A'), the lowest triplet state (a3A″), and the open-shell singlet state (A1A″). The adiabatic electron affinity (EA) of the ground state, EA(X1A') = 0.87(1) eV, spectroscopically determined for the first time, compares to 1.10(2) eV for unsubstituted glyoxal. The EAs (adiabatic attachment energies) of two excited states of methylglyoxal were also determined: EA(a3A″) = 3.27(2) eV and EA(A1A″) = 3.614(9) eV. The photodetachment of the anion to each of these two states produces the neutral species near the respective structural equilibria; hence, the a3A″ ← X2A″ and A1A″ ← X2A″ photodetachment transitions are dominated by intense peaks at their respective origins. The lowest-energy photodetachment transition, on the other hand, involves significant geometry relaxation in the X1A' state, which corresponds to a 60° internal rotation of the methyl group, compared to the anion structure. Accordingly, the X1A' ← X2A″ transition is characterized as a broad, congested band, whose vertical detachment energy, VDE = 1.20(4) eV, significantly exceeds the adiabatic EA. The experimental results are in excellent agreement with the ab initio predictions using several equation-of-motion methodologies, combined with coupled-cluster theory.

  11. Structure of Low-Lying Excited States of Guanine in DNA and Solution: Combined Molecular Mechanics and High-Level Coupled Cluster Studies

    DOE PAGES

    Kowalski, Karol; Valiev, Marat

    2007-01-01

    High-level ab-initio equation-of-motion coupled-cluster methods with singles, doubles, and noniterative triples are used, in conjunction with the combined quantum mechanical molecular mechanics approach, to investigate the structure of low-lying excited states of the guanine base in DNA and solvated environments. Our results indicate that while the excitation energy of the first excited state is barely changed compared to its gas-phase counterpart, the excitation energy of the second excited state is blue-shifted by 0.24 eV.

  12. Excited-State Dynamics of Biological Molecules in Solution: Photoinduced Charge Transfer in Oxidatively Damaged DNA and Deactivation of Violacein in Viscous Solvents

    NASA Astrophysics Data System (ADS)

    Beckstead, Ashley Ann

    UV radiation from the sun is strongly absorbed by DNA, and the resulting electronic excited states can lead to the formation of mutagenic photoproducts. Decades of research have brought to light the excited-state dynamics of single RNA and DNA nucleobases, but questions remain about the nature of excited states accessed in DNA strands. In this thesis, I present ultrafast spectroscopic observations of photoinduced electron transfer from the oxidatively damaged bases, 8-oxo-7,8-dihydro-2'-deoxyguanosine, 5-hydroxy-2'-deoxycytidine and 5-hydroxy-2'-deoxyuridine, to adenine in three dinucleotides. The results reveal that charge transfer states are formed on a timescale faster than our instrumental resolution (<0.5 ps), and back electron transfer efficiently returns the excited-state population to the ground state on timescales from tens to hundreds of ps. In addition to recent spectroscopic observations of charge transfer state species in DNA by other groups, our results have augmented understanding of the long-lived transient signals observed in DNA strands. The observation of photoinduced electron transfer in these oxidatively damaged nucleobases also supports a recent proposal regarding the role of oxidative products in pre-RNA catalysis. I discuss these observations in the contexts of fundamental DNA excited-state dynamics and prebiotic chemical evolution. In this thesis, I also present the first ultrafast spectroscopic investigation of violacein, a pigment isolated from Antarctic bacteria. Despite claims for the photoprotective role of this pigment, there has never been a spectroscopic analysis of excited-state deactivation in violacein. Emission spectra, fluorescence quantum yields and excited-state lifetimes of violacein in various solvents were measured for the first time. Both the fluorescence quantum yield and excited-state lifetime of violacein increase in increasingly viscous solvents, suggesting a large-scale motion mediates excited-state deactivation. I

  13. Granule cell excitability regulates gamma and beta oscillations in a model of the olfactory bulb dendrodendritic microcircuit

    PubMed Central

    Osinski, Bolesław L.

    2016-01-01

    Odors evoke gamma (40–100 Hz) and beta (20–30 Hz) oscillations in the local field potential (LFP) of the mammalian olfactory bulb (OB). Gamma (and possibly beta) oscillations arise from interactions in the dendrodendritic microcircuit between excitatory mitral cells (MCs) and inhibitory granule cells (GCs). When cortical descending inputs to the OB are blocked, beta oscillations are extinguished whereas gamma oscillations become larger. Much of this centrifugal input targets inhibitory interneurons in the GC layer and regulates the excitability of GCs, which suggests a causal link between the emergence of beta oscillations and GC excitability. We investigate the effect that GC excitability has on network oscillations in a computational model of the MC-GC dendrodendritic network with Ca2+-dependent graded inhibition. Results from our model suggest that when GC excitability is low, the graded inhibitory current mediated by NMDA channels and voltage-dependent Ca2+ channels (VDCCs) is also low, allowing MC populations to fire in the gamma frequency range. When GC excitability is increased, the activation of NMDA receptors and other VDCCs is also increased, allowing the slow decay time constants of these channels to sustain beta-frequency oscillations. Our model argues that Ca2+ flow through VDCCs alone could sustain beta oscillations and that the switch between gamma and beta oscillations can be triggered by an increase in the excitability state of a subpopulation of GCs. PMID:27121582

  14. Molecular excited states from the SCAN functional

    NASA Astrophysics Data System (ADS)

    Tozer, David J.; Peach, Michael J. G.

    2018-06-01

    The performance of the strongly constrained and appropriately normed (SCAN) meta-generalised gradient approximation exchange-correlation functional is investigated for the calculation of time-dependent density-functional theory molecular excitation energies of local, charge-transfer and Rydberg character, together with the excited ? potential energy curve in H2. The SCAN results frequently resemble those obtained using a global hybrid functional, with either a standard or increased fraction of exact orbital exchange. For local excitations, SCAN can exhibit significant triplet instability problems, resulting in imaginary triplet excitation energies for a number of cases. The Tamm-Dancoff approximation offers a simple approach to improve the situation, but the excitation energies are still significantly underestimated. Understanding the origin of these (near)-triplet instabilities may provide useful insight into future functional development.

  15. Surface-catalyzed recombination into excited electronic, vibrational, rotational, and kinetic energy states: A review

    NASA Technical Reports Server (NTRS)

    Kofsky, I. L.; Barrett, J. L.

    1985-01-01

    Laboratory experiments in which recombined CO, CO2, D2O, OH, N2, H2, and O2 molecules desorb from surfaces in excited internal and translational states are briefly reviewed. Unequilibrated distributions predominate from the principally catalytic metal substrates so far investigated. Mean kinetic energies have been observed up to approx. 3x, and in some cases less than, wall-thermal; the velocity distributions generally vary with emission angle, with non-Lambertian particle fluxes. The excitation state populations are found to depend on surface impurities, in an as yet unexplained way.

  16. Magnetic Excitations in α-RuCl3

    NASA Astrophysics Data System (ADS)

    Nagler, Stephen; Banerjee, Arnab; Bridges, Craig; Yan, Jiaqiang; Mandrus, David; Stone, Matthew; Aczel, Adam; Li, Ling; Yiu, Yuen; Lumsden, Mark; Knolle, Johannes; Moessner, Roderich; Tennant, Alan

    2015-03-01

    The layered material α-RuCl3 is composed of stacks of weakly coupled honeycomb lattices of octahedrally coordinated Ru3+ ions. The Ru ion ground state has 5 d electrons in the low spin state, with spin-orbit coupling very strong compared to other terms in the single ion Hamiltonian. The material is therefore an excellent candidate for investigating possible Heisenberg-Kitaev physics. In addition, this compound is very amenable to investigation by neutron scattering to explore the magnetic ground state and excitations in detail. Here we discuss new time-of-flight inelastic neutron scattering data on α-RuCl3. A high energy excitation near 200 meV is identified as a transition from the single ion J=1/2 ground state to the J=3/2 excited state, yielding a direct measurement of the spin orbit coupling energy. Higher resolution measurements reveal two collective modes at much lower energy scales. The results are compared with the theoretical expectations for excitations in the Heisenberg - Kitaev model on a honeycomb lattice, and show that Kitaev interactions are important. Research at SNS supported by the DOE BES Scientific User Facilities Division.

  17. Coulomb-repulsion-assisted double ionization from doubly excited states of argon

    NASA Astrophysics Data System (ADS)

    Liao, Qing; Winney, Alexander H.; Lee, Suk Kyoung; Lin, Yun Fei; Adhikari, Pradip; Li, Wen

    2017-08-01

    We report a combined experimental and theoretical study to elucidate nonsequential double-ionization dynamics of argon atoms at laser intensities near and below the recollision-induced ionization threshold. Three-dimensional momentum measurements of two electrons arising from strong-field nonsequential double ionization are achieved with a custom-built electron-electron-ion coincidence apparatus, showing laser intensity-dependent Coulomb repulsion effect between the two outgoing electrons. Furthermore, a previously predicted feature of double ionization from doubly excited states is confirmed in the distributions of sum of two-electron momenta. A classical ensemble simulation suggests that Coulomb-repulsion-assisted double ionization from doubly excited states is at play at low laser intensity. This mechanism can explain the dependence of Coulomb repulsion effect on the laser intensity, as well as the transition from side-by-side to back-to-back dominant emission along the laser polarization direction.

  18. Electron-impact excitation of Rydberg and valence electronic states of nitric oxide: II. Integral cross sections

    NASA Astrophysics Data System (ADS)

    Brunger, M. J.; Campbell, L.; Cartwright, D. C.; Middleton, A. G.; Mojarrabi, B.; Teubner, P. J. O.

    2000-02-01

    Integral cross sections (ICSs) for the excitation of 18 excited electronic states, and four composite excited electronic states, in nitric oxide (NO) have been determined for incident electron energies of 15, 20, 30, 40 and 50 eV. These ICSs were derived by extrapolating the respective measured differential cross sections (M J Brunger et al 2000 J. Phys. B: At. Mol. Opt. Phys. 33 783) to 0° and 180° and by performing the appropriate integration. Comparison of the present ICSs with the results of those determined in earlier optical emission measurements, and from theoretical calculations is made. At each incident energy considered, the current ICSs are also summed along with the corresponding elastic and rovibrational excitation ICSs from B Mojarrabi et al (1995 J. Phys. B: At. Mol. Opt. Phys. 28 487) and the ionization cross sections from Rapp and Englander-Golden (1965 J. Chem. Phys. 43 1464), to derive an estimate of the grand total cross sections (GTSs) for e- + NO scattering. The GTSs derived in this manner are compared with the results from independent linear transmission experiments and are found to be entirely consistent with them. The present excited electronic state ICS, and those for elastic and rovibrational excitation from Mojarrabi et al , appear to represent the first set of self-consistent cross sections for electron impact scattering from NO.

  19. Excitation Mechanisms in Moderate-Energy Li+-He Collisions

    NASA Astrophysics Data System (ADS)

    Kita, Shigetomo; Itaya, Jun; Sawatari, Yugo; Tabata, Tadanobu; Hayashi, Takeo; Shimakura, Noriyuki; Koseki, Shiro

    2018-02-01

    Excitation mechanisms in Li+-He collisions were studied at laboratory collision energies of 350 ≤ Elab ≤ 2000 eV by measuring double differential cross sections (DCSs) σ(Θ)k over a wide range of center-of-mass scattering angles, 2.5 ≤ Θ ≤ 175°. At Elab ≥ 500 eV, two-electron (2e) excitations were observed as well as one-electron (1e) excitations. At the higher collision energies, excitation probabilities P(Θ)k for the 1e and 2e excitations have characteristic angular dependences, i.e., at Elab = 1500 and 2000 eV, P(Θ)1e for the 1e excitations has double maxima around Θ = 20 and 120° and P(Θ)2e for the 2e excitations has a broad maximum around Θ = 60°. As a first analysis of the experimental data, P(Θ)k, σ(Θ)k, and the integral cross sections Sk(Elab) were calculated by assuming excitations from the 11Σ state into the 11Π and 11Δ states through rotational couplings using the model potentials and couplings. As the next step, ab initio potential energies for the ground and excited states were calculated by a multiconfiguration self-consistent field (MCSCF) method, and then the electronic transitions among the seven states through the radial and rotational couplings were calculated using the theoretical potentials and couplings. Autoionizations from the 2e-excited He**(2s2 and 2p2) atoms were also simulated at Elab = 750-1500 eV and small laboratory angles of θ ≤ 25° by using the MCSCF potentials. The excitation mechanisms were reasonably well understood through these analyses.

  20. Data-driven modelling of vertical dynamic excitation of bridges induced by people running

    NASA Astrophysics Data System (ADS)

    Racic, Vitomir; Morin, Jean Benoit

    2014-02-01

    With increasingly popular marathon events in urban environments, structural designers face a great deal of uncertainty when assessing dynamic performance of bridges occupied and dynamically excited by people running. While the dynamic loads induced by pedestrians walking have been intensively studied since the infamous lateral sway of the London Millennium Bridge in 2000, reliable and practical descriptions of running excitation are still very rare and limited. This interdisciplinary study has addressed the issue by bringing together a database of individual running force signals recorded by two state-of-the-art instrumented treadmills and two attempts to mathematically describe the measurements. The first modelling strategy is adopted from the available design guidelines for human walking excitation of structures, featuring perfectly periodic and deterministic characterisation of pedestrian forces presentable via Fourier series. This modelling approach proved to be inadequate for running loads due to the inherent near-periodic nature of the measured signals, a great inter-personal randomness of the dominant Fourier amplitudes and the lack of strong correlation between the amplitudes and running footfall rate. Hence, utilising the database established and motivated by the existing models of wind and earthquake loading, speech recognition techniques and a method of replicating electrocardiogram signals, this paper finally presents a numerical generator of random near-periodic running force signals which can reliably simulate the measurements. Such a model is an essential prerequisite for future quality models of dynamic loading induced by individuals, groups and crowds running under a wide range of conditions, such as perceptibly vibrating bridges and different combinations of visual, auditory and tactile cues.

  1. Stepwise vs concerted excited state tautomerization of 2-hydroxypyridine: Ammonia dimer wire mediated hydrogen/proton transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esboui, Mounir, E-mail: mounir.esboui@fst.rnu.tn; Technical and Vocational Training Corporation, Hail College of Technology, P.O. Box 1960, Hail 81441

    The stepwise and concerted excited state intermolecular proton transfer (PT) and hydrogen transfer (HT) reactions in 2-hydroxypyridine-(NH{sub 3}){sub 2} complex in the gas phase under Cs symmetry constraint and without any symmetry constraints were performed using quantum chemical calculations. It shows that upon excitation, the hydrogen bonded in 2HP-(NH{sub 3}){sub 2} cluster facilitates the releasing of both hydrogen and proton transfer reactions along ammonia wire leading to the formation of the 2-pyridone tautomer. For the stepwise mechanism, it has been found that the proton and the hydrogen may transfer consecutively. These processes are distinguished from each other through charge translocationmore » analysis and the coupling between the motion of the proton and the electron density distribution along ammonia wire. For the complex under Cs symmetry, the excited state HT occurs on the A″({sup 1}πσ{sup ∗}) and A′({sup 1}nσ{sup ∗}) states over two accessible energy barriers along reaction coordinates, and excited state PT proceeds mainly through the A′({sup 1}ππ{sup ∗}) and A″({sup 1}nπ{sup ∗}) potential energy surfaces. For the unconstrained complex, potential energy profiles show two {sup 1}ππ{sup ∗}-{sup 1}πσ{sup ∗} conical intersections along enol → keto reaction path indicating that proton and H atom are localized, respectively, on the first and second ammonia of the wire. Moreover, the concerted excited state PT is competitive to take place with the stepwise process, because it proceeds over low barriers of 0.14 eV and 0.11 eV with respect to the Franck-Condon excitation of enol tautomer, respectively, under Cs symmetry and without any symmetry constraints. These barriers can be probably overcome through tunneling effect.« less

  2. Vibrationally resolved photoelectron spectroscopy of electronic excited states of DNA bases: application to the ã state of thymine cation.

    PubMed

    Hochlaf, Majdi; Pan, Yi; Lau, Kai-Chung; Majdi, Youssef; Poisson, Lionel; Garcia, Gustavo A; Nahon, Laurent; Al Mogren, Muneerah Mogren; Schwell, Martin

    2015-02-19

    For fully understanding the light-molecule interaction dynamics at short time scales, recent theoretical and experimental studies proved the importance of accurate characterizations not only of the ground (D0) but also of the electronic excited states (e.g., D1) of molecules. While ground state investigations are currently straightforward, those of electronic excited states are not. Here, we characterized the à electronic state of ionic thymine (T(+)) DNA base using explicitly correlated coupled cluster ab initio methods and state-of-the-art synchrotron-based electron/ion coincidence techniques. The experimental spectrum is composed of rich and long vibrational progressions corresponding to the population of the low frequency modes of T(+)(Ã). This work challenges previous numerous works carried out on DNA bases using common synchrotron and VUV-based photoelectron spectroscopies. We provide hence a powerful theoretical and experimental framework to study the electronic structure of ionized DNA bases that could be generalized to other medium-sized biologically relevant systems.

  3. Correspondence between discrete and continuous models of excitable media: trigger waves

    NASA Technical Reports Server (NTRS)

    Chernyak, Y. B.; Feldman, A. B.; Cohen, R. J.

    1997-01-01

    We present a theoretical framework for relating continuous partial differential equation (PDE) models of excitable media to discrete cellular automata (CA) models on a randomized lattice. These relations establish a quantitative link between the CA model and the specific physical system under study. We derive expressions for the CA model's plane wave speed, critical curvature, and effective diffusion constant in terms of the model's internal parameters (the interaction radius, excitation threshold, and time step). We then equate these expressions to the corresponding quantities obtained from solution of the PDEs (for a fixed excitability). This yields a set of coupled equations with a unique solution for the required CA parameter values. Here we restrict our analysis to "trigger" wave solutions obtained in the limiting case of a two-dimensional excitable medium with no recovery processes. We tested the correspondence between our CA model and two PDE models (the FitzHugh-Nagumo medium and a medium with a "sawtooth" nonlinear reaction source) and found good agreement with the numerical solutions of the PDEs. Our results suggest that the behavior of trigger waves is actually controlled by a small number of parameters.

  4. Excited-state structure and electronic dephasing time of Nile blue from absolute resonance Raman intensities

    NASA Astrophysics Data System (ADS)

    Lawless, Mary K.; Mathies, Richard A.

    1992-06-01

    Absolute resonance Raman cross sections are measured for Nile blue 690 perchlorate dissolved in ethylene glycol with excitation at 514, 531, and 568 nm. These values and the absorption spectrum are modeled using a time-dependent wave packet formalism. The excited-state equilibrium geometry changes are quantitated for 40 resonance Raman active modes, seven of which (590, 1141, 1351, 1429, 1492, 1544, and 1640 cm-1 ) carry 70% of the total resonance Raman intensity. This demonstrates that in addition to the prominent 590 and 1640 cm-1 modes, a large number of vibrational degrees of freedom are Franck-Condon coupled to the electronic transition. After exposure of the explicit vibrational progressions, the residual absorption linewidth is separated into its homogeneous [350 cm-1 half-width at half-maximum (HWHM)] and inhomogeneous (313 cm-1 HWHM) components through an analysis of the absolute Raman cross sections. The value of the electronic dephasing time derived from this study (25 fs) compares well to previously published results. These data should be valuable in multimode modeling of femtosecond experiments on Nile blue.

  5. Quantum coherence effects in natural light-induced processes: cis-trans photoisomerization of model retinal under incoherent excitation.

    PubMed

    Tscherbul, Timur V; Brumer, Paul

    2015-12-14

    We present a theoretical study of quantum coherence effects in the primary cis-trans photoisomerization of retinal in rhodopsin induced by incoherent solar light. Using the partial secular Bloch-Redfield quantum master equation approach based on a two-state two-mode linear vibronic coupling model of the retinal chromophore [S. Hahn and G. Stock, J. Phys. Chem. B, 2000, 104, 1146-1149], we show that a sudden turn-on of incoherent pumping can generate substantial Fano coherences among the excited states of retinal. These coherences are the most pronounced in the regime where the matrix elements of the transition dipole moment between the ground and excited eigenstates are parallel to one another. We show that even when the transition dipole moments are perpendicular (implying the absence of light-induced Fano coherence) a small amount of excited-state coherence is still generated due to the coupling to intramolecular vibrational modes and the protein environment, causing depopulation of the excited eigenstates. The overall effect of the coherences on the steady-state population and on the photoproduct quantum yield is shown to be small; however we observe a significant transient effect on the formation of the trans photoproduct, enhancing the photoreaction quantum yield by ∼11% at 200 fs. These calculations suggest that coupling to intramolecular vibrational modes and the protein environment play an important role in photoreaction dynamics, suppressing oscillations in the quantum yield associated with Fano interference.

  6. Excited state non-adiabatic dynamics of pyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Guorong; State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023; Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026

    The dynamics of pyrrole excited at wavelengths in the range 242-217 nm are studied using a combination of time-resolved photoelectron spectroscopy and wavepacket propagations performed using the multi-configurational time-dependent Hartree method. Excitation close to the origin of pyrrole’s electronic spectrum, at 242 and 236 nm, is found to result in an ultrafast decay of the system from the ionization window on a single timescale of less than 20 fs. This behaviour is explained fully by assuming the system to be excited to the A{sub 2}(πσ{sup ∗}) state, in accord with previous experimental and theoretical studies. Excitation at shorter wavelengths hasmore » previously been assumed to result predominantly in population of the bright A{sub 1}(ππ{sup ∗}) and B{sub 2}(ππ{sup ∗}) states. We here present time-resolved photoelectron spectra at a pump wavelength of 217 nm alongside detailed quantum dynamics calculations that, together with a recent reinterpretation of pyrrole’s electronic spectrum [S. P. Neville and G. A. Worth, J. Chem. Phys. 140, 034317 (2014)], suggest that population of the B{sub 1}(πσ{sup ∗}) state (hitherto assumed to be optically dark) may occur directly when pyrrole is excited at energies in the near UV part of its electronic spectrum. The B{sub 1}(πσ{sup ∗}) state is found to decay on a timescale of less than 20 fs by both N-H dissociation and internal conversion to the A{sub 2}(πσ{sup ∗}) state.« less

  7. Spectroscopy of excited states of unbound nuclei 30Ar and 29Cl

    NASA Astrophysics Data System (ADS)

    Xu, X.-D.; Mukha, I.; Grigorenko, L. V.; Scheidenberger, C.; Acosta, L.; Casarejos, E.; Chudoba, V.; Ciemny, A. A.; Dominik, W.; Duénas-Díaz, J.; Dunin, V.; Espino, J. M.; Estradé, A.; Farinon, F.; Fomichev, A.; Geissel, H.; Golubkova, T. A.; Gorshkov, A.; Janas, Z.; Kamiński, G.; Kiselev, O.; Knöbel, R.; Krupko, S.; Kuich, M.; Litvinov, Yu. A.; Marquinez-Durán, G.; Martel, I.; Mazzocchi, C.; Nociforo, C.; Ordúz, A. K.; Pfützner, M.; Pietri, S.; Pomorski, M.; Prochazka, A.; Rymzhanova, S.; Sánchez-Benítez, A. M.; Sharov, P.; Simon, H.; Sitar, B.; Slepnev, R.; Stanoiu, M.; Strmen, P.; Szarka, I.; Takechi, M.; Tanaka, Y. K.; Weick, H.; Winkler, M.; Winfield, J. S.

    2018-03-01

    Several states of proton-unbound isotopes 30Ar and 29Cl were investigated by measuring their in-flight decay products, 28S + proton + proton and 28S + proton, respectively. A refined analysis of 28S-proton angular correlations indicates that the ground state of 30Ar is located at 2 .45-0.10+0.05 MeV above the two-proton emission threshold. The investigation of the decay mechanism of the 30Ar ground state demonstrates that it has the transition dynamics. In the "transitional" region, the correlation patterns of the decay products present a surprisingly strong sensitivity to the two-proton decay energy of the 30Ar ground state and the one-proton decay energy as well as the one-proton decay width of the 29Cl ground state. The comparison of the experimental 28S-proton angular correlations with those resulting from Monte Carlo simulations of the detector response illustrates that other observed 30Ar excited states decay by sequential emission of protons via intermediate resonances in 29Cl. Based on the findings, the decay schemes of the observed states in 30Ar and 29Cl were constructed. For calibration purposes and for checking the performance of the experimental setup, decays of the previously known states of a two-proton emitter 19Mg were remeasured. Evidences for one new excited state in 19Mg and two unknown states in 18Na were found.

  8. Assessment of Ab Initio and Density Functional Theory Methods for the Excitations of Donor-Acceptor Complexes: The Case of the Benzene-Tetracyanoethylene Model.

    PubMed

    Xu, Peng; Zhang, Cai-Rong; Wang, Wei; Gong, Ji-Jun; Liu, Zi-Jiang; Chen, Hong-Shan

    2018-04-10

    The understanding of the excited-state properties of electron donors, acceptors and their interfaces in organic optoelectronic devices is a fundamental issue for their performance optimization. In order to obtain a balanced description of the different excitation types for electron-donor-acceptor systems, including the singlet charge transfer (CT), local excitations, and triplet excited states, several ab initio and density functional theory (DFT) methods for excited-state calculations were evaluated based upon the selected model system of benzene-tetracyanoethylene (B-TCNE) complexes. On the basis of benchmark calculations of the equation-of-motion coupled-cluster with single and double excitations method, the arithmetic mean of the absolute errors and standard errors of the electronic excitation energies for the different computational methods suggest that the M11 functional in DFT is superior to the other tested DFT functionals, and time-dependent DFT (TDDFT) with the Tamm-Dancoff approximation improves the accuracy of the calculated excitation energies relative to that of the full TDDFT. The performance of the M11 functional underlines the importance of kinetic energy density, spin-density gradient, and range separation in the development of novel DFT functionals. According to the TDDFT results, the performances of the different TDDFT methods on the CT properties of the B-TCNE complexes were also analyzed.

  9. Electronic excited state paths of Stone-Wales rearrangement in pyrene: roles of conical intersections.

    PubMed

    Yamazaki, Kaoru; Niitsu, Naoyuki; Nakamura, Kosuke; Kanno, Manabu; Kono, Hirohiko

    2012-11-26

    We investigated the reaction paths of Stone-Wales rearrangement (SWR), i.e., π/2 rotation of two carbon atoms with respect to the midpoint of the bond, in graphene and carbon nanotube quantum chemically. Our particular attention is focused on the roles of electronic excitations and conical intersections (CIs) in the reaction mechanism. We used pyrene as a model system. The reaction paths were determined by constructing potential energy surfaces at the MS-CASPT2//SA-CASSCF level of theory. We found that there are no CIs involved in SWR when both of C-C bond cleavage and formation occur simultaneously (concerted mechanism). In contrast, for the reaction path with stepwise cleavage and formation of C-C bonds, C-C bond breaking and making processes proceed through two CIs. When SWR starts from the ground (S(0)) state, the concerted and stepwise paths have an equivalent reaction barrier ΔE(‡) (9.5-9.6 eV). For the reaction path starting from excited states, only the stepwise mechanism is energetically preferable. This path contains a nonadabatic transition between the S(1) and S(0) states via a CI associated with the first stage of C-C bond cleavage and has ΔE(‡) as large as in the S(0) paths. We confirmed that the main active molecular orbitals and electron configurations for the low-lying electronic states of larger nanocarbons are the same as those in pyrene. This result suggests the importance of the nonadiabatic transitions through CIs in the photochemical reactions in large nanocarbons.

  10. Aqueous reactions of triplet excited states with allylic compounds

    NASA Astrophysics Data System (ADS)

    Kaur, R.; Anastasio, C.; Hudson, B. M.; Tantillo, D. J.

    2016-12-01

    Triplet excited states of dissolved organic matter react with several classes of aromatic organics such as phenols, anilines, sulfonamide antibiotics and phenylurea herbicides. Aqueous triplets appear to be among the most important oxidants for atmospheric phenols in regions with biomass burning, with phenol lifetimes on the order of a few hours to a day. However, little is known of the reactions of triplets with other classes of organic compounds. Recent work from our group shows that triplets react rapidly with several biogenic volatile organic compounds (BVOCs), such as methyl jasmonate, cis-3-hexenyl acetate, and cis-3-hexen-1-ol. However, there are only a few rate constants for aqueous reactions between alkenes such as these and triplet excited states. For our work, we refer to these and similar alkenes which have hydrogen(s) attached to a carbon adjacent to the double bond, as allylic compounds. To better assess the importance of triplets as aqueous oxidants, we measured second-order rate constants (kAC+3BP*) for a number of allylic compounds (ACs) with the triplet state of benzophenone; then established a quantitative structure-activity relationship (QSAR) between kAC+3BP* and computed oxidation potential of the ACs (R2 =0.65). Using the QSAR, we estimated the rate constants for triplets with some allylic isoprene and limonene oxidation products that have high Henry's law constants (KH>103 M atm-1). Hydroxylated limonene products and the delta-isomers of isoprene hydroxyhydroperoxides (δ4ISOPOOH) and hydroxynitrates (δ4ISONO2) were faster with predicted kAC+3BP* values ranging between (0.5-3.5) x 109 M-1-s-1 whereas the beta-isomers of ISOPOOH and ISONO2 were slower (kAC+3BP* < 0.5 x 109 M-1s-1). We scaled the predicted kAC+3BP* to represent less reactive atmospheric triplets that have been measured in fog drops, and compared to gas and aqueous hydroxyl radical and ozone, triplets in fog could account for up to 20 % of the measured loss of these compounds

  11. Visible-Light-Mediated Excited State Relaxation in Semi-Synthetic Genetic Alphabet: d5SICS and dNaM.

    PubMed

    Bhattacharyya, Kalishankar; Datta, Ayan

    2017-08-25

    The excited state dynamics of an unnatural base pair (UBP) d5SICS/dNaM were investigated by accurate ab-initio calculations. Time-dependent density functional and high-level multireference calculations (MS-CASPT2) were performed to elucidate the excitation of this UBP and its excited state relaxation mechanism. After excitation to the bright state S 2 (ππ*), it decays to the S 1 state and then undergoes efficient intersystem crossing to the triplet manifold. The presence of sulfur atom in d5SICS leads to strong spin-orbit coupling (SOC) and a small energy gap that facilitates intersystem crossing from S 1 (n s π*) to T 2 (ππ*) followed by internal conversion to T 1 state. Similarly in dNaM, the deactivation pathway follows analogous trends. CASPT2 calculations suggest that the S 1 (ππ*) state is a dark state below the accessible S 2 (ππ*) bright state. During the ultrafast deactivation, it exhibits bond length inversion. From S 1 state, significant SOC leads the population transfer to T 3 due to a smaller energy gap. Henceforth, fast internal conversion occurs from T 3 to T 2 followed by T 1 . From time-dependent trajectory surface hopping dynamics, it is found that excited state relaxation occurs on a sub-picosecond timescale in d5SICS and dNaM. Our findings strongly suggest that there is enough energy available in triplet state of UBP to generate reactive oxygen species and induce phototoxicity with respect to cellular DNA. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolesniková, L.; Alonso, E. R.; Mata, S.

    2017-04-01

    We report a detailed spectroscopic investigation of the interstellar aminoacetonitrile, a possible precursor molecule of glycine. Using a combination of Stark and frequency-modulation microwave and millimeter wave spectroscopies, we observed and analyzed the room-temperature rotational spectra of 29 excited states with energies up to 1000 cm{sup −1}. We also observed the {sup 13}C isotopologues in the ground vibrational state in natural abundance (1.1%). The extensive data set of more than 2000 new rotational transitions will support further identifications of aminoacetonitrile in the interstellar medium.

  13. Magnetic moment and lifetime measurements of Coulomb-excited states in 106Cd

    NASA Astrophysics Data System (ADS)

    Benczer-Koller, N.; Kumbartzki, G. J.; Speidel, K.-H.; Torres, D. A.; Robinson, S. J. Q.; Sharon, Y. Y.; Allmond, J. M.; Fallon, P.; Abramovic, I.; Bernstein, L. A.; Bevins, J. E.; Crawford, H. L.; Guevara, Z. E.; Hurst, A. M.; Kirsch, L.; Laplace, T. A.; Lo, A.; Matthews, E. F.; Mayers, I.; Phair, L. W.; Ramirez, F.; Wiens, A.

    2016-09-01

    Background: The Cd isotopes are well studied, but experimental data for the rare isotopes are sparse. At energies above the Coulomb barrier, higher states become accessible. Purpose: Remeasure and supplement existing lifetimes and magnetic moments of low-lying states in 106Cd. Methods: In an inverse kinematics reaction, a 106Cd beam impinging on a 12C target was used to Coulomb excite the projectiles. The high recoil velocities provide a unique opportunity to measure g factors with the transient-field technique and to determine lifetimes from lineshapes by using the Doppler-shift-attenuation method. Large-scale shell-model calculations were carried out for 106Cd. Results: The g factors of the 21+ and 41+ states in 106Cd were measured to be g (21+)=+0.398 (22 ) and g (41+)=+0.23 (5 ) . A lineshape analysis yielded lifetimes in disagreement with published values. The new results are τ (106Cd;21+)=7.0 (3 )ps and τ (106Cd;41+)=2.5 (2 )ps . The mean life τ (106Cd;22+)=0.28 (2 )ps was determined from the fully-Doppler-shifted γ line. Mean lives of τ (106Cd;43+)=1.1 (1 )ps and τ (106Cd;31-)=0.16 (1 )ps were determined for the first time. Conclusions: The newly measured g (41+) of 106Cd is found to be only 59% of the g (21+) . This difference cannot be explained by either shell-model or collective-model calculations.

  14. Relaxation of Vibrationally Excited States in Solid Binary Carbonate-Sulfate Systems

    NASA Astrophysics Data System (ADS)

    Aliev, A. R.; Akhmedov, I. R.; Kakagasanov, M. G.; Aliev, Z. A.; Gafurov, M. M.; Rabadanov, K. Sh.; Amirov, A. M.

    2018-02-01

    The processes of molecular relaxation in solid binary carbonate-sulfate systems, such as Li2CO3-Li2SO4, Na2CO3-Na2SO4, K2CO3-K2SO4, have been studied by Raman spectroscopy. It has been revealed that the relaxation time of CO 3 2- anion vibration ν1(A) in a binary system is higher than in an individual carbonate. It is shown that an increase in the relaxation rate may be explained by the existence of an additional mechanism of the relaxation of vibrationally excited states of a carbonate anion. This mechanism is associated with the excitation of the vibration of another anion (SO 4 2- ) and the "birth" of a lattice phonon. It has been established that the condition for the implementation of such a relaxation mechanism is that the difference between the frequencies of these vibrations must correspond to the region of a rather high density of phonon spectrum states.

  15. Spectral Properties of Composite Excitations in the t-J Model

    NASA Astrophysics Data System (ADS)

    Otaki, Takashi; Yahagi, Yuta; Matsueda, Hiroaki

    2017-08-01

    In quantum many-body systems, the equation of motion for a simple fermionic operator does not close, and higher-order processes induce composite operators dressed with several types of nonlocal quantum fluctuation. We systematically examine the spectral properties of these composite excitations in the t-J model in one spatial dimension by both numerical and theoretical approaches. Of particular interest, with the help of the Bethe ansatz for the large-U Hubbard model, is the classification of which composite excitations are due to the string excitation, which is usually hidden in the single-particle spectrum, as well as the spinon and holon branches. We examine how the mixing between the spinon and string excitations is prohibited in terms of the composite operator method. Owing to the dimensionality independent nature of the present approach, we discuss the implications of the mixing in close connection with the pseudogap in high-Tc cuprates.

  16. Flow-excited acoustic resonance of a Helmholtz resonator: Discrete vortex model compared to experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Xiwen; Jing, Xiaodong, E-mail: jingxd@buaa.edu.cn; Sun, Xiaofeng

    The acoustic resonance in a Helmholtz resonator excited by a low Mach number grazing flow is studied theoretically. The nonlinear numerical model is established by coupling the vortical motion at the cavity opening with the cavity acoustic mode through an explicit force balancing relation between the two sides of the opening. The vortical motion is modeled in the potential flow framework, in which the oscillating motion of the thin shear layer is described by an array of convected point vortices, and the unsteady vortex shedding is determined by the Kutta condition. The cavity acoustic mode is obtained from the one-dimensionalmore » acoustic propagation model, the time-domain equivalent of which is given by means of a broadband time-domain impedance model. The acoustic resistances due to radiation and viscous loss at the opening are also taken into account. The physical processes of the self-excited oscillations, at both resonance and off-resonance states, are simulated directly in the time domain. Results show that the shear layer exhibits a weak flapping motion at the off-resonance state, whereas it rolls up into large-scale vortex cores when resonances occur. Single and dual-vortex patterns are observed corresponding to the first and second hydrodynamic modes. The simulation also reveals different trajectories of the two vortices across the opening when the first and second hydrodynamic modes co-exist. The strong modulation of the shed vorticity by the acoustic feedback at the resonance state is demonstrated. The model overestimates the pressure pulsation amplitude by a factor 2, which is expected to be due to the turbulence of the flow which is not taken into account. The model neglects vortex shedding at the downstream and side edges of the cavity. This will also result in an overestimation of the pulsation amplitude.« less

  17. Microwave spectroscopy of HCOO13CH3 in the second methyl torsional excited state

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kaori; Kuwahara, Takuro; Tachi, Haruka; Urata, Yuki; Tsunekawa, Shozo; Hayashi, Naoto; Higuchi, Hiroyuki; Fujitake, Masaharu; Ohashi, Nobukimi

    2018-01-01

    The new experimental results and analysis of the microwave spectra of HCOO13CH3 in the second methyl torsional excited state are reported. Pseudo-principal axis method (pseudo-PAM) was successfully applied to the normal methyl formate in the second torsional excited state and again applied to this isotopologue. We succeeded to assign 536 A-species transitions up to J = 33 and Ka = 15 and 417 E-species transitions up to J = 32 and Ka = 14. Thirty parameters were used to do the least-squares-analysis by using the pseudo-PAM Hamiltonian consisting of rotational, centrifugal distortion, and internal-rotational constants.

  18. Electron Attachment to Radicals and Highly-Excited States in Laser-Irradiated CCl_2F_2*

    NASA Astrophysics Data System (ADS)

    Pinnaduwage, Lal; Datskos, Panos

    1997-10-01

    We have measured electron attachment rate constants for two species produced via ArF-excimer- laser irradiated CF_2Cl_2, i.e., the CF_2Cl radical and the highly-excited electronically-excited states of CF_2Cl_2. These measurements show that while electron attachment to the fragment radical has a rate constants about an order of magnitude higher compared to the ground states of CF_2Cl_2, electron attachment to the highly- excited states have many orders of magnitude larger rate constants. To our knowledge, only one other electron attachment measurement has been conducted on molecular fragments up to now. Implications of these measurements for plasma processing discharges will be discussed. Research supported by the National Science Foundation under contract No. ECS-9626217 with the University of Tennessee, Knoxville. The Oak Ridge National Laboratory is managed by Lockheed Martin Energy Research Corp. for the U. S. DOE under contract No. DE-AC05- 96OR22464.

  19. The energy structure and decay channels of the 4p6-shell excited states in Sr

    NASA Astrophysics Data System (ADS)

    Kupliauskienė, A.; Kerevičius, G.; Borovik, V.; Shafranyosh, I.; Borovik, A.

    2017-11-01

    The ejected-electron spectra arising from the decay of the 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } autoionizing states in Sr atoms have been studied precisely at the incident-electron energies close to excitation and ionization thresholds of the 4{{{p}}}6 subshell. The excitation behaviors for 58 lines observed between 12 and 21 eV ejected-electron kinetic energy have been investigated. Also, the ab initio calculations of excitation energies, autoionization probabilities and electron-impact excitation cross sections of the states 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } (nl = 4d, 5s, 5p; {n}{\\prime }{l}{\\prime } = 4d, 5s, 5p; {n}{\\prime\\prime }{l}{\\prime\\prime } = 5s, 6s, 7s, 8s, 9s, 5p, 6p, 5d, 6d, 7d, 8d, 4f, 5g) have been performed by employing the large-scale configuration-interaction method in the basis of the solutions of Dirac-Fock-Slater equations. The obtained experimental and theoretical data have been used for the accurate identification of the 60 lines in ejected-electron spectra and the 68 lines observed earlier in photoabsorption spectra. The excitation and decay processes for 105 classified states in the 4p55s{}2{nl}, 4p54d{}2{nl} and 4p55s{{nln}}{\\prime }{l}{\\prime } configurations have been considered in detail. In particular, most of the states lying below the ionization threshold of the 4p6 subshell at 26.92 eV possess up to four decay channels with formation of Sr+ in 5s{}1/2, 4d{}3/{2,5/2} and 5p{}1/{2,3/2} states. Two-step autoionization and two-electron Auger transitions with formation of Sr2+ in the 4p6 {}1{{{S}}}0 ground state are the main decay paths for high-lying autoionizing states. The excitation threshold of the 4{{{p}}}6 subshell in Sr has been established at 20.98 ± 0.05 eV.

  20. Electronic structures and population dynamics of excited states of xanthione and its derivatives

    NASA Astrophysics Data System (ADS)

    Fedunov, Roman G.; Rogozina, Marina V.; Khokhlova, Svetlana S.; Ivanov, Anatoly I.; Tikhomirov, Sergei A.; Bondarev, Stanislav L.; Raichenok, Tamara F.; Buganov, Oleg V.; Olkhovik, Vyacheslav K.; Vasilevskii, Dmitrii A.

    2017-09-01

    A new compound, 1,3-dimethoxy xanthione (DXT), has been synthesized and its absorption (stationary and transient) and luminescence spectra have been measured in n-hexane and compared with xanthione (XT) spectra. The pronounced broadening of xanthione vibronic absorption band related to the electronic transition to the second singlet excited state has been observed. Distinctions between the spectra of xanthione and its methoxy derivatives are discussed. Quantum chemical calculations of these compounds in the ground and excited electronic states have been accomplished to clarify the nature of electronic spectra changes due to modification of xanthione by methoxy groups. Appearance of a new absorption band of DXT caused by symmetry changes has been discussed. Calculations of the second excited state structure of xanthione and its methoxy derivatives confirm noticeable charge transfer (about 0.1 of the charge of an electron) from the methoxy group to thiocarbonyl group. Fitting of the transient spectra of XT and DXT has been fulfilled and the time constants of internal conversion S2 →S1 and intersystem crossing S1 →T1 have been determined. A considerable difference between the time constants of internal conversion S2 →S1 in XT and DXT is uncovered.

  1. Excited-State Structure of Oligothiophene Dendrimers: Computational and Experimental Study

    DTIC Science & Technology

    2010-01-01

    REPORT Excited-State Structure of Oligothiophene Dendrimers : Computational and Experimental Study 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The...nature of one and two-photon absorption enhancement in a series of oligothiophene dendrimers , recently proposed for applications in entangled photon...upconversion measurements). The linear absorption spectra exhibit a red shift of the absorption maxima and broadening as a function of dendrimer generations

  2. Exciplex Formation between Silver Ions and the Lowest MLCT Excited State of the Tris(Bipyrazine)Ruthenium(2) Cation

    DTIC Science & Technology

    1988-07-11

    OFFICE OF NAVAL RESEARCH Contract N00014-84-G-0201 Task No. 0051-865 0 Technical Report #21 Exciplex Formation Between Silver Ions and the Lowest...ELEMENT NO-. NO NO ~ ACCESSION NO 11. TITLE (include Security Classification) Exciplex Formation Between Silver Ions and the Lowest MLCT Excited State of... eXCiplexes with upIV to six silver ions per excited Cation. Lifetime, wavelength data are presented as a function of the [Agi/[Ru] ratio. An excited state

  3. Determination of ground and excited state dipole moments of dipolar laser dyes by solvatochromic shift method.

    PubMed

    Patil, S K; Wari, M N; Panicker, C Yohannan; Inamdar, S R

    2014-04-05

    The absorption and fluorescence spectra of three medium sized dipolar laser dyes: coumarin 478 (C478), coumarin 519 (C519) and coumarin 523 (C523) have been recorded and studied comprehensively in various solvents at room temperature. The absorption and fluorescence spectra of C478, C519 and C523 show a bathochromic and hypsochromic shifts with increasing solvent polarity indicate that the transitions involved are π→π(∗) and n→π(∗). Onsager radii determined from ab initio calculations were used in the determination of dipole moments. The ground and excited state dipole moments were evaluated by using solvatochromic correlations. It is observed that the dipole moment values of excited states (μe) are higher than corresponding ground state values (μg) for the solvents studied. The ground and excited state dipole moments of these probes computed from ab initio calculations and those determined experimentally are compared and the results are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. First-Principles Studies of the Excited States and Optical Properties of Xanthene Derivative Chromophores

    NASA Astrophysics Data System (ADS)

    Hamed, Samia; Sharifzadeh, Sahar; Neaton, Jeffrey

    2014-03-01

    Elucidation of the energy transfer mechanism in natural photosynthetic systems remains an exciting challenge. In particular, biomimetic protein-pigment complexes provide a unique study space in which individual parameters are adjusted and the impact of those changes captured. Here, we compute the excited state properties of a group of xanthene-derivative chromophores to be employed in the construction of new biomimetic light harvesting frameworks. Excitation energies, transition dipoles, and natural transition orbitals for the low-lying singlet and triplet states of these experimentally-relevant chromophores are obtained from first-principles density functional theory. The performance of several exchange-correlation functionals, including an optimally-tuned range-separated hybrid, are evaluated and compared with many body perturbation theory and experiment. Finally, we will discuss the implication of our results for the bottom-up design of new chromophores. This work is supported by the DOE and computational resources are provided by NERSC.

  5. Coulomb Excitation of the N = 50 nucleus 80Zn

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Aksouh, F.; Ames, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Nilsson, T.; Pantea, M.; Perru, O.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; van Duppen, P.; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.

    2008-05-01

    Neutron rich Zinc isotopes, including the N = 50 nucleus 80Zn, were produced and post-accelerated at the Radioactive Ion Beam (RIB) facility REX-ISOLDE (CERN). Low-energy Coulomb excitation was induced on these isotopes after post-acceleration, yielding B(E2) strengths to the first excited 2+ states. For the first time, an excited state in 80Zn was observed and the 21+ state in 78Zn was established. The measured B(E2,21+-->01+) values are compared to two sets of large scale shell model calculations. Both calculations reproduce the observed B(E2) systematics for the full Zinc isotopic chain. The results for N = 50 isotones indicate a good N = 50 shell closure and a strong Z = 28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus 78Ni.

  6. Development and Application of Single-Referenced Perturbation and Coupled-Cluster Theories for Excited Electronic States

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Recent work on the development of single-reference perturbation theories for the study of excited electronic states will be discussed. The utility of these methods will be demonstrated by comparison to linear-response coupled-cluster excitation energies. Results for some halogen molecules of interest in stratospheric chemistry will be presented.

  7. Two-neutrino double-β decay of 150Nd to excited final states in 150Sm

    NASA Astrophysics Data System (ADS)

    Kidd, M. F.; Esterline, J. H.; Finch, S. W.; Tornow, W.

    2014-11-01

    Background: Double-β decay is a rare nuclear process in which two neutrons in the nucleus are converted to two protons with the emission of two electrons and two electron antineutrinos. Purpose: We measured the half-life of the two-neutrino double-β decay of 150Nd to excited final states of 150Sm by detecting the deexcitation γ rays of the daughter nucleus. Method: This study yields the first detection of the coincidence γ rays from the 0 1+ excited state of 150Sm. These γ rays have energies of 333.97 and 406.52 keV and are emitted in coincidence through a 01+→21+→0gs+ transition. Results: The enriched Nd2O3 sample consisted of 40.13 g 150Nd and was observed for 642.8 days at the Kimballton Underground Research Facility, producing 21.6 net events in the region of interest. This count rate gives a half-life of T1 /2=[1 .07-0.25+0.45(stat ) ±0.07 (syst ) ] ×1020 yr. The effective nuclear matrix element was found to be 0.0465 -0.0054+0.0098. Finally, lower limits were obtained for decays to higher excited final states. Conclusions: Our half-life measurement agrees within uncertainties with another recent measurement in which no coincidence was employed. Our nuclear matrix element calculation may have an impact on a recent neutrinoless double-β decay nuclear matrix element calculation which implies that the decay to the first excited state in 150Sm is favored over that to the ground state.

  8. Ultrafast dynamics and excited state spectra of open-chain carotenoids at room and low temperatures.

    PubMed

    Niedzwiedzki, Dariusz; Koscielecki, Jeremy F; Cong, Hong; Sullivan, James O; Gibson, George N; Birge, Robert R; Frank, Harry A

    2007-05-31

    Many of the spectroscopic features and photophysical properties of carotenoids are explained using a three-state model in which the strong visible absorption of the molecules is associated with an S0 (1(1)Ag-) --> S2 (1(1)Bu+) transition, and the lowest lying singlet state, S1 (2(1)Ag-), is a state into which absorption from the ground state is forbidden by symmetry. However, semiempirical and ab initio quantum calculations have suggested additional excited singlet states may lie either between or in the vicinity of S1 (2(1)Ag-) and S2 (1(1)Bu+), and some ultrafast spectroscopic studies have reported evidence for these states. One such state, denoted S*, has been implicated as an intermediate in the depopulation of S2 (1(1)Bu+) and as a pathway for the formation of carotenoid triplet states in light-harvesting complexes. In this work, we present the results of an ultrafast, time-resolved spectroscopic investigation of a series of open-chain carotenoids derived from photosynthetic bacteria and systematically increasing in their number of pi-electron carbon-carbon double bonds (n). The molecules are neurosporene (n = 9), spheroidene (n = 10), rhodopin glucoside (n = 11), rhodovibrin (n = 12), and spirilloxanthin (n = 13). The molecules were studied in acetone and CS2 solvents at room temperature. These experiments explore the effect of solvent polarity and polarizability on the spectroscopic and kinetic behavior of the molecules. The molecules were also studied in ether/isopentane/ethanol (EPA) glasses at 77 K, in which the spectral resolution is greatly enhanced. Analysis of the data using global fitting techniques has revealed the ultrafast dynamics of the excited states and spectral changes associated with their decay, including spectroscopic features not previously reported. The data are consistent with S* being identified with a twisted conformational structure, the yield of which is increased in molecules having longer pi-electron conjugations. In particular

  9. Excited state free energy calculations of Cy3 in different environments

    NASA Astrophysics Data System (ADS)

    Sawangsang, Pilailuk; Buranachai, Chittanon; Punwong, Chutintorn

    2015-05-01

    Cy3, a cyanine dye, is one of the most widely used dyes in investigating the structure and dynamics of biomolecules by means of fluorescence methods. However, Cy3 fluorescence emission is strongly competed by trans-cis isomerization, whose efficiency is dictated by the isomerization energy barrier and the environment of Cy3. The fluorescence quantum yield of Cy3 is very low when the dye is free in homogeneous solution but it is considerably enhanced in an environment that rigidifies the structure, e.g. when it is attached to a DNA strand. In this work, the barriers for isomerization on the excited state of free Cy3, and Cy3 attached to single- and double-stranded DNA in methanol, are presented. The free energy and subsequently the isomerization barrier calculations are performed using the umbrella sampling technique with the weighted histogram analysis method. The hybrid quantum mechanics/molecular mechanics (QM/MM) approach is employed to provide the potential energy surfaces for the excited state dynamics simulations in umbrella sampling. The semiempirical floating occupation molecular orbital configuration interaction method is used for electronic excited state calculations of the QM region (Cy3). From the free energy calculations, the barrier of Cy3 attached to the single-stranded DNA is highest, in agreement with previously reported experimental results. This is likely due to the stacking interaction between Cy3 and DNA. Such a stacking interaction is likely associated with steric hindrance that prevents the rotation around the conjugated bonds of Cy3. If Cy3 experiences high steric hindrance, it has a higher isomerization barrier and thus the efficiency of fluorescence emission increases.

  10. QM/MM studies on the excited-state relaxation mechanism of a semisynthetic dTPT3 base.

    PubMed

    Guo, Wei-Wei; Zhang, Teng-Shuo; Fang, Wei-Hai; Cui, Ganglong

    2018-02-14

    Semisynthetic alphabets can potentially increase the genetic information stored in DNA through the formation of unusual base pairs. Recent experiments have shown that near-visible-light irradiation of the dTPT3 chromophore could lead to the formation of a reactive triplet state and of singlet oxygen in high quantum yields. However, the detailed excited-state relaxation paths that populate the lowest triplet state are unclear. Herein, we have for the first time employed the QM(MS-CASPT2//CASSCF)/MM method to explore the spectroscopic properties and excited-state relaxation mechanism of the aqueous dTPT3 chromophore. On the basis of the results, we have found that (1) the S 2 ( 1 ππ*) state of dTPT3 is the initially populated excited singlet state upon near-visible light irradiation; and (2) there are two efficient relaxation pathways to populate the lowest triplet state, i.e. T 1 ( 3 ππ*). In the first one, the S 2 ( 1 ππ*) system first decays to the S 1 ( 1 nπ*) state near the S 2 /S 1 conical intersection, which is followed by an efficient S 1 → T 1 intersystem crossing process at the S 1 /T 1 crossing point; in the second one, an efficient S 2 → T 2 intersystem crossing takes place first, and then, the T 2 ( 3 nπ*) system hops to the T 1 ( 3 ππ*) state through an internal conversion process at the T 2 /T 1 conical intersection. Moreover, an S 2 /S 1 /T 2 intersection region is found to play a vital role in the excited-state relaxation. These new mechanistic insights help in understanding the photophysics and photochemistry of unusual base pairs.

  11. Excited-State Dynamics in 6-THIOGUANOSINE from Femtosecond to Microsecond Time Scale

    NASA Astrophysics Data System (ADS)

    Guo, Cao; Reichardt, Christian; Crespo-Hernández, Carlos E.

    2011-06-01

    6-thioguanine is a widely used pro-drug in which the oxygen atom in the carbonyl group of guanine is replaced by a sulfur atom. Previous studies have shown that patients treated with 6-thioguanine can metabolize and incorporate it in DNA as 6-thioguanosine (6tGuo). These patients show a high incidence of skin cancer when they are exposed to extended periods of sunlight irradiation. In this work, the photodynamics of 6tGuo is investigated by broad band time resolved transient spectroscopy. Similar to previously studied 4-thiothymidine, our results show that excitation of 6tGuo with UVA light at 340 nm results in efficient and ultrafast intersystem crossing to the triplet manifold (τ = 0.31±0.05 ps) and a high triplet quantum yield (φ = 0.8±0.2). The triplet state has a lifetime of 720±10 ns in N2-saturated vs. 460±10 ns in air-saturated aqueous solution. In addition, a minor picosecond deactivation channel (80±15 ps) is observed, which is tentatively assigned to internal conversion from the lowest-energy excited singlet state to the ground state. Quantum chemical calculations support the proposed kinetic model. Based on the high triplet quantum yield measured, it is proposed that the phototoxicity of 6tGuo is due to its ability to photosensitized singlet oxygen, which can result in oxidative damage to DNA. P. O'Donovan, C. M. Perrett, X. Zhang, B. Montaner, Y.-Z. Xu, C. A. Harwood, J. M. McGregor, S. L. Walker, F. Hanaoka, P. Karran, Science 309, 1871 (2005). C. Reichardt, C. Guo, C. E. Crespo-Hernández, J. Phys. Chem. B. in press (2011). C. Reichardt, C. E. Crespo-Hernández, J. Phys. Chem. Lett. 1, 2239 (2010) C. Reichardt, C. E. Crespo-Hernández, Chem. Comm. 46, 5963 (2010).

  12. Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography

    NASA Astrophysics Data System (ADS)

    Coquelle, Nicolas; Sliwa, Michel; Woodhouse, Joyce; Schirò, Giorgio; Adam, Virgile; Aquila, Andrew; Barends, Thomas R. M.; Boutet, Sébastien; Byrdin, Martin; Carbajo, Sergio; de La Mora, Eugenio; Doak, R. Bruce; Feliks, Mikolaj; Fieschi, Franck; Foucar, Lutz; Guillon, Virginia; Hilpert, Mario; Hunter, Mark S.; Jakobs, Stefan; Koglin, Jason E.; Kovacsova, Gabriela; Lane, Thomas J.; Lévy, Bernard; Liang, Mengning; Nass, Karol; Ridard, Jacqueline; Robinson, Joseph S.; Roome, Christopher M.; Ruckebusch, Cyril; Seaberg, Matthew; Thepaut, Michel; Cammarata, Marco; Demachy, Isabelle; Field, Martin; Shoeman, Robert L.; Bourgeois, Dominique; Colletier, Jacques-Philippe; Schlichting, Ilme; Weik, Martin

    2018-01-01

    Chromophores absorb light in photosensitive proteins and thereby initiate fundamental biological processes such as photosynthesis, vision and biofluorescence. An important goal in their understanding is the provision of detailed structural descriptions of the ultrafast photochemical events that they undergo, in particular of the excited states that connect chemistry to biological function. Here we report on the structures of two excited states in the reversibly photoswitchable fluorescent protein rsEGFP2. We populated the states through femtosecond illumination of rsEGFP2 in its non-fluorescent off state and observed their build-up (within less than one picosecond) and decay (on the several picosecond timescale). Using an X-ray free-electron laser, we performed picosecond time-resolved crystallography and show that the hydroxybenzylidene imidazolinone chromophore in one of the excited states assumes a near-canonical twisted configuration halfway between the trans and cis isomers. This is in line with excited-state quantum mechanics/molecular mechanics and classical molecular dynamics simulations. Our new understanding of the structure around the twisted chromophore enabled the design of a mutant that displays a twofold increase in its off-to-on photoswitching quantum yield.

  13. Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography

    DOE PAGES

    Coquelle, Nicolas; Sliwa, Michel; Woodhouse, Joyce; ...

    2017-09-11

    Chromophores absorb light in photosensitive proteins and thereby initiate fundamental biological processes such as photosynthesis, vision and biofluorescence. An important goal in their understanding is the provision of detailed structural descriptions of the ultrafast photochemical events that they undergo, in particular of the excited states that connect chemistry to biological function. Here in this paper we report on the structures of two excited states in the reversibly photoswitchable fluorescent protein rsEGFP2. We populated the states through femtosecond illumination of rsEGFP2 in its non-fluorescent off state and observed their build-up (within less than one picosecond) and decay (on the several picosecondmore » timescale). Using an X-ray free-electron laser, we performed picosecond time-resolved crystallography and show that the hydroxybenzylidene imidazolinone chromophore in one of the excited states assumes a near-canonical twisted configuration halfway between the trans and cis isomers. This is in line with excited-state quantum mechanics/molecular mechanics and classical molecular dynamics simulations. Our new understanding of the structure around the twisted chromophore enabled the design of a mutant that displays a twofold increase in its off-to-on photoswitching quantum yield.« less

  14. Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coquelle, Nicolas; Sliwa, Michel; Woodhouse, Joyce

    Chromophores absorb light in photosensitive proteins and thereby initiate fundamental biological processes such as photosynthesis, vision and biofluorescence. An important goal in their understanding is the provision of detailed structural descriptions of the ultrafast photochemical events that they undergo, in particular of the excited states that connect chemistry to biological function. Here in this paper we report on the structures of two excited states in the reversibly photoswitchable fluorescent protein rsEGFP2. We populated the states through femtosecond illumination of rsEGFP2 in its non-fluorescent off state and observed their build-up (within less than one picosecond) and decay (on the several picosecondmore » timescale). Using an X-ray free-electron laser, we performed picosecond time-resolved crystallography and show that the hydroxybenzylidene imidazolinone chromophore in one of the excited states assumes a near-canonical twisted configuration halfway between the trans and cis isomers. This is in line with excited-state quantum mechanics/molecular mechanics and classical molecular dynamics simulations. Our new understanding of the structure around the twisted chromophore enabled the design of a mutant that displays a twofold increase in its off-to-on photoswitching quantum yield.« less

  15. Alternative definition of excitation amplitudes in multi-reference state-specific coupled cluster

    NASA Astrophysics Data System (ADS)

    Garniron, Yann; Giner, Emmanuel; Malrieu, Jean-Paul; Scemama, Anthony

    2017-04-01

    A central difficulty of state-specific Multi-Reference Coupled Cluster (MR-CC) in the multi-exponential Jeziorski-Monkhorst formalism concerns the definition of the amplitudes of the single and double excitation operators appearing in the exponential wave operators. If the reference space is a complete active space (CAS), the number of these amplitudes is larger than the number of singly and doubly excited determinants on which one may project the eigenequation, and one must impose additional conditions. The present work first defines a state-specific reference-independent operator T˜ ^ m which acting on the CAS component of the wave function |Ψ0m⟩ maximizes the overlap between (1 +T˜ ^ m ) |Ψ0m⟩ and the eigenvector of the CAS-SD (Singles and Doubles) Configuration Interaction (CI) matrix |ΨCAS-SDm⟩ . This operator may be used to generate approximate coefficients of the triples and quadruples, and a dressing of the CAS-SD CI matrix, according to the intermediate Hamiltonian formalism. The process may be iterated to convergence. As a refinement towards a strict coupled cluster formalism, one may exploit reference-independent amplitudes provided by (1 +T˜ ^ m ) |Ψ0m⟩ to define a reference-dependent operator T^ m by fitting the eigenvector of the (dressed) CAS-SD CI matrix. The two variants, which are internally uncontracted, give rather similar results. The new MR-CC version has been tested on the ground state potential energy curves of 6 molecules (up to triple-bond breaking) and two excited states. The non-parallelism error with respect to the full-CI curves is of the order of 1 mEh.

  16. Noise-induced escape in an excitable system

    NASA Astrophysics Data System (ADS)

    Khovanov, I. A.; Polovinkin, A. V.; Luchinsky, D. G.; McClintock, P. V. E.

    2013-03-01

    We consider the stochastic dynamics of escape in an excitable system, the FitzHugh-Nagumo (FHN) neuronal model, for different classes of excitability. We discuss, first, the threshold structure of the FHN model as an example of a system without a saddle state. We then develop a nonlinear (nonlocal) stability approach based on the theory of large fluctuations, including a finite-noise correction, to describe noise-induced escape in the excitable regime. We show that the threshold structure is revealed via patterns of most probable (optimal) fluctuational paths. The approach allows us to estimate the escape rate and the exit location distribution. We compare the responses of a monostable resonator and monostable integrator to stochastic input signals and to a mixture of periodic and stochastic stimuli. Unlike the commonly used local analysis of the stable state, our nonlocal approach based on optimal paths yields results that are in good agreement with direct numerical simulations of the Langevin equation.

  17. Resonant coherent excitation of hydrogen-like ions planar channeled in a crystal; Transition into the first excited state

    NASA Astrophysics Data System (ADS)

    Babaev, A.; Pivovarov, Yu. L.

    2012-03-01

    The presented program is designed to simulate the characteristics of resonant coherent excitation of hydrogen-like ions planar-channeled in a crystal. The program realizes the numerical algorithm to solve the Schrödinger equation for the ion-bound electron at a special resonance excitation condition. The calculated wave function of the bound electron defines probabilities for the ion to be in the either ground or first excited state, or to be ionized. Finally, in the outgoing beam the fractions of ions in the ground state, in the first excited state, and ionized by collisions with target electrons, are defined. The program code is written on C++ and is designed for multiprocessing systems (clusters). The output data are presented in the table. Program summaryProgram title: RCE_H-like_1 Catalogue identifier: AEKX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2813 No. of bytes in distributed program, including test data, etc.: 34 667 Distribution format: tar.gz Programming language: C++ (g++, icc compilers) Computer: Multiprocessor systems (clusters) Operating system: Any OS based on LINUX; program was tested under Novell SLES 10 Has the code been vectorized or parallelized?: Yes. Contains MPI directives RAM: <1 MB per processor Classification: 2.1, 2.6, 7.10 External routines: MPI library for GNU C++, Intel C++ compilers Nature of problem: When relativistic hydrogen-like ion moves in the crystal in the planar channeling regime, in the ion rest frame the time-periodic electric field acts on the bound electron. If the frequency of this field matches the transition frequency between electronic energy levels, the resonant coherent excitation can take place. Therefore, ions in the different states may be

  18. Excitation and fluorescence spectra of pyrene cooled in a syupersonic jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borisevich, N.A.; Vodovatov, L.B.; D`yachenko, G.G.

    1995-02-01

    The excitation and fluorescence spectra of pyrene molecules cooled in a jet are obtained upon excitation into the S{sub 1}, S{sub 2}, S{sub 3}, and S{sub 4} electronic states. Based on the K. Ohno MO/8 model, a new method for calculating frequencies of the in-plane vibrations in the excited electronic states of polycyclic aromatic hydrocarbons is developed. The method is used for a comparitive analysis of the excitation and fluorescence spectra and assignment of the spectral lines. Good agreement between calculations and experimental data are found. The fluorescence spectrum recorded upon excitation into the high-lying electronic states shows a newmore » long-wavelength band that is probably related to pyrene dimers formed in a jet. 12 refs., 4 figs., 2 tabs.« less

  19. New Measurements of the Lifetimes of Excited States of Mn-55 Below 2.7 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caggiano, Joseph A.; Hasty, R.; Korbly, Steve

    The lifetimes of the excited states of 55 Mn between 1.5 and 2.7 MeV were measured using nuclear resonance fluorescence. The absolute lifetimes of the excited levels were determined from simultaneous measurements of manganese and aluminum. In this approach, the precisely known aluminum states serves as a means to normalize the results. Our findings differ from the evaluated level lifetimes in ENSDF, but agree with earlier nuclear resonance fluorescence measurements.

  20. Local CC2 response method for triplet states based on Laplace transform: excitation energies and first-order properties.

    PubMed

    Freundorfer, Katrin; Kats, Daniel; Korona, Tatiana; Schütz, Martin

    2010-12-28

    A new multistate local CC2 response method for calculating excitation energies and first-order properties of excited triplet states in extended molecular systems is presented. The Laplace transform technique is employed to partition the left/right local CC2 eigenvalue problems as well as the linear equations determining the Lagrange multipliers needed for the properties. The doubles part in the equations can then be inverted on-the-fly and only effective equations for the singles part must be solved iteratively. The local approximation presented here is adaptive and state-specific. The density-fitting method is utilized to approximate the electron-repulsion integrals. The accuracy of the new method is tested by comparison to canonical reference values for a set of 12 test molecules and 62 excited triplet states. As an illustrative application example, the lowest four triplet states of 3-(5-(5-(4-(bis(4-(hexyloxy)phenyl)amino)phenyl)thiophene-2-yl)thiophene-2-yl)-2-cyanoacrylic acid, an organic sensitizer for solar-cell applications, are computed in the present work. No triplet charge-transfer states are detected among these states. This situation contrasts with the singlet states of this molecule, where the lowest singlet state has been recently found to correspond to an excited state with a pronounced charge-transfer character having a large transition strength.

  1. Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy

    PubMed Central

    Vallurupalli, Pramodh; Hansen, D. Flemming; Kay, Lewis E.

    2008-01-01

    Molecular function is often predicated on excursions between ground states and higher energy conformers that can play important roles in ligand binding, molecular recognition, enzyme catalysis, and protein folding. The tools of structural biology enable a detailed characterization of ground state structure and dynamics; however, studies of excited state conformations are more difficult because they are of low population and may exist only transiently. Here we describe an approach based on relaxation dispersion NMR spectroscopy in which structures of invisible, excited states are obtained from chemical shifts and residual anisotropic magnetic interactions. To establish the utility of the approach, we studied an exchanging protein (Abp1p SH3 domain)–ligand (Ark1p peptide) system, in which the peptide is added in only small amounts so that the ligand-bound form is invisible. From a collection of 15N, 1HN, 13Cα, and 13CO chemical shifts, along with 1HN-15N, 1Hα-13Cα, and 1HN-13CO residual dipolar couplings and 13CO residual chemical shift anisotropies, all pertaining to the invisible, bound conformer, the structure of the bound state is determined. The structure so obtained is cross-validated by comparison with 1HN-15N residual dipolar couplings recorded in a second alignment medium. The methodology described opens up the possibility for detailed structural studies of invisible protein conformers at a level of detail that has heretofore been restricted to applications involving visible ground states of proteins. PMID:18701719

  2. Excited state dynamics & optical control of molecular motors

    NASA Astrophysics Data System (ADS)

    Wiley, Ted; Sension, Roseanne

    2014-03-01

    Chiral overcrowded alkenes are likely candidates for light driven rotary molecular motors. At their core, these molecular motors are based on the chromophore stilbene, undergoing ultrafast cis/trans photoisomerization about their central double bond. Unlike stilbene, the photochemistry of molecular motors proceeds in one direction only. This unidirectional rotation is a result of helicity in the molecule induced by steric hindrance. However, the steric hindrance which ensures unidirectional excited state rotation, has the unfortunate consequence of producing large ground state barriers which dramatically decrease the overall rate of rotation. These molecular scale ultrafast motors have only recently been studied by ultrafast spectroscopy. Our lab has studied the photochemistry and photophysics of a ``first generation'' molecular motor with UV-visible transient absorption spectroscopy. We hope to use optical pulse shaping to enhance the efficiency and turnover rate of these molecular motors.

  3. Charge-displacement analysis for excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronca, Enrico, E-mail: enrico@thch.unipg.it; Tarantelli, Francesco, E-mail: francesco.tarantelli@unipg.it; Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, I-06123 Perugia

    2014-02-07

    We extend the Charge-Displacement (CD) analysis, already successfully employed to describe the nature of intermolecular interactions [L. Belpassi et al., J. Am. Chem. Soc. 132, 13046 (2010)] and various types of controversial chemical bonds [L. Belpassi et al., J. Am. Chem. Soc. 130, 1048 (2008); N. Salvi et al., Chem. Eur. J. 16, 7231 (2010)], to study the charge fluxes accompanying electron excitations, and in particular the all-important charge-transfer (CT) phenomena. We demonstrate the usefulness of the new approach through applications to exemplary excitations in a series of molecules, encompassing various typical situations from valence, to Rydberg, to CT excitations.more » The CD functions defined along various spatial directions provide a detailed and insightful quantitative picture of the electron displacements taking place.« less

  4. Electron scattering from excited states of hydrogen: Implications for the ionization threshold law

    NASA Astrophysics Data System (ADS)

    Temkin, A.; Shertzer, J.

    2013-05-01

    The elastic scattering wave function for electrons scattered from the Nth excited state of hydrogen is the final state of the matrix element for excitation of that state. This paper deals with the solution of that problem primarily in the context of the Temkin-Poet (TP) model [A. Temkin, Phys. Rev.PHRVAO0031-899X10.1103/PhysRev.126.130 126, 130 (1962); R. Poet, J. Phys. BJPAPEH0022-370010.1088/0022-3700/11/17/019 11, 3081 (1978)], wherein only the radial parts of the interaction are included. The relevant potential for the outer electron is dominated by the Hartree potential, VNH(r). In the first part of the paper, VNH(r) is approximated by a potential WN(r), for which the scattering equation can be analytically solved. The results allow formal analytical continuation of N into the continuum, so that the ionization threshold law can be deduced. Because the analytic continuation involves going from N to an imaginary function of the momentum of the inner electron, the threshold law turns out to be an exponentially damped function of the available energy E, in qualitative accord with the result of Macek and Ihra [J. H. Macek and W. Ihra, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.55.2024 55, 2024 (1997)] for the TP model. Thereafter, the scattering equation for the Hartree potential VNH(r) is solved numerically. The numerical aspects of these calculations have proven to be challenging and required several developments for the difficulties to be overcome. The results for VNH(r) show only a simple energy-dependent shift from the approximate potential WN(r), which therefore does not change the analytic continuation and the form of the threshold law. It is concluded that the relevant optical potential must be included in order to compare directly with the analytic result of Macek and Ihra. The paper concludes with discussions of (a) a quantum mechanical interpretation of the result, and (b) the outlook of this approach for the complete problem.

  5. The Microwave Spectroscopy of HCOO^{13}CH_3 in the Second Torsional Excited State

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kaori; Kuwahara, Takuro; Urata, Yuki; Ohashi, Nobukimi; Fujitake, Masaharu

    2017-06-01

    Methyl formate (HCOOCH_3) is an abundant interstellar molecule, found almost everywhere in the star-forming region. The interstellar abundance of the ^{13}C is about 1/50 of ^{12}C. The ^{13}C substituted methyl formate in the ground and first excited states were already found toward massive star-forming regions including Orion KL. With the aid of the state-of-the-art telescope like ALMA, the pure rotational transitions in the second torsional excited may be identified in the near future and laboratory data are necessary. We recorded the spectra of HCOOCH_3 below 340 GHz by using conventional source-modulation microwave spectrometer. The assignment of the pure rotational spectra in the second torsional excited state and the analysis by using pseudo-PAM Hamiltonian, which was effective to analyze the normal species, will be reported. C. Favre, M. Carvajal, D. Field, J. K. Jørgensen, S. E. Bisschop, N. Brouillet, D. Despois, A. Baudry, I. Kleiner, E. A. Bergin, N. R. Crockett, J. L. Neill, L. Marguès, T. R. Huet, and J. Demaison, Astrophys. J. Suppl. Ser. 215, 25 (2014).

  6. Magnetic moments of excited states in nuclei far from stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, A.; Berant, Z.; Gill, R.L.

    1985-01-01

    Magnetic moments of excited states in nuclei far from stability have been measured by gamma-gamma angular correlation at the output of the fission product separators TRISTAN and JOSEF. The results obtained until now will be reviewed. They provide important nuclear structure information about nuclei around closed shells, and transitional nuclei in the A = 100 and 150 regions. 22 refs., 3 figs., 3 tabs.

  7. Combining extrapolation with ghost interaction correction in range-separated ensemble density functional theory for excited states

    NASA Astrophysics Data System (ADS)

    Alam, Md. Mehboob; Deur, Killian; Knecht, Stefan; Fromager, Emmanuel

    2017-11-01

    The extrapolation technique of Savin [J. Chem. Phys. 140, 18A509 (2014)], which was initially applied to range-separated ground-state-density-functional Hamiltonians, is adapted in this work to ghost-interaction-corrected (GIC) range-separated ensemble density-functional theory (eDFT) for excited states. While standard extrapolations rely on energies that decay as μ-2 in the large range-separation-parameter μ limit, we show analytically that (approximate) range-separated GIC ensemble energies converge more rapidly (as μ-3) towards their pure wavefunction theory values (μ → +∞ limit), thus requiring a different extrapolation correction. The purpose of such a correction is to further improve on the convergence and, consequently, to obtain more accurate excitation energies for a finite (and, in practice, relatively small) μ value. As a proof of concept, we apply the extrapolation method to He and small molecular systems (viz., H2, HeH+, and LiH), thus considering different types of excitations such as Rydberg, charge transfer, and double excitations. Potential energy profiles of the first three and four singlet Σ+ excitation energies in HeH+ and H2, respectively, are studied with a particular focus on avoided crossings for the latter. Finally, the extraction of individual state energies from the ensemble energy is discussed in the context of range-separated eDFT, as a perspective.

  8. Unveiling the excited state energy transfer pathways in peridinin-chlorophyll a-protein by ultrafast multi-pulse transient absorption spectroscopy.

    PubMed

    Redeckas, Kipras; Voiciuk, Vladislava; Zigmantas, Donatas; Hiller, Roger G; Vengris, Mikas

    2017-04-01

    Time-resolved multi-pulse methods were applied to investigate the excited state dynamics, the interstate couplings, and the excited state energy transfer pathways between the light-harvesting pigments in peridinin-chlorophyll a-protein (PCP). The utilized pump-dump-probe techniques are based on perturbation of the regular PCP energy transfer pathway. The PCP complexes were initially excited with an ultrashort pulse, resonant to the S 0 →S 2 transition of the carotenoid peridinin. A portion of the peridinin-based emissive intramolecular charge transfer (ICT) state was then depopulated by applying an ultrashort NIR pulse that perturbed the interaction between S 1 and ICT states and the energy flow from the carotenoids to the chlorophylls. The presented data indicate that the peridinin S 1 and ICT states are spectrally distinct and coexist in an excited state equilibrium in the PCP complex. Moreover, numeric analysis of the experimental data asserts ICT→Chl-a as the main energy transfer pathway in the photoexcited PCP systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Magnetic moments, E3 transitions and the structure of high-spin core excited states in 211Rn

    NASA Astrophysics Data System (ADS)

    Poletti, A. R.; Dracoulis, G. D.; Byrne, A. P.; Stuchbery, A. E.; Poletti, S. J.; Gerl, J.; Lewis, P. M.

    1985-05-01

    The results of g-factor measurements of high-spin states in 211Rn are: Ex = 8856 + Δ' keV (Jπ = 63/2-), g = 0.626(7); 6101 + Δ' KeV (49/2+), 0.766(8); 5347 + Δ' KeV (43/2-), 0.74(2); 3927 + Δ KeV (35/2+), 1.017(12); 1578 + Δ KeV (17/2-), 0.912(9). These results together with measured E3 transition strengths and shell model calculations are used to assign configurations to the core excited states in 211Rn. Mixed configurations are required to explain the g-factors and enhanced E3 strengths simultaneously.

  10. Avoided crossings, conical intersections, and low-lying excited states with a single reference method: the restricted active space spin-flip configuration interaction approach.

    PubMed

    Casanova, David

    2012-08-28

    The restricted active space spin-flip CI (RASCI-SF) performance is tested in the electronic structure computation of the ground and the lowest electronically excited states in the presence of near-degeneracies. The feasibility of the method is demonstrated by analyzing the avoided crossing between the ionic and neutral singlet states of LiF along the molecular dissociation. The two potential energy surfaces (PESs) are explored by means of the energies of computed adiabatic and approximated diabatic states, dipole moments, and natural orbital electronic occupancies of both states. The RASCI-SF methodology is also used to study the ground and first excited singlet surface crossing involved in the double bond isomerization of ethylene, as a model case. The two-dimensional PESs of the ground (S(0)) and excited (S(1)) states are calculated for the complete configuration space of torsion and pyramidalization molecular distortions. The parameters that define the state energetics in the vicinity of the S(0)/S(1) conical intersection region are compared to complete active space self-consistent field (CASSCF) results. These examples show that it is possible to describe strongly correlated electronic states using a single reference methodology without the need to expand the wavefunction to high levels of collective excitations. Finally, RASCI is also examined in the electronic structure characterization of the ground and 2(1)A(g)(-), 1(1)B(u)(+), 1(1)B(u)(-), and 1(3)B(u)(-) states of all-trans polyenes with two to seven double bonds and beyond. Transition energies are compared to configuration interaction singles, time-dependent density functional theory (TDDFT), CASSCF, and its second-order perturbation correction calculations, and to experimental data. The capability of RASCI-SF to describe the nature and properties of each electronic state is discussed in detail. This example is also used to expose the properties of different truncations of the RASCI wavefunction and to

  11. A semiempirical study for the ground and excited states of free-base and zinc porphyrin-fullerene dyads

    NASA Technical Reports Server (NTRS)

    Parusel, A. B.

    2000-01-01

    The ground and excited states of a covalently linked porphyrin-fullerene dyad in both its free-base and zinc forms (D. Kuciauskas et al., J. Phys. Chem. 100 (1996) 15926) have been investigated by semiempirical methods. The excited-state properties are discussed by investigation of the character of the molecular orbitals. All frontier MOs are mainly localized on either the donor or the acceptor subunit. Thus, the absorption spectra of both systems are best described as the sum of the spectra of the single components. The experimentally observed spectra are well reproduced by the theoretical computations. Both molecules undergo efficient electron transfer in polar but not in apolar solvents. This experimental finding is explained theoretically by explicitly considering solvent effects. The tenth excited state in the gas phase is of charge-separated character where an electron is transferred from the porphyrin donor to the fullerene acceptor subunit. This state is stabilized in energy in polar solvents due to its large formal dipole moment. The stabilization energy for an apolar environment such as benzene is not sufficient to lower this state to become the first excited singlet state. Thus, no electron transfer is observed, in agreement with experiment. In a polar environment such as acetonitrile, the charge-separated state becomes the S, state and electron transfer takes place, as observed experimentally. The flexible single bond connecting both the donor and acceptor subunits allows free rotation by ca. +/- 30 degrees about the optimized ground-state conformation. For the charge-separated state this optimized geometry has a maximum dipole moment. The geometry of the charge-separated state thus does not change relatively to the ground-state conformation. The electron-donating properties of porphyrin are enhanced in the zinc derivative due to a reduced porphyrin HOMO-LUMO energy gap. This yields a lower energy for the charge-separated state compared to the free

  12. Structure, initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level

    PubMed Central

    Andruniów, Tadeusz; Ferré, Nicolas; Olivucci, Massimo

    2004-01-01

    We demonstrate that a “brute force” quantum chemical calculation based on an ab initio multiconfigurational second order perturbation theory approach implemented in a quantum mechanics/molecular mechanics strategy can be applied to the investigation of the excited state of the visual pigment rhodopsin (Rh) with a computational error <5 kcal·mol-1. As a consequence, the simulation of the absorption and fluorescence of Rh and its retinal chromophore in solution allows for a nearly quantitative analysis of the factors determining the properties of the protein environment. More specifically, we demonstrate that the Rh environment is more similar to the “gas phase” than to the solution environment and that the so-called “opsin shift” originates from the inability of the solvent to effectively “shield” the chromophore from its counterion. The same strategy is used to investigate three transient structures involved in the photoisomerization of Rh under the assumption that the protein cavity does not change shape during the reaction. Accordingly, the analysis of the initially relaxed excited-state structure, the conical intersection driving the excited-state decay, and the primary isolable bathorhodopsin intermediate supports a mechanism where the photoisomerization coordinate involves a “motion” reminiscent of the so-called bicycle-pedal reaction coordinate. Most importantly, it is shown that the mechanism of the ∼30 kcal·mol-1 photon energy storage observed for Rh is not consistent with a model based exclusively on the change of the electrostatic interaction of the chromophore with the protein/counterion environment. PMID:15604139

  13. Search for excited quarks in the γ + jet final state in proton-proton collisions at √{ s} = 8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Kim, T. J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Liao, J.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Correa Martins Junior, M.; Dos Reis Martins, T.; Pol, M. E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garay Garcia, J.; Geiser, A.; Gunnellini, P.; Hauk, J.; Hellwig, G.; Hempel, M.; Horton, D.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Novgorodova, O.; Nowak, F.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schröder, M.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Aldaya Martin, M.; Blobel, V.; Centis Vignali, M.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Lobelle Pardo, P.; Mozer, M. U.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Meneguzzo, A. T.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Simonetto, F.; Torassa, E.; Tosi, M.; Triossi, A.; Vanini, S.; Ventura, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, J. Y.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, I. C.; Park, S.; Ryu, G.; Ryu, M. S.; Choi, Y.; Choi, Y. K.; Goh, J.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Dordevic, M.; Ekmedzic, M.; Milosevic, J.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Treille, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wardle, N.; Wöhri, H. K.; Wollny, H.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Meister, D.; Mohr, N.; Nägeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Millan Mejias, B.; Ngadiuba, J.; Robmann, P.; Ronga, F. J.; Snoek, H.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Karapinar, G.; Ocalan, K.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; Vardarlı, F. I.; Yücel, M.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Richardson, C.; Rohlf, J.; Sperka, D.; St. John, J.; Sulak, L.; Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Babb, J.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Liu, H.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Klein, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bourilkov, D.; Carver, M.; Cheng, T.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P., III; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R. J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Lopes Pegna, D.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Woods, N.; CMS Collaboration

    2014-11-01

    A search for excited quarks decaying into the γ + jet final state is presented. The analysis is based on data corresponding to an integrated luminosity of 19.7 fb-1 collected by the CMS experiment in proton-proton collisions at √{ s} = 8 TeV at the LHC. Events with photons and jets with high transverse momenta are selected and the γ + jet invariant mass distribution is studied to search for a resonance peak. The 95% confidence level upper limits on the product of cross section and branching fraction are evaluated as a function of the excited quark mass. Limits on excited quarks are presented as a function of their mass and coupling strength; masses below 3.5 TeV are excluded at 95% confidence level for unit couplings to their standard model partners.

  14. Ground and excited state dipole moments of some flavones using solvatochromic methods: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Kapoor, Vinita; Bansal, Ritu; Tandon, H. C.

    2018-03-01

    The absorption and fluorescence characteristics of biologically active flavone derivatives 6-Hydroxy-7,3‧,4‧,5‧-tetramethoxyflavone (6HTMF) and 7-Hydroxy-6,3‧,4‧,5‧-tetramethoxyflavone (7HTMF) are studied at room temperature (298 K) in solvents of different polarities. Excited state dipole moments of these compounds have been determined using the solvatochromic shift method based on the microscopic solvent polarity parameter ETN . Dipole moments in excited state were found to be higher than those in the ground state in both the molecules. A reasonable agreement has been observed between experimental and theoretically calculated dipole moments (using AM1 method). Slightly large value of ground and excited state dipole moments of 7HTMF than 6HTMF are in conformity with predicted electrostatic potential maps. Our results would be helpful in understanding use of these compounds as tunable dye lasers, optical brighteners and biosensors.

  15. Lifetimes and energetics of the first electronically excited states of NaH2O from time-resolved photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Gartmann, Thomas E.; Yoder, Bruce L.; Chasovskikh, Egor; Signorell, Ruth

    2017-09-01

    The energetics and lifetimes of the first electronically excited states (;3p-states;) of NaH2O and NaD2O have been measured by pump-probe (740/780 and 400 nm) photoelectron imaging. The photoelectron spectra of NaH2O show two bands at an electron kinetic energy of 0.14 and 0.38 eV, respectively. We assign the former to excitation via the two energetically close lying ;pπ-states; with flat potential curves in the intermolecular degrees of freedom, and the latter to the excitation via the ;pσ-state; characterized by significantly steeper potential curves. The relaxation of all ;p-states; follows a double exponential decay with a lifetime around 110 ps for the dominant fast component.

  16. Multi-quasiparticle excitations in 145Tb

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Zhou, X. H.; Zhang, Y. H.; Hayakawa, T.; Oshima, M.; Toh, Y.; Shizuma, T.; Katakura, J.; Hatsukawa, Y.; Matsuda, M.; Kusakari, H.; Sugawara, M.; Furuno, K.; Komatsubara, T.

    2004-04-01

    High-spin states in 145Tb have been investigated by means of in-beam ggr-ray spectroscopy techniques with the 118Sn(32S, 1p4n) reaction. Excitation functions, X-ggr-t and ggr-ggr-t coincidences and ggr-ray anisotropies were measured. A level scheme of 145Tb was established up to Exap 7 MeV. The level structure shows characteristics of a spherical nucleus. Based on the systematics of level structure in the odd-A N = 80 isotones, the level structure below 2 MeV excitation is interpreted by coupling an h11/2 proton to the excitations in the even-even 144Gd core. Above 2 MeV excitation, most of the yrast levels are interpreted with multi-quasiparticle shell-model configurations.

  17. Excited State Dynamics in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshiyuki

    2004-03-01

    Carbon nanotube, one of the most promising materials for nano-technology, still suffers from its imperfection in crystalline structure that will make performance of nanotube behind theoretical limit. From the first-principles simulations, I propose efficient methods to overcome the imperfection. I show that photo-induced ion dynamics can (1) identify defects in nanotubes, (2) stabilize defected nanotubes, and (3) purify contaminated nanotubes. All of these methods can be alternative to conventional heat treatments and will be important techniques for realizing nanotube-devices. Ion dynamics under electronic excitation has been simulated with use of the computer code FPSEID (First-Principles Simulation tool for Electron Ion Dynamics) [1], which combines the time-dependent density functional method [2] to classical molecular dynamics. This very challenging approach is time-consuming but can automatically treat the level alternation of differently occupied states, and can observe initiation of non-adiabatic decay of excitation. The time-dependent Kohn-Sham equation has been solved by using the Suzuki-Trotter split operator method [3], which is a numerically stable method being suitable for plane wave basis, non-local pseudopotentials, and parallel computing. This work has been done in collaboration with Prof. Angel Rubio, Prof. David Tomanek, Dr. Savas Berber and Mina Yoon. Most of present calculations have been done by using the SX5 Vector-Parallel system in the NEC Fuchu-plant, and the Earth Simulator in Yokohama Japan. [1] O. Sugino and Y. Miyamoto, Phys. Rev. B59, 2579 (1999); ibid, B66 089901(E) (2001) [2] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984). [3] M. Suzuki, J. Phys. Soc. Jpn. 61, L3015 (1992).

  18. Very narrow excited Ωc baryons

    NASA Astrophysics Data System (ADS)

    Karliner, Marek; Rosner, Jonathan L.

    2017-06-01

    Recently, LHCb reported the discovery of five extremely narrow excited Ωc baryons decaying into Ξc+K-. We interpret these baryons as bound states of a c quark and a P -wave s s diquark. For such a system, there are exactly five possible combinations of spin and orbital angular momentum. The narrowness of the states could be a signal that it is hard to pull apart the two s quarks in a diquark. We predict two of spin 1 /2 , two of spin 3 /2 , and one of spin 5 /2 , all with negative parity. Of the five states, two can decay in S -wave, and three can decay in D -wave. Some of the D -wave states might be narrower than the S -wave states. We discuss the relations among the five masses expected in the quark model and the likely spin assignments, and we compare them with the data. A similar pattern is expected for negative-parity excited Ωb states. An alternative interpretation is noted in which the heaviest two states are 2 S excitations with JP=1 /2+ and 3 /2+, while the lightest three are those with JP=3 /2- , 3 /2- , 5 /2- , expected to decay via D -waves. In this case, we expect JP=1 /2- Ωc states around 2904 and 2978 MeV.

  19. Magnetic moment and lifetime measurements of Coulomb-excited states in Cd 106

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benczer-Koller, N.; Kumbartzki, G. J.; Speidel, K. -H.

    2016-09-06

    The Cd isotopes are well studied, but experimental data for the rare isotopes are sparse. At energies above the Coulomb barrier, higher states become accessible. Remeasure and supplement existing lifetimes and magnetic moments of low-lying states in 106Cd. Methods: In an inverse kinematics reaction, a 106Cd beam impinging on a 12C target was used to Coulomb excite the projectiles. The high recoil velocities provide a unique opportunity to measure g factors with the transient-field technique and to determine lifetimes from lineshapes by using the Doppler-shift-attenuation method. Large-scale shell-model calculations were carried out for 106Cd. As a result, the g factorsmore » of the 2 + 1 and 4 + 1 states in 106Cd were measured to be g(2 + 1) = +0.398(22) and g(4 + 1) = +0.23(5). A lineshape analysis yielded lifetimes in disagreement with published values. The new results are τ( 106Cd; 2 + 1) = 7.0(3) ps and τ( 106Cd; 4 + 1) = 2.5(2) ps. The mean life τ( 106Cd; 2 + 2) = 0.28(2) ps was determined from the fully-Doppler-shifted γ line. Mean lives of τ( 106Cd; 4 + 3) = 1.1(1) ps and τ( 106Cd; 3 – 1) = 0.16(1) ps were determined for the first time. In conclusion, the newly measured g(4 + 1) of 106Cd is found to be only 59% of the g(2 + 1). This difference cannot be explained by either shell-model or collective-model calculations.« less

  20. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    NASA Astrophysics Data System (ADS)

    Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-12-01

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  1. Electron-helium S-wave model benchmark calculations. I. Single ionization and single excitation

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip L.; Stelbovics, Andris T.

    2010-02-01

    A full four-body implementation of the propagating exterior complex scaling (PECS) method [J. Phys. B 37, L69 (2004)] is developed and applied to the electron-impact of helium in an S-wave model. Time-independent solutions to the Schrödinger equation are found numerically in coordinate space over a wide range of energies and used to evaluate total and differential cross sections for a complete set of three- and four-body processes with benchmark precision. With this model we demonstrate the suitability of the PECS method for the complete solution of the full electron-helium system. Here we detail the theoretical and computational development of the four-body PECS method and present results for three-body channels: single excitation and single ionization. Four-body cross sections are presented in the sequel to this article [Phys. Rev. A 81, 022716 (2010)]. The calculations reveal structure in the total and energy-differential single-ionization cross sections for excited-state targets that is due to interference from autoionization channels and is evident over a wide range of incident electron energies.

  2. High-Yield Excited Triplet States in Pentacene Self-Assembled Monolayers on Gold Nanoparticles through Singlet Exciton Fission.

    PubMed

    Kato, Daiki; Sakai, Hayato; Tkachenko, Nikolai V; Hasobe, Taku

    2016-04-18

    One of the major drawbacks of organic-dye-modified self-assembled monolayers on metal nanoparticles when employed for efficient use of light energy is the fact that singlet excited states on dye molecules can be easily deactivated by means of energy transfer to the metal surface. In this study, a series of 6,13-bis(triisopropylsilylethynyl)pentacene-alkanethiolate monolayer protected gold nanoparticles with different particle sizes and alkane chain lengths were successfully synthesized and were employed for the efficient generation of excited triplet states of the pentacene derivatives by singlet fission. Time-resolved transient absorption measurements revealed the formation of excited triplet states in high yield (172±26 %) by suppressing energy transfer to the gold surface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Charge-exchange x-ray spectra: Evidence for significant contributions from radiative decays of doubly excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, R.; Beiersdorfer, P.; Harris, C. L.

    2016-01-21

    Charge-exchange collisions of slow Ne 10+ ions with He, Ne, and Ar targets were studied with simultaneous x-ray and cold-target recoil-ion-momentum spectroscopy proving the contribution of several mechanisms to the radiative stabilization of apparent (4,4) doubly excited states for He and Ne targets and of (5,6) states for Ar. In particular, the stabilization efficiency of the mechanism of dynamic auto-transfer to Rydberg states is confirmed. Moreover, we present evidence for direct radiative decays of (4,4) states populated in collisions with He, which is an experimental indication of the population of so-called unnatural-parity states in such collisions. Lastly, these mechanisms leadmore » to the emission of x-rays that have considerably higher energies than those predicted by current spectral models and may explain recent observations of anomalously large x-ray emission from Rydberg levels.« less

  4. Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states.

    PubMed

    Durrant, James R

    2013-08-13

    This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.

  5. Ab initio determination of mode coupling in HSSH - The torsional splitting in the first excited S-S stretching state

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Winnewisser, G.; Yamada, K. M. T.; Defrees, D. J.; Mclean, A. D.

    1989-01-01

    A mechanism for the enhanced splitting detected in the millimeter-wave rotational spectra of the first excited S-S stretching state of HSSH (disulfane) has been studied. The mechanism, which involves a potential coupling between the first excited S-S stretching state and excited torsional states, has been investigated in part by the use of ab initio theory. Based on an ab initio potential surface, coupling matrix elements have been calculated, and the amount of splitting has then been estimated by second-order perturbation theory. The result, while not in quantitative agreement with the measured splitting, lends plausibility to the assumed mechanism.

  6. Charge transfer in low-energy collisions of H with He+ and H+ with He in excited states

    NASA Astrophysics Data System (ADS)

    Loreau, J.; Ryabchenko, S.; Muñoz Burgos, J. M.; Vaeck, N.

    2018-04-01

    The charge transfer process in collisions of excited (n = 2, 3) hydrogen atoms with He+ and in collisions of excited helium atoms with H+ is studied theoretically. A combination of a fully quantum-mechanical method and a semi-classical approach is employed to calculate the charge-exchange cross sections at collision energies from 0.1 eV u‑1 up to 1 keV u‑1. These methods are based on accurate ab initio potential energy curves and non-adiabatic couplings for the molecular ion HeH+. Charge transfer can occur either in singlet or in triplet states, and the differences between the singlet and triplet spin manifolds are discussed. The dependence of the cross section on the quantum numbers n and l of the initial state is demonstrated. The isotope effect on the charge transfer cross sections, arising at low collision energy when H is substituted by D or T, is investigated. Rate coefficients are calculated for all isotopes up to 106 K. Finally, the impact of the present calculations on models of laboratory plasmas is discussed.

  7. Theory and computation of triply excited resonances: Application to states of He-

    NASA Astrophysics Data System (ADS)

    Nicolaides, Cleanthes A.; Piangos, Nicos A.; Komninos, Yannis

    1993-11-01

    Autoionizing multiply excited states offer unusual challenges to the theory of electronic structure and spectra because of the presence of strong electron correlations, of their occasional weak binding, of their proximity to more than one threshold, and of their degeneracy with many continua. Here we discuss a theory that addresses these difficulties in conjunction with the computation of their wave functions and intrinsic properties. Emphasis is given on the justification of the possible presence of self-consistently obtained open-channel-like (OCL) correlating configurations in the square-integrable representation of such states and on their effect on the energy E and the width Γ. Application of the theory has allowed the prediction of two hitherto unknown He- triply excited resonances, the 2s2p2 2P (E=59.71 eV, above the He ground state, Γ=79 meV) and the 2p3 2Do (E=59.46 eV, Γ=282 meV) (1 a.u.=27.2116 eV). These resonances are above the singly excited states of He and are embedded in its doubly excited spectrum. The relatively broad 2p3 2Do state interacts strongly with the He 2s2p 3Po ɛd continuum. The effect of this interaction has been studied in terms of the coupling with fixed core scattering states as well as with a self-consistently computed OCL bound configuration. The position of the He- 2p3 2Do resonance is below that of the He 2p2 1D autoionizing state at 59.91 eV and of the He 2p2 3P bound state at 59.68 eV. The partial decay widths to the three important open channels are γ(2s2p 3Po)=252 meV, γ(1s2p 3Po)=21 meV, γ(1s2p 1Po)=9 meV. The final core states are also represented by correlated (multiconfigurational Hartree-Fock) functions. The 2s2p2 2P state couples to four neighboring He thresholds, the 2s2p 3Po, 2p2 3P, 1D, and 2s2p 1Po. It is above the He 2s2p 3Po threshold at 58.31 eV, with respect to which it is a valence shape resonance, and below the He 2p2 1D and 2s2p 1Po autoionizing states. In the limit of an exact energy calculation, we

  8. Electronic spectra and excited-state dynamics of acridine and its hydrated clusters

    NASA Astrophysics Data System (ADS)

    Harthcock, Colin; Zhang, Jie; Kong, Wei; Mitsui, Masaaki; Ohshima, Yasuhiro

    2017-04-01

    We combine results from several different experiments to investigate the photophysics of acridine (Ac) and its hydrated clusters in the gas phase. Our findings are also compared with results from condensed phase studies. Similar to measurements of Ac dissolved in hydrocarbons, the lifetime of the first electronically excited state of isolated Ac in vacuum is too short for typical resonantly enhanced multiphoton ionization (REMPI) and laser induced fluorescence (LIF) experiments, hence no signal from REMPI and LIF can be attributed to monomeric Ac. Instead, sensitized phosphorescence emission spectroscopy is more successful in revealing the electronic states of Ac. Upon clustering with water, on the other hand, the lifetimes of the excited states are substantially increased to the nanosecond scale, and with two water molecules attached to Ac, the lifetime of the hydrated cluster is essentially the same as that of Ac in aqueous solutions. Detailed REMPI and ultraviolet-ultraviolet hole-burning experiments are then performed to reveal the structural information of the hydrated clusters. Although the formation of hydrogen bonds results in energy level reversal and energy separation between the first two excited states of Ac, its effect on the internal geometry of Ac is minimal, and all clusters with 1-3 water molecules demonstrate consistent intramolecular vibrational modes. Theoretical calculations reveal just one stable structure for each cluster under supersonic molecular beam conditions. Furthermore, different from mono- and di-water clusters, tri-water clusters consist of a linear chain of three water molecules attached to Ac. Consequently, the fragmentation pattern in the REMPI spectrum of tri-water clusters seems to be dominated by water trimer elimination, since the REMPI spectrum of Ac+.W3 is largely reproduced in the Ac+ mass channel, but not in the Ac+.W1 or Ac+.W2 channel.

  9. Effect of charged and excited states on the decomposition of 1,1-diamino-2,2-dinitroethylene molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmel, Anna V.; Sushko, Peter V.; Shluger, Alexander L.

    The authors have calculated the electronic structure of individual 1,1-diamino-2,2-dinitroethylene molecules (FOX-7) in the gas phase by means of density functional theory with the hybrid B3LYP functional and 6-31+G(d,p) basis set and considered their dissociation pathways. Positively and negatively charged states as well as the lowest excited states of the molecule were simulated. They found that charging and excitation can not only reduce the activation barriers for decomposition reactions but also change the dominating chemistry from endo- to exothermic type. In particular, they found that there are two competing primary initiation mechanisms of FOX-7 decomposition: C-NO{sub 2} bond fission andmore » C-NO{sub 2} to CONO isomerization. Electronic excitation or charging of FOX-7 disfavors CONO formation and, thus, terminates this channel of decomposition. However, if CONO is formed from the neutral FOX-7 molecule, charge trapping and/or excitation results in spontaneous splitting of an NO group accompanied by the energy release. Intramolecular hydrogen transfer is found to be a rare event in FOX-7 unless free electrons are available in the vicinity of the molecule, in which case HONO formation is a feasible exothermic reaction with a relatively low energy barrier. The effect of charged and excited states on other possible reactions is also studied. Implications of the obtained results to FOX-7 decomposition in condensed state are discussed.« less

  10. Excited-State Complexes of Conjugated Polymers: Novel Photophysical Processes and Optoelectronic Materials.

    DTIC Science & Technology

    1995-03-20

    corresponding excited-state complexes were only recently discovered. The results of our extensive studies of intermolecular excimers and exciplexes of many...the luminescence of conjugated polymers. The luminescence and charge photogeneration in exciplexes of conjugated polymers with donor triarylamines will also be presented. jg

  11. Excitation model of pacemaker cardiomyocytes of cardiac conduction system

    NASA Astrophysics Data System (ADS)

    Grigoriev, M.; Babich, L.

    2015-11-01

    Myocardium includes typical and atypical cardiomyocytes - pacemakers, which form the cardiac conduction system. Excitation from the atrioventricular node in normal conditions is possible only in one direction. Retrograde direction of pulses is impossible. The most important prerequisite for the work of cardiomyocytes is the anatomical integrity of the conduction system. Changes in contractile force of the cardiomyocytes, which appear periodically, are due to two mechanisms of self-regulation - heterometric and homeometric. Graphic course of the excitation pulse propagation along the heart muscle more accurately reveals the understanding of the arrhythmia mechanism. These models have the ability to visualize the essence of excitation dynamics. However, they do not have the proper forecasting function for result estimation. Integrative mathematical model enables further investigation of general laws of the myocardium active behavior, allows for determination of the violation mechanism of electrical and contractile function of cardiomyocytes. Currently, there is no full understanding of the topography of pacemakers and ionic mechanisms. There is a need for the development of direction of mathematical modeling and comparative studies of the electrophysiological arrangement of cells of atrioventricular connection and ventricular conduction system.

  12. Deactivation via ring opening: A quantum chemical study of the excited states of furan and comparison to thiophene

    NASA Astrophysics Data System (ADS)

    Gavrilov, Nemanja; Salzmann, Susanne; Marian, Christel M.

    2008-06-01

    Minimum nuclear arrangements of the ground and low-lying excited electronic states of furan were obtained by means of (time dependent) Kohn-Sham density functional theory. A combined density functional/multi-reference configuration interaction method (DFT/MRCI) was employed to compute the spectral properties at these points. Multiple minima were found on the first excited singlet (S 1) potential energy hypersurface with electronic structures S1, S2, S3 corresponding to the 1 1A 2 (π → 3s-Ryd), 1 1B 2 (π → π ∗), and 2 1A 1 (π → π ∗) states in the vertical absorption spectrum, respectively. In analogy to recently published studies in thiophene [S. Salzmann, M. Kleinschmidt, J. Tatchen, R. Weinkauf, C.M. Marian, Phys. Chem. Chem. Phys. 10 (2008) 380] a deactivation mechanism for electronically excited furan was detected that involves the opening of the pentacyclic ring. We found a nearly barrierless relaxation pathway from the Franck-Condon region along a C-O bond-breaking coordinate. Hereby the initially excited 1B 2 (π → π ∗) state undergoes a conical intersection with a 1B 1 (π → σ ∗) state. The system can return to the electronic ground state through a second conical intersection of the 1(π → σ ∗) state before the minimum of that B 1 state is reached.

  13. Synthesis, structure, and excited state kinetics of heteroleptic Cu(i) complexes with a new sterically demanding phenanthroline ligand

    DOE PAGES

    Kohler, Lars; Hadt, Ryan G.; Hayes, Dugan; ...

    2017-09-25

    In this paper we describe the synthesis of a new phenanthroline ligand, 2,9-di(2,4,6-tri-isopropyl-phenyl)-1,10-phenanthroline (bL2) and its use as the blocking ligand in the preparation of two new heteroleptic Cu(I)diimine complexes. Analysis of the CuHETPHEN single crystal structures shows a distinct distortion from an ideal tetrahedral geometry around the Cu(I) center, forced by the secondary phenanthroline ligand rotating to accommodate the isopropyl groups of bL2. The increased steric bulk of bL2 as compared to the more commonly used 2,9-dimesityl-1,10-phenanthroline blocking ligand prohibits intramolecular ligand–ligand interaction, which is unique among CuHETPHEN complexes. The ground state optical and redox properties of CuHETPHEN complexesmore » are responsive to the substitution on the blocking ligand even though the differences in structure are far removed from the Cu(I) center. Transient optical spectroscopy was used to understand the excited state kinetics in both coordinating and non-coordinating solvents following visible excitation. Substitution of the blocking phenanthroline ligand has a significant impact on the 3MLCT decay and can be used to increase the excited state lifetime by 50%. Electronic structure calculations established relationships between ground and excited state properties, and general entatic state concepts are discussed for copper photosensitizers. This work contributes to the growing library of CuHETPHEN complexes and broadens the fundamental understanding of their ground and excited state properties.« less

  14. Photoinduced Ultrafast Intramolecular Excited-State Energy Transfer in the Silylene-Bridged Biphenyl and Stilbene (SBS) System: A Nonadiabatic Dynamics Point of View.

    PubMed

    Wang, Jun; Huang, Jing; Du, Likai; Lan, Zhenggang

    2015-07-09

    The photoinduced intramolecular excited-state energy-transfer (EET) process in conjugated polymers has received a great deal of research interest because of its important role in the light harvesting and energy transport of organic photovoltaic materials in photoelectric devices. In this work, the silylene-bridged biphenyl and stilbene (SBS) system was chosen as a simplified model system to obtain physical insight into the photoinduced intramolecular energy transfer between the different building units of the SBS copolymer. In the SBS system, the vinylbiphenyl and vinylstilbene moieties serve as the donor (D) unit and the acceptor (A) unit, respectively. The ultrafast excited-state dynamics of the SBS system was investigated from the point of view of nonadiabatic dynamics with the surface-hopping method at the TDDFT level. The first two excited states (S1 and S2) are characterized by local excitations at the acceptor (vinylstilbene) and donor (vinylbiphenyl) units, respectively. Ultrafast S2-S1 decay is responsible for the intramolecular D-A excitonic energy transfer. The geometric distortion of the D moiety play an essential role in this EET process, whereas the A moiety remains unchanged during the nonadiabatic dynamics simulation. The present work provides a direct dynamical approach to understand the ultrafast intramolecular energy-transfer dynamics in SBS copolymers and other similar organic photovoltaic copolymers.

  15. Signal transmission competing with noise in model excitable brains

    NASA Astrophysics Data System (ADS)

    Marro, J.; Mejias, J. F.; Pinamonti, G.; Torres, J. J.

    2013-01-01

    This is a short review of recent studies in our group on how weak signals may efficiently propagate in a system with noise-induced excitation-inhibition competition which adapts to the activity at short-time scales and thus induces excitable conditions. Our numerical results on simple mathematical models should hold for many complex networks in nature, including some brain cortical areas. In particular, they serve us here to interpret available psycho-technical data.

  16. Ultraviolet laser spectroscopy of jet-cooled CaNC and SrNC free radicals: Observation of bent excited electronic states

    NASA Astrophysics Data System (ADS)

    Greetham, Gregory M.; Ellis, Andrew M.

    2000-11-01

    New electronic transitions of the CaNC and SrNC free radicals have been identified in the near ultraviolet. For CaNC one new system, labeled the D˜-X˜ transition, was observed in the 31 500-33 400 cm-1 region. Two new transitions were found for SrNC, the D˜-X˜ and Ẽ-X˜ systems spanning 29 100-31 000 and 32 750-34 000 cm-1, respectively. Jet-cooled laser excitation spectra yield complex vibrational structure, much of which is attributed to excitation of the bending vibration. This has been used to infer that the molecule adopts a nonlinear equilibrium geometry in the upper electronic state in all three band systems, in contrast to the linear ground electronic state. This structural change is accounted for by the increased diffuseness of the unpaired electron in the excited states, which favors deviation from linearity. All three new excited states are assigned 2A' symmetry and correlate with 2Σ+ states in the linear molecule limit. Tentative estimates for the barriers to linearity in the D˜ 2A' states of CaNC and SrNC have been determined as ˜700 and ˜1050 cm-1, respectively.

  17. Photophysical study of some 3-benzoylmethyleneindol-2-ones and estimation of ground and excited states dipole moments from solvatochromic methods using solvent polarity parameters

    NASA Astrophysics Data System (ADS)

    Saroj, Manju K.; Sharma, Neera; Rastogi, Ramesh C.

    2012-03-01

    3-Benzoylmethyleneindol-2-ones, isatin based chalcones containing donor and acceptor moieties that exhibit excited-state intramolecular charge transfer, have been studied in different solvents by absorption and emission spectroscopy. The excited state behavior of these compounds is strongly dependent on the nature of substituents and the environment. These compounds show multiple emissions arising from a locally excited state and the two states due to intramolecular processes viz. intramolecular charge transfer (ICT) and excited state intramolecular proton transfer (ESIPT). Excited-state dipole moments have been calculated using Stoke-shifts of LE and ICT states using solvatochromic methods. The higher values of dipole moments obtained lead to support the formation of ICT state as one of the prominent species in the excited states of all 3-benzoylmethyleneindol-2-ones. The correlation of the solvatochromic Stokes-shifts with the microscopic solvent polarity parameter (ETN) was found to be superior to that obtained using bulk solvent polarity functions. The absorption and florescence spectral characteristics have been also investigated as a function of acidity and basicity (Ho/pH) in aqueous phase.

  18. Application of the BEf-scaling approach to electron impact excitation of diople-allowed electronic states in molecules

    NASA Astrophysics Data System (ADS)

    Brunger, M. J.; Thorn, P. A.; Campbell, L.; Kato, H.; Kawahara, H.; Hoshino, M.; Tanaka, H.; Kim, Y.-K.

    2008-05-01

    We consider the efficacy of the BEf-scaling approach, in calculating reliable integral cross sections for electron impact excitation of dipole-allowed electronic states in molecules. We will demonstrate, using specific examples in H2, CO and H2O, that this relatively simple procedure can generate quite accurate integral cross sections which compare well with available experimental data. Finally, we will briefly consider the ramifications of this to atmospheric and other types of modelling studies.

  19. On the properties of microsolvated molecules in the ground (S0) and excited (S1) states: The anisole-ammonia 1:1 complex

    NASA Astrophysics Data System (ADS)

    Biczysko, Malgorzata; Piani, Giovanni; Pasquini, Massimiliano; Schiccheri, Nicola; Pietraperzia, Giangaetano; Becucci, Maurizio; Pavone, Michele; Barone, Vincenzo

    2007-10-01

    State-of-the-art spectroscopic and theoretical methods have been exploited in a joint effort to elucidate the subtle features of the structure and the energetics of the anisole-ammonia 1:1 complex, a prototype of microsolvation processes. Resonance enhanced multiphoton ionization and laser-induced fluorescence spectra are discussed and compared to high-level first-principles theoretical models, based on density functional, many body second order perturbation, and coupled cluster theories. In the most stable nonplanar structure of the complex, the ammonia interacts with the delocalized π electron density of the anisole ring: hydrogen bonding and dispersive forces provide a comparable stabilization energy in the ground state, whereas in the excited state the dispersion term is negligible because of electron density transfer from the oxygen to the aromatic ring. Ground and excited state geometrical parameters deduced from experimental data and computed by quantum mechanical methods are in very good agreement and allow us to unambiguously determine the molecular structure of the anisole-ammonia complex.

  20. Multipulse spectroscopy on the wild-type and YM210W Bacterial Reaction Centre uncovers a new intermediate state in the special pair excited state

    NASA Astrophysics Data System (ADS)

    Cohen Stuart, T. A.; van Grondelle, R.

    2009-06-01

    The Bacterial Reaction Centre (BRC) has a complex electronic excited state, P ∗, that evolves into subsequent charge separated product states P +H - and P +B -. Pump-dump-probe spectroscopy on the wild-type BRC and on YM210W, a mutant with a stabilized, long-lived P ∗ excited state, has uncovered a new charge-separated state in both BRC's. When P ∗ is dumped, a fraction of its population is transferred to this state that has a strong Stark shift in the accessory bacteriochlorophyll (B M) region which serves as a signature for P + and a lifetime highly comparable to the slow phase of P ∗ decay. This lead us propose this intermediate to be P +/P -.

  1. An insight into non-emissive excited states in conjugated polymers

    NASA Astrophysics Data System (ADS)

    Hu, Zhongjian; Willard, Adam P.; Ono, Robert J.; Bielawski, Christopher W.; Rossky, Peter J.; vanden Bout, David A.

    2015-09-01

    Conjugated polymers in the solid state usually exhibit low fluorescence quantum yields, which limit their applications in many areas such as light-emitting diodes. Despite considerable research efforts, the underlying mechanism still remains controversial and elusive. Here, the nature and properties of excited states in the archetypal polythiophene are investigated via aggregates suspended in solvents with different dielectric constants (ε). In relatively polar solvents (ε>~ 3), the aggregates exhibit a low fluorescence quantum yield (QY) of 2-5%, similar to bulk films, however, in relatively nonpolar solvents (ε<~ 3) they demonstrate much higher fluorescence QY up to 20-30%. A series of mixed quantum-classical atomistic simulations illustrate that dielectric induced stabilization of nonradiative charge-transfer (CT) type states can lead to similar drastic reduction in fluorescence QY as seen experimentally. Fluorescence lifetime measurement reveals that the CT-type states exist as a competitive channel of the formation of emissive exciton-type states.

  2. Search for excited quarks in the γ+jet final state in proton–proton collisions at √s=8 TeV

    DOE PAGES

    Khachatryan, Vardan

    2014-10-01

    A search for excited quarks decaying into the γ+jet final state is presented. The analysis is based on data corresponding to an integrated luminosity of 19.7 fb -1 collected by the CMS experiment in proton–proton collisions at √s =8 TeV at the LHC. Events with photons and jets with high transverse momenta are selected and the γ+jet invariant mass distribution is studied to search for a resonance peak. The 95% confidence level upper limits on the product of cross section and branching fraction are evaluated as a function of the excited quark mass. Limits on excited quarks are presented asmore » a function of their mass and coupling strength; masses below 3.5 TeV are excluded at 95% confidence level for unit couplings to their standard model partners.« less

  3. Investigation of excited 0+ states in 160Er populated via the (p, t) two-neutron transfer reaction

    NASA Astrophysics Data System (ADS)

    Burbadge, C.; Garrett, P. E.; Ball, G. C.; Bildstein, V.; Diaz Varela, A.; Dunlop, M. R.; Dunlop, R.; Faesternann, T.; Hertenberger, R.; Jamieson, D. S.; Kisliuk, D.; Leach, K. G.; Loranger, J.; MacLean, A. D.; Radich, A. J.; Rand, E. T.; Svensson, C. E.; Triambak, S.; Wirth, H.-F.

    2018-05-01

    Many efforts have been made in nuclear structure physics to interpret the nature of low-lying excited 0+ states in well-deformed rare-earth nuclei. However, one of the difficulties in resolving the nature of these states is that there is a paucity of data. In this work, excited 0+ states in the N = 92 nucleus 160Er were studied via the 162Er(p, t)160Er two-neutron transfer reaction, which is ideal for probing 0+ → 0+ transitions, at the Maier-Leibnitz-Laboratorium in Garching, Germany. Reaction products were momentum-analyzed with a Quadrupole-3-Dipole magnetic spectrograph. The 0+2 state was observed to be strongly populated with 18% of the ground state strength.

  4. Emergent Bloch excitations in Mott matter

    DOE PAGES

    Lanata, Nicola; Lee, Tsung -Han; Yao, Yong -Xin; ...

    2017-11-14

    Here, we develop a unified theoretical picture for excitations in Mott systems, portraying both the heavy quasiparticle excitations and the Hubbard bands as features of an emergent Fermi liquid state formed in an extended Hilbert space, which is nonperturbatively connected to the physical system. This observation sheds light on the fact that even the incoherent excitations in strongly correlated matter often display a well-defined Bloch character, with pronounced momentum dispersion. Furthermore, it indicates that the Mott point can be viewed as a topological transition, where the number of distinct dispersing bands displays a sudden change at the critical point. Ourmore » results, obtained from an appropriate variational principle, display also remarkable quantitative accuracy. This opens an exciting avenue for fast realistic modeling of strongly correlated materials.« less

  5. A Computational Study on the Ground and Excited States of Nickel Silicide.

    PubMed

    Schoendorff, George; Morris, Alexis R; Hu, Emily D; Wilson, Angela K

    2015-09-17

    Nickel silicide has been studied with a range of computational methods to determine the nature of the Ni-Si bond. Additionally, the physical effects that need to be addressed within calculations to predict the equilibrium bond length and bond dissociation energy within experimental error have been determined. The ground state is predicted to be a (1)Σ(+) state with a bond order of 2.41 corresponding to a triple bond with weak π bonds. It is shown that calculation of the ground state equilibrium geometry requires a polarized basis set and treatment of dynamic correlation including up to triple excitations with CR-CCSD(T)L resulting in an equilibrium bond length of only 0.012 Å shorter than the experimental bond length. Previous calculations of the bond dissociation energy resulted in energies that were only 34.8% to 76.5% of the experimental bond dissociation energy. It is shown here that use of polarized basis sets, treatment of triple excitations, correlation of the valence and subvalence electrons, and a Λ coupled cluster approach is required to obtain a bond dissociation energy that deviates as little as 1% from experiment.

  6. Emergent low-energy bound states in the two-orbital Hubbard model

    NASA Astrophysics Data System (ADS)

    Núñez-Fernández, Y.; Kotliar, G.; Hallberg, K.

    2018-03-01

    A repulsive Coulomb interaction between electrons in different orbitals in correlated materials can give rise to bound quasiparticle states. We study the nonhybridized two-orbital Hubbard model with intra- (inter)orbital interaction U (U12) and different bandwidths using an improved dynamical mean-field theory numerical technique which leads to reliable spectra on the real energy axis directly at zero temperature. We find that a finite density of states at the Fermi energy in one band is correlated with the emergence of well-defined quasiparticle states at excited energies Δ =U -U12 in the other band. These excitations are interband holon-doublon bound states. At the symmetric point U =U12 , the quasiparticle peaks are located at the Fermi energy, leading to a simultaneous and continuous Mott transition settling a long-standing controversy.

  7. Transient vibration analytical modeling and suppressing for vibration absorber system under impulse excitation

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Yang, Bintang; Yu, Hu; Gao, Yulong

    2017-04-01

    The impulse excitation of mechanism causes transient vibration. In order to achieve adaptive transient vibration control, a method which can exactly model the response need to be proposed. This paper presents an analytical model to obtain the response of the primary system attached with dynamic vibration absorber (DVA) under impulse excitation. The impulse excitation which can be divided into single-impulse excitation and multi-impulse excitation is simplified as sinusoidal wave to establish the analytical model. To decouple the differential governing equations, a transform matrix is applied to convert the response from the physical coordinate to model coordinate. Therefore, the analytical response in the physical coordinate can be obtained by inverse transformation. The numerical Runge-Kutta method and experimental tests have demonstrated the effectiveness of the analytical model proposed. The wavelet of the response indicates that the transient vibration consists of components with multiple frequencies, and it shows that the modeling results coincide with the experiments. The optimizing simulations based on genetic algorithm and experimental tests demonstrate that the transient vibration of the primary system can be decreased by changing the stiffness of the DVA. The results presented in this paper are the foundations for us to develop the adaptive transient vibration absorber in the future.

  8. Existence of a new emitting singlet state of proflavine: femtosecond dynamics of the excited state processes and quantum chemical studies in different solvents.

    PubMed

    Kumar, Karuppannan Senthil; Selvaraju, Chellappan; Malar, Ezekiel Joy Padma; Natarajan, Paramasivam

    2012-01-12

    Proflavine (3,6-diaminoacridine) shows fluorescence emission with lifetime, 4.6 ± 0.2 ns, in all the solvents irrespective of the solvent polarity. To understand this unusual photophysical property, investigations were carried out using steady state and time-resolved fluorescence spectroscopy in the pico- and femtosecond time domain. Molecular geometries in the ground and low-lying excited states of proflavine were examined by complete structural optimization using ab initio quantum chemical computations at HF/6-311++G** and CIS/6-311++G** levels. Time dependent density functional theory (TDDFT) calculations were performed to study the excitation energies in the low-lying excited states. The steady state absorption and emission spectral details of proflavine are found to be influenced by solvents. The femtosecond fluorescence decay of the proflavine in all the solvents follows triexponential function with two ultrafast decay components (τ(1) and τ(2)) in addition to the nanosecond component. The ultrafast decay component, τ(1), is attributed to the solvation dynamics of the particular solvent used. The second ultrafast decay component, τ(2), is found to vary from 50 to 215 ps depending upon the solvent. The amplitudes of the ultrafast decay components vary with the wavelength and show time dependent spectral shift in the emission maximum. The observation is interpreted that the time dependent spectral shift is not only due to solvation dynamics but also due to the existence of more than one emitting state of proflavine in the solvent used. Time resolved area normalized emission spectral (TRANES) analysis shows an isoemissive point, indicating the presence of two emitting states in homogeneous solution. Detailed femtosecond fluorescence decay analysis allows us to isolate the two independent emitting components of the close lying singlet states. The CIS and TDDFT calculations also support the existence of the close lying emitting states. The near constant

  9. Influences of temperature and impurity on excited state of bound polaron in the parabolic quantum dots

    NASA Astrophysics Data System (ADS)

    Xiao, Jing-Lin

    2014-06-01

    On the condition of strong electron-LO phonon coupling in parabolic quantum dot (QD), the first excited state energy, the excitation energy and the transition frequency between the first excited and the ground states of the bound polaron are calculated by using the linear combination operator and the unitary transformation methods. The variation of the above quantities with the temperature, the Coulombic impurity potential and the QD confinement strength are studied in detail. We find that (1) These physical quantities will increase with increasing temperature. (2) They are increasing functions of the confinement strength due to the existence of the Coulombic impurity potential between the electron and the hydrogen-like impurity. (3) We obtain three ways of tuning them via controlling the temperature, the Coulombic impurity potential and the confinement strength.

  10. Communication: Smoothing out excited-state dynamics: Analytical gradients for dynamically weighted complete active space self-consistent field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glover, W. J., E-mail: williamjglover@gmail.com

    2014-11-07

    State averaged complete active space self-consistent field (SA-CASSCF) is a workhorse for determining the excited-state electronic structure of molecules, particularly for states with multireference character; however, the method suffers from known issues that have prevented its wider adoption. One issue is the presence of discontinuities in potential energy surfaces when a state that is not included in the state averaging crosses with one that is. In this communication I introduce a new dynamical weight with spline (DWS) scheme that mimics SA-CASSCF while removing energy discontinuities due to unweighted state crossings. In addition, analytical gradients for DWS-CASSCF (and other dynamically weightedmore » schemes) are derived for the first time, enabling energy-conserving excited-state ab initio molecular dynamics in instances where SA-CASSCF fails.« less

  11. Determination and Comparison of Carbonyl Stretching Frequency of a Ketone in Its Ground State and the First Electronic Excited State

    ERIC Educational Resources Information Center

    Bandyopadhyay, Subhajit; Roy, Saswata

    2014-01-01

    This paper describes an inexpensive experiment to determine the carbonyl stretching frequency of an organic keto compound in its ground state and first electronic excited state. The experiment is simple to execute, clarifies some of the fundamental concepts of spectroscopy, and is appropriate for a basic spectroscopy laboratory course. The…

  12. Memory-induced nonlinear dynamics of excitation in cardiac diseases.

    PubMed

    Landaw, Julian; Qu, Zhilin

    2018-04-01

    Excitable cells, such as cardiac myocytes, exhibit short-term memory, i.e., the state of the cell depends on its history of excitation. Memory can originate from slow recovery of membrane ion channels or from accumulation of intracellular ion concentrations, such as calcium ion or sodium ion concentration accumulation. Here we examine the effects of memory on excitation dynamics in cardiac myocytes under two diseased conditions, early repolarization and reduced repolarization reserve, each with memory from two different sources: slow recovery of a potassium ion channel and slow accumulation of the intracellular calcium ion concentration. We first carry out computer simulations of action potential models described by differential equations to demonstrate complex excitation dynamics, such as chaos. We then develop iterated map models that incorporate memory, which accurately capture the complex excitation dynamics and bifurcations of the action potential models. Finally, we carry out theoretical analyses of the iterated map models to reveal the underlying mechanisms of memory-induced nonlinear dynamics. Our study demonstrates that the memory effect can be unmasked or greatly exacerbated under certain diseased conditions, which promotes complex excitation dynamics, such as chaos. The iterated map models reveal that memory converts a monotonic iterated map function into a nonmonotonic one to promote the bifurcations leading to high periodicity and chaos.

  13. Memory-induced nonlinear dynamics of excitation in cardiac diseases

    NASA Astrophysics Data System (ADS)

    Landaw, Julian; Qu, Zhilin

    2018-04-01

    Excitable cells, such as cardiac myocytes, exhibit short-term memory, i.e., the state of the cell depends on its history of excitation. Memory can originate from slow recovery of membrane ion channels or from accumulation of intracellular ion concentrations, such as calcium ion or sodium ion concentration accumulation. Here we examine the effects of memory on excitation dynamics in cardiac myocytes under two diseased conditions, early repolarization and reduced repolarization reserve, each with memory from two different sources: slow recovery of a potassium ion channel and slow accumulation of the intracellular calcium ion concentration. We first carry out computer simulations of action potential models described by differential equations to demonstrate complex excitation dynamics, such as chaos. We then develop iterated map models that incorporate memory, which accurately capture the complex excitation dynamics and bifurcations of the action potential models. Finally, we carry out theoretical analyses of the iterated map models to reveal the underlying mechanisms of memory-induced nonlinear dynamics. Our study demonstrates that the memory effect can be unmasked or greatly exacerbated under certain diseased conditions, which promotes complex excitation dynamics, such as chaos. The iterated map models reveal that memory converts a monotonic iterated map function into a nonmonotonic one to promote the bifurcations leading to high periodicity and chaos.

  14. Excited State Properties of Hybrid Perovskites.

    PubMed

    Saba, Michele; Quochi, Francesco; Mura, Andrea; Bongiovanni, Giovanni

    2016-01-19

    Metal halide perovskites have come to the attention of the scientific community for the progress achieved in solar light conversion. Energy sustainability is one of the priorities of our society, and materials advancements resulting in low-cost but efficient solar cells and large-area lighting devices represent a major goal for applied research. From a basic point of view, perovskites are an exotic class of hybrid materials combining some merits of organic and inorganic semiconductors: large optical absorption, large mobilities, and tunable band gap together with the possibility to be processed in solution. When a novel class of promising semiconductors comes into the limelight, lively discussions ensue on the photophysics of band-edge excitations, because just the states close to the band edge are entailed in energy/charge transport and light emission. This was the case several decades ago for III-V semiconductors, it has been up to 10 years ago for organics, and it is currently the case for perovskites. Our aim in this Account is to rationalize the body of experimental evidence on perovskite photophysics in a coherent theoretical framework, borrowing from the knowledge acquired over the years in materials optoelectronics. A crucial question is whether photon absorption leads to a population of unbound, conductive free charges or instead excitons, neutral and insulating bound states created by Coulomb interaction just below the energy of the band gap. We first focus on the experimental estimates of the exciton binding energy (Eb): at room temperature, Eb is comparable to the thermal energy kBT in MAPbI3 and increases up to values 2-3kBT in wide band gap MAPbBr3 and MAPbCl3. Statistical considerations predict that these values, even though comparable to or larger than thermal energy, let free carriers prevail over bound excitons for all levels of excitation densities relevant for devices. The analysis of photophysics evidence confirms that all hybrid halide

  15. Even-parity resonances with synchrotron radiation from Laser Excited Lithium at 1s^22p State

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Tie; Wehlitz, Ralf

    2010-03-01

    Correlated many-body dynamics is still one of the unsolved fundamental problems in physics. Such correlation effects can be most clearly studied in processes involving single atoms for their simplicity.Lithium, being the simplest open shell atom, has been under a lot of study. Most of the studies focused on ground state lithium. However, only odd parity resonances can be populated through single photon (synchrotron radiation) absorption from ground state lithium (1s^22s). Lithium atoms, after being laser excited to the 1s^22p state, allow the study of even parity resonances. We have measured some of the even parity resonances of lithium for resonant energies below 64 eV. A single-mode diode laser is used to excite lithium from 1s^22s ground state to 1s^22p (^2P3/2) state. Photoions resulting from the interaction between the excited lithium and synchrotron radiation were analyzed and collected by an ion time-of-flight (TOF) spectrometer with a Z- stack channel plate detector. The Li^+ ion yield was recorded while scanning the undulator along with the monochromator. The energy scans have been analyzed regarding resonance energies and parameters of the Fano profiles. Our results for the observed resonances will be presented.

  16. Excited-state solvation and proton transfer dynamics of DAPI in biomimetics and genomic DNA.

    PubMed

    Banerjee, Debapriya; Pal, Samir Kumar

    2008-08-14

    The fluorescent probe DAPI (4',6-diamidino-2-phenylindole) is an efficient DNA binder. Studies on the DAPI-DNA complexes show that the probe exhibits a wide variety of interactions of different strengths and specificities with DNA. Recently the probe has been used to report the environmental dynamics of a DNA minor groove. However, the use of the probe as a solvation reporter in restricted environments is not straightforward. This is due to the presence of two competing relaxation processes (intramolecular proton transfer and solvation stabilization) in the excited state, which can lead to erroneous interpretation of the observed excited-state dynamics. In this study, the possibility of using DAPI to unambiguously report the environmental dynamics in restricted environments including DNA is explored. The dynamics of the probe is studied in bulk solvents, biomimetics like micelles and reverse micelles, and genomic DNA using steady-state and picosecond-resolved fluorescence spectroscopies.

  17. Charge-transfer excited states: Seeking a balanced and efficient wave function ansatz in variational Monte Carlo

    DOE PAGES

    Blunt, Nick S.; Neuscamman, Eric

    2017-11-16

    We present a simple and efficient wave function ansatz for the treatment of excited charge-transfer states in real-space quantum Monte Carlo methods. Using the recently-introduced variation-after-response method, this ansatz allows a crucial orbital optimization step to be performed beyond a configuration interaction singles expansion, while only requiring calculation of two Slater determinant objects. As a result, we demonstrate this ansatz for the illustrative example of the stretched LiF molecule, for a range of excited states of formaldehyde, and finally for the more challenging ethylene-tetrafluoroethylene molecule.

  18. Concentrations of a triplet excited state are enhanced in illuminated ice.

    PubMed

    Chen, Zeyuan; Anastasio, Cort

    2017-01-25

    Photochemical reactions influence the fates and lifetimes of organic compounds in snow and ice, both through direct photoreactions and via photoproduced transient species such as hydroxyl radical (˙OH) and, perhaps, triplet excited states of organic compounds (i.e., triplets). While triplets can be important oxidants in atmospheric drops and surface waters, little is known of this class of oxidants in frozen samples. To investigate this, we examined the photoreaction of phenol with the triplet state of 3,4-dimethoxybenzaldehyde ( 3 DMB*), a product from biomass combustion, in illuminated laboratory ices. Our results show that the rate of phenol loss due to 3 DMB* is, on average, increased by a factor of 95 ± 50 in ice compared to the equivalent liquid sample. We find that this experimentally measured freeze concentration factor, F EXP , is independent of total solute concentration and temperature, in contrast to what is expected from a liquid-like region whose composition follows freezing point depression. We also find that F EXP for triplets is independent of pH, although the rates of phenol loss increase with decreasing pH in both solution and ice. The enhancement in the rate of phenol loss in/on ice indicates that concentrations of triplet excited states are enhanced in ice relative to solution and suggests that this class of oxidants might be a significant sink for organics in snow and ice.

  19. Low-lying Photoexcited States of a One-Dimensional Ionic Extended Hubbard Model

    NASA Astrophysics Data System (ADS)

    Yokoi, Kota; Maeshima, Nobuya; Hino, Ken-ichi

    2017-10-01

    We investigate the properties of low-lying photoexcited states of a one-dimensional (1D) ionic extended Hubbard model at half-filling. Numerical analysis by using the full and Lanczos diagonalization methods shows that, in the ionic phase, there exist low-lying photoexcited states below the charge transfer gap. As a result of comparison with numerical data for the 1D antiferromagnetic (AF) Heisenberg model, it was found that, for a small alternating potential Δ, these low-lying photoexcited states are spin excitations, which is consistent with a previous analytical study [Katsura et al., Phys. Rev. Lett. 103, 177402 (2009)]. As Δ increases, the spectral intensity of the 1D ionic extended Hubbard model rapidly deviates from that of the 1D AF Heisenberg model and it is clarified that this deviation is due to the neutral-ionic domain wall, an elementary excitation near the neutral-ionic transition point.

  20. Ultrafast excited-state relaxation of a binuclear Ag(i) phosphine complex in gas phase and solution.

    PubMed

    Kruppa, S V; Bäppler, F; Klopper, W; Walg, S P; Thiel, W R; Diller, R; Riehn, C

    2017-08-30

    The binuclear complex [Ag 2 (dcpm) 2 ](PF 6 ) 2 (dcpm = bis(dicyclohexylphosphino)methane) exhibits a structure with a close silver-silver contact mediated by the bridging ligand and thus a weak argentophilic interaction. Upon electronic excitation this cooperative effect is strongly increased and determines the optical and luminescence properties of the compound. We have studied here the ultrafast electronic dynamics in parallel in gas phase by transient photodissociation and in solution by transient absorption. In particular, we report the diverse photofragmentation pathways of isolated [Ag 2 (dcpm) 2 ] 2+ in an ion trap and its gas phase UV photodissociation spectrum. By pump-probe fragmentation action spectroscopy (λ ex = 260 nm) in the gas phase, we have obtained fragment-specific transients which exhibit a common ultrafast multiexponential decay. This is fitted to four time constants (0.6/5.8/100/>1000 ps), highlighting complex intrinsic photophysical processes. Remarkably, multiexponential dynamics (0.9/8.5/73/604 ps) are as well found for the relaxation dynamics in acetonitrile solution. Ab initio calculations at the level of approximate coupled-cluster singles-doubles (CC2) theory of ground and electronically excited states of the reduced model system [Ag 2 (dmpm) 2 ] 2+ (dmpm = bis(dimethylphosphino)methane) indicate a shortening of the Ag-Ag distance upon excitation by 0.3-0.4 Å. In C 2 geometry two close-lying singlet states S 1 ( 1 MC(dσ*-pπ), 1 B, 4.13 eV) and S 2 ( 1 MC(dσ*-pσ), 1 A, 4.45 eV) are found. The nearly dark S 1 state has not been reported so far. The excitation of the S 2 state carries a large oscillator strength for the calculated vertical transition (266 nm). Two related triplets are calculated at T 1 (3.87 eV) and T 2 (3.90 eV). From these findings we suggest possible relaxation pathways with the two short time constants ascribed to ISC/IVR and propose from the obtained similar values in gas phase that the fast solution dynamics