Science.gov

Sample records for excited state quencher

  1. Characterization of Dark Quencher Chromophores as Nonfluorescent Acceptors for Single-Molecule FRET

    PubMed Central

    Le Reste, Ludovic; Hohlbein, Johannes; Gryte, Kristofer; Kapanidis, Achillefs N.

    2012-01-01

    Dark quenchers are chromophores that primarily relax from the excited state to the ground state nonradiatively (i.e., are dark). As a result, they can serve as acceptors for Förster resonance energy transfer experiments without contributing significantly to background in the donor-emission channel, even at high concentrations. Although the advantages of dark quenchers have been exploited for ensemble bioassays, no systematic single-molecule study of dark quenchers has been performed, and little is known about their photophysical properties. Here, we present the first systematic single-molecule study of dark quenchers in conjunction with fluorophores and demonstrate the use of dark quenchers for monitoring multiple interactions and distances in multichromophore systems. Specifically, using double-stranded DNA standards labeled with two fluorophores and a dark quencher (either QSY7 or QSY21), we show that the proximity of a fluorophore and dark quencher can be monitored using the stoichiometry ratio available from alternating laser excitation spectroscopy experiments, either for single molecules diffusing in solution (using a confocal fluorescence) or immobilized on surfaces (using total-internal-reflection fluorescence). The latter experiments allowed characterization of the dark-quencher photophysical properties at the single-molecule level. We also use dark-quenchers to study the affinity and kinetics of binding of DNA Polymerase I (Klenow fragment) to DNA. The measured properties are in excellent agreement with the results of ensemble assays, validating the use of dark quenchers. Because dark-quencher-labeled biomolecules can be used in total-internal-reflection fluorescence experiments at concentrations of 1 μM or more without introducing a significant background, the use of dark quenchers should permit single-molecule Förster resonance energy transfer measurements for the large number of biomolecules that participate in interactions of moderate

  2. Characterization of dark quencher chromophores as nonfluorescent acceptors for single-molecule FRET.

    PubMed

    Le Reste, Ludovic; Hohlbein, Johannes; Gryte, Kristofer; Kapanidis, Achillefs N

    2012-06-06

    Dark quenchers are chromophores that primarily relax from the excited state to the ground state nonradiatively (i.e., are dark). As a result, they can serve as acceptors for Förster resonance energy transfer experiments without contributing significantly to background in the donor-emission channel, even at high concentrations. Although the advantages of dark quenchers have been exploited for ensemble bioassays, no systematic single-molecule study of dark quenchers has been performed, and little is known about their photophysical properties. Here, we present the first systematic single-molecule study of dark quenchers in conjunction with fluorophores and demonstrate the use of dark quenchers for monitoring multiple interactions and distances in multichromophore systems. Specifically, using double-stranded DNA standards labeled with two fluorophores and a dark quencher (either QSY7 or QSY21), we show that the proximity of a fluorophore and dark quencher can be monitored using the stoichiometry ratio available from alternating laser excitation spectroscopy experiments, either for single molecules diffusing in solution (using a confocal fluorescence) or immobilized on surfaces (using total-internal-reflection fluorescence). The latter experiments allowed characterization of the dark-quencher photophysical properties at the single-molecule level. We also use dark-quenchers to study the affinity and kinetics of binding of DNA Polymerase I (Klenow fragment) to DNA. The measured properties are in excellent agreement with the results of ensemble assays, validating the use of dark quenchers. Because dark-quencher-labeled biomolecules can be used in total-internal-reflection fluorescence experiments at concentrations of 1 μM or more without introducing a significant background, the use of dark quenchers should permit single-molecule Förster resonance energy transfer measurements for the large number of biomolecules that participate in interactions of moderate

  3. Fluorescence quenching at high quencher concentrations

    NASA Astrophysics Data System (ADS)

    Peak, David; Werner, T. C.; Dennin, Richard M., Jr.; Baird, James K.

    1983-10-01

    Chemical reactions occurring in dense media at high reactant concentrations can be described by rate ``constants'' which are actually functions of concentration. We present a theoretical model in which this so-called rate constant ``renormalization'' occurs for the specific case of fluorescence quenching in solution. We show that both the quenching and the excitation rate constants can become concentration dependent. We fit our theory to several sets of experimental data—our own and some from the literature—and show that excellent agreement is obtained by varying a single free parameter, namely, the efficiency with which a fluorophore-quencher collision leads to a quench of the excited state.

  4. Excited state quenching via "unsuccessful" chemical reactions.

    PubMed

    Sinicropi, Adalgisa; Nau, Werner M; Olivucci, Massimo

    2002-08-01

    We discuss the results of recent photochemical reaction path computations on 1n,pi* azoalkanes interacting with a single quencher molecule. We provide computational and experimental evidence that there are two basic mechanisms for the true quenching of 1n,pi* states both based on unsuccessful chemical reactions. The first mechanism is based upon an unsuccessful hydrogen atom transfer and may occur through two different (direct and stepwise) routes. The second mechanism is based on an unsuccessful charge transfer reaction that occurs exclusively in a direct fashion. We show that the efficiency of the two quenching mechanisms is substantially due to the existence of two different types of conical intersections between the excited and ground state potential energy surfaces of the reacting bimolecular system.

  5. Photoacoustic imaging of the excited state lifetime of fluorophores

    NASA Astrophysics Data System (ADS)

    Märk, Julia; Schmitt, Franz-Josef; Laufer, Jan

    2016-05-01

    Photoacoustic (PA) imaging using pump-probe excitation has been shown to allow the detection and visualization of fluorescent contrast agents. The technique relies upon inducing stimulated emission using pump and probe pulses at excitation wavelengths that correspond to the absorption and fluorescence spectra. By changing the time delay between the pulses, the excited state lifetime of the fluorophore is modulated to vary the amount of thermalized energy, and hence PA signal amplitude, to provide fluorophore-specific PA contrast. In this study, this approach was extended to the detection of differences in the excited state lifetime of fluorophores. PA waveforms were measured in solutions of a near-infrared fluorophore using simultaneous and time-delayed pump-probe excitation. The lifetime of the fluorophore solutions was varied by using different solvents and quencher concentrations. By calculating difference signals and by plotting their amplitude as a function of pump-probe time delay, a correlation with the excited state lifetime of the fluorophore was observed. The results agreed with the output of a forward model of the PA signal generation in fluorophores. The application of this method to tomographic PA imaging of differences in the excited state lifetime was demonstrated in tissue phantom experiments.

  6. Optically excited states in positronium

    NASA Technical Reports Server (NTRS)

    Howell, R. H.; Ziock, Klaus P.; Magnotta, F.; Dermer, Charles D.; Failor, R. A.; Jones, K. M.

    1990-01-01

    Optical excitation are reported of the 1 3S-2 3P transition in positronium, and a second excitation from n=2 to higher n states. The experiment used light from two pulsed dye lasers. Changes in the positronium annihilation rate during and after the laser pulse were used to deduce the excited state populations. The n=2 level was found to be saturable and excitable to a substantial fraction of n=2 positronium to higher levels. Preliminary spectroscopic measurements were performed on n=14 and n=15 positronium.

  7. Study of intermediates from transition metal excited-state electron-transfer reactions

    SciTech Connect

    Hoffman, M.Z.

    1992-07-31

    Conventional and fast-kinetics techniques of photochemistry, photophysics, radiation chemistry, and electrochemistry were used to study the intermediates involved in transition metal excited-state electron-transfer reactions. These intermediates were excited state of Ru(II) and Cr(III) photosensitizers, their reduced forms, and species formed in reactions of redox quenchers and electron-transfer agents. Of particular concern was the back electron-transfer reaction between the geminate pair formed in the redox quenching of the photosensitizers, and the dependence of its rate on solution medium and temperature in competition with transformation and cage escape processes. (DLC)

  8. Dynamics of excited molecular states

    NASA Astrophysics Data System (ADS)

    Meyer, Hans-Dieter

    2005-01-01

    The photo-excitation or photo-ionization of a polyatomic molecule is typically accompanied by a strong excitation of the vibrational modes. In particular when a conical intersection of the electronic potential energy surfaces involved lies within or close to the Frank-Condon zone, the nuclear motion becomes very complicated, often chaotic, and the spectra become irregular and dense. An accurate simulation of the dynamics of such excited molecules requires firstly that the multi-dimensional and multi-state potential energy surface - or a reliable model thereof - can be determined. Secondly, the multi-dimensional quantum dynamics have to be solved. This is a very difficult task, because of the high dimensionality of the problem (6 to 30 degrees of freedom, say). The multi-configuration time-dependent Hartree (MCTDH) method has proven to be very useful for the study of such problems. In fact, an accurate treatment of the quantal dynamics of molecules like the allene cation (C3 H+4, 15D), the butatriene cation (C4 H+4, 18D), or the pyrazine molecule (C4N2H4, 24D) in their full dimensionality, is - up to date - only possible with MCTDH. (The acronym n D denotes the dimensionality.) The construction of the vibronic model Hamiltonian and the MCTDH method will be briefly discussed. After this, the excited state dynamics of the butatriene and pyrazine molecules will be discussed.

  9. Excited states in 129I

    NASA Astrophysics Data System (ADS)

    Deleanu, D.; Balabanski, D. L.; Venkova, Ts.; Bucurescu, D.; Mărginean, N.; Ganioǧlu, E.; Căta-Danil, Gh.; Atanasova, L.; Căta-Danil, I.; Detistov, P.; Filipescu, D.; Ghiţă, D.; Glodariu, T.; Ivaşcu, M.; Mărginean, R.; Mihai, C.; Negret, A.; Pascu, S.; Sava, T.; Stroe, L.; Suliman, G.; Zamfir, N. V.

    2013-01-01

    Excited states in 129I were populated with the 124Sn(7Li,2n) reaction at 23 MeV. In-beam measurements of γ-ray coincidences were performed with an array of eight HPGe detectors and five LaBr3(Ce) scintillation detectors. Based on the γγ coincidence data, a positive parity band structure built on the 7/2+ ground state was established and the πg7/2 configuration at oblate deformation was assigned to it. The results are compared to interacting Boson-Fermion model (IBFM) and total Routhian surface (TRS) calculations.

  10. Theoretical studies of electronically excited states

    SciTech Connect

    Besley, Nicholas A.

    2014-10-06

    Time-dependent density functional theory is the most widely used quantum chemical method for studying molecules in electronically excited states. However, excited states can also be computed within Kohn-Sham density functional theory by exploiting methods that converge the self-consistent field equations to give excited state solutions. The usefulness of single reference self-consistent field based approaches for studying excited states is demonstrated by considering the calculation of several types of spectroscopy including the infrared spectroscopy of molecules in an electronically excited state, the rovibrational spectrum of the NO-Ar complex, core electron binding energies and the emission spectroscopy of BODIPY in water.

  11. Photochemistry of excited-state species in natural waters: a role for particulate organic matter.

    PubMed

    Cottrell, Barbara A; Timko, Stephen A; Devera, Lianne; Robinson, Alice K; Gonsior, Michael; Vizenor, Ashley E; Simpson, André J; Cooper, William J

    2013-09-15

    Laser flash photolysis (LFP) was used to characterize a triplet excited state species isolated from Black River and San Joaquin wetlands particulate organic matter (POM). The solubilized organic matter, isolated from POM by pH-independent diffusion in distilled water, was named PdOM. UV-visible absorption spectroscopy, excitation-emission matrix spectroscopy (EEMs), and (1)H NMR were used to characterize the PdOM. While LFP of dissolved organic matter (DOM) is known to generate the solvated electron, LFP of the PdOM transient in argon-, air-, and nitrous oxide-saturated solutions indicated that this was a triplet excited state species ((3)PdOM*). The lifetime and the reactivity of (3)PdOM* with sorbic acid, a triplet state quencher, were compared with that of the triplet excited state of benzophenone, a DOM proxy. A second excited state species (designated DOM*), with a longer lifetime, was reported in a number of previous studies but not characterized. The lifetime of DOM*, measured for seventeen organic matter isolates, lignin, tannic acid, and three wetlands plant extracts, was shown to differentiate allochthonous from autochthonous DOM. (3)POM* and DOM* were also observed in lake water and a constructed wetlands' water. Aqueous extracts of fresh and aged plant material from the same wetland were shown to be one source of these excited state species. This study provides evidence of a role for POM in the photochemistry of natural and constructed wetland waters.

  12. Single determinant calculations of excited state polarizabilities

    NASA Astrophysics Data System (ADS)

    Jonsson, Dan; Norman, Patrick; Ågren, Hans

    1997-12-01

    We apply response theory to simulate excited state polarizabilities emphasizing the possibility to do so by means of optimization of a ground state single determinant only. The excited state polarizabilities are given by the double residues of the cubic response functions. A set of molecules with varying ground state configurations and properties have been considered: water, ozone, formaldehyde, ethylene, butadiene, cyclobutadiene, pyridine, pyrazine and s-tetrazine. The results have been compared to excited state experiments where available and with linear response calculations of the multi-determinant optimized excited state. It is shown that calculations of excited state polarizabilities based on a ground state optimized single determinant work well for most of the cases investigated. This contention is exemplified by the fact the gas phase value from an electrochromism experiment for the polarizability of the 1 1B2 excited state of formaldehyde is better reproduced by ground state cubic response theory than by the corresponding separate state linear response function calculation, and by that the calculations call for an experimental reinvestigation of the excited state polarizabilities of s-tetrazine. A few prerequisites are given: The excited state should be isolated in energy, the ordering of the main contributing states should be reproduced, and the geometric conformation of the excited state in question should not be very different from the ground state geometry. The computational and formal advantages of the approach are discussed.

  13. Resource Paper: Molecular Excited State Relaxation Processes.

    ERIC Educational Resources Information Center

    Rhodes, William

    1979-01-01

    Develops the concept of oscillatory v dissipative limits as it applies to electronic excited state processes in molecular systems. Main emphasis is placed on the radiative and nonradiative dynamics of the excited state of a molecule prepared by interaction with light or some other excitation source. (BT)

  14. Study of intermediates from transition metal excited-state electron-transfer reactions

    SciTech Connect

    Hoffman, M.Z.

    1991-12-31

    During this period, conventional and fast-kinetics techniques of photochemistry, photophysics, radiation chemistry, and electrochemistry were used for the characterization of the intermediates that are involved in transition metal excited-state electron-transfer reactions. The intermediates of interest were the excited states of Ru(II) and Cr(III) photosensitizers, their reduced forms, and the species formed in the reactions of redox quenchers and electron-transfer agents. Of particular concern has been the back electron-transfer reaction between the geminate pair formed in the redox quenching of the photosensitizers, and the dependence of its rate on solution medium and temperature in competition with transformation and cage escape processes.

  15. Multimode optical fibers: steady state mode exciter.

    PubMed

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  16. Excited-to-excited-state scattering using weak measurements

    NASA Astrophysics Data System (ADS)

    U, Satya Sainadh; Narayanan, Andal

    2015-11-01

    Weak measurements are a subset of measurement processes in quantum mechanics wherein the system, which is being measured, interacts very weakly with the measuring apparatus. Measurement values of observables undergoing a weak interaction and their amplification are concepts that have sharpened our understanding of interaction processes in quantum mechanics. Recent experiments show that naturally occurring processes such as resonance fluorescence from excited states of an atom can exhibit weak value amplification effect. In this paper we theoretically analyze the process of elastic resonance fluorescence from a V -type three-level atomic system, using the well-known Weiskopff-Wigner (WW) theory of spontaneous emission. Within this theory we show that a weak interaction regime can be identified and for suitable choices of initial and final excited states the mean scattering time between these states show an amplification effect during interaction with the vacuum bath modes of the electromagnetic field. We thus show that a system-bath interaction can show weak value amplification. Using our theory we reproduce the published experimental results carried out in such a system. More importantly, our theory can calculate scattering time scales in elastic resonance scattering between multiple excited states of a single atom or between common excited state configurations of interacting multiatom systems.

  17. Excited States of Non-Isolated Chromophores

    NASA Astrophysics Data System (ADS)

    Matsika, S.; Kozak, C.; Kistler, K.

    2009-06-01

    The photophysical and photochemical behavior of nucleobases is very important because of their biological role as the building blocks in DNA and RNA. Great progress has been made in understanding the excited-state properties of single bases. In order to understand the photophysical properties of nucleobases in complex environments we have investigated their excited states (a) in aqueous solutions and (b) as π-stacked dimers in DNA. The solvatochromic shifts of the excited states of pyrimidine nucleobases in aqueous solution have been investigated using a combined QM/MM procedure where the quantum mechanical solute is described using high level multireference configuration interaction methods while molecular dynamics simulations are used to obtain the structure of the solvent around the solute in an average way. The excited states of π-stacked nucleobases have also been investigated using various ab initio methods. The effect of the environment on the excited states and conical intersections is investigated.

  18. Local pair natural orbitals for excited states

    NASA Astrophysics Data System (ADS)

    Helmich, Benjamin; Hättig, Christof

    2011-12-01

    We explore how in response calculations for excitation energies with wavefunction based (e.g., coupled cluster) methods the number of double excitation amplitudes can be reduced by means of truncated pair natural orbital (PNO) expansions and localized occupied orbitals. Using the CIS(D) approximation as a test model, we find that the number of double excitation amplitudes can be reduced dramatically with minor impact on the accuracy if the excited state wavefunction is expanded in state-specific PNOs generated from an approximate first-order guess wavefunction. As for ground states, the PNO truncation error can also for excitation energies be controlled by a single threshold related to generalized natural occupation numbers. The best performance is found with occupied orbitals which are localized by the Pipek-Mezey localization. For a large test set of excited states we find with this localization that already a PNO threshold of 10-8-10-7, corresponding to an average of only 40-80 PNOs per pair, is sufficient to keep the PNO truncation error for vertical excitation energies below 0.01 eV. This is a significantly more rapid convergence with the number doubles amplitudes than in domain-based local response approaches. We demonstrate that the number of significant excited state PNOs scales asymptotically linearly with the system size in the worst case of completely delocalized excitations and sub-linearly whenever the chromophore does not increase with the system size. Moreover, we observe that the flexibility of state-specific PNOs to adapt to the character of an excitation allows for an almost unbiased treatment of local, delocalized and charge transfer excited states.

  19. Local pair natural orbitals for excited states.

    PubMed

    Helmich, Benjamin; Hättig, Christof

    2011-12-07

    We explore how in response calculations for excitation energies with wavefunction based (e.g., coupled cluster) methods the number of double excitation amplitudes can be reduced by means of truncated pair natural orbital (PNO) expansions and localized occupied orbitals. Using the CIS(D) approximation as a test model, we find that the number of double excitation amplitudes can be reduced dramatically with minor impact on the accuracy if the excited state wavefunction is expanded in state-specific PNOs generated from an approximate first-order guess wavefunction. As for ground states, the PNO truncation error can also for excitation energies be controlled by a single threshold related to generalized natural occupation numbers. The best performance is found with occupied orbitals which are localized by the Pipek-Mezey localization. For a large test set of excited states we find with this localization that already a PNO threshold of 10(-8)-10(-7), corresponding to an average of only 40-80 PNOs per pair, is sufficient to keep the PNO truncation error for vertical excitation energies below 0.01 eV. This is a significantly more rapid convergence with the number doubles amplitudes than in domain-based local response approaches. We demonstrate that the number of significant excited state PNOs scales asymptotically linearly with the system size in the worst case of completely delocalized excitations and sub-linearly whenever the chromophore does not increase with the system size. Moreover, we observe that the flexibility of state-specific PNOs to adapt to the character of an excitation allows for an almost unbiased treatment of local, delocalized and charge transfer excited states.

  20. Study of intermediates from transition metal excited-state electron-transfer reactions. [Annual] progress report, August 1, 1989--July 31, 1992

    SciTech Connect

    Hoffman, M.Z.

    1992-07-31

    Conventional and fast-kinetics techniques of photochemistry, photophysics, radiation chemistry, and electrochemistry were used to study the intermediates involved in transition metal excited-state electron-transfer reactions. These intermediates were excited state of Ru(II) and Cr(III) photosensitizers, their reduced forms, and species formed in reactions of redox quenchers and electron-transfer agents. Of particular concern was the back electron-transfer reaction between the geminate pair formed in the redox quenching of the photosensitizers, and the dependence of its rate on solution medium and temperature in competition with transformation and cage escape processes. (DLC)

  1. Energy conversion based on molecular excited states: Redox splitting in soluble polymers. Final report

    SciTech Connect

    Meyer, T.J.

    1995-12-31

    A general method was developed for preparing complexes of Ru(II) with three different bidentate ligands; it is being extended to monodentate ligands for more synthetic versatility. This method was used to prepare a series of complexes with pre-designed absorption properties, with the goal of ``black absorbers`` for use as antenna chromophores in a light-to-chemical energy conversion array. The energy gap law for nonradiative decay was studied for preparing near-IR luminophores with long excited state lifetimes. The problem of destructive dd excited states in Ru(II) polypyridyl complexes was focused on, with success in preparing an extremely photo-inert complex with monodentate pyridine ligands. Time-resolved resonance Raman and infrared spectroscopy were used to study subtle excited state properties of complexes of Ru(II), Os(II), and Re(I). Success was achieved in controlled immobilization of d{sup 6} chromophores and quenchers on styrenic polymers. Having perfected our synthetic technique, we have begun to optimize the ground and excited state properties such as chromophore density, dipole orientation, and lifetime.

  2. Hydrogen Bonds in Excited State Proton Transfer

    NASA Astrophysics Data System (ADS)

    Horke, D. A.; Watts, H. M.; Smith, A. D.; Jager, E.; Springate, E.; Alexander, O.; Cacho, C.; Chapman, R. T.; Minns, R. S.

    2016-10-01

    Hydrogen bonding interactions between biological chromophores and their surrounding protein and solvent environment significantly affect the photochemical pathways of the chromophore and its biological function. A common first step in the dynamics of these systems is excited state proton transfer between the noncovalently bound molecules, which stabilizes the system against dissociation and principally alters relaxation pathways. Despite such fundamental importance, studying excited state proton transfer across a hydrogen bond has proven difficult, leaving uncertainties about the mechanism. Through time-resolved photoelectron imaging measurements, we demonstrate how the addition of a single hydrogen bond and the opening of an excited state proton transfer channel dramatically changes the outcome of a photochemical reaction, from rapid dissociation in the isolated chromophore to efficient stabilization and ground state recovery in the hydrogen bonded case, and uncover the mechanism of excited state proton transfer at a hydrogen bond, which follows sequential hydrogen and charge transfer processes.

  3. Targeting individual excited states in DMRG.

    NASA Astrophysics Data System (ADS)

    Dorando, Jonathan; Hachmann, Johannes; Kin-Lic Chan, Garnet

    2007-03-01

    The low-lying excited states of π-conjugated molecules are important for the development of novel devices such as lasers, light-emitting diodes, photovoltaic cells, and field-effect transistors [1,2]. The ab-intio Density Matrix Renormalization Group (DMRG) provides a powerful way to explore the electronic structure of quasi-one-dimensional systems such as conjugated organic oligomers. However, DMRG is limited to targeting only low-lying excited states through state-averaged DMRG (SDMRG). There are several drawbacks; state-averaging degrades the accuracy of the excited states and is limited to at most a few of the low-lying states [3]. In this study, we present a new method for targeting higher individual excited states. Due to progress in the field of numerical analysis presented by Van Der Horst and others [4], we are able to target individual excited states of the Hamiltonian. This is accomplished by modifying the Jacobi-Davidson algorithm via a ``Harmonic Ritz'' procedure. We will present studies of oligoacenes and polyenes that compare the accuracy of SDMRG and Harmonic Davidson DMRG. [1] Burroughes, et al. , Nature 347, 539 (1990). [2] Shirota, J. Mater. Chem. 10, 1, (2000). [3] Ramasesha, Pati, Krishnamurthy, Shuai, Bredas, Phys. Rev. B. 54, 7598, (1997). [4] Bai, Demmel, Dongarra, Ruhe, Van Der Horst, Templates for the Solution of Algebraic Eigenvalue Problems, SIAM, 2000.

  4. Charmonium excited state spectrum in lattice QCD

    SciTech Connect

    Jozef Dudek; Robert Edwards; Nilmani Mathur; David Richards

    2008-02-01

    Working with a large basis of covariant derivative-based meson interpolating fields we demonstrate the feasibility of reliably extracting multiple excited states using a variational method. The study is performed on quenched anisotropic lattices with clover quarks at the charm mass. We demonstrate how a knowledge of the continuum limit of a lattice interpolating field can give additional spin-assignment information, even at a single lattice spacing, via the overlap factors of interpolating field and state. Excited state masses are systematically high with respect to quark potential model predictions and, where they exist, experimental states. We conclude that this is most likely a result of the quenched approximation.

  5. Coulomb excitation of states in 232Th

    NASA Astrophysics Data System (ADS)

    McGowan, F. K.; Milner, W. T.

    1993-09-01

    Twenty-five states in 232Th have been observed with 18 MeV 4He ions on a thick target. Eleven 2 + states between 774 and 1554 keV and three 3 - states are populated by direct E2 and E3, respectively. The remaining states are either weakly excited by multiple Coulomb excitation and/or populated by the decay of the directly excited states. Spin assignments are based on γ-ray angular distributions. Reduced transition probabilities have been deduced from the γ-ray yields. The B(E2) values for excitation of the 2 + states range from 0.024 to 3.5 W.u. (222 W.u. for the first 2 + state). For the 3 - states, the B(E3,0 → 3 -) values are 1.7, 11, and 24 W.u. A possible two-phonon state at 1554 keV, which is nearly harmonic, decays to four members of the one-phonon states, to the ground-state band, and to the K = 0 - octupole band. The B(E2) value for excitation of this state is 0.66 ± 0.05 W.u. and the B(E1) values for decay of this state are (2 and 6)×10 -4 W.u. The B(E2) values between two- and one-phonon vibrational states range between 16 and 53 W.u. which are an order of magnitude larger than the B(E2) values between the one- and zero-phonon states. This disagrees with our present understanding of collectivity in nuclei if this 2 + state is considered to be a collective two-phonon excitation. The 2 + states at 1477 and 1387 keV, which are also nearly harmonic, are possible candidates with two-phonon structure. The agreement between the experimental results and the microscopic calculations by Neergård and Vogel of the B(E3,0 → 3) for the 3 - members of the one-phonon octupole quadruplet is satisfactory when the Coriolis coupling between the states with K and K ± 1 is included. The B(E1) branching ratios for transitions from the 3 - and 1 - states to the ground-state band have large deviations from the Alaga-rule predictions. These deviations can be understood by the strong Coriolis coupling between the states of the octupole quadruplet in deformed nuclei.

  6. Excited-state imaging of cold atoms

    NASA Astrophysics Data System (ADS)

    Sheludko, David V.; Bell, Simon C.; Vredenbregt, Edgar J. D.; Scholten, Robert E.

    2007-09-01

    We have investigated state-selective diffraction contrast imaging (DCI) of cold 85Rb atoms in the first excited (52P3/2) state. Excited-state DCI requires knowledge of the complex refractive index of the atom cloud, which was calculated numerically using a semi-classical model. The Autler-Townes splitting predicted by the model was verified experimentally, showing excellent agreement. 780 nm lasers were used to cool and excite atoms within a magneto-optical trap, and the atoms were then illuminated by a 776 nm imaging laser. Several excited-state imaging techniques, including blue cascade fluorescence, on-resonance absorption, and DCI have been demonstrated. Initial results show that improved signal-to-noise ratio (SNR) will be required to accurately determine the excited state fraction. We have demonstrated magnetic field gradient compression of the cold atom cloud, and expect that further progress on compression and additional cooling will achieve sufficient diffraction contrast for quantitative state-selective imaging.

  7. Triplet excited States as a source of relevant (bio)chemical information.

    PubMed

    Jiménez, M Consuelo; Miranda, Miguel A

    2014-01-01

    The properties of triplet excited states are markedly medium-dependent, which turns this species into valuable tools for investigating the microenvironments existing in protein binding pockets. Monitoring of the triplet excited state behavior of drugs within transport proteins (serum albumins and α1-acid glycoproteins) by laser flash photolysis constitutes a valuable source of information on the strength of interaction, conformational freedom and protection from oxygen or other external quenchers. With proteins, formation of spatially confined triplet excited states is favored over competitive processes affording ionic species. Remarkably, under aerobic atmosphere, the triplet decay of drug@protein complexes is dramatically longer than in bulk solution. This offers a convenient dynamic range for assignment of different triplet populations or for stereochemical discrimination. In this review, selected examples of the application of the laser flash photolysis technique are described, including drug distribution between the bulk solution and the protein cavities, or between two types of proteins, detection of drug-drug interactions inside proteins, and enzyme-like activity processes mediated by proteins. Finally, protein encapsulation can also modify the photoreactivity of the guest. This is illustrated by presenting an example of retarded photooxidation.

  8. Electron excitation from ground state to first excited state: Bohmian mechanics method

    NASA Astrophysics Data System (ADS)

    Yang, Song; Shuang, Zhao; Fu-Ming, Guo; Yu-Jun, Yang; Su-Yu, Li

    2016-03-01

    The excitation process of electrons from the ground state to the first excited state via the resonant laser pulse is investigated by the Bohmian mechanics method. It is found that the Bohmian particles far away from the nucleus are easier to be excited and are excited firstly, while the Bohmian particles in the ground state is subject to a strong quantum force at a certain moment, being excited to the first excited state instantaneously. A detailed analysis for one of the trajectories is made, and finally we present the space and energy distribution of 2000 Bohmian particles at several typical instants and analyze their dynamical process at these moments. Project supported by the Doctoral Research Start-up Funding of Northeast Dianli University, China (Grant No. BSJXM-201332), the National Natural Science Foundation of China (Grant Nos. 11547114, 11534004, 11474129, 11274141, 11447192, and 11304116), and the Graduate Innovation Fund of Jilin University, China (Grant No. 2015091).

  9. Coulomb excitation of states in 238U

    NASA Astrophysics Data System (ADS)

    McGowan, F. K.; Milner, W. T.

    1994-05-01

    Twenty-two states in 238U have been observed with 18 MeV 4He ions on a thick target. Eight 2 + states between 966 and 1782 keV and three 3 - states are populated by direct E2 and E3, respectively. The remaining states are either weakly excited by multiple Coulomb excitation and /or populated by the γ-ray decay of the directly excited states. Spin assignments are based on γ-ray angular distributions. Reduced transition probabilities have been deduced from the γ-ray yields. The B(E2) values for excitation of the 2 + states range from 0.10 to 3.0 W.u. (281 W.u. for the first 2 + state). For the 3 states, the B(E3, 0 → 3 -) values are 7.1, 7.8, and 24.2 W.u. Several of the 2 + states have decay branches to the one-phonon states with B(E2) values between 27 and 56 W.u. which are an order of magnitude larger than the B(E2) values between the one- and zero-phonon states. This disagrees with our present understanding of collectivity in nuclei if these 2 + states are considered to be collective two-phonon excitations. However, the excitation energies of these 2 + states with respect to the one-phonon states are only 1.3 to 1.6. The B(E1) values for 17 transitions between the positive- and negative-parity states range between 10 -3 and 10 -7 W.u. The B(E1) branching ratios for many of these transitions have large deviations from the Alaga-rule predictions. These deviations can be understood by the strong Coriolis coupling between the states of the one-phonon octupole quadruplet in deformed nuclei. The general features of the experimental results for the B(E3) values are reproduced by the microscopic calculations of Neergård and Vogel when the Coriolis coupling between the states of the octupole quadruplet is included.

  10. Fluorophore-Quencher Pair For Monitoring Protein Motion

    PubMed Central

    Tahmassebi, Deborah C.; Millar, David P.

    2009-01-01

    A fluorophore/quencher pair capable of detecting conformational changes of DNA-protein complexes is described. The system employs a fluorescent nucleoside analog 1,3-diaza-2-oxophenothiazine (tC) within duplex DNA and a non-fluorescent quencher (TEMPO) attached to an engineered cysteine residue of the protein. The straightforward labeling methodology allows for the placement of the fluorophore and quencher moieties at specific positions suited to studying the conformational change of interest. To illustrate the utility of the tC-TEMPO pair, we have monitored nucleotide-induced conformational changes of the Klenow fragment (KF) polymerase bound to duplex DNA. In this system, tC was incorporated in the primer strand of the duplex, adjacent to the 3’ end, while TEMPO was positioned at the end of the O-helix within the fingers domain of KF. Using steady-state fluorescence spectroscopy, we measured the quenching efficiency in a binary complex of tC-modified DNA and TEMPO-labeled KF and in ternary complexes containing cognate or non-cognate dNTP substrates. The quenching efficiency is significantly enhanced in the presence of a cognate dNTP, indicating that the O-helix has moved closer towards the DNA. In contrast, no significant tC quenching is observed in the presence of a non-cognate dNTP, indicating that the O-helix remains in a position that is beyond the distance reporting range of the tC-TEMPO pair. These results demonstrate that a cognate dNTP substrate induces a large conformational change of the O-helix, which can be sensitively detected using the tC-TEMPO pair. This fluorophore/quencher pair may be useful to study conformational changes associated with other DNA-enzyme complexes. PMID:19167347

  11. Computing correct truncated excited state wavefunctions

    NASA Astrophysics Data System (ADS)

    Bacalis, N. C.; Xiong, Z.; Zang, J.; Karaoulanis, D.

    2016-12-01

    We demonstrate that, if a wave function's truncated expansion is small, then the standard excited states computational method, of optimizing one "root" of a secular equation, may lead to an incorrect wave function - despite the correct energy according to the theorem of Hylleraas, Undheim and McDonald - whereas our proposed method [J. Comput. Meth. Sci. Eng. 8, 277 (2008)] (independent of orthogonality to lower lying approximants) leads to correct reliable small truncated wave functions. The demonstration is done in He excited states, using truncated series expansions in Hylleraas coordinates, as well as standard configuration-interaction truncated expansions.

  12. Energy transfer, excited-state deactivation, and exciplex formation in artificial caroteno-phthalocyanine light-harvesting antennas.

    PubMed

    Berera, Rudi; van Stokkum, Ivo H M; Kodis, Gerdenis; Keirstead, Amy E; Pillai, Smitha; Herrero, Christian; Palacios, Rodrigo E; Vengris, Mikas; van Grondelle, Rienk; Gust, Devens; Moore, Thomas A; Moore, Ana L; Kennis, John T M

    2007-06-21

    We present results from transient absorption spectroscopy on a series of artificial light-harvesting dyads made up of a zinc phthalocyanine (Pc) covalently linked to carotenoids with 9, 10, or 11 conjugated carbon-carbon double bonds, referred to as dyads 1, 2, and 3, respectively. We assessed the energy transfer and excited-state deactivation pathways following excitation of the strongly allowed carotenoid S2 state as a function of the conjugation length. The S2 state rapidly relaxes to the S* and S1 states. In all systems we detected a new pathway of energy deactivation within the carotenoid manifold in which the S* state acts as an intermediate state in the S2-->S1 internal conversion pathway on a sub-picosecond time scale. In dyad 3, a novel type of collective carotenoid-Pc electronic state is observed that may correspond to a carotenoid excited state(s)-Pc Q exciplex. The exciplex is only observed upon direct carotenoid excitation and is nonfluorescent. In dyad 1, two carotenoid singlet excited states, S2 and S1, contribute to singlet-singlet energy transfer to Pc, making the process very efficient (>90%) while for dyads 2 and 3 the S1 energy transfer channel is precluded and only S2 is capable of transferring energy to Pc. In the latter two systems, the lifetime of the first singlet excited state of Pc is dramatically shortened compared to the 9 double-bond dyad and model Pc, indicating that the carotenoid acts as a strong quencher of the phthalocyanine excited-state energy.

  13. Paramagnetic excited vortex states in superconductors

    NASA Astrophysics Data System (ADS)

    Gomes, Rodolpho Ribeiro; Doria, Mauro M.; Romaguera, Antonio R. de C.

    2016-06-01

    We consider excited vortex states, which are vortex states left inside a superconductor once the external applied magnetic field is switched off and whose energy is lower than of the normal state. We show that this state is paramagnetic and develop here a general method to obtain its Gibbs free energy through conformal mapping. The solution for any number of vortices in any cross-section geometry can be read off from the Schwarz-Christoffel mapping. The method is based on the first-order equations used by Abrikosov to discover vortices.

  14. Excited triplet state spectroscopy in the infrared

    NASA Astrophysics Data System (ADS)

    Baiardo, Joseph; Mukherjee, Ranajit; Vala, Martin

    1982-03-01

    A new method for the investigation of the infrared spectra of metastable excitedelectronic states is presented. With a Fourier Transform infrared spectrometer as the probe and a CW Xe lamp source as the pump, the infrared spectrum of the lowest triplet state of triphenylene isolated in a N 2 matrix at 15K has been examined. CH out-of-plane wagging modes are prominent and shifted from their ground state frequencies. It is expected that when fully developed this method will provide important information on excited state force constants and potential energy surfaces.

  15. On the Electronically Excited States of Uracil

    SciTech Connect

    Epifanovsky, Evgeny; Kowalski, Karol; Fan, Peng-Dong; Valiev, Marat; Matsika, Spiridoula; Krylov, Anna

    2008-10-09

    Vertical excitation energies in uracil in the gas phase and in water solution are investigated by the equation-of-motion coupled-cluster and multi-reference configuration interaction methods. Basis set effects are found to be important for converged results. The analysis of electronic wave functions reveals that the lowest singlet states are predominantly of a singly excited character and are therefore well described by single-reference equation-of-motion methods augmented by a perturbative triples correction to account for dynamical correlation. Our best estimates for the vertical excitation energies for the lowest singlet n and are 5.0±0.1 eV and 5.3±0.1 eV, respectively. The solvent effects for these states are estimated to be +0.5 eV and ±0.1 eV, respectively. We attribute the difference between the computed vertical excitations and the maximum of the experimental absorption to strong vibronic interaction between the lowest A00 and A0 states leading to intensity borrowing by the forbidden transition.

  16. STIRAP on helium: Excitation to Rydberg states

    NASA Astrophysics Data System (ADS)

    Yuan, Deqian

    Research in optically induced transitions between dierent atomic levels has a long history. For transitions between states driven by a coherent optical eld, the theoretical eciency could be ideally high as 100% but there could be many factors preventing this. In the three state helium atom excitation process, i.e. 23S→33P→nL , the stimulated emission from intermediate state makes it hard to achieve ecient population transfer to the nal state through an intuitive excitation order. One technique to achieve a higher eciency is Stimulated Raman Adiabatic Passage (STIRAP) which is being studied and under research in our lab. Unlike traditional three level excitation processes, STIRAP actually uses a counter intuitive pulsed laser beams timing arrangement. The excitation objects are metastable helium atoms traveling in a vacuum system with a longitudinal velocity of ~ 1070 m/s. We are using a 389 nm UV laser to connect the 23S and the 33P state and a frequency tunable ~790 nm IR laser to connect the 33P state and the dierent Rydberg states. A third 1083 nm wavelength laser beam drives the 23S → 23P transition to transversely separate the residual metastable atoms and the Rydberg atoms for eciency measurements. The data is taken by a stainless steel detector in the vacuum system. As the Rydberg atoms will get ionized by blackbody radiation under room temperature, we can utilize this for their detection. An ion detector sitting on the eld plate is capable to collect the ion signals of the Rydberg atoms for detection. So far the whole system has not been ready for data collection and measurement, so here we are using data and results from previous theses for discussions. The highest transition frequency that has ever been achieved in our lab is around 70% after corrections.

  17. Accelerating slow excited state proton transfer

    PubMed Central

    Stewart, David J.; Concepcion, Javier J.; Brennaman, M. Kyle; Binstead, Robert A.; Meyer, Thomas J.

    2013-01-01

    Visible light excitation of the ligand-bridged assembly [(bpy)2RuaII(L)RubII(bpy)(OH2)4+] (bpy is 2,2′-bipyridine; L is the bridging ligand, 4-phen-tpy) results in emission from the lowest energy, bridge-based metal-to-ligand charge transfer excited state (L−•)RubIII-OH2 with an excited-state lifetime of 13 ± 1 ns. Near–diffusion-controlled quenching of the emission occurs with added HPO42− and partial quenching by added acetate anion (OAc−) in buffered solutions with pH control. A Stern–Volmer analysis of quenching by OAc− gave a quenching rate constant of kq = 4.1 × 108 M−1⋅s−1 and an estimated pKa* value of ∼5 ± 1 for the [(bpy)2RuaII(L•−)RubIII(bpy)(OH2)4+]* excited state. Following proton loss and rapid excited-state decay to give [(bpy)2RuaII(L)RubII(bpy)(OH)3+] in a H2PO4−/HPO42− buffer, back proton transfer occurs from H2PO4− to give [(bpy)2RuaII(L)Rub(bpy)(OH2)4+] with kPT,2 = 4.4 × 108 M−1⋅s−1. From the intercept of a plot of kobs vs. [H2PO4−], k = 2.1 × 106 s−1 for reprotonation by water providing a dramatic illustration of kinetically limiting, slow proton transfer for acids and bases with pKa values intermediate between pKa(H3O+) = −1.74 and pKa(H2O) = 15.7. PMID:23277551

  18. Photoionization of aligned molecular excited states

    NASA Astrophysics Data System (ADS)

    Appling, J. R.; White, M. G.; Kessler, W. J.; Fernandez, R.; Poliakoff, E. D.

    1988-02-01

    Photoelectron angular distributions of several excited states of NO have been measured in an effort to better elucidate the role of alignment in resonant multiphoton excitation processes of molecules. In contrast to previous molecular REMPI measurements on NO, (2+1) angular distributions taken for low rotational levels of the E 2Σ+ (4sσ) Rydberg state of NO exhibit complex angular behavior which is characteristic of strong spatial alignment of the optically prepared levels. Photoelectron angular distributions were also found to be strongly branch and J dependent with the lowest rotational levels of the R21+S11 branch exhibiting the full anisotropy expected for an overall three-photon process. Fluorescence anisotropies extracted from complementary two-photon fluorescence angular distribution measurements reveal small, but nonzero alignment in all rotational levels with J>1/2, in contrast to the photoelectron results. Additional photoelectron angular distributions taken for (1+1) REMPI via the A 2Σ+ (3sσ), v=0 state exhibit near ``cos2θ'' distributions characteristic of photoionization of unaligned target states. The observed photoelectron data are qualitatively interpreted on the basis of the angular momentum constraints of the excitation-induced alignment and photoionization dynamics which determine the observable moments in the angular distribution.

  19. Photoprotective energy dissipation in higher plants involves alteration of the excited state energy of the emitting chlorophyll(s) in the light harvesting antenna II (LHCII).

    PubMed

    Johnson, Matthew P; Ruban, Alexander V

    2009-08-28

    Non-photochemical quenching (NPQ), a mechanism of energy dissipation in higher plants protects photosystem II (PSII) reaction centers from damage by excess light. NPQ involves a reduction in the chlorophyll excited state lifetime in the PSII harvesting antenna (LHCII) by a quencher. Yet, little is known about the effect of the quencher on chlorophyll excited state energy and dynamics. Application of picosecond time-resolved fluorescence spectroscopy demonstrated that NPQ involves a red-shift (60 +/- 5 cm(-1)) and slight enhancement of the vibronic satellite of the main PSII lifetime component present in intact chloroplasts. Whereas this fluorescence red-shift was enhanced by the presence of zeaxanthin, it was not dependent upon it. The red-shifted fluorescence of intact chloroplasts in the NPQ state was accompanied by red-shifted chlorophyll a absorption. Nearly identical absorption and fluorescence changes were observed in isolated LHCII complexes quenched in a low detergent media, suggesting that the mechanism of quenching is the same in both systems. In both cases, the extent of the fluorescence red-shift was shown to correlate with the lifetime of a component. The alteration in the energy of the emitting chlorophyll(s) in intact chloroplasts and isolated LHCII was also accompanied by changes in lutein 1 observed in their 77K fluorescence excitation spectra. We suggest that the characteristic red-shifted fluorescence emission reflects an altered environment of the emitting chlorophyll(s) in LHCII brought about by their closer interaction with lutein 1 in the quenching locus.

  20. Intermediate Excited States in Rhodopsin Photochemistry

    NASA Astrophysics Data System (ADS)

    Rothberg, L. J.; Yan, M.; Jedju, T. M.; Callender, R. H.; Chao, H.; Alfano, R. R.

    1996-03-01

    Recent work by Wang et.al. footnote Q. Wang et.al., Science 266, 422 (1994) reports rapid coherent photoisomerization in rhodopsin. The bathorhodopsin photoproduct appears in 200 fs and exhibits torsional oscillations which remain synchronized with the initial photoexcitation. We report transient absorption experiments which suggest that the fraction of excited rhodopsin molecules which does not isomerize in this fashion (approximately 1/3) remains in an electronically excited state, probably the twisted state described by Birge and Hubbard,footnote R. R. Birge and L. M. Hubbard, J. Am. Chem. Soc. 102, 2195 (1980) for ~ 3 ps and then reforms rhodopsin. This picture explains the long bleaching recovery time for rhodopsin and the controversial spectral dynamics which are observed in the red.

  1. Stretched-State Excitations with the

    NASA Astrophysics Data System (ADS)

    Garcia, Luis Alberto Casimiro

    Neutron time-of-fight spectra were obtained for the ^{14}C(p,n) ^{14}N, ^{18 }O(p,n)^{18}F, and ^{30}Si(p,n) ^{30}P reactions at 135 MeV with the beam-swinger system at the Indiana University Cyclotron Facility. Excitation-energy spectra and the differential cross sections for the observed excitations in these reactions were extracted over the momentum transfer range from 0 to 2.7 fm^{-1}. The primary goal of this work was to obtain the strengths and distributions for the "stretched" states. The identification of these states was based on comparisons of the theoretical differential cross sections, performed in a DWIA formalism, with the experimental cross sections. Isospin assignments were based primarily on comparisons of the measured (p,n) and (e,e^') spectroscopic strengths. Candidate (pid_ {5/2},nu{rm p}_sp {3/2}{-1}), J^ pi = 4 ^- T = 0, 1 and 2, 1 hbaromega states, were identified at E_{x} = 8.5, 13.8, 19.5, and 26.7 MeV in the ^{14}C(p,n) ^{14}N reaction, and the corresponding isovector strengths were extracted. The observed 4^--state excitation energies and the strengths are in good agreement with the analog T = 1 and 2, 4^--states observed in the (e,e^') reaction. Large -basis shell-model calculations were found to predict reasonably well the excitation energies; however, these calculations overpredict the strength by a factor of 2, for the T = 1 and 2 components. In the ^{18}O(p,n) ^{18}F reaction at 135 MeV, (pi d_{5/2},nu {rm d}_sp{5/2}{-1 }) 5^+ T = 0 0hbaromega strength was observed, concentrated in a single state, at E_{x} = 1.1 MeV, with 75% of the extreme-single-particle-model (ESPM) strength, in good agreement with a shell-model calculation. No 6^- 1hbaromega strength was observed in this reaction. Candidate (pi {rm d}_{5/2},nu p _sp{3/2}{-1}) J ^pi = 4^- T = 0, 1 and 2, 1hbaromega states, were identified at E_{x} = 3.9, 9.4, 10.2, 11.4, 12.0, 14.4, 15.3, 17.3, 18.0, 19.7, 21.4, and 23.4 MeV. The observed 4^- T = 2 state excitation energies and

  2. Excited state baryon spectroscopy from lattice QCD

    DOE PAGES

    Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; ...

    2011-10-31

    Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting ofmore » levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.« less

  3. Excited state baryon spectroscopy from lattice QCD

    SciTech Connect

    Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; Wallace, Stephen J.

    2011-10-31

    Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting of levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.

  4. Radiative and Excited State Charmonium Physics

    SciTech Connect

    Jozef Dudek

    2007-07-30

    Renewed interest in the spectroscopy of charmonium has arisen from recent unexpected observations at $e^+e^-$ colliders. Here we report on a series of works from the previous two years examining the radiative physics of charmonium states as well as the mass spectrum of states of higher spin and internal excitation. Using new techniques applied to Domain-Wall and Clover quark actions on quenched isotropic and anisotropic lattices, radiative transitions and two-photon decays are considered for the first time. Comparisons are made with experimental results and with model approaches. Forthcoming application to the light-quark sector of relevance to experiments like Jefferson Lab's GlueX is discussed.

  5. Ensemble density functional theory method correctly describes bond dissociation, excited state electron transfer, and double excitations

    SciTech Connect

    Filatov, Michael; Huix-Rotllant, Miquel; Burghardt, Irene

    2015-05-14

    State-averaged (SA) variants of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, SA-REKS and state-interaction (SI)-SA-REKS, implement ensemble density functional theory for variationally obtaining excitation energies of molecular systems. In this work, the currently existing version of the SA-REKS method, which included only one excited state into the ensemble averaging, is extended by adding more excited states to the averaged energy functional. A general strategy for extension of the REKS-type methods to larger ensembles of ground and excited states is outlined and implemented in extended versions of the SA-REKS and SI-SA-REKS methods. The newly developed methods are tested in the calculation of several excited states of ground-state multi-reference systems, such as dissociating hydrogen molecule, and excited states of donor–acceptor molecular systems. For hydrogen molecule, the new method correctly reproduces the distance dependence of the lowest excited state energies and describes an avoided crossing between the doubly excited and singly excited states. For bithiophene–perylenediimide stacked complex, the SI-SA-REKS method correctly describes crossing between the locally excited state and the charge transfer excited state and yields vertical excitation energies in good agreement with the ab initio wavefunction methods.

  6. Excited state electron affinity calculations for aluminum

    NASA Astrophysics Data System (ADS)

    Hussein, Adnan Yousif

    2017-08-01

    Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.

  7. Excited States of {sup 11}Be

    SciTech Connect

    Cappuzzello, F.; Cunsolo, A.; Fortier, S.; Foti, A.; Laurent, H.; Lenske, H.; Maison, J.M.; Melita, A.L.; Nociforo, C.; Rosier, L.; Stephan, C.; Tassan-Got, L.; Winfield, J.S.; Wolter, H.H.

    2000-12-31

    The {sup 11}B({sup 7}Li,{sup 7}Be){sup 11}Be reaction at 57 MeV incident energy was used to explore the {sup 11}Be excitation energy spectrum at forward angles. Angular distributions were extracted for the transitions to the ground and to the states of {sup 11}Be at excitation energies of E*=0.32, 1.78, 2.69, 3.41, 3.89, 3.96, 6.05 MeV combined with the ground and the first excited state of {sup 7}Be. Also the SDR [1][2] oscillation mode was observed at E*=9.5 MeV and FWHM{approx}9 MeV and a new peak at E*=6.05 MeV and FWHM{approx}0.3 MeV was observed. QRPA calculations in the G-matrix representation are in progress in order to describe the continuum structure of {sup 11}Be. DWBA calculations have been started to evaluate transferred angular momenta both in the one step and in the two steps dynamical framework.

  8. Dilute Excited States in Light Nuclei

    NASA Astrophysics Data System (ADS)

    Demyanova, A. S.; Ogloblin, A. A.; Danilov, A. N.; Goncharov, S. A.; Belyaeva, T. L.; Trzaska, W. H.

    2015-11-01

    A review of measurements of the radii of 11B, 12C and 13C nuclei in some excited states, whose structure recently attracted a lot of attention, is presented. The differential cross-sections of the inelastic α-scattering were measured. The radii values were extracted from the date using the Modified Diffraction Model (MDM). The evidence that the famous Hoyle state (0+, 7.65 MeV) in 12C has the enhanced dimensions and is the head of a new rotational band (besides the known band based on the 12C ground state) was obtained. The radius of the second 2+ member state (E* = 9.8 or 9.6 MeV) was seen to be similar to that of the Hoyle state (~3.0 fm). A 4+ state was identified at E* = 13.75 MeV. The radii of the 8.86 MeV, 1/2- state in 13C and 8.56 MeV, 3/2- state in 11B are found to be close to that of the Hoyle state and these states can be considered as analogues of the latter. Comparison of the data with the predictions of some theoretical models, e.g., alpha condensation, has been made. The obtained results show that one may speak only about rudimentary manifestation of the condensate effects.

  9. Semiclassical quantization of highly excited scar states

    NASA Astrophysics Data System (ADS)

    Vergini, Eduardo G.

    2017-04-01

    The semiclassical quantization of Hamiltonian systems with classically chaotic dynamics is restricted to low excited states, close to the ground state, because the number of required periodic orbits grows exponentially with energy. Nevertheless, here we demonstrate that it is possible to find eigenenergies of highly excited states scarred by a short periodic orbit. Specifically, by using 18146 homoclinic orbits (HO)s of the shortest periodic orbit of the hyperbola billiard, we find eigenenergies of the strongest scars over a range which includes 630 even eigenfunctions. The analysis of data reveals that the used semiclassical formula presents two regimes. First, when all HOs with excursion time smaller than the Heisenberg time t H are included, the error is around 3.3% of the mean level spacing. Second, in the energy region defined by \\tilde{t}/ tH > 0.13 , where \\tilde{t} is the maximum excursion time included in the calculation, the error is around 15% of the mean level spacing.

  10. Lifetimes of Bound Excited States of Si^-

    NASA Astrophysics Data System (ADS)

    O'Malley, Steven M.; Beck, Donald R.

    2003-05-01

    The bound excited states of Si^- lie 6955 cm-1 (^2D_3/2), 6969 cm-1 (M. Scheer et al, Phys. Rev. Lett. 80), 2562 (1998). (^2D_5/2), and 10 977 cm-1 (A. Kasden et al, J. Chem. Phys. 62), 541 (1975). (^2P_1/2) above the ^4S_3/2 ground state. Transitions from each of the bottom three levels to the ^2P_1/2 level are LS allowed (both E2 and M1) and thus relatively uncomplicated calculations, resulting in a lifetime for the ^2P_1/2 level of ˜25 s. The ^4S/^2D/^2P mixing is critical for the ^4S arrow ^2D LS forbidden transitions, and LS purity is greater than 99.5% for such a light (nonrelativistic) system. At the Dirac-Fock level we find the most important factor in the ^4S_3/2 arrow ^2D_3/2 transition is the amount of ^4S mixing in the ^2D_3/2 level. With no such ^4S component in the ^2D_5/2 level, its lifetime is over 100 000 s. Important correlation configurations which act to lower the ^2D_3/2 lifetime include the valence excitations 3p arrow p and 3p^2 arrow p^2 and the core-valence 3s,3p and 2p,3p pair excitations. Our current ^2D_3/2 lifetime in an ongoing series of calculations is ˜200 s.

  11. The polaron: Ground state, excited states, and far from equilibrium

    SciTech Connect

    Trugman, S.A.; Bonca, J. |

    1998-12-01

    The authors describe a variational approach for solving the Holstein polaron model with dynamical quantum phonons on an infinite lattice. The method is simple, fast, extremely accurate, and gives ground and excited state energies and wavefunctions at any momentum k. The method can also be used to calculate coherent quantum dynamics for inelastic tunneling and for strongly driven polarons far from equilibrium.

  12. A treatment of excited states in nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjib Shankar

    2002-10-01

    Many isotopes of importance to nucleosynthesis have metastable states whose decay to the ground state is strongly inhibited by a high angular momentum difference. Traditionally, excited states of a nucleus have been treated by assuming attainment of thermal equilibrium; a Hauser-Feshbach calculation is then performed on the whole nucleus to determine nuclear reaction rates. A description of the nucleus when it is not in equilibrium, and a method for computing reaction rates that does not presume thermalization are presented in this work. In nucleosynthesis calculations, we may characterize the internal electromagnetic transitions of a nucleus as a Markov process. This allows us to decompose the interaction of radiation with nucleons into effective interactions between ensembles. Rather than consider a single isotope, we construct the canonical ensembles which are the true nuclear species of interest. We are then in a position to specify nonequilibrium occupations of the ensembles by discretizing the Nuclear Level Density function. The generality of the stochastic process identified at the outset now permits the description of nucleosynthesis as Markov flows in networks of suitably populated ensembles. This allows us to use as many excited states as we wish in nucleosyn thesis while tracking their nonequilibrium evolution as substochastic processes. A website utilizing these principles is discussed in some detail. It accesses the theoretical NLD database from the Brussels Intitute of Astrophysics to supplement adopted experimental data from the ENSDF database (maintained by Brookhaven National Laboratories). The composite is processed by a CGI (Common Gateway Interface) application to dynamically obtain plots and tables of rates on a specified temperature grid. Beta-decay rates are discussed for an isotope important to nuclear astrophysics ( 180TA) as a test-bed for the techniques implemented.

  13. How much double excitation character do the lowest excited states of linear polyenes have?

    NASA Astrophysics Data System (ADS)

    Starcke, Jan Hendrik; Wormit, Michael; Schirmer, Jochen; Dreuw, Andreas

    2006-10-01

    Doubly excited states play important roles in the low-energy region of the optical spectra of polyenes and their investigation has been subject of theoretical and experimental studies for more than 30 years now and still is in the focus of ongoing research. In this work, we address the question why doubly excited states play a role in the low-energy region of the optical spectrum of molecular systems at all, since from a naive point of view one would expect their excitation energy approximately twice as large as the one of the corresponding single excitation. Furthermore, we show that extended-ADC(2) is well suited for the balanced calculation of the low-lying excited 21Ag-, 11Bu- and 11Bu+ states of long all- trans polyenes, which are known to possess substantial double excitation character. A careful re-investigation of the performance of TDDFT calculations for these states reveals that the previously reported good performance for the 21Ag- state relies heavily on fortuitous cancellation of errors. Finally, the title question is answered such that for short polyenes the lowest excited 21Ag- and 11Bu- states can clearly be classified as doubly excited, whereas the 11Ag- ground state is essentially represented by the (ground-state) HF determinant. For longer polyenes, in addition to increasing double excitation contributions in the 21Ag- and 11Bu- states, the ground state itself aquires substantial double excitation character (45% in C 22H 24), so that the transition from the ground state to these excited states should not be addressed as the excitation of two electrons relative to the 11Ag- ground state.

  14. Excited State Quantum-Classical Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag

    2005-05-01

    The development of a new theoretical, algorithmic, and computational framework is reported describing the corresponding excited state many-body dynamics by applying multiphysics described by classical equations of motion for nuclei and Hartree-Fock/Multi-Configuration Hartree-Fock and multiresolution techniques for solving the quantum part of the problem (i.e. the motion of the electrons). We primarily have in mind reactive and electron-transition dynamics which involves molecular clusters, containing hundreds of atoms, perturbed by a slow ionic/atomic/molecular projectile, with possible applications in plasma-surface interactions, cluster physics, chemistry and biotechnology. The validation of the developed technique is performed at three-body systems. Application to the transition dynamics in small carbon clusters and hydrocarbons perturbed by slow carbon ions resolves some long-standing issues in the ion-surface interactions in fusion tokamaks.

  15. Study of intermediates from transition metal excited-state electron-transfer reactions. Progress report, August 1, 1989--December 31, 1991

    SciTech Connect

    Hoffman, M.Z.

    1991-12-31

    During this period, conventional and fast-kinetics techniques of photochemistry, photophysics, radiation chemistry, and electrochemistry were used for the characterization of the intermediates that are involved in transition metal excited-state electron-transfer reactions. The intermediates of interest were the excited states of Ru(II) and Cr(III) photosensitizers, their reduced forms, and the species formed in the reactions of redox quenchers and electron-transfer agents. Of particular concern has been the back electron-transfer reaction between the geminate pair formed in the redox quenching of the photosensitizers, and the dependence of its rate on solution medium and temperature in competition with transformation and cage escape processes.

  16. Excited-State Proton Transfer in Indigo.

    PubMed

    Pina, J; Sarmento, Daniela; Accoto, Marco; Gentili, Pier Luigi; Vaccaro, Luigi; Galvão, Adelino; Seixas de Melo, J Sérgio

    2017-03-16

    Excited-state proton transfer (ESPT) in Indigo and its monohexyl-substituted derivative (Ind and NHxInd, respectively) in solution was investigated experimentally as a function of solvent viscosity, polarity, and temperature, and theoretically by time-dependent density functional theory (TDDFT) calculations. Although a single emission band is observed, the fluorescence decays (collected at different wavelengths along the emission band using time-correlated single photon counting (TCSPC)) are biexponential, with two identical decay times but different pre-exponential factors, which is consistent with the existence of excited-state keto and enol species. The femtosecond (fs)-transient absorption data show that two similar decay components are present, in addition to a shorter (<3 ps) component associated with vibrational relaxation. From TDDFT calculations it was shown that with both Ind and NHxInd, the reaction proceeds through a single ESPT mechanism driven by an Arrhenius-type activation through a saddle point, which is enhanced by tunneling through the barrier. From the temperature dependence of the steady-state and time-resolved fluorescence data, the activation energy for the process was found to be ∼11 kJ mol(-1) for Ind and ∼5 kJ mol(-1) for NHxInd, in close agreement with the values calculated by TDDFT: 12.3 kJ mol(-1) (Ind) and 3.1 kJ mol(-1) (NHxInd). From time-resolved data, the rate constants for the ESPT process in dimethyl sulfoxide were found to be 9.24 × 10(10) s(-1) (Ind) and 7.12 × 10(10) s(-1) (NHxInd). The proximity between the two values suggests that the proton transfer mechanism in indigo is very similar to that found in NHxInd, where a single proton is involved. In addition, with NHxInd, the TDDFT calculations, together with the viscosity dependence of the fast component, and differences in the activation energy values between the steady-state and time-resolved data indicate that an additional nonradiative process is involved, which

  17. Excited State Dynamics in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshiyuki

    2004-03-01

    Carbon nanotube, one of the most promising materials for nano-technology, still suffers from its imperfection in crystalline structure that will make performance of nanotube behind theoretical limit. From the first-principles simulations, I propose efficient methods to overcome the imperfection. I show that photo-induced ion dynamics can (1) identify defects in nanotubes, (2) stabilize defected nanotubes, and (3) purify contaminated nanotubes. All of these methods can be alternative to conventional heat treatments and will be important techniques for realizing nanotube-devices. Ion dynamics under electronic excitation has been simulated with use of the computer code FPSEID (First-Principles Simulation tool for Electron Ion Dynamics) [1], which combines the time-dependent density functional method [2] to classical molecular dynamics. This very challenging approach is time-consuming but can automatically treat the level alternation of differently occupied states, and can observe initiation of non-adiabatic decay of excitation. The time-dependent Kohn-Sham equation has been solved by using the Suzuki-Trotter split operator method [3], which is a numerically stable method being suitable for plane wave basis, non-local pseudopotentials, and parallel computing. This work has been done in collaboration with Prof. Angel Rubio, Prof. David Tomanek, Dr. Savas Berber and Mina Yoon. Most of present calculations have been done by using the SX5 Vector-Parallel system in the NEC Fuchu-plant, and the Earth Simulator in Yokohama Japan. [1] O. Sugino and Y. Miyamoto, Phys. Rev. B59, 2579 (1999); ibid, B66 089901(E) (2001) [2] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984). [3] M. Suzuki, J. Phys. Soc. Jpn. 61, L3015 (1992).

  18. Excited State Properties of Hybrid Perovskites.

    PubMed

    Saba, Michele; Quochi, Francesco; Mura, Andrea; Bongiovanni, Giovanni

    2016-01-19

    Metal halide perovskites have come to the attention of the scientific community for the progress achieved in solar light conversion. Energy sustainability is one of the priorities of our society, and materials advancements resulting in low-cost but efficient solar cells and large-area lighting devices represent a major goal for applied research. From a basic point of view, perovskites are an exotic class of hybrid materials combining some merits of organic and inorganic semiconductors: large optical absorption, large mobilities, and tunable band gap together with the possibility to be processed in solution. When a novel class of promising semiconductors comes into the limelight, lively discussions ensue on the photophysics of band-edge excitations, because just the states close to the band edge are entailed in energy/charge transport and light emission. This was the case several decades ago for III-V semiconductors, it has been up to 10 years ago for organics, and it is currently the case for perovskites. Our aim in this Account is to rationalize the body of experimental evidence on perovskite photophysics in a coherent theoretical framework, borrowing from the knowledge acquired over the years in materials optoelectronics. A crucial question is whether photon absorption leads to a population of unbound, conductive free charges or instead excitons, neutral and insulating bound states created by Coulomb interaction just below the energy of the band gap. We first focus on the experimental estimates of the exciton binding energy (Eb): at room temperature, Eb is comparable to the thermal energy kBT in MAPbI3 and increases up to values 2-3kBT in wide band gap MAPbBr3 and MAPbCl3. Statistical considerations predict that these values, even though comparable to or larger than thermal energy, let free carriers prevail over bound excitons for all levels of excitation densities relevant for devices. The analysis of photophysics evidence confirms that all hybrid halide

  19. Fluorescence Quenchers for Hydrazone and Oxime Orthogonal Bioconjugation

    PubMed Central

    Crisalli, Pete; Hernández, Armando R.; Kool, Eric T.

    2012-01-01

    We describe the synthesis and properties of new fluorescence quenchers containing aldehyde, hydrazine and aminooxy groups, allowing convenient bioconjugation as oximes or hydrazones. Conjugation to oligonucleotides proceeded in high yield with aniline as catalyst. Kinetics studies of conjugation show that, under optimal conditions, a hydrazine or aminooxy quencher can react with aldehyde-modified DNA to form a stable hydrazone or oxime adduct in as little as five minutes. The resulting quencher-containing DNAs were assessed for their ability to quench the emission of fluorescein in labeled complements and compared to the commercially available dabcyl and Black Hole Quencher 2 (BHQ2), which were conjugated as phosphoramidites. Results show that the new quenchers possess slightly different absorbance properties compared to dabcyl and are as efficient as the commercial quenchers in quenching fluorescein emission. Hydrazone-based quenchers were further successfully incorporated into molecular beacons and shown to give high signal:background in single nucleotide polymorphism detection in vitro . Finally, aminooxy and hydrazine quenchers were applied to quenching of an aldehyde-containing fluorophore associated with living cells, demonstrating cellular quenching within one hour. PMID:22913527

  20. Computing electronic structures: A new multiconfiguration approach for excited states

    NASA Astrophysics Data System (ADS)

    Cancès, Éric; Galicher, Hervé; Lewin, Mathieu

    2006-02-01

    We present a new method for the computation of electronic excited states of molecular systems. This method is based upon a recent theoretical definition of multiconfiguration excited states [due to one of us, see M. Lewin, Solutions of the multiconfiguration equations in quantum chemistry, Arch. Rat. Mech. Anal. 171 (2004) 83-114]. Our algorithm, dedicated to the computation of the first excited state, always converges to a stationary state of the multiconfiguration model, which can be interpreted as an approximate excited state of the molecule. The definition of this approximate excited state is variational. An interesting feature is that it satisfies a non-linear Hylleraas-Undheim-MacDonald type principle: the energy of the approximate excited state is an upper bound to the true excited state energy of the N-body Hamiltonian. To compute the first excited state, one has to deform paths on a manifold, like this is usually done in the search for transition states between reactants and products on potential energy surfaces. We propose here a general method for the deformation of paths which could also be useful in other settings. We also compare our method to other approaches used in Quantum Chemistry and give some explanation of the unsatisfactory behaviours which are sometimes observed when using the latters. Numerical results for the special case of two-electron systems are provided: we compute the first singlet excited state potential energy surface of the H2 molecule.

  1. Computing electronic structures: A new multiconfiguration approach for excited states

    SciTech Connect

    Cances, Eric . E-mail: cances@cermics.enpc.fr; Galicher, Herve . E-mail: galicher@cermics.enpc.fr; Lewin, Mathieu . E-mail: lewin@cermic.enpc.fr

    2006-02-10

    We present a new method for the computation of electronic excited states of molecular systems. This method is based upon a recent theoretical definition of multiconfiguration excited states [due to one of us, see M. Lewin, Solutions of the multiconfiguration equations in quantum chemistry, Arch. Rat. Mech. Anal. 171 (2004) 83-114]. Our algorithm, dedicated to the computation of the first excited state, always converges to a stationary state of the multiconfiguration model, which can be interpreted as an approximate excited state of the molecule. The definition of this approximate excited state is variational. An interesting feature is that it satisfies a non-linear Hylleraas-Undheim-MacDonald type principle: the energy of the approximate excited state is an upper bound to the true excited state energy of the N-body Hamiltonian. To compute the first excited state, one has to deform paths on a manifold, like this is usually done in the search for transition states between reactants and products on potential energy surfaces. We propose here a general method for the deformation of paths which could also be useful in other settings. We also compare our method to other approaches used in Quantum Chemistry and give some explanation of the unsatisfactory behaviours which are sometimes observed when using the latter. Numerical results for the special case of two-electron systems are provided: we compute the first singlet excited state potential energy surface of the H {sub 2} molecule.

  2. Structure of excited states and properties of organic dyes

    NASA Astrophysics Data System (ADS)

    Klessinger, M.

    1992-03-01

    Optimized geometries and charge distributions for the ground state and the first allowed π,π* excited singlet state are reported for some polyenes, polyene aldehydes, merocyanines and cyanines, which may be considered as representatives of conjugated chain chromophores of organic dyes. The dependence of excited state properties on molecular structure is discussed in relation to spectroscopic properties of these systems.

  3. Vibronic coupling in the excited-states of carotenoids

    SciTech Connect

    Miki, Takeshi; Buckup, Tiago; Krause, Marie S.; Southall, June; Cogdell, Richard J.; Motzkus, Marcus

    2016-01-01

    The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S2to the optically dark state S1.

  4. Excited-State Effective Masses in Lattice QCD

    SciTech Connect

    George Fleming, Saul Cohen, Huey-Wen Lin

    2009-10-01

    We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.

  5. Excited-State Effective Masses in Lattice QCD

    SciTech Connect

    Fleming, George; Cohen, Saul; Lin, Huey-Wen

    2009-01-01

    We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.

  6. Excited electronic states and spectroscopy of unsymmetrically substituted polyenes

    NASA Astrophysics Data System (ADS)

    Itoh, Takao

    2013-09-01

    α-Methyl-ω-phenylpolyenes, Me-(CH=CH)N-Ph, (MPPNs) with N = 2, 3, and 4 were synthesized. Fluorescence, absorption, and excitation spectra of MPPNs have been measured under different conditions along with those of β-methylstyrene. It is shown that there is a forbidden singlet (π, π*) excited state located at energies below the absorbing state for MPPNs with N = 3 and 4. Excitation energies of these polyenes are determined as a function of N. Quantitative analysis of the temperature dependence of the relative intensity of the fluorescence spectrum and its solvent shift behavior extract estimates of the various physical parameters that characterize excitation energies and excited-state dynamical behavior of MPPN with N = 3. The singlet excited states of the MPPNs were compared with those of the α,ω-diphenylpolyenes and α,ω-dimethylpolyenes.

  7. Excited electronic states and spectroscopy of unsymmetrically substituted polyenes.

    PubMed

    Itoh, Takao

    2013-09-07

    α-Methyl-ω-phenylpolyenes, Me-(CH=CH)N-Ph, (MPPNs) with N = 2, 3, and 4 were synthesized. Fluorescence, absorption, and excitation spectra of MPPNs have been measured under different conditions along with those of β-methylstyrene. It is shown that there is a forbidden singlet (π, π∗) excited state located at energies below the absorbing state for MPPNs with N = 3 and 4. Excitation energies of these polyenes are determined as a function of N. Quantitative analysis of the temperature dependence of the relative intensity of the fluorescence spectrum and its solvent shift behavior extract estimates of the various physical parameters that characterize excitation energies and excited-state dynamical behavior of MPPN with N = 3. The singlet excited states of the MPPNs were compared with those of the α,ω-diphenylpolyenes and α,ω-dimethylpolyenes.

  8. Direct excitation of microwave-spin dressed states using a laser-excited resonance Raman interaction

    NASA Astrophysics Data System (ADS)

    Shahriar, M. S.; Hemmer, P. R.

    1990-10-01

    We have used a laser-induced resonance Raman transition between the ground-state hyperfine sublevels in a sodium atomic beam to excite individual dressed states of the microwave-spin hyperfine transition. In addition, we have used the microwave interaction to excite the Raman trapped state. Extension of this technique to mm waves or to the far infrared may lead to applications such as mm-wave-beam steering and holographic image conversion.

  9. Experimental Investigation of Excited-State Lifetimes in Atomic Ytterbium

    SciTech Connect

    Bowers, C.J.; Budker, D.; Commins, E.D.; DeMille, D.; Freedman, S.J.; Nguyen, A.-T.; Shang, S.-Q.; Zolotorev, M.; /SLAC

    2011-11-15

    Lifetimes of 21 excited states in atomic Yb were measured using time-resolved fluorescence detection following pulsed laser excitation. The lifetime of the 4f{sup 14}5d6s {sup 3}D{sub 1} state, which is of particular importance for a proposed study of parity nonconservation in atoms, was measured to be 380(30) ns.

  10. Role of Excited States In High-order Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Beaulieu, S.; Camp, S.; Descamps, D.; Comby, A.; Wanie, V.; Petit, S.; Légaré, F.; Schafer, K. J.; Gaarde, M. B.; Catoire, F.; Mairesse, Y.

    2016-11-01

    We investigate the role of excited states in high-order harmonic generation by studying the spectral, spatial, and temporal characteristics of the radiation produced near the ionization threshold of argon by few-cycle laser pulses. We show that the population of excited states can lead either to direct extreme ultraviolet emission through free induction decay or to the generation of high-order harmonics through ionization from these states and recombination to the ground state. By using the attosecond lighthouse technique, we demonstrate that the high-harmonic emission from excited states is temporally delayed by a few femtoseconds compared to the usual harmonics, leading to a strong nonadiabatic spectral redshift.

  11. Role of Excited States In High-order Harmonic Generation.

    PubMed

    Beaulieu, S; Camp, S; Descamps, D; Comby, A; Wanie, V; Petit, S; Légaré, F; Schafer, K J; Gaarde, M B; Catoire, F; Mairesse, Y

    2016-11-11

    We investigate the role of excited states in high-order harmonic generation by studying the spectral, spatial, and temporal characteristics of the radiation produced near the ionization threshold of argon by few-cycle laser pulses. We show that the population of excited states can lead either to direct extreme ultraviolet emission through free induction decay or to the generation of high-order harmonics through ionization from these states and recombination to the ground state. By using the attosecond lighthouse technique, we demonstrate that the high-harmonic emission from excited states is temporally delayed by a few femtoseconds compared to the usual harmonics, leading to a strong nonadiabatic spectral redshift.

  12. Evidence for coherent mixing of excited and charge-transfer states in the major plant light-harvesting antenna, LHCII.

    PubMed

    Ramanan, Charusheela; Ferretti, Marco; van Roon, Henny; Novoderezhkin, Vladimir I; van Grondelle, Rienk

    2017-08-30

    LHCII, the major light harvesting antenna from plants, plays a dual role in photosynthesis. In low light it is a light-harvester, while in high light it is a quencher that protects the organism from photodamage. The switching mechanism between these two orthogonal conditions is mediated by protein dynamic disorder and photoprotective energy dissipation. The latter in particular is thought to occur in part via spectroscopically 'dark' states. We searched for such states in LHCII trimers from spinach, at both room temperature and at 77 K. Using 2D electronic spectroscopy, we explored coherent interactions between chlorophylls absorbing on the low-energy side of LHCII, which is the region that is responsible for both light-harvesting and photoprotection. 2D beating frequency maps allow us to identify four frequencies with strong excitonic character. In particular, our results show the presence of a low-lying state that is coupled to a low-energy excitonic state. We assign this to a mixed excitonic-charge transfer state involving the state with charge separation within the Chl a603-b609 heterodimer, borrowing some dipole strength from the Chl a602-a603 excited states. Such a state may play a role in photoprotection, in conjunction with specific and environmentally controlled realizations of protein dynamic disorder. Our identification and assignment of the coherences observed in the 2D frequency maps suggests that the structure of exciton states as well as a mixing of the excited and charge-transfer states is affected by coupling of these states to resonant vibrations in LHCII.

  13. Nonadiabatic excited-state molecular dynamics: On-the-fly limiting of essential excited states

    NASA Astrophysics Data System (ADS)

    Nelson, Tammie; Naumov, Artem; Fernandez-Alberti, Sebastian; Tretiak, Sergei

    2016-12-01

    The simulation of nonadiabatic dynamics in extended molecular systems involving hundreds of atoms and large densities of states is particularly challenging. Nonadiabatic coupling terms (NACTs) represent a significant numerical bottleneck in surface hopping approaches. Rather than using unreliable NACT cutting schemes, here we develop "on-the-fly" state limiting methods to eliminate states that are no longer essential for the non-radiative relaxation dynamics as a trajectory proceeds. We propose a state number criteria and an energy-based state limit. The latter is more physically relevant by requiring a user-imposed energy threshold. For this purpose, we introduce a local kinetic energy gauge by summing contributions from atoms within the spatial localization of the electronic wavefunction to define the energy available for upward hops. The proposed state limiting schemes are implemented within the nonadiabatic excited-state molecular dynamics framework to simulate photoinduced relaxation in poly-phenylene vinylene (PPV) and branched poly-phenylene ethynylene (PPE) oligomers for benchmark evaluation.

  14. Charge-displacement analysis for excited states

    SciTech Connect

    Ronca, Enrico Tarantelli, Francesco; Pastore, Mariachiara Belpassi, Leonardo; De Angelis, Filippo; Angeli, Celestino; Cimiraglia, Renzo

    2014-02-07

    We extend the Charge-Displacement (CD) analysis, already successfully employed to describe the nature of intermolecular interactions [L. Belpassi et al., J. Am. Chem. Soc. 132, 13046 (2010)] and various types of controversial chemical bonds [L. Belpassi et al., J. Am. Chem. Soc. 130, 1048 (2008); N. Salvi et al., Chem. Eur. J. 16, 7231 (2010)], to study the charge fluxes accompanying electron excitations, and in particular the all-important charge-transfer (CT) phenomena. We demonstrate the usefulness of the new approach through applications to exemplary excitations in a series of molecules, encompassing various typical situations from valence, to Rydberg, to CT excitations. The CD functions defined along various spatial directions provide a detailed and insightful quantitative picture of the electron displacements taking place.

  15. Charge-displacement analysis for excited states

    NASA Astrophysics Data System (ADS)

    Ronca, Enrico; Pastore, Mariachiara; Belpassi, Leonardo; De Angelis, Filippo; Angeli, Celestino; Cimiraglia, Renzo; Tarantelli, Francesco

    2014-02-01

    We extend the Charge-Displacement (CD) analysis, already successfully employed to describe the nature of intermolecular interactions [L. Belpassi et al., J. Am. Chem. Soc. 132, 13046 (2010)] and various types of controversial chemical bonds [L. Belpassi et al., J. Am. Chem. Soc. 130, 1048 (2008); N. Salvi et al., Chem. Eur. J. 16, 7231 (2010)], to study the charge fluxes accompanying electron excitations, and in particular the all-important charge-transfer (CT) phenomena. We demonstrate the usefulness of the new approach through applications to exemplary excitations in a series of molecules, encompassing various typical situations from valence, to Rydberg, to CT excitations. The CD functions defined along various spatial directions provide a detailed and insightful quantitative picture of the electron displacements taking place.

  16. Excited-State Deactivation of Branched Phthalocyanine Compounds.

    PubMed

    Zhu, Huaning; Li, Yang; Chen, Jun; Zhou, Meng; Niu, Yingli; Zhang, Xinxing; Guo, Qianjin; Wang, Shuangqing; Yang, Guoqiang; Xia, Andong

    2015-12-21

    The excited-state relaxation dynamics and chromophore interactions in two phthalocyanine compounds (bis- and trisphthalocyanines) are studied by using steady-state and femtosecond transient absorption spectral measurements, where the excited-state energy-transfer mechanism is explored. By exciting phthalocyanine compounds to their second electronically excited states and probing the subsequent relaxation dynamics, a multitude of deactivation pathways are identified. The transient absorption spectra show the relaxation pathway from the exciton state to excimer state and then back to the ground state in bisphthalocyanine (bis-Pc). In trisphthalocyanine (tris-Pc), the monomeric and dimeric subunits are excited and the excitation energy transfers from the monomeric vibrationally hot S1 state to the exciton state of a pre-associated dimer, with subsequent relaxation to the ground state through the excimer state. The theoretical calculations and steady-state spectra also show a face-to-face conformation in bis-Pc, whereas in tris-Pc, two of the three phthalocyanine branches form a pre-associated face-to-face dimeric conformation with the third one acting as a monomeric unit; this is consistent with the results of the transient absorption experiments from the perspective of molecular structure. The detailed structure-property relationships in phthalocyanine compounds is useful for exploring the function of molecular aggregates in energy migration of natural photosynthesis systems.

  17. Optimal control of peridinin excited-state dynamics

    NASA Astrophysics Data System (ADS)

    Dietzek, Benjamin; Chábera, Pavel; Hanf, Robert; Tschierlei, Stefanie; Popp, Jürgen; Pascher, Torbjörn; Yartsev, Arkady; Polívka, Tomáš

    2010-07-01

    Optimal control is applied to study the excited-state relaxation of the carbonyl-carotenoid peridinin in solution. Phase-shaping of the excitation pulses is employed to influence the photoinduced reaction dynamics of peridinin. The outcome of various control experiments using different experimentally imposed fitness parameters is discussed. Furthermore, the effects of pump-wavelength and different solvents on the control efficiency are presented. The data show that excited-state population within either the S 1 or the ICT state can be reduced significantly by applying optimal control, while the efficiency of control decreases upon excitation into the low-energy side of the absorption band. However, we are unable to alter the ratio of S 1 and ICT population or increase the population of either state compared to excitation with a transform-limited pulse. We compare the results to various control mechanisms and argue that characteristic low-wavenumber modes are relevant for the photochemistry of peridinin.

  18. 23. Brick coke quencher, brick stack, metal stack to right, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Brick coke quencher, brick stack, metal stack to right, coke gas pipe to left; in background, BOF building, limestone piles, Levy's Slag Dump. Looking north/northwest - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  19. Excited State Mass Spectra of Ω0 c Baryon

    NASA Astrophysics Data System (ADS)

    Shah, Z.; Thakkar, K.; Rai, A. K.; Vinodkumar, P. C.

    2016-10-01

    We have calculated the radial and orbital excited states of singly charmed baryon Oc using the Hypercentral Constituent Quark Model (hCQM). The confinement potential is assumed as coulomb plus power potential (CPP V ). The ground state and excited state masses are determined with and with out first order correction to the potential. Furthermore, we plot graph between Mass(M) → Potential Index(v). Our calculated results are in good agreement with experimental and other theoretical predictions.

  20. Multiple Pathway Quenchers: Efficient Quenching of Common Fluorophores

    PubMed Central

    Crisalli, Pete; Kool, Eric T.

    2011-01-01

    Fluorescence quenching groups are widely employed in biological detection, sensing, and imaging. To date, a relatively small number of such groups are in common use. Perhaps the most commonly used quencher, dabcyl, has limited efficiency with a broad range of fluorophores. Here we describe a molecular approach to improve the efficiency of quenchers by increasing their electronic complexity. Multiple pathway quenchers (MPQ) are designed to have multiple donor or acceptor groups in their structure, allowing for a multiplicity of conjugation pathways of varied length. This has the effect of broadening the absorption spectrum, which in turn can increase quenching efficiency and versatility. Six such MPQ derivatives are synthesized and tested for quenching efficiency in a DNA hybridization context. Duplexes placing quenchers and fluorophores within contact distance or beyond this distance are used to measure quenching via contact or FRET mechanisms. Results show that several of the quenchers are considerably more efficient than dabcyl at quenching a wider range of common fluorophores, and two quench fluorescein and TAMRA as well as or better than a Black Hole Quencher. PMID:22034828

  1. Intermolecular and intramolecular quencher based quantum dot nanoprobes for multiplexed detection of endonuclease activity and inhibition.

    PubMed

    Huang, Yong; Zhao, Shulin; Shi, Ming; Chen, Jia; Chen, Zhen-Feng; Liang, Hong

    2011-12-01

    DNA cleavage by endonucleases plays an important role in many biological events such as DNA replication, recombination, and repair and is used as a powerful tool in medicinal chemistry. However, conventional methods for assaying endonuclease activity and inhibition by gel electrophoresis and chromatography techniques are time-consuming, laborious, not sensitive, or costly. Herein, we combine the high specificity of DNA cleavage reactions with the benefits of quantum dots (QDs) and ultrahigh quenching abilities of inter- and intramolecular quenchers to develop highly sensitive and specific nanoprobes for multiplexed detection of endonucleases. The nanoprobe was prepared by conjugating two sets of DNA substrates carrying quenchers onto the surface of aminated QDs through direct assembly and DNA hybridization. With this new design, the background fluorescence was significantly suppressed by introducing inter- and intramolecular quenchers. When these nanoprobes are exposed to the targeted endonucleases, specific DNA cleavages occur and pieces of DNA fragments are released from the QD surface along with the quenchers, resulting in fluorescence recovery. The endonuclease activity was quantified by monitoring the change in the fluorescence intensity. The detection was accomplished with a single excitation light. Multiplexed detection was demonstrated by simultaneously assaying EcoRI and BamHI (as model analytes) using two different emissions of QDs. The limits of detection were 4.0 × 10(-4) U/mL for EcoRI and 8.0 × 10(-4) U/mL for BamHI, which were at least 100 times more sensitive than traditional gel electrophoresis and chromatography assays. Moreover, the potential application of the proposed method for screening endonuclease inhibitors has also been demonstrated. The assay protocol presented here proved to be simple, sensitive, effective, and easy to carry out.

  2. Excited State Dynamics of DNA and RNA bases

    NASA Astrophysics Data System (ADS)

    Hudock, Hanneli; Levine, Benjamin; Martinez, Todd

    2007-03-01

    Recent ultrafast spectroscopic experiments have reported excited state lifetimes for DNA and RNA bases and assigned these lifetimes to various electronic states. We have used theoretical and simulation methods to describe the excited state dynamics of these bases in an effort to provide a mechanistic explanation for the observed lifetimes. Our simulations are based on ab initio molecular dynamics, where the electronic and nuclear Schrodinger equations are solved simultaneously. The results are further verified by comparison to high-level ab initio electronic structure methods, including dynamic electron correlation effects through multireference perturbation theory, at important points along the dynamical pathways. Our results provide an explanation of the photochemical mechanism leading to nonradiative decay of the electronic excited states and some suggestions as to the origin of the different lifetimes. Comparisons between pyrimidines illustrate how chemical differences impact excited state dynamics and may play a role in explaining the propensity for dimer formation in thymine.

  3. Two-Photon Excitation of Conjugated Molecules in Solution: Spectroscopy and Excited-State Dynamics

    NASA Astrophysics Data System (ADS)

    Elles, Christopher G.; Houk, Amanda L.; de Wergifosse, Marc; Krylov, Anna

    2017-06-01

    We examine the two-photon absorption (2PA) spectroscopy and ultrafast excited-state dynamics of several conjugated molecules in solution. By controlling the relative wavelength and polarization of the two photons, the 2PA measurements provide a more sensitive means of probing the electronic structure of a molecule compared with traditional linear absorption spectra. We compare experimental spectra of trans-stilbene, cis-stilbene, and phenanthrene in solution with the calculated spectra of the isolated molecules using EOM-EE-CCSD. The calculated spectra show good agreement with the low-energy region of the experimental spectra (below 6 eV) after suppressing transitions with strong Rydberg character and accounting for solvent and method-dependent shifts of the valence transitions. We also monitor the excited state dynamics following two-photon excitation to high-lying valence states of trans-stilbene up to 6.5 eV. The initially excited states rapidly relax to the lowest singlet excited state and then follow the same reaction path as observed following direct one-photon excitation to the lowest absorption band at 4.0 eV.

  4. Cyclopropyl Group: An Excited-State Aromaticity Indicator?

    PubMed

    Ayub, Rabia; Papadakis, Raffaello; Jorner, Kjell; Zietz, Burkhard; Ottosson, Henrik

    2017-07-06

    The cyclopropyl (cPr) group, which is a well-known probe for detecting radical character at atoms to which it is connected, is tested as an indicator for aromaticity in the first ππ* triplet and singlet excited states (T1 and S1 ). Baird's rule says that the π-electron counts for aromaticity and antiaromaticity in the T1 and S1 states are opposite to Hückel's rule in the ground state (S0 ). Our hypothesis is that the cPr group, as a result of Baird's rule, will remain closed when attached to an excited-state aromatic ring, enabling it to be used as an indicator to distinguish excited-state aromatic rings from excited-state antiaromatic and nonaromatic rings. Quantum chemical calculations and photoreactivity experiments support our hypothesis; calculated aromaticity indices reveal that openings of cPr substituents on [4n]annulenes ruin the excited-state aromaticity in energetically unfavorable processes. Yet, polycyclic compounds influenced by excited-state aromaticity (e.g., biphenylene), as well as 4nπ-electron heterocycles with two or more heteroatoms represent limitations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Excited-State Dynamics in Folic Acid and 6-CARBOXYPTERIN upon Uva Excitation

    NASA Astrophysics Data System (ADS)

    Huang, Huijuan; Vogt, R. Aaron; Crespo-Hernandez, Carlos E.

    2013-06-01

    The excited-state dynamics of folic acid (FA) and 6-carboxypterin (6CP) are poorly understood and work is needed to uncover the relaxation pathways that ultimately lead to their oxidative damage of DNA. In our approach, broad-band transient absorption spectroscopy was used to monitor the evolution of the excited states in FA and 6CP in basic aqueous solution upon excitation at 350 nm. In addition, quantum-chemical calculations were performed to assist in the interpretation of the experimental results and in the postulation of kinetic mechanisms. The combined experimental and computational results support a kinetic model where excitation of FA results in ultrafast charge separation (τ = 0.6 ps), which decays back to the ground state primarily by charge recombination with a lifetime of 2.2 ps. A small fraction of the charge transfer state undergoes intersystem crossing to populate the lowest-energy triplet state with a lifetime of 200 ps. On the other hand, a large fraction of the initially excited singlet state in 6CP decays by fluorescence emission with a lifetime of 100 ps, while intersystem crossing to the triplet state occurs with a lifetime of 4.4 ns. The potential implications of these results to the oxidative damage of DNA by FA and 6CP will be discussed. Funding from the National Science Foundation is gratefully acknowledged (CHE-1255084).

  6. Ultrafast excited state relaxation in long-chain polyenes

    NASA Astrophysics Data System (ADS)

    Antognazza, Maria Rosa; Lüer, Larry; Polli, Dario; Christensen, Ronald L.; Schrock, Richard R.; Lanzani, Guglielmo; Cerullo, Giulio

    2010-07-01

    We present a comprehensive study, by femtosecond pump-probe spectroscopy, of excited state dynamics in a polyene that approaches the infinite chain limit. By excitation with sub-10-fs pulses resonant with the 0-0 S 0 → S 2 transition, we observe rapid loss of stimulated emission from the bright excited state S 2, followed by population of the hot S 1 state within 150 fs. Vibrational cooling of S 1 takes place within 500 fs and is followed by decay back to S 0 with 1 ps time constant. By excitation with excess vibrational energy we also observe the ultrafast formation of a long-living absorption, that is assigned to the triplet state generated by singlet fission.

  7. The examination of berberine excited state by laser flash photolysis

    NASA Astrophysics Data System (ADS)

    Cheng, Lingli; Wang, Mei; Zhao, Ping; Zhu, Hui; Zhu, Rongrong; Sun, Xiaoyu; Yao, Side; Wang, Shilong

    2009-07-01

    The property of the excited triplet state of berberine (BBR) was investigated by using time-resolved laser flash photolysis of 355 nm in acetonitrile. The transient absorption spectra of the excited triplet BBR were obtained in acetonitrile, which have an absorption maximum at 420 nm. And the ratio of excitation to ionization of BBR in acetonitrile solvent was calculated. The self-decay and self-quenching rate constants, and the absorption coefficient of 3BBR* were investigated and the excited state quantum yield was determined. Furthermore utilizing the benzophenone (BEN) as a triplet sensitizer, and the β-carotene (Car) as an excited energy transfer acceptor, the assignment of 3BBR* was further confirmed and the related energy transfer rate constants were also determined.

  8. Excited states of a significantly ruffled porphyrin: computational study on structure-induced rapid decay mechanism via intersystem crossing.

    PubMed

    Bai, Fu-Quan; Nakatani, Naoki; Nakayama, Akira; Hasegawa, Jun-ya

    2014-06-12

    The compound meso-tetra-tert-butylporphyrin (H2T(t-Bu)P) is a significantly ruffled porphyrin and known as a good quencher. Compared with planar porphyrins, H2T(t-Bu)P showed bathochromic shift and rapid radiationless decay of the (1)(π, π*) excited state. Density functional theory, approximated coupled-cluster theory, and complete active space self-consistent field method level calculations were performed for the potential energy surface (PES) of the low-lying singlet and triplet states of H2T(t-Bu)P. The origin of the bathochromic shift in the absorption and fluorescence spectra was attributed to both steric distortions of the ring and electronic effects of the substituents. The nonradiative deactivation process of H2T(t-Bu)P via intersystem crossing (ISC) is proposed as (S1 → T2 → T1 → S0). Along a nonplanar distortion angle, the PESs of the S1 and T2 states are very close to each other, which suggests that many channels exist for ISC. For the T1 → S0 transition, minimum energy ISC points were located, and spin-orbit coupling (SOC) was evaluated. The present results indicate that the ISC can also occur at the T1/S0 intersection, in addition to the vibrational SOC promoted by specific normal modes.

  9. Peroxyacetyl radical: Electronic excitation energies, fundamental vibrational frequencies, and symmetry breaking in the first excited state

    SciTech Connect

    Copan, Andreas V.; Wiens, Avery E.; Nowara, Ewa M.; Schaefer, Henry F.; Agarwal, Jay

    2015-02-07

    Peroxyacetyl radical [CH{sub 3}C(O)O{sub 2}] is among the most abundant peroxy radicals in the atmosphere and is involved in OH-radical recycling along with peroxyacetyl nitrate formation. Herein, the ground (X{sup ~}) and first (A{sup ~}) excited state surfaces of cis and trans peroxyacetyl radical are characterized using high-level ab initio methods. Geometries, anharmonic vibrational frequencies, and adiabatic excitation energies extrapolated to the complete basis-set limit are reported from computations with coupled-cluster theory. Excitation of the trans conformer is found to induce a symmetry-breaking conformational change due to second-order Jahn-Teller interactions with higher-lying excited states. Additional benchmark computations are provided to aid future theoretical work on peroxy radicals.

  10. Investigation into chromophore excited-state coupling in allophycocyanin

    NASA Astrophysics Data System (ADS)

    Zheng, Xiguang; Zhao, Fuli; Wang, He Z.; Gao, Zhaolan; Yu, Zhenxin; Zhu, Jinchang; Xia, Andong; Jiang, Lijin

    1994-08-01

    Both theoretical and experimental studies are presented on chromophore excited-state coupling in linker-free allophycocyanin (APC), one of the antenna phycobiliproteins in algal photosynthesis. A three-site-coupling model has been introduced to describe the exciton interaction mechanism amoung the excited (beta) chromophore in APC, and the exciton energy splitting is estimated. Picosecond polarized fluorescence experiments both on monomeric and trimeric APC isolated from alga Spirulina platensis have been performed. The experimental results show that APC monomer and trimer exhibit remarkedly different spectropic characteristics, and satisfy the suggestion of strong excited- state coupling among chromophores in APC.

  11. Electron-impact excitation and ionization cross sections for ground state and excited helium atoms

    SciTech Connect

    Ralchenko, Yu. Janev, R.K.; Kato, T.; Fursa, D.V.; Bray, I.; Heer, F.J. de

    2008-07-15

    Comprehensive and critically assessed cross sections for the electron-impact excitation and ionization of ground state and excited helium atoms are presented. All states (atomic terms) with n{<=}4 are treated individually, while the states with n{>=}5 are considered degenerate. For the processes involving transitions to and from n{>=}5 levels, suitable cross section scaling relations are presented. For a large number of transitions, from both ground and excited states, convergent close coupling calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions, which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in graphical form.

  12. Long-lived excited states in metal clusters.

    PubMed

    Koop, Alexander; Gantefoer, Gerd; Kim, Young Dok

    2017-08-16

    Bare metal clusters have properties that make them interesting for applications in photochemistry and photovoltaics. Long-lived excited states are a prerequisite for such applications, because in them the energy of the photon can be stored. Clusters have a low density of states and long-lived excited states should therefore occur frequently. However, in fact, such states are a rarity, as indicated by time-resolved photoelectron data of mass-selected cluster anions. And there is another puzzling observation: only clusters with narrow peaks in their photoelectron spectra exhibit long-lived excited states. Both findings can be explained if internal conversion, i.e. the conversion of electronic excitation energy into vibrational excitations, is the major relaxation mechanism in clusters. It becomes more likely, if a change of the electronic configuration results in a large geometry change, which is probably the case for most clusters. Only clusters with a weak coupling between geometric and electronic structure may have long-lived excited states and narrow peaks.

  13. Characterizing RNA Excited States using NMR Relaxation Dispersion

    PubMed Central

    Xue, Yi; Kellogg, Dawn; Kimsey, Isaac J; Sathyamoorthy, Bharathwaj; Stein, Zachary W; McBrairty, Mitchell; Al-Hashimi, Hashim M.

    2016-01-01

    Changes in RNA secondary structure play fundamental roles in the cellular functions of a growing number of non-coding RNAs. This chapter describes NMR-based approaches for characterizing microsecond-to-millisecond changes in RNA secondary structure that are directed toward short-lived and low-populated species often referred to as “excited states”. Compared to larger-scale changes in RNA secondary structure, transitions towards excited states do not require assistance from chaperones, are often orders of magnitude faster, and are localized to a small number of nearby base pairs in and around non-canonical motifs. Here we describe a procedure for characterizing RNA excited states using off-resonance R1ρ NMR relaxation dispersion utilizing low-to-high spin-lock fields (25–3000 Hz). R1ρ NMR relaxation dispersion experiments are used to measure carbon and nitrogen chemical shifts in base and sugar moieties of the excited state. The chemical shift data is then interpreted with the aid of secondary structure prediction to infer potential excited states that feature alternative secondary structures. Candidate structures are then tested by using mutations, single-atom substitutions, or by changing physiochemical conditions, such as pH and temperature, to either stabilize or destabilize the candidate excited state. The resulting chemical shifts of the mutants or under different physiochemical conditions are then compared to those of the ground and excited state. Application is illustrated with a focus on the transactivation response element (TAR) from the human immune deficiency virus type 1 (HIV-1), which exists in dynamic equilibrium with at least two distinct excited states. PMID:26068737

  14. Targeting excited states in all-trans polyenes with electron-pair states.

    PubMed

    Boguslawski, Katharina

    2016-12-21

    Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.

  15. Targeting excited states in all-trans polyenes with electron-pair states

    NASA Astrophysics Data System (ADS)

    Boguslawski, Katharina

    2016-12-01

    Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.

  16. Lifetime and g-factor measurements of excited states using Coulomb excitation and alpha transfer reactions

    SciTech Connect

    Guevara, Z. E. Torres, D. A.

    2016-07-07

    In this contribution the challenges in the use of a setup to simultaneously measure lifetimes and g-factor values will be presented. The simultaneous use of the transient field technique and the Doppler Shift Attenuation Method, to measure magnetic moments and lifetimes respectively, allows to obtain a complete characterization of the currents of nucleons and the deformation in excited states close to the ground state. The technique is at the moment limited to Coulomb excitation and alpha-transfer reactions, what opens an interesting perspective to consider this type of experiments with radioactive beams. The use of deep-inelastic and fusion-evaporation reactions will be discussed. An example of a setup that makes use of a beam of {sup 106}Cd to study excited states of {sup 110}Sn and the beam nuclei itself will be presented.

  17. Lifetime and g-factor measurements of excited states using Coulomb excitation and alpha transfer reactions

    NASA Astrophysics Data System (ADS)

    Guevara, Z. E.; Torres, D. A.

    2016-07-01

    In this contribution the challenges in the use of a setup to simultaneously measure lifetimes and g-factor values will be presented. The simultaneous use of the transient field technique and the Doppler Shift Attenuation Method, to measure magnetic moments and lifetimes respectively, allows to obtain a complete characterization of the currents of nucleons and the deformation in excited states close to the ground state. The technique is at the moment limited to Coulomb excitation and alpha-transfer reactions, what opens an interesting perspective to consider this type of experiments with radioactive beams. The use of deep-inelastic and fusion-evaporation reactions will be discussed. An example of a setup that makes use of a beam of 106Cd to study excited states of 110Sn and the beam nuclei itself will be presented.

  18. Direct observation of photoinduced bent nitrosyl excited-state complexes

    SciTech Connect

    Sawyer, Karma R.; Steele, Ryan P.; Glascoe, Elizabeth A.; Cahoon, James F.; Schlegel, Jacob P.; Head-Gordon, Martin; Harris, Charles B.

    2008-06-28

    Ground state structures with side-on nitrosyl ({eta}{sup 2}-NO) and isonitrosyl (ON) ligands have been observed in a variety of transition-metal complexes. In contrast, excited state structures with bent-NO ligands have been proposed for years but never directly observed. Here we use picosecond time-resolved infrared spectroscopy and density functional theory (DFT) modeling to study the photochemistry of Co(CO){sub 3}(NO), a model transition-metal-NO compound. Surprisingly, we have observed no evidence for ON and {eta}{sup 2}-NO structural isomers, but have observed two bent-NO complexes. DFT modeling of the ground and excited state potentials indicates that the bent-NO complexes correspond to triplet excited states. Photolysis of Co(CO){sub 3}(NO) with a 400-nm pump pulse leads to population of a manifold of excited states which decay to form an excited state triplet bent-NO complex within 1 ps. This structure relaxes to the ground triplet state in ca. 350 ps to form a second bent-NO structure.

  19. The excited state antiaromatic benzene ring: a molecular Mr Hyde?

    PubMed

    Papadakis, Raffaello; Ottosson, Henrik

    2015-09-21

    The antiaromatic character of benzene in its first ππ* excited triplet state (T1) was deduced more than four decades ago by Baird using perturbation molecular orbital (PMO) theory [J. Am. Chem. Soc. 1972, 94, 4941], and since then it has been confirmed through a range of high-level quantum chemical calculations. With focus on benzene we now first review theoretical and computational studies that examine and confirm Baird's rule on reversal in the electron count for aromaticity and antiaromaticity of annulenes in their lowest triplet states as compared to Hückel's rule for the ground state (S0). We also note that the rule according to quantum chemical calculations can be extended to the lowest singlet excited state (S1) of benzene. Importantly, Baird, as well as Aihara [Bull. Chem. Soc. Jpn. 1978, 51, 1788], early put forth that the destabilization and excited state antiaromaticity of the benzene ring should be reflected in its photochemical reactivity, yet, today these conclusions are often overlooked. Thus, in the second part of the article we review photochemical reactions of a series of benzene derivatives that to various extents should stem from the excited state antiaromatic character of the benzene ring. We argue that benzene can be viewed as a molecular "Dr Jekyll and Mr Hyde" with its largely unknown excited state antiaromaticity representing its "Mr Hyde" character. The recognition of the "Jekyll and Hyde" split personality feature of the benzene ring can likely be useful in a range of different areas.

  20. Controlling chimera states: The influence of excitable units

    NASA Astrophysics Data System (ADS)

    Isele, Thomas; Hizanidis, Johanne; Provata, Astero; Hövel, Philipp

    2016-02-01

    We explore the influence of a block of excitable units on the existence and behavior of chimera states in a nonlocally coupled ring-network of FitzHugh-Nagumo elements. The FitzHugh-Nagumo system, a paradigmatic model in many fields from neuroscience to chemical pattern formation and nonlinear electronics, exhibits oscillatory or excitable behavior depending on the values of its parameters. Until now, chimera states have been studied in networks of coupled oscillatory FitzHugh-Nagumo elements. In the present work, we find that introducing a block of excitable units into the network may lead to several interesting effects. It allows for controlling the position of a chimera state as well as for generating a chimera state directly from the synchronous state.

  1. Excited state correlations of the finite Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Pozsgay, Balázs

    2017-02-01

    We consider short range correlations in excited states of the finite XXZ and XXX Heisenberg spin chains. We conjecture that the known results for the factorized ground state correlations can be applied to the excited states too, if the so-called physical part of the construction is changed appropriately. For the ground state we derive simple algebraic expressions for the physical part; the formulas only use the ground state Bethe roots as an input. We conjecture that the same formulas can be applied to the excited states as well, if the exact Bethe roots of the excited states are used instead. In the XXZ chain the results are expected to be valid for all states (except certain singular cases where regularization is needed), whereas in the XXX case they only apply to singlet states or group invariant operators. Our conjectures are tested against numerical data from exact diagonalization and coordinate Bethe Ansatz calculations, and perfect agreement is found in all cases. In the XXX case we also derive a new result for the nearest-neighbour correlator < σ 1zσ 2z> , which is valid for non-singlet states as well. Our results build a bridge between the known theory of factorized correlations, and the recently conjectured TBA-like description for the building blocks of the construction.

  2. Excited-State OH Masers and Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Pihlström, Ylva M.; Fish, Vincent L.; Sjouwerman, Loránt O.; Zschaechner, Laura K.; Lockett, Philip B.; Elitzur, Moshe

    2008-03-01

    The collisionally pumped, ground-state 1720 MHz maser line of OH is widely recognized as a tracer for shocked regions and observed in star-forming regions and supernova remnants. Whereas some lines of excited states of OH have been detected and studied in star-forming regions, the subject of excited-state OH in supernova remnants—where high collision rates are to be expected—is only recently being addressed. Modeling of collisional excitation of OH demonstrates that 1720, 4765, and 6049 MHz masers can occur under similar conditions in regions of shocked gas. In particular, the 6049 and 4765 MHz masers become more significant at increased OH column densities where the 1720 MHz masers begin to be quenched. In supernova remnants, the detection of excited-state OH line maser emission could therefore serve as a probe of regions of higher column densities. Using the Very Large Array, we searched for excited-state OH in the 4.7, 7.8, 8.2, and 23.8 GHz lines in four well-studied supernova remnants with strong 1720 MHz maser emission (Sgr A East, W28, W44 and IC 443). No detections were made, at typical detection limits of around 10 mJy beam-1. The search for the 6 GHz lines were done using Effelsberg since the VLA receivers did not cover those frequencies, and are reported on in an accompanying letter (Fish and coworkers). We also cross-correlated the positions of known supernova remnants with the positions of 1612 MHz maser emission obtained from blind surveys. No probable associations were found, perhaps except in the Sgr A East region. The lack of detections of excited-state OH indicates that the OH column densities suffice for 1720 MHz inversion but not for inversion of excited-state transitions, consistent with the expected results for C-type shocks.

  3. Nature of ground and electronic excited states of higher acenes

    PubMed Central

    Yang, Yang; Yang, Weitao

    2016-01-01

    Higher acenes have drawn much attention as promising organic semiconductors with versatile electronic properties. However, the nature of their ground state and electronic excited states is still not fully clear. Their unusual chemical reactivity and instability are the main obstacles for experimental studies, and the potentially prominent diradical character, which might require a multireference description in such large systems, hinders theoretical investigations. Here, we provide a detailed answer with the particle–particle random-phase approximation calculation. The 1Ag ground states of acenes up to decacene are on the closed-shell side of the diradical continuum, whereas the ground state of undecacene and dodecacene tilts more to the open-shell side with a growing polyradical character. The ground state of all acenes has covalent nature with respect to both short and long axes. The lowest triplet state 3B2u is always above the singlet ground state even though the energy gap could be vanishingly small in the polyacene limit. The bright singlet excited state 1B2u is a zwitterionic state to the short axis. The excited 1Ag state gradually switches from a double-excitation state to another zwitterionic state to the short axis, but always keeps its covalent nature to the long axis. An energy crossing between the 1B2u and excited 1Ag states happens between hexacene and heptacene. Further energetic consideration suggests that higher acenes are likely to undergo singlet fission with a low photovoltaic efficiency; however, the efficiency might be improved if a singlet fission into multiple triplets could be achieved. PMID:27528690

  4. Nature of ground and electronic excited states of higher acenes.

    PubMed

    Yang, Yang; Davidson, Ernest R; Yang, Weitao

    2016-08-30

    Higher acenes have drawn much attention as promising organic semiconductors with versatile electronic properties. However, the nature of their ground state and electronic excited states is still not fully clear. Their unusual chemical reactivity and instability are the main obstacles for experimental studies, and the potentially prominent diradical character, which might require a multireference description in such large systems, hinders theoretical investigations. Here, we provide a detailed answer with the particle-particle random-phase approximation calculation. The (1)Ag ground states of acenes up to decacene are on the closed-shell side of the diradical continuum, whereas the ground state of undecacene and dodecacene tilts more to the open-shell side with a growing polyradical character. The ground state of all acenes has covalent nature with respect to both short and long axes. The lowest triplet state (3)B2u is always above the singlet ground state even though the energy gap could be vanishingly small in the polyacene limit. The bright singlet excited state (1)B2u is a zwitterionic state to the short axis. The excited (1)Ag state gradually switches from a double-excitation state to another zwitterionic state to the short axis, but always keeps its covalent nature to the long axis. An energy crossing between the (1)B2u and excited (1)Ag states happens between hexacene and heptacene. Further energetic consideration suggests that higher acenes are likely to undergo singlet fission with a low photovoltaic efficiency; however, the efficiency might be improved if a singlet fission into multiple triplets could be achieved.

  5. Role of nonemissive quenchers for the green emission in polyfluorene.

    PubMed

    Liu, Linlin; Lu, Ping; Xie, Zengqi; Wang, Huiping; Tang, Shi; Wang, Zhiming; Zhang, Wu; Ma, Yuguang

    2007-09-13

    The stability of fluorene-based compounds and polymers, especially at the bridged C-9 position under photoirradiation and thermal treatment, has claimed much attention. The emission of fluorenone formed by degradation of the 9-site is regarded as the origin of the low emission band at 2.2-2.3 eV in polyfluorene-based conjugated materials. We have investigated the role of nonemissive quenchers such as alkyl ketones, which were also one of the products of polyfluorene degradation, for the low-energy emission in polyfluorenes. The spectral characteristics of a blend system of polyfluorene/nonemissive quencher/fluorenone are found to accord well with the kinetics of actual polyfluorene degradation. Our results indicate that strong green emission in degraded polyfluorene would be not caused only by fluorenone, but also by nonemissive quenchers for their effectively quenching bulk emission.

  6. Charge transfer excitations from excited state Hartree-Fock subsequent minimization scheme

    SciTech Connect

    Theophilou, Iris; Tassi, M.; Thanos, S.

    2014-04-28

    Photoinduced charge-transfer processes play a key role for novel photovoltaic phenomena and devices. Thus, the development of ab initio methods that allow for an accurate and computationally inexpensive treatment of charge-transfer excitations is a topic that nowadays attracts a lot of scientific attention. In this paper we extend an approach recently introduced for the description of single and double excitations [M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem. 113, 690 (2013); M. Tassi, I. Theophilou, and S. Thanos, J. Chem. Phys. 138, 124107 (2013)] to allow for the description of intermolecular charge-transfer excitations. We describe an excitation where an electron is transferred from a donor system to an acceptor one, keeping the excited state orthogonal to the ground state and avoiding variational collapse. These conditions are achieved by decomposing the space spanned by the Hartree-Fock (HF) ground state orbitals into four subspaces: The subspace spanned by the occupied orbitals that are localized in the region of the donor molecule, the corresponding for the acceptor ones and two more subspaces containing the virtual orbitals that are localized in the neighborhood of the donor and the acceptor, respectively. Next, we create a Slater determinant with a hole in the subspace of occupied orbitals of the donor and a particle in the virtual subspace of the acceptor. Subsequently we optimize both the hole and the particle by minimizing the HF energy functional in the corresponding subspaces. Finally, we test our approach by calculating the lowest charge-transfer excitation energies for a set of tetracyanoethylene-hydrocarbon complexes that have been used earlier as a test set for such kind of excitations.

  7. Lifetimes and Structure of Excited States of 73AS

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Căta-Danil, I.; Ivaşcu, M.; Mărginean, N.; Stroe, L.; Ur, C. A.; Dinu, N.

    The lifetimes of twelve low spin excited states in 73As, below 2 MeV excitation, have been measured with the DSA method in the 73Ge(p,nγ) reaction. The existing data (energy levels, electromagnetic moments, transition probabilities and branching ratios, one-nucleon transfer spectroscopic factors) are discussed in the frame of multi-shell interacting boson-fermion model calculations. A good agreement is obtained for a large number of levels.

  8. Observation of Excited State Spin Ordering under Pulsed Magnetic Field

    NASA Astrophysics Data System (ADS)

    Amaya, Kiichi; Karaki, Yoshitomo; Yamada, Norikatsu; Haseda, Taiichiro

    1981-10-01

    Spin ordering among excited levels in NaNi Acac3\\cdotbenzene is observed in the course of pulsed adiabatic magnetization with sweep rate of 105 T/sec. For initial temperatures below 1 K, dM/dt signals give the characteristic double peaks around the field of 2.11 T where the excited singlet and the upper state of the ground doublet crosses.

  9. Ultrafast excited-state intramolecular proton transfer of aloesaponarin I.

    PubMed

    Nagaoka, Shin-ichi; Uno, Hidemitsu; Huppert, Dan

    2013-04-25

    Time-resolved emission of aloesaponarin I was studied with the fluorescence up-conversion and time-correlated single-photon-counting techniques. The rates of the excited-state intramolecular proton transfer, of the solvent and molecular rearrangements, and of the decay from the excited proton-transferred species were determined and interpreted in the light of time-dependent density functional calculations. These results were discussed in conjunction with UV protection and singlet-oxygen quenching activity of aloe.

  10. Excitation energies of superdeformed states in the Pb isotopes

    SciTech Connect

    Wilson, A. N.; Byrne, A. P.; Dracoulis, G. D.; Davidson, P. M.; Lane, G. J.; Huebel, H.; Rossbach, D.; Schonwasser, G.; Korichi, A.; Hannachi, F.; Lopez-Martens, A.; Clark, R. M.; Fallon, P.; Macchiavelli, A. O.; Ward, D.

    2006-04-26

    Measurements of the excitation energies of superdeformed states via the observation of single-step linking transitions have now been made in three even-A Pb nuclei, with a quasicontinuum analysis providing a limit in a fourth, odd-A case. These results allow us to take the first steps towards establishing systematic trends in excitation energies and binding energies in the second minimum in Pb isotopes.

  11. Excited states of Ne isoelectronic ions: SAC-CI study

    NASA Astrophysics Data System (ADS)

    Das, A. K.; Ehara, M.; Nakatsuji, H.

    2001-01-01

    Excited states of the s, p, and d symmetries up to principal quantum number n = 4 are studied for the first eight members of Ne isoelectronic sequence (Ne to Cl7+) by the SAC-CI (symmetry-adapted-cluster configuration-interaction) method. The valence STO basis sets of Clementi et al. and the optimized excited STO are used by the STO-6G expansion method. The calculated transition energies agree well with the experimental values wherever available.

  12. Two-neutron decay of excited states of 11Li

    NASA Astrophysics Data System (ADS)

    Smith, Jenna; MoNA Collaboration

    2013-10-01

    One prominent example of a Borromean nucleus is the two-neutron halo nucleus, 11Li. All excited states of this nucleus are unbound to two-neutron decay. Many theories propose that the two valence neutrons exhibit dineutron behavior in the ground state, but it is unclear what effect such a structure would have on the decay of the excited states. We have recently completed an experiment designed to study the decay of one of these excited states. Unbound 11Li was populated via a two-proton knockout from 13B. The two emitted neutrons were detected with the Modular Neutron Array (MoNA) and the Large-area multi-Institutional Scintillator Array (LISA) in coincidence with the daughter fragment, 9Li. Preliminary results will be discussed.

  13. Dynamics and spectroscopy of CH₂OO excited electronic states.

    PubMed

    Kalinowski, Jaroslaw; Foreman, Elizabeth S; Kapnas, Kara M; Murray, Craig; Räsänen, Markku; Gerber, R Benny

    2016-04-28

    The excited states of the Criegee intermediate CH2OO are studied in molecular dynamics simulations using directly potentials from multi-reference perturbation theory (MR-PT2). The photoexcitation of the species is simulated, and trajectories are propagated in time on the excited state. Some of the photoexcitation events lead to direct fragmentation of the molecule, but other trajectories describe at least several vibrations in the excited state, that may terminate by relaxation to the ground electronic state. Limits on the role of non-adiabatic contributions to the process are estimated by two different simulations, one that forces surface-hopping at potential crossings, and another that ignores surface hopping altogether. The effect of non-adiabatic transitions is found to be small. Spectroscopic implications and consequences for the interpretation of experimental results are discussed.

  14. The Chemical Production of Excited State Moleculea.

    DTIC Science & Technology

    2014-09-26

    reverse side It necessary and identify by block number) dioxetanes chemilumuniscence amino peroxides ’jto Most of e search deals with the effect of...n, state (vs carbonyl formation and attempts to trap the proposed 1,4-dioxybiradica intermediate from thermolysis of dioxetanes. Some amino peroxides ...ring peroxide in order to distinguish between concerted vs stepwise decomposition routes. This study was pertinent to the mechanism of dioxetane (a

  15. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    NASA Astrophysics Data System (ADS)

    Ramon, John Glenn Santos

    The potential for using conducting polymers as the active material in optoelectronic devices has come to fruition in the past few years. Understanding the fundamental photophysics behind their operations points to the significant role played by the polymer interface in their performance. Current device architectures involve the use of bulk heterojunctions which intimately blend the donor and acceptor polymers to significantly increase not only their interfacial surface area but also the probability of exciton formation within the vicinity of the interface. In this dissertation, we detail the role played by the interface on the behavior and performance of bulk heterojunction systems. First, we explore the relation between the exciton binding energy to the band offset in determining device characteristics. As a general rule, when the exciton binding energy is greater than the band offset, the exciton remains the lowest energy excited state leading to efficient light-emitting properties. On the other hand, if the offset is greater than the binding energy, charge separation becomes favorable leading to better photovoltaic behavior. Here, we use a Wannier function, configuration interaction based approach to examine the essential excited states and predict the vibronic absorption and emission spectra of the PPV/BBL, TFB/F8BT and PFB/F8BT heterojunctions. Our results underscore the role of vibrational relaxation in the formation of charge-transfer states following photoexcitation. In addition, we look at the relaxation dynamics that occur upon photoexcitation. For this, we adopt the Marcus-Hush semiclassical method to account for lattice reorganization in the calculation of the interconversion rates in TFB/F8BT and PFB/F8BT. We find that, while a tightly bound charge-transfer state (exciplex) remains the lowest excited state, a regeneration pathway to the optically active lowest excitonic state in TFB/F8BT is possible via thermal repopulation from the exciplex. Finally

  16. Lifetime of the Excited State In Vivo

    PubMed Central

    Mar, T.; Govindjee; Singhal, G. S.; Merkelo, H.

    1972-01-01

    Using a mode-locked laser (λ, 632.8 nm), fluorescence decay of chlorophyll (Chl) a in the green alga Chlorella pyrenoidosa, the red alga Porphyridium cruentum, and the blue-green alga Anacystis nidulans was measured by the phase-shift method under conditions when photosynthesis was not operative (3-(3,4-dichlorophenyl)-1,1-dimethylurea [DCMU] poisoning, or cooling to 77°K). In the presence of 10-5 M DCMU, the lifetime of Chl a fluorescence (τ) at room temperature is about 1.7 nsec in Chlorella, 1.0 nsec in Porphyridium, and 0.7 nsec in Anacystis. At 77°K, τ is 1.4 nsec (for fluorescence at about 685 nm, F-685) and 2.3 nsec (for F-730) in Chlorella, 0.9 nsec (F-685) and 1.2 nsec (F-730) in Porphyridium, and 0.8 nsec (F-685 and F-730) in Anacystis. From the above measurement, and the assumption that τ0 (the intrinsic fluorescence lifetime) for Chl a in all three algae is 15.2 nsec, we have calculated the rate constants of radiationless transition (that includes energy transfer to weakly fluorescent system I) processes competing with fluorescence at room temperature to be about 5 × 108 sec-1 in Chlorella, 9 × 108 sec-1 in Porphyridium, and 13 × 108 sec-1 in Anacystis. At 77°K, this rate constant for Chl a that fluoresces at 685 nm remains, in the first approximation, the same as at room temperature. From the τ data, the rate constant for the trapping of excitation energy is calculated to be about 1.2 × 109 sec-1 for Chlorella, 2 × 109 sec-1 for Porphyridium, and 2 × 109 sec-1 for Anacystis. The efficiency of trapping is calculated to be about 66% (Chlorella), 68% (Porphyridium), and 60% (Anacystis). (It is recognized that variations in the above values are to be expected if algae grown under different conditions are used for experimentation.) The maximum quantum yield of Chl a fluorescence for system II (λ, 632.8 nm), calculated from τ measurements, is about 10% in Chlorella, 6-7% in Porhyridium, and 5% in Anacystis under conditions when photosynthesis

  17. Excited State Chemistry of Halogen Azides.

    DTIC Science & Technology

    1982-08-01

    a. CONTRACT OR GRANT "UMSERas A.T. Pritt, Jr. F49620-79-C-0053 S. PERF004IIN ORGANIZATION NAME AND ADDRESS 10. PROGRAM EL EMEN T. PROJECT. T ASK...intensities of transitions to the Q = 0+ and a = 1± states in NBr do not agree with calculations based on values of rotational and spin-rotational...and in our own laboratory.12 As is the case for other covalently bound azides, however, it is probable that the strongest absorptions in these

  18. Excited state conformational dynamics in carotenoids: dark intermediates and excitation energy transfer.

    PubMed

    Beck, Warren F; Bishop, Michael M; Roscioli, Jerome D; Ghosh, Soumen; Frank, Harry A

    2015-04-15

    A consideration of the excited state potential energy surfaces of carotenoids develops a new hypothesis for the nature of the conformational motions that follow optical preparation of the S2 (1(1)Bu(+)) state. After an initial displacement from the Franck-Condon geometry along bond length alternation coordinates, it is suggested that carotenoids pass over a transition-state barrier leading to twisted conformations. This hypothesis leads to assignments for several dark intermediate states encountered in femtosecond spectroscopic studies. The Sx state is assigned to the structure reached upon the onset of torsional motions near the transition state barrier that divides planar and twisted structures on the S2 state potential energy surface. The X state, detected recently in two-dimensional electronic spectra, corresponds to a twisted structure well past the barrier and approaching the S2 state torsional minimum. Lastly, the S(∗) state is assigned to a low lying S1 state structure with intramolecular charge transfer character (ICT) and a pyramidal conformation. It follows that the bent and twisted structures of carotenoids that are found in photosynthetic light-harvesting proteins yield excited-state structures that favor the development of an ICT character and optimized energy transfer yields to (bacterio)chlorophyll acceptors.

  19. Influence of bridging ligand unsaturation on excited state behavior in mono- and bimetallic ruthenium(II) diimine complexes

    SciTech Connect

    Baba, A.I.; Ensley, H.E.; Schmehl, R.H.

    1995-03-01

    The redox and photophysical properties of a series of bis(bipyridine)-bridged bimetallic complexes of the type [(dmb){sub 2}Ru(BL)](PF{sub 6}){sub 2} and ([(dmb){sub 2}Ru]{sub 2}(BL))(PF{sub 6}){sub 4} (dmb = 4,4{prime}-dimethyl-2,2{prime}-bipyridine; BL = 1,4-bis(4{prime}-methyl-2,2{prime}-bipyridin-4-yl)buta-1,3-diene (bbdb), 1,4-bis(4{prime}-methyl-2,2{prime}-bipyridin-4-yl)-2-cyclohexene -5,6-dicarboxylic acid diethyl ester (bchb), and 1,4-bis(r{prime}-methyl-2,2{prime}-bipyridin-4-yl)benzene (bphb)) are reported. Complexes having cyclohexenyl and phenyl bridging ligands have redox and photophysical properties similar to the parent complex of the series, [(dmb){sub 3} Ru](PF{sub 6}){sub 2}. The butadienyl complexes exhibit very weak luminescence and transient absorbance spectra which are indicative of the presence of another excited state. For [(dmb){sub 2}Ru-(bbdb)](PF{sub 6}){sub 2} the room temperature luminescence lifetime differs from the lifetime obtained by transient absorbance and the luminescence and transient absorbance are quenched with different rate constants by a series of triplet quenchers. The results suggest that the complexes of bbdb have a second excited state which is populated along with the {sup 3}MLCT state. A comparison of the luminescence behavior of several different bridged complexes with the triplet energies of related aromatic hydrocarbons suggests that the triplet energy of the bridging ligand is relatively unaffected by coordination.

  20. SW Sextantis in an excited, low state

    NASA Astrophysics Data System (ADS)

    Groot, P. J.; Rutten, R. G. M.; van Paradijs, J.

    2001-03-01

    We present low-resolution spectrophotometric optical observations of the eclipsing nova-like cataclysmic variable SW Sex, the prototype of the SW Sex stars. We observed the system when it was in an unusual low state. The spectrum is characterized by the presence of strong Heii and Civ emission lines as well as the normal single peaked Balmer emission lines. The radial temperature profile of the disk follows the expected T~ R-3/4 only in the outer parts and flattens off inside 0.5 times the white dwarf Roche lobe radius. The single peaked emission lines originate in a region above the plane of the disk, at the position of the hot spot.

  1. Excited-state dynamics of astaxanthin aggregates

    NASA Astrophysics Data System (ADS)

    Fuciman, Marcel; Durchan, Milan; Šlouf, Václav; Keşan, Gürkan; Polívka, Tomáš

    2013-05-01

    Astaxanthin forms three types of aggregates in hydrated dimethyl sulfoxide (DMSO). In DMSO/water ratio of 1:1, a red-shifted J-aggregate with maximum at 570 nm is generated, while a ratio of 1:9 produces blue-shifted H-aggregates with peaks at 386 nm (H1) and 460 nm (H2). Monomeric astaxanthin in DMSO has an S1 lifetime of 5.3 ps, but a long-lived (33 ps) S∗ signal was also identified. Aggregation changes the S1 lifetimes to 17 ps (H1), 30 ps (H2), and 14 ps (J). Triplet state of astaxanthin, most likely generated via singlet homofission, was observed in H1 and H2 aggregates.

  2. Excited state entanglement in homogeneous fermionic chains

    NASA Astrophysics Data System (ADS)

    Ares, F.; Esteve, J. G.; Falceto, F.; Sánchez-Burillo, E.

    2014-06-01

    We study the Rényi entanglement entropy of an interval in a periodic fermionic chain for a general eigenstate of a free, translational invariant Hamiltonian. In order to analytically compute the entropy we use two technical tools. The first is used to logarithmically reduce the complexity of the problem and the second to compute the Rényi entropy of the chosen subsystem. We introduce new strategies to perform the computations, derive new expressions for the entropy of these general states and show the perfect agreement of the analytical computations and the numerical outcome. Finally we discuss the physical interpretation of our results and generalize them to compute the entanglement entropy for a fragment of a fermionic ladder.

  3. Quenching of excited triplet states by dissolved natural organic matter.

    PubMed

    Wenk, Jannis; Eustis, Soren N; McNeill, Kristopher; Canonica, Silvio

    2013-11-19

    Excited triplet states of aromatic ketones and quinones are used as proxies to assess the reactivity of excited triplet states of the dissolved organic matter ((3)DOM*) in natural waters. (3)DOM* are crucial transients in environmental photochemistry responsible for contaminant transformation, production of reactive oxygen species, and potentially photobleaching of DOM. In recent photochemical studies aimed at clarifying the role of DOM as an inhibitor of triplet-induced oxidations of organic contaminants, aromatic ketones have been used in the presence of DOM, and the question of a possible interaction between their excited triplet states and DOM has emerged. To clarify this issue, time-resolved laser spectroscopy was applied to measure the excited triplet state quenching of four different model triplet photosensitizers induced by a suite of DOM from various aquatic and terrestrial sources. While no quenching for the anionic triplet sensitizers 4-carboxybenzophenone (CBBP) and 9,10-anthraquinone-2,6-disulfonic acid (2,6-AQDS) was detected, second-order quenching rate constants with DOM for the triplets of 2-acetonaphthone (2AN) and 3-methoxyacetophenone (3MAP) in the range of 1.30-3.85 × 10(7) L mol(C)(-1) s(-1) were determined. On the basis of the average molecular weight of DOM molecules, the quenching for these uncharged excited triplet molecules is nearly diffusion-controlled, but significant quenching (>10%) in aerated water is not expected to occur below DOM concentrations of 22-72 mg(C) L(-1).

  4. Exploration of Excited State Deactivation Pathways of Adenine Monohydrates.

    PubMed

    Chaiwongwattana, Sermsiri; Sapunar, Marin; Ponzi, Aurora; Decleva, Piero; Došlić, Nađa

    2015-10-29

    Binding of a single water molecule has a dramatic effect on the excited state lifetime of adenine. Here we report a joint nonadiabatic dynamics and reaction paths study aimed at understanding the sub-100 fs lifetime of adenine in the monohydrates. Our nonadiabatic dynamics simulations, performed using the ADC(2) electronic structure method, show a shortening of the excited state lifetime in the monohydrates with respect to bare adenine. However, the computed lifetimes were found to be significantly longer that the observed one. By comparing the reaction pathways of several excited state deactivation processes in adenine and adenine monohydrates, we show that electron-driven proton transfer from water to nitrogen atom N3 of the adenine ring may be the process responsible for the observed ultrafast decay. The inaccessibility of the electron-driven proton transfer pathway to trajectory-based nonadiabatic dynamics simulation is discussed.

  5. Polymethine and squarylium molecules with large excited-state absorption

    NASA Astrophysics Data System (ADS)

    Lim, Jin Hong; Przhonska, Olga V.; Khodja, Salah; Yang, Sidney; Ross, T. S.; Hagan, David J.; Van Stryland, Eric W.; Bondar, Mikhail V.; Slominsky, Yuriy L.

    1999-07-01

    We study nonlinear absorption in a series of ten polymethine dyes and two squarylium dyes using Z-scan, pump-probe and optical limiting experiments. Both picosecond and nanosecond characterization were performed at 532 nm, while picosecond measurements were performed using an optical parametric oscillator (OPO) from 440 to 650 nm. The photophysical parameters of these dyes including cross sections and excited-state lifetimes are presented both in solution in ethanol and in an elastopolymeric material, polyurethane acrylate (PUA). We determine that the dominant nonlinearity in all these dyes is large excited-state absorption (ESA), i.e. reverse saturable absorption. For several of the dyes we measure a relatively large ground-state absorption cross section, σ01, which effectively populates an excited state that possesses an extremely large ESA cross section, σ12. The ratios of σ12/ σ01 are the largest we know of, up to 200 at 532 nm, and lead to very low thresholds for optical limiting. However, the lifetimes of the excited state are of the order of 1 ns in ethanol, which is increased to up to 3 ns in PUA. This lifetime is less than optimum for sensor protection applications for Q-switched inputs, and intersystem crossing times for these molecules are extremely long, so that triplet states are not populated. These parameters show a significant improvement over those of the first set of this class of dyes studied and indicate that further improvement of the photophysical parameters may be possible. From these measurements, correlations between molecular structure and nonlinear properties are made. We propose a five-level, all-singlet state model, which includes reorientation processes in the first excited state. This includes a trans- cis conformational change that leads to the formation of a new state with a new molecular configuration which is also absorbing but can undergo a light-induced degradation at high inputs.

  6. Two-Mode Excited Entangled Coherent State: Nonclassicality and Entanglement

    NASA Astrophysics Data System (ADS)

    Zhang, Hao-Liang; Wu, Jia-Ni; Liu, Cun-Jin; Hu, Yin-Quan; Hu, Li-Yun

    2017-03-01

    Two-mode excited entangled coherent states (TME-ECSs) are introduced by operating repeatedly the photon-excited operator on the ECSs. It is shown that the normalization constant is related to the product of two Laguerre polynomials. The influence of the operation on nonclassical behaviour of the ECSs is investigated in terms of cross-correlation function, anti-bunching effect and the negativity of Wigner function, which show that nonclassical properties can be enhanced. In addition, inseparability properties of the TME-ECSs are discussed by using Bell inequality and concurrence. It is found that the degree of quantum entanglement of even ECSs increases with the increase of the total excited photon number, and the violation of Bell inequality can be present for both even and odd case only when the total excited photon numbers are even and odd, respectively.

  7. State-Selective Excitation of Quantum Systems via Geometrical Optimization.

    PubMed

    Chang, Bo Y; Shin, Seokmin; Sola, Ignacio R

    2015-09-08

    We lay out the foundations of a general method of quantum control via geometrical optimization. We apply the method to state-selective population transfer using ultrashort transform-limited pulses between manifolds of levels that may represent, e.g., state-selective transitions in molecules. Assuming that certain states can be prepared, we develop three implementations: (i) preoptimization, which implies engineering the initial state within the ground manifold or electronic state before the pulse is applied; (ii) postoptimization, which implies engineering the final state within the excited manifold or target electronic state, after the pulse; and (iii) double-time optimization, which uses both types of time-ordered manipulations. We apply the schemes to two important dynamical problems: To prepare arbitrary vibrational superposition states on the target electronic state and to select weakly coupled vibrational states. Whereas full population inversion between the electronic states only requires control at initial time in all of the ground vibrational levels, only very specific superposition states can be prepared with high fidelity by either pre- or postoptimization mechanisms. Full state-selective population inversion requires manipulating the vibrational coherences in the ground electronic state before the optical pulse is applied and in the excited electronic state afterward, but not during all times.

  8. Accurate Excited State Geometries within Reduced Subspace TDDFT/TDA.

    PubMed

    Robinson, David

    2014-12-09

    A method for the calculation of TDDFT/TDA excited state geometries within a reduced subspace of Kohn-Sham orbitals has been implemented and tested. Accurate geometries are found for all of the fluorophore-like molecules tested, with at most all valence occupied orbitals and half of the virtual orbitals included but for some molecules even fewer orbitals. Efficiency gains of between 15 and 30% are found for essentially the same level of accuracy as a standard TDDFT/TDA excited state geometry optimization calculation.

  9. First-principles Calculation of Excited State Spectra in QCD

    SciTech Connect

    Jozef Dudek,Robert Edwards,Michael Peardon,David Richards,Christopher Thomas

    2011-05-01

    Recent progress at understanding the excited state spectra of mesons and baryons is described. I begin by outlining the application of the variational method to compute the spectrum of QCD, and then present results for the excited meson spectrum, with continuum quantum numbers of the states clearly delineated. I emphasise the need to extend the calculation to encompass multi-hadron contributions, and describe a recent calculation of the I=2 pion-pion energy-dependent phase shifts as a precursor to the study of channels with resonant behavior. I conclude with recent results for the low lying baryon spectrum, and the prospects for future calculations.

  10. 2{sup +} excitation of the {sup 12}C Hoyle state

    SciTech Connect

    Freer, M.; Fujita, H.; Carter, J.; Usman, I.; Buthelezi, Z.; Foertsch, S. V.; Neveling, R.; Perez, S. M.; Smit, F. D.; Fearick, R. W.; Papka, P.; Swartz, J. A.

    2009-10-15

    A high-energy-resolution magnetic spectrometer has been used to measure the {sup 12}C excitation energy spectrum to search for the 2{sup +} excitation of the 7.65 MeV, 0{sup +} Hoyle state. By measuring in the diffractive minimum of the angular distribution for the broad 0{sup +} background, evidence is found for a possible 2{sup +} state at 9.6(1) MeV with a width of 600(100) keV. The implications for the {sup 8}Be+{sup 4}He reaction rate in stellar environments are discussed.

  11. Stabilization of secondary diesel fuels by singlet-oxygen quenchers

    SciTech Connect

    Rat`kova, M.Y.; Danilov, A.M.

    1993-05-10

    A study was carried out on the effect of singlet-oxygen quenchers on the stability of light catalytic gas oil not subjected to hydrogen treatment. Compositions based on {alpha}-tocopherol with Ionol and a dispersing agent (Dneprol additive) have a stabilizing effect.

  12. Formation of metastable excited states during sputtering of transition metals

    SciTech Connect

    Wucher, A.; Sroubek, Z.

    1997-01-01

    We propose a simple model which treats the formation of metastable excited neutral atoms during sputtering of a transition metal as a two step process. First, the energy deposited into the electronic system of the solid by electronic energy losses of all moving particles in the collision cascade is considered to lead to a locally altered equilibrium electronic state of the solid. It is found that this step is dominated by collective interaction with the conduction band electrons rather than by electron promotion in binary atom-atom collisions. Second, sputtered excited atoms are assumed to be formed by resonant neutralization of excited ions (reflecting the altered equilibrium state) while crossing the surface. It is shown that this model explains the total as well as the velocity dependent excitation probability observed in recent experiments on sputtered neutral silver atoms, which cannot be understood in terms of existing theories describing the formation of excited states in sputtering. {copyright} {ital 1996} {ital The American Physical Society}

  13. Two-color excited-state absorption imaging of melanins

    NASA Astrophysics Data System (ADS)

    Fu, Dan; Ye, Tong; Matthews, Thomas E.; Yurtsever, Gunay; Hong, Lian; Simon, John D.; Warren, Warren S.

    2007-02-01

    We have demonstrated a new method for imaging melanin with two-color excited state absorption microscopy. If one of two synchronized mode-locked pulse trains at different colors is intensity modulated, the modulation transfers to the other pulse train when nonlinear absorption takes place in the medium. We can easily measure 10 -6 absorption changes caused by either instantaneous two-photon absorption or relatively long lived excited state absorption with a RF lock-in amplifier. Eumelanin and pheomelanin exhibit similar excited state dynamics. However, their difference in excited state absorption and ground state absorption leads to change in the phase of the transient absorption signal. Scanning microscopic imaging is performed with B16 cells, melanoma tissue to demonstrate the 3D high resolution imaging capability. Different melanosome samples are also imaged to illustrate the differences between eumelanin and pheomelanin signals. These differences could enable us to image their respective distribution in tissue samples and provide us with valuable information in diagnosing malignant transformation of melanocytes.

  14. Internal conversion from excited electronic states of 229Th ions

    NASA Astrophysics Data System (ADS)

    Bilous, Pavlo V.; Kazakov, Georgy A.; Moore, Iain D.; Schumm, Thorsten; Pálffy, Adriana

    2017-03-01

    The process of internal conversion from excited electronic states is investigated theoretically for the case of the vacuum-ultraviolet nuclear transition of 229Th. Due to the very low transition energy, the 229Th nucleus offers the unique possibility to open the otherwise forbidden internal conversion nuclear decay channel for thorium ions via optical laser excitation of the electronic shell. We show that this feature can be exploited to investigate the isomeric state properties via observation of internal conversion from excited electronic configurations of +Th and Th+2 ions. A possible experimental realization of the proposed scenario at the nuclear laser spectroscopy facility IGISOL in Jyväskylä, Finland, is discussed.

  15. Excited state tautomerization of 7-azaindole catalyzed by pyrazole

    NASA Astrophysics Data System (ADS)

    Karmakar, Shreetama; Mukherjee, Moitrayee; Chakraborty, Tapas

    2013-03-01

    Pyrazole, a five member cyclic azole, is reported here as an efficient catalyst for excited state tautomeric conversion of 7-azaindole. In hydrocarbon solution the two compounds efficiently form a doubly hydrogen-bonded 1:1 cyclic complex whose association constant value is found comparable with 7-azaindole dimerization constant, and according to B3LYP/6-311G++∗∗ calculation the binding energies of the complex and dimer are nearly same. In the excited state (S1), the TDDFT calculation predicts tautomer of the complex to be 13.4 kcal/mol more stable than normal form. Fluorescence spectra reveal that upon UV excitation the complex emits exclusively from the tautomeric form.

  16. Direct Lifetime Measurements of the Excited States in 72Ni

    NASA Astrophysics Data System (ADS)

    Kolos, K.; Miller, D.; Grzywacz, R.; Iwasaki, H.; Al-Shudifat, M.; Bazin, D.; Bingham, C. R.; Braunroth, T.; Cerizza, G.; Gade, A.; Lemasson, A.; Liddick, S. N.; Madurga, M.; Morse, C.; Portillo, M.; Rajabali, M. M.; Recchia, F.; Riedinger, L. L.; Voss, P.; Walters, W. B.; Weisshaar, D.; Whitmore, K.; Wimmer, K.; Tostevin, J. A.

    2016-03-01

    The lifetimes of the first excited 2+ and 4+ states in 72>Ni were measured at the National Superconducting Cyclotron Laboratory with the recoil-distance Doppler-shift method, a model-independent probe to obtain the reduced transition probability. Excited states in 72Ni were populated by the one-proton knockout reaction of an intermediate energy 73Cu beam. γ -ray-recoil coincidences were detected with the γ -ray tracking array GRETINA and the S800 spectrograph. Our results provide evidence of enhanced transition probability B (E 2 ;2+→0+) as compared to 68Ni, but do not confirm the trend of large B (E 2 ) values reported in the neighboring isotope 70Ni obtained from Coulomb excitation measurement. The results are compared to shell model calculations. The lifetime obtained for the excited 41+ state is consistent with models showing decay of a seniority ν =4 , 4+ state, which is consistent with the disappearance of the 8+ isomer in 72Ni.

  17. Tuning ground states and excitations in complex electronic materials

    SciTech Connect

    Bishop, A.R.

    1996-09-01

    Modern electronic materials are characterized by a great variety of broken-symmetry ground states and excitations. Their control requires understanding and tuning underlying driving forces of spin-charge-lattice coupling, critical to macroscopic properties and applications. We report representative model calculations which demonstrate some of the richness of the phenomena and the challenges for successful microscopic modeling.

  18. Suppression of excited-state absorption in laser crystals

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Elena; Kolesov, Roman; Kocharovskaya, Olga

    2004-10-01

    Currently, a lot of experimental effort in solid-state optics is devoted to searching for laser materials suitable for tunable lasing, primarily in UV and VUV spectral regions. Researchers mainly focus on optical crystals doped with either transition metal or rare-earth ions. The latter ones doped into wide bandgap dielectric crystals have spectrally broad vibronic emission bands associated with 4fn-15d â" 4fn interconfigurational transitions, whose energies lie mostly in UV and VUV regions of the spectrum. The transitions are electric-dipole-allowed, therefore have large absorption and emission cross-sections, and are promising for efficient tunable laser action. However, in almost all promising crystals laser action in UV and VUV is hindered or completely prohibited due to excited-state absorption (ESA), i.e. absorption from metastable laser levels to higher-energy states, which occurs at emission or/and pump wavelengths. A method of suppression of losses due to excited-state absorption (ESA) in laser crystals is proposed, based on a well-known phenomenon of electromagnetically induced transparency (EIT). Absorption from a populated excited electronic state can be reduced under the action of an additional driving coherent field, resonantly coupling the terminal state of ESA to some intermediate discrete state.

  19. Multiparticle configurations of excited states in 155Lu

    NASA Astrophysics Data System (ADS)

    Carroll, R. J.; Hadinia, B.; Qi, C.; Joss, D. T.; Page, R. D.; Uusitalo, J.; Andgren, K.; Cederwall, B.; Darby, I. G.; Eeckhaudt, S.; Grahn, T.; Gray-Jones, C.; Greenlees, P. T.; Jones, P. M.; Julin, R.; Juutinen, S.; Leino, M.; Leppänen, A.-P.; Nyman, M.; Pakarinen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Seweryniak, D.; Simpson, J.

    2016-12-01

    Excited states in the neutron-deficient N =84 nuclide 155Lu have been populated by using the 102Pd(58Ni,α p ) reaction. The 155Lu nuclei were separated by using the gas-filled recoil ion transport unit (RITU) separator and implanted into the Si detectors of the gamma recoil electron alpha tagging (GREAT) spectrometer. Prompt γ -ray emissions measured at the target position using the JUROGAM Ge detector array were assigned to 155Lu through correlations with α decays measured in GREAT. Structures feeding the (11 /2-) and (25 /2-)α -decaying states have been revised and extended. Shell-model calculations have been performed and are found to reproduce the excitation energies of several of the low-lying states observed to within an average of 71 keV. In particular, the seniority inversion of the 25 /2- and 27 /2- states is reproduced.

  20. Excited-state quantum phase transition in the Rabi model

    NASA Astrophysics Data System (ADS)

    Puebla, Ricardo; Hwang, Myung-Joong; Plenio, Martin B.

    2016-08-01

    The Rabi model, a two-level atom coupled to a harmonic oscillator, can undergo a second-order quantum phase transition (QPT) [M.-J. Hwang et al., Phys. Rev. Lett. 115, 180404 (2015), 10.1103/PhysRevLett.115.180404]. Here we show that the Rabi QPT accompanies critical behavior in the higher-energy excited states, i.e., the excited-state QPT (ESQPT). We derive analytic expressions for the semiclassical density of states, which show a logarithmic divergence at a critical energy eigenvalue in the broken symmetry (superradiant) phase. Moreover, we find that the logarithmic singularities in the density of states lead to singularities in the relevant observables in the system such as photon number and atomic polarization. We corroborate our analytical semiclassical prediction of the ESQPT in the Rabi model with its numerically exact quantum mechanical solution.

  1. Direct excitation of butterfly states in Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Lippe, Carsten; Niederpruem, Thomas; Thomas, Oliver; Eichert, Tanita; Ott, Herwig

    2016-05-01

    Since their first theoretical prediction Rydberg molecules have become an increasing field of research. These exotic states originate from the binding of a ground state atom in the electronic wave function of a highly-excited Rydberg atom mediated by a Fermi contact type interaction. A special class of long-range molecular states, the butterfly states, were first proposed by Greene et al.. These states arise from a shape resonance in the p-wave scattering channel of a ground state atom and a Rydberg electron and are characterized by an electron wavefunction whose density distribution resembles the shape of a butterfly. We report on the direct observation of deeply bound butterfly states of Rydberg molecules of 87 Rb. The butterfly states are studied by high resolution spectroscopy of UV-excited Rydberg molecules. We find states bound up to - 50 GHz from the 25 P1/2 , F = 1 state, corresponding to binding lengths of 50a0 to 500a0 and with permanent electric dipole moments of up to 500 Debye. This distinguishes the observed butterfly states from the previously observed long range Rydberg molecules in rubidium.

  2. Ultrafast excited state dynamics of fucoxanthin: excitation energy dependent intramolecular charge transfer dynamics.

    PubMed

    Kosumi, Daisuke; Kusumoto, Toshiyuki; Fujii, Ritsuko; Sugisaki, Mitsuru; Iinuma, Yoshiro; Oka, Naohiro; Takaesu, Yuki; Taira, Tomonori; Iha, Masahiko; Frank, Harry A; Hashimoto, Hideki

    2011-06-14

    Carotenoids containing a carbonyl group in conjugation with their polyene backbone are naturally-occurring pigments in marine organisms and are essential to the photosynthetic light-harvesting function in aquatic algae. These carotenoids exhibit spectral characteristics attributed to an intramolecular charge transfer (ICT) state that arise in polar solvents due to the presence of the carbonyl group. Here, we report the spectroscopic properties of the carbonyl carotenoid fucoxanthin in polar (methanol) and nonpolar (cyclohexane) solvents studied by steady-state absorption and femtosecond pump-probe measurements. Transient absorption associated with the optically forbidden S(1) (2(1)A) state and/or the ICT state were observed following one-photon excitation to the optically allowed S(2) (1(1)B) state in methanol. The transient absorption measurements carried out in methanol showed that the ratio of the ICT-to-S(1) state formation increased with decreasing excitation energy. We also showed that the ICT character was clearly visible in the steady-state absorption in methanol based on a Franck-Condon analysis. The results suggest that two spectroscopic forms of fucoxanthin, blue and red, exist in the polar environment. This journal is © the Owner Societies 2011

  3. Excited States of the Diatomic Molecule CrHe

    NASA Astrophysics Data System (ADS)

    Pototschnig, Johann V.; Ratschek, Martin; Hauser, Andreas W.; Ernst, Wolfgang E.

    2013-06-01

    Chromium (Cr) atoms embedded in superfluid helium nanodroplets (He_N) have been investigated by laser induced fluorescence, beam depletion and resonant two-photon ionization spectroscopy in current experiments at our institute. Cr is found to reside inside the He_N in the a^7S ground state. Two electronically excited states, z^7P and y^7P, are involved in a photoinduced ejection process which allowed us to study Fano resonances in the photoionisation spectra The need for a better understanding of the experimental observations triggered a theoretical approach towards the computation of electronically excited states via high-level methods of computational chemistry. Two well-established, wave function-based methods, CASSCF and MRCI, are combined to calculate the potential energy curves for the three states involved. The character of the two excited states z^7P and y^7P turns out to be significantly different. Theory predicts the ejection of the Cr atom in the case of an y^7P excitation as was observed experimentally. The quasi-inert helium environment is expected to weaken spin selection rules, allowing a coupling between different spin states especially during the ejection process. We therefore extend our theoretical analysis to the lowest state in the triplet- and quintet- manifold. Most of these alternative states show very weak bonding of only a few wn. A. Kautsch, M. Hasewend, M. Koch and W. E. Ernst, Phys. Rev. A 86, 033428 (2012). A. Kautsch, M. Koch and W. E. Ernst, J. Phys. Chem. A, accepted, doi:10.1021/jp312336m}.

  4. Doubly Excited Resonance States of Helium Atom: Complex Entropies

    NASA Astrophysics Data System (ADS)

    Kuroś, Arkadiusz; Kościk, Przemysław; Saha, Jayanta K.

    2016-12-01

    We provide a diagonal form of a reduced density matrix of S-symmetry resonance states of two electron systems determined under the framework of the complex scaling method. We have employed the variational Hylleraas type wavefunction to estimate the complex entropies in doubly excited resonance states of helium atom. Our results are in good agreement with the corresponding ones determined under the framework of the stabilization method (Lin and Ho in Few-Body Syst 56:157, 2015).

  5. Ground and Excited State Spectra of a Quantum Dot

    NASA Astrophysics Data System (ADS)

    Stewart, D. R.; Sprinzak, D.; Patel, S. R.; Marcus, C. M.; Duruoz, C. I.; Harris, J. S.

    1998-03-01

    We present linear and nonlinear magnetoconductance measurements of the ground and excited state spectra for successive electron occupancy in a gate defined lateral quantum dot. Previous measurementsfootnote D.R. Stewart, D. Sprinzak, C.M. Marcus, C.I. Duruoz and J.S. Harris Jr., Science 278, (1997). showed a direct correlation between the mth excited state of the N-electron system and the ground state of the (N+m)-electron system for m up to 4, consistent to a large degree with a single-particle picture. Here we report quantitative deviations of the excited state spectra from the spectrum of ground state magnetoconductances, attributed to many-body interactions in the finite system of N ~200 electrons. We also describe the behaviour of anticrossings in the ground state magnetoconductances. We acknowledge the support of JSEP (DAAH04-94-G-0058), ARO (DAAH04-95-1-0331), ONR-YIP (N00014-94-1-0622) and the NSF-PECASE program. D.S. acknowledges the support of MINERVA grant.

  6. On the excited-state multi-dimensionality in cyanines

    NASA Astrophysics Data System (ADS)

    Dietzek, Benjamin; Brüggemann, Ben; Persson, Petter; Yartsev, Arkady

    2008-03-01

    Vibrational coherences in a photoexcited cyanine dye are preserved for the time-scale of diffusive torsional motion to the bottom of the excited-state potential. The coherently excited modes are virtually unaffected by solvent friction and thus distinct from the bond-twisting motion, which is strongly coupled to the surrounding solvent. We correlate the modes apparent in the resonance Raman and the four-wave mixing signal of 1,1'-diethyl-2,2'-cyanine with the understanding of optimal control of isomerization. In turn, the experimental results illustrate that optimal control might be used to obtain vibrational information complementary to conventional spectroscopic data.

  7. Observation of Excited Quadrupole-Bound States in Cold Anions

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Zhu; Liu, Yuan; Wang, Lai-Sheng

    2017-07-01

    We report the first observation of an excited quadrupole-bound state (QBS) in an anion. High-resolution photoelectron imaging of cryogenically cooled 4-cyanophenoxide (4 CP- ) anions yields an electron detachment threshold of 24 927 cm-1 . The photodetachment spectrum reveals a resonant transition 20 cm-1 below the detachment threshold, which is attributed to an excited QBS of 4 CP- because neutral 4CP has a large quadrupole moment with a negligible dipole moment. The QBS is confirmed by observation of seventeen above-threshold resonances due to autodetachment from vibrational levels of the QBS.

  8. Highly Excited States of cs Atoms on Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Lackner, F.; Theisen, M.; Koch, M.; Ernst, W. E.

    2011-06-01

    Cs atoms on the surface of helium nanodroplets have been excited to high lying nS (n = 8-11), nP (n = 8-11), and nD (n = 6-10) levels. A two-step excitation scheme via the 62P1/2(2Π1/2) state using two cw lasers was applied. This intermediate state has the advantage that a large fraction of the excited Cs atoms does not desorb from the helium nanodroplets. An absorption spectrum was recorded by detecting laser induced fluorescence light from the 62P3/2→62S1/2 transition. The pseudo-diatomic model for helium nanodroplets doped with single alkali-metal atoms holds for the observed spectrum. An investigation of spectral trends shows that the n'2P(Π)←62P1/2(2Π1/2) and n'2D(Δ)←62P1/2(2Π1/2) (n' > 9) transitions are lower in energy than the corresponding free-atom transitions. This indicates that the Cs*--HeN potential becomes attractive for these highly excited states. Our results suggest a possibility of generating an artificial super-atom with a positive ion core inside a helium nanodroplet and the electron outside, which will be subject to future experiments. M. Theisen, F. Lackner, F. Ancilotto, C. Callegari, and W.E. Ernst, Eur. Phys. J. D 61, 403-408 (2011)

  9. Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation.

    PubMed

    Mondal, Sayan; Puranik, Mrinalini

    2016-05-18

    The photophysical properties of natural nucleobases and their respective nucleotides are ascribed to the sub-picosecond lifetime of their first singlet states in the UV-B region (260-350 nm). Electronic transitions of the ππ* type, which are stronger than those in the UV-B region, lie at the red edge of the UV-C range (100-260 nm) in all isolated nucleobases. The lowest energetic excited states in the UV-B region of nucleobases have been investigated using a plethora of experimental and theoretical methods in gas and solution phases. The sub-picosecond lifetime of these molecules is not a general attribute of all nucleobases but specific to the five primary nucleobases and a few xanthine and methylated derivatives. To determine the overall UV photostability, we aim to understand the effect of more energetic photons lying in the UV-C region on nucleobases. To determine the UV-C initiated photophysics of a nucleobase system, we chose a halogen substituted purine, 6-chloroguanine (6-ClG), that we had investigated previously using resonance Raman spectroscopy. We have performed quantitative measurements of the resonance Raman cross-section across the Bb absorption band (210-230 nm) and constructed the Raman excitation profiles. We modeled the excitation profiles using Lee and Heller's time-dependent theory of resonance Raman intensities to extract the initial excited state dynamics of 6-ClG within 30-50 fs after photoexcitation. We found that imidazole and pyrimidine rings of 6-ClG undergo expansion and contraction, respectively, following photoexcitation to the Bb state. The amount of distortions of the excited state structure from that of the ground state structure is reflected by the total internal reorganization energy that is determined at 112 cm(-1). The contribution of the inertial component of the solvent response towards the total reorganization energy was obtained at 1220 cm(-1). In addition, our simulation also yields an instantaneous response of the first

  10. Controlling the dissociation dynamics of acetophenone radical cation through excitation of ground and excited state wavepackets

    NASA Astrophysics Data System (ADS)

    Moore Tibbetts, Katharine; Tarazkar, Maryam; Bohinski, Timothy; Romanov, Dmitri A.; Matsika, Spiridoula; Levis, Robert J.

    2015-08-01

    Time-resolved measurements of the acetophenone radical cation prepared via adiabatic ionization with strong field 1270 nm excitation reveal coupled wavepacket dynamics that depend on the intensity of the 790 nm probe pulse. At probe intensities below 7× {10}11 W cm-2, out of phase oscillations between the parent molecular ion and the benzoyl fragment ion are shown to arise from a one-photon excitation from the ground D0 ionic surface to the D1 and/or D2 excited surfaces by the probe pulse. At higher probe intensities, a second set of wavepacket dynamics are observed that couple the benzoyl ion to the phenyl, butadienyl, and acylium fragment ions. Equation of motion coupled cluster calculations of the ten lowest lying ionic surfaces and the dipole couplings between the ground ionic surface D0 and the nine excited states enable elucidation of the dissociation pathways and deduction of potential dissociation mechanisms. The results can lead to improved control schemes for selective dissociation of the acetophenone radical cation.

  11. Electronically excited states of sodium-water clusters

    NASA Astrophysics Data System (ADS)

    Schulz, Claus Peter; Bobbert, Christiana; Shimosato, Taku; Daigoku, Kota; Miura, Nobuaki; Hashimoto, Kenro

    2003-12-01

    The lowest electronically excited state of small Na(H2O)n clusters has been investigated experimentally and theoretically. The excitation energy as determined by the depletion spectroscopy method drops from 16 950 cm-1 for the sodium atom down to 9670 cm-1 when only three water molecules are attached to the Na atom. For larger clusters the absorption band shifts back towards higher energies and reaches 10 880 cm-1 for n=12. The experimental data are compared to quantum-chemical calculations at the Møeller-Plesset second-order perturbation and multireference single and double excitation configuration interaction levels. We found that the observed size dependence of the transition energy is well reproduced by the interior structure where the sodium atom is surrounded by water molecules. The analysis of the radial charge distribution of the unpaired electron in these interior structures gives a new insight into the formation of the "solvated" electron.

  12. Photodissociation of FONO: an excited state nonadiabatic dynamics study.

    PubMed

    Hilal, Allaa R; Hilal, Rifaat

    2017-03-01

    The photo dissociation of nitrosyl fluorite, FONO, a potential source of atmospheric fluorine, underlies its active role in ozone depletion and other activities in the troposphere. In the present work, the electronic structure of FONO is revisited at high level of ab initio and density functional theory (DFT) theoretical levels. Several different post SCF methods were used to compute excited states, vertical excitation energies and intensities, namely configuration interaction with single excitations (CIS), equation of motion coupled cluster with single and double excitations (EOM-CCSD), and symmetry adopted cluster configuration interaction (SAC-CI) methods. The potential energy functions along two internal coordinates, namely the F-ONO bond and the FONO dihedral angle, have been computed on the ground state relaxed potential energy surface (PES) for the ground, 5A' and 5A″ excited states using the EOM-CCSD method. In the gas phase, the decay of the excited states of FONO was examined closely by calculating the UV photoabsorption cross-section spectrum and by nonadiabatic dynamics simulations. Nonadiabatic dynamics were simulated by sampling 300 trajectories in two spectral windows at 3.0 ± 0.25 and 4.5 ± 0.25 eV using the surface hopping method. Two different photodissociation reaction pathways with two main products, including multifragmentation (FO+NO) and atomic elimination (F) mechanisms were identified. For the cis-isomer, the main photochemical channel is F+NO2, representing 67% of all processes. For the trans-isomer, however, the main dissociation pathway is (FO+NO). Graphical Abstract Photodisscociation of nitrosyl fluorite (FONO) seems to underlie its active role in ozone depletion and other activities in the troposphere. The present research revisits the electronic structure of FONO at high level of ab initio and DFT theoretical levels. Cis-trans isomerization and dissociation in the ground and low lying excited states were examined

  13. Excited state dipole moments of 4-(dimethylamino)benzaldehyde

    NASA Astrophysics Data System (ADS)

    Kawski, A.; Kukliński, B.; Bojarski, P.

    2007-11-01

    The effect of various polar solvents on the location of absorption and dual fluorescence (short wavelength emission, SE, and long wavelength emission, LE) of 4-(dimethylamino)benzaldehyde (DMABA) at room temperature was investigated. It was found that the fluorescence intensities ratio LE/SE is constant for concentrations ranging from 10 -5 M to 10 -1 M, which evidences that the LE-band is not of excimer origin. Based on the batochromic shift of electronic spectra of DMABA and Bilot-Kawski theory the values of excited state dipole moments in SE: μeSE=7.6D and the Onsager radius a = 4.3 Å were found using the known from literature value of ground state dipole moment μg = 5.6 D. For the emitting twisted intramolecular charge transfer (TICT) excited state the value of μeLE=12D was found.

  14. Basicity of coumarin derivatives in the ground and excited states

    SciTech Connect

    Ponomarev, O.A.; Mitina, V.G.; Vasina, E.R.; Yarmolenko, S.N.

    1985-07-01

    The acid-base properties of coumarin luminophores are widely used for widening the optical spectrum generated by lasers. The aim of this work was a quantitative study of the proton-acceptor capacity of a series of substituted coumarins at the H-complex formation stage and during protonation, and also to evaluate the basicity of these compounds in the first excited singlet state. The compounds chosen were the 4- and 7-substituted coumarins, most widely used in laser technology. In the ground state the sensitivity of the carbonyl group to the effect of a substituent was twice as great in position 4 as in position 7; for the excited state the effect was reversed.

  15. Optical nanoscopy with excited state saturation at liquid helium temperatures

    NASA Astrophysics Data System (ADS)

    Yang, B.; Trebbia, J.-B.; Baby, R.; Tamarat, Ph.; Lounis, B.

    2015-10-01

    Optical resolution of solid-state single quantum emitters at the nanometre scale is a challenging step towards the control of delocalized states formed by strongly and coherently interacting emitters. We have developed a simple super-resolution optical microscopy method operating at cryogenic temperatures, which is based on optical saturation of the excited state of single fluorescent molecules with a doughnut-shaped beam. Sub-10 nm resolution is achieved with extremely low excitation intensities, a million times lower than those used in room-temperature stimulated emission depletion microscopy. Compared with super-localization approaches, our technique offers a unique opportunity to super-resolve single molecules with overlapping optical resonance frequencies and paves the way to the study of coherent interactions between single emitters and to the manipulation of their degree of entanglement.

  16. Clustered chimera states in systems of type-I excitability

    NASA Astrophysics Data System (ADS)

    Vüllings, Andrea; Hizanidis, Johanne; Omelchenko, Iryna; Hövel, Philipp

    2014-12-01

    The chimera state is a fascinating phenomenon of coexisting synchronized and desynchronized behaviour that was discovered in networks of nonlocally coupled identical phase oscillators over ten years ago. Since then, chimeras have been found in numerous theoretical and experimental studies and more recently in models of neuronal dynamics as well. In this work, we consider a generic model for a saddle-node bifurcation on a limit cycle representative of neural excitability type I. We obtain chimera states with multiple coherent regions (clustered chimeras/multi-chimeras) depending on the distance from the excitability threshold, the range of nonlocal coupling and the coupling strength. A detailed stability diagram for these chimera states and other interesting coexisting patterns (like traveling waves) is presented.

  17. Relativistic calculations of excited states of molecular iodine

    NASA Astrophysics Data System (ADS)

    Teichteil, C.; Pelissier, M.

    1994-02-01

    An ab initio relativistic atomic pseudopotential method is used for the calculation of the 23 valence excited states of the I 2 molecule which dissociate into the 2Pj+ 2Pj' ( J, J' = 3/2, 1/2) atomic states. The vertical transition energies are in very good agreement with experimental results, and the deficiency of the dissociation energy is discussed. The potential energy curves are given without and with spin-orbit coupling, and a semi-empirical improvement is proposed. In this way, we obtain for the first time very reliable potential energy curves for these excited states. The quality of these curves is tested by a careful comparison with all the available experimental data.

  18. The Exotic Excited State Behavior of 3-PHENYL-2-PROPYNENITRILE

    NASA Astrophysics Data System (ADS)

    Jawad, Khadija M.; Viquez Rojas, Claudia I.; Slipchenko, Lyudmila V.; Zwier, Timothy S.

    2017-06-01

    3-phenyl-2-propynenitrile (Ph-C≡C-C≡N) is of interest to the study of Titan's atmosphere as it is a likely product of the photochemical reaction between two known species in that environment: benzene and cyanoacetylene. The gas phase jet-cooled resonant two-photon ionization, laser induced fluorescence, and preliminary dispersed fluorescence spectra were previously reported without firm assignments due to the scarcity of totally symmetric vibrations and the prevalence of strong bands of b2 and b1 symmetry vibrations. These had called into question the identity and geometry of the excited state(s) involved in the transitions. We will here present the completed set of dispersed fluorescence data along with an analysis of the potential energy surfaces and vibronic coupling characteristic of the close-lying excited states in this intriguing molecule.

  19. Characterising a configuration interaction excited state using natural transition geminals

    NASA Astrophysics Data System (ADS)

    Coe, J. P.; Paterson, M. J.

    2014-03-01

    We introduce natural transition geminals as a means to qualitatively understand a transition where double excitations are important. The first two A1 singlet states of the CH cation are used as an initial example. We calculate these states with configuration interaction singles and state-averaged Monte Carlo configuration interaction (SA-MCCI). For each method, we compare the important natural transition geminals with the dominant natural transition orbitals. We then compare SA-MCCI and full configuration interaction with regards to the natural transition geminals using the beryllium atom. We compare using the natural transition geminals with analysing the important configurations in the CI expansion to give the dominant transition for the beryllium atom and the carbon dimer. Finally, we calculate the natural transition geminals for two electronic excitations of formamide.

  20. Excited state dynamics of the astaxanthin radical cation

    NASA Astrophysics Data System (ADS)

    Amarie, Sergiu; Förster, Ute; Gildenhoff, Nina; Dreuw, Andreas; Wachtveitl, Josef

    2010-07-01

    Femtosecond transient absorption spectroscopy in the visible and NIR and ultrafast fluorescence spectroscopy were used to examine the excited state dynamics of astaxanthin and its radical cation. For neutral astaxanthin, two kinetic components corresponding to time constants of 130 fs (decay of the S 2 excited state) and 5.2 ps (nonradiative decay of the S 1 excited state) were sufficient to describe the data. The dynamics of the radical cation proved to be more complex. The main absorption band was shifted to 880 nm (D 0 → D 3 transition), showing a weak additional band at 1320 nm (D 0 → D 1 transition). We found, that D 3 decays to the lower-lying D 2 within 100 fs, followed by a decay to D 1 with a time constant of 0.9 ps. The D 1 state itself exhibited a dual behavior, the majority of the population is transferred to the ground state in 4.9 ps, while a small population decays on a longer timescale of 40 ps. Both transitions from D 1 were found to be fluorescent.

  1. Controlling excited-state contamination in nucleon matrix elements

    SciTech Connect

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joo, Balint; Lin, Huey -Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank

    2016-06-08

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1-flavor ensemble with lattices of size 323 × 64 generated using the rational hybrid Monte Carlo algorithm at a = 0.081 fm and with Mπ = 312 MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a 2-state fit to data at multiple values of the source-sink separation tsep. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost effectiveness. As a result, a detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of tsep needed to demonstrate convergence of the isovector charges of the nucleon to the tsep → ∞ estimates is presented.

  2. Controlling excited-state contamination in nucleon matrix elements

    DOE PAGES

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; ...

    2016-06-08

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1-flavor ensemble with lattices of size 323 × 64 generated using the rational hybrid Monte Carlo algorithm at a = 0.081 fm and with Mπ = 312 MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a 2-state fit to data at multiple values of the source-sink separation tsep. Wemore » show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost effectiveness. As a result, a detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of tsep needed to demonstrate convergence of the isovector charges of the nucleon to the tsep → ∞ estimates is presented.« less

  3. Controlling excited-state contamination in nucleon matrix elements

    SciTech Connect

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joo, Balint; Lin, Huey -Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank

    2016-06-08

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1-flavor ensemble with lattices of size 323 × 64 generated using the rational hybrid Monte Carlo algorithm at a = 0.081 fm and with Mπ = 312 MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a 2-state fit to data at multiple values of the source-sink separation tsep. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost effectiveness. As a result, a detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of tsep needed to demonstrate convergence of the isovector charges of the nucleon to the tsep → ∞ estimates is presented.

  4. Controlling excited-state contamination in nucleon matrix elements

    SciTech Connect

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank

    2016-06-01

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1 flavor ensemble with lattices of size $32^3 \\times 64$ generated using the rational hybrid Monte Carlo algorithm at $a=0.081$~fm and with $M_\\pi=312$~MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a two-state fit to data at multiple values of the source-sink separation $t_{\\rm sep}$. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost-effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of $t_{\\rm sep}$ needed to demonstrate convergence of the isovector charges of the nucleon to the $t_{\\rm sep} \\to \\infty $ estimates is presented.

  5. Embedding potentials for excited states of embedded species

    SciTech Connect

    Wesolowski, Tomasz A.

    2014-05-14

    Frozen-Density-Embedding Theory (FDET) is a formalism to obtain the upper bound of the ground-state energy of the total system and the corresponding embedded wavefunction by means of Euler-Lagrange equations [T. A. Wesolowski, Phys. Rev. A 77(1), 012504 (2008)]. FDET provides the expression for the embedding potential as a functional of the electron density of the embedded species, electron density of the environment, and the field generated by other charges in the environment. Under certain conditions, FDET leads to the exact ground-state energy and density of the whole system. Following Perdew-Levy theorem on stationary states of the ground-state energy functional, the other-than-ground-state stationary states of the FDET energy functional correspond to excited states. In the present work, we analyze such use of other-than-ground-state embedded wavefunctions obtained in practical calculations, i.e., when the FDET embedding potential is approximated. Three computational approaches based on FDET, that assure self-consistent excitation energy and embedded wavefunction dealing with the issue of orthogonality of embedded wavefunctions for different states in a different manner, are proposed and discussed.

  6. Embedding potentials for excited states of embedded species.

    PubMed

    Wesolowski, Tomasz A

    2014-05-14

    Frozen-Density-Embedding Theory (FDET) is a formalism to obtain the upper bound of the ground-state energy of the total system and the corresponding embedded wavefunction by means of Euler-Lagrange equations [T. A. Wesolowski, Phys. Rev. A 77(1), 012504 (2008)]. FDET provides the expression for the embedding potential as a functional of the electron density of the embedded species, electron density of the environment, and the field generated by other charges in the environment. Under certain conditions, FDET leads to the exact ground-state energy and density of the whole system. Following Perdew-Levy theorem on stationary states of the ground-state energy functional, the other-than-ground-state stationary states of the FDET energy functional correspond to excited states. In the present work, we analyze such use of other-than-ground-state embedded wavefunctions obtained in practical calculations, i.e., when the FDET embedding potential is approximated. Three computational approaches based on FDET, that assure self-consistent excitation energy and embedded wavefunction dealing with the issue of orthogonality of embedded wavefunctions for different states in a different manner, are proposed and discussed.

  7. Electronically excited rubidium atom in helium clusters and films. II. Second excited state and absorption spectrum.

    PubMed

    Leino, Markku; Viel, Alexandra; Zillich, Robert E

    2011-01-14

    Following our work on the study of helium droplets and film doped with one electronically excited rubidium atom Rb(∗) ((2)P) [M. Leino, A. Viel, and R. E. Zillich, J. Chem. Phys. 129, 184308 (2008)], we focus in this paper on the second excited state. We present theoretical studies of such droplets and films using quantum Monte Carlo approaches. Diffusion and path integral Monte Carlo algorithms combined with a diatomics-in-molecule scheme to model the nonpair additive potential energy surface are used to investigate the energetics and the structure of Rb(∗)He(n) clusters. Helium films as a model for the limit of large clusters are also considered. As in our work on the first electronic excited state, our present calculations find stable Rb(∗)He(n) clusters. The structures obtained are however different with a He-Rb(∗)-He exciplex core to which more helium atoms are weakly attached, preferentially on one end of the core exciplex. The electronic absorption spectrum is also presented for increasing cluster sizes as well as for the film.

  8. Excitation and suppression of chimera states by multiplexing.

    PubMed

    Maksimenko, Vladimir A; Makarov, Vladimir V; Bera, Bidesh K; Ghosh, Dibakar; Dana, Syamal Kumar; Goremyko, Mikhail V; Frolov, Nikita S; Koronovskii, Alexey A; Hramov, Alexander E

    2016-11-01

    We study excitation and suppression of chimera states in an ensemble of nonlocally coupled oscillators arranged in a framework of multiplex network. We consider the homogeneous network (all identical oscillators) with different parametric cases and interlayer heterogeneity by introducing parameter mismatch between the layers. We show the feasibility to suppress chimera states in the multiplex network via moderate interlayer interaction between a layer exhibiting chimera state and other layers which are in a coherent or incoherent state. On the contrary, for larger interlayer coupling, we observe the emergence of identical chimera states in both layers which we call an interlayer chimera state. We map the spatiotemporal behavior in a wide range of parameters, varying interlayer coupling strength and phase lag in two and three multiplexing layers. We also prove the emergence of interlayer chimera states in a multiplex network via evaluation of a continuous model. Furthermore, we consider the two-layered network of Hindmarsh-Rose neurons and reveal that in such a system multiplex interaction between layers is capable of exciting not only the synchronous interlayer chimera state but also nonidentical chimera patterns.

  9. Excitation on the Coherent States of Pseudoharmonic Oscillator

    NASA Astrophysics Data System (ADS)

    Popov, Dusan; Pop, Nicolina; Sajfert, Vjekoslav

    2009-05-01

    In the last decades, much attention has been paid to the excitation on coherent states, especially for coherent states of the harmonic oscillator ([1] and references therein). But an interesting anharmonic oscillator with many potential applications is also the pseudoharmonic oscillator (PHO). So, in the present paper we have defined the excitation on the Klauder-Perelomov coherent states (E-KP-CSs) for the PHO. These states are obtained by repeatedly operating the raising operator K+ on a usual Klauder-Perelomov coherent state (KP-CS) of the PHO [2]. We have verified that really, the E-KP-CSs fulfill all the properties of the coherent states, as stated by Klauder [3]. We have examined the nonclassical properties of the E-KP-CSs, by using the density matrix formalism and examining the dependence of the Mandel parameter Qz,k;m(|z|2) on the |z|2 and on the m. It seems that these states can be used in optical communication field and in the physics of quantum information, as signal beams, due to the fact that in these fields the nonclassicality plays an important role.

  10. Excitation on the Coherent States of Pseudoharmonic Oscillator

    SciTech Connect

    Popov, Dusan; Pop, Nicolina; Sajfert, Vjekoslav

    2009-05-22

    In the last decades, much attention has been paid to the excitation on coherent states, especially for coherent states of the harmonic oscillator ([1] and references therein). But an interesting anharmonic oscillator with many potential applications is also the pseudoharmonic oscillator (PHO). So, in the present paper we have defined the excitation on the Klauder-Perelomov coherent states (E-KP-CSs) for the PHO. These states are obtained by repeatedly operating the raising operator K{sub +} on a usual Klauder-Perelomov coherent state (KP-CS) of the PHO [2]. We have verified that really, the E-KP-CSs fulfill all the properties of the coherent states, as stated by Klauder [3]. We have examined the nonclassical properties of the E-KP-CSs, by using the density matrix formalism and examining the dependence of the Mandel parameter Q{sub z,k;m}(|z|{sup 2}) on the |z|{sup 2} and on the m. It seems that these states can be used in optical communication field and in the physics of quantum information, as signal beams, due to the fact that in these fields the nonclassicality plays an important role.

  11. Excitation and suppression of chimera states by multiplexing

    NASA Astrophysics Data System (ADS)

    Maksimenko, Vladimir A.; Makarov, Vladimir V.; Bera, Bidesh K.; Ghosh, Dibakar; Dana, Syamal Kumar; Goremyko, Mikhail V.; Frolov, Nikita S.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2016-11-01

    We study excitation and suppression of chimera states in an ensemble of nonlocally coupled oscillators arranged in a framework of multiplex network. We consider the homogeneous network (all identical oscillators) with different parametric cases and interlayer heterogeneity by introducing parameter mismatch between the layers. We show the feasibility to suppress chimera states in the multiplex network via moderate interlayer interaction between a layer exhibiting chimera state and other layers which are in a coherent or incoherent state. On the contrary, for larger interlayer coupling, we observe the emergence of identical chimera states in both layers which we call an interlayer chimera state. We map the spatiotemporal behavior in a wide range of parameters, varying interlayer coupling strength and phase lag in two and three multiplexing layers. We also prove the emergence of interlayer chimera states in a multiplex network via evaluation of a continuous model. Furthermore, we consider the two-layered network of Hindmarsh-Rose neurons and reveal that in such a system multiplex interaction between layers is capable of exciting not only the synchronous interlayer chimera state but also nonidentical chimera patterns.

  12. Quantum correlations in excited coherent W-type state

    NASA Astrophysics Data System (ADS)

    Sathiyabama, R.; Ahmed, A. B. M.; Mohammed, S. Naina

    2017-06-01

    The tripartite W-state plays an important role in the quantum information science, due to its non vanishing bipartite correlations even after partially tracing one of the modes. The continuous variable extension of the W state is constructed using Glauber coherent states and excited using bosonic creation operators. The bipartite entanglement is measured through concurrence and tangle is also evaluated. The non classicality introduced in the three modes is measured in terms of quadrature squeezing and higher order squeezing. The influence of photon addition process on the entanglement and squeezing is derived, and from the result it is evident that the photon addition enhances the operational aspects of quantum correlation.

  13. Lifetimes and structure of excited states of 115Sb

    NASA Astrophysics Data System (ADS)

    Lobach, Yu. N.; Bucurescu, D.

    1998-06-01

    Lifetimes of excited states of 115Sb were measured by the Doppler shift attenuation method in the (α,2nγ) reaction at Eα = 27.2 MeV. The experimental level scheme and the electromagnetic transition probabilities have been interpreted in terms of the interacting boson-fermion model. A reasonable agreement with the experiment was obtained for the positive-parity states. The experimental data also show the applicability of the cluster-vibrational model for the mixing of two 9/2+ states having different intrinsic configurations.

  14. Direct lifetime measurements of the excited states in Ni72

    DOE PAGES

    Kolos, K.; Miller, D.; Grzywacz, R.; ...

    2016-03-22

    The lifetimes of the first excited 2+ and 4+ states in 72Ni were measured at the National Superconducting Cyclotron Laboratory with the recoil-distance Doppler-shift method, a model-independent probe to obtain the reduced transition probability. Excited states in 72Ni were populated by the one-proton knockout reaction of an intermediate energy 73Cu beam. γ-ray-recoil coincidences were detected with the γ-ray tracking array GRETINA and the S800 spectrograph. Our results provide evidence of enhanced transition probability B(E2;2+ → 0+) as compared to 68Ni, but do not confirm the trend of large B(E2) values reported in the neighboring isotope 70Ni obtained from Coulomb excitationmore » measurement. The results are compared to shell model calculations. Here, the lifetime obtained for the excited 4+1 state is consistent with models showing decay of a seniority ν = 4, 4+ state, which is consistent with the disappearance of the 8+ isomer in 72Ni.« less

  15. Signature of nonadiabatic coupling in excited-state vibrational modes.

    PubMed

    Soler, Miguel A; Nelson, Tammie; Roitberg, Adrian E; Tretiak, Sergei; Fernandez-Alberti, Sebastian

    2014-11-13

    Using analytical excited-state gradients, vibrational normal modes have been calculated at the minimum of the electronic excited-state potential energy surfaces for a set of extended conjugated molecules with different coupling between them. Molecular model systems composed of units of polyphenylene ethynylene (PPE), polyphenylenevinylene (PPV), and naphthacene/pentacene (NP) have been considered. In all cases except the NP model, the influence of the nonadiabatic coupling on the excited-state equilibrium normal modes is revealed as a unique highest frequency adiabatic vibrational mode that overlaps with the coupling vector. This feature is removed by using a locally diabatic representation in which the effect of NA interaction is removed. Comparison of the original adiabatic modes with a set of vibrational modes computed in the locally diabatic representation demonstrates that the effect of nonadiabaticity is confined to only a few modes. This suggests that the nonadiabatic character of a molecular system may be detected spectroscopically by identifying these unique state-specific high frequency vibrational modes.

  16. Self-Scattering for Dark Matter with an Excited State

    NASA Astrophysics Data System (ADS)

    Schutz, Katelin; Slatyer, Tracy

    2015-01-01

    Self-interacting dark matter scenarios have recently attracted much attention as a possible means to alleviate the tension between N-body simulations and observations of the dark matter distribution on galactic and sub-galactic scales. The presence of internal structure for the dark matter --- for example, a nearly-degenerate state in the spectrum that could decay, or be collisionally excited or de-excited --- has also been proposed as a possible means to address these discrepancies. Such internal structure can be a source of interesting signatures in direct and indirect dark matter searches, for example providing a novel explanation for the 3.5 keV line recently observed in galaxies and galaxy clusters. We analyze a simple model of dark matter self-scattering including a nearly-degenerate excited state, and develop an accurate analytic approximation for the elastic and inelastic s-wave cross sections, which is valid outside the perturbative regime provided the particle velocity is sufficiently low (this condition is also required for the s-wave to dominate over higher partial waves). We anticipate our results will be useful in incorporating inelastic self-scattering into N-body simulations, in order to study the quantitative impact of nearly-degenerate states in the dark matter spectrum on galactic structure and dynamics, and in computing the indirect signatures of multi-state dark matter.

  17. Controlling autoionization in strontium two-electron-excited states

    NASA Astrophysics Data System (ADS)

    Fields, Robert; Zhang, Xinyue; Dunning, F. Barry; Yoshida, Shuhei; Burgdörfer, Joachim

    2016-05-01

    One challenge in engineering long-lived two-electron-excited states, i.e., so-called planetary atoms, is autoionization. Autoionization, however, can be suppressed if the outermost electron is placed in a high- n, n ~ 300 - 600 , high- L state because such states have only a very small overlap with the inner electron, even when this is also excited to a state of relatively high n and hence of relatively long lifetime. Here the L-dependence of the autoionization rate for high- n strontium Rydberg atoms is examined during excitation of the core ion 5 s 2S1 / 2 - 5 p 2P3 / 2 transition. Measurements in which the angular momentum of the Rydberg electron is controlled using a pulsed electric field show that the autoionization rate decreases rapidly with increasing L and becomes very small for values larger than ~ 20 . The data are analyzed with the aid of calculations undertaken using complex scaling. Research supported by the NSF and Robert A. Welch Foundation.

  18. Lifetimes of the 7D excited states of francium

    NASA Astrophysics Data System (ADS)

    Grossman, J. S.; Fliller, R. P., III; Orozco, L. A.; Pearson, M. R.; Sprouse, G. D.

    2000-06-01

    We report our measurement of the lifetimes of the 7D_3/2 and 7D_5/2 levels of francium, using time-correlated single-photon counting techniques. We collect francium atoms in a magneto-optical trap (MOT) in the target room of the superconducting LINAC at Stony Brook. We use two-photon resonant excitation to reach either of the 7D levels. The trapping Ti:Sapph laser operating at 718 nm on the D2 line provides the first photon of the excitation. A second Ti:Sapph probe laser at 969 nm or 961 nm excites the second step to the 7D_3/2 or 7D_5/2 level, respectively. We chop the probe laser and monitor the fluorescent decay to the ground state via the 7P levels using a photomultiplier tube (PMT). The PMT photon-detection pulses are sent to a time to amplitude converter (TAC), and a histogram of the data gives the exponential decay of the fluorescence. Measurements of state lifetimes provide an important check of ab initio calculations of the structure of this simple, heavy atom. In this regard, the d states provide a stringent test that goes beyond the well understood s and p states. Work supported by the NSF.

  19. Influence of CB[n] complexation on the quenching of 2,4,6-triphenylpyrylium excited states by Fe2+ ions.

    PubMed

    Montes-Navajas, Pedro; Garcia, Hermenegildo

    2013-11-15

    This manuscript focuses on the influence that the addition of Fe(2+) as electron donor quencher exerts on the photophysics of 2,4,6-triphenylpyrylium (TP(+)) depending on the formation or not of supramolecular inclusion complexes with cucurbit[n]uril (n: 7 or 8). (1)H-NMR spectroscopy does not provide evidence supporting the formation of a ternary TP(+)@CB[n]-Fe(2+) complex. Emission quenching studies indicate that the prevalent deactivation mechanism for the quenching of TP(+) emission by Fe(2+) is by increasing the ionic strength of the solution, with no evidence for the occurrence of dynamic quenching. Laser flash photolysis indicates that while the triplet excited state of TP(+) is instantaneously quenched by Fe(2+) in the absence of CB[n], formation of the TP(+)@CB[n] inclusion complex protects TP(+) triplet excited state from quenching, an effect that is more pronounced in the case of CB[8] due to the deeper penetration and more complete encapsulation of the heterocyclic pyrylium core inside the larger CB[8] capsule.

  20. The electronic excited states of green fluorescent protein chromophore models

    NASA Astrophysics Data System (ADS)

    Olsen, Seth Carlton

    We explore the properties of quantum chemical approximations to the excited states of model chromophores of the green fluorescent protein of A. victoria. We calculate several low-lying states by several methods of quantum chemical calculation, including state-averaged complete active space SCF (CASSCF) methods, time dependent density functional theory (TDDFT), equation-of motion coupled cluster (EOM-CCSD) and multireference perturbation theory (MRPT). Amongst the low-lying states we identify the optically bright pipi* state of the molecules and examine its properties. We demonstrate that the state is dominated by a single configuration function. We calculate zero-time approximations to the resonance Raman spectrum of GFP chromophore models, and assign published spectra based upon these.

  1. Excited state proton transfer in the Cinchona alkaloid cupreidine.

    PubMed

    Qian, Junhong; Brouwer, Albert M

    2010-10-21

    Photophysical properties of the organocatalyst cupreidine (CPD) and its chromophoric building block 6-hydroxyquinoline (6HQ) in protic and nonprotic polar solvents (methanol and acetonitrile) were investigated by means of UV-vis absorption, and steady state and time resolved fluorescence spectroscopy. The effects of the catalytically relevant interactions with electrophilic and hydrogen bonding agents (p-toluene sulfonic acid and water) on their spectral characteristics were studied. In neutral CPD in acetonitrile, quenching of fluorescence occurs due to electron transfer from the quinuclidine nitrogen to the excited quinoline chromophore. Protonation suppresses this process, while complexation with water leads to enhanced excited state proton transfer from the 6'-OH group to the quinuclidine nitrogen, and emission occurs from the anionic form of the chromophore. The weakly emitting zwitterionic form of the hydroxyquinoline chromophore is readily formed in methanol, but not in acetonitrile.

  2. Theoretical Studies of Excited State Dynamics in Semiconductor Materials

    NASA Astrophysics Data System (ADS)

    Liu, Jin

    The motivation of this research work is to investigate excited state dynamics of semiconductor systems using quantum computational techniques. The detailed ultrafast photoinduced processes, such as charge recombination, charge relaxation, energy/charge transfer, etc., sometimes cannot be fully addressed by spectroscopy experiments. The nonadiabatic molecular dynamics (NAMD), on the other hand, provides critical insights into the complex processes. In this thesis, we apply the NAMD simulation method to various semiconductor systems, ranging from bulk crystals, nanoparticles to clusters, to study the electronic and optical properties of semiconductors. The first chapter outlines important concepts in excited states dynamics and semiconductor disciplinary. The second chapter explains the theoretical methodology related to the research work, including approximations, computational methods and simulation details, etc. Starting from chapter three to chapter six, we present a comprehensive study focusing on silicon clusters, cadmium selenide quantum dots, cycloparaphenylenes and perovskites. Potential applications include solar harvesting, photoluminescence, energy transfer, etc.

  3. Excited-state absorption measurements of Tm3+-doped crystals

    NASA Astrophysics Data System (ADS)

    Szela, J. W.; Mackenzie, J. I.

    2012-06-01

    High resolution, absolute excited-state absorption (ESA) spectra, at room temperature, from the long-lived 3F4 energy level of several crystals doped with trivalent thulium (Tm3+) ions have been measured employing high-brightness narrowband (FWHM <30 nm) light emitting diodes (LEDs) as a probe wavelength. The aim of this investigation was to determine the strength of ESA channels at wavelengths addressable by commercially available semiconductor laser diodes operating around 630-680 nm. The favourable lifetime of the 3F4 manifold and negligible ground-state absorption (GSA) for the red-wavelength second-step excitation, ensures a direct and efficient route for a dual-wavelength pumping scheme of the thulium ion, which will enable blue-green laser emission from its 1G4 upper-laser level.

  4. Excited states of the 150Pm odd-odd nucleus

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Drăgulescu, E.; Pascu, S.; Wirth, H.-F.; Filipescu, D.; Căta-Danil, G.; Căta-Danil, I.; Deleanu, D.; Eppinger, K.; Faestermann, T.; Ghiţă, D. G.; Glodariu, T.; Hertenberger, R.; Ivaşcu, M.; Krücken, R.; Mărginean, N.; Mărginean, R.; Mihai, C.; Negret, A.; Sava, T.; Stroe, L.; Wimmer, K.; Zamfir, N. V.

    2012-01-01

    The knowledge of excited states in the odd-odd 150Pm, completely unknown until recently, is important both for understanding double β decay of 150Nd and for nuclear structure studies in mass regions with a quantum phase transition. A large number of excited states have been determined for the first time in this nucleus by measuring spectra of the 152Sm(d,α) direct reaction at 25 MeV with the Munich Q3D spectrograph and by γ-ray spectroscopy with the (p,nγ) reaction at 7.1 MeV at the Bucharest tandem accelerator. Some of these levels correspond to peaks recently observed with the (3He,t) reaction at 140 MeV/u.

  5. Highly excited Rydberg states of pyrazine and their autoionization

    SciTech Connect

    Goto, A.; Fujii, M.; Ito, M.

    1987-04-23

    The two-color MPI spectra of jet-cooled pyrazine obtained via various vibrational levels in the S/sub 1/(n,..pi..*) state have been observed. A regularity was found in that the Rydberg series lying above the adiabatic ionization potential appear upon excitation of the S/sub 1/ vibronic level containing the nontotally symmetric vibration but they are apparently absent upon excitation of the S/sub 1/ vibronic level containing the totally symmetric vibration. The regularity is similar to that found by Hager et al. for aniline and can be explained as due to the interaction between a discrete level and an isoenergetic ionization continuum. The appearance or apparent absence of the Rydberg series results from the absorption cross section of the interacting ionization continuum in the transition from the S/sub 1/ vibronic level. The electronic structures of the Rydberg state and ion and the vibrational potentials of the ion are discussed.

  6. Excited State Absorption Measurements In Some Scintillator Dye Solutions

    NASA Astrophysics Data System (ADS)

    Dharamsi, A., N.; Jong, Shawpin; Hassam, A. B.

    1986-11-01

    Time-resolved excited state triplet-triplet absorption spectra were measured for solutions of 2,5 diphenyloxazole (PPO) and 2,1 napthyl, 5 phenyloxazole (aNPO) in several solvents. Concentration quenching effects due to excimer formation in nonaromatic solvents were observed. A numerical analysis of the experimental results yielded the rate constants for intersystem crossing, triplet quenching by 02, triplet self quenching and the formation of excimers.

  7. Temperature dependence of the excited state absorption of alexandrite

    SciTech Connect

    Shand, M.L.; Jenssen, H.P.

    1983-03-01

    The temperature dependence from 28 to 290/sup 0/C of the excited-state absorption cross section sigma /SUB 2a/ (E) in the gain wavelength region of alexandrite has been determined from the temperature dependence of the single pass gain (SPG) and of the fluorescence. sigma /SUB 2a/ (E) and the emission cross section increase with temperature at approximately the same rate.

  8. Excited State Biexcitons in Atomically Thin MoSe2.

    PubMed

    Pei, Jiajie; Yang, Jiong; Wang, Xibin; Wang, Fan; Mokkapati, Sudha; Lü, Tieyu; Zheng, Jin-Cheng; Qin, Qinghua; Neshev, Dragomir; Tan, Hark Hoe; Jagadish, Chennupati; Lu, Yuerui

    2017-07-25

    The tightly bound biexcitons found in atomically thin semiconductors have very promising applications for optoelectronic and quantum devices. However, there is a discrepancy between theory and experiment regarding the fundamental structure of these biexcitons. Therefore, the exploration of a biexciton formation mechanism by further experiments is of great importance. Here, we successfully triggered the emission of biexcitons in atomically thin MoSe2, via the engineering of three critical parameters: dielectric screening, density of trions, and excitation power. The observed binding energy and formation dynamics of these biexcitons strongly support the model that the biexciton consists of a charge attached to a trion (excited state biexciton) instead of four spatially symmetric particles (ground state biexciton). More importantly, we found that the excited state biexcitons not only can exist at cryogenic temperatures but also can be triggered at room temperature in a freestanding bilayer MoSe2. The demonstrated capability of biexciton engineering in atomically thin MoSe2 provides a route for exploring fundamental many-body interactions and enabling device applications, such as bright entangled photon sources operating at room temperature.

  9. Isolating excited states of the nucleon in lattice QCD

    SciTech Connect

    Mahbub, M. S.; Cais, Alan O.; Kamleh, Waseem; Lasscock, B. G.; Leinweber, Derek B.; Williams, Anthony G.

    2009-09-01

    We discuss a robust projection method for the extraction of excited-state masses of the nucleon from a matrix of correlation functions. To illustrate the algorithm in practice, we present results for the positive parity excited states of the nucleon in quenched QCD. Using eigenvectors obtained via the variational method, we construct an eigenstate-projected correlation function amenable to standard analysis techniques. The method displays its utility when comparing results from the fit of the projected correlation function with those obtained from the eigenvalues of the variational method. Standard nucleon interpolators are considered, with 2x2 and 3x3 correlation matrix analyses presented using various combinations of source-smeared, sink-smeared, and smeared-smeared correlation functions. Using these new robust methods, we observe a systematic dependency of the extracted nucleon excited-state masses on source- and sink-smearing levels. To the best of our knowledge, this is the first clear indication that a correlation matrix of standard nucleon interpolators is insufficient to isolate the eigenstates of QCD.

  10. Note: Excited State Studies of Ozone using State-Specific Multireference Coupled Cluster Methods

    SciTech Connect

    Bhaskaran-Nair, Kiran; Kowalski, Karol

    2012-12-07

    Vertical excitation energies obtained with state-specific multi-reference coupled cluster (MRCC) methods are reported for the ozone molecule. Using state-specific MRCC non-iterative methods with singles, doubles, and non-iterative triples (MRCCSD(T)) we obtain 4.40 eV for the challenging doubly excited 21A1 state when using a reliable model space. This estimate is in good agreement with experiment (4.5 eV). We also compare our MRCC results with the excitation energies obtained with high-order equation-of-motion coupled cluster methods

  11. Quantal density-functional theory of excited states: The state arbitrariness of the model noninteracting system

    SciTech Connect

    Slamet, Marlina; Singh, Ranbir; Sahni, Viraht; Massa, Lou

    2003-10-01

    The quantal density-functional theory (Q-DFT) of nondegenerate excited-states maps the pure state of the Schroedinger equation to one of noninteracting fermions such that the equivalent excited state density, energy, and ionization potential are obtained. The state of the model S system is arbitrary in that it may be in a ground or excited state. The potential energy of the model fermions differs as a function of this state. The contribution of correlations due to the Pauli exclusion principle and Coulomb repulsion to the potential and total energy of these fermions is independent of the state of the S system. The differences are solely a consequence of correlation-kinetic effects. Irrespective of the state of the S system, the highest occupied eigenvalue of the model fermions is the negative of the ionization potential. In this paper we demonstrate the state arbitrariness of the model system by application of Q-DFT to the first excited singlet state of the exactly solvable Hookean atom. We construct two model S systems: one in a singlet ground state (1s{sup 2}), and the other in a singlet first excited state (1s2s). In each case, the density and energy determined are equivalent to those of the excited state of the atom, with the highest occupied eigenvalues being the negative of the ionization potential. From these results we determine the corresponding Kohn-Sham density-functional theory (KS-DFT) 'exchange-correlation' potential energy for the two S systems. Further, based on the results of the model calculations, suggestions for the KS-DFT of excited states are made.

  12. Lattice QCD sprectrum of excited states of the nucleon

    NASA Astrophysics Data System (ADS)

    Wallace, Stephen

    2012-03-01

    Lattice QCD results are presented for the spectrum of excited states of the nucleon. Matrices of correlation functions are calculated using lattice operators that incorporate up to two covariant derivatives in combinations that transform according to SU(2) symmetry restricted to the lattice. Although the lattice has cubic symmetry, identification of continuum SU(2) spins is straightforward using such operators. Overlaps of the operators with the lattice QCD states obtained by diagonalizing matrices of correlation functions provide the link of continuum spins to lattice states. Spins up to 7/2 are identified clearly. Evidence for an approximate realization of rotational symmetry in the spectrum is presented, which helps to explain why the continuum spins can be identified. In lattice simulations with pion mass equal to 392 MeV, the low-lying excited states of lattice QCD are found to have the same spin quantum numbers as the states of SU(6)xO(3) symmetry. The lattice QCD spectra are inconsistent with either a quark-diquark model or parity doubling of states. They suggest that the Roper resonance may have a complex structure consisting of contributions from L=0, 1 and 2.

  13. Low-Lying ππ* States of Heteroaromatic Molecules: A Challenge for Excited State Methods.

    PubMed

    Prlj, Antonio; Sandoval-Salinas, María Eugenia; Casanova, David; Jacquemin, Denis; Corminboeuf, Clémence

    2016-06-14

    The description of low-lying ππ* states of linear acenes by standard electronic structure methods is known to be challenging. Here, we broaden the framework of this problem by considering a set of fused heteroaromatic rings and demonstrate that standard electronic structure methods do not provide a balanced description of the two (typically) lowest singlet state (La and Lb) excitations. While the Lb state is highly sensitive to correlation effects, La suffers from the same drawbacks as charge transfer excitations. We show that the comparison between CIS/CIS(D) can serve as a diagnostic for detecting the two problematic excited states. Standard TD-DFT and even its spin-flip variant lead to inaccurate excitation energies and interstate gaps, with only a double hybrid functional performing somewhat better. The complication inherent to a balanced description of these states is so important that even CC2 and ADC(2) do not necessarily match the ADC(3) reference.

  14. An incompressible state of a photo-excited electron gas

    PubMed Central

    Chepelianskii, Alexei D.; Watanabe, Masamitsu; Nasyedkin, Kostyantyn; Kono, Kimitoshi; Konstantinov, Denis

    2015-01-01

    Two-dimensional electrons in a magnetic field can form new states of matter characterized by topological properties and strong electronic correlations as displayed in the integer and fractional quantum Hall states. In these states, the electron liquid displays several spectacular characteristics, which manifest themselves in transport experiments with the quantization of the Hall resistance and a vanishing longitudinal conductivity or in thermodynamic equilibrium when the electron fluid becomes incompressible. Several experiments have reported that dissipationless transport can be achieved even at weak, non-quantizing magnetic fields when the electrons absorb photons at specific energies related to their cyclotron frequency. Here we perform compressibility measurements on electrons on liquid helium demonstrating the formation of an incompressible electronic state under these resonant excitation conditions. This new state provides a striking example of irradiation-induced self-organization in a quantum system. PMID:26007282

  15. Excited State Dynamics of Protonated Phenylalanine and Tyrosine: Photo-Induced Reactions Following Electronic Excitation.

    PubMed

    Féraud, Géraldine; Broquier, Michel; Dedonder, Claude; Jouvet, Christophe; Grégoire, Gilles; Soorkia, Satchin

    2015-06-11

    The electronic spectroscopy and the electronic excited state properties of cold protonated phenylalanine and protonated tyrosine have been revisited on a large spectral domain and interpreted by comparison with ab initio calculations. The protonated species are stored in a cryogenically cooled Paul trap, maintained at ∼10 K, and the parent and all the photofragment ions are mass-analyzed in a time-of-flight mass spectrometer, which allows detecting the ionic species with an improved mass resolution compared to what is routinely achieved with a quadrupole mass spectrometer. These new results emphasize the competition around the band origin between two proton transfer reactions from the ammonium group toward either the aromatic chromophore or the carboxylic acid group. These reactions are initiated by the coupling of the locally excited ππ* state with higher charge transfer states, the positions and coupling of which depend on the conformation of the protonated molecules. Each of these reaction processes gives rise to specific fragmentation channels that supports the conformer selectivity observed in the photofragmentation spectra of protonated tyrosine and phenylalanine.

  16. CHARACTERIZATION OF DWPF MELTER OFF-GAS QUENCHER SAMPLE

    SciTech Connect

    Newell, J.

    2011-11-14

    The Savannah River National Laboratory (SRNL) recently received a deposit sample from the Melter Primary Off Gas System (POG) of the Defense Waste Processing Facility (DWPF). This sample was composed of material that had been collected while the quencher was in operation January 27, 2011 through March 31, 2011. DWPF requested, through a technical assistance request, characterization of the melter off-gas deposits by x-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical analysis. The purpose of the Melter Off-Gas System is to reduce the amount of radioactive particles and mercury in the gases vented to the atmosphere. Gases emitted from the melter pass through the primary film cooler, quencher, Off-Gas Condensate Tank (OGCT), Steam Atomized Scrubbers (SAS), a condenser, a high efficiency mist eliminator, and a high efficiency particulate air filter, before being vented to the Process Vessel Vent System. The film coolers cool the gases leaving the melter vapor space from {approx}750 C to {approx}375 C, by introducing air and steam to the flow. In the next step, the quencher cools the gas to about 60 C by bringing the condensate from the OGCT in contact with the effluent (Figure 1). Most of the steam in the effluent is then condensed and the melter vapor space pressure is reduced. The purpose of the OGCT is to collect and store the condensate formed during the melter operation. Condensate from the OGCT is circulated to the SAS and atomized with steam. This atomized condensate is mixed with the off-gas to wet and join the particulate which is then removed in the cyclone. The next stage incorporates a chilled water condenser which separates the vapors and elemental mercury from the off-gas steam. Primary off-gas deposit samples from the DWPF melter have previously been analyzed. In 2003, samples from just past the film cooler, from the inlet of the quencher and inside the quencher were analyzed at SRNL. It was determined that the samples were a

  17. Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile

    NASA Astrophysics Data System (ADS)

    Kolesniková, L.; Alonso, E. R.; Mata, S.; Alonso, J. L.

    2017-04-01

    We report a detailed spectroscopic investigation of the interstellar aminoacetonitrile, a possible precursor molecule of glycine. Using a combination of Stark and frequency-modulation microwave and millimeter wave spectroscopies, we observed and analyzed the room-temperature rotational spectra of 29 excited states with energies up to 1000 cm‑1. We also observed the 13C isotopologues in the ground vibrational state in natural abundance (1.1%). The extensive data set of more than 2000 new rotational transitions will support further identifications of aminoacetonitrile in the interstellar medium.

  18. Leptonic partial widths of the excited {psi} states

    SciTech Connect

    Mo, X. H.; Yuan, C. Z.; Wang, P.

    2010-10-01

    The resonance parameters of the excited {psi}-family resonances, namely, the {psi}(4040), {psi}(4160), and {psi}(4415), were determined by fitting the R values measured by experiments. It is found that the previously reported leptonic partial widths of these states were merely one possible solution among a four-fold ambiguity. By fitting the most precise experimental data on the R values measured by the BES collaboration, this work presents all four sets of solutions. These results may affect the interpretation of the charmonium and charmonium-like states above 4 GeV/c{sup 2}.

  19. Excited states in 146Sm and 147Sm

    NASA Astrophysics Data System (ADS)

    Kownacki, J.; Sujkowski, Z.; Hammarén, E.; Liukkonen, E.; Piiparinen, M.; Lindblad, Th.; Ryde, H.; Paar, V.

    1980-03-01

    The 144, 146Nd(α, χn) and 146,148Nd( 3He, χn) reactions with Eα = 20-43 MeV and E3He , = 19-27 MeV are used to investigate excited states in the isotopes 146Sm and 147Sm. The experiments involve measurements of singles γ-ray spectra and conversion electron spectra, γ-ray angular distributions and three-parameter ( Eγ- Eγ-time) coincidences. From these experiments information is obtained for states with spin up to I = 13 +and I = {27}/{2}-, respectively. These states are interpreted within the framework of the cluster-vibration model (CVM) as well as the shell model. In the latter approach, the energies of several well established states, in both isotopes, are calculated using empirical singleparticle energies, empirical two-particle interaction matrix elements and angular momentum algebra. The average deviation between the calculated and the experimental energies is less than 100 keV. The CVM calculations involve the coupling of a three-particle neutron cluster to the quadrupole vibration of the core. For 147Sm, these calculations reproduce the observed sequence of states based on the I π = {7}/{2}- ground state, as well as the sequence of states based on the I π = {13}/{2}+ excited state. The CVM calculations also reproduce the ground band in 146Sm, while for the negative parity states based on the cluster (f {7}/{2}i {13}/{2}) 3 --10 - an additional shift in energy is expected due to the mixing with octupole phonons.

  20. Excited-State Properties of Molecular Solids from First Principles.

    PubMed

    Kronik, Leeor; Neaton, Jeffrey B

    2016-05-27

    Molecular solids have attracted attention recently in the context of organic (opto)electronics. These materials exhibit unique charge carrier generation and transport phenomena that are distinct from those of conventional semiconductors. Understanding these phenomena is fundamental to optoelectronics and requires a detailed description of the excited-state properties of molecular solids. Recent advances in many-body perturbation theory (MBPT) and density functional theory (DFT) have made such description possible and have revealed many surprising electronic and optical properties of molecular crystals. Here, we review this progress. We summarize the salient aspects of MBPT and DFT as well as various properties that can be described by these methods. These properties include the fundamental gap and its renormalization, hybridization and band dispersion, singlet and triplet excitations, optical spectra, and excitonic properties. For each, we present concrete examples, a comparison to experiments, and a critical discussion.

  1. Quantum entanglement of locally excited states in Maxwell theory

    NASA Astrophysics Data System (ADS)

    Nozaki, Masahiro; Watamura, Naoki

    2016-12-01

    In 4 dimensional Maxwell gauge theory, we study the changes of (Rényi) entanglement entropy which are defined by subtracting the entropy for the ground state from the one for the locally excited states, generated by acting with gauge invariant local operators on the state. The changes for the operators which we consider in this paper reflect the electric-magnetic duality. The late-time value of changes can be interpreted in terms of electromagnetic quasi-particles. When the operator constructed of both electric and magnetic fields acts on the ground state, it shows that the operator acts on the late-time structure of quantum entanglement differently from free scalar fields.

  2. Electronic Ground and Excited State Spectral Diffusion of a Photocatalyst

    NASA Astrophysics Data System (ADS)

    Kiefer, Laura M.; King, John T.; Kubarych, Kevin J.

    2014-06-01

    Re(bpy)(CO)_3Cl is a well studied CO_2 reduction catalyst, known for its ability as both a photosensitizer and a catalyst with a high quantum yield and product selectivity. The catalysis reaction is initiated by a 400 nm excitation, followed by an intersystem crossing (ISC) and re-equilibration in the lowest triplet state. We utilize the quasi-equilibrium nature of this long-lived triplet metal-to-ligand charge-transfer (3MLCT) state to completely characterize the solvent dynamics using the technique of transient two-dimensional infrared (t-2DIR) spectroscopy to extract observables such as the frequency-frequency correlation function (FFCF), an equilibrium function. The electronic ground state solvent dynamics are characterized using equilibrium two-dimensional infrared spectroscopy (2D IR). Our technique allows us to independently observe the solvent dynamics of different electronic states and compare them. In this study, three carbonyl stretching modes were utilized to probe both the intramolecular and solvent environments in each electronic state. In the electronic ground state, the totally symmetric mode exhibits pure homogeneous broadening and a lack of spectral dynamics, while the two other modes have similar FFCF decay times of ˜ 1.5 ps. In the 3MLCT, however, all three modes experience similar spectral dynamics and have a FFCF decay time of ˜ 4.5 ps, three times slower than in the electronic ground state. Our technique allows us to directly observe the differences in spectral dynamics of the ground and excited electronic states and allows us to attribute the differences to specific origins such as solvent-solute coupling and molecular flexibility.

  3. Output power of a quantum dot laser: Effects of excited states

    SciTech Connect

    Wu, Yuchang; Jiang, Li Asryan, Levon V.

    2015-11-14

    A theory of operating characteristics of quantum dot (QD) lasers is discussed in the presence of excited states in QDs. We consider three possible situations for lasing: (i) ground-state lasing only; (ii) ground-state lasing at first and then the onset of also excited-state lasing with increasing injection current; (iii) excited-state lasing only. The following characteristics are studied: occupancies of the ground-state and excited-state in QDs, free carrier density in the optical confinement layer, threshold currents for ground- and excited-state lasing, densities of photons emitted via ground- and excited-state stimulated transitions, output power, internal and external differential quantum efficiencies. Under the conditions of ground-state lasing only, the output power saturates with injection current. Under the conditions of both ground- and excited-state lasing, the output power of ground-state lasing remains pinned above the excited-state lasing threshold while the power of excited-state lasing increases. There is a kink in the light-current curve at the excited-state lasing threshold. The case of excited-state lasing only is qualitatively similar to that for single-state QDs—the role of ground-state transitions is simply reduced to increasing the threshold current.

  4. Application of spectroscopy and super-resolution microscopy: Excited state

    SciTech Connect

    Bhattacharjee, Ujjal

    2016-02-19

    Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10-9 s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such as lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.

  5. Self-scattering for Dark Matter with an excited state

    SciTech Connect

    Schutz, Katelin; Slatyer, Tracy R. E-mail: tslatyer@mit.edu

    2015-01-01

    Self-interacting dark matter scenarios have recently attracted much attention, as a possible means to alleviate the tension between N-body simulations and observations of the dark matter distribution on galactic and sub-galactic scales. The presence of internal structure for the dark matter—for example, a nearly-degenerate state in the spectrum that could decay, or be collisionally excited or de-excited—has also been proposed as a possible means to address these discrepancies. Such internal structure can be a source of interesting signatures in direct and indirect dark matter searches, for example providing a novel explanation for the 3.5 keV line recently observed in galaxies and galaxy clusters. We analyze a simple model of dark matter self-scattering including a nearly-degenerate excited state, and develop an accurate analytic approximation for the elastic and inelastic s-wave cross sections, which is valid outside the perturbative regime provided the particle velocity is sufficiently low (this condition is also required for the s-wave to dominate over higher partial waves). We anticipate our results will be useful in incorporating inelastic self-scattering into N-body simulations, in order to study the quantitative impact of nearly-degenerate states in the dark matter spectrum on galactic structure and dynamics, and in computing the indirect signatures of multi-state dark matter.

  6. Ultra-Fast Excited State Dynamics in Green Fluorescent Protein: Multiple States and Proton Transfer

    NASA Astrophysics Data System (ADS)

    Chattoraj, Mita; King, Brett A.; Bublitz, Gerold U.; Boxer, Steven G.

    1996-08-01

    The green fluorescent protein (GFP) of the jellyfish Aequorea Victoria has attracted widespread interest since the discovery that its chromophore is generated by the autocatalytic, posttranslational cyclization and oxidation of a hexapeptide unit. This permits fusion of the DNA sequence of GFP with that of any protein whose expression or transport can then be readily monitored by sensitive fluorescence methods without the need to add exogenous fluorescent dyes. The excited state dynamics of GFP were studied following photo-excitation of each of its two strong absorption bands in the visible using fluorescence upconversion spectroscopy (about 100 fs time resolution). It is shown that excitation of the higher energy feature leads very rapidly to a form of the lower energy species, and that the excited state interconversion rate can be markedly slowed by replacing exchangeable protons with deuterons. This observation and others lead to a model in which the two visible absorption bands correspond to GFP in two ground-state conformations. These conformations can be slowly interconverted in the ground state, but the process is much faster in the excited state. The observed isotope effect suggests that the initial excited state process involves a proton transfer reaction that is followed by additional structural changes. These observations may help to rationalize and motivate mutations that alter the absorption properties and improve the photo stability of GFP.

  7. Excitation of Helium to Rydberg States Using STIRAP

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoxu

    2011-12-01

    Driving atoms from an initial to a final state of the same parity via an intermediate state of opposite parity is most efficiently done using STIRAP, because it does not populate the intermediate state. For optical transitions this requires appropriate pulses of light in the counter-intuitive order - first coupling the intermediate and final states. We populate Rydberg states of helium (n = 12 ˜ 30) in a beam of average velocity 1070 m/s by having the atoms cross two laser beams in a tunable dc electric field. The "red" light near lambda = 790 ~ 830 nm connects the 33P states to the Rydberg states and the "blue" beam of lambda = 389 nm connects the metastable 2 3S state atoms emitted by our source to the 33 P states. By varying the relative position of these beams we can vary both the order and the overlap encountered by the atoms. We vary either the dc electric field and fix the " red " laser frequency or vary the "red" laser frequency and fix the dc electric field to sweep across Stark states of the Rydberg manifolds. Several mm downstream of the interaction region we apply the very strong bichromatic force on the 23S → 2 3P transition at lambda = 1083 nm. It deflects the remaining 23S atoms out of the beam and the ratio of this signal measured with STIRAP beam on and off provides an absolute measure of the fraction of the atoms remaining in the 23 S state. Simple three-level models of STIRAP all predict 100% excitation probability, but our raw measurements are typically around half of this, and vary with both n and l of the Rydberg states selected for excitation by the laser frequency and electric field tuning on our Stark maps. For states with high enough Rabi frequency, after correction for the decay back to the metastable state before the deflection, the highest efficiencies are around 70%. An ion detector readily detects the presence of Rydberg atoms. We believe that the observed signals are produced by black-body ionization at a very low rate, but

  8. Spectroscopic properties of the S1 state of linear carotenoids after excess energy excitation

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Valentyna; Southall, June; Cogdell, Richard J.; Fuciman, Marcel; Polívka, Tomáš

    2017-09-01

    Properties of the S1 state of neurosporene, spheroidene and lycopene were studied after excess energy excitation in the S2 state. Excitation of carotenoids into higher vibronic levels of the S2 state generates excess vibrational energy in the S1 state. The vibrationally hot S1 state relaxes faster when carotenoid is excited into the S2 state with excess energy, but the S1 lifetime remains constant regardless of which vibronic level of the S2 state is excited. The S∗ signal depends on excitation energy only for spheroidene, which is likely due to asymmetry of the molecule, facilitating conformations responsible for the S∗ signal.

  9. Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters.

    PubMed

    Padalkar, Vikas S; Seki, Shu

    2016-01-07

    Solid state emitters based on excited state intramolecular proton transfer (ESIPT) have been attracting considerable interest since the past few years in the field of optoelectronic devices because of their desirable unique photophysical properties. The photophysical properties of the solid state ESIPT fluorophores determine their possible applicability in functional materials. Less fluorescence quantum efficiencies and short fluorescence lifetime in the solid state are the shortcomings of the existing ESIPT solid state emitters. Designing of ESIPT chromophores with high fluorescence quantum efficiencies and a long fluorescence lifetime in the solid state is a challenging issue because of the unclear mechanism of the solid state emitters in the excited state. Reported design strategies, detailed photophysical properties, and their applications will help in assisting researchers to overcome existing challenges in designing novel solid state ESIPT fluorophores for promising applications. This review highlights recently developed solid state ESIPT emitters with focus on molecular design strategies and their photophysical properties, reported in the last five years.

  10. Excited state mass spectra of doubly heavy Ξ baryons

    NASA Astrophysics Data System (ADS)

    Shah, Zalak; Rai, Ajay Kumar

    2017-02-01

    In this paper, the mass spectra are obtained for doubly heavy Ξ baryons, namely, Ξ _{cc}+, Ξ _{cc}^{++}, Ξ _{bb}-, Ξ _{bb}0, Ξ _{bc}0 and Ξ _{bc}+. These baryons consist of two heavy quarks ( cc, bb, and bc) with a light ( d or u) quark. The ground, radial, and orbital states are calculated in the framework of the hypercentral constituent quark model with Coulomb plus linear potential. Our results are also compared with other predictions, thus, the average possible range of excited states masses of these Ξ baryons can be determined. The study of the Regge trajectories is performed in ( n, M2) and ( J, M2) planes and their slopes and intercepts are also determined. Lastly, the ground state magnetic moments of these doubly heavy baryons are also calculated.

  11. TBA and TCSA with boundaries and excited states

    NASA Astrophysics Data System (ADS)

    Dorey, Patrick; Pocklington, A. J.; Tateo, Roberto; Watts, Gérard

    1998-08-01

    We study the spectrum of the scaling Lee-Yang model on a finite interval from two points of view: via a generalisation of the truncated conformal space approach to systems with boundaries, and via the boundary thermodynamic Bethe ansatz. This allows reflection factors to be matched with specific boundary conditions, and leads us to propose a new (and non-minimal) family of reflection factors to describe the one relevant boundary perturbation in the model. The equations proposed previously for the ground state on an interval must be revised in certain regimes, and we find the necessary modifications by analytic continuation. We also propose new equations to describe excited states, and check all equations against boundary truncated conformal space data. Access to the finite-size spectrum enables us to observe boundary flows when the bulk remains massless, and the formation of boundary bound states when the bulk is massive.

  12. Excited-state proton transfer of firefly dehydroluciferin.

    PubMed

    Presiado, Itay; Erez, Yuval; Simkovitch, Ron; Shomer, Shay; Gepshtein, Rinat; Pinto da Silva, Luís; Esteves da Silva, Joaquim C G; Huppert, Dan

    2012-11-08

    Steady-state and time-resolved emission techniques were used to study the protolytic processes in the excited state of dehydroluciferin, a nonbioluminescent product of the firefly enzyme luciferase. We found that the ESPT rate coefficient is only 1.1 × 10(10) s(-1), whereas those of d-luciferin and oxyluciferin are 3.7 × 10(10) and 2.1 × 10(10) s(-1), respectively. We measured the ESPT rate in water-methanol mixtures, and we found that the rate decreases nonlinearly as the methanol content in the mixture increases. The deprotonated form of dehydroluciferin has a bimodal decay with short- and long-time decay components, as was previously found for both D-luciferin and oxyluciferin. In weakly acidic aqueous solutions, the deprotonated form's emission is efficiently quenched. We attribute this observation to the ground-state protonation of the thiazole nitrogen, whose pK(a) value is ~3.

  13. Radiative Decays of Low-Lying Excited-State Hyperons

    SciTech Connect

    Taylor, Simon

    2000-05-01

    The quark wave-functions of the lower-lying excited-state hyperons Lambda(1405), Sigma(1385), and Lambda(1520) are not well understood. For example, the Lambda(1405) may not be a regular three-quark state but a $\\bar{K}$N molecule. Several competing models have been proposed, but none have been convincingly eliminated. Measuring radiative decays provides a means of discriminating between the models. The radiative branching of ratios are predicted to be small (~1%), but the radiative widths vary by factors of 2-10 from model to model. The existing experimental data is sparse and inconsistent; moreover, the radiative decay of the Sigma(1385) has never been observed before (except for one event). These lower-lying excited state hypersons were produced in a tagged photon-beam experiment in the CLAS detector at TJNAF in the reaction gamma p → K+ Y* for photon energies from threshold to 2.4 GeV. The radiative branching ration for the Sigma0(1385) relative to the Sigma0(1385) → Lambda pi0 channel was measured to be 0.021 ± 0.008$+0.004\\atop{-0.007}$, corresponding to a partial width of 640 ± 270$+130\\atop{-220}$ keV.

  14. New results on the excited states in ^32Mg

    NASA Astrophysics Data System (ADS)

    McGauley, A. J.; Mach, H.; Fraile, L. M.; Tengblad, O.; Boutami, R.; Jouliet, C.; Plociennik, W.; Yordanov, D. Z.; Stanoiu, M.

    2008-10-01

    ^32Mg is located at the center of a region known as the ``island of inversion,'' a region in which the classic picture of stable shell structure was shattered when the energy of the 2^+ state in ^32Mg was found to be only 885 keV, much lower than expected for a nucleus with a closed neutron shell. The collapse of the N=20 shell closure has been extensively studied, yet very little information exists on the excited states in ^32Mg, which is the critical nucleus. We have studied the levels in ^32Mg populated from the beta-decay of ^32Na at the ISOLDE facility at CERN. We have established a new level scheme which includes 9 excited states and 18 transitions based on the gamma-gamma coincidences. The statistics exceeded by about 2 orders of magnitude statistics collected in previous measurements of ^32Mg [1]. We do not confirm two levels previously proposed, while two new levels and five new transitions are included in the level scheme. [1] G. Klotz et al., Phys. Rev. C47, 2502 (1993), C.M. Mattoon et al., Phys. Rev. C75, 017302 (2007), and V. Tripathi et al., Phys. Rev C77, 034310 (2008).

  15. Nonlinear absorption properties and excited state dynamics of ferrocene.

    PubMed

    Scuppa, Stefano; Orian, Laura; Dini, Danilo; Santi, Saverio; Meneghetti, Moreno

    2009-08-20

    We report on the first observation of reverse saturable absorption by ferrocene (Fc) in toluene using nanosecond pulses at 532 nm. Pump and probe experiments in the visible spectral region show the existence of an excited triplet state with an intersystem crossing quantum yield S1 --> T1 of 0.085 and a molar extinction coefficient epsilon(Fc)(T) of 5650 L mol(-1) cm(-1) at 700 nm. The full understanding of the nonlinear optical behavior of Fc cannot be obtained, however, with a model that includes only the one-photon absorption from T1, but it is mandatory to consider also a simultaneous two-photon absorption from an excited singlet state of Fc (two-photon absorption cross section: 2.4 x 10(-41) cm4 s ph(-1) mol(-1)). The optical spectrum of the ground and triplet state of Fc are calculated within a TD-DFT approach considering several functionals (PBE, BLYP, LDA, OPBE) for the optimization of molecular geometry.

  16. Population shuffling between ground and high energy excited states.

    PubMed

    Sabo, T Michael; Trent, John O; Lee, Donghan

    2015-11-01

    Stochastic processes powered by thermal energy lead to protein motions traversing time-scales from picoseconds to seconds. Fundamental to protein functionality is the utilization of these dynamics for tasks such as catalysis, folding, and allostery. A hierarchy of motion is hypothesized to connect and synergize fast and slow dynamics toward performing these essential activities. Population shuffling predicts a "top-down" temporal hierarchy, where slow time-scale conformational interconversion leads to a shuffling of the free energy landscape for fast time-scale events. Until now, population shuffling was only applied to interconverting ground states. Here, we extend the framework of population shuffling to be applicable for a system interconverting between low energy ground and high energy excited states, such as the SH3 domain mutants G48M and A39V/N53P/V55L from the Fyn tyrosine kinase, providing another tool for accessing the structural dynamics of high energy excited states. Our results indicate that the higher energy gauche - rotameric state for the leucine χ2 dihedral angle contributes significantly to the distribution of rotameric states in both the major and minor forms of the SH3 domain. These findings are corroborated with unrestrained molecular dynamics (MD) simulations on both the major and minor states of the SH3 domain demonstrating high correlations between experimental and back-calculated leucine χ2 rotameric populations. Taken together, we demonstrate how fast time-scale rotameric side-chain population distributions can be extracted from slow time-scale conformational exchange data further extending the scope and the applicability of the population shuffling model.

  17. Population shuffling between ground and high energy excited states

    PubMed Central

    Sabo, T Michael; Trent, John O; Lee, Donghan

    2015-01-01

    Stochastic processes powered by thermal energy lead to protein motions traversing time-scales from picoseconds to seconds. Fundamental to protein functionality is the utilization of these dynamics for tasks such as catalysis, folding, and allostery. A hierarchy of motion is hypothesized to connect and synergize fast and slow dynamics toward performing these essential activities. Population shuffling predicts a “top-down” temporal hierarchy, where slow time-scale conformational interconversion leads to a shuffling of the free energy landscape for fast time-scale events. Until now, population shuffling was only applied to interconverting ground states. Here, we extend the framework of population shuffling to be applicable for a system interconverting between low energy ground and high energy excited states, such as the SH3 domain mutants G48M and A39V/N53P/V55L from the Fyn tyrosine kinase, providing another tool for accessing the structural dynamics of high energy excited states. Our results indicate that the higher energy gauche− rotameric state for the leucine χ2 dihedral angle contributes significantly to the distribution of rotameric states in both the major and minor forms of the SH3 domain. These findings are corroborated with unrestrained molecular dynamics (MD) simulations on both the major and minor states of the SH3 domain demonstrating high correlations between experimental and back-calculated leucine χ2 rotameric populations. Taken together, we demonstrate how fast time-scale rotameric side-chain population distributions can be extracted from slow time-scale conformational exchange data further extending the scope and the applicability of the population shuffling model. PMID:26316263

  18. Excited State Effects in Nucleon Matrix Element Calculations

    SciTech Connect

    Constantia Alexandrou, Martha Constantinou, Simon Dinter, Vincent Drach, Karl Jansen, Theodoros Leontiou, Dru B Renner

    2011-12-01

    We perform a high-statistics precision calculation of nucleon matrix elements using an open sink method allowing us to explore a wide range of sink-source time separations. In this way the influence of excited states of nucleon matrix elements can be studied. As particular examples we present results for the nucleon axial charge g{sub A} and for the first moment of the isovector unpolarized parton distribution x{sub u-d}. In addition, we report on preliminary results using the generalized eigenvalue method for nucleon matrix elements. All calculations are performed using N{sub f} = 2+1+1 maximally twisted mass Wilson fermions.

  19. Triaxiality near the 110Ru ground state from Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Doherty, D. T.; Allmond, J. M.; Janssens, R. V. F.; Korten, W.; Zhu, S.; Zielińska, M.; Radford, D. C.; Ayangeakaa, A. D.; Bucher, B.; Batchelder, J. C.; Beausang, C. W.; Campbell, C.; Carpenter, M. P.; Cline, D.; Crawford, H. L.; David, H. M.; Delaroche, J. P.; Dickerson, C.; Fallon, P.; Galindo-Uribarri, A.; Kondev, F. G.; Harker, J. L.; Hayes, A. B.; Hendricks, M.; Humby, P.; Girod, M.; Gross, C. J.; Klintefjord, M.; Kolos, K.; Lane, G. J.; Lauritsen, T.; Libert, J.; Macchiavelli, A. O.; Napiorkowski, P. J.; Padilla-Rodal, E.; Pardo, R. C.; Reviol, W.; Sarantites, D. G.; Savard, G.; Seweryniak, D.; Srebrny, J.; Varner, R.; Vondrasek, R.; Wiens, A.; Wilson, E.; Wood, J. L.; Wu, C. Y.

    2017-03-01

    A multi-step Coulomb excitation measurement with the GRETINA and CHICO2 detector arrays was carried out with a 430-MeV beam of the neutron-rich 110Ru (t1/2 = 12 s) isotope produced at the CARIBU facility. This represents the first successful measurement following the post-acceleration of an unstable isotope of a refractory element. The reduced transition probabilities obtained for levels near the ground state provide strong evidence for a triaxial shape; a conclusion confirmed by comparisons with the results of beyond-mean-field and triaxial rotor model calculations.

  20. Theoretical study on the excited states of HCN

    NASA Astrophysics Data System (ADS)

    Nayak, Malaya K.; Chaudhuri, Rajat K.; Krishnamachari, S. N. L. G.

    2005-05-01

    In the flash-photolysis of oxazole, iso-oxazole, and thiozole a transient band system was observed in the region 2500-3050 Å. This band system was attributed to a meta-stable form of HCN, i.e., either HNC or triplet HCN. Theoretical investigations have been carried out on the ground and excited states of HCN to characterize this and other experimentally observed transitions. The predicted geometries are compared with the experiment and earlier theoretical calculations. The present calculations show that the band system in the region 2500-3050 Å corresponds to the transition 43-A'←13-A' of HCN.

  1. Triaxiality near the 110Ru ground state from Coulomb excitation

    DOE PAGES

    Doherty, D. T.; Allmond, James M.; Janssens, R. V. F.; ...

    2017-01-20

    A multi-step Coulomb excitation measurement with the GRETINA and CHICO2 detector arrays was carried out with a 430-MeV beam of the neutron-rich 110Ru (t1/2 = 12 s) isotope produced at the CARIBU facility. This represents the first successful measurement following the post-acceleration of an unstable isotope of a refractory element. The reduced transition probabilities obtained for levels near the ground state provide strong evidence for a triaxial shape; a conclusion confirmed by comparisons with the results of beyond-mean-field and triaxial rotor model calculations.

  2. Ground- and excited-state impurity bands in quantum wells

    NASA Astrophysics Data System (ADS)

    Ghazali, A.; Gold, A.; Serre, J.

    1989-02-01

    The density of states and the spectral density of electrons in quantum wells with charged impurities are calculated with use of a multiple-scattering method. The impurity-density-dependent broadening and the gradual merging of the ground (1s) and excited (2p+/-,2s) impurity levels into impurity bands are investigated. At low density the shapes of the 1s, 2p+/-, and 2s spectral densities are found to be in excellent agreement with the analytical results obtained for the ideal two-dimensional Coulomb problem.

  3. Photosensitized Thymine Dimerization via Delocalized Triplet Excited States.

    PubMed

    Miro, Paula; Lhiaubet-Vallet, Virginie; Marin, M Luisa; Miranda, Miguel A

    2015-11-16

    A new mechanism of photosensitized formation of thymine (Thy) dimers is proposed, which involves generation of a delocalized triplet excited state as the key step. This is supported by chemical evidence obtained by combining one benzophenone and two Thy units with different degrees of freedom, whereby the photoreactivity is switched from a clean Paternò-Büchi reaction to a fully chemo-, regio-, and stereoselective [2+2] cycloaddition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Infrared spectroscopy of excited states and transients in photochemistry

    NASA Astrophysics Data System (ADS)

    Schaffner, Kurt; Grevels, Friedrich-Wilhelm

    Flash photolysis with time-resolved IR detection is used in investigations of the primary photoreactions of chromium, molybdenum, tungsten, manganese, iron, and osmium carbonyl complexes, and of the ensuing transformations of transient products in room temperature solution. The method bridges the gap to spectral data obtained at low temperatures. It provides information which has previously been inaccessible, such as detailed structural information, and kinetic data in cases where the UV-visible absorptions of the species of interest overlap. Finally, excited-state IR spectroscopy has now become feasible for many organic compounds with the most recent instrumental set-up which reaches a time resolution of ≥ 50 ns.

  5. Excitation Energy Transfer Dynamics and Excited-State Structure in Chlorosomes of Chlorobium phaeobacteroides

    PubMed Central

    Pšenčík, Jakub; Ma, Ying-Zhong; Arellano, Juan B.; Hála, Jan; Gillbro, Tomas

    2003-01-01

    The excited-state relaxation within bacteriochlorophyll (BChl) e and a in chlorosomes of Chlorobium phaeobacteroides has been studied by femtosecond transient absorption spectroscopy at room temperature. Singlet-singlet annihilation was observed to strongly influence both the isotropic and anisotropic decays. Pump intensities in the order of 1011 photons × pulse−1 × cm−2 were required to obtain annihilation-free conditions. The most important consequence of applied very low excitation doses is an observation of a subpicosecond process within the BChl e manifold (∼200–500 fs), manifesting itself as a rise in the red part of the Qy absorption band of the BChl e aggregates. The subsequent decay of the kinetics measured in the BChl e region and the corresponding rise in the baseplate BChl a is not single-exponential, and at least two components are necessary to fit the data, corresponding to several BChl e→BChl a transfer steps. Under annihilation-free conditions, the anisotropic kinetics show a generally slow decay within the BChl e band (10–20 ps) whereas it decays more rapidly in the BChl a region (∼1 ps). Analysis of the experimental data gives a detailed picture of the overall time evolution of the energy relaxation and energy transfer processes within the chlorosome. The results are interpreted within an exciton model based on the proposed structure. PMID:12547796

  6. State-to-state kinetics and transport properties of electronically excited N and O atoms

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2016-11-01

    A theoretical model of transport properties in electronically excited atomic gases in the state-to-state approach is developed. Different models for the collision diameters of atoms in excited states are discussed, and it is shown that the Slater-like models can be applied for the state-resolved transport coefficient calculations. The influence of collision diameters of N and O atoms with electronic degrees of freedom on the transport properties is evaluated. Different distributions on the electronic energy are considered for the calculation of transport coefficients. For the Boltzmann-like distributions at temperatures greater than 15000 K, an important effect of electronic excitation on the thermal conductivity and viscosity coefficients is found; the coefficients decrease significantly when many electronic states are taken into account. It is shown that under hypersonic reentry conditions the impact of collision diameters on the transport properties is not really important since the populations of high levels behind the shock waves are low.

  7. Comparison of TaqMan and Epoch Dark Quenchers during real-time reverse transcription PCR.

    PubMed

    Daum, Luke T; Ye, Keying; Chambers, James P; Santiago, Jose; Hickman, John R; Barnes, William J; Kruzelock, Russell P; Atchley, Daniel H

    2004-06-01

    Several biotechnology companies have recently introduced novel quencher fluors for use with dual-labeled fluorogenic hydrolysis probes. The Epoch Dark Quencher trade mark fluorochrome consists of a non-fluorescent moiety capable of absorption at higher wavelengths (400-650 nm). The aim of this study was to: (1) evaluate the feasibility of using Epoch Dark Quencher fluorochromes in real-time PCR pathogen detection assays that were previously optimized with TaqMan (TAMRA) quenching fluors, and (2) compare the sensitivity based on cycle threshold (CT) between probes containing either TaqMan or Epoch Dark Quencher fluors. Our data indicate Epoch Dark Quencher probes can be used in place of TaqMan probes and their performance was not better than traditional TaqMan (TAMRA) quenchers. Marginal differences observed between quenching fluorochromes may arise from concentration differences during probe synthesis.

  8. The excited spin state of Comet 2P/Encke

    NASA Astrophysics Data System (ADS)

    Belton, Michael J. S.; Samarasinha, Nalin H.; Fernández, Yan R.; Meech, Karen J.

    2005-05-01

    Ways to rationalize the different periods (e.g., 15.08 h, Luu and Jewitt, 1990, Icarus 86, 69-81; 11.01 h, Fernández et al., 2004, Icarus, in this issue; Lowry et al., 2003, Lunar Planet. Sci. XXXIV, Abstract 2056) seen in near aphelion R-band light curves of Comet 2P/Encke are explored. We show that the comet is usually active at aphelion and it's observed light curves contain signal from both the nucleus and an unresolved coma. The coma contribution to the observed brightness is generally found to dominate with the nucleus providing from 28 to 87% of the total brightness. The amplitude of the observed variations cannot be explained by the nucleus alone and are due to coma activity. We show that some seven periodicities exist in the observed light curves at various times and that this is likely the result of an active nucleus spinning in an excited spin state. The changing periodicities are probably due to changes in the relative strengths of the active areas. We work out possible excited states based on experience with model light curves and by using an analogy to light curve observations of Comet 1P/Halley for which the spin state has been separately determined from spacecraft observations. There is a possibility of a fully relaxed principal axis spin state (0.538 d -1; P=44.6 h) but, because it provides a poorer fit to the observed periodicities than the best fit excited state together with the absence of a peak near 1.08 d -1 ( 2f) in the frequency spectrum of the Fernández et al. (2000, Icarus 147, 145-160) thermal IR lightcurve, we consider it unlikely. Both SAM and LAM excited states are allowed by the underlying periodicities and additional information is needed to choose between these. Our choice of a low excitation SAM state, i.e., one in which the instantaneous spin axis nutates around the total angular momentum vector in a motion that is characterized by limited angular oscillations around the long axis, is based on Sekanina's (1988, Astron J. 95

  9. Search for dilute excited states in 16O

    NASA Astrophysics Data System (ADS)

    Ogloblin, A. A.; Danilov, A. N.; Demyanova, A. S.; Goncharov, S. A.; Belyaeva, T. L.

    2016-11-01

    The root mean square radii of 16O in the short-lived 0+ excited states were experimentally deduced for the first time from the analyses of α +16O diffraction scattering. Differential cross sections of the elastic and inelastic α +16O and 16O+16O scattering in the incident energy range from a few MeV/nucleon up to 100 MeV/nucleon were analyzed by the modified diffraction model. No significant radius enhancement in any state in comparison with the ground state was observed. This concerns, in particular, the 15.1-MeV 06+ state of 16O, located in the vicinity of the four-α -particle complete dissociation threshold, for which we did not confirm the "gigantic" size predicted by the α -particle condensation model. This result does not support the idea that 16O in the 06+ state has a dilute structure and can be considered as an analog of the famous 7.65-MeV 02+ Hoyle state of 12C.

  10. Excited state absorption spectra and intersystem crossing kinetics in diazanaphthalenes

    NASA Astrophysics Data System (ADS)

    Scott, Gary W.; Talley, Larry D.; Anderson, Robert W.

    1980-05-01

    Picosecond time-resolved, excited state absorption spectra in the visible following excitation at 355 nm are discussed for room temperature solutions of four diazanaphthalenes (DN)—quinoxaline (1,4-DN), quinazoline (1,3-DN), cinnoline (1,2-DN), and phthalazine (2,3-DN). Kinetics of singlet state decay are obtained by monitoring the decay of Sn←S1 bands. The intersystem crossing rate constant (kisc) is found to vary as kisc(1,4-DN)≳kisc(1,3-DN)≳kisc(1,2-DN). The kisc in phthalazine could not be determined from the weak, visible Sn←S1 absorption. Assuming rapid singlet vibrational relaxation and only minor effects due to energy gap variations, these experimental results agree with statistical limit predictions for the relative nonradiative rate. Calculations of the spin-orbit coupling matrix element βel= , using INDO wave functions, give the ordering βel(1,4-DN)≳βel(2,3-DN)≳βel(1,3-DN) ≳βel(1,2-DN).

  11. Probing the Locality of Excited States with Linear Algebra.

    PubMed

    Etienne, Thibaud

    2015-04-14

    This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable.

  12. Excited-State Decay Paths in Tetraphenylethene Derivatives

    PubMed Central

    2017-01-01

    The photophysical properties of tetraphenylethene (TPE) compounds may differ widely depending on the substitution pattern, for example, with regard to the fluorescence quantum yield ϕf and the propensity to exhibit aggregation-induced emission (AIE). We report combined electronic structure calculations and nonadiabatic dynamics simulations to study the excited-state decay mechanisms of two TPE derivatives with four methyl substituents, either in the meta position (TPE-4mM, ϕf = 0.1%) or in the ortho position (TPE-4oM, ϕf = 64.3%). In both cases, two excited-state decay pathways may be relevant, namely, photoisomerization around the central ethylenic double bond and photocyclization involving two adjacent phenyl rings. In TPE-4mM, the barrierless S1 cyclization is favored; it is responsible for the ultralow fluorescence quantum yield observed experimentally. In TPE-4oM, both the S1 photocyclization and photoisomerization paths are blocked by non-negligible barriers, and fluorescence is thus feasible. Nonadiabatic dynamics simulations with more than 1000 surface hopping trajectories show ultrafast cyclization upon photoexcitation of TPE-4mM, whereas TPE-4oM remains unreactive during the 1 ps simulations. We discuss the chances for spectroscopic detection of the postulated cyclic photoproduct of TPE-4mM and the relevance of our findings for the AIE process. PMID:28318255

  13. The Microwave Spectroscopy of Aminoacetonitrile in the Vibrational Excited State

    NASA Astrophysics Data System (ADS)

    Fujita, Chiho; Ozeki, Hiroyuki; Kobayashi, Kaori

    2015-06-01

    Aminoacetonitrile (NH_2CH_2CN) is a potential precursor of the simplest amino acid, glycine and was detected toward SgrB2(N). It is expected that the strongest transitions will be found in the terahertz region so that we have extended measurements up to 1.3 THz. This study gave an accurate prediction of aminoacetonitrile up to 2 THz which is useful for astronomically search. This molecule has a few low-lying vibrational excited states and the pure rotational transitions in these vibrational excited states are expected to found. We found a series of transitions with intensity of about 30%. Eighty-eight spectral lines including both a-type and b-type transitions were recorded in the frequency region of 400 - 450 GHz, and centrifugal distortion constants up to the sextic term were determined. Perturbation was recognized. We will report the current status of the analysis. A. Belloche, K. M. Menten, C. Comito, H. S. P. Müller, P. Schilke, J. Ott, S. Thorwirth, and C. Hieret, 2008, Astronom. & Astrophys. 482, 179 (2008). Y. Motoki, Y. Tsunoda, H. Ozeki, and K. Kobayashi, Astrophys. J. Suppl. Ser. 209, 23 (2013). B. Bak, E. L. Hansen, F. M. Nicolaisen, and O. F. Nielsen, Can. J. Phys. 53, 2183 (1975).

  14. The Astrophysical Weeds: Rotational Transitions in Excited Vibrational States

    NASA Astrophysics Data System (ADS)

    Alonso, José L.; Kolesniková, Lucie; Alonso, Elena R.; Mata, Santiago

    2017-06-01

    The number of unidentified lines in the millimeter and submillimeter wave surveys of the interstellar medium has grown rapidly. The major contributions are due to rotational transitions in excited vibrational states of a relatively few molecules that are called the astrophysical weeds. necessary data to deal with spectral lines from astrophysical weeds species can be obtained from detailed laboratory rotational measurements in the microwave and millimeter wave region. A general procedure is being used at Valladolid combining different time and/or frequency domain spectroscopic tools of varying importance for providing the precise set of spectroscopic constants that could be used to search for this species in the ISM. This is illustrated in the present contribution through its application to several significant examples. Fortman, S. M., Medvedev, I. R., Neese, C.F., & De Lucia, F.C. 2010, ApJ,725, 1682 Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile, L. Kolesniková, E. R. Alonso, S. Mata, and J. L. Alonso, The Astrophysical Journal Supplement Series 2017, (in press).

  15. Excited state mass spectra of singly charmed baryons

    NASA Astrophysics Data System (ADS)

    Shah, Zalak; Thakkar, Kaushal; Kumar Rai, Ajay; Vinodkumar, P. C.

    2016-10-01

    Mass spectra of excited states of the singly charmed baryons are calculated using the hypercentral description of the three-body system. The baryons consist of a charm quark and light quarks ( u, d and s) are studied in the framework of QCD motivated constituent quark model. The form of the confinement potential is hyper-Coloumb plus power potential with potential index ν, varying from 0.5 to 2.0. The first-order correction to the confinement potential is also incorporated in this approach. The radial as well as orbital excited state masses of Σc^{++}, Σc+, Σc0, Ξc+, Ξc0, Λc+, Ωc0 baryons, are reported in this paper. We have incorporated spin-spin, spin-orbit and tensor interactions perturbatively in the present study. The semi-electronic decay of Ωc and Ξc are also calculated using the spectroscopic parameters of these baryons. The computed results are compared with other theoretical predictions as well as with the available experimental observations. We also construct the Regge trajectory in (nr, M2) and (J, M2) planes for these baryons.

  16. Excited-State Decay Paths in Tetraphenylethene Derivatives.

    PubMed

    Gao, Yuan-Jun; Chang, Xue-Ping; Liu, Xiang-Yang; Li, Quan-Song; Cui, Ganglong; Thiel, Walter

    2017-04-06

    The photophysical properties of tetraphenylethene (TPE) compounds may differ widely depending on the substitution pattern, for example, with regard to the fluorescence quantum yield ϕf and the propensity to exhibit aggregation-induced emission (AIE). We report combined electronic structure calculations and nonadiabatic dynamics simulations to study the excited-state decay mechanisms of two TPE derivatives with four methyl substituents, either in the meta position (TPE-4mM, ϕf = 0.1%) or in the ortho position (TPE-4oM, ϕf = 64.3%). In both cases, two excited-state decay pathways may be relevant, namely, photoisomerization around the central ethylenic double bond and photocyclization involving two adjacent phenyl rings. In TPE-4mM, the barrierless S1 cyclization is favored; it is responsible for the ultralow fluorescence quantum yield observed experimentally. In TPE-4oM, both the S1 photocyclization and photoisomerization paths are blocked by non-negligible barriers, and fluorescence is thus feasible. Nonadiabatic dynamics simulations with more than 1000 surface hopping trajectories show ultrafast cyclization upon photoexcitation of TPE-4mM, whereas TPE-4oM remains unreactive during the 1 ps simulations. We discuss the chances for spectroscopic detection of the postulated cyclic photoproduct of TPE-4mM and the relevance of our findings for the AIE process.

  17. Excited state dynamics of thulium ions in yttrium aluminum garnets

    NASA Technical Reports Server (NTRS)

    Armagan, G.; Buoncristiani, A. M.; Dibartolo, B.

    1991-01-01

    The processes that take place in the excited states of a trivalent Thulium (Tm) ion in an Yttrium Aluminum Garnet (YAG) crystal, being relevant to the use of this system for laser applications, have been the object of several studies. We have reexamined this system focusing our attention on the dynamics of Tm following its excitation in the H-3(sub 4) level. Under these conditions the system relaxes through a cross-relaxation process. H-3(sub 4) yields F-3(sub 4), H-3(sub 6) yields F-3(sub 4), whose rate depends upon both the concentration of the Tm ion and the temperature of the crystal. The excitation spectrum obtained by monitoring the 1.8 micron emission of Tm (due to the F-3(sub 4) yields H-3(sub 6) transition) indicates an increase in the contribution to this emission from the H-3(sub 4) level relative to the H-3(sub 5) level as the Tm concentration increases; this shows the increased role played by the H-3(sub 4) level in pumping the infrared emission. Correspondingly, the duration of the luminescence originating in the H-3(sub 4) level is shortened as the concentration of Tm increases. The concentration quenching of this lifetime can be fit to a model which assumes that the cross-relaxation is due to a dipole-dipole interaction; from this fit, the intrinsic Tm lifetime in the absence of cross relaxation can be derived. We have used this lifetime to calculate the rate of the cross-relaxation process. We have evaluated this rate as a function of the temperature and found it to be fastest at 77 K. We have also calculated the microscopic interaction parameters for the cross-relaxation process by using two independent experimental features: (1) the time evolution of the emission from the H-3(sub 4) level; and (2) the spectral overlap between the H-3(sub 4) yields F-3(sub 4) emission and the H-3(sub 6) yields F-3(sub 4) absorption. We have also considered the migration of excitation among the Tm ions in the F-3(sub 4) level and calculated the relevant

  18. Trapped electronic states in YAG crystal excited by femtosecond radiation

    NASA Astrophysics Data System (ADS)

    Zavedeev, E. V.; Kononenko, V. V.; Konov, V. I.

    2017-07-01

    The excitation of an electronic subsystem of an yttrium aluminum garnet by 800 nm femtosecond radiation was studied theoretically and experimentally. The spatio-temporal dynamics of the refractive index ( n) inside the beam waist was explored by means of the pump-probe interferometric technique with a submicron resolution. The observed increase in n indicated the formation of bound electronic states relaxed for {˜}150 ps. We showed that the experimental data agreed with the computational simulation based on the numerical solution of the nonlinear Schrödinger equation only if these transient states were considered to arise from a direct light-induced process but not from the decay of radiatively generated free-electron-hole pairs.

  19. Characterizing excited conformational states of RNA by NMR spectroscopy

    PubMed Central

    Zhao, Bo; Zhang, Qi

    2016-01-01

    Conformational dynamics is a hallmark of diverse non-coding RNA functions. During these functional processes, RNA molecules almost ubiquitously undergo conformational transitions that are tuned to meet distinct structural and kinetic requirements for proper function. A complete mechanistic understanding of RNA function requires comprehensive structural and dynamic knowledge of these complex transitions, which often involve alternative higher-energy conformational states that pose a major challenge for high-resolution structural study by conventional methods. In this review, we describe recent progress in RNA NMR that has started to unveil detailed structural, thermodynamic and kinetic insights into some of these excited conformational states of RNA and their functional roles in biology. PMID:25765780

  20. Benzonitrile: Electron affinity, excited states, and anion solvation.

    PubMed

    Dixon, Andrew R; Khuseynov, Dmitry; Sanov, Andrei

    2015-10-07

    We report a negative-ion photoelectron imaging study of benzonitrile and several of its hydrated, oxygenated, and homo-molecularly solvated cluster anions. The photodetachment from the unsolvated benzonitrile anion to the X̃(1)A1 state of the neutral peaks at 58 ± 5 meV. This value is assigned as the vertical detachment energy (VDE) of the valence anion and the upper bound of adiabatic electron affinity (EA) of benzonitrile. The EA of the lowest excited electronic state of benzonitrile, ã(3)A1, is determined as 3.41 ± 0.01 eV, corresponding to a 3.35 eV lower bound for the singlet-triplet splitting. The next excited state, the open-shell singlet Ã(1)A1, is found about an electron-volt above the triplet, with a VDE of 4.45 ± 0.01 eV. These results are in good agreement with ab initio calculations for neutral benzonitrile and its valence anion but do not preclude the existence of a dipole-bound state of similar energy and geometry. The step-wise and cumulative solvation energies of benzonitrile anions by several types of species were determined, including homo-molecular solvation by benzonitrile, hydration by 1-3 waters, oxygenation by 1-3 oxygen molecules, and mixed solvation by various combinations of O2, H2O, and benzonitrile. The plausible structures of the dimer anion of benzonitrile were examined using density functional theory and compared to the experimental observations. It is predicted that the dimer anion favors a stacked geometry capitalizing on the π-π interactions between the two partially charged benzonitrile moieties.

  1. Universal crossover from ground-state to excited-state quantum criticality

    NASA Astrophysics Data System (ADS)

    Kang, Byungmin; Potter, Andrew C.; Vasseur, Romain

    2017-01-01

    We study the nonequilibrium properties of a nonergodic random quantum chain in which highly excited eigenstates exhibit critical properties usually associated with quantum critical ground states. The ground state and excited states of this system belong to different universality classes, characterized by infinite-randomness quantum critical behavior. Using strong-disorder renormalization group techniques, we show that the crossover between the zero and finite energy density regimes is universal. We analytically derive a flow equation describing the unitary dynamics of this isolated system at finite energy density from which we obtain universal scaling functions along the crossover.

  2. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    NASA Astrophysics Data System (ADS)

    Egidi, Franco; Segado, Mireia; Koch, Henrik; Cappelli, Chiara; Barone, Vincenzo

    2014-12-01

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π*, π-π*, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  3. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    SciTech Connect

    Egidi, Franco Segado, Mireia; Barone, Vincenzo; Koch, Henrik; Cappelli, Chiara

    2014-12-14

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π{sup *}, π-π{sup *}, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  4. Excited state properties of the astaxanthin radical cation: A quantum chemical study

    NASA Astrophysics Data System (ADS)

    Dreuw, Andreas; Starcke, Jan Hendrik; Wachtveitl, Josef

    2010-07-01

    Using time-dependent density functional theory, the excited electronic states of the astaxanthin radical cation (AXT rad + ) are investigated. While the optically allowed excited D 1 and D 3 states are typical ππ∗ excited states, the D 2 and D 4 states are nπ∗ states. Special emphasis is put onto the influence of the carbonyl groups onto the excited states. For this objective, the excited states of four hypothetical carotenoids and zeaxanthin have been computed. Addition of a carbonyl group to a conjugated carbon double bond system does essentially not change the vertical excitation energies of the optically allowed ππ∗ states due to two counter-acting effects: the excitation energy should increase due to the -M-effect of the carbonyl group and at the same time decrease owing to the elongation of the conjugated double bond system by the carbonyl group itself.

  5. Ultrafast electronic relaxation of excited state vitamin B 12 in the gas phase

    NASA Astrophysics Data System (ADS)

    Shafizadeh, Niloufar; Poisson, Lionel; Soep, Benoıˆt

    2008-06-01

    The time evolution of electronically excited vitamin B 12 (cyanocobalamin) has been observed for the first time in the gas phase. It reveals an ultrafast decay to a state corresponding to metal excitation. This decay is interpreted as resulting from a ring to metal electron transfer. This opens the observation of the excited state of other complex biomimetic systems in the gas phase, the key to the characterisation of their complex evolution through excited electronic states.

  6. Neutron decay widths of excited states of {sup 11}Be

    SciTech Connect

    Haigh, P. J.; Freer, M.; Ashwood, N. I.; Bloxham, T.; Curtis, N.; McEwan, P.; Bohlen, H. G.; Dorsch, T.; Kokalova, Tz.; Schulz, Ch.; Wheldon, C.

    2009-01-15

    The two-neutron transfer reaction {sup 9}Be({sup 16}O, {sup 14}O){sup 11}Be[{sup 10}Be +n] has been used to measure the branching ratios for the neutron decay of excited states of {sup 11}Be. The {sup 14}O ejectile was detected by a Q3D spectrometer at forward angles. The energies and angles of the {sup 10}Be fragments of the decaying {sup 11}Be* recoil were measured in coincidence with the {sup 14}O ejectile using a double-sided silicon strip detector array at backward angles. This enabled a kinematic reconstruction of the reaction to be performed. Theoretical decay branch ratios were calculated using barrier penetrability factors and were compared to the measured ratios to provide information on the relative reduced widths of the states. The decay widths have been used to link states in {sup 11}Be with a common structure and structurally to states in the daughter nucleus {sup 10}Be. The 3/2{sup -} 8.82-MeV state was identified as a candidate for a molecular band head.

  7. Aqueous reactions of triplet excited states with allylic compounds

    NASA Astrophysics Data System (ADS)

    Kaur, R.; Anastasio, C.; Hudson, B. M.; Tantillo, D. J.

    2016-12-01

    Triplet excited states of dissolved organic matter react with several classes of aromatic organics such as phenols, anilines, sulfonamide antibiotics and phenylurea herbicides. Aqueous triplets appear to be among the most important oxidants for atmospheric phenols in regions with biomass burning, with phenol lifetimes on the order of a few hours to a day. However, little is known of the reactions of triplets with other classes of organic compounds. Recent work from our group shows that triplets react rapidly with several biogenic volatile organic compounds (BVOCs), such as methyl jasmonate, cis-3-hexenyl acetate, and cis-3-hexen-1-ol. However, there are only a few rate constants for aqueous reactions between alkenes such as these and triplet excited states. For our work, we refer to these and similar alkenes which have hydrogen(s) attached to a carbon adjacent to the double bond, as allylic compounds. To better assess the importance of triplets as aqueous oxidants, we measured second-order rate constants (kAC+3BP*) for a number of allylic compounds (ACs) with the triplet state of benzophenone; then established a quantitative structure-activity relationship (QSAR) between kAC+3BP* and computed oxidation potential of the ACs (R2 =0.65). Using the QSAR, we estimated the rate constants for triplets with some allylic isoprene and limonene oxidation products that have high Henry's law constants (KH>103 M atm-1). Hydroxylated limonene products and the delta-isomers of isoprene hydroxyhydroperoxides (δ4ISOPOOH) and hydroxynitrates (δ4ISONO2) were faster with predicted kAC+3BP* values ranging between (0.5-3.5) x 109 M-1-s-1 whereas the beta-isomers of ISOPOOH and ISONO2 were slower (kAC+3BP* < 0.5 x 109 M-1s-1). We scaled the predicted kAC+3BP* to represent less reactive atmospheric triplets that have been measured in fog drops, and compared to gas and aqueous hydroxyl radical and ozone, triplets in fog could account for up to 20 % of the measured loss of these compounds

  8. Excited state lifetime measurements of ytterbium in indium phosphide

    NASA Astrophysics Data System (ADS)

    Desrocher, David

    1989-12-01

    The AFIT Time Resolved Photoluminescence (TRPL) lab was disassembled, relocated and rebuilt with improvements to layout and performance. Excited state lifetime measurements of ytterbium implanted in indium phosphide were conducted using the new lab. Effects of sample temperature, rapid thermal annealing (RTA) time and RTA temperature on the lifetimes of the 1.002 microns Yb3+ line were examined. Lifetime measurements of Er, Pr and Tm in GaAs were also attempted. Ytterbium concentrations were 3 x 10(exp 13) ions/sq cm, implanted at an ion energy of 1 MeV in semi-insulating InP substrate. Sample temperatures ranged from 4.2 to 90K. Annealing times ranged from 1 to 25 seconds on samples annealed at 850 C. Annealing temperatures ranged from 400 to 850 C, with RTA times of 15 seconds. The excitation source was a nitrogen-pumped dye laser with primary wavelength at 580 nm. A germanium photodiode detector was selected to eliminate the long time constant associated with available S1 power supplies and to enable detection at the near infrared wavelengths of the other rare earths. Data acquisition was accomplished with a boxcar averager and a microcomputer equipped with acquisition hardware and software. Thermal quenching was clearly observed in lifetimes at increasing sample temperatures, most dramatically at above 50 C. The results would be very helpful in device fabrication/operation considerations, and some of the sample preparation parameters may be equally applicable for other RE doped III-V semiconductors.

  9. Lowest singlet excited state and spectroscopy of α-carotene

    NASA Astrophysics Data System (ADS)

    Itoh, Takao

    2011-03-01

    Emission, excitation and absorption spectra of α-carotene have been measured in solvents with different polarizabilities. It is shown that in highly-polarized solvents α-carotene emits weak fluorescence from the S 1( π, π∗) state with the fluorescence origin observed at 14 800 ± 200 cm -1. The relative S 1/S 2 fluorescence intensity ratio tends to increase with increasing solvent polarizability or decreasing the S 1-S 2 energy separation. The obtained spectroscopic data include the Raman spectrum of α-carotene along with the vibrational analyses of the Raman spectrum based on the DFT calculation at the B3LYP/6-31G(d,p) level.

  10. Excited states and reduced transition probabilities in 168Os

    NASA Astrophysics Data System (ADS)

    Grahn, T.; Stolze, S.; Joss, D. T.; Page, R. D.; Sayǧı, B.; O'Donnell, D.; Akmali, M.; Andgren, K.; Bianco, L.; Cullen, D. M.; Dewald, A.; Greenlees, P. T.; Heyde, K.; Iwasaki, H.; Jakobsson, U.; Jones, P.; Judson, D. S.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Lumley, N.; Mason, P. J. R.; Möller, O.; Nomura, K.; Nyman, M.; Petts, A.; Peura, P.; Pietralla, N.; Pissulla, Th.; Rahkila, P.; Sapple, P. J.; Sarén, J.; Scholey, C.; Simpson, J.; Sorri, J.; Stevenson, P. D.; Uusitalo, J.; Watkins, H. V.; Wood, J. L.

    2016-10-01

    The level scheme of the neutron-deficient nuclide 168Os has been extended and mean lifetimes of excited states have been measured by the recoil distance Doppler-shift method using the JUROGAM γ -ray spectrometer in conjunction with the IKP Köln plunger device. The 168Osγ rays were measured in delayed coincidence with recoiling fusion-evaporation residues detected at the focal plane of the RITU gas-filled separator. The ratio of reduced transition probabilities B (E 2 ;41+→21+) /B (E 2 ;21+→01+) is measured to be 0.34(18), which is very unusual for collective band structures and cannot be reproduced by interacting boson model (IBM-2) calculations based on the SkM* energy-density functional.

  11. Chimera states and excitation waves in networks with complex topologies

    NASA Astrophysics Data System (ADS)

    Schöll, Eckehard

    2016-06-01

    Chimera patterns, which consist of coexisting spatial domains of coherent (synchronized) and incoherent (desyn- chronized) dynamics are studied in networks of FitzHugh-Nagumo systems with complex topologies. To test the robustness of chimera patterns with respect to changes in the structure of the network, we study the following network topologies: Regular ring topology with R nearest neigbors coupled to each side, small-world topology with additional long-range random links, and a hierarchical geometry in the connectivity matrix. We find that chimera states are generally robust with respect to these perturbations, but qualitative changes of the chimera patterns in form of nested coherent and incoherent regions can be induced by a hierarchical topology. The suppression of propagating excitation waves by a small-world topology is also reviewed.

  12. Theoretical study on the excited states of HCN

    SciTech Connect

    Nayak, Malaya K.; Chaudhuri, Rajat K.; Krishnamachari, S.N.L.G.

    2005-05-08

    In the flash-photolysis of oxazole, iso-oxazole, and thiozole a transient band system was observed in the region 2500-3050 A. This band system was attributed to a meta-stable form of HCN, i.e., either HNC or triplet HCN. Theoretical investigations have been carried out on the ground and excited states of HCN to characterize this and other experimentally observed transitions. The predicted geometries are compared with the experiment and earlier theoretical calculations. The present calculations show that the band system in the region 2500-3050 A corresponds to the transition 4 {sup 3}-A{sup '}<{sup -}1 {sup 3}-A{sup '} of HCN.

  13. Measurement of Atomic Oscillator Strength Distribution from the Excited States

    SciTech Connect

    Hussain, Shahid; Saleem, M.; Baig, M. A.

    2008-10-22

    Saturation technique has been employed to measure the oscillator strength distribution in spectra of helium lithium using an electrical discharge cell a thermionic diode ion detector respectively. The photoabsorption cross sections in the discrete or bound region (commonly known as f-values) have been determined form the Rydberg series accessed from a particular excited state calibrating it with the absolute value of the photoionization cross section measured at the ionization threshold. The extracted discrete f-values merge into the oscillator strength densities, estimated from the measured photoionization cross sections at different photon energies above the first ionization threshold. The experimental data on helium and lithium show continuity between the discrete and the continuous oscillator strengths across the ionization threshold.

  14. Excited state mass spectra and Regge trajectories of bottom baryons

    NASA Astrophysics Data System (ADS)

    Thakkar, Kaushal; Shah, Zalak; Rai, Ajay Kumar; C. Vinodkumar, P.

    2017-09-01

    We present the mass spectra of radial and orbital excited states of singly heavy bottom baryons; Σb+, Σb-, Ξb-, Ξb0, Λb0 and Ωb-. The QCD motivated hypercentral quark model is employed for the three body description of baryons and the form of confinement potential is hyper Coulomb plus linear. The first order correction to the confinement potential is also incorporated in this work. The semi-electronic decay of Ωb and Ξb are calculated using the spectroscopic parameters of the baryons. The computed results are compared with other theoretical predictions as well as with the available experimental observations. The Regge trajectories are plotted in (n ,M2) plane.

  15. Theoretical description of excited state dynamics in nanostructures

    NASA Astrophysics Data System (ADS)

    Rubio, Angel

    2009-03-01

    There has been much progress in the synthesis and characterization of nanostructures however, there remain immense challenges in understanding their properties and interactions with external probes in order to realize their tremendous potential for applications (molecular electronics, nanoscale opto-electronic devices, light harvesting and emitting nanostructures). We will review the recent implementations of TDDFT to study the optical absorption of biological chromophores, one-dimensional polymers and layered materials. In particular we will show the effect of electron-hole attraction in those systems. Applications to the optical properties of solvated nanostructures as well as excited state dynamics in some organic molecules will be used as text cases to illustrate the performance of the approach. Work done in collaboration with A. Castro, M. Marques, X. Andrade, J.L Alonso, Pablo Echenique, L. Wirtz, A. Marini, M. Gruning, C. Rozzi, D. Varsano and E.K.U. Gross.

  16. Masses of Ground- and Excited-State Hadrons

    NASA Astrophysics Data System (ADS)

    Roberts, Hannes L. L.; Chang, Lei; Cloët, Ian C.; Roberts, Craig D.

    2011-07-01

    We present the first Dyson-Schwinger equation calculation of the light hadron spectrum that simultaneously correlates the masses of meson and baryon ground- and excited-states within a single framework. At the core of our analysis is a symmetry-preserving treatment of a vector-vector contact interaction. In comparison with relevant quantities the root-mean-square-relative-error/degree-of freedom is 13%. Notable amongst our results is agreement between the computed baryon masses and the bare masses employed in modern dynamical coupled-channels models of pion-nucleon reactions. Our analysis provides insight into numerous aspects of baryon structure; e.g., relationships between the nucleon and Δ masses and those of the dressed-quark and diquark correlations they contain.

  17. The Ground and First Excited Torsional States of Acetic Acid.

    PubMed

    Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F.; Podnos, S. V.; Kleiner, I.; Margulès, L.; Wlodarczak, G.; Demaison, J.; Cosléou, J.; Maté, B.; Karyakin, E. N.; Golubiatnikov, G. Yu.; Fraser, G. T.; Suenram, R. D.; Hougen, J. T.

    2001-02-01

    A global fit of microwave and millimeter-wave rotational transitions in the ground and first excited torsional states (v(t) = 0 and 1) of acetic acid (CH(3)COOH) is reported, which combines older measurements from the literature with new measurements from Kharkov, Lille, and NIST. The fit uses a model developed initially for acetaldehyde and methanol-type internal rotor molecules. It requires 34 parameters to achieve a unitless weighted standard deviation of 0.84 for a total of 2518 data and includes A- and E-species transitions with J

  18. Theoretical studies of excited state 1,3 dipolar cycloadditions

    NASA Astrophysics Data System (ADS)

    Belluccci, Michael A.

    The 1,3 dipolar photocycloaddition reaction between 3-hydroxy-4',5,7-trimethoxyflavone (3-HTMF) and methyl cinnamate is investigated in this work. Since its inception in 2004 [JACS, 124, 13260 (2004)], this reaction remains at the forefront in the synthetic design of the rocaglamide natural products. The reaction is multi-faceted in that it involves multiple excited states and is contingent upon excited state intramolecular proton transfer (ESIPT) in 3-HTMF. Given the complexity of the reaction, there remain many questions regarding the underlying mechanism. Consequently, throughout this work we investigate the mechanism of the reaction along with a number of other properties that directly influence it. To investigate the photocycloaddition reaction, we began by studying the effects of different solvent environments on the ESIPT reaction in 3-hydroxyflavone since this underlying reaction is sensitive to the solvent environment and directly influences the cycloaddition. To study the ESIPT reaction, we developed a parallel multi-level genetic program to fit accurate empirical valence bond (EVB) potentials to ab initio data. We found that simulations with our EVB potentials accurately reproduced experimentally determined reaction rates, fluorescence spectra, and vibrational frequency spectra in all solvents. Furthermore, we found that the ultrafast ESIPT process results from a combination of ballistic transfer and intramolecular vibrational redistribution. To investigate the cycloaddition reaction mechanism, we utilized the string method to obtain minimum energy paths on the ab initio potential. These calculations demonstrated that the reaction can proceed through formation of an exciplex in the S1 state, followed by a non-adiabatic transition to the ground state. In addition, we investigated the enantioselective catalysis of the reaction using alpha,alpha,alpha',alpha'-tetraaryl-1,3-dioxolan-4,5-dimethanol alcohol (TADDOL). We found that TADDOL lowered the energy

  19. Lasing due to the excited state in quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Abusaa, M.; Danckaert, J.; Viktorov, E. A.

    2017-07-01

    Quantum Dot Lasers (QDLs) are promising sources of light because of their favorable properties compared to other light sources. Emission in QDLs can access transitions in ground state (GS) and excited state (ES). Lasing due to the ES extends the spectral range and enables the laser to generate high output powers. Thus, lasing action due to the ES or to the dual lasing regime (GS and ES simultaneously) is expected to increase the applicability of QDLs in many future applications. We present a partially microscopic rate equation model that takes into account lasing action due to both the GS and the ES and distinguishes between both types of carriers (electrons and holes). Also, we present all possible steady-state solutions and we apply a stability analysis to the solutions to determine all stable lasing regimes (lasing due to the GS, lasing due to the ES and the dual lasing regime) to highlight the role of ES transitions. Specifically, we address the appearance of lasing due to the ES to the larger population of the ES and hence to the larger gain in higher injected current regimes.

  20. Ultrafast Spectroscopy of Delocalized Excited States of the Hydrated Electron

    SciTech Connect

    Paul F. Barbara

    2005-09-28

    Research under support of this grant has been focused on the understanding of highly delocalized ''conduction-band-like'' excited states of solvated electrons in bulk water, in water trapped in the core of reverse micelles, and in alkane solvents. We have strived in this work to probe conduction-band-like states by a variety of ultrafast spectroscopy techniques. (Most of which were developed under DOE support in a previous funding cycle.) We have recorded the optical spectrum of the hydrated electron for the first time. This was accomplished by applying a photo-detrapping technique that we had developed in a previous funding cycle, but had not yet been applied to characterize the actual spectrum. In the cases of reverse micelles, we have been investigating the potential role of conduction bands in the electron attachment process and the photoinduced detrapping, and have published two papers on this topic. Finally, we have been exploring solvated electrons in isooctane from various perspectives. All of these results strongly support the conclusion that optically accessible, highly delocalized electronic states exist in these various media.

  1. Watching ultrafast barrierless excited-state isomerization of pseudocyanine in real time.

    PubMed

    Dietzek, Benjamin; Yartsev, Arkady; Tarnovsky, Alexander N

    2007-05-03

    The photoinduced excited-state processes in 1,1'-diethyl-2,2'-cyanine iodine are investigated using femtosecond time-resolved pump-probe spectroscopy. Using a broad range of probe wavelengths, the relaxation of the initially prepared excited-state wavepacket can be followed down to the sink region. The data directly visualize the directed downhill motion along the torsional reaction coordinate and suggest a barrierless excited-state isomerization in the short chain cyanine dye. Additionally, ultrafast ground-state hole and excited-state hole replica broadening is observed. While the narrow excited-state wavepacket broadens during pump-probe overlap, the ground-state hole burning dynamics takes place on a significantly longer time-scale. The experiment reported can be considered as a direct monitoring of the shape and the position of the photoprepared wavepacket on the excited-state potential energy surface.

  2. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    SciTech Connect

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A.

    2014-05-14

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  3. Stability of quantum-dot excited-state laser emission under simultaneous ground-state perturbation

    SciTech Connect

    Kaptan, Y. Herzog, B.; Schöps, O.; Kolarczik, M.; Woggon, U.; Owschimikow, N.; Röhm, A.; Lingnau, B.; Lüdge, K.; Schmeckebier, H.; Arsenijević, D.; Bimberg, D.; Mikhelashvili, V.; Eisenstein, G.

    2014-11-10

    The impact of ground state amplification on the laser emission of In(Ga)As quantum dot excited state lasers is studied in time-resolved experiments. We find that a depopulation of the quantum dot ground state is followed by a drop in excited state lasing intensity. The magnitude of the drop is strongly dependent on the wavelength of the depletion pulse and the applied injection current. Numerical simulations based on laser rate equations reproduce the experimental results and explain the wavelength dependence by the different dynamics in lasing and non-lasing sub-ensembles within the inhomogeneously broadened quantum dots. At high injection levels, the observed response even upon perturbation of the lasing sub-ensemble is small and followed by a fast recovery, thus supporting the capacity of fast modulation in dual-state devices.

  4. Microwave Spectroscopy of the Excited Vibrational States of Methanol

    NASA Astrophysics Data System (ADS)

    Pearson, John; Daly, Adam M.; Bermúdez, Celina

    2015-06-01

    Methanol is the simplest molecule with a three-fold internal rotation and the observation of its νb{8} band served the primary catalyst for the development of internal rotation theory(a,b). The 75 subsequent years of investigation into the νb{8} band region have yielded a large number assignments, numerous high precision energy levels and a great deal of insight into the coupling of νb{t}=3 & 4 with νb{8}, νb{7}, νb{11} and other nearby states(c). In spite of this progress numerous assignment mysteries persist, the origin of almost half the far infrared laser lines remain unknown and all attempts to model the region quantum mechanically have had very limited success. The C3V internal rotation Hamiltonian has successfully modeled the νb{t}=0,1 & 2 states of methanol and other internal rotors(d). However, successful modeling of the coupling between torsional bath states and excited small amplitude motion remains problematic and coupling of multiple interacting excited small amplitude vibrations featuring large amplitude motions remains almost completely unexplored. Before such modeling can be attempted, identifying the remaining low lying levels of νb{7} and νb{11} is necessary. We present an investigation into the microwave spectrum of νb{7}, νb{8} and νb{11} along with the underlying torsional bath states in νb{t}=3 and νb{t}= 4. (a) A. Borden, E.F. Barker J. Chem. Phys., 6, 553 (1938). (b) J. S. Koehler and D. M. Dennison, Phys. Rev. 57, 1006 (1940). (c) R. M. Lees, Li-Hong Xu, J. W. C. Johns, B. P. Winnewisser, and M. Lock, J. Mol. Spectrosc. 243, 168 (2007). (d) L.-H. Xu, J. Fisher, R.M. Lees, H.Y. Shi, J.T. Hougen, J.C. Pearson, B.J. Drouin, G.A. Blake, R. Braakman J. Mol. Spectrosc., 251, 305 (2008).

  5. Coherence, Energy and Charge Transfers in De-Excitation Pathways of Electronic Excited State of Biomolecules in Photosynthesis

    NASA Astrophysics Data System (ADS)

    Bohr, Henrik G.; Malik, F. Bary

    2013-11-01

    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin-chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used Förster-Dexter theory, which does not allow for charge transfer, is a special case of B-A theory. The latter could, under appropriate circumstances, lead to excimers.

  6. Excitation energy dependence of excited states dynamics in all- trans-carotenes determined by femtosecond absorption and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Kosumi, Daisuke; Yanagi, Kazuhiro; Nishio, Tomohiro; Hashimoto, Hideki; Yoshizawa, Masayuki

    2005-06-01

    Ultrafast relaxation kinetics in β-carotene and lycopene has been investigated by femtosecond absorption and fluorescence spectroscopies using tunable excitation pulses. The transient signals induced by the photoexcitation with larger excess energy have broader bands and longer lifetimes both in the 11Bu+and21Ag- excited states. The excess vibrational energy remains longer than several picoseconds and slows the relaxation kinetics in carotenoids.

  7. Ground-state and excited-state structures of tungsten-benzylidyne complexes.

    PubMed

    Lovaasen, Benjamin M; Lockard, Jenny V; Cohen, Brian W; Yang, Shujiang; Zhang, Xiaoyi; Simpson, Cheslan K; Chen, Lin X; Hopkins, Michael D

    2012-05-21

    The molecular structure of the tungsten-benzylidyne complex trans-W(≡CPh)(dppe)(2)Cl (1; dppe = 1,2-bis(diphenylphosphino)ethane) in the singlet (d(xy))(2) ground state and luminescent triplet (d(xy))(1)(π*(WCPh))(1) excited state (1*) has been studied using X-ray transient absorption spectroscopy, X-ray crystallography, and density functional theory (DFT) calculations. Molecular-orbital considerations suggest that the W-C and W-P bond lengths should increase in the excited state because of the reduction of the formal W-C bond order and decrease in W→P π-backbonding, respectively, between 1 and 1*. This latter conclusion is supported by comparisons among the W-P bond lengths obtained from the X-ray crystal structures of 1, (d(xy))(1)-configured 1(+), and (d(xy))(2) [W(CPh)(dppe)(2)(NCMe)](+) (2(+)). X-ray transient absorption spectroscopic measurements of the excited-state structure of 1* reveal that the W-C bond length is the same (within experimental error) as that determined by X-ray crystallography for the ground state 1, while the average W-P/W-Cl distance increases by 0.04 Å in the excited state. The small excited-state elongation of the W-C bond relative to the M-E distortions found for M(≡E)L(n) (E = O, N) compounds with analogous (d(xy))(1)(π*(ME))(1) excited states is due to the π conjugation within the WCPh unit, which lessens the local W-C π-antibonding character of the π*(WCPh) lowest unoccupied molecular orbital (LUMO). These conclusions are supported by DFT calculations on 1 and 1*. The similar core bond distances of 1, 1(+), and 1* indicates that the inner-sphere reorganization energy associated with ground- and excited-state electron-transfer reactions is small.

  8. Ground-state and excited-state structures of tungsten-benzylidyne complexes

    SciTech Connect

    Lovaasen, B. M.; Lockard, J. V.; Cohen, B. W.; Yang, S.; Zhang, X.; Simpson, C. K.; Chen, L. X.; Hopkins, M. D.

    2012-01-01

    The molecular structure of the tungsten-benzylidyne complex trans-W({triple_bond}CPh)(dppe){sub 2}Cl (1; dppe = 1,2-bis(diphenylphosphino)ethane) in the singlet (d{sub xy}){sup 2} ground state and luminescent triplet (d{sub xy}){sup 1}({pi}*(WCPh)){sup 1} excited state (1*) has been studied using X-ray transient absorption spectroscopy, X-ray crystallography, and density functional theory (DFT) calculations. Molecular-orbital considerations suggest that the W-C and W-P bond lengths should increase in the excited state because of the reduction of the formal W-C bond order and decrease in W {yields} P {pi}-backbonding, respectively, between 1 and 1*. This latter conclusion is supported by comparisons among the W-P bond lengths obtained from the X-ray crystal structures of 1, (d{sub xy}){sup 1}-configured 1{sup +}, and (d{sub xy}){sup 2} [W(CPh)(dppe){sub 2}(NCMe)]{sup +} (2{sup +}). X-ray transient absorption spectroscopic measurements of the excited-state structure of 1* reveal that the W-C bond length is the same (within experimental error) as that determined by X-ray crystallography for the ground state 1, while the average W-P/W-Cl distance increases by 0.04 {angstrom} in the excited state. The small excited-state elongation of the W-C bond relative to the M-E distortions found for M({triple_bond}E)L{sub n} (E = O, N) compounds with analogous (d{sub xy}){sup 1}({pi}*(ME)){sup 1} excited states is due to the {pi} conjugation within the WCPh unit, which lessens the local W-C {pi}-antibonding character of the {pi}*(WCPh) lowest unoccupied molecular orbital (LUMO). These conclusions are supported by DFT calculations on 1 and 1*. The similar core bond distances of 1, 1{sup +}, and 1* indicates that the inner-sphere reorganization energy associated with ground- and excited-state electron-transfer reactions is small.

  9. Graphene as a Reversible and Spectrally Selective Fluorescence Quencher

    NASA Astrophysics Data System (ADS)

    Salihoglu, Omer; Kakenov, Nurbek; Balci, Osman; Balci, Sinan; Kocabas, Coskun

    2016-09-01

    We report reversible and spectrally selective fluorescence quenching of quantum dots (QDs) placed in close proximity to graphene. Controlling interband electronic transitions of graphene via electrostatic gating greatly modifies the fluorescence lifetime and intensity of nearby QDs via blocking of the nonradiative energy transfer between QDs and graphene. Using ionic liquid (IL) based electrolyte gating, we are able to control Fermi energy of graphene in the order of 1 eV, which yields electrically controllable fluorescence quenching of QDs in the visible spectrum. Indeed, our technique enables us to perform voltage controllable spectral selectivity among quantum dots at different emission wavelengths. We anticipate that our technique will provide tunable light-matter interaction and energy transfer that could yield hybrid QDs-graphene based optoelectronic devices with novel functionalities, and additionally, may be useful as a spectroscopic ruler, for example, in bioimaging and biomolecular sensing. We propose that graphene can be used as an electrically tunable and wavelength selective fluorescence quencher.

  10. Excited state electron transfer after visible light absorption by the Co(I) state of vitamin B12.

    PubMed

    Achey, Darren; Brigham, Erinn C; DiMarco, Brian N; Meyer, Gerald J

    2014-11-11

    The first example of excited state electron transfer from cob(I)alamin is reported herein. Vitamin B12 was anchored to a mesoporous TiO2 thin film and electrochemically reduced to the cob(I)alamin form. Pulsed laser excitation resulted in rapid excited state electron transfer, ket > 10(8) s(-1), followed by microsecond interfacial charge recombination to re-form cob(I)alamin. The supernucleophilic cob(I)alamin was found to be a potent photoreductant. The yield of excited state electron transfer was found to be excitation wavelength dependent. The implications of this dependence are discussed.

  11. Ultrafast branching in the excited state of coumarin and umbelliferone.

    PubMed

    Krauter, Caroline M; Möhring, Jens; Buckup, Tiago; Pernpointner, Markus; Motzkus, Marcus

    2013-11-07

    In the present work we have explored the ultrafast relaxation network of coumarin and umbelliferone (7-hydroxy-coumarin) using time-resolved femtosecond spectroscopy and quantum chemical calculations. Despite the importance of the photophysical properties of coumarin derivatives for applications in biomedicine, the low fluorescence quantum yield of coumarin itself has not been fully understood so far. On the basis of our combined experimental and theoretical results we suggest a model for the ultrafast decay after photoexcitation incorporating two parallel radiationless relaxation pathways: one within the initially excited state via ring opening and the other one by transition into a dark state along the carbonyl stretching mode. The fluorescence quantum yield is determined by the position of the branching point relative to the Franck-Condon region which is strongly influenced by interactions with the environment and the substitution pattern. This model is finally capable of giving a comprehensive account of the striking differences observed in the photophysical behavior of coumarin as opposed to umbelliferone.

  12. Orbitally Excited States of Quarkonia in a Nonrelativistic Model

    NASA Astrophysics Data System (ADS)

    Bhaghyesh; Vijaya Kumar, K. B.; Ma, Yong-Liang

    Having succeeded in predicting the S wave spectra and decays of cbar {c} and bbar {b} mesons, Bhaghyesh, K. B. Vijaya Kumar and A. P. Monteiro, J. Phys. G: Nucl. Part. Phys. 38, 085001 (2011), in this article, we apply our nonrelativistic quark model to calculate the spectra and decays of the orbitally excited states (P- and D-waves) of heavy quarkonia. The full Qbar {Q} potential used in our model consists of a Hulthen potential and a confining linear potential. The spin hyperfine, spin-orbit and tensor interactions are introduced to obtain the masses of the P- and D-wave states. The three-dimensional harmonic oscillator wave function is employed as a trial wave function to obtain the mass spectra. The model parameters and the wave function that reproduce the mass spectra of cbar {c} and bbar {b} mesons are used to investigate their decay properties. The two-photon decay widths, two-gluon decay widths and E1 radiative decay widths are calculated. The obtained values are compared with the experimental results and those obtained from other theoretical models.

  13. Excited-state symmetry breaking of linear quadrupolar chromophores: A transient absorption study

    NASA Astrophysics Data System (ADS)

    Dozova, Nadia; Ventelon, Lionel; Clermont, Guillaume; Blanchard-Desce, Mireille; Plaza, Pascal

    2016-11-01

    The photophysical properties of two highly symmetrical quadrupolar chromophores were studied by both steady-state and transient absorption spectroscopy. Their excited-state behavior is dominated by the solvent-induced Stokes shift of the stimulated-emission band. The origin of this shift is attributed to symmetry breaking that confers a non-vanishing dipole moment to the excited state of both compounds. This dipole moment is large and constant in DMSO, whereas symmetry breaking appears significantly slower and leading to smaller excited-state dipole in toluene. Time-dependant increase of the excited-state dipole moment induced by weak solvation is proposed to explain the results in toluene.

  14. Calculation of excited-state properties using general coupled-cluster and configuration-interaction models.

    PubMed

    Kállay, Mihály; Gauss, Jürgen

    2004-11-15

    Using string-based algorithms excitation energies and analytic first derivatives for excited states have been implemented for general coupled-cluster (CC) models within CC linear-response (LR) theory which is equivalent to the equation-of-motion (EOM) CC approach for these quantities. Transition moments between the ground and excited states are also considered in the framework of linear-response theory. The presented procedures are applicable to both single-reference-type and multireference-type CC wave functions independently of the excitation manifold constituting the cluster operator and the space in which the effective Hamiltonian is diagonalized. The performance of different LR-CC/EOM-CC and configuration-interaction approaches for excited states is compared. The effect of higher excitations on excited-state properties is demonstrated in benchmark calculations for NH(2) and NH(3). As a first application, the stationary points of the S(1) surface of acetylene are characterized by high-accuracy calculations.

  15. Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants.

    PubMed

    Bilski, P; Li, M Y; Ehrenshaft, M; Daub, M E; Chignell, C F

    2000-02-01

    Vitamin B6 (pyridoxine, 1) and its derivatives: pyridoxal (2), pyridoxal 5-phosphate (3) and pyridoxamine (4) are important natural compounds involved in numerous biological functions. Pyridoxine appears to play a role in the resistance of the filamentous fungus Cercospora nicotianae to its own abundantly produced strong photosensitizer of singlet molecular oxygen (1O2), cercosporin. We measured the rate constants (kq) for the quenching of 1O2 phosphorescence by 1-4 in D2O. The respective total (physical and chemical quenching) kq values are: 5.5 x 10(7) M-1 s-1 for 1; 7.5 x 10(7) M-1 s-1 for 2, 6.2 x 10(7) M-1 s-1 for 3 and 7.5 x 10(7) M-1 s-1 for 4, all measured at pD 6.2. The quenching efficacy increased up to five times in alkaline solutions and decreased approximately 10 times in ethanol. Significant contribution to total quenching by chemical reaction(s) is suggested by the degradation of all the vitamin derivatives by 1O2, which was observed as declining absorption of the pyridoxine moiety upon aerobic irradiation of RB used to photosensitize 1O2. This photodegradation was completely stopped by azide, a known physical quencher of 1O2. The pyridoxine moiety can also function as a redox quencher for excited cercosporin by forming the cercosporin radical anion, as observed by electron paramagnetic resonance. All B6 vitamers fluoresce upon UV excitation. Compounds 1 and 4 emit fluorescence at 400 nm, compound 2 at 450 nm and compound 3 at 550 nm. The fluorescence intensity of 3 increased approximately 10 times in organic solvents such as ethanol and 1,2-propanediol compared to aqueous solutions, suggesting that fluorescence may be used to image the distribution of 1-4 in Cercospora to understand better the interactions of pyridoxine and 1O2 in the living fungus.

  16. Exploring ground states and excited states of spin-1 Bose-Einstein condensates by continuation methods

    SciTech Connect

    Chen, Jen-Hao; Chern, I-Liang; Wang Weichung

    2011-03-20

    A pseudo-arclength continuation method (PACM) is employed to compute the ground state and excited state solutions of spin-1 Bose-Einstein condensates (BEC). The BEC is governed by the time-independent coupled Gross-Pitaevskii equations (GPE) under the conservations of the mass and magnetization. The coupling constants that characterize the spin-independent and spin-exchange interactions are chosen as the continuation parameters. The continuation curve starts from a ground state or an excited state with very small coupling parameters. The proposed numerical schemes allow us to investigate the effect of the coupling constants and study the bifurcation diagrams of the time-independent coupled GPE. Numerical results on the wave functions and their corresponding energies of spin-1 BEC with repulsive/attractive and ferromagnetic/antiferromagnetic interactions are presented. Furthermore, we reveal that the component separation and population transfer between the different hyperfine states can only occur in excited states due to the spin-exchange interactions.

  17. Resonance Raman and photoluminescence excitation profiles and excited-state dynamics in CdSe nanocrystals

    NASA Astrophysics Data System (ADS)

    Baker, Joshua A.; Kelley, David F.; Kelley, Anne Myers

    2013-07-01

    Resonance Raman excitation profiles for the longitudinal optical (LO) phonon fundamental and its first overtone have been measured for organic ligand capped, wurtzite form CdSe nanocrystals of ˜3.2 nm diameter dissolved in chloroform. The absolute differential Raman cross-section for the fundamental is much larger when excited at 532 or 543 nm, on the high-frequency side of the lowest-wavelength absorption maximum, than for excitation in the 458-476 nm range although the absorbance is higher at the shorter wavelengths. That is, the quantum yield for resonance Raman scattering is reduced for higher-energy excitation. In contrast, the photoluminescence quantum yield is relatively constant with wavelength. The optical absorption spectrum and the resonance Raman excitation profiles and depolarization dispersion curves are reproduced with a model for the energies, oscillator strengths, electron-phonon couplings, and dephasing rates of the multiple low-lying electronic excitations. The Huang-Rhys factor for LO phonon in the lowest excitonic transition is found to lie in the range S = 0.04-0.14. The strong, broad absorption feature about 0.5 eV above the lowest excitonic peak, typically labeled as the 1P3/21Pe transition, is shown to consist of at least two significant components that vary greatly in the magnitude of their electron-phonon coupling.

  18. Nature of the lowest excited states of neutral polyenyl radicals and polyene radical cations

    NASA Astrophysics Data System (ADS)

    Starcke, Jan Hendrik; Wormit, Michael; Dreuw, Andreas

    2009-10-01

    Due to the close relation of the polyenyl radicals C2n+1H2n+3• and polyene radical cations C2nH2n+2•+ to the neutral linear polyenes, one may suspect their excited states to possess substantial double excitation character, similar to the famous S1 state of neutral polyenes and thus to be equally problematic for simple excited state theories. Using the recently developed unrestricted algebraic-diagrammatic construction scheme of second order perturbation theory and the equation-of-motion coupled-cluster method, the vertical excitation energies, their corresponding oscillator strengths, and the nature of the wave functions of the lowest excited electronic states of the radicals are calculated and analyzed in detail. For the polyenyl radicals two one-photon allowed states are found as D1 and D4 states, with two symmetry-forbidden D2 and D3 states in between, while in the polyene radical cations D1 and D2 are allowed and D3 is forbidden. The order of the states is conserved with increasing chain length. It is found that all low-lying excited states exhibit a significant but similar amount of doubly excited configuration in their wave functions of 15%-20%. Using extrapolation, predictions for the excitation energies of the five lowest excited states of the polyene radical cations are made for longer chain lengths.

  19. TDDFT study on the excited-state proton transfer of 8-hydroxyquinoline: key role of the excited-state hydrogen-bond strengthening.

    PubMed

    Lan, Sheng-Cheng; Liu, Yu-Hui

    2015-03-15

    Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations have been employed to study the excited-state intramolecular proton transfer (ESIPT) reaction of 8-hydroxyquinoline (8HQ). Infrared spectra of 8HQ in both the ground and the lowest singlet excited states have been calculated, revealing a red-shift of the hydroxyl group (-OH) stretching band in the excited state. Hence, the intramolecular hydrogen bond (O-H···N) in 8HQ would be significantly strengthened upon photo-excitation to the S1 state. As the intramolecular proton-transfer reaction occurs through hydrogen bonding, the ESIPT reaction of 8HQ is effectively facilitated by strengthening of the electronic excited-state hydrogen bond (O-H···N). As a result, the intramolecular proton-transfer reaction would occur on an ultrafast timescale with a negligible barrier in the calculated potential energy curve for the ESIPT reaction. Therefore, although the intramolecular proton-transfer reaction is not favorable in the ground state, the ESIPT process is feasible in the excited state. Finally, we have identified that radiationless deactivation via internal conversion (IC) becomes the main dissipative channel for 8HQ by analyzing the energy gaps between the S1 and S0 states for the enol and keto forms.

  20. State-to-state chemistry and rotational excitation of CH+ in photon-dominated regions

    NASA Astrophysics Data System (ADS)

    Faure, A.; Halvick, P.; Stoecklin, T.; Honvault, P.; Epée Epée, M. D.; Mezei, J. Zs.; Motapon, O.; Schneider, I. F.; Tennyson, J.; Roncero, O.; Bulut, N.; Zanchet, A.

    2017-07-01

    We present a detailed theoretical study of the rotational excitation of CH+ due to reactive and non-reactive collisions involving C+(2P), H2, CH+, H and free electrons. Specifically, the formation of CH+ proceeds through the reaction between C+(2P) and H_2(ν _H_2 = 1, 2), while the collisional (de)excitation and destruction of CH+ is due to collisions with hydrogen atoms and free electrons. State-to-state and initial-state-specific rate coefficients are computed in the kinetic temperature range 10-3000 K for the inelastic, exchange, abstraction and dissociative recombination processes using accurate potential energy surfaces and the best scattering methods. Good agreement, within a factor of 2, is found between the experimental and theoretical thermal rate coefficients, except for the reaction of CH+ with H atoms at kinetic temperatures below 50 K. The full set of collisional and chemical data are then implemented in a radiative transfer model. Our non-LTE calculations confirm that the formation pumping due to vibrationally excited H2 has a substantial effect on the excitation of CH+ in photon-dominated regions. In addition, we are able to reproduce, within error bars, the far-infrared observations of CH+ towards the Orion Bar and the planetary nebula NGC 7027. Our results further suggest that the population of ν _H_2 = 2 might be significant in the photon-dominated region of NGC 7027.

  1. Excited-state one-neutron halo nuclei within a parallel momentum distribution analysis

    NASA Astrophysics Data System (ADS)

    Shubhchintak

    2017-08-01

    Using a fully quantum mechanical post-form finite-range distorted-wave Born approximation theory of Coulomb breakup, I study the parallel momentum distribution of the core in the Coulomb breakup of suggested excited-state one-neutron halo nuclei considered in their different bound excited states. Narrow momentum distributions obtained in the present calculations for some cases indicate the possibilities of the excited-state halo structure in the nuclei under consideration and therefore favor the previous predictions.

  2. Two-photon excitation into low-energy singlet states of anthracene in mixed crystals

    NASA Astrophysics Data System (ADS)

    Bree, A.; Leyderman, A.; Taliani, C.

    1985-08-01

    The two-photon excitation spectrum of the first excited state of anthracene in fluorene and biphenyl at 4.2 K has been measured. Intensity is induced into the origin by the static dipole moment of fluorene, and into b 1u vibrons through coupling to an A g state near 29400 cm -1; the nature of this A g state is discussed.

  3. Electron delocalization and aromaticity in low-lying excited states of archetypal organic compounds.

    PubMed

    Feixas, Ferran; Vandenbussche, Jelle; Bultinck, Patrick; Matito, Eduard; Solà, Miquel

    2011-12-14

    Aromaticity is a property usually linked to the ground state of stable molecules. Although it is well-known that certain excited states are unquestionably aromatic, the aromaticity of excited states remains rather unexplored. To move one step forward in the comprehension of aromaticity in excited states, in this work we analyze the electron delocalization and aromaticity of a series of low-lying excited states of cyclobutadiene, benzene, and cyclooctatetraene with different multiplicities at the CASSCF level by means of electron delocalization measures. While our results are in agreement with Baird's rule for the aromaticity of the lowest-lying triplet excited state in annulenes having 4nπ-electrons, they do not support Soncini and Fowler's generalization of Baird's rule pointing out that the lowest-lying quintet state of benzene and septet state of cyclooctatetraene are not aromatic.

  4. Study of the12C excited states above the Hoyle State.

    NASA Astrophysics Data System (ADS)

    López-Saavedra, E.; Acosta, L.; Araujo, V.; Favela, F.; Huerta, A.; Aspiazu, J.; Murillo, G.; Policroniades, R.; Santa Rita, P.; Varela, A.; Chávez, E.

    2017-07-01

    In this work we study the low-lying excited states of12C, especially above the Hoyle state (0+, 7,654 MeV) through the use of the14N(d,α)12C reaction. The EN-Tandem at ININ delivered deuteron beams between 2.5 and 7.5 MeV. Typical beam intensities were 20-50 nA. Two different compounds were used to produce thin films: Si3N4 (150 nm) and of C5H5N5 (10 μm). Angular distributions of emitted α-particles were measured at each energy. The first results of the analysis are presented including quantum number assignments (energy, spin and parity) of the excited states populated.

  5. Lifetimes and branching ratios of excited anion states

    NASA Astrophysics Data System (ADS)

    O'Malley, Steven M.; Beck, Donald R.

    2010-03-01

    Relativistic configuration-interaction transition probability calculations have been performed for several anion cases of our recent lanthanideootnotetextS. M. O'Malley and D. R. Beck, Phys. Rev. A 79, 012511 (2009). and actinideootnotetextS. M. O'Malley and D. R. Beck, Phys. Rev. A 80, 032514 (2009). studies. In particular, we identified an E1 transition (˜3680 nm) in La^- that may prove more useful in laser-cooling applications than the previously proposed Os^- candidateootnotetextA. Kellerbauer and J. Walz, New J. Phys. 8, 45 (2006).. We also explored long-lived states in Lu^- and Lr^- which are restricted to M2 decay by selection rules. Finally, we found sufficient mixing between a weakly-bound alternate-configuration Pr^- level and a nearby resonance to result in a lifetime (M1/E2) similar to other excited levels despite a two-electron difference between the dominant configurations. The details of the Pr^- calculations serve as further confirmation of the utility of our universal jls restrictions on 4f^n and 5f^n portions of lanthanide and actinide wave functions, but we find that a similar application to d^k electron subgroups in transition metals (Os^-) has a much smaller impact on the complexity of our calculations.

  6. Theory of electronic states and excitations in PPV

    NASA Astrophysics Data System (ADS)

    Brazovskii, S.; Kirova, N.; Bishop, A. R.

    1998-01-01

    We present a consistent theoretical picture for optical properties of phenyl based polymers, especially for the PPV family. The model is based upon an analytical solution for the band structure of PPV oligomers, while invoking the dominant Coulomb corrections for electron-hole interactions. The adjustable parameters are only the common shift for the bands centers of gravity and a dielectric susceptibility at small distances. Our picture gives a clear understanding for the origin of all possible transitions in linear and nonlinear optics. We describe both tightly bound localized excitons and excitons of intermediate range (i.e. of both the Frenkel and Wannier-Mott types). The quantitative description of excitons is obtained from the long range Coulomb interactions, We emphasize where the ring torsion plays a role in the overall energy minimization of the excited state. This article provides theory details for the joint article [S. Brazovskii, N. Kirova, A.R. Bishop, V. Klimov, D. McBranch, N.N. Barashkov, J.P. Ferraris, Opt. Mater. 9 (1998) 472], where a complete picture was outlined.

  7. Role of excited-state hydrogen detachment and hydrogen-transfer processes for the excited-state deactivation of an aromatic dipeptide: N-acetyl tryptophan methyl amide.

    PubMed

    Shemesh, Dorit; Sobolewski, Andrzej L; Domcke, Wolfgang

    2010-05-21

    The excited-state electronic potential-energy surfaces of the three conformers of the capped dipeptide N-acetyl tryptophan methyl amide (NATMA), for which UV and IR spectra have been reported by Dian et al. [J. Chem. Phys., 2003, 118, 2696], have been explored with ab initio electronic-structure methods. The results provide insight into the nonadiabatic electronic coupling mechanisms which are responsible for the pronounced and conformer-specific perturbations of the spectra, such as broad and congested UV spectra as well as the deletion of certain fundamentals in the IR spectrum of the S(1) state. It is shown that the photophysical dynamics of NATMA is governed by at least five excited singlet electronic states: the two spectroscopic (1)L(b) and (1)L(a) states and the dissociative (1)pisigma* state of the indole chromophore, as well as a locally-excited state and a charge-transfer state of the peptide backbone. For the conformer NATMA C, which exhibits a gamma-turn of the backbone, a potentially very efficient excited-state deactivation mechanism to the electronic ground state via three conical intersections has been revealed. The results confirm the important role of hydrogen bonds for rapid excited-state deactivation of peptides, which enhances their photostability.

  8. The Structure of the Nucleon and it's Excited States

    SciTech Connect

    1995-02-20

    The past year has been an exciting and productive one for particle physics research at Abilene Christian University. The thrust of our experimental investigations is the study of the nucleon and its excited states. Laboratories where these investigations are presently being conducted are the AGS at Brookhaven, Fermilab and LAMPF. Some analysis of the data for experiments at the Petersburg Nuclear Physics Institute (Gatchina, Russia) is still in progress. Scheduling of activities at different laboratories inevitably leads to occasional conflicts. This likelihood is increased by the present budget uncertainties at the laboratories that make long-term scheduling difficult. For the most part, the investigators have been able to avoid such conflicts. Only one experiment received beam time in 1994 (E890 at the AGS). The situation for 1995-1996 also appears manageable at this point. E890 and another AGS experiment (E909) will run through May, 1995. El 178 at LAMPF is presently scheduled for August/September 1995. E866 at Fermilab is scheduled to start in Spring/Summer 1996. Undergraduate student involvement has been a key element in this research contract since its inception. Summer students participated at all of the above laboratories in 1994 and the same is planned in 1995. A transition to greater involvement by graduate students will provide cohesiveness to ACU involvement at a given laboratory and full-time on-site involvement in the longer running experiments at FNAL and BNL. Funds to support a full-time graduate student are requested this year. Finally, collaboration by Russian, Croatian and Bosnian scientists has proven to be mutually beneficial to these experimental programs and to the overall programs at the institutions involved. Past support has been augmented by other grants from government agencies and from the Research Council at Abilene Christian University. Additional funds are requested in this renewal to enable more programmatic support for these

  9. Excited state absorption spectrum of chlorophyll a obtained with white-light continuum.

    PubMed

    De Boni, L; Correa, D S; Pavinatto, F J; dos Santos, D S; Mendonça, C R

    2007-04-28

    The study of excited state properties of chlorophyll a is a subject of foremost interest, given that it plays important roles in biological process and has also been proposed for applications in photonics. This work reports on the excited state absorption spectrum of chlorophyll a solution from 460 to 700 nm, obtained through the white-light continuum Z-scan technique. Saturation of absorption was observed due to the ground state depletion, induced by the white-light continuum region that is resonant with the Q band of chlorophyll a. The authors also observed reverse saturation of absorption related to the excitation from the first excited state to a higher energy level for wavelengths below 640 nm. An energy-level diagram, based on the electronic states of chlorophyll a, was employed to interpret their results, revealing that more states than the ones related to the Q and B bands participate in the excited state absorption of this molecule.

  10. Activity of upper electron-excited states in bioluminescence of coelenterates

    NASA Astrophysics Data System (ADS)

    Belogurova, N. V.; Alieva, R. R.; Kudryasheva, N. S.

    2009-04-01

    The involvement of upper electron-excited states as the primary excited states into bioluminescence of coelenterates was experimentally verified. A series of fluorescent molecules was used as foreign energy acceptors in this bioluminescent reaction. The fluorescent aromatic compounds - pyrene, 2-methoxy-naphtalene, naphthalene, and 1,4-diphenylbutadiene - were selected, with fluorescent state energies ranging from 26,700 to 32,500 cm -1. Excitation of these molecules by Forster singlet-singlet energy transfer from S of bioluminescence emitter and by light absorption were excluded. The weak sensitized fluorescence of three compounds was found in the course of bioluminescent reaction. Energy of the upper electron-excited states of the bioluminescent emitter was located around 31,000 cm -1. Localization of the primary excitation on a carbonyl group of coelenteramide molecule is discussed. Comparison of the primary excitation in bioluminescent processes of coelenterates and bacteria is provided.

  11. Ab Initio Calculations of Singlet and Triplet Excited States of Chlorine Nitrate and Nitric Acid

    NASA Technical Reports Server (NTRS)

    Grana, Ana M.; Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    Ab initio calculations of vertical excitations to singlet and triplet excited states of chlorine nitrate and nitric acid are reported. The nature of the electronic transitions are examined by decomposing the difference density into the sum of detachment and attachment densities. Counterparts for the three lowest singlet excited states of nitric acid survive relatively unperturbed in chlorine nitrate, while other low-lying singlet states of chlorine nitrate appear to be directly dissociative in the ClO chromophore. These results suggest an assignment of the two main peaks in the experimental chlorine nitrate absorption spectrum. In addition, triplet vertical excitations and the lowest optimized triplet geometries of both molecules are studied.

  12. Ab Initio Calculations of Singlet and Triplet Excited States of Chlorine Nitrate and Nitric Acid

    NASA Technical Reports Server (NTRS)

    Grana, Ana M.; Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    Ab initio calculations of vertical excitations to singlet and triplet excited states of chlorine nitrate and nitric acid are reported. The nature of the electronic transitions are examined by decomposing the difference density into the sum of detachment and attachment densities. Counterparts for the three lowest singlet excited states of nitric acid survive relatively unperturbed in chlorine nitrate, while other low-lying singlet states of chlorine nitrate appear to be directly dissociative in the ClO chromophore. These results suggest an assignment of the two main peaks in the experimental chlorine nitrate absorption spectrum. In addition, triplet vertical excitations and the lowest optimized triplet geometries of both molecules are studied.

  13. Nontrivial excited-state coherence due to two uncorrelated partially coherent fields

    NASA Astrophysics Data System (ADS)

    Sadeq, Z. S.

    2015-04-01

    We analyze a model where a closed V system is excited by two uncorrelated partially coherent fields. We use a collisionally broadened cw laser, which is a good model for an experimentally realizable partially coherent field, and show that it is possible to generate excited-state coherences even if the two fields are uncorrelated. This transient coherence can be increased if splitting between the excited states is reduced relative to the radiation coherence time τd. For small excited-state splitting, one can use this scheme to generate a long-lived coherent response in the system.

  14. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    DOE PAGES

    Zhang, Wenkai; Kjaer, Kasper S.; Alonso-Mori, Roberto; ...

    2016-08-25

    Developing light-harvesting and photocatalytic molecules made with iron could provide a cost effective, scalable, and environmentally benign path for solar energy conversion. To date these developments have been limited by the sub-picosecond metal-to-ligand charge transfer (MLCT) electronic excited state lifetime of iron based complexes due to spin crossover – the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand iron complexes with four cyanide (CN–) ligands and one 2,2'-bipyridine (bpy) ligand. This enables MLCTmore » excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2–. The two experimental techniques are highly complementary; the time-resolved UV-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kβ fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. Here, we conclude that the MLCT excited state of [Fe(CN)4(bpy)]2– decays with roughly a 20 ps lifetime without undergoing spin crossover, exceeding the MLCT excited state lifetime of [Fe(2,2'-bipyridine)3]2+ by more than two orders of magnitude.« less

  15. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    SciTech Connect

    Zhang, Wenkai; Kjaer, Kasper S.; Alonso-Mori, Roberto; Bergmann, Uwe; Chollet, Matthieu; Fredin, Lisa A.; Hadt, Ryan G.; Hartsock, Robert W.; Harlang, Tobias; Kroll, Thomas; Kubicek, Katharina; Lemke, Henrik T.; Liang, Huiyang W.; Liu, Yizhu; Nielsen, Martin M.; Persson, Petter; Robinson, Joseph S.; Solomon, Edward I.; Sun, Zheng; Sokaras, Dimosthenis; van Driel, Tim B.; Weng, Tsu -Chien; Zhu, Diling; Warnmark, Kenneth; Sundstrom, Villy; Gaffney, Kelly J.

    2016-08-25

    Developing light-harvesting and photocatalytic molecules made with iron could provide a cost effective, scalable, and environmentally benign path for solar energy conversion. To date these developments have been limited by the sub-picosecond metal-to-ligand charge transfer (MLCT) electronic excited state lifetime of iron based complexes due to spin crossover – the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand iron complexes with four cyanide (CN) ligands and one 2,2'-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2–. The two experimental techniques are highly complementary; the time-resolved UV-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kβ fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. Here, we conclude that the MLCT excited state of [Fe(CN)4(bpy)]2– decays with roughly a 20 ps lifetime without undergoing spin crossover, exceeding the MLCT excited state lifetime of [Fe(2,2'-bipyridine)3]2+ by more than two orders of magnitude.

  16. Excited-state lifetime of adenine near the first electronic band origin

    NASA Astrophysics Data System (ADS)

    Kang, Hyuk; Chang, Jinyoung; Lee, Sang Hak; Ahn, Tae Kyu; Kim, Nam Joon; Kim, Seong Keun

    2010-10-01

    The excited-state lifetime of supersonically cooled adenine was measured in the gas phase by femtosecond pump-probe transient ionization as a function of excitation energy between 36 100 and 37 500 cm-1. The excited-state lifetime of adenine is ˜2 ps around the 0-0 band of the L1b ππ ∗ state (36 105 cm-1). The lifetime drops to ˜1 ps when adenine is excited to the L1a ππ ∗ state with the pump energy at 36 800 cm-1 and above. The excited-state lifetimes of L1a and L1b ππ∗ states are differentiated in accordance with previous frequency-resolved and computational studies.

  17. Excited-state annihilation process involving a cyclometalated platinum(II) complex

    SciTech Connect

    Maestri, M.; Sandrini, D. ); von Zelewsky, A.; Deuschel-Cornioley, C. )

    1991-05-29

    The Pt(tpy)(ppz) complex exhibits strong luminescence with a relatively long excited-state lifetime (15.3 {mu}s) in deaerated acetonitrile solution, at room temperature and at low excitation intensity, and can be easily involved in excited-state quenching processes. The {sub 3}CT excited state is, in fact, quenched (1) by oxygen (k{sub q} {congruent} 10{sup 9} M{sup {minus}1} s{sup {minus}1}), (2) by the ground-state complex (k{sub q} = 5.7 {times} 10{sup 7} M{sup {minus}1} s{sup {minus}1}), and (3) by another {sup 3}CT excited state in an annihilation process, which is practically diffusion controlled (k{sub 3} > 6 {times} 10{sup 9} M{sup {minus}1} s{sup {minus}1}). The ground-state quenching and the annihilation process most probably occur via an excimer formation mechanism. 46 refs., 3 figs.

  18. Intramolecular excited-state proton-transfer studies on flavones in different environments

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Jain, Sapan K.; Sharma, Neera; Rastogi, Ramesh C.

    2001-02-01

    The absorption and fluorescence spectra of some biologically active flavones have been studied as a function of the acidity (pH/H 0) of the solution. Dissociation constants have been determined for the ground and first excited singlet states. The results are compared with those obtained from Forster-Weller calculations. The acidity constants obtained by fluorimetric titration method are in complete agreement (in most of the systems) with ground state data indicating a excited state deactivation prior to prototropic equilibration. Compared to umbelliferones, flavones are only weakly fluorescent in alkaline solution. This behaviour is explained by the small energy difference between the singlet excited state and triplet excited state giving rise to more efficient intersystem crossing. Most of the flavones studied here undergo adiabatic photodissociation in the singlet excited state indicating the formation of an exciplex or a phototautomer.

  19. Quencher-free multiplexed monitoring of DNA reaction circuits.

    PubMed

    Padirac, Adrien; Fujii, Teruo; Rondelez, Yannick

    2012-08-01

    We present a simple yet efficient technique to monitor the dynamics of DNA-based reaction circuits. This technique relies on the labeling of DNA oligonucleotides with a single fluorescent modification. In this quencher-free setup, the signal is modulated by the interaction of the 3'-terminus fluorophore with the nucleobases themselves. Depending on the nature of the fluorophore's nearest base pair, fluorescence intensity is decreased or increased upon hybridization. By tuning the 3'-terminal nucleotides, it is possible to obtain opposite changes in fluorescence intensity for oligonucleotides whose hybridization site is shifted by a single base. Quenching by nucleobases provides a highly sequence-specific monitoring technique, which presents a high sensitivity even for small oligonucleotides. Compared with other sequence-specific detection methods, it is relatively non-invasive and compatible with the complex dynamics of DNA reaction circuits. As an application, we show the implementation of nucleobase quenching to monitor a DNA-based chemical oscillator, allowing us to follow in real time and quantitatively the dephased oscillations of the components of the network. This cost-effective monitoring technique should be widely implementable to other DNA-based reaction systems.

  20. Graphene as a Reversible and Spectrally Selective Fluorescence Quencher

    PubMed Central

    Salihoglu, Omer; Kakenov, Nurbek; Balci, Osman; Balci, Sinan; Kocabas, Coskun

    2016-01-01

    We report reversible and spectrally selective fluorescence quenching of quantum dots (QDs) placed in close proximity to graphene. Controlling interband electronic transitions of graphene via electrostatic gating greatly modifies the fluorescence lifetime and intensity of nearby QDs via blocking of the nonradiative energy transfer between QDs and graphene. Using ionic liquid (IL) based electrolyte gating, we are able to control Fermi energy of graphene in the order of 1 eV, which yields electrically controllable fluorescence quenching of QDs in the visible spectrum. Indeed, our technique enables us to perform voltage controllable spectral selectivity among quantum dots at different emission wavelengths. We anticipate that our technique will provide tunable light-matter interaction and energy transfer that could yield hybrid QDs-graphene based optoelectronic devices with novel functionalities, and additionally, may be useful as a spectroscopic ruler, for example, in bioimaging and biomolecular sensing. We propose that graphene can be used as an electrically tunable and wavelength selective fluorescence quencher. PMID:27652976

  1. Phytochemicals as Effective Quorum Quenchers Against Bacterial Communication.

    PubMed

    Subramaniyan, Sivaramakrishnan; Divyasree, Sasikumar; Sandhia, Girija Sadasivan

    2016-01-01

    Quorum sensing or the bacterial information flow in an orchestrated manner is an essential feature of many pathogenic bacteria. Quorum quenching molecules (QQ) can inhibit the growth of such bacteria. The purpose of this study is to evaluate the potential of plant extracts as quorum quenchers and monitor the recent patents. Many available reports and patents are on synthetic ligand molecules or even compounds isolated from cyanobacteria (Honaucin A) and other microorganisms inhibiting quorum sensing molecules. Molecules with Quorum quenching (QQ) ability isolated from plants could inhibit violacein and pyocyanin production in Chromobacterium violaceum and Pseudomonas aeruginosa respectively. Studies leading to patents are initiated in this comparatively new topic. Hydrolysable tannins such as vescalagin and castalagin isolated from Conocarpus erectus are reported to have anti- quorum sensing activity. The gene product of agr D in gram positive bacteria is modified by endopeptidase to thiolactone peptide which is equivalent to acyl homoserine lactone of gram negative bacteria. General pathways suggested for the quorum sensing inhibition by plant extracts focuses on such autoinducers. Medicinal plants and plant extracts are the leading sources of quorum sensing inhibitors. Patents related to quorum sensing inhibitors are taking new leaps in medicine, especially applications relating to the addition of quorum sensing inhibitors on to the surface of implantable or indwelling devices that are helpful in eradicating the trouble of infection in health care industry.

  2. Analysis of the excited-state absorption spectral bandshape of oligofluorenes

    NASA Astrophysics Data System (ADS)

    Hayes, Sophia C.; Silva, Carlos

    2010-06-01

    We present ultrafast transient absorption spectra of two oligofluorene derivatives in dilute solution. These spectra display a photoinduced absorption band with clear vibronic structure, which we analyze rigorously using a time-dependent formalism of absorption to extract the principal excited-state vibrational normal-mode frequencies that couple to the electronic transition, the configurational displacement of the higher-lying excited state, and the reorganization energies. We can model the excited-state absorption spectrum using two totally symmetric vibrational modes with frequencies 450 (dimer) or 400 cm-1 (trimer), and 1666 cm-1. The reorganization energy of the ground-state absorption is rather insensitive to the oligomer length at 230 meV. However, that of the excited-state absorption evolves from 58 to 166 meV between the oligofluorene dimer and trimer. Based on previous theoretical work [A. Shukla et al., Phys. Rev. B 67, 245203 (2003)], we assign the absorption spectra to a transition from the 1Bu excited state to a higher-lying mAg state, and find that the energy of the excited-state transition with respect to the ground-state transition energy is in excellent agreement with the theoretical predictions for both oligomers studied here. These results and analysis permit profound understanding of the nature of excited-state absorption in π-conjugated polymers, which are the subject of general interest as organic semiconductors in the solid state.

  3. THE PHOTOTOXOICITY OF POLYCYCLIC AROMATIC HYDROCARBONS: A THEORETICAL STUDY OF EXCITED STATES AND CORRELATION TO EXPERIMENT

    EPA Science Inventory



    Investigators using models to determine the phototoxic effects of sunlight on polycyclic aromatic hydrocarbons (PAHS) have invoked the excited states of the molecule as important in elucidating the mechanism of these reactions. Energies of actual excited states were calcu...

  4. Excited singlet-state absorption in laser dyes at the XeCl wavelength

    NASA Astrophysics Data System (ADS)

    Taylor, R. S.; Mihailov, S.

    1985-10-01

    The transmission properties of the laser dyes BBQ, PBD, BPBD, α-NPO, p-Quarterphenyl and PPO have been measured using a XeCl (308 nm) excimer laser. A model for the dye saturation which incorporates excited-state absorption was used to estimate the lifetime and the absorption cross section of the first excited singlet-state for each dye.

  5. Excited State Absorption from Real-Time Time-Dependent Density Functional Theory.

    PubMed

    Fischer, Sean A; Cramer, Christopher J; Govind, Niranjan

    2015-09-08

    The optical response of excited states is a key property used to probe photophysical and photochemical dynamics. Additionally, materials with a large nonlinear absorption cross-section caused by two-photon (TPA) and excited state absorption (ESA) are desirable for optical limiting applications. The ability to predict the optical response of excited states would help in the interpretation of transient absorption experiments and aid in the search for and design of optical limiting materials. We have developed an approach to obtain excited state absorption spectra by combining real-time (RT) and linear-response (LR) time-dependent density functional theory (TDDFT). Being based on RT-TDDFT, our method is aimed at tackling larger molecular complexes and materials systems where excited state absorption is predominantly seen and many time-resolved experimental efforts are focused. To demonstrate our method, we have calculated the ground and excited state spectra of H₂⁺ and H₂ due to the simplicity in the interpretation of the spectra. We have validated our new approach by comparing our results for butadiene with previously published results based on quadratic response (QR). We also present results for oligofluorenes, where we compare our results with both QR-TDDFT and experimental measurements. Because our method directly measures the response of an excited state, stimulated emission features are also captured; although, these features are underestimated in energy which could be attributed to a change of the reference from the ground to the excited state.

  6. THE PHOTOTOXOICITY OF POLYCYCLIC AROMATIC HYDROCARBONS: A THEORETICAL STUDY OF EXCITED STATES AND CORRELATION TO EXPERIMENT

    EPA Science Inventory



    Investigators using models to determine the phototoxic effects of sunlight on polycyclic aromatic hydrocarbons (PAHS) have invoked the excited states of the molecule as important in elucidating the mechanism of these reactions. Energies of actual excited states were calcu...

  7. Effect of xenon on the excited states of phototropic receptor flavin in corn seedlings

    SciTech Connect

    Vierstra, R.D.; Poff, K.L.; Walker, E.B.; Song, P.S.

    1981-05-01

    The chemically inert, water-soluble heavy atom gas, xenon, at millimolar concentrations specifically quenches the triplet excited state of flavin in solution without quenching the flavin singlet excited state. The preferential quenching of the flavin triplet over the singlet excited state by Xe has been established by showing that the flavin triplet-sensitized photooxidation of NADH is inhibited while the fluorescence intensity and lifetime of flavin are not affected by Xe. No significant inhibition of phototropism and geotropism by Xe was observed, suggesting that a flavin singlet state is more likely involved than the triplet state in the primary photoprocess of phototropism in corn.

  8. Dissociative excitation of the N(+)(5S) state by electron impact on N2 - Excitation function and quenching

    NASA Technical Reports Server (NTRS)

    Erdman, P. W.; Zipf, E. C.

    1986-01-01

    Metastable N(+)(5S) ions were produced in the laboratory by dissociative excitation of N2 with energetic electrons. The resulting radiative decay of the N(+)(5S) state was observed with sufficient resolution to completely resolve the doublet from the nearby N2 molecular radiation. The excitation function was measured from threshold to 500 eV. The cross section peaks at a high electron energy and also exhibits a high threshold energy both of which are typical of dissociative excitation-ionization processes. This finding complicates the explanation of electron impact on N2 as the mechanism for the source of the 2145 A 'auroral mystery feature' by further increasing the required peak cross section. It is suggested that the apparent N(+)(5S) quenching in auroras may be an artifact due to the softening of the electron energy spectrum in the auroral E region.

  9. E2 transitions between excited single-phonon states: Role of ground-state correlations

    NASA Astrophysics Data System (ADS)

    Kamerdzhiev, S. P.; Voitenkov, D. A.

    2016-11-01

    The probabilities for E2 transitions between low-lying excited 3- and 5- single-phonon states in the 208Pb and 132Sn magic nuclei are estimated on the basis of the theory of finite Fermi systems. The approach used involves a new type of ground-state correlations, that which originates from integration of three (rather than two, as in the random-phase approximation) single-particle Green's functions. These correlations are shown to make a significant contribution to the probabilities for the aforementioned transitions.

  10. E2 transitions between excited single-phonon states: Role of ground-state correlations

    SciTech Connect

    Kamerdzhiev, S. P.; Voitenkov, D. A.

    2016-11-15

    The probabilities for E2 transitions between low-lying excited 3{sup −} and 5{sup −} single-phonon states in the {sup 208}Pb and {sup 132}Sn magic nuclei are estimated on the basis of the theory of finite Fermi systems. The approach used involves a new type of ground-state correlations, that which originates from integration of three (rather than two, as in the random-phase approximation) single-particle Green’s functions. These correlations are shown to make a significant contribution to the probabilities for the aforementioned transitions.

  11. Theoretical Study of Tautomerization Reactions for the Ground and First Excited Electronic States of Adenine

    NASA Technical Reports Server (NTRS)

    Salter, Latasha M.; Chaban, Galina M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest singlet excited state potential energy surfaces are studied. Four tautomeric forms are considered, and their energetic order is found to be different on the ground and the excited state potential energy surfaces. Minimum energy reaction paths are obtained for hydrogen atom transfer (tautomerization) reactions in the ground and the lowest excited electronic states. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic states, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. This tautomerization process should become possible in the presence of water or other polar solvent molecules and should play an important role in the photochemistry of adenine.

  12. Configuration interaction study of the ground and excited states of TiO2 ring structures

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takashi; Whitten, Jerry L.

    2011-03-01

    Theoretical studies of the ground and lowest excited singlet and triplet states of a series of titanium dioxide ring structures, (TiO2)2n, n = 3-9, are reported. Calculations are based on many-electron configuration theory, where energies of states and geometrical structures are determined by variational energy minimization. The lowest energy excited states correspond to excitations from oxygen 2p levels to unoccupied 3d orbitals on titanium. For each ring system, two types of excited state solutions are investigated: those that maintain periodic symmetry for individual orbitals and solutions that allow the symmetry to be broken. The latter solutions which correspond to localized states or excitons are found to be significantly lower in energy than the symmetric solutions. We compare the vertical excitation energy of these well-defined geometrical structures with size effects reported in experimental studies.

  13. A Doubles Correction to Electronic Excited States from Configuration Interaction in the Space of Single Substitutions

    NASA Technical Reports Server (NTRS)

    Head-Gordon, Martin; Rico, Rudolph J.; Lee, Timothy J.; Oumi, Manabu

    1994-01-01

    A perturbative correction to the method of configuration interaction with single substitutions (CIS) is presented. This CIS(D) correction approximately introduces the effect of double substitutions which are absent in CIS excited states. CIS(D) is a second-order perturbation expansion of the coupled-cluster excited state method, restricted to single and double substitutions, in a series in which CIS is zeroth order, and the first-order correction vanishes. CIS (D) excitation energies are size consistent and the calculational complexity scales with the fifth power of molecular size, akin to second-order Moller-Plesset theory for the ground state. Calculations on singlet excited states of ethylene, formaldehyde, acetaldehyde, butadiene and benzene show that CIS (D) is a uniform improvement over CIS. CIS(D) appears to be a promising method for examining excited states of large molecules, where more accurate methods are not feasible.

  14. Evaluating Electronic Couplings for Excited State Charge Transfer Based on Maximum Occupation Method ΔSCF Quasi-Adiabatic States.

    PubMed

    Liu, Junzi; Zhang, Yong; Bao, Peng; Yi, Yuanping

    2017-02-14

    Electronic couplings of charge-transfer states with the ground state and localized excited states at the donor/acceptor interface are crucial parameters for controlling the dynamics of exciton dissociation and charge recombination processes in organic solar cells. Here we propose a quasi-adiabatic state approach to evaluate electronic couplings through combining maximum occupation method (mom)-ΔSCF and state diabatization schemes. Compared with time-dependent density functional theory (TDDFT) using global hybrid functional, mom-ΔSCF is superior to estimate the excitation energies of charge-transfer states; moreover it can also provide good excited electronic state for property calculation. Our approach is hence reliable to evaluate electronic couplings for excited state electron transfer processes, which is demonstrated by calculations on a typical organic photovoltaic system, oligothiophene/perylenediimide complex.

  15. Dynamics of Excited States for Fluorescent Emitters with Hybridized Local and Charge-Transfer Excited State in Solid Phase: A QM/MM Study.

    PubMed

    Fan, Jianzhong; Cai, Lei; Lin, Lili; Wang, Chuan-Kui

    2016-12-01

    The highly efficient organic light-emitting diodes (OLEDS) based on fluorescent emitters with hybridized local and charge-transfer (HLCT) excited state have attracted great attention recently. The excited-state dynamics of the fluorescent molecule with consideration of molecular interaction are studied using the hybrid quantum mechanics/molecular mechanics method. The results show that, in solid state, the internal conversion rate (KIC) between the first singlet excited state (S1) and the ground state (S0) is smaller than the fluorescent rate (Kr), while in gas phase KIC is much larger than Kr. By analyzing the Huang-Rhys (HR) factor and reorganization energy (λ), we find that these two parameters in solid state are much smaller than those in gas phase due to the suppression of the vibration modes in low-frequency regions (<200 cm(-1)) related with dihedral angles between donor and acceptor groups. This is further demonstrated by the geometrical analysis that variation of the dihedral angle between geometries of S1 and S0 is smaller in solid state than that in gas phase. Moreover, combining the dynamics of the excited states and the adiabatic energy structures calculated in solid state, we illustrate the suggested "hot-exciton" mechanism of the HLCT emitters in OLEDs. Our work presents a rational explanation for the experimental results and demonstrates the importance of molecular interaction for theoretical simulation of the working principle of OLEDs.

  16. Variational state specific solvent models for excited states from time dependent self-consistent field methods

    NASA Astrophysics Data System (ADS)

    Bjorgaard, Josiah; Velizhanin, Kirill; Tretiak, Sergei

    2015-03-01

    The effect of a dielectric environment on a molecule can be profound, causing changes in nuclear configuration and electronic structure. Quantum chemical simulation of a solute-solvent system can be prohibitively expensive due to the large number of degrees of freedom attributed to the solvent. To remedy this, the solvent can be treated as a dielectric cavity. Mutual polarization of the solute and solvent must be considered for accurate treatment of an optically excited state (ES) with a state-specific solvent model (SSM). In vacuum, time dependent self-consistent field (TD-SCF) methods (e,g, TD-HF, TD-DFT) give variational excitation energies. With the well known Z-vector equation, a variational ES energy is used to explore the ES potential energy surface (PES) with analytical gradients. Modification of the standard TD-SCF eigensystem to accommodate a SSM creates a nonlinear TD-SCF equation with non-variational excitation energies. This prevents analytical gradients from being formulated so that the ES PES cannot be explored. Here, we show how a variational formulation of existing SSMs can be derived from a Lagrangian formalism and give numerical results for the variability of calculated quantities. Model dynamics using SSMs are showcased.

  17. Emergence of nontrivial magnetic excitations in a spin-liquid state of kagomé volborthite

    PubMed Central

    Watanabe, Daiki; Sugii, Kaori; Shimozawa, Masaaki; Suzuki, Yoshitaka; Yajima, Takeshi; Ishikawa, Hajime; Hiroi, Zenji; Shibauchi, Takasada; Matsuda, Yuji; Yamashita, Minoru

    2016-01-01

    When quantum fluctuations destroy underlying long-range ordered states, novel quantum states emerge. Spin-liquid (SL) states of frustrated quantum antiferromagnets, in which highly correlated spins fluctuate down to very low temperatures, are prominent examples of such quantum states. SL states often exhibit exotic physical properties, but the precise nature of the elementary excitations behind such phenomena remains entirely elusive. Here, we use thermal Hall measurements that can capture the unexplored property of the elementary excitations in SL states, and report the observation of anomalous excitations that may unveil the unique features of the SL state. Our principal finding is a negative thermal Hall conductivity κxy which the charge-neutral spin excitations in a gapless SL state of the 2D kagomé insulator volborthite Cu3V2O7(OH)2⋅2H2O exhibit, in much the same way in which charged electrons show the conventional electric Hall effect. We find that κxy is absent in the high-temperature paramagnetic state and develops upon entering the SL state in accordance with the growth of the short-range spin correlations, demonstrating that κxy is a key signature of the elementary excitation formed in the SL state. These results suggest the emergence of nontrivial elementary excitations in the gapless SL state which feel the presence of fictitious magnetic flux, whose effective Lorentz force is found to be less than 1/100 of the force experienced by free electrons. PMID:27439874

  18. Emergence of nontrivial magnetic excitations in a spin-liquid state of kagomé volborthite.

    PubMed

    Watanabe, Daiki; Sugii, Kaori; Shimozawa, Masaaki; Suzuki, Yoshitaka; Yajima, Takeshi; Ishikawa, Hajime; Hiroi, Zenji; Shibauchi, Takasada; Matsuda, Yuji; Yamashita, Minoru

    2016-08-02

    When quantum fluctuations destroy underlying long-range ordered states, novel quantum states emerge. Spin-liquid (SL) states of frustrated quantum antiferromagnets, in which highly correlated spins fluctuate down to very low temperatures, are prominent examples of such quantum states. SL states often exhibit exotic physical properties, but the precise nature of the elementary excitations behind such phenomena remains entirely elusive. Here, we use thermal Hall measurements that can capture the unexplored property of the elementary excitations in SL states, and report the observation of anomalous excitations that may unveil the unique features of the SL state. Our principal finding is a negative thermal Hall conductivity [Formula: see text] which the charge-neutral spin excitations in a gapless SL state of the 2D kagomé insulator volborthite Cu3V2O7(OH)2[Formula: see text]2H2O exhibit, in much the same way in which charged electrons show the conventional electric Hall effect. We find that [Formula: see text] is absent in the high-temperature paramagnetic state and develops upon entering the SL state in accordance with the growth of the short-range spin correlations, demonstrating that [Formula: see text] is a key signature of the elementary excitation formed in the SL state. These results suggest the emergence of nontrivial elementary excitations in the gapless SL state which feel the presence of fictitious magnetic flux, whose effective Lorentz force is found to be less than 1/100 of the force experienced by free electrons.

  19. Electronically Excited States in Poly(p-phenylenevinylene): Vertical Excitations and Torsional Potentials from High-Level Ab Initio Calculations

    PubMed Central

    2013-01-01

    Ab initio second-order algebraic diagrammatic construction (ADC(2)) calculations using the resolution of the identity (RI) method have been performed on poly-(p-phenylenevinylene) (PPV) oligomers with chain lengths up to eight phenyl rings. Vertical excitation energies for the four lowest π–π* excitations and geometry relaxation effects for the lowest excited state (S1) are reported. Extrapolation to infinite chain length shows good agreement with analogous data derived from experiment. Analysis of the bond length alternation (BLA) based on the optimized S1 geometry provides conclusive evidence for the localization of the defect in the center of the oligomer chain. Torsional potentials have been computed for the four excited states investigated and the transition densities divided into fragment contributions have been used to identify excitonic interactions. The present investigation provides benchmark results, which can be used (i) as reference for lower level methods and (ii) give the possibility to parametrize an effective Frenkel exciton Hamiltonian for quantum dynamical simulations of ultrafast exciton transfer dynamics in PPV type systems. PMID:23427902

  20. Vibrations of acrylonitrile in N 1s excited states

    NASA Astrophysics Data System (ADS)

    Ilakovac, V.; Carniato, S.; Gallet, J.-J.; Kukk, E.; Horvatić, D.; Ilakovac, A.

    2008-01-01

    The N 1s near edge x-ray absorption fine structure spectra of acrylonitrile gas are accurately reproduced by a complete ab initio multidimensional vibrational analysis. The role of π∗ -orbital localization and hybridization on vibrations accompanying core excitation is discussed. Transition to the π⊥∗(C=C-C≡N) delocalized orbital excites mostly stretching vibrations of the whole spinal column of the molecule. Promoting a core electron to the localized π∥∗(C≡N) produces C≡N stretching vibration combined with two strong bending modes of the C-C≡N end of the molecule, related to the change of carbon hybridization.

  1. Exotic and excited-state meson spectroscopy and radiative transitions from lattice QCD

    SciTech Connect

    Christopher Thomas

    2010-09-01

    We discuss recent progress in extracting the excited meson spectrum and radiative transition form factors using lattice QCD. We mention results in the charmonium sector, including the first lattice QCD calculation of radiative transition rates involving excited charmonium states, highlighting results for high spin and exotic states. We present recent results on a highly excited isovector meson spectrum from dynamical anisotropic lattices. Using carefully constructed operators we show how the continuum spin of extracted states can be reliably identified and confidently extract excited states, states with exotic quantum numbers and states of high spin. This spectrum includes the first spin-four state extracted from lattice QCD. We conclude with some comments on future prospects.

  2. Ground and excited state dipole moments of coumarin 337 laser dye

    NASA Astrophysics Data System (ADS)

    Raikar, U. S.; Tangod, V. B.; Mannopantar, S. R.; Mastiholi, B. M.

    2010-11-01

    This paper reports that the effects of spectral properties of coumarin 337 laser dye have been investigated in different solvents considering solvent parameters like dielectric constant ( є) and refractive index ( n) of different solvent polarities. The ground state ( μg) and excited state ( μe) dipole moments are calculated using Lippert's, Bakhshiev's, and Kawski-Chamma-Viallet's equations. In all these three equations the variation of Stokes shift was used to calculate the excited state ( μe) dipole moment. It is observed that the Bakhshiev method is comparatively better than the other two methods for ground state and excited state dipole moment calculations. The angle between the excited state and ground state dipole moments is also calculated.

  3. Methodological CASPT2 study of the valence excited states of an iron-porphyrin complex.

    PubMed

    Ben Amor, Nadia; Soupart, Adrien; Heitz, Marie-Catherine

    2017-02-01

    The singlet valence excited states of an iron-porphyrin-pyrazine-carbonyl complex are investigated up to the Soret band (about 3 eV) using multi-state complete active space with perturbation at the second order (MS-CASPT2). This complex is a model for the active site of carboxy-hemoglobin/myoglobin. The spectrum of the excited states is rather dense, comprising states of different nature: d→π* transitions, d→d states, π→π* excitations of the porphyrin, and doubly excited states involving simultaneous intra-porphyrin π→π* and d→d transitions. Specific features of the MS-CASPT2 method are investigated. The effect of varying the number of roots in the state average calculation is quantified as well as the consequence of targeted modifications of the active space. The effect of inclusion of standard ionization potential-electron affinity (IPEA) shift in the perturbation treatment is also investigated.

  4. A TDDFT study on the excited-state intramolecular proton transfer (ESIPT): excited-state equilibrium induced by electron density swing.

    PubMed

    Zhang, Mingzhen; Yang, Dapeng; Ren, Baiping; Wang, Dandan

    2013-07-01

    One important issue of current interest is the excited-state equilibrium for some ESITP dyes. However, so far, the information about the driving forces for excited-state equilibrium is very limited. In this work, the time-dependent density functional theory (TDDFT) method was employed to investigate the nature of the excited-state intramolecular proton transfer (ESIPT). The geometric structures, vibrational frequencies, frontier molecular orbitals (MOs) and the potential-energy curves for 1-hydroxy-11H-benzo[b]fluoren-11-one (HHBF) in the ground and the first singlet excited state were calculated. Analysis of the results shows that the intramolecular hydrogen bond of HHBF is strengthened from E to E*. Moreover, it is found that electron density swing between the proton acceptor and donor provides the driving forces for the forward and backward ESIPT, enabling the excited-state equilibrium to be established. Furthermore, we proposed that the photoexcitation and the interchange of position for electron-donating and electron-withdrawing groups are the main reasons for the electron density swing. The potential-energy curves suggest that the forward ESIPT and backward ESIPT may happen on the similar timescale, which is faster than the fluorescence decay of both E* and K* forms.

  5. Self-Consistent Optimization of Excited States within Density-Functional Tight-Binding.

    PubMed

    Kowalczyk, Tim; Le, Khoa; Irle, Stephan

    2016-01-12

    We present an implementation of energies and gradients for the ΔDFTB method, an analogue of Δ-self-consistent-field density functional theory (ΔSCF) within density-functional tight-binding, for the lowest singlet excited state of closed-shell molecules. Benchmarks of ΔDFTB excitation energies, optimized geometries, Stokes shifts, and vibrational frequencies reveal that ΔDFTB provides a qualitatively correct description of changes in molecular geometries and vibrational frequencies due to excited-state relaxation. The accuracy of ΔDFTB Stokes shifts is comparable to that of ΔSCF-DFT, and ΔDFTB performs similarly to ΔSCF with the PBE functional for vertical excitation energies of larger chromophores where the need for efficient excited-state methods is most urgent. We provide some justification for the use of an excited-state reference density in the DFTB expansion of the electronic energy and demonstrate that ΔDFTB preserves many of the properties of its parent ΔSCF approach. This implementation fills an important gap in the extended framework of DFTB, where access to excited states has been limited to the time-dependent linear-response approach, and affords access to rapid exploration of a valuable class of excited-state potential energy surfaces.

  6. Ultrafast internal conversion of excited cytosine via the lowest pipi electronic singlet state.

    PubMed

    Merchán, Manuela; Serrano-Andrés, Luis

    2003-07-09

    Computational evidence at the CASPT2 level supports that the lowest excited state pipi* contributes to the S1/S0 crossing responsible for the ultrafast decay of singlet excited cytosine. The computed radiative lifetime, 33 ns, is consistent with the experimentally derived value, 40 ns. The nOpi* state does not play a direct role in the rapid repopulation of the ground state; it is involved in a S2/S1 crossing. Alternative mechanisms through excited states pisigma* or nNpi* are not competitive in cytosine.

  7. Excited-state wavepacket and potential reconstruction by coherent anti-Stokes Raman scattering.

    PubMed

    Avisar, David; Tannor, David J

    2015-01-28

    Among the major challenges in the chemical sciences is controlling chemical reactions and deciphering their mechanisms. Since much of chemistry occurs in excited electronic states, in the last three decades scientists have employed a wide variety of experimental techniques and theoretical methods to recover excited-state potential energy surfaces and the wavepackets that evolve on them. These methods have been partially successful but generally do not provide a complete reconstruction of either the excited state wavepacket or potential. We have recently proposed a methodology for reconstructing excited-state molecular wavepackets and the corresponding potential energy surface [Avisar and Tannor, Phys. Rev. Lett., 2011, 106, 170405]. In our approach, the wavepacket is represented as a superposition of the set of vibrational eigenfunctions of the molecular ground-state Hamiltonian. We assume that the multidimensional ground-state potential surface is known, and therefore these vibrational eigenfunctions are known as well. The time-dependent coefficients of the basis functions are obtained by experimental measurement of the resonant coherent anti-Stokes Raman scattering (CARS) signal. Our reconstruction strategy has several significant advantages: (1) the methodology requires no a priori knowledge of any excited-state potential. (2) It applies to dissociative as well as to bound excited-state potentials. (3) It is general for polyatomics. (4) The excited-state potential surface is reconstructed simultaneously with the wavepacket. Apart from making a general contribution to the field of excited-state spectroscopy, our method provides the information on the excited-state wavepacket and potential necessary to design laser pulse sequences to control photochemical reactions.

  8. Protolytic dissociation of cyano derivatives of naphthol, biphenyl and phenol in the excited state: A review

    NASA Astrophysics Data System (ADS)

    Szczepanik, Beata

    2015-11-01

    The excited state proton transfer (ESPT) has been extensively studied for hydroxyarenes, phenols, naphthols, hydroxystilbenes, etc., which undergo large enhancement of acidity upon electronic excitation, thus classified as photoacids. The changes of acidic character in the excited state of cyano-substituted derivatives of phenol, hydroxybiphenyl and naphthol are reviewed in this paper. The acidity constants pKa in the ground state (S0), pKa∗ in the first singlet excited state (S1) and the change of the acidity constant in the excited state ΔpKa for the discussed compounds are summarized and compared. The results of the acidity studies show, that the "electro-withdrawing" CN group in the molecules of naphthol, hydroxybiphenyl and phenol causes dramatic increase of their acidity in the excited state in comparison to the ground state. This effect is greatest for the cyanonaphthols (the doubly substituted CN derivatives are almost as strong as a mineral acid in the excited state), comparable for cyanobiphenyls, and smaller for phenol derivatives. The increase of acidity enables proton transfer to various organic solvents, and the investigation of ESPT can be extended to a variety of solvents besides water. The results of theoretical investigations were also presented and used for understanding the protolytic equilibria of cyano derivatives of naphthol, hydroxybiphenyl and phenol.

  9. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics.

    PubMed

    Neville, Simon P; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S

    2016-10-14

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L(2) method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  10. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics

    NASA Astrophysics Data System (ADS)

    Neville, Simon P.; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2016-10-01

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L 2 method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  11. Fast excited-state deactivation in N(5)-ethyl-4a-hydroxyflavin pseudobase.

    PubMed

    Zhou, Dapeng; Mirzakulova, Ekaterina; Khatmullin, Renat; Schapiro, Igor; Olivucci, Massimo; Glusac, Ksenija D

    2011-06-02

    We present a study of the excited-state behavior of N(5)-ethyl-4a-hydroxyflavin (Et-FlOH), a model compound for bacterial bioluminescence. Using femtosecond pump-probe spectroscopy, we found that the Et-FlOH excited state exhibits multiexponential dynamics, with the dominant decay component having a 0.5 ps lifetime. Several possible mechanisms for fast excited-state decay in Et-FlOH were considered: (i) excited-state deprotonation of the -OH proton, (ii) thermal deactivation via (1)n,π* → (1)π,π* conical intersection, and (iii) excited-state release of OH(-) ion. These mechanisms were excluded based on transient absorption studies of two model compounds (N(5)-ethyl-4a-methoxyflavin, Et-FlOMe, and N(5)-ethyl-flavinium ion, Et-Fl(+)) and based on the results of time-dependent density functional theory (TD-DFT) calculations of Et-FlOH excited-states. Instead, we propose that the fast decay in Et-FlOH is caused by S(1) → S(0) internal conversion, initiated by the excited-state nitrogen planarization (sp(3) → sp(2) hybridization change at the N(5)-atom of Et-FlOH S(1) state) coupled with out-of-plane distortion of the pyrimidine moiety of flavin.

  12. Excitation of single proton states in ( p, α) reactions

    NASA Astrophysics Data System (ADS)

    Gadioli, E.; Erba, E. Gadioli; Guazzoni, P.; Luinetti, M.; Zetta, L.; Berg, G. P. A.; Meissburger, J.; von Rossen, P.; Römer, J. G. M.; Prasuhn, D.; Paul, D.

    1986-06-01

    A high resolution experiment, using the BIG KARL spectrometer has been made to identify the levels of 141 Pr excited in the 144 Nd(p,α) reaction at 25 MeV. It has been found that only levels with a dominant single proton component are populated with appreciable intensity.

  13. Lifetime measurement of excited states in /sup 105/Ag

    SciTech Connect

    Mittal, V.K.; Govil, I.M.

    1986-11-01

    The levels up to about 2.1 MeV in /sup 105/Ag were excited via /sup 105/Pd(p,n..gamma..) reaction. For the first time, lifetimes of energy levels at 1023, 1042, 1097, 1166, 1243, 1295, 1328, 1386, 1442, 1543, 1558, 1587, 1719, 1923, and 2081 keV have been measured using the Doppler shift attenuation technique.

  14. yambo: An ab initio tool for excited state calculations

    NASA Astrophysics Data System (ADS)

    Marini, Andrea; Hogan, Conor; Grüning, Myrta; Varsano, Daniele

    2009-08-01

    : Calculation of excited state properties (quasiparticles, excitons, plasmons) from first principles. Solution method: Many body perturbation theory (Dyson equation, Bethe Salpeter equation) and time-dependent density functional theory. Quasiparticle approximation. Plasmon-pole model for the dielectric screening. Plane wave basis set with norm conserving pseudopotentials. Unusual features: During execution, yambo supplies estimates of the elapsed and remaining time for completion of each runlevel. Very friendly shell-based user-interface. Additional comments:yambo was known as "SELF" prior to GPL release. It belongs to the suite of codes maintained and used by the European Theoretical Spectroscopy Facility (ETSF) [1]. Running time: The typical yambo running time can range from a few minutes to some days depending on the chosen level of approximation, and on the property and physical system under study. References: [1] The European Theoretical Spectroscopy Facility, http://www.etsf.eu.

  15. Electron-impact excitation of the low-lying electronic states of formaldehyde

    NASA Technical Reports Server (NTRS)

    Chutjian, A.

    1974-01-01

    Electron-impact excitation has been observed at incident electron energies of 10.1 and 20.1 eV to the first five excited electronic states of formaldehyde lying at and below the 1B2 state at 7.10 eV. These excitations include two new transitions in the energy-loss range 5.6-6.2 eV and 6.7-7.0 eV which have been detected for the first time, either through electron-impact excitation or photon absorption. The differential cross sections of these new excitations are given at scattering angles between 15 and 135 deg. These cross-section ratios peak at large scattering angles - a characteristic of triplet - singlet excitations. The design and performance of the electron-impact spectrometer used in the above observations is outlined and discussed.

  16. Excited state properties of peridinin: Observation of a solvent dependence of the lowest excited singlet state lifetime and spectral behavior unique among carotenoids

    SciTech Connect

    Bautista, J.A.; Connors, R.E.; Raju, B.B.; Hiller, R.G.; Sharples, F.P.; Gosztola, D.; Wasielewski, M.R.; Frank, H.A.

    1999-10-14

    The spectroscopic properties and dynamic behavior of peridinin in several different solvents were studied by steady-state absorption, fluorescence, and transient optical spectroscopy. The lifetime of the lowest excited singlet state of peridinin is found to be strongly dependent on solvent polarity and ranges from 7 ps in the strongly polar solvent trifluoroethanol to 172 ps in the nonpolar solvents cyclohexane and benzene. The lifetimes show no obvious correlation with solvent polarizability, and hydrogen bonding of the solvent molecules to peridinin is not an important factor in determining the dynamic behavior of the lowest excited singlet state. The wavelengths of emission maxima, the quantum yields of fluorescence, and the transient absorption spectra are also affected by the solvent environment. A model consistent with the data and supported by preliminary semiempirical calculations invokes the presence of a charge transfer state in the excited state manifold of peridinin to account for the observations. The charge transfer state most probably results from the presence of the lactone ring in the {pi}-electron conjugation of peridinin analogous to previous findings on aminocoumarins and related compounds. The behavior of peridinin reported here is highly unusual for carotenoids, which generally show little dependence of the spectral properties and lifetimes of the lowest excited singlet state on the solvent environment.

  17. Modeling the doubly excited state with time-dependent Hartree-Fock and density functional theories

    NASA Astrophysics Data System (ADS)

    Isborn, Christine M.; Li, Xiaosong

    2008-11-01

    Multielectron excited states have become a hot topic in many cutting-edge research fields, such as the photophysics of polyenes and in the possibility of multiexciton generation in quantum dots for the purpose of increasing solar cell efficiency. However, obtaining multielectron excited states has been a major obstacle as it is often done with multiconfigurational methods, which involve formidable computational cost for large systems. Although they are computationally much cheaper than multiconfigurational wave function based methods, linear response adiabatic time-dependent Hartree-Fock (TDHF) and density functional theory (TDDFT) are generally considered incapable of obtaining multielectron excited states. We have developed a real-time TDHF and adiabatic TDDFT approach that is beyond the perturbative regime. We show that TDHF/TDDFT is able to simultaneously excite two electrons from the ground state to the doubly excited state and that the real-time TDHF/TDDFT implicitly includes double excitation within a superposition state. We also present a multireference linear response theory to show that the real-time electron density response corresponds to a superposition of perturbative linear responses of the S0 and S2 states. As a result, the energy of the two-electron doubly excited state can be obtained with several different approaches. This is done within the adiabatic approximation of TDDFT, a realm in which the doubly excited state has been deemed missing. We report results on simple two-electron systems, including the energies and dipole moments for the two-electron excited states of H2 and HeH+. These results are compared to those obtained with the full configuration interaction method.

  18. Estimation of first excited singlet-state dipole moments of aminoanthraquinones by solvatochromic method.

    PubMed

    Siddlingeshwar, B; Hanagodimath, S M

    2009-04-01

    The ground state (micro(g)) and the excited state (micro(e)) dipole moments of three substituted anthraquinones, namely 1-aminoanthracene-9,10-dione (AAQ), 1-(methylamino)anthracence-9,10-dione (MAQ) and 1,5-diaminoanthracene-9,10-dione (DAQ) were estimated in various solvents. The dipole moments (micro(g) and micro(e)) were estimated from Lippert, Bakhshiev, Kawski-Chamma-Viallet, McRae and Suppan equations by using the variation of Stokes shift with the solvent dielectric constant and refractive index. The excited state dipole moments were also calculated by using the variation of Stokes shift with microscopic solvent polarity parameter (Epsilon(T)(N)). It was observed that dipole moment values of excited states (micro(e)) were higher than corresponding ground state values (micro(g)), indicating a substantial redistribution of the pi-electron densities in a more polar excited state for all the molecules investigated.

  19. Efficient Deactivation of a Model Base Pair via Excited-State Hydrogen Transfer

    NASA Astrophysics Data System (ADS)

    Schultz, Thomas; Samoylova, Elena; Radloff, Wolfgang; Hertel, Ingolf V.; Sobolewski, Andrzej L.; Domcke, Wolfgang

    2004-12-01

    We present experimental and theoretical evidence for an excited-state deactivation mechanism specific to hydrogen-bonded aromatic dimers, which may account, in part, for the photostability of the Watson-Crick base pairs in DNA. Femtosecond time-resolved mass spectroscopy of 2-aminopyridine clusters reveals an excited-state lifetime of 65 +/- 10 picoseconds for the near-planar hydrogen-bonded dimer, which is significantly shorter than the lifetime of either the monomer or the 3- and 4-membered nonplanar clusters. Ab initio calculations of reaction pathways and potential-energy profiles identify the mechanism of the enhanced excited-state decay of the dimer: Conical intersections connect the locally excited 1ππ* state and the electronic ground state with a 1ππ* charge-transfer state that is strongly stabilized by the transfer of a proton.

  20. Estimation of first excited singlet-state dipole moments of aminoanthraquinones by solvatochromic method

    NASA Astrophysics Data System (ADS)

    Siddlingeshwar, B.; Hanagodimath, S. M.

    2009-04-01

    The ground state ( μg) and the excited state ( μe) dipole moments of three substituted anthraquinones, namely 1-aminoanthracene-9,10-dione (AAQ), 1-(methylamino)anthracence-9,10-dione (MAQ) and 1,5-diaminoanthracene-9,10-dione (DAQ) were estimated in various solvents. The dipole moments ( μg and μe) were estimated from Lippert, Bakhshiev, Kawski-Chamma-Viallet, McRae and Suppan equations by using the variation of Stokes shift with the solvent dielectric constant and refractive index. The excited state dipole moments were also calculated by using the variation of Stokes shift with microscopic solvent polarity parameter ( ETN). It was observed that dipole moment values of excited states ( μe) were higher than corresponding ground state values ( μg), indicating a substantial redistribution of the π-electron densities in a more polar excited state for all the molecules investigated.

  1. Excited-state lifetime of propadienylidene, l-C3H2.

    PubMed

    Noller, Bastian; Margraf, Markus; Schröter, Christian; Schultz, Thomas; Fischer, Ingo

    2009-07-14

    The excited-state dynamics of the singlet carbene propadienylidene, l-C(3)H(2), were investigated by femtosecond time-resolved photoionisation. The carbene was excited into the C (1)A(1) state with 250 nm pulses and the subsequent excited state dynamics were probed by multiphoton ionization with 800 nm pulses. The lifetime of the C (1)A(1) state was determined to be 70 fs. In agreement with recent nanosecond experiments, we assume that the carbene deactivates to the electronic ground state where it subsequently dissociates. Since propadienylidene was generated from 3-bromo-1-iodopropyne, two further radical intermediates were studied, IC(3)H(2) and C(3)H(2)Br. For both species, an ultrafast excited state decay was observed with an upper limit of 40 fs for the respective lifetimes.

  2. Estimation of ground and excited state dipole moments of some laser dyes

    NASA Astrophysics Data System (ADS)

    Biradar, D. S.; Siddlingeshwar, B.; Hanagodimath, S. M.

    2008-03-01

    The ground state ( μg) and the excited state ( μe) dipole moments of three laser dyes namely 2, 5-diphenyl-1, 3, 4- oxadiazole (PPD), 2, 2″-dimethyl-p-terphenyl (DMT) and 1, 3-diphenyl benzene (MT) were studied at room temperature in various solvents. The ground state dipole moments ( μg) of all the three laser dyes were determined experimentally by Guggenheim method. The excited state dipole moments ( μe) were estimated from Lippert's, Bakshiev's and Chamma Viallet's equations by using the variation of the Stokes shift with the solvent dielectric constant and refractive index. Ground and excited state dipole moments were evaluated by means of solvatochromic shift method and also the excited state dipole moments are determined in combination with ground state dipole moments. It was observed that dipole moment values of excited states ( μe) were higher than corresponding ground state values ( μg), indicating a substantial redistribution of the π-electron densities in a more polar excited state for all the dyes investigated.

  3. Pulsed CO2 laser pumped by an all solid-state magnetic exciter

    NASA Astrophysics Data System (ADS)

    Shimada, T.; Noda, K.; Obara, M.; Midorikawa, K.

    1985-11-01

    An all solid-state exciter, which consists of a Silicon Controlled Rectifier (SCR) switched pulse transformer and a three stage magnetic pulse compressor, has been successfully used for pulsed CO2 laser excitation. Using the exciter, output laser energy of 240 mJ has been obtained at 1 pps under sealed-off conditions. Since this laser has no discharge switch, long lifetime operation with high repetition rate (HRR) is anticipated.

  4. Resonance-Enhanced Excited-State Raman Spectroscopy of Conjugated Thiophene Derivatives: Combining Experiment with Theory

    NASA Astrophysics Data System (ADS)

    Barclay, Matthew S.; Quincy, Timothy J.; Caricato, Marco; Elles, Christopher G.

    2017-06-01

    Resonance-enhanced Femtosecond Stimulated Raman Spectroscopy (FSRS) is an ultrafast experimental method that allows for the study of excited-state structural behaviors, as well as the characterization of higher electronically excited states accessible through the resonant conditions of the observed vibrations. However, interpretation of the experiment is difficult without an accurate vibrational assignment of the resonance-enhanced spectra. We therefore utilize simulations of off-resonant excited-state Raman spectra, in which we employ a numerical derivative of the analytical excited-state polarizabilities along the normal mode displacements, in order to identify and interpret the resonance-enhanced vibrations observed in experiment. We present results for a benchmark series of conjugated organic thiophene derivatives, wherein we have computed the off-resonant excited-state Raman spectra for each molecule and matched it with its resonance-enhanced experimental spectrum. This comparison allows us to successfully identify the vibrational displacements of the observed FSRS bands, as well as validate the accuracy of the theoretical results through an experimental benchmark. The agreement between the experimental and computed results demonstrates that we are able to predict qualitatively accurate excited-state Raman spectra for these conjugated thiophenes, allowing for a more thorough interpretation of excited-state Raman signals at relatively low computational cost.

  5. An Ab Initio Exciton Model Including Charge-Transfer Excited States

    DOE PAGES

    Li, Xin; Parrish, Robert M.; Liu, Fang; ...

    2017-06-15

    Here, the Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states. However, our previous implementation excluded charge-transfer excited states, which can play an important role in light-harvesting systems and near-infrared optoelectronic materials. Recent studies have also emphasized the significance of charge-transfer in singlet fission, which mediates the coupling between the locally excited states and the multiexcitonic states. In this work, we report on an ab initio exciton model that incorporates charge-transfer excited statesmore » and demonstrate that the model provides correct charge-transfer excitation energies and asymptotic behavior. Comparison with TDDFT and EOM-CC2 calculations shows that our exciton model is robust with respect to system size, screening parameter, and different density functionals. Inclusion of charge-transfer excited states makes the exciton model more useful for studies of singly excited states and provides a starting point for future construction of a model that also includes double-exciton states.« less

  6. Detection of the torsionally excited state of methanol in Orion A

    NASA Technical Reports Server (NTRS)

    Lovas, F. J.; Suenram, R. D.; Snyder, L. E.; Hollis, J. M.; Lees, R. M.

    1982-01-01

    Torsionally excited methanol has been detected in Orion A, where three emission lines observed in the region of 93-100 GHz coincide with laboratory measurements of three methanol transitions. Torsionally excited methanol may therefore be used as a novel temperature probe, since this state lies near 200 per cm above the ground state, or about 290 K. No emission was detected from the transition arising from levels near 300 per cm, or approximately 430 K above the ground state.

  7. Variational calculation of 4He tetramer ground and excited states using a realistic pair potential

    NASA Astrophysics Data System (ADS)

    Hiyama, E.; Kamimura, M.

    2012-02-01

    We calculated the 4He trimer and tetramer ground and excited states with the LM2M2 potential using our Gaussian expansion method for ab initio variational calculations of few-body systems. The method has been extensively used for a variety of three-, four-, and five-body systems in nuclear physics and exotic atomic and molecular physics. The trimer (tetramer) wave function is expanded in terms of symmetric three- (four-) body Gaussian basis functions, ranging from very compact to very diffuse, without assumption of any pair correlation function. The calculated results for the trimer ground and excited states are in excellent agreement with values reported in the literature. The binding energies of the tetramer ground and excited states are obtained as 558.98 and 127.33 mK (0.93 mK below the trimer ground state), respectively. We found that precisely the same shape of the short-range correlation (rij≲4 Å) in the dimer appears in the ground and excited states of the trimer and tetramer. The overlap function between the trimer excited state and the dimer ground state and that between the tetramer excited state and the trimer ground state are almost proportional to the dimer wave function in the asymptotic region (up to ˜1000 Å). Also, the pair correlation functions of trimer and tetramer excited states are almost proportional to the squared dimer wave function. We then propose a model which predicts the binding energy of the first excited state of 4HeN (N≥3) measured from the 4HeN-1 ground state to be nearly (N)/(2(N-1))B2 where B2 is the dimer binding energy.

  8. Excited state absorption of pump radiation as a loss mechanism in solid-state lasers

    SciTech Connect

    Kliewer, M.L.; Powell, R.C.

    1989-08-01

    The characteristics of optical pumping dynamics occurring in laser-pumped rare earth-doped, solid-state laser materials were investigated by using a tunable alexandrite laser to pump Y/sub 3/Al/sub 5/O/sub 12/:Nd/sup 3+/ in an optical cavity. It was found that the slope efficiency of the Nd laser operation depends strongly on the wavelength of the pump laser. For pump wavelengths resulting in low slope efficiencies, intense fluorescence emission is observed from the sample in the blue-green spectral region. This is attributed to the excited state absorption of pump photons which occurs during radiationless relaxation from the pump band to the metastable state. This type of process will be an important loss mechanism for monochromatic pumping of laser systems at specific pump wavelengths.

  9. Excited-state absorption of pump radiation as a loss mechanism in solid-state lasers

    SciTech Connect

    Kliewer, M.L.; Powell, R.C.

    1989-08-01

    The characteristics of optical pumping dynamics occuring in laser-pumped rare earth-doped, solid-state laser materials were investigated by using a tunable alexandrite laser to pump Y3Al5O12:Nd(3+) in an optical cavity. It was found that the slope efficiency of the Nd laser operation depends strongly on the wavelength of the pump laser. For pump wavelength resulting in low slope efficiencies, intense fluorescence emission is observed form the sample in the blue-green spectral region. This is attributed to the excited state absorption of pump photons which occurs during radiationless relaxation from the pump band to the metastable state. This type of process will be an important loss mechanism for monochromatic pumping of laser systems at specific pump wavelengths.

  10. Excited state absorption of pump radiation as a loss mechanism in solid-state lasers

    NASA Technical Reports Server (NTRS)

    Kliewer, Michael L.; Powell, Richard C.

    1989-01-01

    The characteristics of optical pumping dynamics in laser-pumped, rare-earth-doped, solid-state laser materials are investigated by using a tunable alexandrite laser to pump Y3Al5O12:Nd(3+) in an optical cavity. It is found that the slope efficiency of the Nd laser operation depends strongly on the wavelength of the pump laser. For pump wavelengths resulting in low slope efficiencies, intense fluorescence emission is observed from the sample in the blue-green spectral region. This is attributed to the excited-state absorption of pump photons which occurs during radiationless relaxation from the pump band to the metastable state. This type of process is an important loss mechanism for monochromatic pumping of laser systems at specific pump wavelengths.

  11. Excited state dynamics in photosynthetic reaction center and light harvesting complex 1.

    PubMed

    Strümpfer, Johan; Schulten, Klaus

    2012-08-14

    Key to efficient harvesting of sunlight in photosynthesis is the first energy conversion process in which electronic excitation establishes a trans-membrane charge gradient. This conversion is accomplished by the photosynthetic reaction center (RC) that is, in case of the purple photosynthetic bacterium Rhodobacter sphaeroides studied here, surrounded by light harvesting complex 1 (LH1). The RC employs six pigment molecules to initiate the conversion: four bacteriochlorophylls and two bacteriopheophytins. The excited states of these pigments interact very strongly and are simultaneously influenced by the surrounding thermal protein environment. Likewise, LH1 employs 32 bacteriochlorophylls influenced in their excited state dynamics by strong interaction between the pigments and by interaction with the protein environment. Modeling the excited state dynamics in the RC as well as in LH1 requires theoretical methods, which account for both pigment-pigment interaction and pigment-environment interaction. In the present study we describe the excitation dynamics within a RC and excitation transfer between light harvesting complex 1 (LH1) and RC, employing the hierarchical equation of motion method. For this purpose a set of model parameters that reproduce RC as well as LH1 spectra and observed oscillatory excitation dynamics in the RC is suggested. We find that the environment has a significant effect on LH1-RC excitation transfer and that excitation transfers incoherently between LH1 and RC.

  12. Excited state dynamics in photosynthetic reaction center and light harvesting complex 1

    NASA Astrophysics Data System (ADS)

    Strümpfer, Johan; Schulten, Klaus

    2012-08-01

    Key to efficient harvesting of sunlight in photosynthesis is the first energy conversion process in which electronic excitation establishes a trans-membrane charge gradient. This conversion is accomplished by the photosynthetic reaction center (RC) that is, in case of the purple photosynthetic bacterium Rhodobacter sphaeroides studied here, surrounded by light harvesting complex 1 (LH1). The RC employs six pigment molecules to initiate the conversion: four bacteriochlorophylls and two bacteriopheophytins. The excited states of these pigments interact very strongly and are simultaneously influenced by the surrounding thermal protein environment. Likewise, LH1 employs 32 bacteriochlorophylls influenced in their excited state dynamics by strong interaction between the pigments and by interaction with the protein environment. Modeling the excited state dynamics in the RC as well as in LH1 requires theoretical methods, which account for both pigment-pigment interaction and pigment-environment interaction. In the present study we describe the excitation dynamics within a RC and excitation transfer between light harvesting complex 1 (LH1) and RC, employing the hierarchical equation of motion method. For this purpose a set of model parameters that reproduce RC as well as LH1 spectra and observed oscillatory excitation dynamics in the RC is suggested. We find that the environment has a significant effect on LH1-RC excitation transfer and that excitation transfers incoherently between LH1 and RC.

  13. Dark excited States of carotenoid regulated by bacteriochlorophyll in photosynthetic light harvesting.

    PubMed

    Nakamura, Ryosuke; Nakagawa, Katsunori; Nango, Mamoru; Hashimoto, Hideki; Yoshizawa, Masayuki

    2011-03-31

    In photosynthesis, carotenoids play important roles in light harvesting (LH) and photoprotective functions, which have been described mainly in terms of two singlet excited states of carotenoids: S(1) and S(2). In addition to the "dark" S(1) state, another dark state, S*, was recently identified and its involvement in photosynthetic functions was determined. However, there is no consistent picture concerning its nature or the mechanism of its formation. One particularly anomalous behavior obtained from femtosecond transient absorption (TA) spectroscopy is that the S*/S(1) population ratio depends on the excitation intensity. Here, we focus on the effect of nearby bacteriochlorophyll (BChl) on the relaxation dynamics of carotenoid in the LH complex. We performed femtosecond TA spectroscopy combined with pre-excitation of BChl in the reconstituted LH1 complex from Rhodospirillum rubrum S1. We observed that the energy flow from S(1), including its vibrationally excited hot states, to S* occurs only when nearby BChl is excited into Q(y), resulting in an increase in S*/S(1). We also examined the excitation-intensity dependence of S*/S(1) by conventional TA spectroscopy. A comparison between the pre-excitation effect and excitation-intensity dependence shows a strong correlation of S*/S(1) with the number of BChls excited into Q(y). In addition, we observed an increase in triplet formation as the S* population increased, indicating that S* is an electronic excited state that is the precursor to triplet formation. Our findings provide an explanation for observed spectroscopic features, including the excitation-intensity dependences debated so far, and offer new insights into energy deactivation mechanisms inherent in the LH antenna.

  14. Optically Excited Entangled States in Organic Molecules Illuminate the Dark.

    PubMed

    Upton, L; Harpham, M; Suzer, O; Richter, M; Mukamel, S; Goodson, T

    2013-06-20

    We utilize quantum entangled photons to carry out nonlinear optical spectroscopy in organic molecules with an extremely small number of photons. For the first time, fluorescence is reported as a result of entangled photon absorption in organic nonlinear optical molecules. Selectivity of the entangled photon absorption process is also observed and a theoretical model of this process is provided. Through these experiments and theoretical modeling it is found that while some molecules may not have strong classical nonlinear optical properties due to their excitation pathways; these same excitation pathways may enhance the entangled photon processes. It is found that the opposite is also true. Some materials with weak classical nonlinear optical effects may exhibit strong non-classical nonlinear optical effects. Our entangled photon fluorescence results provide the first steps in realizing and demonstrating the viability of entangled two-photon microscopy, remote sensing, and optical communications.

  15. Ultrafast excited-state proton transfer from dicyano-naphthol

    NASA Astrophysics Data System (ADS)

    Carmeli, I.; Huppert, D.; Tolbert, L. M.; Haubrich, J. E.

    1996-09-01

    The rate of proton transfer from electronically excited 5,8-dicyano-2-naphthol (DCN2) to the solvent is studied by time-resolved fluorescence. Unlike most naphthol derivatives, excited DCN2 is a strong acid ( pK ∗ 2≈ -4.5 ) and therefore is capable of transferring protons to alcohols and other moderate proton acceptor solvents. The rate constant of proton transfer, κd, at low temperatures (< 250 K) is slightly larger than the inverse dielectric relaxation time, 1/τ D and has the same activation energy of the dielectric relaxation. On the other hand, at temperatures above 250 K the temperature dependence of the proton transfer rate decreases monotonically with increasing temperature, while the dielectric relaxation activation energy maintains the low temperature value.

  16. Excited triplet states as photooxidants in surface waters

    NASA Astrophysics Data System (ADS)

    Canonica, S.

    2012-12-01

    The chromophoric components of dissolved organic matter (DOM) are generally the main absorbers of sunlight in surface waters and therefore a source of transient reactants under irradiation. Such short-lived species can be relevant for the fate of various classes of chemical contaminants in the aquatic environment. The present contribution focuses on the role of excited triplet states of chromophoric DOM, 3CDOM*, as transient photooxidants initiating the transformation and degradation of organic chemical contaminants. An early study [1] indicated that 3CDOM* may play a dominant role in the photo-induced transformation of electron-rich phenols, a conclusion which was later fortified by the results of transient absorption investigations using aromatic ketones as model photosensitizers [2] and by a recent careful analysis of the effect of oxygen concentration on transformation rates [3]. The variety of aquatic contaminants shown to be affected by triplet-induced oxidation has kept increasing, phenylurea herbicides [4], sulfonamide antibiotics [5] and some phytoestrogens [6] being prominent examples. Recent research has shown that the triplet-induced transformation of specific contaminants, especially aromatic nitrogen compounds, could be inhibited by the presence of DOM, very probably due to its antioxidant moieties [7]. While such moieties are not relevant for the quenching of 3CDOM*, they are expected to react with it in a similar way as the studied contaminants. Analogous reactions can be postulated to occur in liquid or solid phases of the atmospheric environment, as demonstrated in the case of HONO formation [8]. References 1. Canonica, S.; Jans, U.; Stemmler, K.; Hoigné, J. Transformation kinetics of phenols in water: Photosensitization by dissolved natural organic material and aromatic ketones. Environ. Sci. Technol. 1995, 29 (7), 1822-1831. 2. Canonica, S.; Hellrung, B.; Wirz, J. Oxidation of phenols by triplet aromatic ketones in aqueous solution. J. Phys

  17. Reconstruction of an excited-state molecular wave packet with attosecond transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Chini, Michael; Wang, Xiaowei; González-Castrillo, Alberto; Palacios, Alicia; Argenti, Luca; Martín, Fernando; Chang, Zenghu

    2016-08-01

    Attosecond science promises to allow new forms of quantum control in which a broadband isolated attosecond pulse excites a molecular wave packet consisting of a coherent superposition of multiple excited electronic states. This electronic excitation triggers nuclear motion on the molecular manifold of potential energy surfaces and can result in permanent rearrangement of the constituent atoms. Here, we demonstrate attosecond transient absorption spectroscopy (ATAS) as a viable probe of the electronic and nuclear dynamics initiated in excited states of a neutral molecule by a broadband vacuum ultraviolet pulse. Owing to the high spectral and temporal resolution of ATAS, we are able to reconstruct the time evolution of a vibrational wave packet within the excited B'Σ1u+ electronic state of H2 via the laser-perturbed transient absorption spectrum.

  18. Probing vibrationally mediated ultrafast excited-state reaction dynamics with multireference (CASPT2) trajectories.

    PubMed

    El-Khoury, Patrick Z; Joseph, Saju; Schapiro, Igor; Gozem, Samer; Olivucci, Massimo; Tarnovsky, Alexander N

    2013-11-07

    Excited-state trajectories computed at the complete active space second-order perturbation theory (CASPT2) reveal how vibrational excitation controls the molecular approach to the intersection space that drives the photodissociation of a prototypical halogenated methyl radical, namely CF2I. Translating the Franck-Condon structure along the ground-state CASPT2 vibrational modes in this system followed by propagating the displaced structures in the first excited doublet state simulates specific vibrational excitations and vibrationally mediated dynamics, respectively. Three distinct situations are encountered: the trajectories (i) converge to an energetically flat segment of the intersection space, (ii) locate a segment of the intersection space, and (iii) access a region where the intersection space degeneracy is lifted to form a ridge of avoided crossings. The computational protocol documented herein can be used as a tool to design control strategies based on selective excitation of vibrational modes, including adaptive feedback schemes using coherent light sources.

  19. Precise control of state-selective excitation in stimulated Raman scattering

    SciTech Connect

    Zhang Shian; Zhang Hui; Jia Tianqing; Wang Zugeng; Sun Zhenrong; Shi Junhui

    2010-10-15

    Multiphoton transitions can be manipulated by tailoring the ultrashort laser pulse. In this paper, we propose two schemes for achieving precise control of the selective excitation between two excited states in stimulated Raman-scattering process. We theoretically demonstrate that by properly designing the spectral phase distribution, the stimulated Raman transition probability for one excited state is kept at zero or a maximal value, while that for the other excited state can be continuously tuned over a wide range. Furthermore, the influence of the spectral bandwidth on the tunable range by the two schemes is discussed. We conclude that these schemes have significant application to the selective excitation of femtosecond coherent anti-Stokes Raman scattering.

  20. Protolytic dissociation of cyanophenols in ground and excited states in alcohol and water solutions

    NASA Astrophysics Data System (ADS)

    Szczepanik, Beata; Styrcz, Stanisław

    2011-08-01

    The effect of cyano substituents on acidity in ground and excited states of mono- and dicyanophenols was investigated. The equilibrium dissociation constants of 3,4-dicyanophenol in ground and lowest excited states in water solution and the change of these constants in the excited state during the transfer to the ground state for o-, m-, p-cyanophenol and 3,4-dicyanophenol in alcohol and water solutions were determined. It was shown that the cyano substitution increases the acidity of ortho-, meta- and dicyano-derivative in ground state in comparison to the phenol, which makes the anions of these derivatives appear in solutions from methanol to 1-butanol. In the excited state the acidity of investigated compounds changes significantly in comparison to the ground state. 3,4-Dicyanophenol is the strongest acid in the lowest excited singlet state, while p-cyanophenol is the weakest one in both alcohol and water solutions. The distribution of the electronic charge and dipole moments of all investigated cyanophenols in ground and excited states were determined on the basis of ab initio calculations using the GAMESS program.

  1. Excited State Electronic Properties of Sodium Iodide and Cesium Iodide

    SciTech Connect

    Campbell, Luke W.; Gao, Fei

    2013-05-01

    We compute from first principles the dielectric function, loss function, lifetime and scattering rate of quasiparticles due to electronic losses, and secondary particle spectrum due to plasmon decay in two scintillating alkali halides, sodium iodide and cesium iodide. Particular emphasis is placed on quasiparticles within several multiples of the band gap from the band edges. A theory for the decay spectra of plasmons and other electronic excitations in crystals is presented. Applications to Monte Carlo radiation transport codes are discussed.

  2. Excited states in the active media of oxygen - iodine lasers

    SciTech Connect

    Azyazov, V N

    2009-11-30

    A review of investigations of kinetic processes in active media oxygen - iodine lasers (OILs) performed in the last decade is presented. The mechanisms of pumping and quenching of electronically and vibrationally excited O{sub 2} and I{sub 2} molecules are considered, and dissociation mechanisms of I{sub 2} in the active medium of the OIL are analysed. The values of kinetic constants of processes proceeding in the active media of OILs are recommended. (review)

  3. Interpretation of unusual absorption bandwidths and resonance Raman intensities in excited state mixed valence.

    PubMed

    Lockard, Jenny V; Valverde, Guadalupe; Neuhauser, Daniel; Zink, Jeffrey I; Luo, Yun; Weaver, Michael N; Nelsen, Stephen F

    2006-01-12

    Excited state mixed valence (ESMV) occurs in molecules in which the ground state has a symmetrical charge distribution but the excited state possesses two or more interchangeably equivalent sites that have different formal oxidation states. Although mixed valence excited states are relatively common in both organic and inorganic molecules, their properties have only recently been explored, primarily because their spectroscopic features are usually overlapped or obscured by other transitions in the molecule. The mixed valence excited state absorption bands of 2,3-di-p-anisyl-2,3-diazabicyclo[2.2.2]octane radical cation are well-separated from others in the absorption spectrum and are particularly well-suited for detailed analysis using the ESMV model. Excited state coupling splits the absorption band into two components. The lower energy component is broader and more intense than the higher energy component. The absorption bandwidths are caused by progressions in totally symmetric modes, and the difference in bandwidths is caused by the coordinate dependence of the excited state coupling. The Raman intensities obtained in resonance with the high and low energy components differ significantly from those expected based on the oscillator strengths of the bands. This unexpected observation is a result of the excited state coupling and is explained by both the averaging of the transition dipole moment orientation over all angles for the two types of spectroscopies and the coordinate-dependent coupling. The absorption spectrum is fit using a coupled two-state model in which both symmetric and asymmetric coordinates are included. The physical meaning of the observed resonance Raman intensity trends is discussed along with the origin of the coordinate-dependent coupling. The well-separated mixed valence excited state spectroscopic components enable detailed electronic and resonance Raman data to be obtained from which the model can be more fully developed and tested.

  4. Ab Initio Excited State Properties and Dynamics of a Prototype σ-Bridged-Donor-Acceptor Molecule

    NASA Astrophysics Data System (ADS)

    Tapavicza, Enrico; Tavernelli, Ivano; Rothlisberger, Ursula

    2009-08-01

    The photophysical and dynamical properties of the donor-(σ-bridge)-acceptor molecule N-phenylpiperindone-malondinitrile are investigated by second-order approximate coupled cluster (CC2) and time-dependent density functional theory (TDDFT). The study is based on optimized equilibrium geometries for ground and excited states as well as on ab initio molecular dynamics simulations. While CC2 and DFT both predict ground state geometries that are consistent with the crystal structure, equilibrium geometries for the fluorescent charge transfer (CT) state are qualitatively different between CC2 and TDDFT. CC2 reproduces the experimental results for vertical excitations (within 0.3 eV) and provides an orbital assignment of the experimental absorption bands that is supported by experiments. Using CC2, a good agreement is also found for fluorescence energies (within 0.1-0.6 eV). At contrast, CT absorption and fluorescence energies are strongly underestimated by TDDFT using the semi-local functional PBE but improved agreement is found for the hybrid functional PBE0. However, for both functionals, TDDFT fails to predict an equilibrium geometry of the intradonor excited state because of mixing between this state and an artificially low-lying CT state during the optimization. This is an example where the well documented CT failure of TDDFT affects properties of other locally excited states. The minimum of the intradonor locally excited state was therefore only located by the CC2 method. The internal conversion (IC) process from a locally excited donor state to the CT state is simulated by excited state ab initio molecular dynamics based on CC2 and where nonadiabatic transitions are described using the Landau-Zener approximation. We find the IC process to occur a few tens of femtoseconds after excitation. The simulation provides a detailed description of the atomic rearrangements in electron donor and acceptor that drive the interconversion process.

  5. Excited-state polarizabilities of solvated molecules using cubic response theory and the polarizable continuum model

    NASA Astrophysics Data System (ADS)

    Ferrighi, Lara; Frediani, Luca; Ruud, Kenneth

    2010-01-01

    The theory and an implementation of the solvent contribution to the cubic response function for the polarizable continuum model for multiconfigurational self-consistent field wave functions is presented. The excited-state polarizability of benzene, para-nitroaniline, and nitrobenzene has been obtained from the double residue of the cubic response function calculated in the presence of an acetonitrile and dioxane solvent. The calculated excited-state polarizabilities are compared to results obtained from the linear response function of the explicitly optimized excited states.

  6. Excited electronic state of a cluster formed from self-trapped electrons

    SciTech Connect

    Mukhomorov, V.K.

    1995-12-01

    The possibility of spontaneous clustering of self-trapped electrons in an excited electronic state is discussed. The pair interaction potential corresponds to the excited terms {sup 1}{Sigma}{sub g}(1s2s) in the single spin state and {sup 3}{Sigma}{sub u}(1s2s) in the triplet spin state. The energy interval corresponding to a pair of excited quasi-particles is calculated. Quantitative calculations are presented for electrons solvated in ammonia. 9 refs., 4 figs.

  7. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states

    SciTech Connect

    Bjorgaard, Josiah August; Velizhanin, Kirill A.; Tretiak, Sergei

    2016-04-15

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited state molecular dynamics. In this paper, we describe methods of simulating nonequilibrium solvent effects in excited state molecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Finally, molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission.

  8. Defect States in Copper Indium Gallium Selenide Solar Cells from Two-Wavelength Excitation Photoluminescence Spectroscopy

    SciTech Connect

    Jensen, Soren A.; Dippo, Patricia; Mansfield, Lorelle M.; Glynn, Stephen; Kuciauskas, Darius

    2016-11-21

    We use two-wavelength excitation photoluminescence spectroscopy to probe defect states in CIGS thin films. Above-Eg excitation is combined with a tunable IR bias light that modulates the population of the defect states. We find that IR illumination in the range of 1400-2000 nm (0.62-0.89 eV) causes a reduction of the PL intensity, the magnitude of which scales linearly with IR power. Further, KF post deposition treatment has only a modest influence on the effect of the IR excitation. Initial data suggest that we have developed an optical characterization tool for band-gap defect states.

  9. Ultrafast excited state hydrogen atom transfer in salicylideneaniline driven by changes in aromaticity.

    PubMed

    Gutiérrez-Arzaluz, Luis; Cortés-Guzmán, Fernando; Rocha-Rinza, Tomás; Peón, Jorge

    2015-12-21

    We investigated two important unresolved issues on excited state intramolecular proton transfer (ESIPT) reactions, i.e., their driving force and the charge state of the transferred species by means of quantum chemical topology. We related changes in the aromaticity of a molecule after electron excitation to reaction dynamics in an excited state. Additionally, we found that the conveyed particle has a charge intermediate between that of a bare proton and a neutral hydrogen atom. We anticipate that the analysis presented in this communication will yield valuable insights into ESIPT and other similar photochemical reactions.

  10. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states

    NASA Astrophysics Data System (ADS)

    Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.

    2016-04-01

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited state molecular dynamics. In this work, we describe methods of simulating nonequilibrium solvent effects in excited state molecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission.

  11. Entropy, chaos, and excited-state quantum phase transitions in the Dicke model.

    PubMed

    Lóbez, C M; Relaño, A

    2016-07-01

    We study nonequilibrium processes in an isolated quantum system-the Dicke model-focusing on the role played by the transition from integrability to chaos and the presence of excited-state quantum phase transitions. We show that both diagonal and entanglement entropies are abruptly increased by the onset of chaos. Also, this increase ends in both cases just after the system crosses the critical energy of the excited-state quantum phase transition. The link between entropy production, the development of chaos, and the excited-state quantum phase transition is more clear for the entanglement entropy.

  12. Dynamics of the Chemistry of Electronically Excited Atoms in Defined Quantum States.

    DTIC Science & Technology

    1980-08-15

    excited atom concentration by atomic absorption spectroscopy in the vacuum ultraviolet (6). Relatively efficient electronic to vibrational energy transfer...by the use of atomic absorption spectroscopy , permitted observation of both ground and electronically excited state bromine atoms. The deactivation of

  13. On the nature of excited electronic states in cyanine dyes: implications for visual pigment spectra

    NASA Astrophysics Data System (ADS)

    Dinur, Uri; Honig, Barry; Schulten, Klaus

    1980-06-01

    CNDO/S CI calculations are carried out on polyenes and on cyanine dyes. In contrast to polyenes, doubly excited configurations have a strong effect on the first optically allowed excited state in cyanines. Protonated Schiff bases of retinal are closely related to cyanine dyes, with important consequences for models of visual pigment spectra and photochemistry.

  14. Reduced Heat Flux Through Preferential Surface Reactions Leading to Vibrationally and Electronically Excited Product States

    DTIC Science & Technology

    2016-03-04

    computational chemistry approaches, capable of modeling nonadiabatic oxygen interactions (electronically excited interactions) with surface defects...were developed. Through such computational chemistry modeling we determined precisely how and why such excited-state molecules are produced, by...to interpret the experimental data. The third objective was to develop new computational chemistry approaches capable of modeling the challenging

  15. Microsolvation Effects on the Excited-State Dynamics of Protonated Tryptophan

    NASA Astrophysics Data System (ADS)

    Guglielmi, Matteo; Mercier, Sebastien; Boyarkin, Oleg; Kamariotis, Anthi; Tavernelli, Ivano; Cascella, Michele; Roethlisberger, Ursula; Rizzo, Thomas

    2008-03-01

    To better understand the complex photophysics of the amino acid tryptophan, which is widely used as a probe of protein structure and dynamics, we have measured electronic spectra of protonated, gas-phase tryptophan solvated with a controlled number of water molecules and cooled to ˜10 K. We observe that, even at this temperature, the bare molecule exhibits a broad electronic spectrum, implying ultrafast, nonradiative decay of the excited state. Surprisingly, the addition of two water molecules sufficiently lengthens the excited-state lifetime that we obtain a fully vibrationally resolved electronic spectrum. Quantum chemical calculations at the RI-CC2/aug-cc-pVDZ level, together with TDDFT/pw based first-principles MD simulations of the excited-state dynamics, clearly demonstrate how interactions with water destabilize the photodissociative states and increase the excited-state lifetime.

  16. Electronic excited states of CO/sub 2/: An electron impact investigation

    SciTech Connect

    McDiarmid, R.; Doering, J.P.

    1984-01-15

    The electronic excited states of CO/sub 2/ were restudied by variable incident energy, variable angle electron impact spectroscopy. In this study, valence states of mixed configurations were distinguished from pure Rydberg states. Our results are incompatible with the theoretical description of CO/sub 2/, in which only two valence singlet states are located.

  17. Mode specific excited state dynamics study of bis(phenylethynyl)benzene from ultrafast Raman loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Roy, Khokan; Kayal, Surajit; Ariese, Freek; Beeby, Andrew; Umapathy, Siva

    2017-02-01

    Femtosecond transient absorption (fs-TA) and Ultrafast Raman Loss Spectroscopy (URLS) have been applied to reveal the excited state dynamics of bis(phenylethynyl)benzene (BPEB), a model system for one-dimensional molecular wires that have numerous applications in opto-electronics. It is known from the literature that in the ground state BPEB has a low torsional barrier, resulting in a mixed population of rotamers in solution at room temperature. For the excited state this torsional barrier had been calculated to be much higher. Our femtosecond TA measurements show a multi-exponential behaviour, related to the complex structural dynamics in the excited electronic state. Time-resolved, excited state URLS studies in different solvents reveal mode-dependent kinetics and picosecond vibrational relaxation dynamics of high frequency vibrations. After excitation, a gradual increase in intensity is observed for all Raman bands, which reflects the structural reorganization of Franck-Condon excited, non-planar rotamers to a planar conformation. It is argued that this excited state planarization is also responsible for its high fluorescence quantum yield. The time dependent peak positions of high frequency vibrations provide additional information: a rapid, sub-picosecond decrease in peak frequency, followed by a slower increase, indicates the extent of conjugation during different phases of excited state relaxation. The CC triple (-C≡C-) bond responds somewhat faster to structural reorganization than the CC double (>C=C<) bonds. This study deepens our understanding of the excited state of BPEB and analogous linear pi-conjugated systems and may thus contribute to the advancement of polymeric "molecular wires."

  18. Mode specific excited state dynamics study of bis(phenylethynyl)benzene from ultrafast Raman loss spectroscopy.

    PubMed

    Roy, Khokan; Kayal, Surajit; Ariese, Freek; Beeby, Andrew; Umapathy, Siva

    2017-02-14

    Femtosecond transient absorption (fs-TA) and Ultrafast Raman Loss Spectroscopy (URLS) have been applied to reveal the excited state dynamics of bis(phenylethynyl)benzene (BPEB), a model system for one-dimensional molecular wires that have numerous applications in opto-electronics. It is known from the literature that in the ground state BPEB has a low torsional barrier, resulting in a mixed population of rotamers in solution at room temperature. For the excited state this torsional barrier had been calculated to be much higher. Our femtosecond TA measurements show a multi-exponential behaviour, related to the complex structural dynamics in the excited electronic state. Time-resolved, excited state URLS studies in different solvents reveal mode-dependent kinetics and picosecond vibrational relaxation dynamics of high frequency vibrations. After excitation, a gradual increase in intensity is observed for all Raman bands, which reflects the structural reorganization of Franck-Condon excited, non-planar rotamers to a planar conformation. It is argued that this excited state planarization is also responsible for its high fluorescence quantum yield. The time dependent peak positions of high frequency vibrations provide additional information: a rapid, sub-picosecond decrease in peak frequency, followed by a slower increase, indicates the extent of conjugation during different phases of excited state relaxation. The CC triple (-C≡C-) bond responds somewhat faster to structural reorganization than the CC double (>C=C<) bonds. This study deepens our understanding of the excited state of BPEB and analogous linear pi-conjugated systems and may thus contribute to the advancement of polymeric "molecular wires."

  19. Effect of xanthophyll composition on the chlorophyll excited state lifetime in plant leaves and isolated LHCII

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew P.; Zia, Ahmad; Horton, Peter; Ruban, Alexander V.

    2010-07-01

    Xanthophyll excited states have been implicated by transient absorption and two-photon excitation studies in playing a key role in the regulation of photosynthetic light harvesting via photoprotective energy dissipation. For any proposed quenching mechanism to be effective it must reduce the chlorophyll excited state lifetime from 2 ns to ˜0.5-0.4 ns. In the presented study the effect of xanthophyll composition on the chlorophyll excited state lifetime in Arabidopsis leaves in the light harvesting ( F m) and photoprotective (NPQ) states was determined. The data was compared to the chlorophyll excited state lifetime of native isolated LHCII and CP26 in detergent micelles with varying xanthophyll composition. It was found that although the differences in xanthophyll composition between LHC complexes from various Arabidopsis mutants were sufficient to explain the varying F m lifetime (and varying PSII efficiency), they were not of a sufficient scale to fully explain the observed differences in the NPQ lifetimes. Only when the LHC complexes were exposed to a low detergent/low pH media, a condition known to mimic the conformational state of LHCII associated with NPQ in vivo, were variations in excited state lifetime large enough to explain the differences observed in leaves. Furthermore, the data reveal that the replacement of lutein by either zeaxanthin or violaxanthin in the internal xanthophyll binding sites of LHCII and CP26 reduces the efficiency of energy dissipation in the photoprotective state in leaves and isolated complexes.

  20. Towards experimental determination of conical intersection properties: a twin state based comparison with bound excited states.

    PubMed

    Zilberg, Shmuel; Haas, Yehuda

    2011-07-07

    The energy and approximate structure of certain S(0)/S(1) conical intersections (CI) are shown computationally to be deducible from those of two bound states: the first triplet (T(1)), which is iso-energetic with the CI, and the second excited singlet state (S(2)). This is demonstrated for acepentalene (I) and its perfluoro derivative (II) using the twin state concept for three states systems and based on the fact that the triplet T(1) is almost degenerate with the CI. The stable S(2) (C(3v) configuration) state exhibits unusual exaltation of Jahn-Teller active degenerate mode-ν(JT) = 2058 cm(-1) (∼500 cm(-1) higher than analogous e-mode of the symmetric (C(3v)) T(1) and the dianion I(-2) or any C-C vibration of the Jahn-Teller distorted (C(s)) ground state minimum). The acepentalene molecule, whose rigid structure and possibility to attain the relatively high symmetry C(3v) configuration, is a particularly suitable candidate for this purpose.

  1. The excited states and vibronic spectroscopy of diphenyldiacetylene and diphenylvinylacetylene.

    PubMed

    Sebree, Joshua A; Zwier, Timothy S

    2012-01-07

    Laser induced fluorescence (LIF) excitation scans and dispersed fluorescence (DFL) spectra have been recorded for two four-carbon α,ω-diphenyl systems, diphenyldiacetylene (DPDA, φ-C≡C-C≡C-φ) and trans-diphenylvinylacetylene (DPVA, φ-CH≡CH-C≡C-φ) as isolated molecules cooled in a supersonic expansion. While these molecules have similar conjugation length, they exhibit strikingly different vibronic spectroscopy and photophysics. The near-UV LIF excitation spectrum of diphenyldiacetylene has its electronic origin at 32,158 cm(-1), and a strong progression in the C≡C stretch (2156 cm(-1)). All transitions are inherently broad, with widths of ~30 cm(-1) fwhm or greater. The S(1) origin DFL spectrum is composed of sharp transitions with Franck-Condon activity mirroring that in the excitation spectrum, and broad emission shifted well to the red ascribable to phosphorescence on the μs timescale. Using ab initio calculations, it is possible to show that DPDA exists as a single, planar conformer with D(2h) symmetry. In contrast, trans-diphenylvinylacetylene shows intense sharp transitions in both LIF and DFL spectra with an S(0)-S(1) origin of 31,183.2 cm(-1) and long progressions involving the in-plane fundamentals ν(53) (bridge-phenyl bending) and ν(51) (bridge-phenyl stretch). A sharp reduction in fluorescence yield in DPVA occurs within 300 cm(-1) of the S(1) origin. Possible causes for the photophysical processes occurring in the two molecules are discussed.

  2. The Millimeter-Wave Spectrum of Methacrolein. Torsion-Rotation Effects in the Excited States

    NASA Astrophysics Data System (ADS)

    Zakharenko, Olena; Motiyenko, R. A.; Aviles Moreno, Juan-Ramon; Huet, T. R.

    2015-06-01

    Last year we reported the analysis of the rotational spectrum of s-trans conformer of methacrolein CH2=C(CH3)CHO in the ground vibrational state. In this talk we report the study of its low lying excited vibrational states. The study is based on room-temperature absorption spectra of methacrolein recorded in the frequency range 150 - 465 GHz using the spectrometer in Lille. The new results include assignment of the first excited torsional state (131 cm-1), and the joint analysis of the vt = 0 and vt = 1 states, that allowed us to improve the model in the frame of Rho-Axis-Method (RAM) Hamiltonian and to remove some strong correlations between parameters. Also we assigned the first excited vibrational state of the skeletal torsion mode (170 cm-1). The inverse sequence of A and E tunneling substates as well as anomalous A-E splittings observed for the rotational lines of vsk = 1 state clearly indicate a coupling between methyl torsion and skeletal torsion. However we were able to fit within experimental accuracy the rotational lines of vsk = 1 state using the RAM Hamiltonian. Because of the inversion of the A and E tunneling substates the rotational lines of the vsk = 1 states were assumed to belong to a virtual first excited torsional state. Finally, we assigned several low-Ka rotational transitions of the excited vibrational states above 200 cm-1 but their analysis is complicated by different rotation-vibration interactions. In particular there is an evidence of the Fermi-type resonance between the second excited torsional state and the first excited state of the in-plane skeletal bending mode (265 cm-1). Support from the French Laboratoire d'Excellence CaPPA (Chemical and Physical Properties of the Atmosphere) through contract ANR-10-LABX-0005 of the Programme d'Investissements d'Avenir is acknowledged. Zakharenko O. et al., 69th ISMS, 2014, TI01

  3. Noncollisional excitation of low-lying states in gaseous nebulae

    NASA Technical Reports Server (NTRS)

    Rubin, Robert H.

    1986-01-01

    Consideration is given to the effects of processes other than electron collisional excitation on the energy level populations of species of C, N, and O. It is found that dielectronic as well as direct-radiative recombination may contribute significantly and in some cases be the major input to populating the low-lying metastable levels. It is concluded that the most pronounced changes occur when there is a large effective recombination coefficient to a level and when T(e) is low. The most dramatic change among the forbidden lines occurs for the O II forbidden lines.

  4. Populating excited states of incoherent atoms using coherent light.

    NASA Technical Reports Server (NTRS)

    Mcilrath, T. J.; Carlsten, J. L.

    1972-01-01

    Study of the influence of various experimental parameters on the interaction between a multimode high-intensity laser light and the absorbing atoms of an atomic gas. Using a simplified treatment of line broadening which does not include correlations between momentum-changing collisions and pressure-broadening collisions, expressions are obtained that show the effect of pressure, laser-pulse length, and intensity on the excitation. It is found that, as long as the dephasing time of the atomic system is sufficiently short, the interaction reduces to a two-body collision between the atoms and photons, where coherence effects do not occur.

  5. Excited-state hadron masses from lattice QCD

    NASA Astrophysics Data System (ADS)

    Morningstar, C.; Bulava, J.; Foley, J.; Jhang, Y. C.; J, K. J.; Lenkner, D.; Wong, C. H.

    2012-09-01

    Progress in computing the spectrum of excited baryons and mesons in lattice QCD is described. Large sets of spatially-extended hadron operators are used. The need for multi-hadron operators in addition to single-hadron operators is emphasized, necessitating the use of a new stochastic method of treating the low-lying modes of quark propagation which exploits Laplacian Heaviside quark-field smearing. A new glueball operator is tested and computing the mixing of this glueball operator with a quark-antiquark operator and multiple two-pion operators is shown to be feasible.

  6. Comments on the determination of excited state dipole moment of molecules using the method of solvatochromism.

    PubMed

    Kawski, A; Bojarski, P

    2011-11-01

    The present note comments on several publications which appeared in different journals containing many inaccurate statements and lacking honest citations of basic papers dealing with the application of solvatochromism to determine excited state dipole moments.

  7. Excited state surfaces in density functional theory: a new twist on an old problem.

    PubMed

    Wiggins, Paul; Williams, J A Gareth; Tozer, David J

    2009-09-07

    Excited state surfaces in density functional theory and the problem of charge transfer are considered from an orbital overlap perspective. For common density functional approximations, the accuracy of the surface will not be uniform if the spatial overlap between the occupied and virtual orbitals involved in the excitation has a strong conformational dependence; the excited state surface will collapse toward the ground state in regions where the overlap is very low. This characteristic is used to predict and to provide insight into the breakdown of excited state surfaces in the classic push-pull 4-(dimethylamino)benzonitrile molecule, as a function of twist angle. The breakdown is eliminated using a Coulomb-attenuated functional. Analogous situations will arise in many molecules.

  8. Radical ions and excited states in radiolysis. Optically detected time resolved EPR

    SciTech Connect

    Trifunac, A.D.; Smith, J.P.

    1981-01-01

    Excited-state production and radical-ion recombination kinetics in pulse-irradiated solutions of aromatic solutes in cyclohexane are studied by a new method of optical detection of time-resolved electron paramagnetic resonance (EPR) spectra. 7 figures.

  9. Collective magnetic excitations of C4-symmetric magnetic states in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Scherer, Daniel D.; Eremin, Ilya; Andersen, Brian M.

    2016-11-01

    We study the collective magnetic excitations of the recently discovered C4-symmetric spin-density-wave states of iron-based superconductors with particular emphasis on their orbital character based on an itinerant multiorbital approach. This is important since the C4-symmetric spin-density-wave states exist only at moderate interaction strengths where damping effects from a coupling to the continuum of particle-hole excitations strongly modify the shape of the excitation spectra compared to predictions based on a local moment picture. We uncover a distinct orbital polarization inherent to magnetic excitations in C4-symmetric states, which provide a route to identify the different commensurate magnetic states appearing in the continuously updated phase diagram of the iron-pnictide family.

  10. Inelastic WIMP-nucleus scattering to the first excited state in 125Te

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.; Avignone, F. T., III; Kortelainen, M.; Pirinen, P.; Srivastava, P. C.; Suhonen, J.; Thomas, A. W.

    2016-11-01

    The direct detection of dark matter constituents, in particular the weakly interacting massive particles (WIMPs), is considered central to particle physics and cosmology. In this paper we study transitions to the excited states, possible in nuclei which have sufficiently low-lying excited states. Examples considered previously were the first excited states of 127I, 129Xe and 83Kr. Here, we examine 125Te, which offers some advantages and is currently being considered as a target. In all these cases the extra signature of the gamma rays following the de-excitation of these states has definite advantages over the purely nuclear recoil and in principle such a signature can be exploited experimentally. A brief discussion of the experimental feasibility is given in the context of the CUORE experiment.

  11. Ultrafast transient absorption microscopy: Study of excited state dynamics in PtOEP crystals

    NASA Astrophysics Data System (ADS)

    Davydova, Dar'ya; de la Cadena, Alejandro; Demmler, Stefan; Rothhardt, Jan; Limpert, Jens; Pascher, Torbjörn; Akimov, Denis; Dietzek, Benjamin

    2016-01-01

    We report a novel transient absorption microscope based on a tailor-made femtosecond fiber laser system operating at 250 kHz. The setup is applied to study PtOEP crystals embedded in a PBMA polymer matrix by analyzing the excited state dynamics in specific points of the sample as well as by spatially resolved excited state dynamics of the crystals. The results reveal the impact of the distortions of the crystal lattice, such as microcracks or amorphous regions caused by non-thermal melting on a lifetime of the excited triplet states of PtOEP crystals. Although transient absorption studies without any spatial resolution of PtOEP in solution and thin films were reported before, the study of spatially resolved excited state dynamics of micrometer-sized PtOEP crystals is performed for the first time to the best of our knowledge.

  12. Description of ground and excited electronic states by ensemble density functional method with extended active space

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Martínez, Todd J.; Kim, Kwang S.

    2017-08-01

    An extended variant of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, the REKS(4,4) method, designed to describe the ground electronic states of strongly multireference systems is modified to enable calculation of excited states within the time-independent variational formalism. The new method, the state-interaction state-averaged REKS(4,4), i.e., SI-SA-REKS(4,4), is capable of describing several excited states of a molecule involving double bond cleavage, polyradical character, or multiple chromophoric units. We demonstrate that the new method correctly describes the ground and the lowest singlet excited states of a molecule (ethylene) undergoing double bond cleavage. The applicability of the new method for excitonic states is illustrated with π stacked ethylene and tetracene dimers. We conclude that the new method can describe a wide range of multireference phenomena.

  13. Permanent Magnet Synchronous Condenser with Solid State Excitation

    SciTech Connect

    Hsu, Ping; Muljadi, Eduard; Wu, Ziping; Gao, Wenzhong

    2015-10-05

    A synchronous condenser consists of a free-spinning wound-field synchronous generator and a field excitation controller. In this paper, we propose a synchronous generator that employs a permanent magnet synchronous generator (PMSG) instead of a wound-field machine. PMSGs have the advantages of higher efficiency and reliability. In the proposed configuration, the reactive power control is achieved by a voltage source converter connected in series with the PMSG and the grid. The converter varies the phase voltage of the PMSG so as to create the same effect of over or under excitation in a wound-field machine. The converter output voltage level controls the amount and the direction of the produced reactive power and the voltage's phase is kept in-phase with the grid voltage except a slight phase can be introduced so that some power can be drawn from the grid for maintaining the DC bus voltage level of the converter. Since the output voltage of the converter is only a fraction of the line voltage, its VA rating is only a fraction of the rating of the PMSG. The proposed scheme is shown to be effective by computer simulation.

  14. Switching between ground and excited states by optical feedback in a quantum dot laser diode

    SciTech Connect

    Virte, Martin; Breuer, Stefan; Sciamanna, Marc; Panajotov, Krassimir

    2014-09-22

    We demonstrate switching between ground state and excited state emission in a quantum-dot laser subject to optical feedback. Even though the solitary laser emits only from the excited state, we can trigger the emission of the ground state by optical feedback. We observe recurrent but incomplete switching between the two emission states by variation of the external cavity length in the sub-micrometer scale. We obtain a good qualitative agreement of experimental results with simulation results obtained by a rate equation that accounts for the variations of the feedback phase.

  15. Geometric constraints in semiclassical initial value representation calculations in Cartesian coordinates: excited states.

    PubMed

    Issack, Bilkiss B; Roy, Pierre-Nicholas

    2007-01-14

    The authors show that a recently proposed approach [J. Chem. Phys. 123, 084103 (2005)] for the inclusion of geometric constraints in semiclassical initial value representation calculations can be used to obtain excited states of weakly bound complexes. Sample calculations are performed for free and constrained rare gas clusters. The results show that the proposed approach allows the evaluation of excited states with reasonable accuracy when compared to exact basis set calculations.

  16. Nonaxial shapes of even–even lantanide and actinide nuclei in excited collective states

    SciTech Connect

    Nadirbekov, M. S. Bozarov, O. A.

    2016-07-15

    Quadrupole-type excited states of even–even nuclei are studied on the basis of arbitrary-triaxiality model. It is shown that the inclusion of high-order terms in the expansion of the rotational-energy operator in the variable γ improves substantially agreement between our theoretical results and respective experimental data. The proposed model makes it possible to explain the intricate character of the spectrum of excited states of even–even lanthanide and actinide nuclei.

  17. Counting the number of excited states in organic semiconductor systems using topology

    SciTech Connect

    Catanzaro, Michael J.; Shi, Tian; Tretiak, Sergei; Chernyak, Vladimir Y.

    2015-02-28

    Exciton scattering theory attributes excited electronic states to standing waves in quasi-one-dimensional molecular materials by assuming a quasi-particle picture of optical excitations. The quasi-particle properties at branching centers are described by the corresponding scattering matrices. Here, we identify the topological invariant of a scattering center, referred to as its winding number, and apply topological intersection theory to count the number of quantum states in a quasi-one-dimensional system.

  18. Role of the low-energy excited states in the radiolysis of aromatic liquids.

    PubMed

    Baidak, Aliaksandr; Badali, Matthew; LaVerne, Jay A

    2011-07-07

    The contribution of the low-energy excited states to the overall product formation in the radiolysis of simple aromatic liquids--benzene, pyridine, toluene, and aniline--has been examined by comparison of product yields obtained in UV-photolysis and in γ-radiolysis. In photolysis, these electronic excited states were selectively populated using UV-light excitation sources with various energies. Yields of molecular hydrogen and of "dimers" (biphenyl, bibenzyl, dipyridyl for benzene, toluene, pyridine, respectively, and of ammonia and diphenylamine for aniline) have been determined, since they are the most abundant radiolytic products. Negligibly small production of molecular hydrogen in the UV-photolysis of aromatic liquids with excitation to energies of 4.88, 5.41, 5.79, and 6.70 eV and the lack of a scavenger effect suggest that this product originates from short-lived high-energy singlet states. A significant reduction in "dimer" radiation-chemical yields in the presence of scavengers such as anthracene or naphthalene indicates that the triplet excited states are important precursors to these products. The results for toluene and aniline suggest that efficient dissociation from the lowest-energy excited triplet state leads to noticeable "dimer" production. For benzene and pyridine, the lowest-energy triplet excited states are not likely to fragment into radicals because of the relatively large energy gap between the excited state level and corresponding bond dissociation energy. The "dimer" formation in the radiolysis of benzene and pyridine is likely to involve short-lived high-energy triplet states.

  19. On the nature of the "dark S*" excited state of β-carotene.

    PubMed

    Ostroumov, Evgeny E; Müller, Marc G; Reus, Michael; Holzwarth, Alfred R

    2011-04-28

    Femtosecond transient absorption spectroscopy has been applied to the isolated carotenoid β-carotene under a large variety of experimental conditions regarding solvent, temperature, excitation wavelength, and intensity to study the excited state relaxation dynamics in order to elucidate the origin of the so-called "dark S* state", which has been discussed very controversially in the literature. The results are analyzed in terms of lifetime density maps, and various kinetic models are tested on the data. The sample purification was found to be critical. The appearance of a component with a lifetime longer than that of the relaxed S(1) state (i.e., τ > 10 ps), which has been associated previously with the S* (or S(‡)) state is due to the presence of an impurity. For pure samples, four lifetimes are typically observed (all ≤10 ps at room temperature). Consideration of the large body of experimental data leads us to exclude relaxation schemes implying a separate "dark S* state" in β-carotene formed in parallel to the normal S(2) → S(1) relaxation scheme. Vibrational cooling in the S(1) state can explain fully all the features of the transient spectra on the picosecond time scale within a S(2) → S(1v) → S(1v') → S(1) → S(0) relaxation scheme without invoking any additional electronic or distinctly different conformational states. Thus, we exclude assignments of the previously reported "S* state" signals in β-carotene (i) to require the postulate of a separate electronic state, (ii) to require the postulate of a large conformational change and/or a partial cis configuration formed in the relaxation pathway, or (iii) to require a vibrationally excited ground state (GS) species. High intensity excitation leads in part to a two-photon excitation to the S(2N) state which upon relaxation gives rise to a different vibrational excitation pattern in the initially created hot S(1) state(s). The spectral changes in the S(1v) state observed upon both short wave

  20. Triplet excited states of cyclic disulfides and related compounds: electronic structures, geometries, energies, and decay.

    PubMed

    Ginagunta, Saroja; Bucher, Götz

    2011-02-03

    We have performed a computational study on the properties of a series of heterocycles bearing two adjacent heteroatoms, focusing on the structures and electronic properties of their first excited triplet states. If the heteroatoms are both heavy chalcogens (S, Se, or Te) or isoelectronic species, then the lowest excited triplet state usually has (π*, σ*) character. The triplet energies are fairly low (30-50 kcal mol(-1)). The (π*, σ*) triplet states are characterized by a significantly lengthened bond between the two heteroatoms. Thus, in 1,2-dithiolane (1b), the S-S bond length is calculated to be 2.088 Å in the singlet ground state and 2.568 Å in the first triplet excited state. The spin density is predicted to be localized almost exclusively on the sulfur atoms. Replacing one heavy chalcogen atom by an oxygen atom or an NR group results in a significant destabilization of the (π*, σ*) triplet excited state, which then no longer is lower in energy than an open-chain biradical. The size of the heterocyclic ring also contributes to the stability of the (π*, σ*) triplet state, with five-membered rings being more favorable than six-membered rings. Benzoannulation, finally, usually lowers the energy of the (π*, σ*) triplet excited states. If one of the heteroatoms is an oxygen or nitrogen atom, however, the corresponding lowest triplet states are better described as σ,π-biradicals.

  1. Non-orthogonal configuration interaction for the calculation of multielectron excited states

    SciTech Connect

    Sundstrom, Eric J. Head-Gordon, Martin

    2014-03-21

    We apply Non-orthogonal Configuration Interaction (NOCI) to molecular systems where multielectron excitations, in this case double excitations, play a substantial role: the linear polyenes and β-carotene. We demonstrate that NOCI when applied to systems with extended conjugation, provides a qualitatively correct wavefunction at a fraction of the cost of many other multireference treatments. We also present a new extension to this method allowing for purification of higher-order spin states by utilizing Generalized Hartree-Fock Slater determinants and the details for computing 〈S{sup 2}〉 for the ground and excited states.

  2. Non-orthogonal configuration interaction for the calculation of multielectron excited states

    NASA Astrophysics Data System (ADS)

    Sundstrom, Eric J.; Head-Gordon, Martin

    2014-03-01

    We apply Non-orthogonal Configuration Interaction (NOCI) to molecular systems where multielectron excitations, in this case double excitations, play a substantial role: the linear polyenes and β-carotene. We demonstrate that NOCI when applied to systems with extended conjugation, provides a qualitatively correct wavefunction at a fraction of the cost of many other multireference treatments. We also present a new extension to this method allowing for purification of higher-order spin states by utilizing Generalized Hartree-Fock Slater determinants and the details for computing ⟨S2⟩ for the ground and excited states.

  3. A SPONTANEOUS STATE OF WEAKLY CORRELATED SYNAPTIC EXCITATION AND INHIBITION IN VISUAL CORTEX

    PubMed Central

    TAN, A. Y. Y.; ANDONI, S.; PRIEBE, N. J.

    2013-01-01

    Cortical spontaneous activity reflects an animal’s behavioral state and affects neural responses to sensory stimuli. The correlation between excitatory and inhibitory synaptic input to single neurons is a key parameter in models of cortical circuitry. Recent measurements demonstrated highly correlated synaptic excitation and inhibition during spontaneous “up-and-down” states, during which excitation accounted for approximately 80% of inhibitory variance (Shu et al., 2003; Haider et al., 2006). Here we report in vivo whole-cell estimates of the correlation between excitation and inhibition in the rat visual cortex under pentobarbital anesthesia, during which up-and-down states are absent. Excitation and inhibition are weakly correlated, relative to the up-and-down state: excitation accounts for less than 40% of inhibitory variance. Although these correlations are lower than when the circuit cycles between up-and-down states, both behaviors may arise from the same circuitry. Our observations provide evidence that different correlational patterns of excitation and inhibition underlie different cortical states. PMID:23727451

  4. Size and shape dependent photoluminescence and excited state decay rates of diamondoids.

    PubMed

    Richter, Robert; Wolter, David; Zimmermann, Tobias; Landt, Lasse; Knecht, Andre; Heidrich, Christoph; Merli, Andrea; Dopfer, Otto; Reiss, Philipp; Ehresmann, Arno; Petersen, Jens; Dahl, Jeremy E; Carlson, Robert M K; Bostedt, Christoph; Möller, Thomas; Mitric, Roland; Rander, Torbjörn

    2014-02-21

    We present photoluminescence spectra and excited state decay rates of a series of diamondoids, which represent molecular structural analogues to hydrogen-passivated bulk diamond. Specific isomers of the five smallest diamondoids (adamantane-pentamantane) have been brought into the gas phase and irradiated with synchrotron radiation. All investigated compounds show intrinsic photoluminescence in the ultraviolet spectral region. The emission spectra exhibit pronounced vibrational fine structure which is analyzed using quantum chemical calculations. We show that the geometrical relaxation of the first excited state of adamantane, exhibiting Rydberg character, leads to the loss of Td symmetry. The luminescence of adamantane is attributed to a transition from the delocalized first excited state into different vibrational modes of the electronic ground state. Similar geometrical changes of the excited state structure have also been identified in the other investigated diamondoids. The excited state decay rates show a clear dependence on the size of the diamondoid, but are independent of the particle geometry, further indicating a loss of particle symmetry upon electronic excitation.

  5. Excited-State Energies and Electronic Couplings of DNA Base Dimers

    SciTech Connect

    Kozak, Christopher R.; Kistler, Kurt A.; Lu, Zhen; Matsika, Spiridoula

    2010-02-04

    The singlet excited electronic states of two π-stacked thymine molecules and their splittings due to electronic coupling have been investigated with a variety of computational methods. Focus has been given on the effect of intermolecular distance on these energies and couplings. Single-reference methods, CIS, CIS(2), EOMCCSD, TDDFT, and the multireference method CASSCF, have been used, and their performance has been compared. It is found that the excited-state energies are very sensitive to the applied method but the couplings are not as sensitive. Inclusion of diffuse functions in the basis set also affects the excitation energies significantly but not the couplings. TDDFT is inadequate in describing the states and their coupling, while CIS(2) gives results very similar to EOM-CCSD. Excited states of cytosine and adenine π-stacked dimers were also obtained and compared with those of thymine dimers to gain a more general picture of excited states in π-stacked DNA base dimers. The coupling is very sensitive to the relative position and orientation of the bases, indicating great variation in the degree of delocalization of the excited states between stacked bases in natural DNA as it fluctuates.

  6. Laser pulse trains for controlling excited state dynamics of adenine in water.

    PubMed

    Petersen, Jens; Wohlgemuth, Matthias; Sellner, Bernhard; Bonačić-Koutecký, Vlasta; Lischka, Hans; Mitrić, Roland

    2012-04-14

    We investigate theoretically the control of the ultrafast excited state dynamics of adenine in water by laser pulse trains, with the aim to extend the excited state lifetime and to suppress nonradiative relaxation processes. For this purpose, we introduce the combination of our field-induced surface hopping method (FISH) with the quantum mechanical-molecular mechanical (QM/MM) technique for simulating the laser-driven dynamics in the condensed phase under explicit inclusion of the solvent environment. Moreover, we employ parametric pulse shaping in the frequency domain in order to design simplified laser pulse trains allowing to establish a direct link between the pulse parameters and the controlled dynamics. We construct pulse trains which achieve a high excitation efficiency and at the same time keep a high excited state population for a significantly extended time period compared to the uncontrolled dynamics. The control mechanism involves a sequential cycling of the population between the lowest and higher excited states, thereby utilizing the properties of the corresponding potential energy surfaces to avoid conical intersections and thus to suppress the nonradiative decay to the ground state. Our findings provide a means to increase the fluorescence yield of molecules with an intrinsically very short excited state lifetime, which can lead to novel applications of shaped laser fields in the context of biosensing.

  7. Excited state wavepacket dynamics in NO2 probed by strong-field ionization

    NASA Astrophysics Data System (ADS)

    Forbes, Ruaridh; Boguslavskiy, Andrey E.; Wilkinson, Iain; Underwood, Jonathan G.; Stolow, Albert

    2017-08-01

    We present an experimental femtosecond time-resolved study of the 399 nm excited state dynamics of nitrogen dioxide using channel-resolved above threshold ionization (CRATI) as the probe process. This method relies on photoelectron-photoion coincidence and covariance to correlate the strong-field photoelectron spectrum with ionic fragments, which label the channel. In all ionization channels observed, we report apparent oscillations in the ion and photoelectron yields as a function of pump-probe delay. Further, we observe the presence of a persistent, time-invariant above threshold ionization comb in the photoelectron spectra associated with most ionization channels at long time delays. These observations are interpreted in terms of single-pump-photon excitation to the first excited electronic X ˜2A1 state and multi-pump-photon excitations to higher-lying states. The short time delay (<100 fs) dynamics in the fragment channels show multi-photon pump signatures of higher-lying neutral state dynamics, in data sets recorded with higher pump intensities. As expected for pumping NO2 at 399 nm, non-adiabatic coupling was seen to rapidly re-populate the ground state following excitation to the first excited electronic state, within 200 fs. Subsequent intramolecular vibrational energy redistribution results in the spreading of the ground state vibrational wavepacket into the asymmetric stretch coordinate, allowing the wavepacket to explore nuclear geometries in the asymptotic region of the ground state potential energy surface. Signatures of the vibrationally "hot" ground state wavepacket were observed in the CRATI spectra at longer time delays. This study highlights the complex and sometimes competing phenomena that can arise in strong-field ionization probing of excited state molecular dynamics.

  8. The Cyanobacterial Photoactive Orange Carotenoid Protein Is an Excellent Singlet Oxygen Quencher[C][W

    PubMed Central

    Sedoud, Arezki; López-Igual, Rocío; ur Rehman, Ateeq; Wilson, Adjélé; Perreau, François; Boulay, Clémence; Vass, Imre; Krieger-Liszkay, Anja; Kirilovsky, Diana

    2014-01-01

    Cyanobacteria have developed a photoprotective mechanism that decreases the energy arriving at the photosynthetic reaction centers under high-light conditions. The photoactive orange carotenoid protein (OCP) is essential in this mechanism as a light sensor and energy quencher. When OCP is photoactivated by strong blue-green light, it is able to dissipate excess energy as heat by interacting with phycobilisomes. As a consequence, charge separation and recombination leading to the formation of singlet oxygen diminishes. Here, we demonstrate that OCP has another essential role. We observed that OCP also protects Synechocystis cells from strong orange-red light, a condition in which OCP is not photoactivated. We first showed that this photoprotection is related to a decrease of singlet oxygen concentration due to OCP action. Then, we demonstrated that, in vitro, OCP is a very good singlet oxygen quencher. By contrast, another carotenoid protein having a high similarity with the N-terminal domain of OCP is not more efficient as a singlet oxygen quencher than a protein without carotenoid. Although OCP is a soluble protein, it is able to quench the singlet oxygen generated in the thylakoid membranes. Thus, OCP has dual and complementary photoprotective functions as an energy quencher and a singlet oxygen quencher. PMID:24748041

  9. Strategy for high recovery of fluorescence from quencher assembled quantum-dot donor

    NASA Astrophysics Data System (ADS)

    Kim, Joong Hyun; Ozkan, Mihrimah

    2014-05-01

    We fabricated 1.4 nm nanogold and molecular dark quencher assembled quantum dot for estimating their performances in a target specific conformal changing molecular event. For the assembling, we immobilized each acceptor linked molecular beacons using interaction between biotin at molecular beacon and streptavidins on quantum dot. Through optical analysis of the purified hybrids of the acceptors and quantum dots, we could estimate numbers of the assembled acceptors per quantum dot and their efficiency of energy transfer depending on conformal changes of molecular beacons. We obtained maximum 95 % and 78% of energy transfer efficiency with 17 metallic nanocrystals and 41 black hole quencher 2, the molecular dark quencher per single quantum dote, respectively. Molecular beacons form linear helix from a hair-pin structure by hybridizing with complementary DNA. In the presence of target DNA, energy transfer efficiency of the organic quencher was 22 % while only 2 % decreased efficiency was obtained with the nanogold, indicating higher fluorescence recovery with the ordinary organic quencher. Considering the relatively low assembled number and the large size, a steric hindrance might be attributed to the low fluorescence recovery. Since the energy transfer efficiency obtained with the nanogold at a fixed distance is high enough, it would be still effective to apply nanogold a system, where nanogold is removed permanently from quantum dots.

  10. Multiple hydrogen bonding in excited states of aminopyrazine in methanol solution: time-dependent density functional theory study.

    PubMed

    Chai, Shuo; Yu, Jie; Han, Yong-Chang; Cong, Shu-Lin

    2013-11-01

    Aminopyrazine (AP) and AP-methanol complexes have been theoretically studied by using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The excited-state hydrogen bonds are discussed in detail. In the ground state the intermolecular multiple hydrogen bonds can be formed between AP molecule and protic solvents. The AP monomer and hydrogen-bonded complex of AP with one methanol are photoexcited initially to the S2 state, and then transferred to the S1 state via internal conversion. However the complex of AP with two methanol molecules is directly excited to the S1 state. From the calculated electronic excited energies and simulated absorption spectra, we find that the intermolecular hydrogen bonds are strengthened in the electronic excited states. The strengthening is confirmed by the optimized excited-state geometries. The photochemical processes in the electronic excited states are significantly influenced by the excited-state hydrogen bond strengthening.

  11. Theory of Highly Excited Molecular States : Some Recent Developments

    NASA Astrophysics Data System (ADS)

    Jungen, Christian

    2000-06-01

    Throughout his career Gerhard Herzberg had an interest in Rydberg states. This began with his observation of the Balmer series of hydrogen during his thesis work and led to the discovery of `Rydberg molecules' late in his career (i.e. molecules, such as H_3, which are unstable in their ground state but possess stable Rydberg states). While initially GH focussed mainly on the structural properties of Rydberg states, he later also studied their internal dynamics (uncoupling phenomena) and radiationless decay (preionization and predissociation). All of these phenomena play a crucial role in modern-day experiments where ultra-high spectral resolution resolves the hyperfine structure in high Rydberg states, while time-resolved experiments lead to the observation of Rydberg wave packets. Both these aspects, hyperfine effects and wavepacket motion in Rydberg states, will be discussed from a theoretical point of view.

  12. Steady-state photoluminescent excitation characterization of semiconductor carrier recombination

    SciTech Connect

    Bhosale, J. S.; Moore, J. E.; Wang, X.; Bermel, P.; Lundstrom, M. S.

    2016-01-15

    Photoluminescence excitation spectroscopy is a contactless characterization technique that can provide valuable information about the surface and bulk recombination parameters of a semiconductor device, distinct from other sorts of photoluminescent measurements. For this technique, a temperature-tuned light emitting diode (LED) has several advantages over other light sources. The large radiation density offered by LEDs from near-infrared to ultraviolet region at a low cost enables efficient and fast photoluminescence measurements. A simple and inexpensive LED-based setup facilitates measurement of surface recombination velocity and bulk Shockley-Read-Hall lifetime, which are key parameters to assess device performance. Under the right conditions, this technique can also provide a contactless way to measure the external quantum efficiency of a solar cell.

  13. Steady-state photoluminescent excitation characterization of semiconductor carrier recombination.

    PubMed

    Bhosale, J S; Moore, J E; Wang, X; Bermel, P; Lundstrom, M S

    2016-01-01

    Photoluminescence excitation spectroscopy is a contactless characterization technique that can provide valuable information about the surface and bulk recombination parameters of a semiconductor device, distinct from other sorts of photoluminescent measurements. For this technique, a temperature-tuned light emitting diode (LED) has several advantages over other light sources. The large radiation density offered by LEDs from near-infrared to ultraviolet region at a low cost enables efficient and fast photoluminescence measurements. A simple and inexpensive LED-based setup facilitates measurement of surface recombination velocity and bulk Shockley-Read-Hall lifetime, which are key parameters to assess device performance. Under the right conditions, this technique can also provide a contactless way to measure the external quantum efficiency of a solar cell.

  14. Level density parameters from excitation cross sections of isomeric states

    NASA Astrophysics Data System (ADS)

    Skakun, E. A.; Batij, V. G.

    1992-03-01

    Cross section ratios were measured for the production of the isomeric pairs99m,gRh,101m,gRh,102m,gRh,104m,gRh and108m,gIn in the (p,n)-reaction,107m,gIn and109m,gIn in the ( p, γ)-reaction over the energy range up to 9 MeV, and116m,gSb and118m,gSb in the (α, n)-reaction up to 24 MeV. The experimental results for these nuclei as well as for other isometric pairs excited in the ( p, n)-reaction were analysed in the frame of the statistical model for extracting the level density parameter values in the vicinity of closed nucleon shells. The level density parameter behaviour is discussed in the range of nuclear mass numbers under study.

  15. Highly excited {Sigma}{sup -} states of molecular hydrogen

    SciTech Connect

    Argoubi, F.; Bezzaouia, S.; Oueslati, H.; Telmini, M.; Jungen, Ch.

    2011-05-15

    We report calculations of H{sub 2} {Sigma}{sup -} states using a variational R-matrix approach combined with multichannel quantum defect theory. Several Rydberg series converging to the 2p{pi} state of the H{sub 2}{sup +} ion core are established and their mutual channel interactions characterized. The influence of the external electron on the chemical bond is found to be particularly strong in these electronically and chemically weakly bound states.

  16. Excited-State Geometry Optimization with the Density Matrix Renormalization Group, as Applied to Polyenes.

    PubMed

    Hu, Weifeng; Chan, Garnet Kin-Lic

    2015-07-14

    We describe and extend the formalism of state-specific analytic density matrix renormalization group (DMRG) energy gradients, first used by Liu et al. [J. Chem. Theor. Comput. 2013, 9, 4462]. We introduce a DMRG wave function maximum overlap following technique to facilitate state-specific DMRG excited-state optimization. Using DMRG configuration interaction (DMRG-CI) gradients, we relax the low-lying singlet states of a series of trans-polyenes up to C20H22. Using the relaxed excited-state geometries, as well as correlation functions, we elucidate the exciton, soliton, and bimagnon ("single-fission") character of the excited states, and find evidence for a planar conical intersection.

  17. Excited-state properties and environmental effects for protonated schiff bases: a theoretical study.

    PubMed

    Aquino, Adélia J A; Barbatti, Mario; Lischka, Hans

    2006-10-13

    Complete active space self-consistent field (CASSCF), multireference configuration interaction (MRCI), density functional theory (DFT), time dependent DFT (TDDFT) and the singles and doubles coupled-cluster (CC2) methodologies have been used to study the ground state and excited states of protonated and neutral Schiff bases (PSB and SB) as models for the retinal chromophore. Systems with two to four conjugated double bonds are investigated. Geometry relaxation effects are studied in the excited pipi* state using the aforementioned methods. Taking the MRCI results as reference we find that CASSCF results are quite reliable even though overshooting of geometry changes is observed. TDDFT does not reproduce bond alternation well in the pipi* state. CC2 takes an intermediate position. Environmental effects due to solvent or protein surroundings have been studied in the excited states of the PSBs and SBs using a water molecule and solvated formate as model cases. Particular emphasis is given to the proton transfer process from the PSB to its solvent partner in the excited state. It is found that its feasibility is significantly enhanced in the excited state as compared to the ground state, which means that a proton transfer could be initiated already at an early step in the photodynamics of PSBs.

  18. Excited-state spectroscopy for producing ultracold ground-state NaRb molecule

    NASA Astrophysics Data System (ADS)

    Wang, Dajun; Zhu, Bing; Guo, Mingyang; Li, Xiaoke; Lu, Bo; Wang, Fudong; Ye, Xin; Vexiau, Romain; Luc, Eliane; Bouloufa-Maafa, Nadia; Dulieu, Olivier

    2015-05-01

    We report a joint experimental and theoretical investigation on the excited states of NaRb molecule. In particular, we focus on the A1Σ+ /b3 Π admixture which is a promising intermediate state for transferring weakly-bound NaRb Feshbach molecules to the v = 0 level of the X1Σ+ state. Based on RKR potentials obtained from conventional molecular spectroscopy [1], we identified several levels which satisfy the requirements for efficient two-photon population transfer. Starting from a pure sample of NaRb Feshbach molecules, we have experimentally observed most of these levels. The detailed characterization of these levels, including their transition strengths and singlet/triplet mixing ratios, as well as searching of the v = 0 level of the X1Σ+ state with two-photon Autler-Townes spectroscopy, are well underway. This work is jointly supported by Agence Nationale de la Recherche (#ANR-13-IS04-0004-01) and Hong Kong Research Grant Council (#A-CUHK403/13) through the COPOMOL project.

  19. Triplet excited state spectra and dynamics of carotenoids from the thermophilic purple photosynthetic bacterium Thermochromatium tepidum

    SciTech Connect

    Niedzwiedzki, Dariusz; Kobayashi, Masayuki; Blankenship, R. E.

    2011-01-13

    Light-harvesting complex 2 from the anoxygenic phototrophic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption, fluorescence and flash photolysis spectroscopy. Steady-state absorption and fluorescence measurements show that carotenoids play a negligible role as supportive energy donors and transfer excitation to bacteriochlorophyll-a with low energy transfer efficiency of ~30%. HPLC analysis determined that the dominant carotenoids in the complex are rhodopin and spirilloxanthin. Carotenoid excited triplet state formation upon direct (carotenoid) or indirect (bacteriochlorophyll-a Q{sub x} band) excitation shows that carotenoid triplets are mostly localized on spirilloxanthin. In addition, no triplet excitation transfer between carotenoids was observed. Such specific carotenoid composition and spectroscopic results strongly suggest that this organism optimized carotenoid composition in the light-harvesting complex 2 in order to maximize photoprotective capabilities of carotenoids but subsequently drastically suppressed their supporting role in light-harvesting process.

  20. Excited state distribution of reflected hydrogen atoms at metal surfaces - Development of theoretical models

    NASA Astrophysics Data System (ADS)

    Kato, D.; Kenmotsu, T.; Ohya, K.; Tanabe, T.

    2009-06-01

    Numerical methods were developed to study single electron capture by translating hydrogen atoms above metal surfaces. The present method gives predictions for hitherto unknown population distribution of excited species in hydrogen atoms reflected at the metal surfaces. The excited state abundance was calculated for Mo surface. Kinetic energy distribution of the reflected atoms was taken into account with the aid of the Monte-Carlo simulation code (ACAT). Energy distribution associated with the 3d 2 excited state in reflected neutrals consistently explains peak energy variation with incident energies of Doppler-shifted D α lines measured by Tanabe et al. Occupation probability of the magnetic sub-levels is obtained to be highly polarized. It suggests strong anisotropy in angular distribution of photon emission from the excited states created via the surface electron capture.

  1. First-order derivative couplings between excited states from adiabatic TDDFT response theory

    SciTech Connect

    Ou, Qi; Subotnik, Joseph E.; Bellchambers, Gregory D.; Furche, Filipp

    2015-02-14

    We present a complete derivation of derivative couplings between excited states in the framework of adiabatic time-dependent density functional response theory. Explicit working equations are given and the resulting derivative couplings are compared with derivative couplings from a pseudo-wavefunction ansatz. For degenerate excited states, i.e., close to a conical intersection (CI), the two approaches are identical apart from an antisymmetric overlap term. However, if the difference between two excitation energies equals another excitation energy, the couplings from response theory exhibit an unphysical divergence. This spurious behavior is a result of the adiabatic or static kernel approximation of time-dependent density functional theory leading to an incorrect analytical structure of the quadratic response function. Numerical examples for couplings close to a CI and for well-separated electronic states are given.

  2. First-order derivative couplings between excited states from adiabatic TDDFT response theory.

    PubMed

    Ou, Qi; Bellchambers, Gregory D; Furche, Filipp; Subotnik, Joseph E

    2015-02-14

    We present a complete derivation of derivative couplings between excited states in the framework of adiabatic time-dependent density functional response theory. Explicit working equations are given and the resulting derivative couplings are compared with derivative couplings from a pseudo-wavefunction ansatz. For degenerate excited states, i.e., close to a conical intersection (CI), the two approaches are identical apart from an antisymmetric overlap term. However, if the difference between two excitation energies equals another excitation energy, the couplings from response theory exhibit an unphysical divergence. This spurious behavior is a result of the adiabatic or static kernel approximation of time-dependent density functional theory leading to an incorrect analytical structure of the quadratic response function. Numerical examples for couplings close to a CI and for well-separated electronic states are given.

  3. Quantal Density Functional Theory (Q-DFT) of Excited States: The State Arbitrariness of the Model Noninteracting Fermion System

    NASA Astrophysics Data System (ADS)

    Slamet, Marlina; Singh, Ranbir; Sahni, Viraht

    2003-03-01

    Within Q-DFT(V. Sahni, L. Massa, R.Singh, and M. Slamet, Phys. Rev. Lett. 87), 113002(2001)., the system of electrons in a nondegenerate excited state as described by the schrödinger equation, is transformed to one of noninteracting fermions such that the equivalent excited state density, energy, and ionization potential are obtained. The state of the model fermion system is arbitrary in that it may be in a ground or excited state. (The correaponding local effective potential energies differ, their difference being solely due to Correlation-Kinetic effects.) In either case, the highest occupied eigenvalue is the negative of the ionization potential. We demonstrate the state arbitrariness of the model system by application of Q-DFT to the first excited singlet state of the exactly solvable Hooke's atom. We construct two model systems: one in a singlet ground state (textstyle1s^2), and the other in a singlet first excited state (1s2s). The density and energy obtained from each model are the same as that of the interacting system, with the highest occupied eigenvalue in each case being the negative of the ionization potential.

  4. Gapped excitations of unconventional fractional quantum Hall effect states in the second Landau level

    NASA Astrophysics Data System (ADS)

    Wurstbauer, U.; Levy, A. L.; Pinczuk, A.; West, K. W.; Pfeiffer, L. N.; Manfra, M. J.; Gardner, G. C.; Watson, J. D.

    2015-12-01

    We report the observation of low-lying collective charge and spin excitations in the second Landau level at ν =2 +1 /3 and also for the very fragile states at ν =2 +2 /5 and 2 +3 /8 in inelastic light scattering experiments. These modes exhibit a clear dependence on filling factor and temperature substantiating the unique access to the characteristic neutral excitation spectra of the incompressible fractional quantum Hall effect (FQHE) states. A detailed mode analysis reveals low-energy modes at around 70 μ eV and a sharp mode slightly below the Zeeman energy interpreted as gap and spin-wave excitation, respectively. The lowest-energy collective charge excitation spectrum at ν =2 +1 /3 exhibits significant qualitative similarities with its cousin state in the lowest Landau level at ν =1 /3 suggesting similar magnetoroton minima in the neutral excitations. The mode energies differ by a scaling of 0.15 indicating different interaction physics in the N =0 and N =1 Landau levels. The striking polarization dependence in elastic and inelastic light scattering is discussed in the framework of anisotropic electron phases that allow for the stabilization of nematic FQHE states. The observed excitation spectra provide new insights by accessing quantum phases in the bulk of electron systems and facilitate comparison with different theoretical descriptions of those enigmatic FQHE states.

  5. Communication: Momentum-resolved quantum interference in optically excited surface states.

    PubMed

    Chan, Wai-Lun; Tritsch, John; Dolocan, Andrei; Ligges, Manuel; Miaja-Avila, Luis; Zhu, X-Y

    2011-07-21

    Surface states play essential roles in condensed matter physics, e.g., as model two-dimensional (2D) electron gases and as the basis for topological insulators. Here, we demonstrate quantum interference in the optical excitation of 2D surface states using the model system of C(60)/Au(111). These surface states are transiently populated and probed in a femtosecond time- and angle-resolved two-photon photoemission experiment. We observe quantum interference within the excited populations of these surface states as a function of parallel momentum vector. Such quantum interference in momentum space may allow one to control 2D transport properties by optical fields.

  6. Control of multiple excited image states around segmented carbon nanotubes

    SciTech Connect

    Knörzer, J. Fey, C.; Sadeghpour, H. R.; Schmelcher, P.

    2015-11-28

    Electronic image states around segmented carbon nanotubes can be confined and shaped along the nanotube axis by engineering the image potential. We show how several such image states can be prepared simultaneously along the same nanotube. The inter-electronic distance can be controlled a priori by engineering tubes of specific geometries. High sensitivity to external electric and magnetic fields can be exploited to manipulate these states and their mutual long-range interactions. These building blocks provide access to a new kind of tailored interacting quantum systems.

  7. Electron Impact Excitation of Xenon from the Ground State and the Metastable State to the 5p57p Levels

    NASA Astrophysics Data System (ADS)

    Chen, Zhan-Bin; Dong, Chen-Zhong; Xie, Lu-You; Jiang, Jun

    2014-03-01

    Electron impact excitation cross sections from the ground state and the lowest metastable state 5p56s J = 2 to the excited states of the 5p57p configuration of xenon are calculated systematically using the fully relativistic distorted wave method. Special attention is paid to the configuration interaction effects in the wave-function expansion of target states. The results are in good agreement with the recent experimental data by Jung et al. [Phys. Rev. A 80 (2009) 062708] over the measured energy range. These accurate theoretical results can be used in the modeling and diagnosis of plasmas containing xenon.

  8. Influence of ligand substitution on excited state structural dynamics in Cu(I) bisphenanthroline complexes.

    PubMed

    Lockard, Jenny V; Kabehie, Sanaz; Zink, Jeffrey I; Smolentsev, Grigory; Soldatov, Alexander; Chen, Lin X

    2010-11-18

    This study explores the influences of steric hindrance and excited state solvent ligation on the excited state dynamics of Cu(I) diimine complexes. Ultrafast excited state dynamics of Cu(I)bis(3,8-di(ethynyltrityl)-1,10-phenanthroline) [Cu(I)(detp)(2)](+) are measured using femtosecond transient absorption spectroscopy. The steady state electronic absorption spectra and measured lifetimes are compared to those of Cu(I)bis(1,10-phenanthroline), [Cu(I)(phen)(2)](+), and Cu(I)bis(2-9-dimethyl-1,10-phenanthroline), [Cu(I)(dmp)(2)](+), model complexes to determine the influence of different substitution patterns of the phenanthroline ligand on the structural dynamics associated with the metal to ligand charge transfer excited states. Similarities between the [Cu(I)(detp)(2)](+) and [Cu(I)(phen)(2)](+) excited state lifetimes were observed in both coordinating and noncoordinating solvents and attributed to the lack of steric hindrance from substitution at the 2- and 9-positions. The solution-phase X-ray absorption spectra of [Cu(I)(detp)(2)](+), [Cu(I)(phen)(2)](+), and [Cu(I)(dmp)(2)](+) are reported along with finite difference method calculations that are used to determine the degree of ground state dihedral angle distortion in solution and to account for the pre-edge features observed in the XANES region.

  9. The Single-Determinant Approximation with a Local Potential for Excited States

    SciTech Connect

    Glushkov, V.N.

    2005-11-15

    The specific features of the calculations of the electronic structure in the approximation of a local exchange potential that is identical for all the electrons involved are considered. An optimized effective potential method is proposed for calculating the energies of excited electronic states of the same symmetry. A single-particle Schroedinger equation is derived for an excited state whose orbitals are described by a single-determinant wave function orthogonal to the ground state. The equations determining the local potential for excited states are obtained within the variational approach. The solution to these equations is analyzed in the framework of the parameterized representation of the effective potential. The efficiency of the proposed method is demonstrated by calculating the energies of three excited states of the same symmetry for a HeH molecule. The difference between the results obtained by the Hartree-Fock method and the method proposed in this paper is equal, on average, to 0.05%. A comparison with the results obtained from precise calculations based on the configuration interaction method shows that the accuracy in determining the energy of the excited states by the optimized effective potential method is comparable to the accuracy in calculating the energy of the ground state.

  10. On the nature of excited states of photosynthetic reaction centers: An ultrafast infrared study

    SciTech Connect

    Haran, G.; Wynne, K.; Reid, G.D.

    1995-12-31

    Bacterial photosynthetic reaction centers (RC) contain eight chromophores forming a well-defined supramolecular structure within a protein framework. Theoretical studies suggest that the excited states of these chromophores are delocalized and contain important contributions from charge-transfer and resonance states. There is no clear-cut experimental evidence pertaining to the degree of localization of excited states. We have used ultrafast near and mid-infrared spectroscopic methods to investigate the character of some of the excited states. Exciting the 800 nm, absorption band, we followed the fate of the excitation energy using either the stimulated emission of the special pair at 920 nm or a transient absorption at 1.2 {mu}m. For a completely localized system, Forster theory-based calculations are expected to accurately predict the kinetics of energy transfer. It was found, however, that calculated rates arc much faster than measured rates. This corroborates a delocalized picture, with internal conversion rather than energy transfer between states. We have also measured the transient absorption spectrum of the RC in the infrared spectral region, detecting several new low-lying electronic states. Assignments for these states, and implications for the localization problem will be discussed.

  11. Multiphoton Rabi oscillations between highly excited Stark states of potassium

    SciTech Connect

    He Yonglin

    2011-11-15

    We have applied a nonperturbative resonant theory to study the Rabi frequency of microwave multiphoton transitions between two Rydberg states of potassium in a static electric field. The Stark electric dipole moments used to calculate the Rabi frequency are determined by the Stark states' wave functions, which are obtained by the diagonalization method. The frequencies of the Rabi oscillations are in good agreement with either experimental ones or ones calculated by the time-dependent close-coupling method and the Floquet theory. Furthermore, we are able to show that the size of avoided crossings between the (n+2)s and (n,3) states can be predicted from the Stark electric dipole moment and the difference of the two Stark states' energy at a given resonance.

  12. Unbound excited states of the N =16 closed shell nucleus 24O

    NASA Astrophysics Data System (ADS)

    Rogers, W. F.; Garrett, S.; Grovom, A.; Anthony, R. E.; Aulie, A.; Barker, A.; Baumann, T.; Brett, J. J.; Brown, J.; Christian, G.; DeYoung, P. A.; Finck, J. E.; Frank, N.; Hamann, A.; Haring-Kaye, R. A.; Hinnefeld, J.; Howe, A. R.; Islam, N. T.; Jones, M. D.; Kuchera, A. N.; Kwiatkowski, J.; Lunderberg, E. M.; Luther, B.; Meyer, D. A.; Mosby, S.; Palmisano, A.; Parkhurst, R.; Peters, A.; Smith, J.; Snyder, J.; Spyrou, A.; Stephenson, S. L.; Strongman, M.; Sutherland, B.; Taylor, N. E.; Thoennessen, M.

    2015-09-01

    Two low-lying neutron-unbound excited states of 24O, populated by proton-knockout reactions on 26F, have been measured using the MoNA and LISA arrays in combination with the Sweeper Magnet at the Coupled Cyclotron Facility at the NSCL using invariant mass spectroscopy. The current measurement confirms the separate identity of two states with decay energies 0.51(5) MeV and 1.20(7) MeV, and provides support for theoretical model calculations, which predict a 2+ first excited state and a 1+ higher-energy state. The measured excitation energies for these states, 4.70(15) MeV for the 2+ level and 5.39(16) MeV for the 1+ level, are consistent with previous lower-resolution measurements, and are compared with five recent model predictions.

  13. Excited-state mixed-valence distortions in a diisopropyl diphenyl hydrazine cation.

    PubMed

    Lockard, Jenny V; Zink, Jeffrey I; Luo, Yun; Weaver, Michael N; Konradsson, Asgeir E; Fowble, Joseph W; Nelsen, Stephen F

    2006-12-27

    Excited-state mixed valence (ESMV) occurs in the 1,2-diphenyl-1,2-diisopropyl hydrazine radical cation, a molecule in which the ground state has a symmetrical charge distribution localized primarily on the hydrazine, but the phenyl to hydrazine charge-transfer excited state has two interchangeably equivalent phenyl groups that have different formal oxidation states. Electronic absorption and resonance Raman spectra are presented. The neighboring orbital model is employed to interpret the absorption spectrum and coupling. Resonance Raman spectroscopy is used to determine the excited-state distortions. The frequencies of the enhanced modes from the resonance Raman spectra are used together with the time-dependent theory of spectroscopy to fit the two observed absorption bands that have resolved vibronic structure. The origins of the vibronic structure and relationships with the neighboring orbital model are discussed.

  14. Estimation of ground and excited state dipole moments of Oil Red O by solvatochromic shift methods.

    PubMed

    Sıdır, İsa; Gülseven Sıdır, Yadigar

    2015-01-25

    Absorption and fluorescence spectra of Oil Red O (abbreviated as ORO) are recorded in various solvents with different polarity in the range of 250-900 nm, at room temperature. The solvatochromic shift methods have been used to determine the ground state (μg) and excited state (μe) dipole moments depending on dielectric constant and refractive index functions. It is observed that fluorescence spectra show positive solvatochromism whereas absorption spectra do not indicates sensitive behavior to solvent polarity. Excited state dipole moment is found as higher than those of ground state for all of the used methods and it is attributed to more polar excited state of ORO. Theoretical μg has been determined by quantum chemical calculations using DFT and semi empirical methods. HOMO, LUMO, molecular electrostatic potential (MEP) and solvent accessible surface of ORO are calculated by using DFT-B3LYP method.

  15. Estimation of ground and excited state dipole moments of Oil Red O by solvatochromic shift methods

    NASA Astrophysics Data System (ADS)

    Sıdır, İsa; Gülseven Sıdır, Yadigar

    2015-01-01

    Absorption and fluorescence spectra of Oil Red O (abbreviated as ORO) are recorded in various solvents with different polarity in the range of 250-900 nm, at room temperature. The solvatochromic shift methods have been used to determine the ground state (μg) and excited state (μe) dipole moments depending on dielectric constant and refractive index functions. It is observed that fluorescence spectra show positive solvatochromism whereas absorption spectra do not indicates sensitive behavior to solvent polarity. Excited state dipole moment is found as higher than those of ground state for all of the used methods and it is attributed to more polar excited state of ORO. Theoretical μg has been determined by quantum chemical calculations using DFT and semi empirical methods. HOMO, LUMO, molecular electrostatic potential (MEP) and solvent accessible surface of ORO are calculated by using DFT-B3LYP method.

  16. 7/3 fractional quantum Hall effect: topology, trion excitations and edge states

    NASA Astrophysics Data System (ADS)

    Balram, Ajit C.; Wu, Ying-Hai; Sreejith, G. J.; Wójs, Arkadiusz; Jain, J. K.

    2013-03-01

    Exact diagonalization studies on finite systems show that the quasihole and quasiparticle excitations in the 7/3 fractional quantum Hall (FQH) state are qualitatively distinct from those of the 1/3 state, suggesting the possibility of different topological origins for the two states. We perform composite-fermion diagonalization on larger systems and also evaluate the entanglement spectrum, which shows that in spite of these strong finite size deviations, the 7/3 and 1/3 FQH states have the same topological structure in the thermodynamic limit. Nonetheless, there are substantial non-topological differences between the two, arising from the stronger residual interaction between composite fermions at 7/3. In particular, we show that the lowest energy charged excitations of the 7/3 state are complex trions of composite fermions, which have a much larger size than the charged excitations at 1/3. We discuss many observable consequences of our results.

  17. Vibrational spectroscopy of the electronically excited state. 4. Nanosecond and picosecond time-resolved resonance Raman spectroscopy of carotenoid excited states

    SciTech Connect

    Dallinger, R.F.; Farquharson, S.; Woodruff, W.H.; Rodgers, M.A.J.

    1981-12-16

    Resonance Raman and electronic absorption spectra are reported for the S/sub 0/ and T/sub 1/ states of the carotenoids ..beta..-carotene, zeaxanthin, echinenone, canthaxanthin, dihydroxylycopene, astaxanthin, decapreno(C/sub 50/)-..beta..-carotene, ..beta..-apo-8'-carotenal, and ethyl ..beta..-apo-8'-carotenoate. The results reveal qualitatively similar ground-state spectra and similar frequency shifts in all observed resonance Raman modes between S/sub 0/ and T/sub 1/, regardless of carotenoid structure. Examinations of the relationship of the putative C--C and C==C frequencies in S/sub 0/ and T/sub 1/ reveals anomalous shifts to lower frequency in the ''single-bond'' mode upon electronic excitation. These shifts may be due to molecular distortions in the excited state which force changes in molecular motions comprising the observed modes. However, another possibility requiring no distortion is that the interaction (off-diagonal) force constants connecting the C--C and C==C modes change sign upon electronic excitation. This latter phenomenon may provide a unitary explanation for the ''anomalous'' frequency shifts in the C--C and C==C modes, both in the T/sub 1/ states of carotenoids and in the S/sub 1/ states of simpler polyenes, without postulating large, unpredicted structural changes upon excitation or general errors in existing vibrational or theoretical analyses. Resonance Raman and absorbance studies with 35-ps time resolution suggest that S/sub 1/ lifetime (of the /sup 1/B/sub u/ and/or the /sup 1/A/sub g/* states) of ..beta..-carotene in benzene is less than 1 ps.

  18. Permanent Magnet Synchronous Condenser with Solid State Excitation: Preprint

    SciTech Connect

    Hsu, P.; Muljadi, E.; Wu, Z.; Gao, W.

    2015-04-07

    A typical synchronous condenser (SC) consists of a free-spinning, wound-field synchronous generator and a field excitation controller. In this paper, we propose an SC that employs a permanent magnet synchronous generator (PMSG) instead of a wound-field machine. PMSGs have the advantages of higher efficiency and reliability. In the proposed configuration, the reactive power control is achieved by a voltage converter controller connected in series to the PMSG. The controller varies the phase voltage of the PMSG and creates the same effect on the reactive power flow as that of an over- or underexcited wound-field machine. The controller’s output voltage magnitude controls the amount of the reactive power produced by the SC. The phase of the controller’s output is kept within a small variation from the grid voltage phase. This small phase variation is introduced so that a small amount of power can be drawn from the grid into the controller to maintain its DC bus voltage. Because the output voltage of the controller is only a fraction of the line voltage, its VA rating is only a fraction of the rating of the PMSG. The proposed scheme is shown to be effective by computer simulations.

  19. The excited spin-triplet state of a charged exciton in quantum dots

    NASA Astrophysics Data System (ADS)

    Molas, M. R.; Nicolet, A. A. L.; Piętka, B.; Babiński, A.; Potemski, M.

    2016-09-01

    We report on spectroscopic studies of resonances related to ladder of states of a charged exciton in single GaAlAs/AlAs quantum dot structures. Polarization-resolved photoluminescence, photoluminescence excitation and photon-correlation measurements were performed at low (T  =  4.2 K) temperature also in magnetic field applied in Faraday configuration. The investigated resonances are assigned to three different configurations of a positively charged exciton. Together with a singlet ground state and a conventional triplet state (involving an electron from the ground state electronic s-shell), an excited triplet state, which involved an electron from the excited electronic p-shell was identified in single dots. The appearance of an emission line related to the latter complex is due to a partially suppressed electron relaxation in the investigated dots. An analysis of this emission line allows us to scrupulously determine properties of the excited triplet state and compare them with those of the conventional triplet state. Both triplets exhibit similar patterns of anisotropic fine structure and Zeeman splitting, however their amplitudes significantly differ for those two states. Presented results emphasize the role of the symmetry of the electronic state on the properties of the triplet states of two holes  +  electron excitonic complex.

  20. Ultrafast excited-state dynamics in vitamin B12 and related cob(III)alamins.

    PubMed

    Shiang, Joseph J; Cole, Allwyn G; Sension, Roseanne J; Hang, Kun; Weng, Yuxiang; Trommel, Jenna S; Marzilli, Luigi G; Lian, Tianquan

    2006-01-25

    Femtosecond transient IR and visible absorption spectroscopies have been employed to investigate the excited-state photophysics of vitamin B12 (cyanocobalamin, CNCbl) and the related cob(III)alamins, azidocobalamin (N3Cbl), and aquocobalamin (H2OCbl). Excitation of CNCbl, H2OCbl, or N3Cbl results in rapid formation of a short-lived excited state followed by ground-state recovery on time scales ranging from a few picoseconds to a few tens of picoseconds. The lifetime of the intermediate state is influenced by the sigma-donating ability of the axial ligand, decreasing in the order CNCbl > N3Cbl > H2OCbl, and by the polarity of the solvent, decreasing with increasing solvent polarity. The peak of the excited-state visible absorption spectrum is shifted to ca. 490 nm, and the shape of the spectrum is characteristic of weak axial ligands, similar to those observed for cob(II)alamin, base-off cobalamins, or cobinamides. Transient IR spectra of the upper CN and N3 ligands are red-shifted 20-30 cm(-1) from the ground-state frequencies, consistent with a weakened Co-upper ligand bond. These results suggest that the transient intermediate state can be attributed to a corrin ring pi to Co 3d(z2) ligand to metal charge transfer (LMCT) state. In this state bonds between the cobalt and the axial ligands are weakened and lengthened with respect to the corresponding ground states.

  1. Mechanistic photodecarboxylation of pyruvic acid: Excited-state proton transfer and three-state intersection

    SciTech Connect

    Chang, Xue-Ping; Fang, Qiu Cui, Ganglong

    2014-10-21

    Photodissociation dynamics of pyruvic acid experimentally differs from that of commonly known ketones. We have employed the complete active space self-consistent field and its multi-state second-order perturbation methods to study its photodissociation mechanism in the S{sub 0}, T{sub 1}, and S{sub 1} states. We have uncovered four nonadiabatic photodecarboxylation paths. (i) The S{sub 1} system relaxes via an excited-state intramolecular proton transfer (ESIPT) to a hydrogen-transferred tautomer, near which an S{sub 1}/S{sub 0} conical intersection funnels the S{sub 1} to S{sub 0} state. Then, some trajectories continue completing the decarboxylation reaction in the S{sub 0} state; the remaining trajectories via a reverse hydrogen transfer return to the S{sub 0} minimum, from which a thermal decarboxylation reaction occurs. (ii) Due to a small S{sub 1} −T{sub 1} energy gap and a large S{sub 1}/T{sub 1} spin-orbit coupling, an efficient S{sub 1} → T{sub 1} intersystem crossing process happens again near this S{sub 1}/S{sub 0} conical intersection. When decaying to T{sub 1} state, a direct photodecarboxylation proceeds. (iii) Prior to ESIPT, the S{sub 1} system first decays to the T{sub 1} state via an S{sub 1} → T{sub 1} intersystem crossing; then, the T{sub 1} system evolves to a hydrogen-transferred tautomer. Therefrom, an adiabatic T{sub 1} decarboxylation takes place due to a small barrier of 7.7 kcal/mol. (iv) Besides the aforementioned T{sub 1} ESIPT process, there also exists a comparable Norrish type I reaction in the T{sub 1} state, which forms the ground-state products of CH{sub 3}CO and COOH. Finally, we have found that ESIPT plays an important role. It closes the S{sub 1}-T{sub 1} and S{sub 1}-S{sub 0} energy gaps, effecting an S{sub 1}/T{sub 1}/S{sub 0} three-state intersection region, and mediating nonadiabatic photodecarboxylation reactions of pyruvic acid.

  2. Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3

    NASA Astrophysics Data System (ADS)

    Schreiber, Marko; Silva-Junior, Mario R.; Sauer, Stephan P. A.; Thiel, Walter

    2008-04-01

    A benchmark set of 28 medium-sized organic molecules is assembled that covers the most important classes of chromophores including polyenes and other unsaturated aliphatic compounds, aromatic hydrocarbons, heterocycles, carbonyl compounds, and nucleobases. Vertical excitation energies and one-electron properties are computed for the valence excited states of these molecules using both multiconfigurational second-order perturbation theory, CASPT2, and a hierarchy of coupled cluster methods, CC2, CCSD, and CC3. The calculations are done at identical geometries (MP2/6-31G*) and with the same basis set (TZVP). In most cases, the CC3 results are very close to the CASPT2 results, whereas there are larger deviations with CC2 and CCSD, especially in singlet excited states that are not dominated by single excitations. Statistical evaluations of the calculated vertical excitation energies for 223 states are presented and discussed in order to assess the relative merits of the applied methods. CC2 reproduces the CC3 reference data for the singlets better than CCSD. On the basis of the current computational results and an extensive survey of the literature, we propose best estimates for the energies of 104 singlet and 63 triplet excited states.

  3. Excited-state hydrogen atom transfer reaction in solvated 7-hydroxy-4-methylcoumarin.

    PubMed

    De Silva, Nuwan; Minezawa, Noriyuki; Gordon, Mark S

    2013-12-12

    Excited-state enol to keto tautomerization of 7-hydroxy-4-methylcoumarin (C456) with three water molecules (C456:3H2O), is theoretically investigated using time-dependent density functional theory (TDDFT) combined with the polarizable continuum model and 200 waters explicitly modeled with the effective fragment potential. The tautomerization of C456 in the presence of three water molecules is accompanied by an asynchronous quadruple hydrogen atom transfer reaction from the enol to the keto tautomer in the excited state. TDDFT with the PBE0 functional and the DH(d,p) basis set is used to calculate the excited-state reaction barrier height, absorption (excitation), and fluorescence (de-excitation) energies. These results are compared with the available experimental and theoretical data. In contrast to previous work, it is predicted here that the coumarin 456 system undergoes a hydrogen atom transfer, not a proton transfer. The calculated reaction barrier of the first excited state of C456:3H2O with 200 water molecules is found to be -0.23 kcal/mol without zero-point energy (-5.07 kcal/mol with zero point energy, i.e., the activation energy).

  4. Double excitations and state-to-state transition dipoles in π-π∗ excited singlet states of linear polyenes: Time-dependent density-functional theory versus multiconfigurational methods

    NASA Astrophysics Data System (ADS)

    Mikhailov, Ivan A.; Tafur, Sergio; Masunov, Artëm E.

    2008-01-01

    The effect of static and dynamic electron correlation on the nature of excited states and state-to-state transition dipole moments is studied with a multideterminant wave function approach on the example of all-trans linear polyenes ( C4H6 , C6H8 , and C8H10 ). Symmetry-forbidden singlet nAg states were found to separate into three groups: purely single, mostly single, and mostly double excitations. The excited-state absorption spectrum is dominated by two bright transitions: 1Bu-2Ag and 1Bu-mAg , where mAg is the state, corresponding to two-electron excitation from the highest occupied to lowest unoccupied molecular orbital. The richness of the excited-state absorption spectra and strong mixing of the doubly excited determinants into lower- nAg states, reported previously at the complete active space self-consistent field level of theory, were found to be an artifact of the smaller active space, limited to π orbitals. When dynamic σ-π correlation is taken into account, single- and double-excited states become relatively well separated at least at the equilibrium geometry of the ground state. This electronic structure is closely reproduced within time-dependent density-functional theory (TD DFT), where double excitations appear in a second-order coupled electronic oscillator formalism and do not mix with the single excitations obtained within the linear response. An extension of TD DFT is proposed, where the Tamm-Dancoff approximation (TDA) is invoked after the linear response equations are solved (a posteriori TDA). The numerical performance of this extension is validated against multideterminant-wave-function and quadratic-response TD DFT results. It is recommended for use with a sum-over-states approach to predict the nonlinear optical properties of conjugated molecules.

  5. Ionization potential for excited S states of the lithium atom

    SciTech Connect

    Puchalski, M.; KePdziera, D.; Pachucki, K.

    2010-12-15

    Nonrelativistic, relativistic, quantum electrodynamic, and finite nuclear mass corrections to the energy levels are obtained for the nS{sub 1/2},n=3,...,9 states of the lithium atom. Computational approach is based on the explicitly correlated Hylleraas functions with the analytic integration and recursion relations. Theoretical predictions for the ionization potential of nS{sub 1/2} states and transition energies nS{sub 1/2{yields}}2S{sub 1/2} are compared to known experimental values for {sup 6,7}Li isotopes.

  6. Excited State Trends in Bidirectionally Expanded Closed-Shell PAH and PANH Anions.

    PubMed

    Fortenberry, Ryan C; Moore, Megan M; Lee, Timothy J

    2016-09-22

    Some anions are known to exhibit excited states independent of external forces such as dipole moments and induced polarizabilities. Such states exist simply as a result of the stabilization of valence accepting orbitals whereby the binding energy of the extra electron is greater than the valence excitation energy. Closed-shell anions are interesting candidates for such transitions since their ground-state, spin-paired nature makes the anions more stable from the beginning. Consequently, this work shows the point beyond which deprotonated, closed-shell polycyclic aromatic hydrocarbons (PAHs) and those PAHs containing nitrogen heteroatoms (PANHs) will exhibit valence excited states. This behavior has already been demonstrated in some PANHs and for anistropically extended PAHs. This work establishes a general trend for PAHs/PANHs of arbitrary size and directional extension, whether in one dimension or two. Once seven six-membered rings make up a PAH/PANH, valence excited states are present. For most classes of PAHs/PANHs, this number is closer to four. Even though most of these excited states are weak absorbers, the sheer number of PAHs present in various astronomical environments should make them significant contributors to astronomical spectra.

  7. Dynamics of charge-transfer excited states relevant to photochemical energy conversion

    SciTech Connect

    Lim, E.C.

    1991-11-01

    The primary objective of the research program is to gain a fundamental understanding of the factors governing the efficiency of excited-state charge transfer CT interactions between two chromophores that are brought together in close proximity, either by a very short covalent linkage or by ground-state complex formation. CT and van der Walls (vdW), interactions in covalently bonded bichromophoric compounds in condensed phase, as well as those in vdW complexes in supersonic jets, are being investigated using laser-based techniques under a variety of experimental conditions. This progress report is divided into three parts, according to the class of molecular systems and the phase (liquid vs. gas) in which the excited-state interactions are probed. The first is concerned with the excited states of bridged diaryl compounds in the condensed phase. The second involves the excited states of vdW complexes in supersonic jets. Finally, the third, is concerned with the excited states of electron donor-acceptor (EDA) systems in both the condensed phase and supersonic jets. In each of these studies, we are concerned with the interchromophore interactions ranging from weak vdW forces to strong CT forces, and the factors determining whether the interaction forces are weak or strong in related molecules.

  8. Excited-State Dynamics of Melamine and Its Lysine Derivative Investigated by Femtosecond Transient Absorption Spectroscopy.

    PubMed

    Zhang, Yuyuan; Beckstead, Ashley A; Hu, Yuesong; Piao, Xijun; Bong, Dennis; Kohler, Bern

    2016-11-30

    Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase) and its lysine derivative (a proto-nucleoside) using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps), but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.

  9. Excited-State Dynamics of Melamine and Its Lysine Derivative Investigated by Femtosecond Transient Absorption Spectroscopy

    PubMed Central

    Zhang, Yuyuan; Beckstead, Ashley A.; Hu, Yuesong; Piao, Xijun; Bong, Dennis; Kohler, Bern

    2017-01-01

    Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase) and its lysine derivative (a proto-nucleoside) using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps), but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state. PMID:27916910

  10. Synthesis, in vitro evaluation, and in vivo metabolism of fluor/quencher compounds containing IRDye 800CW and Black Hole Quencher-3 (BHQ-3).

    PubMed

    Linder, Karen E; Metcalfe, Edmund; Nanjappan, Palaniappa; Arunachalam, Thangavel; Ramos, Kimberly; Skedzielewski, Tina Marie; Marinelli, Edmund R; Tweedle, Michael F; Nunn, Adrian D; Swenson, Rolf E

    2011-07-20

    Protease-cleavable peptides containing a suitable fluor/quencher (Fl/Q) pair are optically dark until cleaved by their target protease, generating fluorescence. This approach has been used with many Fl/Q pairs, but little has been reported with IRDye 800CW, a popular near-infrared (NIR) fluor. We explored the use of the azo-bond-containing Black Hole Quencher 3 (BHQ-3) as a quencher for IRDye 800CW and found that IRDye 800CW/BHQ-3 is a suitable Fl/Q pair, despite the lack of proper spectral overlap for fluorescence resonance energy transfer (FRET) applications. Cleavage of IRDye 800CW-PLGLK(BHQ-3)AR-NH(2) (8) and its D-arginine (Darg) analogue (9) by matrix metalloproteinases (MMPs) in vitro yielded the expected cleavage fragments. In vivo, extensive metabolism was found. Significant decomposition of a "non-cleavable" control IRDye 800CW-(1,13-diamino-4,7,10-trioxatridecane)-BHQ-3 (10) was evident in plasma of normal mice by 3 min post injection. The major metabolite showed a m/z and UV/vis spectrum consistent with azo bond cleavage in the BHQ-3 moiety. Preparation of an authentic standard of this metabolite (11) confirmed the assignment. Although the IRDye 800CW/BHQ-3 constructs showed efficient contact quenching prior to enzymatic cleavage, BHQ-3 should be used with caution in vivo, due to instability of its azo bond.

  11. Multiple-state interfacial electron injection competes with excited state relaxation and de-excitation to determine external quantum efficiencies of organic dye-sensitized solar cells.

    PubMed

    Zhang, Min; Yang, Lin; Yan, Cancan; Ma, Wentao; Wang, Peng

    2014-10-14

    A comprehensive description of the complicated dynamics of excited state evolution and charge transfer at the photochemical interface in dye-sensitized solar cells is crucial to understand the mechanism of converting solar photons to clean electricity, providing an informative basis for the future development of advanced organic materials. By selecting two triarylamine-based organic donor-acceptor dyes characteristic of the respective benzoic acid and cyanoacrylic acid anchors, in this paper we reveal stepwise excited state relaxations and multiple-state electron injections at a realistic titania/dye/electrolyte interface based upon ultrafast spectroscopic measurements and theoretical simulations. Density functional theory (DFT) and time-dependent DFT calculations show that the optically generated "hot" excited state of the dye molecules can undergo a significant conformational relaxation via multistage torsional motions, and thereby transform into an equilibrium quinonoid structure characteristic of a more planar conjugated backbone. A set of kinetic parameters derived from the target analysis of femtosecond transient absorption spectra have been utilized to estimate the electron injection yield, which is in good accord with the maximum of external quantum efficiencies.

  12. The dispersed fluorescence spectrum of NaAr - Ground and excited state potential curves

    NASA Technical Reports Server (NTRS)

    Tellinghuisen, J.; Ragone, A.; Kim, M. S.; Auerbach, D. J.; Smalley, R. E.; Wharton, L.; Levy, D. H.

    1979-01-01

    Potential curves for the ground state and the first excited state of NaAr were determined. The van der Waals molecule NaAr was prepared by supersonic free jet expansion of a mixture of sodium, argon, and helium. The electronic transition from the ground state to the first excited state A2pi was excited by a tunable dye laser and the resulting fluorescence was studied. The dispersed fluorescence spectra show discrete and diffuse features, corresponding to transitions from excited vibrational levels of the A state to bound and unbound levels of the x state. The characteristic reflection structure in the bound-free spectra permits an unambiguous assignment of the vibrational numbering in the A state, and this assignment together with previously measured spectroscopic constants are used to calculate the potential curve of the A state. The discrete structure in the fluorescence spectra is used to determine the potential curve of the x state in the well region, and the repulsive part of the X curve is then deduced through trial-and-error simulation of the bound-free spectra.

  13. Half-life of the first excited state of {sup 201}Hg

    SciTech Connect

    Meot, V.; Morel, P.; Gosselin, G.

    2007-06-15

    The lifetime of the first excited state of {sup 201}Hg, populated by the {sup 201}Tl electron capture decay and subsequent {gamma}-ray transitions, has been measured for the first time. This measurement has been carried out using a coincidence between an internal conversion electron and a {gamma}-ray. The half-life of 81{+-}5 ns has been obtained and B(E2) and B(M1) values were deduced and compared to previous estimates. With these reduced matrix elements, the excitation rate of the first excited state of {sup 201}Hg in plasma have been calculated in the frame of a Nuclear excitation by electronic transition (NEET) process.

  14. Lifetime measurement of excited low-spin states via the (p, p‧ γ) reaction

    NASA Astrophysics Data System (ADS)

    Hennig, A.; Derya, V.; Mineva, M. N.; Petkov, P.; Pickstone, S. G.; Spieker, M.; Zilges, A.

    2015-09-01

    In this paper a method for lifetime measurements in the sub-picosecond regime via the Doppler-shift attenuation method (DSAM) following the inelastic proton scattering reaction is presented. In a pioneering experiment we extracted the lifetimes of 30 excited low-spin states of 96Ru, taking advantage of the coincident detection of scattered protons and de-exciting γ-rays as well as the large number of particle and γ-ray detectors provided by the SONIC@HORUS setup at the University of Cologne. The large amount of new experimental data shows that this technique is suited for the measurement of lifetimes of excited low-spin states, especially for isotopes with a low isotopic abundance, where (n ,n‧ γ) or - in case of investigating dipole excitations - (γ ,γ‧) experiments are not feasible due to the lack of sufficient isotopically enriched target material.

  15. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states.

    PubMed

    Bjorgaard, J A; Velizhanin, K A; Tretiak, S

    2016-04-21

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited statemolecular dynamics. In this work, we describe methods of simulating nonequilibrium solvent effects in excited statemolecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission.

  16. Imaging Excited-State Dynamics of Doped He Nanodroplets in Real-Time.

    PubMed

    von Vangerow, Johannes; Coppens, François; Leal, Antonio; Pi, Martí; Barranco, Manuel; Halberstadt, Nadine; Stienkemeier, Frank; Mudrich, Marcel

    2017-01-05

    The real-time dynamics of excited alkali metal atoms (Rb) attached to quantum fluid He nanodroplets is investigated using femtosecond imaging spectroscopy and time-dependent density functional theory. We disentangle the competing dynamics of desorption of excited Rb atoms off the He droplet surface and solvation inside the droplet interior as the Rb atom is ionized. For Rb excited to the 5p and 6p states, desorption occurs on starkly differing time scales (∼100 versus ∼1 ps, respectively). The comparison between theory and experiment indicates that desorption proceeds either impulsively (6p) or in a transition regime between impulsive dissociation and complex desorption (5p).

  17. Electron impact excitation and dissociation of N2 via the b 1Pi(u) state

    NASA Technical Reports Server (NTRS)

    Ratliff, J. M.; James, G. K.; Trajmar, S.; Ajello, J. M.; Shemansky, D. E.

    1991-01-01

    Electron impact excitation of the b 1Pi(u) state in N2 plays a prominent role in the dissociation of the molecule and thus in the production of atomic nitrogen in planetary atmospheres. Electron impact excitation cross sections combined with electron-impact-induced fluorescence measurements can yield the corresponding dissociation cross sections. Serious discrepancies exist among excitation cross sections reported in the literature. To clarify the situation, these cross sections were measured at two impact energies using electron energy loss spectroscopy. The new results are in agreement with recent values deduced from optical measurements and fall midway between previous results which are too high or low by factors of 2.

  18. Discrimination of nuclear spin isomers exploiting the excited state dynamics of a quinodimethane derivative

    SciTech Connect

    Obaid, Rana; Kinzel, Daniel; Oppel, Markus González, Leticia

    2014-10-28

    Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.

  19. Photoionization cross sections of the excited 3s3p 3Po state for atomic Mg

    NASA Astrophysics Data System (ADS)

    Wang, Guoli; Wan, Jianjie; Zhou, Xiaoxin

    2017-01-01

    The photoionization cross sections of the excited levels (3s3p 0,1,2,o 3P) of atomic Mg have been studied theoretically using both the nonrelativistic and fully relativistic R-matrix method. For the threshold cross sections, as previous nonrelativistic studies, present calculations show significant differences (a factor of 3) from former experimental values. Large discrepancies with experiment calls for additional measurements of the photoionization cross sections from the excited states of Mg.

  20. Total electron scattering and electronic state excitations cross sections for O2, CO, and CH4

    NASA Technical Reports Server (NTRS)

    Kanik, I.; Trajmar, S.; Nickel, J. C.

    1993-01-01

    Available electron collision cross section data concerning total and elastic scattering, vibrational excitation, and ionization for O2, CO, and CH4 have been critically reviewed, and a set of cross sections for modeling of planetary atmospheric behavior is recommended. Utilizing these recommended cross sections, we derived total electronic state excitation cross sections and upper limits for dissociation cross sections, which in the case of CH4 should very closely equal the actual dissociation cross section.

  1. Discrimination of nuclear spin isomers exploiting the excited state dynamics of a quinodimethane derivative.

    PubMed

    Obaid, Rana; Kinzel, Daniel; Oppel, Markus; González, Leticia

    2014-10-28

    Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.

  2. Watson-Crick base pairing controls excited-state decay in natural DNA.

    PubMed

    Bucher, Dominik B; Schlueter, Alexander; Carell, Thomas; Zinth, Wolfgang

    2014-10-13

    Excited-state dynamics are essential to understanding the formation of DNA lesions induced by UV light. By using femtosecond IR spectroscopy, it was possible to determine the lifetimes of the excited states of all four bases in the double-stranded environment of natural DNA. After UV excitation of the DNA duplex, we detected a concerted decay of base pairs connected by Watson-Crick hydrogen bonds. A comparison of single- and double-stranded DNA showed that the reactive charge-transfer states formed in the single strands are suppressed by base pairing in the duplex. The strong influence of the Watson-Crick hydrogen bonds indicates that proton transfer opens an efficient decay path in the duplex that prohibits the formation or reduces the lifetime of reactive charge-transfer states.

  3. Testing excited-state energy-density functionals and potentials with the ionization potential theorem

    NASA Astrophysics Data System (ADS)

    Harbola, Manoj; Myneni, Hemanadhan; Shamim, Md.

    2014-03-01

    The modified local spin density functional and the related local potential for excited-states are tested by employing the ionization potential theorem. The functional is constructed by splitting k-space. Since its functional derivative cannot be obtained easily, the corresponding potential is given by analogy to its ground-state counterpart. Further, to calculate the highest occupied orbital energy ɛmax accurately, the potential is corrected for its asymptotic behavior by employing the van Leeuwen-Barends correction to it. The highest occupied orbital energy ɛmax thus obtained is then compared with the ΔSCF ionization energy calculated using the excited-state functional. It is shown that the two match quite accurately, demonstrating thereby that our approach of constructing excited-state functional is on sound footing.

  4. Electro-optical parameters in excited states of some spectrally active molecules

    NASA Astrophysics Data System (ADS)

    Benchea, Andreea Celia; Closca, Valentina; Rusu, Cristina Marcela; Morosanu, Cezarina; Dorohoi, Dana Ortansa

    2014-08-01

    The spectral shifts measured in different solvents are expressed as functions of the solvent macroscopic parameters. The value of the correlation coefficient multiplying the functions of electric permittivity was determined by statistical means. The correlation coefficient depends on the electric dipole moment of the spectrally active molecules. The electro-optical parameters in the ground state of the solute molecules can be approximated by molecular modeling. The excited state parameters are usually estimated using the results obtained both by HyperChem Programme and solvatochromic study. The importance of this approximate method is that it offers information about of the excited state of solute molecule for which our measuring possibilities are very restrictive. The information about the excited electronic state is affected by the limits in which the theories of liquid solutions are developed. Our results refer to two molecules of vitamins from B class, namely B3 and B6.

  5. Excited-state indirect excitons in GaAs quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Heyn, Ch.; Küster, A.; Ungeheuer, A.; Gräfenstein, A.; Hansen, W.

    2017-08-01

    We demonstrate the fabrication of strain-free and widely adjustable GaAs quantum-dot molecules (QDMs) by filling of droplet etched nanoholes in AlGaAs. Gate-voltage dependent optical spectra of highly asymmetric QDMs exhibit anticrossings that clearly indicate strong coupling with delocalized molecule states. Furthermore, indirect excitons are observed that are related to recombinations of excited-state electrons and ground-state holes both located in different dots. Simple numerical simulations reproduce the electric-field dependent energy shifts of direct and indirect transitions and predict their radiative lifetimes. The visibility of excited-state indirect excitons even for strong off-resonant energy detuning indicates the presence of a phonon bottleneck which suppresses the relaxation of excited electrons into lower levels.

  6. Excited-state absorption in a terpyridyl platinum(II) pentynyl complex.

    PubMed

    Pritchett, Timothy M; Sun, Wenfang; Guo, Fengqi; Zhang, Bingguang; Ferry, Michael J; Rogers-Haley, Joy E; Shensky, William; Mott, Andrew G

    2008-05-15

    The singlet excited-state lifetime of a terpyridyl platinum(II) pentynyl complex was determined to be 268+/-87 ps by fitting femtosecond transient absorption data, the triplet excited-state lifetime was found to be 62 ns by fitting nanosecond transient absorption decay data, and the triplet quantum yield was measured to be 0.16. A ground-state absorption cross section of 2.5 x 10(-19) cm(2) at 532 nm was deduced from UV-vis absorption data. Excited-state absorption cross sections of 3.5 x 10(-17) cm(2) (singlet) and 4.5 x 10(-17) cm(2) (triplet) were obtained by using a five-level dynamic model to fit open-aperture Z scans at picosecond and nanosecond pulse widths and a variety of pulse energies.

  7. Quantal Density Functional Theory(Q-DFT) of Degenerate Ground and Excited States

    NASA Astrophysics Data System (ADS)

    Sahni, Viraht; Pan, Xiaoyin

    2002-03-01

    We present here Q-DFT (V.Sahni et al, PRL 87), 113002 (2001), and references therein. of degenerate states with degeneracy g. We describe : (a) The transformation from a degenerate ground or excited pure state of the interacting system to an S (single Slater determinant) system of noninteracting Fermions with equivalent density, total energy, and ionization potential; (b) The construction of g S systems to reproduce a subspace ensemble density and energy. The density and energy are defined via the ensemble density matrix formed from the degenerate ground or excited pure states of the interacting system; (c) The construction of an S system with a g-fold degenerate highest occupied level, (which leads to g Slater determinants (C.A. Ullrich and W. Kohn, PRL 87), 093001(2001).), to reproduce the ground or excited state ensemble density and energy.

  8. Fluorescence following excited-state protonation of riboflavin at N(5).

    PubMed

    Quick, Martin; Weigel, Alexander; Ernsting, Nikolaus P

    2013-05-09

    Excited-state protonation of riboflavin in the oxidized form is studied in water. In the -1 < pH < 2 range, neutral and N(1)-protonated riboflavin coexist in the electronic ground state. Transient absorption shows that the protonated form converts to the ground state in <40 fs after optical excitation. Broadband fluorescence upconversion is therefore used to monitor solvation and protonation of the neutral species in the excited singlet state exclusively. A weak fluorescence band around 660 nm is assigned to the product of protonation at N(5). Its radiative rate and quantum yield relative to neutral riboflavin are estimated. Protonation rates agree with proton diffusion times for H(+) concentrations below 5 M but increase at higher acidities, where the average proton distance is below the diameter of the riboflavin molecule.

  9. A global study of the conformers of 1,2-propanediol and new vibrationally excited states

    NASA Astrophysics Data System (ADS)

    Arenas, Benjamin E.; Gruet, Sébastien; Steber, Amanda L.; Schnell, Melanie

    2017-07-01

    The astrochemically relevant molecule 1,2-propanediol was investigated at room temperature between 75 and 110 GHz with the aims of providing accurate global rotational constants for its numerous conformers and vibrationally excited states. This was performed with our segmented chirped-pulse millimeter-wave spectrometer. In the spectrum, six previously observed conformers were assigned and treated in global fits, and three vibrationally excited states of the molecule were identified and assigned. The provided transition frequencies of the ground states and vibrationally excited states will aid in the astronomical detection of 1,2-propanediol, specifically in the Atacama Large Millimeter/submillimeter Array Band 3 regime as it overlaps with the frequency range of our spectrometer.

  10. Excited State Kinetics of Mercury Halides and Mixtures with N2 and Xe.

    DTIC Science & Technology

    1983-11-28

    AD-A135 432 EXCITED STATE KINETICS OF MERCURY HALIDES AND MIXTURES i/i WITH N2 AND XECU) KANSAS STATE UNIV MANHATTAN DEPT OF CHEMISTRY D W SETSER 28...ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK Chemistry Department AREA 6 WORK UNIT NUMERS :T Kansas State University Manhattan , KS...913)532-6692 Chemistry Department Kansas State University Manhattan , Kansas 66506 Contract Period April 1, 1980 - Sept. 30, 1983 Summary Experimental

  11. Sideband excitation of trapped ions by rapid adiabatic passage for manipulation of motional states

    SciTech Connect

    Watanabe, T.; Nomura, S.; Toyoda, K.; Urabe, S.

    2011-09-15

    We describe an analysis and experimental results of the manipulation of motional states of a single trapped {sup 40}Ca{sup +} ion based on sideband excitation by rapid adiabatic passage. When the sideband transition is excited by rapid adiabatic passage, adiabaticity may be affected by ac Stark shifts. We investigate the influence of ac Stark shifts and compensate for these shifts with an additional laser field. This makes the population transfer by rapid adiabatic passage more robust with respect to experimental parameters. Finally, we manipulate the motional states and generate motional Fock states of a single {sup 40}Ca{sup +} ion by rapid adiabatic passage with ac Stark compensation.

  12. Coherent motion of excited state cyclic ketones: The have and the have-nots

    NASA Astrophysics Data System (ADS)

    Larsen, M. A. B.; Stephansen, A. B.; Sølling, T. I.

    2017-09-01

    The internal conversion processes of four cyclic ketones; cyclopentanone, 2-methylcyclopentanone, 3-methylcyclopentanone and cyclohexanone are investigated by Velocity Map Imaging (VMI) photoelectron spectroscopy. A 201 nm pump accesses the second excited state (n,3s) and the ultrafast dynamics is mapped by subsequent ionization with a 350 nm probe. Three of the four investigated molecular systems show an oscillatory time-dependence in the peak position of the 3s photoelectron band, while the last one simply decays exponentially. We find that the most plausible reason for the absence of the oscillation is due to high structural similarity between the excited state and the ionic state along the active coordinate.

  13. Resonant charge exchange and relevant transport cross sections for excited states of oxygen and nitrogen atoms

    SciTech Connect

    Eletskii, A.V.; Capitelli, M.; Celiberto, R.; Laricchiuta, A.

    2004-04-01

    Resonant charge-exchange cross sections and the relevant transport (diffusion) cross sections for excited states of nitrogen and oxygen atoms have been calculated. The calculation is performed using the asymptotic approach, based on the single-electron asymptotic representation of the electron wave function. The ground-state cross sections are in a good agreement with those calculated via comprehensive quantum chemical approach. The results of calculations demonstrate a reasonable accuracy and a high convenience of this approach in determination of cross sections for the manifold of excited states of atoms.

  14. Nuclear Modification of Excited Quarkonia States from SPS to LHC Energies

    NASA Astrophysics Data System (ADS)

    da Silva, C. L.

    2017-05-01

    The study of quarkonia spectroscopy in the presence of hadronic or deconfined medium is a powerful procedure to study density and temperature of different kinds of nuclear matter. Most of the efforts are made with the ground states J/ψ and Υ (1S), but excited state quarkonia offers a rich spectrum of binding energies and particle sizes for nuclear medium studies. This report summarizes measurements of several quarkonium excited states in the last three decades by Fermilab, SPS, HERA, RHIC and LHC experiments along with the current understanding on how nuclear medium affects their yields.

  15. Engineering the ground- and excited-state absorption spectra of broadband reverse saturable absorbers

    NASA Astrophysics Data System (ADS)

    Pritchett, Timothy M.; Ferry, Michael J.; Shensky, William M.; Mott, Andrew G.; Pei, Chengkui; Sun, Wenfang

    2014-10-01

    We exploit the strong spin-orbit coupling in iridium to modify the linear absorption spectrum of a novel iridium(III) complex so as to broaden the spectral region over which it exhibits reverse saturable absorption. We discuss the design of the new chromophore, present its ground-state absorption spectrum, and report values of its singlet excited-state lifetime and singlet and triplet excited-state absorption cross sections, determined from femtosecond transient difference absorption measurements and nanosecond and picosecond open-aperture Z scans.

  16. Communication: Application of state-specific multireference coupled cluster methods to core-level excitations

    NASA Astrophysics Data System (ADS)

    Brabec, Jiří; Bhaskaran-Nair, Kiran; Govind, Niranjan; Pittner, Jiří; Kowalski, Karol

    2012-11-01

    The concept of the model space underlying multireference coupled-cluster (MRCC) formulations is a powerful tool to deal with complex correlation effects for various electronic states. Here, we demonstrate that iterative state-specific MRCC methods (SS-MRCC) based on properly defined model spaces can be used to describe core-level excited states even when Hartree-Fock orbitals are utilized. We show that the SS-MRCC models with single and double excitations are comparable in accuracy to high-level single reference equation-of-motion coupled cluster (EOMCC) formalism.

  17. Luminescent materials: probing the excited state of emission centers by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Mihóková, E.; Nikl, M.

    2015-01-01

    We review recent methods employed to study the excited state of rare-earth centers in various luminescent and scintillating materials. The focus is on processes that help determine localization of the excited state within the material band gap, namely photoionization and thermally stimulated ionization. Then the tunneling process between the luminescence center and the trapping state is addressed. We describe the experimental implementation of methods recently developed to study these processes. We report theoretical models helping the data interpretation. We also present application to currently investigated materials.

  18. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S1(π,π*) electronic state

    PubMed Central

    Shin, Hee Won; Ocola, Esther J.; Kim, Sunghwan; Laane, Jaan

    2014-01-01

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π*) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π*) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π*) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π*) excited state. PMID:25669377

  19. Ratiometric fluorescent/colorimetric cyanide-selective sensor based on excited-state intramolecular charge transfer-excited-state intramolecular proton transfer switching.

    PubMed

    Lin, Wei-Chi; Fang, Sin-Kai; Hu, Jiun-Wei; Tsai, Hsing-Yang; Chen, Kew-Yu

    2014-05-20

    A novel salicylideneaniline-based fluorescent sensor, SB1, with a unique excited-state intramolecular charge transfer-excited-state intramolecular proton transfer (ESICT-ESIPT) coupled system was synthesized and demonstrated to fluorescently sense CN(-) with specific selectivity and high sensitivity in aqueous media based on ESICT-ESIPT switching. A large blue shift (96 nm) was also observed in the absorption spectra in response to CN(-). The bleaching of the color could be clearly observed by the naked eye. Moreover, SB1-based test strips were easily fabricated and low-cost, and could be used in practical and efficient CN(-) test kits. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations further support the cyanide-induced ESICT-ESIPT switching mechanism. The results provide the proof of concept that the colorimetric and ratiometric fluorescent cyanide-selective chemodosimeter can be created based on an ESICT-ESIPT coupled system.

  20. Rotationally resolved IR-diode laser studies of ground-state CO2 excited by collisions with vibrationally excited pyridine.

    PubMed

    Johnson, Jeremy A; Kim, Kilyoung; Mayhew, Maurine; Mitchell, Deborah G; Sevy, Eric T

    2008-03-27

    Relaxation of highly vibrationally excited pyridine (C5NH5) by collisions with carbon dioxide has been investigated using diode laser transient absorption spectroscopy. Vibrationally hot pyridine (E' = 40,660 cm(-1)) was prepared by 248 nm excimer laser excitation followed by rapid radiationless relaxation to the ground electronic state. Pyridine then collides with CO2, populating the high rotational CO2 states with large amounts of translational energy. The CO2 nascent rotational population distribution of the high-J (J = 58-80) tail of the 00(0)0 state was probed at short times following the excimer laser pulse to measure rate constants and probabilities for collisions populating these CO2 rotational states. Doppler spectroscopy was used to measure the CO2 recoil velocity distribution for J = 58-80 of the 00(0)0 state. The energy-transfer distribution function, P(E,E'), from E' - E approximately 1300-7000 cm(-1) was obtained by re-sorting the state-indexed energy-transfer probabilities as a function of DeltaE. P(E,E') is fit to an exponential or biexponential function to determine the average energy transferred in a single collision between pyridine and CO2. Also obtained are fit parameters that can be compared to previously studied systems (pyrazine, C6F6, methylpyrazine, and pyrimidine/CO2). Although the rotational and translational temperatures that describe pyridine/CO2 energy transfer are similar to previous systems, the energy-transfer probabilities are much smaller. P(E,E') fit parameters for pyridine/CO2 and the four previously studied systems are compared to various donor molecular properties. Finally, P(E,E') is analyzed in the context of two models, one indicating that P(E,E') shape is primarily determined by the low-frequency out-of-plane donor vibrational modes, and the other that indicates that P(E,E') shape can be determined from how the donor molecule final density of states changes with DeltaE.

  1. Optical Pulse Interactions in Nonlinear Excited State Materials

    DTIC Science & Technology

    2008-07-14

    parameters - the absorption cross sections and decay rates - in our analysis and do not attempt to derive these parameters either from microscopic quantum...operating in the UV to near IR spectral regions, the vibrational and/or rotational energy sublevels within a manifold of states may exhibit very...Renewable Energy Laboratory/Univ of Colorado74 and the other is at Los Alamos National Laboratory81. A typical energy level diagram for a

  2. Ab initio study of the ground and excited electronic states of the methyl radical

    PubMed Central

    Zanchet, A.; Bañares, L.; Senent, M. L.; García-Vela, A.

    2016-01-01

    The ground and some excited electronic states of the methyl radical have been characterized by means of highly correlated ab intio techniques. The specific excited states investigated are those involved in the dissociation of the radical, namely the 3s and 3pz Rydberg states, and the A1 and B1 valence states crossing them, respectively. The C-H dissociative coordinate and the HCH bending angle were considered in order to generate the first two-dimensional ab initio representation of the potential surfaces of the above electronic states of CH3, along with the nonadiabatic couplings between them. Spectroscopic constants and frequencies calculated for the ground and bound excited states agree well with most of the available experimental data. Implications of the shape of the excited potential surfaces and couplings for the dissociation pathways of CH3 are discussed in the light of recent experimental results for dissociation from low-lying vibrational states of CH3. Based on the ab initio data some predictions are made regarding methyl photodissociation from higher initial vibrational states. PMID:27892569

  3. Time-resolved and steady-state fluorescence studies of excited-state proton-transfer reactions of proflavine

    NASA Astrophysics Data System (ADS)

    De Silvestri, S.; Laporta, P.

    1984-01-01

    Time-resolved and steady-state fluorescence studies of proflavine in aqueous solution are presented. The observation of a monoexponential fluorescence decay with a time constant decreasing with increasing pH and the presence of an anomalous red-shift in the fluorescence spectrum as a function of pH indicate the existence of a complex proton-transfer mechanism in the excited state. A reaction scheme is proposed and the corresponding proton-transfer rates are evaluated. An excited-state pK value of 12.85 is obtained for the equilibrium between the cationic form of proflavine and the same form dissociated at an amino group.

  4. Modeling the Excited States of Biological Chromophores within Many-Body Green's Function Theory.

    PubMed

    Ma, Yuchen; Rohlfing, Michael; Molteni, Carla

    2010-01-12

    First-principle many-body Green's function theory (MBGFT) has been successfully used to describe electronic excitations in many materials, from bulk crystals to nanoparticles. Here we assess its performance for the calculations of the excited states of biological chromophores. MBGFT is based on a set of Green's function equations, whose key ingredients are the electron's self-energy Σ, which is obtained by Hedin's GW approach, and the electron-hole interaction, which is described by the Bethe-Salpeter equation (BSE). The GW approach and the BSE predict orbital energies and excitation energies with high accuracy, respectively. We have calculated the low-lying excited states of a series of model biological chromophores, related to the photoactive yellow protein (PYP), rhodopsin, and the green fluorescent protein (GFP), obtaining a very good agreement with the available experimental and accurate theoretical data; the order of the excited states is also correctly predicted. MBGFT bridges the gap between time-dependent density functional theory and high-level quantum chemistry methods, combining the efficiency of the former with the accuracy of the latter: this makes MBGFT a promising method for studying excitations in complex biological systems.

  5. Potential-energy surfaces of local excited states from subsystem- and selective Kohn-Sham-TDDFT

    NASA Astrophysics Data System (ADS)

    Kovyrshin, Arseny; Neugebauer, Johannes

    2011-11-01

    Calculating excited-state potential-energy surfaces for systems with a large number of close-lying excited states requires the identification of the relevant electronic transitions for several geometric structures. Time-dependent density functional theory (TDDFT) is very efficient in such calculations, but the assignment of local excited states of the active molecule can be difficult. We compare the results of the frozen-density embedding (FDE) method with those of standard Kohn-Sham density-functional theory (KS-DFT) and simpler QM/MM-type methods. The FDE results are found to be more accurate for the geometry dependence of excitation energies than classical models. We also discuss how selective iterative diagonalization schemes can be exploited to directly target specific excitations for different structures. Problems due to strongly interacting orbital transitions and possible solutions are discussed. Finally, we apply FDE and the selective KS-TDDFT to investigate the potential energy surface of a high-lying π → π∗ excitation in a pyridine molecule approaching a silver cluster.

  6. Doubly excited states of molecular nitrogen by scattered electron-ion coincidence measurements

    NASA Astrophysics Data System (ADS)

    Takahashi, Karin; Hasegawa, Toru; Sakai, Yasuhiro

    2017-03-01

    Scattered electron-ion coincidence measurements were performed on molecular nitrogen (N2) to study the relaxation dynamics of doubly excited states. Doubly excited states are typically so unstable that they result in either auto-ionization or a neutral dissociation. In auto-ionization, ionization and dissociation typically occur. Using a mixed-gas method, we determined the absolute values of the generalized oscillator strength (GOS) distributions using an incident electron energy of 200 eV and a scattering angle of 6°. The GOS distributions of N2+ and N+ were determined by combining the coincidence ion signals, which revealed some doubly excited states of N2. Since electron impact experiments can provide information on optically forbidden transitions, the contribution of optically forbidden states appears in the GOS distributions of both N2+ and N+. We observed auto-ionization and dissociative auto-ionization induced by excitation to the optically forbidden doubly excited states in the range of 30-40 eV.

  7. Excited-State Proton Transfer in Resveratrol and Proposed Mechanism for Plant Resistance to Fungal Infection.

    PubMed

    Simkovitch, Ron; Huppert, Dan

    2015-09-03

    Steady-state and time-resolved fluorescence techniques were employed to study the photophysics and photochemistry of trans-resveratrol. trans-Resveratrol is found in large quantities in fungi-infected grapevine-leaf tissue and plays a direct role in the resistance to plant disease. We found that trans-resveratrol in liquid solution undergoes a trans-cis isomerization process in the excited state at a rate that depends partially on the solvent viscosity, as was found in previous studies on trans-stilbene. The hydroxyl groups of the phenol moieties in resveratrol are weak photoacids. In water and methanol solutions containing weak bases such as acetate, a proton is transferred to the base within the lifetime of the excited state. When resveratrol is adsorbed on cellulose (also a component of the plant's cell wall), the cis-trans process is slow and the lifetime of the excited state increases from several tens of picoseconds in ethanol to about 1.5 ns. Excited-state proton transfer occurs when resveratrol is adsorbed on cellulose and acetate ions are in close proximity to the phenol moieties. We propose that proton transfer from excited resveratrol to the fungus acid-sensing chemoreceptor is one of the plant's resistance mechanisms to fungal infection.

  8. Ultrafast Dynamics of 1,3-Cyclohexadiene in Highly Excited States

    DOE PAGES

    Bühler, Christine C.; Minitti, Michael P.; Deb, Sanghamitra; ...

    2011-01-01

    The ultrafast dynamics of 1,3-cyclohexadiene has been investigated via structurally sensitive Rydberg electron binding energies and shown to differ upon excitation to the 1B state and the 3p Rydberg state. Excitation of the molecule with 4.63 eV photons into the ultrashort-lived 1B state yields the well-known ring opening to 1,3,5-hexatriene, while a 5.99 eV photon lifts the molecule directly into the 3p-Rydberg state. Excitation to 3p does not induce ring opening. In both experiments, time-dependent shifts of the Rydberg electron binding energy reflect the structural dynamics of the molecular core. Structural distortions associated with 3p-excitation cause a dynamical shift in the -more » and -binding energies by 10 and 26 meV/ps, respectively, whereas after excitation into 1B, more severe structural transformations along the ring-opening coordinate produce shifts at a rate of 40 to 60 meV/ps. The experiment validates photoionization-photoelectron spectroscopy via Rydberg states as a powerful technique to observe structural dynamics of polyatomic molecules.« less

  9. The effect of dimerization on the excited state behavior of methylated xanthine derivatives: a computational study.

    PubMed

    Nachtigallová, Dana; Aquino, Adelia J A; Horn, Shawn; Lischka, Hans

    2013-08-01

    The behavior of monomers and dimers of methylated xanthine derivatives in their excited states is investigated by means of the ADC(2), CASSCF, and CASPT2 methods. The results of the calculations of stationary points in the ground and excited states, minima on the S0/S1 crossing seams and the relaxation pathways are used to provide the interpretation of experimental observations of the monomer xanthine derivatives. The effect of dimerization on the excited state properties is studied for various relative orientations of the monomers in the dimer complexes in comparison with the relevant monomer species. A significant stabilization in the excited state minima of dimers is observed. These can act as trapping sites. Various types of conical intersections, with both localized and delocalized characters of wavefunctions, have been found, mainly energetically above the lowest bright excited state in the FC region. In addition, structures with the bonds formed between the two monomers were also found on the crossing seams. The possibility of ultrafast relaxation via these conical intersections is discussed.

  10. Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy

    PubMed Central

    Knoll, Jessica D.; Turro, Claudia

    2015-01-01

    The use of visible light to produce highly selective and potent drugs through photodynamic therapy (PDT) holds much potential in the treatment of cancer. PDT agents can be designed to follow an O2-dependent mechanism by producing highly reactive species such as 1O2 and/or an O2 independent mechanism through processes such as excited state electron transfer, covalent binding to DNA or photoinduced drug delivery. Ru(II)-polypyridyl and Rh2(II,II) complexes represent an important class of compounds that can be tailored to exhibit desired photophysical properties and photochemical reactivity by judicious selection of the ligand set. Complexes with relatively long-lived excited states and planar, intercalating ligands localize on the DNA strand and photocleave DNA through 1O2 production or guanine oxidation by the excited state of the chromophore. Photoinduced ligand substitution occurs through the population of triplet metal centered (3MC) excited states and facilitates covalent binding of the metal complex to DNA in a mode similar to cisplatin. Ligand photodissociation also provides a route to selective drug delivery. The ability to construct metal complexes with desired light absorbing and excited state properties by ligand variation enables the design of PDT agents that can potentially provide combination therapy from a single metal complex. PMID:25729089

  11. DNA Excited-State Dynamics: From Single Bases to the Double Helix

    NASA Astrophysics Data System (ADS)

    Middleton, Chris T.; de La Harpe, Kimberly; Su, Charlene; Law, Yu Kay; Crespo-Hernández, Carlos E.; Kohler, Bern

    2009-05-01

    Ultraviolet light is strongly absorbed by DNA, producing excited electronic states that sometimes initiate damaging photochemical reactions. Fully mapping the reactive and nonreactive decay pathways available to excited electronic states in DNA is a decades-old quest. Progress toward this goal has accelerated rapidly in recent years, in large measure because of ultrafast laser experiments. Here we review recent discoveries and controversies concerning the nature and dynamics of excited states in DNA model systems in solution. Nonradiative decay by single, solvated nucleotides occurs primarily on the subpicosecond timescale. Surprisingly, excess electronic energy relaxes one or two orders of magnitude more slowly in DNA oligo- and polynucleotides. Highly efficient nonradiative decay pathways guarantee that most excited states do not lead to deleterious reactions but instead relax back to the electronic ground state. Understanding how the spatial organization of the bases controls the relaxation of excess electronic energy in the double helix and in alternative structures is currently one of the most exciting challenges in the field.

  12. Minimal excitation states for heat transport in driven quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Vannucci, Luca; Ronetti, Flavio; Rech, Jérôme; Ferraro, Dario; Jonckheere, Thibaut; Martin, Thierry; Sassetti, Maura

    2017-06-01

    We investigate minimal excitation states for heat transport into a fractional quantum Hall system driven out of equilibrium by means of time-periodic voltage pulses. A quantum point contact allows for tunneling of fractional quasiparticles between opposite edge states, thus acting as a beam splitter in the framework of the electron quantum optics. Excitations are then studied through heat and mixed noise generated by the random partitioning at the barrier. It is shown that levitons, the single-particle excitations of a filled Fermi sea recently observed in experiments, represent the cleanest states for heat transport since excess heat and mixed shot noise both vanish only when Lorentzian voltage pulses carrying integer electric charge are applied to the conductor. This happens in the integer quantum Hall regime and for Laughlin fractional states as well, with no influence of fractional physics on the conditions for clean energy pulses. In addition, we demonstrate the robustness of such excitations to the overlap of Lorentzian wave packets. Even though mixed and heat noise have nonlinear dependence on the voltage bias, and despite the noninteger power-law behavior arising from the fractional quantum Hall physics, an arbitrary superposition of levitons always generates minimal excitation states.

  13. Control by decoherence: weak field control of an excited state objective

    SciTech Connect

    Katz, Gil; Ratner, Mark A.; Kosloff, Ronnie

    2010-01-01

    Coherent control employing a broadband excitation is applied to a branching reaction in the excited state. In a weak field for an isolated molecule, a control objective is only frequency dependent. This means that phase control of the pulse cannot improve the objective beyond the best frequency selection. Once the molecule is put into a dissipative environment a new timescale emerges. In this study, we demonstrate that the dissipation allows us to achieve coherent control of branching ratios in the excited state. The model studied contains a nuclear coordinate and three electronic states: the ground and two coupled diabatic excited states. The influence of the environment is modeled by the stochastic surrogate Hamiltonian. The excitation is generated by a Gaussian pulse where the phase control introduced a chirp to the pulse. For sufficient relaxation, we find significant control in the weak field depending on the chirp rate. The observed control is rationalized by a timing argument caused by a focused wavepacket. The initial non-adiabatic crossing is enhanced by the chirp. This is followed by energy relaxation which stabilizes the state by having an energy lower than the crossing point.

  14. Determination and Comparison of Carbonyl Stretching Frequency of a Ketone in Its Ground State and the First Electronic Excited State

    ERIC Educational Resources Information Center

    Bandyopadhyay, Subhajit; Roy, Saswata

    2014-01-01

    This paper describes an inexpensive experiment to determine the carbonyl stretching frequency of an organic keto compound in its ground state and first electronic excited state. The experiment is simple to execute, clarifies some of the fundamental concepts of spectroscopy, and is appropriate for a basic spectroscopy laboratory course. The…

  15. Determination and Comparison of Carbonyl Stretching Frequency of a Ketone in Its Ground State and the First Electronic Excited State

    ERIC Educational Resources Information Center

    Bandyopadhyay, Subhajit; Roy, Saswata

    2014-01-01

    This paper describes an inexpensive experiment to determine the carbonyl stretching frequency of an organic keto compound in its ground state and first electronic excited state. The experiment is simple to execute, clarifies some of the fundamental concepts of spectroscopy, and is appropriate for a basic spectroscopy laboratory course. The…

  16. Investigations into photo-excited state dynamics in colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Singh, Gaurav

    Colloidal Quantum dots (QDs) have garnered considerable scientific and technological interest as a promising material for next generation solar cells, photo-detectors, lasers, bright light-emitting diodes (LEDs), and reliable biomarkers. However, for practical realization of these applications, it is crucial to understand the complex photo-physics of QDs that are very sensitive to surface chemistry and chemical surroundings. Depending on the excitation density, QDs can support single or multiple excitations. The first part of this talk addresses evolution of QD excited state dynamics in the regime of low excitation intensity. We use temperature-resolved time-resolved fluorescence spectroscopy to study exciton dynamics from picoseconds to microseconds and use kinetic modeling based on classical electron transfer to show the effect of surface trap states on dynamics of ground-state exciton manifold in core-shell CdSe/CdS QDs. We show that the thickness of CdS shell plays an important role in interaction of CdSe core exciton states with nanocrystal environment, and find that a thicker shell can minimize the mixing of QD exciton states with surface trap states. I will then present an investigation into the dynamics of multiply-excited states in QDs. One of the key challenges in QD spectroscopy is to reliably distinguish multi- from single-excited states that have similar lifetime components and spectroscopic signatures. I will describe the development of a novel multi-pulse fluorescence technique to selectively probe multi-excited states in ensemble QD samples and determine the nature of the multi-excited state contributing to the total fluorescence even in the limit of low fluorescent yields. We find that in our sample of CdSe/CdS core/shell QDs the multi-excited emission is dominated by emissive trion states rather than biexcitons. Next, I will discuss the application of this technique to probe exciton-plasmon coupling in layered hybrid films of QD/gold nanoparticles

  17. Electronic and structural properties of low-lying excited states of vitamin B12.

    PubMed

    Lodowski, Piotr; Jaworska, Maria; Kornobis, Karina; Andruniów, Tadeusz; Kozlowski, Pawel M

    2011-11-17

    Time-dependent density functional theory (TD-DFT) has been applied to explore electronically excited states of vitamin B(12) (cyanocobalamin or CNCbl). To explain why the Co-C bond in CNCbl does not undergo photodissociation under conditions of simple photon excitation, electronically excited states have been computed along the Co-C(CN) stretched coordinate. It was found that the repulsive (3)(σ(Co-C) → σ*(Co-C)) triplet state drops in energy as the Co-C(CN) bond lengthens, but it does not become dissociative. Low-lying excited states were also computed as function of two axial bond lengths. Two energy minima have been located on the S(1)/CNCbl, as well as T(1)/CNCbl, surfaces. The full geometry optimization was carried out for each minimum and electronic properties associated with each optimized structure were analyzed in details. One minimum was described as excitation having mixed ππ*/MLCT (metal-to-ligand charge transfer) character, while the second as ligand-to-metal charge transfer (LMCT) transition. Neither of them, however, can be viewed as pure MLCT or LMCT transitions since additional excitation to or from σ-bonds (SB) of N-Co-C unit have also noticeable contributions. Inclusion of solvent altered the character of one of the excitations from ππ*/MLCT/SBLCT to ππ*/LMCT/LSBCT-type, and therefore, both of them gained significant contribution from LMCT/LSBCT transition. Finally, the nature of S(1) electronic state has been comparatively analyzed in CNCbl and MeCbl cobalamins.

  18. Multiple-photon excitation imaging with an all-solid-state laser

    NASA Astrophysics Data System (ADS)

    Wokosin, David L.; Centonze, Victoria F.; White, John G.; Hird, Steven N.; Sepsenwol, S.; Malcolm, Graeme P. A.; Maker, Gareth T.; Ferguson, Allister I.

    1996-05-01

    Two-photon excitation imaging is a recently described optical sectioning technique where fluorophore excitation is confined to--and therefore defines--the optical section being observed. This characteristic offers a significant advantage over laser-scanning confocal microscopy; the volume of fluorophore excited in the minimum necessary for imaging, thereby minimizing the destructive effects of fluorophore excitation in living tissues. In addition, a confocal pinhole is not required for optical scattering--thus further reducing the excitation needed for efficient photon collection. We have set up a two-photon excitation imaging system which uses an all-solid-state, short-pulse, long-wavelength laser as an excitation source. The source is a diode-pumped, mode-locked Nd:YLF laser operating in the infrared (1047 nm). This laser is small, has modest power requirements, and has proven reliable and stable in operation. The short laser pulses from the laser are affected by the system optical path; this has been investigated with second harmonic generation derived from a nonlinear crystal. The system has been specifically designed for the study of live biological specimens. Two cell types especially sensitive to high-energy illumination, the developing Caenorhabditis elegans embryo and the crawling sperm of the nematode, Ascaris, were used to demonstrate the dramatic increase in viability when fluorescence is generated by two-photon excitation. The system has the capability of switching between two-photon and confocal imaging modes to facilitate direct comparison of theory of these two optical sectioning techniques on the same specimen. A heavily stained zebra fish embryo was used to demonstrate the increase in sectioning depth when fluorescence is generated by infrared two- photon excitation. Two-photon excitation with the 1047 nm laser produces bright images with a variety of red emitting fluorophores, and some green emitting fluorophores, commonly used in biological

  19. Resonant coherent excitation of hydrogen-like ions planar channeled in a crystal; Transition into the first excited state

    NASA Astrophysics Data System (ADS)

    Babaev, A.; Pivovarov, Yu. L.

    2012-03-01

    The presented program is designed to simulate the characteristics of resonant coherent excitation of hydrogen-like ions planar-channeled in a crystal. The program realizes the numerical algorithm to solve the Schrödinger equation for the ion-bound electron at a special resonance excitation condition. The calculated wave function of the bound electron defines probabilities for the ion to be in the either ground or first excited state, or to be ionized. Finally, in the outgoing beam the fractions of ions in the ground state, in the first excited state, and ionized by collisions with target electrons, are defined. The program code is written on C++ and is designed for multiprocessing systems (clusters). The output data are presented in the table. Program summaryProgram title: RCE_H-like_1 Catalogue identifier: AEKX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2813 No. of bytes in distributed program, including test data, etc.: 34 667 Distribution format: tar.gz Programming language: C++ (g++, icc compilers) Computer: Multiprocessor systems (clusters) Operating system: Any OS based on LINUX; program was tested under Novell SLES 10 Has the code been vectorized or parallelized?: Yes. Contains MPI directives RAM: <1 MB per processor Classification: 2.1, 2.6, 7.10 External routines: MPI library for GNU C++, Intel C++ compilers Nature of problem: When relativistic hydrogen-like ion moves in the crystal in the planar channeling regime, in the ion rest frame the time-periodic electric field acts on the bound electron. If the frequency of this field matches the transition frequency between electronic energy levels, the resonant coherent excitation can take place. Therefore, ions in the different states may be

  20. Pathways for Excited State Nonradiative Decay of 5,6-Dihydroxyindole, a Building Block of Eumelanin.

    PubMed

    Datar, Avdhoot; Hazra, Anirban

    2017-03-17

    The photophysics of 5,6-dihydroxyindole (DHI) following excitation to its lowest two optically bright states has been investigated using the complete active space self consistent field method with second order perturbative energy corrections. There is a barrierless pathway for the molecule to relax from the second lowest bright state (2(1)ππ*) to the lowest bright state (1(1)ππ*). The 1(1)ππ* state has a conical intersection with the optically dark 1(1)πσ* state, which further intersects with the ground state along the NH and OH stretching coordinates. Moreover, the 1(1)ππ* has out-of-plane conical intersections with the ground state. For accessing the conical intersections with the ground state, there are energy barriers, which are higher than the available energy following vertical excitation to the lowest bright state. The nature of the calculated deactivation pathways helps interpret the experimentally estimated lifetimes of the lowest two bright states of DHI. The relatively long excited state lifetimes suggests that isolated DHI in monomeric form cannot rationalize the ultrafast deactivation property of eumelanin.