Science.gov

Sample records for excited thin bismuth

  1. Induced electronic anisotropy in bismuth thin films

    SciTech Connect

    Liao, Albert D.; Yao, Mengliang; Opeil, Cyril; Katmis, Ferhat; Moodera, Jagadeesh S.; Li, Mingda; Tang, Shuang; Dresselhaus, Mildred S.

    2014-08-11

    We use magneto-resistance measurements to investigate the effect of texturing in polycrystalline bismuth thin films. Electrical current in bismuth films with texturing such that all grains are oriented with the trigonal axis normal to the film plane is found to flow in an isotropic manner. By contrast, bismuth films with no texture such that not all grains have the same crystallographic orientation exhibit anisotropic current flow, giving rise to preferential current flow pathways in each grain depending on its orientation. Extraction of the mobility and the phase coherence length in both types of films indicates that carrier scattering is not responsible for the observed anisotropic conduction. Evidence from control experiments on antimony thin films suggests that the anisotropy is a result of bismuth's large electron effective mass anisotropy.

  2. Simultaneous solution-based generation and characterization of crystalline bismuth thin film by femtosecond laser spectroscopy

    SciTech Connect

    Zhu, Liangdong; Keszler, Douglas A.; Fang, Chong; Saha, Sumit; Liu, Weimin; Wang, Yanli

    2015-08-10

    We demonstrate generation and characterization of crystalline bismuth thin film from triphenyl bismuth in methanol. Upon ultraviolet (267 nm) femtosecond laser irradiation of the solution, a thin film of elemental bismuth forms on the inner side of the sample cuvette, confirmed by detection of the coherent A{sub 1g} optical phonon mode of crystalline bismuth at ∼90 cm{sup −1}. Probe pulses at 267 and 400 nm are used to elucidate the excited state potential energy surface and photochemical reaction coordinate of triphenyl bismuth in solution with femtosecond resolution. The observed phonon mode blueshifts with increasing irradiation time, likely due to the gradual thickening of nascent bismuth thin film to ∼80 nm in 90 min. From transient absorption with the 400 nm probe, we observe a dominant ∼4 ps decay time constant of the excited-state absorption signal, which is attributed to a characteristic metal-ligand bond-weakening/breaking intermediate enroute to crystalline metallic thin film from the solution precursor molecules. Our versatile optical setup thus opens an appealing avenue to characterize the laser-induced crystallization process in situ and prepare high-quality thin films and nanopatterns directly from solution phase.

  3. Bismuth pyrochlore thin films for dielectric energy storage

    SciTech Connect

    Michael, Elizabeth K. Trolier-McKinstry, Susan

    2015-08-07

    Thin films of cubic pyrochlore bismuth zinc niobate, bismuth zinc tantalate, and bismuth zinc niobate tantalate were fabricated using chemical solution deposition. This family of materials exhibited moderate relative permittivities between 55 ± 2 and 145 ± 5 for bismuth zinc tantalate and bismuth zinc niobate, respectively, and low loss tangents on the order of 0.0008 ± 0.0001. Increases in the concentration of the tantalum end member increased the dielectric breakdown strength. For example, at 10 kHz, the room temperature breakdown strength of bismuth zinc niobate was 5.1 MV/cm, while that of bismuth zinc tantalate was 6.1 MV/cm. This combination of a high breakdown strength and a moderate permittivity led to a high discharged energy storage density for all film compositions. For example, at a measurement frequency of 10 kHz, bismuth zinc niobate exhibited a maximum recoverable energy storage density of 60.8 ± 2.0 J/cm{sup 3}, while bismuth zinc tantalate exhibited a recoverable energy storage density of 60.7 ± 2.0 J/cm{sup 3}. Intermediate compositions of bismuth zinc niobate tantalate offered higher energy storage densities; at 10 mol. % tantalum, the maximum recoverable energy storage density was ∼66.9 ± 2.4 J/cm{sup 3}.

  4. Crystallization of bismuth titanate and bismuth silicate grown as thin films by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Harjuoja, Jenni; Väyrynen, Samuli; Putkonen, Matti; Niinistö, Lauri; Rauhala, Eero

    2006-01-01

    Bismuth silicate and bismuth titanate thin films were deposited by atomic layer deposition (ALD). A novel approach with pulsing of two Bi-precursors was studied to control the Si/Bi atomic ratio in bismuth silicate thin films. The crystallization of compounds formed in the Bi 2O 3-SiO 2 and Bi 2O 3-TiO 2 systems was investigated. Control of the stoichiometry of Bi-Si-O thin films was studied when deposited on Si(1 0 0) and crystallization was studied for films on sapphire and MgO-, ZrO 2- and YSZ-buffered Si(1 0 0). The Bi-Ti-O thin films were deposited on Si(1 0 0) substrate. Both Bi-Si-O and Bi-Ti-O thin films were amorphous after deposition. Highly a-axis oriented Bi 2SiO 5 thin films were obtained when the Bi-Si-O thin films deposited on MgO-buffered Si(1 0 0) were annealed at 800 °C in nitrogen. The full-width half-maximum values for 200 peak were also studied. An excess of bismuth was found to improve the crystallization of Bi-Ti-O thin films and the best crystallinity was observed with Ti/Bi atomic ratio of 0.28 for films annealed at nitrogen at 1000 °C. Roughness of the thin films as well as the concentration depth distribution were also examined.

  5. Ultrafast electronic dynamics in laser-excited crystalline bismuth

    NASA Astrophysics Data System (ADS)

    Melnikov, Alexey A.; Misochko, Oleg V.; Chekalin, Sergey V.

    2013-07-01

    Femtosecond spectroscopy is applied to study transient electronic processes in bismuth. The components with relaxation times of 1 ps, 7 ps, and ˜1 ns are detected in the photoinduced reflectivity response of the crystal. To facilitate assignment of the observed relaxation to the decay of particular excited electronic states, we use pump pulses with central wavelengths ranging from 400 to 2300 nm. Additionally, we examine the variation of parameters of coherent A1g phonons upon the change of excitation and probing conditions. Data analysis reveals significant wavevector dependence of electron-hole and electron-phonon coupling strength along Γ-T direction of the Brillouin zone.

  6. Bismuth(III) dialkyldithiophosphates: Facile single source precursors for the preparation of bismuth sulfide nanorods and bismuth phosphate thin films

    SciTech Connect

    Biswal, Jasmine B.; Garje, Shivram S.; Nuwad, Jitendra; Pillai, C.G.S.

    2013-08-15

    Two different phase pure materials (Bi{sub 2}S{sub 3} and Bi{sub 2}P{sub 4}O{sub 13}) have been prepared under different conditions using the same single source precursors. Solvothermal decomposition of the complexes, Bi(S{sub 2}P(OR){sub 2}){sub 3} [where, R=Methyl (Me) (1), Ethyl (Et) (2), n-Propyl (Pr{sup n}) (3) and iso-Propyl (Pr{sup i}) (4)] in ethylene glycol gave orthorhombic bismuth sulfide nanorods, whereas aerosol assisted chemical vapor deposition (AACVD) of the same precursors deposited monoclinic bismuth tetraphosphate (Bi{sub 2}P{sub 4}O{sub 13}) thin films on glass substrates. Surface study of the thin films using SEM illustrated the formation of variety of nanoscale morphologies (spherical-, wire-, pendent-, doughnut- and flower-like) at different temperatures. AFM studies were carried out to evaluate quality of the films in terms of uniformity and roughness. Thin films of average roughness as low as 1.4 nm were deposited using these precursors. Photoluminescence studies of Bi{sub 2}P{sub 4}O{sub 13} thin films were also carried out. - Graphical abstract: Solvothermal decomposition of bismuth(III) dialkyldithiophosphates in ethylene glycol gave Bi{sub 2}S{sub 3} nanoparticles, whereas aerosol assisted chemical vapor deposition of these single source precursors deposited Bi{sub 2}P{sub 4}O{sub 13} thin films. Display Omitted - Highlights: • Preparation of phase pure orthorhombic Bi{sub 2}S{sub 3} nanorods and monoclinic Bi{sub 2}P{sub 4}O{sub 13} thin films. • Use of single source precursors for deposition of bismuth phosphate thin films. • Use of solvothermal decomposition and AACVD methods. • Morphology controlled synthesis of Bi{sub 2}P{sub 4}O{sub 13} thin films. • Bi{sub 2}S{sub 3} nanorods and Bi{sub 2}P{sub 4}O{sub 13} thin films using same single source precursors.

  7. Bismuth(III) dialkyldithiophosphates: Facile single source precursors for the preparation of bismuth sulfide nanorods and bismuth phosphate thin films

    NASA Astrophysics Data System (ADS)

    Biswal, Jasmine B.; Garje, Shivram S.; Nuwad, Jitendra; Pillai, C. G. S.

    2013-08-01

    Two different phase pure materials (Bi2S3 and Bi2P4O13) have been prepared under different conditions using the same single source precursors. Solvothermal decomposition of the complexes, Bi{S2P(OR)2}3 [where, R=Methyl (Me) (1), Ethyl (Et) (2), n-Propyl (Prn) (3) and iso-Propyl (Pri) (4)] in ethylene glycol gave orthorhombic bismuth sulfide nanorods, whereas aerosol assisted chemical vapor deposition (AACVD) of the same precursors deposited monoclinic bismuth tetraphosphate (Bi2P4O13) thin films on glass substrates. Surface study of the thin films using SEM illustrated the formation of variety of nanoscale morphologies (spherical-, wire-, pendent-, doughnut- and flower-like) at different temperatures. AFM studies were carried out to evaluate quality of the films in terms of uniformity and roughness. Thin films of average roughness as low as 1.4 nm were deposited using these precursors. Photoluminescence studies of Bi2P4O13 thin films were also carried out.

  8. Growth and Characterization of Bismuth and Antimony Thin Films

    NASA Astrophysics Data System (ADS)

    Martinez, A.; Berrios, A. R.; Collazo, R.; Garcia, J. L.; Ducoudray, G. O.

    1996-03-01

    We have grown thin films of bismuth and antimony using hot wall epitaxy. The polycrystalline films were grown onto (111)-silicon substrates. The chemical integrity of the films was established using Auger electron spectroscopy. The crystallographical properties of the films were assessed using x-ray diffraction techniques. We will report on the results of these characterization efforts, as well as, on the growth apparatus and process. Work supported in part by NSWC-CRADA 93-01 and EPSCoR-NSF Grant EHR-9108775

  9. Ultrafast electronic dynamics in laser-excited crystalline bismuth

    NASA Astrophysics Data System (ADS)

    Melnikov, A.; Misochko, O.; Chekalin, S.

    2013-03-01

    Femtosecond spectroscopy was applied to capture complex dynamics of non equilibrium electrons in bismuth. Data analysis reveals significant wavevector dependence of electron-hole and electron-phonon coupling strength along the Γ-T direction of the Brillouin zone

  10. Bismuth pyrochlore-based thin films for dielectric energy storage

    NASA Astrophysics Data System (ADS)

    Michael, Elizabeth K.

    The drive towards the miniaturization of electronic devices has created a need for dielectric materials with large energy storage densities. These materials, which are used in capacitors, are a critical component in many electrical systems. Here, the development of dielectric energy storage materials for pulsed power applications, which require materials with the ability to accumulate a large amount of energy and then deliver it to the system rapidly, is explored. The amount of electrostatic energy that can be stored by a material is a function of the induced polarization and the dielectric breakdown strength of the material. An ideal energy storage dielectric would possess a high relative permittivity, high dielectric breakdown strength, and low loss tangent under high applied electric fields. The bismuth pyrochlores are a compositionally tunable family of materials that meet these requirements. Thin films of cubic pyrochlore bismuth zinc niobate, bismuth zinc tantalate, and bismuth zinc niobate tantalate, were fabricated using a novel solution chemistry based upon the Pechini method. This solution preparation is advantageous because it avoids the use of teratogenic solvents, such as 2-methoxyethanol. Crystalline films fabricated using this solution chemistry had very small grains that were approximately 27 nm in lateral size and 35 nm through the film thickness. Impedance measurements found that the resistivity of the grain boundaries was two orders of magnitude higher than the resistivity of the grain interior. The presence of many resistive grain boundaries impeded conduction through the films, resulting in high breakdown strengths for these materials. In addition to high breakdown strengths, this family of materials exhibited moderate relative permittivities of between 55 +/- 2 and 145 +/- 5, for bismuth zinc tantalate and bismuth zinc niobate, respectively, and low loss tangents on the order of 0.0008 +/- 0.0001. Increases in the concentration of the tantalum

  11. Ferroelectric thin film bismuth titanate prepared from acetate precursors

    SciTech Connect

    Lu, Yanxia; Hoelzer, D.T.; Schulze, W.A.; Tuttle, B.A.; Potter, B.G.

    1994-10-01

    Bismuth titanate (Bi{sub 4}Ti{sub 3}O{sub 12}) thin films were fabricated by spin coat deposition followed by rapid thermal processing (RTP). Acetate derived solutions for deposition were synthesized by blending bismuth acetate in aqueous acetic acid and then adding titanium acetate. A series of electrically insulating, semiconducting and conducting substrates were evaluated for Bi{sub 4}Ti{sub 3}O{sub 12} film deposition. While X-ray diffraction and TEM analyses indicated that the initial perovskite crystallization temperature was 500{degrees}C or less for these Bi{sub 4}Ti{sub 3}O{sub 12} films, a 700{degrees}C crystallization treatment was used to obtain single phase perovskite films. Bi{sub 4}Ti{sub 3}O{sub 12} film crystallographic orientation was shown to depend on three factors: substrate surface morphology, the number of coating layers and thermal processing. While preferred c-direction orientation was observed for Bi{sub 4}Ti{sub 3}O{sub 12} films deposited on silver foil substrates, preferred a-direction orientation was obtained for films deposited on both Si and Pt coated Si wafers. The films were dense, smooth, crack free, and had grain sizes ranging from 20 nm to 100 nm. Film thickness and refractive index were determined using a combination of ellipsometry, waveguide refractometry and TEM measurements. Both low field dielectric and ferroelectric properties were measured for an 800 nm thick film deposited on a Pt coated MgO substrate. A remanent polarization of 38 {mu}C/cm{sup 2} and a coercive field of 98 kV/cm were measured for this film that was crystallized at 700{degrees}C.

  12. Bismuth induced enhanced green emission from terbium ions and their complex in thin films.

    PubMed

    Kaur, Gagandeep; Kumar, Brijesh; Verma, R K; Rai, S B

    2014-07-28

    Bismuth nanoparticles (NPs) have been prepared by the pulsed laser ablation technique using the third harmonics of a Nd-YAG laser. UV-absorption and TEM micrographs show Bi NPs of spherical shape with the average particle size ranging from 15 to 20 nm. These NPs were dispersed with Tb(3+) ions and their complex with salicylic acid (Sal) in polyvinyl alcohol to obtain thin films. The influence of Bi NPs on the emissive properties of Tb(3+) ions and the [Tb(Sal)3(phen)] complex has been studied by luminescence spectroscopy using 266 nm and 355 nm as excitation wavelengths. The luminescence intensity of Tb(3+) ions complexed with Sal in the thin polymer films increased significantly as compared to the Tb(3+) ions in the presence of Bi NPs on excitation at 355 nm. However, terbium ions in the case of the [Tb(Sal)3(phen)] complex together with NPs show an intense and extended emission spectrum in the 375-700 nm range for transitions arising from (5)D3 and (5)D4 levels to different (7)F(J) levels on 266 nm excitation. The luminescence enhancement has also been supported by lifetime measurements.

  13. Robust surface state transport in thin bismuth nanoribbons

    PubMed Central

    Ning, Wei; Kong, Fengyu; Han, Yuyan; Du, Haifeng; Yang, Jiyong; Tian, Mingliang; Zhang, Yuheng

    2014-01-01

    While a two-dimensional (2D) metallic surface state in bismuth has been proposed, experimental 2D evidence of quantum transport, e.g., angular dependent Shubnikov-de Haas (SdH) oscillations is still lacking. Here, we report the angular-dependent magnetoresistance measurements in single-crystal Bi nanoribbons, and found that both the low-field weak antilocalization behavior and the high-field angle-dependent SdH oscillations follow exactly the 2D character, indicative of the 2D metallic surface states which dominate the transport properties of thin Bi nanoribbons. Moreover, by controllable exposing the ribbons to ambient environment (1 atm and room temperature), the metallic surface states were found to be robust to the oxidation although the carrier density in the surface states are modified after the exposures. These results suggest that the metallic surface states in Bi nanoribbons should be topologically protected which can provide key information in understanding the surface properties of Bi in nanometer scale. PMID:25404036

  14. Electron excitation and autoionisation cross sections for elements of chemically peculiar stars: Study of bismuth

    NASA Astrophysics Data System (ADS)

    Predojević, B.; Pejčev, V.; Šević, D.; Marinković, B. P.

    2014-12-01

    Electron impact excitation from the ground state of bismuth atoms has been studied. A beam of electrons was scattered from a beam of atoms and the intensity of scattered electrons was measured for scattering angles up to 150° and incident electron energies of 40 and 60 eV. Obtained intensities were used for the calculation of relative differential cross sections (DCS). In addition, we recorded the energy loss-spectra at different incident electron energies and scattering angles. These spectra were analysed in order to identify the energy levels of bismuth atom below and above (autoionisation) the first ionization limit in electron spectroscopy. The presence of bismuth was confirmed in spectra of the chemically peculiar (CP) magnetic Ap 73 Dra and HR 465 and nonmagnetic Hg-Mn HR 7775 and χ Lupi stars. The obtained results for relative DCS and identified autoionised energy levels of bismuth were analysed and compared with previous experimental and theoretical data. The connection between our investigations of bismuth and astrophysical measurements are discussed.

  15. A model bismuth oxide intergranular thin film in a ZnO twist grain boundary.

    PubMed

    Domingos, H S

    2010-04-14

    The electronic properties of a model bismuth oxide intergranular film in ZnO were investigated using density functional plane wave calculations. It was found that oxygen excess plays a fundamental role in the appearance of electrical activity. The introduction by oxygen interstitials or zinc vacancies results in depletion of the charge in deep gap states introduced by the bismuth impurities. This makes the boundary less metallic and promotes the formation of acceptor states localized to the boundary core, resulting in Schottky barrier enhancement. The results indicate that the origin of electrical activity in thin intergranular bismuth oxide films is probably not distinct from that in decorated ZnO boundaries. PMID:21389532

  16. Anti-Stokes luminescence in bismuth-doped aluminoand phosphosilicate fibres under two-step IR excitation

    NASA Astrophysics Data System (ADS)

    Firstov, S. V.; Riumkin, K. E.; Khopin, V. F.; Alyshev, S. V.; Firstova, E. G.; Mel'kumov, M. A.; Gur'yanov, A. N.; Dianov, E. M.

    2016-07-01

    We have studied the luminescence properties of optical fibres with a bismuth-doped alumino- and phosphosilicate glass core under two-step excitation and obtained new experimental data on the properties of luminescence centres in such fibres.

  17. Thin film bismuth iron oxides useful for piezoelectric devices

    DOEpatents

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  18. Hot Wall Epitaxy And Characterization Of Bismuth And Antimony Thin Films On Barium Fluoride Substrates

    NASA Astrophysics Data System (ADS)

    Collazo, Ramon; Dalmau, Rafael; Martinez, Antonio

    1998-03-01

    We have grown thin films of bismuth and antimony using hot wall epitaxy. The epitaxial films were grown on (111)-BaF2 substrates. The chemical integrity of the films was established using Auger electron spectroscopy and X ray Photoelectron Spectroscopy. The thickness of the films was measured using an atomic force microscope to establish their growth rate. The crystallographic properties of the films were assessed using x-ray diffraction techniques. Both bismuth and antimony thin films were found to be oriented with the [003] direction perpendicular to the plane of the films. Pole figures of both types of films indicate the epitaxial nature of the films. Bi/Sb multilayer structures were grown using the same growth technique. We will report on the results of the characterization of these films as well as on the growth apparatus and process. Work supported in part by EPSCoR-NSF Grant EHR-9108775 and NCRADA-NSWCDD-92-01.

  19. A large polarization in Ce-modified bismuth ferrite thin films

    SciTech Connect

    Wang Yuanyu

    2011-06-15

    Bi{sub 0.95}Ce{sub 0.05}FeO{sub 3} (BCFO) thin films were grown on SrRuO{sub 3}/TiO{sub 2}/SiO{sub 2}/Si(100) substrates via radio frequency sputtering. The BCFO thin film has a (111) orientation with a high phase purity. Improved dielectric behavior is observed for the BCFO thin film as compared with that of pure bismuth ferrite thin film. A large remanent polarization of 2P{sub r} {approx} 183.9 {mu}C/cm{sup 2} is induced in the BCFO thin film, owing to the (111) orientation and the introduction of Ce. The local phase decomposition induced by larger depolarization fields and the oxygen vacancies dominates the fatigue resistance of the BCFO thin film.

  20. Phase transition studies in bismuth ferrite thin films synthesized via spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Goyal, Ankit; Lakhotia, Harish

    2013-06-01

    Multiferroic are the materials, which combine two or more "ferroic" properties, ferromagnetism, ferroelectricity or ferroelasticity. BiFeO3 is the only single phase multiferroic material which possesses a high Curie temperature (TC ˜ 1103 K), and a high Neel temperature (TN ˜ 643 K) at room temperature. Normally sophisticated methods are being used to deposit thin films but here we have tried a different method Low cost Spray Pyrolysis Method to deposit BiFeO3 thin film of Glass Substrate with rhombohedral crystal structure and R3c space group. Bismuth Ferrite thin films are synthesized using Bismuth Nitrate and Iron Nitrate as precursor solutions. X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) were used to study structural analysis of prepared thin films. XRD pattern shows phase formation of BiFeO3 and SEM analysis shows formation of nanocrystals of 200 nm. High Temperature Resistivity measurements were done by using Keithley Electrometer (Two Probe system). Abrupt behavior in temperature range (313 K - 400K) has been observed in resistance studies which more likely suggests that in this transition the structure is tetragonal rather than rhombohedral. BiFeO3 is the potential active material in the next generation of ferroelectric memory devices.

  1. Preparation of mixed bismuth and iron thin films by pulsed laser deposition using powder targets

    NASA Astrophysics Data System (ADS)

    Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Tanaka, Yuki; Suda, Yoshiaki

    2016-01-01

    Bismuth iron garnet (Bi3Fe5O12) thin films, for use in magnetic optics, were prepared by a pulsed laser deposition method using Bi and Fe mixed powder targets in oxygen gas. The deposition rate of the film strongly depended on the target mixture. The X-ray diffraction and X-ray photoelectron spectroscopy results suggest that the prepared films were not Bi3Fe5O12 but Bi-rich films, because of the lower melting temperature of Bi (544 K) compared with that of Fe (1811 K).

  2. Faraday effect of bismuth iron garnet thin film prepared by mist CVD method

    NASA Astrophysics Data System (ADS)

    Yao, Situ; Sato, Takafumi; Kaneko, Kentaro; Murai, Shunsuke; Fujita, Koji; Tanaka, Katsuhisa

    2015-06-01

    Metastable bismuth iron garnet (BIG, an abbreviation of Bi3Fe5O12), one kind of garnet-type ferrites, is known to manifest very large Faraday rotation as well as low optical absorption in the visible to infrared region. We report on successful synthesis of thin film composed of single-phase BIG epitaxially grown on single-crystalline gadolinium gallium garnet (Gd3Ga5O12, GGG) substrate by using mist chemical vapor deposition (CVD) method, which is an emerging technique for preparation of thin films. The crystal structure, surface morphology, and magnetic, optical and magneto-optical properties of the resultant thin films have been explored. The BIG thin film has a relatively flat surface free from roughness compared to those prepared by other vapor deposition methods. Saturation magnetization is about 1620 G at room temperature, which is close to that expected from the ideal magnetic structure of BIG. The maximum value of Faraday rotation angle reaches 54.3 deg/µm at a wavelength of 424 nm. This value is rather large when compared with those reported for BIG thin films prepared by other techniques. The wavelength dependence of Faraday rotation angle is analyzed well in terms of the crystal electric field (CEF) level schema. Our result suggests that the mist CVD method is a simple and effective technique to synthesize BIG thin film with excellent magneto-optical properties.

  3. Bismuth ferrite based thin films, nanofibers, and field effect transistor devices

    NASA Astrophysics Data System (ADS)

    Rivera-Beltran, Rut

    In this research an attempt has been made to explore bismuth ferrite thin films with low leakage current and nanofibers with high photoconductivity. Thin films were deposited with pulsed laser deposition (PLD) method. An attempt has been made to develop thin films under different deposition parameters with following target compositions: i) 0.6BiFeO3-0.4(Bi0.5 K0.5)TiO3 (BFO-BKT) and ii) bi-layered 0.88Bi 0.5Na0.5TiO3-0.08Bi0.5K0.5TiO 3-0.04BaTiO3/BiFeO3 (BNT-BKT-BT/BFO). BFO-BKT thin film shows suppressed leakage current by about four orders of magnitude which in turn improve the ferroelectric and dielectric properties of the films. The optimum remnant polarization is 19 muC.cm-2 at the oxygen partial pressure of 300 mtorr. The BNT-BKT-BT/BFO bi-layered thin films exhibited ferroelectric behavior as: Pr = 22.0 muC.cm-2, Ec = 100 kV.cm-1 and epsilonr = 140. The leakage current of bi-layered thin films have been reduced two orders of magnitude compare to un-doped bismuth ferrite. Bismuth ferrite nanofibers were developed by electrospinning technique and its electronic properties such as photoconductivity and field effect transistor performance were investigated extensively. Nanofibers were deposited by electrospinning of sol-gel solution on SiO2/Si substrate at driving voltage of 10 kV followed by heat treatment at 550 °C for 2 hours. The composition analysis through energy dispersive detector and electron energy loss spectroscopy revealed the heterogeneous nature of the composition with Bi rich and Fe deficient regions. X-ray photoelectron spectroscopy results confirmed the combination of Fe3+ and Fe2+ valence state in the fibers. The photoresponse result is almost hundred times higher for a fiber of 40 nm diameter compared to a fiber with 100 nm diameter. This effect is described by a size dependent surface recombination mechanism. A single and multiple BFO nanofibers field effect transistors devices were fabricated and characterized. Bismuth ferrite FET behaves

  4. Chemically deposited thin films of sulfides and selenides of antimony and bismuth as solar energy materials

    NASA Astrophysics Data System (ADS)

    Nair, M. T.; Nair, Padmanabhan K.; Garcia, V. M.; Pena, Y.; Arenas, O. L.; Garcia, J. C.; Gomez-Daza, O.

    1997-10-01

    Chemical bath deposition techniques for bismuth sulfide, bismuth selenide, antimony sulfide, and antimony selenide thin films of about 0.20 - 0.25 micrometer thickness are reported. All these materials may be considered as solar absorber films: strong optical absorption edges, with absorption coefficient, (alpha) , greater than 104 cm-1, are located at 1.31 eV for Bi2Se3, 1.33 eV for Bi2S3, 1.8 eV for Sb2S3, and 1.35 eV for Sb2Se3. As deposited, all the films are nearly amorphous. However, well defined crystalline peaks matching bismuthinite (JCPDS 17- 0320), paraguanajuatite (JCPDS 33-0214), and stibnite (JCPDS 6-0474) and antimony selenide (JCPDS 15-0861) for Bi2S3, Bi2Se3, Sb2S3 and Sb2Se3 respectively, are observed when the films are annealed in nitrogen at 300 degrees Celsius. This is accompanied by a substantial modification of the electrical conductivity in the films: from 10-7 (Omega) -1 cm-1 (in as prepared films) to 10 (Omega) -1 cm-1 in the case of bismuth sulfide and selenide films, and enhancement of photosensitivity in the case of antimony sulfide films. The chemical deposition of a CuS/CuxSe film on these Vx- VIy films and subsequent annealing at 300 degrees Celsius for 1 h at 1 torr of nitrogen leads to the formation of p-type films (conductivity of 1 - 100 (Omega) -1 cm-1) of multinary composition. Among these, the formation of Cu3BiS3 (JCPDS 9-0488) and Cu3SbS4 (JCPDS 35- 0581), CuSbS2 (JCPDS 35-0413) have been clearly detected. Solar energy applications of these films are suggested.

  5. Low-temperature growth of bismuth thin films with (111) facet on highly oriented pyrolytic graphite.

    PubMed

    Song, Fei; Wells, Justin W; Jiang, Zheng; Saxegaard, Magne; Wahlström, Erik

    2015-04-29

    The epitaxial growth of artificial two-dimensional metals at interfaces plays a key role in fabricating heterostructures for nanoelectronics. Here, we present the growth of bismuth nanostructures on highly oriented pyrolytic graphite (HOPG) under ultrahigh vacuum (UHV) conditions, which was investigated thoroughly by a combination of scanning tunneling microscopy (STM), ultraviolet photoemission spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), and low energy electron diffraction (LEED). It was found that (111)-oriented bilayers are formed on as-cleaved high-quality HOPG at 140 K, which opens the possibility of making Bi(111) thin films on a semimetal, and this is a notable step forward from the earlier studies, which show that only Bi(110) facets could be formed at ultrathin thickness at room temperature. XPS investigation of both C 1s and Bi 4f reflects the rather weak bonding between the Bi film and the HOPG substrate and suggests a quasi layer-by-layer growth mode of Bi nanostructures on HOPG at low temperature. Moreover, the evolution of the valence band of the interface is recorded by UPS, and a transition from quantum well states to bulk-like features is observed at varying film thickness. Unlike semimetallic bulk bismuth, ultrathin Bi(111) films are expected to be topological insulators. Our study may therefore pave the way for the generation of high quality Bi nanostructures to be used in spin electronics.

  6. Enhanced thermoelectric properties of phase-separating bismuth selenium telluride thin films via a two-step method

    SciTech Connect

    Takashiri, Masayuki Kurita, Kensuke; Hagino, Harutoshi; Miyazaki, Koji; Tanaka, Saburo

    2015-08-14

    A two-step method that combines homogeneous electron beam (EB) irradiation and thermal annealing has been developed to enhance the thermoelectric properties of nanocrystalline bismuth selenium telluride thin films. The thin films, prepared using a flash evaporation method, were treated with EB irradiation in a N{sub 2} atmosphere at room temperature and an acceleration voltage of 0.17 MeV. Thermal annealing was performed under Ar/H{sub 2} (5%) at 300 °C for 60 min. X-ray diffraction was used to determine that compositional phase separation between bismuth telluride and bismuth selenium telluride developed in the thin films exposed to higher EB doses and thermal annealing. We propose that the phase separation was induced by fluctuations in the distribution of selenium atoms after EB irradiation, followed by the migration of selenium atoms to more stable sites during thermal annealing. As a result, thin film crystallinity improved and mobility was significantly enhanced. This indicates that the phase separation resulting from the two-step method enhanced, rather than disturbed, the electron transport. Both the electrical conductivity and the Seebeck coefficient were improved following the two-step method. Consequently, the power factor of thin films that underwent the two-step method was enhanced to 20 times (from 0.96 to 21.0 μW/(cm K{sup 2}) that of the thin films treated with EB irradiation alone.

  7. Bismuth oxide thin films prepared by chemical bath deposition (CBD) method: annealing effect

    NASA Astrophysics Data System (ADS)

    Gujar, T. P.; Shinde, V. R.; Lokhande, C. D.; Mane, R. S.; Han, Sung-Hwan

    2005-08-01

    Bismuth oxide thin films have been deposited by room temperature chemical bath deposition (CBD) method and annealed at 623 K in air. They were characterized for structural, surface morphological, optical and electrical properties. From the X-ray diffraction patterns, it was found that after annealing a non-stoichiometric phase, Bi 2O 2.33, was removed and phase pure monoclinic Bi 2O 3 was obtained. Surface morphology of Bi 2O 3 film at lower magnification SEM showed rod-like structure, however, higher magnification showed a rectangular slice-like structure perpendicular to substrate, giving rise to microrods on the surface. The optical studies showed the decrease in band gap by 0.3 eV after annealing. The electrical resistivity variation showed semiconductor behavior and from thermoemf measurements, the electrical conductivity was found to be of n-type.

  8. Surface morphology and Raman spectroscopy of thin layers of antimony and bismuth chalcogenides

    NASA Astrophysics Data System (ADS)

    Luk'yanova, L. N.; Bibik, A. Yu.; Aseev, V. A.; Usov, O. A.; Makarenko, I. V.; Petrov, V. N.; Nikonorov, N. V.; Kutasov, V. A.

    2016-07-01

    The phonon spectra in thin layers of bismuth telluride and solid solutions of Bi2- x Sb x Te3- y Se y of different composition, belonging to three-dimensional topological insulators, have been investigated by micro-Raman spectroscopy, and the morphology of an interlayer van der Waals (0001) surface in them has been studied by semicontact atomic force microscopy at room temperature. The analysis of the Raman spectra and the intensity ratio of active and inactive longitudinal optical modes depending on the composition, morphology of the interlayer surface, and thickness of the layers enabled the estimation of the effect of topological surface states of Dirac fermions, associated with the strengthening of the electron-phonon interaction as a result of resonance Raman scattering, and the identification of the compositions, in which the contribution of topological surface states becomes dominant.

  9. Effect of annealing atmosphere on phase formation and electrical characteristics of bismuth ferrite thin films

    SciTech Connect

    Simoes, A.Z.; Riccardi, C.S.; Dos Santos, M.L.; Garcia, F. Gonzalez; Longo, E.; Varela, J.A.

    2009-08-05

    Bismuth ferrite thin films were deposited on Pt/Ti/SiO{sub 2}/Si substrates by a soft chemical method and spin-coating technique. The effect of annealing atmosphere (air, N{sub 2} and O{sub 2}) on the structure and electrical properties of the films are reported. X-ray diffraction analysis reveals that the film annealed in air atmosphere is a single-phase perovskite structure. The films annealed in air showed better crystallinity and the presence of a single BFO phase leading to lower leakage current density and superior ferroelectric hysteresis loops at room temperature. In this way, we reveal that BFO film crystallized in air atmosphere by the soft chemical method can be useful for practical applications, including nonvolatile digital memories, spintronics and data-storage media.

  10. Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Y. W.; Kim, J. S.; Kim, G. H.; Kim, Kwang S.

    2006-04-01

    Quantum size effects in volume plasmon excitation of bismuth nanoparticles with diameters ranging from 5to500nm have been studied by electron energy loss spectroscopy. The Bi nanoparticles were prepared by reducing Bi3+ with sodium borohydride in the presence of poly(vinylpyrroldone). The volume plasmon energy and its peak width increase with decreasing nanoparticle diameter, due to the quantum size effect. For the particles with diameter less than 40nm, the increase of the volume plasmon energy is proportional to the inverse square of the nanoparticle diameter, confirming the semimetal to semiconductor transition in Bi nanoparticles.

  11. Direct evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films.

    PubMed

    Bertinshaw, Joel; Maran, Ronald; Callori, Sara J; Ramesh, Vidya; Cheung, Jeffery; Danilkin, Sergey A; Lee, Wai Tung; Hu, Songbai; Seidel, Jan; Valanoor, Nagarajan; Ulrich, Clemens

    2016-01-01

    Magnonic devices that utilize electric control of spin waves mediated by complex spin textures are an emerging direction in spintronics research. Room-temperature multiferroic materials, such as bismuth ferrite (BiFeO3), would be ideal candidates for this purpose. To realize magnonic devices, a robust long-range spin cycloid with well-known direction is desired, since it is a prerequisite for the magnetoelectric coupling. Despite extensive investigation, the stabilization of a large-scale uniform spin cycloid in nanoscale (100 nm) thin BiFeO3 films has not been accomplished. Here, we demonstrate cycloidal spin order in 100 nm BiFeO3 thin films through the careful choice of crystallographic orientation, and control of the electrostatic and strain boundary conditions. Neutron diffraction, in conjunction with X-ray diffraction, reveals an incommensurate spin cycloid with a unique [11] propagation direction. While this direction is different from bulk BiFeO3, the cycloid length and Néel temperature remain equivalent to bulk at room temperature. PMID:27585637

  12. Direct evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films

    NASA Astrophysics Data System (ADS)

    Bertinshaw, Joel; Maran, Ronald; Callori, Sara J.; Ramesh, Vidya; Cheung, Jeffery; Danilkin, Sergey A.; Lee, Wai Tung; Hu, Songbai; Seidel, Jan; Valanoor, Nagarajan; Ulrich, Clemens

    2016-09-01

    Magnonic devices that utilize electric control of spin waves mediated by complex spin textures are an emerging direction in spintronics research. Room-temperature multiferroic materials, such as bismuth ferrite (BiFeO3), would be ideal candidates for this purpose. To realize magnonic devices, a robust long-range spin cycloid with well-known direction is desired, since it is a prerequisite for the magnetoelectric coupling. Despite extensive investigation, the stabilization of a large-scale uniform spin cycloid in nanoscale (100 nm) thin BiFeO3 films has not been accomplished. Here, we demonstrate cycloidal spin order in 100 nm BiFeO3 thin films through the careful choice of crystallographic orientation, and control of the electrostatic and strain boundary conditions. Neutron diffraction, in conjunction with X-ray diffraction, reveals an incommensurate spin cycloid with a unique [11] propagation direction. While this direction is different from bulk BiFeO3, the cycloid length and Néel temperature remain equivalent to bulk at room temperature.

  13. Selective separation and determination of isoproterenol on thin layers of bismuth silicate ion-exchanger.

    PubMed

    Ghoulipour Vanik; Hassankhani-Majd Zahra

    2015-06-01

    A simple and sensitive method for the separation and determination of isoproterenol from other doping drugs has been developed on thin layers of bismuth silicate, a synthetic inorganic ion exchanger as adsorbent in thin layer chromatography (TLC). A mixture of methanol and 0.1 mol/L formic acid (3:7, v/v) was employed as the mobile phase. The development time was 32 min. The quantitative measurement were performed with a Camag TLC Scanner-3 at wavelength (λ) of 410 nm. The isoproterenol recovery in this procedure was 98.9%. The linear correlation coefficient was greater than 0. 987 1 and the relative standard deviation (RSD) was less than 0.94. The limit of detection (LOD) and limit of quantification ( LOQ) were 7.7 x 10(-7) mol/L and 3.85 x 10(-6) mol/L, respectively. This method has been applied in the determination of isoproterenol in dosage forms and in biological fluids.

  14. Direct evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films

    PubMed Central

    Bertinshaw, Joel; Maran, Ronald; Callori, Sara J.; Ramesh, Vidya; Cheung, Jeffery; Danilkin, Sergey A.; Lee, Wai Tung; Hu, Songbai; Seidel, Jan; Valanoor, Nagarajan; Ulrich, Clemens

    2016-01-01

    Magnonic devices that utilize electric control of spin waves mediated by complex spin textures are an emerging direction in spintronics research. Room-temperature multiferroic materials, such as bismuth ferrite (BiFeO3), would be ideal candidates for this purpose. To realize magnonic devices, a robust long-range spin cycloid with well-known direction is desired, since it is a prerequisite for the magnetoelectric coupling. Despite extensive investigation, the stabilization of a large-scale uniform spin cycloid in nanoscale (100 nm) thin BiFeO3 films has not been accomplished. Here, we demonstrate cycloidal spin order in 100 nm BiFeO3 thin films through the careful choice of crystallographic orientation, and control of the electrostatic and strain boundary conditions. Neutron diffraction, in conjunction with X-ray diffraction, reveals an incommensurate spin cycloid with a unique [11] propagation direction. While this direction is different from bulk BiFeO3, the cycloid length and Néel temperature remain equivalent to bulk at room temperature. PMID:27585637

  15. Microwave synthesis of calcium bismuth niobate thin films obtained by the polymeric precursor method

    SciTech Connect

    Simoes, A.Z.; Ramirez, M.A. . E-mail: miganr@kenter.com; Ries, A.; Wang, F.; Longo, E.; Varela, J.A.

    2006-08-10

    The crystal structure, surface morphology and electrical properties of layered perovskite calcium bismuth niobate thin films (CaBi{sub 2}Nb{sub 2}O{sub 9}-CBN) deposited on platinum coated silicon substrates by the polymeric precursor method have been investigated. The films were crystallized in a domestic microwave and in a conventional furnace. X-ray diffraction and atomic force microscopy analysis confirms that the crystallinity and morphology of the films are affected by the different annealing routes. Ferroelectric properties of the films were determined with remanent polarization P {sub r} and a drive voltage V {sub c} of 4.2 {mu}C/cm{sup 2} and 1.7 V for the film annealed in the conventional furnace and 1.0 {mu}C/cm{sup 2} and 4.0 V for the film annealed in microwave furnace, respectively. A slight decay after 10{sup 8} polarization cycles was observed for the films annealed in the microwave furnace indicating a reduction of the domain wall mobility after interaction of the microwave energy with the bottom electrode.

  16. Influence of bismuth substitution on yttrium orthoferrite thin films preparation by the MOD method

    NASA Astrophysics Data System (ADS)

    Galstyan, Ogsen; Lee, Hanju; Park, Jongwon; Lee, Jung-Ha; Babajanyan, Arsen; Friedman, Barry; Lee, Kiejin

    2016-01-01

    Yttrium orthoferrite thin films with a thickness of about 0.4 μm were prepared on glass substrates by using a metal-organic decomposition method. Our studies reveal that it is possible to reduce the crystallization temperature of the yttrium orthoferrite by the substitution of the yttrium ion with bismuth. For the samples BixY1-xFeO3 with x=0.3 and x=0.4, orthorhombic yttrium orthoferrite characteristic peaks in the X-ray diffraction spectra have been detected. The lattice constants of the Bi0.3Y0.7FeO3 film were a=5.905 Å, b=7.66 Å, c=5.256 Å with an average grain size of about 40 nm. The magnetization data indicate that the film has in-plane easy axis and weak coercivity which might be explained by a possible secondary garnet phase crystallization. Faraday rotation angle of the sample was measured to be about 0.3°/μm.

  17. Mapping strain modulated electronic structure perturbations in mixed phase bismuth ferrite thin films

    SciTech Connect

    Krishnan, P.S. Sanakara R.; Aguiar, Jeffery A.; Ramasse, Q. M.; Kepaptsoglou, D. M.; Liang, W. I.; Chu, Y. H.; Browning, Nigel D.; Munroe, Paul R.; Nagarajan, Valanoor

    2015-01-01

    Strain engineering of epitaxial ferroelectrics has emerged as a powerful method to tailor the electromechanical response of these materials, although the effect of strain at the atomic scale and the interplay between lattice displacements and electronic structure changes are not yet fully understood. Here, using a combination of scanning transmission electron microscopy (STEM) and density functional theory (DFT), we systematically probe the role of epitaxial strain in mixed phase bismuth ferrite thin films. Electron energy loss O K and Fe L2,3 edge spectra acquired across the rhombohedral (R)-tetragonal (T) phase boundary reveal progressive, and systematic changes, in electronic structure going from one phase to the other. The comparison of the acquired spectra, with theoretical simulations using DFT, suggests a breakage in the structural symmetry across the boundary due to the simultaneous presence of increasing epitaxial strain and off- axial symmetry in the T phase. This implies that the imposed epitaxial strain plays a significant role in not only changing the crystal-field geometry, but also the bonding environment surrounding the central iron cation at the interface thus providing new insights and a possible link to understand how the imposed strain could perturb magnetic ordering in the T phase BFO.

  18. Structural, optical, and transport properties of nanocrystalline bismuth telluride thin films treated with homogeneous electron beam irradiation and thermal annealing

    NASA Astrophysics Data System (ADS)

    Takashiri, Masayuki; Asai, Yuki; Yamauchi, Kazuki

    2016-08-01

    We investigated the effects of homogeneous electron beam (EB) irradiation and thermal annealing treatments on the structural, optical, and transport properties of bismuth telluride thin films. Bismuth telluride thin films were prepared by an RF magnetron sputtering method at room temperature. After deposition, the films were treated with homogeneous EB irradiation, thermal annealing, or a combination of both the treatments (two-step treatment). We employed Williamson–Hall analysis for separating the strain contribution from the crystallite domain contribution in the x-ray diffraction data of the films. We found that strain was induced in the thin films by EB irradiation and was relieved by thermal annealing. The crystal orientation along c-axis was significantly enhanced by the two-step treatment. Scanning electron microscopy indicated the melting and aggregation of nano-sized grains on the film surface by the two-step treatment. Optical analysis indicated that the interband transition of all the thin films was possibly of the indirect type, and that thermal annealing and two-step treatment methods increased the band gap of the films due to relaxation of the strain. Thermoelectric performance was significantly improved by the two-step treatment. The power factor reached a value of 17.2 μW (cm‑1 K‑2), approximately 10 times higher than that of the as-deposited thin films. We conclude that improving the crystal orientation and relaxing the strain resulted in enhanced thermoelectric performance.

  19. Structural, optical, and transport properties of nanocrystalline bismuth telluride thin films treated with homogeneous electron beam irradiation and thermal annealing.

    PubMed

    Takashiri, Masayuki; Asai, Yuki; Yamauchi, Kazuki

    2016-08-19

    We investigated the effects of homogeneous electron beam (EB) irradiation and thermal annealing treatments on the structural, optical, and transport properties of bismuth telluride thin films. Bismuth telluride thin films were prepared by an RF magnetron sputtering method at room temperature. After deposition, the films were treated with homogeneous EB irradiation, thermal annealing, or a combination of both the treatments (two-step treatment). We employed Williamson-Hall analysis for separating the strain contribution from the crystallite domain contribution in the x-ray diffraction data of the films. We found that strain was induced in the thin films by EB irradiation and was relieved by thermal annealing. The crystal orientation along c-axis was significantly enhanced by the two-step treatment. Scanning electron microscopy indicated the melting and aggregation of nano-sized grains on the film surface by the two-step treatment. Optical analysis indicated that the interband transition of all the thin films was possibly of the indirect type, and that thermal annealing and two-step treatment methods increased the band gap of the films due to relaxation of the strain. Thermoelectric performance was significantly improved by the two-step treatment. The power factor reached a value of 17.2 μW (cm(-1) K(-2)), approximately 10 times higher than that of the as-deposited thin films. We conclude that improving the crystal orientation and relaxing the strain resulted in enhanced thermoelectric performance. PMID:27389820

  20. Electronic, vibrational, and structural properties of thin and ultrathin films of carbon and bismuth

    NASA Astrophysics Data System (ADS)

    Merkulov, Vladimir Igorivich

    A number of techniques, including Raman scattering spectroscopy, high resolution electron energy loss spectroscopy (HREELS), transmission electron microscopy (TEM), Auger electron and x-ray photoemission spectroscopies (AES and XPS), were employed to investigate the electronic, vibrational, and structural properties of nanocrystalline carbon and liquid bismuth clusters, as well as diamondlike amorphous carbon films. Hydrogen-free, diamondlike amorphous carbon thin films with a wide range of tetrahedral bonding were studied using HREELS and Raman scattering in the visible and ultraviolet. The measurements provided direct evidence for the presence of spsp3-bonded C atoms in these materials. The experimental results were found to be in excellent agreement with theoretical predictions and contributed to an improved understanding of the mechanism by which the diamondlike fraction develops within the amorphous carbon network. HREELS studies of two dimensional, grahite-like carbon clusters were performed and indicated a semimetal to semiconductor transition as a function of particle size. The formation of an energy gap was observed for nanocrystallites smaller than ˜1nm estimated by using a novel thin annular detector and the dark-field mode of a scanning transmission electron microscope. Hydrogen adsorption was found to modify the electronic states, increasing the existing gap of the smaller semiconducting clusters and opening a gap in the case of larger metallic particles. Interference enhanced Raman scattering (IERS) measurements also showed the first evidence for changes in the phonon density of states of small carbon nanocrystallites. While a large number of elemental and compound semiconductors in bulk form become metallic upon melting due to changes in local atomic structure of the liquid state, in situ IERS studies of liquid Bi clusters suggested that for very small sizes this atomic structure transition does not occur. Changes in the vibrational spectra with the

  1. Valence-driven electrical behavior of manganese-modified bismuth ferrite thin films

    SciTech Connect

    Wu Jiagang; Wang, John; Xiao Dingquan; Zhu Jianguo

    2011-06-15

    BiFe{sub 0.95}R{sub 0.05}O{sub 3} (Mn{sup 2+}, Mn{sup 3+}, and Mn{sup 4+}) thin films with (110) orientation were fabricated on SrRuO{sub 3}/Pt/TiO{sub 2}/SiO{sub 2}/Si(100) substrates via rf sputtering. With the increasing valence of Mn in BiFe{sub 0.95}R{sub 0.05}O{sub 3}, the concentration of Fe{sup 2+} increases, whereas the concentration of oxygen vacancies decreases. The electrical properties of BiFe{sub 0.95}R{sub 0.05}O{sub 3} are correlated with the valence of Mn. Their leakage current density is dependent on the concentration of oxygen vacancies caused by different valences of Mn. Their P-E loops become better with the increasing valence of Mn owing to a lower leakage current density in high electric field regions, and a large remanent polarization of 2P{sub r} {approx} 145.2 {mu}C/cm{sup 2} is obtained for the Mn{sup 4+}-doped film. For the Mn{sup 2+}-doped bismuth ferrite film, the space-charge-limited conduction and Schottky barrier dominate its leakage behavior under a negative electric field, the Ohmic conduction and Schottky barrier are involved in the leakage behavior under a positive electric field, and the interface-limited Fowler-Nordheim tunneling is their dominant mechanism in a high electric field region. In contrast, an Ohmic conduction dominates the leakage behavior of Mn{sup 3+}- and Mn{sup 4+}-doped films regardless of negative and positive directions or measurement temperatures.

  2. Global and Chaotic Dynamics for a Parametrically Excited Thin Plate

    NASA Astrophysics Data System (ADS)

    ZHANG, W.

    2001-02-01

    The global bifurcations and chaotic dynamics of a parametrically excited, simply supported rectangular thin plate are analyzed. The formulas of the thin plate are derived by von Karman-type equation and Galerkin's approach. The method of multiple scales is used to obtain the averaged equations. Based on the averaged equations, theory of normal form is used to give the explicit expressions of normal form associated with a double zero and a pair of pure imaginary eigenvalues by Maple program. On the basis of the normal form, global bifurcation analysis of the parametrically excited rectangular thin plate is given by a global perturbation method developed by Kovacic and Wiggins. The chaotic motion of thin plate is found by numerical simulation.

  3. Electrochemical and surface spectroscopic studies of thin films of bismuth ruthenium oxide (Bi{sub 2}Ru{sub 2}O{sub 7})

    SciTech Connect

    Wideloev, A.; Markovic, N.M.; Ross, P.N. Jr.

    1996-11-01

    Thin, nonporous films of bismuth ruthenium oxide having the pyrochlore crystal structure were prepared by ion beam deposition. The films were grown on metal disks machined to fit into a rotating ring-disk electrode. The electrocatalytic properties of these films for O{sub 2} reduction and evolution were studied in 1 M KOH using the rotating ring-disk electrode method in conjunction with spectroscopic studies of the surfaces before and after electrochemical analysis. The crystalline pyrochlore film was found to be an extremely poor oxygen reduction catalyst, but it could be activated in situ by a procedure that created a highly porous amorphous structure by dissolution of bismuth cations into the solution. The authors found in separate experiments that bismuth ions in solution increased the oxygen reduction activity of a nonporous ruthenium oxide surface, and suggest that there is an analogous effect on the activity of the residual, ruthenium-rich oxide surface by bismuth ions in solution following activation.

  4. Comprehensive dielectric performance of bismuth acceptor doped BaTiO3 based nanocrystal thin film capacitors

    SciTech Connect

    Liu, SY; Zhang, HN; Sviridov, L; Huang, LM; Liu, XH; Samson, J; Akins, D; Li, J; O'Brien, S

    2012-11-07

    We present a novel approach to preparing bismuth acceptor doped barium titanate nanocrystal formulations that can be deposited in conjunction with polymers in order to prepare a thin film nanocomposite dielectric that exhibits desirable capacitor characteristics. Exploring the limits of dielectric function in nanocomposites is an important avenue of materials research, while paying strict attention to the overall device quality, namely permittivity, loss and equivalent series resistance (ESR). Pushing capacitor function to higher frequencies, a desirable goal from an electrical engineering point of view, presents a new set of challenges in terms of minimizing interfacial, space charge and polarization effects within the dielectric. We show the ability to synthesize BaTi0.96Bi0.04O3 or BaTi0.97Bi0.03O3 depending on nominal molar concentrations of bismuth at the onset. The low temperature solvothermal route allows for substitution at the titanium site (strongly supported by Rietveld and Raman analysis). Characterization is performed by XRD with Rietveld refinement, Raman Spectroscopy, SEM and HRTEM. A mechanism is proposed for bismuth acceptor substitution, based on the chemical reaction of the alkoxy-metal precursors involving nucleophilic addition. Dielectric analysis of the nanocrystal thin films is performed by preparing nanocrystal/PVP 2-2 nanocomposites (no annealing) and comparing BaTi0.96Bi0.04O3 and BaTi0.97Bi0.03O3 with undoped BaTiO3. Improvements of up to 25% in capacitance (permittivity) are observed, with lower loss and dramatically improved ESR, all to very high frequency ranges (>10 MHz).

  5. Group III-nitride thin films grown using MBE and bismuth

    DOEpatents

    Kisielowski, Christian K.; Rubin, Michael

    2000-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  6. Group III-nitride thin films grown using MBE and bismuth

    DOEpatents

    Kisielowski, Christian K.; Rubin, Michael

    2002-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  7. Synthesis and materials chemistry of bismuth tris-(di-i-propylcarbamate): deposition of photoactive Bi2O3 thin films.

    PubMed

    Cosham, Samuel D; Hill, Michael S; Horley, Graeme A; Johnson, Andrew L; Jordan, Laura; Molloy, Kieran C; Stanton, David C

    2014-01-01

    The bismuth carbamate Bi(O2CNPr(i)2)3, a tetramer in the solid-state, has been synthesized and used to deposit mixtures of bismuth oxides by aerosol-assisted chemical vapor deposition (AACVD). The nature of the deposited oxide is a function of both temperature and run-time. Initially, δ-Bi2O3 is deposited, over which grows a thick layer of β-Bi2O3 nanowires, the latter having an increasing degree of preferred orientation at higher deposition temperatures. The photocatalytic activity of a thin film of δ-Bi2O3 for the degradation of methylene blue dye was found to be similar to that of a commercial TiO2 film on glass, while the film overcoated with β-Bi2O3 nanowires was less active. Exposure of Bi(O2CNPr(i)2)3 to controlled amounts of moist air affords the novel oxo-cluster Bi8(O)6(O2CNPr(i)2)12, whose structure has also been determined. PMID:24387747

  8. Studies of Photo-Excited and Trapped Electrons in Cubic BISMUTH(12) Silicon OXYGEN(20)

    NASA Astrophysics Data System (ADS)

    Nouchi, Pascale

    We present experimental and theoretical studies of charge transport processes in cubic n-type Bi _{12}SiO_{20 } (n-BSO). We first study the room-temperature photocurrent response to short-pulse illumination in two n-BSO samples called CT1 and SU1 in previous publications. These experiments suggest that drifting electrons spend much time in shallow traps. They allow us to estimate the corresponding trap-limited mobility and to measure the electron lifetime in the conduction band and the dwell time in shallow traps. In sample CT1, we also study the transient photocurrent behavior below room temperature: we find that the charge transport is limited by two sets of shallow traps with energy depths equal to 410 +/- 50 meV and 650 +/- 80 meV. In sample SU1, we directly measure the trap-limited mobility and find it is equal to 0.24 +/- 0.07 cm^2V ^{-1}s^ {-1} at room temperature. We then describe what we believe to be the first measurement of the pure conduction band mobility in n-BSO which we find to be 4.4 +/- 1.3 cm^2V ^{-1}s^ {-1} in SU1. We describe the novel holographic "time-of-flight" technique we developed for this measurement in which we observe the average time for a photoexcited charge carrier to drift in the dark (because of a strong applied electric field) over the period of a grating of charged traps created in the crystal by two interfering short laser pulses. We also use this technique to study the temperature dependence of the mobility. These results suggest the existence of shallow traps of energy depth equal to 320 +/- 40 meV. We also derive an analytical solution to the standard material equations which describes the build-up of the photorefractive grating in the dark after an initial low-energy, spatially -sinusoidal, short-pulse excitation. It is the first short -pulse solution to be developed in a band transport model containing both deep photoexcitable traps and shallow thermally excitable traps. The build-up of the space-charge field includes two

  9. Ultrafast optical control of magnetization dynamics in polycrystalline bismuth doped iron garnet thin films

    SciTech Connect

    Deb, Marwan Vomir, Mircea; Rehspringer, Jean-Luc; Bigot, Jean-Yves

    2015-12-21

    Controlling the magnetization dynamics on the femtosecond timescale is of fundamental importance for integrated opto-spintronic devices. For industrial perspectives, it requires to develop simple growth techniques for obtaining large area magneto-optical materials having a high amplitude ultrafast Faraday or Kerr response. Here we report on optical pump probe studies of light induced spin dynamics in high quality bismuth doped iron garnet polycrystalline film prepared by the spin coating method. We demonstrate an ultrafast non-thermal optical control of the spin dynamics using both circularly and linearly polarized pulses.

  10. Multiplexed displacement fiber sensor using thin core fiber exciter

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2015-06-01

    This letter reports a multiplexed optical displacement sensor using a thin core fiber (TCF) exciter. The TCF exciter is followed by a stripped single mode optical fiber. A small section of buffer is used as the movable component along the single mode fiber. Ultra-weak cladding mode reflection (< - 75 dB) was employed to probe the refractive index discontinuity between the air and buffer coating boundary. The position change of the movable buffer segment results in a delay change of the cladding mode reflection. Thus, it is a measure of the displacement of the buffer segment with respect to the glass fiber. The insertion loss of one sensor was measured to be less than 3 dB. A linear relationship was evaluated between the measurement position and absolute position of the moving actuator. Multiplexed capability was demonstrated and no cross talk was found between the sensors.

  11. Development of Bismuth-based Lead-free Piezoelectric Materials: Thin Film Piezoelectric Materials via PVD and CSD Routes

    NASA Astrophysics Data System (ADS)

    Jeon, Yu Hong

    Piezoelectric materials have been widely used in electromechanical actuators, sensors, and ultrasonic transducers. Among these materials, lead zirconate titanate Pb(Zr1-xTix)O3 (PZT) has been primarily investigated due to its excellent piezoelectric properties. However, environmental concerns due to the toxicity of PbO have led to investigations into alternative materials systems. Bismuth-based perovskite piezoelectric materials such as (Bi0.5,Na0.5)TiO3 - (Bi0.5K 0.5)TiO3 (BNT - BKT), (Bi0.5,Na0.5 )TiO3 - (Bi0.5K0.5)TiO3 - BaTiO3(BNT - BKT - BT), (Bi0.5K 0.5)TiO3 - Bi(Zn0.5,Ti0.5)O 3 (BKT - BZT), and (Bi0.5,Na0.5)TiO 3 - (Bi0.5K0.5)TiO3 - Bi(Mg 0.5,Ti0.5)O3 (BNT - BKT - BMgT) have been explored as potential alternatives to PZT. These materials systems have been extensively studied in bulk ceramic form, however many of the ultimate applications will be in thin film embodiments (i.e., microelectromechanical systems). For this reason, in this thesis these lead-free piezoelectrics are synthesized in thin film form to understand the structure-property-processing relationships and their impact on the ultimate device response. Fabrication of high quality of 0.95BKT - 0.05BZT thin films on platinized silicon substrates was attempted by pulsed laser deposition. Due to cation volatility, deposition parameters such as substrate temperature, deposition pressure, and target-substrate distance, as well as target overdoping were explored to achieve phase pure materials. This route led to high dielectric loss, indicative of poor ferroelectric behavior. This was likely a result of the poor thin film morphology observed in films deposited via this method. Subsequently, 0.8BNT - 0.2BKT, 85BNT - 10BKT - 5BT, and 72.5BNT - 22.5BKT - 5BMgT (near morphotropic phase boundary composition) were synthesized via chemical solution deposition. To compensate the loss of A-site cations, overdoped precursor solutions were prepared. Crystallization after each spin cast layer were required to

  12. Super-resolution readout property of bismuth-doped antimony-based thin film as a functional mask for read-only memory

    NASA Astrophysics Data System (ADS)

    Lu, Xinmiao; Wu, Yiqun; Wang, Yang; Wei, Jingsong

    2012-09-01

    Bismuth-doped antimony-based (Sb100- x Bi x , x=2.46) thin films were presented as a functional mask for super-resolution readout of read-only memory (ROM). The pit size of the ROM was 390 nm, and super-resolution readout was realized on a dynamic tester with laser wavelength of 780 nm and the numerical aperture of the focusing objective lens of 0.45. The carrier-to-noise ratio (CNR) of 22 dB, readout threshold power of 0.8 mW and super-resolution readout cycles of 2×104 was achieved. The influence of film thickness and readout power on CNR was investigated. The reflectivity and transmittance of the film with different temperature at wavelength of 780 nm were detected, and the super-resolution mechanism of the bismuth-doped antimony-based thin films as the functional mask layer was discussed.

  13. Low temperature preparation of bismuth-related ferroelectrics powder and thin films by hydrothermal synthesis.

    PubMed

    Nguyen, T Tho; Inoue, Akihiro; Noda, Minoru; Okuyama, Masanori

    2007-12-01

    Bi(4)Ti(3)O(12) (BIT) thin films were prepared by low temperature hydrothermal synthesis on Pt/TiO(x)/SiO(2)/Si. Bi(4)Ti(3)O(12) or TiO(2) gel solution was formed and annealed at 350 degrees C. The BIT thin films were crystallized as a Bi-layer structural ferroelectric. During the hydrothermal treatment, the TiO(2) anatase (101) peak appears and seems to play the role as an intermediate layer. Randomly oriented BIT thin films were obtained. As a result, the BIT thin films have ferroelectric property. The as-deposited BIT thin films include spherical grains with the grain size of 120 nm.

  14. Nonlinear optical properties of zinc oxide doped bismuth thin films using Z-scan technique

    NASA Astrophysics Data System (ADS)

    Abed, S.; Bouchouit, K.; Aida, M. S.; Taboukhat, S.; Sofiani, Z.; Kulyk, B.; Figa, V.

    2016-06-01

    ZnO doped Bi thin films were grown on glass substrates by spray ultrasonic technique. This paper presents the effect of Bi doping concentration on structural and nonlinear optical properties of zinc oxide thin films. These thin films were characterized by X-ray diffractometer technique. XRD analysis revealed that the ZnO:Bi thin films indicated good preferential orientation along c-axis perpendicular to the substrate. The nonlinear optical properties such as nonlinear absorption coefficient (β) and third order nonlinear susceptibility (Imχ(3)) are investigated. The calculations have been performed with a Z scan technique using Nd:YAG laser emitting 532 nm. The reverse saturable absorption (RSA) mechanism was responsible for the optical limiting effect. The results suggest that this material considered as a promising candidate for future optical device applications.

  15. Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells.

    PubMed

    Han, Lihao; Abdi, Fatwa F; van de Krol, Roel; Liu, Rui; Huang, Zhuangqun; Lewerenz, Hans-Joachim; Dam, Bernard; Zeman, Miro; Smets, Arno H M

    2014-10-01

    A hybrid photovoltaic/photoelectrochemical (PV/PEC) water-splitting device with a benchmark solar-to-hydrogen conversion efficiency of 5.2% under simulated air mass (AM) 1.5 illumination is reported. This cell consists of a gradient-doped tungsten-bismuth vanadate (W:BiVO4 ) photoanode and a thin-film silicon solar cell. The improvement with respect to an earlier cell that also used gradient-doped W:BiVO4 has been achieved by simultaneously introducing a textured substrate to enhance light trapping in the BiVO4 photoanode and further optimization of the W gradient doping profile in the photoanode. Various PV cells have been studied in combination with this BiVO4 photoanode, such as an amorphous silicon (a-Si:H) single junction, an a-Si:H/a-Si:H double junction, and an a-Si:H/nanocrystalline silicon (nc-Si:H) micromorph junction. The highest conversion efficiency, which is also the record efficiency for metal oxide based water-splitting devices, is reached for a tandem system consisting of the optimized W:BiVO4 photoanode and the micromorph (a-Si:H/nc-Si:H) cell. This record efficiency is attributed to the increased performance of the BiVO4 photoanode, which is the limiting factor in this hybrid PEC/PV device, as well as better spectral matching between BiVO4 and the nc-Si:H cell.

  16. Bismuth telluride (Bi2Te3) nanowires: synthesis by cyclic electrodeposition/stripping, thinning by electrooxidation, and electrical power generation.

    PubMed

    Menke, E J; Brown, M A; Li, Q; Hemminger, J C; Penner, R M

    2006-12-01

    Nanowires composed of the thermoelectric material Bi2Te3 were synthesized on highly oriented pyrolytic graphite (HOPG) electrodes using the electrochemical step edge decoration (ESED) method. Nanowire synthesis was initiated by applying a voltage pulse of -0.75 V versus SCE for 5 ms to an HOPG electrode in an aqueous solution containing both Bi3+ and TeO22-, thereby producing nuclei at the step edges. Bi2Te3 was electrodeposited onto these nuclei using a cyclic electrodeposition-stripping scheme that involved the electrodeposition of bismuth-rich Bi2Te3 on a negative-going voltammetric scan (to -0.05 V) and the subsequent anodic stripping of excess bismuth from these nanowires during a positive-going scan (to +0.35 V). When this cycle was repeated 10-50 times, Bi2Te3 nanowires in the 100-300-nm-diameter range were obtained. These nanowires were narrowly dispersed in diameter (RSDdia = 10-20%), were more than 100 microm in length, and were organized into parallel arrays containing hundreds of wires. Smaller nanowires, with diameters down to 30 nm, were obtained by electrooxidizing 150-nm-diameter Bi2Te3 nanowires at +0.37 V under conditions of kinetic control. This oxidation process unexpectedly improved the uniformity of Bi2Te3 nanowires, and X-ray photoelectron spectroscopy (XPS) shows that these nanowires retain a Bi2Te3 core but also have a thin surface layer composed of Bi and Te oxides. The ability of Bi2Te3 nanowires to generate electrical power was assessed by transferring ensembles of these nanowires onto cyanoacrylate-coated glass surfaces and evaporating 4-point nickel contacts. A dimensionless figure of merit, ZT, ranging from 0 to 0.85 was measured for fresh samples that were less than 1 day old. XPS reveals that Bi2Te3 nanowires are oxidized within a week to Bi2O3 and TeO2. These oxides may interfere with the application by evaporation of electrical contacts to these nanowires.

  17. Optical and structural properties of indium doped bismuth selenide thin films

    NASA Astrophysics Data System (ADS)

    Pavagadhi, Himanshu; Vyas, S. M.; Patel, Piyush; Patel, Vimal; Patel, Jaydev; Jani, M. P.

    2015-08-01

    In: Bi2Se3 crystals were grown by Bridgman method at a growth velocity of 0.5cm/h with temperature gradient of 650 C/cm in our laboratory. The thin films of In:Bi2se3 were grown on amorphous substrate (glass) at a room temperature under a pressure of 10-4Pa by thermal evaporation technique. Thin film were deposited at various thicknesses and optical absorption spectrum of such thin films, obtain in wave no. range 300 to 2600 cm-1. The optical energy gap calculated from this data were found to be inverse function of square of thickness, particularly for thickness about 1800 Å or less. This dependence is explained in terms of quantum size effect. For thicker films, the bandgap is found to be independent of film thickness. For the surface stud of the as grown thin film by using AFM, which shows continuous film with some step height and surface roughness found in terms of few nm and particle size varies with respect to thickness.

  18. Optical and structural properties of indium doped bismuth selenide thin films

    SciTech Connect

    Pavagadhi, Himanshu Vyas, S. M. Patel, Piyush; Patel, Vimal; Patel, Jaydev; Jani, M. P.

    2015-08-28

    In: Bi{sub 2}Se{sub 3} crystals were grown by Bridgman method at a growth velocity of 0.5cm/h with temperature gradient of 650 C/cm in our laboratory. The thin films of In:Bi{sub 2}se{sub 3} were grown on amorphous substrate (glass) at a room temperature under a pressure of 10{sup −4}Pa by thermal evaporation technique. Thin film were deposited at various thicknesses and optical absorption spectrum of such thin films, obtain in wave no. range 300 to 2600 cm{sup −1}. The optical energy gap calculated from this data were found to be inverse function of square of thickness, particularly for thickness about 1800 Å or less. This dependence is explained in terms of quantum size effect. For thicker films, the bandgap is found to be independent of film thickness. For the surface stud of the as grown thin film by using AFM, which shows continuous film with some step height and surface roughness found in terms of few nm and particle size varies with respect to thickness.

  19. Polarization-dependent force driving the Eg mode in bismuth under optical excitation: comparison of first-principles theory with ultra-fast x-ray experiments

    NASA Astrophysics Data System (ADS)

    Fahy, Stephen; Murray, Eamonn

    2015-03-01

    Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of a ultrafast pulse of polarized light. To compare the results with recent ultra-fast, time-resolved x-ray diffraction experiments, we include the decay of the force due to carrier scattering, as measured in optical Raman scattering experiments, and simulate the optical absorption process, depth-dependent atomic driving forces, and x-ray diffraction in the experimental geometry. We find excellent agreement between the theoretical predictions and the observed oscillations of the x-ray diffraction signal, indicating that first-principles theory of optical absorption is well suited to the calculation of initial atomic driving forces in photo-excited materials following ultrafast excitation. This work is supported by Science Foundation Ireland (Grant No. 12/IA/1601) and EU Commission under the Marie Curie Incoming International Fellowships (Grant No. PIIF-GA-2012-329695).

  20. Excitation of Love waves in a thin film layer by a line source.

    NASA Technical Reports Server (NTRS)

    Tuan, H.-S.; Ponamgi, S. R.

    1972-01-01

    The excitation of a Love surface wave guided by a thin film layer deposited on a semiinfinite substrate is studied in this paper. Both the thin film and the substrate are considered to be elastically isotropic. Amplitudes of the surface wave in the thin film region and the substrate are found in terms of the strength of a line source vibrating in a direction transverse to the propagating wave. In addition to the surface wave, the bulk shear wave excited by the source is also studied. Analytical expressions for the bulk wave amplitude as a function of the direction of propagation, the acoustic powers transported by the surface and bulk waves, and the efficiency of surface wave excitation are obtained. A numerical example is given to show how the bulk wave radiation pattern depends upon the source frequency, the film thickness and other important parameters of the problem. The efficiency of surface wave excitation is also calculated for various parameter values.

  1. Electronic excitation induced modification in fullerene C70 thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Pooja; Singhal, R.; Banerjee, M. K.; Vishnoi, R.; Kaushik, R.; Singh, F.

    2016-07-01

    Fullerene C70 thin films were deposited by resistive heating on glass substrates and the thickness were approximated to be 150 nm. The effect of energy deposition by 55 MeV Si ions on the optical and structural properties of the prepared thin film samples is investigated. The samples were irradiated with 55 MeV Si ions within fluence range from 1 × 1012 to 3 × 1013 ions/cm2. For optical studies, the pristine and the Si ion irradiated samples are examined by UV-visible absorption spectroscopy and Raman spectroscopy. UV-visible absorption studies reveal that the absorption peaks of irradiated samples decrease with a decrease in the band gap of the thin films. The damage cross-section (σ) and radius of damaged cylindrical zone (r) are determined as ∼0.6 × 10-13 cm2 and ∼1.41 nm, respectively from the Raman spectra. Raman studies also suggest that at higher fluence (up to 3 × 1013 ions/cm2), the damage caused by the SHI results in partial amorphization of fullerene C70 thin film. Modification in the surface properties has been investigated by atomic force microscopy; it has revealed that the roughness decreases and average particle size increases with the increase in fluences.

  2. Interference effects in the UV(VUV)-excited luminescence spectroscopy of thin dielectric films.

    PubMed

    Buntov, Evgeny; Zatsepin, Anatoly

    2013-05-01

    The problem of exciting UV and VUV light interference affecting experimental photoluminescence excitation spectra is analysed for the case of thin transparent films containing arbitrarily distributed emission centres. A numerical technique and supplied software aimed at modelling the phenomenon and correcting the distorted spectra are proposed. Successful restoration results of the experimental synchrotron data for ion-implanted silica films show that the suggested method has high potential.

  3. Effect of Electronic Excitation on Thin Film Growth

    SciTech Connect

    Elsayed-Ali, Hani E.

    2011-01-31

    The effect of nanosecond pulsed laser excitation on surface diffusion during growth of Ge on Si(100) at 250 degrees C was studied. In Situ reflection high-energy electron diffraction (RHEED) was used to measure the surface diffusion coefficient while ex situ atomic force microscopy (AFM) was used to probe the structure and morphology of the grown quantum dots. The results show that laser excitation of the substrate increases the surface diffusion during growth of Ge on Si(100), changes the growth morphology, improves crystalline structure of the grown quantum dots, and decreases their size distribution. A purely electronic mechanism of enhanced surface diffusion of the deposited Ge is proposed. Ge quantum dots were grown on Si(100)-(2x1) by pulsed laser deposition at various substrate temperatures using a femtosecond Ti:sapphire laser. In-situ reflection high-energy electron diffraction and ex-situ atomic force microscopy were used to analyze the fim structure and morphology. The morphology of germanium islands on silicon was studied at differect coverages. The results show that femtosecond pulsed laser depositon reduces the minimum temperature for epitaxial growth of Ge quantum dots to ~280 degrees C, which is 120 degrees C lower then previously observed in nanosecond pulsed laser deposition and more than 200 degrees C lower than that reported for molecular beam epitaxy and chemical vapor deposition.

  4. Effects of excitation intensity on the photocurrent response of thin film silicon solar modules

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Shumka, A.; Trask, J.

    1986-01-01

    Photocurrent responses of amorphous thin film silicon solar modules at room temperature were studied at different excitation intensities using various monochromatic light sources. Photocurrent imaging techniques have been effectively used to locate rapidly, and non-destructively, failure and defect sites in the multilayer thin film device. Differences observed in the photocurrent response characteristics for two different cells in the same amorphous thin film silicon solar module suggest the possibility of the formation of dissimilarly active devices, even though the module is processed in the same fabrication process. Possible mechanisms are discussed.

  5. 2-Pyridyl selenolates of antimony and bismuth: Synthesis, characterization, structures and their use as single source molecular precursor for the preparation of metal selenide nanostructures and thin films.

    PubMed

    Sharma, Rakesh K; Kedarnath, G; Jain, Vimal K; Wadawale, Amey; Nalliath, Manoj; Pillai, C G S; Vishwanadh, B

    2010-10-01

    Reactions of SbCl(3) and BiCl(3) with M'Se-C(5)H(3)(R-3)N (M' = Li or Na; R = H or Me) gave homoleptic selenolate complexes of the general formula [M{Se-C(5)H(3)(R-3)N}(3)] (M = Sb or Bi). The complexes were characterized by elemental analysis, UV-vis and NMR ((1)H, (13)C and (77)Se) spectroscopy. The single crystal X-ray analysis of [M{Se-C(5)H(3)(Me-3)N}(3)].nH(2)O (M/n = Sb/1.5 and Bi/0.5) revealed that the antimony complex adopts a trigonal pyramidal configuration with monodentate selenolate ligands while the bismuth analogue acquires a distorted square pyramidal configuration defined by two chelating and one monodentate selenolate groups. Pyrolysis of [M{Se-C(5)H(3)(Me-3)N}(3)] either in a furnace or in hexadecylamine (HDA) at different temperatures gave a variety of M(2)Se(3) nanostructures. Thin films of metal selenides have also been deposited on glass substrate by aerosol-assisted chemical vapor deposition (AACVD). Both nanostructures and thin films of metal selenides were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). PMID:20714620

  6. Microwave excitation of spin wave beams in thin ferromagnetic films

    PubMed Central

    Gruszecki, P.; Kasprzak, M.; Serebryannikov, A. E.; Krawczyk, M.; Śmigaj, W.

    2016-01-01

    An inherent element of research and applications in photonics is a beam of light. In magnonics, which is the magnetic counterpart of photonics, where spin waves are used instead of electromagnetic waves to transmit and process information, the lack of a beam source limits exploration. Here, we present an approach enabling generation of narrow spin wave beams in thin homogeneous nanosized ferromagnetic films by microwave current. We show that the desired beam-type behavior can be achieved with the aid of a properly designed coplanar waveguide transducer generating a nonuniform microwave magnetic field. We test this idea using micromagnetic simulations, confirming numerically that the resulting spin wave beams propagate over distances of several micrometers. The proposed approach requires neither inhomogeneity of the ferromagnetic film nor nonuniformity of the biasing magnetic field. It can be generalized to different magnetization configurations and yield multiple spin wave beams of different width at the same frequency. PMID:26971711

  7. Enhanced photoelectron emission from aluminum thin film by surface plasmon resonance under deep-ultraviolet excitation

    NASA Astrophysics Data System (ADS)

    Ono, A.; Shiroshita, N.; Kikawada, M.; Inami, W.; Kawata, Y.

    2015-05-01

    We report photoelectron emission enhancement of aluminum thin films by surface plasmon excitation in the deep-ultraviolet region. Deep-ultraviolet light with a wavelength of 266 nm has enough energy to cause electron emission from aluminum and excite surface plasmons on aluminum. We applied the Kretschmann configuration to excite surface plasmons. The enhancement factor of the emission current is found to depend on the enhanced electric field intensity excited by surface plasmons. The maximum emission efficiency of photoelectrons is 2.9 nA mW-1 for an aluminum thickness of 19 nm with an alumina thickness of 4 nm. The characteristics of the dependence of the photoelectron emission efficiency on the applied bias between the anode and cathode are investigated.

  8. Photothermal measurement of absorption and scattering losses in thin films excited by surface plasmons.

    PubMed

    Domené, Esteban A; Balzarotti, Francisco; Bragas, Andrea V; Martínez, Oscar E

    2009-12-15

    We present a novel noncontact, photothermal technique, based on the focus error signal of a commercial CD pickup head that allows direct determination of absorption in thin films. Combined with extinction methods, this technique yields the scattering contribution to the losses. Surface plasmon polaritons are excited using the Kretschmann configuration in thin Au films of varying thickness. By measuring the extinction and absorption simultaneously, it is shown that dielectric constants and thickness retrieval leads to inconsistencies if the model does not account for scattering. PMID:20016617

  9. Case study of piezoelectric flexible thin films in pulse excited electromechanical transducers

    NASA Astrophysics Data System (ADS)

    Salamon, Natalia; Gozdur, Roman; Turczyński, Marcin; Lisik, Zbigniew; Soupremanien, Ulrich; Ollier, Emmanuel; Monfray, Stéphane; Skotnicki, Thomas

    2014-08-01

    The paper presents the examination of modern flexible piezoelectric thin films made of PVDF (polyvinylidene difluoride) in terms of their application in electromechanical transducers, a brief overview of available piezoelectric materials and energy harvesting devices based on piezoelectric. In order to assess the usefulness of these films from the perspective of described devices, the energy efficiency coefficient determined under the pulse excitation conditions was taken into account. Normalized volumetric efficiency ratio allows to evaluate the commercially available flexible piezoelectric films.

  10. Two-photon excited fluorescence from a pseudoisocyanine-attached gold-coated tip via a thin tapered fiber under a weak continuous wave excitation.

    PubMed

    Ren, Fang; Takashima, Hideaki; Tanaka, Yoshito; Fujiwara, Hideki; Sasaki, Keiji

    2013-11-18

    A simple tapered fiber based photonic-plasmonic hybrid nanostructure composed of a thin tapered fiber and a pseudoisocyanine (PIC)-attached Au-coated tip was demonstrated. Using this simple hybrid nanostructure, we succeeded in observing two-photon excited fluorescence from the PIC dye molecules under a weak continuous wave excitation condition. From the results of the tip-fiber distance dependence and excitation polarization dependence, we found that using a thin tapered fiber and an Au-coated tip realized efficient coupling of the incident light (~95%) and LSP excitation at the Au-coated tip, suggesting the possibility of efficiently inducing two-photon excited fluorescence from the PIC dye molecules attached on the Au-coated tip. This simple photonic-plasmonic hybrid system is one of the promising tools for single photon sources, highly efficient plasmonic sensors, and integrated nonlinear plasmonic devices.

  11. Resonant indirect excitation of Gd{sup 3+} in AlN thin films

    SciTech Connect

    Ishizu, Yuta; Tsuji, Kazuma; Harada, Yukihiro; Kita, Takashi; Chigi, Yoshitaka; Nishimoto, Tetsuro; Tanaka, Hiroyuki; Kobayashi, Mikihiro; Ishihara, Tsuguo; Izumi, Hirokazu

    2014-05-07

    We studied the efficient indirect excitation of Gd{sup 3+} ions in AlN thin films. C-axis oriented polycrystalline thin films of Al{sub 0.997}Gd{sub 0.003}N/AlN were grown on fused silica substrates using a reactive radio-frequency magnetron sputtering technique. The intra-orbital electron transition in Gd{sup 3+} showed a narrow luminescence line at 3.9 eV. The photoluminescence (PL) excitation (PLE) spectrum exhibited a peak originating from efficient indirect energy transfer from the band edge of AlN to Gd{sup 3+} ions. The PLE peak shifted and the PL intensity showed a dramatic change when the AlN band gap was varied by changing the temperature. Energy scanning performed by changing the band-gap energy of AlN with temperature revealed several resonant channels of energy transfer into the higher excited states of Gd{sup 3+}.

  12. Excitation and emission spectra of rubidium in rare-gas thin-films

    SciTech Connect

    Gerhardt, Ilja; Sin, Kyungseob; Momose, Takamasa

    2012-07-07

    To understand the optical properties of atoms in solid state matrices, the absorption, excitation, and emission spectra of rubidium doped thin-films of argon, krypton, and xenon were investigated in detail. A two-dimensional spectral analysis extends earlier reports on the excitation and emission properties of rubidium in rare-gas hosts. We found that the doped crystals of krypton and xenon exhibit a simple absorption-emission relation, whereas rubidium in argon showed more complicated spectral structures. Our sample preparation employed in the present work yielded different results for the Ar crystal, but our peak positions were consistent with the prediction based on the linear extrapolation of Xe and Kr data. We also observed a bleaching behavior in rubidium excitation spectra, which suggests a population transfer from one to another spectral feature due to hole-burning. The observed optical response implies that rubidium in rare-gas thin-films is detectable with extremely high sensitivity, possibly down to a single atom level, in low concentration samples.

  13. Experiments on self-excited oscillation in a thin-walled collapsible tube

    NASA Astrophysics Data System (ADS)

    Wu, Hai-Jun; Jia, Lai-Bing; Yin, Xie-Zhen

    2015-12-01

    Self-excited oscillation in a collapsible tube is an important phenomenon in physiology. An experimental approach on self-excited oscillation in a thin-walled collapsible tube is developed by using a high transmittance and low Young's modulus silicone rubber tube. The elastic tube is manufactured by the method of centrifugal casting in our laboratory. An optical method for recording the evolution of the cross-sectional areas at a certain position along the longitudinal direction of the tube is developed based on the technology of refractive index matching. With the transparent tube, the tube law is measured under the static no-flow condition. The cross section at the middle position of the tube transfers from a quasi-circular configuration to an ellipse, and then to a dumbell-shape as the chamber pressure is increased. During the self-excited oscillation, two periodic self-excited oscillating states and one transitional oscillating state are identified. They all belong to the LU mode. These different oscillating states are related to the initial cross-sectional shape of the tube caused by the difference of the downstream transmural pressure.

  14. A comparative investigation on structure and multiferroic properties of bismuth ferrite thin films by multielement co-doping

    SciTech Connect

    Dong, Guohua; Tan, Guoqiang Luo, Yangyang; Liu, Wenlong; Xia, Ao; Ren, Huijun

    2014-12-15

    Highlights: • Multielement (Tb, Cr and Mn) co-doped BiFeO{sub 3} films were fabricated by CSD method. • Multielement co-doping induces a structural transition. • It is found effective to stabilize the valence of Fe ions at +3 by the strategy. • The co-doping at A/B-sites gives rise to the superior multiferroic properties. - Abstract: (Tb, Cr and Mn) multielement co-doped BiFeO{sub 3} (BTFCMO) thin films were prepared by the chemical solution deposition method on fluorine doped tin oxide (FTO) substrates. X-ray diffraction, Rietveld refinement and Raman analyses revealed that a phase transition from rhombohedral to triclinic structure occurs in the multielement co-doped BiFeO{sub 3} films. It is found that the doping is conducive to stabilizing the valence of Fe ions and reducing leakage current. In addition, the highly enhanced ferroelectric properties with a huge remanent polarization (2P{sub r}) of 239.6 μC/cm{sup 2} and a low coercive field (2E{sub c}) of 615.6 kV/cm are ascribed to the well film texture, the structure transition and the reduced leakage current by the co-doping. Moreover, the structure transition is the dominant factor resulting in the significant enhancement observed in magnetization (M{sub s} ∼ 10.5 emu/cm{sup 3}), owing to the collapse of the space-modulated spin structure. In this contribution, these results demonstrate that the multielement co-doping is in favor of the enhanced multiferroic properties of the BFO films for possible multifunctional applications.

  15. Excitations in a thin liquid {sup 4}He film from inelastic neutron scattering

    SciTech Connect

    Clements, B.E. |; Godfrin, H.; Krotscheck, E. |; Lauter, H.J.; Leiderer, P.; Passiouk, V. |; Tymczak, C.J.

    1996-05-01

    We perform a thorough analysis of the experimental dynamic structure function measured by inelastic neutron scattering for a low-temperature ({ital T}=0.65 K) four-layer liquid {sup 4}He film. The results are interpreted in light of recent theoretical calculations of the (nonvortex) excitations in thin liquid Bose films. The experimental system consists of four outer liquid layers, adsorbed to two solid inner {sup 4}He layers, which are themselves adsorbed to a graphite substrate. Relatively intense surface (ripplon) and bulklike modes are observed. The analysis of the experimental data gives strong evidence for still other modes and supports the long-standing theoretical predictions of layerlike modes (layer phonons) associated with excitations propagating primarily within the liquid layers comprising the film. The results of the analysis are consistent with the occurrence of level crossings between modes, and the existence of a layer modes for which the theory predicts will propagate in the vicinity of the solid-liquid interface. The theory and experiment agree on the detailed nature of the ripplon; its dispersion at low momenta, its fall off in intensity at intermediate momenta, and the level crossings at high momentum. Similar to experiment, the theory yields an intense mode in the maxon-roton region which is intrepreted as the formation of the bulklike excitation. {copyright} {ital 1996 The American Physical Society.}

  16. The neutral oxygen spectrum. 1: Collisionally excited level populations and line intensities under optically thin conditions

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Kastner, S. O.

    1995-01-01

    This is the first paper in a projected program to produce quantitative information on the spectrum of the neutral oxygen atom under a variety of excitation conditions. Radiative rates and effective collision strengths are assembled from the recent literature where available, or are calculated for as yet untreated transitions using the University College superstructure/distorted-wave computer package, to produce a complete set of atomic data for a 13 hybrid level model of neutral oxygen. Level populations and relative intensities for 28 allowed, inter-combination, and forbidden oxygen lines are computed, under optically thin conditions, for the electron density range 4.0 less than log N(sub e) less than 12.0 and the electron temperature values T(sub e) = 5000, 10,000, 20,000, 50,000, and 100,000 K. Preliminary applications to observed intercombination/allowed and forbidden/allowed line ratios are discussed.

  17. Excitation and deexcitation of ac-driven thin-film ZnS electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Sohn, S. H.; Hamakawa, Y.

    1992-09-01

    Theoretical formulas accounting for the excitation and deexcitation processes of the alternating current-driven thin-film electroluminescent devices have been obtained, which include both the impact excitation and the energy-transfer mechanisms. The empirical equations for the conduction current duration time and the luminescent decay time related to the tunneling emission of electrons at the interface, the capture of holes in traps, and the light emission of luminescent centers lead to the analytical formulas for the transferred charge ΔQ, the luminance L, and other quantities of physical interest as a function of the electric field. The estimates for ΔQ and L in ZnS:Mn and ZnS:TbF3 devices have been made on the basis of Wolff's distribution function and found to be in good agreement with the experimental data. From the estimated results, it is found that the energy-transfer mechanism depends on various material parameters and drive conditions, and that it plays a role in improvement of the luminance in the low-electric-field region. In the high-electric-field region of interest, the energy transfer from Cu-related sensitizers to luminescent centers in ZnS:Mn and ZnS:TbF3 devices yields an increase of luminance by a factor of about 1.5 and 3, respectively.

  18. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Bismuth-ring-doped fibres

    NASA Astrophysics Data System (ADS)

    Zlenko, Aleksandr S.; Akhmetshin, Ural G.; Dvoirin, Vladislav V.; Bogatyrev, Vladimir A.; Firstov, Sergei V.

    2009-11-01

    A new process for bismuth doping of optical fibres is proposed in which the dopant is introduced into a thin layer surrounding the fibre core. This enables bismuth stabilisation in the silica glass, with no limitations on the core composition. In particular, the GeO2 content of the fibre core in this study is 16 mol %. Spectroscopic characterisation of such fibres and optical gain measurements suggest that the proposed approach has considerable potential for laser applications.

  19. Nanocalorimetry of bismuth nanoparticles

    NASA Astrophysics Data System (ADS)

    Olson, Eric Ashley

    The properties of nanosized bismuth particles are investigated using a nanocalorimetric technique. A brief description of the experimental method and data analysis procedures is reported. Bismuth nanoparticles are found to melt at a temperature below that of bulk material, but higher than expected using the standard model. Also included is the results of a finite element analysis and simulated melting of bismuth films on various kinds of sensors. Temperature distributions are found to be nonuniform for calorimetric sensors with Al metallizations, but much more uniform for Pt metallized sensors. The consequences of this nonuniformity on caloric data are discussed.

  20. Bismuth - modified supported catalysts

    SciTech Connect

    Nadirov, N.K.; Lykova, L.F.; Petrosyan, L.S.

    1985-09-01

    Bismuth was used as an additive to three-component catalysts prepared through modification of an aluminoplatinorhenium catalyst by III and IV nontransition and iron subgroup elements. Since there is conflicting information on bismuth additions, the role of bismuth in polycomponent catalysts and whether it promotes aromatization catalysts was considered. The effect of temperature on the yield of n-hexane conversion products in the presence of Pt-Re-Co-Bi/gamma-A1/sub 2/O/sub 3/ is shown. Conclusive results establish that the addition of 0.5% nickel to a 0.3 Pt-0.3 Re/gamma-A1/sub 2/O/sub 3/ catalyst (in wt.%) increased the yield of benzene from n-hexane by 5.7%. It was also shown that 0.1 to 0.25 wt.% bismuth poisons two- and three-component samples containing 0.25 to 0.3 wt.% platinum.

  1. Tribochemistry of Bismuth and Bismuth Salts for Solid Lubrication.

    PubMed

    Gonzalez-Rodriguez, Pablo; van den Nieuwenhuijzen, Karin J H; Lette, Walter; Schipper, Dik J; Ten Elshof, Johan E

    2016-03-23

    One of the main trends in the past decades is the reduction of wastage and the replacement of toxic compounds in industrial processes. Some soft metallic particles can be used as nontoxic solid lubricants in high-temperature processes. The behavior of bismuth metal particles, bismuth sulfide (Bi2S3), bismuth sulfate (Bi2(SO4)3), and bismuth oxide (Bi2O3) as powder lubricants was studied in a range of temperatures up to 580 °C. The mechanical behavior was examined using a high-temperature pin-on-disc setup, with which the friction force between two flat-contact surfaces was recorded. The bismuth-lubricated surfaces showed low coefficients of friction (μ ≈ 0.08) below 200 °C. Above the melting temperature of the metal powder at 271 °C, a layer of bismuth oxide developed and the friction coefficient increased. Bismuth oxide showed higher friction coefficients at all temperatures. Bismuth sulfide exhibited partial oxidation upon heating but the friction coefficient decreased to μ ≈ 0.15 above 500 °C, with the formation of bismuth oxide-sulfate, while some bismuth sulfate remained. All surfaces were studied by X-ray diffraction (XRD), confocal microscopy, high-resolution scanning electron microscopy (HR-SEM), and energy-dispersive X-ray spectroscopy (EDS). This study reveals how the partial oxidation of bismuth compounds at high temperatures affects their lubrication properties, depending on the nature of the bismuth compound. PMID:26936490

  2. Infrared surface polaritons on bismuth

    NASA Astrophysics Data System (ADS)

    Khalilzadeh-Rezaie, Farnood; Smith, Christian W.; Nath, Janardan; Nader, Nima; Shahzad, Monas; Cleary, Justin W.; Avrutsky, Ivan; Peale, Robert E.

    2015-01-01

    Optical constants for evaporated bismuth (Bi) films were measured by ellipsometry and compared with those published for single crystal and melt-cast polycrystalline Bi in the wavelength range of 1 to 40 μm. The bulk plasma frequency ωp and high-frequency limit to the permittivity ε∞ were determined from the long-wave portion of the permittivity spectrum, taking previously published values for the relaxation time τ and effective mass m*. This part of the complex permittivity spectrum was confirmed by comparing calculated and measured reflectivity spectra in the far-infrared. Properties of surface polaritons (SPs) in the long-wave infrared were calculated to evaluate the potential of Bi for applications in infrared plasmonics. Measured excitation resonances for SPs on Bi lamellar gratings agree well with calculated resonance spectra based on grating geometry and complex permittivity.

  3. Red Shift of Faraday Rotation in Thin Films of Completely Bismuth-Substituted Iron Garnet Bi3Fe5O12

    NASA Astrophysics Data System (ADS)

    Chern, Ming-Yau; Lo, Fang-Yuh; Liu, Da-Ren; Yang, Kuang; Liaw, Juin-Sen

    1999-12-01

    The magnetooptical Faraday rotations of epitaxial films of BixY3-xFe5O12 (Bi:YIG) grown on [111]-oriented gadolinium gallium garnet (GGG) substrates by pulsed laser deposition (PLD) were studied with bismuth content x = 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0. The Faraday rotation angles, θF, of the films were measured by the method of rotating analyzer ellipsometry (RAE) with the photon energy varied from 1.5 to 3.5 eV. It was shown that in addition to the increase of the Faraday rotation with increasing x, the peaks of θF shifted toward the red region as x changed from 1.0 to 1.5. The peak positions of θF for the completely Bi-substituted iron garnet, Bi3Fe5O12 (BIG), were found at 2.4 and 2.8 eV with peak values as large as -23 deg/µm and 44 deg/µm, respectively

  4. Ultrafast electronic relaxation in superheated bismuth

    NASA Astrophysics Data System (ADS)

    Gamaly, E. G.; Rode, A. V.

    2013-01-01

    Interaction of moving electrons with vibrating ions in the lattice forms the basis for many physical properties from electrical resistivity and electronic heat capacity to superconductivity. In ultrafast laser interaction with matter the electrons are heated much faster than the electron-ion energy equilibration, leading to a two-temperature state with electron temperature far above that of the lattice. The rate of temperature equilibration is governed by the strength of electron-phonon energy coupling, which is conventionally described by a coupling constant, neglecting the dependence on the electron and lattice temperature. The application of this constant to the observations of fast relaxation rate led to a controversial notion of ‘ultra-fast non-thermal melting’ under extreme electronic excitation. Here we provide theoretical grounds for a strong dependence of the electron-phonon relaxation time on the lattice temperature. We show, by taking proper account of temperature dependence, that the heating and restructuring of the lattice occurs much faster than were predicted on the assumption of a constant, temperature independent energy coupling. We applied the temperature-dependent momentum and energy transfer time to experiments on fs-laser excited bismuth to demonstrate that all the observed ultra-fast transformations of the transient state of bismuth are purely thermal in nature. The developed theory, when applied to ultrafast experiments on bismuth, provides interpretation of the whole variety of transient phase relaxation without the non-thermal melting conjecture.

  5. Phase-matched emission from an optically thin medium following one-photon pulse excitation: Energy considerations

    SciTech Connect

    Berman, P. R.; Le Goueet, J.-L.

    2011-03-15

    Scully and coworkers [M. O. Scully, E. S. Fry, C. H. R. Oii, and K. Wodkiewicz, Phys. Rev. Lett. 96, 010501 (2006)] demonstrated that there is directional, phase-matched emission following the excitation of an ensemble of atoms by a single-photon pulse. While the phase-matched emission intensity is proportional to the the number of atoms, for optically thin samples the total energy emitted in the phase-matched direction is much less than that radiated in other directions. Moreover, even for optically thin samples, it is necessary to take into account effects related to cooperative decay if energy is to be conserved in the overall emission process. An analytic calculation is presented to show explicitly how cooperative decay reduces the incoherent emission and restores energy conservation in this low-density limit.

  6. New Approach on Quantification of Porosity of Thin Films via Electron-Excited X-ray Spectra.

    PubMed

    Ortel, Erik; Hertwig, Andreas; Berger, Dirk; Esposito, Pasquale; Rossi, Andrea M; Kraehnert, Ralph; Hodoroaba, Vasile-Dan

    2016-07-19

    One of the crucial characteristics of functionalized thin films is their porosity (i.e., the ratio between the pore volume and the volume of the whole film). Due to the very low amount of material per coated area corresponding to thin films, it is a challenge for analytics to measure the film porosity. In this work, we present an approach to determine the porosity of thin films by means of electron probe microanalysis (EPMA) either by wavelength-dispersive X-ray spectrometry (WDX) or by energy-dispersive X-ray spectrometry (EDX) with a scanning electron microscope (SEM). The procedure is based on the calculation of the film mass deposition from electron-excited X-ray spectra. The mass deposition is converted into film density by division of measured film thickness. Finally, the film porosity is calculated from the measured film density and the density of bulk, nonporous film material. The general applicability of the procedure to determine the porosity is demonstrated on thin templated mesoporous TiO2 films, dip-coated on silicon wafer, with controlled porosity in the range of 15 to 50%. The high accuracy of the mass deposition as determined from X-ray spectra was validated with independent methods (ICP-OES and weighing). Furthermore, for the validation of the porosity results, ellipsometry, interference fringes method (IFM), and focused ion beam (FIB) cross sectioning were employed as independent techniques. Hence, the approach proposed in the present study is proven to be suited as a new analytical tool for accurate and relatively fast determination of the porosity of thin films. PMID:27334649

  7. Selective excitation of eigenmodes in a multilayer thin film resonator on bulk acoustic waves

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. K.; Ptashnik, S. V.; Kozyrev, A. B.

    2016-08-01

    We consider a method of control over the operating frequency of a resonator on bulk acoustic waves, which is based on the selective excitation of eigenmodes. The frequency switching is achieved by using several layers of a ferroelectric in the paraelectric state and applying a control voltage of appropriate magnitude and polarity to each layer. The principle of selectivity is formulated and the criterion function is defined, which ensure the most effective excitation of a selected eigenmode with the possible suppression of parasitic modes. An example of using this function for a resonator switched between four eigenmodes is presented.

  8. Structural and optical characterization of thermally evaporated bismuth and antimony films for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Srimathy, N.; Ruban Kumar, A.

    2016-05-01

    In this present study, the thin film of bismuth and antimony is coated by thermal evaporation system equipped with the inbuilt ultra high vacuum system. XRD analysis confirmed the rhombohedral structure of Bismuth and Antimony on the prepared film. The surface roughness and physical appearance is analyzed by Atomic force microscopy. The results of Raman Spectroscopy show the wave functions and the spectrum of electrons. The preparation technique and conditions strongly influence the crystalline structure and the phase composition of bismuth and antimony thin films. The electrical and optical properties for the prepared film are analyzed. The results show a great interest and promising applications in Photovoltaic devices.

  9. Ultrafast broadband spectroscopy of crystalline bismuth

    SciTech Connect

    Mel'nikov, A A; Misochko, Oleg V; Chekalin, Sergei V

    2013-04-30

    Femtosecond spectroscopy in the wavelength range 0.4 - 2.3 {mu}m has been used to probe ultrafast electronic and lattice processes in bismuth. The photoresponse of a bismuth crystal is shown to comprise components with relaxation times of 1 ps, 7 ps, and {approx}1 ns. The electron-hole and electron-phonon interaction strengths in bismuth are found to depend significantly on the wave vector in the {Gamma}-T direction of the Brillouin zone. Comparison of the spectral dependences of the amplitudes of coherent E{sub g} and A{sub 1g} phonons and the corresponding dependences of the Raman scattering cross sections indicates that these phonon modes differ in generation mechanism. The generation of coherent A{sub 1g} phonons is mainly due to displacement of the equilibrium position of atoms in the crystal lattice in a nonequilibrium state. This process differs fundamentally from resonance Raman scattering responsible for the coherent excitation of low-symmetry phonon modes. (extreme light fields and their applications)

  10. Polarization-resolved spectroscopy imaging of grain boundaries and optical excitations in crystalline organic thin films

    PubMed Central

    Pan, Z.; Rawat, N.; Cour, I.; Manning, L.; Headrick, R. L.; Furis, M.

    2015-01-01

    Exploration of optical properties of organic crystalline semiconductors thin films is challenging due to submicron grain sizes and the presence of numerous structural defects, disorder and grain boundaries. Here we report on the results of combined linear dichroism (LD)/ polarization-resolved photoluminescence (PL) scanning microscopy experiments that simultaneously probe the excitonic radiative recombination and the molecular ordering in solution-processed metal-free phthalocyanine crystalline thin films with macroscopic grain sizes. LD/PL images reveal the relative orientation of the singlet exciton transition dipoles at the grain boundaries and the presence of a localized electronic state that acts like a barrier for exciton diffusion across the grain boundary. We also show how this energy barrier can be entirely eliminated through the optimization of deposition parameters that results in films with large grain sizes and small-angle boundaries. These studies open an avenue for exploring the influence of long-range order on exciton diffusion and carrier transport. PMID:26365682

  11. Electronic excitation induced modifications of optical and morphological properties of PCBM thin films

    NASA Astrophysics Data System (ADS)

    Sharma, T.; Singhal, R.; Vishnoi, R.; Sharma, P.; Patra, A.; Chand, S.; Lakshmi, G. B. V. S.; Biswas, S. K.

    2016-07-01

    Phenyl C61 butyric acid methyl ester (PCBM) is a fullerene derivative and most commonly used in organic photovoltaic devices both as electron acceptor and transporting material due to high electron mobility. PCBM is easy to spin caste on some substrate as it is soluble in chlorobenzene. In this study, the spin coated thin films of PCBM (on two different substrate, glass and double sided silicon) were irradiated using 90 MeV Ni7+ swift heavy ion beam at low fluences ranging from 1 × 109 to 1 × 1011 ions/cm2 to study the effect of ion beam irradiation. The pristine and irradiated PCBM thin films were characterized by UV-visible absorption spectroscopy and fourier transform infrared spectroscopy (FTIR) to investigate the optical properties before and after irradiation. These thin films were further analyzed using atomic force microscopy (AFM) to investigate the morphological modifications which are induced by energetic ions. The variation in optical band gap after irradiation was measured using Tauc's relation from UV-visible absorption spectra. A considerable change was observed with increasing fluence in optical band gap of irradiated thin films of PCBM with respect to the pristine film. The decrease in FTIR band intensity of C60 cage reveals the polymerization reaction due to high energy ion impact. The roughness is also found to be dependent on incident fluences. This study throws light for the application of PCBM in organic solar cells in form of ion irradiation induced nanowires of PCBM for efficient charge carrier transportation in active layer.

  12. Bismuth catalysts in aqueous media.

    PubMed

    Kobayashi, Shū; Ueno, Masaharu; Kitanosono, Taku

    2012-01-01

    Several bismuth-catalyzed synthetic reactions, which proceed well in aqueous media, are discussed. Due to increasing demand of water as a solvent in organic synthesis, catalysts that can be used in aqueous media are becoming more and more important. Although bismuth Lewis acids are not very stable in water, it has been revealed that they can be stabilized by basic ligands. Chiral amine and related basic ligands combined with bismuth Lewis acids are particularly useful in asymmetric catalysis in aqueous media. On the other hand, bismuth hydroxide is stable and works as an efficient catalyst for carbon-carbon bond-forming reactions in water. PMID:21769719

  13. Femtosecond to nanosecond excited state dynamics of vapor deposited copper phthalocyanine thin films.

    PubMed

    Caplins, Benjamin W; Mullenbach, Tyler K; Holmes, Russell J; Blank, David A

    2016-04-28

    Vapor deposited thin films of copper phthalocyanine (CuPc) were investigated using transient absorption spectroscopy. Exciton-exciton annihilation dominated the kinetics at high exciton densities. When annihilation was minimized, the observed lifetime was measured to be 8.6 ± 0.6 ns, which is over an order of magnitude longer than previous reports. In comparison with metal free phthalocyanine (H2Pc), the data show evidence that the presence of copper induces an ultrafast relaxation process taking place on the ca. 500 fs timescale. By comparison to recent time-resolved photoemission studies, this is assigned as ultrafast intersystem crossing. As the intersystem crossing occurs ca. 10(4) times faster than lifetime decay, it is likely that triplets are the dominant excitons in vapor deposited CuPc films. The exciton lifetime of CuPc thin films is ca. 35 times longer than H2Pc thin films, while the diffusion lengths reported in the literature are typically quite similar for the two materials. These findings suggest that despite appearing to be similar materials at first glance, CuPc and H2Pc may transport energy in dramatically different ways. This has important implications on the design and mechanistic understanding of devices where phthalocyanines are used as an excitonic material.

  14. Femtosecond to nanosecond excited state dynamics of vapor deposited copper phthalocyanine thin films.

    PubMed

    Caplins, Benjamin W; Mullenbach, Tyler K; Holmes, Russell J; Blank, David A

    2016-04-28

    Vapor deposited thin films of copper phthalocyanine (CuPc) were investigated using transient absorption spectroscopy. Exciton-exciton annihilation dominated the kinetics at high exciton densities. When annihilation was minimized, the observed lifetime was measured to be 8.6 ± 0.6 ns, which is over an order of magnitude longer than previous reports. In comparison with metal free phthalocyanine (H2Pc), the data show evidence that the presence of copper induces an ultrafast relaxation process taking place on the ca. 500 fs timescale. By comparison to recent time-resolved photoemission studies, this is assigned as ultrafast intersystem crossing. As the intersystem crossing occurs ca. 10(4) times faster than lifetime decay, it is likely that triplets are the dominant excitons in vapor deposited CuPc films. The exciton lifetime of CuPc thin films is ca. 35 times longer than H2Pc thin films, while the diffusion lengths reported in the literature are typically quite similar for the two materials. These findings suggest that despite appearing to be similar materials at first glance, CuPc and H2Pc may transport energy in dramatically different ways. This has important implications on the design and mechanistic understanding of devices where phthalocyanines are used as an excitonic material. PMID:27058732

  15. THORIUM DISPERSION IN BISMUTH

    DOEpatents

    Bryner, J.S.

    1961-07-01

    The growth of thorium bismutaide particles, which are formed when thorium is suspended in liquid bismuth, is inhibited when the liquid metal suspension is being flowed through a reactor and through a heat exchanger in sequence. It involves the addition of as little as 1 part by weight of tellurium to 100 parts of thorium. This addition is sufficient to inhibit particle growth and agglomeration.

  16. Influence of substrate temperature on structural and optical properties of bismuth oxide thin films deposited by close-spaced vacuum sublimation

    NASA Astrophysics Data System (ADS)

    Ivashchenko, M. M.; Buryk, I. P.; Latyshev, V. M.; Stepanenko, A. O.; Levchenko, K. S.

    2015-12-01

    Bi2O3 thin films were deposited on ultrasonically-cleaned glass and mica substrates by close-spaced vacuum sublimation technique. Films surface morphology was studied using scanning electron microscopy (SEM). Structural study based on the transmission-electron microscopy (TEM) and selected-area electron diffraction (SAED) analysis has been shown that deposited films were polycrystalline with face-centered cubic structure. Optical study was carried out by spectral photometry analysis in the wavelengths range λ = 320-900 nm using the optical transmittance and absorbance measurements. For determination optical band gap Eg the Tauc plot was used and the band gap energy Eg is determined in the range of 3.50-3.62 eV, respectively. Fourier-transform infra-red (FTIR) analysis shown that obtained films are well-crystalline and have a good optical quality.

  17. Bismuth toxicity in patients treated with bismuth iodoform paraffin packs.

    PubMed

    Atwal, A; Cousin, G C S

    2016-01-01

    Bismuth is a heavy metal used in bismuth iodoform paraffin paste (BIPP) antiseptic dressings and in a number of other medical preparations. It can be absorbed systemically and cause toxicity. We report 2 cases of such neurotoxicity after it was used in operations on the jaws.

  18. Characteristics of surface plasmon-polariton waves excited on 2D periodically patterned columnar thin films of silver.

    PubMed

    Dutta, Jhuma; Anantha Ramakrishna, S; Lakhtakia, Akhlesh

    2016-09-01

    Periodically patterned thin films of slanted silver nanocolumns were deposited by directing a collimated vapor flux of silver toward square and hexagonal gratings of photoresist on glass substrates. Angle-resolved specular-transmittance measurements in the visible and near-infrared wavelength bands on these periodically patterned columnar thin films (CTFs) were carried out to investigate the excitation of surface plasmon-polariton (SPP) waves bound tightly to either the air/CTF or the photoresist/CTF interfaces. The orientation of the propagation vector of the incident p-polarized plane wave with respect to the morphologically significant plane of the CTFs was varied to reveal asymmetric (unidirectional) coupling of Floquet modes to SPP waves. The asymmetric coupling is maximal when the propagation vector of the incident plane wave lies wholly in the morphologically significant plane. Theoretical understanding based on the Bruggeman formalism to homogenize the silver CTFs into hyperbolic biaxial continua is able to explain the experimental observations very well. PMID:27607490

  19. Characterization of bismuth nanospheres deposited by plasma focus device

    SciTech Connect

    Ahmad, M.; Al-Hawat, Sh.; Akel, M.; Mrad, O.

    2015-02-14

    A new method for producing thin layer of bismuth nanospheres based on the use of low energy plasma focus device is demonstrated. Various techniques such as scanning electron microscopy, Rutherford backscattering spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been used to characterize the morphology and the composition of the nanospheres. Experimental parameters may be adjusted to favour the formation of bismuth nanospheres instead of microspheres. Therefore, the formation of large surface of homogeneous layer of bismuth nanospheres with sizes of below 100 nm can be obtained. The natural snowball phenomenon is observed to be reproduced in nanoscale where spheres roll over the small nanospheres and grow up to bigger sizes that can reach micro dimensions. The comet-like structure, a reverse phenomenon to snowball is also observed.

  20. Fluid-loaded vibration of thin structures due to turbulent excitation

    NASA Astrophysics Data System (ADS)

    Tomko, Jason Robert

    Flow-induced structural acoustics involves the study of the vibration of a structure induced by a fluid flow as well as the resulting sound generated and radiated by the motion of the system. The thesis examines several aspects of flow-induced structural vibration for fluid-loaded systems. A new method, termed Magnitude-Phase Identification, is derived to experimentally obtain a modal decomposition of the vibration of a structure using two-point measurements. MPI was used to measure the auto-spectral density of various modes for a non-fluid-loaded, rectangular, clamped plate excited by a spatially-homogeneous turbulent boundary layer. These results agreed well with theory. Using MPI, it was shown that when both fluid-loading and a spatially non-homogeneous wall pressure field is applied to a structure that the mode shapes become dependent on the forcing field, an effect which does not occur when either characteristic is applied individually. Furthermore, the resulting mode shapes are potentially highly asymmetric. It was shown through a discretized string model that these results can be attributed to the increased damping induced by fluid loading. Internal acoustic wall pressure fields due to a ducted rotor were measured, and it was shown that the acoustic effects of the rotor can be approximated by replacing the rotor with a continuous ring of dipoles located at the blade tip. The finite length of the duct was accounted for through use of a method of images. The theoretical results from this model match well with the measured values. Lastly, the vibration of a fluid-loaded duct excited by an internal rotor is measured through use of MPI. The resulting vibration field appears similar to the field examined earlier due to fluid loading, with a decrease in the coherent vibration magnitude for increasing spatial separation from the reference location.

  1. Transparent nanoscale floating gate memory using self-assembled bismuth nanocrystals in Bi(2) Mg(2/3) Nb(4/3) O(7) (BMN) pyrochlore thin films grown at room temperature.

    PubMed

    Jung, Hyun-June; Yoon, Soon-Gil; Hong, Soon-Ku; Lee, Jeong-Yong

    2012-07-01

    Bismuth nanocrystals for a nanoscale floating gate memory device are self-assembled in Bi(2) Mg(2/3) Nb(4/3) O(7) (BMN) dielectric films grown at room temperature by radio-frequency sputtering. The TEM cross-sectional image shows the "real" structure grown on a Si (001) substrate. The image magnified from the dotted box (red color) in the the cross-sectional image clearly shows bismuth nanoparticles at the interface between the Al(2) O(3) and HfO(2) layer (right image). Nanoparticles approximately 3 nm in size are regularly distributed at the interface.

  2. Separation of visibly-excited fluorescent components in fingerprint residue by thin-layer chromatography.

    PubMed

    Jones, N E; Davies, L M; Brennan, J S; Bramble, S K

    2000-11-01

    The use of lasers for the detection of fingermarks is widespread in the forensic field. Despite this, and the fact that many studies have been conducted into the composition of fingermark residue, the components responsible for the inherent visible fluorescence remain unidentified. Traditionally compositional studies have been performed on sweat, sebum, or skin surface washes, none of which are truly representative of the situation when a fingerprint is deposited on a surface. In this paper thin-layer chromatography (TLC) has been performed on sebum-rich fingermarks laid directly onto TLC plates and an argon ion laser used to visualize the separated components. It has been found to be a robust and reproducible method for studying the fluorescent components in fingermark residue and is considered to be more realistic than other methods of sample preparation as it eliminates the chances of extraneous matter being extracted from the skin surface. Investigations into the nature of the separated compounds have also been made and the results are reported. PMID:11110184

  3. Bismuth ochers from San Diego Co., California

    USGS Publications Warehouse

    Schaller, W.T.

    1911-01-01

    The chief points brought out in this paper may be briefly summarized as follows: (1) The existence of natural Bi2O3 has not been established. (2) Natural bismite or bismuth ocher, when pure, is more probably a bismuth hydroxide. (3) The bismuth ochers from San Diego County, California, are either a bismuth hydroxide or bismuth vanadate, pucherite, or mixtures of these two. (4) Pucherite has been found noncrystallin and determined for the first time in the United States.

  4. Third order nonlinear optical properties of bismuth zinc borate glasses

    SciTech Connect

    Shanmugavelu, B.; Ravi Kanth Kumar, V. V.; Kuladeep, R.; Narayana Rao, D.

    2013-12-28

    Third order nonlinear optical characterization of bismuth zinc borate glasses are reported here using different laser pulse durations. Bismuth zinc borate glasses with compositions xBi{sub 2}O{sub 3}-30ZnO-(70-x) B{sub 2}O{sub 3} (where x = 30, 35, 40, and 45 mol. %) have been prepared by melt quenching method. These glasses were characterized by Raman, UV-Vis absorption, and Z scan measurements. Raman and UV-Vis spectroscopic results indicate that non-bridging oxygens increase with increase of bismuth content in the glass. Nonlinear absorption and refraction behavior in the nanosecond (ns), picosecond (ps), and femtosecond (fs) time domains were studied in detail. Strong reverse saturable absorption due to dominant two-photon absorption (TPA) was observed with both ps and fs excitations. In the case of ns pulse excitations, TPA and free-carrier absorption processes contribute for the nonlinear absorption. Two-photon absorption coefficient (β) and the absorption cross section due to free carriers (σ{sub e}) are estimated by theoretical fit of the open aperture Z-scan measurements and found to be dependent on the amount of bismuth oxide in the glass composition. In both ns and fs regimes the sign and magnitude of the third order nonlinearity are evaluated, and the optical limiting characteristics are also reported.

  5. Influence of cooling on a bismuth-doped fiber laser and amplifier performance.

    PubMed

    Kalita, Mridu P; Yoo, Seongwoo; Sahu, Jayanta K

    2009-11-01

    We characterize bismuth-doped fibers under different excitation wavelengths. The fiber laser performance at 1179 nm was investigated, incorporating different cooling arrangements. Effective heat extraction can reduce the temperature-dependent unsaturable loss in fiber, resulting in increased laser performance. The operation of a bismuth-doped fiber amplifier at 1179 nm, at both low and high input signals, is also examined. The amplifier efficiency and the saturation power both depend on effective fiber cooling. PMID:19881653

  6. Energetics of bismuth vanadate

    SciTech Connect

    Nagabhushana, G.P.; Tavakoli, A.H.; Navrotsky, A.

    2015-05-15

    Bismuth vanadate has gained considerable interest as a photoanode for water splitting reactions under visible light. It exists in four different polymorphs, out of which three of them have been synthesized. Thermodynamic properties of these three polymorphs are investigated using high temperature oxide melt solution calorimetry. The monoclinic scheelite phase which exhibits photocatalytic activity under visible light is found to be the most stable polymorph, followed by tetragonal scheelite which exhibits activity under UV light. The photocatalytically inactive tetragonal zircon form is found to be the least stable polymorph. The small difference in enthalpy of formation between the two scheelite structures (−8 kJ/mol) is in accord with the reversibility of the transformation between them and the larger difference between the most stable monoclinic phase and the least stable tetragonal zircon phase (−23 kJ/mol) is in accord with the irreversible (monoclinic→tetragonal zircon) phase transformation. - Graphical abstract: Schematic representation of polymorphic transitions in BiVO{sub 4} along with their formation enthalpies. - Highlights: • Bismuth vanadate crystallizes in three different polymorphs. • High temperature calorimetric measurements were made to determine their formation enthalpies. • Enthalpy of formation decreases in the order BV-ms→BV-ts→BV-tz. • Photocatalytically active monoclinic-BiVO{sub 4} was found to be the most stable polymorph.

  7. Infrared-to-visible upconversion luminescence in neodymium-doped bismuth-borate glass

    NASA Astrophysics Data System (ADS)

    Oprea, Isabella-Ioana; Hesse, Hartmut; Betzler, Klaus

    2005-10-01

    The upconversion luminescence in Nd3+-doped bismuth-borate glass, excited by 0.8 μm light, was studied in the visible spectral region. Four distinct emission bands were found. From their kinetics, two mechanisms can be shown to be responsible for all four lines: energy-transfer upconversion, slightly dominating, and excited state absorption.

  8. Deposition of Polymer Thin Film Using an Atmospheric Pressure Micro-Plasma Driven by Dual-Frequency Excitation

    NASA Astrophysics Data System (ADS)

    Wang, Xiaomin; Yuan, Qianghua; Zhou, Yongjie; Yin, Guiqin; Dong, Chenzhong

    2014-01-01

    Polymer thin film deposition using an atmospheric pressure micro-plasma jet driven by dual-frequency excitations is described in this paper. The discharge process was operated with a mixture of argon (6 slm) and a small amount of acetone (0-2100 ppm). Plasma composition was measured by optical emission spectroscopy (OES). In addition to a large number of Ar spectra lines, we observed some spectra of C, CN, CH and C2. Through changing acetone content mixed in argon, we found that the optimum discharge condition for deposition can be characterized by the maximum concentration of carbonaceous species. The deposited film was characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. The XPS indicated that the film was mostly composed of C with trace amount of O and N elements. The FTIR suggested different carbon-containing bonds (-CHx, C=O, C=C, C-O-C) presented in the deposited film.

  9. Low-energy excitations and the fast process of polystyrene thin supported films studied by inelastic and quasielastic neutron scattering

    SciTech Connect

    Inoue, Rintaro; Kanaya, Toshiji; Nishida, Koji; Tsukushi, Itaru; Shibata, Kaoru

    2006-08-15

    We studied the low-energy excitations in the meV region as well as the picosecond fast process in polystyrene thin supported films using inelastic and quasielastic neutron scattering in a temperature range from 11 to 430 K, covering the bulk glass transition temperature T{sub g}. It was found that the mean square displacement decreased with the film thickness below and above the glass transition temperature T{sub g}, suggesting that the hardening occurs with decreasing the film thickness. Corresponding to the decrease in , it was also found that the density of phonon states G({omega}) decreased with film thickness. This decrease occurs mainly in the Debye mode while the contribution of the boson peak mode also decreases with the film thickness without changing the boson peak energy. As for the fast process, which appeared above at about 150 K as a quasielastic scattering, the fraction A{sub fast}(Q) decreased with the film thickness in a similar manner with the boson peak without changing the relaxation rate, suggesting a common origin for the boson peak and the fast process. These observations showing the hardening were well explained by assuming a hard dense layer at the interface, where the numbers of the boson peak mode as well as the fast process are less than the bulk state.

  10. Determination of refractive index, extinction coefficient and thickness of thin films by the method of waveguide mode excitation

    SciTech Connect

    Sokolov, V I; Marusin, N V; Panchenko, V Ya; Savelyev, A G; Seminogov, V N; Khaydukov, E V

    2013-12-31

    We propose a method for measuring simultaneously the refractive index n{sub f}, extinction coefficient m{sub f} and thickness H{sub f} of thin films. The method is based on the resonant excitation of waveguide modes in the film by a TE- or a TM-polarised laser beam in the geometry of frustrated total internal reflection. The values of n{sub f}, m{sub f} and H{sub f} are found by minimising the functional φ = [N{sup -1}Σ{sup N}{sub i=1}(R{sub exp}(θ{sub i}) – R{sub thr}(θ{sub i})){sup 2}]{sup 1/2}, where R{sub exp}(θ{sub i}) and R{sub thr}(θ{sub i}) are the experimental and theoretical coefficients of reflection of the light beam from the interface between the measuring prism and the film at an angle of incidence θ{sub i}. The errors in determining n{sub f}, m{sub f} and H{sub f} by this method are ±2 × 10{sup -4}, ±1 × 10{sup -3} and ±0.5%, respectively. (fiber and integrated optics)

  11. Plasmonic excitation-assisted optical and electric enhancement in ultra-thin solar cells: the influence of nano-strip cross section

    SciTech Connect

    Sabaeian, Mohammad Heydari, Mehdi; Ajamgard, Narges

    2015-08-15

    The effects of Ag nano-strips with triangle, rectangular and trapezoid cross sections on the optical absorption, generation rate, and short-circuit current density of ultra-thin solar cells were investigated. By putting the nano-strips as a grating structure on the top of the solar cells, the waveguide, surface plasmon polariton (SPP), and localized surface plasmon (LSP) modes, which are excited with the assistance of nano-strips, were evaluated in TE and TM polarizations. The results show, firstly, the TM modes are more influential than TE modes in optical and electrical properties enhancement of solar cell, because of plasmonic excitations in TM mode. Secondly, the trapezoid nano-strips reveal noticeable impact on the optical absorption, generation rate, and short-circuit current density enhancement than triangle and rectangular ones. In particular, the absorption of long wavelengths which is a challenge in ultra-thin solar cells is significantly improved by using Ag trapezoid nano-strips.

  12. Study of bismuth alkoxides as possible precursors for ALD.

    PubMed

    Hatanpää, Timo; Vehkamäki, Marko; Ritala, Mikko; Leskelä, Markku

    2010-04-01

    While searching for bismuth precursors for thin film preparation by atomic layer deposition (ALD) three bismuth alkoxides Bi(O(t)Bu)(3) (1), Bi(OCMe(2)(i)Pr)(3) (2), Bi(OC(i)Pr(3))(3) (3), bismuth beta-diketonate, Bi(thd)(3) (4), and bismuth carboxylate, Bi(O(2)C(t)Bu)(3) (5), were synthesized and evaluated. The compounds were characterized by CHN, NMR, MS, and TGA/SDTA. Earlier unknown crystal structures of compounds 1 and 3 were solved. Compound 1 forms dimeric and loose polymeric structures in the solid state while 3 is strictly monomeric. For compound 2 crystals suitable for complete structure solution could not be grown. Crystallization trials of 2 from hexane and toluene resulted in oxygen bridged tetramer [Bi(2)O(OCMe(2)(i)Pr)(4)](2) (6). Compound 4 has dimeric structure and compound 5 forms loose tetramers as reported earlier. The structure of toluene solvated crystal [Bi(O(2)C(t)Bu)(3)](4).2MeC(6)H(5) (7) was solved. All compounds studied showed relatively good volatility and thermal stability. They were all tested in ALD deposition experiments, in which compound 2 was found to be the most suitable for ALD growth of Bi(2)O(3). It exhibited a clear improvement over Bi precursors studied earlier.

  13. Inclusive measurement of (p,. pi. /sup -/xn) double charge exchange reactions on bismuth from threshold to 800 MeV

    SciTech Connect

    Dombsky, M.; D'Auria, J.M.; Kelson, I.; Yavin, A.I.; Ward, T.E.; Clark, J.L.; Ruth, T.; Sheffer, G.

    1985-07-01

    The energy dependence of the total angle-integrated cross section for the production of astatine isotopes from (p,..pi../sup -/xn) double charge exchange reactions on bismuth (/sup 209/Bi) was measured from 120 to 800 MeV using activation and radiochemical techniques. Chemical yields were estimated by direct radioassaying of /sup 211/At activity in thin (approx.1 mg/cm/sup 2/), irradiated bismuth targets. Calculations of the contributions of secondary (two-step) reactions to these measured astatine yields were performed, based partially upon the observed /sup 211/At activity although even at the highest energies, the contribution to products lighter than /sup 207/At was negligible. These data for products with as many as seven neutrons removed from the doubly coherent product (/sup 210/At) display nearly Gaussian shapes for the mass distributions of the astatine residues, with the maximum occurring for about /sup 204/At. The most probable momentum transfer deduced from these distributions for the initial ..pi../sup -/ production step was 335 MeV/c. The observed excitation functions display a behavior similar to that observed for the yield of /sup 210/Po from a (p,..pi../sup 0/) reaction on /sup 209/Bi, but radically different from that observed for inclusive ..pi../sup -/ reactions on a heavy nucleus. These data are discussed in terms of recent theoretical approaches to negative pion production from bismuth. In addition, a simple, schematic model is developed to treat the rapidly decreasing percentage of the total inclusive ..pi../sup -/ emission which is observed for this double charge exchange reaction. This model reflects the opacity of a nucleus to a source of internal energetic protons.

  14. Mineral resource of the month: bismuth

    USGS Publications Warehouse

    Carlin, James F.

    2006-01-01

    Bismuth compounds are most known for their soothing effects on the stomach, wounds and sores. These properties make the compounds an essential part of many medicinal and cosmetic preparations, which until 1930 accounted for about 90 percent of the bismuth used. The subsequent development of low-melting alloys and chemical catalysts containing bismuth, as well as its use as an additive to casting alloys, has resulted in a wider variety of industrial applications for bismuth.

  15. 21 CFR 73.2110 - Bismuth citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2110 Bismuth citrate. (a) Identity. The color additive... restrictions. The color additive bismuth citrate may be safely used in cosmetics intended for coloring hair on the scalp, subject to the following restrictions: (1) The amount of bismuth citrate in the...

  16. 21 CFR 73.2110 - Bismuth citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2110 Bismuth citrate. (a) Identity. The color additive... restrictions. The color additive bismuth citrate may be safely used in cosmetics intended for coloring hair on the scalp, subject to the following restrictions: (1) The amount of bismuth citrate in the...

  17. 21 CFR 73.2110 - Bismuth citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2110 Bismuth citrate. (a) Identity. The color additive... restrictions. The color additive bismuth citrate may be safely used in cosmetics intended for coloring hair on the scalp, subject to the following restrictions: (1) The amount of bismuth citrate in the...

  18. 21 CFR 73.2110 - Bismuth citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2110 Bismuth citrate. (a) Identity. The color additive... restrictions. The color additive bismuth citrate may be safely used in cosmetics intended for coloring hair on the scalp, subject to the following restrictions: (1) The amount of bismuth citrate in the...

  19. 21 CFR 73.2110 - Bismuth citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2110 Bismuth citrate. (a) Identity. The color additive... restrictions. The color additive bismuth citrate may be safely used in cosmetics intended for coloring hair on the scalp, subject to the following restrictions: (1) The amount of bismuth citrate in the...

  20. Nano sized bismuth oxy chloride by metal organic chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Jagdale, Pravin; Castellino, Micaela; Marrec, Françoise; Rodil, Sandra E.; Tagliaferro, Alberto

    2014-06-01

    Metal organic chemical vapour deposition (MOCVD) method was used to prepare thin films of bismuth based nano particles starting from bismuth salts. Nano sized bismuth oxy chloride (BiOCl) crystals were synthesized from solution containing bismuth chloride (BiCl3) in acetone (CH3sbnd COsbnd CH3). Self-assembly of nano sized BiOCl crystals were observed on the surface of silicon, fused silica, copper, carbon nanotubes and aluminium substrates. Various synthesis parameters and their significant impact onto the formation of self-assembled nano-crystalline BiOCl were investigated. BiOCl nano particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Micro-Raman spectroscopy. These analyses confirm that bismuth nanometer-sized crystal structures showing a single tetragonal phase were indeed bismuth oxy chloride (BiOCl) square platelets 18-250 nm thick and a few micrometres wide.

  1. Ultrafast dynamics of the dielectric functions of ZnO and BaTiO{sub 3} thin films after intense femtosecond laser excitation

    SciTech Connect

    Acharya, S.; Seifert, G.; Chouthe, S.; Graener, H.; Böntgen, T.; Sturm, C.; Schmidt-Grund, R.; Grundmann, M.

    2014-02-07

    The ultrafast carrier dynamics of epitaxial ZnO and BaTiO{sub 3} thin films after intense excitation at 3.10 eV and 4.66 eV photon energy has been studied by femtosecond absorption spectroscopy. Modelling the transient transmission changes on the basis of spectroscopic ellipsometry data and pertinent equilibrium model dielectric functions extended by additional terms for the effects at high carrier density (P-band luminescence and stimulated emission from electron-hole-plasma), a self-consistent parameterized description was obtained for both materials. Excited carrier lifetimes in the range of ≈2 to ≈60 ps and long-lived thermal effects after several hundred ps have been identified in both materials. These findings form a reliable basis to quantitatively describe future femtosecond studies on ZnO/BaTiO{sub 3} heterolayer systems.

  2. Terahertz surface emission from Cu{sub 2}ZnSnSe{sub 4} thin film photovoltaic material excited by femtosecond laser pulses

    SciTech Connect

    Zhao, Zhenyu Han, Qifeng; Zhang, Jingtao; Shi, Wangzhou; Niehues, Gudrun; Funkner, Stefan; Yamamoto, Kohji; Tani, Masahiko; Estacio, Elmer; Guo, Qixin

    2014-12-08

    We observed efficient terahertz (THz) emission from sol-gel grown Cu{sub 2}ZnSnSe{sub 4} (CZTSe) thin films using THz time domain spectroscopy technique. The THz emission bandwidth exceeds 2 THz with a dynamic range of 20 dB in the amplitude spectrum. The THz emission amplitude from CZTSe is found to be independent of external magnetic fields. Comparing the polarity of THz emission waveforms of CZTSe and GaAs, we suggest that the acceleration of photo-carriers in the surface accumulation layer of CZTSe is the dominant mechanism of radiation emission. Optical excitation fluence dependence measurements show that the saturation fluence of the CZTSe thin film reaches 1.48 μJ/cm{sup 2}.

  3. Aspects of the magmatic geochemistry of bismuth

    USGS Publications Warehouse

    Greenland, L.P.; Gottfried, D.; Campbell, E.Y.

    1973-01-01

    Bismuth has been determined in 74 rocks from a differentiated tholeiitic dolerite, two calc-alkaline batholith suites and in 66 mineral separates from one of the batholiths. Average bismuth contents, weighted for rock type, of the Great Lake (Tasmania) dolerite, the Southern California batholith and the Idaho batholith are, 32, 50 and 70 ppb respectively. All three bodies demonstrate an enrichment of bismuth in residual magmas with magmatic differentiation. Bismuth is greatly enriched (relative to the host rock) in the calcium-rich accessory minerals, apatite and sphene, but other mineral analyses show that a Bi-Ca association is of little significance to the magmatic geochemistry of bismuth. Most of the bismuth, in the Southern California batholith at least, occurs in a trace mineral phase (possibly sulfides) present as inclusions in the rock-forming minerals. ?? 1973.

  4. SEPARATION OF PLUTONIUM HYDROXIDE FROM BISMUTH HYDROXIDE

    DOEpatents

    Watt, G.W.

    1958-08-19

    An tmproved method is described for separating plutonium hydroxide from bismuth hydroxide. The end product of the bismuth phosphate processes for the separation amd concentration of plutonium is a inixture of bismuth hydroxide amd plutonium hydroxide. It has been found that these compounds can be advantageously separated by treatment with a reducing agent having a potential sufficient to reduce bismuth hydroxide to metalltc bisinuth but not sufficient to reduce the plutonium present. The resulting mixture of metallic bismuth and plutonium hydroxide can then be separated by treatment with a material which will dissolve plutonium hydroxide but not metallic bismuth. Sodiunn stannite is mentioned as a preferred reducing agent, and dilute nitric acid may be used as the separatory solvent.

  5. Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials.

    PubMed

    Stefik, Morgan

    2016-07-01

    The fabrication of porous nanocomposites is key to the advancement of energy conversion and storage devices that interface with electrolytes. Bismuth vanadate, BiVO4 , is a promising oxide for solar water splitting where the controlled fabrication of BiVO4 layers within porous, conducting scaffolds has remained a challenge. Here, the atomic layer deposition of bismuth vanadates is reported from BiPh3 , vanadium(V) oxytriisopropoxide, and water. The resulting films have tunable stoichiometry and may be crystallized to form the photoactive scheelite structure of BiVO4 . A selective etching process was used with vanadium-rich depositions to enable the synthesis of phase-pure BiVO4 after spinodal decomposition. BiVO4 thin films were measured for photoelectrochemical performance under AM 1.5 illumination. The average photocurrents were 1.17 mA cm(-2) at 1.23 V versus the reversible hydrogen electrode using a hole-scavenging sulfite electrolyte. The capability to deposit conformal bismuth vanadates will enable a new generation of nanocomposite architectures for solar water splitting.

  6. BISMUTH PHOSPHATE CARRIER PROCESS FOR Pu RECOVERY

    DOEpatents

    Finzel, T.G.

    1959-02-01

    An improvement in the bismuth phosphate carrier precipitation process for recovering plutonium is described. It has been found that a more granular and more easily filterable carrier precipitiite is formed if the addition of the bismuth and phosphate ions is effected by first adding 9/10 of the bismuth ions necessary, then slowly adding all of the source of the phosphate ions to be incorporated in the precipitate, while digesting at 75 C and afterwards incorporating the remainder of the total bismuth ions necessary

  7. Structure of unsupported bismuth nanoparticles

    NASA Astrophysics Data System (ADS)

    Wurl, A.; Hyslop, M.; Brown, S. A.; Hall, B. D.; Monot, R.

    We present new results of electron diffraction experiments on unsupported nanometer-sized bismuth clusters. The high intensity cluster beam, necessary for electron diffraction, is provided by an inert-gas aggregation source. The cluster beam contains particles with average cluster sizes between 4.5 and 10 nm. When using Helium as a carrier gas we are able to observe a transition from crystalline clusters to a new structure, which we identify with that of amorphous or liquid clusters.

  8. Ultrafast carrier dynamics in polycrystalline bismuth telluride nanofilm

    SciTech Connect

    Jia, Lin; Ma, Weigang; Zhang, Xing

    2014-06-16

    In this study, the dynamics of energy carriers in polycrystalline bismuth telluride nanofilm are investigated by the ultrafast pump-probe method. The energy relaxation processes are quantitatively analyzed by using the numerical fitting models. The extracted hot carrier relaxation times of photon excitation, thermalization, and diffusion are around sub-picosecond. The initial reflectivity recovery is found to be dominantly determined by the carrier diffusion, electron-phonon coupling, and photo-generated carriers trapping processes. High-frequency and low-frequency oscillations are both observed and attributed to coherent optical phonons and coherent acoustic phonons, respectively.

  9. Multi-elemental bio-imaging of rat tissue from a study investigating the bioavailability of bismuth from shotgun pellets.

    PubMed

    Urgast, Dagmar S; Ellingsen, Dag G; Berlinger, Balázs; Eilertsen, Einar; Friisk, Grete; Skaug, Vidar; Thomassen, Yngvar; Beattie, John H; Kwun, In-Sook; Feldmann, Jörg

    2012-07-01

    In recent years, bismuth has been promoted as a "green element" and is used as a substitute for the toxic lead in ammunition and other applications. However, the bioavailability and toxicity of bismuth is still not very well described. Following a hunting accident with bismuth-containing shots, a bioavailability study of bismuth from metal pellets inoculated into rat limb muscles was carried out. Bismuth could be found in urine and blood of the animals. Bio-imaging using laser ablation ICP-MS of thin sections of the tissue around the metal implant was carried out to find out more about the distribution of the metal diffusing into the tissue. Two laser ablation systems with different ablation cell designs were compared regarding their analytical performance. Low concentrations of bismuth showing a non-symmetrical pattern were detected in the tissue surrounding the metal implant. This was partly an artefact from cutting the thin sections but also bio-mobilisation of the metals of the implant could be seen. An accumulation of zinc around the implant was interpreted as a marker of inflammation. Challenges regarding sample preparation for laser ablation and bio-imaging of samples of diverse composition became apparent during the analysis. PMID:22627704

  10. Multi-elemental bio-imaging of rat tissue from a study investigating the bioavailability of bismuth from shotgun pellets.

    PubMed

    Urgast, Dagmar S; Ellingsen, Dag G; Berlinger, Balázs; Eilertsen, Einar; Friisk, Grete; Skaug, Vidar; Thomassen, Yngvar; Beattie, John H; Kwun, In-Sook; Feldmann, Jörg

    2012-07-01

    In recent years, bismuth has been promoted as a "green element" and is used as a substitute for the toxic lead in ammunition and other applications. However, the bioavailability and toxicity of bismuth is still not very well described. Following a hunting accident with bismuth-containing shots, a bioavailability study of bismuth from metal pellets inoculated into rat limb muscles was carried out. Bismuth could be found in urine and blood of the animals. Bio-imaging using laser ablation ICP-MS of thin sections of the tissue around the metal implant was carried out to find out more about the distribution of the metal diffusing into the tissue. Two laser ablation systems with different ablation cell designs were compared regarding their analytical performance. Low concentrations of bismuth showing a non-symmetrical pattern were detected in the tissue surrounding the metal implant. This was partly an artefact from cutting the thin sections but also bio-mobilisation of the metals of the implant could be seen. An accumulation of zinc around the implant was interpreted as a marker of inflammation. Challenges regarding sample preparation for laser ablation and bio-imaging of samples of diverse composition became apparent during the analysis.

  11. In vitro cytotoxicity of surface modified bismuth nanoparticles.

    PubMed

    Luo, Yang; Wang, Chaoming; Qiao, Yong; Hossain, Mainul; Ma, Liyuan; Su, Ming

    2012-10-01

    This paper describes in vitro cytotoxicity of bismuth nanoparticles revealed by three complementary assays (MTT, G6PD, and calcein AM/EthD-1). The results show that bismuth nanoparticles are more toxic than most previously reported bismuth compounds. Concentration dependent cytotoxicities have been observed for bismuth nanoparticles and surface modified bismuth nanoparticles. The bismuth nanoparticles are non-toxic at concentration of 0.5 nM. Nanoparticles at high concentration (50 nM) kill 45, 52, 41, 34 % HeLa cells for bare nanoparticles, amine terminated bismuth nanoparticles, silica coated bismuth nanoparticles, and polyethylene glycol (PEG) modified bismuth nanoparticles, respectively; which indicates cytotoxicity in terms of cell viability is in the descending order of amine terminated bismuth nanoparticles, bare bismuth nanoparticles, silica coated bismuth nanoparticles, and PEG modified bismuth nanoparticles. HeLa cells are more susceptible to toxicity from bismuth nanoparticles than MG-63 cells. The simultaneous use of three toxicity assays provides information on how nanoparticles interact with cells. Silica coated bismuth nanoparticles can damage cellular membrane yet keep mitochondria less influenced; while amine terminated bismuth nanoparticles can affect the metabolic functions of cells. The findings have important implications for caution of nanoparticle exposure and evaluating toxicity of bismuth nanoparticles.

  12. Bismuth ions are metabolized into autometallographic traceable bismuth-sulphur quantum dots.

    PubMed

    Stoltenberg, M; Juhl, S; Danscher, G

    2007-01-01

    Bismuth - sulphur quantum dots can be silver enhanced by autometallography (AMG). In the present study, autometallographic silver enhanced bismuth-sulphur nanocrystals were isolated from unfixed cryo-sections of kidneys and livers of rats exposed to bismuth (Bi207) subnitrate. After being subjected to AMG all the organic material was removed by sonication and enzymatic digestion and the silver enhanced Bi-S quantum dots spun down by an ultracentrifuge and analyzed by scintillation. The analysis showed that the autometallographic technique traces approximately 94% of the total bismuth. This implies that the injected bismuth is ultimately captured in bismuth-sulphur quantum dots, i.e., that Bi-S nanocrystals are the end product of bismuth metabolism.

  13. Bismuth generator method

    DOEpatents

    Bray, Lane Allan; DesChane, Jaquetta R.

    1998-01-01

    A method for separating .sup.213 Bi from a solution of radionuclides wherein the solution contains a concentration of the chloride ions and hydrogen ions adjusted to allow the formation of a chloride complex. The solution is then brought into contact with an anion exchange resin, whereupon .sup.213 Bi is absorbed from the solution and adhered onto the anion exchange resin in the chloride complex. Other non-absorbing radionuclides such as .sup.225 Ra, .sup.225 Ac, and .sup.221 Fr, along with HCl are removed from the anion exchange resin with a scrub solution. The .sup.213 Bi is removed from the anion exchange resin by washing the anion exchange resin with a stripping solution free of chloride ions and with a reduced hydrogen ion concentration which breaks the chloride anionic complex, releasing the .sup.213 Bi as a cation. In a preferred embodiment of the present invention, the anion exchange resin is provided as a thin membrane, allowing for extremely rapid adherence and stripping of the .sup.213 Bi. A preferred stripping solution for purification of .sup.213 Bi for use in medical applications includes sodium acetate, pH 5.5. A protein conjugated with bifunctional chelating agents in vivo with the NaOAc, to receive the .sup.213 Bi as it is being released from the anion exchange resin.

  14. Bismuth generator method

    DOEpatents

    Bray, L.A.; DesChane, J.R.

    1998-05-05

    A method is described for separating {sup 213}Bi from a solution of radionuclides wherein the solution contains a concentration of the chloride ions and hydrogen ions adjusted to allow the formation of a chloride complex. The solution is then brought into contact with an anion exchange resin, whereupon {sup 213}Bi is absorbed from the solution and adhered onto the anion exchange resin in the chloride complex. Other non-absorbing radionuclides such as {sup 225}Ra, {sup 225}Ac, and {sup 221}Fr, along with HCl are removed from the anion exchange resin with a scrub solution. The {sup 213}Bi is removed from the anion exchange resin by washing the anion exchange resin with a stripping solution free of chloride ions and with a reduced hydrogen ion concentration which breaks the chloride anionic complex, releasing the {sup 213}Bi as a cation. In a preferred embodiment of the present invention, the anion exchange resin is provided as a thin membrane, allowing for extremely rapid adherence and stripping of the {sup 213}Bi. A preferred stripping solution for purification of {sup 213}Bi for use in medical applications includes sodium acetate, pH 5.5. A protein conjugated with bifunctional chelating agents in vivo with the NaOAc receives the {sup 213}Bi as it is being released from the anion exchange resin. 10 figs.

  15. 21 CFR 73.1162 - Bismuth oxychloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1162 Bismuth oxychloride. (a) Identity. (1) The color additive bismuth oxychloride is a synthetically prepared white or nearly white amorphous or finely crystalline, odorless powder consisting principally of BiOCl. (2) Color additive mixtures for drug use...

  16. 21 CFR 73.1162 - Bismuth oxychloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1162 Bismuth oxychloride. (a) Identity. (1) The color additive bismuth oxychloride is a synthetically prepared white or nearly white amorphous or finely crystalline, odorless powder consisting principally of BiOCl. (2) Color additive mixtures for drug use...

  17. 21 CFR 73.1162 - Bismuth oxychloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1162 Bismuth oxychloride. (a) Identity. (1) The color additive bismuth oxychloride is a synthetically prepared white or nearly white amorphous or finely crystalline, odorless powder consisting principally of BiOCl. (2) Color additive mixtures for drug use...

  18. 21 CFR 73.1162 - Bismuth oxychloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1162 Bismuth oxychloride. (a) Identity. (1) The color additive bismuth oxychloride is a synthetically prepared white or nearly white amorphous or finely crystalline, odorless powder consisting principally of BiOCl. (2) Color additive mixtures for drug use...

  19. 21 CFR 73.1162 - Bismuth oxychloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1162 Bismuth oxychloride. (a) Identity. (1) The color additive bismuth oxychloride is a synthetically prepared white or nearly white amorphous or finely crystalline, odorless powder consisting principally of BiOCl. (2) Color additive mixtures for drug use...

  20. Bismuth nickel passivation effective in FCCU

    SciTech Connect

    Heite, R.S. ); English, A.R. ); Smith, G.A. )

    1990-06-04

    Bismuth-based nickel passivation has been effective in Mapco Petroleum Inc.'s fluid catalytic cracking unit (FCCU) at its Memphis, Tenn., refinery for the past 2 years. Mapco switched to the bismuth passivator in 1988 after using antimony as a passivator since the early 1980s. Metals (nickel and vanadium) passivators help reduce the catalyst activity suppression that occurs from contamination of the catalyst with feed-born metals. With the switch to bismuth, a hazardous material has been eliminated. Antimony is on the U.S. Environmental protection Agency's lit of hazardous chemicals. The bismuth also reduced the deleterious effects of high nickel content in the feed to the FCCU, at a bismuth quantity equal to, or slightly greater than, the amount of antimony previously used. Trouble-free operation of the unit was maintained at a reduced passivation cost.

  1. Electronic excitations and structure of Li{sub 2}IrO{sub 3} thin films grown on ZrO{sub 2}:Y (001) substrates

    SciTech Connect

    Jenderka, Marcus Schmidt-Grund, Rüdiger; Grundmann, Marius; Lorenz, Michael

    2015-01-14

    Thin films are a prerequisite for application of the emergent exotic ground states in iridates that result from the interplay of strong spin-orbit coupling and electronic correlations. We report on pulsed laser deposition of Li{sub 2}IrO{sub 3} films on ZrO{sub 2}:Y (001) single crystalline substrates. X-ray diffraction confirms preferential (001) and (10-1) out-of-plane crystalline orientations with well defined in-plane orientation. Resistivity between 35 and 300 K is dominated by a three-dimensional variable range hopping mechanism. The dielectric function is determined by means of spectroscopic ellipsometry and, complemented by Fourier transform infrared transmission spectroscopy, reveals a small optical gap of ≈300 meV, a splitting of the 5d-t{sub 2g} manifold, and several in-gap excitations attributed to phonons and possibly magnons.

  2. Long-Term Cathodoluminescent Characterization of Thin-Film Oxide Phosphors in a Wide Range of Electron Excitation Densities

    SciTech Connect

    Bondar, V D; Felter, T E; Hunt, C E; Dubov, Y G; Chakhovskoy, A G

    2001-04-09

    Long-term processes of cathodoluminescence degradation of thin film phosphors Zn{sub 2}SiO{sub 4}:Ti and Zn{sub 2}GeO{sub 4}:Mn were investigated in a wide range of e-beam energies, current and power densities. The time dependencies describing decreasing of emission intensity have been found. At high-level densities of e-beam irradiation the specific behavior of long-term degradation processes was observed, which is characteristic with rapid degradation at initial stage and slow consequent decrease of intensity. The most probable mechanisms responsible for long-term processes of degradation in investigated phosphors are proposed.

  3. Long-Term Cathodoluminescent Characterization of Thin-Film Oxide Phosphors in a Wide Range of Electron Excitation Densities

    SciTech Connect

    Bondar, V D; Felter, T E; Hunt, C E; Dubov, Y G; Chakhovskoi, A G

    2001-05-06

    Long-term processes of cathodoluminescence degradation of thin film phosphors Zn{sub 2}SiO{sub 4}:Ti and Zn{sub 2}GeO{sub 4}:Mn were investigated in a wide range of e-beam energies, current and power densities. The time dependencies describing decreasing of emission intensity have been found. At high-level densities of e-beam irradiation the specific behavior of long-term degradation processes was observed, which is characteristic with rapid degradation at initial stage and slow consequent decrease of intensity. The most probable mechanisms responsible for long-term processes of degradation in investigated phosphors are proposed.

  4. Suppression effect of silicon (Si) on Er3+ 1.54μm excitation in ZnO thin films

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Lu, Fei; Ma, Changdong; Fan, Ranran

    2016-08-01

    We have investigated the photoluminescence (PL) characteristics of ZnO:Er thin films on Si (100) single crystal and SiO2-on-silicon (SiO2) substrates, synthesized by radio frequency magnetron sputtering. Rutherford backscattering/channeling spectrometry (RBS), X-ray diffraction (XRD) and atomic force microscope (AFM) were used to analyze the properties of thin films. The diffusion depth profiles of Si were determined by second ion mass spectrometry (SIMS). Infrared spectra were obtained from the spectrometer and related instruments. Compared with the results at room temperature (RT), PL (1.54μm) intensity increased when samples were annealed at 250°C and decreased when at 550°C. A new peak at 1.15μm from silicon (Si) appeared in 550°C samples. The Si dopants in ZnO film, either through the diffusion of Si from the substrate or ambient, directly absorbed the energy of pumping light and resulted in the suppression of Er3+ 1.54μm excitation. Furthermore, the energy transmission efficiency between Si and Er3+ was very low when compared with silicon nanocrystal (Si-NC). Both made the PL (1.54μm) intensity decrease. All the data in experiments proved the negative effects of Si dopants on PL at 1.54μm. And further research is going on.

  5. IR luminescence in bismuth-doped germanate glasses and fibres

    SciTech Connect

    Pynenkov, A A; Firstov, Sergei V; Panov, A A; Firstova, E G; Nishchev, K N; Bufetov, Igor' A; Dianov, Evgenii M

    2013-02-28

    We have studied the optical properties of lightly bismuth doped ({<=}0.002 mol %) germanate glasses prepared in an alumina crucible. The glasses are shown to contain bismuth-related active centres that have been identified previously only in bismuth-doped fibres produced by MCVD. With increasing bismuth concentration in the glasses, their luminescence spectra change markedly, which is attributable to interaction between individual bismuth centres. (optical fibres)

  6. PROCESS OF COATING METALS WITH BISMUTH OR BISMUTH-BASE ALLOYS

    DOEpatents

    Beach, J.G.

    1958-01-28

    A method is described for producing coatings of bismuth or bismuth alloys on a metal base. This is accomplished by electrodepositing the bismuth from an aqueous solution of BiCl/sub 3/, and by making the metal base alternately the cathode and the anode, the cathode periods being twice as long as the anode periods. In one embodiment a nickel coating is first electrodeposited in a known way, and this nickel plated piece is tae base upon which tae bismuth is deposited by the process of this patent. The coated piece is then heat treated to produce a homogeneous Ni--Bi alloy by diffusion.

  7. Thermoelectric properties of pressed bismuth nanoparticles

    NASA Astrophysics Data System (ADS)

    Hostler, Stephen R.; Qu, Yu Qiao; Demko, Michael T.; Abramson, Alexis R.; Qiu, Xiaofeng; Burda, Clemens

    2008-03-01

    Theory predicts a substantial increase in the dimensionless figure of merit as the dimensionality and characteristic size of a material are decreased. We explore the use of bismuth nanoparticles pressed into pellets as potential increased efficiency thermoelectric materials. The figure of merit of these pellets is determined by independently measuring the electrical conductivity, thermal conductivity and Seebeck coefficient. The results from the nanoparticle sample are compared to microparticle-based samples. Both sample types show a slight reduction in thermal conductivity relative to bulk bismuth and a Seebeck coefficient near or slightly larger in magnitude than bulk bismuth. These changes are dwarfed by a hundred-fold decrease in the electrical conductivity due to porosity and an oxide layer on the particles. The low conductivity leads to figures of merit at least two orders of magnitude smaller than bulk bismuth. Oxide layer removal and reduced pellet porosity will be required to increase the figure of merit.

  8. Bismuth-based electrochemical stripping analysis

    DOEpatents

    Wang, Joseph

    2004-01-27

    Method and apparatus for trace metal detection and analysis using bismuth-coated electrodes and electrochemical stripping analysis. Both anodic stripping voltammetry and adsorptive stripping analysis may be employed.

  9. Effect of phase stability degradation of bismuth on sensor characteristics of nano-bismuth fixed electrode.

    PubMed

    Lee, Gyoung-Ja; Kim, Chang Kyu; Lee, Min Ku; Rhee, Chang Kyu

    2010-12-15

    Effect of phase stability degradation of bismuth on sensor characteristics of nano-bismuth fixed electrode has been investigated using square-wave anodic stripping voltammetry technique, scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectroscopy. From the analyses of square-wave anodic stripping voltammograms (SWASV) repetitively measured on the nano-bismuth fixed electrode, it was found that the oxidation peak currents dropped by 81%, 68% and 59% for zinc, cadmium and lead, respectively, after the 100th measurement (about 400 min of operation time). The sphere bismuth nanoparticles gradually changed to the agglomerates with petal shape as the operation time increased. From the analyses of SEM images and XRD patterns, it is confirmed that the oxidation of Bi into BiOCl/Bi(2)O(2)CO(3) and the agglomeration of bismuth nanoparticles caused by the phase change decrease a reproducibility of the stripping voltammetric response. Moreover, most of the bismuth becomes BiOCl at pH 3.0 and bismuth hydroxide, Bi(OH)(3) at pH 7.0, which results in a significant decrease in sensitivity of the nano-bismuth fixed electrode.

  10. Gravimetric Analysis of Bismuth in Bismuth Subsalicylate Tablets: A Versatile Quantitative Experiment for Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Davis, Eric; Cheung, Ken; Pauls, Steve; Dick, Jonathan; Roth, Elijah; Zalewski, Nicole; Veldhuizen, Christopher; Coeler, Joel

    2015-01-01

    In this laboratory experiment, lower- and upper-division students dissolved bismuth subsalicylate tablets in acid and precipitated the resultant Bi[superscript 3+] in solution with sodium phosphate for a gravimetric determination of bismuth subsalicylate in the tablets. With a labeled concentration of 262 mg/tablet, the combined data from three…

  11. Preparation of layered thin film samples for angle-resolved photoemission spectroscopy

    SciTech Connect

    Harrison, S. E.; Zhou, B.; Huo, Y.; Harris, J. S.; Pushp, A.; Kellock, A. J.; Parkin, S. S. P.; Chen, Y.; Hesjedal, T.

    2014-09-22

    Materials with layered van der Waals crystal structures are exciting research topics in condensed matter physics and materials science due to outstanding physical properties associated with their strong two dimensional nature. Prominent examples include bismuth tritelluride and triselenide topological insulators (TIs), which are characterized by a bulk bandgap and pairwise counter-propagating spin-polarized electronic surface states. Angle-resolved photoemission spectroscopy (ARPES) of ex-situ grown thin film samples has been limited by the lack of suitable surface preparation techniques. We demonstrate the shortcomings of previously successful conventional surface preparation techniques when applied to ternary TI systems which are susceptible to severe oxidation. We show that in-situ cleaving is a simple and effective technique for preparation of clean surfaces on ex-situ grown thin films for high quality ARPES measurements. The method presented here is universally applicable to other layered van der Waals systems as well.

  12. Electronic band structure calculations of bismuth-antimony nanowires

    NASA Astrophysics Data System (ADS)

    Levin, Andrei; Dresselhaus, Mildred

    2012-02-01

    Alloys of bismuth and antimony received initial interest due to their unmatched low-temperature thermoelectric performance, and have drawn more recent attention as the first 3D topological insulators. One-dimensional bismuth-antimony (BiSb) nanowires display interesting quantum confinement effects, and are expected to exhibit even better thermoelectric properties than bulk BiSb. Due to the small, anisotropic carrier effective masses, the electronic properties of BiSb nanowires show great sensitivity to nanowire diameter, crystalline orientation, and alloy composition. We develop a theoretical model for calculating the band structure of BiSb nanowires. For a given crystalline orientation, BiSb nanowires can be in the semimetallic, direct semiconducting, or indirect semiconducting phase, depending on nanowire diameter and alloy composition. These ``phase diagrams'' turn out to be remarkably similar among the different orientations, which is surprising in light of the anisotropy of the bulk BiSb Fermi surface. We predict a novel direct semiconducting phase for nanowires with diameter less than ˜15 nm, over a narrow composition range. We also find that, in contrast to the bulk and thin film BiSb cases, a gapless state with Dirac dispersion cannot be realized in BiSb nanowires.

  13. Thermal degradation of ultrabroad bismuth NIR luminescence in bismuth-doped tantalum germanate laser glasses.

    PubMed

    Wang, Liping; Zhao, Yanqi; Xu, Shanhui; Peng, Mingying

    2016-04-01

    Because of ultra-broadband luminescence in 1000-1700 nm and consequent applications in fiber amplifier and lasers in the new spectral range where traditional rare earth cannot work, bismuth-doped laser glasses have received rising interest recently. For long-term practical application, thermal degradation must be considered for the glasses. This, however, has seldom been investigated. Here we report the thermal degradation of bismuth-doped germanate glass. Heating and cooling cycle experiments at high temperature reveal strong dependence of the thermal degradation on glass compositions. Bismuth and tantalum lead to the reversible degradation, while lithium can produce permanent irreversible degradation. The degradation becomes worse as lithium content increases in the glass. Absorption spectra show this is due to partial oxidation of bismuth near-infrared emission center. Surprisingly, we notice the emission of bismuth exhibits blueshift, rather than redshift at a higher temperature, and the blueshift can be suppressed by increasing the lithium content. PMID:27192231

  14. Controlled oxidative synthesis of Bi nanoparticles and emission centers in bismuth glass nanocomposites for photonic application

    NASA Astrophysics Data System (ADS)

    Singh, Shiv Prakash; Karmakar, Basudeb

    2011-09-01

    Here we demonstrate an oxidative process to control metallic bismuth (Bi 0) nanoparticles (NPs) creation in bismuth glass nanocomposites by using K 2S 2O 8 as oxidant and enhanced transparency of bismuth glasses. Formation of Bi 0 NPs has been monitored by their distinct surface plasmon resonance (SPR) band at 460 nm in the UV-visible absorption spectra. It is further confirmed by the transmission electron microscopy (TEM) images which disclose the formation of spherical Bi 0 NPs whereas the selected area electron diffraction (SAED) pattern reveals their crystalline rhombohedral phase. These glasses are found to exhibit visible and near infrared (NIR) luminescence bands at 630 and 843 nm respectively on excitation at 460 nm of the SPR band. It is realized that the luminescence center of bismuth species is an uncertain issue, however, it is reasonable to consider that the emission band at 630 nm is due to the combination of 2D 5/2 → 4S 3/2 of Bi 0 and 2P 3/2 (1) → 2P 1/2 of Bi 2+ transitions, and that of NIR emission band at 843 nm is attributed to the 2D 3/2 → 4S 3/2 of Bi 0 transition.

  15. Preparation of Few-Layer Bismuth Selenide by Liquid-Phase-Exfoliation and Its Optical Absorption Properties

    PubMed Central

    Sun, Liping; Lin, Zhiqin; Peng, Jian; Weng, Jian; Huang, Yizhong; Luo, Zhengqian

    2014-01-01

    Bismuth selenide (Bi2Se3), a new topological insulator, has attracted much attention in recent years owing to its relatively simple band structure and large bulk band gap. Compared to bulk, few-layer Bi2Se3 is recently considered as a highly promising material. Here, we use a liquid-phase exfoliation method to prepare few-layer Bi2Se3 in N-methyl-2-pyrrolidone or chitosan acetic solution. The resulted few-layer Bi2Se3 dispersion demonstrates an interesting absorption in the visible light region, which is different from bulk Bi2Se3 without any absorption in this region. The absorption spectrum of few-layer Bi2Se3 depends on its size and layer number. At the same time, the nonlinear and saturable absorption of few-layer Bi2Se3 thin film in near infrared is also characterized well and further exploited to generate laser pulses by a passive Q-switching technique. Stable Q-switched operation is achieved with a lower pump threshold of 9.3 mW at 974 nm, pulse energy of 39.8 nJ and a wide range of pulse-repetition-rate from 6.2 to 40.1 kHz. Therefore, the few-layer Bi2Se3 may excite a potential applications in laser photonics and optoelectronic devices. PMID:24762534

  16. Liquid Bismuth Propellant Flow Sensor

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Stanojev, B. J.; Korman, V.

    2007-01-01

    Quantifying the propellant mass flow rate in liquid bismuth-fed electric propulsion systems has two challenging facets. First, the flow sensors must be capable of providing a resolvable measurement at propellant mass flow rates on the order of 10 mg/see with and uncertainty of less that 5%. The second challenge has to do with the fact that the materials from which the flow sensors are fabricated must be capable of resisting any of the corrosive effects associated with the high-temperature propellant. The measurement itself is necessary in order to properly assess the performance (thrust efficiency, Isp) of thruster systems in the laboratory environment. The hotspot sensor[I] has been designed to provide the bismuth propellant mass flow rate measurement. In the hotspot sensor, a pulse of thermal energy (derived from a current pulse and associated joule heating) is applied near the inlet of the sensor. The flow is "tagged" with a thermal feature that is convected downstream by the flowing liquid metal. Downstream, a temperature measurement is performed to detect a "ripple" in the local temperature associated with the passing "hotspot" in the propellant. By measuring the time between the upstream generation and downstream detection of the thermal feature, the flow speed can be calculated using a "time of flight" analysis. In addition, the system can be calibrated by measuring the accumulated mass exiting the system as a-function of time and correlating this with the time it takes the hotspot to convect through the sensor. The primary advantage of this technique is that it doesn't depend on an absolute measurement of temperature but, instead, relies on the observation of thermal features. This makes the technique insensitive to other externally generated thermal fluctuations. In this paper, we describe experiments performed using the hotspot flow sensor aimed at quantifying the resolution of the sensor technology. Propellant is expelled onto an electronic scale to

  17. Spin Transfer Torque Generated by the Topological Insulator Bismuth Selenide

    NASA Astrophysics Data System (ADS)

    Mellnik, Alex; Grab, Jennifer L.; Mintun, Peter J.; Lee, Joon S.; Richardella, Anthony; Buhrman, Robert A.; Samarth, Nitin; Ralph, Dan C.

    2014-03-01

    We measure large spin-transfer torques generated by in-plane currents in thin films of the topological insulator bismuth selenide at room temperature. We use spin-torque ferromagnetic resonance in Bi2Se3/Ni81Fe19 bilayers to determine that the spin-torque arising from the Bi2Se3 and acting on the Ni81Fe19 layer possesses substantial vector components both in the sample plane and perpendicular to the plane. The out-of-plane torque is several times larger than expected from the Oersted field, and the efficiency of in-plane (anti-damping) spin torque generation per unit current density in the Bi2Se3 is greater than has been observed in any other material.

  18. Luminescence properties of IR-emitting bismuth centres in SiO{sub 2}-based glasses in the UV to near-IR spectral region

    SciTech Connect

    Firstova, E G; Vel'miskin, V V; Firstov, S V; Dianov, E M; Bufetov, I A; Khopin, V F; Gur'yanov, A N; Bufetova, G A; Nishchev, K N

    2015-01-31

    We have studied UV excitation spectra of IR luminescence in bismuth-doped glasses of various compositions and obtained energy level diagrams of IR-emitting bismuth-related active centres (BACs) associated with silicon and germanium atoms up to ∼5.2 eV over the ground level. A possible energy level diagram of the BACs in phosphosilicate glass has been proposed. The UV excitation peaks for the IR luminescence of the BACs in the glasses have been shown to considerably overlap with absorption bands of the Bi{sup 3+} ion, suggesting that Bi{sup 3+} may participate in BAC formation. (optical fibres)

  19. Electrodeposition and Characterization of Bismuth Telluride Nanowires

    NASA Astrophysics Data System (ADS)

    Frantz, C.; Stein, N.; Gravier, L.; Granville, S.; Boulanger, C.

    2010-09-01

    In this work, we report thermoelectric measurements on electroplated bismuth telluride nanowires. Porous polycarbonate membranes, obtained by ion-track irradiation lithography, were chosen as electroplating templates. Bismuth telluride nanowires were achieved in acidic media under potentiostatic conditions at -100 mV versus saturated silver chloride electrode. The filling ratio of the pores was increased to 80% by adding dimethyl sulfoxide to the electrolyte. Whatever the experimental conditions, the nanowires were polycrystalline in the rhombohedral phase of Bi2Te3. Finally, the power output of arrays of bismuth telluride nanowires was analyzed as a function of load resistance. The results were strongly dependent on the internal resistance, which can be significantly reduced by the presence of dimethyl sulfoxide during electroplating.

  20. Liquid Bismuth Feed System for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Markusic, T. E.; Polzin, K. A.; Stanojev, B. J.

    2006-01-01

    Operation of Hall thrusters with bismuth propellant has been shown to be a promising path toward high-power, high-performance, long-lifetime electric propulsion for spaceflight missions. For example, the VHITAL project aims td accurately, experimentally assess the performance characteristics of 10 kW-class bismuth-fed Hall thrusters - in order to validate earlier results and resuscitate a promising technology that has been relatively dormant for about two decades. A critical element of these tests will be the precise metering of propellant to the thruster, since performance cannot be accurately assessed without an accurate accounting of mass flow rate. Earlier work used a pre/post-test propellant weighing scheme that did not provide any real-time measurement of mass flow rate while the thruster was firing, and makes subsequent performance calculations difficult. The motivation of the present work was to develop a precision liquid bismuth Propellant Management System (PMS) that provides real-time propellant mass flow rate measurement and control, enabling accurate thruster performance measurements. Additionally, our approach emphasizes the development of new liquid metal flow control components and, hence, will establish a basis for the future development of components for application in spaceflight. The design of various critical components in a bismuth PMS are described - reservoir, electromagnetic pump, hotspot flow sensor, and automated control system. Particular emphasis is given to material selection and high-temperature sealing techniques. Open loop calibration test results are reported, which validate the systems capability to deliver bismuth at mass flow rates ranging from 10 to 100 mg/sec with an uncertainty of less than +/- 5%. Results of integrated vaporizer/liquid PMS tests demonstrate all of the necessary elements of a complete bismuth feed system for electric propulsion.

  1. Burnout current density of bismuth nanowires

    NASA Astrophysics Data System (ADS)

    Cornelius, T. W.; Picht, O.; Müller, S.; Neumann, R.; Völklein, F.; Karim, S.; Duan, J. L.

    2008-05-01

    Single bismuth nanowires with diameters ranging from 100nmto1μm were electrochemically deposited in ion track-etched single-pore polycarbonate membranes. The maximum current density the wires are able to carry was investigated by ramping up the current until failure occurred. It increases by three to four orders of magnitude for nanowires embedded in the template compared to bulk bismuth and rises with diminishing diameter. Simulations show that the wires are heated up electrically to the melting temperature. Since the surface-to-volume ratio rises with diminishing diameter, thinner wires dissipate the heat more efficiently to the surrounding polymer matrix and, thus, can tolerate larger current densities.

  2. Bismuth induced encephalopathy caused by tri potassium dicitrato bismuthate in a patient with chronic renal failure.

    PubMed Central

    Playford, R J; Matthews, C H; Campbell, M J; Delves, H T; Hla, K K; Hodgson, H J; Calam, J

    1990-01-01

    A 68 year old man with a creatinine clearance rate of only 15 ml/min took twice the recommended dose of tripotassium dicitrato bismuthate (TDB) as DeNol liquid; 10 ml qds; a total of 864 mg bismuth daily for two months. Whole blood bismuth concentrations rose to 880 micrograms/l and he developed global cerebral dysfunction with hallucinations, ataxia, and an abnormal EEG. Renal clearance of bismuth rose from 0.24 to 2.4 ml/min when the heavy metal chelator 2-3 dimercapto-1 propane sulphonic acid (DMPS) was given by mouth. Bismuth was measured by a novel method involving inductively coupled plasma source mass spectrometry. Fifty days after stopping TDB, whole blood bismuth concentrations fell to 46 micrograms/l and the patient's EEG returned to normal. His mental function also recovered completely. The case serves as a timely reminder that TDB should not be administered to patients with renal disorders, as stated in the data sheet. PMID:2323603

  3. Probing bismuth ferrite nanoparticles by hard x-ray photoemission: Anomalous occurrence of metallic bismuth

    SciTech Connect

    Chaturvedi, Smita; Rajendra, Ranguwar; Ballav, Nirmalya; Kulkarni, Sulabha; Sarkar, Indranil; Shirolkar, Mandar M.; Jeng, U-Ser; Yeh, Yi-Qi

    2014-09-08

    We have investigated bismuth ferrite nanoparticles (∼75 nm and ∼155 nm) synthesized by a chemical method, using soft X-ray (1253.6 eV) and hard X-ray (3500, 5500, and 7500 eV) photoelectron spectroscopy. This provided an evidence for the variation of chemical state of bismuth in crystalline, phase pure nanoparticles. X-ray photoelectron spectroscopy analysis using Mg Kα (1253.6 eV) source showed that iron and bismuth were present in both Fe{sup 3+} and Bi{sup 3+} valence states as expected for bismuth ferrite. However, hard X-ray photoelectron spectroscopy analysis of the bismuth ferrite nanoparticles using variable photon energies unexpectedly showed the presence of Bi{sup 0} valence state below the surface region, indicating that bismuth ferrite nanoparticles are chemically inhomogeneous in the radial direction. Consistently, small-angle X-ray scattering reveals a core-shell structure for these radial inhomogeneous nanoparticles.

  4. 21 CFR 73.2162 - Bismuth oxychloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2162 Bismuth oxychloride. (a) Identity and... following diluents: (i) For coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and,...

  5. 21 CFR 73.2162 - Bismuth oxychloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2162 Bismuth oxychloride. (a) Identity and... following diluents: (i) For coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and,...

  6. 21 CFR 73.2162 - Bismuth oxychloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2162 Bismuth oxychloride. (a) Identity and... following diluents: (i) For coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and,...

  7. 21 CFR 73.2162 - Bismuth oxychloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2162 Bismuth oxychloride. (a) Identity and... following diluents: (i) For coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and,...

  8. 21 CFR 73.2162 - Bismuth oxychloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2162 Bismuth oxychloride. (a) Identity and... following diluents: (i) For coloring cosmetics generally, only those diluents listed under § 73.1001(a)(1); (ii) For coloring externally applied cosmetics, only those diluents listed in § 73.1001(b) and,...

  9. Hydrothermal synthesis map of bismuth titanates

    SciTech Connect

    Sardar, Kripasindhu; Walton, Richard I.

    2012-05-15

    The hydrothermal synthesis of four bismuth titanate materials from common bismuth and titanium precursors under hydrothermal conditions is described. Reaction of NaBiO{sub 3}{center_dot}2H{sub 2}O and anatase TiO{sub 2} in concentrated NaOH solution at 240 Degree-Sign C is shown to produce perovskite and sillenite phases Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} and Bi{sub 12}TiO{sub 20}, depending on the ratio of metal precursors used. When KOH solution is used and a 1:1 ratio of the same precursors, a pyrochlore Bi{sub 1.43}Ti{sub 2}O{sub 6}(OH){sub 0.29}(H{sub 2}O){sub 0.66} is formed. The use of a mixture of HNO{sub 3} and NaOH is shown to facilitate the formation of the Aurivillius-type bismuth titanate Bi{sub 4}Ti{sub 3}O{sub 12}. The phases have been isolated separately as phase-pure powders and profile refinement of powder X-ray diffraction data allows comparisons with comparable materials reported in the literature. Analysis of Bi L{sub III}-edge X-ray absorption near edge structure (XANES) spectra of the materials shows the oxidation state of bismuth is +3 in all of the hydrothermally derived products. - Graphical abstract: Use of NaBiO{sub 3}{center_dot}2H{sub 2}O and TiO{sub 2} as reagents under hydrothermal conditions allows the phase-pure preparation of four crystalline bismuth titanate materials. Highlights: Black-Right-Pointing-Pointer NaBiO{sub 3} and TiO{sub 2} under hydrothermal conditions allow formation of bismuth titanates. Black-Right-Pointing-Pointer Synthesis of four distint phases has been mapped. Black-Right-Pointing-Pointer Bi LIII-edge XANES shows Bi is reduced to oxidation state +3 in all materials. Black-Right-Pointing-Pointer A new hydrated bismuth titanate pyrochlore has been isolated.

  10. Syntheses, crystal structures and characterizations of two new bismuth(III) arsenites

    SciTech Connect

    Liu Junhui; Kong Fang; Gai Yanli; Mao Jianggao

    2013-01-15

    Two new bismuth arsenites with two different structural types, namely, Bi{sub 2}O(AsO{sub 3})Cl (1), Bi{sub 8}O{sub 6}(AsO{sub 3}){sub 2}(AsO{sub 4}){sub 2} (2), have been synthesized by the solid-state reactions. Compound 1 exhibits novel 2D bismuth arsenite layers with Bi{sub 4}O{sub 4} rings capped by oxide anions, which are further interconnected by Bi-Cl-Bi bridges into a 3D network. Compound 2 contains both arsenite and arsenate anions, its 3D structures are based on 1D bismuth arsenite and 1D bismuth arsenate chains both along b-axis, which are interconnected by oxide anions via Bi-O-Bi bridges, forming 1D tunnels of Bi{sub 4}As{sub 4} 8-membered rings (MRs) along b-axis, the lone pairs of the arsenite groups are orientated toward the centers of the above tunnels. Thermogravimetric analysis indicated that both compounds display high thermal stability. Optical property measurements revealed that they are wide band-gap semiconductors. Both compounds display broad green-light emission bands centered at 506 nm under excitation at 380 and 388 nm. - Graphical abstract: Solid state reactions of Bi{sub 2}O{sub 3} (BiCl{sub 3}) and As{sub 2}O{sub 3} yielded two new compounds with two different structural types, namely, Bi{sub 2}O(AsO{sub 3})Cl (1), Bi{sub 8}O{sub 6}(AsO{sub 3}){sub 2}(AsO{sub 4}){sub 2} (2). They represent the first examples of bismuth arsenates. Highlights: Black-Right-Pointing-Pointer Solid state reactions of Bi{sub 2}O{sub 3} (BiCl{sub 3}) and As{sub 2}O{sub 3} yielded two new phases. Black-Right-Pointing-Pointer They represent the first examples of bismuth arsenites. Black-Right-Pointing-Pointer The two compounds exhibit two different structural types.

  11. Optical pumping and readout of bismuth hyperfine states in silicon for atomic clock applications

    PubMed Central

    Saeedi, K.; Szech, M.; Dluhy, P.; Salvail, J.Z.; Morse, K.J.; Riemann, H.; Abrosimov, N.V.; Nötzel, N.; Litvinenko, K.L.; Murdin, B.N.; Thewalt, M.L.W.

    2015-01-01

    The push for a semiconductor-based quantum information technology has renewed interest in the spin states and optical transitions of shallow donors in silicon, including the donor bound exciton transitions in the near-infrared and the Rydberg, or hydrogenic, transitions in the mid-infrared. The deepest group V donor in silicon, bismuth, has a large zero-field ground state hyperfine splitting, comparable to that of rubidium, upon which the now-ubiquitous rubidium atomic clock time standard is based. Here we show that the ground state hyperfine populations of bismuth can be read out using the mid-infrared Rydberg transitions, analogous to the optical readout of the rubidium ground state populations upon which rubidium clock technology is based. We further use these transitions to demonstrate strong population pumping by resonant excitation of the bound exciton transitions, suggesting several possible approaches to a solid-state atomic clock using bismuth in silicon, or eventually in enriched 28Si. PMID:25990870

  12. Efficient gas sensitivity in mixed bismuth ferrite micro (cubes) and nano (plates) structures

    SciTech Connect

    Waghmare, Shivaji D.; Jadhav, Vijaykumar V.; Gore, Shaym K.; Yoon, Seog-Joon; Ambade, Swapnil B.; Lokhande, B.J.; Mane, Rajaram S.; Han, Sung-Hwan

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Micro (cubes) structure embedded in nano (plates) of bismuth ferrite was prepared by a chemical method. ► These structures were characterized by XRD and SEM. ► LPG, CO{sub 2} and NH{sub 4} gases were exposed. ► Properties related to gas sensors were measured and reported. -- Abstract: Mixed micro (cubes) and nano (plates) structures of bismuth ferrite (BFO) have been synthesized by a simple and cost-effective wet-chemical method. Structural, morphological and phase confirmation characteristics are measured using X-ray diffraction, field-emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis techniques. The digital FE-SEM photo-images of BFO sample confirmed an incubation of discrete micro-cubes into thin and regularly placed large number of nano-plates. The bismuth ferrite, with mixed structures, films show considerable performance when used in liquefied petroleum (LPG), carbon dioxide (CO{sub 2}) and ammonium (NH{sub 3}) gas sensors application. Different chemical entities in LPG have made it more efficient with higher sensitivity, recovery and response times compared to CO{sub 2} and NH{sub 3} gases. Furthermore, effect of palladium surface treatment on the gas sensitivity and the charge transfer resistances of BFO mixed structures is investigated and reported.

  13. Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals.

    PubMed

    Teweldebrhan, Desalegne; Goyal, Vivek; Balandin, Alexander A

    2010-04-14

    Bismuth telluride (Bi(2)Te(3)) and its alloys are the best bulk thermoelectric materials known today. In addition, stacked quasi-two-dimensional (2D) layers of Bi(2)Te(3) were recently identified as promising topological insulators. In this Letter we describe a method for "graphene-inspired" exfoliation of crystalline bismuth telluride films with a thickness of a few atoms. The atomically thin films were suspended across trenches in Si/SiO(2) substrates, and subjected to detail material characterization, which included atomic force microscopy and micro-Raman spectroscopy. The presence of the van der Waals gaps allowed us to disassemble Bi(2)Te(3) crystal into its quintuple building blocks-five monatomic sheets-consisting of Te((1))-Bi-Te((2))-Bi-Te((1)). By altering the thickness and sequence of atomic planes, we were able to create "designer" nonstoichiometric quasi-2D crystalline films, change their composition and doping, the type of charge carriers as well as other properties. The exfoliated quintuples and ultrathin films have low thermal conductivity, high electrical conductivity, and enhanced thermoelectric properties. The obtained results pave the way for producing stacks of crystalline bismuth telluride quantum wells with the strong spatial confinement of charge carriers and acoustic phonons, beneficial for thermoelectric devices. The developed technology for producing free-standing quasi-2D layers of Te((1))-Bi-Te((2))-Bi-Te((1)) creates an impetus for investigation of the topological insulators and their possible practical applications.

  14. Phase transitions of Dirac electrons in bismuth.

    PubMed

    Li, Lu; Checkelsky, J G; Hor, Y S; Uher, C; Hebard, A F; Cava, R J; Ong, N P

    2008-07-25

    The Dirac Hamiltonian, which successfully describes relativistic fermions, applies equally well to electrons in solids with linear energy dispersion, for example, in bismuth and graphene. A characteristic of these materials is that a magnetic field less than 10 tesla suffices to force the Dirac electrons into the lowest Landau level, with resultant strong enhancement of the Coulomb interaction energy. Moreover, the Dirac electrons usually come with multiple flavors or valley degeneracy. These ingredients favor transitions to a collective state with novel quantum properties in large field. By using torque magnetometry, we have investigated the magnetization of bismuth to fields of 31 tesla. We report the observation of sharp field-induced phase transitions into a state with striking magnetic anisotropy, consistent with the breaking of the threefold valley degeneracy. PMID:18653888

  15. Mechanism of formation of. gamma. -bismuth molybdate

    SciTech Connect

    Kustova, G.N.; Yurchenko, E.N.; Odegova, G.V.; Lazarenko, T.P.; Tarasova, D.V.; Aleshina, G.I.

    1986-04-01

    Infrared and Raman spectroscopic methods were used to study the mechanism of the formation of a Bi-Mo catalyst. X-ray-amorphous Bi/sub 2/MoO/sub 6/ is formed upon precipitation from solutions of bismuth nitrate and ammonium heptamolybdate at pH 2, which, after removal of the NH/sub 4/NO/sub 3/ side product by filtration and heating, crystallizes to the ..gamma..-phase. The presence of NH/sub 4/NO/sub 3/ causes a change in the nature of the solid-phase transformations upon heat treatment leading to decomposition of Bi/sub 2/MoO/sub 6/ into the ..cap alpha..-molybdate and a basic bismuth salt which react upon a further increase in temperature to form the ..gamma..-phase. This difference in the generation process leads to a change in the state of the catalyst surface.

  16. Antimony promoted bismuth cerium molybdate catalysts

    SciTech Connect

    Brazdil, J.F.; Glaeser, L.C.; Grasselli, R.K.

    1990-05-01

    This patent describes an improvement in antimony-promoted bismuth cerium molybdate whereby the tendency of the catalyst to lose efectiveness over time is significantly reduced. This patent describes new catalysts which are also useful in other oxidation-type reactions such as the oxidation of acrolein and methacrolein to produce the corresponding unsaturated aldehydes and acids and the oxydehydrogenation of various olefins such as isoamylenes to produce the corresponding diolefins such as isoprene.

  17. Optical properties of bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Oprea, Isabella-Ioana; Hesse, Hartmut; Betzler, Klaus

    2004-08-01

    Optical properties of glasses in the binary system bismuth oxide (Bi 2O 3)-boric oxide (B 2O 3) are measured for the composition range 25-65 mol% Bi 2O 3. Both, refractive indices and ultraviolet absorption edge, show an expressed dependence on composition. A generalized Sellmeier formula is derived to describe the refractive indices for the whole composition range and a wide wavelength range.

  18. Oscillating Nernst-Ettingshausen effect in bismuth across the quantum limit.

    PubMed

    Behnia, Kamran; Méasson, Marie-Aude; Kopelevich, Yakov

    2007-04-20

    In elemental bismuth, 10(5) atoms share a single itinerant electron. Therefore, a moderate magnetic field can confine electrons to the lowest Landau level. We report on the first study of metallic thermoelectricity in this regime. The main thermoelectric response is off-diagonal with an oscillating component several times larger than the nonoscillating background. When the first Landau level attains the Fermi energy, both the Nernst and the Ettingshausen coefficients sharply peak, and the latter attains a temperature-independent maximum. These features are yet to be understood. We note a qualitative agreement with a theory invoking current-carrying edge excitations. PMID:17501444

  19. LASL bismuth sulfate thermochemical hydrogen cycle

    SciTech Connect

    Cox, K.E.; Jones, W.M.; Peterson, C.L.

    1980-01-01

    The LASL bismuth sulfate cycle is one of a generic class of solid sulfate cycles in which a metal sulfate is substituted for sulfuric acid in a hybrid (partly electrochemical) cycle. This technique avoids the serious materials and heat penalty problems associated with the handling of concentrated acid solutions, and if the electrolyzer is operated at acid concentrations below 50% it may, in principle, lead to a lower cell voltage with subsequent energy savings. Experiment verification of all steps in the cycle has been obtained, particularly for the decomposition of normal bismuth sulfate and lower bismuth oxysulfates. For the substance, Bi/sub 2/O/sub 3/ 2SO/sub 3/, an endothermic requirement of 172 kJ/mol was obtained, which is considerably less than that for other metal sulfate systems. A rotary kiln was used for continuous experiments and our results show decomposition of this compound to Bi/sub 2/O/sub 3/ SO/sub 3/ in under 8 minutes residence time at 1023 K. Preliminary analysis of the cycle's energy balance shows an overall thermal efficiency of greater than 50% when the maximum cycle reaction temperature is 1500 K. The cycle has potential for hydrogen production when coupled with an energy source such as solar or fusion energy.

  20. Growth of epitaxial bismuth and gallium substituted lutetium iron garnet films by pulsed laser deposition

    SciTech Connect

    Leitenmeier, Stephan; Heinrich, Andreas; Lindner, Joerg K. N.; Stritzker, Bernd

    2006-04-15

    Epitaxial bismuth and gallium substituted lutetium iron garnet thin films have been grown on (100) oriented gadolinium gallium garnet Gd{sub 3}Ga{sub 5}O{sub 12} substrates by pulsed laser deposition. The films have been studied using x-ray diffraction, high resolution x-ray diffraction, Rutherford backscattering spectroscopy, transmission electron microscopy, and electron diffraction. We obtained smooth films with thicknesses between 0.3 and 1.0 {mu}m showing good crystalline quality and epitaxial growth.

  1. Determination of zirconium by amperometric titration of excess complexone III with bismuth nitrate at a bismuth electrode

    SciTech Connect

    Kozulina, M.M.; Lepin, Y.K.; Songina, O.A.

    1985-10-01

    Among the various methods for determining zirconium is the amperometric titration of excess EDTA with bismuth nitrate. Such a titration was first used with a dropping mercury electrode. Here the authors investigate the conditions for titrating with a bismuth indicator electrode because a number of difficulties -current oscillation, mercury toxicity -- arise in work with the dropping mercury electrode. It is determined that the bismuth indicator electrode can in fact be used to determine zirconium by inverse amperometric titration of excess EDTA with bismuth nitrate.

  2. Spin dynamics of complex oxides, bismuth-antimony alloys, and bismuth chalcogenides

    NASA Astrophysics Data System (ADS)

    Sahin, Cuneyt

    The emerging field of spintronics relies on the manipulation of electron spin in order to use it in spin-based electronics. Such a paradigm change has to tackle several challenges including finding materials with sufficiently long spin lifetimes and materials which are efficient in generating pure spin currents. This thesis predicts that two types of material families could be a solution to the aforementioned challenges: complex oxides and bismuth based materials. We derived a general approach for constructing an effective spin-orbit Hamiltonian which is applicable to all nonmagnetic materials. This formalism is useful for calculating spin-dependent properties near an arbitrary point in momentum space. We also verified this formalism through comparisons with other approaches for III-V semiconductors, and its general applicability is illustrated by deriving the spin-orbit interaction and predicting spin lifetimes for strained strontium titanate (STO) and a two-dimensional electron gas in STO (such as at the LAO/STO interface). Our results suggest robust spin coherence and spin transport properties in STO related materials even at room temperature. In the second part of the study we calculated intrinsic spin Hall conductivities for bismuth-antimony (BISb) semimetals with strong spin-orbit couplings, from the Kubo formula and using Berry curvatures evaluated throughout the Brillouin zone from a tight-binding Hamiltonian. Nearly crossing bands with strong spin-orbit interaction generate giant spin Hall conductivities in these materials, ranging from 474 ((h/e)O--1cm--1) for bismuth to 96((h/e)O--1cm --1) for antimony; the value for bismuth is more than twice that of platinum. The large spin Hall conductivities persist for alloy compositions corresponding to a three-dimensional topological insulator state, such as Bi0.83Sb0.17. The spin Hall conductivity could be changed by a factor of 5 for doped Bi, or for Bi0.83Sb0.17, by changing the chemical potential by 0.5 e

  3. Cryogenic exciter

    SciTech Connect

    Bray, James William; Garces, Luis Jose

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  4. Performance comparison of bismuth/erbium co-doped optical fibre by 830 nm and 980 nm pumping

    NASA Astrophysics Data System (ADS)

    Yan, Binbin; Luo, Yanhua; Zareanborji, Amirhassan; Xiao, Gui; Peng, Gang-Ding; Wen, Jianxiang

    2016-10-01

    The performance of bismuth/erbium co-doped fibre (BEDF) by 830 nm and 980 nm pumping has been studied in detail, including the small signal absorption, pump absorption, emission, gain and excited state absorption (ESA). Based on the study, energy transition diagrams of BEDF under 830 nm or 980 nm pumping are proposed to clarify the spectroscopic properties. The results demonstrate the advantages of 830 nm pumping for BEDF over 980 nm pumping when considering the absorption, pumping efficiency, excited state absorption and optical amplification.

  5. Hall-Effect Thruster Utilizing Bismuth as Propellant

    NASA Technical Reports Server (NTRS)

    Szabo, James; Gasdaska, Charles; Hruby, Vlad; Robin, Mike

    2008-01-01

    A laboratory-model Hall-effect spacecraft thruster was developed that utilizes bismuth as the propellant. Xenon was used in most prior Hall-effect thrusters. Bismuth is an attractive alternative because it has a larger atomic mass, a larger electron-impact-ionization cross-section, and is cheaper and more plentiful.

  6. 21 CFR 520.1204 - Kanamycin, bismuth subcarbonate, activated attapulgite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Kanamycin, bismuth subcarbonate, activated... § 520.1204 Kanamycin, bismuth subcarbonate, activated attapulgite. (a) Specifications—(1) Each 5 milliliters (mL) of suspension contains 100 milligrams (mg) kanamycin (as the sulfate), 250 mg...

  7. 21 CFR 520.1204 - Kanamycin, bismuth subcarbonate, activated attapulgite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Kanamycin, bismuth subcarbonate, activated... § 520.1204 Kanamycin, bismuth subcarbonate, activated attapulgite. (a) Specifications—(1) Each 5 milliliters (mL) of suspension contains 100 milligrams (mg) kanamycin (as the sulfate), 250 mg...

  8. 21 CFR 520.1204 - Kanamycin, bismuth subcarbonate, activated attapulgite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Kanamycin, bismuth subcarbonate, activated... § 520.1204 Kanamycin, bismuth subcarbonate, activated attapulgite. (a) Specifications—(1) Each 5 milliliters (mL) of suspension contains 100 milligrams (mg) kanamycin (as the sulfate), 250 mg...

  9. Bismuth X-ray absorber studies for TES microcalorimeters

    NASA Astrophysics Data System (ADS)

    Sadleir, J. E.; Bandler, S. R.; Brekosky, R. P.; Chervenak, J.; Figueroa-Feliciano, E.; Finkbeiner, F.; Iyomoto, N.; Kelley, R. L.; Kilbourne, C. A.; King, J. M.; Porter, F. S.; Robinson, I. K.; Saab, T.; Talley, D. J.

    2006-04-01

    Bismuth's large atomic number and low carrier density makes it an attractive X-ray absorber material for microcalorimeters. Bismuth's long fermi wavelength and long mean free paths have motivated much interest in the fabrication of high quality bismuth films to study quantum size effects. Despite such incentives, fabrication of high quality bismuth films has proven difficult, and measured properties of such films are highly variable in the literature. Implementing a bismuth deposition process for TES (superconducting Transition Edge Sensor) device fabrication presents additional challenges particularly at interfaces due to the inherent granularity and surface roughness of its films, its low melting point, and its tendency to diffuse and form undesired intermetallic phases. We report observations of Bi-Cu and Bi-Au diffusion in our devices correlating with large shifts in Tc (superconducting transition temperature). Using SEM and in situ R vs T annealing experiments we have been able to study these diffusion processes and identify their activation temperatures.

  10. Bismuth nano-Hall Sensor for Scanning Hall Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Sonusen, Selda; Dede, Munir; Oral, Ahmet

    2013-03-01

    Scanning hall probe microscopy (SHPM) is a non invasive and quantitative magnetic imaging technique, which provides high spatial (50nm) and magnetic resolution to image magnetic and superconducting materials. SHPM can also work under high magnetic field and in a wide temperature (range 30mK -300K). Since Bismuth is a semimetal with a concentration five orders of magnitude lower than metals and negligible surface charge depletion effect, it is an alternative material for Hall probes for SHPM. In this work, we fabricated Bi Hall sensors with different sizes ranging from 10nm to 50nm- by electron beam lithography. The sensors are calibrated -under high magnetic fields -and the minimum detectable magnetic field was measured in a broad temperature range, 4-300K. In addition, 50nm Bi Hall sensors are -used for imaging magnetic domains in Iron Garnet thin film crystal. A detailed electrical characterization and performance of the 25nm and 50nm Hall Sensors will also be presented.

  11. Bismuth Oxide: A New Lithium-Ion Battery Anode

    PubMed Central

    Li, Yuling; Trujillo, Matthias A.; Fu, Engang; Patterson, Brian; Fei, Ling; Xu, Yun; Deng, Shuguang; Smirnov, Sergei; Luo, Hongmei

    2013-01-01

    Bismuth oxide directly grown on nickel foam (p-Bi2O3/Ni) was prepared by a facile polymer-assisted solution approach and was used directly as a lithium-ion battery anode for the first time. The Bi2O3 particles were covered with thin carbon layers, forming network-like sheets on the surface of the Ni foam. The binder-free p-Bi2O3/Ni shows superior electrochemical properties with a capacity of 668 mAh/g at a current density of 800 mA/g, which is much higher than that of commercial Bi2O3 powder (c-Bi2O3) and Bi2O3 powder prepared by the polymer-assisted solution method (p-Bi2O3). The good performance of p-Bi2O3/Ni can be attributed to higher volumetric utilization efficiency, better connection of active materials to the current collector, and shorter lithium ion diffusion path. PMID:24416506

  12. Nanoscale Andreev Reflection Spectroscopy on Bismuth-Chalcogenide Topological Insulators

    NASA Astrophysics Data System (ADS)

    Granstrom, C. R.; Fridman, I.; Liang, R. X.; Lei, H.; Petrovic, C.; Yang, Shuo; Wu, K. H.; Wei, J. Y. T.

    Andreev reflection (AR) is the basic mechanism underlying the superconducting proximity effect which, at the interface between a topological insulator (TI) and a spin-singlet superconductor, can induce chiral p-wave pairing in the TI. Despite this novel importance, it is not well understood how AR is affected by the unique attributes of a three-dimensional TI, namely the Dirac dispersion and helical spin-polarization of its surface states. In this work, we use both s-wave and d-wave superconducting tips to perform AR spectroscopy at 4.2 K on flux-grown Bi2Se3 and Bi2Te3 single crystals, as well as epitaxial Bi2Se3 thin films grown on SrTiO3 substrates by molecular beam epitaxy. These AR measurements are complemented by scanning tunneling spectroscopy, in order to characterize the superconducting tip as well as the doping level and surface condition of the TI sample. Our data are analyzed using BTK theory, in light of the characteristic band structure of bismuth chalcogenides, to elucidate how the band structure affects the AR process. Work supported by: NSERC, CFI-OIT, the Canadian Institute for Advanced Research, and the Department of Energy.

  13. Chelation of bismuth by combining desferrioxamine and deferiprone in rats.

    PubMed

    Tubafard, S; Fatemi, S J

    2008-05-01

    Consumption and production of bismuth compounds are increasing, however, a little information on the toxic effect and also the effective method in removal of bismuth compounds are available. The present research aimed to characterize the potential efficiency of two chelators after bismuth administration for 55A days following two dose levels of 20 and 40A mg/kg body weight daily to male rats. However, we found abnormalities after bismuth administration in clinical signs, such as body weight, kidneys and liver damages, a black line on gums and skin reactions. Furthermore, the hypothesis that the two chelators might be more efficient as combined therapy than as single therapy in removing bismuth from the body was considered. Along this line, two known chelators deferiprone (1, 2-dimethy1-3-hydroxypyride-4-one, L(1)) and desferrioxamine (DFO) were chosen and tested in the acute rat model. Chelators were given orally (L(1)) or intraperitoneally (DFO) as a single or combined therapy for the period of a week. Doses of L(1) and DFO were 110A mg/kg body weight in experiments. Bismuth and iron concentrations in various tissues were determined by graphite furnace and flame atomic absorption spectrometry, respectively. The combined chelation therapy results show that DFO and L(1) are able to remove bismuth ions from the body, whereas iron concentration returned to the normal level and symptoms are also decreased. DFO was more effective than L1 in reducing bismuth concentration in tissues. The efficiency of DFOA +A L(1) is more than DFO or L(1) in removing bismuth from organs. Our results are indicative that the design procedure might be useful for preliminary in-vivo testing of the efficiency of chelating agents. Results of combined chelators' treatment should be confirmed in a different experimental model before extrapolation to other systems. This testing procedure of course does not provide all the relevant answers for efficiency of chelating agents in bismuth toxicity.

  14. Synthesis and characterization Bi2O2S thin film via chemical bath deposition at low pH

    NASA Astrophysics Data System (ADS)

    KARİPER, İ. Afşin

    2016-06-01

    Bismuth oxysulfide thin film was prepared using Bi(NO3)3 and Na2S as reactive. Since bismuth in the form of bismuth oxide is dissolved into water, bismuth and sulfide concentration of the chemical bath is very important. Bismuth oxysulfide (Bi2O2S) thin films were produced below pH 2. Tested bismuth and sulfide concentrations are as follows: 2 × 10- 1 M, 2 × 10- 2 M, 2 × 10- 3 M, 2 × 10- 4 M bismuth and 1 × 10- 1 M, 1 × 10- 2 M, 1 × 10- 3 M, 1 × 10- 4 M sulfide. The structure of the films was examined via X-ray diffraction (XRD). Optical properties, such as transmission and absorbance were measured with Ultra violet-visible spectrum, and then refractive index and reflectivity were calculated. The pH of chemical bath was stabilized below pH of 2 using 13.85 mL concentrated nitric acid. Deposition time and temperature of the baths were 4 h and 30 °C. It has been found that bismuth and sulfide concentrations affected the structure and thickness of the film. Also, optical band gap of the films varied with concentration, parallel to the change of the structure and film thickness.

  15. Synthesis and characterization Bi2O2S thin film via chemical bath deposition at low pH.

    PubMed

    Kariper, I Afşin

    2016-06-15

    Bismuth oxysulfide thin film was prepared using Bi(NO3)3 and Na2S as reactive. Since bismuth in the form of bismuth oxide is dissolved into water, bismuth and sulfide concentration of the chemical bath is very important. Bismuth oxysulfide (Bi2O2S) thin films were produced below pH2. Tested bismuth and sulfide concentrations are as follows: 2×10(-1)M, 2×10(-2)M, 2×10(-3)M, 2×10(-4)M bismuth and 1×10(-1)M, 1×10(-2)M, 1×10(-3)M, 1×10(-4)M sulfide. The structure of the films was examined via X-ray diffraction (XRD). Optical properties, such as transmission and absorbance were measured with Ultra violet-visible spectrum, and then refractive index and reflectivity were calculated. The pH of chemical bath was stabilized below pH of 2 using 13.85mL concentrated nitric acid. Deposition time and temperature of the baths were 4h and 30°C. It has been found that bismuth and sulfide concentrations affected the structure and thickness of the film. Also, optical band gap of the films varied with concentration, parallel to the change of the structure and film thickness. PMID:27043873

  16. Nonlinear elastic effects in bismuth whiskers

    NASA Astrophysics Data System (ADS)

    Powell, B. E.; Skove, M. J.

    1983-03-01

    Finite deformations have a stress (σ)-strain (ɛ) relation of the form ɛ=s'11σ +δ(s11σ)2, where s'11 is an elastic compliance and δ is a combination of second-order and third-order elastic constants. Tensile tests performed on bismuth whisker crystals oriented in the <111¯> and <11¯0> directions give δ111¯ =7.6±0.5 and δ11¯0 =0±0.3, respectively. Orientations are given in the rhombohedral system in which the angle between axes is approximately 57°.

  17. Deterministic Switching in Bismuth Ferrite Nanoislands.

    PubMed

    Morelli, Alessio; Johann, Florian; Burns, Stuart R; Douglas, Alan; Gregg, J Marty

    2016-08-10

    We report deterministic selection of polarization variant in bismuth BiFeO3 nanoislands via a two-step scanning probe microscopy procedure. The polarization orientation in a nanoisland is toggled to the desired variant after a reset operation by scanning a conductive atomic force probe in contact over the surface while a bias is applied. The final polarization variant is determined by the direction of the inhomogeneous in-plane trailing field associated with the moving probe tip. This work provides the framework for better control of switching in rhombohedral ferroelectrics and for a deeper understanding of exchange coupling in multiferroic nanoscale heterostructures toward the realization of magnetoelectric devices. PMID:27454612

  18. Magnetic properties of the magnetophotonic crystal based on bismuth iron garnet

    NASA Astrophysics Data System (ADS)

    Popova, Elena; Magdenko, Liubov; Niedoba, Halina; Deb, Marwan; Dagens, Béatrice; Berini, Bruno; Vanwolleghem, Mathias; Vilar, Christèle; Gendron, François; Fouchet, Arnaud; Scola, Joseph; Dumont, Yves; Guyot, Marcel; Keller, Niels

    2012-11-01

    This article reports on the magnetism of continuous and patterned bismuth iron garnet (Bi3Fe5O12 or BIG) thin films for magnetophotonic crystal (MPC) applications. The exact knowledge of the magnetic properties is crucial for the design of fully functional MPC. BIG thin films were grown on several types of isostructural substrates by pulsed laser deposition. The growth conditions and bismuth transfer were optimized to obtain good quality magneto-optically active films compatible with nanostructuring process. MPC were successfully fabricated from BIG/GGG(001) films with low roughness and high Faraday rotation. Magnetic characteristics (magnetization, anisotropy, magnetic domains, magnetization reversal) of the continuous BIG films and MPC were extensively studied and compared to the results of the micromagnetic simulations performed for MPC with different anisotropy. The present study shows that the fabrication of the MPC structure lowers the magnetocrystalline and uniaxial in-plane anisotropies and induces a partial out-of-plane magnetization. External field smaller than 2000 G is sufficient to ensure the out-of-plane saturation of magnetization for optimum device operation, in agreement with micromagnetic calculations. The experimentally determined magnetic properties of MPC are fully compatible with the device operation.

  19. Electron Paramagnetic Resonance Study of Thermally Treated Bismuth Subgallate

    PubMed Central

    Ramos, Paweł; Pilawa, Barbara

    2014-01-01

    Complex of bismuth, an anti-inflammatory drug, was studied by EPR spectroscopy. The aim of this study was to determine concentrations and properties of free radicals formed during thermal sterilization of bismuth subgallate according to pharmacopoeia norms to optimize its sterilization process. Different temperatures (160°C, 170°C, and 180°C) and times (120 minutes, 60 minutes, and 30 minutes) of sterilization were used. Interactions of bismuth subgallate with DPPH, the model free radical reference, were checked. g-Factors, amplitudes (A), integral intensities (I), and linewidths (ΔBpp) were obtained. Integral intensities were obtained by double integration of the first-derivative EPR lines. The influence of microwave power in the range of 2.2–70 mW on shape and parameters of the EPR spectra was examined. Thermal sterilization produced free radicals in bismuth subgallate in all tested cases. Strong interactions with free radicals were pointed out for all the analysed samples containing bismuth independent of sterilization conditions. Optimal conditions of thermal sterilization for bismuth subgallate with the lowest free radical formation are temperature 170°C and time of heating 60 minutes. Strong dipolar interactions exist in thermally sterilized bismuth subgallate. EPR spectroscopy is a useful method of examination of thermal sterilization conditions. PMID:25525421

  20. Determining the background levels of bismuth in tissues of wild game birds: a first step in addressing the environmental consequences of using bismuth shotshells.

    PubMed

    Jayasinghe, R; Tsuji, L J S; Gough, W A; Karagatzides, J D; Perera, D; Nieboer, E

    2004-11-01

    Bismuth shotshells have been approved as a "nontoxic" alternative to lead in North America. Approval was based on a limited number of studies; even background levels of bismuth in wildfowl were unknown. We report on the concentration of bismuth (and lead) in muscle and liver tissues of wildfowl (Anas platyrhynchos, Anas acuta, Anas crecca, Branta canadensis, Chen caerulescens) harvested with lead shotshell. Average liver-bismuth levels detected in the present study (e.g., teal, 0.05 microg/g dw; mallard, 0.09 microg/g dw) suggest analytical error in other studies examining the effects of bismuth in birds. Significant positive relationships between bismuth- and lead-tissue levels for muscle when all species were combined (and for B. canadensis and C. caerulescens separately) can be explained by noting that bismuth is a contaminant of lead. Thus, more research is recommended to confirm the appropriateness of bismuth as a "nontoxic" shot alternative.

  1. Effects of annealing electrodeposited bismuth Telluride films

    NASA Technical Reports Server (NTRS)

    Snyder, J.; Stoltz, N. G.

    2002-01-01

    Thermoelectric thin films exhibit different qualities when compared with bulk materials. The goal however is to achieve thermoelectric properties of bulk materials from electrodeposited thin films. Thin films are produced by electrochemical deposition at room temperature. In order to optimize thermoelectric figure of merit proper carrierconcentration must be obtained.

  2. Dielectric investigations of polycrystalline samarium bismuth ferrite ceramic

    SciTech Connect

    Palaimiene, E.; Macutkevic, J.; Banys, J.; Karpinsky, D. V.; Kholkin, A. L.

    2015-01-05

    Results of broadband dielectric investigations of samarium doped bismuth ferrite ceramics are presented in wide temperature range (20–800 K). At temperatures higher than 400 K, the dielectric properties of samarium bismuth ferrite ceramics are governed by Maxwell-Wagner relaxation and electrical conductivity. The DC conductivity increases and activation energy decreases with samarium concentration. In samarium doped bismuth ferrite, the ferroelectric phase transition temperature decreases with samarium concentration and finally no ferroelectric order is observed at x = 0.2. At lower temperatures, the dielectric properties of ferroelectric samarium doped bismuth ferrite are governed by ferroelectric domains dynamics. Ceramics with x = 0.2 exhibit the relaxor-like behaviour.

  3. Visualization of the coalescence of bismuth nanoparticles.

    PubMed

    Niu, Kai-Yang; Liao, Hong-Gang; Zheng, Haimei

    2014-04-01

    Coalescence is a significant pathway for the growth of nanostructures. Here we studied the coalescence of Bi nanoparticles in situ by liquid cell transmission electron microscopy (TEM). The growth of Bi nanoparticles was initiated from a bismuth neodecanoate precursor solution by electron beam irradiation inside a liquid cell under the TEM. A significant number of coalescence events occurred from the as-grown Bi nanodots. Both symmetric coalescence of two equal-sized nanoparticles and asymmetric coalescence of two or more unequal-sized nanoparticles were analyzed along their growth trajectories. Our observation suggests that two mass transport mechanisms, i.e., surface diffusion and grain boundary diffusion, are responsible for the shape evolution of nanoparticles after a coalescence event.

  4. Highly ytterbium-doped bismuth-oxide-based fiber.

    PubMed

    Ohara, Seiki; Kuroiwa, Yutaka

    2009-08-01

    Thermally stable highly ytterbium-doped bismuth-oxide-based glasses have been investigated. The absorbance increased linearly with Yb(2)O(3) concentration, reaching 7800 dB/m with 3 mol-% of Yb(2)O(3). An ytterbium-doped bismuth-oxide-based fiber has also been fabricated with a fiber loss of 0.24 dB/m. A fiber laser is also demonstrated, and it shows a slope efficiency of 36%.

  5. Antisymmetric feature-guided ultrasonic waves in thin plates with small radius transverse bends from low-frequency symmetric axial excitation.

    PubMed

    Ramdhas, Abilasha; Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2013-09-01

    The influence of bends constituting annular polygonal structures on ultrasonic guided waves propagating along their axis is investigated. Considering a single bend as a bent plate connects this problem to the better-understood physics of guided waves in straight plates. Using a three-dimensional finite element simulation validated with experiments, bends in plates are shown to act as features that can concentrate and guide ultrasonic energy along their length. Two interesting feature-guided modes are identified when the bent plate is subjected to "in-plane" or axial excitation applied uniformly along a through-thickness line bisecting the bent edge. Of these, the faster traveling mode has properties similar to, but travels at group velocities lower than, the S0 (fundamental symmetric) Lamb mode in flat plates. This paper however focuses on the slower bend-guided mode that is similar to the A0 (fundamental anti-symmetric) Lamb mode in flat plates. This mode is shown to be more strongly generated in smaller angle bends where it has a low attenuation. The results are discussed in light of simple modal studies performed using the Semi-Analytical Finite Element method.

  6. Evolution of properties of epitaxial bismuth iron garnet films with increasing thickness

    NASA Astrophysics Data System (ADS)

    Kahl, S.; Grishin, A. M.

    2004-07-01

    Bismuth iron garnet (BIG) films of thicknesses from 470 to 2560 nm were prepared by pulsed laser deposition under identical deposition conditions. All films are epitaxial, bismuth deficient, and show rms surface roughnesses between 15 and 40 nm. X-ray coherence lengths decrease with increasing film thickness. Films below approximately 1 μm are free of cracks, thicker films possess a network of cracks. From fits of optical transmission spectra, real and imaginary parts of the refractive indices were found for wavelengths from 500 to 850 nm. The effects of thin film interference and surface roughness were included. With these data as input information, each of our experimental Faraday rotation spectra was described by a single diamagnetic line in visible light. The measured spectra could be reproduced and parameters of the magneto-optical transition were obtained. We observed a broadening of the transition with increasing film thickness and a red shift of the center frequency. This corresponds to our experimental observation that the wavelength of maximum Faraday rotation for BIG films in visible light shifts to longer wavelengths by almost 40 nm for a 2560-nm-thick film as compared to a 470-nm-thick film. As BIG is not thermodynamically stable, aging is a crucial question. We found that careful annealing in oxygen below the deposition temperature increases the angle of Faraday rotation, while film properties deteriorate during long annealing times at the deposition temperature.

  7. Excited waves in shear layers

    NASA Technical Reports Server (NTRS)

    Bechert, D. W.

    1982-01-01

    The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.

  8. Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Wefel, John P.

    1998-01-01

    This is the final report for NASA grant NAGW-4577, "Advanced Thin Ionization Calorimeter (ATIC)". This grant covered a joint project between LSU and the University of Maryland for a Concept Study of a new type of fully active calorimeter to be used to measure the energy spectra of very high energy cosmic rays, particularly Hydrogen and Helium, to beyond 1014 eV. This very high energy region has been studied with emulsion chamber techniques, but never investigated with electronic calorimeters. Technology had advanced to the point that a fully active calorimeter based upon Bismuth Germanate (BGO) scintillating crystals appeared feasible for balloon flight (and eventually space) experiments.

  9. Substitution effects on bismuth based multifunctional materials

    NASA Astrophysics Data System (ADS)

    Krezhov, Kiril; Kovachev, Stefan; Svab, Erzsebet

    Described are our targeted experiments to improve understanding of some key aspects of the mechanisms contributing to intrinsic effects such as the magnetoelectric coupling in oxides. The magnetoelectric materials have long been of interest because of useful combinations of electrical, magnetic, optical and catalytic properties. Particularly spectacular are the manganites(M=Mn) for which apart from the strong magnetoresistance (MR) effect another striking feature is the occurrence of charge and orbital ordering (CO-OO) effects connected with the specific orbital orientation and the spatial arrangement of the eg orbitals. The MR and CO-OO effects are a manifestation of the strong interplay between the orbital, charge, and spin degrees of freedom in these systems and in some cases gives rise to multiferroicity. In this regard, some of our research is on new ABO3, AB2O5 and double perovskites A2BB'O6 containing p elements with lone pair electrons such as Bi3+. Bismuth creates irregular oxygen coordination environment and to stabilize its valence state often requires the use of high pressure or specific soft chemistry. Studied are the effects of cationic substitution on the structural parameters of the perovskites (Bi1-yRy)1-xAxMnO3 (R = rare earth; A= Ca2+, Sr2+; x,y=0.5), BiFexMn2-xO5, La1-xBiXMn2O5 etc. Ab-initio density functional theory calculations were performed to study the structure, magnetic and optical properties of multiferroic BiFeO3, also modified with La3+ and Mn3+. Synthesized and characterized is a new bismuth oxide - multiferroic BiFe2O5-δ A number of studies continue to address this class of materials and related-type materials such as cobaltites, chromites and ferrites, much of the work being driven by the potential applications as electrode materials in solid oxide fuel cells, exhaust gas sensors, membranes for separation processes or as catalysts but lately new functionalities emerge and are in the focus for use in electronics and information

  10. Multiscale X-ray and Proton Imaging of Bismuth-Tin Solidification

    NASA Astrophysics Data System (ADS)

    Gibbs, P. J.; Imhoff, S. D.; Morris, C. L.; Merrill, F. E.; Wilde, C. H.; Nedrow, P.; Mariam, F. G.; Fezzaa, K.; Lee, W.-K.; Clarke, A. J.

    2014-08-01

    The formation of structural patterns during metallic solidification is complex and multiscale in nature, ranging from the nanometer scale, where solid-liquid interface properties are important, to the macroscale, where casting mold filling and intended heat transfer are crucial. X-ray and proton imaging can directly interrogate structure, solute, and fluid flow development in metals from the microscale to the macroscale. X-rays permit high spatio-temporal resolution imaging of microscopic solidification dynamics in thin metal sections. Similarly, high-energy protons permit imaging of mesoscopic and macroscopic solidification dynamics in large sample volumes. In this article, we highlight multiscale x-ray and proton imaging of bismuth-tin alloy solidification to illustrate dynamic measurement of crystal growth rates and solute segregation profiles that can be that can be acquired using these techniques.

  11. Effect of different surfactants and thicknesses on electrodeposited films of bismuth telluride and its thermoelectric performance

    NASA Astrophysics Data System (ADS)

    Kulsi, Chiranjit; Mitra, Mousumi; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali; Goswami, Shyamaprosad

    2015-10-01

    Thin films of bismuth telluride using various surfactants such as sodium dodecyl sulfate (SDS) and polyvinylpyrrolidone (PVP) have been electrochemically deposited. The influence of different surfactants on crystal orientation and morphology was investigated and correlated with the thermoelectric performance of the electrodeposited films. Since thickness affects the thermoelectric performance compared to the surfactant, thickness- dependent thermoelectric performance has also been investigated. The carrier mobilities of the films obtained are significantly enhanced due to improved surface morphology using different surfactants. Between the two surfactants, films with SDS exhibited the higher value of thermoelectric power, power factor, and figure of merit, which is due to the effect of micelle formation. The XRD pattern of all the films, which are electrodeposited without surfactant or using SDS and PVP, showed preferred crystal orientation along the (018) direction. The roles of organic molecules in the development of nanoparticles with improved thermoelectric properties have been investigated.

  12. Electrospun bismuth ferrite nanofibers for potential applications in ferroelectric photovoltaic devices.

    PubMed

    Fei, Linfeng; Hu, Yongming; Li, Xing; Song, Ruobing; Sun, Li; Huang, Haitao; Gu, Haoshuang; Chan, Helen L W; Wang, Yu

    2015-02-18

    Bismuth ferrite (BFO) nanofibers were synthesized via a sol-gel-based electrospinning process followed by thermal treatment. The influences of processing conditions on the final structure of the samples were investigated. Nanofibers prepared under optimized conditions were found to have a perovskite structure with good quality of crystallization and free of impurity phase. Ferroelectric and piezoelectric responses were obtained from individual nanofiber measured on a piezoelectric force microscope. A prototype photovoltaic device using laterally aligned BFO nanofibers and interdigital electrodes was developed and its performance was examined on a standard photovoltaic system. The BFO nanofibers were found to exhibit an excellent ferroelectric photovoltaic property with the photocurrent several times larger than the literature data obtained on BFO thin films.

  13. Ultrasonication of Bismuth Telluride Nanocrystals Fabricated by Solvothermal Method

    NASA Technical Reports Server (NTRS)

    Chu, Sang-Hyon; Choi, Sang H.; Kim, Jae-Woo; King, Glen C.; Elliott, James R.

    2006-01-01

    The objective of this study is to evaluate the effect of ultrasonication on bismuth telluride nanocrystals prepared by solvothermal method. In this study, a low dimensional nanocrystal of bismuth telluride (Bi2Te3) was synthesized by a solvothermal process in an autoclave at 180 C and 200 psi. During the solvothermal reaction, organic surfactants effectively prevented unwanted aggregation of nanocrystals in a selected solvent while controlling the shape of the nanocrystal. The atomic ratio of bismuth and tellurium was determined by energy dispersive spectroscopy (EDS). The cavitational energy created by the ultrasonic probe was varied by the ultrasonication process time, while power amplitude remained constant. The nanocrystal size and its size distribution were measured by field emission scanning electron microscopy (FESEM) and a dynamic light scattering system. When the ultrasonication time increased, the average size of bismuth telluride nanocrystal gradually increased due to the direct collision of nanocrystals. The polydispersity of the nanocrystals showed a minimum when the ultrasonication was applied for 5 min. Keywords: bismuth telluride, nanocrystal, low-dimensional, ultrasonication, solvothermal

  14. Ultraviolet laser spectroscopy of the neutron-deficient bismuth isotopes

    NASA Astrophysics Data System (ADS)

    Xu, Fei

    1997-12-01

    The isotope shifts and nuclear moments of the neutron deficient bismuth isotopes 201-204Bi have been measured at Stony Brook with a highly sensitive gas cell technique. The isotopes were populated with the nuclear reactions 197Au(10B,6n)201Po and 197Au(11B,xn)208-xPo, with boron beams from the SUNY Stony Brook tandem-linac accelerator. The bismuth samples that accumulated from the Po decay were evaporated from the target material and illuminated with 1-2mW of 306.7nm radiation from an intra-cavity frequency doubled ring dye laser. By measuring and analyzing the fluorescence spectra of the bismuth isotopes, the isotope shifts and hyperfine constants were obtained and the nuclear moments were extracted. The systematic behaviour of isotope shifts of the neutron-deficient bismuth isotopes is discussed and compared with the Po, Pb, Tl and Fr isotope shifts. It was found that the isotonic and isotopic trends, around the doubly magic core of 208Pb, are nearly identical. This implies that the h9/2 valence proton in the bismuth isotopes does not have a strong effect on the deformation of the core.

  15. 40 CFR 471.10 - Applicability; description of the lead-tin-bismuth forming subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-tin-bismuth forming subcategory. 471.10 Section 471.10 Protection of Environment ENVIRONMENTAL... METAL POWDERS POINT SOURCE CATEGORY Lead-Tin-Bismuth Forming Subcategory § 471.10 Applicability; description of the lead-tin-bismuth forming subcategory. This subpart applies to discharges of pollutants...

  16. 40 CFR 471.10 - Applicability; description of the lead-tin-bismuth forming subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-tin-bismuth forming subcategory. 471.10 Section 471.10 Protection of Environment ENVIRONMENTAL... METAL POWDERS POINT SOURCE CATEGORY Lead-Tin-Bismuth Forming Subcategory § 471.10 Applicability; description of the lead-tin-bismuth forming subcategory. This subpart applies to discharges of pollutants...

  17. 40 CFR 471.10 - Applicability; description of the lead-tin-bismuth forming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-tin-bismuth forming subcategory. 471.10 Section 471.10 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Lead-Tin-Bismuth Forming Subcategory § 471.10 Applicability; description of the lead-tin-bismuth forming subcategory. This subpart applies to discharges of pollutants to waters of...

  18. 40 CFR 471.10 - Applicability; description of the lead-tin-bismuth forming subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-tin-bismuth forming subcategory. 471.10 Section 471.10 Protection of Environment ENVIRONMENTAL... METAL POWDERS POINT SOURCE CATEGORY Lead-Tin-Bismuth Forming Subcategory § 471.10 Applicability; description of the lead-tin-bismuth forming subcategory. This subpart applies to discharges of pollutants...

  19. 40 CFR 471.10 - Applicability; description of the lead-tin-bismuth forming subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-tin-bismuth forming subcategory. 471.10 Section 471.10 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Lead-Tin-Bismuth Forming Subcategory § 471.10 Applicability; description of the lead-tin-bismuth forming subcategory. This subpart applies to discharges of pollutants to waters of...

  20. Integrated Liquid Bismuth Propellant Feed System

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.

    2006-01-01

    A prototype bismuth propellant feed and control system was constructed and tested. An electromagnetic pump was used in this system to provide fine control of the hydrostatic pressure, and a new type of in-line flow sensor was developed to provide an accurate, real-time measurement of the mass flow rate. High-temperature material compatibility was a driving design requirement for the pump and flow sensor, leading to the selection of macor for the main body of both components. Post-test inspections of both components revealed no cracks or leaking in either. In separate proof-of-concept experiments, the pump produced a linear pressure rise as a function of current that compared favorably with theoretical pump pressure predictions, with a pressure of 10 kPa at 30 A. Flow sensing was successfully demonstrated in a bench-top test using gallium as a substitute liquid metal. A real-time controller was successfully used to control the entire system, simultaneously monitoring all power supplies and performing data acquisition duties.

  1. Bismuth nanoparticles for phenolic compounds biosensing application.

    PubMed

    Mayorga-Martinez, Carmen C; Cadevall, Miquel; Guix, Maria; Ros, Josep; Merkoçi, Arben

    2013-02-15

    The rapid determination of trace phenolic compounds is of great importance for evaluating the total toxicity of contaminated water samples. Nowadays, electrochemical tyrosinase (Tyr) based biosensors constitute a promising technology for the in situ monitoring of phenolic compounds because of their advantages such as high selectivity, low production cost, promising response speed, potential for miniaturization, simple instrumentation and easy automatization. A mediator-free amperometric biosensor for phenolic compounds detection based on the combination of bismuth nanoparticles (BiNPs) and Tyr for phenol detections will be hereby reported. This is achieved through the integration of BiNPs/Tyr onto the working electrode of a screen printed electrode (SPE) by using glutaraldehyde as a cross-linking agent. BiNPs/Tyr biosensor is evaluated by amperometric measurements at -200 mV DC and a linear range of up to 71 μM and 100 μM and a correlation coefficient of 0.995 and 0.996 for phenol and catechol, respectively. The very low DC working potential ensures the avoidance of interferences making this biosensor an advantageous device for real sample applications. In addition, the response mechanism including the effect of BiNPs based on electrochemical studies and optical characterizations will be also discussed. The obtained results may open the way to many other BiNPs applications in the biosensing field.

  2. Tunneling in cuprate and bismuthate superconductors

    SciTech Connect

    Zasadzinski, J.F.; Huang, Qiang; Tralshawala, N. . Dept. of Physics); Gray, K.E. )

    1991-10-01

    Tunneling measurements using a point-contact technique are reported for the following high temperature superconducting oxides: Ba{sub 1-x}K{sub x}BiO{sub 3}(BKBO), Nd{sub 2-x}Ce{sub x}CuO{sub 4}(NCCO), Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 7}(BSCCO) and Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub x} (TBCCO). For the bismuthate, BKBO, ideal, S-I-N tunneling characteristics are observed using a Au tip. The normalized conductance is fitted to a BCS density of states and thermal smearing only proving there is no fundamental limitation in BKBO for device applications. For the cuprates, the normalized conductance displays BCS-like characteristics, but with a broadening larger than from thermal smearing. Energy gap values are presented for each material. For BKBO and NCCO the Eliashberg functions, {alpha}{sup 2}F({omega}), obtained from the tunneling are shown to be in good agreement with neutron scattering results. Proximity effect tunneling studies are reported for Au/BSCCO bilayers and show that the energy gap of BSCCO can be observed through Au layers up to 600 {Angstrom} thick.

  3. Tunneling in cuprate and bismuthate superconductors

    SciTech Connect

    Zasadzinski, J.F.; Huang, Qiang; Tralshawala, N.; Gray, K.E.

    1991-10-01

    Tunneling measurements using a point-contact technique are reported for the following high temperature superconducting oxides: Ba{sub 1-x}K{sub x}BiO{sub 3}( BKBO ), Nd{sub 2-x}Ce{sub x}CuO{sub 4}( NCCO ), Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 7}( BSCCO ) and Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub x} ( TBCCO ). For the bismuthate, BKBO, ideal, S-I-N tunneling characteristics are observed using a Au tip. The normalized conductance is fitted to a BCS density of states and thermal smearing only proving there is no fundamental limitation in BKBO for device applications. For the cuprates, the normalized conductance displays BCS-like characteristics, but with a broadening larger than from thermal smearing. Energy gap values are presented for each material. For BKBO and NCCO the Eliashberg functions, {alpha}{sup 2}F({omega}), obtained from the tunneling are shown to be in good agreement with neutron scattering results. Proximity effect tunneling studies are reported for Au/BSCCO bilayers and show that the energy gap of BSCCO can be observed through Au layers up to 600 {Angstrom} thick.

  4. Ultrasound in lead-bismuth eutectic

    SciTech Connect

    Dierckx, M.; Van Dyck, D.

    2011-07-01

    The Belgian Nuclear Research Centre (SCK.CEN) is in the process of designing MYRRHA, a new multi-purpose irradiation facility to replace the ageing BR2. MYRRHA is a fast spectrum reactor cooled with lead-bismuth eutectic (LBE). As liquid metal is opaque to visual light, ultrasonic measurement techniques are selected to fulfill essential tasks that, according to our assessment, will be demanded by licensing authorities, in particular: fuel assembly identification and localization of a lost fuel assembly. To that end, a considerable research effort at SCK.CEN is devoted to study ultrasonic propagation in LBE. As ultrasonic experiments in LBE are elaborate and expensive to set up, we are particularly interested in to what extent experiments in water can be extrapolated to LBE - one of the main focuses of this article. We describe and present results of a first experiment with this goal which shows that the signal to noise ratio is better in LBE and that we even see small diffuse reflections up to 40 deg. off normal. On the other hand, we do not see internal reflections in stainless steel objects in LBE which we do in water. Therefore, we conclude that experiments in water can be used to validate algorithms for LBE on the condition that they do not rely on internal reflections. We also present solutions to tackle the essential tasks: fuel assembly identification and lost object localization. The requirements for the ultrasonic equipment implementing these solutions are also discussed. (authors)

  5. LMO dielectronic resonances in highly charged bismuth

    NASA Astrophysics Data System (ADS)

    Smiga, Joseph; Gillaspy, John; Podpaly, Yuri; Ralchenko, Yuri

    2016-05-01

    Dielectronic resonances from high-Z elements are important for the analysis of high temperature plasmas. Thus, the extreme ultraviolet spectra of highly charged bismuth were measured using the NIST electron beam ion trap (EBIT) at beam energies ranging from 8.7 keV to 9.2 keV. The measured intensity ratios between forbidden magnetic-dipole lines in Bi64+ and Bi63+ show strong resonance features. The experimental data were compared to theoretical predictions from a large-scale collisional-radiative model with the code NOMAD, and good agreement was found that allowed the identification of observed resonance features as the LMO inner-shell dielectronic resonances. It is common practice in EBIT experiments that ions are periodically dumped from the trap and replaced. However, in this particular experiment, the contents of the trap were not dumped for the duration of each 10 minute sampling. The effects of trap stability were studied and a small but noticeable shift in beam energy over time was observed. Potential explanations for this are considered.

  6. Nonlinear optical properties of bismuth selenide

    NASA Astrophysics Data System (ADS)

    Bas, Derek; Babakiray, Sercan; Stanescu, Tudor; Lederman, David; Bristow, Alan

    Bismuth selenide (Bi2Se3) is a topological insulator with many interesting photonic properties. Much research has been done involving various types of photocurrents in an attempt to highlight the differences between the bulk electronic states and massless conducting surface states. Here, Bi2Se3 films varying in thickness from 6 to 40 quintuple layers have been produced via molecular beam epitaxy as a means to vary the relative contributions of bulk and surface. On these samples, optical measurements were performed at around 1.6 eV, which is enough energy to stimulate transitions from the Fermi level to a region near the second Dirac cone. Z-scan was used to measure saturable absorption, time-resolved two-color pump-probe was used to measure two-photon absorption, and a Fourier transform infrared spectrometer was used to measure linear absorption. Results were examined and analyzed with respect to thickness. Thickness-dependent band structures were produced using a tight-binding model and used to compare with experimental results.

  7. Photoreductive generation of amorphous bismuth nanoparticles using polysaccharides--bismuth-cellulose nanocomposites.

    PubMed

    Breitwieser, Doris; Kriechbaum, Margit; Ehmann, Heike M A; Monkowius, Uwe; Coseri, Sergiu; Sacarescu, Liviu; Spirk, Stefan

    2015-02-13

    A simple and highly reproducible synthesis of amorphous bismuth nanoparticles incorporated into a polysaccharide matrix using a photoreduction process is presented. As precursor for the generation of the Bi nanoparticles, organosoluble triphenylbismuth is used. The precursor is dissolved in toluene and mixed with a hydrophobic organosoluble polysaccharide, namely trimethylsilyl cellulose (TMSC) with high DSSi. The solution is subjected to UV exposure, which induces the homolytic cleavage of the bismuth-carbon bond in BiPh3 resulting in the formation of Bi(0) and phenyl radicals. The aggregation of the Bi atoms can be controlled in the TMSC matrix and yields nanoparticles of around 20 nm size as proven by TEM. The phenyl radicals undergo recombination to form small organic molecules like benzene and biphenyl, which can be removed from the nanocomposite after lyophilization and exposure to high vacuum. Finally, the TMSC matrix is converted to cellulose after exposure to HCl vapors, which remove the trimethylsilyl groups from the TMSC derivative. Although TMSC is converted to cellulose, the formed TMS-OH is not leaving the nanocomposite but reacts instead with surface oxide layer of the Bi nanoparticles to form silylated Bi nanoparticles as proven by TEM/EDX.

  8. Large magneto-optic enhancement in ultra-thin liquid-phase-epitaxy iron garnet films

    SciTech Connect

    Levy, Miguel; Chakravarty, A.; Huang, H.-C.; Osgood, R. M.

    2015-07-06

    Significant departures from bulk-like magneto-optic behavior are found in ultra-thin bismuth-substituted iron-garnet films grown by liquid-phase-epitaxy. These changes are due, at least in part, to geometrical factors and not to departures from bulk-composition in the transient layer at the film-substrate interface. A monotonic increase in specific Faraday rotation with reduced thickness is the signature feature of the observed phenomena. These are traced to size-dependent modifications in the diamagnetic transition processes responsible for the Faraday rotation. These processes correspond to the electronic transitions from singlet {sup 6}S ground states to spin-orbit split excited states of the Fe{sup 3+} ions in the garnet. A measurable reduction in the corresponding ferrimagnetic resonance linewidths is found, thus pointing to an increase in electronic relaxation times and longer lived excitations at reduced thicknesses. These changes together with a shift in vibrational frequency of the Bi-O bonds in the garnet at reduced thicknesses result in greatly enhanced magneto-optical performance. These studies were conducted on epitaxial monocrystalline Bi{sub 0.8}Gd{sub 0.2}Lu{sub 2}Fe{sub 5}O{sub 12} films.

  9. Isotopic generator for bismuth-212 and lead-212 from radium

    DOEpatents

    Atcher, Robert W.; Friedman, Arnold M.; Hines, John

    1987-01-01

    A method and apparatus for providing radionuclides of bismuth-212 and lead-212. Thorium-228 and carrier solution starting material is input to a radiologically contained portion of an isotopic generator system, and radium-224 is separated from thorium-228 which is retained by a strongly basic anion exchange column. The separated radium-224 is transferred to an accessible, strongly acidic cationic exchange column. The cationic column retains the radium-224, and natural radioactive decay generates bismuth-212 and lead-212. The cationic exchange column can also be separated from the contained portion of the system and utilized without the extraordinary safety measures necessary in the contained portion. Furthermore, the cationic exchange column provides over a relatively long time period the short lived lead-212 and bismuth-212 radionuclides which are useful for a variety of medical therapies.

  10. Dependence of optical properties of calcium bismuthates on synthesis conditions

    NASA Astrophysics Data System (ADS)

    Shtarev, D. S.; Shtareva, A. V.

    2016-08-01

    The article studies optical properties of calcium bismuthate nanoparticles of different composition. For the first time the synthesis of these compounds was produced by the pyrolysis of organic precursors using an organic solvent. Characterization of particles was made by scanning electron microscopy and X-ray analysis. The optical properties were investigated by diffuse reflectance spectroscopy (DRS). It is shown that the type of crystal lattice of the particles of calcium bismuthate determines the possibility to control the optical properties of nanoparticles by varying their composition. The conclusions about the production process and the composition of calcium bismuthate, the most promising for use as a photocatalyst of visible light and solar cells, were made.

  11. Phase transitions in the Hubbard model for the bismuth nickelate

    NASA Astrophysics Data System (ADS)

    Kojima, Shoya; Nasu, Joji; Koga, Akihisa

    2016-07-01

    We study low temperature properties of the Hubbard model for the bismuth nickelate, where degenerate orbitals in the nickel ions and a single orbital in the bismuth ions are taken into account, combining dynamical mean-field theory with the continuous-time quantum Monte Carlo method. We discuss the effect of the attractive interactions to mimic the valence skipping phenomenon in the bismuth ions. We demonstrate how the charge and magnetically ordered states are stable against thermal fluctuations. It is furthermore clarified that the ferromagnetically ordered and orbital ordered states are stabilized due to the presence of the orbital degeneracy at low temperatures. The crossover between metallic and insulating states is also discussed.

  12. Compact and Integrated Liquid Bismuth Propellant Feed System

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Stanojev, Boris; Korman, Valentin; Gross, Jeffrey T.

    2007-01-01

    Operation of Hall thrusters with bismuth propellant has been shown to be a promising path toward high-power, high-performance, long-lifetime electric propulsion for spaceflight missions [1]. There has been considerable effort in the past three years aimed at resuscitating this promising technology and validating earlier experimental results indicating the advantages of a bismuth-fed Hall thruster. A critical element of the present effort is the precise metering of propellant to the thruster, since performance cannot be accurately assessed without an accurate accounting of mass flow rate. Earlier work used a pre./post-test propellant weighing scheme that did not provide any real-time measurement of mass flow rate while the thruster was firing, and makes subsequent performance calculations difficult. The motivation of the present work is to develop a precision liquid bismuth Propellant Management System (PMS) that provides hot, molten bismuth to the thruster while simultaneously monitoring in real-time the propellant mass flow rate. The system is a derivative of our previous propellant feed system [2], but the present system represents a more compact design. In addition, all control electronics are integrated into a single unit and designed to reside on a thrust stand and operate in the relevant vacuum environment where the thruster is operating, significantly increasing the present technology readiness level of liquid metal propellant feed systems. The design of various critical components in a bismuth PMS are described. These include the bismuth reservoir and pressurization system, 'hotspot' flow sensor, power system and integrated control system. Particular emphasis is given to selection of the electronics employed in this system and the methods that were used to isolate the power and control systems from the high-temperature portions of the feed system and thruster. Open loop calibration test results from the 'hotspot' flow sensor are reported, and results of

  13. Investigation of Bismuth Triiodide (BiI3) for Photovoltaic Applications

    SciTech Connect

    Brandt, Riley E.; Kurchin, Rachel C.; Hoye, Robert L. Z.; Poindexter, Jeremy R.; Wilson, Mark W. B.; Sulekar, Soumitra; Lenahan, Frances; Yen, Patricia; Stevanovic, Vladan; Nino, Juan C.; Bawendi, Moungi G.; Buonassisi, Tonio

    2015-10-12

    We investigate bismuth triiodide (BiI3) as a candidate thin-film photovoltaic (PV) absorber. BiI3 was chosen for its optical properties and the potential for “defect-tolerant” charge transport properties, which we test experimentally by measuring optical absorption and recombination lifetimes. We synthesize phase-pure BiI3 thin films by physical vapor transport and solution processing and single-crystals by an electrodynamic gradient vertical Bridgman method. The bandgap of these materials is ~1.8 eV, and they demonstrate room-temperature band-edge photoluminescence. We measure monoexponential recombination lifetimes in the range of 180–240 ps for thin films, and longer, multiexponential dynamics for single crystals, with time constants up to 1.3 to 1.5 ns. We discuss the outstanding challenges to developing BiI3 PVs, including mechanical and electrical properties, which can also inform future selection of candidate PV absorbers.

  14. Bismuth-doped optical fibres: A new breakthrough in near-IR lasing media

    SciTech Connect

    Dianov, Evgenii M

    2012-09-30

    Recent results demonstrate that bismuth-doped optical fibres have considerable potential as near-IR active lasing media. This paper examines bismuth-doped fibres intended for the fabrication of fibre lasers and optical amplifiers and reviews recent results on the luminescence properties of various types of bismuth-doped fibres and the performance of bismuth-doped fibre lasers and optical amplifiers for the spectral range 1150 - 1550 nm. Problems are discussed that have yet to be solved in order to improve the efficiency of the bismuth lasers and optical amplifiers. (optical fibres, lasers and amplifiers. properties and applications)

  15. Lead-bismuth eutectic technology for Hyperion reactor

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Kapernick, R. J.; McClure, P. R.; Trapp, T. J.

    2013-10-01

    A small lead-bismuth eutectic-cooled reactor concept (referred to as the Hyperion reactor concept) is being studied at Los Alamos National Laboratory and Hyperion Power Generation. In this report, a critical assessment of the lead-bismuth eutectic technology for Hyperion reactor is presented based on currently available knowledge. Included are: material compatibility, oxygen control, thermal hydraulics, polonium control. The key advances in the technology and their applications to Hyperion reactor design are analyzed. Also, the near future studies in main areas of the technology are recommended for meeting the design requirements.

  16. Electrical and optical properties of gadolinium doped bismuth ferrite nanoparticles

    SciTech Connect

    Mukherjee, A. Banerjee, M. Basu, S.; Pal, M.

    2014-04-24

    Multiferroic bismuth ferrite (BFO) and gadolinium (Gd) doped bismuth ferrite had been synthesized by a sol-gel method. Particle size had been estimated by Transmission electron microscopy (TEM) and found to decrease with Gd doping. We studied the temperature and frequency dependence of impedance and electric modulus and calculated the grain and grain boundary resistance and capacitance of the investigated samples. We observed that electrical activation energy increases for all the doped samples. Optical band gap also increases for the doped samples which can be used in photocatalytic application of BFO.

  17. Correlation between thermoluminescence and radiation damage in bismuth germanate

    SciTech Connect

    Melcher, C.L.

    1985-02-01

    Thermoluminescence properties of bismuth germanate and their relationship to radiation damage characteristics have been investigated. Thermoluminescence and radiation damage in bismuth germanate display several similar properties including similar responses as a function of radiation dose, similar saturation levels, and similar decay times. Also a correlation was found between the thermoluminescence sensitivities and radiation damage sensitivities of four different crystals. The traps responsible for the radiation damage and those which store the thermoluminescence signal appear to be either closely related or actually the same traps. Four trapping centers can be seen in the thermoluminescence glow curves. The depth of the dominant trap is 1.1 eV. 10 references.

  18. Hydrolysis studies on bismuth nitrate: synthesis and crystallization of four novel polynuclear basic bismuth nitrates.

    PubMed

    Miersch, L; Rüffer, T; Schlesinger, M; Lang, H; Mehring, M

    2012-09-01

    Hydrolysis of Bi(NO(3))(3) in aqueous solution gave crystals of the novel compounds [Bi(6)O(4)(OH)(4)(NO(3))(5)(H(2)O)](NO(3)) (1) and [Bi(6)O(4)(OH)(4)(NO(3))(6)(H(2)O)(2)]·H(2)O (2) among the series of hexanuclear bismuth oxido nitrates. Compounds 1 and 2 both crystallize in the monoclinic space group P2(1)/n but show significant differences in their lattice parameters: 1, a = 9.2516(6) Å, b = 13.4298(9) Å, c = 17.8471(14) Å, β = 94.531(6)°, V = 2210.5(3) Å(3); 2, a = 9.0149(3) Å, b = 16.9298(4) Å, c = 15.6864(4) Å, β = 90.129(3)°, V = 2394.06(12) Å(3). Variation of the conditions for partial hydrolysis of Bi(NO(3))(3) gave bismuth oxido nitrates of even higher nuclearity, [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·4DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·4DMSO] (3) and [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·2DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·0.5DMSO] (5), upon crystallization from DMSO. Bismuth oxido clusters 3 and 5 crystallize in the triclinic space group P1 both with two crystallographically independent molecules in the asymmetric unit. The following lattice parameters are observed: 3, a = 20.3804(10) Å, b = 20.3871(9) Å, c = 34.9715(15) Å, α = 76.657(4)°, β = 73.479(4)°, γ = 60.228(5)°, V = 12021.7(9) Å(3); 5, a = 20.0329(4) Å, b = 20.0601(4) Å, c = 34.3532(6) Å, α = 90.196(1)°, β = 91.344(2)°, γ = 119.370(2)°, V = 12025.8(4) Å(3). Differences in the number of DMSO molecules (coordinated and noncoordinated) and ligand (nitrate, DMSO) coordination modes are observed.

  19. Degradation of organic dyes via bismuth silver oxide initiated direct oxidation coupled with sodium bismuthate based visible light photocatalysis.

    PubMed

    Yu, Kai; Yang, Shaogui; Liu, Cun; Chen, Hongzhe; Li, Hui; Sun, Cheng; Boyd, Stephen A

    2012-07-01

    Organic dye degradation was achieved via direct oxidation by bismuth silver oxide coupled with visible light photocatalysis by sodium bismuthate. Crystal violet dye decomposition by each reagent proceeded via two distinct pathways, each involving different active oxygen species. A comparison of each treatment method alone and in combination demonstrated that using the combined methods in sequence achieved a higher degree of degradation, and especially mineralization, than that obtained using either method alone. In the combined process direct oxidation acts as a pretreatment to rapidly bleach the dye solution which substantially facilitates subsequent visible light photocatalytic processes. The integrated sequential direct oxidation and visible light photocatalysis are complementary manifesting a > 100% increase in TOC removal, compared to either isolated method. The combined process is proposed as a novel and effective technology based on one primary material, sodium bismuthate, for treating wastewaters contaminated by high concentrations of organic dyes.

  20. Excited Delirium

    PubMed Central

    Takeuchi, Asia; Ahern, Terence L.; Henderson, Sean O.

    2011-01-01

    Excited (or agitated) delirium is characterized by agitation, aggression, acute distress and sudden death, often in the pre-hospital care setting. It is typically associated with the use of drugs that alter dopamine processing, hyperthermia, and, most notably, sometimes with death of the affected person in the custody of law enforcement. Subjects typically die from cardiopulmonary arrest, although the cause is debated. Unfortunately an adequate treatment plan has yet to be established, in part due to the fact that most patients die before hospital arrival. While there is still much to be discovered about the pathophysiology and treatment, it is hoped that this extensive review will provide both police and medical personnel with the information necessary to recognize and respond appropriately to excited delirium. PMID:21691475

  1. Excited baryons

    SciTech Connect

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)

  2. Discovery of the thallium, lead, bismuth, and polonium isotopes

    NASA Astrophysics Data System (ADS)

    Fry, C.; Thoennessen, M.

    2013-05-01

    Forty-two thallium, forty-two lead, forty-one bismuth, and forty-two polonium isotopes have so far been observed; the discovery of these isotopes is described. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  3. Extraction-photometric determination of bismuth in antimony

    SciTech Connect

    Presnyak, I.S.; Antonovich, V.P.; Nazarenko, V.A.

    1987-07-01

    The heteroligand coordination-solvated complex Bi-tetramethylenethiourea (TMTU)-I/sup -/ (Bi:TMU:I/sup -/ = 1:2:3) is 96-98% extracted by chloroform from a medium of 0.5-1.5 M sulfuric acid at concentrations of (5-8). 10/sup -3/M TMU and (6-10) x 10/sup -3/ M potassium iodide and is characterized by a rather high molar extinction coefficient (epsilon = 1.13 x 10/sup 4/) at lambda = 480 nm. In this communication they demonstrate the possibility of using this complex as an analytical form for the extraction separation and photometric determination of bismuth in the presence of antimony. It was established that in the presence of tartaric acid, the following do not interfere with the extraction of 2-50 ..mu..g bismuth: up to 2 g Sb(III), 100 mg Ni, Zn, Fe, and Cr(III); 2 mg Mo(VI) and W(VI); 1 mg Cu(II). Beer's law is fulfilled in the range of contents 2-50 ..mu..g bismuth. With an antimony sample weighing 1 g, it is possible to determine 2 x 10/sup -4/% bismuth.

  4. Highly monodisperse bismuth nanoparticles and their three-dimensional superlattices.

    PubMed

    Yarema, Maksym; Kovalenko, Maksym V; Hesser, Günter; Talapin, Dmitri V; Heiss, Wolfgang

    2010-11-01

    A simple and reproducible synthesis of highly monodisperse and ligand-protected bismuth nanoparticles (Bi NPs) is reported. The size of the single-crystalline and spherically shaped NPs is controlled between 11 and 22 nm mainly by the reaction temperature. The high uniformity of the NPs allows their self-assembly into long-range-ordered two- and three-dimensional superstructures.

  5. REMOVAL OF CERTAIN FISSION PRODUCT METALS FROM LIQUID BISMUTH COMPOSITIONS

    DOEpatents

    Dwyer, O.E.; Howe, H.E.; Avrutik, E.R.

    1959-11-24

    A method is described for purifying a solution of urarium in liquid bismuth containing at least one metal from the group consisting of selenium, tellurium, palladium, ruthenium, rhodium, niobium, and zirconium. The solution is contacted with zinc in an inert atmosphere to form a homogeneous melt, a solid zinc phase is formed, and the zinc phase containing the metal is separated from the melt.

  6. Controlled synthesis of bismuth oxyiodide toward optimization of photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Liao, Chenxing; Ma, Zhijun; Chen, Xiaofeng; He, Xin; Qiu, Jianrong

    2016-11-01

    A new investigation on the variation rule of the structure, morphology, chemical composition and photocatalytic performance of bismuth oxyiodide synthesized by solvothermal method as a function of reaction conditions was performed here. The composition and morphology of the product could be determined by X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The results revealed that the particle size together with content of iodide in bismuth oxyiodide decrease with the increase of the concentration of reaction precursors. Hollow Bi4O5I2 microsphere with specific surface area as high as 120.88 m2 g-1 can be easily synthesized when the concentration of the reaction precursors finally increased to 62.5 mM. Photocatalytic water purification performance of the as-prepared samples was evaluated by using Rhodamine B (RhB) as a model contaminant. The results revealed that the hollow Bi4O5I2 exhibited the best performance among all the bismuth oxyodide synthesized here for the degradation of RhB under visible light irradiation. Meanwhile, the formation mechanism of the hierarchical hollow structure of bismuth oxyiodide was investigated by the dissolution-recrystallization mechanism.

  7. Bismuth-Loaded Polymer Scintillators for Gamma Ray Spectroscopy

    SciTech Connect

    Rupert, B L; Cherepy, N J; Sturm, B W; Sanner, R D; Dai, Z; Payne, S A

    2011-04-11

    We synthesize a series of polyvinylcarbazole monoliths containing varying loadings of triphenyl bismuth as a high-Z dopant and varying fluors, either organic or organometallic, in order to study their use as scintillators capable of gamma ray spectroscopy. A trend of increasing bismuth loading resulting in a better-resolved photopeak is observed. For PVK parts with no fluor or a standard organic fluor, diphenylanthracene, increasing bismuth loading results in decreasing light yield while with samples 1 or 3 % by weight of the spin-orbit coupling organometallic fluor FIrpic, which emits light from both singlet and triple excitons, show increasing light yield with increasing bismuth loading. Our best performing PVK/ BiPh{sub 3}/FIrpic scintillator with 40 wt % BiPh3 and 3 wt % FIrpic has an emission maximum of 500 nm, a light yield of {approx}30,000 photons/MeV, and energy resolution better than 7% FWHM at 662 keV. Replacing the Ir complex with an equal weight of diphenylanthracene produces a sample with a light yield of {approx}6,000 photons/MeV, with an emission maximum at 420 nm and energy resolution of 9% at 662 keV. Transmission electron microscopy studies show that the BiPh{sub 3} forms small clusters of approximately 5 nm diameter.

  8. ADSORPTION-BISMUTH PHOSPHATE METHOD FOR SEPARATING PLUTONIUM

    DOEpatents

    Russell, E.R.; Adamson, A.W.; Boyd, G.E.

    1960-06-28

    A process is given for separating plutonium from uranium and fission products. Plutonium and uranium are adsorbed by a cation exchange resin, plutonium is eluted from the adsorbent, and then, after oxidation to the hexavalent state, the plutonium is contacted with a bismuth phosphate carrier precipitate.

  9. Bismuth tri-iodide radiation detector development

    NASA Astrophysics Data System (ADS)

    Gokhale, Sasmit S.

    Bismuth tri-iodide is an attractive material for room temperature radiation detection. BiI3 demonstrates a number of properties that are apt for semiconductor radiation detection, especially gamma ray spectroscopy. The high atomic number (ZBi = 83 and ZI = 53) and the relatively high density (5.78 g/cm3) cause the material to have good photon stopping power, while the large band-gap (1.67 eV ) allows it to function as a room temperature radiation detector without any cooling mechanism. This work presents the fabrication and characterization of BiI3 radiation detectors. For the purpose of this research detectors were fabricated by cutting BiI3 crystal boules, followed by mechanical and chemical surface treatments. Detectors with various electrode geometries enabling single polarity charge sensing were fabricated. The electrical characteristics and the radiation response of the detectors were measured. The radiation response measurement was performed at room temperature using a 241Am alpha particle source and a 241Am sealed gamma-ray source. The spectral resolutions of the detectors varied from 2.09% - 6.1% for 59.5 keV gamma-rays and between 26% - 40% for 5.48 MeV alpha particles. Charge carrier properties such as the electron and hole mobility and lifetime were also estimated. The electron mobility for an ultrapure BiI 3 detector was estimated to be approximately 433 cm 2/Vs while that for antimony doped BiI3 was estimated to be around 956 cm2/Vs and the mobility-lifetime product for electrons was estimated to be around 5.44 x 10-4 cm 2/V. Detector simulation was performed using the Monte Carlo simulation code MCNP5. A Matlab script which incorporates charge carrier trapping and statistical variation was written to generate a gamma-ray spectrum from the simulated energy deposition spectra. Measured and simulated spectra were compared to extract the charge carrier mobility-lifetime products, which for electrons and holes were estimated to be 5 x 10-3 cm2/V and 1.3 x

  10. Sexual excitement.

    PubMed

    Stoller, R J

    1976-08-01

    Sexual excitement depends on a scenario the person to be aroused has been writing since childhood. The story is an adventure, an autobiography disguised as fiction, in which the hero/heroine hides crucial intrapsychic conflicts, mysteries, screen memories of actual traumatic events and the resolution of these elements into a happy ending, best celebrated by orgasm. The function of the fantasy is to take these painful experiences and convert them to pleasure-triumph. In order to sharpen excitement-the vibration between the fear of original traumas repeating and the hope of a pleasurable conclusion this time-one introduces into the story elements of risk (approximations of the trauma) meant to prevent boredom and safety factors (sub-limnal signals to the storyteller that the risk are not truly dangerous). Sexual fantasy can be studied by means of a person's daydreams (including those chosen in magazines, books, plays, television, movies, and outright pornography), masturbatory behavior, object choice, foreplay, techniques of intercourse, or postcoital behavior. PMID:949223

  11. Sexual excitement.

    PubMed

    Stoller, R J

    1976-08-01

    Sexual excitement depends on a scenario the person to be aroused has been writing since childhood. The story is an adventure, an autobiography disguised as fiction, in which the hero/heroine hides crucial intrapsychic conflicts, mysteries, screen memories of actual traumatic events and the resolution of these elements into a happy ending, best celebrated by orgasm. The function of the fantasy is to take these painful experiences and convert them to pleasure-triumph. In order to sharpen excitement-the vibration between the fear of original traumas repeating and the hope of a pleasurable conclusion this time-one introduces into the story elements of risk (approximations of the trauma) meant to prevent boredom and safety factors (sub-limnal signals to the storyteller that the risk are not truly dangerous). Sexual fantasy can be studied by means of a person's daydreams (including those chosen in magazines, books, plays, television, movies, and outright pornography), masturbatory behavior, object choice, foreplay, techniques of intercourse, or postcoital behavior.

  12. An investigation of the growth of bismuth whiskers and nanowires during physical vapour deposition

    NASA Astrophysics Data System (ADS)

    Stanley, S. A.; Stuttle, C.; Caruana, A. J.; Cropper, M. D.; Walton, A. S. O.

    2012-10-01

    Bismuth thin films of thickness in the region of 500 nm have been prepared by planar magnetron sputtering onto glass, silicon and GaAs substrates. Electron microscopy of these films reveals that bismuth whiskers grow spontaneously when the substrate is heated to temperatures between 110 and 140 °C during deposition and the optimum temperature for such growth is largely independent of substrate. Depositing films under similar conditions using thermal evaporation does not, however, produce the whisker growth. X-ray diffraction has been employed to investigate film texture with temperature and it has been shown that the film crystallites are predominantly [1 1 0] and [1 1 1] oriented. The [1 1 0] orientation of the crystallites dominates at deposition temperatures above 110 °C for sputter deposition and the [1 1 1] at lower temperatures. The optimum temperature for whisker growth coincides with the temperature for the change between predominant orientations. While sputter deposition appears to favour films with crystallite orientation of [1 1 0], thermal evaporation favours [1 1 1] and has a higher change-over temperature. The whiskers that grow from the film emerge at off-normal angles between 43.3° and 69.2° with a mean of 54 ± 3°. The projected length of whiskers on a 500 nm film on a GaAs substrate shows a wide distribution to a maximum of more than 100 µm. The mean projected length for this sample was 16 ± 1 µm and the diameter is around 0.5 µm. Measurements of the electrical properties of the whiskers at room temperature reveals ohmic behaviour with an estimated resistivity of 2.2 ± 0.2 µΩ m. Detailed examination of scanning electron micrographs, eliminates all growth mechanisms except tip growth by a non-catalysed vapour-solid/vapour-liquid-solid method. By depositing thinner films it is shown that this spontaneous growth of whiskers offers a route to fabricate high quality bismuth nanowires of lengths exceeding 10 µm.

  13. Formation of gas-phase. pi. -allyl radicals from propylene over bismuth oxide and. gamma. -bismuth molybdate catalysts

    SciTech Connect

    Martir, W.; Lunsford, J.H.

    1981-07-01

    Gas-phase ..pi..-allyl radicals were produced when propylene reacted over Bi/sub 2/O/sub 3/ and ..gamma..-bismuth molybdate catalysts at 723 K. The pressure in the catalyst zone was varied between 5 x 10/sup -3/ and 1 torr. The radicals were detected by EPR spectroscopy together with a matrix isolation technique in which argon was used as the diluent. The matrix was formed on a sapphire rod at 12 K which was located 33-cm downstream from the catalyst. Bismuth oxide was more effective in the production of gas-phase allyl radicals than ..gamma..-bismuth molybdate. By contrast ..cap alpha..-bismuth molybdate was ineffective in forming allyl radicals and MoO/sub 3/ acted as a sink for radicals which were produced elsewhere in the system. Comparison of the ..pi..-allyl radical and the stable product concentrations over Bi/sub 2/O/sub 3/ revealed that gas-phase radical recombination reactions served as a major pathway for the formation of 1,5-hexadiene. Addition of small amounts of gas-phase oxygen increased the concentration of allyl radicals, and at greater oxygen levels allyl peroxy radicals were detected. Because of the effect of temperature on the equilibrium between allyl and allyl peroxy radicals, the latter product must be formed in the cooler part of the system.

  14. Polycrystalline thin film photovoltaic technology

    SciTech Connect

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L.; Noufi, R.

    1991-03-01

    Low-cost, high-efficiency thin-film modules are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. In this paper we review the significant technical progress made in the following thin films: copper indium diselenide, cadmium telluride, and polycrystalline thin silicon films. Also, the recent US DOE/SERI initiative to commercialize these emerging technologies is discussed. 6 refs., 9 figs.

  15. Synthesis, structural and photo-physical studies of bismuth(III) complexes with Janus scorpionate and co-ligands.

    PubMed

    Imran, Muhammad; Mix, Andreas; Neumann, Beate; Stammler, Hans-Georg; Monkowius, Uwe; Bleckenwegner, Petra; Mitzel, Norbert W

    2014-07-28

    Some novel complexes of bismuth(III) with the Janus scorpionate ligand [HB(mtda(Me))3](-) (mtda(Me) = 2-mercapto-5-methyl-1,3,4-thiadiazolyl) were synthesised. Na[HB(mtda(Me))3] (1) was reacted with BiX3 (X = Cl, I, NO3) in the molar ratio 2 : 1 to afford the bismuth complexes {HB(mtda(Me))3}2BiCl (3), Na[{HB(mtda(Me))3}2BiI2] (4) and [{HB(mtda(Me))3}2Bi(NO3)]n (5). Two mixed complexes {HB(mtda(Me))3}Bi(phen)Cl2 (6) and {HB(mtda(Me))3}Bi(bipy)Cl2 (7) were obtained using Janus scorpionate as the primary ligand in the presence of 1,10-phenanthroline and 2,2'-bipyridyl, respectively, as co-ligands in the 1 : 1 ratio. The obtained complexes were characterised by (1)H, (13)C and diffusion NMR (DOSY), elemental analyses and mass spectrometry. Structures of the compounds NBu4[HB(mtda(Me))3] (2), 3, 4, 5, 6 and 7 were determined by single crystal X-ray diffraction. The molecular dynamic process in complex 3 was also studied by variable temperature NMR measurements. All bismuth complexes, except for the polymeric 5, are monomeric. Complexes 6 and 7 exhibit (B)H···Bi distances of 2.76(3) and 2.71(2) Å length, respectively. Compounds 2, 6 and 7 were screened for their luminescence activity. At 77 K in ethanol solution, complexes 6 and 7 exhibit phosphorescence from ligand-to-ligand charge transfer (LLCT) and the ligand-centred (LC) excited state, respectively. PMID:24906201

  16. The study of visible light active bismuth modified nitrogen doped titanium dioxide photocatlysts: Role of bismuth

    NASA Astrophysics Data System (ADS)

    Bagwasi, Segomotso; Niu, Yuxiao; Nasir, Muhammad; Tian, Baozhu; Zhang, Jinlong

    2013-01-01

    Bismuth modified nitrogen doped TiO2 nanoparticles have been successfully prepared by two steps synthesis route which includes hydrothermal and impregnation hydrolysis method. Samples were characterized using X-ray diffraction (XRD), N2 physical adsorption, Transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), Fourier Transmission Infrared (FTIR), Raman, X-ray photoelectron spectroscopy (XPS) and photoluminescence spectroscopy (PLS) technologies. The preparatory method afforded the production of well crystallized spherical Bi modified N-doped TiO2 nanoparticles with varied amounts of Bi content. XRD analysis results reveal that Bi exists as rare metastable Bi20TiO32 which started to surface at Bi loading content of 7 mol% in relation to Ti ions. All Bi modified N-TiO2 samples exhibited higher photocatalytic activity toward degradation of 2,4-DCP over N-TiO2 under visible light irradiation. The sample with 10% composition of the Bi20TiO32 exhibited the highest activity. The superior photocatalytic performance of 10%Bi/N-TiO2 is attributed to high visible light absorption as well as effective charge carrier separation. Therefore, the role of Bi species in the N-TiO2 is improvement of visible light harvesting and facilitation of charge carrier separation hence alleviating electron-hole recombination.

  17. METHOD OF PREPARING URANIUM, THORIUM, OR PLUTONIUM OXIDES IN LIQUID BISMUTH

    DOEpatents

    Davidson, J.K.; Robb, W.L.; Salmon, O.N.

    1960-11-22

    A method is given for forming compositions, as well as the compositions themselves, employing uranium hydride in a liquid bismuth composition to increase the solubility of uranium, plutonium and thorium oxides in the liquid bismuth. The finely divided oxide of uranium, plutonium. or thorium is mixed with the liquid bismuth and uranium hydride, the hydride being present in an amount equal to about 3 at. %, heated to about 5OO deg C, agitated and thereafter cooled and excess resultant hydrogen removed therefrom.

  18. Bismuth(III) deferiprone effectively inhibits growth of Desulfovibrio desulfuricans ATCC 27774.

    PubMed

    Barton, Larry L; Lyle, Daniel A; Ritz, Nathaniel L; Granat, Alex S; Khurshid, Ali N; Kherbik, Nada; Hider, Robert; Lin, Henry C

    2016-04-01

    Sulfate-reducing bacteria have been implicated in inflammatory bowel diseases and ulcerative colitis in humans and there is an interest in inhibiting the growth of these sulfide-producing bacteria. This research explores the use of several chelators of bismuth to determine the most effective chelator to inhibit the growth of sulfate-reducing bacteria. For our studies, Desulfovibrio desulfuricans ATCC 27774 was grown with nitrate as the electron acceptor and chelated bismuth compounds were added to test for inhibition of growth. Varying levels of inhibition were attributed to bismuth chelated with subsalicylate or citrate but the most effective inhibition of growth by D. desulfuricans was with bismuth chelated by deferiprone, 3-hydroxy-1,2-dimethyl-4(1H)-pyridone. Growth of D. desulfuricans was inhibited by 10 μM bismuth as deferiprone:bismuth with either nitrate or sulfate respiration. Our studies indicate deferiprone:bismuth has bacteriostatic activity on D. desulfuricans because the inhibition can be reversed following exposure to 1 mM bismuth for 1 h at 32 °C. We suggest that deferiprone is an appropriate chelator for bismuth to control growth of sulfate-reducing bacteria because deferiprone is relatively nontoxic to animals, including humans, and has been used for many years to bind Fe(III) in the treatment of β-thalassemia. PMID:26896170

  19. Bismuth-induced Raman modes in GaP1- x Bi x

    NASA Astrophysics Data System (ADS)

    Christian, Theresa M.; Fluegel, Brian; Beaton, Daniel A.; Alberi, Kirstin; Mascarenhas, Angelo

    2016-10-01

    Dilute bismide semiconductor alloys are a promising material platform for optoelectronic devices due to drastic impacts of bismuth on the electronic structure of the alloy. At the same time, the details of bismuth incorporation in the lattice are not fully understood. In this work, we conduct Raman scattering spectroscopy on GaP1- x Bi x epilayers grown by molecular beam epitaxy (MBE) and identify several bismuth-related Raman features including gap vibration modes at 296, 303, and 314 cm-1. This study paves the way for more detailed analysis of the local symmetry at bismuth incorporation sites in the dilute bismide alloy regime.

  20. METHOD OF SEPARATING FISSION PRODUCTS FROM FUSED BISMUTH-CONTAINING URANIUM

    DOEpatents

    Wiswall, R.H.

    1958-06-24

    A process is described for removing metal selectively from liquid metal compositions. The method effects separation of flssion product metals selectively from dilute solution in fused bismuth, which contains uraniunn in solution without removal of more than 1% of the uranium. The process comprises contacting the fused bismuth with a fused salt composition consisting of sodium, potassium and lithium chlorides, adding to fused bismuth and molten salt a quantity of bismuth chloride which is stoichiometrically required to convert the flssion product metals to be removed to their chlorides which are more stable in the fused salt than in the molten metal and are, therefore, preferentially taken up in the fused salt phase.

  1. Activation energies to characterize ease of removal of various kinds of oxygen from bismuth molybdate

    SciTech Connect

    Dadyburjor, D.B.; Ruckenstein, E.

    1980-06-01

    Calculations by the method of minimum energy paths showed that oxygen(-2) anions are more easily displaced from molybdenum(VI) or from the layer between molybdenum and bismuth than from bismuth(III) of a 2:1 bismuth molybdate (Bi/sub 2/MoO/sub 6/). However, available experimental evidence suggests that the oxygen of the bismuth layer is active in the selective oxidation of hydrocarbons; apparently the presence of the hydrocarbon decreases the energy barrier required for transfer of the oxygen anion, and anion vacancies generated, e.g., in a prereduction of the catalyst, also decrease the energy barrier.

  2. Chrysanthemum-like bismuth sulfide microcrystals: Synthesis, characterization, and properties

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghui; Gao, Guanhua; Yu, Runnan; Qiu, Guanzhou; Liu, Xiaohe

    2011-02-01

    Uniform chrysanthemum-like bismuth sulfide (Bi 2S 3) microcrystals assembled from nanosheet building blocks were successfully synthesized via a convenient hydrothermal synthetic route under mild conditions in which hydrated bismuth nitrate and L-cysteine were employed to supply Bi and S source and ethylenediaminetetraacetic acid disodium salt (EDTA-Na 2) was employed as chelating agent. The influences of reaction temperatures and time on the morphologies of final products were investigated. The phase structures, morphologies, and properties of as-prepared products were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscope, and photoluminescence spectra. The possible growth mechanism for the formation of chrysanthemum-like Bi 2S 3 microcrystals was discussed on the basis of the experimental results.

  3. Coexistence of multiple metastable polytypes in rhombohedral bismuth

    PubMed Central

    Shu, Yu; Hu, Wentao; Liu, Zhongyuan; Shen, Guoyin; Xu, Bo; Zhao, Zhisheng; He, Julong; Wang, Yanbin; Tian, Yongjun; Yu, Dongli

    2016-01-01

    Derivative structural polytypes coexisting with the rhombohedral A7 structure of elemental bismuth (Bi) have been discovered at ambient condition, based on microstructure analyses of pure Bi samples treated under high pressure and high temperature conditions. Three structures with atomic positions close to those of the A7 structure have been identified through first-principles calculations, showing these polytypes energetically comparable to the A7 structure under ambient condition. Simulated diffraction data are in excellent agreement with the experimental observations. We argue that previously reported some variations of physical properties (e.g., density, electrical conductivity, and magnetism) in bismuth could be due to the formation of these polytypes. The coexistence of metastable derivative structural polytypes may be a widely occurring phenomenon in other elemental materials. PMID:26883895

  4. Ac irreversibility line of bismuth-based high temperature superconductors

    SciTech Connect

    Mehdaoui, A.; Beille, J.; Berling, D.; Loegel, B.; Noudem, J.G.; Tournier, R.

    1997-09-01

    We discuss the magnetic properties of lead doped Bi-2223 bulk samples obtained through combined magnetic melt texturing and hot pressing (MMTHP). The ac complex susceptibility measurements are achieved over a broad ac field range (1 Oe{lt}h{sub ac}{lt}100 Oe) and show highly anisotropic properties. The intergranular coupling is improved in the direction perpendicular to the applied stress and magnetic field direction, and an intragranular loss peak is observed for the first time. A comparison is made with other bismuth-based compounds and it is shown that the MMTHP process shifts the ac irreversibility line (ac IL) toward higher fields. It is also shown that all the ac IL{close_quote}s for quasi 2D bismuth-based compounds show a nearly quadratic temperature dependence and deviate therefore strongly from the linear behavior observed in quasi 3D compounds and expected from a critical state model.{copyright} {ital 1997 Materials Research Society.}

  5. Tin-silver-bismuth solders for electronics assembly

    DOEpatents

    Vianco, Paul T.; Rejent, Jerome A.

    1995-01-01

    A lead-free solder alloy for electronic assemblies composed of a eutectic alloy of tin and silver with a bismuth addition, x, of 0bismuth added to the eutectic tin-silver alloy as determined by DSC analysis, 10.degree. C./min. A preferred alloy composition is 91.84Sn-3.33Ag-4.83Bi (weight percent based on total alloy weight).

  6. Tin-silver-bismuth solders for electronics assembly

    DOEpatents

    Vianco, P.T.; Rejent, J.A.

    1995-08-08

    A lead-free solder alloy is disclosed for electronic assemblies composed of a eutectic alloy of tin and silver with a bismuth addition, x, of 0bismuth added to the eutectic tin-silver alloy as determined by DSC analysis, 10 C/min. A preferred alloy composition is 91.84Sn-3.33Ag-4.83Bi (weight percent based on total alloy weight). 4 figs.

  7. Shape-controlled solvothermal synthesis of bismuth subcarbonate nanomaterials

    NASA Astrophysics Data System (ADS)

    Cheng, Gang; Yang, Hanmin; Rong, Kaifeng; Lu, Zhong; Yu, Xianglin; Chen, Rong

    2010-08-01

    Much effort has been devoted to the synthesis of novel nanostructured materials because of their unique properties and potential applications. Bismuth subcarbonate ((BiO) 2CO 3) is one of commonly used antibacterial agents against Helicobacter pylori ( H. pylori). Different (BiO) 2CO 3 nanostructures such as cube-like nanoparticles, nanobars and nanoplates, were fabricated from bismuth nitrate via a simple solvothermal method. The nanostructures were characterized by powder X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). It was found that the solvents and precursors have an influence on the morphologies of (BiO) 2CO 3 nanostructures. The possible formation mechanism of different (BiO) 2CO 3 nanostructures fabricated under different conditions was also discussed.

  8. Magnetic anisotropies in ultrathin bismuth iron garnet films

    NASA Astrophysics Data System (ADS)

    Popova, Elena; Franco Galeano, Andres Felipe; Deb, Marwan; Warot-Fonrose, Bénédicte; Kachkachi, Hamid; Gendron, François; Ott, Frédéric; Berini, Bruno; Keller, Niels

    2013-06-01

    Ultrathin bismuth iron garnet Bi3Fe5O12 films were grown epitaxially on (001)-oriented gadolinium gallium garnet substrates. Film thickness varied from two to three dozens of unit cells. Bi3Fe5O12 films grow pseudomorphically on substrates up to a thickness of 20 nm, and then a lattice relaxation occurs. Magnetic properties of the films were studied as a function of bismuth iron garnet thickness. The magnetization and cubic anisotropy decrease with decreasing film thickness. The uniaxial magnetocrystalline anisotropy is constant for all film thicknesses. For two unit cell thick films, the easy magnetization axis changes from in-plane to perpendicular to the plane direction. Such a reorientation takes place as a result of the competition of constant uniaxial perpendicular anisotropy with weakening film magnetization.

  9. Curie temperature, exchange integrals, and magneto-optical properties in off-stoichiometric bismuth iron garnet epitaxial films

    NASA Astrophysics Data System (ADS)

    Vertruyen, B.; Cloots, R.; Abell, J. S.; Jackson, T. J.; da Silva, R. C.; Popova, E.; Keller, N.

    2008-09-01

    We have studied the influence of the stoichiometry on the structural, magnetic, and magneto-optical properties of bismuth iron garnet (Bi3Fe5O12) thin films grown by pulsed laser deposition. Films with different stoichiometries have been obtained by varying the Bi/Fe ratio of the target and the oxygen pressure during deposition. Stoichiometry variations influence the Curie temperature TC by tuning the (Fe)-O-[Fe] geometry: TC increases when the lattice parameter decreases, contrary to what happens in the case of stoichiometric rare-earth iron garnets. The thermal variation of the magnetization, the Faraday rotation, and the Faraday ellipticity have been analyzed in the frame of the Néel two-sublattice magnetization model giving energies of -48K (4.1 meV), -29K (2.5 meV), and 84 K (7.3 meV) for the three magnetic exchange integrals jaa , jdd , and jad , respectively. Magneto-optical spectroscopy linked to compositional analysis by Rutherford backscattering spectroscopy shows that Bi and/or Fe deficiencies also affect the spectral variation (between 1.77 and 3.1 eV). Our results suggest that bismuth deficiency has an effect on the magneto-optical response of the tetrahedral Fe sublattice, whereas small iron deficiencies affect predominantly the magneto-optical response of the octahedral sublattice.

  10. Influence of Bi on the Er luminescence in yttrium-erbium disilicate thin films

    SciTech Connect

    Scarangella, Adriana; Miritello, Maria; Priolo, Francesco

    2014-09-28

    The influence of bismuth on erbium optical properties at 1.54 μm has been investigated in yttrium-erbium disilicate thin films synthesized by magnetron co-sputtering and implanted with two Bi different doses. The Bi depth distribution and the evolution of its oxidation states after annealing treatments at 1000 °C in two atmospheres, O₂ and N₂, have been investigated. It was found that only in O₂ the Bi³⁺ valence state is prevalent, thanks to the enhanced Bi mobility in the oxidizing ambient, as demonstrated by Rutherford backscattering spectrometry. At lower Bi content, although the formation of Bi⁰ metallic nanoparticles that are deleterious non radiative channels for Er luminescence, efficient energy transfer from Bi to Er has been obtained only in O₂. It is due to the excitation of ultraviolet broad Bi₃⁺ absorption band and the energy transfer to Er ions. We have evaluated that in this case, Er effective excitation cross section increased by a factor of 5 in respect with the one for direct Er absorption at 488 nm. At higher Bi dose, this mechanism is absent, but an increased Er optical efficiency at 1.54 μm has been observed under resonant excitation. It is due to the contribution of a fraction of Er ions having an increased lifetime. This phenomenon is associated with the formation of Bi agglomerates, induced at higher Bi doses, which well isolate Er from non-radiative quenching centers. The increased decay time assures higher optical efficiency at 1.54 μm.

  11. Bi4Si3O12 thin films for scintillator applications

    NASA Astrophysics Data System (ADS)

    Rincón-López, J. A.; Fernández-Benavides, D. A.; Giraldo-Betancur, A. L.; Cruz-Muñoz, B.; Riascos, H.; Muñoz-Saldaña, J.

    2016-04-01

    Bismuth silicate Bi4Si3O12 or BSO thin films were synthesized by pulsed laser deposition and a subsequent annealing treatment from a Bi-Fe-O and compared with films obtained with a pure Bi2O3 target. Bi-Fe-O amorphous thin films of different thicknesses were deposited on silicon substrates at room temperature and subsequently heat treated at 800 °C at different times to study the phase transformations, keeping in all steps a constant oxygen atmosphere. After annealing, Bi-Si-O crystalline phases are formed in all cases with different synthesis kinetics. The Bi-Fe-O target clearly increases the synthesis kinetic of a textured BSO phase having a dissociation and precipitation of homogeneously distributed Fe2O3 particles in the BSO matrix. The key aspects to obtain the Bi4Si3O12 stoichiometric phase are both the film thickness and the heat treatment time to allow the reaction between the Bi2O3 from the target and the SiO2 obtained after the oxidation of the substrate. A deposition time of Bi-Fe-O for 120 and 30 min annealing fulfills the conditions to obtain the Bi4Si3O12 stoichiometric composition and thus scintillation performance. The scintillation properties were measured by a fluorescence spectrophotometry. The stoichiometric Bi4Si3O12 samples show that under 260 nm excitation the material exhibits a peak emission at 466.6 nm. These Bi4Si3O12 thin films crystallize in eulytite phase with cubic structure (a = b = c = 10.291 Å). The phase content was obtained by Rietveld analysis of X-ray diffraction patterns.

  12. Highly spatially resolved structural and optical investigation of Bi nanoparticles in Y-Er disilicate thin films

    NASA Astrophysics Data System (ADS)

    Scarangella, A.; Amiard, G.; Reitano, R.; Priolo, F.; Boninelli, S.; Miritello, M.

    2016-08-01

    Er-containing silicon compatible materials have been widely used as infrared emitters for microphotonics application. In this field, the additional introduction of a proper sensitizer permits to increase the Er excitation cross sections, thus increasing its optical efficiency. This work aims to investigate the influence of a post-transition metal, bismuth, on the optical properties of erbium-yttrium disilicate thin films synthesized by magnetron co-sputtering. After thermal treatments at 1000 °C in O2 or N2 environment, the presence of small precipitates, about 6 nm in diameter, was evidenced by transmission electron microscopy analyses. The spatially resolved chemical nature of the nanoparticles was discerned in the Si and O rich environments by means of scanning transmission electron microscopy-energy dispersive X-ray and scanning transmission electron microscopy-electron energy loss spectroscopy analyses performed with nanometric resolution. In particular, metallic Bi nanoparticles were stabilized in the N2 environment, being strongly detrimental for the Er emission. A different scenario was instead observed in O2, where the formation of Bi silicate nanoparticles was demonstrated with the support of photoluminescence excitation spectroscopy. In particular, a broad band peaked at 255 nm, correlated to the excitation band of Bi silicate nanoparticles, was identified in Er excitation spectrum. Thus Bi silicate clusters act as sensitizer for Er ions, permitting to improve Er emission up to 250 times with respect to the resonant condition. Moreover, the Er decay time increases in the presence of the Bi silicate nanoparticles that act as cages for Er ions. These last results permit to further increase Er optical efficiency in the infrared range, suggesting (Bi + Er)-Y disilicate as a good candidate for applications in microphotonics.

  13. Bismuth iron titanate pyrochlores: Thermostability, structure and properties

    SciTech Connect

    Piir, I.V.; Koroleva, M.S.; Ryabkov, Yu.I.; Korolev, D.A.; Chezhina, N.V.; Semenov, V.G.; Panchuk, V.V.

    2013-08-15

    Iron containing bismuth titanates with pyrochlore structure Bi{sub 1.6}Fe{sub x}Ti{sub 2}O{sub 7−δ}, where 0.08≤x≤0.4, were obtained by ceramic procedure. The results of bough pycnometric density of the pyrochlores and of X-ray powder diffraction structure refinement points to the preference for iron atoms to occupy the Bi{sup 3+}-sites. Electric and magnetic properties were studied for single phase pyrochlores based on bismuth titanates. The magnetic ordering was studied by the methods of Mössbauer spectroscopy and magnetic susceptibility. - Graphical abstract: The ideal crystal structure of pyrochlore A{sub 2}B{sub 2}O{sub 6}O' (A—Bi{sup 3+}, Fe{sup 3+}; B—Ti{sup 4+}, Fe{sup 3+}). Highlights: • Bismuth titanate pyrochlores stable over a wide temperature range were obtained. • The distribution of Fe{sup 3+} over various sites was determined. • The obtained systems were characterized by magnetic susceptibility, Mössbauer spectroscopy and conductivity.

  14. Shape-controlled solvothermal synthesis of bismuth subcarbonate nanomaterials

    SciTech Connect

    Cheng Gang; Yang Hanmin; Rong Kaifeng; Lu Zhong; Yu Xianglin; Chen Rong

    2010-08-15

    Much effort has been devoted to the synthesis of novel nanostructured materials because of their unique properties and potential applications. Bismuth subcarbonate ((BiO){sub 2}CO{sub 3}) is one of commonly used antibacterial agents against Helicobacter pylori (H. pylori). Different (BiO){sub 2}CO{sub 3} nanostructures such as cube-like nanoparticles, nanobars and nanoplates, were fabricated from bismuth nitrate via a simple solvothermal method. The nanostructures were characterized by powder X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). It was found that the solvents and precursors have an influence on the morphologies of (BiO){sub 2}CO{sub 3} nanostructures. The possible formation mechanism of different (BiO){sub 2}CO{sub 3} nanostructures fabricated under different conditions was also discussed. - Graphical abstract: Different bismuth subcarbonate ((BiO){sub 2}CO{sub 3}) nanostructures were successfully synthesized by a simple solvothermal method. It was found that the solvents and precursors have an influence on the morphologies of (BiO){sub 2}CO{sub 3} nanostructures.

  15. Fast pulsed excitation wiggler or undulator

    DOEpatents

    van Steenbergen, Arie

    1990-01-01

    A fast pulsed excitation, electromagnetic undulator or wiggler, employing geometrically alternating substacks of thin laminations of ferromagnetic material, together with a single turn current loop excitation of the composite assembly, of such shape and configuration that intense, spatially alternating, magnetic fields are generated; for use as a pulsed mode undulator or wiggler radiator, for use in a Free Electron Laser (FEL) type radiation source or, for use in an Inverse Free Electron Laser (IFEL) charged particle accelerator.

  16. Bismuth Propellant Feed System Development at NASA-MSFC

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    NASA-MSFC has been developing liquid metal propellant feed systems capable of delivering molten bismuth at a prescribed mass flow rate to the vaporizer of an electric thruster. The first such system was delivered to NASA-JPL as part of the Very High Isp Thruster with Anode Layer (VHITAL) program. In this system, the components pictured were placed in a vacuum chamber and heated while the control electronics were located outside the chamber. The system was successfully operated at JPL in conjunction with a propellant vaporizer, and data was obtained demonstrating a new liquid bismuth flow sensing technique developed at MSFC. The present effort is aimed at producing a feed-system for use in conjunction with a bismuth-fed Hall thruster developed by Busek Co. Developing this system is more ambitious, however, in that it is designed to self-contain all the control electronics inside the same vacuum chamber as an operating bismuth-fed thruster. Consequently, the entire system, including an on-board computer, DC-output power supplies, and a gas-pressurization electro-pneumatic regulator, must be designed to survive a vacuum environment and shielded to keep bismuth plasma from intruding on the electronics and causing a shortcircuit. In addition, the hot portions of the feed system must be thermally isolated from the electronics to avoid failure due to high heat loads. This is accomplished using a thermal protection system (TPS) consisting of multiple layers of aluminum foil. The only penetrations into the vacuum chamber are an electrically isolated (floating) 48 VDC line and a fiberoptic line. The 48 VDC provides power for operation of the power supplies and electronics co-located with the system in the vacuum chamber. The fiberoptic Ethernet connection is used to communicate user-input control commands to the on-board computer and transmit real-time data back to the external computer. The partially assembled second-generation system is shown. Before testing at Busek, a

  17. Solvothermal synthesis and study of nonlinear optical properties of nanocrystalline thallium doped bismuth telluride

    SciTech Connect

    Molli, Muralikrishna; Parola, Sowmendran; Avinash Chunduri, L.A.; Aditha, Saikiran; Sai Muthukumar, V; Mimani Rattan, Tanu; Kamisetti, Venkataramaniah

    2012-05-15

    Nanocrystalline Bismuth telluride and thallium (4 mol %) doped Bismuth telluride were synthesized through hydrothermal method. The as-prepared products were characterized using Powder X-ray Diffraction, High Resolution Transmission Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, UV-Visible spectroscopy and Fourier Transform Infrared Spectroscopy. Powder XRD results revealed the crystalline nature of the obtained phases. HRTEM showed the particle-like morphology of the products. The decrease in the absorption coefficient due to thallium doping was observed in FTIR spectra. The intensity dependent nonlinear optical properties of nanocrystalline bismuth telluride and thallium doped bismuth telluride were studied using the Z-scan technique in open-aperture configuration. Bismuth telluride doped with thallium showed enhanced nonlinear optical response compared to pristine bismuth telluride and hence could be used as a potential candidate for optical power limiting applications. - Graphical Abstract: Nonlinear transmission (Z-scan) curves of nanocrystalline bismuth telluride ({Delta}) and thallium doped bismuth telluride ({open_square}). Thallium doped bismuth telluride showed enhanced nonlinear absorption compared to bismuth telluride. Inset: TEM micrograph of bismuth telluride nanocrystallites. Highlights: Black-Right-Pointing-Pointer Synthesis of Nanocrystalline Bi{sub 2}Te{sub 3} and Thallium doped Bi{sub 2}Te{sub 3} through solvothermal method. Black-Right-Pointing-Pointer Reduced absorption coefficient due to thallium doping found from IR spectroscopy. Black-Right-Pointing-Pointer Open-aperture Z-scan technique for nonlinear optical studies. Black-Right-Pointing-Pointer Two photon absorption based model for theoretical fitting of Z-scan data. Black-Right-Pointing-Pointer Enhanced nonlinear absorption in Thallium doped Bi{sub 2}Te{sub 3} - potential candidate for optical power limiting applications.

  18. Unusual anti-thermal degradation of bismuth NIR luminescence in bismuth doped lithium tantalum silicate laser glasses.

    PubMed

    Tan, Linling; Wang, Liping; Peng, Mingying; Xu, Shanhui; Zhang, Qinyuan

    2016-08-01

    For application of bismuth laser glasses in either fiber amplifier or laser, their performance stability in long run should be understood especially in extreme conditions. However, so far, there are few reports on it. Here, we found, after the cycle experiments on heating and cooling, that the proper increase of lithium content in lithium tantalum silicate laser glass can lead to unusual anti-thermal degradation of bismuth NIR luminescence, which completely differs from the scenario in germanate glass. FTIR, 29Si MAS NMR spectra, absorption and dynamic photoluminescence spectra are employed to unravel how this happens. The results illustrate that it should be due to the decrease of polymerization of silicate glass network, which in turn allows the regeneration at 250°C, and therefore, the content increase of bismuth NIR emission centers. In the meanwhile, we noticed though Bi luminescence can be thermally quenched its peak does not shift along with temperature, which seldom appears in laser materials. The unique property might guarantee the unshift of Bi fiber laser wavelength once such glass was made into fiber devices even as the environmental temperature changes. The role of lithium is discussed in the evolution of glass structures, the suppression of glass heterogeneity, and the thermal stability of Bi luminescence, and it should be helpful to design homogeneous silicate laser glass with outstanding thermal stability.

  19. Unusual anti-thermal degradation of bismuth NIR luminescence in bismuth doped lithium tantalum silicate laser glasses.

    PubMed

    Tan, Linling; Wang, Liping; Peng, Mingying; Xu, Shanhui; Zhang, Qinyuan

    2016-08-01

    For application of bismuth laser glasses in either fiber amplifier or laser, their performance stability in long run should be understood especially in extreme conditions. However, so far, there are few reports on it. Here, we found, after the cycle experiments on heating and cooling, that the proper increase of lithium content in lithium tantalum silicate laser glass can lead to unusual anti-thermal degradation of bismuth NIR luminescence, which completely differs from the scenario in germanate glass. FTIR, 29Si MAS NMR spectra, absorption and dynamic photoluminescence spectra are employed to unravel how this happens. The results illustrate that it should be due to the decrease of polymerization of silicate glass network, which in turn allows the regeneration at 250°C, and therefore, the content increase of bismuth NIR emission centers. In the meanwhile, we noticed though Bi luminescence can be thermally quenched its peak does not shift along with temperature, which seldom appears in laser materials. The unique property might guarantee the unshift of Bi fiber laser wavelength once such glass was made into fiber devices even as the environmental temperature changes. The role of lithium is discussed in the evolution of glass structures, the suppression of glass heterogeneity, and the thermal stability of Bi luminescence, and it should be helpful to design homogeneous silicate laser glass with outstanding thermal stability. PMID:27505827

  20. Pr3+-sensitized Er3+-doped bismuthate glass for generating high inversion rates at 2.7 µm wavelength.

    PubMed

    Guo, Yanyan; Tian, Ying; Zhang, Liyan; Hu, Lili; Chen, Nan-Kuang; Zhang, Junjie

    2012-08-15

    With a 980 nm laser diode pumping, the 2.7 µm emission and energy transfer processes of Er3+/Pr3+ codoped germanium-gallium-bismuthate glasses have been investigated. For Er3+ (1 mol. %) and Pr3+ (1 mol. %) molar concentrations, an intense 2.7 µm emission was obtained based on the high excited-state absorption of Er3+ ions and energy transfer (ET) between Er3+ and Pr3+ ions codopant (ET). The intrinsic lifetime of Er3+:4I(13/2) level is quenched effectively (from 6.85 ms down to 0.24 ms) and the population inversions between Er3+:4I(11/2) and 4I(13/2) levels are enhanced to achieve a four-level energy system at 2.7 µm.

  1. Biosynthesis of bismuth nanoparticles using Serratia marcescens isolated from the Caspian Sea and their characterisation.

    PubMed

    Nazari, P; Faramarzi, M A; Sepehrizadeh, Z; Mofid, M R; Bazaz, R D; Shahverdi, A R

    2012-06-01

    Today, synthesis of nanoparticles (NPs) using micro-organisms has been receiving increasing attention. In this investigation, a bismuth-reducing bacterium was isolated from the Caspian Sea in Northern Iran and was used for intracellular biosynthesis of elemental bismuth NPs. This isolate was identified as non-pigmented Serratia marcescens using conventional identification assays and the 16s rDNA fragment amplification method and used to prepare bismuth NPs. The biogenic bismuth NPs were released by liquid nitrogen and highly purified using an n-octanol water two-phase extraction system. Different characterisations of the purified NPs such as particle shapes, size and purity were carried out with different instruments. The energy-dispersive X-ray and X-ray diffraction (XRD) patterns demonstrated that the purified NPs consisted of only bismuth and are amorphous. In addition, the transmission electron micrograph showed that the small NPs formed larger aggregated NPs around <150 nm. Although the chemical syntheses of elemental bismuth NPs have been reported in the literature, the biological synthesis of elemental bismuth NPs has not been published yet. This is the first report to demonstrate a biological method for synthesising bismuth NPs and their purification with a simple solvent partitioning method.

  2. A highly efficient bismuth salts-catalyzed route for the synthesis of α-aminophosphonates.

    PubMed

    Banik, Antara; Batta, Sahil; Bandyopadhyay, Debasish; Banik, Bimal K

    2010-11-01

    A convenient synthesis of different types of α-amino phosphonates via one-pot solvent-free three component reactions of aldehydes, amines and phosphites catalyzed by bismuth salts has been investigated. Bismuth triflate is found to be the most effective catalyst for this reaction. PMID:21076387

  3. Method of Creating Micro-scale Silver Telluride Grains Covered with Bismuth Nanoparticles

    NASA Technical Reports Server (NTRS)

    Kim, Hyun-Jung (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Park, Yeonjoon (Inventor); Lee, Kunik (Inventor)

    2014-01-01

    Provided is a method of enhancing thermoelectric performance by surrounding crystalline semiconductors with nanoparticles by contacting a bismuth telluride material with a silver salt under a substantially inert atmosphere and a temperature approximately near the silver salt decomposition temperature; and recovering a metallic bismuth decorated material comprising silver telluride crystal grains.

  4. Femtosecond electron diffraction: Preparation and characterization of (110)-oriented bismuth films

    NASA Astrophysics Data System (ADS)

    Moriena, Gustavo; Hada, Masaki; Sciaini, Germán; Matsuo, Jiro; Dwayne Miller, R. J.

    2012-02-01

    Here, we present a new approach to synthesize (110)-oriented ultrathin membranes of bismuth (Bi). This rather exotic orientation was achieved by directing the growth through rationale control of lattice matching. Bi films were hetero-epitaxially grown on the (100)-surface of freshly cleaved potassium chloride crystals. The sample orientation was characterized by x-ray and electron diffraction. In addition, high quality free-standing films were obtained after dissolution of the substrate in water and controlled evaporation. Femtosecond electron diffraction (FED) was, therefore, used to monitor the coherent shear acoustic phonons in (110)-oriented free-standing Bi films produced by impulsive femtosecond optical excitation. The small de Broglie wavelength (flat Ewald sphere) of keV-electrons combined with an off-Bragg detection scheme provided a magnified view of shear atomic motions, i.e., lattice distortions in the transverse direction. All-optical pump-probe experiments are usually insensitive to shear displacements, a fact that makes FED a unique non-contact method to achieve the complete characterization of elastic properties of nanoscale materials.

  5. Luminescence properties of Tm3+/Yb3+ codoped lead alumina bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Goud, K. Krishna Murthy; Reddy, M. Chandra Shekhar; Rao, B. Appa

    2016-05-01

    This paper reports on the spectroscopic properties of Yb3+ and Tm3+ codoped lead alumina bismuth borate glasses. Optical absorption spectra of these Samples were recorded at room temperature in the wavelength range 350-2000 nm. The absorption spectra exhibited the bands at 658 nm (3H6→3F2), 686 nm (3H6→3F3), 792 nm (3H6→3H4), 1211 nm (3H6→3H5) and 1663 nm (3H6→3F4) due to Tm3+ ions. The band at 977 nm (2F7/2→2F5/2) is due to Yb3+ ions. Optical band gap (Eopt) and Urbach energy (ΔE) values were calculated from the spectra. It was observed that the value of optical band gap decreases with increase in the concentration of Tm3+ ions. The upconversion luminescence spectra were measured under excitation of 980 nm laser diode, and the intense blue (470 nm) and green (656 nm) emission were simultaneously observed at room temperature. A proposed upconversion mechanism involving energy transfer from Yb3+ to Tm3+ has been presented.

  6. Optical studies of Sm3+ ions doped Zinc Alumino Bismuth Borate glasses

    NASA Astrophysics Data System (ADS)

    Swapna, K.; Mahamuda, Sk.; Srinivasa Rao, A.; Shakya, S.; Sasikala, T.; Haranath, D.; Vijaya Prakash, G.

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of samarium (Sm3+) ions were prepared by using melt quenching technique and characterized for their lasing potentialities in visible region by using the techniques such as optical absorption, emission and emission decay measurements. Radiative properties for various fluorescent levels of Sm3+ ions were estimated from absorption spectral information using Judd-Ofelt (JO) analysis. The emission spectra and con-focal photoluminescence images obtained by 410 nm laser excitation demonstrates very distinct and intense orange-red emission for all the doped glasses. The suitable concentration of Sm3+ ions in these glasses to act as an efficient lasing material has been discussed by measuring the emission cross-section and branching ratios for the emission transitions. The quantum efficiencies were also been estimated from emission decay measurements recorded for the 4G5/2 level of Sm3+ ions. From the measured emission cross-sections, branching ratios, strong photoluminescence features and CIE chromaticity coordinates, it was found that 1 mol% of Sm3+ ions doped ZnAlBiB glasses are most suitable for the development of visible orange-red lasers.

  7. Optical properties of bismuth-doped silica fibres in the temperature range 300 - 1500 K

    SciTech Connect

    Dvoretskii, D A; Bufetov, Igor' A; Vel'miskin, V V; Zlenko, Alexander S; Khopin, V F; Semjonov, S L; Guryanov, Aleksei N; Denisov, L K; Dianov, Evgenii M

    2012-09-30

    The visible and near-IR absorption and luminescence bands of bismuth-doped silica and germanosilicate fibres have been measured for the first time as a function of temperature. The temperature-dependent IR luminescence lifetime of a bismuth-related active centre associated with silicon in the germanosilicate fibre has been determined. The Bi{sup 3+} profile across the silica fibre preform is shown to differ markedly from the distribution of IR-emitting bismuth centres associated with silicon. The present results strongly suggest that the IR-emitting bismuth centre comprises a lowvalence bismuth ion and an oxygen-deficient glass network defect. (optical fibres, lasers and amplifiers. properties and applications)

  8. Bismuth-induced phase control of GaAs nanowires grown by molecular beam epitaxy

    SciTech Connect

    Lu, Zhenyu; Chen, Pingping E-mail: luwei@mail.sitp.ac.cn; Shi, Suixing; Yao, Luchi; Zhou, Xiaohao; Lu, Wei E-mail: luwei@mail.sitp.ac.cn; Zhang, Zhi; Zhou, Chen; Zou, Jin

    2014-10-20

    In this work, the crystal structure of GaAs nanowires grown by molecular beam epitaxy has been tailored only by bismuth without changing the growth temperature and V/III flux ratio. The introduction of bismuth can lead to the formation of zinc-blende GaAs nanowires, while the removal of bismuth changes the structure into a 4H polytypism before it turns back to the wurtzite phase eventually. The theoretical calculation shows that it is the steadiest for bismuth to adsorb on the GaAs(111){sub B} surface compared to the liquid gold catalyst surface and the interface between the gold catalyst droplet and the nanowire, and these adsorbed bismuth could decrease the diffusion length of adsorbed Ga and hence the supersaturation of Ga in the gold catalyst droplet.

  9. Determination of nanogram amounts of bismuth in rocks by substoichiometric isotope dilution analysis

    USGS Publications Warehouse

    Greenland, L. Paul; Campbell, E.Y.

    1972-01-01

    A rapid procedure suitable for the routine determination of 1-10 ng of bismuth in a silicate rock matrix is described. Results for the U.S. Geological Survey standard rocks are presented. Rocks and minerals are dissolved in hydrofluoric-perchloric acid in the presence of 207Bi tracer and the silica is removed by evaporation. The perchloric acid residue is taken up in water and bismuth iodide is extracted into methyl isobutyl ketone. After three acid-iodide washes, the bismuth is stripped into water and reacted with a substoichiometric amount of EDTA. Excess of bismuth is extracted as the iodide and the specific activity of the bismuth-EDTA complex is determined. ?? 1972.

  10. Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects

    PubMed Central

    Shao, Cheng; Bao, Hua

    2016-01-01

    The successful exfoliation of atomically-thin bismuth telluride (Bi2Te3) quintuple layer (QL) attracts tremendous research interest in this strongly anharmonic quasi-two-dimensional material. The thermal transport properties of this material are not well understood, especially the mode-wise properties and when it is coupled with a substrate. In this work, we have performed molecular dynamics simulations and normal mode analysis to study the mode-resolved thermal transport in freestanding and supported Bi2Te3 QL. The detailed mode-wise phonon properties are calculated and the accumulated thermal conductivities with respect to phonon mean free path (MFP) are constructed. It is shown that 60% of the thermal transport is contributed by phonons with MFP longer than 20 nm. Coupling with a-SiO2 substrate leads to about 60% reduction of thermal conductivity. Through varying the interfacial coupling strength and the atomic mass of substrate, we also find that phonon in Bi2Te3 QL is more strongly scattered by interfacial potential and its transport process is less affected by the dynamics of substrate. Our study provides an in-depth understanding of heat transport in Bi2Te3 QL and is helpful in further tailoring its thermal property through nanostructuring. PMID:27263656

  11. Excitation mechanism and thermal emission quenching of Tb ions in silicon rich silicon oxide thin films grown by plasma-enhanced chemical vapour deposition—Do we need silicon nanoclusters?

    SciTech Connect

    Podhorodecki, A. Golacki, L. W.; Zatryb, G.; Misiewicz, J.; Wang, J.; Jadwisienczak, W.; Fedus, K.

    2014-04-14

    In this work, we will discuss the excitation and emission properties of Tb ions in a Silicon Rich Silicon Oxide (SRSO) matrix obtained at different technological conditions. By means of electron cyclotron resonance plasma-enhanced chemical vapour deposition, undoped and doped SRSO films have been obtained with different Si content (33, 35, 39, 50 at. %) and were annealed at different temperatures (600, 900, 1100 °C). The samples were characterized optically and structurally using photoluminescence (PL), PL excitation, time resolved PL, absorption, cathodoluminescence, temperature dependent PL, Rutherford backscattering spectrometry, Fourier transform infrared spectroscopy and positron annihilation lifetime spectroscopy. Based on the obtained results, we discuss how the matrix modifications influence excitation and emission properties of Tb ions.

  12. Cytotoxic Effect of Lipophilic Bismuth Dimercaptopropanol Nanoparticles on Epithelial Cells.

    PubMed

    Rene, Hernandez-Delgadillo; Badireddy, Appala Raju; José, Martínez-Sanmiguel Juan; Francisco, Contreras-Cordero Juan; Israel, Martinez-Gonzalez Gustavo; Isela, Sánchez-Nájera Rosa; Chellam, Shankararaman; Claudio, Cabral-Romero

    2016-01-01

    Bismuth nanoparticles have many interesting properties to be applied in biomedical and medicinal sectors, however their safety in humans have not been comprehensively investigated. The objective of this research was to determine the cytotoxic effect of bismuth dimercaptopropanol nanoparticles (BisBAL NPs) on epithelial cells. The nanoparticles are composed of 18.7 nm crystallites on average and have a rhombohedral structure, agglomerating into chains-like or clusters of small nanoparticles. Based on MTT viability assay and fluorescence microscopy, cytotoxicity was not observed on monkey kidney cells after growing with 5 µM of BisBAL NPs for 24 h. Employing same techniques, identical results were obtained with human epithelial cells (HeLa), showing a not strain-dependent phenomenon. The absence of toxic effects on epithelial cells growing with BisBAL NPs was corroborated with long-time experiments (24-72 hrs.), showing no difference in comparison with growing control (cells without nanoparticles). Further, genotoxicity assays, comet assay and fluorescent microscopy and electrophoresis in bromide-stained agarose gel revealed no damage to genomic DNA of MA104 cells after 24 h. of exposition to BisBAL NPs. Finally, the effect of bismuth nanoparticles on protein synthesis was studied in cells growing with BisBAL NPs for 24 h. SDS-PAGE assays showed no difference between treated and untreated cells, suggesting that BisBAL NPs did not interfere with protein synthesis. Hence BisBAL NPs do not appear to exert cytotoxic effects suggesting their biological compatibility with epithelial cells.

  13. Conduction mechanism in bismuth silicate glasses containing titanium

    NASA Astrophysics Data System (ADS)

    Dult, Meenakshi; Kundu, R. S.; Murugavel, S.; Punia, R.; Kishore, N.

    2014-11-01

    Bismuth silicate glasses mixed with different concentrations of titanium dioxide having compositions xTiO2-(60-x)Bi2O3-40SiO2 with x=0, 5, 10, 15 and 20 were prepared by the normal melt quench technique. The frequency dependence of the ac electrical conductivity of different compositions of titanium bismuth silicate glasses has been studied in the frequency range 10-1 Hz to 10 MHz and in the temperature range 623-703 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of titanium bismuth silicate glass system. The dc conductivity (σdc), so called crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. The conductivity data have been analyzed in terms of different theoretical models to determine the possible conduction mechanism. Analysis of the conductivity data and the frequency exponent shows that the correlated barrier hopping of electrons between Ti3+ and Ti4+ ions in the glasses is the most favorable mechanism for ac conduction. The temperature dependent dc conductivity has been analyzed in the framework of theoretical variable range hopping model (VRH) proposed by Mott which describe the hopping conduction in disordered semiconducting systems. The various polaron hopping parameters have also been deduced. Mott's VRH model is found to be in good agreement with experimental data and the values of inverse localization length of s-like wave function (α) obtained by this model with modifications suggested by Punia et al. are close to the ones reported for a number of oxide glasses.

  14. Cytotoxic Effect of Lipophilic Bismuth Dimercaptopropanol Nanoparticles on Epithelial Cells.

    PubMed

    Rene, Hernandez-Delgadillo; Badireddy, Appala Raju; José, Martínez-Sanmiguel Juan; Francisco, Contreras-Cordero Juan; Israel, Martinez-Gonzalez Gustavo; Isela, Sánchez-Nájera Rosa; Chellam, Shankararaman; Claudio, Cabral-Romero

    2016-01-01

    Bismuth nanoparticles have many interesting properties to be applied in biomedical and medicinal sectors, however their safety in humans have not been comprehensively investigated. The objective of this research was to determine the cytotoxic effect of bismuth dimercaptopropanol nanoparticles (BisBAL NPs) on epithelial cells. The nanoparticles are composed of 18.7 nm crystallites on average and have a rhombohedral structure, agglomerating into chains-like or clusters of small nanoparticles. Based on MTT viability assay and fluorescence microscopy, cytotoxicity was not observed on monkey kidney cells after growing with 5 µM of BisBAL NPs for 24 h. Employing same techniques, identical results were obtained with human epithelial cells (HeLa), showing a not strain-dependent phenomenon. The absence of toxic effects on epithelial cells growing with BisBAL NPs was corroborated with long-time experiments (24-72 hrs.), showing no difference in comparison with growing control (cells without nanoparticles). Further, genotoxicity assays, comet assay and fluorescent microscopy and electrophoresis in bromide-stained agarose gel revealed no damage to genomic DNA of MA104 cells after 24 h. of exposition to BisBAL NPs. Finally, the effect of bismuth nanoparticles on protein synthesis was studied in cells growing with BisBAL NPs for 24 h. SDS-PAGE assays showed no difference between treated and untreated cells, suggesting that BisBAL NPs did not interfere with protein synthesis. Hence BisBAL NPs do not appear to exert cytotoxic effects suggesting their biological compatibility with epithelial cells. PMID:27398446

  15. Modeling astatine production in liquid lead-bismuth spallation targets

    NASA Astrophysics Data System (ADS)

    David, J. C.; Boudard, A.; Cugnon, J.; Ghali, S.; Leray, S.; Mancusi, D.; Zanini, L.

    2013-03-01

    Astatine isotopes can be produced in liquid lead-bismuth eutectic targets through proton-induced double charge exchange reactions on bismuth or in secondary helium-induced interactions. Models implemented into the most common high-energy transport codes generally have difficulties to correctly estimate their production yields as was shown recently by the ISOLDE Collaboration, which measured release rates from a lead-bismuth target irradiated by 1.4 and 1 GeV protons. In this paper, we first study the capability of the new version of the Liège intranuclear cascade model, INCL4.6, coupled to the deexcitation code ABLA07 to predict the different elementary reactions involved in the production of such isotopes through a detailed comparison of the model with the available experimental data from the literature. Although a few remaining deficiencies are identified, very satisfactory results are found, thanks in particular to improvements brought recently on the treatment of low-energy helium-induced reactions. The implementation of the models into MCNPX allows identifying the respective contributions of the different possible reaction channels in the ISOLDE case. Finally, the full simulation of the ISOLDE experiment is performed, taking into account the likely rather long diffusion time from the target, and compared with the measured diffusion rates for the different astatine isotopes, at the two studied energies, 1.4 and 1 GeV. The shape of the isotopic distribution is perfectly reproduced as well as the absolute release rates, assuming in the calculation a diffusion time between 5 and 10hours. This work finally shows that our model, thanks to the attention paid to the emission of high-energy clusters and to low-energy cluster induced reactions, can be safely used within MCNPX to predict isotopes with a charge larger than that of the target by two units in spallation targets, and, probably, more generally to isotopes created in secondary reactions induced by composite

  16. Bismuth oxide nanotubes-graphene fiber-based flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Gopalsamy, Karthikeyan; Xu, Zhen; Zheng, Bingna; Huang, Tieqi; Kou, Liang; Zhao, Xiaoli; Gao, Chao

    2014-07-01

    Graphene-bismuth oxide nanotube fiber as electrode material for constituting flexible supercapacitors using a PVA/H3PO4 gel electrolyte is reported with a high specific capacitance (Ca) of 69.3 mF cm-2 (for a single electrode) and 17.3 mF cm-2 (for the whole device) at 0.1 mA cm-2, respectively. Our approach opens the door to metal oxide-graphene hybrid fibers and high-performance flexible electronics.Graphene-bismuth oxide nanotube fiber as electrode material for constituting flexible supercapacitors using a PVA/H3PO4 gel electrolyte is reported with a high specific capacitance (Ca) of 69.3 mF cm-2 (for a single electrode) and 17.3 mF cm-2 (for the whole device) at 0.1 mA cm-2, respectively. Our approach opens the door to metal oxide-graphene hybrid fibers and high-performance flexible electronics. Electronic supplementary information (ESI) available: Equations and characterization. SEM images of GGO, XRD and XPS of Bi2O3 NTs, HRTEM images and EDX Spectra of Bi2O3 NT5-GF, CV curves of Bi2O3NT5-GF, Bi2O3 NTs and bismuth nitrate in three-electrode system (vs. Ag/AgCl). CV and GCD curves of Bi2O3 NT1-GF and Bi2O3 NT3-GF. See DOI: 10.1039/c4nr02615b

  17. Coherent phonon coupling to individual Bloch states in photoexcited bismuth.

    PubMed

    Papalazarou, E; Faure, J; Mauchain, J; Marsi, M; Taleb-Ibrahimi, A; Reshetnyak, I; van Roekeghem, A; Timrov, I; Vast, N; Arnaud, B; Perfetti, L

    2012-06-22

    We investigate the temporal evolution of the electronic states at the bismuth (111) surface by means of time- and angle-resolved photoelectron spectroscopy. The binding energy of bulklike bands oscillates with the frequency of the A(1g) phonon mode, whereas surface states are insensitive to the coherent displacement of the lattice. A strong dependence of the oscillation amplitude on the electronic wave vector is correctly reproduced by ab initio calculations of electron-phonon coupling. Besides these oscillations, all the electronic states also display a photoinduced shift towards higher binding energy whose dynamics follows the evolution of the electronic temperature.

  18. Oscillations of electrical conductivity in single bismuth nanowires

    NASA Astrophysics Data System (ADS)

    Cornelius, T. W.; Toimil-Molares, M. E.; Karim, S.; Neumann, R.

    2008-03-01

    Bismuth nanowires were electrochemically deposited in ion track-etched polycarbonate membranes. Single wires with diameters ranging between 70 and 550nm were created in membranes with one single nanopore and their electrical resistance was investigated while leaving them embedded in the template. The specific electrical conductivity oscillates as a function of wire diameter. The modulations are discussed on the basis of quantum-size effects which lead to a splitting of the energy bands into subbands and, thus, cause an oscillation of the density of states at the Fermi level depending on the diameter.

  19. Kinetics of Propagating Phase Transformation in Compressed Bismuth

    SciTech Connect

    Bastea, M; Bastea, S; Emig, J; Springer, P; Reisman, D

    2004-08-18

    The authors observed dynamically driven phase transitions in isentropically compressed bismuth. By changing the stress loading conditions they explored two distinct cases one in which the experimental signature of the phase transformation corresponds to phase-boundary crossings initiated at both sample interfaces, and another in which the experimental trace is due to a single advancing transformation front in the bulk of the material. They introduce a coupled kinetics-hydrodynamics model that for this second case enables them, under suitable simplifying assumptions, to directly extract characteristic transition times from the experimental measurements.

  20. Peculiarities of jumping electroconductivity in bismuth oxide films

    NASA Astrophysics Data System (ADS)

    Vidadi, Yu. A.; Guseinov, Ya. Yu.; Bagiev, V. E.; Rafiev, T. Yu.

    1991-11-01

    The electrical properties of bismuth oxide films with direct and alternating current have been studied. A charge carrier transfer is shown to be dominant in these films both at low temperatures and at high frequencies due to the carrier jumps between the localized states with the energy near the Fermi level N( EF). The value of N( EF) at the localization radius α -1 = 8Å, the angular coefficient in Mott's law for jumping conductivity B = 93 K {1}/{4} and the average length of jumping at 230 K, R = 70 Å, have been calculated by two independent methods for τ-Bi 2O 3 films.

  1. Optical transmission and Faraday rotation spectra of a bismuth iron garnet film

    NASA Astrophysics Data System (ADS)

    Kahl, S.; Popov, V.; Grishin, A. M.

    2003-11-01

    We prepared an epitaxial 530-nm-thick bismuth iron garnet (BIG) film on a Gd3Ga5O12(GGG) (111) substrate by pulsed laser deposition and measured spectra of optical transmission and magneto-optical Faraday rotation θF(λ) in visible light. Both spectra are shaped by the dispersion relations of the dielectric tensor and the effects of multiple-beam interference in the thin film. From fitting of the transmission spectrum, dispersion relations of the real and imaginary parts of the refractive index were found for the wavelength range from 515 to 1000 nm, n(λ)=2.36+(413 nm/λ)2 and k(λ)=(λ/4π nm)×exp[(1660 nm/λ)2-15.2]. With these data as input information, a single diamagnetic line centered at λ=486 nm was fitted to the experimentally recorded magneto-optical spectrum. The effects of thin film interference and surface roughness were included in order to closely reproduce the measured spectrum. The roughness determined from spectral analysis was compared to the rms roughness measured by atomic force microscopy. The values agree within a deviation of less than 20% and are approximately 3% of film thickness. The magneto-optical figure of merit 2|θF|/α (α is the absorption coefficient) of our film increases strongly with wavelength and exceeds 100° at 740 nm. The optical efficiency for magneto-optical visualization |exp(-2αd)sin(4θFd)| (d is film thickness) possesses a maximum value of 29% at 600 nm. Both quantities were calculated using the obtained dispersion relations for absorption and Faraday rotation.

  2. RESONANT CAVITY EXCITATION SYSTEM

    DOEpatents

    Baker, W.R.; Kerns, Q.A.; Riedel, J.

    1959-01-13

    An apparatus is presented for exciting a cavity resonator with a minimum of difficulty and, more specifically describes a sub-exciter and an amplifier type pre-exciter for the high-frequency cxcitation of large cavities. Instead of applying full voltage to the main oscillator, a sub-excitation voltage is initially used to establish a base level of oscillation in the cavity. A portion of the cavity encrgy is coupled to the input of the pre-exciter where it is amplified and fed back into the cavity when the pre-exciter is energized. After the voltage in the cavity resonator has reached maximum value under excitation by the pre-exciter, full voltage is applied to the oscillator and the pre-exciter is tunned off. The cavity is then excited to the maximum high voltage value of radio frequency by the oscillator.

  3. Solvothermal synthesis of uniform bismuth nanospheres using poly(N-vinyl-2-pyrrolidone) as a reducing agent

    PubMed Central

    2011-01-01

    Uniform bismuth nanospheres were successfully prepared from bismuth nitrate in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) by solvothermal process. The product was characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and energy-dispersive X-ray. PVP plays a critical role both as a reducing agent and a capping agent in the formation of bismuth nanospheres. Shape and size of bismuth nanospheres could be tuned by changing the employed PVP/bismuth salt ratio. It was also found the solvent had an effect on the morphologies of bismuth nanomaterials. The possible formation and growth mechanism of bismuth nanospheres were also discussed and proposed to explain the reduction step. PMID:21711606

  4. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation

    PubMed Central

    Hernandez-Delgadillo, Rene; Velasco-Arias, Donaji; Martinez-Sanmiguel, Juan Jose; Diaz, David; Zumeta-Dube, Inti; Arevalo-Niño, Katiushka; Cabral-Romero, Claudio

    2013-01-01

    Multiresistance among microorganisms to common antimicrobials has become one of the most significant concerns in modern medicine. Nanomaterials are a new alternative to successfully treat the multiresistant microorganisms. Nanostructured materials are used in many fields, including biological sciences and medicine. Recently, it was demonstrated that the bactericidal activity of zero-valent bismuth colloidal nanoparticles inhibited the growth of Streptococcus mutans; however the antimycotic potential of bismuth nanostructured derivatives has not yet been studied. The main objective of this investigation was to analyze the fungicidal activity of bismuth oxide nanoparticles against Candida albicans, and their antibiofilm capabilities. Our results showed that aqueous colloidal bismuth oxide nanoparticles displayed antimicrobial activity against C. albicans growth (reducing colony size by 85%) and a complete inhibition of biofilm formation. These results are better than those obtained with chlorhexidine, nystatin, and terbinafine, the most effective oral antiseptic and commercial antifungal agents. In this work, we also compared the antimycotic activities of bulk bismuth oxide and bismuth nitrate, the precursor metallic salt. These results suggest that bismuth oxide colloidal nanoparticles could be a very interesting candidate as a fungicidal agent to be incorporated into an oral antiseptic. Additionally, we determined the minimum inhibitory concentration for the synthesized aqueous colloidal Bi2O3 nanoparticles. PMID:23637533

  5. Focused ion beam processing to fabricate ohmic contact electrodes on a bismuth nanowire for Hall measurements

    PubMed Central

    2013-01-01

    Ohmic contact electrodes for four-wire resistance and Hall measurements were fabricated on an individual single-crystal bismuth nanowire encapsulated in a cylindrical quartz template. Focused ion beam processing was utilized to expose the side surfaces of the bismuth nanowire in the template, and carbon and tungsten electrodes were deposited on the bismuth nanowire in situ to achieve electrical contacts. The temperature dependence of the four-wire resistance was successfully measured for the bismuth nanowire, and a difference between the resistivities of the two-wire and four-wire methods was observed. It was concluded that the two-wire method was unsuitable for estimation of the resistivity due to the influence of contact resistance, even if the magnitude of the bismuth nanowire resistance was greater than the kilo-ohm order. Furthermore, Hall measurement of a 4-μm-diameter bismuth microwire was also performed as a trial, and the evaluated temperature dependence of the carrier mobility was in agreement with that for bulk bismuth, which indicates that the carrier mobility was successfully measured using this technique. PACS 81.07.Gf PMID:24070421

  6. Layered bismuth oxyhalide nanomaterials for highly efficient tumor photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Xu, Yu; Shi, Zhenzhi; Zhang, Ling'e.; Brown, Eric Michael Bratsolias; Wu, Aiguo

    2016-06-01

    Layered bismuth oxyhalide nanomaterials have received much more interest as promising photocatalysts because of their unique layered structures and high photocatalytic performance, which can be used as potential inorganic photosensitizers in tumor photodynamic therapy (PDT). In recent years, photocatalytic materials have been widely used in PDT and photothermal therapy (PTT) as inorganic photosensitizers. This investigation focuses on applying layered bismuth oxyhalide nanomaterials toward cancer PDT, an application that has never been reported so far. The results of our study indicate that the efficiency of UV-triggered PDT was highest when using BiOCl nanoplates followed by BiOCl nanosheets, and then TiO2. Of particular interest is the fact that layered BiOCl nanomaterials showed excellent PDT effects under low nanomaterial dose (20 μg mL-1) and low UV dose (2.2 mW cm-2 for 10 min) conditions, while TiO2 showed almost no therapeutic effect under the same parameters. BiOCl nanoplates and nanosheets have shown excellent performance and an extensive range of applications in PDT.

  7. New Bismuth-Substituted Hydroxyapatite Nanoparticles for Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Ciobanu, Gabriela; Bargan, Ana Maria; Luca, Constantin

    2015-11-01

    New bismuth-substituted hydroxyapatite [Ca10- x Bi x (PO4)6(OH)2 where x = 0-2.5] nanoparticles were synthesized by the co-precipitation method from aqueous solutions. The structural properties of the samples were analyzed by scanning electron microscopy coupled with x-ray analysis, x-ray powder diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller surface area analysis. The results confirm that bismuth ions have been incorporated into the hydroxyapatite lattice. The prepared nanocrystalline powders consisted of hydroxyapatite as single phase with hexagonal structure, crystal sizes smaller than 60 nm and (Bi + Ca)/P atomic ratio of around 1.67. The hydroxyapatite samples doped with Bi have mesoporous textures with pores size of around 2 nm and specific surface area in the range of 12-25 m2/g. The Bi-substituted hydroxyapatite powders are more effective against Gram-negative Escherichia coli bacteria than Gram-positive Staphylococcus aureus bacteria.

  8. Phase transition of solid bismuth under high pressure

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Yan; Xiang, Shi-Kai; Yan, Xiao-Zhen; Zheng, Li-Rong; Zhang, Yi; Liu, Sheng-Gang; Bi, Yan

    2016-10-01

    As a widely used pressure calibrator, the structural phase transitions of bismuth from phase I, to phase II, to phase III, and then to phase V with increasing pressure at 300 K have been widely confirmed. However, there are different structural versions for phase III, most of which are determined by x-ray diffraction (XRD) technology. Using x-ray absorption fine structure (XAFS) measurements combined with ab initio calculations, we show that the proposed incommensurate composite structure of bismuth of the three configurations is the best option. An abnormal continuous increase of the nearest-neighbor distance of phase III with elevated pressure is also observed. The electronic structure transformation from semimetal to metal is responsible for the complex behavior of structure transformation. Project supported by the National Natural Science Foundation of China (Grant Nos. 10904133, 11304294, 11274281, 11404006, and U1230201), the Development Foundation of China Academy of Engineering Physics (Grant Nos. 2015B0101004, 2013B0401062, and 2012A0101001), the Research Foundation of the Laboratory of Shock Wave and Detonation, China (Grant No. 9140C670201140C67282).

  9. Superconductivity in Bismuth. A New Look at an Old Problem.

    PubMed

    Mata-Pinzón, Zaahel; Valladares, Ariel A; Valladares, Renela M; Valladares, Alexander

    2016-01-01

    To investigate the relationship between atomic topology, vibrational and electronic properties and superconductivity of bismuth, a 216-atom amorphous structure (a-Bi216) was computer-generated using our undermelt-quench approach. Its pair distribution function compares well with experiment. The calculated electronic and vibrational densities of states (eDOS and vDOS, respectively) show that the amorphous eDOS is about 4 times the crystalline at the Fermi energy, whereas for the vDOS the energy range of the amorphous is roughly the same as the crystalline but the shapes are quite different. A simple BCS estimate of the possible crystalline superconducting transition temperature gives an upper limit of 1.3 mK. The e-ph coupling is more preponderant in a-Bi than in crystalline bismuth (x-Bi) as indicated by the λ obtained via McMillan's formula, λc = 0.24 and experiment λa = 2.46. Therefore with respect to x-Bi, superconductivity in a-Bi is enhanced by the higher values of λ and of eDOS at the Fermi energy.

  10. Superconductivity in Bismuth. A New Look at an Old Problem.

    PubMed

    Mata-Pinzón, Zaahel; Valladares, Ariel A; Valladares, Renela M; Valladares, Alexander

    2016-01-01

    To investigate the relationship between atomic topology, vibrational and electronic properties and superconductivity of bismuth, a 216-atom amorphous structure (a-Bi216) was computer-generated using our undermelt-quench approach. Its pair distribution function compares well with experiment. The calculated electronic and vibrational densities of states (eDOS and vDOS, respectively) show that the amorphous eDOS is about 4 times the crystalline at the Fermi energy, whereas for the vDOS the energy range of the amorphous is roughly the same as the crystalline but the shapes are quite different. A simple BCS estimate of the possible crystalline superconducting transition temperature gives an upper limit of 1.3 mK. The e-ph coupling is more preponderant in a-Bi than in crystalline bismuth (x-Bi) as indicated by the λ obtained via McMillan's formula, λc = 0.24 and experiment λa = 2.46. Therefore with respect to x-Bi, superconductivity in a-Bi is enhanced by the higher values of λ and of eDOS at the Fermi energy. PMID:26815431

  11. Superconductivity in Bismuth. A New Look at an Old Problem

    PubMed Central

    2016-01-01

    To investigate the relationship between atomic topology, vibrational and electronic properties and superconductivity of bismuth, a 216-atom amorphous structure (a-Bi216) was computer-generated using our undermelt-quench approach. Its pair distribution function compares well with experiment. The calculated electronic and vibrational densities of states (eDOS and vDOS, respectively) show that the amorphous eDOS is about 4 times the crystalline at the Fermi energy, whereas for the vDOS the energy range of the amorphous is roughly the same as the crystalline but the shapes are quite different. A simple BCS estimate of the possible crystalline superconducting transition temperature gives an upper limit of 1.3 mK. The e-ph coupling is more preponderant in a-Bi than in crystalline bismuth (x-Bi) as indicated by the λ obtained via McMillan’s formula, λc = 0.24 and experiment λa = 2.46. Therefore with respect to x-Bi, superconductivity in a-Bi is enhanced by the higher values of λ and of eDOS at the Fermi energy. PMID:26815431

  12. Study of the redox properties of bismuth-molybdate and uranium-antimonate catalysts

    SciTech Connect

    Paz-Pujalt, G.R.

    1985-01-01

    The oxidation/reduction properties of various bismuth molybdates, molybdenum trioxide, bismuth oxide, uranium antimonate, and iron antimonate have been studied in an effort to correlate them to their catalytic properties. The temperature at which ..gamma..-phase bismuth molybdate is prereduced plays an important role in the behavior the catalyst exhibits under reoxidation conditions. The overall behavior of ..gamma..-phase bismuth molybdate under catalytic conditions may be divided into two temperature regimes: below 360/sup 0/C the catalyst shows a higher rate of propylene adsorption than product desorption, and above 360/sup 0/C where produced desorption is dominant. This temperature is the same at which the Arrhenius plot for the reaction has a break. Several reduction of ..gamma..-bismuth molybdate results in the formation of clusters of bismuth metal and crystallites of molybdenum dioxide. This is irreversible. The reoxidation of the bismuth molybdate catalysts shows the presence of two oxygen incorporation temperatures. The ratios of the areas under these peaks are not the same for the three catalysts. Uranium antimonate shows a lesser degree of lattice oxygen participation. During several reduction the catalyst decomposes partially and an excess of antimony is evident. The isothermal reduction profiles of the catalysts permitted their classification into either of two reduction models: (A) ..cap alpha..-, ..beta..-, ..gamma..-phase bismuth molybdates, molybdenum trioxide, bismuth oxide, and the equimolar mixture follow the nucleation model, (B) uranium antimonate, and iron antimonate following the shrinking sphere model. These models have been correlated to certain characteristics of these catalysts. Group A catalysts show a high degree of lattice oxygen participation (migration of bulk oxygen to surface nuclei). In contrast in group B catalysts only a few layers of oxygen are peeled off during catalysis.

  13. Fano interference at the excitation of coherent phonons: Relation between the asymmetry parameter and the initial phase of coherent oscillations

    SciTech Connect

    Misochko, O. V. Lebedev, M. V.

    2015-04-15

    The theoretical assertion that the Fano asymmetry parameter and the asymptotic initial phase of a harmonic oscillator interacting with a continuum are interrelated is experimentally verified. By an example of coherent fully symmetric A{sub 1g} phonons in bismuth that are excited by ultrashort laser pulses at liquid helium temperature, it is demonstrated that, for negative values of the asymmetry parameter, the asymptotic phase increases as the modulus of the parameter decreases.

  14. Synthesis, optical properties and ultrafast electronic relaxation of layered semiconductor nanoparticles: Lead iodide, bismuth iodide, bismuth sulfide

    NASA Astrophysics Data System (ADS)

    Sengupta, Archita

    The first direct observation of the electronic relaxation dynamics in PbI2, BiI3 and Bi2S3 nanoparticles using femtosecond transient spectroscopy has been reported. The nanoparticles were synthesized in polar and nonpolar solvents, polymer matrices and inverse micelles using colloidal chemistry methods and in thin films. The particle sizes were determined using TEM which provided direct evidence of photodegradation of nanoparticles. The ground state electronic absorption spectra of PbI 2 and BiI3 colloidal nanoparticles show well-resolved peaks in the near UV and visible region. Using a particle in an anisotropic box model the blue shift and increase in absorption of these peaks with simultaneous decrease in particle size have been explained. The UV-visible absorption spectra of Bi2S3 colloidal nanoparticles have very different features compared to those of PbI2 and BiI3 nanoparticles. Similarities and differences found among these nanoparticle systems, PbI 2, BiI3 and Bi2S3, in terms of optical properties and femtosecond electronic relaxation dynamics have been discussed. For PbI2, BiI3 and Bi2S3 with excitation at 390 nm and probing in the near infrared, the electronic relaxation dynamics were directly monitored and found to be sensitive to solvent and insensitive to particle size. For both PbI2 and BiI3 there appeared to be an oscillatory feature at early times with a period changing with solvent but not with particle size. However, for BiI3, the oscillation periods were slightly shorter and overall relaxation was somewhat faster than that in PbI2. The possibilities of the origin of this feature have been addressed. For Bi2S3 system, the early time dynamics did not show any resolvable oscillation. It could be due to the fact that the origin of oscillations in PbI2 and BiI3 nanoparticle system is connected to layered iodide structure and thus is not found in layered sulfide structure or the feature was not observed due to overall fast relaxation in Bi2S3

  15. Increased InAs quantum dot size and density using bismuth as a surfactant

    SciTech Connect

    Dasika, Vaishno D.; Krivoy, E. M.; Nair, H. P.; Maddox, S. J.; Park, K. W.; Yu, E. T.; Bank, S. R.; Jung, D.; Lee, M. L.

    2014-12-22

    We have investigated the growth of self-assembled InAs quantum dots using bismuth as a surfactant to control the dot size and density. We find that the bismuth surfactant increases the quantum dot density, size, and uniformity, enabling the extension of the emission wavelength with increasing InAs deposition without a concomitant reduction in dot density. We show that these effects are due to bismuth acting as a reactive surfactant to kinetically suppress the surface adatom mobility. This mechanism for controlling quantum dot density and size has the potential to extend the operating wavelength and enhance the performance of various optoelectronic devices.

  16. Determination of nanogram amounts of bismuth in rocks by atomic absorption spectrometry with electrothermal atomization

    USGS Publications Warehouse

    Kane, J.S.

    1979-01-01

    Bismuth concentrations as low as 10 ng g-1 in 100-mg samples of geological materials can be determined by atomic absorption spectrometry with electrothermal atomization. After HF-HClO4 decomposition of the sample, bismuth is extracted as the iodide into methyl isobutyl ketone and is then stripped with ethylenediaminetetraacetic acid into the aqueous phase. Aliquots of this solution are pipetted into the graphite furnace and dried, charred, and atomized in an automated sequence. Atomic absorbance at the Bi 223.1-nm line provides a measure of the amount of bismuth present. Results are presented for 14 U.S. Geological Survey standard rocks. ?? 1979.

  17. Exploiting Chemistry to Improve Performance of Screen-Printed, Bismuth Film Electrodes (SP-BiFE)

    PubMed Central

    Dossi, Carlo; Monticelli, Damiano; Pozzi, Andrea; Recchia, Sandro

    2016-01-01

    Mercury substitution is a big issue in electroanalysis, and the search for a suitable, and less toxic, replacement is still under development. Of all the proposed alternatives, bismuth films appear to be the most viable solution, although they are still suffering some drawbacks, particularly the influence of deposition conditions and linearity at low concentrations. In this paper, the most promising strategies for bismuth film deposition on screen-printed electrodes (surface modifications, polymeric film deposition, insoluble salt precursors) will be evaluated for trace metal analysis. Particular attention will be devoted to bismuth chemistry, aiming to rationalize their electroanalytic performance. PMID:27455338

  18. Exploiting Chemistry to Improve Performance of Screen-Printed, Bismuth Film Electrodes (SP-BiFE).

    PubMed

    Dossi, Carlo; Monticelli, Damiano; Pozzi, Andrea; Recchia, Sandro

    2016-01-01

    Mercury substitution is a big issue in electroanalysis, and the search for a suitable, and less toxic, replacement is still under development. Of all the proposed alternatives, bismuth films appear to be the most viable solution, although they are still suffering some drawbacks, particularly the influence of deposition conditions and linearity at low concentrations. In this paper, the most promising strategies for bismuth film deposition on screen-printed electrodes (surface modifications, polymeric film deposition, insoluble salt precursors) will be evaluated for trace metal analysis. Particular attention will be devoted to bismuth chemistry, aiming to rationalize their electroanalytic performance. PMID:27455338

  19. Bismuth nitrate-induced microwave-assisted expeditious synthesis of vanillin from curcumin

    PubMed Central

    2012-01-01

    Background Curcumin and vanillin are the two useful compounds in food and medicine. Bismuth nitrate pentahydrate is an economical and ecofriendly reagent. Method Bismuth nitrate pentahydrate impregnated montmorillonite KSF clay and curcumin were subjected to microwave irradiation. Results Microwave-induced bismuth nitrate-promoted synthesis of vanillin from curcumin has been accomplished in good yield under solvent-free condition. Twenty-five different reaction conditions have been studied to optimize the process. Conclusion The present procedure for the synthesis of vanillin may find useful application in the area of industrial process development. PMID:22519970

  20. Measurement of partial L fluorescence yields of bismuth using synchrotron radiation.

    PubMed

    Ménesguen, Yves; Boyer, Bruno; Rodrigues, Matias; Lépy, Marie-Christine

    2016-03-01

    Tunable monochromatic photon radiation was used to measure transmission of a bismuth target in the energy range from 7keV to 20keV. Partial L fluorescence yields of bismuth were obtained by combining measurement of the fluorescence induced by photoionization of the bismuth target and X-rays from the radioactive decay of (210)Pb. Several photon energies have been used to successively ionize the L subshells, which allowed detailed analysis of the rearrangement spectra and determination of the X-ray relative intensities of the L1, L2 and L3 series. PMID:26651165

  1. Oxidation mechanism of formic acid on the bismuth adatom-modified Pt(111) surface.

    PubMed

    Perales-Rondón, Juan Victor; Ferre-Vilaplana, Adolfo; Feliu, Juan M; Herrero, Enrique

    2014-09-24

    In order to improve catalytic processes, elucidation of reaction mechanisms is essential. Here, supported by a combination of experimental and computational results, the oxidation mechanism of formic acid on Pt(111) electrodes modified by the incorporation of bismuth adatoms is revealed. In the proposed model, formic acid is first physisorbed on bismuth and then deprotonated and chemisorbed in formate form, also on bismuth, from which configuration the C-H bond is cleaved, on a neighbor Pt site, yielding CO2. It was found computationally that the activation energy for the C-H bond cleavage step is negligible, which was also verified experimentally. PMID:25188779

  2. PRODUCTION OF PLUTONIUM FLUORIDE FROM BISMUTH PHOSPHATE PRECIPITATE CONTAINING PLUTONIUM VALUES

    DOEpatents

    Brown, H.S.; Bohlmann, E.G.

    1961-05-01

    A process is given for separating plutonium from fission products present on a bismuth phosphate carrier. The dried carrier is first treated with hydrogen fluoride at between 500 and 600 deg C whereby some fission product fluorides volatilize away from plutonium tetrafluoride, and nonvolatile fission product fluorides are formed then with anhydrous fluorine at between 400 and 500 deg C. Bismuth and plutonium distill in the form of volatile fluorides away from the nonvolatile fission product fluorides. The bismuth and plutonium fluorides are condensed at below 290 deg C.

  3. Thin Clouds

    Atmospheric Science Data Center

    2013-04-18

    ... their delicate appearance, thin, feathery clouds of ice crystals called cirrus may contribute to global warming. Some scientists ... July 9, 2002 - Thin, feathery clouds of ice crystals over the Caribbean Sea. project:  MISR ...

  4. Optical Properties of Nanoscale Bismuth Selenide and Its Heterocrystals

    NASA Astrophysics Data System (ADS)

    Vargas, Anthony

    Over the past 12 years since the groundbreaking work on graphene, the field of 2D layered materials has grown by leaps and bounds as more materials are theoretically predicted and experimentically verified. These materials and their unique electronic, optical, and mechanical properties have inspired the scientific community to explore and investigate novel, fundamental physical phenomena as well create and refine technological devices which leverage the host of unique benefits which these materials possess. In the past few years, this burgeoning field has heavily moved towards combining layers of various materials into novel heterostructures. These heterostructures are an exciting area of research because of the plethora of exciting possibilities and results which arise due to the large number of heterostructure combinations and configurations. Particularly, the research into the optical properties of these layered materials and their heterostructures under confinement provides another exciting avenue for developing optoelectric devices. In this dissertation, I present work on the synthesis of Bi2Se 3 nanostructures via chemical vapor deposition (CVD) and the study of the optical properties of these nanostructures and their heterostructures with MoS2. The bulk of the current published work on Bi2Se 3 has focused on the exotic topological properties of its surface states, both interesting fundamental physics purposes as well as for studying avenues for spintronics. In contrast, the work presented here focuses on studying the optical properties of Bi2Se3 nanostructures and how these properties evolve when subjected to confinement. Specifically, the absorbance of singlecrystal Bi2Se3 with sizes tailored down to a few nanometers in diameter and a few quintuple layers (QLs) in thickness. We find a dramatically large bandgap, Eg ≥ 2.5 eV, in the smallest particles which is much higher than that seen in 1QL measurements taken with ARPES. Additionally, utilizing

  5. Application of HTSC-thin films in microwave integrated delay lines

    NASA Astrophysics Data System (ADS)

    Jha, A. R.

    This paper reveals unique capabilities of High-Temperature Superconducting Thin Films (HTSTF) for possible application in microwave integrated delay lines. HTSTF can be characterized as Thin Film Microstrip (TFMS) lines operating at superconducting temperatures. Low insertion loss, minimum signal delay, and small power dissipation are possible with HTSTF delay lines. The conductor loss, dielectric loss, signal distortion, signal delay, and instantaneous bandwidth are dependent on the film thickness, superconducting film material, and substrate properties. Thin films of Yttrium Barium Copper Oxide (YBCO), Bismuth Strontium Calcium Copper Oxide (BSCCO), and Thallium Calcium Barium Copper Oxide (TCBCO) appear to be most suitable for microwave integrated delay lines.

  6. Multiwavelength excitation Raman scattering of Cu{sub 2}ZnSn(S{sub x}Se{sub 1−x}){sub 4} (0 ≤ x ≤ 1) polycrystalline thin films: Vibrational properties of sulfoselenide solid solutions

    SciTech Connect

    Dimitrievska, Mirjana; Xie, Haibing; Fairbrother, Andrew; Fontané, Xavier; Saucedo, Edgardo; Izquierdo-Roca, Victor; Gurieva, Galina; Pérez-Rodríguez, Alejandro; Schorr, Susan

    2014-07-21

    In this work, Raman spectroscopy and X-ray diffraction were applied together to evaluate the crystal structure and the phonon modes of photovoltaic grade Cu{sub 2}ZnSn(S{sub x}Se{sub 1−x}){sub 4} thin films, leading to a complete characterization of their structural and vibrational properties. Vibrational characterization has been based on Raman scattering measurements performed with different excitation wavelengths and polarization configurations. Analysis of the experimental spectra has permitted identification of 19 peaks, which positions are in good accord with theoretical predictions. Besides, the observation of Cu{sub 2}ZnSnS{sub 4}-like A symmetry peaks related to S vibrations and Cu{sub 2}ZnSnSe{sub 4}-like A symmetry peaks related to Se vibrations, additional Raman peaks, characteristic of the solid solution and previously not reported, are observed, and are attributed to vibrations involving both S and Se anions.

  7. The experience in handling of lead-bismuth coolant contaminated by Polonium-210

    SciTech Connect

    Pankratov, D.V.; Gromov, B.F.; Solodjankin, M.A.

    1993-12-31

    During exploitation of lead-bismuth cooled reactors a wide experience in handling of radioactive coolant containing polonium has been gained. By 1990 total time of this reactor operation has reached approximately 60 reactor years.

  8. Facile synthesis and shape control of bismuth nanoflowers induced by surfactants

    NASA Astrophysics Data System (ADS)

    Dai, Yunrong; Song, Yonghui

    2014-01-01

    Several nano-sized bismuth materials with different shapes were fabricated using ionic/nonionic surfactant as a synthesis agent. Ionic surfactants brought about the formation of irregular nanoparticles while nonionic surfactants directed the synthesis of uniform hexagonal nanoprisms. Among them, the nonionic surfactant Pluronic P123 (poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide), PEO20PPO70PEO20) could act as the reductant/shape-directing bifunctional agent for successfully reducing Bi3+ to Bi0 and inducing many hexagonal nanoprisms to grow from one crystal seed and finally form the graceful bismuth nanoflowers. The molding mechanism of bismuth nanoflowers might be attributed to the accommodation, stabilization and induction effects of P123 micelles for bismuth crystal seeds.

  9. In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Sepulveda-Guzman, S.; Elizondo-Villarreal, N.; Ferrer, D.; Torres-Castro, A.; Gao, X.; Zhou, J. P.; Jose-Yacaman, M.

    2007-08-01

    In this work, bismuth nanoparticles were synthesized when a precursor, sodium bismuthate, was exposed to an electron beam at room temperature in a transmission electron microscope (TEM). The irradiation effects were investigated in situ using selected-area electron diffraction, high-resolution transmission electron microscopy and x-ray energy dispersive spectroscopy. After the electron irradiation, bismuth nanoparticles with a rhombohedral structure and diameter of 6 nm were observed. The average particle size increased with the irradiation time. The electron-induced reduction is attributed to the desorption of oxygen ions. This method offers a one-step route to synthesize bismuth nanoparticles using electron irradiation, and the particle size can be controlled by the irradiation time.

  10. Spectral behaviour of bismuth centres in different steps of the FCVD process

    SciTech Connect

    Zlenko, Alexander S; Mashinsky, Valerii M; Iskhakova, L D; Ermakov, R P; Semjonov, S L; Koltashev, V V

    2013-07-31

    The behaviour of bismuth ions in silica glass free of other dopants has been studied in different steps of the furnace chemical vapour deposition (FCVD) process. Porous layers annealed and consolidated in different atmospheres, a bismuth chloride solution in acetone for porous layer impregnation, the resultant glass preform and holey fibres drawn out under various conditions have been characterised by spectroscopic techniques and X-ray diffraction. Active bismuth centres present in the preform and luminescing in the visible and IR spectral regions persist during drawing under reducing conditions, whereas drawing under oxidising conditions eliminates such centres. Annealing under reducing conditions produces absorption bands of IR-emitting bismuth centres (IRBCs) in spectra of fibres drawn out under oxidising conditions and concurrently increases the background loss. Under the annealing conditions of this study (argon atmosphere, T{sub max} = 1100 Degree-Sign C, 30 min), the IRBC concentration reaches a maximum and then decreases, whereas the background loss increases monotonically. (fiber optics)

  11. METHOD FOR RECOVERING PLUTONIUM VALUES FROM SOLUTION USING A BISMUTH HYDROXIDE CARRIER PRECIPITATE

    DOEpatents

    Faris, B.F.

    1961-04-25

    Carrier precipitation processes for separating plutonium values from aqueous solutions are described. In accordance with the invention a bismuth hydroxide precipitate is formed in the plutonium-containing solution, thereby carrying plutonium values from the solution.

  12. Corrosion by liquid lead and lead-bismuth: experimental results review and analysis

    SciTech Connect

    Zhang, Jinsuo

    2008-01-01

    Liquid metal technologies for liquid lead and lead-bismuth alloy are under wide investigation and development for advanced nuclear energy systems and waste transmutation systems. Material corrosion is one of the main issues studied a lot recently in the development of the liquid metal technology. This study reviews corrosion by liquid lead and lead bismuth, including the corrosion mechanisms, corrosion inhibitor and the formation of the protective oxide layer. The available experimental data are analyzed by using a corrosion model in which the oxidation and scale removal are coupled. Based on the model, long-term behaviors of steels in liquid lead and lead-bismuth are predictable. This report provides information for the selection of structural materials for typical nuclear reactor coolant systems when selecting liquid lead or lead bismuth as heat transfer media.

  13. Alkaline extraction of polonium from liquid lead bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Heinitz, S.; Neuhausen, J.; Schumann, D.

    2011-07-01

    The production of highly radiotoxic polonium isotopes poses serious safety concerns for the development of future nuclear systems cooled by lead bismuth eutectic (LBE). In this paper it is shown that polonium can be extracted efficiently from LBE using a mixture of alkaline metal hydroxides (NaOH + KOH) in a temperature range between 180 and 350 °C. The extraction ratio was analyzed for different temperatures, gas blankets and phase ratios. A strong dependence of the extraction performance on the redox properties of the cover gas was found. While hydrogen facilitates the removal of polonium, oxygen has a negative influence on the extraction. These findings open new possibilities to back up the safety of future LBE based nuclear facilities.

  14. Dielectric behavior of barium modified strontium bismuth titanate ceramic

    SciTech Connect

    Nayak, P.; Badapanda, T.; Anwar, S.; Panigrahi, S.

    2014-04-24

    Barium Modified Strontium Bismuth Titanate(SBT) ceramic with general formula Sr1−xBaxBi4Ti4O15 is prepared by solid state reaction route. The structural analysis of the ceramics was done by X-ray diffraction technique. The X-ray patterns show that all the compositions are of single phase with orthorhombic structure. The temperature dependent dielectric behavior shows that the transition temperature decreases with Ba content but the maximum dielectric constant increases. The decreases of the transition with increase in Ba{sup 2+} ion, may be due to the decrease of orthorhombicity by the incorporation of Ba{sup 2+} ion in SBT lattice.

  15. High thermoelectric performance of the distorted bismuth(110) layer.

    PubMed

    Cheng, L; Liu, H J; Zhang, J; Wei, J; Liang, J H; Jiang, P H; Fan, D D; Sun, L; Shi, J

    2016-07-14

    The thermoelectric properties of the distorted bismuth(110) layer are investigated using first-principles calculations combined with the Boltzmann transport equation for both electrons and phonons. To accurately predict the electronic and transport properties, the quasiparticle corrections with the GW approximation of many-body effects have been explicitly included. It is found that a maximum ZT value of 6.4 can be achieved for n-type systems, which essentially stemmed from the weak scattering of electrons. Moreover, we demonstrate that the distorted Bi layer retains high ZT values in relatively broad regions of both temperature and carrier concentration. Our theoretical work emphasizes that the deformation potential constant characterizing the electron-phonon scattering strength is an important paradigm for searching high thermoelectric performance materials. PMID:27302907

  16. Bound excitons at nitrogen and bismuth isoelectronic impurities

    NASA Astrophysics Data System (ADS)

    Christian, Theresa; Alberi, Kirstin; Beaton, Daniel; Fluegel, Brian; Mascarenhas, Angelo

    When nitrogen and bismuth dopants are simultaneously incorporated into a host lattice such as gallium arsenide (GaAs) or gallium phosphide (GaP), each dopant species contributes to the evolution of the electronic structure. Bound excitons in these systems luminescence from localized states whose distinctive radiative signatures provide invaluable clues into the nature of impurity clustering and inter-impurity interactions within the host lattice. Spectroscopic studies of these states will be presented for a series of samples grown by molecular beam epitaxy. Research was supported by the U. S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC36-08GO28308 and by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under Contract No. DE-AC05-06OR23100.

  17. Ni-rich precipitates in a lead bismuth eutectic loop

    NASA Astrophysics Data System (ADS)

    Kikuchi, K.; Saito, S.; Hamaguchi, D.; Tezuka, M.

    2010-03-01

    Solidified LBE was sampled from the specimens, electro-magnetic pump, filter, drain valve and oxygen sensor at the JAEA Lead Bismuth Loop-1 (JLBL-1) where the structural material was made of SS316. The concentration of Ni, Fe and Cr in LBE were analyzed by the Inductive Coupled Plasma atomic emission spectrometer. It was concluded that the solution of Ni into LBE was not saturated although the concentration of Fe and Cr almost achieved to the values in the literature. A needle-type structure appeared on the surface of solidified LBE inside the tube specimens. It was found to be Ni-rich precipitates by X-ray analyses (Field Emission Scanning Electron Microscope, FE-SEM). LBE samples collected from a circulating loop after discharging did not show the amount of impurities equivalent to the LBE bulk property.

  18. Bismuth-doped Mg - Al silicate glasses and fibres

    SciTech Connect

    Bufetov, Igor' A; Vel'miskin, V V; Galagan, B I; Denker, B I; Sverchkov, S E; Semjonov, S L; Firstov, Sergei V; Shulman, I L; Dianov, Evgenii M

    2012-09-30

    This paper compares the optical properties of bulk bismuth-doped Mg - Al silicate glasses prepared in an iridium crucible to those of optical fibres prepared by the powder-in-tube method and having a core identical in composition to the glasses. The bulk glasses and fibres are shown to be similar in luminescence properties. The optical loss in the fibres in their IR luminescence band is about one order of magnitude lower than that in the crucible-melted glasses. The level of losses in the fibres and their luminescence properties suggest that such fibres can be made to lase near 1.15 {mu}m. (optical fibres, lasers and amplifiers. properties and applications)

  19. Solubility of gallium arsenide in bismuth-gallium melts

    SciTech Connect

    Yakusheva, N.A.; Chikichev, S.I.

    1988-03-01

    The solubility of GaAs in melts of the system Bi-Ga at 700, 800, and 850/degree/C was determined. For all isotherms of the liquids the existence of a maximum for a Bi concentration in the solvent of approx. 85 at. % and a maximum in the case of a bismuth concentration of approx. 10 at. % are characteristic. The experimental data do not agree with calculations based on the model of regularly associated solutions. For the quasibinary system Bi-GaAs the solubility of As in the interval 600-900/degree/C is described by the expression C/sub As/ = 1.1 /times/ 10/sup /minus/5/ /times/ exp (9.45 /times/ 10/sup /minus/3/ /times/ t) atomic fractions.

  20. Compatibility of structural materials with liquid bismuth, lead, and mercury

    SciTech Connect

    Weeks, J.R.

    1996-06-01

    During the 1950s and 1960s, a substantial program existed at Brookhaven National Laboratory as part of the Liquid Metal Fuel reactor program on the compatibility of bismuth, lead, and their alloys with structural materials. Subsequently, compatibility investigations of mercury with structural materials were performed in support of development of Rankine cycle mercury turbines for nuclear applications. The present talk will review present understanding of the corrosion/mass-transfer reactions of structural materials with these liquid metal coolants. Topics to be discussed include the basic solubility relationships of iron, chromium, nickel, and refractory metals in these liquid metals, the results of inhibition studies, the role of oxygen on the corrosion processes, and specialized topics such as cavitation-corrosion and liquid metal embrittlement. Emphasis will be placed on utilizing the understanding gained in this earlier work on the development of heavy liquid metal targets in spallation neutron sources.

  1. Process dependent thermoelectric properties of EDTA assisted bismuth telluride

    NASA Astrophysics Data System (ADS)

    Kulsi, Chiranjit; Kargupta, Kajari; Banerjee, Dipali

    2016-04-01

    Comparison between the structure and thermoelectric properties of EDTA (Ethylene-diamine-tetra-acetic acid) assisted bismuth telluride prepared by electrochemical deposition and hydrothermal route is reported in the present work. The prepared samples have been structurally characterized by high resolution X-ray diffraction spectra (HRXRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopic images (HRTEM). Crystallite size and strain have been determined from Williamson-Hall plot of XRD which is in conformity with TEM images. Measurement of transport properties show sample in the pellet form (S1) prepared via hydrothermal route has higher value of thermoelectric power (S) than the electrodeposited film (S2). But due to a substantial increase in the electrical conductivity (σ) of the film (S2) over the pellet (S1), the power factor and the figure of merit is higher for sample S2 than the sample S1 at room temperature.

  2. Structural properties of bismuth-bearing semiconductor alloys

    NASA Technical Reports Server (NTRS)

    Berding, M. A.; Sher, A.; Chen, A.-B.; Miller, W. E.

    1988-01-01

    The structural properties of bismuth-bearing III-V semiconductor alloys InPBi, InAsBi, and InSbBi were studied theoretically. Bond energies, bond lengths, and strain coefficients were calculated for pure AlBi, GaBi, and InBi compounds and their alloys, and predictions were made for the mixing enthalpies, miscibility gaps, and critical metastable-to-stable material transition temperatures. Miscibility calculations indicate that InSbBi will be the most miscible, and the InPBi will be the the most difficult to mix. However, calculations of the hardness of the Bi compounds indicate that, once formed, the InPBi alloy will be harder than the other Bi alloys and substantially harder than the currently favored narrow-gap semiconductor HgCdTe.

  3. Terahertz radiation from bismuth surface induced by femtosecond laser pulses.

    PubMed

    Ilyakov, I E; Shishkin, B V; Fadeev, D A; Oladyshkin, I V; Chernov, V V; Okhapkin, A I; Yunin, P A; Mironov, V A; Akhmedzhanov, R A

    2016-09-15

    We report on the first experimental observation of terahertz (THz) wave generation from bismuth mono- and polycrystalline samples irradiated by femtosecond laser pulses. Dependencies of the THz signal on the crystal orientation, optical pulse energy, incidence angle, and polarization are presented and discussed together with features of the sample surfaces. The optical-to-THz conversion efficiency was up to two orders of magnitude higher than for metal at a moderate fluence of ∼1  mJ/cm2. We also found nonlinear effects not previously observed using other metal and semiconductor materials: (a) asymmetry of THz response with respect to a half-turn of a sample around its normal, (b) THz polarization control by orientation of the sample surface, and PMID:27628379

  4. Sn-doped bismuth telluride nanowires with high conductivity.

    PubMed

    Mi, Gang; Li, Likai; Zhang, Yuanbo; Zheng, Gengfeng

    2012-10-21

    Bismuth telluride (Bi(2)Te(3)) nanowires with sub-100 nm diameters were synthesized by Au-Sn co-catalyzed chemical vapor deposition. These Bi(2)Te(3) nanowires were single crystals with a hexagonal lattice. The Sn catalyst played a key role in achieving the one-dimensional nanowire structures, while the absence of Sn resulted in other morphologies such as nanoplates, nanooctahedrons and nanospheres. Raman spectra revealed that compared to the Bi(2)Te(3) bulk materials, the Bi(2)Te(3) nanowires displayed an A(1u) spectral peak, implying the breaking of symmetry. The temperature-dependent electrical measurement indicated that these Sn-doped Bi(2)Te(3) nanowires were metallic, with a high conductivity of 1.6 × 10(5) S m(-1) at 300 K. PMID:22990308

  5. Methane oxidative coupling over nonstoichiometric bismuth -tin pyrochlore catalysts

    SciTech Connect

    Mims, C.A.; Hall, R.B.; Lewandowski, J.T.

    1995-05-01

    A series of expanded pyrochlore oxides Bi{sub 2}Sn{sub 2{minus}x}Bi{sub x}O{sub 7{minus}x/2} (O{le} x {le} 0.86) was synthesized and the influence of their composition on their performance as methane coupling catalysts was examined. A trend to higher selectivity and lower activity accompanies increases in x. However, analysis of the kinetic data by a simple procedure which separates the catalyst activity and selectivity shows that all the catalysts have similar intrinsic surface selectivities, independent of composition. The trend in observed selectivity is an indirect effect of variations in activity. The similarity in surface selectivity is attributed to the formation of a bismuth-oxide-rich surface layer in all materials upon heating to reaction temperatures. 47 refs., 10 figs., 1 tab.

  6. Luminescence of erbium-doped bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Oprea, Isabella-Ioana; Hesse, Hartmut; Betzler, Klaus

    2006-07-01

    Absorption and luminescence properties of erbium ions in the binary glass system bismuth oxide (Bi 2O 3)-boric oxide (B 2O 3) are measured for the composition range 25-65 mol% Bi 2O 3. A Judd-Ofelt analysis of the typical erbium bands in the absorption spectra reveals comparably high Judd-Ofelt coefficients. This indicates a substantial mixing of other electronic configuration into the 4f N configuration by the random crystal fields in the glasses. All coefficients are decreasing with increasing Bi 2O 3 content, this effect being most pronounced with Ω2. Luminescence decay times and radiative efficiencies show an expressed dependence on the glass composition. Radiative efficiencies of all luminescence bands increase with increasing Bi 2O 3 content—accompanied, however, by a slight narrowing of the bands. Except the common luminescence bands of erbium, upconversion luminescence at a wavelength of 0.54 μm could be detected.

  7. Structural investigation of Zn doped sodium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Bhatia, V.; Kumar, D.; Singh, D.; Singh, S. P.

    2016-05-01

    A series of Bismuth Borate Oxide Glass samples with composition x(ZnO):(15-x)Na2O:15Bi2O3:70B2O3 (variation in x is from 6 to 12 mole %) have been prepared by conventional melt quenching technique. All the chemicals used were of Analytical Grade. In order to verify the amorphous nature of the prepared samples the X-Ray Diffraction (XRD) was done. The physical and structural properties have been explored by using the techniques such as density, molar volume and FTIR in order to understand the effect of alkali and transition metal ions on the structure of these glasses. The results obtained by these techniques are in good agreement to one another and with literature as well. With the increase in the content of ZnO, the increase in density and some variations in structural coordination (ratio of BO3 & BO4 structural units) have been observed.

  8. Comparison of radiation shielding ratios of nano-sized bismuth trioxide and molybdenum

    NASA Astrophysics Data System (ADS)

    Cho, J. H.; Kim, M. S.; Rhim, J. D.

    2015-07-01

    In this study, radiation shielding fibers using non-hazardous nano-sized bismuth trioxide and molybdenum instead of lead were developed and evaluated. Among the elements with high densities and atomic numbers, non-hazardous elements such as bismuth trioxide and molybdenum were chosen as a shielding element. Then, bismuth trioxide (Bi2O3) with average particle size 1-500 µm was ball milled for 10 min to produce a powdered form of nanoparticles with average particle size of 10-100 nm. Bismuth trioxide nanoparticles were dispersed to make a colloidal suspension, followed by spreading and hardening onto one or two sides of fabric, to create the radiation shielding fabric. The thicknesses of the shielding sheets using nano-sized bismuth and molybdenum were 0.4 and 0.7 mm. According to the lead equivalent test of X-ray shielding products suggested by KS, the equivalent dose was measured, followed by calculation of the shielding rate. The shielding rate of bismuth with 0.4 mm thickness and at 50 kVp was 90.5%, which is comparable to lead of 0.082 mm thickness. The shielding rate of molybdenum was 51.89%%, which is comparable to lead of 0.034 mm. At a thickness of 0.7 mm, the shielding rate of bismuth was 98.73%, equivalent to 0.101 mm Pb, whereas the shielding rate of molybdenum was 74.68%, equivalent to 0.045 mm Pb. In conclusion, the radiation shielding fibers using nano-sized bismuth developed in this study are capable of reducing radiation exposure by X-ray and its low-dose scatter ray.

  9. Collective charge excitations along cell membranes

    NASA Astrophysics Data System (ADS)

    Manousakis, E.

    2005-07-01

    A significant part of the thin layers of counter-ions adjacent to the exterior and interior surfaces of a cell membrane form quasi-two-dimensional (2D) layers of mobile charge. Collective charge density oscillations, known as plasmon modes, in these 2D charged systems of counter-ions are predicted in the present paper. This is based on a calculation of the self-consistent response of this system to a fast electric field fluctuation. The possibility that the membrane channels might be using these excitations to carry out fast communication is suggested and experiments are proposed to reveal the existence of such excitations.

  10. Polonium problem in lead-bismuth flow target

    SciTech Connect

    Pankratov, D.V.; Yefimov, E.I.; Bugreev, M.I.

    1996-06-01

    Alpha-active polonium nuclides Po198 - Po210 are formed in a lead-bismuth target as results of reactions Bi{sup 209}(n,{gamma})Bi{sup 210} {yields} Po{sup 210}, Bi{sup 209}(p,xn)Po{sup 210} {yields} Po{sup 210 {minus} x} (x = 1-12), Pb{sup 208}({alpha},xn) {yields} Po{sup 210 {minus} x + 2} (x = 2-14). The most important nuclides are Po-210 (T{sub {1/2}}=138.4 day), Po-209 (T{sub {1/2}}=102 years) and Po-208 (T{sub {1/2}}=2.9 years). Polonium activity of the circuit for SINQ - conditions is about 15,000 Ci after 1-year operation. Polonium radiation hazard is connected with its output from the coolant and formation of aerosol and surface alpha-activity after the circuit break-down for repair works or in accidents. One of the important issues of polonium removal system creation is containing and storing polonium removed. Its storage in solidified alkaline is not expedient because of secondary neutron formation as a result of ({alpha},n) - reaction on oxygen and sodium nucleus. The estimations carried out demonstrated that by polonium concentration {approx} 100 Ci/l neutron current on the container surface can reach {approx} 10{sup 4}n/(cm{sup 2}s). Concentration and storage of polonium in solidified lead-bisumth seems the most convenient. The calculations demonstrated that in a 100 l container 50,000 Ci of polonium can be stored (as much as 3 times more than 1-year polonium product in SINQ-conditions) under temperature in the container less than melting point of lead bismuth (the wall temperature is about 100{degrees}C).

  11. Acoustically excited heated jets. 1: Internal excitation

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Salikuddin, M.; Morris, P. J.

    1988-01-01

    The effects of relatively strong upstream acoustic excitation on the mixing of heated jets with the surrounding air are investigated. To determine the extent of the available information on experiments and theories dealing with acoustically excited heated jets, an extensive literature survey was carried out. The experimental program consisted of flow visualization and flowfield velocity and temperature measurements for a broad range of jet operating and flow excitation conditions. A 50.8-mm-diam nozzle was used for this purpose. Parallel to the experimental study, an existing theoretical model of excited jets was refined to include the region downstream of the jet potential core. Excellent agreement was found between theory and experiment in moderately heated jets. However, the theory has not yet been confirmed for highly heated jets. It was found that the sensitivity of heated jets to upstream acoustic excitation varies strongly with the jet operating conditions and that the threshold excitation level increases with increasing jet temperature. Furthermore, the preferential Strouhal number is found not to change significantly with a change of the jet operating conditions. Finally, the effects of the nozzle exit boundary layer thickness appear to be similar for both heated and unheated jets at low Mach numbers.

  12. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm

    PubMed Central

    Hernandez-Delgadillo, Rene; Velasco-Arias, Donaji; Diaz, David; Arevalo-Niño, Katiushka; Garza-Enriquez, Marianela; De la Garza-Ramos, Myriam A; Cabral-Romero, Claudio

    2012-01-01

    Background and methods Despite continuous efforts, the increasing prevalence of resistance among pathogenic bacteria to common antibiotics has become one of the most significant concerns in modern medicine. Nanostructured materials are used in many fields, including biological sciences and medicine. While some bismuth derivatives has been used in medicine to treat vomiting, nausea, diarrhea, and stomach pain, the biocidal activity of zerovalent bismuth nanoparticles has not yet been studied. The objective of this investigation was to analyze the antimicrobial activity of bismuth nanoparticles against oral bacteria and their antibiofilm capabilities. Results Our results showed that stable colloidal bismuth nanoparticles had 69% antimicrobial activity against Streptococcus mutans growth and achieved complete inhibition of biofilm formation. These results are similar to those obtained with chlorhexidine, the most commonly used oral antiseptic agent. The minimal inhibitory concentration of bismuth nanoparticles that interfered with S. mutans growth was 0.5 mM. Conclusion These results suggest that zerovalent bismuth nanoparticles could be an interesting antimicrobial agent to be incorporated into an oral antiseptic preparation. PMID:22619547

  13. Viability of Bismuth as a Green Substitute for Lead in Jacketed .357 Magnum Revolver Bullets

    NASA Astrophysics Data System (ADS)

    Jenkins, Joel

    In seeking to develop environmentally friendly lead-free non-toxic bullets, the research ballistically evaluated the performance of copper-jacketed handgun bullets containing a pure bismuth core. The lead was first removed from 140 grain Hornady(TM) XTPRTM bullets of 38 caliber (.357 diameter) by melting. The empty jackets were then refilled with pure bismuth, including the forming of a correctly sized hollow-point cavity. Due to the lower density of bismuth as compared to lead, the bismuth-cored bullets consistently weighed 125 gains. Conveniently this allowed direct comparison to commercially available 125 grain Hornady(TM) XTPRTM lead-cored bullets of 38 caliber. Both bismuth-cored and lead-cored versions of the 125 grain bullets had identical nose dimensions and jacket material, the only dimensional difference being the bullet length below the cannelure. Shooting took place at an outdoor range using a 357 Magnum Ruger(TM) SP101RTM revolver with 3" barrel as the test weapon. FBI protocols were followed when firing through clothing, wallboard, plywood, steel plates and laminated glass. Wound paths and bullets were captured in ballistic gelatin, with data collected for velocity, penetration, expansion, and weight retention. Bismuth compared favorably with lead in all but the laminated glass test, where it under penetrated due to jacket separation.

  14. Transport Properties of Thin Bismuth Films on InP (110) Surfaces by Scanning Tunneling Potentiometry

    NASA Astrophysics Data System (ADS)

    Feenstra, R. M.; Briner, B. G.; Chin, T. P.; Woodall, J. M.

    1996-03-01

    Charge transport in 20--30 Å thick Bi-films is studied by scanning tunneling potentiometry (STP) at room temperature. The Bi is deposited on cleaved InP(110) surfaces at temperatures near 140 K, yielding atomically flat films interspersed with 12 Å deep holes. The InP substrates contain conducting/insulating/conducting layers, which in cross-section are used to form contacts to the film, thus enabling lateral current densities as high as 8 × 10^6 A/cm^2 . Potential variations due to scattering of this lateral current is detected using STP, by locating the zero-crossing of current-voltage characteristics at each pixel in an image. Potential images reveal, on a coarse scale, a smooth ramp arising from the electric field due to phonon scattering in the film, from which an electron-phonon scattering length of >1000 Å is deduced. On a finer scale, potential steps 2--10 mV high are seen near surface holes and grain boundaries in the film. Detailed study of the ballistic scattering near the holes reveals a dipole shaped feature, which is identified as a residual resistivity dipole. *present address: Physics, Carnegie Mellon Univ., Pittsburgh PA 15213 **now at: Fritz-Haber-Institut, 14195 Berlin, briner@fhi-berlin.mpg.de

  15. thin films by an hybrid deposition configuration: pulsed laser deposition and thermal evaporation

    NASA Astrophysics Data System (ADS)

    Escobar-Alarcón, L.; Solís-Casados, D. A.; Perez-Alvarez, J.; Romero, S.; Morales-Mendez, J. G.; Haro-Poniatowski, E.

    2014-10-01

    The aim of this work was to report the application of an hybrid deposition configuration to deposit Titanium dioxide (TiO2) thin films modified with different amounts of bismuth (Bi:TiO2). The samples were synthesized combining a TiO2 laser ablation plasma with a flux of vapor of bismuth produced by thermal evaporation. By varying the deposition rate of Bi it was possible to control the amount of Bi incorporated in the film and consequently the film properties. A detailed compositional, structural, and optical characterization by XPS, RBS, Raman spectroscopy, and UV-Vis spectrometry techniques is discussed. Photocatalytic response of the deposited thin films was studied through the degradation of a malachite green solution.

  16. Low-lying electronic states in bismuth trimer Bi₃ as revealed by laser-induced NIR emission spectroscopy in solid Ne.

    PubMed

    Wakabayashi, Tomonari; Wada, Yoriko; Nakajima, Kyo; Morisawa, Yusuke; Kuma, Susumu; Miyamoto, Yuki; Sasao, Noboru; Yoshimura, Motohiko; Sato, Tohru; Kawaguchi, Kentarou

    2015-03-19

    Laser-induced near-infrared (NIR) emission spectra of neutral bismuth timer, Bi₃, embedded in solid neon matrixes at 3 K were recorded in a range 870-1670 nm. Using photoexcitation with low energy photons at 1064 nm, two emission band systems were newly identified by their origin bands at T₀ = 6600 and 8470 cm⁻¹. Accordingly, spectral assignment for three NIR emission band systems reported recently was partly revised for the one with its origin band at T₀ = 7755 cm⁻¹ and reconfirmed for the others at T₀ = 9625 and 11,395 cm⁻¹. Energy splitting by spin-orbit coupling between the pair of electronic energy levels in the ground state of bismuth trimer, Bi₃, both having a totally symmetric vibrational mode of frequency at ω(e)" = 150 cm⁻¹, was determined to be 1870 ± 1.5 cm⁻¹. Transitions from the pair of electronically excited states, locating at T₀ = 8470 and 9625 cm⁻¹ above the ground state and separated by spin–orbit coupling of 1155 cm⁻¹, have relatively long decay constants of τ ∼0.2 and ∼0.1 ms, respectively. PMID:25357154

  17. Controlled electrodeposition of bismuth nanocatalysts for the solution-liquid-solid synthesis of CdSe nanowires on transparent conductive substrates.

    PubMed

    Reim, Natalia; Littig, Alexander; Behn, Dino; Mews, Alf

    2013-12-11

    Semiconductor nanowires (NWs) composed of cadmium selenide (CdSe) have been directly grown on transparent conductive substrates via the solution-liquid-solid (SLS) approach using electrodeposited bismuth nanoparticles (Bi NPs) as catalyst. Bi NPs were fabricated on indium tin oxide (ITO) surfaces from a bismuth trichloride solution using potentiostatic double-pulse techniques. The size and density of electrodeposited Bi NPs were controlled by the pulse parameters. Since the NW diameter is governed by the dimension of the Bi catalyst, the electrodeposition is a reliable method to synthesize nanowires directly on substrates with a desired size and density. We show that the density can be adjusted from individual NWs on several square micrometer to very dense NW networks. The diameter can be controlled between thick nanowires above 100 nm to very thin NW of 7 nm in diameter, which is well below the respective exciton dimension. Hence, especially the thinnest NWs exhibit diameter-dependent photoluminescence energies as a result of quantum confinement effects in the radial dimension.

  18. Controlled electrodeposition of bismuth nanocatalysts for the solution-liquid-solid synthesis of CdSe nanowires on transparent conductive substrates.

    PubMed

    Reim, Natalia; Littig, Alexander; Behn, Dino; Mews, Alf

    2013-12-11

    Semiconductor nanowires (NWs) composed of cadmium selenide (CdSe) have been directly grown on transparent conductive substrates via the solution-liquid-solid (SLS) approach using electrodeposited bismuth nanoparticles (Bi NPs) as catalyst. Bi NPs were fabricated on indium tin oxide (ITO) surfaces from a bismuth trichloride solution using potentiostatic double-pulse techniques. The size and density of electrodeposited Bi NPs were controlled by the pulse parameters. Since the NW diameter is governed by the dimension of the Bi catalyst, the electrodeposition is a reliable method to synthesize nanowires directly on substrates with a desired size and density. We show that the density can be adjusted from individual NWs on several square micrometer to very dense NW networks. The diameter can be controlled between thick nanowires above 100 nm to very thin NW of 7 nm in diameter, which is well below the respective exciton dimension. Hence, especially the thinnest NWs exhibit diameter-dependent photoluminescence energies as a result of quantum confinement effects in the radial dimension. PMID:24245969

  19. Dextran coated bismuth-iron oxide nanohybrid contrast agents for computed tomography and magnetic resonance imaging

    PubMed Central

    Naha, Pratap C.; Zaki, Ajlan Al; Hecht, Elizabeth; Chorny, Michael; Chhour, Peter; Blankemeyer, Eric; Yates, Douglas M.; Witschey, Walter R. T.; Litt, Harold I.; Tsourkas, Andrew; Cormode, David P.

    2014-01-01

    Bismuth nanoparticles have been proposed as a novel CT contrast agent, however few syntheses of biocompatible bismuth nanoparticles have been achieved. We herein report the synthesis of composite bismuth-iron oxide nanoparticles (BION) that are based on a clinically approved, dextran-coated iron oxide formulation; the particles have the advantage of acting as contrast agents for both CT and MRI. BION were synthesized and characterized using various analytical methods. BION CT phantom images revealed that the X-ray attenuation of the different formulations was dependent upon the amount of bismuth present in the nanoparticle, while T2-weighted MRI contrast decreased with increasing bismuth content. No cytotoxicity was observed in Hep G2 and BJ5ta cells after 24 hours incubation with BION. The above properties, as well as the yield of synthesis and bismuth inclusion efficiency, led us to select the Bi-30 formulation for in vivo experiments, performed in mice using a micro-CT and a 9.4 T MRI system. X-ray contrast was observed in the heart and blood vessels over a 2 hour period, indicating that Bi-30 has a prolonged circulation half-life. Considerable signal loss in T2-weighted MR images was observed in the liver compared to pre-injection scans. Evaluation of the biodistribution of Bi-30 revealed that bismuth is excreted via the urine, with significant concentrations found in the kidneys and urine. In vitro experiments confirmed the degradability of Bi-30. In summary, dextran coated BION are biocompatible, biodegradable, possess strong X-ray attenuation properties and also can be used as T2-weighted MR contrast agents. PMID:25485115

  20. Dextran coated bismuth-iron oxide nanohybrid contrast agents for computed tomography and magnetic resonance imaging.

    PubMed

    Naha, Pratap C; Zaki, Ajlan Al; Hecht, Elizabeth; Chorny, Michael; Chhour, Peter; Blankemeyer, Eric; Yates, Douglas M; Witschey, Walter R T; Litt, Harold I; Tsourkas, Andrew; Cormode, David P

    2014-12-14

    Bismuth nanoparticles have been proposed as a novel CT contrast agent, however few syntheses of biocompatible bismuth nanoparticles have been achieved. We herein report the synthesis of composite bismuth-iron oxide nanoparticles (BION) that are based on a clinically approved, dextran-coated iron oxide formulation; the particles have the advantage of acting as contrast agents for both CT and MRI. BION were synthesized and characterized using various analytical methods. BION CT phantom images revealed that the X-ray attenuation of the different formulations was dependent upon the amount of bismuth present in the nanoparticle, while T2-weighted MRI contrast decreased with increasing bismuth content. No cytotoxicity was observed in Hep G2 and BJ5ta cells after 24 hours incubation with BION. The above properties, as well as the yield of synthesis and bismuth inclusion efficiency, led us to select the Bi-30 formulation for in vivo experiments, performed in mice using a micro-CT and a 9.4 T MRI system. X-ray contrast was observed in the heart and blood vessels over a 2 hour period, indicating that Bi-30 has a prolonged circulation half-life. Considerable signal loss in T2-weighted MR images was observed in the liver compared to pre-injection scans. Evaluation of the biodistribution of Bi-30 revealed that bismuth is excreted via the urine, with significant concentrations found in the kidneys and urine. In vitro experiments confirmed the degradability of Bi-30. In summary, dextran coated BION are biocompatible, biodegradable, possess strong X-ray attenuation properties and also can be used as T2-weighted MR contrast agents.

  1. [Geochemical distribution of dissolved bismuth in the Yellow Sea and East China Sea].

    PubMed

    Wu, Xiao-Dan; Song, Jin-Ming; Wu, Bin; Li, Xue-Gang

    2014-01-01

    Occurrence level, geochemical distribution of dissolved bismuth and its coupling relationship to eco-environment were investigated in the Yellow Sea and East China Sea to explore the source and influencing factors. The results showed that the concentration of dissolved bismuth was within the range of 0-0. 029 microg x L(-1) at the surface and 0.001-0.189 microg x L(-1) at the bottom, with the averages of 0.008 and 0.016 microg x L(-1), respectively. Horizontally, low value of dissolved bismuth exhibited the bidirectional extension feature, indicating that it could trace the path of Changjiang Diluted Water. High value of dissolved bismuth was observed where the Subei Costal Current and Yellow Sea Warm Current flowed and the Changjiang Diluted Water and Zhejiang-Fujian Coastal Current met, suggesting that it was controlled by the cycle of current system. Vertically, the coastal water was fully mixed by water convection and eddy mixing, and was divided from the stratified water by strong tidal front, which blocked the transport of dissolved bismuth to the open sea. Thus, the concentration in front area was significantly higher than that in the open sea. Diurnal variation of dissolved bismuth was related to the hydrodynamic conditions (tide, suspension and thermocline) instead of the environmental factors (temperature and salinity). Positive relationship to SPM (suspended particulate matter) clarified that bismuth was prone to release from solid phase to liquid phase. Furthermore, conditions with temperature ranging 22-27 degrees C, salinity ranging 28-31 and pH ranging 7.9-8.1 were shown to be optimal for the release process.

  2. Comparison of Lead-Bismuth and Lead as Coolants for Accelerator Driven Systems

    SciTech Connect

    Bianchi, F.; Mattioda, F.; Meloni, P.

    2002-07-01

    In the framework of the Italian research program TRASCO (TRAsmutazione SCOrie, namely transmutation of radioactive wastes) and of the European research program PDS-XADS (Preliminary Design Study on an eXperimental Accelerator Driven System) the feasibility and operability of gas or liquid metal cooled accelerator driven system prototypes are currently under investigation. Initially the attention of the thermal-hydraulics group of ENEA research centre in Bologna has been focussed toward a lead-bismuth cooled subcritical system under natural or enhanced natural circulation according to the prototype design proposed. The interest in using lead as a coolant, which is characterized by a higher melting point, is explained by the need to increase the plant efficiency for the economic competitiveness, though the higher temperatures pose some technological problems. Moreover, the amount of activation products should result significantly lower. Of course the results obtained and the experience gained analysing the dynamical behaviour of the lead-bismuth cooled system cannot be directly transferred to lead cooled systems. This paper aims at presenting a preliminary comparison of lead-bismuth and lead in a simplified liquid metal cooled subcritical system, mainly from the thermal-hydraulics and system dynamics points of view. By means of the modified RELAP5 version, the dynamical behavior of a lead-bismuth or lead cooled system, which is intended to be a quite accurate representation of the Italian accelerator driven prototype XADS, has been studied. Although a more exhaustive comparison should take into account the necessarily different structural characteristics of lead-bismuth and lead cooled systems, the neutronic feedback on reactor power and also the slightly different neutronic properties of lead-bismuth and lead, the purely thermal-hydraulic analysis presented in this paper has shown that the dynamical behaviour of the XADS does not differ noticeable when lead is used

  3. "Safe" Coulomb excitation of 30Mg.

    PubMed

    Niedermaier, O; Scheit, H; Bildstein, V; Boie, H; Fitting, J; von Hahn, R; Köck, F; Lauer, M; Pal, U K; Podlech, H; Repnow, R; Schwalm, D; Alvarez, C; Ames, F; Bollen, G; Emhofer, S; Habs, D; Kester, O; Lutter, R; Rudolph, K; Pasini, M; Thirolf, P G; Wolf, B H; Eberth, J; Gersch, G; Hess, H; Reiter, P; Thelen, O; Warr, N; Weisshaar, D; Aksouh, F; Van den Bergh, P; Van Duppen, P; Huyse, M; Ivanov, O; Mayet, P; Van de Walle, J; Aystö, J; Butler, P A; Cederkäll, J; Delahaye, P; Fynbo, H O U; Fraile, L M; Forstner, O; Franchoo, S; Köster, U; Nilsson, T; Oinonen, M; Sieber, T; Wenander, F; Pantea, M; Richter, A; Schrieder, G; Simon, H; Behrens, T; Gernhäuser, R; Kröll, T; Krücken, R; Münch, M; Davinson, T; Gerl, J; Huber, G; Hurst, A; Iwanicki, J; Jonson, B; Lieb, P; Liljeby, L; Schempp, A; Scherillo, A; Schmidt, P; Walter, G

    2005-05-01

    We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient gamma spectrometer MINIBALL. Using 30Mg ions accelerated to an energy of 2.25 MeV/u together with a thin (nat)Ni target, Coulomb excitation of the first excited 2+ states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative deexcitation gamma-ray yields the B(E2;0(+)gs-->2(+)1) value of 30Mg was determined to be 241(31)e2 fm4. Our result is lower than values obtained at projectile fragmentation facilities using the intermediate-energy Coulomb excitation method, and confirms the theoretical conjecture that the neutron-rich magnesium isotope 30Mg resides outside the "island of inversion."

  4. Spectroscopic Characterization of Extracellular Polymeric Substances from Escherichia coli and Serratia marcescens: Suppression using Sub-Inhibitory Concentrations of Bismuth Thiols

    SciTech Connect

    Badireddy, Appala R.; Korpol, Bhoom Reddy; Chellam, Shankararaman; Gassman, Paul L.; Engelhard, Mark H.; Lea, Alan S.; Rosso, Kevin M.

    2008-10-21

    Free and capsular EPS produced by Escherichia coli and Serratia marcescens were characterized in detail using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). Total EPS production decreased upon treatment with sub-inhibitory concentrations of lipophilic bismuth thiols (bismuth dimercaptopropanol, BisBAL; bismuth ethanedithiol, BisEDT; and bismuth pyrithione, BisPYR), BisBAL being most effective. Bismuth thiols also influenced acetylation and carboxylation of polysaccharides in EPS from S. marcescens. Extensive homology between EPS samples in the presence and absence of bismuth was observed with proteins, polysaccharides, and nucleic acids varying predominantly only in the total amount expressed. Second derivative analysis of the amide I region of FTIR spectra revealed decreases in protein secondary structures in the presence of bismuth thiols. Hence, anti-fouling properties of bismuth thiols appear to originate in their ability to suppress O-acetylation and protein secondary structures in addition to total EPS secretion.

  5. Morphology modulated growth of bismuth tungsten oxide nanocrystals

    SciTech Connect

    Yao Shushan; Wei, Jiyong; Huang Baibiao Feng Shengyu; Zhang Xiaoyang; Qin Xiaoyan; Wang Peng; Wang Zeyan; Zhang Qi; Jing Xiangyang; Zhan Jie

    2009-02-15

    Two kinds of bismuth tungsten oxide nanocrystals were prepared by microwave hydrothermal method. The morphology modulation of nanocrystals synthesized with precursor suspension's pH varied from 0.25 (strong acid) to 10.05 (base) was studied. The 3D flower like aggregation of Bi{sub 2}WO{sub 6} nanoflakes was synthesized in acid precursor suspension and the nanooctahedron crystals of Bi{sub 3.84}W{sub 0.16}O{sub 6.24} were synthesized in alkalescent precursor. The dominant crystal is changed from Bi{sub 2}WO{sub 6} to Bi{sub 3.84}W{sub 0.16}O{sub 6.24} when the precursor suspension changes from acid to alkalescence. The growth mechanisms of Bi{sub 2}WO{sub 6} and Bi{sub 3.84}W{sub 0.16}O{sub 6.24} were attributed to the different solubility of WO{sub 4}{sup 2-} and [Bi{sub 2}O{sub 2}]{sup 2+} in precursor suspensions with various pH. For the decomposition of Rhodamine B (RhB) under visible light irradiation ({lambda}>400 nm), different morphology of Bi{sub 2}WO{sub 6} crystal samples obtained by microwavesolvothermal process showed different photocatalytic activity. - Graphical abstract: The morphology modulation of bismuth tungsten oxide nanocrystals synthesized by microwave hydrothermal method with precursor suspension's pH varied from 0.25 (strong acid) to 10.05 (base) was studied. The 3D flower like aggregation of Bi{sub 2}WO{sub 6} nanoflakes and nanooctahedron crystals of Bi{sub 3.84}W{sub 0.16}O{sub 6.24} were prepared. The growth mechanisms of Bi{sub 2}WO{sub 6} and Bi{sub 3.84}W{sub 0.16}O{sub 6.24} were attributed to the different precipitation ability and solubility of H{sub 2}WO{sub 4} and Bi(OH){sub 3} in precursor suspensions with various pH. The photocatalytic evaluation, via the decomposition of Rhodamine B (RhB) under visible light irradiation ({lambda}>420 nm), reveals that nanocrystalline Bi{sub 2}WO{sub 6} samples obtained in different condition exhibit different photocatalytic activities which depend on pH value of the precursor suspensions.

  6. How reliable are environmental data on 'orphan' elements? The case of bismuth concentrations in surface waters.

    PubMed

    Filella, Montserrat

    2010-01-01

    Like all elements of the periodic table, bismuth is ubiquitously distributed throughout the environment as a result of natural processes and human activities. It is present as Bi(III) in environmental, biological and geochemical samples. Although bismuth and its compounds are considered to be non-toxic to humans, its increasing use as a replacement for lead has highlighted how little is known about its environmental and ecotoxicological behaviour. In this first critical review paper on the existing information on bismuth occurrence in natural waters, 125 papers on fresh and marine waters have been collated. Although the initial objective of this study was to establish the range of the typical concentrations of total dissolved bismuth in natural waters, this proved impossible to achieve due to the wide, and hitherto unexplained, dispersion of published data. Since analytical limitations might be one of the reasons underlying value dispersion, new analytical methods published since 2000--intended to be applied to natural waters--have also been reviewed. Disappointingly, the detection limits of the bulk of them are well above those required; they are thus of limited usefulness. Analysis of the existing information on bismuth in secondary references (i.e., books, review chapters) and on its chemical speciation in seawater revealed that the uncritical reproduction of old data is a widespread practice.

  7. Synthesis and performance of bismuth trioxide nanoparticles for high energy gas generator use.

    PubMed

    Martirosyan, K S; Wang, L; Vicent, A; Luss, D

    2009-10-01

    Our experiments showed that the combustion of an Al-Bi2O3 nanoparticle mixture generated the highest pressure pulse among common nanothermite reactions and can potentially be used as a nanoenergetic gas generator. The combustion front propagation velocity and rate of energy release increased by up to three orders of magnitude when the particle size was reduced to a nanosize range for both the aluminum and the oxidizer. We developed a novel one-step (metal nitrate-glycine) combustion synthesis of nanostructured amorphous-like and highly crystalline bismuth trioxide nanoparticles. The combustion synthesis was conducted using a solution of molten bismuth nitrate as an oxidizer and glycine as a fuel. The glycine was completely combusted during the thermal decomposition of the bismuth nitrate pentahydrate and generated a temperature front that propagated through the sample. Increasing the fuel concentration increased the maximum combustion temperature from 280 to 1200 degrees C and the Bi2O3 particle size from 20 to 100 nm. The oxidizer/fuel ratio had a strong impact on the bismuth trioxide particle crystallinity. At low temperature (280 degrees C), amorphous-like bismuth trioxide nanoparticles formed, while at T > or =370 degrees C the structures were crystalline. A peak pressure of approximately 12 MPa and a thermal front propagating velocity of approximately 2500 m s(-1) were achieved during the combustion of an Al-Bi2O3 mixture containing 80 wt% of the synthesized Bi2O3 crystalline nanoparticles (size: 40-50 nm).

  8. Improvement of filling bismuth for x-ray absorption gratings through the enhancement of wettability

    NASA Astrophysics Data System (ADS)

    Lei, Yaohu; Liu, Xin; Li, Ji; Guo, Jinchuan; Niu, Hanben

    2016-06-01

    Filling materials with high x-ray linear absorption coefficients in high aspect-ratio (HAR) structures is a key process for the fabrication of absorption gratings used in x-ray differential phase-contrast imaging. Bismuth has been chosen as an effective filling material in micro-casting technology, because of its low cost both in price and facility use. However, repellence on structure surfaces against molten bismuth leads to an obstacle in terms of completely filling bismuth into the small-aperture and HAR microstructure formed by photo-assisted electrochemical etching in 5 inch silicon wafers. We propose and implement a novel method of surface modification to completely fill bismuth into these structures with periods of 3 μm and 42 μm, respectively, and as deep as 150 μm. The modified surface with a Bi2O3 layer covering the structure surface, including the side walls, induces an enhanced bismuth filling ratio. The superiority of the method is demonstrated by micrographs which show filled microstructures compared to the previously used method, where only a layer of 100 nm SiO2 was covered. Furthermore, we have observed that the improved micro-casting makes the absorption gratings clean surfaces, and no post treatment is needed.

  9. Synthesis and performance of bismuth trioxide nanoparticles for high energy gas generator use

    NASA Astrophysics Data System (ADS)

    Martirosyan, K. S.; Wang, L.; Vicent, A.; Luss, D.

    2009-10-01

    Our experiments showed that the combustion of an Al-Bi2O3 nanoparticle mixture generated the highest pressure pulse among common nanothermite reactions and can potentially be used as a nanoenergetic gas generator. The combustion front propagation velocity and rate of energy release increased by up to three orders of magnitude when the particle size was reduced to a nanosize range for both the aluminum and the oxidizer. We developed a novel one-step (metal nitrate-glycine) combustion synthesis of nanostructured amorphous-like and highly crystalline bismuth trioxide nanoparticles. The combustion synthesis was conducted using a solution of molten bismuth nitrate as an oxidizer and glycine as a fuel. The glycine was completely combusted during the thermal decomposition of the bismuth nitrate pentahydrate and generated a temperature front that propagated through the sample. Increasing the fuel concentration increased the maximum combustion temperature from 280 to 1200 °C and the Bi2O3 particle size from 20 to 100 nm. The oxidizer/fuel ratio had a strong impact on the bismuth trioxide particle crystallinity. At low temperature (280 °C), amorphous-like bismuth trioxide nanoparticles formed, while at T>=370 °C the structures were crystalline. A peak pressure of ~12 MPa and a thermal front propagating velocity of ~2500 m s-1 were achieved during the combustion of an Al-Bi2O3 mixture containing 80 wt% of the synthesized Bi2O3 crystalline nanoparticles (size: 40-50 nm).

  10. Bismuth modified carbon-based electrodes for the determination of selected neonicotinoid insecticides.

    PubMed

    Guzsvány, Valéria; Papp, Zsigmond; Zbiljić, Jasmina; Vajdle, Olga; Rodić, Marko

    2011-05-27

    Two types of bismuth modified electrodes, a bismuth-film modified glassy carbon (BiF-GCE) and a bismuth bulk modified carbon paste, were applied for the determination of selected nitroguanidine neonicotinoid insecticides. The method based on an ex situ prepared BiF-GCE operated in the differential pulse voltammetric (DPV) mode was applied to determine clothianidin in the concentration range from 2.5 to 23 μg cm⁻³ with a relative standard deviation (RSD) not exceeding 1.5%. The tricresyl phosphate-based carbon paste electrodes (TCP-CPEs), bulk modified with 5 and 20 w/w% of bismuth, showed a different analytical performance in the determination of imidacloprid, regarding the peak shape, potential window, and noise level. The TCP-CPE with 5% Bi was advantageous, and the developed DPV method based on it allowed the determination in the concentration range from 1.7 to 60 μg cm⁻³ with an RSD of 2.4%. To get a deeper insight into the morphology of the bismuth-based sensor surfaces, scanning electron microscopic measurements were performed of both the surface film and the bulk modified electrodes.

  11. Role of bismuth in improving Helicobacter pylori eradication with triple therapy.

    PubMed

    Dore, Maria Pina; Lu, Hong; Graham, David Y

    2016-05-01

    In most regions of the world, antimicrobial resistance has increased to the point where empirical standard triple therapy for Helicobacter pylorieradication is no longer recommended. The treatment outcome in a population is calculated as the sum of the treatment success in the subpopulation with susceptible infections plus treatment success in the subpopulation with resistant infections. The addition of bismuth (i.e., 14-day triple therapy plus bismuth) can improve cure rates despite a high prevalence of antimicrobial resistance. The major bismuth effect is to add an additional 30%-40% to the success with resistant infections. The overall result is therefore dependent on the prevalence of resistance and the treatment success in the subpopulation with resistant infections (eg, with proton-pump inhibitor-amoxicillin dual therapy). Here, we explore the contribution of each component and the mechanisms of how bismuth might enhance the effectiveness of triple therapy. We also discuss the limitations of this approach and provide suggestions how triple therapy plus bismuth might be further improved. PMID:26848181

  12. Advanced Thin Ionization Calorimeter (ATIC) Update

    NASA Technical Reports Server (NTRS)

    Ahn, H. S.; Ganel, O.; Kim, K. C.; Seo, E. S.; Sina, R.; Wang, J. Z.; Wu, J.; Case, G.; Ellison, S. B.; Gould, R.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) experiment is designed to measure the composition and energy spectra of Z = 1 to 28 cosmic rays over the energy range of approximately 10 GeV - 100 TeV. ATIC is comprised of an eight-layer, 18 radiation length deep Bismuth Germanate (BGO) calorimeter, downstream of a 0.75 nuclear interaction length graphite target and an approximately 1 sq m finely segmented silicon charge detector. Interleaved with the graphite layers are three scintillator strip hodoscopes for pre-triggering and tracking. ATIC flew for the first time on a Long Duration Balloon (LDB) launched from McMurdo, Antarctica in January 2001. During its 16-day flight ATIC collected more than 30 million science events, along with housekeeping, calibration, and rate data. This presentation will describe the ATIC data processing, including calibration and efficiency corrections, and show results from analysis of this dataset. The next launch is planned for December 2002.

  13. Energy levels scheme simulation of divalent cobalt doped bismuth germanate

    NASA Astrophysics Data System (ADS)

    Andreici, Emiliana-Laura; Petkova, Petya; Avram, Nicolae M.

    2015-12-01

    The aim of this paper is to simulate the energy levels scheme for Bismuth Germanate (BGO) doped with divalent cobalt, in order to give a reliable explanation for spectral experimental data. In the semiempirical crystal field theory we first modeled the Crystal Field Parameters (CFPs) of BGO:Cr2+ system, in the frame of Exchange Charge Model (ECM), with actually site symmetry of the impurity ions after doping. The values of CFPs depend on the geometry of doped host matrix and by parameter G of ECM. First, we optimized the geometry of undoped BGO host matrix and afterwards, that of doped BGO with divalent cobalt. The charges effect of ligands and covalence bonding between cobalt cations and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the CFPs we simulate the energy levels scheme of cobalt ions, by diagonalizing the matrix of the doped crystal Hamiltonian. Obviously, energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison of obtained results with experimental data shows quite satisfactory, which justify the model and simulation schemes used for the title system.

  14. One-dimensional Topological Edge States of Bismuth Bilayers

    NASA Astrophysics Data System (ADS)

    Drozdov, Ilya; Alexandradinata, Aris; Jeon, Sangjun; Nadj-Perge, Stevan; Ji, Huiwen; Cava, Robert; Bernevig, B. Andrei; Yazdani, Ali

    2014-03-01

    The hallmark of a time-reversal symmetry protected topologically insulating state of matter in two-dimensions (2D) is the existence of chiral edge modes propagating along the perimeter of the sample. Bilayers of bismuth (Bi), an elemental system theoretically predicted to be a Quantum Spin Hall (QSH) insulator1, has been studied with Scanning Tunneling Microscopy (STM) and the electronic structure of its bulk and edge modes has been experimentally investigated. Spectroscopic mapping with STM reveals the presence of the state bound to the edges of the Bi-bilayer. By visualizing quantum interference of the edge state quasi-particles in confined geometries we characterize their dispersion and demonstrate that their properties are consistent with the absence of backscattering. Hybridization of the edge modes to the underlying substrate will be discussed. [1] Shuichi Murakami, Phys. Rev. Lett. 97, 236805 (2006). The work at Princeton and the Princeton Nanoscale Microscopy Laboratory was supported by ARO MURI program W911NF-12-1-0461, DARPA-SPWAR Meso program N6601-11-1-4110, NSF-DMR1104612, and NSF-MRSEC programs through the Princeton Center for Complex Materials (DMR-0819860)

  15. Bismuth telluride nanostructures: preparation, thermoelectric properties and topological insulating effect

    NASA Astrophysics Data System (ADS)

    Ashalley, Eric; Chen, Haiyuan; Tong, Xin; Li, Handong; Wang, Zhiming M.

    2015-05-01

    Bismuth telluride is known to wield unique properties for a wide range of device applications. However, as devices migrate to the nanometer scale, significant amount of studies are being conducted to keep up with the rapidly growing nanotechnological field. Bi2Te3 possesses distinctive properties at the nanometer level from its bulk material. Therefore, varying synthesis and characterization techniques are being employed for the realization of various Bi2Te3 nanostructures in the past years. A considerable number of these works have aimed at improving the thermoelectric (TE) figure-of-merit (ZT) of the Bi2Te3 nanostructures and drawing from their topological insulating properties. This paper reviews the various Bi2Te3 and Bi2Te3-based nanostructures realized via theoretical and experimental procedures. The study probes the preparation techniques, TE properties and the topological insulating effects of 0D, 1D, 2D and Bi2Te3 nanocomposites. With several applications as a topological insulator (TI), the topological insulating effect of the Bi2Te3 is reviewed in detail with the time reversal symmetry (TRS) and surface state spins which characterize TIs. Schematics and preparation methods for the various nanostructural dimensions are accordingly categorized.

  16. Quasiparticle electronic structure of bismuth telluride in the GW approximation

    NASA Astrophysics Data System (ADS)

    Kioupakis, Emmanouil; Tiago, Murilo L.; Louie, Steven G.

    2010-12-01

    The quasiparticle band structure of bismuth telluride (Bi2Te3) , an important thermoelectric material that exhibits topologically insulating surface states, is calculated from first principles in the GW approximation. The quasiparticle energies are evaluated in fine detail in the first Brillouin zone using a Wannier-function interpolation method, allowing the accurate determination of the location of the band extrema (which is in the mirror plane) as well as the values of the quasiparticle band gap (0.17 eV) and effective-mass tensors. Spin-orbit interaction effects were included. The valence band exhibits two distinct maxima in the mirror plane that differ by just 1 meV, giving rise to one direct and one indirect band gap of very similar magnitude. The effective-mass tensors are in reasonable agreement with experiment. The Wannier interpolation coefficients can be used for the tight-binding parametrization of the band structure. Our work elucidates the electronic structure of Bi2Te3 and sheds light on its exceptional thermoelectric and topologically insulating properties.

  17. Thermoelectric characterization of individual bismuth selenide topological insulator nanoribbons

    NASA Astrophysics Data System (ADS)

    Tang, Hao; Wang, Xiaomeng; Xiong, Yucheng; Zhao, Yang; Zhang, Yin; Zhang, Yan; Yang, Juekuan; Xu, Dongyan

    2015-04-01

    Bismuth selenide (Bi2Se3) nanoribbons have attracted tremendous research interest recently to study the properties of topologically protected surface states that enable new opportunities to enhance the thermoelectric performance. However, the thermoelectric characterization of individual Bi2Se3 nanoribbons is rare due to the technological challenges in the measurements. One challenge is to ensure good contacts between the nanoribbon and electrodes in order to determine the thermal and electrical properties accurately. In this work, we report the thermoelectric characterization of individual Bi2Se3 nanoribbons via a suspended microdevice method. Through careful measurements, we have demonstrated that contact thermal resistance is negligible after the electron-beam-induced deposition (EBID) of platinum/carbon (Pt/C) composites at the contacts between the nanoribbon and electrodes. It is shown that the thermal conductivity of the Bi2Se3 nanoribbons is less than 50% of the bulk value over the whole measurement temperature range, which can be attributed to enhanced phonon boundary scattering. Our results indicate that intrinsic Bi2Se3 nanoribbons prepared in this work are highly doped n-type semiconductors, and therefore the Fermi level should be in the conduction band and no topological transport behavior can be observed in the intrinsic system.

  18. Tributylphosphate Extraction Behavior of Bismuthate-Oxidized Americium

    SciTech Connect

    Mincher; Leigh R. Martin; Nicholas C. Schmitt

    2008-08-01

    Higher oxidation states of americium have long been known; however, options for their preparation in acidic solution are limited. The conventional choice, silver-catalyzed peroxydisulfate, is not useful at nitric acid concentrations above about 0.3 M. We investigated the use of sodium bismuthate as an oxidant for Am3+ in acidic solution. Room-temperature oxidation produced AmO2 2+ quantitatively, whereas oxidation at 80 °C produced AmO2+ quantitatively. The efficacy of the method for the production of oxidized americium was verified by fluoride precipitation and by spectroscopic absorbance measurements. We performed absorbance measurements using a conventional 1 cm cell for high americium concentrations and a 100 cm liquid waveguide capillary cell for low americium concentrations. Extinction coefficients for the absorbance of Am3+ at 503 nm, AmO2+ at 514 nm, and AmO2 2+ at 666 nm in 0.1 M nitric acid are reported. We also performed solvent extraction experiments with the hexavalent americium using the common actinide extraction ligand tributyl phosphate (TBP) for comparison to the other hexavalent actinides. Contact with 30% tributyl phosphate in dodecane reduced americium; it was nevertheless extracted using short contact times. The TBP extraction of AmO2 2+ over a range of nitric acid concentrations is shown for the first time and was found to be analogous to that of uranyl, neptunyl, and plutonyl ions.

  19. [Efficient oxidative degradation of tetrabromobisphenol A by silver bismuth oxide].

    PubMed

    Chen, Man-tang; Song, Zhou; Wang, Nan; Ding, Yao-bin; Liao, Hai-xing; Zhu, Li-hua

    2015-01-01

    Silver bismuth oxide(BSO) was prepared by a simple ion exchange-coprecipitation method with AgNO3 and NaBiO, .2H2O as raw materials, and then used to oxidatively degrade tetrabromobisphenol A(TBBPA). Effects of the molar ratio of Ag/Bi during BSO preparation and the BSO dosage on the degradation of TBBPA were investigated. The results showed that under the optimized conditions (i.e., the Ag/Bi molar ratio of 1:1, BSO dosage of 1 g x L(-1), 40 mg x L(-1) of TBBPA was completely degraded and the removal of total organic carbon achieved more than 80% within 7 min. The degradation intermediates of TBBPA were identified by ion chromatography, gas chromatograph-mass spectrometer and X-ray photoelectron spectroscopy. The degradation pathway of TBBPA included the debromination, the cleavage of tert-butyl group and the open epoxidation of benzene ring. Based on a quenching study of NaN3, singlet oxygen was proved to play a dominant role in the TBBPA degradation. PMID:25898666

  20. Bismuth nanoparticles integration into heavy metal electrochemical stripping sensor.

    PubMed

    Cadevall, Miquel; Ros, Josep; Merkoçi, Arben

    2015-08-01

    Between their many applications bismuth nanoparticles (BiNPs) are showing interest as pre-concentrators in heavy metals detection while being applied as working electrode modifiers used in electrochemical stripping analysis. From the different reported methods to synthesize BiNPs we are focused on the typical polyol method, largely used in these types of metallic and semi-metallic nanoparticles. This study presents the strategy for an easy control of the shape and size of BiNPs including nanocubes, nanosferes and triangular nanostructures. To improve the BiNP size and shape, different reducing agents (ethylene glycol or sodium hypophosphite) and stabilizers (polyvinyl pyrrolidone, PVP, in different amounts) have been studied. The efficiency of BiNPs for heavy metals analysis in terms of detection sensitivity while being used as modifiers of screen-printed carbon electrodes including the applicability of the developed device in real sea water samples is shown. A parallel study between the obtained nanoparticles and their performance in heavy metal sensing has been described in this communication.

  1. Energy levels scheme simulation of divalent cobalt doped bismuth germanate

    SciTech Connect

    Andreici, Emiliana-Laura; Petkova, Petya; Avram, Nicolae M.

    2015-12-07

    The aim of this paper is to simulate the energy levels scheme for Bismuth Germanate (BGO) doped with divalent cobalt, in order to give a reliable explanation for spectral experimental data. In the semiempirical crystal field theory we first modeled the Crystal Field Parameters (CFPs) of BGO:Cr{sup 2+} system, in the frame of Exchange Charge Model (ECM), with actually site symmetry of the impurity ions after doping. The values of CFPs depend on the geometry of doped host matrix and by parameter G of ECM. First, we optimized the geometry of undoped BGO host matrix and afterwards, that of doped BGO with divalent cobalt. The charges effect of ligands and covalence bonding between cobalt cations and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the CFPs we simulate the energy levels scheme of cobalt ions, by diagonalizing the matrix of the doped crystal Hamiltonian. Obviously, energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison of obtained results with experimental data shows quite satisfactory, which justify the model and simulation schemes used for the title system.

  2. Stable high conductivity ceria/bismuth oxide bilayered electrolytes

    SciTech Connect

    Wachsman, E.D.; Jayaweera, P.; Jiang, N.; Lowe, D.M.; Pound, B.G.

    1997-01-01

    The authors have developed a high conductivity bilayered ceria/bismuth oxide anolyte/electrolyte that uses the Po{sub 2} gradient to obtain stability at the anolyte-electrolyte interface and reduced electronic conduction due to the electrolyte region. Results in terms of solid oxide fuel cell (SOFC) performance and stability are presented. These results include a 90 to 160 mV increase in open-circuit potential, depending on temperature, with the bilayered structure as compared to SOFCs fabricated from a single ceria layer. An open-circuit potential of >1.0 V was obtained at 500 C with the bilayered structure. This increase in open-circuit potential is obtained without any measurable increase in cell resistance and is stable for over 1,400 h of testing, under both open-circuit and maximum power conditions. Moreover, SOFCs fabricated from the bilayered structure result in a 33% greater power density as compared to cells with a single ceria electrolyte layer.

  3. Investigation of solution-processed bismuth-niobium-oxide films

    SciTech Connect

    Inoue, Satoshi; Ariga, Tomoki; Matsumoto, Shin; Onoue, Masatoshi; Miyasako, Takaaki; Tokumitsu, Eisuke; Shimoda, Tatsuya; Chinone, Norimichi; Cho, Yasuo

    2014-10-21

    The characteristics of bismuth-niobium-oxide (BNO) films prepared using a solution process were investigated. The BNO film annealed at 550°C involving three phases: an amorphous phase, Bi₃NbO₇ fluorite microcrystals, and Nb-rich cubic pyrochlore microcrystals. The cubic pyrochlore structure, which was the main phase in this film, has not previously been reported in BNO films. The relative dielectric constant of the BNO film was approximately 140, which is much higher than that of a corresponding film prepared using a conventional vacuum sputtering process. Notably, the cubic pyrochlore microcrystals disappeared with increasing annealing temperature and were replaced with triclinic β-BiNbO₄ crystals at 590°C. The relative dielectric constant also decreased with increasing annealing temperature. Therefore, the high relative dielectric constant of the BNO film annealed at 550°C is thought to result from the BNO cubic pyrochlore structure. In addition, the BNO films annealed at 500°C contained approximately 6.5 atm.% carbon, which was lost at approximately 550°C. This result suggests that the carbon in the BNO film played an important role in the formation of the cubic pyrochlore structure.

  4. Structural investigation of phosphate - bismuth glasses with vanadium

    SciTech Connect

    Stănescu, R.; Vedeanu, N.; Cozar, I. B.; Măgdaş, A.

    2013-11-13

    The xV{sub 2}O{sub 5}(1−dx)[0.5P{sub 2}O{sub 5}⋅0.5Bi{sub 2}O{sub 3}] glass system with 0 ≤ x ≤ 50 mol% is investigated by IR and Raman spectroscopy. Both P{sub 2}O{sub 5} and Bi{sub 2}O{sub 3} oxides are known as network formers, but Bi{sub 2}O{sub 3} is an unconventional one. At low content of vanadium oxide (x ≤ 5 mol%), both IR and Raman spectra are dominated by vibration bands characteristics to structural groups of phosphate and bismuthate lattices. Due to the network modifier role, vanadium oxide acts mainly on the Bi{sub 2}O{sub 3} network allowing the phosphate groups to impose their characteristics absorption bands in spectra. These bands are strongly reduced for x ≥ 20 mol% due to the phosphate network depolymerization and the appearance of new vibrations characteristic to P-O-V, Bi-O-V and V-O-V groups showing the network former role of V{sub 2}O{sub 5}.

  5. Ferroelectric and photocatalytic behavior of bismuth ferrite nano wire

    NASA Astrophysics Data System (ADS)

    William, R. V.; Marikani, A.; Madhavan, D.

    2016-05-01

    Multiferroic bismuth ferrite nanowires are prepared through polyol method with an average diameter of 35 nm with a narrow size distribution. The band gap was determined to be 2.10 eV, indicating their potential application as visible-light-response photo catalyst. The magnificent photocatalytic behaviors of BiFeO3 nanowires are understood from the methyl violet degradation under visible light irradiation. Moreover, the nano-wire takes only a lesser time for the diffusion of electron-hole pair from the surface of the sample. Further the BiFeO3 nano-wire was characterized using XRD, SEM, and U-V. The ferroelectric studies of BiFeO3 nano-wire show a frequency dependent property and maximum coercivity of 2.7 V/cm were achieved with a remanent polarization at 0.5 µC/cm2 at the frequency 4 kHz. The coercivity of BiFeO3 nano wire changes with variation of frequency from 1 kHz to 4 kHz.

  6. Structural properties of bismuth-bearing semiconductor alloys

    NASA Technical Reports Server (NTRS)

    Berding, M. A.; Sher, A.; Chen, A. B.

    1986-01-01

    The structural properties of bismuth-bearing III-V semiconductor alloys are addressed. Because the Bi compounds are not known to form zincblende structures, only the anion-substituted alloys InPBi, InAsBi, and InSbBi are considered candidates as narrow-gap semiconductors. Miscibility calculations indicate that InSbBi will be the most miscible, and InPBi, with the large lattice mismatch of the constituents, will be the most difficult to mix. Calculations of the hardness of the Bi compounds indicate that, once formed, the InPBi alloy will be harder than the other Bi alloys, and substantially harder than the currently favored narrow-gap semiconductor HgCdTe. Thus, although InSbBi may be an easier material to prepare, InPBi promises to be a harder material. Growth of the Bi compounds will require high effective growth temperatures, probably attainable only through the use of nonequilibrium energy-assisted epitaxial growth techniques.

  7. Bismuth nanoparticles integration into heavy metal electrochemical stripping sensor.

    PubMed

    Cadevall, Miquel; Ros, Josep; Merkoçi, Arben

    2015-08-01

    Between their many applications bismuth nanoparticles (BiNPs) are showing interest as pre-concentrators in heavy metals detection while being applied as working electrode modifiers used in electrochemical stripping analysis. From the different reported methods to synthesize BiNPs we are focused on the typical polyol method, largely used in these types of metallic and semi-metallic nanoparticles. This study presents the strategy for an easy control of the shape and size of BiNPs including nanocubes, nanosferes and triangular nanostructures. To improve the BiNP size and shape, different reducing agents (ethylene glycol or sodium hypophosphite) and stabilizers (polyvinyl pyrrolidone, PVP, in different amounts) have been studied. The efficiency of BiNPs for heavy metals analysis in terms of detection sensitivity while being used as modifiers of screen-printed carbon electrodes including the applicability of the developed device in real sea water samples is shown. A parallel study between the obtained nanoparticles and their performance in heavy metal sensing has been described in this communication. PMID:25994368

  8. Aromatic amino acids in high selectivity bismuth(III) recognition.

    PubMed

    Ghatak, Sumanta Kumar; Dey, Debarati; Sen, Souvik; Sen, Kamalika

    2013-04-21

    The three aromatic amino acids, tyrosine, tryptophan and phenylalanine, play different physiological roles in life processes. Metal ions capable of binding these amino acids may aid in the reduction of effective concentration of these amino acids in any physiological system. Here we have studied the efficacy of some heavy metals for their complexation with these three amino acids. Bismuth has been found to bind selectively with these aromatic amino acids and this was confirmed using spectrofluorimetric, spectrophotometric and cyclic voltammetric studies. The series of heavy metals has been chosen because each of these metals remains associated with the others at very low concentration levels and Bi(III) is the least toxic amongst the other elements. So, selective recognition for Bi(III) would also mean no response for the other heavy elements if contaminants are present even at low concentration levels. The affinity towards these amino acids has been found to be in the order tryptophan < phenylalanine < tyrosine. The association constants of these amino acids have been calculated using Benesi-Hildebrand equations and the corresponding free energy change has also been calculated. The values of the association constants obtained from BH equations using absorbance values corroborate with the Stern-Volmer constants obtained from fluorimetric studies. The evidence for complexation is also supported by the results of cyclic voltammetry.

  9. Experiments with the low melting indium-bismuth alloy system

    NASA Technical Reports Server (NTRS)

    Krepski, Richard P.

    1992-01-01

    The following is a laboratory experiment designed to create an interest in and to further understanding of materials science. The primary audience for this material is the junior high school or middle school science student having no previous familiarity with the material, other than some knowledge of temperature and the concepts of atoms, elements, compounds, and chemical reactions. The objective of the experiment is to investigate the indium-bismuth alloy system. Near the eutectic composition, the liquidus is well below the boiling point of water, allowing simple, minimal hazard casting experiments. Such phenomena as metal oxidation, formation of intermetallic compound crystals, and an unusual volume increase during solidification could all be directly observed. A key concept for students to absorb is that properties of an alloy (melting point, mechanical behavior) may not correlate with simple interpolation of properties of the pure components. Discussion of other low melting metals and alloys leads to consideration of environmental and toxicity issues, as well as providing some historical context. Wetting behavior can also be explored.

  10. 8. POWERHOUSE INTERIOR SHOWING EXCITER No. 1 IN FOREGROUND, EXCITER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. POWERHOUSE INTERIOR SHOWING EXCITER No. 1 IN FOREGROUND, EXCITER No. 2., AND GENERATOR UNITS BEHIND EXCITER No. 2 IN BACKGROUND. EXCITER No. 1 GENERATOR HAS A COVER OVER TOP HALF OF COMMUTATOR ELEMENT. VIEW TO NORTHWEST. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA

  11. Magneto-optical visualization by Bi:YIG thin films prepared at low temperatures

    SciTech Connect

    Galstyan, Ogsen; Lee, Hanju; Lee, Kiejin; Babajanyan, Arsen; Hakhoumian, Arsen; Friedman, Barry

    2015-04-28

    A device for the imaging of magnetic fields and domain structures based on the Faraday effect has been developed using garnet thin films prepared by the metal-organic decomposition method as indicators. The sensitivity was improved by using high concentration bismuth substituted yttrium iron garnet thin films with in-plane magnetic anisotropy. Low temperature synthesis of the films (Bi{sub x}Y{sub 3−x}Fe{sub 5}O{sub 12}; x = 2) on glass substrates of thickness about 0.8 μm is described and the Faraday rotation angle is measured to be about −11°/μm.

  12. Optical absorption and fluorescence properties of Er{sup 3+}/Yb{sup 3+} codoped lead bismuth alumina borate glasses

    SciTech Connect

    Goud, K. Krishna Murthy Reddy, M. Chandra Shekhar Rao, B. Appa

    2014-04-24

    Lead bismuth alumina borate glasses codoped with Er{sup 3+}/Yb{sup 3+} were prepared by melt quenching technique. Optical absorption, FTIR and photoluminescence spectra of these glasses have been studied. Judd-Ofelt theory has been applied to to the f ↔ f transitions for evaluating Ω{sub 2}, Ω{sub 4} and Ω{sub 6} parameters. Radiative properties like branching ratio β{sub r} and the radiative life time τ{sub R} have been determined on the basis of Judd-Ofelt theory. Upconversion emissions have been observed under 980nm laser excitation at room temperature. Green and red up-conversion emissions are centered at 530, 550 and 656 nm corresponding to {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2}, {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} and {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} transitions of Er{sup 3+} respectively. The results obtained are discussed quantitatively based on the energy transfer between Yb{sup 3+} and Er{sup 3+}.

  13. Insights into the growth of bismuth nanoparticles on 2D structured BiOCl photocatalysts: an in situ TEM investigation.

    PubMed

    Chang, Xiaofeng; Wang, Shuangbao; Qi, Qi; Gondal, Mohammed A; Rashid, Siddique G; Gao, Si; Yang, Deyuan; Shen, Kai; Xu, Qingyu; Wang, Peng

    2015-09-28

    The synthetic techniques for novel photocatalytic crystals had evolved by a trial-and-error process that spanned more than two decades, and an insight into the photocatalytic crystal growth process is a challenging area and prerequisite for achieving an excellent photoactivity. Bismuth nanoparticle based hybrids, such as Bi/BiOCl composites, have recently been investigated as highly efficient photocatalytic systems because of the localized surface plasmon resonance (LSPR) of nanostructured bismuth. In this work, the observation towards the formation and growth of bismuth nanoparticles onto 2D structured BiOCl photocatalysts has been performed using a transmission electron microscope (TEM) directly in real time. The growth of bismuth nanoparticles on BiOCl nanosheets can be emulated and speeded up driven by the electron beam (e(-) beam) in TEM. The crystallinity, growth and the elemental evolution during the formation of bismuth nanoparticles have also been probed in this work.

  14. Promotional Effects of Bismuth on the Formation of Platinum-Bismuth Nanowires Network and the Electrocatalytic Activity toward Ethanol Oxidation

    SciTech Connect

    Du, W.; Su, D.; Wang, Q.; Frenkel, A.I.; Teng, X.

    2011-01-11

    Electrocatalytic activities of Pt and their alloys toward small organic molecules oxidation are highly dependent on their morphology, chemical composition, and electronic structure. Here, we report the synthesis of dendrite-like Pt{sub 95}Bi{sub 5}, Pt{sub 83}Bi{sub 17}, and Pt{sub 76}Bi{sub 24} nanowires network with a high aspect ratio (up to 68). The electronic structure and heterogeneous crystalline structure have been studied using combined techniques, including aberration-corrected scanning transmission electron microscopy (STEM) and X-ray absorption near-edge structure (XANES) spectroscopy. Bismuth-oriented attachment growth mechanism has been proposed for the anisotropic growth of Pt/Bi. The electrochemical activities of Pt/Bi nanowires network toward ethanol oxidations have been tested. In particular, the as-made Pt{sub 95}Bi{sub 5} appears to have superior activity toward ethanol oxidation in comparison with the commercial Pt/C catalyst. The reported promotional effect of Bi on the formation of Pt/Bi and electrochemical activities will be important to design effective catalysts for ethanol fuel cell application.

  15. Promotional Effects of Bismuth on the Formation of Platinum-Bismuth Nanowires Network and the Electrocatalytic Activity toward Ethanol Oxidation

    SciTech Connect

    X Teng; W Du; D Su; Q Wang; A Frenkel

    2011-12-31

    Electrocatalytic activities of Pt and their alloys toward small organic molecules oxidation are highly dependent on their morphology, chemical composition, and electronic structure. Here, we report the synthesis of dendrite-like Pt{sub 95}Bi{sub 5}, Pt{sub 83}Bi{sub 17}, and Pt{sub 76}Bi{sub 24} nanowires network with a high aspect ratio (up to 68). The electronic structure and heterogeneous crystalline structure have been studied using combined techniques, including aberration-corrected scanning transmission electron microscopy (STEM) and X-ray absorption near-edge structure (XANES) spectroscopy. Bismuth-oriented attachment growth mechanism has been proposed for the anisotropic growth of Pt/Bi. The electrochemical activities of Pt/Bi nanowires network toward ethanol oxidations have been tested. In particular, the as-made Pt{sub 95}Bi{sub 5} appears to have superior activity toward ethanol oxidation in comparison with the commercial Pt/C catalyst. The reported promotional effect of Bi on the formation of Pt/Bi and electrochemical activities will be important to design effective catalysts for ethanol fuel cell application.

  16. The study of optical band edge property of bismuth oxide nanowires α-Bi2O3.

    PubMed

    Ho, Ching-Hwa; Chan, Ching-Hsiang; Huang, Ying-Sheng; Tien, Li-Chia; Chao, Liang-Chiun

    2013-05-20

    The α-phase Bi(2)O(3) (α-Bi(2)O(3)) is a crucial and potential visiblelight photocatalyst material needless of intentional doping on accommodating band gap. The understanding on fundamental optical property of α-Bi(2)O(3) is important for its extended applications. In this study, bismuth oxide nanowires with diameters from tens to hundreds nm have been grown by vapor transport method driven with vapor-liquid-solid mechanism on Si substrate. High-resolution transmission electron microscopy and Raman measurement confirm α phase of monoclinic structure for the as-grown nanowires. The axial direction for the as-grown nanowires was along < 122 >. The band-edge structure of α-Bi(2)O(3) has been probed experimentally by thermoreflectance (TR) spectroscopy. The direct band gap was determined accurately to be 2.91 eV at 300 K. Temperaturedependent TR measurements of 30-300 K were carried out to evaluate temperature-energy shift and line-width broadening effect for the band edge of α-Bi(2)O(3) thin-film nanowires. Photoluminescence (PL) experiments at 30 and 300 K were carried out to identify band-edge emission as well as defect luminescence for the α-Bi(2)O(3) nanowires. On the basis of experimental analyses of TR and PL, optical characteristics of direct band edge of α-Bi(2)O(3) nanowires have thus been realized.

  17. Bismuth-catalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells.

    PubMed

    Yu, Linwei; Fortuna, Franck; O'Donnell, Benedict; Jeon, Taewoo; Foldyna, Martin; Picardi, Gennaro; Roca i Cabarrocas, Pere

    2012-08-01

    Silicon nanowires (SiNWs) are becoming a popular choice to develop a new generation of radial junction solar cells. We here explore a bismuth- (Bi-) catalyzed growth and doping of SiNWs, via vapor-liquid-solid (VLS) mode, to fabricate amorphous Si radial n-i-p junction solar cells in a one-pump-down and low-temperature process in a single chamber plasma deposition system. We provide the first evidence that catalyst doping in the SiNW cores, caused by incorporating Bi catalyst atoms as n-type dopant, can be utilized to fabricate radial junction solar cells, with a record open circuit voltage of V(oc) = 0.76 V and an enhanced light trapping effect that boosts the short circuit current to J(sc) = 11.23 mA/cm(2). More importantly, this bi-catalyzed SiNW growth and doping strategy exempts the use of extremely toxic phosphine gas, leading to significant procedure simplification and cost reduction for building radial junction thin film solar cells. PMID:22822909

  18. Application of Thermodynamic Calculations to the Pyro-refining Process for Production of High Purity Bismuth

    NASA Astrophysics Data System (ADS)

    Mezbahul-Islam, Mohammad; Belanger, Frederic; Chartrand, Patrice; Jung, In-Ho; Coursol, Pascal

    2016-04-01

    The present work has been performed with the aim to optimize the existing process for the production of high purity bismuth (99.999 pct). A thermo-chemical database including most of the probable impurities of bismuth (Bi-X, X = Ag, Au, Al, Ca, Cu, Fe, Mg, Mn, Na, Ni, Pb, S, Sb, Sn, Si, Te, Zn) has been constructed to perform different thermodynamic calculations required for the refining process. Thermodynamic description for eight of the selected binaries, Bi-Ca, Cu, Mn, Ni, Pb, S, Sb, and Sn, has been given in the current paper. Using the current database, different thermodynamic calculations have been performed to explain the steps involved in the bismuth refining process.

  19. Isotopic generator for bismuth-212 and lead-212 based on radium

    DOEpatents

    Hines, J.J.; Atcher, R.W.; Friedman, A.M.

    1985-01-30

    Disclosed are method and apparatus for providing radionuclides of bismuth-212 and lead-212. Thorium-228 and carrier solution starting material is input to a radiologically contained portion of an isotopic generator system, and radium-224 is separated from thorium-228 which is retained by a strongly basic anion exchange column. The separated radium-224 is transferred to an accessible, strongly acidic cationic exchange column. The cationic column retains the radium-224, and natural radioactive decay generates bismuth-212 and lead-212. The cationic exchange column can also be separated from the contained portion of the system and utilized without the extraordinary safety measures necessary in the contained portion. Furthermore, the cationic exchange column provides over a relatively long time period the short lived lead-212 and bismuth-212 radionuclides which are useful for a variety of medical therapies.

  20. Photoinduced switchable wettability of bismuth coating with hierarchical dendritic structure between superhydrophobicity and superhydrophilicity

    NASA Astrophysics Data System (ADS)

    Su, Chunping; Lu, Zhong; Zhao, Huiping; Yang, Hao; Chen, Rong

    2015-10-01

    Special wettability such as superhydrophobicity and superhydrophilicity has aroused considerable attention in recent years, especially for the surface that can be switched between superhydrophobicity and superhydrophilicity. In this work, hierarchical bismuth nanostructures with hyperbranched dendritic architectures were synthesized via the galvanic replacement reaction between zinc plate and BiCl3 in ethylene glycol solution, which was composed of a trunk, branches (secondary branch), and leaves (tertiary branch). After being modified by stearic acid, the as-prepared bismuth coating shows superhydrophobicity with a high water contact angle of 164.8° and a low sliding angle of 3°. More importantly, a remarkable surface wettability transition between superhydrophobicity and superhydrophilicity could be easily realized by the alternation of UV-vis irradiation and modification with stearic acid. The tunable wetting behavior of bismuth coating could be used as smart materials to make a great application in practice.

  1. Bismuth sulfide nanoflakes and nanorods as high performance photodetectors and photoelectrochemical cells

    NASA Astrophysics Data System (ADS)

    Chao, Junfeng; Xing, Shumin; Zhao, Yanchun; Gao, Suling; Song, Qinghua; Guo, Lixia; Wang, Di; Zhang, Tingliang

    2016-11-01

    Flake-like and rod-like bismuth sulfide nanostructures were synthesized via a facile polyol refluxing process. The rigid photodetectors based on both nanomaterials have the features of linear photocurrent characteristics and good sensitivity. Especially, the rigid bismuth sulfide nanoflakes photodetector has fast response time of 0.5 s and recovery time of 0.7 s. The flexible photodetectors were then fabricated on PET substrate, and this caused both the response time and the recovery time to increase by a factor of ∼2.5. Moreover, the photoelectrochemical (PEC) devices exhibited photosensitivity with the features of rapid response and recovery time, high on/off ratio and stable switching cycle performance. Our results imply that the two types of bismuth sulfide nanomaterials are prospective candidates for next generation photodetectors and optoelectronic switches.

  2. Preparation of bismuth-based nanosheets by ultrasound-assisted liquid laser ablation

    NASA Astrophysics Data System (ADS)

    Escobar-Alarcón, L.; Velarde Granados, E.; Solís-Casados, D. A.; Olea-Mejía, O.; Espinosa-Pesqueira, M.; Haro-Poniatowski, E.

    2016-04-01

    The preparation of bismuth nanosheets ablating a high purity Bi target immersed in water subjected to an ultrasound wave is reported. The effect of the laser fluence used for ablation on the size and shape of the nanostructures synthesized was investigated. The obtained results reveal the formation of nanosheets with square-like shape and sizes from approximately 140-543 nm. In comparison, experiments without the ultrasound field lead to the formation of quasi-spherical nanoparticles. The nanosheets were characterized by means of transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), UV-Vis and Raman spectroscopies. The bismuth nanosheets, as deposited, are highly crystalline, and depending on the preparation conditions, the α or β phases of Bi2O3 are obtained. UV-Vis measurements show the typical band absorption characteristic of bismuth with nanometric size. Raman spectra confirm the formation of Bi2O3 nanostructures.

  3. PROCESS USING BISMUTH PHOSPHATE AS A CARRIER PRECIPITATE FOR FISSION PRODUCTS AND PLUTONIUM VALUES

    DOEpatents

    Finzel, T.G.

    1959-03-10

    A process is described for separating plutonium from fission products carried therewith when plutonium in the reduced oxidation state is removed from a nitric acid solution of irradiated uranium by means of bismuth phosphate as a carrier precipitate. The bismuth phosphate carrier precipitate is dissolved by treatment with nitric acid and the plutonium therein is oxidized to the hexavalent oxidation state by means of potassium dichromate. Separation of the plutonium from the fission products is accomplished by again precipitating bismuth phosphate and removing the precipitate which now carries the fission products and a small percentage of the plutonium present. The amount of plutonium carried in this last step may be minimized by addition of sodium fluoride, so as to make the solution 0.03N in NaF, prior to the oxidation and prccipitation step.

  4. Design of an Actinide Burning, Lead-Bismuth Cooled Reactor That Produces Low Cost Electricity

    SciTech Connect

    C. Davis; S. Herring; P. MacDonald; K. McCarthy; V. Shah; K. Weaver; J. Buongiorno; R. Ballinger; K. Doyoung; M. Driscoll; P. Hejzler; M. Kazimi; N. Todreas

    1999-07-01

    The purpose of this project is to investigate the suitability of lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. The choice of lead-bismuth for the reactor coolant is an actinide burning fast reactor offers enhanced safety and reliability. The advantages of lead-bismuth over sodium as a coolant are related to the following material characteristics: chemical inertness with air and water; higher atomic number; lower vapor pressure at operating temperatures; and higher boiling temperature. Given the status of the field, it was agreed that the focus of this investigation in the first two years will be on the assessment of approaches to optimize core and plant arrangements in order to provide maximum safety and economic potential in this type of reactor.

  5. Cationic bismuth-catalyzed hydroamination and direct substitution of the hydroxy group in alcohols with amides.

    PubMed

    Matsunaga, Shigeki; Shibasaki, Masakatsu

    2012-01-01

    Bismuth-catalyzed hydroamination and direct substitution of the hydroxy group in alcohols are described in this chapter. Intermolecular 1:1 hydroamination of 1,3-dienes with carbamates, sulfonamides, and carboxamides was promoted by a combination of Bi(OTf)(3) and Cu(CH(3)CN)(4)PF(6). The mechanistic studies suggested that a cationic bismuth species would be an active species, which selectively promotes 1:1 hydroamination to give allylic amides in up to 96% yield. The cationic bismuth species was also applicable for hydroamination of vinyl arenes. The combination of Bi(OTf)(3) and KPF(6) was an excellent catalyst for direct substitution of the hydroxy group in allylic, propargylic, and benzylic alcohols with carbamates, sulfonamides, and carboxamides, giving allylic, propargylic, and benzylic amides, respectively, in up to 99% yield in one step. PMID:21647841

  6. Bismuth- and lithium-loaded plastic scintillators for gamma and neutron detection

    NASA Astrophysics Data System (ADS)

    Cherepy, Nerine J.; Sanner, Robert D.; Beck, Patrick R.; Swanberg, Erik L.; Tillotson, Thomas M.; Payne, Stephen A.; Hurlbut, Charles R.

    2015-04-01

    Transparent plastic scintillators based on polyvinyltoluene (PVT) have been fabricated with high loading of bismuth carboxylates for gamma spectroscopy, and with lithium carboxylates for neutron detection. When activated with a combination of standard fluors, 2,5-diphenyloxazole (PPO) and tetraphenylbutadiene (TPB), gamma light yields with 15 wt% bismuth tripivalate of 5000 Ph/MeV are measured. A PVT plastic formulation including 30 wt% lithium pivalate and 30 wt% PPO offers both pulse shape discrimination, and a neutron capture peak at ~400 keVee. In another configuration, a bismuth-loaded PVT plastic is coated with ZnS(6Li) paint, permitting simultaneous gamma and neutron detection via pulse shape discrimination with a figure-of-merit of 3.8, while offering gamma spectroscopy with energy resolution of R(662 keV)=15%.

  7. Humidity sensors applicative characteristics of granularized and porous Bi2O3 thin films prepared by oxygen plasma-assisted pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Tudorache, Florin; Petrila, Iulian; Condurache-Bota, Simona; Constantinescu, Catalin; Praisler, Mirela

    2015-01-01

    Pulsed laser ablation of pure bismuth targets in a plasma discharge followed by thermal treatment as preparation method for humidity high-sensitive bismuth trioxide thin films deposited onto Si/Pt substrates were analyzed. Several thin films were deposited at different substrate temperatures during the pulsed laser deposition namely between 300 °C and 600 °C. Near to the electrical investigation, the structure and the morphology of the films as keys features for water adsorption are thoroughly investigated and correlated with their sensitivity as humidity sensors. Thus, it has been found that strong granularized Bi2O3 thin films obtained through oxygen plasma-assisted pulsed laser deposition onto Si/Pt substrate at 500 °C provide the most interesting humidity sensing characteristics.

  8. Bismuth Passivation Technique for High-Resolution X-Ray Detectors

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Hess, Larry

    2013-01-01

    The Athena-plus team requires X-ray sensors with energy resolution of better than one part in 3,000 at 6 keV X-rays. While bismuth is an excellent material for high X-ray stopping power and low heat capacity (for large signal when an X-ray is stopped by the absorber), oxidation of the bismuth surface can lead to electron traps and other effects that degrade the energy resolution. Bismuth oxide reduction and nitride passivation techniques analogous to those used in indium passivation are being applied in a new technique. The technique will enable improved energy resolution and resistance to aging in bismuth-absorber-coupled X-ray sensors. Elemental bismuth is lithographically integrated into X-ray detector circuits. It encounters several steps where the Bi oxidizes. The technology discussed here will remove oxide from the surface of the Bi and replace it with nitridized surface. Removal of the native oxide and passivating to prevent the growth of the oxide will improve detector performance and insulate the detector against future degradation from oxide growth. Placing the Bi coated sensor in a vacuum system, a reduction chemistry in a plasma (nitrogen/hydrogen (N2/H2) + argon) is used to remove the oxide and promote nitridization of the cleaned Bi surface. Once passivated, the Bi will perform as a better X-ray thermalizer since energy will not be trapped in the bismuth oxides on the surface. A simple additional step, which can be added at various stages of the current fabrication process, can then be applied to encapsulate the Bi film. After plasma passivation, the Bi can be capped with a non-diffusive layer of metal or dielectric. A non-superconducting layer is required such as tungsten or tungsten nitride (WNx).

  9. Determination of bismuth and copper using adsorptive stripping voltammetry couple with continuous wavelet transform.

    PubMed

    Khaloo, Shokooh S; Ensafi, Ali A; Khayamian, T

    2007-01-15

    A new method is proposed for the determination of bismuth and copper in the presence of each other based on adsorptive stripping voltammetry of complexes of Bi(III)-chromazorul-S and Cu(II)-chromazorul-S at a hanging mercury drop electrode (HMDE). Copper is an interfering element for the determination of Bi(III) because, the voltammograms of Bi(III) and Cu(II) overlapped with each other. Continuous wavelet transform (CWT) was applied to separate the voltammograms. In this regards, wavelet filter, resolution of the peaks and the fitness were optimized to obtain minimum detection limit for the elements. Through continuous wavelet transform Symlet4 (Sym4) wavelet filter at dilation 6, quantitative and qualitative analysis the mixture solutions of bismuth and copper was performed. It was also realized that copper imposes a matrix effect on the determination of Bi(III) and the standard addition method was able to cope with this effect. Bismuth does not have matrix effect on copper determination, therefore, the calibration curve using wavelet coefficients of CWT was used for determination of Cu(II) in the presence of Bi(III). The detection limits were 0.10 and 0.05ngml(-1) for bismuth and copper, respectively. The linear dynamic range of 0.1-30.0 and 0.1-32.0ngml(-1) were obtained for determination of bismuth in the presence of 24.0ngml(-1) of copper and copper in the presence of 24.0ngml(-1) of bismuth, respectively. The method was used for determination of these two cations in water and human hair samples. The results indicate the ability of method for the determination of these two elements in real samples. PMID:19071307

  10. CONCENTRATION AND DECONTAMINATION OF SOLUTIONS CONTAINING PLUTONIUM VALUES BY BISMUTH PHOSPHATE CARRIER PRECIPITATION METHODS

    DOEpatents

    Seaborg, G.T.; Thompson, S.G.

    1960-08-23

    A process is given for isolating plutonium present in the tetravalent state in an aqueous solution together with fission products. First, the plutonium and fission products are coprecipitated on a bismuth phosphate carrier. The precipitate obtained is dissolved, and the plutonium in the solution is oxidized to the hexavalent state (with ceric nitrate, potassium dichromate, Pb/ sub 3/O/sub 4/, sodium bismuthate and/or potassium dichromate). Thereafter a carrier for fission products is added (bismuth phosphate, lanthanum fluoride, ceric phosphate, bismuth oxalate, thorium iodate, or thorium oxalate), and the fission-product precipitation can be repeated with one other of these carriers. After removal of the fission-product-containing precipitate or precipitates. the plutonium in the supernatant is reduced to the tetravalent state (with sulfur dioxide, hydrogen peroxide. or sodium nitrate), and a carrier for tetravalent plutonium is added (lanthanum fluoride, lanthanum hydroxide, lanthanum phosphate, ceric phosphate, thorium iodate, thorium oxalate, bismuth oxalate, or niobium pentoxide). The plutonium-containing precipitate is then dissolved in a relatively small volume of liquid so as to obtain a concentrated solution. Prior to dissolution, the bismuth phosphate precipitates first formed can be metathesized with a mixture of sodium hydroxide and potassium carbonate and plutonium-containing lanthanum fluorides with alkali-metal hydroxide. In the solutions formed from a plutonium-containing lanthanum fluoride carrier the plutonium can be selectively precipitated with a peroxide after the pH was adjusted preferably to a value of between 1 and 2. Various combinations of second, third, and fourth carriers are discussed.

  11. 16. EXCITERS, AND SYNCHROSCOPE GAUGE ON WALL. ACTIVE ELECTRIC EXCITER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. EXCITERS, AND SYNCHROSCOPE GAUGE ON WALL. ACTIVE ELECTRIC EXCITER AT REAR; UNUSED WATER-DRIVEN EXCITER IN FOREGROUND. VIEW TO SOUTH-SOUTHWEST. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  12. Equilibrium distribution of lanthanum, neodymium, and thorium between lithium chloride melt and liquid bismuth

    NASA Astrophysics Data System (ADS)

    Zagnit'ko, A. V.; Ignat'ev, V. V.

    2013-04-01

    The distribution of lanthanum, neodymium, and thorium between a lithium chloride melt and liquid bismuth with additions of lithium as a reducing agent are investigated at 650°C. Equilibrium values of their distribution constants are measured. It is shown that in contrast to neodymium and lanthanum, thorium cannot be extracted from bismuth into lithium chloride. This allows us to propose an efficient scheme for separating lanthanides and thorium in a system for the extraction of fuel salts in molten-salt nuclear reactors.

  13. Distribution of indium, thallium and bismuth in the environmental water of Japan.

    PubMed

    Miyazaki, A; Kimura, A; Tao, H

    2012-12-01

    Indium, thallium and bismuth are toxic and it is important to know the distribution of these elements in environmental water. The concentrations of these elements were measured in 50 sampling points in Japan and the reasons of high concentrations in several samples were discussed. The average concentrations (ng/L) of dissolved and particulate indium in river, lake and coastal seawater were 1.4-3.0 and 2.4-9.1, respectively. Those for thallium were 7.2-11.3 and 3.5-36.0. Those for bismuth were 12.7-24.0 and 12.1-52.7.

  14. Decay of photoinduced oscillations of the optical reflection coefficient of bismuth

    SciTech Connect

    Semenov, A. L.

    2013-07-15

    A model describing the decay of photoinduced oscillations of the optical reflection coefficient R of bismuth is constructed, taking the crystal lattice anharmonicity into account. The decay time of oscillations of R is calculated as a function of the energy density of a laser pulse. The results of calculations explain the experimental data on the anomalously strong decay of oscillations of the optical reflection coefficient of bismuth (the decay time decreases by more than an order of magnitude with an increase in the laser pulse energy density from 0 to 4 mJ/cm{sup 2})

  15. Fabrication of Nanovoid-Imbedded Bismuth Telluride with Low Dimensional System

    NASA Technical Reports Server (NTRS)

    Chu, Sang-Hyon (Inventor); Choi, Sang H. (Inventor); Kim, Jae-Woo (Inventor); Park, Yeonjoon (Inventor); Elliott, James R. (Inventor); King, Glen C. (Inventor); Stoakley, Diane M. (Inventor)

    2013-01-01

    A new fabrication method for nanovoids-imbedded bismuth telluride (Bi--Te) material with low dimensional (quantum-dots, quantum-wires, or quantum-wells) structure was conceived during the development of advanced thermoelectric (TE) materials. Bismuth telluride is currently the best-known candidate material for solid-state TE cooling devices because it possesses the highest TE figure of merit at room temperature. The innovative process described here allows nanometer-scale voids to be incorporated in Bi--Te material. The final nanovoid structure such as void size, size distribution, void location, etc. can be also controlled under various process conditions.

  16. Structural investigations of bismuth lead borosilicate glasses under the influence of gamma irradiation through ultrasonic studies

    NASA Astrophysics Data System (ADS)

    Bootjomchai, Cherdsak; Laopaiboon, Jintana; Laopaiboon, Raewat

    2012-04-01

    The ultrasonic velocity measurements for different compositions of irradiated bismuth lead borosilicate glasses xBi2O3-(50-x)PbO-20B2O3-30SiO2 (x=2, 4, 6, 8, and 10 mol.%) were performed at room temperature using pulse-echo technique. Densities of glass samples were measured by Archimedes' principle using n-hexane as the immersion liquid. The results from the studies show that ultrasonic velocity, elastic moduli, Poisson's ratio, microhardness, and the Debye temperature increase with increasing bismuth oxide content and increasing gamma-radiation dose (3-12 Gy).

  17. Thin films under chemical stress

    SciTech Connect

    Not Available

    1991-01-01

    The goal of work on this project has been develop a set of experimental tools to allow investigators interested in transport, binding, and segregation phenomena in composite thin film structures to study these phenomena in situ. Work to-date has focuses on combining novel spatially-directed optical excitation phenomena, e.g. waveguide eigenmodes in thin dielectric slabs, surface plasmon excitations at metal-dielectric interfaces, with standard spectroscopies to understand dynamic processes in thin films and at interfaces. There have been two main scientific thrusts in the work and an additional technical project. In one thrust we have sought to develop experimental tools which will allow us to understand the chemical and physical changes which take place when thin polymer films are placed under chemical stress. In principle this stress may occur because the film is being swelled by a penetrant entrained in solvent, because interfacial reactions are occurring at one or more boundaries within the film structure, or because some component of the film is responding to an external stimulus (e.g. pH, temperature, electric field, or radiation). However all work to-date has focused on obtaining a clearer understanding penetrant transport phenomena. The other thrust has addressed the kinetics of adsorption of model n-alkanoic acids from organic solvents. Both of these thrusts are important within the context of our long-term goal of understanding the behavior of composite structures, composed of thin organic polymer films interspersed with Langmuir-Blodgett (LB) and self-assembled monolayers. In addition there has been a good deal of work to develop the local technical capability to fabricate grating couplers for optical waveguide excitation. This work, which is subsidiary to the main scientific goals of the project, has been successfully completed and will be detailed as well. 41 refs., 10 figs.

  18. Microbial Methylation of Metalloids: Arsenic, Antimony, and Bismuth

    PubMed Central

    Bentley, Ronald; Chasteen, Thomas G.

    2002-01-01

    A significant 19th century public health problem was that the inhabitants of many houses containing wallpaper decorated with green arsenical pigments experienced illness and death. The problem was caused by certain fungi that grew in the presence of inorganic arsenic to form a toxic, garlic-odored gas. The garlic odor was actually put to use in a very delicate microbiological test for arsenic. In 1933, the gas was shown to be trimethylarsine. It was not until 1971 that arsenic methylation by bacteria was demonstrated. Further research in biomethylation has been facilitated by the development of delicate techniques for the determination of arsenic species. As described in this review, many microorganisms (bacteria, fungi, and yeasts) and animals are now known to biomethylate arsenic, forming both volatile (e.g., methylarsines) and nonvolatile (e.g., methylarsonic acid and dimethylarsinic acid) compounds. The enzymatic mechanisms for this biomethylation are discussed. The microbial conversion of sodium arsenate to trimethylarsine proceeds by alternate reduction and methylation steps, with S-adenosylmethionine as the usual methyl donor. Thiols have important roles in the reductions. In anaerobic bacteria, methylcobalamin may be the donor. The other metalloid elements of the periodic table group 15, antimony and bismuth, also undergo biomethylation to some extent. Trimethylstibine formation by microorganisms is now well established, but this process apparently does not occur in animals. Formation of trimethylbismuth by microorganisms has been reported in a few cases. Microbial methylation plays important roles in the biogeochemical cycling of these metalloid elements and possibly in their detoxification. The wheel has come full circle, and public health considerations are again important. PMID:12040126

  19. An Inexpensive Bismuth-Petrolatum Dressing for Treatment of Burns

    PubMed Central

    Chattopadhyay, Arhana; Chang, Kathleen; Nguyen, Khoa; Galvez, Michael G.; Legrand, Anais; Davis, Christopher; McGoldrick, Rory; Long, Chao; Pham, Hung

    2016-01-01

    Background: Xeroform remains the current standard for treating superficial partial-thickness burns but can be prohibitively expensive in developing countries with prevalent burn injuries. This study (1) describes the production of an alternative low-cost dressing and (2) compares the alternative dressing and Xeroform using the metrics of cost-effectiveness, antimicrobial activity, and biocompatibility in vitro, and wound healing in vivo. Methods: To produce the alternative dressing, 3% bismuth tribromophenate powder was combined with petroleum jelly by hand and applied to Kerlix gauze. To assess cost-effectiveness, the unit costs of Xeroform and components of the alternative dressing were compared. To assess antimicrobial properties, the dressings were placed on agar plated with Escherichia coli and the Kirby-Bauer assay performed. To assess biocompatibility, the dressings were incubated with human dermal fibroblasts and cells stained with methylene blue. To assess in vivo wound healing, dressings were applied to excisional wounds on rats and the rate of re-epithelialization calculated. Results: The alternative dressing costs 34% of the least expensive brand of Xeroform. Antimicrobial assays showed that both dressings had similar bacteriostatic effects. Biocompatibility assays showed that there was no statistical difference (P < 0.05) in the cytotoxicity of Xeroform, alternative dressing, and Kerlix gauze. Finally, the in vivo healing model showed no statistical difference (P < 0.05) in mean re-epithelialization time between Xeroform (13.0 ± 1.6 days) and alternative dressing (13.5 ± 1.0 days). Conclusions: Xeroform is biocompatible, reduces infection, and enhances healing of burn wounds by preventing desiccation and mechanical trauma. Handmade petrolatum gauze may be a low-cost replacement for Xeroform. Future studies will focus on clinical trials in burn units. PMID:27482485

  20. Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite.

    PubMed

    Jartych, Elżbieta; Pikula, Tomasz; Kowal, Karol; Dzik, Jolanta; Guzdek, Piotr; Czekaj, Dionizy

    2016-12-01

    Solid-state sintering method was used to prepare ceramic materials based on bismuth ferrite, i.e., (BiFeO3)1 - x -(BaTiO3) x and Bi1 - x Nd x FeO3 solid solutions and the Aurivillius Bi5Ti3FeO15 compound. The structure of the materials was examined using X-ray diffraction, and the Rietveld method was applied to phase analysis and structure refinement. Magnetoelectric coupling was registered in all the materials using dynamic lock-in technique. The highest value of magnetoelectric coupling coefficient α ME was obtained for the Bi5Ti3FeO15 compound (α ME ~ 10 mVcm(-1) Oe(-1)). In the case of (BiFeO3)1 - x -(BaTiO3) x and Bi1 - x Nd x FeO3 solid solutions, the maximum α ME is of the order of 1 and 2.7 mVcm(-1) Oe(-1), respectively. The magnitude of magnetoelectric coupling is accompanied with structural transformation in the studied solid solutions. The relatively high magnetoelectric effect in the Aurivillius Bi5Ti3FeO15 compound is surprising, especially since the material is paramagnetic at room temperature. When the materials were subjected to a preliminary electrical poling, the magnitude of the magnetoelectric coupling increased 2-3 times. PMID:27129686

  1. Photocatalytic activities of various pentavalent bismuthates under visible light irradiation

    SciTech Connect

    Takei, Takahiro; Haramoto, Rie; Dong, Qiang; Kumada, Nobuhiro; Yonesaki, Yoshinori; Kinomura, Nobukazu; Mano, Takayuki; Nishimoto, Shunsuke; Kameshima, Yoshikazu; Miyake, Michihiro

    2011-08-15

    LiBiO{sub 3}, NaBiO{sub 3}, MgBi{sub 2}O{sub 6}, KBiO{sub 3}, ZnBi{sub 2}O{sub 6}, SrBi{sub 2}O{sub 6}, AgBiO{sub 3}, BaBi{sub 2}O{sub 6} and PbBi{sub 2}O{sub 6} were synthesized by various processes such as hydrothermal treatment, heating and so on. These materials were examined for their photocatalytic activities in the decolorization of methylene blue and decomposition of phenol under visible light irradiation. For methylene blue decolorization, the presence of KBiO{sub 3} resulted in complete decoloration within 5 min. For phenol decomposition, NaBiO{sub 3} showed the highest activity, while LiBiO{sub 3}, SrBi{sub 2}O{sub 6} and BaBi{sub 2}O{sub 6} possessed almost comparable decomposition rates. Their decomposition rates were apparently higher than that by anatase (P25) under UV irradiation. - Graphical abstract: Nine pentavalent bismuthates were synthesized and were examined for their photocatalytic activities by decomposition of phenol under visible light irradiation. NaBiO{sub 3}, LiBiO{sub 3}, SrBi{sub 2}O{sub 6} and BaBi{sub 2}O{sub 6} indicated faster decomposition rate than that of anatase (P25) under UV-vis light irradiation. Highlights: > KBiO{sub 3} decolorize methylene blue aqueous solution immediately within 5 min. > NaBiO{sub 3}, LiBiO{sub 3}, SrBi{sub 2}O{sub 6} and BaBi{sub 2}O{sub 6} indicated high decomposition rate of phenol. > The d electron of Zn, Ag and Pb form broad conduction band. > The broad conduction band poses to diminish photocatalytic activity.

  2. Microbial methylation of metalloids: arsenic, antimony, and bismuth.

    PubMed

    Bentley, Ronald; Chasteen, Thomas G

    2002-06-01

    A significant 19th century public health problem was that the inhabitants of many houses containing wallpaper decorated with green arsenical pigments experienced illness and death. The problem was caused by certain fungi that grew in the presence of inorganic arsenic to form a toxic, garlic-odored gas. The garlic odor was actually put to use in a very delicate microbiological test for arsenic. In 1933, the gas was shown to be trimethylarsine. It was not until 1971 that arsenic methylation by bacteria was demonstrated. Further research in biomethylation has been facilitated by the development of delicate techniques for the determination of arsenic species. As described in this review, many microorganisms (bacteria, fungi, and yeasts) and animals are now known to biomethylate arsenic, forming both volatile (e.g., methylarsines) and nonvolatile (e.g., methylarsonic acid and dimethylarsinic acid) compounds. The enzymatic mechanisms for this biomethylation are discussed. The microbial conversion of sodium arsenate to trimethylarsine proceeds by alternate reduction and methylation steps, with S-adenosylmethionine as the usual methyl donor. Thiols have important roles in the reductions. In anaerobic bacteria, methylcobalamin may be the donor. The other metalloid elements of the periodic table group 15, antimony and bismuth, also undergo biomethylation to some extent. Trimethylstibine formation by microorganisms is now well established, but this process apparently does not occur in animals. Formation of trimethylbismuth by microorganisms has been reported in a few cases. Microbial methylation plays important roles in the biogeochemical cycling of these metalloid elements and possibly in their detoxification. The wheel has come full circle, and public health considerations are again important. PMID:12040126

  3. Magnetoelectric Effect in Ceramics Based on Bismuth Ferrite.

    PubMed

    Jartych, Elżbieta; Pikula, Tomasz; Kowal, Karol; Dzik, Jolanta; Guzdek, Piotr; Czekaj, Dionizy

    2016-12-01

    Solid-state sintering method was used to prepare ceramic materials based on bismuth ferrite, i.e., (BiFeO3)1 - x -(BaTiO3) x and Bi1 - x Nd x FeO3 solid solutions and the Aurivillius Bi5Ti3FeO15 compound. The structure of the materials was examined using X-ray diffraction, and the Rietveld method was applied to phase analysis and structure refinement. Magnetoelectric coupling was registered in all the materials using dynamic lock-in technique. The highest value of magnetoelectric coupling coefficient α ME was obtained for the Bi5Ti3FeO15 compound (α ME ~ 10 mVcm(-1) Oe(-1)). In the case of (BiFeO3)1 - x -(BaTiO3) x and Bi1 - x Nd x FeO3 solid solutions, the maximum α ME is of the order of 1 and 2.7 mVcm(-1) Oe(-1), respectively. The magnitude of magnetoelectric coupling is accompanied with structural transformation in the studied solid solutions. The relatively high magnetoelectric effect in the Aurivillius Bi5Ti3FeO15 compound is surprising, especially since the material is paramagnetic at room temperature. When the materials were subjected to a preliminary electrical poling, the magnitude of the magnetoelectric coupling increased 2-3 times.

  4. Microwave-hydrothermal synthesis of perovskite bismuth ferrite nanoparticles

    SciTech Connect

    Biasotto, G.; Simoes, A.Z.; Foschini, C.R.; Zaghete, M.A.; Varela, J.A.; Longo, E.

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer BiFeO{sub 3} (BFO) nanoparticles were grown by hydrothermal microwave method (HTMW). Black-Right-Pointing-Pointer The soaking time is effective in improving phase formation. Black-Right-Pointing-Pointer Rietveld refinement reveals an orthorhombic structure. Black-Right-Pointing-Pointer The observed magnetism of the BFO crystallites is a consequence of particle size. Black-Right-Pointing-Pointer The HTMW is a genuine technique for low temperatures and short times of synthesis. -- Abstract: Hydrothermal microwave method (HTMW) was used to synthesize crystalline bismuth ferrite (BiFeO{sub 3}) nanoparticles (BFO) in the temperature of 180 Degree-Sign C with times ranging from 5 min to 1 h. BFO nanoparticles were characterized by means of X-ray analyses, FT-IR, Raman spectroscopy, TG-DTA and FE-SEM. X-ray diffraction results indicated that longer soaking time was benefit to refraining the formation of any impurity phases and growing BFO crystallites into almost single-phase perovskites. Typical FT-IR spectra for BFO nanoparticles presented well defined bands, indicating a substantial short-range order in the system. TG-DTA analyses confirmed the presence of lattice OH{sup -} groups, commonly found in materials obtained by HTMW process. Compared with the conventional solid-state reaction process, submicron BFO crystallites with better homogeneity could be produced at the temperature as low as 180 Degree-Sign C. These results show that the HTMW synthesis route is rapid, cost effective, and could be used as an alternative to obtain BFO nanoparticles in the temperature of 180 Degree-Sign C for 1 h.

  5. Enhancement of Er optical efficiency through bismuth sensitization in yttrium oxide

    SciTech Connect

    Scarangella, Adriana; Reitano, Riccardo; Franzò, Giorgia; Miritello, Maria; Priolo, Francesco

    2015-07-27

    The process of energy transfer (ET) between optically active ions has been widely studied to improve the optical efficiency of a system for different applications, from lighting and photovoltaics to silicon microphotonics. In this work, we report the influence of Bi on the Er optical emission in erbium-yttrium oxide thin films synthesized by magnetron co-sputtering. We demonstrate that this host permits to well dissolve Er and Bi ions, avoiding their clustering, and thus to stabilize the optically active Er{sup 3+} and Bi{sup 3+} valence states. In addition, we establish the ET occurrence from Bi{sup 3+} to Er{sup 3+} by the observed Bi{sup 3+} PL emission decrease and the simultaneous Er{sup 3+} photoluminescence (PL) emission increase. This was further confirmed by the coincidence of the Er{sup 3+} and Bi{sup 3+} excitation bands, analyzed by PL excitation spectroscopy. By increasing the Bi content of two orders of magnitude inside the host, though the occurrence of Bi-Bi interactions becomes deleterious for Bi{sup 3+} optical efficiency, the ET process between Bi{sup 3+} and Er{sup 3+} is still prevalent. We estimate ET efficiency of 70% for the optimized Bi:Er ratio equal to 1:3. Moreover, we have demonstrated to enhance the Er{sup 3+} effective excitation cross section by more than three orders of magnitude with respect to the direct one, estimating a value of 5.3 × 10{sup −18} cm{sup 2}, similar to the expected Bi{sup 3+} excitation cross section. This value is one of the highest obtained for Er in Si compatible hosts. These results make this material very promising as an efficient emitter for Si-compatible photonics devices.

  6. Pure Cubic-Phase Hybrid Iodobismuthates AgBi2 I7 for Thin-Film Photovoltaics.

    PubMed

    Kim, Younghoon; Yang, Zhenyu; Jain, Ankit; Voznyy, Oleksandr; Kim, Gi-Hwan; Liu, Min; Quan, Li Na; García de Arquer, F Pelayo; Comin, Riccardo; Fan, James Z; Sargent, Edward H

    2016-08-01

    Bismuth-based hybrid perovskites are candidates for lead-free and air-stable photovoltaics, but poor surface morphologies and a high band-gap energy have previously limited these hybrid perovskites. A new materials processing strategy to produce enhanced bismuth-based thin-film photovoltaic absorbers by incorporation of monovalent silver cations into iodobismuthates is presented. Solution-processed AgBi2 I7 thin films are prepared by spin-coating silver and bismuth precursors dissolved in n-butylamine and annealing under an N2 atmosphere. X-ray diffraction analysis reveals the pure cubic structure (Fd3m) with lattice parameters of a=b=c=12.223 Å. The resultant AgBi2 I7 thin films exhibit dense and pinhole-free surface morphologies with grains ranging in size from 200-800 nm and a low band gap of 1.87 eV suitable for photovoltaic applications. Initial studies produce solar power conversion efficiencies of 1.22 % and excellent stability over at least 10 days under ambient conditions. PMID:27355567

  7. Pure Cubic-Phase Hybrid Iodobismuthates AgBi2 I7 for Thin-Film Photovoltaics.

    PubMed

    Kim, Younghoon; Yang, Zhenyu; Jain, Ankit; Voznyy, Oleksandr; Kim, Gi-Hwan; Liu, Min; Quan, Li Na; García de Arquer, F Pelayo; Comin, Riccardo; Fan, James Z; Sargent, Edward H

    2016-08-01

    Bismuth-based hybrid perovskites are candidates for lead-free and air-stable photovoltaics, but poor surface morphologies and a high band-gap energy have previously limited these hybrid perovskites. A new materials processing strategy to produce enhanced bismuth-based thin-film photovoltaic absorbers by incorporation of monovalent silver cations into iodobismuthates is presented. Solution-processed AgBi2 I7 thin films are prepared by spin-coating silver and bismuth precursors dissolved in n-butylamine and annealing under an N2 atmosphere. X-ray diffraction analysis reveals the pure cubic structure (Fd3m) with lattice parameters of a=b=c=12.223 Å. The resultant AgBi2 I7 thin films exhibit dense and pinhole-free surface morphologies with grains ranging in size from 200-800 nm and a low band gap of 1.87 eV suitable for photovoltaic applications. Initial studies produce solar power conversion efficiencies of 1.22 % and excellent stability over at least 10 days under ambient conditions.

  8. Terahertz-range spontaneous emission under the optical excitation of donors in uniaxially stressed bulk silicon and SiGe/Si heterostructures

    SciTech Connect

    Zhukavin, R. Kh. Kovalevsky, K. A.; Orlov, M. L.; Tsyplenkov, V. V.; Bekin, N. A.; Yablonskiy, A. N.; Yunin, P. A.; Pavlov, S. G.; Abrosimov, N. V.; Hübers, H.-W.; Radamson, H. H.; Shastin, V. N.

    2015-01-15

    The results of measurements of the total terahertz-range photoluminescence of Group-V donors (phosphorus, antimony, bismuth, arsenic) in bulk silicon and SiGe/Si heterostructures depending on the excitation intensity are presented. The signal of bulk silicon was also measured as a function of uniaxial stress. The results of measurement of the dependence of the spontaneous emission intensity on the uniaxial stress is in rather good agreement with theoretical calculations of the relaxation times of excited states of donors in bulk silicon. Comparative measurements of the spontaneous emission from various strained heterostructures showed that the photoluminescence signal is caused by donor-doped silicon regions.

  9. Dietary intake of barium, bismuth, chromium, lithium, and strontium in a Spanish population (Canary Islands, Spain).

    PubMed

    González-Weller, Dailos; Rubio, Carmen; Gutiérrez, Ángel José; González, Gara Luis; Caballero Mesa, José María; Revert Gironés, Consuelo; Burgos Ojeda, Antonio; Hardisson, Arturo

    2013-12-01

    The aim of this study was to analyze barium, bismuth, chromium, lithium, and strontium contents in food and beverages consumed by the population of the Canary Islands (Spain) as well as determine dietary intake of these metals in the archipelago as a whole and in its individual islands. To this end, 440 samples were analyzed by ICP-OES and GFAAS. Barium concentrations ranged from 5.210 ± 2.117 mg/kg in nuts to 0.035 ± 0.043 mg/L in water. Viscera exhibited the highest levels of bismuth (38.07 ± 36.80 mg/kg). The cold meat and sausages group stood out for its high chromium concentrations (0.494 ± 0.257 mg/kg). The highest concentration of lithium and strontium came out in nuts (8.761 ± 5.368 mg/kg and 9.759 ± 5.181 mg/kg, respectively). The total intakes of barium, bismuth, chromium, lithium, and strontium were 0.685, 1.274, 0.087, 3.674, and 1.923 mg/day, respectively. Cereals turned out to contribute most to the dietary intake of barium, bismuth, chromium, and lithium in the Canary Islands, while fruit contributes most to the strontium intake. We also performed a metal intake study by age and sex of the population and compared the outcome with data from other regions, both national and international.

  10. Pepto bismuth associated neurotoxicity: A rare side effect of a commonly used medication.

    PubMed

    Masannat, Yanal; Nazer, Eyad

    2013-01-01

    A 56 years old female with medical history significant for collagenous colitis and GERD for which she was taking Pepto Bismuth for months. She presented with progressive confusion for two weeks, followed by myoclonus, tremors, gait instability and visual hallucinations. Patient was admitted and comprehensive work up was done over a ten day course. This included a CBC, CCP CT head, MRI brain, EEG, Lumbar puncture, and various antibody and serology testing which were all essentially unremarkable. It was noted that patient had been taking OTC Pepto Bismuth chronically for GI symptoms. Based upon the unrevealing work up, serum and urine samples for Bismuth levels were sent and returned markedly positive in both samples. Bismuth was held on admission and over the ten day hospitalization, patient showed gradual improvement of her cognitive function. She also showed resolution of her abnormal movements, myoclonus and visual hallucinations. Her gait continued to improve and required extended period of physical therapy post discharge. Her subsequent follow up visits showed resolution to baseline at four months post discharge. PMID:23798279

  11. The antimicrobial effects and metabolomic footprinting of carboxyl-capped bismuth nanoparticles against Helicobacter pylori.

    PubMed

    Nazari, P; Dowlatabadi-Bazaz, R; Mofid, M R; Pourmand, M R; Daryani, N E; Faramarzi, M A; Sepehrizadeh, Z; Shahverdi, A R

    2014-01-01

    Organic salts of bismuth are currently used as antimicrobial agents against Helicobacter pylori. This study evaluated the antibacterial effect of elemental bismuth nanoparticles (Bi NPs) using a serial agar dilution method for the first time against different clinical isolates and a standard strain of H. pylori. The Bi NPs were biologically prepared and purified by a recently described method and subjected to further characterization by infrared spectroscopy and anti-H. pylori evaluation. Infrared spectroscopy results showed the presence of carboxyl functional groups on the surface of biogenic Bi NPs. These biogenic nanoparticles showed good antibacterial activity against all tested H. pylori strains. The resulting MICs varied between 60 and 100 μg/ml for clinical isolates of H. pylori and H. pylori (ATCC 26695). The antibacterial effect of bismuth ions was also tested against all test strains. The antimicrobial effect of Bi ions was lower than antimicrobial effect of bismuth in the form of elemental NPs. The effect of Bi NPs on metabolomic footprinting of H. pylori was further evaluated by (1)H NMR spectroscopy. Exposure of H. pylori to an inhibitory concentration of Bi NPs (100 μg/ml) led to release of some metabolites such as acetate, formic acid, glutamate, valine, glycine, and uracil from bacteria into their supernatant. These findings confirm that these nanoparticles interfere with Krebs cycle, nucleotide, and amino acid metabolism and shows anti-H. pylori activity.

  12. Renal pigmentation due to chronic bismuth administration in a rhesus macaque (Macaca mulatta).

    PubMed

    Johnson, A L; Blaine, E T; Lewis, A D

    2015-05-01

    Renal pigmentation due to the administration of exogenous compounds is an uncommon finding in most species. This report describes renal pigmentation and intranuclear inclusions of the proximal convoluted tubules due to chronic bismuth administration in a rhesus macaque. An 11-year-old Indian-origin rhesus macaque with a medical history of chronic intermittent vomiting had been treated with bismuth subsalicylate, famotidine, and omeprazole singly or in combination over the course of 8 years. At necropsy, the renal cortices were diffusely dark green to black. Light and electron microscopy revealed intranuclear inclusions within the majority of renal proximal tubular epithelial cells. These inclusions appeared magenta to brown when stained with hematoxylin and eosin and were negative by the Ziehl-Neelsen acid-fast stain. Elemental analysis performed on frozen kidney measured bismuth levels to be markedly elevated at 110.6 ppm, approximately 500 to 1000 times acceptable limits. To our knowledge, this is the first report of renal bismuth deposition in a rhesus macaque resulting in renal pigmentation and intranuclear inclusions.

  13. Hydrosilane and bismuth-accelerated palladium catalyzed aerobic oxidative esterification of benzylic alcohols with air.

    PubMed

    Bai, Xing-Feng; Ye, Fei; Zheng, Long-Sheng; Lai, Guo-Qiao; Xia, Chun-Gu; Xu, Li-Wen

    2012-09-01

    In a palladium-catalyzed oxidative esterification, hydrosilane can serve as an activator of palladium catalyst with bismuth, thus leading to a novel ligand- and silver-free palladium catalyst system for facile oxidative esterification of a variety of benzylic alcohols in good yields.

  14. Separation of Americium in High Oxidation States from Curium Utilizing Sodium Bismuthate.

    PubMed

    Richards, Jason M; Sudowe, Ralf

    2016-05-01

    A simple separation of americium from curium would support closure of the nuclear fuel cycle, assist in nuclear forensic analysis, and allow for more accurate measurement of neutron capture properties of (241)Am. Methods for the separation of americium from curium are however complicated and time-consuming due to the similar chemical properties of these elements. In this work a novel method for the separation of americium from curium in nitric acid media was developed using sodium bismuthate to perform both the oxidation and separation. Sodium bismuthate is shown to be a promising material for performing a simple and rapid separation. Curium is more strongly retained than americium on the undissolved sodium bismuthate at nitric acid concentrations below 1.0 M. A separation factor of ∼90 was obtained in 0.1 M nitric acid. This separation factor is achieved within the first minute of contact and is maintained for at least 2 h of contact. Separations using sodium bismuthate were performed using solid-liquid extraction as well as column chromatography. PMID:27079565

  15. Oxygen-iron interaction in liquid lead-bismuth eutectic alloy.

    PubMed

    Aerts, A; Gavrilov, S; Manfredi, G; Marino, A; Rosseel, K; Lim, J

    2016-07-20

    Iron released by steel corrosion was found to be a key impurity in reactions with dissolved oxygen in liquid lead-bismuth eutectic alloys. The iron-oxygen-magnetite equilibrium was characterized, allowing the quantification of phenomena that are important for long-term operation of lead-alloy based installations such as corrosion rate control and management of precipitates. PMID:27383127

  16. Effect of bismuth citrate, lactose, and organic acid on necrotic enteritis in broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clostridium perfringens – associated necrotic enteritis causes significant losses and increased morbidity in poultry. The objective of this study was to evaluate the effect of bismuth citrate and acidifiers on the development of necrotic enteritis in broilers. The first study was a dose response t...

  17. Thermodynamics of neptunium in LiCl-KCl eutectic/liquid bismuth systems

    SciTech Connect

    Sakamura, Y.; Shirai, O.; Iwai, T.; Suzuki, Y.

    2000-02-01

    Thermodynamic properties of neptunium in LiCl-KCl eutectic/liquid bismuth systems in the temperature range 400--500 C have been studied using a galvanic cell method for the pyrometallurgical reprocessing of nuclear spent fuels. The standard potential of the Np/Np(III) couple vs. the Ag/AgCl (1 wt% AgCl) reference electrode in LiCl-KCl eutectic was measured and given by the equation E{sub Np/Np(III)}{sup 0} = {minus}2.0667 + 0.0007892 T ({sigma} = 0.0009), where E is in volts, T is in kelvin, and {sigma} is the standard deviation. The potential of neptunium-bismuth alloy, E{sub Np-Bi}, was measured as a function of neptunium concentration, X{sub Np in Bi}. The curves for E{sub Bi-Np} vs. log X{sub Np in Bi} indicated the neptunium solubility in liquid bismuth to be 0.34 {+-} 0.02, 0.61 {+-} 0.08, and 1.06 {+-} 0.09 ({+-}{sigma}) atom % at 400, 450, and 500 C, respectively. The excess partial free energy of neptunium in liquid bismuth was represented by the equation, {Delta}{bar G}{sub Np}{sup xs} (kcal/g atom) = {minus}32.5 ({+-}0.7) + 0.0072 ({+-}0.0010) T. The values of the solubility and excess partial free energy for neptunium were closer to those for plutonium rather than uranium.

  18. The effect of integration of Strontium-Bismuth-Tantalate capacitors onto SOI wafers

    NASA Technical Reports Server (NTRS)

    Joshi, Vikram; Ohno, Morifumo; Ida, Jiro; Nagatomo, Yoshiki; Strauss, Karl

    2005-01-01

    We report for the first time the successful integration of Strontium-Bismuth-Tantalate ferroelectric capacitors on an SOI Substrate. We have verified that the unique processing requirements of SBT capacitors does not affect the properties of the surrounding FD-SOI transistors, and, conversely, we have verified that the SOI processing does not affect the quality of the SBT capacitors.

  19. The Effect of Integration of Strontium-Bismuth-Tantalate Capacitors onto SOI Wafers

    NASA Technical Reports Server (NTRS)

    Strauss, Karl F.; Joshi, Vikram; Ohno, Morifumo; Ida, Jiro; Nagatomo, Yoshiki

    2006-01-01

    We report for the first time the successful integration of Strontium-Bismuth-Tantalate ferroelectric capacitors on an SOI Substrate. We have verified that the unique processing requirements of SBT capacitors does not affect the properties of the surrounding FD-SOI transistors, and, conversely, we have verified that the SOI processing does not affect the quality of the SBT capacitors.

  20. Improvements in the energy resolution and high-count-rate performance of bismuth germanate

    SciTech Connect

    Koehler, P.E.; Wender, S.A.; Kapustinsky, J.S.

    1985-01-01

    Several methods for improving the energy resolution of bismuth germanate (BGO) have been investigated. It is shown that some of these methods resulted in a substantial improvement in the energy resolution. In addition, a method to improve the performance of BGO at high counting rates has been systematically studied. The results of this study are presented and discussed.

  1. Bismuth induces metallothionein but does not protect against cadmium cytotoxicity in cultured vasular endothelial cells

    SciTech Connect

    Kaji, T.; Mishima, A.; Yamamoto, C.

    1996-04-01

    Cadmium has been shown to be an inducer of cardiovascular lesions such as atherosclerosis and hypertension. The relationship between cadmium exposure and vascular diseases was shown by epidemiological data. We found that cadmium destroys the monolayer of cultured vascular endothelial cells. This suggested that damage of vascular endothelial cells may be an important event of cadmium-induced vascular disorders. Metallothionein induction is postulated to be in general the most important mechanism for protection against cadmium toxicity. However, zinc protects vascular endothelial cells from cadmium cytotoxicity without metallothionein induction; zinc was not an effective inducer of the protein. Recently, we found that bismuth strongly induces metallothionein selectively in vascular endothelial cells. Although zinc protection against cadmium cytotoxicity in vascular endothelial cells mainly resulted from a decrease in the accumulation of intracellular cadmium, it was likely that bismuth reduces the cytotoxicity of cadmium by the metallothionein-dependent mechanism in the cells. In the present study, the effect of bismuth on the cytotoxicity of cadmium in cultured vascular endothelial cells was investigated. Bismuth alone induces metallothionein but does not protect against cadmium cytotoxicity in the cells. 14 refs., 1 tab.

  2. Determination of trace amounts of lead and cadmium using a bismuth/glassy carbon composite electrode.

    PubMed

    Hwang, Gil-Ho; Han, Won-Kyu; Hong, Seok-Jun; Park, Joon-Shik; Kang, Sung-Goon

    2009-02-15

    We examined the use of a bismuth-glassy carbon (Bi/C) composite electrode for the determination of trace amounts of lead and cadmium. Incorporated bismuth powder in the composite electrode was electrochemically dissolved in 0.1M acetate buffer (pH 4.5) where nanosized bismuth particles were deposited on the glassy carbon at the reduction potential. The anodic stripping voltammetry on the Bi/C composite electrode exhibited well-defined, sharp and undistorted peaks with a favorable resolution for lead and cadmium. Comparing a non-oxidized Bi/C composite electrode with an in-situ plated bismuth film electrode, the Bi/C composite electrode exhibited superior performance due to its much larger surface area. The limit of detection was 0.41 microg/L for lead and 0.49 microg/L for cadmium. Based on this study, we are able to conclude that various types of composite electrodes for electroanalytical applications can be developed with a prudent combination of electrode materials.

  3. Hydrosilane and bismuth-accelerated palladium catalyzed aerobic oxidative esterification of benzylic alcohols with air.

    PubMed

    Bai, Xing-Feng; Ye, Fei; Zheng, Long-Sheng; Lai, Guo-Qiao; Xia, Chun-Gu; Xu, Li-Wen

    2012-09-01

    In a palladium-catalyzed oxidative esterification, hydrosilane can serve as an activator of palladium catalyst with bismuth, thus leading to a novel ligand- and silver-free palladium catalyst system for facile oxidative esterification of a variety of benzylic alcohols in good yields. PMID:22814568

  4. Bismuth(III)-catalyzed dehydrative etherification and thioetherification of phenolic hydroxy groups.

    PubMed

    Murai, Masahito; Origuchi, Kazuki; Takai, Kazuhiko

    2014-07-18

    Use of a bismuth catalyst allowed efficient dehydrative substitution of phenolic hydroxy groups with alcohols and thiols to form C-O and C-S bonds. The reaction required equimolar amounts of two readily available substrates that generated H(2)O as the only byproduct. The relatively mild reaction conditions were compatible with the functional groups selected, and provided excellent chemoselectivity. PMID:25007290

  5. Catalyst free, base free microwave irradiated synthesis of aryl nitrites from potassium aryltrifluoroborates and bismuth nitrate.

    PubMed

    Al-Masum, Mohammad; Welch, Rebecca L

    2014-03-01

    A mixture of bismuth nitrate pentahydrate and potassium aryltrifluoroborate in toluene under microwave heating at 120 °C for 20 min provides an interesting and mild reaction protocol for the synthesis of aryl nitrite. The conversion to aryl nitrites from aryltrifluoroborates without transition metal catalyst and base in high yields is remarkable. PMID:25242828

  6. Catalytic oxidation of propylene--7. Use of temperature programmed reoxidation to characterize. gamma. -bismuth molybdate

    SciTech Connect

    Uda, T.; Lin, T.T.; Keulks, G.W.

    1980-03-01

    Temperature-programed reoxidation of propylene-reduced ..gamma..-Bi/sub 2/MoO/sub 6/ revealed a low-temperature peak (LTP) at 158/sup 0/C and a high-temperature peak (HTP) at 340/sup 0/C. Auger spectroscopy and X-ray diffraction of reduced and partially or completely reoxidized bismuth molybdate showed that at the LTP, molybdenum(IV) is oxidized to molybdenum(VI) and bismuth, from the metallic state to an oxidation state between zero and three, and that the HTP is associated with the complete oxidation of bismuth to bismuth(III). Activity tests for propylene oxidation showed lower acrolein formation on the catalyst, on which only the LTP was reoxidized than on catalysts on which both peaks were reoxidized. The reoxidation kinetics of the catalyst under conditions corresponding to the LTP showed an activation energy of 22.9 kcal/mole below 170/sup 0/C and near zero above 170/sup 0/C; the break in the Arrhenius plot of reoxidation of the catalyst under conditions corresponding to the HTP was at 400/sup 0/C, with activation energies of 46 kcal/mole at lower and near zero at higher temperatures. Propylene oxidation was apparently rate-limited by the HTP reoxidation process below 400/sup 0/C and by allylic hydrogen abstraction above 400/sup 0/C.

  7. Bismuth-embedded SBA-15 mesoporous silica for radioactive iodine capture and stable storage

    NASA Astrophysics Data System (ADS)

    Yang, Jae Hwan; Cho, Yong-Jun; Shin, Jin Myeong; Yim, Man-Sung

    2015-10-01

    Efficient capture and stable storage of the long-lived iodine-129 (129I), released as off-gas from nuclear fuel reprocessing, have been of significant concern in the waste management field. In this study, bismuth-embedded SBA-15 mesoporous silica was firstly applied for iodine capture and storage. SBA-15 was functionalized with thiol (-SH) groups, followed by bismuth adsorption with Bi-S bonding, which was thermally treated to form Bi2S3 within SBA-15. The bismuth-embedded SBA-15s demonstrated high iodine loading capacities (up to 540 mg-I/g-sorbent), which benefitted from high surface area and porosity of SBA-15 as well as the formation of thermodynamically stable BiI3 compound. Iodine physisorption was effectively suppressed due to the large pores present in SBA-15, resulting in chemisorption as a main mechanism for iodine confinement. Furthermore, a chemically durable iodine-bearing material was made with a facile post-sorption process, during which the iodine-incorporated phase was changed from BiI3 to chemically durable Bi5O7I. Thus, our results showed that both efficient capture and stabilization of 129I would be possible with the bismuth-embedded SBA-15, in contrast to other sorbents mainly focused on iodine capture.

  8. Structure-Composition-Property Relationships of Complex Bismuth Oxide Based Photocatalysts

    SciTech Connect

    Vogt, Thomas

    2014-01-08

    Development of a new family of up- and down-conversion materials based on oxtfluorides that can potentially increase photocatalytic activities of photocatalysts such as bismuth oxides and can also be used as phosphors in Al1-xGaxN-based devices and solar devices.

  9. Structural Engineering of Vacancy Defected Bismuth Tellurides for Thermo-electric Applications

    NASA Astrophysics Data System (ADS)

    Termentzidis, K.; Pokropivny, A.; Xiong, S.-Y.; Chumakov, Y.; Cortona, P.; Volz, S.

    2012-10-01

    Molecular Dynamics and ab-initio simulations are used to find the most stable stoichiometries of Bismuth Tellurides with vacancy defects. The interest is to decrease the thermal conductivity of these compounds a key point to achieve high figure of merits. A reduction of 70% of the thermal conductivity is observed with Te vacancies of only 5%.

  10. Excitation and Characterization of Chladni Plate Patterns

    NASA Astrophysics Data System (ADS)

    Bourke, Shannon; Behringer, Ernest

    2011-04-01

    When a thin metal plate with a small amount of sand on it is made to vibrate, aesthetically pleasing sand patterns can form along the nodal lines of the plate. These symmetric patterns are called Chladni Patterns. Students taking PHY 101 Physical Science in the Arts at Eastern Michigan University create these patterns by pulling a violin bow across the edge of a plate, or by using a mechanical oscillator to drive the center of a plate. These two methods only allow a small subset of all possible points on the plate to be excited. We designed and built an electronic device that allows its user to excite the plate at any point. We present patterns created with this electronic device and other methods, and describe ways to model the observed patterns.

  11. Interpretation of the ultrafast photoinduced processes in pentacene thin films.

    PubMed

    Kuhlman, Thomas S; Kongsted, Jacob; Mikkelsen, Kurt V; Møller, Klaus B; Sølling, Theis I

    2010-03-17

    Ambiguity remains in the models explaining the photoinduced dynamics in pentacene thin films as observed in pump-probe experiments. One model advocates exciton fission as governing the evolution of the initially excited species, whereas the other advocates the formation of an excimeric species subsequent to excitation. On the basis of calculations by a combined quantum mechanics and molecular mechanics (QM/MM) method and general considerations regarding the excited states of pentacene we propose an alternative, where the initially excited species instead undergoes internal conversion to a doubly excited exciton. The conjecture is supported by the observed photophysical properties of pentacene from both static as well as time-resolved experiments.

  12. An acetate precursor process for BSCCO (2223) thin films and coprecipitated powders

    NASA Technical Reports Server (NTRS)

    Haertling, Gene H.

    1992-01-01

    Since the discovery of high temperature superconducting oxides much attention has been paid to finding better and useful ways to take advantage of the special properties exhibited by these materials. One such process is the development of thin films for engineering applications. Another such process is the coprecipitation route to producing superconducting powders. An acetate precursor process for use in thin film fabrication and a chemical coprecipitation route to Bismuth based superconducting materials has been developed. Data obtained from the thin film process were inconclusive to date and require more study. The chemical coprecipitation method of producing bulk material is a viable method, and is preferred over the previously used solid state route. This method of powder production appears to be an excellent route to producing thin section tape cast material and screen printed devices, as it requires less calcines than the oxide route to produce quality powders.

  13. Fabrication and photoelectrocatalytic properties of nanocrystalline monoclinic BiVO4 thin-film electrode.

    PubMed

    Zhou, Bin; Qu, Jiuhui; Zhao, Xu; Liu, Huijuan

    2011-01-01

    Monoclinic bismuth vanadate (BiVO4) thin film was fabricated on indium-tin oxide glass from an amorphous heteronuclear complex via dip-coating. After annealation at 400, 500, and 600 degrees C, the thin films were characterized by X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, and UV-Vis spectrophotometry. The BiVO4 particles on the ITO glass surface had a monoclinic structure. The UV-Visible diffuse reflection spectra showed the BiVO4 thin film had photoabsorption properties, with a band gap around 2.5 eV. In addition, the thin film showed high visible photocatalytic activities towards 2,4-dichlorophenol and Bisphenol A degradation under visible light irradiation (lambda > 420 nm). Over 90% of the two organic pollutants were removed in 5 hr. A possible degradation mechanism of 2,4-dichlorophenol were also studied. PMID:21476355

  14. Improvements to a Flow Sensor for Liquid Bismuth-Fed Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Bonds, Kevin; Polzin, Kurt A.

    2010-01-01

    Recently, there has been significant interest in using bismuth metal as a propellant in Hall Thrusters [1, 2]. Bismuth offers some considerable cost, weight, and space savings over the traditional propellant--xenon. Quantifying the performance of liquid metal-fed Hall thrusters requires a very precise measure of the low propellant flow rates [1, 2]. The low flow rates (10 mg/sec) and the temperature at which free flowing liquid bismuth exists (above 300 C) preclude the use of off-the-shelf flow sensing equipment [3]. Therefore a new type of sensor is required. The hotspot bismuth flow sensor, described in Refs. [1-5] is designed to perform a flow rate measurement by measuring the velocity at which a thermal feature moves through a flow chamber. The mass flow rate can be determined from the time of flight of the thermal peak, [4, 5]. Previous research and testing has been concerned mainly with the generation of the thermal peak and it's subsequent detection. In this paper, we present design improvements to the sensor concept; and the results of testing conducted to verify the functionality of these improvements. A ceramic material is required for the sensor body (see Fig. 1), which must allow for active heating of the bismuth flow channel to keep the propellant in a liquid state. The material must be compatible with bismuth and must be bonded to conductive elements to allow for conduction of current into the liquid metal and measurement of the temperature in the flow. The new sensor requires fabrication techniques that will allow for a very small diameter flow chamber, which is required to produce useful measurements. Testing of various materials has revealed several that are potentially compatible with liquid bismuth. Of primary concern in the fabrication and testing of a robust, working prototype, is the compatibility of the selected materials with one another. Specifically, the thermal expansion rates of the materials relative to the ceramic body cannot expand so

  15. Electrodeposition and device incorporation of bismuth antimony nanowire arrays

    NASA Astrophysics Data System (ADS)

    Keyani, Jennifer

    Thermoelectric materials have the unique property where the application of a potential difference across the material results in the formation of a temperature gradient, and vice versa. There is continued interest in bulk thermoelectric materials for power generation and refrigeration applications, however these materials are not currently in widespread use due to their low conversion efficiency. It has been predicted that nanostructured thermoelectric materials will show enhanced performance over their bulk counterparts. In this study, bismuth antimony (Bi1-xSbx) nanowire arrays have been synthesized and assembled into devices in order to demonstrate an enhanced performance in nanostructured thermoelectric materials. Bi1-xSbx nanowire arrays were fabricated by potentiostatic electrodeposition into porous alumina templates from a dimethyl sulfoxide (DMSO) solution. The nanowire composition and texture were studied as a function of the electrodeposition conditions in order to maximize their thermoelectric performance. Energy dispersive spectrometry and electron microprobe analysis were used to study the nanowire composition as a function of the electroactive and non-electroactive species in solution. Texturing in the nanowire arrays was observed by X-ray diffraction and controlled by the applied voltage and presence of supporting electrolyte. The nanowire arrays were also optimized for device incorporation by maximizing the number of nanowires and minimizing their length distribution. The areal density of nanowire arrays was on the order of 1010 wires/cm2 due to the high density of pores in the alumina and the high degree to which those pores were filled with electrodeposited material. A narrow distribution of nanowire lengths was observed by scanning electron microscopy across millimeter-length portions of the arrays. A hybrid nanowire-bulk thermoelectric device was assembled after electrical contacts were electrodeposited over Bi1-xSbx nanowire arrays. Nickel was

  16. Spin Hall effect and Landau spectrum of Dirac electrons in bismuth

    NASA Astrophysics Data System (ADS)

    Fuseya, Yuki

    2015-03-01

    Bismuth has played an important role in solid-state physics. Many key phenomena were first discovered in bismuth, such as diamagnetism, Seebeck, Nernst, Shubnikov-de Haas, and de Haas-van Alphen effects. These phenomena result from particular electronic states of bismuth. The strong spin-orbit interaction (~ 1.5eV) causes strong spin-dependent interband couplings resulting in an anomalous spin magnetic moment. We investigate the spin Hall effect and the angular dependent Landau spectrum of bismuth paying special attention to the effect of the anomalous spin magnetic moment. It is shown that the spin Hall insulator is possible and there is a fundamental relationship between the spin Hall conductivity and orbital diamagnetism in the insulating state of the Dirac electrons. Based on this theoretical finding, the magnitude of spin Hall conductivity is estimated for bismuth by that of orbital susceptibility. The magnitude of spin Hall conductivity turns out to be as large as 104Ω-1 cm-1, which is about 100 times larger than that of Pt. It is also shown that the ratio of the Zeeman splitting to the cyclotron energy, which reflects the effect of crystalline spin-orbit interaction, for holes at the T-point can be larger than 1.0 (the maximum of previous theories) and exhibit strong angular dependence, which gives a possible solution to the long-standing mystery of holes at the T-point. In collaboration with Masao Ogata, Hidetoshi Fukuyama, Zengwei Zhu, Benoît Fauqué, Woun Kang, and Kamran Behnia. Supported by JSPS (KAKENHI 24244053, 25870231, and 13428660).

  17. The impact of bismuth addition to sequential treatment on Helicobacter pylori eradication: A pilot study.

    PubMed

    Basyigit, Sebahat; Kefeli, Ayse; Sapmaz, Ferdane; Yeniova, Abdullah Ozgür; Asilturk, Zeliha; Hokkaomeroglu, Murat; Uzman, Metin; Nazligul, Yasar

    2015-10-25

    The success of the current anti-Helicobacter pylori (H. pylori) treatment protocols is reported to decrease by years, and research is needed to strengthen the H. pylori eradication treatment. Sequential treatment (ST), one of the treatment modalities for H. pylori eradication, includes amoxicillin 1 gr b.i.d and proton pump inhibitor b.i.d for first 5 days and then includes clarithromycin 500 mg b.i.d, metronidazole 500 mg b.i.d and a proton pump inhibitor b.i.d for remaining 5 days. In this study, we investigated efficacy and tolerability of bismuth addition in to ST. We included patients that underwent upper gastrointestinal endoscopy in which H. pylori infection was diagnosed by histological examination of antral and corporal gastric mucosa biopsy. Participants were randomly administered ST or bismuth containing ST (BST) protocols for the first-line H. pylori eradication therapy. Participants have been tested by urea breath test for eradication success 6 weeks after the completion of treatment. One hundred and fifty patients (93 female, 57 male) were enrolled. There were no significant differences in eradication rates for both intention to treat population (70.2%, 95% confidence interval [CI]: 66.3-74.1% vs. 71.8%, 95% CI: 61.8-81.7%, for ST and BST, respectively, p>0.05) and per protocol population (74.6%, 95% CI: 63.2-85.8% vs. 73.7%, 95% CI: 63.9-83.5% for ST and BST, respectively, p>0.05). Despite the undeniable effect of bismuth, there may be several possible reasons of unsatisfactory eradication success. Drug administration time, coadministration of other drugs, possible H. pylori resistance to bismuth may affect the eradication success. The addition of bismuth subcitrate to ST regimen does not provide significant increase in eradication rates.

  18. Quantitative 3D Determination of Radiosensitization by Bismuth-Based Nanoparticles.

    PubMed

    Alqathami, Mamdooh; Blencowe, Anton; Geso, Moshi; Ibbott, Geoffrey

    2016-03-01

    The nanoparticle-induced dose enhancement effect has been shown to improve the therapeutic efficacy of ionizing radiation in external beam radiotherapy. Whereas previous studies have focused on gold nanoparticles (AuNPs), no quantitative studies have been conducted to investigate the potential superiority of other high atomic number (Z) nanomaterials such as bismuth-based nanoparticles. The aims of this study were to experimentally validate and quantify the dose enhancement properties of commercially available bismuth-based nanoparticles (bismuth oxide (Bi2O3-NPs) and bismuth sulfide (Bi2S3-NPs)), and investigate their potential superiority over AuNPs in terms of radiation dose enhancement. Phantom cuvettes doped with and without nanoparticles where employed for measuring radiation dose enhancement produced from the interaction of radiation with metal nanoparticles. Novel 3D phantoms were employed to investigate the 3D spatial distribution of ionising radiation dose deposition. The phantoms were irradiated with kilovoltage and megavoltage X-ray beams and optical absorption changes were measured using a spectrophotometer and optical CT scanner. The radiation dose enhancement factors (DEFs) obtained for 50 nm diameter Bi2O3-NPs and AuNPs were 1.90 and 1.77, respectively, for 100 kV energy and a nanoparticle concentration of 0.5 mM. In addition, the DEFs of 5 nm diameter Bi2S3-NPs and AuNPs were determined to be 1.38 and 1.51, respectively, for 150 kV energy and a nanoparticle concentration of 0.25 mM. The results demonstrate that both bismuth-based nanoparticles can enhance the effects of radiation. For 6 MV energy the DEFs for all the investigated nanoparticles were lower (< 15%) than with kilovoltage energy. PMID:27280244

  19. Extended two-temperature model for ultrafast thermal response of band gap materials upon impulsive optical excitation

    SciTech Connect

    Shin, Taeho; Teitelbaum, Samuel W.; Wolfson, Johanna; Nelson, Keith A.; Kandyla, Maria

    2015-11-21

    Thermal modeling and numerical simulations have been performed to describe the ultrafast thermal response of band gap materials upon optical excitation. A model was established by extending the conventional two-temperature model that is adequate for metals, but not for semiconductors. It considers the time- and space-dependent density of electrons photoexcited to the conduction band and accordingly allows a more accurate description of the transient thermal equilibration between the hot electrons and lattice. Ultrafast thermal behaviors of bismuth, as a model system, were demonstrated using the extended two-temperature model with a view to elucidating the thermal effects of excitation laser pulse fluence, electron diffusivity, electron-hole recombination kinetics, and electron-phonon interactions, focusing on high-density excitation.

  20. Extended two-temperature model for ultrafast thermal response of band gap materials upon impulsive optical excitation.

    PubMed

    Shin, Taeho; Teitelbaum, Samuel W; Wolfson, Johanna; Kandyla, Maria; Nelson, Keith A

    2015-11-21

    Thermal modeling and numerical simulations have been performed to describe the ultrafast thermal response of band gap materials upon optical excitation. A model was established by extending the conventional two-temperature model that is adequate for metals, but not for semiconductors. It considers the time- and space-dependent density of electrons photoexcited to the conduction band and accordingly allows a more accurate description of the transient thermal equilibration between the hot electrons and lattice. Ultrafast thermal behaviors of bismuth, as a model system, were demonstrated using the extended two-temperature model with a view to elucidating the thermal effects of excitation laser pulse fluence, electron diffusivity, electron-hole recombination kinetics, and electron-phonon interactions, focusing on high-density excitation.

  1. Extended two-temperature model for ultrafast thermal response of band gap materials upon impulsive optical excitation.

    PubMed

    Shin, Taeho; Teitelbaum, Samuel W; Wolfson, Johanna; Kandyla, Maria; Nelson, Keith A

    2015-11-21

    Thermal modeling and numerical simulations have been performed to describe the ultrafast thermal response of band gap materials upon optical excitation. A model was established by extending the conventional two-temperature model that is adequate for metals, but not for semiconductors. It considers the time- and space-dependent density of electrons photoexcited to the conduction band and accordingly allows a more accurate description of the transient thermal equilibration between the hot electrons and lattice. Ultrafast thermal behaviors of bismuth, as a model system, were demonstrated using the extended two-temperature model with a view to elucidating the thermal effects of excitation laser pulse fluence, electron diffusivity, electron-hole recombination kinetics, and electron-phonon interactions, focusing on high-density excitation. PMID:26590551

  2. Excitation Methods for Bridge Structures

    SciTech Connect

    Farrar, C.R.; Duffy, T.A.; Cornwell, P.J.; Doebling, S.W.

    1999-02-08

    This paper summarizes the various methods that have been used to excited bridge structures during dynamic testing. The excitation methods fall into the general categories of ambient excitation methods and measured-input excitation methods. During ambient excitation the input to the bridge is not directly measured. In contrast, as the category label implies, measured-input excitations are usually applied at a single location where the force input to the structure can be monitored. Issues associated with using these various types of measurements are discussed along with a general description of the various excitation methods.

  3. Synthesis and characterization of nanocrystalline MoBi2Te5 thin films for photoelectrode applications

    NASA Astrophysics Data System (ADS)

    Salunkhe, M. M.; Kharade, R. R.; Mane, R. M.; Bhosale, P. N.

    2012-10-01

    Molybdenum bismuth telluride thin films have been prepared on clean glass substrate using arrested precipitation technique which is based on self-organized growth process. As deposited MoBi2Te5 thin films were dried in constant temperature oven at 110°C and further characterized for their optical, structural, morphological, compositional, and electrical analysis. Optical absorption spectra recorded in the wavelength range 300-800 nm showed band gap (E g) 1.44 eV. X-ray diffraction pattern and scanning electron microscopic images showed that MoBi2Te5 thin films are granular, nanocrystalline having rhombohedral structure. The compositional analysis showed close agreements in theoretical and experimental atomic percentages of Mo4+, Bi3+, and Te2- suggest that chemical formula MoBi2Te5 assigned to as deposited molybdenum bismuth telluride new material is confirmed. The electrical conductivity and thermoelectric power measurement showed that the films are semiconducting with n-type conduction. The fill factor and conversion efficiency was characterized by photoelectrochemical (PEC) technique. In this article, we report the optostructural, morphological, compositional, and electrical characteristics of nanocrystalline MoBi2Te5 thin films to check its suitability as photoelectrode in PEC cell.

  4. Decoherence at constant excitation

    NASA Astrophysics Data System (ADS)

    Torres, J. M.; Sadurní, E.; Seligman, T. H.

    2012-02-01

    We present a simple exactly solvable extension of the Jaynes-Cummings model by adding dissipation. This is done such that the total number of excitations is conserved. The Liouville operator in the resulting master equation can be reduced to blocks of 4×4 matrices.

  5. Excited states in hydrocarbons

    SciTech Connect

    Lipsky, S.

    1987-01-01

    In this brief review we first summarize some pertinent features of the photophysical properties of excited states of hydrocarbons and the mechanisms by which they transfer energy to solutes and then review their yields and their behavior under fast-electron irradiation conditions. 33 refs.

  6. Positron excitation of neon

    NASA Technical Reports Server (NTRS)

    Parcell, L. A.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    The differential and total cross section for the excitation of the 3s1P10 and 3p1P1 states of neon by positron impact were calculated using a distorted-wave approximation. The results agree well with experimental conclusions.

  7. Laser induced oxidation and optical properties of bismuth telluride nanoplates

    NASA Astrophysics Data System (ADS)

    Ye, Zhipeng; Sucharitakul, Sukrit; Keiser, Courtney; Kidd, Tim E.; Gao, Xuan P. A.; He, Rui

    2015-03-01

    Bi-Te nanoplates (NPs) grown by low pressure vapor transport method were studied by Raman spectroscopy, atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and Auger electron spectroscopy (AES). We find that the surface of relatively thick (more than tens of nanometers) Bi2Te3 NPs is oxidized in the air and forms a bump under heating with moderate laser power, as revealed by the emergence of Raman lines characteristic of Bi2O3 and TeO2 and characterization by AFM and EDS. Further increase of laser power burns holes on the surface of the NPs. Thin (thicknesses less than 20 nm) NPs with stoichiometry different from Bi2Te3 were also studied. Raman lines from non-stoichiometric NPs are different from those of stoichiometric ones. Thin NPs with the same thickness but different stoichiometries show different color contrast compared to the substrate in the optical image. This indicates that the optical absorption coefficient in thin Bi-Te NPs strongly depends on their stoichiometry. Controlling the stoichiometry in the Bi-Te NP growth is thus very important for their thermoelectric, electronic, and optical device applications. Supported by American Chemical Society Petroleum Research Fund (Grant 53401-UNI10), NSF (No. DMR-1206530, No. DMR-1410496, DMR-1151534), UNI Faculty Summer Fellowship and a UNI capacity building grant.

  8. Effect of variable valence impurities on the formation of bismuth-related optical centres in a silicate glass

    SciTech Connect

    Galagan, B I; Denker, B I; Lili Hu; Sverchkov, S E; Shulman, I L; Dianov, Evgenii M

    2012-10-31

    We have studied the effect of variable valence impurities (cerium and iron) on the formation of bismuth-related IR luminescence centres and the optical loss between 1000 and 1300 nm in a magnesium aluminosilicate glass. The results demonstrate that additional doping of the glass with ceria leads to effective bleaching in a wide spectral range, including the luminescence range of the bismuth centres. At the same time, ceria reduces the concentration of luminescence centres. Gamma irradiation of the glass bleached by cerium restores the luminescence centres but leads to a background loss in a wide spectral range. Iron is shown to be a very harmful impurity in bismuth-doped active media: even trace levels of iron prevent the formation of bismuth-related active centres in the glass and produce a strong, broad absorption band centred near 1 {mu}m. (luminescence of glasses)

  9. Thin Film?

    NASA Astrophysics Data System (ADS)

    Kariper, İ. Afşin

    2014-09-01

    This study focuses on the critical surface tension of lead sulfite (PbSO3) crystalline thin film produced with chemical bath deposition on substrates (commercial glass).The PbSO3 thin films were deposited at room temperature at different deposition times. The structural properties of the films were defined and examined according to X-ray diffraction (XRD) and the XRD results such as dislocation density, average grain size, and no. of crystallites per unit area. Atomic force microscopy was used to measure the film thickness and the surface properties. The critical surface tension of the PbSO3 thin films was measured with an optical tensiometer instrument and calculated using the Zisman method. The results indicated that the critical surface tension of films changed in accordance with the average grain size and film thickness. The film thickness increased with deposition time and was inversely correlated with surface tension. The average grain size increased according to deposition time and was inversely correlated with surface tension.

  10. On the Refinement Mechanism of Silicon in Al-Si-Cu-Zn Alloy with Addition of Bismuth

    NASA Astrophysics Data System (ADS)

    Farahany, Saeed; Ourdjini, Ali; Bakar, Tuty Asma Abu; Idris, Mohd Hasbullah

    2014-01-01

    Obtained results of micro and nano studies reveal that bismuth refines the silicon in which the flake silicon changed to lamellar structure with reduction in twin spacing from 160 to 75 nm. Bismuth segregates towards the inter-dendritic regions and decreases the Al-Si contact angle resulting in suppression of the silicon growth causing refinement of the eutectic structure. Increased recalescence temperature and time confirmed that the refinement effect is attributed to the growth stage.

  11. Copper(I)-Catalyzed Cycloaddition of Bismuth(III) Acetylides with Organic Azides: Synthesis of Stable Triazole Anion Equivalents

    PubMed Central

    Worrell, Brady T.; Ellery, Shelby P.

    2014-01-01

    Readily accessible and shelf-stable 1-bismuth(III) acetylides react rapidly and regiospecifically with organic azides in the presence of a copper(I) catalyst. The reaction tolerates many functional groups and gives excellent yields of the previously unreported, bench-stable 5-bismuth triazolides. This uniquely reactive intermediates can be further functionalized under extremely mild conditions to give fully substituted 1,2,3-triazoles. PMID:24130150

  12. Copper(I)-catalyzed cycloaddition of bismuth(III) acetylides with organic azides: synthesis of stable triazole anion equivalents.

    PubMed

    Worrell, Brady T; Ellery, Shelby P; Fokin, Valery V

    2013-12-01

    Fully loaded: Readily accessible and shelf-stable 1-bismuth(III) acetylides react rapidly and regiospecifically with organic azides in the presence of a copper(I) catalyst. The reaction tolerates many functional groups and gives excellent yields of the previously unreported 5-bismuth triazolides. This uniquely reactive intermediate is functionalized under mild reaction conditions to give fully substituted 1,2,3-triazoles. PMID:24130150

  13. SEPARATION OF POLONIUM, PROTACTINIUM OR MIXTURES THEREOF IN AQUEOUS SOLUTION FROM BISMUTH, LEAD, ZIRCONIUM AND/OR COLUMBIUM VALUES

    DOEpatents

    Van Winkle, Q.; Kraus, K.A.

    1959-10-27

    A process is presented for separating polonium, protactinium, or mixtures thereof in aqueous solution from bismuth, zirconium, lead, and niobium values contained in the solution. The method comprises providing hydrochloric acid in the solution in a concentration of at least 5N. contacting the aqueous solution with a substantially waterimmiscible organic solvent such as diisopropyl ketone, and separating the aqueous phase containing the bismuth, zirconium, lead, and niobium from the organic extract phase containing the polonium, protactinium, or mixture thereof.

  14. Mesoscale morphologies in polymer thin films.

    SciTech Connect

    Ramanathan, M.; Darling, S. B.

    2011-06-01

    In the midst of an exciting era of polymer nanoscience, where the development of materials and understanding of properties at the nanoscale remain a major R&D endeavor, there are several exciting phenomena that have been reported at the mesoscale (approximately an order of magnitude larger than the nanoscale). In this review article, we focus on mesoscale morphologies in polymer thin films from the viewpoint of origination of structure formation, structure development and the interaction forces that govern these morphologies. Mesoscale morphologies, including dendrites, holes, spherulites, fractals and honeycomb structures have been observed in thin films of homopolymer, copolymer, blends and composites. Following a largely phenomenological level of description, we review the kinetic and thermodynamic aspects of mesostructure formation outlining some of the key mechanisms at play. We also discuss various strategies to direct, limit, or inhibit the appearance of mesostructures in polymer thin films as well as an outlook toward potential areas of growth in this field of research.

  15. Structure and properties of sodium bismuth titanate ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Aksel, Elena

    Piezoelectric materials are commonly used in sensor and actuator technologies due to their unique ability to couple electrical and mechanical displacements. Applications of piezoelectric materials range from diesel engine fuel injectors, sonar, ultrasound, and nanopositioners in scanning microscopes. Changing environmental regulations and policies have led to a recent surge in the research of lead-free piezoelectric materials. One such system currently under investigation is sodium bismuth titanate (Na0.5Bi0.5 TiO3) or NBT. It has recently been investigated with the addition of chemical modifiers as well as part of various solid solutions with other compounds. However, research into the structure and properties of NBT is still in its infancy. The aim of this dissertation was to develop a comprehensive understanding of the crystal structure and property relationships in NBT. First, the formation of the NBT phase during solid state processing was examined using in situ X-ray diffraction. It was determined that NBT forms through a particle conversion mechanism of the Bi2O 3 particle. The average and local room temperature structure of calcined and sintered NBT were examined using both high resolution synchrotron X-ray diffraction and neutron diffraction techniques. It was determined that the room temperature average structure of this material is best modeled using the monoclinic Cc space group rather than the previously accepted rhombohedral R3c space group. A combined high resolution XRD and neutron diffraction Rietveld refinement provided refined lattice parameters, atomic positions, and displacement parameters. The departure of the local structure of NBT from the average structure was examined through the Pair Distribution Function analysis. It was determined that Na+ and Bi3+, which share the A-site, have differing bonding environments with their surrounding O2- ions. In order to understand the origin of the piezoelectric depolarization behavior of NBT, crystal

  16. Bismuth-ceramic nanocomposites through ball milling and liquid crystal synthetic methods

    NASA Astrophysics Data System (ADS)

    Dellinger, Timothy Michael

    Three methods were developed for the synthesis of bismuth-ceramic nanocomposites, which are of interest due to possible use as thermoelectric materials. In the first synthetic method, high energy ball milling of bismuth metal with either MgO or SiO2 was found to produce nanostructured bismuth dispersed on a ceramic material. The morphology of the resulting bismuth depended on its wetting behavior with respect to the ceramic: the metal wet the MgO, but did not wet on the SiO2. Differential Scanning Calorimetry measurements on these composites revealed unusual thermal stability, with nanostructure retained after multiple cycles of heating and cooling through the metal's melting point. The second synthesis methodology was based on the use of lyotropic liquid crystals. These mixtures of water and amphiphilic molecules self-assemble to form periodic structures with nanometer-scale hydrophilic and hydrophobic domains. A novel shear mixing methodology was developed for bringing together reactants which were added to the liquid crystals as dissolved salts. The liquid crystals served to mediate synthesis by acting as nanoreactors to confine chemical reactions within the nanoscale domains of the mesophase, and resulted in the production of nanoparticles. By synthesizing lead sulfide (PbS) and bismuth (Bi) particles as proof-of-concept, it was shown that nanoparticle size could be controlled by controlling the dimensionality of the nanoreactors through control of the liquid crystalline phase. Particle size was shown to decrease upon going from three-dimensionally percolating nanoreactors, to two dimensional sheet-like nanoreactors, to one dimensional rod-like nanoreactors. Additionally, particle size could be controlled by varying the precursor salt concentration. Since the nanoparticles did not agglomerate in the liquid crystal immediately after synthesis, bismuth-ceramic nanocomposites could be prepared by synthesizing Bi nanoparticles and mixing in SiO2 particles which

  17. Structure and resistivity of bismuth nanobelts in situ synthesized on silicon wafer through an ethanol-thermal method

    SciTech Connect

    Gao Zheng; Qin Haiming; Yan Tao

    2011-12-15

    Bismuth nanobelts in situ grown on a silicon wafer were synthesized through an ethanol-thermal method without any capping agent. The structure of the bismuth belt-silicon composite nanostructure was characterized by scanning electron microscope, energy-dispersive X-ray spectroscopy, and high resolution transmission electron microscope. The nanobelt is a multilayered structure 100-800 nm in width and over 50 {mu}m in length. One layer has a thickness of about 50 nm. A unique sword-like nanostructure is observed as the initial structure of the nanobelts. From these observations, a possible growth mechanism of the nanobelt is proposed. Current-voltage property measurements indicate that the resistivity of the nanobelts is slightly larger than that of the bulk bismuth material. - Graphical Abstract: TEM images, EDS, and electron diffraction pattern of bismuth nanobelts. Highlights: Black-Right-Pointing-Pointer Bismuth nanobelts in situ grown on silicon wafer were achieved. Black-Right-Pointing-Pointer Special bismuth-silicon nanostructure. Black-Right-Pointing-Pointer Potential application in sensitive magnetic sensor and other electronic devices.

  18. Bismuth(III) and copper(II) oxides as catalysts for the electro-oxidation of organic compounds

    SciTech Connect

    Franklin, T.C.; Lee, K.H.; Manlangit, E.; Nnodimele, R.

    1996-11-01

    It was shown that copper(II) oxide bound to the anode with polystyrene containing a cationic surfactant acted as a catalyst for the oxidation of organic compounds in aqueous systems in a manner similar to powdered copper oxide suspended in aqueous systems containing the organic compounds and the cationic surfactant. Voltammetric measurements made with these electrodes were reproducible over an extended period of time, and it was possible to reproducibly use the polystyrene bound copper oxide as a catalyst for anodic destruction of several organic compounds. On the other hand, while bismuth(III) oxide bound to platinum with polystyrene was a catalyst for the oxidation of organic compounds in cationic surfactant suspensions, the results were not reproducible. The rate of renewal of the reactant adsorbed on the anode after oxidation was extremely slow. In addition, the Bi{sub 2}O{sub 3} gradually changed during the catalytic reaction to BiO(OH). Both of the bismuth compounds acted as catalysts for the oxidation reaction, but the potential for oxidation of Bi{sub 2}O{sub 3} was less anodic than the potential for BiO(OH). Previous coulometric experiments have indicated clearly that the catalytic intermediate for the copper oxidations is copper(III); however, the coulometric oxidations of bismuth indicate that the intermediate has a bismuth oxidation state slightly over 4. Most probably the intermediate is bismuth (V) and some of the bismuth had agglomerated so that not all of it has been oxidized.

  19. Magnetostrictive resonance excitation

    DOEpatents

    Schwarz, Ricardo B.; Kuokkala, Veli-Tapani

    1992-01-01

    The resonance frequency spectrum of a magnetostrictive sample is remotely determined by exciting the magnetostrictive property with an oscillating magnetic field. The permeability of a magnetostrictive material and concomitant coupling with a detection coil varies with the strain in the material whereby resonance responses of the sample can be readily detected. A suitable sample may be a magnetostrictive material or some other material having at least one side coated with a magnetostrictive material. When the sample is a suitable shape, i.e., a cube, rectangular parallelepiped, solid sphere or spherical shell, the elastic moduli or the material can be analytically determined from the measured resonance frequency spectrum. No mechanical transducers are required and the sample excitation is obtained without contact with the sample, leading to highly reproducible results and a measurement capability over a wide temperature range, e.g. from liquid nitrogen temperature to the Curie temperature of the magnetostrictive material.

  20. Characterization, Leaching, and Filtration Testing for Bismuth Phosphate Sludge (Group 1) and Bismuth Phosphate Saltcake (Group 2) Actual Waste Sample Composites

    SciTech Connect

    Lumetta, Gregg J.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn; Edwards, Matthew K.; Fiskum, Sandra K.; Hallen, Richard T.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Sinkov, Sergey I.; Snow, Lanee A.

    2009-02-19

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.() The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups—bismuth phosphate sludge (Group 1) and bismuth phosphate saltcake (Group 2)—are the subjects of this report. The Group 1 waste was anticipated to be high in phosphorus and was implicitly assumed to be present as BiPO4 (however, results presented here indicate that the phosphate in Group 1 is actually present as amorphous iron(III) phosphate). The Group 2 waste was also anticipated to be high in phosphorus, but because of the relatively low bismuth content and higher aluminum content, it was anticipated that the Group 2 waste would contain a mixture of gibbsite, sodium phosphate, and aluminum phosphate. Thus, the focus of the Group 1 testing was on determining the behavior of P removal during caustic leaching, and the focus of the Group 2 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

  1. Harmonically excited orbital variations

    SciTech Connect

    Morgan, T.

    1985-08-06

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs.

  2. Aperture excited dielectric antennas

    NASA Technical Reports Server (NTRS)

    Crosswell, W. F.; Chatterjee, J. S.; Mason, V. B.; Tai, C. T.

    1974-01-01

    The results of a comprehensive experimental and theoretical study of the effect of placing dielectric objects over the aperture of waveguide antennas are presented. Experimental measurements of the radiation patterns, gain, impedance, near-field amplitude, and pattern and impedance coupling between pairs of antennas are given for various Plexiglas shapes, including the sphere and the cube, excited by rectangular, circular, and square waveguide feed apertures. The waveguide excitation of a dielectric sphere is modeled using the Huygens' source, and expressions for the resulting electric fields, directivity, and efficiency are derived. Calculations using this model show good overall agreement with experimental patterns and directivity measurements. The waveguide under an infinite dielectric slab is used as an impedance model. Calculations using this model agree qualitatively with the measured impedance data. It is concluded that dielectric loaded antennas such as the waveguide excited sphere, cube, or sphere-cylinder can produce directivities in excess of that obtained by a uniformly illuminated aperture of the same cross section, particularly for dielectric objects with dimensions of 2 wavelengths or less. It is also shown that for certain configurations coupling between two antennas of this type is less than that for the same antennas without dielectric loading.

  3. Electronic excitation spectrum of ABC-stacked multilayer graphene

    NASA Astrophysics Data System (ADS)

    Henni, Y.; Nogajewski, K.; Ojeda Collado, H. P.; Usaj, G.; Balseiro, C. A.; Potemski, M.; Faugeras, C.

    The electronic properties of ABC graphene trilayers has attracted lot of attention recently due to their potential applications in engineering carbon-based devices with gate tunable electrical conductivity. Morever,ABC-stacked thin layers of graphite are predicted to host peculiar surface electronic states, with a flat dispersion over most of the Brillouin zone. The associated high density of states is likely to favour the emergence of exotic electronic phases, such as charge density waves or even superconductivity. We present a micro-magneto-Raman scattering study of a thin graphite flake produced by exfoliation of natural graphite, composed of ~15graphene layers, and including a large ABC-stacked domain. Exploring the low temperature Raman scattering spectrum of this domain up to B=29T,we identify inter Landau level electronic excitations within the surface flat bands,together with electronic excitations involving the gapped states in the bulk. This interband electronic excitation at B=0T can be observed,up to room temperature, directly in the Raman scattering spectrum as a broad(~ 180 cm-1) feature. Because the energy gap strongly depends on the number of layers,this electronic excitation can be used to identify and characterize ABC-stacked graphite thin layers.

  4. Compatibility tests of steels in flowing liquid lead-bismuth

    NASA Astrophysics Data System (ADS)

    Barbier, F.; Benamati, G.; Fazio, C.; Rusanov, A.

    2001-06-01

    The behaviour of steels exposed to flowing Pb-55Bi was evaluated. The materials tested are the two austenitic steels AISI 316L and 1.4970, and the six martensitic steels Optifer IVc, T91, Batman 27, Batman 28, EP823 and EM10 which were exposed to flowing Pb-55Bi for 1000, 2000 and 3000 h and at two temperatures (573 and 743 K). The corrosion tests were conducted in the non-isothermal loop of IPPE-Obninsk under a controlled oxygen level (10 -6 wt%). The compatibility study showed that at a lower temperature, a very thin oxide layer (<1 μm) was formed on the steels. At higher temperature, austenitic steels also exhibited a thin oxide layer sufficient to prevent their dissolution in the melt. A thicker oxide, which grew according to a parabolic law, was observed on the surface of the martensitic steels. The oxidation resistance behaviour of the martensitic steels was correlated with their alloying elements.

  5. Thin film mechanics

    NASA Astrophysics Data System (ADS)

    Cooper, Ryan C.

    the role of grain boundaries on the strength of chemical vapor deposited graphene. The results from these studies suggest that two dimensional films have remarkably high strength-reaching the intrinsic limit of molecular bonds. Chapter 5 explores the viscoelastic properties of heterogeneous polydimethylsiloxane (PDMS) microfilms through dynamic nanoindentation. PDMS microfilms are irradiated with an electron beam creating a 3 m-thick film with an increased cross-link density. The change in mechanical properties of PDMS due to thermal history and accelerator have been explored by a variety of tests, but the effect of electron beam irradiation is still unknown. The resulting structure is a stiff microfilm embedded in a soft rubber with some transformational strain induced by the cross-linking volume changes. Chapter 5 employs a combination of dynamic nanoindentation and finite element analysis to determine the change in stiffness as a function of electron beam irradiation. The experimental results are compared to the literature. The results of these experimental and numerical techniques provide exciting opportu- nities in future research. Two dimensional materials and flexible thin films are exciting materials for novel applications with new form factors, such as flexible electronics and microfluidic devices. The results herein indicate that you can accurately model the strength of two dimsensional materials and that these materials are robust against nanoscale defects. The results also reveal local variation of mechanical properties in PDMS microfilms. This allows one to design substrates that flex with varying amounts of strain on the surface. Combining the mechanics of two dimensional materials with that of a locally irradiated PDMS film could achieve a new class of flexible microelectromechanical systems. Large-scale growth of two dimensional materials will be structurally robust-even in the presence of nanostructural defects-and PDMS microfilms can be irradiated to

  6. Ab initio lattice dynamics and thermochemistry of layered bismuth telluride (Bi2Te3)

    NASA Astrophysics Data System (ADS)

    Zurhelle, Alexander F.; Deringer, Volker L.; Stoffel, Ralf P.; Dronskowski, Richard

    2016-03-01

    We present density-functional theory calculations of the lattice dynamics of bismuth telluride, yielding force constants, mean-square displacements and partial densities of phonon states which corroborate and complement previous nuclear inelastic scattering experiments. From these data, we derive an element- and energy-resolved view of the vibrational anharmonicity, quantified by the macroscopic Grüneisen parameter γ which results in 1.56. Finally, we calculate thermochemical properties in the quasiharmonic approximation, especially the heat capacity at constant pressure and the enthalpy of formation for bismuth telluride; the latter arrives at ▵H f (Bi2Te3)  =  -102 kJ mol-1 at 298 K.

  7. Ab initio lattice dynamics and thermochemistry of layered bismuth telluride (Bi2Te3).

    PubMed

    Zurhelle, Alexander F; Deringer, Volker L; Stoffel, Ralf P; Dronskowski, Richard

    2016-03-23

    We present density-functional theory calculations of the lattice dynamics of bismuth telluride, yielding force constants, mean-square displacements and partial densities of phonon states which corroborate and complement previous nuclear inelastic scattering experiments. From these data, we derive an element- and energy-resolved view of the vibrational anharmonicity, quantified by the macroscopic Grüneisen parameter γ which results in 1.56. Finally, we calculate thermochemical properties in the quasiharmonic approximation, especially the heat capacity at constant pressure and the enthalpy of formation for bismuth telluride; the latter arrives at ΔHf (Bi2Te3)  =  -102 kJ mol(-1) at 298 K.

  8. Direct Observation of Melting in Shock-Compressed Bismuth With Femtosecond X-ray Diffraction.

    PubMed

    Gorman, M G; Briggs, R; McBride, E E; Higginbotham, A; Arnold, B; Eggert, J H; Fratanduono, D E; Galtier, E; Lazicki, A E; Lee, H J; Liermann, H P; Nagler, B; Rothkirch, A; Smith, R F; Swift, D C; Collins, G W; Wark, J S; McMahon, M I

    2015-08-28

    The melting of bismuth in response to shock compression has been studied using in situ femtosecond x-ray diffraction at an x-ray free electron laser. Both solid-solid and solid-liquid phase transitions are documented using changes in discrete diffraction peaks and the emergence of broad, liquid scattering upon release from shock pressures up to 14 GPa. The transformation from the solid state to the liquid is found to occur in less than 3 ns, very much faster than previously believed. These results are the first quantitative measurements of a liquid material obtained on shock release using x-ray diffraction, and provide an upper limit for the time scale of melting of bismuth under shock loading.

  9. Fast oxygen diffusion in bismuth oxide probed by quasielastic neutron scattering

    DOE PAGES

    Mamontov, Eugene

    2016-09-24

    In this paper, we present the first, to our knowledge, study of solid state oxygen translational diffusion by quasielastic neutron scattering. Such studies in the past might have been precluded by relatively low diffusivities of oxygen anions in the temperature range amenable to neutron scattering experiments. To explore the potential of the quasielastic scattering technique, which can deduce atomic diffusion jump length of oxygen anions through the momentum transfer dependence of the scattering signal, we have selected the fastest known oxygen conductor, bismuth oxide. Finally, we have found the oxygen anion jump length in excellent agreement with the nearest oxygen-vacancymore » distance in the anion sublattice of the fluorite-related structure of bismuth oxide.« less

  10. In situ transmission electron microscopy of solid-liquid phase transition of silica encapsulated bismuth nanoparticles

    NASA Astrophysics Data System (ADS)

    Hu, Jianjun; Hong, Yan; Muratore, Chris; Su, Ming; Voevodin, Andrey A.

    2011-09-01

    The solid-liquid phase transition of silica encapsulated bismuth nanoparticles was studied by in situ transmission electron microscopy (TEM). The nanoparticles were prepared by a two-step chemical synthesis process involving thermal decomposition of organometallic precursors for nucleating bismuth and a sol-gel process for growing silica. The microstructural and chemical analyses of the nanoparticles were performed using high-resolution TEM, Z-contrast imaging, focused ion beam milling, and X-ray energy dispersive spectroscopy. Solid-liquid-solid phase transitions of the nanoparticles were directly recorded by electron diffractions and TEM images. The silica encapsulation of the nanoparticles prevented agglomeration and allowed particles to preserve their original volume upon melting, which is desirable for applications of phase change nanoparticles with consistently repeatable thermal properties.

  11. Zero-dimensional nanostructured material with metallic bismuth nanoparticles: a new route for thermoelectrics

    NASA Astrophysics Data System (ADS)

    Benoit, Roland; Treguer, Mona; Saboungi, Marie-Louise

    2011-03-01

    The thermoelectric figure of merit ZT has so far not exceeded the value ZT=3 need to compete with mechanical energy conversion systems. However, theoretical work has shown that it is possible to reach values of ZT higher than this. One of the most promising routes is nanostructured materials, which offer the opportunity to tailor physical properties such as electrical and heat transport, due to the effects of electron filtering and phonon confinement. Dresselhaus et al. (ref.?) were among the first to show that 2D and 1D structures are capable of reaching ZT values higher than 2. The thermoelectric materials of current interest are in the form of nanotubes, nanodots and, more generally, superlattices composed of a matrix and nanoparticles. In our work we synthesize a periodic network of bismuth nanoparticles in a matrix of mesoporous Si O2 . We find that in this form bismuth transforms from a rhombohedral to a cubic structure, with improved filtering of electrons and phonons.

  12. Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery.

    PubMed

    Suárez, David J; González, Zoraida; Blanco, Clara; Granda, Marcos; Menéndez, Rosa; Santamaría, Ricardo

    2014-03-01

    A graphite felt decorated with bismuth nanoparticles was studied as negative electrode in a vanadium redox flow battery (VRFB). The results confirm the excellent electrochemical performance of the bismuth modified electrode in terms of the reversibility of the V(3+) /V(2+) redox reactions and its long-term cycling performance. Moreover a mechanism that explains the role that Bi nanoparticles play in the redox reactions in this negative half-cell is proposed. Bi nanoparticles favor the formation of BiHx , an intermediate that reduces V(3+) to V(2+) and, therefore, inhibits the competitive irreversible reaction of hydrogen formation (responsible for the commonly observed loss of Coulombic efficiency of VRFBs). Thus, the total charge consumed during the cathodic sweep in this electrode is used to reduce V(3+) to V(2+) , resulting in a highly reversible and efficient process.

  13. Synthesis and Electrochemical Sensing Toward Heavy Metals of Bunch-like Bismuth Nanostructures

    PubMed Central

    2010-01-01

    Large-scale bunch-like bismuth (Bi) nanostructures were the first time to be synthesized via two-step electrochemical deposition. The growth mechanism of the nanostructures was discussed. Such a designed bunch-like Bi electrode has high sensitivity to detect the heavy metal ions due to its unique three-dimensional structures and strong ability of adsorbing the heavy metal ions. The bunch-like Bi electrode’s detection of heavy metals was statically performed using anodic stripping voltammetry (ASV). The detection in the Pb(II) concentration range of 2.5–50 μg/l was also performed. Based on the experimental results, this bunch-like Bi electrode can be considered as an interesting alternative to common mercury electrodes and bismuth film electrodes for possible use in electrochemical studies and electroanalytical applications. PMID:20672072

  14. In situ transmission electron microscopy of solid-liquid phase transition of silica encapsulated bismuth nanoparticles.

    PubMed

    Hu, Jianjun; Hong, Yan; Muratore, Chris; Su, Ming; Voevodin, Andrey A

    2011-09-01

    The solid-liquid phase transition of silica encapsulated bismuth nanoparticles was studied by in situ transmission electron microscopy (TEM). The nanoparticles were prepared by a two-step chemical synthesis process involving thermal decomposition of organometallic precursors for nucleating bismuth and a sol-gel process for growing silica. The microstructural and chemical analyses of the nanoparticles were performed using high-resolution TEM, Z-contrast imaging, focused ion beam milling, and X-ray energy dispersive spectroscopy. Solid-liquid-solid phase transitions of the nanoparticles were directly recorded by electron diffractions and TEM images. The silica encapsulation of the nanoparticles prevented agglomeration and allowed particles to preserve their original volume upon melting, which is desirable for applications of phase change nanoparticles with consistently repeatable thermal properties.

  15. Synthesis of α-Bismuth oxide using solution combustion method and its photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Astuti, Y.; Fauziyah, A.; Nurhayati, S.; Wulansari, A. D.; Andianingrum, R.; Hakim, A. R.; Bhaduri, G.

    2016-02-01

    The monoclinic bismuth oxide was prepared by the solution combustion method using bismuthyl nitrate as the raw material and citric acid as fuel. The synthesis process consisted of the formation of a clear transparent solution and the formation of white powder after heating the mixture at 250 °C for 2 hours. The yellow pale crystalline materials were obtained after calcination of the white powder at 600 °C for 80 minutes. Furthermore, the photocatalytic activity of the product was also studied using methyl orange as a model pollutant. The result showed that the coral reef-like bismuth oxide was able to degrade 50 mL methyl orange (5 ppm) by 37.8% within 12 hours irradiation using 75-watt tungsten lamp.

  16. Mixed-layered bismuth-oxygen-iodine materials for capture and waste disposal of radioactive iodine

    SciTech Connect

    Krumhansl, James L; Nenoff, Tina M

    2013-02-26

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

  17. Mixed-layered bismuth--oxygen--iodine materials for capture and waste disposal of radioactive iodine

    DOEpatents

    Krumhansl, James L; Nenoff, Tina M

    2015-01-06

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

  18. Superbroadband near-IR emission from praseodymium-doped bismuth gallate glasses.

    PubMed

    Zhou, Bo; Pun, Edwin Yue-Bun

    2011-08-01

    Superbroadband near-infrared (NIR) emission covering 1250 to 1680 nm wavelength has been obtained in praseodymium (Pr(3+)) singly doped bismuth gallate glasses. The emission originates from the (1)G(4)→(3)H(5) and (1)D(2)→(1)G(4) transitions at 1330 and 1490 nm wavelengths, respectively, and is due to the extremely low phonon energy (∼690 cm(-1)) and the unique ligand field of the glasses. It is shown that the emission line shape can be modified by adjusting the Pr(3+) concentration and the energy transfers involved. The results confirm that other than bismuth (Bi), chromium (Cr), nickel (Ni), and other chemical elements, Pr(3+) singly doped system is a promising alternative in achieving superbroadband NIR emission.

  19. The growth and crystallography of bismuth tri-iodide crystals grown by vapor transport

    SciTech Connect

    Nason, D.; Keller, L.

    1995-10-01

    A single crystal of bismuth tri-iodide (BiI{sub 3}) of dimensions 1.2 {times} 1.2 {times} 0.4 cm{sup 3} has been grown by physical vapor transport. The lattice parameters of the hexagonal crystal and its polycrystaleme powder precursor were measured by x-ray diffraction (XRD) and were in agreement, indicating that the vapor phase growth and sublimation purification processing at temperatures below 330{degree}C did not significantly affect the stoichiometry. X-ray rocking measurements of the single crystal showed low angle boundaries of the order of 0.05{degree}. In tests as gamma radiation detectors, neither melt grown nor vapor grown crystals were satisfactory, but the vapor grown crystals were promising. Several observations suggest that better performance may be achievable with purer bismuth tri-iodide.

  20. Dielectric properties of Bismuth Titanate (Bi4Ti3O12) synthesized using solution combustion route

    NASA Astrophysics Data System (ADS)

    Subohi, Oroosa; Kumar, G. S.; Malik, M. M.; Kurchania, Rajnish

    2012-09-01

    Ferroelectric Bismuth Titanate (Bi4Ti3O12) was prepared by solution combustion route with glycine as fuel. The single phase Bismuth Titanate was obtained after calcination at 800 °C, which was confirmed with the help of X-ray diffraction studies and EDS analysis. SEM micrographs of the calcined powders show agglomerated particles, which is typical of combustion synthesis. Behavior of dielectric constant and dielectric loss as a function of temperature of as prepared sample are reported here. Ferroelectric to paraelectric phase transition occurs at the temperature Tc∼650 °C. Impedance studies were made in the frequency range from 1 KHz to 1 MHz. The semicircles observed in the complex impedance diagrams indicate deviation from the Debye behavior. Activation energy of the sample around Tc is found to be ∼0.35 eV and below Tc is ∼0.13 eV, which was calculated using the Arrhenius plots.