Science.gov

Sample records for excited thin bismuth

  1. Thickness-dependent electron–lattice equilibration in laser-excited thin bismuth films

    DOE PAGES

    Sokolowski-Tinten, K.; Li, R. K.; Reid, A. H.; ...

    2015-11-19

    Electron–phonon coupling processes determine electronic transport properties of materials and are responsible for the transfer of electronic excess energy to the lattice. With decreasing device dimensions an understanding of these processes in nanoscale materials is becoming increasingly important. We use time-resolved electron diffraction to directly study energy relaxation in thin bismuth films after optical excitation. Precise measurements of the transient Debye–Waller-effect for various film thicknesses and over an extended range of excitation fluences allow to separate different contributions to the incoherent lattice response. While phonon softening in the electronically excited state is responsible for an immediate increase of the r.m.s.more » atomic displacement within a few hundred fs, 'ordinary' electron–phonon coupling leads to subsequent heating of the material on a few ps time-scale. Moreover, the data reveal distinct changes in the energy transfer dynamics which becomes faster for stronger excitation and smaller film thickness, respectively. The latter effect is attributed to a cross-interfacial coupling of excited electrons to phonons in the substrate.« less

  2. Induced electronic anisotropy in bismuth thin films

    SciTech Connect

    Liao, Albert D.; Yao, Mengliang; Opeil, Cyril; Katmis, Ferhat; Moodera, Jagadeesh S.; Li, Mingda; Tang, Shuang; Dresselhaus, Mildred S.

    2014-08-11

    We use magneto-resistance measurements to investigate the effect of texturing in polycrystalline bismuth thin films. Electrical current in bismuth films with texturing such that all grains are oriented with the trigonal axis normal to the film plane is found to flow in an isotropic manner. By contrast, bismuth films with no texture such that not all grains have the same crystallographic orientation exhibit anisotropic current flow, giving rise to preferential current flow pathways in each grain depending on its orientation. Extraction of the mobility and the phase coherence length in both types of films indicates that carrier scattering is not responsible for the observed anisotropic conduction. Evidence from control experiments on antimony thin films suggests that the anisotropy is a result of bismuth's large electron effective mass anisotropy.

  3. Simultaneous solution-based generation and characterization of crystalline bismuth thin film by femtosecond laser spectroscopy

    SciTech Connect

    Zhu, Liangdong; Keszler, Douglas A.; Fang, Chong; Saha, Sumit; Liu, Weimin; Wang, Yanli

    2015-08-10

    We demonstrate generation and characterization of crystalline bismuth thin film from triphenyl bismuth in methanol. Upon ultraviolet (267 nm) femtosecond laser irradiation of the solution, a thin film of elemental bismuth forms on the inner side of the sample cuvette, confirmed by detection of the coherent A{sub 1g} optical phonon mode of crystalline bismuth at ∼90 cm{sup −1}. Probe pulses at 267 and 400 nm are used to elucidate the excited state potential energy surface and photochemical reaction coordinate of triphenyl bismuth in solution with femtosecond resolution. The observed phonon mode blueshifts with increasing irradiation time, likely due to the gradual thickening of nascent bismuth thin film to ∼80 nm in 90 min. From transient absorption with the 400 nm probe, we observe a dominant ∼4 ps decay time constant of the excited-state absorption signal, which is attributed to a characteristic metal-ligand bond-weakening/breaking intermediate enroute to crystalline metallic thin film from the solution precursor molecules. Our versatile optical setup thus opens an appealing avenue to characterize the laser-induced crystallization process in situ and prepare high-quality thin films and nanopatterns directly from solution phase.

  4. Bismuth pyrochlore thin films for dielectric energy storage

    SciTech Connect

    Michael, Elizabeth K. Trolier-McKinstry, Susan

    2015-08-07

    Thin films of cubic pyrochlore bismuth zinc niobate, bismuth zinc tantalate, and bismuth zinc niobate tantalate were fabricated using chemical solution deposition. This family of materials exhibited moderate relative permittivities between 55 ± 2 and 145 ± 5 for bismuth zinc tantalate and bismuth zinc niobate, respectively, and low loss tangents on the order of 0.0008 ± 0.0001. Increases in the concentration of the tantalum end member increased the dielectric breakdown strength. For example, at 10 kHz, the room temperature breakdown strength of bismuth zinc niobate was 5.1 MV/cm, while that of bismuth zinc tantalate was 6.1 MV/cm. This combination of a high breakdown strength and a moderate permittivity led to a high discharged energy storage density for all film compositions. For example, at a measurement frequency of 10 kHz, bismuth zinc niobate exhibited a maximum recoverable energy storage density of 60.8 ± 2.0 J/cm{sup 3}, while bismuth zinc tantalate exhibited a recoverable energy storage density of 60.7 ± 2.0 J/cm{sup 3}. Intermediate compositions of bismuth zinc niobate tantalate offered higher energy storage densities; at 10 mol. % tantalum, the maximum recoverable energy storage density was ∼66.9 ± 2.4 J/cm{sup 3}.

  5. Entropy driven atomic motion in laser-excited bismuth.

    PubMed

    Giret, Y; Gellé, A; Arnaud, B

    2011-04-15

    We introduce a thermodynamical model based on the two-temperature approach in order to fully understand the dynamics of the coherent A(1g) phonon in laser-excited bismuth. Using this model, we simulate the time evolution of (111) Bragg peak intensities measured by Fritz et al. [Science 315, 633 (2007)] in femtosecond x-ray diffraction experiments performed on a bismuth film for different laser fluences. The agreement between theoretical and experimental results is striking not only because we use fluences very close to the experimental ones but also because most of the model parameters are obtained from ab initio calculations performed for different electron temperatures.

  6. Stabilizing new bismuth compounds in thin film form [Stabilizing new thin film materials in bismuth compounds

    DOE PAGES

    Chen, Aiping; Zhou, Honghui; Zhu, Yuanyuan; ...

    2016-11-10

    Growth of unexpected phases from a composite target of BiFeO3:BiMnO3 and/or BiFeO3:BiCrO3 has been explored using pulsed laser deposition. The Bi2FeMnO6 tetragonal phase can be grown directly on SrTiO3 (STO) substrate, while two phases (S1 and S2) were found to grow on LaAlO3 (LAO) substrates with narrow growth windows. However, introducing a thin CeO2 buffer layer effectively broadens the growth window for the pure S1 phase, regardless of the substrate. Moreover, we discovered two new phases (X1 and X2) when growing on STO substrates using a BiFeO3:BiCrO3 target. Pure X2 phase can be obtained on CeO2-buffered STO and LAO substrates.more » This work demonstrates that some unexpected phases can be stabilized in a thin film form by using composite perovskite BiRO3 (R = Cr, Mn, Fe, Co, Ni) targets. Moreover, it also indicates that CeO2 can serve as a general template for the growth of bismuth compounds with potential room-temperature multiferroicity.« less

  7. Stabilizing new bismuth compounds in thin film form [Stabilizing new thin film materials in bismuth compounds

    SciTech Connect

    Chen, Aiping; Zhou, Honghui; Zhu, Yuanyuan; Li, Leigang; Zhang, Wenrui; Narayan, Jagdish; Wang, Haiyan; Jia, Quanxi

    2016-11-10

    Growth of unexpected phases from a composite target of BiFeO3:BiMnO3 and/or BiFeO3:BiCrO3 has been explored using pulsed laser deposition. The Bi2FeMnO6 tetragonal phase can be grown directly on SrTiO3 (STO) substrate, while two phases (S1 and S2) were found to grow on LaAlO3 (LAO) substrates with narrow growth windows. However, introducing a thin CeO2 buffer layer effectively broadens the growth window for the pure S1 phase, regardless of the substrate. Moreover, we discovered two new phases (X1 and X2) when growing on STO substrates using a BiFeO3:BiCrO3 target. Pure X2 phase can be obtained on CeO2-buffered STO and LAO substrates. This work demonstrates that some unexpected phases can be stabilized in a thin film form by using composite perovskite BiRO3 (R = Cr, Mn, Fe, Co, Ni) targets. Moreover, it also indicates that CeO2 can serve as a general template for the growth of bismuth compounds with potential room-temperature multiferroicity.

  8. Bismuth(III) dialkyldithiophosphates: Facile single source precursors for the preparation of bismuth sulfide nanorods and bismuth phosphate thin films

    SciTech Connect

    Biswal, Jasmine B.; Garje, Shivram S.; Nuwad, Jitendra; Pillai, C.G.S.

    2013-08-15

    Two different phase pure materials (Bi{sub 2}S{sub 3} and Bi{sub 2}P{sub 4}O{sub 13}) have been prepared under different conditions using the same single source precursors. Solvothermal decomposition of the complexes, Bi(S{sub 2}P(OR){sub 2}){sub 3} [where, R=Methyl (Me) (1), Ethyl (Et) (2), n-Propyl (Pr{sup n}) (3) and iso-Propyl (Pr{sup i}) (4)] in ethylene glycol gave orthorhombic bismuth sulfide nanorods, whereas aerosol assisted chemical vapor deposition (AACVD) of the same precursors deposited monoclinic bismuth tetraphosphate (Bi{sub 2}P{sub 4}O{sub 13}) thin films on glass substrates. Surface study of the thin films using SEM illustrated the formation of variety of nanoscale morphologies (spherical-, wire-, pendent-, doughnut- and flower-like) at different temperatures. AFM studies were carried out to evaluate quality of the films in terms of uniformity and roughness. Thin films of average roughness as low as 1.4 nm were deposited using these precursors. Photoluminescence studies of Bi{sub 2}P{sub 4}O{sub 13} thin films were also carried out. - Graphical abstract: Solvothermal decomposition of bismuth(III) dialkyldithiophosphates in ethylene glycol gave Bi{sub 2}S{sub 3} nanoparticles, whereas aerosol assisted chemical vapor deposition of these single source precursors deposited Bi{sub 2}P{sub 4}O{sub 13} thin films. Display Omitted - Highlights: • Preparation of phase pure orthorhombic Bi{sub 2}S{sub 3} nanorods and monoclinic Bi{sub 2}P{sub 4}O{sub 13} thin films. • Use of single source precursors for deposition of bismuth phosphate thin films. • Use of solvothermal decomposition and AACVD methods. • Morphology controlled synthesis of Bi{sub 2}P{sub 4}O{sub 13} thin films. • Bi{sub 2}S{sub 3} nanorods and Bi{sub 2}P{sub 4}O{sub 13} thin films using same single source precursors.

  9. Electrical resistivity of thin bismuth films

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Katyal, O. P.

    1990-05-01

    The effect of the film thickness of a bismuth film deposited on glass substrate on its electrical resistivity was investigated for films from 41 to 225 nm thickness, in the temperature range 77-350 K. Results show that the electrical resistivity decreases with increasing temperature and that, for films 98.3 and 225.9 nm thick there exists a minimum (between 260 and 350 K) in resistivity at some temperature, Tc. This minimum shifts toward higher temperature for thinner samples, and lies above 350 K. The thickness dependence of the bismuth film resistivity, obtained at 77, 150, and 300 K, can be explained by a modified Fuchs model, which takes into account the thickness dependence of carrier density.

  10. Bismuth(III) dialkyldithiophosphates: Facile single source precursors for the preparation of bismuth sulfide nanorods and bismuth phosphate thin films

    NASA Astrophysics Data System (ADS)

    Biswal, Jasmine B.; Garje, Shivram S.; Nuwad, Jitendra; Pillai, C. G. S.

    2013-08-01

    Two different phase pure materials (Bi2S3 and Bi2P4O13) have been prepared under different conditions using the same single source precursors. Solvothermal decomposition of the complexes, Bi{S2P(OR)2}3 [where, R=Methyl (Me) (1), Ethyl (Et) (2), n-Propyl (Prn) (3) and iso-Propyl (Pri) (4)] in ethylene glycol gave orthorhombic bismuth sulfide nanorods, whereas aerosol assisted chemical vapor deposition (AACVD) of the same precursors deposited monoclinic bismuth tetraphosphate (Bi2P4O13) thin films on glass substrates. Surface study of the thin films using SEM illustrated the formation of variety of nanoscale morphologies (spherical-, wire-, pendent-, doughnut- and flower-like) at different temperatures. AFM studies were carried out to evaluate quality of the films in terms of uniformity and roughness. Thin films of average roughness as low as 1.4 nm were deposited using these precursors. Photoluminescence studies of Bi2P4O13 thin films were also carried out.

  11. Low-temperature Hall effect in bismuth chalcogenides thin films

    NASA Astrophysics Data System (ADS)

    Kuntsevich, A. Yu.; Gabdullin, A. A.; Prudkogliad, V. A.; Selivanov, Yu. G.; Chizhevskii, E. G.; Pudalov, V. M.

    2016-12-01

    Bismuth chalcogenides are the most studied 3D topological insulators. As a rule, at low temperatures, thin films of these materials demonstrate positive magnetoresistance due to weak antilocalization. Weak antilocalization should lead to resistivity decrease at low temperatures; in experiments, however, resistivity grows as temperature decreases. From transport measurements for several thin films (with various carrier density, thickness, and carrier mobility), and by using a purely phenomenological approach, with no microscopic theory, we show that the low-temperature growth of the resistivity is accompanied by growth of the Hall coefficient, in agreement with the diffusive electron-electron interaction correction mechanism. Our data reasonably explain the low-temperature resistivity upturn.

  12. Thermoelectric properties of bismuth-antimony thin films

    SciTech Connect

    Treffny, J.; Jayadev, T.S.

    1980-07-01

    Thermoelectrics have a wide range of potential applications in the temperature range of 0/sup 0/ to 100/sup 0/C. In an effort to enhance the feasibility of thermoelectrics, we have begun investigation of potentially cheaper materials and cheaper techniques for thermoelectrics. Two features of bismuth and antimony have influenced our work. First, Horst and Williams have reported quite respectable figure of merit values in bulk single crystals of bismuth-antimony, up to 2.5 x 10/sup -3/ at room temperature. Second, bismuth and antimony are an order of magnitude cheaper in cost compared to selenium and tellurium, making this binary alloy a natural candidate to reduce the cost of thermoelectric devices. Our avenue of approach involves a simplification of the fabrication process using an established technique of solid-state electronics: thin-film deposition. We have recently begun to investigate the extent to which the favorable properties of bulk Bi-Sb are preserved in thin films. Some of the preliminary data coming out of this ongoing investigation are reported.

  13. Kinetics and mechanism of high-temperature oxidation of copper covered by bismuth thin films

    SciTech Connect

    Belousov, V.V. )

    1992-10-01

    The oxidation kinetics of copper covered by thin films of bismuth were studied by TGA, X-ray diffraction, X-ray micro-elemental, coulombmetric methods, and by electron and optional microscopy. At 1,003 K catastrophic oxidation of copper coated by bismuth thin films was observed. The parabolic rate constant of copper oxidation (Kp) depends markedly on the thickness of the bismuth film and is more than 1,000 times greater than that of bare copper. The mechanism of catastrophic copper oxidation in contact with bismuth is discussed.

  14. Ferroelectric thin film bismuth titanate prepared from acetate precursors

    SciTech Connect

    Lu, Yanxia; Hoelzer, D.T.; Schulze, W.A.; Tuttle, B.A.; Potter, B.G.

    1994-10-01

    Bismuth titanate (Bi{sub 4}Ti{sub 3}O{sub 12}) thin films were fabricated by spin coat deposition followed by rapid thermal processing (RTP). Acetate derived solutions for deposition were synthesized by blending bismuth acetate in aqueous acetic acid and then adding titanium acetate. A series of electrically insulating, semiconducting and conducting substrates were evaluated for Bi{sub 4}Ti{sub 3}O{sub 12} film deposition. While X-ray diffraction and TEM analyses indicated that the initial perovskite crystallization temperature was 500{degrees}C or less for these Bi{sub 4}Ti{sub 3}O{sub 12} films, a 700{degrees}C crystallization treatment was used to obtain single phase perovskite films. Bi{sub 4}Ti{sub 3}O{sub 12} film crystallographic orientation was shown to depend on three factors: substrate surface morphology, the number of coating layers and thermal processing. While preferred c-direction orientation was observed for Bi{sub 4}Ti{sub 3}O{sub 12} films deposited on silver foil substrates, preferred a-direction orientation was obtained for films deposited on both Si and Pt coated Si wafers. The films were dense, smooth, crack free, and had grain sizes ranging from 20 nm to 100 nm. Film thickness and refractive index were determined using a combination of ellipsometry, waveguide refractometry and TEM measurements. Both low field dielectric and ferroelectric properties were measured for an 800 nm thick film deposited on a Pt coated MgO substrate. A remanent polarization of 38 {mu}C/cm{sup 2} and a coercive field of 98 kV/cm were measured for this film that was crystallized at 700{degrees}C.

  15. Large-Area Dry Transfer of Single-Crystalline Epitaxial Bismuth Thin Films.

    PubMed

    Walker, Emily S; Na, Seung Ryul; Jung, Daehwan; March, Stephen D; Kim, Joon-Seok; Trivedi, Tanuj; Li, Wei; Tao, Li; Lee, Minjoo L; Liechti, Kenneth M; Akinwande, Deji; Bank, Seth R

    2016-11-09

    We report the first direct dry transfer of a single-crystalline thin film grown by molecular beam epitaxy. A double cantilever beam fracture technique was used to transfer epitaxial bismuth thin films grown on silicon (111) to silicon strips coated with epoxy. The transferred bismuth films retained electrical, optical, and structural properties comparable to the as-grown epitaxial films. Additionally, we isolated the bismuth thin films on freestanding flexible cured-epoxy post-transfer. The adhesion energy at the bismuth/silicon interface was measured to be ∼1 J/m(2), comparable to that of exfoliated and wet transferred graphene. This low adhesion energy and ease of transfer is unexpected for an epitaxially grown film and may enable the study of bismuth's unique electronic and spintronic properties on arbitrary substrates. Moreover, this method suggests a route to integrate other group-V epitaxial films (i.e., phosphorus) with arbitrary substrates, as well as potentially to isolate bismuthene, the atomic thin-film limit of bismuth.

  16. Robust surface state transport in thin bismuth nanoribbons

    PubMed Central

    Ning, Wei; Kong, Fengyu; Han, Yuyan; Du, Haifeng; Yang, Jiyong; Tian, Mingliang; Zhang, Yuheng

    2014-01-01

    While a two-dimensional (2D) metallic surface state in bismuth has been proposed, experimental 2D evidence of quantum transport, e.g., angular dependent Shubnikov-de Haas (SdH) oscillations is still lacking. Here, we report the angular-dependent magnetoresistance measurements in single-crystal Bi nanoribbons, and found that both the low-field weak antilocalization behavior and the high-field angle-dependent SdH oscillations follow exactly the 2D character, indicative of the 2D metallic surface states which dominate the transport properties of thin Bi nanoribbons. Moreover, by controllable exposing the ribbons to ambient environment (1 atm and room temperature), the metallic surface states were found to be robust to the oxidation although the carrier density in the surface states are modified after the exposures. These results suggest that the metallic surface states in Bi nanoribbons should be topologically protected which can provide key information in understanding the surface properties of Bi in nanometer scale. PMID:25404036

  17. Inexpensive laser-induced surface modification in bismuth thin films

    NASA Astrophysics Data System (ADS)

    Contreras, A. Reyes; Hautefeuille, M.; García, A. Esparza; Mejia, O. Olea; López, M. A. Camacho

    2015-05-01

    In this work, we present results on texturing a 500 nm thick bismuth film, deposited by sputtering onto a glass slide using a low-cost homemade, near-infrared pulsed laser platform. A 785 nm laser diode of a CD-DVD pickup head was precisely focused on the sample mounted on a motorized two-axis translation stage to generate localized surface microbumps on the bismuth films. This simple method successfully transferred desired micropatterns on the films in a computer-numerical control fashion. Irradiated zones were characterized by atomic force microscopy and scanning electron microscopy. It was observed that final results are strongly dependent on irradiation parameters.

  18. Bismuth Oxide Thin Films Deposited on Silicon Through Pulsed Laser Ablation, for Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Condurache-Bota, Simona; Constantinescu, Catalin; Tigau, Nicolae; Praisler, Mirela

    2016-12-01

    Infrared detectors are used in many human activities, from industry to military, telecommunications, environmental studies and even medicine. Bismuth oxide thin films have proved their potential for optoelectronic applications, but their uses as infrared sensors have not been thoroughly studied so far. In this paper, pulsed laser ablation of pure bismuth targets within a controlled oxygen atmosphere is proposed for the deposition of bismuth oxide films on Si (100) substrates. Crystalline films were obtained, whose uniformity depends on the deposition conditions (number of laser pulses and the use of a radio-frequency (RF) discharge of the oxygen inside the deposition chamber). The optical analysis proved that the refractive index of the films is higher than 3 and that their optical bandgap is around 1eV, recommending them for infrared applications.

  19. Electrical conductivity and crystallization of amorphous bismuth ruthenate thin films deposited by spray pyrolysis.

    PubMed

    Ryll, Thomas; Brunner, Andreas; Ellenbroek, Stefan; Bieberle-Hutter, Anja; Rupp, Jennifer L M; Gauckler, Ludwig J

    2010-11-14

    Amorphous oxide thin films with tailored functionality will be crucial for the next generation of micro-electro-mechanical-systems (MEMS). Due to potentially favorable electronic and catalytic properties, amorphous bismuth ruthenate thin films might be applied in this regard. We report on the deposition of amorphous bismuth ruthenate thin films by spray pyrolysis, their crystallization behavior and electrical conductivity. At room temperature the 200 nm thin amorphous films exhibit a high electrical conductivity of 7.7 × 10(4) S m(-1), which was found to be slightly thermally activated (E(a) = 4.1 × 10(-3) eV). It follows that a long-range order of the RuO(6) octahedra is no precondition for the electrical conductivity of Bi(3)Ru(3)O(11). Upon heating to the temperature range between 490 °C and 580 °C the initially amorphous films crystallize rapidly. Simultaneously, a transition from a dense and continuous film to isolated Bi(3)Ru(3)O(11) particles on the substrate takes place. Solid-state agglomeration is proposed as the mechanism responsible for disintegration. The area specific resistance of Bi(3)Ru(3)O(11) particles contacted by Pt paste on gadolinia doped ceria electrolyte pellets was found to be 7 Ω cm(2) at 607 °C in air. Amorphous bismuth ruthenate thin films are proposed for application in electrochemical devices operating at low temperatures, where a high electrical conductivity is required.

  20. Thin film bismuth iron oxides useful for piezoelectric devices

    DOEpatents

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  1. Bismuth thin films obtained by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Flores, Teresa; Arronte, Miguel; Rodriguez, Eugenio; Ponce, Luis; Alonso, J. C.; Garcia, C.; Fernandez, M.; Haro, E.

    1999-07-01

    In the present work Bi thin films were obtained by Pulsed Laser Deposition, using Nd:YAG lasers. The films were characterized by optical microscopy. Raman spectroscopy and X-rays diffraction. It was accomplished the real time spectral emission characterization of the plasma generated during the laser evaporation process. Highly oriented thin films were obtained.

  2. Spectrographic analysis of bismuth-tin eutectic alloys by spark-ignited low-voltage ac-arc excitation

    NASA Technical Reports Server (NTRS)

    Huff, E. A.; Kulpa, S. J.

    1969-01-01

    Spectrographic method determines individual stainless steel components in molten bismuth-42 w/o tin eutectic to determine the solubility of Type 304 stainless steels. It utilizes the high sensitivity and precision of the spark-ignited, low-voltage ac-arc excitation of samples rendered homogeneous by dissolution.

  3. Ferroelectric behavior in bismuth ferrite thin films of different thickness.

    PubMed

    Wu, Jiagang; Wang, John; Xiao, Dingquan; Zhu, Jianguo

    2011-09-01

    The ferroelectric behavior of BiFeO(3) thin films is modified by changing the film thicknesses, where the BiFeO(3) thin films with different thicknesses were grown on SrRuO(3)/Pt/TiO(2)/SiO(2)/Si(100) substrates by radio frequency sputtering. The mixture of (110) and (111) orientations is induced for all BiFeO(3) thin films regardless of their thicknesses, together with the columnar structure and the dense microstructure. Their dielectric behavior is almost independent of the film thickness where all thin films have a low dielectric loss. A giant remanent polarization of 2P(r) ≈ 156.6-188.8 μC/cm(2) is induced for the BiFeO(3) thin films in the thickness range of 190-600 nm. As a result, it is an effective way to improve the ferroelectric behavior of the BiFeO(3) thin film by tailoring the film thickness.

  4. Faraday effect of polycrystalline bismuth iron garnet thin film prepared by mist chemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Yao, Situ; Kamakura, Ryosuke; Murai, Shunsuke; Fujita, Koji; Tanaka, Katsuhisa

    2017-01-01

    We have synthesized polycrystalline thin film composed of a single phase of metastable bismuth iron garnet, Bi3Fe5O12, on a fused silica substrate, one of the most widely utilized substrates in the solid-state electronics, by using mist chemical vapor deposition (mist CVD) method. The phase purity and stoichiometry are confirmed by X-ray diffraction and Rutherford backscattering spectrometry. The resultant thin film shows a small surface roughness of 3.251 nm. The saturation magnetization at room temperature is 1200 G, and the Faraday rotation angle at 633 nm reaches -5.2 deg/μm. Both the magnetization and the Faraday rotation angles are somewhat higher than those of polycrystalline BIG thin films prepared by other methods.

  5. Bismuth ferrite based thin films, nanofibers, and field effect transistor devices

    NASA Astrophysics Data System (ADS)

    Rivera-Beltran, Rut

    In this research an attempt has been made to explore bismuth ferrite thin films with low leakage current and nanofibers with high photoconductivity. Thin films were deposited with pulsed laser deposition (PLD) method. An attempt has been made to develop thin films under different deposition parameters with following target compositions: i) 0.6BiFeO3-0.4(Bi0.5 K0.5)TiO3 (BFO-BKT) and ii) bi-layered 0.88Bi 0.5Na0.5TiO3-0.08Bi0.5K0.5TiO 3-0.04BaTiO3/BiFeO3 (BNT-BKT-BT/BFO). BFO-BKT thin film shows suppressed leakage current by about four orders of magnitude which in turn improve the ferroelectric and dielectric properties of the films. The optimum remnant polarization is 19 muC.cm-2 at the oxygen partial pressure of 300 mtorr. The BNT-BKT-BT/BFO bi-layered thin films exhibited ferroelectric behavior as: Pr = 22.0 muC.cm-2, Ec = 100 kV.cm-1 and epsilonr = 140. The leakage current of bi-layered thin films have been reduced two orders of magnitude compare to un-doped bismuth ferrite. Bismuth ferrite nanofibers were developed by electrospinning technique and its electronic properties such as photoconductivity and field effect transistor performance were investigated extensively. Nanofibers were deposited by electrospinning of sol-gel solution on SiO2/Si substrate at driving voltage of 10 kV followed by heat treatment at 550 °C for 2 hours. The composition analysis through energy dispersive detector and electron energy loss spectroscopy revealed the heterogeneous nature of the composition with Bi rich and Fe deficient regions. X-ray photoelectron spectroscopy results confirmed the combination of Fe3+ and Fe2+ valence state in the fibers. The photoresponse result is almost hundred times higher for a fiber of 40 nm diameter compared to a fiber with 100 nm diameter. This effect is described by a size dependent surface recombination mechanism. A single and multiple BFO nanofibers field effect transistors devices were fabricated and characterized. Bismuth ferrite FET behaves

  6. Chemically deposited thin films of sulfides and selenides of antimony and bismuth as solar energy materials

    NASA Astrophysics Data System (ADS)

    Nair, M. T.; Nair, Padmanabhan K.; Garcia, V. M.; Pena, Y.; Arenas, O. L.; Garcia, J. C.; Gomez-Daza, O.

    1997-10-01

    Chemical bath deposition techniques for bismuth sulfide, bismuth selenide, antimony sulfide, and antimony selenide thin films of about 0.20 - 0.25 micrometer thickness are reported. All these materials may be considered as solar absorber films: strong optical absorption edges, with absorption coefficient, (alpha) , greater than 104 cm-1, are located at 1.31 eV for Bi2Se3, 1.33 eV for Bi2S3, 1.8 eV for Sb2S3, and 1.35 eV for Sb2Se3. As deposited, all the films are nearly amorphous. However, well defined crystalline peaks matching bismuthinite (JCPDS 17- 0320), paraguanajuatite (JCPDS 33-0214), and stibnite (JCPDS 6-0474) and antimony selenide (JCPDS 15-0861) for Bi2S3, Bi2Se3, Sb2S3 and Sb2Se3 respectively, are observed when the films are annealed in nitrogen at 300 degrees Celsius. This is accompanied by a substantial modification of the electrical conductivity in the films: from 10-7 (Omega) -1 cm-1 (in as prepared films) to 10 (Omega) -1 cm-1 in the case of bismuth sulfide and selenide films, and enhancement of photosensitivity in the case of antimony sulfide films. The chemical deposition of a CuS/CuxSe film on these Vx- VIy films and subsequent annealing at 300 degrees Celsius for 1 h at 1 torr of nitrogen leads to the formation of p-type films (conductivity of 1 - 100 (Omega) -1 cm-1) of multinary composition. Among these, the formation of Cu3BiS3 (JCPDS 9-0488) and Cu3SbS4 (JCPDS 35- 0581), CuSbS2 (JCPDS 35-0413) have been clearly detected. Solar energy applications of these films are suggested.

  7. Deposition of Visible Light Active Photocatalytic Bismuth Molybdate Thin Films by Reactive Magnetron Sputtering.

    PubMed

    Ratova, Marina; Kelly, Peter J; West, Glen T; Xia, Xiaohong; Gao, Yun

    2016-01-22

    Bismuth molybdate thin films were deposited by reactive magnetron co-sputtering from two metallic targets in an argon/oxygen atmosphere, reportedly for the first time. Energy dispersive X-ray spectroscopy (EDX) analysis showed that the ratio of bismuth to molybdenum in the coatings can be effectively controlled by varying the power applied to each target. Deposited coatings were annealed in air at 673 K for 30 min. The crystalline structure was assessed by means of Raman spectroscopy and X-ray diffraction (XRD). Oxidation state information was obtained by X-ray photoelectron spectroscopy (XPS). Photodegradation of organic dyes methylene blue and rhodamine B was used for evaluation of the photocatalytic properties of the coatings under a visible light source. The photocatalytic properties of the deposited coatings were then compared to a sample of commercial titanium dioxide-based photocatalytic product. The repeatability of the dye degradation reactions and photocatalytic coating reusability are discussed. It was found that coatings with a Bi:Mo ratio of approximately 2:1 exhibited the highest photocatalytic activity of the coatings studied; its efficacy in dye photodegradation significantly outperformed a sample of commercial photocatalytic coating.

  8. Deposition of Visible Light Active Photocatalytic Bismuth Molybdate Thin Films by Reactive Magnetron Sputtering

    PubMed Central

    Ratova, Marina; Kelly, Peter J.; West, Glen T.; Xia, Xiaohong; Gao, Yun

    2016-01-01

    Bismuth molybdate thin films were deposited by reactive magnetron co-sputtering from two metallic targets in an argon/oxygen atmosphere, reportedly for the first time. Energy dispersive X-ray spectroscopy (EDX) analysis showed that the ratio of bismuth to molybdenum in the coatings can be effectively controlled by varying the power applied to each target. Deposited coatings were annealed in air at 673 K for 30 min. The crystalline structure was assessed by means of Raman spectroscopy and X-ray diffraction (XRD). Oxidation state information was obtained by X-ray photoelectron spectroscopy (XPS). Photodegradation of organic dyes methylene blue and rhodamine B was used for evaluation of the photocatalytic properties of the coatings under a visible light source. The photocatalytic properties of the deposited coatings were then compared to a sample of commercial titanium dioxide-based photocatalytic product. The repeatability of the dye degradation reactions and photocatalytic coating reusability are discussed. It was found that coatings with a Bi:Mo ratio of approximately 2:1 exhibited the highest photocatalytic activity of the coatings studied; its efficacy in dye photodegradation significantly outperformed a sample of commercial photocatalytic coating. PMID:28787867

  9. Chemical deposition of bismuth selenide thin films using N,N-dimethylselenourea

    NASA Astrophysics Data System (ADS)

    García, V. M.; Nair, M. T. S.; Nair, P. K.; Zingaro, R. A.

    1997-05-01

    Good quality thin films of bismuth selenide of thickness up to 0268-1242/12/5/020/img7 were deposited from solutions containing bismuth nitrate, triethanolamine and N,N-dimethylselenourea maintained at temperatures ranging from room temperature to 0268-1242/12/5/020/img8. X-ray diffraction patterns of the samples annealed at 0268-1242/12/5/020/img9 in air match the standard pattern of hexagonal 0268-1242/12/5/020/img10 (paraguanajuatite, JCPDS 33-0214). The films exhibit strong optical absorption corresponding to a bandgap of about 1.7 - 1.41 eV in the as-prepared films. These values decrease to about 1.57 - 1.06 eV upon annealing the films at 0268-1242/12/5/020/img9 for 1 h in nitrogen. As-deposited, the films show high sheet resistance 0268-1242/12/5/020/img12 in the dark. Annealing the films in air or in nitrogen enhances the dark current by about seven orders of magnitude; the resulting dark conductivity is about 0268-1242/12/5/020/img13. This enhancement in conductivity results from improved crystallinity as well as from partial loss of selenium.

  10. Enhanced thermoelectric properties of phase-separating bismuth selenium telluride thin films via a two-step method

    NASA Astrophysics Data System (ADS)

    Takashiri, Masayuki; Kurita, Kensuke; Hagino, Harutoshi; Tanaka, Saburo; Miyazaki, Koji

    2015-08-01

    A two-step method that combines homogeneous electron beam (EB) irradiation and thermal annealing has been developed to enhance the thermoelectric properties of nanocrystalline bismuth selenium telluride thin films. The thin films, prepared using a flash evaporation method, were treated with EB irradiation in a N2 atmosphere at room temperature and an acceleration voltage of 0.17 MeV. Thermal annealing was performed under Ar/H2 (5%) at 300 °C for 60 min. X-ray diffraction was used to determine that compositional phase separation between bismuth telluride and bismuth selenium telluride developed in the thin films exposed to higher EB doses and thermal annealing. We propose that the phase separation was induced by fluctuations in the distribution of selenium atoms after EB irradiation, followed by the migration of selenium atoms to more stable sites during thermal annealing. As a result, thin film crystallinity improved and mobility was significantly enhanced. This indicates that the phase separation resulting from the two-step method enhanced, rather than disturbed, the electron transport. Both the electrical conductivity and the Seebeck coefficient were improved following the two-step method. Consequently, the power factor of thin films that underwent the two-step method was enhanced to 20 times (from 0.96 to 21.0 μW/(cm K2) that of the thin films treated with EB irradiation alone.

  11. Enhanced thermoelectric properties of phase-separating bismuth selenium telluride thin films via a two-step method

    SciTech Connect

    Takashiri, Masayuki Kurita, Kensuke; Hagino, Harutoshi; Miyazaki, Koji; Tanaka, Saburo

    2015-08-14

    A two-step method that combines homogeneous electron beam (EB) irradiation and thermal annealing has been developed to enhance the thermoelectric properties of nanocrystalline bismuth selenium telluride thin films. The thin films, prepared using a flash evaporation method, were treated with EB irradiation in a N{sub 2} atmosphere at room temperature and an acceleration voltage of 0.17 MeV. Thermal annealing was performed under Ar/H{sub 2} (5%) at 300 °C for 60 min. X-ray diffraction was used to determine that compositional phase separation between bismuth telluride and bismuth selenium telluride developed in the thin films exposed to higher EB doses and thermal annealing. We propose that the phase separation was induced by fluctuations in the distribution of selenium atoms after EB irradiation, followed by the migration of selenium atoms to more stable sites during thermal annealing. As a result, thin film crystallinity improved and mobility was significantly enhanced. This indicates that the phase separation resulting from the two-step method enhanced, rather than disturbed, the electron transport. Both the electrical conductivity and the Seebeck coefficient were improved following the two-step method. Consequently, the power factor of thin films that underwent the two-step method was enhanced to 20 times (from 0.96 to 21.0 μW/(cm K{sup 2}) that of the thin films treated with EB irradiation alone.

  12. Effect of annealing atmosphere on phase formation and electrical characteristics of bismuth ferrite thin films

    SciTech Connect

    Simoes, A.Z.; Riccardi, C.S.; Dos Santos, M.L.; Garcia, F. Gonzalez; Longo, E.; Varela, J.A.

    2009-08-05

    Bismuth ferrite thin films were deposited on Pt/Ti/SiO{sub 2}/Si substrates by a soft chemical method and spin-coating technique. The effect of annealing atmosphere (air, N{sub 2} and O{sub 2}) on the structure and electrical properties of the films are reported. X-ray diffraction analysis reveals that the film annealed in air atmosphere is a single-phase perovskite structure. The films annealed in air showed better crystallinity and the presence of a single BFO phase leading to lower leakage current density and superior ferroelectric hysteresis loops at room temperature. In this way, we reveal that BFO film crystallized in air atmosphere by the soft chemical method can be useful for practical applications, including nonvolatile digital memories, spintronics and data-storage media.

  13. Optical properties of bismuth sulfide thin film prepared by thermal evaporation method

    NASA Astrophysics Data System (ADS)

    Kachari, T.; Rahman, A.

    2015-04-01

    Two types of thin films of Bi2S3 have been prepared on chemically cleaned glass substrate by thermal evaporation technique. Either by thermal evaporation of Bi2S3 powder or by thermal evaporation of bismuth and sulfur from two separate source. (Both annealed for 3 h in air inside an oven). Optical properties of these annealed films have been studied by measuring transmittance, absorbance and reflectance of the films. Optical constants such as absorption coefficient, extinction constants, refractive index, dielectric constants etc. of both types of Bi2S3 films have been calculated. Optical band gap of type (I) and (II) films have been found to be 1.647 and 1.668 eV respectively. The crystalline structure and purity of these Bi2S3 films have been studied by taking X-ray diffraction and X-ray fluorescence spectra. Surface morphology of the films has been studied by scanning electron microscopy.

  14. Enhanced Photocatalytic Performance Depending on Morphology of Bismuth Vanadate Thin Film Synthesized by Pulsed Laser Deposition.

    PubMed

    Jeong, Sang Yun; Choi, Kyoung Soon; Shin, Hye-Min; Kim, Taemin Ludvic; Song, Jaesun; Yoon, Sejun; Jang, Ho Won; Yoon, Myung-Han; Jeon, Cheolho; Lee, Jouhahn; Lee, Sanghan

    2017-01-11

    We have fabricated high quality bismuth vanadate (BiVO4) polycrystalline thin films as photoanodes by pulsed laser deposition (PLD) without a postannealing process. The structure of the grown films is the photocatalytically active phase of scheelite-monoclinic BiVO4 which was obtained by X-ray diffraction (XRD) analysis. The change of surface morphology for the BIVO4 thin films depending on growth temperature during synthesis has been observed by scanning electron microscopy (SEM), and its influence on water splitting performance was investigated. The current density of the BiVO4 film grown on a glass substrate covered with fluorine-doped tin oxide (FTO) at 230 °C was as high as 3.0 mA/cm(2) at 1.23 V versus the potential of the reversible hydrogen electrode (VRHE) under AM 1.5G illumination, which is the highest value so far in previously reported BiVO4 films grown by physical vapor deposition (PVD) methods. We expect that doping of transition metal or decoration of oxygen evolution catalyst (OEC) in our BiVO4 film might further enhance the performance.

  15. Direct evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films

    PubMed Central

    Bertinshaw, Joel; Maran, Ronald; Callori, Sara J.; Ramesh, Vidya; Cheung, Jeffery; Danilkin, Sergey A.; Lee, Wai Tung; Hu, Songbai; Seidel, Jan; Valanoor, Nagarajan; Ulrich, Clemens

    2016-01-01

    Magnonic devices that utilize electric control of spin waves mediated by complex spin textures are an emerging direction in spintronics research. Room-temperature multiferroic materials, such as bismuth ferrite (BiFeO3), would be ideal candidates for this purpose. To realize magnonic devices, a robust long-range spin cycloid with well-known direction is desired, since it is a prerequisite for the magnetoelectric coupling. Despite extensive investigation, the stabilization of a large-scale uniform spin cycloid in nanoscale (100 nm) thin BiFeO3 films has not been accomplished. Here, we demonstrate cycloidal spin order in 100 nm BiFeO3 thin films through the careful choice of crystallographic orientation, and control of the electrostatic and strain boundary conditions. Neutron diffraction, in conjunction with X-ray diffraction, reveals an incommensurate spin cycloid with a unique [11] propagation direction. While this direction is different from bulk BiFeO3, the cycloid length and Néel temperature remain equivalent to bulk at room temperature. PMID:27585637

  16. Galvanomagnetic properties of thin films of bismuth and bismuth-antimony alloys on substrates with different thermal expansions

    NASA Astrophysics Data System (ADS)

    Grabov, V. M.; Komarov, V. A.; Kablukova, N. S.

    2016-03-01

    Temperature dependences of the galvanomagnetic properties of films of bismuth and Bi100 - x Sb x ( x ≤ 12) on substrates with different temperature expansion coefficients were studied in the temperature range of 77-300 K. The block films were prepared through thermal deposition, and single-crystal Bi100 - x Sb x were grown by zone recrystallization under a coating. It was found that the temperature expansion coefficient of a substrate substantially influenced the galvanomagnetic properties of Bi and Bi100 - x Sb x films. Using the experimental data, the change in the charge-carrier concentration in the Bi and Bi100 - x Sb x films on different substrates at 77 K was estimated.

  17. Microwave synthesis of calcium bismuth niobate thin films obtained by the polymeric precursor method

    SciTech Connect

    Simoes, A.Z.; Ramirez, M.A. . E-mail: miganr@kenter.com; Ries, A.; Wang, F.; Longo, E.; Varela, J.A.

    2006-08-10

    The crystal structure, surface morphology and electrical properties of layered perovskite calcium bismuth niobate thin films (CaBi{sub 2}Nb{sub 2}O{sub 9}-CBN) deposited on platinum coated silicon substrates by the polymeric precursor method have been investigated. The films were crystallized in a domestic microwave and in a conventional furnace. X-ray diffraction and atomic force microscopy analysis confirms that the crystallinity and morphology of the films are affected by the different annealing routes. Ferroelectric properties of the films were determined with remanent polarization P {sub r} and a drive voltage V {sub c} of 4.2 {mu}C/cm{sup 2} and 1.7 V for the film annealed in the conventional furnace and 1.0 {mu}C/cm{sup 2} and 4.0 V for the film annealed in microwave furnace, respectively. A slight decay after 10{sup 8} polarization cycles was observed for the films annealed in the microwave furnace indicating a reduction of the domain wall mobility after interaction of the microwave energy with the bottom electrode.

  18. Influence of bismuth substitution on yttrium orthoferrite thin films preparation by the MOD method

    NASA Astrophysics Data System (ADS)

    Galstyan, Ogsen; Lee, Hanju; Park, Jongwon; Lee, Jung-Ha; Babajanyan, Arsen; Friedman, Barry; Lee, Kiejin

    2016-01-01

    Yttrium orthoferrite thin films with a thickness of about 0.4 μm were prepared on glass substrates by using a metal-organic decomposition method. Our studies reveal that it is possible to reduce the crystallization temperature of the yttrium orthoferrite by the substitution of the yttrium ion with bismuth. For the samples BixY1-xFeO3 with x=0.3 and x=0.4, orthorhombic yttrium orthoferrite characteristic peaks in the X-ray diffraction spectra have been detected. The lattice constants of the Bi0.3Y0.7FeO3 film were a=5.905 Å, b=7.66 Å, c=5.256 Å with an average grain size of about 40 nm. The magnetization data indicate that the film has in-plane easy axis and weak coercivity which might be explained by a possible secondary garnet phase crystallization. Faraday rotation angle of the sample was measured to be about 0.3°/μm.

  19. Mapping strain modulated electronic structure perturbations in mixed phase bismuth ferrite thin films

    SciTech Connect

    Krishnan, P.S. Sanakara R.; Aguiar, Jeffery A.; Ramasse, Q. M.; Kepaptsoglou, D. M.; Liang, W. I.; Chu, Y. H.; Browning, Nigel D.; Munroe, Paul R.; Nagarajan, Valanoor

    2015-01-01

    Strain engineering of epitaxial ferroelectrics has emerged as a powerful method to tailor the electromechanical response of these materials, although the effect of strain at the atomic scale and the interplay between lattice displacements and electronic structure changes are not yet fully understood. Here, using a combination of scanning transmission electron microscopy (STEM) and density functional theory (DFT), we systematically probe the role of epitaxial strain in mixed phase bismuth ferrite thin films. Electron energy loss O K and Fe L2,3 edge spectra acquired across the rhombohedral (R)-tetragonal (T) phase boundary reveal progressive, and systematic changes, in electronic structure going from one phase to the other. The comparison of the acquired spectra, with theoretical simulations using DFT, suggests a breakage in the structural symmetry across the boundary due to the simultaneous presence of increasing epitaxial strain and off- axial symmetry in the T phase. This implies that the imposed epitaxial strain plays a significant role in not only changing the crystal-field geometry, but also the bonding environment surrounding the central iron cation at the interface thus providing new insights and a possible link to understand how the imposed strain could perturb magnetic ordering in the T phase BFO.

  20. Structural, optical, and transport properties of nanocrystalline bismuth telluride thin films treated with homogeneous electron beam irradiation and thermal annealing.

    PubMed

    Takashiri, Masayuki; Asai, Yuki; Yamauchi, Kazuki

    2016-08-19

    We investigated the effects of homogeneous electron beam (EB) irradiation and thermal annealing treatments on the structural, optical, and transport properties of bismuth telluride thin films. Bismuth telluride thin films were prepared by an RF magnetron sputtering method at room temperature. After deposition, the films were treated with homogeneous EB irradiation, thermal annealing, or a combination of both the treatments (two-step treatment). We employed Williamson-Hall analysis for separating the strain contribution from the crystallite domain contribution in the x-ray diffraction data of the films. We found that strain was induced in the thin films by EB irradiation and was relieved by thermal annealing. The crystal orientation along c-axis was significantly enhanced by the two-step treatment. Scanning electron microscopy indicated the melting and aggregation of nano-sized grains on the film surface by the two-step treatment. Optical analysis indicated that the interband transition of all the thin films was possibly of the indirect type, and that thermal annealing and two-step treatment methods increased the band gap of the films due to relaxation of the strain. Thermoelectric performance was significantly improved by the two-step treatment. The power factor reached a value of 17.2 μW (cm(-1) K(-2)), approximately 10 times higher than that of the as-deposited thin films. We conclude that improving the crystal orientation and relaxing the strain resulted in enhanced thermoelectric performance.

  1. Structural, optical, and transport properties of nanocrystalline bismuth telluride thin films treated with homogeneous electron beam irradiation and thermal annealing

    NASA Astrophysics Data System (ADS)

    Takashiri, Masayuki; Asai, Yuki; Yamauchi, Kazuki

    2016-08-01

    We investigated the effects of homogeneous electron beam (EB) irradiation and thermal annealing treatments on the structural, optical, and transport properties of bismuth telluride thin films. Bismuth telluride thin films were prepared by an RF magnetron sputtering method at room temperature. After deposition, the films were treated with homogeneous EB irradiation, thermal annealing, or a combination of both the treatments (two-step treatment). We employed Williamson-Hall analysis for separating the strain contribution from the crystallite domain contribution in the x-ray diffraction data of the films. We found that strain was induced in the thin films by EB irradiation and was relieved by thermal annealing. The crystal orientation along c-axis was significantly enhanced by the two-step treatment. Scanning electron microscopy indicated the melting and aggregation of nano-sized grains on the film surface by the two-step treatment. Optical analysis indicated that the interband transition of all the thin films was possibly of the indirect type, and that thermal annealing and two-step treatment methods increased the band gap of the films due to relaxation of the strain. Thermoelectric performance was significantly improved by the two-step treatment. The power factor reached a value of 17.2 μW (cm-1 K-2), approximately 10 times higher than that of the as-deposited thin films. We conclude that improving the crystal orientation and relaxing the strain resulted in enhanced thermoelectric performance.

  2. Thermoelectric properties of n-type nanocrystalline bismuth-telluride-based thin films deposited by flash evaporation

    NASA Astrophysics Data System (ADS)

    Takashiri, M.; Takiishi, M.; Tanaka, S.; Miyazaki, K.; Tsukamoto, H.

    2007-04-01

    The thermal conductivity of n-type nanocrystalline bismuth-telluride-based thin films (Bi2.0Te2.7Se0.3) is investigated by a differential 3ω method at room temperature. The nanocrystalline thin films are grown on a glass substrate by a flash evaporation method, followed by hydrogen annealing at 250 °C. The structure of the thin films is studied by means of atomic force microscopy, x-ray diffraction, and energy-dispersive x-ray spectroscopy. The thin films exhibit an average grain size of 60 nm and a cross-plane thermal conductivity of 0.8 W/m K. The in-plane electrical conductivity and in-plane Seebeck coefficient are also investigated. Assuming that the in-plane thermal conductivity of the thin films is identical to that of the cross-plane direction, the in-plane figure of merit of the thin films is estimated to be ZT =0.7. As compared with a sintered bulk sample with average grain size of 30 μm and nearly the same composition as the thin films, the nanocrystalline thin films show approximately a 50% reduction in the thermal conductivity, but the electrical conductivity also falls 40%. The reduced thermal and electrical conductivities are attributed to increased carrier trapping and scattering in the nanocrystalline film.

  3. Global and Chaotic Dynamics for a Parametrically Excited Thin Plate

    NASA Astrophysics Data System (ADS)

    ZHANG, W.

    2001-02-01

    The global bifurcations and chaotic dynamics of a parametrically excited, simply supported rectangular thin plate are analyzed. The formulas of the thin plate are derived by von Karman-type equation and Galerkin's approach. The method of multiple scales is used to obtain the averaged equations. Based on the averaged equations, theory of normal form is used to give the explicit expressions of normal form associated with a double zero and a pair of pure imaginary eigenvalues by Maple program. On the basis of the normal form, global bifurcation analysis of the parametrically excited rectangular thin plate is given by a global perturbation method developed by Kovacic and Wiggins. The chaotic motion of thin plate is found by numerical simulation.

  4. Comprehensive dielectric performance of bismuth acceptor doped BaTiO3 based nanocrystal thin film capacitors

    SciTech Connect

    Liu, SY; Zhang, HN; Sviridov, L; Huang, LM; Liu, XH; Samson, J; Akins, D; Li, J; O'Brien, S

    2012-11-07

    We present a novel approach to preparing bismuth acceptor doped barium titanate nanocrystal formulations that can be deposited in conjunction with polymers in order to prepare a thin film nanocomposite dielectric that exhibits desirable capacitor characteristics. Exploring the limits of dielectric function in nanocomposites is an important avenue of materials research, while paying strict attention to the overall device quality, namely permittivity, loss and equivalent series resistance (ESR). Pushing capacitor function to higher frequencies, a desirable goal from an electrical engineering point of view, presents a new set of challenges in terms of minimizing interfacial, space charge and polarization effects within the dielectric. We show the ability to synthesize BaTi0.96Bi0.04O3 or BaTi0.97Bi0.03O3 depending on nominal molar concentrations of bismuth at the onset. The low temperature solvothermal route allows for substitution at the titanium site (strongly supported by Rietveld and Raman analysis). Characterization is performed by XRD with Rietveld refinement, Raman Spectroscopy, SEM and HRTEM. A mechanism is proposed for bismuth acceptor substitution, based on the chemical reaction of the alkoxy-metal precursors involving nucleophilic addition. Dielectric analysis of the nanocrystal thin films is performed by preparing nanocrystal/PVP 2-2 nanocomposites (no annealing) and comparing BaTi0.96Bi0.04O3 and BaTi0.97Bi0.03O3 with undoped BaTiO3. Improvements of up to 25% in capacitance (permittivity) are observed, with lower loss and dramatically improved ESR, all to very high frequency ranges (>10 MHz).

  5. Group III-nitride thin films grown using MBE and bismuth

    DOEpatents

    Kisielowski, Christian K.; Rubin, Michael

    2000-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  6. Group III-nitride thin films grown using MBE and bismuth

    DOEpatents

    Kisielowski, Christian K.; Rubin, Michael

    2002-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  7. Evaluation of Specific Heat, Sound Velocity and Lattice Thermal Conductivity of Strained Nanocrystalline Bismuth Antimony Telluride Thin Films

    NASA Astrophysics Data System (ADS)

    Zheng, D.; Tanaka, S.; Miyazaki, K.; Takashiri, M.

    2015-06-01

    To investigate the effect of strain on specific heat, sound velocity and lattice thermal conductivity of nanocrystalline bismuth antimony telluride thin films, we performed both experimental study and modeling. The nanocrystalline thin films had mostly preferred crystal orientation along c-axis, and strains in the both directions of c-axis and a- b-axis. It was found that the thermal conductivity of nanocrystalline thin films decreased greatly as compared with that of bulk alloys. To gain insight into the thermal transport in the strained nanocrystalline thin films, we estimated the lattice thermal conductivity based on the phonon transport model of full distribution of mean free paths accounting for the effects of grain size and strain which was influenced to both the sound velocity and the specific heat. As a result, the lattice thermal conductivity was increased when the strain was shifted from compressive to tensile direction. We also confirmed that the strain was influenced by the lattice thermal conductivity but the reduction of the lattice thermal conductivity of thin films can be mainly attributed to the nano-size effect rather than the strain effect. Finally, it was found that the measured lattice thermal conductivities were in good agreement with modeling.

  8. Synthesis and materials chemistry of bismuth tris-(di-i-propylcarbamate): deposition of photoactive Bi2O3 thin films.

    PubMed

    Cosham, Samuel D; Hill, Michael S; Horley, Graeme A; Johnson, Andrew L; Jordan, Laura; Molloy, Kieran C; Stanton, David C

    2014-01-06

    The bismuth carbamate Bi(O2CNPr(i)2)3, a tetramer in the solid-state, has been synthesized and used to deposit mixtures of bismuth oxides by aerosol-assisted chemical vapor deposition (AACVD). The nature of the deposited oxide is a function of both temperature and run-time. Initially, δ-Bi2O3 is deposited, over which grows a thick layer of β-Bi2O3 nanowires, the latter having an increasing degree of preferred orientation at higher deposition temperatures. The photocatalytic activity of a thin film of δ-Bi2O3 for the degradation of methylene blue dye was found to be similar to that of a commercial TiO2 film on glass, while the film overcoated with β-Bi2O3 nanowires was less active. Exposure of Bi(O2CNPr(i)2)3 to controlled amounts of moist air affords the novel oxo-cluster Bi8(O)6(O2CNPr(i)2)12, whose structure has also been determined.

  9. Characterization of bismuth selenide (Bi2Se3) thin films obtained by evaporating the hydrothermally synthesised nano-particles

    NASA Astrophysics Data System (ADS)

    Indirajith, R.; Rajalakshmi, M.; Gopalakrishnan, R.; Ramamurthi, K.

    2016-03-01

    Bismuth selenide (Bi2Se3) was synthesized by hydrothermal method at 200 °C and confirmed by powder X-ray diffraction (XRD) studies. The synthesized material was utilized to deposit bismuth selenide thin films at various substrate temperatures (Room Temperature-RT, 150 °C, 250 °C, 350 °C and 450 °C) by electron beam evaporation technique. XRD study confirmed the polycrystalline nature of the deposited Bi2Se3films. Optical transmittance spectra showed that the deposited (at RT) films acquire relatively high average transmittance of 60%in near infrared region (1500-2500 nm). An indirect allowed optical band gap calculated from the absorption edge for the deposited films is ranging from 0.62 to 0.8 eV. Scanning electron and atomic force microscopy analyses reveal the formation of nano-scale sized particles on the surface and that the nature of surface microstructures is influenced by the substrate temperature. Hall measurements showed improved electrical properties, for the films deposited at 350 °C which possess 2.8 times the mobility and 0.9 times the resistivity of the films deposited at RT.

  10. Excited State Biexcitons in Atomically Thin MoSe2.

    PubMed

    Pei, Jiajie; Yang, Jiong; Wang, Xibin; Wang, Fan; Mokkapati, Sudha; Lü, Tieyu; Zheng, Jin-Cheng; Qin, Qinghua; Neshev, Dragomir; Tan, Hark Hoe; Jagadish, Chennupati; Lu, Yuerui

    2017-07-25

    The tightly bound biexcitons found in atomically thin semiconductors have very promising applications for optoelectronic and quantum devices. However, there is a discrepancy between theory and experiment regarding the fundamental structure of these biexcitons. Therefore, the exploration of a biexciton formation mechanism by further experiments is of great importance. Here, we successfully triggered the emission of biexcitons in atomically thin MoSe2, via the engineering of three critical parameters: dielectric screening, density of trions, and excitation power. The observed binding energy and formation dynamics of these biexcitons strongly support the model that the biexciton consists of a charge attached to a trion (excited state biexciton) instead of four spatially symmetric particles (ground state biexciton). More importantly, we found that the excited state biexcitons not only can exist at cryogenic temperatures but also can be triggered at room temperature in a freestanding bilayer MoSe2. The demonstrated capability of biexciton engineering in atomically thin MoSe2 provides a route for exploring fundamental many-body interactions and enabling device applications, such as bright entangled photon sources operating at room temperature.

  11. Fabrication of bismuth telluride nanoplates via solvothermal synthesis using different alkalis and nanoplate thin films by printing method

    NASA Astrophysics Data System (ADS)

    Wada, Kodai; Tomita, Koji; Takashiri, Masayuki

    2017-06-01

    Bismuth telluride (Bi2Te3) hexagonal nanoplates were prepared via solvothermal synthesis using different sources of alkali such as NaOH, KOH, and LiOH. We observed that NaOH and KOH yielded nanoplates, whereas LiOH yielded irregular-shaped nano-sized materials. In particular, the nanoplates obtained using NaOH exhibited very low thickness and single-crystal structure. The structural framework of the reaction ions (Te2-, Bi3+, OH-, and alkali metal ions) may also affect the growth of the Bi2Te3 nuclei, which leads to a difference in the final morphologies of the products obtained by using different alkalis. After the nanoplate preparation, the Bi2Te3 nanoplate thin films were fabricated by a printing method, followed by thermal annealing at 400°C. SEM images show that the nanoplates were piled up randomly in the thin films. We measured the in-plane thermoelectric properties of the Bi2Te3 nanoplate thin films at room temperature. The nanoplate thin film exhibited an electrical conductivity of 124.5 S/cm, a Seebeck coefficient of -74 μV/K, and a power factor of 0.68 μW/(cm K2).

  12. Photophysics, photoelectrical properties and photoconductivity relaxation dynamics of quantum-sized bismuth(III) sulfide thin films

    SciTech Connect

    Pejova, Biljana . E-mail: biljana@iunona.pmf.ukim.edu.mk; Tanusevski, Atanas; Grozdanov, Ivan

    2005-06-15

    Electrical and photoelectrical properties (including both the stationary photoresponse and the photocarriers' relaxation dynamics) of nanocrystalline semiconducting bismuth(III) sulfide thin films were investigated. The experimental design of photoelectrical properties was achieved by controlling the chemistry of the deposition process (varying the reagent concentration in the reaction system) and also by physical means (controlling the crystal dimensions by post-deposition annealing). The band gap energy of thin films characterized by most pronounced photoelectrical properties was calculated, on the basis of measured photoconductivity spectral response curves, by several approaches. All of the obtained values are in very good agreement with the corresponding ones obtained from optical spectroscopy data within the framework of parabolic approximation for dispersion relation. On the basis of measured temperature dependence of dark electrical resistivity of nanocrystalline bismuth(III) sulfide films, the thermal band gap energy and the ionization energy of the impurity level (of donor type) were calculated. The corresponding values are 1.50 and 0.42eV. Dynamics of non-equilibrium charge carriers' relaxation processes was studied with the oscilloscopic method. By analysis of the photoconductivity decay kinetics data it is found that recombination of non-equilibrium charge carriers is carried out according to the linear mechanism. The calculated relaxation time of photoexcited charge carriers is 1.58ms, the relaxation processes occurring via local trapping centers. Recombination processes occurring via a single-type trapping center can be described within the framework of the Schockley-Read model. The practically linear regime detected in the measured lux-ampere characteristics of the studied films ({delta}{sigma}{approx}{phi}{sup 0.98}) indicate as well a linear recombination mechanism of the photoexcited charge carriers.

  13. Determination of the Origin of Crystal Orientation for Nanocrystalline Bismuth Telluride-Based Thin Films Prepared by Use of the Flash Evaporation Method

    NASA Astrophysics Data System (ADS)

    Takashiri, M.; Tanaka, S.; Miyazaki, K.

    2014-06-01

    We have investigated the origin of crystal orientation for nanocrystalline bismuth telluride-based thin films. Thin films of p-type bismuth telluride antimony (Bi-Te-Sb) and n-type bismuth telluride selenide (Bi-Te-Se) were fabricated by a flash evaporation method, with exactly the same deposition conditions except for the elemental composition of the starting powders. For p-type Bi-Te-Sb thin films the main x-ray diffraction (XRD) peaks were from the c-axis (Σ{00l}/Σ{ hkl} = 0.88) whereas n-type Bi-Te-Se thin films were randomly oriented (Σ{00l}/Σ{ hkl} = 0.40). Crystal orientation, crystallinity, and crystallite size were improved for both types of thin film by sintering. For p-type Bi-Te-Sb thin films, especially, high-quality structures were obtained compared with those of n-type Bi-Te-Se thin films. We also estimated the thermoelectric properties of the as-grown and sintered thin films. The power factor was enhanced by sintering; maximum values were 34.9 μW/cm K2 for p-type Bi-Te-Sb thin films at a sintering temperature of 300°C and 23.9 μW/cm K2 for n-type Bi-Te-Se thin films at a sintering temperature of 350°C. The exact mechanisms of film growth are not yet clear but we deduce the crystal orientation originates from the size of nano-clusters generated on the tungsten boat during flash evaporation.

  14. Preparation of bismuth substituted yttrium iron garnet powder and thin film by the metal-organic decomposition method

    NASA Astrophysics Data System (ADS)

    Lee, Hanju; Yoon, Youngwoon; Kim, Songhui; Yoo, Hyung Keun; Melikyan, Harutyun; Danielyan, Emma; Babajanyan, Arsen; Ishibashi, Takayuki; Friedman, Barry; Lee, Kiejin

    2011-08-01

    The crystallization of bismuth substituted yttrium iron garnet (Bi-YIG) powder and thin film prepared by the metal-organic decomposition method (MOD) have been studied. In the powder analysis, it was observed that the pyrolysis of metal-organic compounds begins at 250 °C and completed at 450 °C from the thermo-gravimetric-differential thermal analysis experiment. The crystallization temperature of Bi-YIG powder was 900 °C, and at lower temperature, secondary YFeO 3, γ-Fe 2O 3, α-Fe 2O 3, and BiFeO 3 phases were observed by X-ray diffraction and Fourier transform infrared spectroscope. This crystallization temperature is higher than other chemical solution decomposition methods, so we suggest that the formation of BiFeO 3 in the MOD method increases the crystallization temperature. In the thin film analysis, the crystallization temperature for Bi-YIG is 750 °C, and at lower temperature, secondary phases are observed by X-ray diffraction. It is observed that high pre-annealing temperature promotes the crystallization of secondary phases. From the magneto-optical measurement, it was observed that the secondary phases strongly degrade the magneto-optical properties of the Bi-YIG thin film.

  15. Ultrafast optical control of magnetization dynamics in polycrystalline bismuth doped iron garnet thin films

    SciTech Connect

    Deb, Marwan Vomir, Mircea; Rehspringer, Jean-Luc; Bigot, Jean-Yves

    2015-12-21

    Controlling the magnetization dynamics on the femtosecond timescale is of fundamental importance for integrated opto-spintronic devices. For industrial perspectives, it requires to develop simple growth techniques for obtaining large area magneto-optical materials having a high amplitude ultrafast Faraday or Kerr response. Here we report on optical pump probe studies of light induced spin dynamics in high quality bismuth doped iron garnet polycrystalline film prepared by the spin coating method. We demonstrate an ultrafast non-thermal optical control of the spin dynamics using both circularly and linearly polarized pulses.

  16. Ultrafast optical control of magnetization dynamics in polycrystalline bismuth doped iron garnet thin films

    NASA Astrophysics Data System (ADS)

    Deb, Marwan; Vomir, Mircea; Rehspringer, Jean-Luc; Bigot, Jean-Yves

    2015-12-01

    Controlling the magnetization dynamics on the femtosecond timescale is of fundamental importance for integrated opto-spintronic devices. For industrial perspectives, it requires to develop simple growth techniques for obtaining large area magneto-optical materials having a high amplitude ultrafast Faraday or Kerr response. Here we report on optical pump probe studies of light induced spin dynamics in high quality bismuth doped iron garnet polycrystalline film prepared by the spin coating method. We demonstrate an ultrafast non-thermal optical control of the spin dynamics using both circularly and linearly polarized pulses.

  17. Multiplexed displacement fiber sensor using thin core fiber exciter.

    PubMed

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2015-06-01

    This letter reports a multiplexed optical displacement sensor using a thin core fiber (TCF) exciter. The TCF exciter is followed by a stripped single mode optical fiber. A small section of buffer is used as the movable component along the single mode fiber. Ultra-weak cladding mode reflection (< - 75 dB) was employed to probe the refractive index discontinuity between the air and buffer coating boundary. The position change of the movable buffer segment results in a delay change of the cladding mode reflection. Thus, it is a measure of the displacement of the buffer segment with respect to the glass fiber. The insertion loss of one sensor was measured to be less than 3 dB. A linear relationship was evaluated between the measurement position and absolute position of the moving actuator. Multiplexed capability was demonstrated and no cross talk was found between the sensors.

  18. Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology

    NASA Astrophysics Data System (ADS)

    Goto, Masahiro; Sasaki, Michiko; Xu, Yibin; Zhan, Tianzhuo; Isoda, Yukihiro; Shinohara, Yoshikazu

    2017-06-01

    p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p-n modules of bismuth telluride without any doping process.

  19. Excitation of Josephson Plasma Resonance in BISMUTH(2) STRONTIUM(2) Calcium COPPER(2) OXYGEN(8+DELTA)

    NASA Astrophysics Data System (ADS)

    Tsui, Ophelia Kwan Chui

    A novel magnetic resonance is observed in Bi_2Sr_2CaCu_2O_{8+ delta} single crystals exposed to microwave radiation (26 to 95 GHz) in the presence of a magnetic field. The resonance exhibits unconventional field and temperature dependence. At a fixed temperature below the melting transition of the vortex solid, T_ {m}(B), the resonance frequency decreases with the applied field and displays a power-law dependence, viz. omega~ B^{-mu }. The exponent was found to be 0.8 within 10% across all samples and temperatures studied. However, when the temperature is increased above T_ {m}(B), mu becomes sample dependent and is equal to 0.64 and 1.08 for the two samples studied. At fixed microwave frequencies, the resonance field, B_0 increases exponentially with temperature to a maximum at T_{m }(B) and decreases slowly with temperature above. We attribute the resonance to Josephson plasma oscillations excited along the sample c-axis. The model explains many features of the experiment. Recently, Bulaevskii et al. proposed an explanation for the field dependence of the Josephson plasma frequency. By assuming that disorder in vortex pancakes is caused by strong pinning at low temperatures, the authors obtained the power-law dependence of omega on B, which agrees with the experiment. Rotating the microwave E-field, { bf E}_{rf} relatively to the sample, we find maximum resonance absorption when {bf E}_{rf} has the maximum projection along the sample c-axis, and minimum when there is none. This identification of {bf E}_{rf} parallel to the sample c-axis as the one responsible for the resonance, supports the Josephson plasma hypothesis. The strongest evidence for the Josephson plasma model is obtained by tilting the magnetic field close to alignment with the ab-plane of the crystal. In that case, an unusual re-entrant cusp in B_0 is observed when the tilt angle is in the range -5.5^circ to 5.5^circ. This is consistent with Bulaevskii et al.'s calculation. They propose that pancake

  20. Compositional analysis of electrodeposited bismuth telluride thermoelectric thin films using combined electrochemical quartz crystal microgravimetry--stripping voltammetry.

    PubMed

    Ham, Sunyoung; Jeon, Soyeon; Lee, Ungki; Park, Minsoon; Paeng, Ki-Jung; Myung, Noseung; Rajeshwar, Krishnan

    2008-09-01

    Bismuth telluride (Bi 2Te 3 ) is a benchmark material for thermoelectric power generation and cooling applications. Electrodeposition is a versatile technique for preparing thin films of this material; however, it affords films of variable composition depending on the preparation history. A simple and rapid assay of electrodeposited films, therefore, has both fundamental and practical importance. In this study, a new protocol for the electroanalysis of Bi 2Te 3 thin films is presented by combining the two powerful and complementary techniques of electrochemical quartz crystal microgravimetry (EQCM) and stripping voltammetry. First, any free (and excess) tellurium in the electrodeposited film was reduced to soluble Te ( 2- ) species by scanning to negative potentials in a 0.1 M Na 2SO 4 electrolyte, and the accompanying frequency increase (mass loss) was used to determine the content of free tellurium. The film was again subjected to cathodic stripping in the same medium (to generate Bi (0) and soluble Te (2-) from the Bi 2 Te 3 film component of interest), and the EQCM frequency change was used to determine the content of chemically bound Te in the Bi 2Te 3 thin film and thereby the compound stoichiometry. Finally, the EQCM frequency change during Bi oxidation to Bi (3+) and the difference between total Bi and Bi in Bi 2Te 3 resulted in the assay of free (excess) Bi in the electrodeposited film. Problems associated with the chemical/electrochemical stability of the free Bi species were circumvented by a flow electroanalysis approach. Data are also presented on the sensitivity of electrodeposited Bi 2Te 3 film composition to the electrodeposition potential. This newly developed method can be used for the compositional analysis of other thermoelectric thin-film material candidates in general.

  1. Determining the Thermal Conductivity of Nanocrystalline Bismuth Telluride Thin Films Using the Differential 3 ω Method While Accounting for Thermal Contact Resistance

    NASA Astrophysics Data System (ADS)

    Kudo, S.; Hagino, H.; Tanaka, S.; Miyazaki, K.; Takashiri, M.

    2015-06-01

    We have estimated the thermal conductivity of nanocrystalline bismuth telluride thin films using the differential 3 ω method, taking into account the thermal contact resistance (TCR) between the substrate and thin-film layers. The thin films were prepared on alumina substrates by radio-frequency (RF) magnetron sputtering at temperature of 200°C. Film thickness varied between 0.8 μm and 3.1 μm. The structural properties of the films were analyzed using x-ray diffraction analysis. Their electrical conductivity, Seebeck coefficient, and power factor were evaluated. For measurement of thermal properties by the differential 3 ω method, SiO2 thin films were deposited onto the samples, to act as insulating layers. Thin aluminum wire was then patterned onto the SiO2 layer. The observed variations in temperature amplitude as a function of film thickness indicated that the TCR contribution was very small and could therefore be neglected when estimating the thermal conductivity of the thin films. The thermal conductivity of the nanocrystalline bismuth telluride thin films with thickness of 0.8 μm and 2.1 μm were determined to be 0.55 W/(m K) and 0.48 W/(m K), respectively.

  2. Reinventing solid state electronics: Harnessing quantum confinement in bismuth thin films

    NASA Astrophysics Data System (ADS)

    Gity, Farzan; Ansari, Lida; Lanius, Martin; Schüffelgen, Peter; Mussler, Gregor; Grützmacher, Detlev; Greer, J. C.

    2017-02-01

    Solid state electronics relies on the intentional introduction of impurity atoms or dopants into a semiconductor crystal and/or the formation of junctions between different materials (heterojunctions) to create rectifiers, potential barriers, and conducting pathways. With these building blocks, switching and amplification of electrical currents and voltages are achieved. As miniaturisation continues to ultra-scaled transistors with critical dimensions on the order of ten atomic lengths, the concept of doping to form junctions fails and forming heterojunctions becomes extremely difficult. Here, it is shown that it is not needed to introduce dopant atoms nor is a heterojunction required to achieve the fundamental electronic function of current rectification. Ideal diode behavior or rectification is achieved solely by manipulation of quantum confinement using approximately 2 nm thick films consisting of a single atomic element, the semimetal bismuth. Crucially for nanoelectronics, this approach enables room temperature operation.

  3. Bismuth Subsalicylate

    MedlinePlus

    Bismuth subsalicylate is used to treat diarrhea, heartburn, and upset stomach in adults and children 12 years of age and older. Bismuth subsalicylate is in a class of medications called antidiarrheal ...

  4. Magnetoresistence Measurements of Textured and Non-Textured Bismuth Thin Films

    NASA Astrophysics Data System (ADS)

    Liao, Albert; Yao, Mengliang; Katmis, Ferhat; Tang, Shuang; Moodera, Jagadeesh; Opeil, Cyril; Dresselhaus, Mildred

    2014-03-01

    Bismuth has recently received renewed interest because it is a key ingredient of many thermoelectric materials. Previous studies focus on bulk and/or single crystalline samples. However for thermoelectrics, it is desirable to assemble nano-structures to create a high ZT material. The way these nano-elements are assembled can be tuned to develop desirable properties. We control the texture of Bi films during thermal evaporation or molecular beam epitaxy, by using different growth substrates. Films deposited on mica, create a mosaic texture with the trigonal axis pointing out of plane. Films made on SiO2 are polycrystalline with grains oriented in random crystallographic direction. We measure magnetoresistance (MR) from 3-300 K while rotating our films in a magnetic field in two configurations. One where the current rotates with the plane of the film, and one where the current flows is always perpendicular to the field. We observe large discrepancies in MR behavior between the different samples at <100 K. Most surprisingly, we detect a MR when the current is supposedly parallel to the field in the non-textured film, inferring the current is not always traveling along the plane of the film. This may indicate the existence of planes within grains in which the carriers prefer to move.

  5. Integration and High-Temperature Characterization of Ferroelectric Vanadium-Doped Bismuth Titanate Thin Films on Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Ekström, Mattias; Khartsev, Sergiy; Östling, Mikael; Zetterling, Carl-Mikael

    2017-03-01

    4H-SiC electronics can operate at high temperature (HT), e.g., 300°C to 500°C, for extended times. Systems using sensors and amplifiers that operate at HT would benefit from microcontrollers which can also operate at HT. Microcontrollers require nonvolatile memory (NVM) for computer programs. In this work, we demonstrate the possibility of integrating ferroelectric vanadium-doped bismuth titanate (BiTV) thin films on 4H-SiC for HT memory applications, with BiTV ferroelectric capacitors providing memory functionality. Film deposition was achieved by laser ablation on Pt (111)/TiO2/4H-SiC substrates, with magnetron-sputtered Pt used as bottom electrode and thermally evaporated Au as upper contacts. Film characterization by x-ray diffraction analysis revealed predominately (117) orientation. P-E hysteresis loops measured at room temperature showed maximum 2P r of 48 μC/cm2, large enough for wide read margins. P-E loops were measurable up to 450°C, with losses limiting measurements above 450°C. The phase-transition temperature was determined to be about 660°C from the discontinuity in dielectric permittivity, close to what is achieved for ceramics. These BiTV ferroelectric capacitors demonstrate potential for use in HT NVM applications for SiC digital electronics.

  6. Integration and High-Temperature Characterization of Ferroelectric Vanadium-Doped Bismuth Titanate Thin Films on Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Ekström, Mattias; Khartsev, Sergiy; Östling, Mikael; Zetterling, Carl-Mikael

    2017-07-01

    4H-SiC electronics can operate at high temperature (HT), e.g., 300°C to 500°C, for extended times. Systems using sensors and amplifiers that operate at HT would benefit from microcontrollers which can also operate at HT. Microcontrollers require nonvolatile memory (NVM) for computer programs. In this work, we demonstrate the possibility of integrating ferroelectric vanadium-doped bismuth titanate (BiTV) thin films on 4H-SiC for HT memory applications, with BiTV ferroelectric capacitors providing memory functionality. Film deposition was achieved by laser ablation on Pt (111)/TiO2/4H-SiC substrates, with magnetron-sputtered Pt used as bottom electrode and thermally evaporated Au as upper contacts. Film characterization by x-ray diffraction analysis revealed predominately (117) orientation. P- E hysteresis loops measured at room temperature showed maximum 2 P r of 48 μC/cm2, large enough for wide read margins. P- E loops were measurable up to 450°C, with losses limiting measurements above 450°C. The phase-transition temperature was determined to be about 660°C from the discontinuity in dielectric permittivity, close to what is achieved for ceramics. These BiTV ferroelectric capacitors demonstrate potential for use in HT NVM applications for SiC digital electronics.

  7. Spin-torque-driven excitations in magnetic thin films

    NASA Astrophysics Data System (ADS)

    Wang, C.; Seinige, H.; Staudacher, T.; Tsoi, M.

    2011-03-01

    Spin transfer torque (STT) refers to a novel method to control and manipulate magnetic moments using an electrical current. For the past decade it has proven to be a fascinating domain of research with a number of manifestations in various systems interesting both from fundamental science's point of view as well as for technological applications. In ferromagnetic/nonmagnetic (F/N) multilayers a dc electrical current can switch and/or drive its constituent F parts into high-frequency precession which is of interest for microwave and magnetic recording technologies. Interestingly, application of high-frequency currents can also drive the multilayer, e.g., into ferromagnetic resonance (STT-FMR) precession. In our experiments we use point contacts to inject high microwave currents into a variety of magnetic thin films including NiFe/Cu/NiFe/IrMn and NiFe/Cu/Co spin valves, and single ferromagnetic (NiFe or Co) films. The resulting magnetodynamics are detected electrically when a small rectified dc voltage appears across the contact at resonance. We find that in addition to a standard FMR, the microwave currents can excite other resonance modes in our point contacts. We study the behavior of the excitations as a function of applied magnetic field, dc bias current, and microwave frequency. Supported in part by NSF grants DMR-06-45377.

  8. Bismuth telluride (Bi2Te3) nanowires: synthesis by cyclic electrodeposition/stripping, thinning by electrooxidation, and electrical power generation.

    PubMed

    Menke, E J; Brown, M A; Li, Q; Hemminger, J C; Penner, R M

    2006-12-05

    Nanowires composed of the thermoelectric material Bi2Te3 were synthesized on highly oriented pyrolytic graphite (HOPG) electrodes using the electrochemical step edge decoration (ESED) method. Nanowire synthesis was initiated by applying a voltage pulse of -0.75 V versus SCE for 5 ms to an HOPG electrode in an aqueous solution containing both Bi3+ and TeO22-, thereby producing nuclei at the step edges. Bi2Te3 was electrodeposited onto these nuclei using a cyclic electrodeposition-stripping scheme that involved the electrodeposition of bismuth-rich Bi2Te3 on a negative-going voltammetric scan (to -0.05 V) and the subsequent anodic stripping of excess bismuth from these nanowires during a positive-going scan (to +0.35 V). When this cycle was repeated 10-50 times, Bi2Te3 nanowires in the 100-300-nm-diameter range were obtained. These nanowires were narrowly dispersed in diameter (RSDdia = 10-20%), were more than 100 microm in length, and were organized into parallel arrays containing hundreds of wires. Smaller nanowires, with diameters down to 30 nm, were obtained by electrooxidizing 150-nm-diameter Bi2Te3 nanowires at +0.37 V under conditions of kinetic control. This oxidation process unexpectedly improved the uniformity of Bi2Te3 nanowires, and X-ray photoelectron spectroscopy (XPS) shows that these nanowires retain a Bi2Te3 core but also have a thin surface layer composed of Bi and Te oxides. The ability of Bi2Te3 nanowires to generate electrical power was assessed by transferring ensembles of these nanowires onto cyanoacrylate-coated glass surfaces and evaporating 4-point nickel contacts. A dimensionless figure of merit, ZT, ranging from 0 to 0.85 was measured for fresh samples that were less than 1 day old. XPS reveals that Bi2Te3 nanowires are oxidized within a week to Bi2O3 and TeO2. These oxides may interfere with the application by evaporation of electrical contacts to these nanowires.

  9. Optical and structural properties of indium doped bismuth selenide thin films

    SciTech Connect

    Pavagadhi, Himanshu Vyas, S. M. Patel, Piyush; Patel, Vimal; Patel, Jaydev; Jani, M. P.

    2015-08-28

    In: Bi{sub 2}Se{sub 3} crystals were grown by Bridgman method at a growth velocity of 0.5cm/h with temperature gradient of 650 C/cm in our laboratory. The thin films of In:Bi{sub 2}se{sub 3} were grown on amorphous substrate (glass) at a room temperature under a pressure of 10{sup −4}Pa by thermal evaporation technique. Thin film were deposited at various thicknesses and optical absorption spectrum of such thin films, obtain in wave no. range 300 to 2600 cm{sup −1}. The optical energy gap calculated from this data were found to be inverse function of square of thickness, particularly for thickness about 1800 Å or less. This dependence is explained in terms of quantum size effect. For thicker films, the bandgap is found to be independent of film thickness. For the surface stud of the as grown thin film by using AFM, which shows continuous film with some step height and surface roughness found in terms of few nm and particle size varies with respect to thickness.

  10. Optical and structural properties of indium doped bismuth selenide thin films

    NASA Astrophysics Data System (ADS)

    Pavagadhi, Himanshu; Vyas, S. M.; Patel, Piyush; Patel, Vimal; Patel, Jaydev; Jani, M. P.

    2015-08-01

    In: Bi2Se3 crystals were grown by Bridgman method at a growth velocity of 0.5cm/h with temperature gradient of 650 C/cm in our laboratory. The thin films of In:Bi2se3 were grown on amorphous substrate (glass) at a room temperature under a pressure of 10-4Pa by thermal evaporation technique. Thin film were deposited at various thicknesses and optical absorption spectrum of such thin films, obtain in wave no. range 300 to 2600 cm-1. The optical energy gap calculated from this data were found to be inverse function of square of thickness, particularly for thickness about 1800 Å or less. This dependence is explained in terms of quantum size effect. For thicker films, the bandgap is found to be independent of film thickness. For the surface stud of the as grown thin film by using AFM, which shows continuous film with some step height and surface roughness found in terms of few nm and particle size varies with respect to thickness.

  11. Controlled Synthesis of High-Mobility Atomically Thin Bismuth Oxyselenide Crystals.

    PubMed

    Wu, Jinxiong; Tan, Congwei; Tan, Zhenjun; Liu, Yujing; Yin, Jianbo; Dang, Wenhui; Wang, Mingzhan; Peng, Hailin

    2017-04-11

    Non-neutral layered crystals, another group of two-dimensional (2D) materials that lack a well-defined van der Waals (vdWs) gap, are those that form strong chemical bonds in-plane but display weak out-of-plane electrostatic interactions, exhibiting intriguing properties for the bulk counterpart. However, investigation of the properties of their atomically thin counterpart are very rare presumably due to the absence of efficient ways to achieve large-area high-quality 2D crystals. Here, high-mobility atomically thin Bi2O2Se, a typical non-neutral layered crystal without a standard vdWs gap, was synthesized via a facial chemical vapor deposition (CVD) method, showing excellent controllability for thickness, domain size, nucleation site, and crystal-phase evolution. Atomically thin, large single crystals of Bi2O2Se with lateral size up to ∼200 μm and thickness down to a bilayer were obtained. Moreover, optical and electrical properties of the CVD-grown 2D Bi2O2Se crystals were investigated, displaying a size-tunable band gap upon thinning and an ultrahigh Hall mobility of >20000 cm(2) V(-1) s(-1) at 2 K. Our results on the high-mobility 2D Bi2O2Se semiconductor may activate the synthesis and related fundamental research of other non-neutral 2D materials.

  12. Defect engineering in atomically-thin bismuth oxychloride towards photocatalytic oxygen evolution

    DOE PAGES

    Di, Jun; Chen, Chao; Yang, Shi -Ze; ...

    2017-06-26

    Photocatalytic solar energy conversion is a clean technology for producing renewable energy sources, but its efficiency is greatly hindered by the kinetically sluggish oxygen evolution reaction. Herein, confined defects in atomically-thin BiOCl nanosheets were created to serve as a remarkable platform to explore the relationship between defects and photocatalytic activity. Surface defects can be clearly observed on atomically-thin BiOCl nanosheets from scanning transmission electron microscopy images. Theoretical/experimental results suggest that defect engineering increased states of density and narrowed the band gap. With combined effects from defect induced shortened hole migratory paths and creation of coordination-unsaturated active atoms with dangling bonds,more » defect-rich BiOCl nanosheets displayed 3 and 8 times higher photocatalytic activity towards oxygen evolution compared with atomically-thin BiOCl nanosheets and bulk BiOCl, respectively. As a result, this successful application of defect engineering will pave a new pathway for improving photocatalytic oxygen evolution activity of other materials.« less

  13. Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells.

    PubMed

    Han, Lihao; Abdi, Fatwa F; van de Krol, Roel; Liu, Rui; Huang, Zhuangqun; Lewerenz, Hans-Joachim; Dam, Bernard; Zeman, Miro; Smets, Arno H M

    2014-10-01

    A hybrid photovoltaic/photoelectrochemical (PV/PEC) water-splitting device with a benchmark solar-to-hydrogen conversion efficiency of 5.2% under simulated air mass (AM) 1.5 illumination is reported. This cell consists of a gradient-doped tungsten-bismuth vanadate (W:BiVO4 ) photoanode and a thin-film silicon solar cell. The improvement with respect to an earlier cell that also used gradient-doped W:BiVO4 has been achieved by simultaneously introducing a textured substrate to enhance light trapping in the BiVO4 photoanode and further optimization of the W gradient doping profile in the photoanode. Various PV cells have been studied in combination with this BiVO4 photoanode, such as an amorphous silicon (a-Si:H) single junction, an a-Si:H/a-Si:H double junction, and an a-Si:H/nanocrystalline silicon (nc-Si:H) micromorph junction. The highest conversion efficiency, which is also the record efficiency for metal oxide based water-splitting devices, is reached for a tandem system consisting of the optimized W:BiVO4 photoanode and the micromorph (a-Si:H/nc-Si:H) cell. This record efficiency is attributed to the increased performance of the BiVO4 photoanode, which is the limiting factor in this hybrid PEC/PV device, as well as better spectral matching between BiVO4 and the nc-Si:H cell. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A new class of room-temperature multiferroic thin films with bismuth-based supercell structure.

    PubMed

    Chen, Aiping; Zhou, Honghui; Bi, Zhenxing; Zhu, Yuanyuan; Luo, Zhiping; Bayraktaroglu, Adrian; Phillips, Jamie; Choi, Eun-Mi; Macmanus-Driscoll, Judith L; Pennycook, Stephen J; Narayan, Jagdish; Jia, Quanxi; Zhang, Xinghang; Wang, Haiyan

    2013-02-20

    Intergrowth of two partially miscible phases of BiFeO(3) and BiMnO(3) gives a new class of room-temperature multiferroic phase, Bi(3) Fe(2) Mn(2) O(10+δ) , which has a unique supercell (SC) structure. The SC heterostructures exhibit simultaneously room-temperature ferrimagnetism and remanent polarization. These results open up a new avenue for exploring room-temperature single-phase multiferroic thin films by controlling the phase mixing of two perovskite BiRO(3) (R = Cr, Mn, Fe, Co, Ni) materials.

  15. Structure, composition and microwave dielectric properties of bismuth zinc niobate pyrochlore thin films

    NASA Astrophysics Data System (ADS)

    Wang, Zhao; Ren, Wei; Zhan, Xuelei; Shi, Peng; Wu, Xiaoqing

    2014-11-01

    (Bi1.5Zn0.5)(Zn0.5Nb1.5)O7 (BZN) pyrochlore thin films were deposited onto both Pt/TiO2/SiO2/Si and polycrystalline alumina substrates using pulsed laser deposition technique and then post-annealed using rapid thermal processing. The deposition temperature varies from 300 °C to 600 °C, and all the BZN films showed cubic pyrochlore structure after annealing at 650 °C for 30 min in air. The influence of the substrate associated with crystal structure is significant in the as-deposited films and disappears after post-annealing. The dielectric properties as a function of frequency up to the microwave frequency in both films were measured by LCR meter and split-post dielectric resonator technique. It is found that the BZN film deposited at 400 °C and post-annealed at 650 °C shows excellent dielectric properties with low loss in the microwave frequency range. This result indicates that the BZN thin film is a potential microwave material.

  16. Magnetic anisotropies in (210)-oriented bismuth substituted iron garnet thin films

    NASA Astrophysics Data System (ADS)

    Nistor, I.; Holthaus, C.; Tkachuk, S.; Mayergoyz, I. D.; Krafft, C.

    2007-05-01

    The liquid phase epitaxy growth and characterization of single crystal (210)-oriented thin garnet films with Bi substitution up to 1.5at./f.u. is reported. These epitaxial films exhibit an easy plane of magnetization which is inclined with respect to the film plane, making them uniquely suitable for garnet-based magneto-optic imagers (MOIs). In order to identify the optimal growth conditions to attain the highest sensitivity of such MOIs, the chemical composition of the films is discussed in relation with their magnetic and optic properties. It has been demonstrated that the increase in the amount of Pr tends to increase the in-plane orthorhombic anisotropy field HKi, while the rare-earth substitution by Bi has a strong effect on the canted orthorhombic anisotropy Kyz. The best MOI film had a saturation field of 130Oe and a sensitivity of 175deg /A.

  17. Electric control of magnon frequencies and magnetic moment of bismuth ferrite thin films at room temperature

    PubMed Central

    Kumar, Ashok; Scott, J. F.; Katiyar, R. S.

    2011-01-01

    Here, we report the tuning of room-temperature magnon frequencies from 473 GHz to 402 GHz (14%) and magnetic moment from 4 to 18 emu∕cm3 at 100 Oe under the application of external electric fields (E) across interdigital electrodes in BiFeO3 (BFO) thin films. A decrease in magnon frequencies and increase in phonon frequencies were observed with Magnon and phonon Raman intensities are asymmetric with polarity, decreasing with positive E (+E) and increasing with negative E (−E) where polarity is with respect to in-plane polarization P. The magnetoelectric coupling (α) is proved to be linear and a rather isotropic α = 8.5 × 10−12 sm−1. PMID:21901050

  18. Electric control of magnon frequencies and magnetic moment of bismuth ferrite thin films at room temperature.

    PubMed

    Kumar, Ashok; Scott, J F; Katiyar, R S

    2011-08-08

    Here, we report the tuning of room-temperature magnon frequencies from 473 GHz to 402 GHz (14%) and magnetic moment from 4 to 18 emu∕cm(3) at 100 Oe under the application of external electric fields (E) across interdigital electrodes in BiFeO(3) (BFO) thin films. A decrease in magnon frequencies and increase in phonon frequencies were observed with Magnon and phonon Raman intensities are asymmetric with polarity, decreasing with positive E (+E) and increasing with negative E (-E) where polarity is with respect to in-plane polarization P. The magnetoelectric coupling (α) is proved to be linear and a rather isotropic α = 8.5 × 10(-12) sm(-1).

  19. Superconducting Thin Films of Bismuth-Strontium Calcium-Copper by Laser Ablation

    NASA Astrophysics Data System (ADS)

    Bedekar, Milind Mukund

    The discovery in 1986 of a new class of copper oxide superconductors has led to the development of three major systems that exhibit superconducting properties. Among these systems, the Bi-Sr-Ca-Cu-O superconductors offer intrinsic advantages due to the high T_ {rm c}, chemical inertness and tolerance for a range of compositions. However due to the problems in pure phase formation, thin film research on these materials has progressed more slowly than the other cuprate systems. This dissertation examines the film growth, by laser ablation, of the Bi-Sr-Ca-Cu-O superconductors and the effect of the deposition parameters such as the laser target interaction, substrate temperature, target to substrate distance, deposition and cooling pressure, target type and processing and the substrate type. CO_2 laser ablation was shown to give rise to a non-stoichiometric material transfer due to the low fluences and long pulse lengths. In situ superconducting thin films with T_{ rm c(0)}'s of 76 K could be deposited using the KrF laser at substrate temperatures of 5 ^circC to 20^circ C below melting. Lower temperatures gave rise to a mixture of 2201 and glassy phases. An increase in the target to substrate distance led to a deterioration of the electrical and structural properties of the films due to a decrease in the energy for film formation. A maximum in T_{rm c(0)} was observed at 450 mtorr as the deposition pressure was varied between 200 to 700 mtorr. Optimum oxygen incorporation could be achieved by cooling the films in high oxygen pressures and the best films were obtained with 700 torr cooling pressure. The oxygen deficiency of the hot pressed targets led to inferior properties compared to the conventionally sintered targets. The films displayed FWHM's of 1 ^circ in the omega scan and AFM studies indicated the presence of 1/2 μm grains. The microwave surface resistance of the films measured at 35 GHz showed an onset at 80 K and dropped below that of copper at 30 K. The

  20. Spectroscopic ellipsometry investigations of the optical properties of manganese doped bismuth vanadate thin films

    SciTech Connect

    Kumari, Neelam; Krupanidhi, S.B.; Varma, K.B.R.

    2010-04-15

    The optical properties of Bi{sub 2}V{sub 1-x}Mn{sub x}O{sub 5.5-x} {l_brace}x = 0.05, 0.1, 0.15 and 0.2 at.%{r_brace} thin films fabricated by pulsed laser deposition on platinized silicon substrates were studied in UV-visible spectral region (1.51-4.17 eV) using spectroscopic ellipsometry. The optical constants and thicknesses of these films have been obtained by fitting the ellipsometric data ({Psi} and {Delta}) using a multilayer four-phase model system and a relaxed Lorentz oscillator dispersion relation. The surface roughness and film thickness obtained by spectroscopic ellipsometry were found to be consistent with the results obtained by atomic force and scanning electron microscopy. The refractive index measured at 650 nm does not show any marginal increase with Mn content. Further, the extinction coefficient does not show much decrease with increasing Mn content. An increase in optical band gap energy from 2.52 to 2.77 eV with increasing Mn content from x = 0.05 to 0.15 was attributed to the increase in oxygen ion vacancy disorder.

  1. Carrier confinement and bond softening in photoexcited bismuth films

    NASA Astrophysics Data System (ADS)

    Shin, Taeho; Wolfson, Johanna W.; Teitelbaum, Samuel W.; Kandyla, Maria; Nelson, Keith A.

    2015-11-01

    Femtosecond pump-probe spectroscopy of bismuth thin films has revealed strong dependencies of reflectivity and phonon frequency on film thickness in the range of 25 -40 nm . The reflectivity variations are ascribed to distinct electronic structures originating from strongly varying electronic temperatures and proximity of the film thickness to the optical penetration depth of visible light. The phonon frequency is redshifted by an amount that increases with decreasing film thickness under the same excitation fluence, indicating carrier density-dependent bond softening that increases due to suppressed diffusion of carriers away from the photoexcited region in thin films. The results have significant implications for nonthermal melting of bismuth as well as lattice heating due to inelastic electron-phonon scattering.

  2. Excitation of Thin Cyanine Films via Energy Transfer from Si Substrate

    NASA Astrophysics Data System (ADS)

    Ito, Yukako; Kojima, Osamu; Kita, Takashi; Shim, YongGu

    2017-09-01

    Energy transfer from an inorganic substrate to a cyanine molecule thin film has been investigated as an excitation method for organic luminescent devices. Cyanine molecule thin films were fabricated on a Si substrate by layer-by-layer assembly and were excited from the back side of the substrate to observe the luminescence. The luminescence intensity depends on the excitation power and excitation energy. Moreover, the dependence of the luminescence intensity on the excitation energy clearly shows a profile similar to the absorption spectrum of Si. These results indicate that luminescence is not due to the direct optical excitation of cyanine by the light transmitted through the substrate but due to the energy transfer from the photoexcited carriers in the substrate. Our results demonstrate that such energy transfer can be used to excite organic molecules on inorganic substrates without energy matching between the electrodes and luminescent materials.

  3. Polarization-dependent force driving the Eg mode in bismuth under optical excitation: comparison of first-principles theory with ultra-fast x-ray experiments

    NASA Astrophysics Data System (ADS)

    Fahy, Stephen; Murray, Eamonn

    2015-03-01

    Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of a ultrafast pulse of polarized light. To compare the results with recent ultra-fast, time-resolved x-ray diffraction experiments, we include the decay of the force due to carrier scattering, as measured in optical Raman scattering experiments, and simulate the optical absorption process, depth-dependent atomic driving forces, and x-ray diffraction in the experimental geometry. We find excellent agreement between the theoretical predictions and the observed oscillations of the x-ray diffraction signal, indicating that first-principles theory of optical absorption is well suited to the calculation of initial atomic driving forces in photo-excited materials following ultrafast excitation. This work is supported by Science Foundation Ireland (Grant No. 12/IA/1601) and EU Commission under the Marie Curie Incoming International Fellowships (Grant No. PIIF-GA-2012-329695).

  4. Excitation of Love waves in a thin film layer by a line source.

    NASA Technical Reports Server (NTRS)

    Tuan, H.-S.; Ponamgi, S. R.

    1972-01-01

    The excitation of a Love surface wave guided by a thin film layer deposited on a semiinfinite substrate is studied in this paper. Both the thin film and the substrate are considered to be elastically isotropic. Amplitudes of the surface wave in the thin film region and the substrate are found in terms of the strength of a line source vibrating in a direction transverse to the propagating wave. In addition to the surface wave, the bulk shear wave excited by the source is also studied. Analytical expressions for the bulk wave amplitude as a function of the direction of propagation, the acoustic powers transported by the surface and bulk waves, and the efficiency of surface wave excitation are obtained. A numerical example is given to show how the bulk wave radiation pattern depends upon the source frequency, the film thickness and other important parameters of the problem. The efficiency of surface wave excitation is also calculated for various parameter values.

  5. Excitation-dependent fluorescence from atomic/molecular layer deposited sodium-uracil thin films.

    PubMed

    Pale, Ville; Giedraityte, Zivile; Chen, Xi; Lopez-Acevedo, Olga; Tittonen, Ilkka; Karppinen, Maarit

    2017-08-01

    Atomic/molecular layer deposition (ALD/MLD) offers unique possibilities in the fabrication of inorganic-organic thin films with novel functionalities. Especially, incorporating nucleobases in the thin-film structures could open new avenues in the development of bio-electronic and photonic devices. Here we report an intense blue and widely excitation-dependent fluorescence in the visible region for ALD/MLD fabricated sodium-uracil thin films, where the crystalline network is formed from hydrogen-bonded uracil molecules linked via Na atoms. The excitation-dependent fluorescence is caused by the red-edge excitation shift (REES) effect taking place in the red-edge of the absorption spectrum, where the spectral relaxation occurs in continuous manner as demonstrated by the time-resolved measurements.

  6. Airflow energy harvesters of metal-based PZT thin films by self-excited vibration

    NASA Astrophysics Data System (ADS)

    Suwa, E.; Tsujiura, Y.; Kurokawa, F.; Hida, H.; Kanno, I.

    2014-11-01

    We developed self-excited vibration energy harvesters of Pb(Zr,Ti)O3 (PZT) thin films using airflow. To enhance the self-excited vibration, we used 30-μm-thick stainless steel (SS304) foils as base cantilevers on which PZT thin films were deposited by rf-magnetron sputtering. To compensate for the initial bending of PZT/SS304 unimorph cantilever due to the thermal stress, we deposited counter PZT thin films on the back of the SS304 cantilever. We evaluated power-generation performance and vibration mode of the energy harvester in the airflow. When the angle of attack (AOA) was 20° to 30°, large vibration was generated at wind speeds over 8 m/s. By FFT analysis, we confirmed that stable self-excited vibration was generated. At the AOA of 30°, the output power reached 19 μW at wind speeds of 12 m/s.

  7. Interference effects in the UV(VUV)-excited luminescence spectroscopy of thin dielectric films.

    PubMed

    Buntov, Evgeny; Zatsepin, Anatoly

    2013-05-01

    The problem of exciting UV and VUV light interference affecting experimental photoluminescence excitation spectra is analysed for the case of thin transparent films containing arbitrarily distributed emission centres. A numerical technique and supplied software aimed at modelling the phenomenon and correcting the distorted spectra are proposed. Successful restoration results of the experimental synchrotron data for ion-implanted silica films show that the suggested method has high potential.

  8. Effect of Electronic Excitation on Thin Film Growth

    SciTech Connect

    Elsayed-Ali, Hani E.

    2011-01-31

    The effect of nanosecond pulsed laser excitation on surface diffusion during growth of Ge on Si(100) at 250 degrees C was studied. In Situ reflection high-energy electron diffraction (RHEED) was used to measure the surface diffusion coefficient while ex situ atomic force microscopy (AFM) was used to probe the structure and morphology of the grown quantum dots. The results show that laser excitation of the substrate increases the surface diffusion during growth of Ge on Si(100), changes the growth morphology, improves crystalline structure of the grown quantum dots, and decreases their size distribution. A purely electronic mechanism of enhanced surface diffusion of the deposited Ge is proposed. Ge quantum dots were grown on Si(100)-(2x1) by pulsed laser deposition at various substrate temperatures using a femtosecond Ti:sapphire laser. In-situ reflection high-energy electron diffraction and ex-situ atomic force microscopy were used to analyze the fim structure and morphology. The morphology of germanium islands on silicon was studied at differect coverages. The results show that femtosecond pulsed laser depositon reduces the minimum temperature for epitaxial growth of Ge quantum dots to ~280 degrees C, which is 120 degrees C lower then previously observed in nanosecond pulsed laser deposition and more than 200 degrees C lower than that reported for molecular beam epitaxy and chemical vapor deposition.

  9. Microwave excitation of spin wave beams in thin ferromagnetic films

    PubMed Central

    Gruszecki, P.; Kasprzak, M.; Serebryannikov, A. E.; Krawczyk, M.; Śmigaj, W.

    2016-01-01

    An inherent element of research and applications in photonics is a beam of light. In magnonics, which is the magnetic counterpart of photonics, where spin waves are used instead of electromagnetic waves to transmit and process information, the lack of a beam source limits exploration. Here, we present an approach enabling generation of narrow spin wave beams in thin homogeneous nanosized ferromagnetic films by microwave current. We show that the desired beam-type behavior can be achieved with the aid of a properly designed coplanar waveguide transducer generating a nonuniform microwave magnetic field. We test this idea using micromagnetic simulations, confirming numerically that the resulting spin wave beams propagate over distances of several micrometers. The proposed approach requires neither inhomogeneity of the ferromagnetic film nor nonuniformity of the biasing magnetic field. It can be generalized to different magnetization configurations and yield multiple spin wave beams of different width at the same frequency. PMID:26971711

  10. Wavelength specific excitation of gold nanoparticle thin-films

    NASA Astrophysics Data System (ADS)

    Lucas, Thomas M.; James, Kurtis T.; Beharic, Jasmin; Moiseeva, Evgeniya V.; Keynton, Robert S.; O'Toole, Martin G.; Harnett, Cindy K.

    2014-01-01

    Advances in microelectromechanical systems (MEMS) continue to empower researchers with the ability to sense and actuate at the micro scale. Thermally driven MEMS components are often used for their rapid response and ability to apply relatively high forces. However, thermally driven MEMS often have high power consumption and require physical wiring to the device. This work demonstrates a basis for designing light-powered MEMS with a wavelength specific response. This is accomplished by patterning surface regions with a thin film containing gold nanoparticles that are tuned to have an absorption peak at a particular wavelength. The heating behavior of these patterned surfaces is selected by the wavelength of laser directed at the sample. This method also eliminates the need for wires to power a device. The results demonstrate that gold nanoparticle films are effective wavelength-selective absorbers. This "hybrid" of infrared absorbent gold nanoparticles and MEMS fabrication technology has potential applications in light-actuated switches and other mechanical structures that must bend at specific regions. Deposition methods and surface chemistry will be integrated with three-dimensional MEMS structures in the next phase of this work. The long-term goal of this project is a system of light-powered microactuators for exploring cellular responses to mechanical stimuli, increasing our fundamental understanding of tissue response to everyday mechanical stresses at the molecular level.

  11. Bismuth-ring-doped fibres

    SciTech Connect

    Zlenko, Aleksandr S; Dvoirin, Vladislav V; Bogatyrev, Vladimir A; Firstov, Sergei V; Akhmetshin, Ural G

    2009-11-30

    A new process for bismuth doping of optical fibres is proposed in which the dopant is introduced into a thin layer surrounding the fibre core. This enables bismuth stabilisation in the silica glass, with no limitations on the core composition. In particular, the GeO{sub 2} content of the fibre core in this study is 16 mol %. Spectroscopic characterisation of such fibres and optical gain measurements suggest that the proposed approach has considerable potential for laser applications. (optical fibres and fibreoptic sensors)

  12. Photothermal measurement of absorption and scattering losses in thin films excited by surface plasmons.

    PubMed

    Domené, Esteban A; Balzarotti, Francisco; Bragas, Andrea V; Martínez, Oscar E

    2009-12-15

    We present a novel noncontact, photothermal technique, based on the focus error signal of a commercial CD pickup head that allows direct determination of absorption in thin films. Combined with extinction methods, this technique yields the scattering contribution to the losses. Surface plasmon polaritons are excited using the Kretschmann configuration in thin Au films of varying thickness. By measuring the extinction and absorption simultaneously, it is shown that dielectric constants and thickness retrieval leads to inconsistencies if the model does not account for scattering.

  13. Electronic excitation in transmission of relativistic H{sup {minus}} ions through thin foils

    SciTech Connect

    Reinhold, C.O.; Kuerpick, P.; Burgdoerfer, J.; Yoshida, S. |; Gervais, B.

    1998-05-07

    The authors describe a theoretical model to study the transmission of relativistic H{sup {minus}} ions through thin carbon foils. The approach is based on a Monte Carlo solution of the Langevin equation describing electronic excitations of the atoms during the transport through the foil. Calculations for the subshell populations of outgoing hydrogen atoms are found to be in good agreement with recent experimental data on an absolute scale and show that there exists a propensity for populating extreme Stark states.

  14. Magnetic, ferroelectric and leakage current properties of gadolinium doped bismuth ferrite thin films by sol-gel method

    NASA Astrophysics Data System (ADS)

    Chen, Hone-Zern; Kao, Ming-Cheng; Young, San-Lin; Hwang, Jun-Dar; Chiang, Jung-Lung; Chen, Po-Yen

    2015-05-01

    Bi0.9Gd0.1FeO3 (BGFO) thin films were fabricated on Pt(111)/Ti/SiO2/Si(100) substrates by using the sol-gel technology. The effects of annealing temperature (400-700 °C) on microstructure and multiferroic properties of thin films were investigated. The X-ray diffraction analysis showed that the BGFO thin films had an orthorhombic structure. The thin films showed ferroelectric and ferromagnetic properties with remanent polarization (2Pr) of 10 μC/cm2, remnant magnetization (2Mr) of 2.4 emu/g and saturation magnetization (Ms) of 5.3 emu/g. A small leakage current density (J) was 4.64×10-8 A/cm2 under applied field 100 kV/cm. It was found that more than one conduction mechanism is involved in the electric field range used in these experiments. The leakage current mechanisms were controlled by Poole-Frenkel emission in the low electric field region and by Schottky emission from the Pt electrode in the high field region.

  15. Excitation and emission spectra of rubidium in rare-gas thin-films.

    PubMed

    Gerhardt, Ilja; Sin, Kyungseob; Momose, Takamasa

    2012-07-07

    To understand the optical properties of atoms in solid state matrices, the absorption, excitation, and emission spectra of rubidium doped thin-films of argon, krypton, and xenon were investigated in detail. A two-dimensional spectral analysis extends earlier reports on the excitation and emission properties of rubidium in rare-gas hosts. We found that the doped crystals of krypton and xenon exhibit a simple absorption-emission relation, whereas rubidium in argon showed more complicated spectral structures. Our sample preparation employed in the present work yielded different results for the Ar crystal, but our peak positions were consistent with the prediction based on the linear extrapolation of Xe and Kr data. We also observed a bleaching behavior in rubidium excitation spectra, which suggests a population transfer from one to another spectral feature due to hole-burning. The observed optical response implies that rubidium in rare-gas thin-films is detectable with extremely high sensitivity, possibly down to a single atom level, in low concentration samples.

  16. Excitation and emission spectra of rubidium in rare-gas thin-films

    SciTech Connect

    Gerhardt, Ilja; Sin, Kyungseob; Momose, Takamasa

    2012-07-07

    To understand the optical properties of atoms in solid state matrices, the absorption, excitation, and emission spectra of rubidium doped thin-films of argon, krypton, and xenon were investigated in detail. A two-dimensional spectral analysis extends earlier reports on the excitation and emission properties of rubidium in rare-gas hosts. We found that the doped crystals of krypton and xenon exhibit a simple absorption-emission relation, whereas rubidium in argon showed more complicated spectral structures. Our sample preparation employed in the present work yielded different results for the Ar crystal, but our peak positions were consistent with the prediction based on the linear extrapolation of Xe and Kr data. We also observed a bleaching behavior in rubidium excitation spectra, which suggests a population transfer from one to another spectral feature due to hole-burning. The observed optical response implies that rubidium in rare-gas thin-films is detectable with extremely high sensitivity, possibly down to a single atom level, in low concentration samples.

  17. Excitation and emission spectra of rubidium in rare-gas thin-films

    NASA Astrophysics Data System (ADS)

    Gerhardt, Ilja; Sin, Kyungseob; Momose, Takamasa

    2012-07-01

    To understand the optical properties of atoms in solid state matrices, the absorption, excitation, and emission spectra of rubidium doped thin-films of argon, krypton, and xenon were investigated in detail. A two-dimensional spectral analysis extends earlier reports on the excitation and emission properties of rubidium in rare-gas hosts. We found that the doped crystals of krypton and xenon exhibit a simple absorption-emission relation, whereas rubidium in argon showed more complicated spectral structures. Our sample preparation employed in the present work yielded different results for the Ar crystal, but our peak positions were consistent with the prediction based on the linear extrapolation of Xe and Kr data. We also observed a bleaching behavior in rubidium excitation spectra, which suggests a population transfer from one to another spectral feature due to hole-burning. The observed optical response implies that rubidium in rare-gas thin-films is detectable with extremely high sensitivity, possibly down to a single atom level, in low concentration samples.

  18. Observation of one magnon and magnon-phonon-electric dipole coupling in multiferroics bismuth ferrite thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Murari, N. M.; Katiyar, R. S.

    2008-04-01

    We observed "one magnon," scattering in multiferroic polycrystalline BiFeO3 thin films near 17.2cm-1 at 90K employing Raman spectroscopy. It is seen with a kink in magnon intensity at 150K and with strong anomaly near 210K illustrating spin reorientation transition. The spectral weight of one magnon transferred to the lowest phonon mode near the spin reorientation temperature suggests magnon-phonon coupling. Dielectric constant and dielectric loss as function of temperature showed anomaly at 210K suggesting magnon-phonon-electric dipole coupling. The one magnon becomes overdamped or overcome by elastic scattering at elevated temperatures.

  19. Two-dimensional bismuth-rich nanosheets through the evaporative thinning of Se-doped Bi2Te3

    NASA Astrophysics Data System (ADS)

    Hanson, Eve D.; Shi, Fengyuan; Chasapis, Thomas C.; Kanatzidis, Mercouri G.; Dravid, Vinayak P.

    2016-02-01

    High bulk conductance obscures the behavior of surface states in the prototypical topological insulators Bi2Te3 and Bi2Se3. However, ternary phases of Bi2Te3-ySey with balanced donor and acceptor levels may lead to large bulk resistivity, allowing for the observation of the surface states. Additionally, the contribution of the bulk conductance may be further suppressed by nanostructuring, increasing the surface-to-volume ratio. Herein we report the synthesis of a ternary tetradymite newly confined to two dimensions. Ultra-thin large-area stable nanosheets were fabricated via evaporative thinning of a Bi2Te2.9Se0.1 original phase. Owing to vapor pressure differences, a compositional shift to a final Bi-rich phase is observed. The Se/Te ratio of the nanosheet increases tenfold, due to the higher stability of the Bi-Se bonds. Hexagonal crystal symmetry is maintained despite dramatic changes in thickness and stoichiometry. Given that small variations in stoichiometry of this ternary system can incur large changes in carrier concentration and switch majority carrier type, the large compositional shifts found in this case imply that compositional analysis of similar CVD and PVD grown materials is critical to correctly interpret topological insulator performance. Further, the characterization techniques deployed, including STEM-EDS and ToF-SIMS, serve as a case study in determining such compositional shifts in two-dimensional form.

  20. Excitation dependent photoluminescence study of Si-rich a-SiNx:H thin films

    NASA Astrophysics Data System (ADS)

    Kumar Bommali, Ravi; Preet Singh, Sarab; Rai, Sanjay; Mishra, P.; Sekhar, B. R.; Vijaya Prakash, G.; Srivastava, P.

    2012-12-01

    We report photoluminescence (PL) investigations on Si-rich amorphous hydrogenated silicon nitride (a-SiNx:H) thin films of different compositions, using three different excitation lasers, viz., 325 nm, 410 nm, and 532 nm. The as-deposited films contain amorphous Si quantum dots (QDs) as evidenced in high resolution transmission electron microscopy images. The PL spectral shape is in general seen to change with the excitation used, thus emphasizing the presence of multiple luminescence centres in these films. It is found that all the spectra so obtained can be deconvoluted assuming Gaussian contributions from defects and quantum confinement effect. Further strength to this assignment is provided by low temperature (300 °C) hydrogen plasma annealing of these samples, wherein a preferential enhancement of the QD luminescence over defect luminescence is observed.

  1. Experiments on self-excited oscillation in a thin-walled collapsible tube

    NASA Astrophysics Data System (ADS)

    Wu, Hai-Jun; Jia, Lai-Bing; Yin, Xie-Zhen

    2015-12-01

    Self-excited oscillation in a collapsible tube is an important phenomenon in physiology. An experimental approach on self-excited oscillation in a thin-walled collapsible tube is developed by using a high transmittance and low Young's modulus silicone rubber tube. The elastic tube is manufactured by the method of centrifugal casting in our laboratory. An optical method for recording the evolution of the cross-sectional areas at a certain position along the longitudinal direction of the tube is developed based on the technology of refractive index matching. With the transparent tube, the tube law is measured under the static no-flow condition. The cross section at the middle position of the tube transfers from a quasi-circular configuration to an ellipse, and then to a dumbell-shape as the chamber pressure is increased. During the self-excited oscillation, two periodic self-excited oscillating states and one transitional oscillating state are identified. They all belong to the LU mode. These different oscillating states are related to the initial cross-sectional shape of the tube caused by the difference of the downstream transmural pressure.

  2. Low-frequency Raman modes and electronic excitations in atomically thin MoS2 films

    NASA Astrophysics Data System (ADS)

    Zeng, Hualing; Zhu, Bairen; Liu, Kai; Fan, Jiahe; Cui, Xiaodong; Zhang, Q. M.

    2012-12-01

    Atomically thin MoS2 crystals have been recognized as quasi-two-dimensional semiconductors with remarkable physical properties. We report our Raman scattering measurements on multilayer and monolayer MoS2, especially in the low-frequency range (<50 cm-1). We find two low-frequency Raman modes with a contrasting thickness dependence. When increasing the number of MoS2 layers, one mode shows a significant increase in frequency while the other decreases following a 1/N (N denotes the number of unit layers) trend. With the aid of first-principles calculations we assign the former as the shear mode E2g2. The latter is distinguished as the compression vibrational mode, similar to the surface vibration of other epitaxial thin films. The opposite evolution of the two modes with thickness demonstrates vibrational modes in an atomically thin crystal as well as a more precise way to characterize the thickness of atomically thin MoS2 films. In addition, we observe a broad feature around 38 cm-1(5 meV) which is visible only under near-resonance excitation and pinned at a fixed energy, independent of thickness. We interpret the feature as an electronic Raman scattering associated with the spin-orbit coupling induced splitting in a conduction band at K points in their Brillouin zone.

  3. Thin torus perturbative analysis of elementary excitations in the Gaffnian and Haldane-Rezayi quantum Hall states

    NASA Astrophysics Data System (ADS)

    Weerasinghe, Amila; Seidel, Alexander

    2014-09-01

    We present a systematic perturbative approach to study excitations in the thin cylinder/torus limit of the quantum Hall states. The approach is applied to the Haldane-Rezayi and Gaffnian quantum Hall states, which are both expected to have gapless excitations in the usual two-dimensional thermodynamic limit. For the Haldane-Rezayi state, we confirm that gapless excitations are present also in the "one-dimensional" thermodynamic limit of an infinite thin cylinder, in agreement with earlier considerations based on the wave functions alone. In contrast, we identify the lowest excitations of the Gaffnian state in the thin cylinder limit, and conclude that they are gapped, using a combination of perturbative and numerical means. We discuss possible scenarios for the crossover between the two-dimensional and the one-dimensional thermodynamic limit in this case.

  4. Bismuth, Metronidazole, and Tetracycline

    MedlinePlus

    Helidac® (as a kit containing Bismuth Subsalicylate, Metronidazole, Tetracycline) ... Bismuth, metronidazole, and tetracycline is used along with other ulcer medications to treat duodenal ulcers. It is in a ...

  5. Current and potential applications of bismuth-based drugs.

    PubMed

    Keogan, Donal M; Griffith, Darren M

    2014-09-23

    : Bismuth compounds have been used extensively as medicines and in particular for the treatment of gastrointestinal ailments. In addition to bismuth's well known gastroprotective effects and efficacy in treating H. pylori infection it also has broad anti-microbial, anti-leishmanial and anti-cancer properties. Aspects of the biological chemistry of bismuth are discussed and biomolecular targets associated with bismuth treatment are highlighted. This review strives to provide the reader with an up to date account of bismuth-based drugs currently used to treat patients and discuss potential medicinal applications of bismuth drugs with reference to recent developments in the literature. Ultimately this review aims to encourage original contributions to this exciting and important field.

  6. Annealing Effect on the Structural and Optical Properties of Sputter-Grown Bismuth Titanium Oxide Thin Films

    PubMed Central

    Alfonso, José E.; Olaya, Jhon J.; Bedoya-Hincapié, Claudia M.; Toudert, Johann; Serna, Rosalia

    2014-01-01

    The aim of this work is to assess the evolution of the structural and optical properties of BixTiyOz films grown by rf magnetron sputtering upon post-deposition annealing treatments in order to obtain good quality films with large grain size, low defect density and high refractive index similar to that of single crystals. Films with thickness in the range of 220–250 nm have been successfully grown. After annealing treatment at 600 °C the films show excellent transparency and full crystallization. It is shown that to achieve larger crystallite sizes, up to 17 nm, it is better to carry the annealing under dry air than under oxygen atmosphere, probably because the nucleation rate is reduced. The refractive index of the films is similar under both atmospheres and it is very high (n =2.5 at 589 nm). However it is still slightly lower than that of the single crystal value due to the polycrystalline morphology of the thin films. PMID:28788626

  7. Low-frequency current fluctuations in "graphene-like" exfoliated thin-films of bismuth selenide topological insulators.

    PubMed

    Hossain, Md Zahid; Rumyantsev, Sergey L; Shahil, Khan M F; Teweldebrhan, Desalegne; Shur, Michael; Balandin, Alexander A

    2011-04-26

    We report on the low-frequency current fluctuations and electronic noise in thin-films made of Bi(2)Se(3) topological insulators. The films were prepared via the "graphene-like" mechanical exfoliation and used as the current conducting channels in the four- and two-contact devices. The thickness of the films ranged from ∼50 to 170 nm to avoid hybridization of the top and bottom electron surface states. Analysis of the resistance dependence on the film thickness indicates that the surface contribution to conductance is dominant in our samples. It was established that the current fluctuations have the noise spectrum close to the pure 1/f in the frequency range from 1 Hz to 10 kHz (f is the frequency). The relative noise amplitude S(I)/I(2) for the examined Bi(2)Se(3) films was increasing from ∼5 × 10(-8) to 5 × 10(-6) (1/Hz) as the resistance of the channels varied from ∼10(3) to 10(5) Ω. The obtained noise data is important for understanding electron transport through the surface and volume of topological insulators, and proposed applications of this class of materials. The results may help to develop a new method of noise reduction in electronic devices via the "scattering immune" transport through the surface states.

  8. Photonic crystal fiber modal interferometer based on thin-core-fiber mode exciter.

    PubMed

    Miao, Yinping; Ma, Xixi; Wu, Jixuan; Song, Binbin; Zhang, Hao; Liu, Bo; Yao, Jianquan

    2015-11-10

    A thin-core-fiber excited photonic crystal fiber modal interferometer has been proposed and experimentally demonstrated. By employing a thin-core fiber as the mode exciter, both of the core and cladding modes propagate in the photonic crystal fiber and interfere with each other. The experimental results show that the transmission dips corresponding to different-order modes have various strain responses with opposite shift directions. The strain sensitivity could be improved to 58.57  pm/με for the applied strain from 0 to 491 με by utilizing the wavelength interval between the dips with opposite shift directions. Moreover, due to the pure silica property of the employed photonic crystal fiber, the proposed fiber modal interferometer exhibits a low-temperature sensitivity of about 0.56  pm/°C within a temperature range from 26.4°C (room temperature) to 70°C. Additionally, the proposed fiber modal interferometer has several advantages, such as good stability, compact structure, and simple fabrication. Therefore, it is more applicable for strain measurement with reducing temperature cross-sensitivity.

  9. A comparative investigation on structure and multiferroic properties of bismuth ferrite thin films by multielement co-doping

    SciTech Connect

    Dong, Guohua; Tan, Guoqiang Luo, Yangyang; Liu, Wenlong; Xia, Ao; Ren, Huijun

    2014-12-15

    Highlights: • Multielement (Tb, Cr and Mn) co-doped BiFeO{sub 3} films were fabricated by CSD method. • Multielement co-doping induces a structural transition. • It is found effective to stabilize the valence of Fe ions at +3 by the strategy. • The co-doping at A/B-sites gives rise to the superior multiferroic properties. - Abstract: (Tb, Cr and Mn) multielement co-doped BiFeO{sub 3} (BTFCMO) thin films were prepared by the chemical solution deposition method on fluorine doped tin oxide (FTO) substrates. X-ray diffraction, Rietveld refinement and Raman analyses revealed that a phase transition from rhombohedral to triclinic structure occurs in the multielement co-doped BiFeO{sub 3} films. It is found that the doping is conducive to stabilizing the valence of Fe ions and reducing leakage current. In addition, the highly enhanced ferroelectric properties with a huge remanent polarization (2P{sub r}) of 239.6 μC/cm{sup 2} and a low coercive field (2E{sub c}) of 615.6 kV/cm are ascribed to the well film texture, the structure transition and the reduced leakage current by the co-doping. Moreover, the structure transition is the dominant factor resulting in the significant enhancement observed in magnetization (M{sub s} ∼ 10.5 emu/cm{sup 3}), owing to the collapse of the space-modulated spin structure. In this contribution, these results demonstrate that the multielement co-doping is in favor of the enhanced multiferroic properties of the BFO films for possible multifunctional applications.

  10. Excitations in a thin liquid {sup 4}He film from inelastic neutron scattering

    SciTech Connect

    Clements, B.E. |; Godfrin, H.; Krotscheck, E. |; Lauter, H.J.; Leiderer, P.; Passiouk, V. |; Tymczak, C.J.

    1996-05-01

    We perform a thorough analysis of the experimental dynamic structure function measured by inelastic neutron scattering for a low-temperature ({ital T}=0.65 K) four-layer liquid {sup 4}He film. The results are interpreted in light of recent theoretical calculations of the (nonvortex) excitations in thin liquid Bose films. The experimental system consists of four outer liquid layers, adsorbed to two solid inner {sup 4}He layers, which are themselves adsorbed to a graphite substrate. Relatively intense surface (ripplon) and bulklike modes are observed. The analysis of the experimental data gives strong evidence for still other modes and supports the long-standing theoretical predictions of layerlike modes (layer phonons) associated with excitations propagating primarily within the liquid layers comprising the film. The results of the analysis are consistent with the occurrence of level crossings between modes, and the existence of a layer modes for which the theory predicts will propagate in the vicinity of the solid-liquid interface. The theory and experiment agree on the detailed nature of the ripplon; its dispersion at low momenta, its fall off in intensity at intermediate momenta, and the level crossings at high momentum. Similar to experiment, the theory yields an intense mode in the maxon-roton region which is intrepreted as the formation of the bulklike excitation. {copyright} {ital 1996 The American Physical Society.}

  11. The neutral oxygen spectrum. 1: Collisionally excited level populations and line intensities under optically thin conditions

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Kastner, S. O.

    1995-01-01

    This is the first paper in a projected program to produce quantitative information on the spectrum of the neutral oxygen atom under a variety of excitation conditions. Radiative rates and effective collision strengths are assembled from the recent literature where available, or are calculated for as yet untreated transitions using the University College superstructure/distorted-wave computer package, to produce a complete set of atomic data for a 13 hybrid level model of neutral oxygen. Level populations and relative intensities for 28 allowed, inter-combination, and forbidden oxygen lines are computed, under optically thin conditions, for the electron density range 4.0 less than log N(sub e) less than 12.0 and the electron temperature values T(sub e) = 5000, 10,000, 20,000, 50,000, and 100,000 K. Preliminary applications to observed intercombination/allowed and forbidden/allowed line ratios are discussed.

  12. The neutral oxygen spectrum. 1: Collisionally excited level populations and line intensities under optically thin conditions

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Kastner, S. O.

    1995-01-01

    This is the first paper in a projected program to produce quantitative information on the spectrum of the neutral oxygen atom under a variety of excitation conditions. Radiative rates and effective collision strengths are assembled from the recent literature where available, or are calculated for as yet untreated transitions using the University College superstructure/distorted-wave computer package, to produce a complete set of atomic data for a 13 hybrid level model of neutral oxygen. Level populations and relative intensities for 28 allowed, inter-combination, and forbidden oxygen lines are computed, under optically thin conditions, for the electron density range 4.0 less than log N(sub e) less than 12.0 and the electron temperature values T(sub e) = 5000, 10,000, 20,000, 50,000, and 100,000 K. Preliminary applications to observed intercombination/allowed and forbidden/allowed line ratios are discussed.

  13. Dynamics of coupled plasmon polariton wave packets excited at a subwavelength slit in optically thin metal films

    NASA Astrophysics Data System (ADS)

    Wang, Lei-Ming; Zhang, Lingxiao; Seideman, Tamar; Petek, Hrvoje

    2012-10-01

    We study by numerical simulations the excitation and propagation dynamics of coupled surface plasmon polariton (SPP) wave packets (WPs) in optically thin Ag films and a bulk Ag/vacuum interface under the illumination of a subwavelength slit by 400 nm continuous wave (cw) and femtosecond pulsed light. The generated surface fields include contributions from both SPPs and quasicylindrical waves, which dominate in different regimes. We explore aspects of the coupled SPP modes in Ag thin films, including symmetry, propagation, attenuation, and the variation of coupling with incident angle and film thickness. Simulations of the electromagnetic transients initiated with femtosecond pulses reveal new features of coupled SPP WP generation and propagation in thin Ag films. Our results show that, under pulsed excitation, the SPP modes in an Ag thin film break up into two distinct bound surface wave packets characterized by marked differences in symmetries, group velocities, attenuation lengths, and dispersion properties. The nanometer spatial and femtosecond temporal scale excitation and propagation dynamics of the coupled SPP WPs are revealed in detail by movies recording the evolution of their transient field distributions.

  14. The shear-lag effect of thin-walled box girder under vertical earthquake excitation

    NASA Astrophysics Data System (ADS)

    Zhai, Zhipeng; Li, Yaozhuang; Guo, Wei

    2017-03-01

    The variation method based on the energy variation principle is proved to be accurate and valid for analyzing the shear lag effect of box girder under static and dynamic load. Meanwhile, dynamic problems gradually become the key factors in engineering practice. Therefore, a method for calculating the shear lag effect in thin-walled box girder under vertical seismic excitation is proposed by applying Hamilton Principle in this paper. The Timoshenko shear deformation is taken into account. And a new definition of shear lag ratio for box girder is given. What's more, some conclusions are drawn by analysis of numerical example. The results show that small amplitude of earthquake ground motion can generate high stress and obvious shear lag, especially in the region of resonance. And the influence of rotary inertia cannot be ignored for analyzing the shear lag effect. With the increase of span to width ratio, shear lag effect becomes smaller and smaller. These research conclusions will be useful for the engineering practice and enrich the theoretical studies of box girders.

  15. Strongly Enhanced Photovoltaic Performance and Defect Physics of Air-Stable Bismuth Oxyiodide (BiOI)

    DOE PAGES

    Hoye, Robert L. Z.; Lee, Lana C.; Kurchin, Rachel C.; ...

    2017-07-17

    Bismuth-based compounds have recently gained increasing attention as potentially nontoxic and defect-tolerant solar absorbers. However, many of the new materials recently investigated show limited photovoltaic performance. Herein, one such compound is explored in detail through theory and experiment: bismuth oxyiodide (BiOI). BiOI thin films are grown by chemical vapor transport and found to maintain the same tetragonal phase in ambient air for at least 197 d. The computations suggest BiOI to be tolerant to antisite and vacancy defects. All-inorganic solar cells (ITO|NiOx|BiOI|ZnO|Al) with negligible hysteresis and up to 80% external quantum efficiency under select monochromatic excitation are demonstrated. The short-circuitmore » current densities and power conversion efficiencies under AM 1.5G illumination are nearly double those of previously reported BiOI solar cells, as well as other bismuth halide and chalcohalide photovoltaics recently explored by many groups. Through a detailed loss analysis using optical characterization, photoemission spectroscopy, and device modeling, direction for future improvements in efficiency is provided. In conclusion, this work demonstrates that BiOI, previously considered to be a poor photocatalyst, is promising for photovoltaics.« less

  16. Electronic and structural properties of rhombohedral [1 1 1] and [1 1 0] oriented ultra-thin bismuth nanowires.

    PubMed

    Ansari, Lida; Gity, Farzan; Greer, James C

    2017-02-15

    Structures and electronic properties of rhombohedral [1 1 1] and [1 1 0] bismuth nanowires are calculated with the use of density functional theory. The formation of an energy band gap from quantum confinement is studied and to improve estimates for the band gap the GW approximation is applied. The [1 1 1] oriented nanowires require surface bonds to be chemically saturated to avoid formation of metallic surface states, whereas the surfaces of the [1 1 0] nanowires do not support metallic surface states. It is found that the onset of quantum confinement in the surface passivated [1 1 1] nanowires occurs at larger critical dimensions than for the [1 1 0] nanowires. For the [1 1 1] oriented nanowires it is predicted that a band gap of ~0.5 eV can be formed at a diameter of approximately 6 nm, whereas for the [1 1 0] oriented nanowires a diameter of approximately 3 nm is required to achieve a similar band gap energy. The GW correction is also applied to estimates of the electron affinity, ionisation potentials and work functions for both orientations of the nanowires for various diameters below 5 nm. The magnitude of the energy band gaps that arise in bismuth at critical dimensions of a few nanometers are of the same order as for conventional bulk semiconductors.

  17. Electronic and structural properties of rhombohedral [1 1 1] and [1 1 0] oriented ultra-thin bismuth nanowires

    NASA Astrophysics Data System (ADS)

    Ansari, Lida; Gity, Farzan; Greer, James C.

    2017-02-01

    Structures and electronic properties of rhombohedral [1 1 1] and [1 1 0] bismuth nanowires are calculated with the use of density functional theory. The formation of an energy band gap from quantum confinement is studied and to improve estimates for the band gap the GW approximation is applied. The [1 1 1] oriented nanowires require surface bonds to be chemically saturated to avoid formation of metallic surface states, whereas the surfaces of the [1 1 0] nanowires do not support metallic surface states. It is found that the onset of quantum confinement in the surface passivated [1 1 1] nanowires occurs at larger critical dimensions than for the [1 1 0] nanowires. For the [1 1 1] oriented nanowires it is predicted that a band gap of ~0.5 eV can be formed at a diameter of approximately 6 nm, whereas for the [1 1 0] oriented nanowires a diameter of approximately 3 nm is required to achieve a similar band gap energy. The GW correction is also applied to estimates of the electron affinity, ionisation potentials and work functions for both orientations of the nanowires for various diameters below 5 nm. The magnitude of the energy band gaps that arise in bismuth at critical dimensions of a few nanometers are of the same order as for conventional bulk semiconductors.

  18. Time-domain excitation of quantized magnetostatic spin-wave modes in patterned NiFe thin film ensembles

    NASA Astrophysics Data System (ADS)

    Crawford, T. M.; Covington, M.; Parker, G. J.

    2003-01-01

    We measure quantized spin waves excited by a spatially inhomogeneous pulsed magnetic field in patterned NiFe thin films by inductive detection of the dynamic magnetization. When anisotropy and numerically calculated demagnetizing fields are included in the magnetostatic Damon Eshbach spin-wave dispersion relation, the predicted mode frequencies agree closely with measurements. Micromagnetic calculations predict the correct mode frequencies and agree remarkably well with time-domain measurements.

  19. Fabrication of bright and thin Zn₂SiO₄ luminescent film for electron beam excitation-assisted optical microscope.

    PubMed

    Furukawa, Taichi; Kanamori, Satoshi; Fukuta, Masahiro; Nawa, Yasunori; Kominami, Hiroko; Nakanishi, Yoichiro; Sugita, Atsushi; Inami, Wataru; Kawata, Yoshimasa

    2015-07-13

    We fabricated a bright and thin Zn₂SiO₄ luminescent film to serve as a nanometric light source for high-spatial-resolution optical microscopy based on electron beam excitation. The Zn₂SiO₄ luminescent thin film was fabricated by annealing a ZnO film on a Si₃N₄ substrate at 1000 °C in N₂. The annealed film emitted bright cathodoluminescence compared with the as-deposited film. The film is promising for nano-imaging with electron beam excitation-assisted optical microscopy. We evaluated the spatial resolution of a microscope developed using this Zn₂SiO₄ luminescent thin film. This is the first report of the investigation and application of ZnO/Si₃N₄ annealed at a high temperature (1000 °C). The fabricated Zn₂SiO₄ film is expected to enable high-frame-rate dynamic observation with ultra-high resolution using our electron beam excitation-assisted optical microscopy.

  20. Femtosecond excited-state absorption dynamics and optical limiting in fullerene solutions, sol-gel glasses, and thin films

    SciTech Connect

    McBranch, D.; Klimov, V.; Smilowitz, L.; Wang, H.; Wudl, F.

    1996-11-01

    We compare detailed dynamics of the excited-state absorption for C{sub 60} in solution, thin films, and entrapped in an inorganic sol-gel glass matrix. Our results demonstrate that the microscopic morphology of the C{sub 60} molecule plays a crucial role in determining the relaxation dynamics. This is a key factor for applications in optical limiting for nanosecond pulses using reverse saturable absorption. We find that the dynamics of the C{sub 60}-glass composite occur on long (ns) timescales, comparable to that in solution; thin film samples, by contrast, show rapid decay (<20 picoseconds). These results demonstrate that the C{sub 60}-sol-gel glass composites contain C{sub 60} in a molecular dispersion, and are suitable candidates for solid-state optical limiting. Multispectral analysis of the decay dynamics in solution allows accurate determination of both the intersystem crossing time (600 {+-}100 ps) and the relative strengths of the singlet and triplet excited-state cross sections as a function of wavelength from 450-950 nm. The triplet excited-state cross section is greater than that for the singlet excited-state over the range from 620-810 nm.

  1. Seedless Growth of Bismuth Nanowire Array via Vacuum Thermal Evaporation.

    PubMed

    Liu, Mingzhao; Nam, Chang-Yong; Zhang, Lihua

    2015-12-21

    Here a seedless and template-free technique is demonstrated to scalably grow bismuth nanowires, through thermal evaporation in high vacuum at RT. Conventionally reserved for the fabrication of metal thin films, thermal evaporation deposits bismuth into an array of vertical single crystalline nanowires over a flat thin film of vanadium held at RT, which is freshly deposited by magnetron sputtering or thermal evaporation. By controlling the temperature of the growth substrate the length and width of the nanowires can be tuned over a wide range. Responsible for this novel technique is a previously unknown nanowire growth mechanism that roots in the mild porosity of the vanadium thin film. Infiltrated into the vanadium pores, the bismuth domains (~ 1 nm) carry excessive surface energy that suppresses their melting point and continuously expels them out of the vanadium matrix to form nanowires. This discovery demonstrates the feasibility of scalable vapor phase synthesis of high purity nanomaterials without using any catalysts.

  2. Comparison of plasma bismuth levels after oral dosing with basic bismuth carbonate or tripotassium dicitrato bismuthate.

    PubMed

    Madaus, S; Schulte-Frohlinde, E; Scherer, C; Kämmereit, A; Schusdziarra, V; Classen, M

    1992-04-01

    In 20 healthy subjects plasma bismuth concentration was measured after single oral doses of basic bismuth carbonate or tripotassium dicitrato bismuthate. The drugs were administered in the fasted state or immediately after ingestion of a standard breakfast. After basic bismuth carbonate, plasma bismuth rose to concentrations between 0.7 and 2.6 micrograms/L in the fasted state, while after the meal the maximal level was only 1.3 micrograms/L. In contrast to these very low levels after basic bismuth carbonate, the administration of tripotassium dicitrato bismuthate was paralleled by an increase of plasma bismuth to concentrations between 15 and 232 micrograms/L with a mean peak value of 64 +/- 15.3 (S.E.M.) micrograms/L in the fasted state. Postprandial ingestion of tripotassium dicitrato bismuthate attenuated the peak concentrations to 10.9 +/- 6.3 micrograms/L. One subject, however, had a value of 120 micrograms/L. This study demonstrates that basic bismuth carbonate leads to very low plasma bismuth concentrations, which are far below the critical range that might eventually be associated with bismuth neurotoxicity. Therefore this compound can be considered potentially useful for bismuth therapy of gastrointestinal disorders.

  3. Magnetometer uses bismuth-selenide

    NASA Technical Reports Server (NTRS)

    Woollman, J. A.; Spain, I. L.; Beale, H.

    1972-01-01

    Characteristics of bismuth-selenide magnetometer are described. Advantages of bismuth-selenide magnetometer over standard magnetometers are stressed. Thermal stability of bismuth-selenide magnetometer is analyzed. Linearity of output versus magnetic field over wide range of temperatures is reported.

  4. Influence of heat generated by a Raman excitation laser on the structural analysis of thin amorphous silicon film

    NASA Astrophysics Data System (ADS)

    Novák, P.; Očenášek, J.; Prušáková, L.; Vavruňková, V.; Savková, J.; Rezek, J.

    2016-02-01

    In the present work we investigate thin amorphous silicon film fabricated by plasma enhanced chemical vapor deposition. In particular, we analyze changes in the recorded Raman spectra caused by excitation laser irradiation. Solid phase crystallization, hydrogen diffusive outflow and Raman spectra peak shifts have been observed experimentally and analyzed numerically. The role of film thickness on all these features is pointed out. The study involves laser powers between 0.1 mW and 10 mW focused to a spot diameter of ∼1 μm and film thicknesses between 50 and ∼2000 nm. Additionally, the laser induced temperature fields were analyzed by means of numerical simulation and the Raman spectral shift trough Balkanski model. Results are correlated to structural analysis by Raman spectroscopy, optical microscopy, scanning electron microscopy and atomic force microscopy. It was found that the hydrogen content and solid phase fraction identified by Raman spectroscopy are highly sensitive to the applied excitation laser power.

  5. Phase-matched emission from an optically thin medium following one-photon pulse excitation: Energy considerations

    SciTech Connect

    Berman, P. R.; Le Goueet, J.-L.

    2011-03-15

    Scully and coworkers [M. O. Scully, E. S. Fry, C. H. R. Oii, and K. Wodkiewicz, Phys. Rev. Lett. 96, 010501 (2006)] demonstrated that there is directional, phase-matched emission following the excitation of an ensemble of atoms by a single-photon pulse. While the phase-matched emission intensity is proportional to the the number of atoms, for optically thin samples the total energy emitted in the phase-matched direction is much less than that radiated in other directions. Moreover, even for optically thin samples, it is necessary to take into account effects related to cooperative decay if energy is to be conserved in the overall emission process. An analytic calculation is presented to show explicitly how cooperative decay reduces the incoherent emission and restores energy conservation in this low-density limit.

  6. Terahertz surface emission from Cu2ZnSnSe4 thin film photovoltaic material excited by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenyu; Niehues, Gudrun; Funkner, Stefan; Estacio, Elmer; Han, Qifeng; Yamamoto, Kohji; Zhang, Jingtao; Shi, Wangzhou; Guo, Qixin; Tani, Masahiko

    2014-12-01

    We observed efficient terahertz (THz) emission from sol-gel grown Cu2ZnSnSe4 (CZTSe) thin films using THz time domain spectroscopy technique. The THz emission bandwidth exceeds 2 THz with a dynamic range of 20 dB in the amplitude spectrum. The THz emission amplitude from CZTSe is found to be independent of external magnetic fields. Comparing the polarity of THz emission waveforms of CZTSe and GaAs, we suggest that the acceleration of photo-carriers in the surface accumulation layer of CZTSe is the dominant mechanism of radiation emission. Optical excitation fluence dependence measurements show that the saturation fluence of the CZTSe thin film reaches 1.48 μJ/cm2.

  7. Bismuth vanadate process

    SciTech Connect

    Sullivan, R.M.

    1990-06-26

    This patent describes the process for the preparation of bismuth vanadate and bismuth vanadate-containing compounds wherein the precursor materials are calcined in the solid state at temperatures sufficient to react the precursor materials to prepare the vanadate compounds. It comprises: wet grinding the calcined product, contacting the calcined product with sufficient alkaline material to provide a pH level of 7.0-13.0 and recovering the treated product, the wet grinding of the calcined product being conducted either in the presence of the alkaline material or prior to the contacting with the alkaline material.

  8. Bismuth compounds in medicinal chemistry.

    PubMed

    Salvador, Jorge A R; Figueiredo, Sandra A C; Pinto, Rui M A; Silvestre, Samuel M

    2012-07-01

    In recent years, the chemical potential of bismuth and bismuth compounds has been actively exploited. Bismuth salts are known for their low toxicity, making them potential valuable reagents for large-scale synthesis, which becomes more obvious when dealing with products such as active pharmaceutical ingredients or synthetic intermediates. Conversely, bismuth compounds have been widely used in medicine. After extensive use in the treatments of syphilis and other bacterial infections before the advent of modern antibiotics, bismuth compounds remain important for the treatment of several gastrointestinal disorders and also exhibit antimicrobial properties and cytotoxic activity, among others. This review updates relevant advances in the past few years, concerning the application of bismuth reagents and catalysts in innovative synthetic processes for the preparation of compounds of medicinal interest, as well as the preparation, biological evaluation and potential medicinal uses of bismuth compounds.

  9. New Approach on Quantification of Porosity of Thin Films via Electron-Excited X-ray Spectra.

    PubMed

    Ortel, Erik; Hertwig, Andreas; Berger, Dirk; Esposito, Pasquale; Rossi, Andrea M; Kraehnert, Ralph; Hodoroaba, Vasile-Dan

    2016-07-19

    One of the crucial characteristics of functionalized thin films is their porosity (i.e., the ratio between the pore volume and the volume of the whole film). Due to the very low amount of material per coated area corresponding to thin films, it is a challenge for analytics to measure the film porosity. In this work, we present an approach to determine the porosity of thin films by means of electron probe microanalysis (EPMA) either by wavelength-dispersive X-ray spectrometry (WDX) or by energy-dispersive X-ray spectrometry (EDX) with a scanning electron microscope (SEM). The procedure is based on the calculation of the film mass deposition from electron-excited X-ray spectra. The mass deposition is converted into film density by division of measured film thickness. Finally, the film porosity is calculated from the measured film density and the density of bulk, nonporous film material. The general applicability of the procedure to determine the porosity is demonstrated on thin templated mesoporous TiO2 films, dip-coated on silicon wafer, with controlled porosity in the range of 15 to 50%. The high accuracy of the mass deposition as determined from X-ray spectra was validated with independent methods (ICP-OES and weighing). Furthermore, for the validation of the porosity results, ellipsometry, interference fringes method (IFM), and focused ion beam (FIB) cross sectioning were employed as independent techniques. Hence, the approach proposed in the present study is proven to be suited as a new analytical tool for accurate and relatively fast determination of the porosity of thin films.

  10. Structural and optical characterization of thermally evaporated bismuth and antimony films for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Srimathy, N.; Ruban Kumar, A.

    2016-05-01

    In this present study, the thin film of bismuth and antimony is coated by thermal evaporation system equipped with the inbuilt ultra high vacuum system. XRD analysis confirmed the rhombohedral structure of Bismuth and Antimony on the prepared film. The surface roughness and physical appearance is analyzed by Atomic force microscopy. The results of Raman Spectroscopy show the wave functions and the spectrum of electrons. The preparation technique and conditions strongly influence the crystalline structure and the phase composition of bismuth and antimony thin films. The electrical and optical properties for the prepared film are analyzed. The results show a great interest and promising applications in Photovoltaic devices.

  11. CW bismuth fibre laser

    SciTech Connect

    Dianov, Evgenii M; Dvoyrin, V V; Mashinsky, V M; Umnikov, A A; Yashkov, M V; Gur'yanov, A N

    2005-12-31

    A new fibre laser based on a bismuth-doped aluminosilicate glass fibre is proposed and fabricated. CW lasing is obtained in the spectral region between 1150 and 1300 nm. The fibres are fabricated by the method of modified chemical vapour deposition. (letters)

  12. Electronic excitation induced modifications of optical and morphological properties of PCBM thin films

    NASA Astrophysics Data System (ADS)

    Sharma, T.; Singhal, R.; Vishnoi, R.; Sharma, P.; Patra, A.; Chand, S.; Lakshmi, G. B. V. S.; Biswas, S. K.

    2016-07-01

    Phenyl C61 butyric acid methyl ester (PCBM) is a fullerene derivative and most commonly used in organic photovoltaic devices both as electron acceptor and transporting material due to high electron mobility. PCBM is easy to spin caste on some substrate as it is soluble in chlorobenzene. In this study, the spin coated thin films of PCBM (on two different substrate, glass and double sided silicon) were irradiated using 90 MeV Ni7+ swift heavy ion beam at low fluences ranging from 1 × 109 to 1 × 1011 ions/cm2 to study the effect of ion beam irradiation. The pristine and irradiated PCBM thin films were characterized by UV-visible absorption spectroscopy and fourier transform infrared spectroscopy (FTIR) to investigate the optical properties before and after irradiation. These thin films were further analyzed using atomic force microscopy (AFM) to investigate the morphological modifications which are induced by energetic ions. The variation in optical band gap after irradiation was measured using Tauc's relation from UV-visible absorption spectra. A considerable change was observed with increasing fluence in optical band gap of irradiated thin films of PCBM with respect to the pristine film. The decrease in FTIR band intensity of C60 cage reveals the polymerization reaction due to high energy ion impact. The roughness is also found to be dependent on incident fluences. This study throws light for the application of PCBM in organic solar cells in form of ion irradiation induced nanowires of PCBM for efficient charge carrier transportation in active layer.

  13. Femtosecond to nanosecond excited state dynamics of vapor deposited copper phthalocyanine thin films.

    PubMed

    Caplins, Benjamin W; Mullenbach, Tyler K; Holmes, Russell J; Blank, David A

    2016-04-28

    Vapor deposited thin films of copper phthalocyanine (CuPc) were investigated using transient absorption spectroscopy. Exciton-exciton annihilation dominated the kinetics at high exciton densities. When annihilation was minimized, the observed lifetime was measured to be 8.6 ± 0.6 ns, which is over an order of magnitude longer than previous reports. In comparison with metal free phthalocyanine (H2Pc), the data show evidence that the presence of copper induces an ultrafast relaxation process taking place on the ca. 500 fs timescale. By comparison to recent time-resolved photoemission studies, this is assigned as ultrafast intersystem crossing. As the intersystem crossing occurs ca. 10(4) times faster than lifetime decay, it is likely that triplets are the dominant excitons in vapor deposited CuPc films. The exciton lifetime of CuPc thin films is ca. 35 times longer than H2Pc thin films, while the diffusion lengths reported in the literature are typically quite similar for the two materials. These findings suggest that despite appearing to be similar materials at first glance, CuPc and H2Pc may transport energy in dramatically different ways. This has important implications on the design and mechanistic understanding of devices where phthalocyanines are used as an excitonic material.

  14. Ultrafast broadband spectroscopy of crystalline bismuth

    SciTech Connect

    Mel'nikov, A A; Misochko, Oleg V; Chekalin, Sergei V

    2013-04-30

    Femtosecond spectroscopy in the wavelength range 0.4 - 2.3 {mu}m has been used to probe ultrafast electronic and lattice processes in bismuth. The photoresponse of a bismuth crystal is shown to comprise components with relaxation times of 1 ps, 7 ps, and {approx}1 ns. The electron-hole and electron-phonon interaction strengths in bismuth are found to depend significantly on the wave vector in the {Gamma}-T direction of the Brillouin zone. Comparison of the spectral dependences of the amplitudes of coherent E{sub g} and A{sub 1g} phonons and the corresponding dependences of the Raman scattering cross sections indicates that these phonon modes differ in generation mechanism. The generation of coherent A{sub 1g} phonons is mainly due to displacement of the equilibrium position of atoms in the crystal lattice in a nonequilibrium state. This process differs fundamentally from resonance Raman scattering responsible for the coherent excitation of low-symmetry phonon modes. (extreme light fields and their applications)

  15. Doubly excited pulse waves on thin liquid films flowing down an inclined plane: An experimental and numerical study

    NASA Astrophysics Data System (ADS)

    Adebayo, Idris; Xie, Zhihua; Che, Zhizhao; Matar, Omar K.

    2017-07-01

    The interaction patterns between doubly excited pulse waves on thin liquid films flowing down an inclined plane are studied both experimentally and numerically. The effect of varying the film flow rate, interpulse interval, and substrate inclination angle on the pulse interaction patterns is examined. Our results show that different interaction patterns exist for these binary pulses, which include solitary wave behavior, partial or complete pulse coalescence, and pulse noncoalescence. A regime map of these patterns is plotted for each inclination angle examined, parametrized by the film Reynolds number and interpulse interval. Finally, the individual effect of the system parameters mentioned above on the coalescence distance of binary pulses in the "complete pulse coalescence" mode is studied; the results are compared to numerical simulations of the two-dimensional Navier-Stokes equations yielding good agreement.

  16. Nonlinear vibrations of thin arbitrarily laminated composite plates subjected to harmonic excitations using DKT elements

    NASA Technical Reports Server (NTRS)

    Chiang, C. K.; Xue, David Y.; Mei, Chuh

    1993-01-01

    A finite element formulation is presented for determining the large-amplitude free and steady-state forced vibration response of arbitrarily laminated anisotropic composite thin plates using the Discrete Kirchhoff Theory (DKT) triangular elements. The nonlinear stiffness and harmonic force matrices of an arbitrarily laminated composite triangular plate element are developed for nonlinear free and forced vibration analyses. The linearized updated-mode method with nonlinear time function approximation is employed for the solution of the system nonlinear eigenvalue equations. The amplitude-frequency relations for convergence with gridwork refinement, triangular plates, different boundary conditions, lamination angles, number of plies, and uniform versus concentrated loads are presented.

  17. Non-local dynamics of weakly nonlinear spin excitations in thin ferromagnetic films

    NASA Astrophysics Data System (ADS)

    Kiseliev, V. V.; Tankeyev, A. P.

    1996-12-01

    Effective integro-differential equations of weakly nonlinear dynamics describing the interaction of quasi-one-dimensional exchange-dipole spin-waves are derived for a thin ferromagnetic slab (film). The non-local part of the magnetostatic dispersion of these waves has been taken into account. Algebraic soliton-like states have been predicted. The conditions of their existence and their dynamic properties are investigated depending on the film thickness and on the magnitude and orientation of the external magnetic field. The role of crystallographic magnetic anisotropy in the formation of these states is analysed.

  18. Bismuth incorporation into gallium phosphide

    SciTech Connect

    Jena, Puru; Kandalam, Anil K.; Christian, Theresa M.; Beaton, Daniel A.; Mascarenhas, Angelo; Alberi, Kirstin

    2016-12-21

    Gallium phosphide bismide (GaP1-xBix) epilayers with bismuth fractions from 0.9% to 3.2%, as calculated from lattice parameter measurements, were studied with Rutherford backscattering spectrometry (RBS) to directly measure bismuth incorporation. The total bismuth fractions found by RBS were higher than expected from the lattice parameter calculations. Furthermore, in one analyzed sample grown by molecular beam epitaxy at 300 degrees C, 55% of incorporated bismuth was found to occupy interstitial sites. We discuss implications of this high interstitial incorporation fraction and its possible relationship to x-ray diffraction and photoluminescence measurements of GaP0.99Bi0.01.

  19. Bismuth incorporation into gallium phosphide

    NASA Astrophysics Data System (ADS)

    Christian, Theresa M.; Beaton, Daniel A.; Mascarenhas, Angelo; Alberi, Kirstin

    2016-12-01

    Gallium phosphide bismide (GaP1-xBix) epilayers with bismuth fractions from 0.9% to 3.2%, as calculated from lattice parameter measurements, were studied with Rutherford backscattering spectrometry (RBS) to directly measure bismuth incorporation. The total bismuth fractions found by RBS were higher than expected from the lattice parameter calculations. Furthermore, in one analyzed sample grown by molecular beam epitaxy at 300 °C, 55% of incorporated bismuth was found to occupy interstitial sites. We discuss implications of this high interstitial incorporation fraction and its possible relationship to x-ray diffraction and photoluminescence measurements of GaP0.99Bi0.01.

  20. High acoustic strains in Si through ultrafast laser excitation of Ti thin-film transducers.

    PubMed

    Tzianaki, Eirini; Bakarezos, Makis; Tsibidis, George D; Orphanos, Yannis; Loukakos, Panagiotis A; Kosmidis, Constantine; Patsalas, Panos; Tatarakis, Michael; Papadogiannis, Nektarios A

    2015-06-29

    The role of thin-film metal transducers in ultrafast laser-generated longitudinal acoustic phonons in Si (100) monocrystal substrates is investigated. For this purpose degenerate femtosecond pump-probe transient reflectivity measurements are performed probing the Brillouin scattering of laser photons from phonons. The influence of the metallic electron-phonon coupling factor, acoustical impedance and film thickness is examined. An optical transfer matrix method for thin films is applied to extract the net acoustic strain relative strength for the various transducer cases, taking into account the experimental probing efficiency. In addition, a theoretical thermo-mechanical approach based on the combination of a revised two-temperature model and elasticity theory is applied and supports the experimental findings. The results show highly efficient generation of acoustic phonons in Si when Ti transducers are used. This demonstrates the crucial role of the transducer's high electron-phonon coupling constant and high compressive yield strength, as well as strong acoustical impedance matching with the semiconductor substrate.

  1. In situ observation of the melting and sintering of submicron-sized bismuth particles.

    PubMed

    Diewald, S; Feldmann, C

    2009-03-25

    The sintering and melting of submicron-sized bismuth particles were studied in situ via scanning electron microscopy. The relevant bismuth particles were prepared via a polyol-mediated synthesis, which results in spherical and non-agglomerated particles, about 250 nm in size. The samples as well as suitable references were deposited on a heater stage assembly inside a scanning electron microscope. Both were investigated up to temperatures of 480 degrees C. Surprisingly, sample areas continuously scanned by the electron beam showed neither sintering nor melting of submicron-sized bismuth, whereas melting was observed at temperatures between 250 and 270 degrees C in non-scanned areas. This behavior was ascribed to an electron-beam-induced decomposition of organic stabilizers that adhered on the bismuth particles to form a thin layer of amorphous carbon. For experimental verification of this hypothesis, controlled carbon coating of submicron-sized bismuth particles was conducted.

  2. Layered bismuth vanadate ferroelectrics

    SciTech Connect

    Osipyan, V.G.; Savchenko, L.M.; Elbakyan, V.L.; Avakyan, P.B.

    1987-08-01

    The authors synthesize new layered bismuth vanadate ferroelectrics. The x-ray diffraction characteristics of Bi/sub 2/VO/sub 5.5/ are shown. Thermal expansion of ceramics with various compositions are presented, as are the temperature dependences of the dielectric constant of the ceramic with various compositions. Unit-cell parameters, Curie temperature, electrical conductivity and the dielectric characteristics of the compositions studied are shown.

  3. THORIUM DISPERSION IN BISMUTH

    DOEpatents

    Bryner, J.S.

    1961-07-01

    The growth of thorium bismutaide particles, which are formed when thorium is suspended in liquid bismuth, is inhibited when the liquid metal suspension is being flowed through a reactor and through a heat exchanger in sequence. It involves the addition of as little as 1 part by weight of tellurium to 100 parts of thorium. This addition is sufficient to inhibit particle growth and agglomeration.

  4. Characterization of bismuth nanospheres deposited by plasma focus device

    SciTech Connect

    Ahmad, M.; Al-Hawat, Sh.; Akel, M.; Mrad, O.

    2015-02-14

    A new method for producing thin layer of bismuth nanospheres based on the use of low energy plasma focus device is demonstrated. Various techniques such as scanning electron microscopy, Rutherford backscattering spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been used to characterize the morphology and the composition of the nanospheres. Experimental parameters may be adjusted to favour the formation of bismuth nanospheres instead of microspheres. Therefore, the formation of large surface of homogeneous layer of bismuth nanospheres with sizes of below 100 nm can be obtained. The natural snowball phenomenon is observed to be reproduced in nanoscale where spheres roll over the small nanospheres and grow up to bigger sizes that can reach micro dimensions. The comet-like structure, a reverse phenomenon to snowball is also observed.

  5. Effects of annealing temperature on the structural, mechanical and electrical properties of flexible bismuth telluride thin films prepared by high-pressure RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Singkaselit, Kamolmad; Sakulkalavek, Aparporn; Sakdanuphab, Rachsak

    2017-09-01

    In this work Bi x Te y thin films were deposited on polyimide substrate by a high-pressure RF magnetron sputtering technique. The deposited condition was maintained using a high pressure of 1.3  ×  10-2 mbar. The as-deposited films show Bi2Te3 structure with Te excess phase (Te-rich Bi2Te3). After that, as-deposited films were annealed in the vacuum chamber under the N2 flow at temperatures from 250 to 400 °C for one hour. The microstructure, cross-section, [Bi]:[Te] content, and the mechanical, electrical and thermoelectric properties of as-deposited and different annealed films were investigated. It was found that the annealing temperature enhanced the crystallinity and film density for the temperature range 250-300 °C. However, the crystal structure of Bi2Te3 almost changed to the BiTe structure after annealing the films above 350 °C, due to the re-evaporation of Te. Nano-indentation results and cross-section images indicated that the hardness of the films related to the film density. The maximum hardness of 2.30 GPa was observed by annealing the films at 300 °C. As a result of an improvement in crystallinity and phase changes, the highest power factor of 11.45  ×  10-4 W m-1K-2 at 300 °C with the carrier concentration and mobility of 6.15  ×  1020 cm-3 and 34.03 cm2 V-1 s-1, respectively, was achieved for the films annealed at 400 °C. Contribution at the 4th Southeast Asia Conference on Thermoelectrics 2016 (SACT 2016), 15-18 December 2016, Da Nang City, Vietnam.

  6. Third order nonlinear optical properties of bismuth zinc borate glasses

    SciTech Connect

    Shanmugavelu, B.; Ravi Kanth Kumar, V. V.; Kuladeep, R.; Narayana Rao, D.

    2013-12-28

    Third order nonlinear optical characterization of bismuth zinc borate glasses are reported here using different laser pulse durations. Bismuth zinc borate glasses with compositions xBi{sub 2}O{sub 3}-30ZnO-(70-x) B{sub 2}O{sub 3} (where x = 30, 35, 40, and 45 mol. %) have been prepared by melt quenching method. These glasses were characterized by Raman, UV-Vis absorption, and Z scan measurements. Raman and UV-Vis spectroscopic results indicate that non-bridging oxygens increase with increase of bismuth content in the glass. Nonlinear absorption and refraction behavior in the nanosecond (ns), picosecond (ps), and femtosecond (fs) time domains were studied in detail. Strong reverse saturable absorption due to dominant two-photon absorption (TPA) was observed with both ps and fs excitations. In the case of ns pulse excitations, TPA and free-carrier absorption processes contribute for the nonlinear absorption. Two-photon absorption coefficient (β) and the absorption cross section due to free carriers (σ{sub e}) are estimated by theoretical fit of the open aperture Z-scan measurements and found to be dependent on the amount of bismuth oxide in the glass composition. In both ns and fs regimes the sign and magnitude of the third order nonlinearity are evaluated, and the optical limiting characteristics are also reported.

  7. Bismuth ochers from San Diego Co., California

    USGS Publications Warehouse

    Schaller, W.T.

    1911-01-01

    The chief points brought out in this paper may be briefly summarized as follows: (1) The existence of natural Bi2O3 has not been established. (2) Natural bismite or bismuth ocher, when pure, is more probably a bismuth hydroxide. (3) The bismuth ochers from San Diego County, California, are either a bismuth hydroxide or bismuth vanadate, pucherite, or mixtures of these two. (4) Pucherite has been found noncrystallin and determined for the first time in the United States.

  8. Determination of refractive index, extinction coefficient and thickness of thin films by the method of waveguide mode excitation

    SciTech Connect

    Sokolov, V I; Marusin, N V; Panchenko, V Ya; Savelyev, A G; Seminogov, V N; Khaydukov, E V

    2013-12-31

    We propose a method for measuring simultaneously the refractive index n{sub f}, extinction coefficient m{sub f} and thickness H{sub f} of thin films. The method is based on the resonant excitation of waveguide modes in the film by a TE- or a TM-polarised laser beam in the geometry of frustrated total internal reflection. The values of n{sub f}, m{sub f} and H{sub f} are found by minimising the functional φ = [N{sup -1}Σ{sup N}{sub i=1}(R{sub exp}(θ{sub i}) – R{sub thr}(θ{sub i})){sup 2}]{sup 1/2}, where R{sub exp}(θ{sub i}) and R{sub thr}(θ{sub i}) are the experimental and theoretical coefficients of reflection of the light beam from the interface between the measuring prism and the film at an angle of incidence θ{sub i}. The errors in determining n{sub f}, m{sub f} and H{sub f} by this method are ±2 × 10{sup -4}, ±1 × 10{sup -3} and ±0.5%, respectively. (fiber and integrated optics)

  9. Bismuth accumulates in the body during treatment with tripotassium dicitrato bismuthate.

    PubMed

    Gavey, C J; Szeto, M L; Nwokolo, C U; Sercombe, J; Pounder, R E

    1989-02-01

    Bismuth concentration was measured in plasma, dried leucocytes and urine in nine patients before, during and after treatment with tripotassium dicitrato bismuthate (De-Noltab 2 b.d.) for 6 weeks. During treatment there was an 8.5-fold rise in median plasma bismuth concentration (P less than 0.01), a non-significant doubling of leucocyte bismuth content, and a 349-fold rise in 24-h urinary bismuth excretion (P less than 0.01). The significantly increased urinary bismuth excretion continued for at least 3 months after cessation of treatment with tripotassium dicitrato bismuthate, indicating accumulation of bismuth during treatment with this drug.

  10. Energetics of bismuth vanadate

    SciTech Connect

    Nagabhushana, G.P.; Tavakoli, A.H.; Navrotsky, A.

    2015-05-15

    Bismuth vanadate has gained considerable interest as a photoanode for water splitting reactions under visible light. It exists in four different polymorphs, out of which three of them have been synthesized. Thermodynamic properties of these three polymorphs are investigated using high temperature oxide melt solution calorimetry. The monoclinic scheelite phase which exhibits photocatalytic activity under visible light is found to be the most stable polymorph, followed by tetragonal scheelite which exhibits activity under UV light. The photocatalytically inactive tetragonal zircon form is found to be the least stable polymorph. The small difference in enthalpy of formation between the two scheelite structures (−8 kJ/mol) is in accord with the reversibility of the transformation between them and the larger difference between the most stable monoclinic phase and the least stable tetragonal zircon phase (−23 kJ/mol) is in accord with the irreversible (monoclinic→tetragonal zircon) phase transformation. - Graphical abstract: Schematic representation of polymorphic transitions in BiVO{sub 4} along with their formation enthalpies. - Highlights: • Bismuth vanadate crystallizes in three different polymorphs. • High temperature calorimetric measurements were made to determine their formation enthalpies. • Enthalpy of formation decreases in the order BV-ms→BV-ts→BV-tz. • Photocatalytically active monoclinic-BiVO{sub 4} was found to be the most stable polymorph.

  11. Luminescence quenching of Dy3+ ions in lead bismuthate glasses

    NASA Astrophysics Data System (ADS)

    Pisarski, Wojciech A.; Pisarska, Joanna; Lisiecki, Radosław; Dominiak-Dzik, Grażyna; Ryba-Romanowski, Witold

    2012-04-01

    Luminescence of lead bismuthate glasses PbO-Bi2O3-Ga2O3 containing Dy3+ ions has been studied. Two overlapping luminescence bands corresponding to 3P1-1S0 transition of Bi3+ and 4F9/2 -6H13/2 transition of Dy3+ were detected under 480 nm excitation. Comparison of luminescence features for the system under study to those reported for dysprosium-doped lead borate glass PbO-B2O3-Ga2O3 indicates that the luminescence of Dy3+ is efficiently quenched by Bi3+ ions. Analysis of luminescence dynamics implies that the excitation energy transfer from Dy3+ to Bi3+ is nonradiative. The theoretical calculations using Inokuti-Hirayama model confirm strong luminescence of Dy3+ ions in lead bismuthate glasses.

  12. Plasmonic excitation-assisted optical and electric enhancement in ultra-thin solar cells: the influence of nano-strip cross section

    SciTech Connect

    Sabaeian, Mohammad Heydari, Mehdi; Ajamgard, Narges

    2015-08-15

    The effects of Ag nano-strips with triangle, rectangular and trapezoid cross sections on the optical absorption, generation rate, and short-circuit current density of ultra-thin solar cells were investigated. By putting the nano-strips as a grating structure on the top of the solar cells, the waveguide, surface plasmon polariton (SPP), and localized surface plasmon (LSP) modes, which are excited with the assistance of nano-strips, were evaluated in TE and TM polarizations. The results show, firstly, the TM modes are more influential than TE modes in optical and electrical properties enhancement of solar cell, because of plasmonic excitations in TM mode. Secondly, the trapezoid nano-strips reveal noticeable impact on the optical absorption, generation rate, and short-circuit current density enhancement than triangle and rectangular ones. In particular, the absorption of long wavelengths which is a challenge in ultra-thin solar cells is significantly improved by using Ag trapezoid nano-strips.

  13. On the formation of Bi2S3-cellulose nanocomposite films from bismuth xanthates and trimethylsilyl-cellulose.

    PubMed

    Reishofer, David; Ehmann, Heike M; Amenitsch, Heinz; Gspan, Christian; Fischer, Roland; Plank, Harald; Trimmel, Gregor; Spirk, Stefan

    2017-05-15

    The synthesis and characterization of bismuth sulfide-cellulose nanocomposite thin films was explored. The films were prepared using organosoluble precursors, namely bismuth xanthates for Bi2S3 and trimethylsilyl cellulose (TMSC) for cellulose. Solutions of these precursors were spin coated onto solid substrates yielding homogeneous precursor films. Afterwards, a heating step under inert atmosphere led to the formation of thin nanocomposite films of bismuth sulfide nanoparticles within the TMSC matrix. In a second step, the silyl groups were cleaved off by vapors of HCl yielding bismuth sulfide/cellulose nanocomposite films. The thin films were characterized by a wide range of surface sensitive techniques such as atomic force microscopy, attenuated total reflection infrared spectroscopy, transmission electron microscopy and wettability investigations. In addition, the formation of the nanoparticle directly in the TMSC matrix was investigated in situ by GI-SWAXS using a temperature controlled sample stage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Topologically nontrivial bismuth(111) thin films

    PubMed Central

    Yao, Meng-Yu; Zhu, Fengfeng; Han, C. Q.; Guan, D. D.; Liu, Canhua; Qian, Dong; Jia, Jin-feng

    2016-01-01

    Using high-resolution angle-resolved photoemission spectroscopy (ARPES), the topological property of the three-dimensional Bi(111) films grown on the Bi2Te3(111) substrate were studied. Very different from the bulk Bi, we found another surface band near the point besides the two well-known surface bands on the 30 nm films. With this new surface band, the bulk valence band and the bulk conduction band can be connected by the surface states in the Bi(111)/Bi2Te3 films. Our band mapping revealed odd number of Fermi crossings of the surface bands, which provided new experimental evidences that Bi(111)/Bi2Te3 films of a certain thickness can be topologically nontrivial in three dimension. PMID:26888122

  15. Energetics of bismuth vanadate

    NASA Astrophysics Data System (ADS)

    Nagabhushana, G. P.; Tavakoli, A. H.; Navrotsky, A.

    2015-05-01

    Bismuth vanadate has gained considerable interest as a photoanode for water splitting reactions under visible light. It exists in four different polymorphs, out of which three of them have been synthesized. Thermodynamic properties of these three polymorphs are investigated using high temperature oxide melt solution calorimetry. The monoclinic scheelite phase which exhibits photocatalytic activity under visible light is found to be the most stable polymorph, followed by tetragonal scheelite which exhibits activity under UV light. The photocatalytically inactive tetragonal zircon form is found to be the least stable polymorph. The small difference in enthalpy of formation between the two scheelite structures (-8 kJ/mol) is in accord with the reversibility of the transformation between them and the larger difference between the most stable monoclinic phase and the least stable tetragonal zircon phase (-23 kJ/mol) is in accord with the irreversible (monoclinic→tetragonal zircon) phase transformation.

  16. Gold-bismuth clusters.

    PubMed

    Martínez, Ana

    2014-08-07

    Metal clusters have interesting characteristics, such as the relationship between properties and size of the cluster. This is not always apparent, so theoretical studies can provide relevant information. In this report, optimized structures and electron donor-acceptor properties of AunBim clusters are reported (n + m = 2-7, 20). Density functional theory calculations were performed to obtain optimized structures. The ground states of gold clusters formed with up to seven atoms are planar. The presence of Bi modifies the structure, and the clusters become 3-D. Several optimized geometries have at least one Bi atom bonded to gold or bismuth atoms and form structures similar to NH3. This fragment is also present in clusters with 20 atoms, where the formation of Au3Bi stabilizes the structures. Bismuth clusters are better electron donors and worse electron acceptors than gold clusters. Mixed clusters fall in between these two extremes. The presence of Bi atoms in gold clusters modifies the electron donor-acceptor properties of the clusters, but there is no correlation between the number of Bi atoms present in the cluster and the capacity for donating electrons. The effect of planarity in Au19Bi clusters is the same as that in Au20 clusters. The properties of pure gold clusters are certainly interesting, but clusters formed by Bi and Au are more important because the introduction of different atoms modifies the geometry, the stability, and consequently the physical and chemical properties. Apparently, the presence of Bi may increase the reactivity of gold clusters, but further studies are necessary to corroborate this hypothesis.

  17. Transparent nanoscale floating gate memory using self-assembled bismuth nanocrystals in Bi(2) Mg(2/3) Nb(4/3) O(7) (BMN) pyrochlore thin films grown at room temperature.

    PubMed

    Jung, Hyun-June; Yoon, Soon-Gil; Hong, Soon-Ku; Lee, Jeong-Yong

    2012-07-03

    Bismuth nanocrystals for a nanoscale floating gate memory device are self-assembled in Bi(2) Mg(2/3) Nb(4/3) O(7) (BMN) dielectric films grown at room temperature by radio-frequency sputtering. The TEM cross-sectional image shows the "real" structure grown on a Si (001) substrate. The image magnified from the dotted box (red color) in the the cross-sectional image clearly shows bismuth nanoparticles at the interface between the Al(2) O(3) and HfO(2) layer (right image). Nanoparticles approximately 3 nm in size are regularly distributed at the interface. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. STM driven modification of bismuth nanostructures

    NASA Astrophysics Data System (ADS)

    Kowalczyk, P. J.; Mahapatra, O.; Brown, S. A.; Bian, G.; Chiang, T.-C.

    2014-03-01

    The tip of a scanning tunneling microscope (STM) gently interacting with the substrate is used to modify (110) bismuth islands deposited on highly oriented pyrolitic graphite (HOPG), and hence to investigate the atomic and electronic structure of the islands. The tip interaction leads to the evolution of metastable 3 ML thick regions into structures of higher thermodynamic stability, which in the case of bismuth on graphite are rods (typically ≥ 5 ML high) and stripes. The formation of trenches that extend along the stripes is observed which is related to the presence of kinks and weak bonds at the 3-5 ML interface. Migration of whole islands along particular substrate directions is evidence for superlubricity due to the misfit between Bi and HOPG unit cells. Perimeter diffusion through atoms and not vacancies is a driving force of all observed modifications. The Bi islands are found to be able to deform and their decay is not governed by Ostwald ripening (which is absent in this system). Instead quantum size effects play a major role in the evolution of the islands, as evidenced by the observation of preferred widths. Density functional theory calculations reveal an oval Fermi surface with de Broglie wavelength corresponding to observed width of islands. These results are all consistent with a thin film Bi allotrope which has both paired atomic layers on the surface and bulk-like chains of bonds vertically through the structure.

  19. Inclusive measurement of (p,. pi. /sup -/xn) double charge exchange reactions on bismuth from threshold to 800 MeV

    SciTech Connect

    Dombsky, M.; D'Auria, J.M.; Kelson, I.; Yavin, A.I.; Ward, T.E.; Clark, J.L.; Ruth, T.; Sheffer, G.

    1985-07-01

    The energy dependence of the total angle-integrated cross section for the production of astatine isotopes from (p,..pi../sup -/xn) double charge exchange reactions on bismuth (/sup 209/Bi) was measured from 120 to 800 MeV using activation and radiochemical techniques. Chemical yields were estimated by direct radioassaying of /sup 211/At activity in thin (approx.1 mg/cm/sup 2/), irradiated bismuth targets. Calculations of the contributions of secondary (two-step) reactions to these measured astatine yields were performed, based partially upon the observed /sup 211/At activity although even at the highest energies, the contribution to products lighter than /sup 207/At was negligible. These data for products with as many as seven neutrons removed from the doubly coherent product (/sup 210/At) display nearly Gaussian shapes for the mass distributions of the astatine residues, with the maximum occurring for about /sup 204/At. The most probable momentum transfer deduced from these distributions for the initial ..pi../sup -/ production step was 335 MeV/c. The observed excitation functions display a behavior similar to that observed for the yield of /sup 210/Po from a (p,..pi../sup 0/) reaction on /sup 209/Bi, but radically different from that observed for inclusive ..pi../sup -/ reactions on a heavy nucleus. These data are discussed in terms of recent theoretical approaches to negative pion production from bismuth. In addition, a simple, schematic model is developed to treat the rapidly decreasing percentage of the total inclusive ..pi../sup -/ emission which is observed for this double charge exchange reaction. This model reflects the opacity of a nucleus to a source of internal energetic protons.

  20. [Spectroscopic properties of Er3+-doped germanium bismuthate glass].

    PubMed

    Zhang, Yong; Ren, Guo-Zhong; Yang, Qi-Bin; Xu, Chang-Fu; Liu, Yun-Xin; Shang, Zhen-Gang

    2008-05-01

    Er(3+)-Doped Germanium Bismuthate Glass was fabricated and characterized. The absorption spectrum and up-conversion spectrum of glass were studied. The Judd-Oflet intensity parameters omega(t) (t = 2, 4, 6), determined based on Judd-Ofelt theory, were found to be omega2 = 3.35 x 10(-20) cm2, omega4 = 1.34 x 10(-20) cm2, omega6 = 0.67 x 10(-20) cm2. Frequency up-conversion of Er(3+)-doped germanium bismuthate glass has been investigated. The up-conversion mechanisms are discussed under 808 nm and 980 nm excitation. Stimulated emission cross-section of 4I(13/2) --> 4I(15/2) transition was calculated by McCumber theory. Compared to other host glasses, the emission property of Er(3+)-doped germanium bismuthate glasses has advantage over those of silicate, phosphate and germinate glasses. Er(3+)-doped germanium bismuth glasses are promising upconversion optical and optic-communication materials.

  1. Mineral resource of the month: bismuth

    USGS Publications Warehouse

    Carlin Jr., James F.

    2006-01-01

    Bismuth compounds are most known for their soothing effects on the stomach, wounds and sores. These properties make the compounds an essential part of many medicinal and cosmetic preparations, which until 1930 accounted for about 90 percent of the bismuth used. The subsequent development of low-melting alloys and chemical catalysts containing bismuth, as well as its use as an additive to casting alloys, has resulted in a wider variety of industrial applications for bismuth.

  2. 21 CFR 73.2162 - Bismuth oxychloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2162 Bismuth oxychloride. (a) Identity and specifications. (1) The color additive bismuth oxychloride shall conform in identity and specifications to the requirements of § 73.1162(a)(1) and (b). (2) Color additive mixtures of bismuth oxychloride may contain the...

  3. 21 CFR 73.2162 - Bismuth oxychloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2162 Bismuth oxychloride. (a) Identity and specifications. (1) The color additive bismuth oxychloride shall conform in identity and specifications to the requirements of § 73.1162(a)(1) and (b). (2) Color additive mixtures of bismuth oxychloride may contain the...

  4. Separating Bulk and Surface Contributions to Electronic Excited-State Processes in Hybrid Mixed Perovskite Thin Films via Multimodal All-Optical Imaging

    DOE PAGES

    Simpson, Mary Jane; Doughty, Benjamin; Das, Sanjib; ...

    2017-07-04

    A comprehensive understanding of electronic excited-state phenomena underlying the impressive performance of solution-processed hybrid halide perovskite solar cells requires access to both spatially resolved electronic processes and corresponding sample morphological characteristics. In this paper, we demonstrate an all-optical multimodal imaging approach that enables us to obtain both electronic excited-state and morphological information on a single optical microscope platform with simultaneous high temporal and spatial resolution. Specifically, images were acquired for the same region of interest in thin films of chloride containing mixed lead halide perovskites (CH3NH3PbI3–xClx) using femtosecond transient absorption, time-integrated photoluminescence, confocal reflectance, and transmission microscopies. Comprehensive image analysismore » revealed the presence of surface- and bulk-dominated contributions to the various images, which describe either spatially dependent electronic excited-state properties or morphological variations across the probed region of the thin films. Finally, these results show that PL probes effectively the species near or at the film surface.« less

  5. Bismuth bronze from machu picchu, peru.

    PubMed

    Gordon, R B; Rutledge, J W

    1984-02-10

    The decorative bronze handle of a tumi excavated at the Inca city of Machu Picchu, Peru, contains 18 percent bismuth and appears to be the first known example of the use of bismuth with tin to make bronze. The alloy is not embrittled by the bismuth because the bismuth-rich constituent does not penetrate the grain boundaries of the matrix phase. The use of bismuth facilitates the duplex casting process by which the tumi was made and forms an alloy of unusual color.

  6. Exciting transition metal doped dilute magnetic thin films: MgO:Er and ZnO:Er

    NASA Astrophysics Data System (ADS)

    Ćakıcı, T.; Sarıtaş, S.; Muǧlu, G. Merhan; Yıldırım, M.

    2017-02-01

    Erbium doped MgO and doped ZnO thin films have reasonably important properties applications in spintronic devices. These films were synthesized on glass substrates by Chemical Spray Pyrolysis (CSP) method. In the literature there has been almost no report on preparation of MgO:Er dilute magnetic thin films by means of CSP. Because doped thin films show different magnetic behaviors, depending upon the type of magnetic material ions, concentration of them, synthesis route and experimental conditions, synthesized MgO:Er and ZnO:Er films were compared to thin film properties. Optical analyses of the synthesized thin films were examined spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. Structural analysis of the thin films was examined by using XRD, Raman Analysis, FE-SEM, EDX and AFM techniques. Also, magnetic properties of the MgO:Er and ZnO:Er films were investigated by vibrating sample magnetometer (VSM) which show that diamagnetic behavior of the MgO:Er thin film and ferromagnetic (FM) behavior of the ZnO:Er film were is formed.

  7. Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction.

    PubMed

    Sokolowski-Tinten, K; Shen, X; Zheng, Q; Chase, T; Coffee, R; Jerman, M; Li, R K; Ligges, M; Makasyuk, I; Mo, M; Reid, A H; Rethfeld, B; Vecchione, T; Weathersby, S P; Dürr, H A; Wang, X J

    2017-09-01

    We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively follow the temporal evolution of the lattice temperature after short pulse laser excitation. Data obtained over an extended range of laser fluences reveal an increased relaxation rate when the film thickness is reduced or the Au-film is capped with an additional insulator top-layer. This behavior is attributed to a cross-interfacial coupling of excited electrons in the Au film to phonons in the adjacent insulator layer(s). Analysis of the data using the two-temperature-model taking explicitly into account the additional energy loss at the interface(s) allows to deduce the relative strength of the two relaxation channels.

  8. Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction

    PubMed Central

    Sokolowski-Tinten, K.; Shen, X.; Zheng, Q.; Chase, T.; Coffee, R.; Jerman, M.; Li, R. K.; Ligges, M.; Makasyuk, I.; Mo, M.; Reid, A. H.; Rethfeld, B.; Vecchione, T.; Weathersby, S. P.; Dürr, H. A.; Wang, X. J.

    2017-01-01

    We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively follow the temporal evolution of the lattice temperature after short pulse laser excitation. Data obtained over an extended range of laser fluences reveal an increased relaxation rate when the film thickness is reduced or the Au-film is capped with an additional insulator top-layer. This behavior is attributed to a cross-interfacial coupling of excited electrons in the Au film to phonons in the adjacent insulator layer(s). Analysis of the data using the two-temperature-model taking explicitly into account the additional energy loss at the interface(s) allows to deduce the relative strength of the two relaxation channels. PMID:28795080

  9. Directionality control through selective excitation of low-order guided modes in thin-film InGaN photonic crystal light-emitting diodes

    SciTech Connect

    Rangel, Elizabeth; Matioli, Elison; Choi, Yong-Seok; Weisbuch, Claude; Speck, J. S.; Hu, Evelyn L.

    2011-01-01

    This letter explores the impact of quantum well placement and photonic crystal (PhC) etch depth on the emission directionality of thin-film InGaN PhC light-emitting diodes (LEDs). The far-field pattern of 800-nm-thick PhC LEDs is tuned by varying only the etch depth of a surface-patterned hexagonal PhC from 90 to 440 nm. This dependence on etch depth is shown to arise from the preferential excitation of a subset of the allowed guided modes. Selective excitation of the TE{sub 0} and TE{sub 1} modes is utilized to achieve a vertically directional emission pattern comprised of only these two modes.

  10. Terahertz surface emission from Cu{sub 2}ZnSnSe{sub 4} thin film photovoltaic material excited by femtosecond laser pulses

    SciTech Connect

    Zhao, Zhenyu Han, Qifeng; Zhang, Jingtao; Shi, Wangzhou; Niehues, Gudrun; Funkner, Stefan; Yamamoto, Kohji; Tani, Masahiko; Estacio, Elmer; Guo, Qixin

    2014-12-08

    We observed efficient terahertz (THz) emission from sol-gel grown Cu{sub 2}ZnSnSe{sub 4} (CZTSe) thin films using THz time domain spectroscopy technique. The THz emission bandwidth exceeds 2 THz with a dynamic range of 20 dB in the amplitude spectrum. The THz emission amplitude from CZTSe is found to be independent of external magnetic fields. Comparing the polarity of THz emission waveforms of CZTSe and GaAs, we suggest that the acceleration of photo-carriers in the surface accumulation layer of CZTSe is the dominant mechanism of radiation emission. Optical excitation fluence dependence measurements show that the saturation fluence of the CZTSe thin film reaches 1.48 μJ/cm{sup 2}.

  11. D-penicillamine does not increase urinary bismuth excretion in patients treated with tripotassium dicitrato bismuthate.

    PubMed

    Nwokolo, C U; Pounder, R E

    1990-10-01

    Twenty-four urinary bismuth excretion was measured in five patients who had been treated with tripotassium dicitrato bismuthate, before and after single 1 g oral dose of D-penicillamine. Before dosing with D-penicillamine, the median 24 h urinary bismuth output was 55 micrograms 24 h-1 (range 17-156 micrograms 24 h-1) and following dosing with D-penicillamine the median 24 h urinary bismuth output was 53 micrograms 24 h-1 (range 12-156 micrograms 24 h-1). D-penicillamine does not facilitate the urinary excretion of bismuth, hence it is unsuitable for use as an oral chelator in patients with bismuth intoxication.

  12. The minimum inhibitory concentrations of various bismuth salts against Campylobacter pylori.

    PubMed

    Vogt, K; Warrelmann, M; Hahn, H

    1989-09-01

    The minimum inhibitory concentrations of five bismuth salts (bismuth subcitrate, bismuth subgallate, bismuth subnitrate, bismuth subsalicylate and tripotassium dicitrato bismuthate, a water soluble compound of bismuth subcitrate) were assayed against 48 strains of Campylobacter pylori employing the agar dilution method. Tripotassium dicitrato bismuthate was most effective (MIC50 8 mg/l), the other bismuth salts exhibited somewhat lower inhibitory activities. It is concluded that bismuth salts are suitable agents for inhibiting growth of Campylobacter pylori.

  13. Pharmacokinetics of bismuth and ranitidine following single doses of ranitidine bismuth citrate

    PubMed Central

    KOCH, K M; DAVIS, I M; GOODING, A E; YIN, Y

    1996-01-01

    The pharmacokinetics of bismuth and ranitidine derived from ranitidine bismuth citrate given in single oral doses ranging from 200 mg to 1600 mg were evaluated in healthy subjects. Bismuth was only minimally absorbed (<0.5% of the amount dosed) after administration of ranitidine bismuth citrate, and peak plasma concentrations never exceeded 33 ng ml−1 in any subject. Plasma concentrations and urinary recoveries of bismuth at doses up to and including 800 mg were relatively constant and not proportional to dose. Bismuth absorption was increased more than proportionally with the dose at 1600 mg. The pharmacokinetics of ranitidine after administration of ranitidine bismuth citrate were dose-proportional and consistent with previous observations for ranitidine administered alone. Ranitidine bismuth citrate was well-tolerated in single oral doses of up to 1600 mg. PMID:8864318

  14. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes.

    PubMed

    Akimov, Yu A; Koh, W S; Ostrikov, K

    2009-06-08

    Recent research in the rapidly emerging field of plasmonics has shown the potential to significantly enhance light trapping inside thin-film solar cells by using metallic nanoparticles. In this article it is demonstrated the plasmon enhancement of optical absorption in amorphous silicon solar cells by using silver nanoparticles. Based on the analysis of the higher-order surface plasmon modes, it is shown how spectral positions of the surface plasmons affect the plasmonic enhancement of thin-film solar cells. By using the predictive 3D modeling, we investigate the effect of the higher-order modes on that enhancement. Finally, we suggest how to maximize the light trapping and optical absorption in the thin-film cell by optimizing the nanoparticle array parameters, which in turn can be used to fine tune the corresponding surface plasmon modes.

  15. SEPARATION OF PLUTONIUM HYDROXIDE FROM BISMUTH HYDROXIDE

    DOEpatents

    Watt, G.W.

    1958-08-19

    An tmproved method is described for separating plutonium hydroxide from bismuth hydroxide. The end product of the bismuth phosphate processes for the separation amd concentration of plutonium is a inixture of bismuth hydroxide amd plutonium hydroxide. It has been found that these compounds can be advantageously separated by treatment with a reducing agent having a potential sufficient to reduce bismuth hydroxide to metalltc bisinuth but not sufficient to reduce the plutonium present. The resulting mixture of metallic bismuth and plutonium hydroxide can then be separated by treatment with a material which will dissolve plutonium hydroxide but not metallic bismuth. Sodiunn stannite is mentioned as a preferred reducing agent, and dilute nitric acid may be used as the separatory solvent.

  16. Aspects of the magmatic geochemistry of bismuth

    USGS Publications Warehouse

    Greenland, L.P.; Gottfried, D.; Campbell, E.Y.

    1973-01-01

    Bismuth has been determined in 74 rocks from a differentiated tholeiitic dolerite, two calc-alkaline batholith suites and in 66 mineral separates from one of the batholiths. Average bismuth contents, weighted for rock type, of the Great Lake (Tasmania) dolerite, the Southern California batholith and the Idaho batholith are, 32, 50 and 70 ppb respectively. All three bodies demonstrate an enrichment of bismuth in residual magmas with magmatic differentiation. Bismuth is greatly enriched (relative to the host rock) in the calcium-rich accessory minerals, apatite and sphene, but other mineral analyses show that a Bi-Ca association is of little significance to the magmatic geochemistry of bismuth. Most of the bismuth, in the Southern California batholith at least, occurs in a trace mineral phase (possibly sulfides) present as inclusions in the rock-forming minerals. ?? 1973.

  17. Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials.

    PubMed

    Stefik, Morgan

    2016-07-07

    The fabrication of porous nanocomposites is key to the advancement of energy conversion and storage devices that interface with electrolytes. Bismuth vanadate, BiVO4 , is a promising oxide for solar water splitting where the controlled fabrication of BiVO4 layers within porous, conducting scaffolds has remained a challenge. Here, the atomic layer deposition of bismuth vanadates is reported from BiPh3 , vanadium(V) oxytriisopropoxide, and water. The resulting films have tunable stoichiometry and may be crystallized to form the photoactive scheelite structure of BiVO4 . A selective etching process was used with vanadium-rich depositions to enable the synthesis of phase-pure BiVO4 after spinodal decomposition. BiVO4 thin films were measured for photoelectrochemical performance under AM 1.5 illumination. The average photocurrents were 1.17 mA cm(-2) at 1.23 V versus the reversible hydrogen electrode using a hole-scavenging sulfite electrolyte. The capability to deposit conformal bismuth vanadates will enable a new generation of nanocomposite architectures for solar water splitting.

  18. Producing bismuth trioxide and its application in fire assaying

    NASA Astrophysics Data System (ADS)

    Kelly, Zack; Ojebuoboh, Funsho

    2002-04-01

    Bismuth trioxide (Bi2O3) is the prevalent commercial oxide of bismuth. A precursor to the preparation of other compounds of bismuth, including the chemical reagents, bismuth trioxide has specialized uses in optical glass, flame-retardant paper, and, increasingly, in glaze formulations where it substitutes for lead oxides. In the last decade, bismuth trioxide has also become a key ingredient in flux formulations used by mineral analysts in fire assaying. The production of bismuth trioxide generally begins with the minor metal bismuth. This paper describes bismuth trioxide production and the properties and basis for its use in environmentally sound fire assaying.

  19. Multi-elemental bio-imaging of rat tissue from a study investigating the bioavailability of bismuth from shotgun pellets.

    PubMed

    Urgast, Dagmar S; Ellingsen, Dag G; Berlinger, Balázs; Eilertsen, Einar; Friisk, Grete; Skaug, Vidar; Thomassen, Yngvar; Beattie, John H; Kwun, In-Sook; Feldmann, Jörg

    2012-07-01

    In recent years, bismuth has been promoted as a "green element" and is used as a substitute for the toxic lead in ammunition and other applications. However, the bioavailability and toxicity of bismuth is still not very well described. Following a hunting accident with bismuth-containing shots, a bioavailability study of bismuth from metal pellets inoculated into rat limb muscles was carried out. Bismuth could be found in urine and blood of the animals. Bio-imaging using laser ablation ICP-MS of thin sections of the tissue around the metal implant was carried out to find out more about the distribution of the metal diffusing into the tissue. Two laser ablation systems with different ablation cell designs were compared regarding their analytical performance. Low concentrations of bismuth showing a non-symmetrical pattern were detected in the tissue surrounding the metal implant. This was partly an artefact from cutting the thin sections but also bio-mobilisation of the metals of the implant could be seen. An accumulation of zinc around the implant was interpreted as a marker of inflammation. Challenges regarding sample preparation for laser ablation and bio-imaging of samples of diverse composition became apparent during the analysis.

  20. BISMUTH PHOSPHATE CARRIER PROCESS FOR Pu RECOVERY

    DOEpatents

    Finzel, T.G.

    1959-02-01

    An improvement in the bismuth phosphate carrier precipitation process for recovering plutonium is described. It has been found that a more granular and more easily filterable carrier precipitiite is formed if the addition of the bismuth and phosphate ions is effected by first adding 9/10 of the bismuth ions necessary, then slowly adding all of the source of the phosphate ions to be incorporated in the precipitate, while digesting at 75 C and afterwards incorporating the remainder of the total bismuth ions necessary

  1. Hydrothermal synthesis of bismuth germanium oxide

    DOEpatents

    Boyle, Timothy J.

    2016-12-13

    A method for the hydrothermal synthesis of bismuth germanium oxide comprises dissolving a bismuth precursor (e.g., bismuth nitrate pentahydrate) and a germanium precursor (e.g., germanium dioxide) in water and heating the aqueous solution to an elevated reaction temperature for a length of time sufficient to produce the eulytite phase of bismuth germanium oxide (E-BGO) with high yield. The E-BGO produced can be used as a scintillator material. For example, the air stability and radioluminescence response suggest that the E-BGO can be employed for medical applications.

  2. Ultrafast carrier dynamics in polycrystalline bismuth telluride nanofilm

    SciTech Connect

    Jia, Lin; Ma, Weigang; Zhang, Xing

    2014-06-16

    In this study, the dynamics of energy carriers in polycrystalline bismuth telluride nanofilm are investigated by the ultrafast pump-probe method. The energy relaxation processes are quantitatively analyzed by using the numerical fitting models. The extracted hot carrier relaxation times of photon excitation, thermalization, and diffusion are around sub-picosecond. The initial reflectivity recovery is found to be dominantly determined by the carrier diffusion, electron-phonon coupling, and photo-generated carriers trapping processes. High-frequency and low-frequency oscillations are both observed and attributed to coherent optical phonons and coherent acoustic phonons, respectively.

  3. Pure and strong red photoluminescence from Na0.5Gd0.5TiO3: Eu ferroelectric thin films under ultraviolet light excitation

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Sun, Lina; Tan, Jun; Li, Xinsheng; Liu, Dongyun; Liang, Duoqiang

    2017-02-01

    A series of novel photoluminescent ferroelectric thin films Na0.5Gd0.5TiO3: xEu (NGT: Eu) with various Eu3+ doping concentrations were prepared at various heat-treated temperature, which have single pseudo-cubic perovskite structure at proper heat-treated temperature from 700 °C to 800 °C according to X-ray diffraction results. There existed narrow and intensive emission bands located at red light region ascribed to 5D0 → 7F2 and 5D0 → 7F1 transitions of Eu3+ by 283 nm excitation. The strong energy absorption of NGT host and efficient energy transfer to Eu3+ should be primarily responsible for the emissions. Gd3+ acts as sensitizer which has an important role on the energy transfer from the host NGT to Eu3+. The luminescence from NGT: 0.25Eu thin films is the strongest for all the NGT: Eu films, and its color coordinate is (0.65, 0.32) close to ideal red light. The quenching concentration in NGT: Eu films reaches as high as 25%. The lifetime of emissive energy level Eu3+: 5D0 in NGT: 0.1Eu and NGT: 0.5Eu thin films is 1.024 ms and 0.931 ms, respectively. Finally, the ferroelectric property of NGT: 0.25Eu thin films was tested and the remanent polarization (2Pr) is 7.10 μC/cm2 lower than that of Na0.5Bi0.5TiO3.

  4. Optical transitions and frequency upconversion emission of Er 3+ions in novel lead-bismuthate glass

    NASA Astrophysics Data System (ADS)

    Sun, Hongtao; Dai, Shixun; Zhang, Debao; Xu, Shiqing; Zhang, Junjie; Hu, Lili; Jiang, Zhonghong

    2004-12-01

    Er 3+-doped strontiam lead bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt analysis was performed on the absorption spectrum and the transition probabilities, excited state lifetimes, and the fluorescence branching ratios were calculated and discussed. Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H→4I, 4S→4I, and 4F→4I, respectively, were observed. The upconversion mechanisms are discussed based on the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions.

  5. Hydrothermal synthesis of sodium bismuth titanate and titanate nanofibers

    NASA Astrophysics Data System (ADS)

    Kundu, Animesh

    A hydrothermal processing method was developed for the synthesis of sodium bismuth titanate powders and thin films from suitable precursors at 150°C. Oxide precursors were best suited for preparing pure phase materials. The sodium bismuth titanate powders consisted of cube shaped crystals. A modified solution-reprecitation model involving partial dissolution of the precursors was proposed to explain the growth of these particles. The thin films were prepared on strontium titanate (100) substrate. A sample holder was specially designed and fabricated to secure the substrates in the reaction vessel. The result was a relatively smooth film of thickness ≤550 nm. The films were essentially single crystalline and had strong epitaxial relationship with the substrate. Titanate nanofibers (NaxH yTinO2n+1° zH2O) were known to form under similar hydrothermal conditions as sodium bismuth titanate powders. Detail research revealed that the pure hydroxide and oxide precursors tend to form sodium bismuth titanate powders or thin films. Titanate nanofibers were the predominant product when any other ions or organics were present in the precursor. Much faster reaction kinetics for the formation of nanofibers was observed when certain organic compounds were added deliberately with the precursors. Accordingly, a hydrothermal process was developed for converting the precursors to titanate nanofibers in a significantly shorter time than reported in the literature. A thin film consisting of vertically aligned nanofibers was prepared on titanium substrate at 150°C in as little as 30 minutes. Complete conversion of starting precursors to free standing nanofibers was achieved in ˜8 hours at 150°C. The as-prepared nanofibers were some form of sodium titanate. They were converted to hydrogen titanate by ion exchange. Differential Scanning calorimetric experiments were performed to understand the thermal evolution of the fibers. The hydrogen titanate fibers underwent structural

  6. The absorption of bismuth from oral doses of tripotassium dicitrato bismuthate.

    PubMed

    Nwokolo, C U; Gavey, C J; Smith, J T; Pounder, R E

    1989-02-01

    Two studies measured plasma concentrations of bismuth during dosing with tripotassium dicitrato bismuthate (De-Noltab). The first study compared 24 h plasma bismuth concentration and urinary bismuth excretion in six patients who had already received 29-131 days (median 47 days) of treatment with De-Noltab 2 b.d., and six healthy subjects who only received De-Noltab 2 b.d. on the day of study. There was a prompt rise in plasma bismuth concentration after each dose of De-Noltabs. The median 24 h integrated plasma bismuth concentration was similar in both groups, but the median 24 h urinary bismuth excretion was 5.4-fold higher in the patients. The second study compared the plasma bismuth concentrations after the first and third doses of De-Noltab 2 b.d. in 16 healthy subjects. The median peak bismuth concentration occurred 30 min (range 15-105 min) post-dosing. The peak plasma bismuth concentration was greater than 50 ng/ml in 14 of the 16 subjects, and greater than 100 ng/ml in nine of the subjects. There was no significant difference in the median integrated 10-h plasma bismuth concentration after the first or third dose of De-Noltabs. The results of these studies confirm that bismuth is absorbed and sequestrated during dosing with De-Noltabs. Bismuth is absorbed rapidly after oral dosing with De-Noltabs, to produce peak plasma bismuth concentrations hitherto considered to be in the range associated with bismuth neurotoxicity.

  7. Bilayer Bismuth Selenide nanoplatelets based saturable absorber for ultra-short pulse generation (Invited)

    NASA Astrophysics Data System (ADS)

    Xu, Yanhua; Xie, Hanhan; Jiang, Guobao; Miao, Lili; Wang, Ke; Tang, Siying; Yu, Xuefeng; Zhang, Han; Bao, Qiaoliang

    2017-07-01

    Based on an efficient and bottom-up synthesis technique, Bismuth Selenide (Bi2Se3) nanoplatelets with uniform morphology and average thickness down to 3-7 nm had been fabricated. Its nonlinear absorption property under high power excitation had been well characterized by our Z-scan measurement system at different illumination wavelengths, and we found that the as-fabricated bi-layer Bi2Se3 nanoplatelets show unique nonlinear optical responses, that is, with a saturable optical intensity of 32 GW/cm2 (resp. 3.7 MW/cm2) and a modulation depth of 88% (resp. 36%) at 800 nm (resp. 1565 nm). By implementing its saturable absorption property, we designed an optical saturable absorber device based on bilayer Bi2Se3 nanoplatelets through deposited them onto the end-facet of optical fiber. The as-fabricated optical saturable absorber device allows for the generation of mode-locking pulses at 1571 nm with pulse duration of 579 fs and a repetition rate of 12.54 MHz at a pump power of 160 mW. The method on fabricating ultrathin Bi2Se3 nanoplatelets may pave a new way to massive production of large-area topological insulator thin films that can be used in two-dimensional layered materials related photonics device.

  8. In vitro cytotoxicity of surface modified bismuth nanoparticles.

    PubMed

    Luo, Yang; Wang, Chaoming; Qiao, Yong; Hossain, Mainul; Ma, Liyuan; Su, Ming

    2012-10-01

    This paper describes in vitro cytotoxicity of bismuth nanoparticles revealed by three complementary assays (MTT, G6PD, and calcein AM/EthD-1). The results show that bismuth nanoparticles are more toxic than most previously reported bismuth compounds. Concentration dependent cytotoxicities have been observed for bismuth nanoparticles and surface modified bismuth nanoparticles. The bismuth nanoparticles are non-toxic at concentration of 0.5 nM. Nanoparticles at high concentration (50 nM) kill 45, 52, 41, 34 % HeLa cells for bare nanoparticles, amine terminated bismuth nanoparticles, silica coated bismuth nanoparticles, and polyethylene glycol (PEG) modified bismuth nanoparticles, respectively; which indicates cytotoxicity in terms of cell viability is in the descending order of amine terminated bismuth nanoparticles, bare bismuth nanoparticles, silica coated bismuth nanoparticles, and PEG modified bismuth nanoparticles. HeLa cells are more susceptible to toxicity from bismuth nanoparticles than MG-63 cells. The simultaneous use of three toxicity assays provides information on how nanoparticles interact with cells. Silica coated bismuth nanoparticles can damage cellular membrane yet keep mitochondria less influenced; while amine terminated bismuth nanoparticles can affect the metabolic functions of cells. The findings have important implications for caution of nanoparticle exposure and evaluating toxicity of bismuth nanoparticles.

  9. Optical pumping and readout of bismuth hyperfine states in silicon for atomic clock applications.

    PubMed

    Saeedi, K; Szech, M; Dluhy, P; Salvail, J Z; Morse, K J; Riemann, H; Abrosimov, N V; Nötzel, N; Litvinenko, K L; Murdin, B N; Thewalt, M L W

    2015-05-20

    The push for a semiconductor-based quantum information technology has renewed interest in the spin states and optical transitions of shallow donors in silicon, including the donor bound exciton transitions in the near-infrared and the Rydberg, or hydrogenic, transitions in the mid-infrared. The deepest group V donor in silicon, bismuth, has a large zero-field ground state hyperfine splitting, comparable to that of rubidium, upon which the now-ubiquitous rubidium atomic clock time standard is based. Here we show that the ground state hyperfine populations of bismuth can be read out using the mid-infrared Rydberg transitions, analogous to the optical readout of the rubidium ground state populations upon which rubidium clock technology is based. We further use these transitions to demonstrate strong population pumping by resonant excitation of the bound exciton transitions, suggesting several possible approaches to a solid-state atomic clock using bismuth in silicon, or eventually in enriched (28)Si.

  10. Pharmacokinetics of bismuth and ranitidine following multiple doses of ranitidine bismuth citrate

    PubMed Central

    KOCH, K M; KERR, B M; GOODING, A E; DAVIS, I M

    1996-01-01

    The pharmacokinetics of bismuth and ranitidine derived from oral doses of ranitidine bismuth citrate 800 mg given twice daily for 28 days were examined in this double-blind, placebo-controlled, parallel-group study in 27 healthy subjects. Bismuth accumulation in plasma reflected its multicompartmental disposition, achieving the majority of predicted steady state within 14–28 days. Bismuth absorption from ranitidine bismuth citrate is limited (<0.5% of the dose), and bismuth elimination is predominantly renal secretion. Peak plasma concentrations did not exceed 19 ng ml−1, remaining well below those associated with bismuth toxicity. Bismuth was measurable at low concentrations in plasma and urine for up to 5 months after the last dose. Plasma bismuth concentration-time data and urinary excretion data were best described by separate multicompartmental models, with terminal half-lives averaging 21 days and 45 days, respectively. The pharmacokinetics of ranitidine derived from ranitidine bismuth citrate were similar to those of ranitidine administered alone. Ranitidine did not appreciably accumulate in plasma. Ranitidine bismuth citrate was well-tolerated during 28 days of repeated dosing. PMID:8864319

  11. Electronic excitations and structure of Li{sub 2}IrO{sub 3} thin films grown on ZrO{sub 2}:Y (001) substrates

    SciTech Connect

    Jenderka, Marcus Schmidt-Grund, Rüdiger; Grundmann, Marius; Lorenz, Michael

    2015-01-14

    Thin films are a prerequisite for application of the emergent exotic ground states in iridates that result from the interplay of strong spin-orbit coupling and electronic correlations. We report on pulsed laser deposition of Li{sub 2}IrO{sub 3} films on ZrO{sub 2}:Y (001) single crystalline substrates. X-ray diffraction confirms preferential (001) and (10-1) out-of-plane crystalline orientations with well defined in-plane orientation. Resistivity between 35 and 300 K is dominated by a three-dimensional variable range hopping mechanism. The dielectric function is determined by means of spectroscopic ellipsometry and, complemented by Fourier transform infrared transmission spectroscopy, reveals a small optical gap of ≈300 meV, a splitting of the 5d-t{sub 2g} manifold, and several in-gap excitations attributed to phonons and possibly magnons.

  12. Optical orientation of azo dye molecules in a thin solid film upon nonlinear excitation by femtosecond laser pulses

    SciTech Connect

    Yongseok, Jung; Kozenkov, V M; Magnitskiy, Sergey A; Nagorskiy, Nikolay M

    2006-11-30

    The orientation of molecules in an amorphous pure azo dye film upon nonlinear excitation is detected for the first time. The simultaneous increase and decrease in the film transmission by a factor of 2.5 for orthogonal polarisations of probe radiation indicated the appearance of orientation order in the film caused by the reorientation of azo dye molecules. Due to a high photostability of the AD-1 azo dye demonstrated in single-photon experiments and a high efficiency of nonlinear orientation obtained in experiments with femtosecond pulses, this dye can be widely used in three-dimensional nanophotonic devices such as photonic crystals, optical computers, and optical memory. (letters)

  13. Engineering strain, densification, order parameter and magnetic properties of FePt thin films by dense electronic excitations

    NASA Astrophysics Data System (ADS)

    Gupta, Rekha; Sehdev, Neeru; Asokan, K.; Kanjilal, D.; Annapoorni, S.

    2014-08-01

    FePt films prepared by DC sputtering on Si ⟨100⟩ substrates when annealed at 600 °C for 1 h exhibited a structurally ordered and magnetically hard L10 phase. These FePt films were exposed to dense electronic excitations by using 100 MeV oxygen ions as a function of increasing fluences. Such excitations induce pressure and result in the enhancement of order parameter by increasing strain on the FePt films. Apart from this, the surface morphological images from field emission scanning electron microscopy reveal a densification of the films consequent to irradiation and are correlated with the details obtained from Rutherford back scattering analysis. The variation in the values of coercivity correlates well with the change in volume percentage of face centered tetragonal and face centered cubic phase. A coercivity of 14.7 kOe with order parameter 0.92 is achieved at a fluence of 5 × 1012 ions/cm2. The theoretical simulation of the demagnetization curve shows a strong correlation of coercivity and order parameter between the experimentally obtained values with that of simulation. The effect of irradiation induced strain, the structural ordering and coercivity of FePt films as a function of fluences have been discussed.

  14. 21 CFR 73.1162 - Bismuth oxychloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1162 Bismuth oxychloride. (a) Identity. (1) The color additive bismuth oxychloride is a synthetically prepared white or nearly white amorphous or finely crystalline, odorless powder consisting principally of BiOCl. (2) Color additive mixtures for drug use made...

  15. 21 CFR 73.1162 - Bismuth oxychloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1162 Bismuth oxychloride. (a) Identity. (1) The color additive bismuth oxychloride is a synthetically prepared white or nearly white amorphous or finely crystalline, odorless powder consisting principally of BiOCl. (2) Color additive mixtures for drug use made...

  16. 21 CFR 73.1162 - Bismuth oxychloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1162 Bismuth oxychloride. (a) Identity. (1) The color additive bismuth oxychloride is a synthetically prepared white or nearly white amorphous or finely crystalline, odorless powder consisting principally of BiOCl. (2) Color additive mixtures for drug use made...

  17. 21 CFR 73.1162 - Bismuth oxychloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1162 Bismuth oxychloride. (a) Identity. (1) The color additive bismuth oxychloride is a synthetically prepared white or nearly white amorphous or finely crystalline, odorless powder consisting principally of BiOCl. (2) Color additive mixtures for drug use made...

  18. 21 CFR 73.2162 - Bismuth oxychloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... amounts consistent with good manufacturing practice. (c) Labeling. The color additive and any mixture... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2162 Bismuth oxychloride. (a) Identity and specifications. (1) The color additive bismuth oxychloride shall conform in identity and specifications to the...

  19. 21 CFR 73.2162 - Bismuth oxychloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... amounts consistent with good manufacturing practice. (c) Labeling. The color additive and any mixture... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2162 Bismuth oxychloride. (a) Identity and specifications. (1) The color additive bismuth oxychloride shall conform in identity and specifications to the...

  20. 21 CFR 73.1162 - Bismuth oxychloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1162 Bismuth oxychloride. (a) Identity. (1) The color additive bismuth oxychloride is a synthetically prepared white or nearly white amorphous or finely crystalline, odorless powder consisting principally of BiOCl. (2) Color additive mixtures for drug use made...

  1. 21 CFR 73.2162 - Bismuth oxychloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... amounts consistent with good manufacturing practice. (c) Labeling. The color additive and any mixture... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2162 Bismuth oxychloride. (a) Identity and specifications. (1) The color additive bismuth oxychloride shall conform in identity and specifications to the...

  2. Local optical emission spectroscopy of excited species effused from an evaporation cell and a sputter source into dense plasmas - Basic studies for the deposition of thin gradient films.

    PubMed

    Bolt, H; Hemel, V; Koch, F; Nickel, H

    1996-06-01

    Space resolved optical emission spectroscopy has been applied to determine the distribution of excited species in dense plasmas which are used for the deposition of thin coatings. Typical electron densities and electron temperatures in the plasma facility PETRA ( Plasma Engineering and Technology Research Assembly) are in the range of n(e) = 10(12) cm(-3) and T(e) = 10 eV. During the deposition process material (Al) is evaporated from a vapour cell under controlled conditions. The vapour stream is guided into a dense plasma which is composed of inert gas, Ar or He, and hydrocarbon species produced from the dissociation of C(2)H(2). The evaporated Al-stream which travels with thermal velocity into a plasma of high electron density, is nearly completely ionized due to the short mean free path for electron impact ionization in the above mentioned parameter range. Optical emission spectroscopy has been applied to investigate the interaction processes between the vapour stream and the plasma as well as the transport of the ionized Al along the applied magnetic field. For the measurements space resolved optical emission spectroscopy with an in-situ translation mechanism of the optical fibre has been used to measure the local concentrations of excited Al neutrals and ions as well as the concentration of the background plasma species.

  3. Variational Photocarrier Radiometry Reconstruction of Exciton Lifetime Spectra for a Coupled PbS Colloidal Quantum Dot Thin Film Under Combined AC and DC Laser Excitation

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Mandelis, Andreas; Melnikov, Alexander

    2015-06-01

    Colloidal quantum dots (CQDs) have attracted significant interest for applications in electronic and optoelectronic devices such as photodetectors, light emitting diodes, and solar cells. However, a poor understanding of charge transport in these nanocrystalline films hinders their practical applications. The photocarrier radiometry (PCR) technique, a frequency-domain photoluminescence method spectrally gated for radiative recombination photon emissions and exclusion of thermal infrared photons, has been applied to a coupled PbS CQD thin film with inter-dot spacing of 0.5 nm to 1 nm for the analysis of charge transport properties. As the nanoparticle bandgap depends on the size of the quantum dots, polydispersity of the CQD thin film causes bandgap variability leading to photoexcited carrier (exciton) decay lifetime broadening and temperature dependence. The carrier transport mechanisms of QDs are quite different from bulk semiconductors, so the conventional carrier-diffusion wave-based PCR theory was modified into a non-diffusive limit model. A developed variational discrete lifetime reconstruction approach was used to analyze PCR frequency scans under two optical excitation modes: a modulated laser source without, and with, an additional continuous laser source. Using this model, the CQD mean lifetime values were found and variational discrete lifetime spectra were reconstructed.

  4. Suppression effect of silicon (Si) on Er{sup 3+} 1.54μm excitation in ZnO thin films

    SciTech Connect

    Xu, Bo; Lu, Fei Fan, Ranran; Ma, Changdong

    2016-08-15

    We have investigated the photoluminescence (PL) characteristics of ZnO:Er thin films on Si (100) single crystal and SiO{sub 2}-on-silicon (SiO{sub 2}) substrates, synthesized by radio frequency magnetron sputtering. Rutherford backscattering/channeling spectrometry (RBS), X-ray diffraction (XRD) and atomic force microscope (AFM) were used to analyze the properties of thin films. The diffusion depth profiles of Si were determined by second ion mass spectrometry (SIMS). Infrared spectra were obtained from the spectrometer and related instruments. Compared with the results at room temperature (RT), PL (1.54μm) intensity increased when samples were annealed at 250°C and decreased when at 550°C. A new peak at 1.15μm from silicon (Si) appeared in 550°C samples. The Si dopants in ZnO film, either through the diffusion of Si from the substrate or ambient, directly absorbed the energy of pumping light and resulted in the suppression of Er{sup 3+} 1.54μm excitation. Furthermore, the energy transmission efficiency between Si and Er{sup 3+} was very low when compared with silicon nanocrystal (Si-NC). Both made the PL (1.54μm) intensity decrease. All the data in experiments proved the negative effects of Si dopants on PL at 1.54μm. And further research is going on.

  5. Bismuth generator method

    DOEpatents

    Bray, Lane Allan; DesChane, Jaquetta R.

    1998-01-01

    A method for separating .sup.213 Bi from a solution of radionuclides wherein the solution contains a concentration of the chloride ions and hydrogen ions adjusted to allow the formation of a chloride complex. The solution is then brought into contact with an anion exchange resin, whereupon .sup.213 Bi is absorbed from the solution and adhered onto the anion exchange resin in the chloride complex. Other non-absorbing radionuclides such as .sup.225 Ra, .sup.225 Ac, and .sup.221 Fr, along with HCl are removed from the anion exchange resin with a scrub solution. The .sup.213 Bi is removed from the anion exchange resin by washing the anion exchange resin with a stripping solution free of chloride ions and with a reduced hydrogen ion concentration which breaks the chloride anionic complex, releasing the .sup.213 Bi as a cation. In a preferred embodiment of the present invention, the anion exchange resin is provided as a thin membrane, allowing for extremely rapid adherence and stripping of the .sup.213 Bi. A preferred stripping solution for purification of .sup.213 Bi for use in medical applications includes sodium acetate, pH 5.5. A protein conjugated with bifunctional chelating agents in vivo with the NaOAc, to receive the .sup.213 Bi as it is being released from the anion exchange resin.

  6. Bismuth generator method

    DOEpatents

    Bray, L.A.; DesChane, J.R.

    1998-05-05

    A method is described for separating {sup 213}Bi from a solution of radionuclides wherein the solution contains a concentration of the chloride ions and hydrogen ions adjusted to allow the formation of a chloride complex. The solution is then brought into contact with an anion exchange resin, whereupon {sup 213}Bi is absorbed from the solution and adhered onto the anion exchange resin in the chloride complex. Other non-absorbing radionuclides such as {sup 225}Ra, {sup 225}Ac, and {sup 221}Fr, along with HCl are removed from the anion exchange resin with a scrub solution. The {sup 213}Bi is removed from the anion exchange resin by washing the anion exchange resin with a stripping solution free of chloride ions and with a reduced hydrogen ion concentration which breaks the chloride anionic complex, releasing the {sup 213}Bi as a cation. In a preferred embodiment of the present invention, the anion exchange resin is provided as a thin membrane, allowing for extremely rapid adherence and stripping of the {sup 213}Bi. A preferred stripping solution for purification of {sup 213}Bi for use in medical applications includes sodium acetate, pH 5.5. A protein conjugated with bifunctional chelating agents in vivo with the NaOAc receives the {sup 213}Bi as it is being released from the anion exchange resin. 10 figs.

  7. Modulation of magnetic interaction in Bismuth ferrite through strain and spin cycloid engineering

    NASA Astrophysics Data System (ADS)

    Yadav, Rama Shanker; Reshi, Hilal Ahmad; Pillai, Shreeja; Rana, D. S.; Shelke, Vilas

    2016-12-01

    Bismuth ferrite, a widely studied room temperature multiferroic, provides new horizons of multifunctional behavior in phase transited bulk and thin film forms. Bismuth ferrite thin films were deposited on lattice mismatched LaAlO3 substrate using pulsed laser deposition technique. X-ray diffraction confirmed nearly tetragonal (T-type) phase of thin film involving role of substrate induced strain. The film thickness of 56 nm was determined by X-ray reflectivity measurement. The perfect coherence and epitaxial nature of T- type film was observed through reciprocal space mapping. The room temperature Raman measurement of T-type bismuth ferrite thin film also verified phase transition with appearance of only few modes. In parallel, concomitant La and Al substituted Bi1-xLaxFe0.95Al0.05O3 (x = 0.1, 0.2, 0.3) bulk samples were synthesized using solid state reaction method. A structural phase transition into orthorhombic (Pnma) phase at x = 0.3 was observed. The structural distortion at x = 0.1, 0.2 and phase transition at x = 0.3 substituted samples were also confirmed by changes in Raman active modes. The remnant magnetization moment of 0.199 emu/gm and 0.28 emu/gm were observed for x = 0.2 and 0.3 bulk sample respectively. The T-type bismuth ferrite thin film also showed high remnant magnetization of around 20emu/cc. The parallelism in magnetic behavior between T-type thin film and concomitant La and Al substituted bulk samples is indication of modulation, frustration and break in continuity of spiral spin cycloid.

  8. Bismuth toxicity in man II. Review of bismuth blood and urine levels in patients after administration of therapeutic bismuth formulations in relation to the problem of bismuth toxicity in man.

    PubMed

    Serfontein, W J; Mekel, R

    1979-11-01

    A survey of the leterature on bismuth toxicity in man in relation to blood level data, has revealed the necessity of distinguishing between lipid soluble and water soluble organic complexes of bismuth on the one hand and the simple inorganic salts of bismuth on the other hand. A characteristic feature of the former, illustrated by the water soluble bismuth complex triglycollamate, is the high bismuth levels (due to absorption of the complex as such) and the nephrotoxic properties of the compound in man. Bismuth absorption after administration of the simple inorganic salts of bismuth is postulated to occur in the form of ionic bismuth as such, low bismuth levels being characteristic features of such compounds. Bismuth blood and urine levels obtained from patients after administration of a new anti-ulcer drug (Bicitropeptide) in a well controlled clinical trial are discussed and suggest that that this bismuth containing drug behaves pharmacologically in a manner similar to the inorganic bismuth salts in man, low bismuth blood levels and the absence of toxic side effects being conspicuous features of the drug. Based on these considerations, it is proposed that the pharmacologically active bismuth compounds be divided into four different groups depending on structure, stability and solubility. The question as to what constitutes a "toxic bismuth blood level" can only be discussed in relation to the new proposed sub-division of bismuth compounds and is only meaningful if the term is defined to relate only to ionic bismuth (presumably bound to a large extent to blood proteins). Based on information gleaned from the literature and blood level values reported in the clinical trial referred to, it is suggested that bismuth blood level values below 50 micrograms/ml are highly unlikely to be associated with meaningful toxicity in man. Finally, attention is drawn to the reversibility of bismuth toxicity in man as reported by many authors irrespective of the type of bismuth

  9. IR luminescence in bismuth-doped germanate glasses and fibres

    SciTech Connect

    Pynenkov, A A; Firstov, Sergei V; Panov, A A; Firstova, E G; Nishchev, K N; Bufetov, Igor' A; Dianov, Evgenii M

    2013-02-28

    We have studied the optical properties of lightly bismuth doped ({<=}0.002 mol %) germanate glasses prepared in an alumina crucible. The glasses are shown to contain bismuth-related active centres that have been identified previously only in bismuth-doped fibres produced by MCVD. With increasing bismuth concentration in the glasses, their luminescence spectra change markedly, which is attributable to interaction between individual bismuth centres. (optical fibres)

  10. Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect.

    PubMed

    Niu, Kai-Yang; Park, Jungwon; Zheng, Haimei; Alivisatos, A Paul

    2013-01-01

    We study the formation of bismuth oxide hollow nanoparticles by the Kirkendall effect using liquid cell transmission electron microscopy (TEM). Rich dynamics of bismuth diffusion through the bismuth oxide shell have been captured in situ. The diffusion coefficient of bismuth through bismuth oxide shell is 3-4 orders of magnitude higher than that of bulk. Observation reveals that defects, temperature, sizes of the particles, and so forth can affect the diffusion of reactive species and modify the kinetics of the hollowing process.

  11. Pharmacokinetics and toxicity of bismuth compounds.

    PubMed

    Slikkerveer, A; de Wolff, F A

    1989-01-01

    Inorganic bismuth salts are poorly soluble in water: solubility is influenced by the acidity of the medium and the presence of certain compounds with (hydr)oxy or sulfhydryl groups. The analysis of bismuth in biological material is not standardised and is subject to large variation; it is difficult to compare data from different studies, and older data should be approached with caution. The normal concentration of bismuth in blood is between 1 and 15 micrograms/L, but absorption from oral preparations produces a significant rise. Distribution of bismuth in the organs is largely independent of the compound administered or the route of administration: the concentration in kidney is always highest and the substance is also retained there for a long time. It is bound to a bismuth-metal binding protein in the kidney, the synthesis of which can be induced by the metal itself. Elimination from the body takes place by the urinary and faecal routes, but the exact proportion contributed by each route is still unknown. Elimination from blood displays multicompartment pharmacokinetics, the shortest half-life described in humans being 3.5 minutes, and the longest 17 to 22 years. A number of toxic effects have been attributed to bismuth compounds in humans: nephropathy, encephalopathy, osteoarthropathy, gingivitis, stomatitis and colitis. Whether hepatitis is a side effect, however, is open to dispute. Each of these adverse effects is associated with certain bismuth compounds. Bismuth encephalopathy occurred in France as an epidemic of toxicity and was associated with the intake of inorganic salts including bismuth subnitrate, subcarbonate and subgallate. In the prodromal phase patients developed problems in walking, standing or writing, deterioration of memory, changes in behaviour, insomnia and muscle cramps, together with several psychiatric symptoms. The manifest phase started abruptly and was characterised by changes in awareness, myoclonia, astasia and/or abasia and

  12. Brain and blood levels of bismuth after oral or parenteral administration of tripotassium-dicitrato bismuthate to rats.

    PubMed

    Abbracchio, M P; Balduini, W; Cavallaro, A; Adamoli, P; Fittipaldi, M; Muzio, F; Malandrino, S; Cattabeni, F

    1985-01-01

    Bismuth levels in blood and brain of rats have been measured following acute or subchronic administration of tri-potassium-dicitrato bismuthate (TDB) by intraperitoneal injection or by gavage. After parenteral administration, the presence of bismuth in blood was associated with appreciable bismuth concentrations in brain of treated animals (approximately equal to 10-30% of blood levels). In contrast, following oral treatment, no bismuth was detected in brain of animals, even at doses of TDB able to produce blood bismuth concentrations comparable with those obtained after intraperitoneal administration. The formation of different bismuth species in blood of treated animals depending upon the route of administration of TDB is suggested.

  13. Ultrafast Bond Softening in Bismuth: Mapping a Solid’s Interatomic Potential with X-rays

    NASA Astrophysics Data System (ADS)

    Fritz, D. M.; Reis, D. A.; Adams, B.; Akre, R. A.; Arthur, J.; Blome, C.; Bucksbaum, P. H.; Cavalieri, A. L.; Engemann, S.; Fahy, S.; Falcone, R. W.; Fuoss, P. H.; Gaffney, K. J.; George, M. J.; Hajdu, J.; Hertlein, M. P.; Hillyard, P. B.; Horn-von Hoegen, M.; Kammler, M.; Kaspar, J.; Kienberger, R.; Krejcik, P.; Lee, S. H.; Lindenberg, A. M.; McFarland, B.; Meyer, D.; Montagne, T.; Murray, É. D.; Nelson, A. J.; Nicoul, M.; Pahl, R.; Rudati, J.; Schlarb, H.; Siddons, D. P.; Sokolowski-Tinten, K.; Tschentscher, Th.; von der Linde, D.; Hastings, J. B.

    2007-02-01

    Intense femtosecond laser excitation can produce transient states of matter that would otherwise be inaccessible to laboratory investigation. At high excitation densities, the interatomic forces that bind solids and determine many of their properties can be substantially altered. Here, we present the detailed mapping of the carrier density-dependent interatomic potential of bismuth approaching a solid-solid phase transition. Our experiments combine stroboscopic techniques that use a high-brightness linear electron accelerator-based x-ray source with pulse-by-pulse timing reconstruction for femtosecond resolution, allowing quantitative characterization of the interatomic potential energy surface of the highly excited solid.

  14. Ultrafast bond softening in bismuth: mapping a solid's interatomic potential with X-rays.

    PubMed

    Fritz, D M; Reis, D A; Adams, B; Akre, R A; Arthur, J; Blome, C; Bucksbaum, P H; Cavalieri, A L; Engemann, S; Fahy, S; Falcone, R W; Fuoss, P H; Gaffney, K J; George, M J; Hajdu, J; Hertlein, M P; Hillyard, P B; Horn-von Hoegen, M; Kammler, M; Kaspar, J; Kienberger, R; Krejcik, P; Lee, S H; Lindenberg, A M; McFarland, B; Meyer, D; Montagne, T; Murray, E D; Nelson, A J; Nicoul, M; Pahl, R; Rudati, J; Schlarb, H; Siddons, D P; Sokolowski-Tinten, K; Tschentscher, Th; von der Linde, D; Hastings, J B

    2007-02-02

    Intense femtosecond laser excitation can produce transient states of matter that would otherwise be inaccessible to laboratory investigation. At high excitation densities, the interatomic forces that bind solids and determine many of their properties can be substantially altered. Here, we present the detailed mapping of the carrier density-dependent interatomic potential of bismuth approaching a solid-solid phase transition. Our experiments combine stroboscopic techniques that use a high-brightness linear electron accelerator-based x-ray source with pulse-by-pulse timing reconstruction for femtosecond resolution, allowing quantitative characterization of the interatomic potential energy surface of the highly excited solid.

  15. Electronic excitation induced modifications of structural, electrical and optical properties of Cu-C60 nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Inani, H.; Singhal, R.; Sharma, P.; Vishnoi, R.; Ojha, S.; Chand, S.; Sharma, G. D.

    2017-09-01

    High energy ion irradiation significantly affects the size and shape of nanoparticles in composites. Low concentration metal fraction embedded in fullerene matrix in form of nanocomposites was synthesized by thermal co-evaporation method. Swift heavy ion irradiation was performed with 120 MeV Au ion beam on Cu-C60 nanocomposites at different fluences 1 × 1012, 3 × 1012, 6 × 1012, 1 × 1013 and 3 × 1013 ions/cm2. Absorption spectra demonstrated that absorption intensity of nanocomposite thin film was increased whereas absorption modes of fullerene C60 were diminished with fluence. Rutherford backscattering spectroscopy was also performed to estimate the thickness of the film and atomic metal fraction in matrix and found to be 45 nm and 3%, respectively. Transmission electron microscopy was performed for structural and particle size evaluation of Cu nanoparticles (NPs) in fullerene C60 matrix. A growth of Cu nanoparticles is observed at a fluence of 3 × 1013 ions/cm2 with a bi-modal distribution in fullerene C60. Structural evolution of fullerene C60 matrix with increasing fluence of 120 MeV Au ion beam is studied by Raman spectroscopy which shows the amorphization of matrix (fullerene C60) at lower fluence. The growth of Cu nanoparticles is explained using the phenomena of Ostwald ripening.

  16. Epileptic phenomena in bismuth toxic encephalopathy.

    PubMed Central

    Buge, A; Supino-Viterbo, V; Rancurel, G; Pontes, C

    1981-01-01

    Seventy patients admitted to hospital with bismuth encephalopathy had repeated clinical and EEG examinations. All the patients exhibited myoclonic jerks, but no paroxysmal features ever appeared on EEG. Computed tomography showed cortical hyperdensities. Seizures were observed in 22 patients, but epileptic EEG patterns appeared only when the bismuth blood level was below 1500 microgram/1. It is suggested that a high cortical intracellular bismuth concentration induces a "cortical inhibition" which causes suppression of physiological electrical brain activity, the absence of EEG paroxysmal phenomena during myoclonic jerks, and explains the rarity of epileptic seizures. Images PMID:7205307

  17. PROCESS OF COATING METALS WITH BISMUTH OR BISMUTH-BASE ALLOYS

    DOEpatents

    Beach, J.G.

    1958-01-28

    A method is described for producing coatings of bismuth or bismuth alloys on a metal base. This is accomplished by electrodepositing the bismuth from an aqueous solution of BiCl/sub 3/, and by making the metal base alternately the cathode and the anode, the cathode periods being twice as long as the anode periods. In one embodiment a nickel coating is first electrodeposited in a known way, and this nickel plated piece is tae base upon which tae bismuth is deposited by the process of this patent. The coated piece is then heat treated to produce a homogeneous Ni--Bi alloy by diffusion.

  18. Preparation of layered thin film samples for angle-resolved photoemission spectroscopy

    SciTech Connect

    Harrison, S. E.; Zhou, B.; Huo, Y.; Harris, J. S.; Pushp, A.; Kellock, A. J.; Parkin, S. S. P.; Chen, Y.; Hesjedal, T.

    2014-09-22

    Materials with layered van der Waals crystal structures are exciting research topics in condensed matter physics and materials science due to outstanding physical properties associated with their strong two dimensional nature. Prominent examples include bismuth tritelluride and triselenide topological insulators (TIs), which are characterized by a bulk bandgap and pairwise counter-propagating spin-polarized electronic surface states. Angle-resolved photoemission spectroscopy (ARPES) of ex-situ grown thin film samples has been limited by the lack of suitable surface preparation techniques. We demonstrate the shortcomings of previously successful conventional surface preparation techniques when applied to ternary TI systems which are susceptible to severe oxidation. We show that in-situ cleaving is a simple and effective technique for preparation of clean surfaces on ex-situ grown thin films for high quality ARPES measurements. The method presented here is universally applicable to other layered van der Waals systems as well.

  19. Formation and possible growth mechanism of bismuth nanowires on various substrates

    NASA Astrophysics Data System (ADS)

    Volkov, V. T.; Kasumov, A. Yu.; Kasumov, Yu. A.; Khodos, I. I.

    2017-08-01

    In this work, we report results of a study of bismuth nanowires growth on various substrates, including Fe, Ni, Co, W, Pt, Au thin films on oxidized Si, Si (111), oxidized Si (100), and fused quartz. The nanowires (NW) were prepared by RF diode sputtering of Bi onto a substrate heated to about 200 °C. The structure of the wires was studied by a scanning and transmission electron microscopy. The NWs are monocrystalline up to a length of several micrometers and possess a very thin (less than 2 nm) oxide layer. A major influence of the substrate type on the quantity and the length of the obtained nanowires is observed. Based on the above studies, we propose a possible mechanism of a bismuth nanowire growth.

  20. Sandwich heterostructures of antimony trioxide and bismuth trioxide films: Structural, morphological and optical analysis

    NASA Astrophysics Data System (ADS)

    Condurache-Bota, Simona; Praisler, Mirela; Gavrila, Raluca; Tigau, Nicolae

    2017-01-01

    Thin film heterostructures can be advantageous since they either exhibit novel or a combination of the properties of their components. Here we propose sandwich-type of heterostructures made of antimony trioxide and bismuth trioxide thin films, which were deposited on glass substrates by thermal vacuum deposition at three substrate temperatures, 50° Celsius apart. Their morphology and optical properties are studied as compared to the corresponding monolayers. It was found that even small substrate temperature changes strongly influence their morphology, increasing their roughness, while the optical transmittance shows a slight decrease as compared with the individual layers. The corresponding absorption coefficient exhibits intermediate values as compared to the component oxides, while the energy bandgaps for the indirect allowed transitions move towards the Infrared when overlapping the antimony and bismuth trioxides.

  1. Optical transmission enhancement through chemically tuned two-dimensional bismuth chalcogenide nanoplates.

    PubMed

    Yao, Jie; Koski, Kristie J; Luo, Weidong; Cha, Judy J; Hu, Liangbing; Kong, Desheng; Narasimhan, Vijay Kris; Huo, Kaifu; Cui, Yi

    2014-11-28

    Layer-structured two-dimensional nanomaterials are a family of materials with strong covalent bonding within layers and weak van der Waals interaction between layers, whose vertical thickness can be thinned down to few nanometer and even single atomic layer. Bismuth chalcogenides are examples of such two-dimensional materials. Here, we present our discovery of significant enhancement of light transmission through thin nanoplates of layered bismuth chalcogenides by intercalation of copper atoms, which is on the contrary to most bulk materials in which doping reduces the light transmission. This surprising behaviour results from two mechanisms: chemical tuning effect of substantial reduction of material absorption after intercalation and nanophotonic effect of zero-wave anti-reflection unique to ultra-small thickness of nanoplates. We demonstrate that the synergy of these two effects in two-dimensional nanostructures can be exploited for various optoelectronic applications including transparent electrode. The intercalation mechanism allows potential dynamic tuning capability.

  2. Doping is Good: Enhancing Hall-Effect Sensor Performance with Doped Bismuth

    NASA Astrophysics Data System (ADS)

    Chu, Ricky; David, Nigel; Chouinard, Taras; Schneider, Adam; Broun, David

    2012-10-01

    Hall-effect sensors are quantitative magnetic flux detectors with sensitivity comparable to that of superconducting quantum interference devices (SQUIDs), but with superior spatial resolution [S.J. Bending, Adv. Phys. 48, 449 (1999)]. Applications of Hall sensors include the imaging of microscopic magnetic structures such as vortices in superconductors, nanoscale domains in magnetic thin films, and nanoparticles in bioassay samples. Bismuth is being tested as a Hall probe material in order to avoid problems associated with excess noise, which arise in semiconductor Hall sensors as they are miniaturized [A. Sandhu et al, Jpn. J. Appl. Phys. 40, L524 (2001)]. However, bismuth is a compensated metal, and the presence of both electrons and holes reduces its native sensitivity due to cancellations in the Hall coefficient. We present experimental results for thin films and sensors that show hole doping by Pb can be used to empty the electron band, thereby breaking the compensation and increasing flux sensitivity.

  3. Bismuth-based electrochemical stripping analysis

    DOEpatents

    Wang, Joseph

    2004-01-27

    Method and apparatus for trace metal detection and analysis using bismuth-coated electrodes and electrochemical stripping analysis. Both anodic stripping voltammetry and adsorptive stripping analysis may be employed.

  4. Influence of RF excitation during pulsed laser deposition in oxygen atmosphere on the structural properties and luminescence of nanocrystalline ZnO:Al thin films

    SciTech Connect

    Meljanac, Daniel Plodinec, Milivoj; Siketić, Zdravko; Gracin, Davor; Juraić, Krunoslav; Bernstorff, Sigrid

    2016-03-15

    Thin ZnO:Al layers were deposited by pulsed laser deposition in vacuum and in oxygen atmosphere at gas pressures between 10 and 70 Pa and by applying radio-frequency (RF) plasma. Grazing incidence small angle x-ray scattering and grazing incidence x-ray diffraction (GIXRD) data showed that an increase in the oxygen pressure leads to an increase in the roughness, a decrease in the sample density, and changes in the size distribution of nanovoids. The nanocrystal sizes estimated from GIXRD were around 20 nm, while the sizes of the nanovoids increased from 1 to 2 nm with the oxygen pressure. The RF plasma mainly influenced the nanostructural properties and point defects dynamics. The photoluminescence consisted of three contributions, ultraviolet (UV), blue emission due to Zn vacancies, and red emission, which are related to an excess of oxygen. The RF excitation lowered the defect level related to blue emission and narrowed the UV luminescence peak, which indicates an improvement of the structural ordering. The observed influence of the deposition conditions on the film properties is discussed as a consequence of two main effects: the variation of the energy transfer from the laser plume to the growing film and changes in the growth chemistry.

  5. Effect of bismuth subsalicylate on ciprofloxacin bioavailability.

    PubMed Central

    Rambout, L; Sahai, J; Gallicano, K; Oliveras, L; Garber, G

    1994-01-01

    A single oral dose of 528 mg of bismuth subsalicylate (30 ml of Pepto-Bismol) had no significant effect on the plasma pharmacokinetics of a single oral dose of 750 mg of ciprofloxacin administered to 12 healthy volunteers (six men and six women). These results suggest that ciprofloxacin bioavailability will not be significantly decreased by single doses of bismuth subsalicylate when the two medications are administered simultaneously. PMID:7811043

  6. Evaluation of bismuth germanate detectors

    SciTech Connect

    Swinth, K.L.; Eschbach, P.A.

    1993-12-01

    During International Atomic Energy Agency (IAEA) safeguards inspections, one of the activities is the verification of materials in the inventory through quantitative or qualitative measurements. Performance of these measurements requires an array of sophisticated detectors, electronics, shields, and stands. This requires the transport and handling of delicate systems that are both heavy and bulky. The increasing sophistication and miniaturization of electronic and computer systems have led to progressive reductions in both the weight and the bulk of such electronics. However, to take full advantage of these improvements, similar reductions must also occur in the size and weight of the detectors. The purpose of this study was to explore the usefulness of one type of new detector, the bismuth germinate (BGO) scintillator. The purpose was to test detectors for their performance at high (fission products) and low ({sup 235}U) photon energies. Information is also provided on other scintillators, including those using photodiode-coupled cesium iodide and germanium orthosilicate.

  7. Effect of phase stability degradation of bismuth on sensor characteristics of nano-bismuth fixed electrode.

    PubMed

    Lee, Gyoung-Ja; Kim, Chang Kyu; Lee, Min Ku; Rhee, Chang Kyu

    2010-12-15

    Effect of phase stability degradation of bismuth on sensor characteristics of nano-bismuth fixed electrode has been investigated using square-wave anodic stripping voltammetry technique, scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectroscopy. From the analyses of square-wave anodic stripping voltammograms (SWASV) repetitively measured on the nano-bismuth fixed electrode, it was found that the oxidation peak currents dropped by 81%, 68% and 59% for zinc, cadmium and lead, respectively, after the 100th measurement (about 400 min of operation time). The sphere bismuth nanoparticles gradually changed to the agglomerates with petal shape as the operation time increased. From the analyses of SEM images and XRD patterns, it is confirmed that the oxidation of Bi into BiOCl/Bi(2)O(2)CO(3) and the agglomeration of bismuth nanoparticles caused by the phase change decrease a reproducibility of the stripping voltammetric response. Moreover, most of the bismuth becomes BiOCl at pH 3.0 and bismuth hydroxide, Bi(OH)(3) at pH 7.0, which results in a significant decrease in sensitivity of the nano-bismuth fixed electrode.

  8. Gravimetric Analysis of Bismuth in Bismuth Subsalicylate Tablets: A Versatile Quantitative Experiment for Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Davis, Eric; Cheung, Ken; Pauls, Steve; Dick, Jonathan; Roth, Elijah; Zalewski, Nicole; Veldhuizen, Christopher; Coeler, Joel

    2015-01-01

    In this laboratory experiment, lower- and upper-division students dissolved bismuth subsalicylate tablets in acid and precipitated the resultant Bi[superscript 3+] in solution with sodium phosphate for a gravimetric determination of bismuth subsalicylate in the tablets. With a labeled concentration of 262 mg/tablet, the combined data from three…

  9. Gravimetric Analysis of Bismuth in Bismuth Subsalicylate Tablets: A Versatile Quantitative Experiment for Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Davis, Eric; Cheung, Ken; Pauls, Steve; Dick, Jonathan; Roth, Elijah; Zalewski, Nicole; Veldhuizen, Christopher; Coeler, Joel

    2015-01-01

    In this laboratory experiment, lower- and upper-division students dissolved bismuth subsalicylate tablets in acid and precipitated the resultant Bi[superscript 3+] in solution with sodium phosphate for a gravimetric determination of bismuth subsalicylate in the tablets. With a labeled concentration of 262 mg/tablet, the combined data from three…

  10. Thermoelectric Micro-Refrigerator Based on Bismuth/Antimony Telluride

    NASA Astrophysics Data System (ADS)

    Dang, Linh Tuan; Dang, Tung Huu; Nguyen, Thao Thi Thu; Nguyen, Thuat Tran; Nguyen, Hue Minh; Nguyen, Tuyen Viet; Nguyen, Hung Quoc

    2017-03-01

    Thermoelectric micro-coolers based on bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) are important in many practical applications thanks to their compactness and fluid-free circulation. In this paper, we studied thermoelectric properties of bismuth/antimony telluride (Bi/SbTe) thin films prepared by the thermal co-evaporation method, which yielded among the best thermoelectric quality. Different co-evaporation conditions such as deposition flux ratio of materials and substrate temperature during deposition were investigated to optimize the thermoelectric figure␣of merit of these materials. Micron-size refrigerators were designed and fabricated using standard lithography and etching technique. A three-layer structure was introduced, including a p-type layer, an n-type layer and an aluminum layer. Next to the main cooler, a pair of smaller Bi/SbTe junctions was used as a thermocouple to directly measure electron temperature of the main device. Etching properties of the thermoelectric materials were investigated and optimized to support the fabrication process of the micro-refrigerator. We discuss our results and address possible applications.

  11. Thermal degradation of ultrabroad bismuth NIR luminescence in bismuth-doped tantalum germanate laser glasses.

    PubMed

    Wang, Liping; Zhao, Yanqi; Xu, Shanhui; Peng, Mingying

    2016-04-01

    Because of ultra-broadband luminescence in 1000-1700 nm and consequent applications in fiber amplifier and lasers in the new spectral range where traditional rare earth cannot work, bismuth-doped laser glasses have received rising interest recently. For long-term practical application, thermal degradation must be considered for the glasses. This, however, has seldom been investigated. Here we report the thermal degradation of bismuth-doped germanate glass. Heating and cooling cycle experiments at high temperature reveal strong dependence of the thermal degradation on glass compositions. Bismuth and tantalum lead to the reversible degradation, while lithium can produce permanent irreversible degradation. The degradation becomes worse as lithium content increases in the glass. Absorption spectra show this is due to partial oxidation of bismuth near-infrared emission center. Surprisingly, we notice the emission of bismuth exhibits blueshift, rather than redshift at a higher temperature, and the blueshift can be suppressed by increasing the lithium content.

  12. Light-Induced Surface Reactions at the Bismuth Vanadate/Potassium Phosphate Interface.

    PubMed

    Favaro, Marco; Abdi, Fatwa F; Lamers, Marlene; Crumlin, Ethan J; Liu, Zhi; van de Krol, Roel; Starr, David E

    2017-09-18

    Bismuth vanadate has recently drawn significant research attention as a light-absorbing photoanode due to its performance for photoelectrochemical water splitting. In this study, we use in situ ambient pressure X-ray photoelectron spectroscopy with "tender" X-rays (4.0 keV) to investigate a polycrystalline bismuth vanadate (BiVO4) electrode in contact with an aqueous potassium phosphate (KPi) solution at open circuit potential under both dark and light conditions. This is facilitated by the creation of a 25 to 30 nm thick electrolyte layer using the "dip-and-pull" method. We observe that under illumination bismuth phosphate forms on the BiVO4 surface leading to an increase of the surface negative charge. The bismuth phosphate layer may act to passivate surface states observed in photoelectrochemical measurements. The repulsive interaction between the negatively charged surface under illumination and the phosphate ions in solution causes a shift in the distribution of ions in the thin aqueous electrolyte film, which is observed as an increase in their photoelectron signals. Interestingly, we find that such changes at the BiVO4/KPi electrolyte interface are reversible upon returning to dark conditions. By measuring the oxygen 1s photoelectron peak intensities from the phosphate ions and liquid water as a function of time under dark and light conditions, we determine the time scales for the forward and reverse reactions. Our results provide direct evidence for light-induced chemical modification of the BiVO4/KPi electrolyte interface.

  13. Preparation of Few-Layer Bismuth Selenide by Liquid-Phase-Exfoliation and Its Optical Absorption Properties

    PubMed Central

    Sun, Liping; Lin, Zhiqin; Peng, Jian; Weng, Jian; Huang, Yizhong; Luo, Zhengqian

    2014-01-01

    Bismuth selenide (Bi2Se3), a new topological insulator, has attracted much attention in recent years owing to its relatively simple band structure and large bulk band gap. Compared to bulk, few-layer Bi2Se3 is recently considered as a highly promising material. Here, we use a liquid-phase exfoliation method to prepare few-layer Bi2Se3 in N-methyl-2-pyrrolidone or chitosan acetic solution. The resulted few-layer Bi2Se3 dispersion demonstrates an interesting absorption in the visible light region, which is different from bulk Bi2Se3 without any absorption in this region. The absorption spectrum of few-layer Bi2Se3 depends on its size and layer number. At the same time, the nonlinear and saturable absorption of few-layer Bi2Se3 thin film in near infrared is also characterized well and further exploited to generate laser pulses by a passive Q-switching technique. Stable Q-switched operation is achieved with a lower pump threshold of 9.3 mW at 974 nm, pulse energy of 39.8 nJ and a wide range of pulse-repetition-rate from 6.2 to 40.1 kHz. Therefore, the few-layer Bi2Se3 may excite a potential applications in laser photonics and optoelectronic devices. PMID:24762534

  14. Efficient light emission at 1.54 mum from Er in Si excited by hot electron injection through thin suboxide layers

    NASA Astrophysics Data System (ADS)

    Markmann, M.; Sticht, A.; Bobe, F.; Zandler, G.; Brunner, K.; Abstreiter, G.; Muller, E.

    2002-06-01

    We studied the electroluminescence of Er:O-doped Si pn diodes and unipolar structures with thin SiO1.6 suboxide barriers, which were deposited by molecular-beam epitaxy. These suboxide layers reveal a barrier height of about 320 meV in the conduction band and therefore raise the average kinetic energy of electrons injected through the barrier into the Er:O doped region. These electrons turn out to be advantageous for impact excitation processes with the erbium ion. Compared to conventional reverse biased pn diodes a ten-times higher sigma][tau product for impact excitation (1.2 x10-19 cm2 s) can be achieved in pn diodes with a suboxide injector at 10 K. The saturation electroluminescence (EL) intensity is enlarged in reverse bias and suppressed in forward bias compared to a diode without a suboxide layer. These structures exhibit a reduction of the EL intensity by a factor of 3 for increasing temperature from 10 to 300 K and yield a two-times higher EL output at 1.54 mum and 300 K than an optimized reverse biased pn diode without a suboxide layer. At 300 K this results in an absolute output power of 250 nW and an external quantum efficiency of 1.3 x10-4 at 1.54 mum. For the unipolar structure with an integrated suboxide barrier the EL output also depends on the current flow direction: Injecting the electrons hot through the suboxide barrier into the Er:O doped region results in a six times higher EL intensity at 1.54 mum than for the opposite biasing condition. The EL is detectable up to 300 K with a reduction of the intensity by a factor of 8 between 10 and 300 K. Monte Carlo simulations were performed on unipolar structures with an incorporated barrier to provide insight into the carrier density and carrier energy distribution after injection through the barrier.

  15. Bismuth alloy potting seals aluminum connector in cryogenic application

    NASA Technical Reports Server (NTRS)

    Flower, J. F.; Stafford, R. L.

    1966-01-01

    Bismuth alloy potting seals feedthrough electrical connector for instrumentation within a pressurized vessel filled with cryogenic liquids. The seal combines the transformation of high-bismuth content alloys with the thermal contraction of an external aluminum tube.

  16. Luminescence properties of IR-emitting bismuth centres in SiO{sub 2}-based glasses in the UV to near-IR spectral region

    SciTech Connect

    Firstova, E G; Vel'miskin, V V; Firstov, S V; Dianov, E M; Bufetov, I A; Khopin, V F; Gur'yanov, A N; Bufetova, G A; Nishchev, K N

    2015-01-31

    We have studied UV excitation spectra of IR luminescence in bismuth-doped glasses of various compositions and obtained energy level diagrams of IR-emitting bismuth-related active centres (BACs) associated with silicon and germanium atoms up to ∼5.2 eV over the ground level. A possible energy level diagram of the BACs in phosphosilicate glass has been proposed. The UV excitation peaks for the IR luminescence of the BACs in the glasses have been shown to considerably overlap with absorption bands of the Bi{sup 3+} ion, suggesting that Bi{sup 3+} may participate in BAC formation. (optical fibres)

  17. Luminescence properties of IR-emitting bismuth centres in SiO2-based glasses in the UV to near-IR spectral region

    NASA Astrophysics Data System (ADS)

    Firstova, E. G.; Bufetov, I. A.; Khopin, V. F.; Vel'miskin, V. V.; Firstov, S. V.; Bufetova, G. A.; Nishchev, K. N.; Gur'yanov, A. N.; Dianov, E. M.

    2015-01-01

    We have studied UV excitation spectra of IR luminescence in bismuth-doped glasses of various compositions and obtained energy level diagrams of IR-emitting bismuth-related active centres (BACs) associated with silicon and germanium atoms up to ~5.2 eV over the ground level. A possible energy level diagram of the BACs in phosphosilicate glass has been proposed. The UV excitation peaks for the IR luminescence of the BACs in the glasses have been shown to considerably overlap with absorption bands of the Bi3+ ion, suggesting that Bi3+ may participate in BAC formation.

  18. Chemical Solution Processing of Strontium Bismuth Tantalate Films

    SciTech Connect

    Boyle, T.J.; Lakeman, C.D.E.

    1998-12-21

    We describe Chemical Solution Deposition (CSD) processes by which Strontium Bismuth Tantalate (SBT) thin films can be prepared at temperatures as low as 550 C. In this paper, we will present strategies used to optimize the properties of the films including solution chemistry, film composition, the nature of the substrate (or bottom electrode) used, and the thermal processing cycle. Under suitable conditions, {approximately} 1700 {angstrom} films can be prepared which have a large switchable polarization (2P{sub r} > 10{micro}C/cm{sup 2}), and an operating voltage, defined as the voltage at which 0.80 x 2P{sub r} max is switched, 2.0V. We also describe an all-alkoxide route to SBT films from which SBT can be crystallized at 550 C.

  19. Liquid Bismuth Propellant Flow Sensor

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Stanojev, B. J.; Korman, V.

    2007-01-01

    Quantifying the propellant mass flow rate in liquid bismuth-fed electric propulsion systems has two challenging facets. First, the flow sensors must be capable of providing a resolvable measurement at propellant mass flow rates on the order of 10 mg/see with and uncertainty of less that 5%. The second challenge has to do with the fact that the materials from which the flow sensors are fabricated must be capable of resisting any of the corrosive effects associated with the high-temperature propellant. The measurement itself is necessary in order to properly assess the performance (thrust efficiency, Isp) of thruster systems in the laboratory environment. The hotspot sensor[I] has been designed to provide the bismuth propellant mass flow rate measurement. In the hotspot sensor, a pulse of thermal energy (derived from a current pulse and associated joule heating) is applied near the inlet of the sensor. The flow is "tagged" with a thermal feature that is convected downstream by the flowing liquid metal. Downstream, a temperature measurement is performed to detect a "ripple" in the local temperature associated with the passing "hotspot" in the propellant. By measuring the time between the upstream generation and downstream detection of the thermal feature, the flow speed can be calculated using a "time of flight" analysis. In addition, the system can be calibrated by measuring the accumulated mass exiting the system as a-function of time and correlating this with the time it takes the hotspot to convect through the sensor. The primary advantage of this technique is that it doesn't depend on an absolute measurement of temperature but, instead, relies on the observation of thermal features. This makes the technique insensitive to other externally generated thermal fluctuations. In this paper, we describe experiments performed using the hotspot flow sensor aimed at quantifying the resolution of the sensor technology. Propellant is expelled onto an electronic scale to

  20. Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis

    NASA Astrophysics Data System (ADS)

    Li, Jie; Yu, Ying; Zhang, Lizhi

    2014-07-01

    In recent years, layered bismuth oxyhalide nanomaterials have received more and more interest as promising photocatalysts because their unique layered structures endow them with fascinating physicochemical properties; thus, they have great potential photocatalytic applications for environment remediation and energy harvesting. In this article, we explore the synthesis strategies and growth mechanisms of layered bismuth oxyhalide nanomaterials, and propose design principles of tailoring a layered configuration to control the nanoarchitectures for high efficient photocatalysis. Subsequently, we focus on their layered structure dependent properties, including pH-related crystal facet exposure and phase transformation, facet-dependent photoactivity and molecular oxygen activation pathways, so as to clarify the origin of the layered structure dependent photoreactivity. Furthermore, we summarize various strategies for modulating the composition and arrangement of layered structures to enhance the photoactivity of nanostructured bismuth oxyhalides via internal electric field tuning, dehalogenation effect, surface functionalization, doping, plasmon modification, and heterojunction construction, which may offer efficient guidance for the design and construction of high-performance bismuth oxyhalide-based photocatalysis systems. Finally, we highlight some crucial issues in engineering the layered-structure mediated properties of bismuth oxyhalide photocatalysts and provide tentative suggestions for future research on increasing their photocatalytic performance.

  1. Dynamics of lithium ions in bismuthate glasses

    NASA Astrophysics Data System (ADS)

    Pan, A.; Ghosh, A.

    2000-01-01

    The dynamics of lithium ions in lithium bismuthate glasses have been studied in the frequency range from 10 Hz to 2 MHz and in the temperature range from 323 to 543 K. The composition dependence of the dc (direct current) conductivity has been explained in terms of the structure of bismuthate glasses. The activation energy has been analyzed in the framework of the Anderson-Stuart model. An additional energy term arising from the Madelung constant of glasses and the polarizability of the bismuth ions has been suggested to explain the discrepancy between the calculated and experimentally obtained values. The relaxation mechanism of these glasses has been explored by employing the modulus and conductivity formalisms and the microscopic parameters obtained from the analysis have been compared. Furthermore, the stretched exponential relaxation parameter and the dc conductivity have been correlated with the decoupling index.

  2. Liquid Bismuth Feed System for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Markusic, T. E.; Polzin, K. A.; Stanojev, B. J.

    2006-01-01

    Operation of Hall thrusters with bismuth propellant has been shown to be a promising path toward high-power, high-performance, long-lifetime electric propulsion for spaceflight missions. For example, the VHITAL project aims td accurately, experimentally assess the performance characteristics of 10 kW-class bismuth-fed Hall thrusters - in order to validate earlier results and resuscitate a promising technology that has been relatively dormant for about two decades. A critical element of these tests will be the precise metering of propellant to the thruster, since performance cannot be accurately assessed without an accurate accounting of mass flow rate. Earlier work used a pre/post-test propellant weighing scheme that did not provide any real-time measurement of mass flow rate while the thruster was firing, and makes subsequent performance calculations difficult. The motivation of the present work was to develop a precision liquid bismuth Propellant Management System (PMS) that provides real-time propellant mass flow rate measurement and control, enabling accurate thruster performance measurements. Additionally, our approach emphasizes the development of new liquid metal flow control components and, hence, will establish a basis for the future development of components for application in spaceflight. The design of various critical components in a bismuth PMS are described - reservoir, electromagnetic pump, hotspot flow sensor, and automated control system. Particular emphasis is given to material selection and high-temperature sealing techniques. Open loop calibration test results are reported, which validate the systems capability to deliver bismuth at mass flow rates ranging from 10 to 100 mg/sec with an uncertainty of less than +/- 5%. Results of integrated vaporizer/liquid PMS tests demonstrate all of the necessary elements of a complete bismuth feed system for electric propulsion.

  3. Liquid Bismuth Feed System for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Markusic, T. E.; Polzin, K. A.; Stanojev, B. J.

    2006-01-01

    Operation of Hall thrusters with bismuth propellant has been shown to be a promising path toward high-power, high-performance, long-lifetime electric propulsion for spaceflight missions. For example, the VHITAL project aims td accurately, experimentally assess the performance characteristics of 10 kW-class bismuth-fed Hall thrusters - in order to validate earlier results and resuscitate a promising technology that has been relatively dormant for about two decades. A critical element of these tests will be the precise metering of propellant to the thruster, since performance cannot be accurately assessed without an accurate accounting of mass flow rate. Earlier work used a pre/post-test propellant weighing scheme that did not provide any real-time measurement of mass flow rate while the thruster was firing, and makes subsequent performance calculations difficult. The motivation of the present work was to develop a precision liquid bismuth Propellant Management System (PMS) that provides real-time propellant mass flow rate measurement and control, enabling accurate thruster performance measurements. Additionally, our approach emphasizes the development of new liquid metal flow control components and, hence, will establish a basis for the future development of components for application in spaceflight. The design of various critical components in a bismuth PMS are described - reservoir, electromagnetic pump, hotspot flow sensor, and automated control system. Particular emphasis is given to material selection and high-temperature sealing techniques. Open loop calibration test results are reported, which validate the systems capability to deliver bismuth at mass flow rates ranging from 10 to 100 mg/sec with an uncertainty of less than +/- 5%. Results of integrated vaporizer/liquid PMS tests demonstrate all of the necessary elements of a complete bismuth feed system for electric propulsion.

  4. Influence of the ion energy on the structure of Bi and Fe2O3 thin films

    NASA Astrophysics Data System (ADS)

    Cardona, Dagoberto; Camps, Enrique; Escobar-Alarcón, L.; Rodil, Sandra E.

    2013-03-01

    Compounds containing bismuth, iron and oxygen (BFO) can result in materials with important magnetic and electrical properties for high-technology applications. We plan to prepare such compounds using the simultaneous ablation of bismuth and iron oxide targets. For that reason in the first part of this work we study the plasmas and the materials produced by ablation of bismuth or Fe2O3 targets, and then the two plasmas are combined in order to deposit the BFO compounds. The individual plasmas were characterized using a Langmuir probe, in order to measure the mean kinetic ion energy ( E p) and plasma density ( N p). Bismuth and magnetite-Fe3O4 thin films were obtained in high vacuum (2.7×10-4 Pa). Meanwhile for the deposition of α-Fe2O3 (hematite) or amorphous bismuth oxide thin films a reactive atmosphere (Ar/O2=80/20) was used. All depositions were made at room temperature. The bismuth thin films crystallized in the rhombohedral metallic system with preferential orientations that depended on the Bi-ion energy used. Bismuth oxide phases were only obtained after annealing of the Bi thin films at different temperatures. Iron oxide thin films reproducing the target stoichiometry were obtained at a certain value of iron-ion energy. Preliminary structural results of the BFO thin films obtained by the combination of the individual plasmas are presented.

  5. Coexistence of Topological Edge State and Superconductivity in Bismuth Ultrathin Film.

    PubMed

    Sun, Hao-Hua; Wang, Mei-Xiao; Zhu, Fengfeng; Wang, Guan-Yong; Ma, Hai-Yang; Xu, Zhu-An; Liao, Qing; Lu, Yunhao; Gao, Chun-Lei; Li, Yao-Yi; Liu, Canhua; Qian, Dong; Guan, Dandan; Jia, Jin-Feng

    2017-05-10

    Ultrathin freestanding bismuth film is theoretically predicted to be one kind of two-dimensional topological insulators. Experimentally, the topological nature of bismuth strongly depends on the situations of the Bi films. Film thickness and interaction with the substrate often change the topological properties of Bi films. Using angle-resolved photoemission spectroscopy, scanning tunneling microscopy or spectroscopy and first-principle calculation, the properties of Bi(111) ultrathin film grown on the NbSe2 superconducting substrate have been studied. We find the band structures of the ultrathin film is quasi-freestanding, and one-dimensional edge state exists on Bi(111) film as thin as three bilayers. Superconductivity is also detected on different layers of the film and the pairing potential exhibits an exponential decay with the layer thicknesses. Thus, the topological edge state can coexist with superconductivity, which makes the system a promising platform for exploring Majorana Fermions.

  6. Absorption and elimination of bismuth from oral doses of tripotassium dicitrato bismuthate.

    PubMed

    Froomes, P R; Wan, A T; Keech, A C; McNeil, J J; McLean, A J

    1989-01-01

    The pharmacokinetics of bismuth subcitrate were studied in plasma and urine under conditions of single and multiple dosing (28-56 days) using atomic absorption technique. Single dose plasma pharmacokinetics showed peak concentrations of 5.5-57.5 micrograms.l-1 (mean = 24.7 micrograms.l-1), reached between 30 and 60 min post dosing with an apparent biphasic elimination pattern. Multiple dose studies showed a continuing rise in plasma concentration and urine excretion rate reaching apparent steady-state levels over 7-29 days (mean = 18 days). Washout studies in 6 individuals reciprocated accumulation. Maximum equilibrated plasma levels of 7.6-58.3 micrograms.l-1 (mean = 38.3 micrograms.l-1) were well below those associated with encephalopathy. The half-life of bismuth elimination was 20.7 days. Present patterns of intermittent dosing with bismuth are unlikely to be associated with bismuth accumulation despite slow accumulation and elimination.

  7. Bismuth induced encephalopathy caused by tri potassium dicitrato bismuthate in a patient with chronic renal failure.

    PubMed Central

    Playford, R J; Matthews, C H; Campbell, M J; Delves, H T; Hla, K K; Hodgson, H J; Calam, J

    1990-01-01

    A 68 year old man with a creatinine clearance rate of only 15 ml/min took twice the recommended dose of tripotassium dicitrato bismuthate (TDB) as DeNol liquid; 10 ml qds; a total of 864 mg bismuth daily for two months. Whole blood bismuth concentrations rose to 880 micrograms/l and he developed global cerebral dysfunction with hallucinations, ataxia, and an abnormal EEG. Renal clearance of bismuth rose from 0.24 to 2.4 ml/min when the heavy metal chelator 2-3 dimercapto-1 propane sulphonic acid (DMPS) was given by mouth. Bismuth was measured by a novel method involving inductively coupled plasma source mass spectrometry. Fifty days after stopping TDB, whole blood bismuth concentrations fell to 46 micrograms/l and the patient's EEG returned to normal. His mental function also recovered completely. The case serves as a timely reminder that TDB should not be administered to patients with renal disorders, as stated in the data sheet. PMID:2323603

  8. Bismuth induced encephalopathy caused by tri potassium dicitrato bismuthate in a patient with chronic renal failure.

    PubMed

    Playford, R J; Matthews, C H; Campbell, M J; Delves, H T; Hla, K K; Hodgson, H J; Calam, J

    1990-03-01

    A 68 year old man with a creatinine clearance rate of only 15 ml/min took twice the recommended dose of tripotassium dicitrato bismuthate (TDB) as DeNol liquid; 10 ml qds; a total of 864 mg bismuth daily for two months. Whole blood bismuth concentrations rose to 880 micrograms/l and he developed global cerebral dysfunction with hallucinations, ataxia, and an abnormal EEG. Renal clearance of bismuth rose from 0.24 to 2.4 ml/min when the heavy metal chelator 2-3 dimercapto-1 propane sulphonic acid (DMPS) was given by mouth. Bismuth was measured by a novel method involving inductively coupled plasma source mass spectrometry. Fifty days after stopping TDB, whole blood bismuth concentrations fell to 46 micrograms/l and the patient's EEG returned to normal. His mental function also recovered completely. The case serves as a timely reminder that TDB should not be administered to patients with renal disorders, as stated in the data sheet.

  9. Probing bismuth ferrite nanoparticles by hard x-ray photoemission: Anomalous occurrence of metallic bismuth

    SciTech Connect

    Chaturvedi, Smita; Rajendra, Ranguwar; Ballav, Nirmalya; Kulkarni, Sulabha; Sarkar, Indranil; Shirolkar, Mandar M.; Jeng, U-Ser; Yeh, Yi-Qi

    2014-09-08

    We have investigated bismuth ferrite nanoparticles (∼75 nm and ∼155 nm) synthesized by a chemical method, using soft X-ray (1253.6 eV) and hard X-ray (3500, 5500, and 7500 eV) photoelectron spectroscopy. This provided an evidence for the variation of chemical state of bismuth in crystalline, phase pure nanoparticles. X-ray photoelectron spectroscopy analysis using Mg Kα (1253.6 eV) source showed that iron and bismuth were present in both Fe{sup 3+} and Bi{sup 3+} valence states as expected for bismuth ferrite. However, hard X-ray photoelectron spectroscopy analysis of the bismuth ferrite nanoparticles using variable photon energies unexpectedly showed the presence of Bi{sup 0} valence state below the surface region, indicating that bismuth ferrite nanoparticles are chemically inhomogeneous in the radial direction. Consistently, small-angle X-ray scattering reveals a core-shell structure for these radial inhomogeneous nanoparticles.

  10. 21 CFR 73.2110 - Bismuth citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... restrictions. The color additive bismuth citrate may be safely used in cosmetics intended for coloring hair on..., eyebrows, or hair on parts of the body other than the scalp. (d) Labeling. (1) The label of the color... abraded scalp. Do not use to color eyelashes, eyebrows, or hair on parts of the body other than the scalp...

  11. 21 CFR 73.2110 - Bismuth citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... restrictions. The color additive bismuth citrate may be safely used in cosmetics intended for coloring hair on..., eyebrows, or hair on parts of the body other than the scalp. (d) Labeling. (1) The label of the color... abraded scalp. Do not use to color eyelashes, eyebrows, or hair on parts of the body other than the scalp...

  12. 21 CFR 73.2110 - Bismuth citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... restrictions. The color additive bismuth citrate may be safely used in cosmetics intended for coloring hair on..., eyebrows, or hair on parts of the body other than the scalp. (d) Labeling. (1) The label of the color... abraded scalp. Do not use to color eyelashes, eyebrows, or hair on parts of the body other than the scalp...

  13. 21 CFR 73.2110 - Bismuth citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... restrictions. The color additive bismuth citrate may be safely used in cosmetics intended for coloring hair on..., eyebrows, or hair on parts of the body other than the scalp. (d) Labeling. (1) The label of the color... abraded scalp. Do not use to color eyelashes, eyebrows, or hair on parts of the body other than the scalp...

  14. 21 CFR 73.2110 - Bismuth citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... restrictions. The color additive bismuth citrate may be safely used in cosmetics intended for coloring hair on..., eyebrows, or hair on parts of the body other than the scalp. (d) Labeling. (1) The label of the color... abraded scalp. Do not use to color eyelashes, eyebrows, or hair on parts of the body other than the scalp...

  15. Development and Investigation of Bismuth Nanowires

    DTIC Science & Technology

    2008-06-05

    To: technicalreports@afosr.af.mil Subject: Final Statement to Dr. Donald Silversmith Contract/Grant Title: Development and Investigation of...Report Development and Investigation of Bismuth Nanowires – Start up phase FA9550-07-1-0472 To Dr. Donald Silversmith AFOSR PI: Jimmy Xu

  16. Hydrothermal synthesis map of bismuth titanates

    SciTech Connect

    Sardar, Kripasindhu; Walton, Richard I.

    2012-05-15

    The hydrothermal synthesis of four bismuth titanate materials from common bismuth and titanium precursors under hydrothermal conditions is described. Reaction of NaBiO{sub 3}{center_dot}2H{sub 2}O and anatase TiO{sub 2} in concentrated NaOH solution at 240 Degree-Sign C is shown to produce perovskite and sillenite phases Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} and Bi{sub 12}TiO{sub 20}, depending on the ratio of metal precursors used. When KOH solution is used and a 1:1 ratio of the same precursors, a pyrochlore Bi{sub 1.43}Ti{sub 2}O{sub 6}(OH){sub 0.29}(H{sub 2}O){sub 0.66} is formed. The use of a mixture of HNO{sub 3} and NaOH is shown to facilitate the formation of the Aurivillius-type bismuth titanate Bi{sub 4}Ti{sub 3}O{sub 12}. The phases have been isolated separately as phase-pure powders and profile refinement of powder X-ray diffraction data allows comparisons with comparable materials reported in the literature. Analysis of Bi L{sub III}-edge X-ray absorption near edge structure (XANES) spectra of the materials shows the oxidation state of bismuth is +3 in all of the hydrothermally derived products. - Graphical abstract: Use of NaBiO{sub 3}{center_dot}2H{sub 2}O and TiO{sub 2} as reagents under hydrothermal conditions allows the phase-pure preparation of four crystalline bismuth titanate materials. Highlights: Black-Right-Pointing-Pointer NaBiO{sub 3} and TiO{sub 2} under hydrothermal conditions allow formation of bismuth titanates. Black-Right-Pointing-Pointer Synthesis of four distint phases has been mapped. Black-Right-Pointing-Pointer Bi LIII-edge XANES shows Bi is reduced to oxidation state +3 in all materials. Black-Right-Pointing-Pointer A new hydrated bismuth titanate pyrochlore has been isolated.

  17. Ferroelectric properties of niobium-doped strontium bismuth tantalate films

    NASA Astrophysics Data System (ADS)

    Golosov, D. A.; Zavadski, S. M.; Kolos, V. V.; Turtsevich, A. S.

    2016-01-01

    The characteristics of ferroelectric thin films of strontium bismuth tantalate (SBT) and niobium-doped strontium bismuth tantalate (SBTN) deposited by radio-frequency (RF) magnetron sputtering on Pt/TiO2/SiO2/Si substrates were investigated. For the formation of the structure of the ferroelectric material, the deposited films were subjected to a subsequent annealing at temperatures of 970-1070 K in an O2 atmosphere. The results of the X-ray diffraction analysis demonstrated that, in contrast to SBT films, in which the Aurivillius phase is formed only at annealing temperatures of 1050-1070 K, the formation of this phase in SBTN films is observed already at a temperature of 970 K. The dependences of the dielectric permittivity, remanent polarization, and coercive force of the SBT and SBTN films on the subsequent annealing conditions were determined. It was found that, upon doping of the SBT films with niobium, the remanent polarization increases by a factor of approximately three, the Curie temperature increases by 50 K, and the dielectric permittivity also increases. It was revealed that, in contrast to the SBT films, the polarization of the SBTN films is observed already at an annealing temperature of approximately 970 K. It was shown that the replacement of SBT films by SBTN films in the manufacture of high-density nonvolatile ferroelectric randomaccess memory (FeRAM) capacitor modules makes it possible to decrease the synthesis temperature from 1070 to 990-1000 K, which improves the compatibility with the planar technology of semiconductor devices. However, it turned out that an increase in the coercive field makes niobium-doped SBT films less attractive for the use in FeRAM.

  18. Autometallographic tracing of bismuth in human brain autopsies.

    PubMed

    Stoltenberg, M; Hogenhuis, J A; Hauw, J J; Danscher, G

    2001-07-01

    For decades, drugs containing bismuth have been used to treat gastrointestinal disorders. Although a variety of adverse effects, including neurological syndromes, have been recorded, the biological/toxicological effects of bismuth ions are far from disclosed. Until recently, only quantitative assessments were possible, but resent research has made histochemical tracing of bismuth possible. The technique involves silver enhancement of bismuth crystallites by autometallography (AMG). In the present study, the localization of bismuth was traced by AMG in sections of paraffin-embedded brain tissue obtained by autopsy from 6 patients suffering from bismuth intoxication in a period ranging from 1975 through 1977. Tissue was analyzed at light and electron microscopical levels, and the presence of bismuth further confirmed by proton-induced x-ray emission (PIXE). Clinical data and bismuth concentrations in blood, cerebellum, and thalamus were measured by atomic absorption spectrophotometry (AAS) and are reported here. Histochemical analyses demonstrate that bismuth accumulated in neurons and glia cells in the brain regions examined (neocortex, cerebellum, thalamus, hippocampus). Cerebellar blood vessels stained most intensely. The PIXE and AAS data correlated with the histochemical staining patterns and intensities. At the ultrastructural level, bismuth was found to accumulate intracellularly in lysosomes and extracellularly in the basement membranes of some vessels.

  19. Intense 2.7 µm emission and structural origin in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass.

    PubMed

    Guo, Yanyan; Li, Ming; Hu, Lili; Zhang, Junjie

    2012-01-15

    The 2.7 μm emission properties in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass were investigated in the present Letter. An intense 2.7 μm emission in Er3+-doped bismuthate glass was observed. It is found that Er3+-doped bismuthate glass possesses high spontaneous transition probability A (65.26 s(-1)) and large 2.7 μm emission cross section σ(em) (9.53×10(-21) cm2) corresponding to the stimulated emission of Er3+:4I11/2→4I13/2 transition. The emission characteristic and energy transfer process upon excitation of a conventional 980 nm laser diode in bismuthate glass were analyzed. Additionally, the structure of bismuthate glass was analyzed by the Raman spectrum. The advantageous spectroscopic characteristics of Er3+ single-doped bismuthate glass together with the prominent thermal property indicate that bismuthate glass might become an attractive host for developing solid-state lasers around 2.7 μm.

  20. Syntheses, crystal structures and characterizations of two new bismuth(III) arsenites

    SciTech Connect

    Liu Junhui; Kong Fang; Gai Yanli; Mao Jianggao

    2013-01-15

    Two new bismuth arsenites with two different structural types, namely, Bi{sub 2}O(AsO{sub 3})Cl (1), Bi{sub 8}O{sub 6}(AsO{sub 3}){sub 2}(AsO{sub 4}){sub 2} (2), have been synthesized by the solid-state reactions. Compound 1 exhibits novel 2D bismuth arsenite layers with Bi{sub 4}O{sub 4} rings capped by oxide anions, which are further interconnected by Bi-Cl-Bi bridges into a 3D network. Compound 2 contains both arsenite and arsenate anions, its 3D structures are based on 1D bismuth arsenite and 1D bismuth arsenate chains both along b-axis, which are interconnected by oxide anions via Bi-O-Bi bridges, forming 1D tunnels of Bi{sub 4}As{sub 4} 8-membered rings (MRs) along b-axis, the lone pairs of the arsenite groups are orientated toward the centers of the above tunnels. Thermogravimetric analysis indicated that both compounds display high thermal stability. Optical property measurements revealed that they are wide band-gap semiconductors. Both compounds display broad green-light emission bands centered at 506 nm under excitation at 380 and 388 nm. - Graphical abstract: Solid state reactions of Bi{sub 2}O{sub 3} (BiCl{sub 3}) and As{sub 2}O{sub 3} yielded two new compounds with two different structural types, namely, Bi{sub 2}O(AsO{sub 3})Cl (1), Bi{sub 8}O{sub 6}(AsO{sub 3}){sub 2}(AsO{sub 4}){sub 2} (2). They represent the first examples of bismuth arsenates. Highlights: Black-Right-Pointing-Pointer Solid state reactions of Bi{sub 2}O{sub 3} (BiCl{sub 3}) and As{sub 2}O{sub 3} yielded two new phases. Black-Right-Pointing-Pointer They represent the first examples of bismuth arsenites. Black-Right-Pointing-Pointer The two compounds exhibit two different structural types.

  1. Optical pumping and readout of bismuth hyperfine states in silicon for atomic clock applications

    PubMed Central

    Saeedi, K.; Szech, M.; Dluhy, P.; Salvail, J.Z.; Morse, K.J.; Riemann, H.; Abrosimov, N.V.; Nötzel, N.; Litvinenko, K.L.; Murdin, B.N.; Thewalt, M.L.W.

    2015-01-01

    The push for a semiconductor-based quantum information technology has renewed interest in the spin states and optical transitions of shallow donors in silicon, including the donor bound exciton transitions in the near-infrared and the Rydberg, or hydrogenic, transitions in the mid-infrared. The deepest group V donor in silicon, bismuth, has a large zero-field ground state hyperfine splitting, comparable to that of rubidium, upon which the now-ubiquitous rubidium atomic clock time standard is based. Here we show that the ground state hyperfine populations of bismuth can be read out using the mid-infrared Rydberg transitions, analogous to the optical readout of the rubidium ground state populations upon which rubidium clock technology is based. We further use these transitions to demonstrate strong population pumping by resonant excitation of the bound exciton transitions, suggesting several possible approaches to a solid-state atomic clock using bismuth in silicon, or eventually in enriched 28Si. PMID:25990870

  2. Efficient gas sensitivity in mixed bismuth ferrite micro (cubes) and nano (plates) structures

    SciTech Connect

    Waghmare, Shivaji D.; Jadhav, Vijaykumar V.; Gore, Shaym K.; Yoon, Seog-Joon; Ambade, Swapnil B.; Lokhande, B.J.; Mane, Rajaram S.; Han, Sung-Hwan

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Micro (cubes) structure embedded in nano (plates) of bismuth ferrite was prepared by a chemical method. ► These structures were characterized by XRD and SEM. ► LPG, CO{sub 2} and NH{sub 4} gases were exposed. ► Properties related to gas sensors were measured and reported. -- Abstract: Mixed micro (cubes) and nano (plates) structures of bismuth ferrite (BFO) have been synthesized by a simple and cost-effective wet-chemical method. Structural, morphological and phase confirmation characteristics are measured using X-ray diffraction, field-emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis techniques. The digital FE-SEM photo-images of BFO sample confirmed an incubation of discrete micro-cubes into thin and regularly placed large number of nano-plates. The bismuth ferrite, with mixed structures, films show considerable performance when used in liquefied petroleum (LPG), carbon dioxide (CO{sub 2}) and ammonium (NH{sub 3}) gas sensors application. Different chemical entities in LPG have made it more efficient with higher sensitivity, recovery and response times compared to CO{sub 2} and NH{sub 3} gases. Furthermore, effect of palladium surface treatment on the gas sensitivity and the charge transfer resistances of BFO mixed structures is investigated and reported.

  3. Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals.

    PubMed

    Teweldebrhan, Desalegne; Goyal, Vivek; Balandin, Alexander A

    2010-04-14

    Bismuth telluride (Bi(2)Te(3)) and its alloys are the best bulk thermoelectric materials known today. In addition, stacked quasi-two-dimensional (2D) layers of Bi(2)Te(3) were recently identified as promising topological insulators. In this Letter we describe a method for "graphene-inspired" exfoliation of crystalline bismuth telluride films with a thickness of a few atoms. The atomically thin films were suspended across trenches in Si/SiO(2) substrates, and subjected to detail material characterization, which included atomic force microscopy and micro-Raman spectroscopy. The presence of the van der Waals gaps allowed us to disassemble Bi(2)Te(3) crystal into its quintuple building blocks-five monatomic sheets-consisting of Te((1))-Bi-Te((2))-Bi-Te((1)). By altering the thickness and sequence of atomic planes, we were able to create "designer" nonstoichiometric quasi-2D crystalline films, change their composition and doping, the type of charge carriers as well as other properties. The exfoliated quintuples and ultrathin films have low thermal conductivity, high electrical conductivity, and enhanced thermoelectric properties. The obtained results pave the way for producing stacks of crystalline bismuth telluride quantum wells with the strong spatial confinement of charge carriers and acoustic phonons, beneficial for thermoelectric devices. The developed technology for producing free-standing quasi-2D layers of Te((1))-Bi-Te((2))-Bi-Te((1)) creates an impetus for investigation of the topological insulators and their possible practical applications.

  4. Environmentally friendly organic synthesis using bismuth(III) compounds.

    PubMed

    Krabbe, Scott W; Mohan, Ram S

    2012-01-01

    With increasing environmental concerns, the need for environmentally friendly organic synthesis has gained increased importance. In this regard, bismuth(III) compounds are especially attractive as "green" reagents and catalysts for organic synthesis. Bismuth(III) compounds are remarkably nontoxic, relatively air and moisture stable, and easy to handle. The contributions from our laboratory in the last 5 years in the field of applications of bismuth(III) compounds as catalysts are presented.

  5. The effect of tripotassium dicitrato bismuthate on pepsin activity.

    PubMed

    De Beaux, A C; Defize, J; Hunt, R H

    1989-08-01

    We have studied the effect of tripotassium dicitrato bismuthate on the peptic activity of gastric juice, both basal and pentagastrin-stimulated, from five healthy volunteers using porcine pepsin solution as a control. Tripotassium dicitrato bismuthate showed no inhibition of the proteolytic activity of either the pure porcine or the human pepsin in the gastric juice. The ulcer healing efficacy of tripotassium dicitrato bismuthate is unlikely to be related to a gastric anti-protease effect.

  6. Comparative pharmacokinetics of bismuth from ranitidine bismuth citrate (GR122311X), a novel anti-ulcerant and tripotassium dicitrato bismuthate (TDB).

    PubMed

    Lacey, L F; Frazer, N M; Keene, O N; Smith, J T

    1994-01-01

    GR122311X (ranitidine bismuth citrate, Glaxo Group Research Ltd.) is a salt of ranitidine with a complex of bismuth and citric acid which is being developed for the treatment of peptic ulceration. In this study, 4 groups of 12 healthy male subjects were dosed for 10 days with either GR122311X 500 mg bid (301 mg bismuth per day), GR122311X 1.0 g bid (602 mg bismuth per day), tripotassium dicitrato bismuthate (TDB, DeNoltab, Gist Brocades Ltd., Weybridge, England) 240 mg bid (431 mg bismuth per day) or placebo. After the last dose the geometric mean for Cmax for 500 mg bid of GR122311X was 5 ng.g-1, for 1.0 g bid GR122311X it was 12 ng.g-1 and it was 21 ng.g-1 for 240 mg TDB bid. The corresponding trough plasma levels were 2 ng.g-1, 4 ng.g-1 and 4 ng.g-1, respectively. The AUC over a dosing interval after the last dose (AUC tau) were 34 ng.h.g-1, 71 ng.h.g-1 and 79 ng.h.g-1, respectively. The bismuth urinary recoveries over the last dosing interval (Ae tau) were 97 micrograms, 227 micrograms and 309 micrograms, respectively, which is less than 1% of the administered doses. The renal clearance of bismuth was less than the glomerular filtration rate. After adjustment for bismuth dose, the Cmax for GR122311X 500 mg was 35% that of TDB, while for GR122311X 1.0 g the Cmax was 42% that of TDB. Similar differences were observed for Ae tau. In conclusion bismuth pharmacokinetics after oral administration of GR1223311X exhibited lower Ae tau and Cmax, with a much narrower Cmax range than those observed for TDB.

  7. Dielectric investigations of polycrystalline samarium bismuth ferrite ceramic

    NASA Astrophysics Data System (ADS)

    Palaimiene, E.; Macutkevic, J.; Karpinsky, D. V.; Kholkin, A. L.; Banys, J.

    2015-01-01

    Results of broadband dielectric investigations of samarium doped bismuth ferrite ceramics are presented in wide temperature range (20-800 K). At temperatures higher than 400 K, the dielectric properties of samarium bismuth ferrite ceramics are governed by Maxwell-Wagner relaxation and electrical conductivity. The DC conductivity increases and activation energy decreases with samarium concentration. In samarium doped bismuth ferrite, the ferroelectric phase transition temperature decreases with samarium concentration and finally no ferroelectric order is observed at x = 0.2. At lower temperatures, the dielectric properties of ferroelectric samarium doped bismuth ferrite are governed by ferroelectric domains dynamics. Ceramics with x = 0.2 exhibit the relaxor-like behaviour.

  8. NEGATIVE PION PHOTOPRODUCTION FROM BISMUTH ACCOMPANIED BY NEUTRON EMISSION,

    DTIC Science & Technology

    BISMUTH, PIONS, EMISSIVITY, BREMSSTRAHLUNG, NUCLEI, ALPHA PARTICLE DETECTORS, PROTON REACTIONS, RADIOACTIVITY, PHOTONUCLEAR REACTIONS, POLONIUM , NUCLEAR STRUCTURE, MATHEMATICAL MODELS, PROBABILITY, SURFACES, DISTRIBUTION.

  9. Growth of epitaxial bismuth and gallium substituted lutetium iron garnet films by pulsed laser deposition

    SciTech Connect

    Leitenmeier, Stephan; Heinrich, Andreas; Lindner, Joerg K. N.; Stritzker, Bernd

    2006-04-15

    Epitaxial bismuth and gallium substituted lutetium iron garnet thin films have been grown on (100) oriented gadolinium gallium garnet Gd{sub 3}Ga{sub 5}O{sub 12} substrates by pulsed laser deposition. The films have been studied using x-ray diffraction, high resolution x-ray diffraction, Rutherford backscattering spectroscopy, transmission electron microscopy, and electron diffraction. We obtained smooth films with thicknesses between 0.3 and 1.0 {mu}m showing good crystalline quality and epitaxial growth.

  10. Structures of small bismuth cluster cations

    NASA Astrophysics Data System (ADS)

    Kelting, Rebecca; Baldes, Alexander; Schwarz, Ulrike; Rapps, Thomas; Schooss, Detlef; Weis, Patrick; Neiss, Christian; Weigend, Florian; Kappes, Manfred M.

    2012-04-01

    The structures of bismuth cluster cations in the range between 4 and 14 atoms have been assigned by a combination of gas phase ion mobility and trapped ion electron diffraction measurements together with density functional theory calculations. We find that above 8 atoms the clusters adopt prolate structures with coordination numbers between 3 and 4 and highly directional bonds. These open structures are more like those seen for clusters of semiconducting-in-bulk elements (such as silicon) rather than resembling the compact structures typical for clusters of metallic-in-bulk elements. An accurate description of bismuth clusters at the level of density functional theory, in particular of fragmentation pathways and dissociation energetics, requires taking spin-orbit coupling into account. For n = 11 we infer that low energy isomers can have fragmentation thresholds comparable to their structural interconversion barriers. This gives rise to experimental isomer distributions which are dependent on formation and annealing histories.

  11. Li+ ion dynamics in strontium bismuthate glasses

    NASA Astrophysics Data System (ADS)

    Dutta, A.; Ghosh, A.

    2004-11-01

    Ion transport in Li2O-Bi2O3-SrO glasses has been studied in the frequency range 10 Hz-2 MHz and in the temperature range 263-483 K. The variation of the dc conductivity and the activation energy of these glasses with composition has been compared with those of bismuthate and lead bismuthate glasses. The frequency dependent conductivity has been studied using both modulus and conductivity formalisms. We have observed that the variation of the power law exponent with Li2O content is in contrast to that for the Li2O-Bi2O3 and Li2O-Bi2O3-PbO glasses. The values of the non-exponential parameter for the Li2O-Bi2O3-SrO glasses are lower than those for the binary Li2O-Bi2O3 glasses.

  12. Bismuth film electrodes for heavy metals determination

    NASA Astrophysics Data System (ADS)

    Rehacek, Vlastimil; Hotovy, Ivan; Vojs, Marian; Mika, Fedor

    2007-05-01

    Bismuth film electrodes (BiFEs) have a potential to replace toxic mercury used most frequently for determination of heavy metals (Cd, Pb, Zn) by anodic stripping voltammetry. We prepared a graphite disc electrode (0.5 mm in diameter) from a pencil-lead rod and developed a nitrogen doped diamond-like carbon (NDLC) microelectrode array consisting of 50 625 microdiscs with 3 μm in diameter and interelectrode distances of 20 μm on a highly conductive silicon substrate as a support for BiFEs. The disc graphite BiFE was used for simultaneous determination of Pb(II), Cd(II) and Zn(II) by square wave voltammetry (SWV) in an aqueous solution. We found the optimum bismuth-to-metal concentration ratio in the solution to be 20. The dependence of the stripping responses on the concentration of target metals was linear in the range from 1×10 -8 to 1.2×10 -7 mol/L. Detection limits 2.4×10 -9 mol/L for Pb(II), 2.9×10 -9 mol/L for Cd(II) and 1.2×10 -8 mol/L for Zn(II) were estimated. A bismuth-plated NDLC microelectrode array was used for Pb(II) determination by differential pulse voltammetry (DPV) in an aqueous solution. We found that the stripping current for bismuth-plated NDLC array was linear in the concentration range of Pb(II) from 2×10 -8 to 1.2×10 -7 mol/L. The detection limit 2.2×10 -8 mol/L was estimated from a calibration plot.

  13. Spin dynamics of complex oxides, bismuth-antimony alloys, and bismuth chalcogenides

    NASA Astrophysics Data System (ADS)

    Sahin, Cuneyt

    The emerging field of spintronics relies on the manipulation of electron spin in order to use it in spin-based electronics. Such a paradigm change has to tackle several challenges including finding materials with sufficiently long spin lifetimes and materials which are efficient in generating pure spin currents. This thesis predicts that two types of material families could be a solution to the aforementioned challenges: complex oxides and bismuth based materials. We derived a general approach for constructing an effective spin-orbit Hamiltonian which is applicable to all nonmagnetic materials. This formalism is useful for calculating spin-dependent properties near an arbitrary point in momentum space. We also verified this formalism through comparisons with other approaches for III-V semiconductors, and its general applicability is illustrated by deriving the spin-orbit interaction and predicting spin lifetimes for strained strontium titanate (STO) and a two-dimensional electron gas in STO (such as at the LAO/STO interface). Our results suggest robust spin coherence and spin transport properties in STO related materials even at room temperature. In the second part of the study we calculated intrinsic spin Hall conductivities for bismuth-antimony (BISb) semimetals with strong spin-orbit couplings, from the Kubo formula and using Berry curvatures evaluated throughout the Brillouin zone from a tight-binding Hamiltonian. Nearly crossing bands with strong spin-orbit interaction generate giant spin Hall conductivities in these materials, ranging from 474 ((h/e)O--1cm--1) for bismuth to 96((h/e)O--1cm --1) for antimony; the value for bismuth is more than twice that of platinum. The large spin Hall conductivities persist for alloy compositions corresponding to a three-dimensional topological insulator state, such as Bi0.83Sb0.17. The spin Hall conductivity could be changed by a factor of 5 for doped Bi, or for Bi0.83Sb0.17, by changing the chemical potential by 0.5 e

  14. Cryogenic exciter

    DOEpatents

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  15. The dependence of singlet exciton relaxation on excitation density and temperature in polycrystalline tetracene thin films: kinetic evidence for a dark intermediate state and implications for singlet fission.

    PubMed

    Burdett, Jonathan J; Gosztola, David; Bardeen, Christopher J

    2011-12-07

    The excited state dynamics of polycrystalline tetracene films are studied using femtosecond transient absorption in combination with picosecond fluorescence, continuing work reported in an earlier paper [J. J. Burdett, A. M. Muller, D. Gosztola, and C. J. Bardeen, J. Chem. Phys. 133, 144506 (2010)]. A study of the intensity dependence of the singlet state decay is conducted to understand the origins of the discrepancy between the broadband transient absorption and fluorescence experiments seen previously. High-sensitivity single channel transient absorption experiments allow us to compare the transient absorption dynamics to the fluorescence dynamics measured at identical laser fluences. At high excitation densities, an exciton-exciton annihilation rate constant of ~1 × 10(-8) cm(3) s(-1) leads to rapid singlet decays, but at excitation densities of 2 × 10(17) cm(-3) or less the kinetics of the transient absorption match those of the fluorescence. At these lower excitation densities, both measurements confirm that the initially excited singlet state relaxes with a decay time of 80 ± 3 ps, not 9.2 ps as claimed in the earlier paper. In order to investigate the origin of the singlet decay, the wavelength-resolved fluorescence dynamics were measured at 298 K, 77 K, and 4 K. A high-energy J-type emitting species undergo a rapid (~100 ps) decay at all temperatures, while at 77 K and 4 K additional species with H-type and J-type emission lineshapes have much longer lifetimes. A global analysis of the wavelength-dependent decays shows that the initial ~100 ps decay occurs to a dark state and not via energy transfer to lower energy bright states. Varying the excitation wavelength from 400 nm to 510 nm had no effect on the fast decay, suggesting that there is no energy threshold for the initial singlet relaxation. The presence of different emitting species at different temperatures means that earlier interpretations of the fluorescence behavior in terms of one singlet

  16. 21 CFR 520.1204 - Kanamycin, bismuth subcarbonate, activated attapulgite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Kanamycin, bismuth subcarbonate, activated... § 520.1204 Kanamycin, bismuth subcarbonate, activated attapulgite. (a) Specifications—(1) Each 5 milliliters (mL) of suspension contains 100 milligrams (mg) kanamycin (as the sulfate), 250 mg...

  17. 21 CFR 520.1204 - Kanamycin, bismuth subcarbonate, activated attapulgite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Kanamycin, bismuth subcarbonate, activated... § 520.1204 Kanamycin, bismuth subcarbonate, activated attapulgite. (a) Specifications—(1) Each 5 milliliters (mL) of suspension contains 100 milligrams (mg) kanamycin (as the sulfate), 250 mg...

  18. 21 CFR 520.1204 - Kanamycin, bismuth subcarbonate, activated attapulgite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Kanamycin, bismuth subcarbonate, activated... § 520.1204 Kanamycin, bismuth subcarbonate, activated attapulgite. (a) Specifications—(1) Each 5 milliliters (mL) of suspension contains 100 milligrams (mg) kanamycin (as the sulfate), 250 mg...

  19. Hall-Effect Thruster Utilizing Bismuth as Propellant

    NASA Technical Reports Server (NTRS)

    Szabo, James; Gasdaska, Charles; Hruby, Vlad; Robin, Mike

    2008-01-01

    A laboratory-model Hall-effect spacecraft thruster was developed that utilizes bismuth as the propellant. Xenon was used in most prior Hall-effect thrusters. Bismuth is an attractive alternative because it has a larger atomic mass, a larger electron-impact-ionization cross-section, and is cheaper and more plentiful.

  20. 21 CFR 520.1204 - Kanamycin, bismuth subcarbonate, activated attapulgite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... milliliters (mL) of suspension contains 100 milligrams (mg) kanamycin (as the sulfate), 250 mg bismuth subcarbonate, and 500 mg activated attapulgite (aluminum magnesium silicate). (2) Each tablet contains 100 mg kanamycin (as the sulfate), 250 mg bismuth subcarbonate, and 500 mg activated attapulgite. (b) Sponsor....

  1. 21 CFR 520.1204 - Kanamycin, bismuth subcarbonate, activated attapulgite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... milliliters (mL) of suspension contains 100 milligrams (mg) kanamycin (as the sulfate), 250 mg bismuth subcarbonate, and 500 mg activated attapulgite (aluminum magnesium silicate). (2) Each tablet contains 100 mg kanamycin (as the sulfate), 250 mg bismuth subcarbonate, and 500 mg activated attapulgite. (b) Sponsor....

  2. Optical analysis of samarium doped sodium bismuth silicate glass

    NASA Astrophysics Data System (ADS)

    Thomas, V.; Sofin, R. G. S.; Allen, M.; Thomas, H.; Biju, P. R.; Jose, G.; Unnikrishnan, N. V.

    2017-01-01

    Samarium doped sodium bismuth silicate glass was synthesized using the melt quenching method. Detailed optical spectroscopic studies of the glassy material were carried out in the UV-Vis-NIR spectral range. Using the optical absorption spectra Judd-Ofelt (JO) parameters are derived. The calculated values of the JO parameters are utilized in evaluating the various radiative parameters such as electric dipole line strengths (Sed), radiative transition probabilities (Arad), radiative lifetimes (τrad), fluorescence branching ratios (β) and the integrated absorption cross- sections (σa) for stimulated emission from various excited states of Sm3 +‡ ion. The principal fluorescence transitions are identified by recording the fluorescence spectrum. Our analysis revealed that the novel glassy system has the optimum values for the key parameters viz. spectroscopic quality factor, optical gain, stimulated emission cross section and quantum efficiency, which are required for a high performance optical amplifier. Calculated chromaticity co-ordinates (0.61, 0.38) also confirm its application potential in display devices.

  3. Gastroprotective effect of ranitidine bismuth citrate is associated with increased mucus bismuth concentration in rats.

    PubMed Central

    Tanaka, S; Guth, P H; Paulsen, G; Kaunitz, J D

    1996-01-01

    BACKGROUND: Antisecretory and bismuth compounds protect the gastric mucosa from injury resulting from non-steroidal anti-inflammatory drugs. AIM: To study the mechanism underlying the gastroprotective effects of ranitidine bismuth citrate (GG311) in rats. METHODS: Indomethacin rat injury model and in vivo microscopy in which acid output, surface cell intracellular pH (pHi), gastric mucus gel thickness, and mucosal blood flow were measured simultaneously. RESULTS: In injury studies, GG311 dose dependently protected against severe injury induced by indomethacin (60 mg/kg subcutaneously). In in vivo microscopic studies, indomethacin significantly decreased mucus gel thickness and increased the initial rate of acidification of gastric surface cells when the superfusate pH was lowered from 7.4 to 1.0, and impaired pHi during acid exposure. Indomethacin had no effect on mucosal blood flow or acid output. GG311 alone had no effect on gel thickness, blood flow, or pHi homeostasis during acid exposure, but improved the initial acidification rate and pHi during superfusion with pH 1.0 solutions in the presence of indomethacin. In separate experiments, indomethacin pretreatment considerably increased gastric mucus bismuth concentrations in rats given GG311. CONCLUSIONS: The gastroprotective effect of GG311 against indomethacin induced gastric injury is associated with high and prolonged gastric mucus bismuth concentrations, which may impair proton permeation across the mucus gel. PMID:8977335

  4. Nanoscale Andreev Reflection Spectroscopy on Bismuth-Chalcogenide Topological Insulators

    NASA Astrophysics Data System (ADS)

    Granstrom, C. R.; Fridman, I.; Liang, R. X.; Lei, H.; Petrovic, C.; Yang, Shuo; Wu, K. H.; Wei, J. Y. T.

    Andreev reflection (AR) is the basic mechanism underlying the superconducting proximity effect which, at the interface between a topological insulator (TI) and a spin-singlet superconductor, can induce chiral p-wave pairing in the TI. Despite this novel importance, it is not well understood how AR is affected by the unique attributes of a three-dimensional TI, namely the Dirac dispersion and helical spin-polarization of its surface states. In this work, we use both s-wave and d-wave superconducting tips to perform AR spectroscopy at 4.2 K on flux-grown Bi2Se3 and Bi2Te3 single crystals, as well as epitaxial Bi2Se3 thin films grown on SrTiO3 substrates by molecular beam epitaxy. These AR measurements are complemented by scanning tunneling spectroscopy, in order to characterize the superconducting tip as well as the doping level and surface condition of the TI sample. Our data are analyzed using BTK theory, in light of the characteristic band structure of bismuth chalcogenides, to elucidate how the band structure affects the AR process. Work supported by: NSERC, CFI-OIT, the Canadian Institute for Advanced Research, and the Department of Energy.

  5. Economic bismuth-film microsensor for anodic stripping analysis of trace heavy metals using differential pulse voltammetry.

    PubMed

    Legeai, Sophie; Soropogui, Koïkoï; Cretinon, Martin; Vittori, Olivier; Heeren De Oliveira, Arno; Barbier, Frédérique; Grenier-Loustalot, Marie-Florence

    2005-11-01

    Stripping analysis has been widely recognised as a powerful tool in trace metal analysis. Its remarkable sensitivity is attributed to the combination of a preconcentration step coupled with pulse measurements that generate an extremely high signal-to-background ratio. Mercury-based electrodes have traditionally been used to achieve high reproducibility and sensitivity in the stripping technique. Because of the toxicity of mercury, however, new alternative electrode materials are highly desired, particularly for on-site monitoring. Use of thin films of bismuth deposited on platinum or glassy-carbon substrates has recently been proposed as a possible alternative to mercury--bismuth is "environmentally friendly", of low toxicity, and is in widespread pharmaceutical use. In this paper the preparation of economic bismuth-film microelectrodes by electrodeposition on a copper substrate and their application to heavy metal analysis are described. Bismuth-film electrodes were prepared by potentiostatic electrodeposition. Optimum conditions for chemical and electrochemical deposition to obtain an adherent, reproducible, and robust deposit were determined. The suitability of such microelectrodes for analysis of heavy metals was evaluated by anodic stripping voltammetry of cadmium. The analytical performance of bismuth-film electrodes for anodic stripping voltammetry of heavy metals was evaluated for non-deaerated solutions containing Cd2+, Pb2+, and Zn2+ ions. Well-defined peaks with low background current were obtained by use of differential pulse voltammetry. Linear calibration plots were obtained for Cd2+ in acidified tap water at concentrations ranging from 2 x 10(-8) to 1 x 10(-7) mol L(-1) and from 1 x 10(-7) to 1 x 10(-6) mol L(-1) with relative standard deviations of 5% (n = 15) at the 1 x 10(-7) mol L(-1) level. The method was then successfully used to monitor the Cd2+ content of plant extracts and validated by polarographic and ICP-MS measurements. These results

  6. First-Principles Calculation of Femtosecond Symmetry-Breaking Atomic Forces in Photoexcited Bismuth

    NASA Astrophysics Data System (ADS)

    Murray, Éamonn D.; Fahy, Stephen

    2015-02-01

    We present a first-principles method for the calculation of the polarization-dependent atomic forces resulting from optical excitation in a solid. We calculate the induced force driving the Eg phonon mode in bismuth immediately after absorption of polarized light. When radiation with polarization perpendicular to the c axis is absorbed, the photoexcited charge density breaks the threefold rotational symmetry, leading to an atomic force component perpendicular to the axis. We calculate the initial excited electronic distribution as a function of photon energy and polarization and find the resulting atomic force components parallel and perpendicular to the axis. The magnitude of the calculated force is in excellent agreement with that derived from recent measurements of the amplitude of Eg atomic motion and the decay time of several femtoseconds for the driving force.

  7. Aging phenomenon of stabilized bismuth oxides

    SciTech Connect

    Jiang, N.; Buchanan, R.M.; Henn, F.E.G.; Marshall, A.F.; Stevenson, D.A. . Dept. of Materials Science and Engineering); Washsman, E.D. . Materials Research Center)

    1994-03-01

    Stabilized bismuth oxides exhibit a decay in conductivity when annealed at temperatures below 600 C. The authors refer to this phenomenon as aging and it is distinct from a conventional crystallographic phase transformation. This phenomenon is revealed by an endotherm from DSC thermal analysis and results in the formation of a superstructure observable by TEM diffraction patterns, yet no change in structure is observable by XRD. Since oxygen vacancies are the mobile defects responsible for ionic conductivity, the authors attribute the aging process to the ordering of oxygen vacancies by an order-disorder transition below [approximately]600 C.

  8. An evaluated neutronic data file for bismuth

    SciTech Connect

    Guenther, P.T.; Lawson, R.D.; Meadows, J.W.; Smith, A.B.; Smith, D.L.; Sugimoto, M. ); Howerton, R.J. )

    1989-11-01

    A comprehensive evaluated neutronic data file for bismuth, extending from 10{sup {minus}5} eV to 20.0 MeV, is described. The experimental database, the application of the theoretical models, and the evaluation rationale are outlined. Attention is given to uncertainty specification, and comparisons are made with the prior ENDF/B-V evaluation. The corresponding numerical file, in ENDF/B-VI format, has been transmitted to the National Nuclear Data Center, Brookhaven National Laboratory. 106 refs., 10 figs., 6 tabs.

  9. Understanding Photocharging Effects on Bismuth Vanadate.

    PubMed

    Liu, Erik Y; Thorne, James E; He, Yumin; Wang, Dunwei

    2017-07-12

    Bismuth vanadate (BiVO4) is a promising material for photoelectrochemical water oxidation. Recently, it has been shown that "photocharging" BiVO4 results in an improved water oxidation performance. However, the understanding of how BiVO4 is being improved has been lacking. Here we study the surface kinetics of BiVO4 using intensity-modulated photocurrent spectroscopy and show that photocharging BiVO4 results in both surface and bulk improvements. This result sheds light on how the surface charge transfer and bulk charge transport of BiVO4 respond to illumination.

  10. Quantum conductance in semimetallic bismuth nanocontacts.

    PubMed

    Rodrigo, J G; García-Martín, A; Sáenz, J J; Vieira, S

    2002-06-17

    Electronic transport properties of bismuth nanocontacts are analyzed using a low temperature scanning tunneling microscope. The subquantum steps observed in the conductance versus elongation curves give evidence of atomic rearrangements in the contact. The quantum nature of the conductance reveals itself through peaks in the conductance histograms. The shape of the curves at 77 K is described by a simple gliding mechanism for the contact evolution during elongation. The different behavior at 4 K suggests a transition from light to heavy charge carriers as the contact cross section is decreased.

  11. Optical properties of bismuth tellurite based glass.

    PubMed

    Oo, Hooi Ming; Mohamed-Kamari, Halimah; Wan-Yusoff, Wan Mohd Daud

    2012-01-01

    A series of binary tellurite based glasses (Bi(2)O(3))(x) (TeO(2))(100-) (x) was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi(3+) increase, this is due to the increased polarization of the ions Bi(3+) and the enhanced formation of non-bridging oxygen (NBO). The Fourier transform infrared spectroscopy (FTIR) results show the bonding of the glass sample and the optical band gap, E(opt) decreases while the refractive index increases when the ion Bi(3+) content increases.

  12. Optical Properties of Bismuth Tellurite Based Glass

    PubMed Central

    Oo, Hooi Ming; Mohamed-Kamari, Halimah; Wan-Yusoff, Wan Mohd Daud

    2012-01-01

    A series of binary tellurite based glasses (Bi2O3)x (TeO2)100−x was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi3+ increase, this is due to the increased polarization of the ions Bi3+ and the enhanced formation of non-bridging oxygen (NBO). The Fourier transform infrared spectroscopy (FTIR) results show the bonding of the glass sample and the optical band gap, Eopt decreases while the refractive index increases when the ion Bi3+ content increases. PMID:22605999

  13. High T(sub c) thin film superconductors: Preparation, patterning and characterization

    NASA Astrophysics Data System (ADS)

    Azoulay, J.

    A conventional oil-pumped vacuum system equipped with resistively heated tungsten boat sources was used for evaporation of bismuth- or yttrium-based cuprates for high T(sub c) thin film superconductors. A well-ground mixture with atomic proportions of bismuth, SrF2, CaF2 and copper for bismuth-based material, and of YF3, BaF2 and copper for yttrium-based material, was inserted into the boat and then resistively evaporated onto different substrates such as MgO, ZrO2 and SrTiO3 kept at room temperature. Yttrium-based thin films were found to have a better quality upon reduction of fluorine in the constituents. Thus, films prepared with an yttrium BaF2 and copper mixture show a metallic-like behavior, sharper transition and higher zero-resistance temperature as compared with that of films obtained by using a YF2 constiuent instead of yttrium. Bismuth-based thin films were found to lose bismuth during heat treatment unless the copper constiuent ended the evaporation process and was subsequently fully oxidized at 400 C. Bismuth-based patterned films were easily obtained by using a lift-off photolithographic method. Typical thickness of the films was measured to be about 0.5 micron after heat treatment.

  14. Chirp excitation

    NASA Astrophysics Data System (ADS)

    Khaneja, Navin

    2017-09-01

    The paper describes the design of broadband chirp excitation pulses. We first develop a three stage model for understanding chirp excitation in NMR. We then show how a chirp π pulse can be used to refocus the phase of the chirp excitation pulse. The resulting magnetization still has some phase dispersion in it. We show how a combination of two chirp π pulses instead of one can be used to eliminate this dispersion, leaving behind a small residual phase dispersion. The excitation pulse sequence presented here allows exciting arbitrary large bandwidths without increasing the peak rf-amplitude. Experimental excitation profiles for the residual HDO signal in a sample of 99.5 % D2O are displayed as a function of resonance offset. Although methods presented in this paper have appeared elsewhere, we present complete analytical treatment that elucidates the working of these methods.

  15. Excitation and propagation of X-ray fluorescence through thin devices with hollowed ordered structures: comparison of experimental and theoretical spectra.

    PubMed

    Mazuritskiy, M I; Dabagov, S B; Marcelli, A; Lerer, A M; Dziedzic-Kocurek, K

    2016-01-01

    The lack of models describing the propagation of X-rays in waveguides and the interference mechanism between incident and reflected radiation waves hamper the understanding and the control of wave propagation phenomena occurring in many real systems. Here, experimental spectra collected at the exit of microchannel plates (MCPs) under the total X-ray reflection condition are presented. The results are discussed in the framework of a theoretical model in which the wave propagation is enhanced by the presence of a transition layer at the surface. The angular distributions of the propagating radiation at the exit of these MCPs with microchannels of ∼3 µm diameter will also be presented and discussed. These spectra show contributions associated with the reflection of the primary monochromatic beam and with the fluorescence radiation originating from the excitation of atoms composing the surface of the microchannel. The soft X-ray fluorescence spectra collected at the exit of microcapillaries were analyzed in the framework of a wave approximation while diffraction contributions observed at the exit of these hollow X-ray waveguides have been calculated using the Fraunhofer diffraction model for waves in the far-field domain. Data collected at the Si L-edge show that in glassy MCPs the fluorescence radiation can be detected only when the energy of the primary monochromatic radiation is above the absorption edge for grazing angles higher than half of the critical angle of the total reflection phenomenon. Experimental data and simulations of the propagating radiation represent a clear experimental confirmation of the channeling phenomenon of the excited fluorescence radiation inside a medium and point out that a high transmission can be obtained in waveguide optics for parameters relevant to X-ray imaging.

  16. Design and fabrication technology of thinned backside-excited CCD imagers and the family of the intensified electron-bombarded CCD image tubes

    NASA Astrophysics Data System (ADS)

    Dalinenko, Ilia N.; Malyarov, Alexandre V.; Vishnevsky, Grigory I.; Vydrevitch, Michail G.; Kossov, Vladimir G.; Lazovsky, Leonid Y.; Golovkin, Sergei V.

    1995-09-01

    This paper sums up the results of more than 10 years of experience in design and manufacturing of thinned back-side illuminated CCDs of different types. Based upon the EB- CCDs created, the family of intensified electron-bombardment CCD image tubes has been designed, fabricated, and tested. This family includes: the single-stage Gen I EB-CCD devices with the 532(superscript *)580 and 780(superscript *)580 pixels CCDs; the 'hybrid' (the EB-CCD tube plus Gen I image intensifier) devices; and the EB-CCD tubes with the 40 mm photocathode and image demagnification factor 3 to 1. The results of the tests of these devices are presented and discussed. Besides this, the near future projects concerning EB-CCD tubes with the 80 mm photocathode and with image demagnification factor 5 to 1, and EB-CCD tubes with solar blind photocathods for the UV and EUV applications are briefly described.

  17. Design and fabrication technology of thinned backside-excited CCD imagers and the family of intensified electron-bombarded CCD image tubes

    NASA Astrophysics Data System (ADS)

    Dalinenko, Ilia N.; Malyarov, Alexandre V.; Vishnevsky, Grigory I.; Vydrevitch, Michail G.; Kossov, Vladimir G.; Lazovsky, Leonid Y.; Golovkin, Sergei V.

    1996-04-01

    This paper sums up the results of more than 10 years experience in design and manufacturing of thinned backside illuminated CCDs of different types. Based upon the EB-CCDs created, the family of intensified electron-bombarded CCD image tubes has been designed, fabricated and tested. This family includes: the single-stage Gen I-type EB-CCD devices with the 532*580 and 780*580 pixels CCDs; the `hybrid' (the EB-CCD tube plus Gen I image intensifier) devices; and the EB-CCD tubes with the 40 mm photocathode and image demagnification factor 3:1. The results of tests of these devices are presented and discussed. Besides, the near future projects concerning EB-CCD tubes with the 80 mm photocathode and with image demagnification factor 5:1, and EB-CCD tubes with solar blind photocathodes for the UV and EUV applications are briefly described.

  18. Design and fabrication technology of thinned backside-excited CCD imagers and the family of the electron-bombarded CCD image tubes

    NASA Astrophysics Data System (ADS)

    Dalinenko, I.; Kossov, V.; Kozlov, V.; Lazovsky, L.; Malyarov, A.; Vishnevsky, G.; Vydrevitch, M.; Zhuk, A.; Golovkin, S.

    1997-02-01

    The results of more than 10 years experience in design and manufacturing of thinned backside illuminated CCDs of different types are summed up. Based upon the EB CCDs created, the family of intensified electron-bombarded CCD image tubes has been designed, fabricated and tested. This family includes: the single-stage Gen I type EB CCD devices with the 532 × 580 and 780 × 580 pixels CCDs; the ``hybrid'' (the EB CCD tube plus Gen I image intensifier) devices; and the EB CCD tubes with the 40 mm photocathode and image demagnification factor 3:1. The results of tests of these devices are presented and discussed. Besides, the near future projects concerning EB CCD tubes with 80 mm photocathode and with image demagnification factor 5:1, the EB CCD tubes with solar blind photocathodes for the UV and EUV applications are briefly described.

  19. Possible nuclear decay of bismuth induced by a mechanical impact

    NASA Astrophysics Data System (ADS)

    Marakhtanov, M. K.

    2016-09-01

    It is experimentally shown that the metallic dust after the inertial explosion induced by the impact of a metallic bismuth striker on a fixed steel barrier contains platinum and boron, which were absent before the explosion. The existence of platinum and boron is qualitatively determined. The emission of single 8-MeV α particles is also detected from the metallic dust that forms at the site of the impact interaction of bismuth with steel. Both effects point to possible nuclear decay of bismuth due to the energy of a mechanical impact.

  20. Development of a direct evaporation bismuth Hall thruster

    NASA Astrophysics Data System (ADS)

    Massey, Dean Richard

    Hall thrusters have been under active development around the world since the 1960's. Thrusters using traditional propellants such as xenon have been flown on a variety of satellite orbit raising and maintenance missions with an excellent record. To expand the mission envelope, it is necessary to lower the specific impulse of the thrusters but xenon and krypton are poor performers at specific impulses below 1,200 seconds. To enhance low specific impulse performance, this dissertation examines the development of a Hall-effect thruster which uses bismuth as a propellant. Bismuth, the heaviest non-radioactive element, holds many advantages over noble gas propellants from an energetics as well as a practical economic standpoint. Low ionization energy, large electron-impact cross-section and high atomic mass make bismuth ideal for low-specific impulse applications. The primary disadvantage lies in the high temperatures which are required to generate the bismuth vapors. Previous efforts carried out in the Soviet Union relied upon the complete bismuth vaporization and gas phase delivery to the anode. While this proved successful, the power required to vaporize and maintain gas phase throughout the mass flow system quickly removed many of the efficiency gains expected from using bismuth. To solve these problems, a unique method of delivering liquid bismuth to the anode has been developed. Bismuth is contained within a hollow anode reservoir that is capped by a porous metallic disc. By utilizing the inherent waste heat generated in a Hall thruster, liquid bismuth is evaporated and the vapors pass through the porous disc into the discharge chamber. Due to the high temperatures and material compatibility requirements, the anode was fabricated out of pure molybdenum. The porous vaporizer was not available commercially so a method of creating a refractory porous plate with 40-50% open porosity was developed. Molybdenum also does not respond well to most forms of welding so a

  1. Exciter switch

    NASA Technical Reports Server (NTRS)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  2. Effects of annealing electrodeposited bismuth Telluride films

    NASA Technical Reports Server (NTRS)

    Snyder, J.; Stoltz, N. G.

    2002-01-01

    Thermoelectric thin films exhibit different qualities when compared with bulk materials. The goal however is to achieve thermoelectric properties of bulk materials from electrodeposited thin films. Thin films are produced by electrochemical deposition at room temperature. In order to optimize thermoelectric figure of merit proper carrierconcentration must be obtained.

  3. Cryogenic Thermoelectric Properties of the Bismuth-Magnesium and Bismuth-Antimony-Magnesium Systems

    NASA Astrophysics Data System (ADS)

    Orovets, Christine; Jin, Hyungyu; Wiendlocha, Bartlomiej; Heremans, Joseph P.

    2012-02-01

    There is a need to increase the Figure of Merit of thermoelectric materials used in low temperature cooling applications. Band structure calculations show that substitutional magnesium in bismuth can form sharp density of states peaks, suggesting the presence of a resonant level. Single crystal samples of (Bi1-xSbx)1-yMgy (0 <= x <= 12% and 0 <= y <= 0.7% nominally) were synthesized in evacuated ampoules. The composition of each ingot was analyzed using x-ray diffraction, and transport properties were measured using a Thermal Transport Option (TTO) in a Physical Properties Measurement System (PPMS) from 300K to 2K. It is apparent that the addition of magnesium strongly influences thermopower; the data for Bi90Sb10Mg0.7 shows a second minimum in thermopower at 20K, in addition to the expected minimum at approximately 50-60K. This could be due to the resonant scattering at the cryogenic temperatures which arises from the excess density of states. The addition of magnesium also appears to decrease thermal conductivity below 30K. We present systematic experimental approaches and the results to elucidate the role of magnesium in bismuth and bismuth-antimony systems.

  4. Dielectric investigations of polycrystalline samarium bismuth ferrite ceramic

    SciTech Connect

    Palaimiene, E.; Macutkevic, J.; Banys, J.; Karpinsky, D. V.; Kholkin, A. L.

    2015-01-05

    Results of broadband dielectric investigations of samarium doped bismuth ferrite ceramics are presented in wide temperature range (20–800 K). At temperatures higher than 400 K, the dielectric properties of samarium bismuth ferrite ceramics are governed by Maxwell-Wagner relaxation and electrical conductivity. The DC conductivity increases and activation energy decreases with samarium concentration. In samarium doped bismuth ferrite, the ferroelectric phase transition temperature decreases with samarium concentration and finally no ferroelectric order is observed at x = 0.2. At lower temperatures, the dielectric properties of ferroelectric samarium doped bismuth ferrite are governed by ferroelectric domains dynamics. Ceramics with x = 0.2 exhibit the relaxor-like behaviour.

  5. Tripotassium dicitrato bismuthate enemas in the treatment of ulcerative proctitis.

    PubMed

    Srivastava, E D; Swift, G L; Wilkinson, S; Williams, G T; Evans, B K; Rhodes, J

    1990-12-01

    Eleven patients with active proctitis or proctosigmoiditis completed one month's treatment with tripotassium dicitrato bismuthate enemas administered at night. Symptoms, sigmoidoscopic appearances, and the histological grade of acute inflammation were assessed at the commencement of therapy and after one month. An overall score of these features showed improvement in 9 of 11 patients, which encourages further investigation of bismuth in controlled trials for patients with inflammatory bowel disease.

  6. Highly ytterbium-doped bismuth-oxide-based fiber.

    PubMed

    Ohara, Seiki; Kuroiwa, Yutaka

    2009-08-03

    Thermally stable highly ytterbium-doped bismuth-oxide-based glasses have been investigated. The absorbance increased linearly with Yb(2)O(3) concentration, reaching 7800 dB/m with 3 mol-% of Yb(2)O(3). An ytterbium-doped bismuth-oxide-based fiber has also been fabricated with a fiber loss of 0.24 dB/m. A fiber laser is also demonstrated, and it shows a slope efficiency of 36%.

  7. Studies on the absorption and excretion of tripotassium dicitrato-bismuthate in man.

    PubMed

    Lee, S P

    1981-11-01

    In 8 volunteers blood and urine bismuth levels were detected after a 5-day course of tripotassium dicitrato-bismuthate and rose further with increasing dose. In 24 patients, blood and urine bismuth were measured on the last day of treatment. There was no significant difference (p greater than 0.2) in either blood or urine bismuth levels amongst patients treated for 4,5 or 6 weeks with colloidal bismuth. None of the blood level measurements exceeded 50 micrograms/l. Bismuth was slowly eliminated in the urine after stopping treatment.

  8. Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Wefel, John P.

    1998-01-01

    This is the final report for NASA grant NAGW-4577, "Advanced Thin Ionization Calorimeter (ATIC)". This grant covered a joint project between LSU and the University of Maryland for a Concept Study of a new type of fully active calorimeter to be used to measure the energy spectra of very high energy cosmic rays, particularly Hydrogen and Helium, to beyond 1014 eV. This very high energy region has been studied with emulsion chamber techniques, but never investigated with electronic calorimeters. Technology had advanced to the point that a fully active calorimeter based upon Bismuth Germanate (BGO) scintillating crystals appeared feasible for balloon flight (and eventually space) experiments.

  9. Development of bismuth self-powered detector

    NASA Astrophysics Data System (ADS)

    Alex, Mary; Prasad, K. R.; Kataria, S. K.

    2004-05-01

    Self-powered detectors have been developed with bismuth (2 mm diameter×6.4 mm) and platinum (2 mm diameter ×5 mm) emitters. Tests at a 60Co irradiation facility in 0.125 MR/h (484.5 MC/kg/h) gamma field showed that the gamma sensitivity of the two detectors is 0.121 fA/R/h (0.468 pA/C/kg/h) and 0.17 fA/R/h (0.658 pA/C/kg/h). When tested in the core location in Apsara Swimming Pool reactor the current from Bi detector was assumed to be totally gamma-induced. This information was used to derive the neutron-induced component of the Pt detector in which 55% of the total signal was gamma-induced. The neutron sensitivity was found to be 0.54×10 -21 A/nv.

  10. Tripotassium dicitrato bismuthate: absorption and urinary excretion of bismuth in patients with normal and impaired renal function.

    PubMed

    Treiber, G; Gladziwa, U; Ittel, T H; Walker, S; Schweinsberg, F; Klotz, U

    1991-10-01

    We have investigated the absorption and urinary excretion of tripotassium dicitrato bismuthate during a treatment course of 4 weeks in 7 patients with normal renal function (creatinine clearance 115 +/- 29 ml/min; mean +/- S.D.), in 7 patients with impaired renal function (creatinine clearance = 34 +/- 19 ml/min) and in 4 dialysed patients. Following the first dose of tripotassium dicitrato bismuthate (216 mg bismuth b.d.), and after 2 and 4 weeks of treatment (dialysed patients received only 108 mg/b.d.), plasma and urine concentrations of bismuth were monitored for 2 and 24 h, respectively. After stopping therapy plasma and urine concentrations of bismuth were followed for 4 and 6 weeks, respectively. In all three groups of patients small amounts of bismuth (mean values 0.26 to 0.28% of dose) were rapidly (transient mean peak concentrations between 40 and 134 micrograms/L) reached within about 30 to 40 min, absorbed and plasma levels demonstrated a wide intra- and inter-individual variability. Absorption profiles were not altered during the treatment course; however, the trough plasma concentration of bismuth demonstrated an about 3- to 5-fold accumulation (correlated to creatinine clearance) from about 5 micrograms/L to 15 micrograms/L (normal renal function) or to 20-25 micrograms/L (impaired renal function). Pre-study bismuth levels could be detected within 2 to 4 weeks after stopping therapy in all subjects whereas urinary concentrations were still elevated 6 weeks after the course of treatment. Our results indicate that tripotassium dicitrato bismuthate is absorbed in very low amounts during standard therapy. However, dependent on renal function, accumulation to non-toxic levels does occur during a course of treatment. It appears prudent to halve tripotassium dicitrato bismuthate dosage in patients with severe renal insufficiency (creatinine clearance less than or equal to 20 ml/min) to avoid any possible toxic risks. In such patients monitoring of the

  11. Structural and luminescence properties of Dy3+ doped bismuth phosphate glasses for greenish yellow light applications

    NASA Astrophysics Data System (ADS)

    Damodaraiah, S.; Reddy Prasad, V.; Babu, S.; Ratnakaram, Y. C.

    2017-05-01

    Different compositions of (5, 10, 15 and 20 mol%) of bismuth and different concentrations (0.5, 1.0, 1.5 and 2.0 mol%) of Dy3+ ion doped bismuth phosphate (BiP) glasses were synthesized by melt-quenching technique. The structural characterization was accomplished by XRD, SEM with EDS, FTIR, FT-Raman and 31P MAS NMR spectroscopy. The optical properties were studied using absorption and photoluminescence spectroscopy. Different structural groups were identified using FTIR and FT-Raman spectra. The depolymerization of metaphosphate chains are described by the decrease of Q2 tetrahedral sites allowing the formation of pyrophosphate groups (Q1) revealed by 31P MAS NMR spectroscopic investigations. Judd-Ofelt intensity parameters Ωλ (λ = 2, 4 and 6) were evaluated from absorption spectra. Radiative parameters such as radiative lifetimes (τR), integrated absorption cross-sections (Σ) and branching ratios (βR) were calculated using Judd-Ofelt intensity parameters. From photoluminescence spectra, experimental branching ratios (βexp) and stimulated emission cross-sections (σP) were calculated for all the observed emission transitions of prepared glasses. The decay profiles for 4F9/2 level were recorded and fit exponential for 0.5 mol% and non-exponential for higher concentrations of Dy3+ due to non-radiative energy transfer among excited Dy3+ ions. The CIE chromaticity co-ordinates have been calculated from the luminescence spectra which confirmed greenish yellow light emission.

  12. Synthesis and Characterization of High-Purity Bismuth Nanowires via Seed-Assisted Growth Approach

    NASA Astrophysics Data System (ADS)

    Mu, Xin; Zhao, Wen-Yu; He, Dan-Qi; Zhou, Hong-Yu; Zhu, Wan-Ting; Zhang, Qing-Jie

    2015-06-01

    Nanowires are considered as high-performance thermoelectric materials with large Seebeck coefficients due to quantum confinement and low thermal conductivity because of enhanced boundary scattering of phonons. In this work, a seed-assisted growth method has been developed to synthesize high-purity bismuth nanowires. The bismuth seeds were first synthesized by reducing BiCl3 in the ice water with NaBH4. The high-purity bismuth nanowires about 40-50 nm in diameter and several tens of micrometers in length were then grown on bismuth seeds by reducing NaBiO3 with ethylene glycol. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were employed to characterize the crystal structure, microstructure, and growth direction of the bismuth seeds and nanowires. The effects of temperature, reductant, and bismuth seeds template on the microstructures of the bismuth nanowires were also investigated. The synthesis conditions of bismuth seeds and nanowires were optimized. The selected area electron diffraction pattern confirms that the growth direction of bismuth nanowires is parallel to [] direction. It was discovered that high-purity bismuth nanowires with high aspect ratio can be synthesized by precisely controlling the temperature to adjust the nucleation rate of the bismuth nuclei, selecting the appropriate reductant to maintain a low nucleation rate, and using bismuth seeds as the template of the epitaxial growth of the bismuth nuclei.

  13. Bismuth(III) volatilization and immobilization by filamentous fungus Aspergillus clavatus during aerobic incubation.

    PubMed

    Boriová, Katarína; Urík, Martin; Bujdoš, Marek; Matúš, Peter

    2015-02-01

    As with many metals, bismuth can be accumulated or transformed by microorganisms. These interactions affect microbial consortia and bismuth environmental behaviour, mobility, and toxicity. Recent research focused specifically on bismuth anaerobic transformation by bacteria and archaea has inspired the evaluation of the mutual interactions between bismuth and filamentous fungi as presented in this article. The Aspergillus clavatus fungus proved resistant to adverse effects from bismuth contamination in culture medium with up to a concentration of 195 µmol L(-1) during static 15- and 30-day cultivation. The examined resistance mechanism includes biosorption to the fungal surface and biovolatilization. Pelletized fungal biomass has shown high affinity for dissolved bismuth(III). Bismuth biosorption was rapid, reaching equilibrium after 50 min with a 0.35 mmol g(-1) maximum sorption capacity as calculated from the Langmuir isotherm. A. clavatus accumulated ≤70 µmol g(-1) of bismuth after 30 days. Preceding isotherm study implications that most accumulated bismuth binds to cell wall suggests that biosorption is the main detoxification mechanism. Accumulated bismuth was also partly volatilized (≤1 µmol) or sequestrated in the cytosol or vacuoles. Concurrently, ≤1.6 µmol of bismuth remaining in solution was precipitated by fungal activity. These observations indicate that complex mutual interactions between bismuth and filamentous fungi are environmentally significant regarding bismuth mobility and transformation.

  14. Exciting Pools

    ERIC Educational Resources Information Center

    Wright, Bradford L.

    1975-01-01

    Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)

  15. Excited waves in shear layers

    NASA Technical Reports Server (NTRS)

    Bechert, D. W.

    1982-01-01

    The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.

  16. Theoretical modeling of electrical resistivity and Seebeck coefficient of bismuth nanowires by considering carrier mean free path limitation

    NASA Astrophysics Data System (ADS)

    Murata, Masayuki; Yamamoto, Atsushi; Hasegawa, Yasuhiro; Komine, Takashi; Endo, Akira

    2017-01-01

    In this study, the electrical resistivity and Seebeck coefficient of bismuth nanowires, several hundred nanometers in diameter, are calculated using the Boltzmann equation in the relaxation time approximation. The three-dimensional density of states and properties of single-crystalline bulk bismuth, such as carrier density, effective mass, and mobility, are used in the calculation without considering the quantum size effect. The relaxation times of the electrons and holes are calculated using Matthiessen's rule considering the carrier collisions at the wire boundary. The temperature, crystal orientation, and diameter dependence of the electrical resistivity and Seebeck coefficient are investigated. The calculation demonstrates that the electrical resistivity increases gradually with decreasing wire diameter, and the temperature coefficient of the electrical resistivity varies from positive to negative at low temperatures for thin wires with diameters less than approximately 500 nm. The diameter dependence of the electrical resistivity varies with the crystal orientation; the increase along the bisectrix axis is larger than that along the binary and trigonal axes. The temperature dependence of the Seebeck coefficient also strongly depends on the crystal orientation. The absolute value of the negative Seebeck coefficient along the bisectrix axis rapidly decreases with decreasing diameter and even changes sign from negative to positive at low temperatures despite the charge neutrality condition, while the Seebeck coefficients along the binary and trigonal axes do not differ significantly from those of single-crystalline bulk bismuth. We conclude that the thermoelectric properties of bismuth nanowires strongly depend not only on the wire diameter but also on the crystal orientation.

  17. Enhancement of bismuth antibacterial activity with lipophilic thiol chelators.

    PubMed Central

    Domenico, P; Salo, R J; Novick, S G; Schoch, P E; Van Horn, K; Cunha, B A

    1997-01-01

    The antibacterial properties of bismuth are greatly enhanced when bismuth is combined with certain lipophilic thiol compounds. Antibacterial activity was enhanced from 25- to 300-fold by the following seven different thiols, in order of decreasing synergy: 1,3-propanedithiol, dimercaprol (BAL), dithiothreitol, 3-mercapto-2-butanol, beta-mercaptoethanol, 1-monothioglycerol, and mercaptoethylamine. The dithiols produced the greatest synergy with bismuth at optimum bismuth-thiol molar ratios of from 3:1 to 1:1. The monothiols were generally not as synergistic and required molar ratios of from 1:1 to 1:4 for optimum antibacterial activity. The most-active mono- or dithiols were also the most soluble in butanol. The intensity of the yellow formed by bismuth-thiol complexes reflected the degree of chelation and correlated with antibacterial potency at high molar ratios. The bismuth-BAL compound (BisBAL) was active against most bacteria, as assessed by broth dilution, agar diffusion, and agar dilution analyses. Staphylococci (MIC, 5 to 7 microM Bi3+) and Helicobacter pylori (MIC, 2.2 microM) were among the most sensitive bacteria. Gram-negative bacteria were sensitive (MIC, < 17 microM). Enterococci were relatively resistant (MIC, 63 microM Bi3+). The MIC range for anaerobes was 15 to 100 microM Bi3+, except for Clostridium difficile (MIC, 7.5 microM). Bactericidal activity averaged 29% above the MIC. Bactericidal activity increased with increasing pH and/or increasing temperature. Bismuth-thiol solubility, stability, and antibacterial activity depended on pH and the bismuth-thiol molar ratio. BisBAL was stable but ineffective against Escherichia coli at pH 4. Activity and instability (reactivity) increased with increasing alkalinity. BisBAL was acid soluble at a molar ratio of greater than 3:2 and alkaline soluble at a molar ratio of less than 2:3. In conclusion, certain lipophilic thiol compounds enhanced bismuth antibacterial activity against a broad spectrum of

  18. Large magneto-optic enhancement in ultra-thin liquid-phase-epitaxy iron garnet films

    SciTech Connect

    Levy, Miguel; Chakravarty, A.; Huang, H.-C.; Osgood, R. M.

    2015-07-06

    Significant departures from bulk-like magneto-optic behavior are found in ultra-thin bismuth-substituted iron-garnet films grown by liquid-phase-epitaxy. These changes are due, at least in part, to geometrical factors and not to departures from bulk-composition in the transient layer at the film-substrate interface. A monotonic increase in specific Faraday rotation with reduced thickness is the signature feature of the observed phenomena. These are traced to size-dependent modifications in the diamagnetic transition processes responsible for the Faraday rotation. These processes correspond to the electronic transitions from singlet {sup 6}S ground states to spin-orbit split excited states of the Fe{sup 3+} ions in the garnet. A measurable reduction in the corresponding ferrimagnetic resonance linewidths is found, thus pointing to an increase in electronic relaxation times and longer lived excitations at reduced thicknesses. These changes together with a shift in vibrational frequency of the Bi-O bonds in the garnet at reduced thicknesses result in greatly enhanced magneto-optical performance. These studies were conducted on epitaxial monocrystalline Bi{sub 0.8}Gd{sub 0.2}Lu{sub 2}Fe{sub 5}O{sub 12} films.

  19. Luminescence properties of Sm{sup 3+} impurities in strontium lithium bismuth borate glasses

    SciTech Connect

    Rajesh, D.; Ratnakaram, Y. C.; Seshadri, M.; Balakrishna, A.

    2012-06-05

    In the present work, different concentrations of Sm{sup 3+}-doped strontium lithium bismuth borate glasses (SLBiB) were prepared by melt quench technique. The amorphous nature of the prepared glass samples was confirmed by X-ray diffraction and SEM analysis. Using the J-O intensity parameters, emission and decay measurements various radiative properties are studied. The nature of decay curves of {sup 4}G{sub 5/2} level for different Sm{sup 3+} ion concentrations in SLBiB glasses has been analyzed. The intensities of observed emission peaks and measured lifetimes decrease with the increase of Sm{sup 3+} ion concentration which may be due to energy transfer between excited Sm{sup 3+} ions through cross-relaxations and resonant energy channels.

  20. Optical properties and ultrafast optical nonlinearity of Yb3+ doped sodium borate and bismuthate glasses

    NASA Astrophysics Data System (ADS)

    Karthikeyan, B.; Suchand Sandeep, C. S.; Cha, Jaemine; Takebe, Hiromichi; Philip, Reji; Mohan, S.

    2008-05-01

    In this paper, we report the optical and ultrafast nonlinear optical properties of Yb3+ doped sodium borate and bismuthate glasses. The glasses have been prepared through the melt quench technique. Optical absorption measurements show compositional dependent absorption spectrum of Yb3+, which is due to the higher crystal field induced by Bi3+ ions. Local structure of the glasses has been identified by using Fourier transform infrared and Raman studies. From open aperture z-scan measurements done by using 100 fs laser pulses, the ultrafast optical nonlinearity in these materials is calculated at the nonresonant excitation wavelength of 800 nm. The measured three-photon absorption originates from the glass host, with contributions from the nonbridging oxygens and the nonlinear electronic polarization of the Bi3+ ions.

  1. Electrospun bismuth ferrite nanofibers for potential applications in ferroelectric photovoltaic devices.

    PubMed

    Fei, Linfeng; Hu, Yongming; Li, Xing; Song, Ruobing; Sun, Li; Huang, Haitao; Gu, Haoshuang; Chan, Helen L W; Wang, Yu

    2015-02-18

    Bismuth ferrite (BFO) nanofibers were synthesized via a sol-gel-based electrospinning process followed by thermal treatment. The influences of processing conditions on the final structure of the samples were investigated. Nanofibers prepared under optimized conditions were found to have a perovskite structure with good quality of crystallization and free of impurity phase. Ferroelectric and piezoelectric responses were obtained from individual nanofiber measured on a piezoelectric force microscope. A prototype photovoltaic device using laterally aligned BFO nanofibers and interdigital electrodes was developed and its performance was examined on a standard photovoltaic system. The BFO nanofibers were found to exhibit an excellent ferroelectric photovoltaic property with the photocurrent several times larger than the literature data obtained on BFO thin films.

  2. Rashba effect in antimony and bismuth studied by spin-resolved ARPES

    NASA Astrophysics Data System (ADS)

    Takayama, A.; Sato, T.; Souma, S.; Takahashi, T.

    2014-05-01

    We have performed spin- and angle-resolved photoemission spectroscopy of antimony (Sb) and bismuth (Bi) thin films grown on Si(111) to elucidate the nature of the Rashba effect in the spin-split surface bands. In Sb, we revealed spin polarization with the in-plane vortical texture on an elongated hole-like Fermi surface. The spin polarization is strongly momentum-dependent, almost vanishing at the region away from the Brillouin zone center. Such unusual suppression of the spin polarization is not observed in Bi, pointing to a strong influence from the quantized bulk bands on the surface spin polarization in Sb. The present result strongly suggests that bulk-surface interband scattering should be properly taken into account to understand the Rashba surface states in group-V semimetals.

  3. Multiscale X-ray and Proton Imaging of Bismuth-Tin Solidification

    NASA Astrophysics Data System (ADS)

    Gibbs, P. J.; Imhoff, S. D.; Morris, C. L.; Merrill, F. E.; Wilde, C. H.; Nedrow, P.; Mariam, F. G.; Fezzaa, K.; Lee, W.-K.; Clarke, A. J.

    2014-08-01

    The formation of structural patterns during metallic solidification is complex and multiscale in nature, ranging from the nanometer scale, where solid-liquid interface properties are important, to the macroscale, where casting mold filling and intended heat transfer are crucial. X-ray and proton imaging can directly interrogate structure, solute, and fluid flow development in metals from the microscale to the macroscale. X-rays permit high spatio-temporal resolution imaging of microscopic solidification dynamics in thin metal sections. Similarly, high-energy protons permit imaging of mesoscopic and macroscopic solidification dynamics in large sample volumes. In this article, we highlight multiscale x-ray and proton imaging of bismuth-tin alloy solidification to illustrate dynamic measurement of crystal growth rates and solute segregation profiles that can be that can be acquired using these techniques.

  4. Substitution effects on bismuth based multifunctional materials

    NASA Astrophysics Data System (ADS)

    Krezhov, Kiril; Kovachev, Stefan; Svab, Erzsebet

    Described are our targeted experiments to improve understanding of some key aspects of the mechanisms contributing to intrinsic effects such as the magnetoelectric coupling in oxides. The magnetoelectric materials have long been of interest because of useful combinations of electrical, magnetic, optical and catalytic properties. Particularly spectacular are the manganites(M=Mn) for which apart from the strong magnetoresistance (MR) effect another striking feature is the occurrence of charge and orbital ordering (CO-OO) effects connected with the specific orbital orientation and the spatial arrangement of the eg orbitals. The MR and CO-OO effects are a manifestation of the strong interplay between the orbital, charge, and spin degrees of freedom in these systems and in some cases gives rise to multiferroicity. In this regard, some of our research is on new ABO3, AB2O5 and double perovskites A2BB'O6 containing p elements with lone pair electrons such as Bi3+. Bismuth creates irregular oxygen coordination environment and to stabilize its valence state often requires the use of high pressure or specific soft chemistry. Studied are the effects of cationic substitution on the structural parameters of the perovskites (Bi1-yRy)1-xAxMnO3 (R = rare earth; A= Ca2+, Sr2+; x,y=0.5), BiFexMn2-xO5, La1-xBiXMn2O5 etc. Ab-initio density functional theory calculations were performed to study the structure, magnetic and optical properties of multiferroic BiFeO3, also modified with La3+ and Mn3+. Synthesized and characterized is a new bismuth oxide - multiferroic BiFe2O5-δ A number of studies continue to address this class of materials and related-type materials such as cobaltites, chromites and ferrites, much of the work being driven by the potential applications as electrode materials in solid oxide fuel cells, exhaust gas sensors, membranes for separation processes or as catalysts but lately new functionalities emerge and are in the focus for use in electronics and information

  5. 40 CFR 471.10 - Applicability; description of the lead-tin-bismuth forming subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-tin-bismuth forming subcategory. 471.10 Section 471.10 Protection of Environment ENVIRONMENTAL... METAL POWDERS POINT SOURCE CATEGORY Lead-Tin-Bismuth Forming Subcategory § 471.10 Applicability; description of the lead-tin-bismuth forming subcategory. This subpart applies to discharges of pollutants...

  6. 40 CFR 471.10 - Applicability; description of the lead-tin-bismuth forming subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-tin-bismuth forming subcategory. 471.10 Section 471.10 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Lead-Tin-Bismuth Forming Subcategory § 471.10 Applicability; description of the lead-tin-bismuth forming subcategory. This subpart applies to discharges of pollutants to waters of...

  7. 40 CFR 471.10 - Applicability; description of the lead-tin-bismuth forming subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-tin-bismuth forming subcategory. 471.10 Section 471.10 Protection of Environment ENVIRONMENTAL... METAL POWDERS POINT SOURCE CATEGORY Lead-Tin-Bismuth Forming Subcategory § 471.10 Applicability; description of the lead-tin-bismuth forming subcategory. This subpart applies to discharges of pollutants...

  8. 40 CFR 471.10 - Applicability; description of the lead-tin-bismuth forming subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-tin-bismuth forming subcategory. 471.10 Section 471.10 Protection of Environment ENVIRONMENTAL... METAL POWDERS POINT SOURCE CATEGORY Lead-Tin-Bismuth Forming Subcategory § 471.10 Applicability; description of the lead-tin-bismuth forming subcategory. This subpart applies to discharges of pollutants...

  9. Homogeneity of bismuth-distribution in bismuth-doped alkali germanate laser glasses towards superbroad fiber amplifiers.

    PubMed

    Zhao, Yanqi; Wondraczek, Lothar; Mermet, Alain; Peng, Mingying; Zhang, Qinyuan; Qiu, Jianrong

    2015-05-04

    Compared to rare-earth doped glasses, bismuth-doped glasses hold promise for super-broadband near-infrared (NIR) photoemission and potential applications in optical amplification. However, optically active bismuth centers are extremely sensitive to the properties of the surrounding matrix, and also to processing conditions. This is strongly complicating the exploitation of this class of materials, because functional devices require a very delicate adjustment of the redox state of the bismuth species, and its distribution throughout the bulk of the material. It also largely limits some of the conventional processing routes for glass fiber, which start from gas phase deposition and may require very high processing temperature. Here, we investigate the influence of melting time and alkali addition on bismuth-related NIR photoluminescence from melt-derived germanate glasses. We show that the effect of melting time on bismuth-related absorption and NIR photoemission is primarily through bismuth volatilization. Adding alkali oxides as fluxing agents, the melt viscosity can be lowered to reduce either the glass melting temperature, or the melting time, or both. At the same time, however, alkali addition also leads to increasing mean-field basicity, what may reduce the intensity of bismuth-related NIR emission. Preferentially using Li2O over Na2O or K2O presents the best trade-off between those above factors, because its local effect may be adverse to the generally assumed trend of the negative influence of more basic matrix composition. This observation provides an important guideline for the design of melt-derived Bi-doped glasses with efficient NIR photoemission and high optical homogeneity.

  10. Ultrasonication of Bismuth Telluride Nanocrystals Fabricated by Solvothermal Method

    NASA Technical Reports Server (NTRS)

    Chu, Sang-Hyon; Choi, Sang H.; Kim, Jae-Woo; King, Glen C.; Elliott, James R.

    2006-01-01

    The objective of this study is to evaluate the effect of ultrasonication on bismuth telluride nanocrystals prepared by solvothermal method. In this study, a low dimensional nanocrystal of bismuth telluride (Bi2Te3) was synthesized by a solvothermal process in an autoclave at 180 C and 200 psi. During the solvothermal reaction, organic surfactants effectively prevented unwanted aggregation of nanocrystals in a selected solvent while controlling the shape of the nanocrystal. The atomic ratio of bismuth and tellurium was determined by energy dispersive spectroscopy (EDS). The cavitational energy created by the ultrasonic probe was varied by the ultrasonication process time, while power amplitude remained constant. The nanocrystal size and its size distribution were measured by field emission scanning electron microscopy (FESEM) and a dynamic light scattering system. When the ultrasonication time increased, the average size of bismuth telluride nanocrystal gradually increased due to the direct collision of nanocrystals. The polydispersity of the nanocrystals showed a minimum when the ultrasonication was applied for 5 min. Keywords: bismuth telluride, nanocrystal, low-dimensional, ultrasonication, solvothermal

  11. Bismuth-norfloxacin complex: synthesis, physicochemical and antimicrobial evaluation.

    PubMed

    Shaikh, Anwar R; Giridhar, Rajani; Yadav, Mange Ram

    2007-03-06

    Norfloxacin is a fluoroquinolone antibacterial agent which is active against various Gram-positive as well as Gram-negative microorganisms. Presence of metal ions considerably alters the activity of fluoroquinolones against potentially susceptible bacteria. As bismuth is known to possess a good antibacterial activity, bismuth complex of norfloxacin was prepared by reacting bismuth citrate with aqueous solution of norfloxacin. The structure of the bismuth-norfloxacin complex (BNC) was confirmed by spectral, chemical and elemental analysis. Antimicrobial studies were carried out using agar diffusion method against Escherichia coli (ATCC 25922), Klebsiella pneumoniae (NTCC 10320), Staphylococcus aureus (ATCC 29213), Bacillus pumilis (NTCC 8241) and Staphylococcus epidermidis (ATCC 12228). The results showed significant increase (p<0.05, Tukeys test) in antibacterial activity of BNC as compared with norfloxacin and physical mixture of norfloxacin and bismuth citrate. This increase in activity is being considered due to increased bioavailability of the metal drug complex. Thus, the use of the BNC may be preferable over norfloxacin alone.

  12. Ultraviolet laser spectroscopy of the neutron-deficient bismuth isotopes

    NASA Astrophysics Data System (ADS)

    Xu, Fei

    1997-12-01

    The isotope shifts and nuclear moments of the neutron deficient bismuth isotopes 201-204Bi have been measured at Stony Brook with a highly sensitive gas cell technique. The isotopes were populated with the nuclear reactions 197Au(10B,6n)201Po and 197Au(11B,xn)208-xPo, with boron beams from the SUNY Stony Brook tandem-linac accelerator. The bismuth samples that accumulated from the Po decay were evaporated from the target material and illuminated with 1-2mW of 306.7nm radiation from an intra-cavity frequency doubled ring dye laser. By measuring and analyzing the fluorescence spectra of the bismuth isotopes, the isotope shifts and hyperfine constants were obtained and the nuclear moments were extracted. The systematic behaviour of isotope shifts of the neutron-deficient bismuth isotopes is discussed and compared with the Po, Pb, Tl and Fr isotope shifts. It was found that the isotonic and isotopic trends, around the doubly magic core of 208Pb, are nearly identical. This implies that the h9/2 valence proton in the bismuth isotopes does not have a strong effect on the deformation of the core.

  13. Bismuth(III) salts as synthetic tools in organic transformations.

    PubMed

    Yadav, J S; Antony, Aneesh; Reddy, Basi V Subba

    2012-01-01

    Bismuth is the heaviest stable element of the periodic table and even though it carries the status of heavy metal, it is rated as relatively nontoxic and noncarcinogenic unlike its neighboring elements. Additionally, the fact that it tolerates air and moisture makes the chemistry of bismuth attractive to synthetic chemists. The catalytic nature of this metal is attributed to the capability of its salts to acts as Lewis acids in reactions. The nontoxicity together with the ability to endure moisture makes bismuth compounds favorites of chemists and scientists who are concerned about environmental hazards, and such properties are highly desirable for scale-up of a method. The Lewis acidic nature of salts of this element have been thoroughly investigated in various types of reactions such as cycloaddition reactions, reactions of sugars, protection and deprotection reactions, synthesis of heterocyclic systems etc. Since the 1990s, various research groups have successfully utilized this catalytic nature for many organic transformations. Our group's contribution towards the development of methodologies that are useful in accomplishing various functional group manipulations by making use of the catalytic properties of bismuth salts is portrayed here. The mechanistic aspects and the catalytic efficiency of the bismuth(III) salts are accented together with the synthetic utility and the biological and pharmacological applications of the methodologies developed.

  14. Effect of bismuth telluride concentration on the thermoelectric properties of PEDOT:PSS-glycerol organic films

    NASA Astrophysics Data System (ADS)

    Rahman, Airul Azha Abd; Ali Umar, Akrajas; Othman, Mohamad Habrul Ulum

    2015-02-01

    In this work, the effect of bismuth-telluride concentration on the thermoelectric properties of PEDOT:PSS-Glycerol thin films is investigated. A thermoelectric device was fabricated by depositing the n-type and the p-type Bi2Te3 (BT) doped-PEDOT:PSS-Glycerol on a glass substrate via a spin coating method at 500 rpm. Room-temperature electrical properties characterization shows that the electrical conductivity of both type thin film increases with increasing of BT doping concentration and optimum at concentration of 0.8 wt% for both p-type and n-type thin films, i.e. 17.9 S/cm and 7.78 S/cm, respectively. However, the study of the temperature effect on the thin films electrical conductivity suggested that the thermoelectric properties of both types' samples improved with increasing of BT concentration and optimum at 0.8 and 0.6 wt% for p-type and n-type thin films, respectively. It then decreased if the BT concentration further increased. The Sebeeck coefficient for these samples is as high as -11.9 and -15.7 uV/K, which is equivalent to a power factors of 0.26 and 0.19 μS V2/ (m K2), respectively. A thermoelectric device resembling a thermocouple system that was fabricated using the optimum p-type and n-type thin films can generate a voltage as high as 1.1 V at a temperature difference as low as 55 K, which is equivalent to a maximum power of 6.026 μW at Vmax.power of 0.5489 V (for an estimated matched-load of 50 Ω). The present materials system is potential for powering low power consumption electronic devices.

  15. Photoreductive generation of amorphous bismuth nanoparticles using polysaccharides--bismuth-cellulose nanocomposites.

    PubMed

    Breitwieser, Doris; Kriechbaum, Margit; Ehmann, Heike M A; Monkowius, Uwe; Coseri, Sergiu; Sacarescu, Liviu; Spirk, Stefan

    2015-02-13

    A simple and highly reproducible synthesis of amorphous bismuth nanoparticles incorporated into a polysaccharide matrix using a photoreduction process is presented. As precursor for the generation of the Bi nanoparticles, organosoluble triphenylbismuth is used. The precursor is dissolved in toluene and mixed with a hydrophobic organosoluble polysaccharide, namely trimethylsilyl cellulose (TMSC) with high DSSi. The solution is subjected to UV exposure, which induces the homolytic cleavage of the bismuth-carbon bond in BiPh3 resulting in the formation of Bi(0) and phenyl radicals. The aggregation of the Bi atoms can be controlled in the TMSC matrix and yields nanoparticles of around 20 nm size as proven by TEM. The phenyl radicals undergo recombination to form small organic molecules like benzene and biphenyl, which can be removed from the nanocomposite after lyophilization and exposure to high vacuum. Finally, the TMSC matrix is converted to cellulose after exposure to HCl vapors, which remove the trimethylsilyl groups from the TMSC derivative. Although TMSC is converted to cellulose, the formed TMS-OH is not leaving the nanocomposite but reacts instead with surface oxide layer of the Bi nanoparticles to form silylated Bi nanoparticles as proven by TEM/EDX.

  16. Tin, Bismuth, and Tin–Bismuth Alloy Electrodeposition from Chlorometalate Salts in Deep Eutectic Solvents

    PubMed Central

    Vieira, Luciana; Burt, Jennifer; Richardson, Peter W.; Schloffer, Daniel; Fuchs, David; Moser, Alwin; Bartlett, Philip N.; Reid, Gillian

    2017-01-01

    Abstract The electrodeposition of tin, bismuth, and tin–bismuth alloys from SnII and BiIII chlorometalate salts in the choline chloride/ethylene glycol (1:2 molar ratio) deep eutectic solvent was studied on glassy carbon and gold by cyclic voltammetry, rotating disc voltammetry, and chronoamperometry. The SnII‐containing electrolyte showed one voltammetric redox process corresponding to SnII/Sn0. The diffusion coefficient of [SnCl3]−, detected as the dominating species by Raman spectroscopy, was determined from Levich and Cottrell analyses. The BiIII‐containing electrolyte showed two voltammetric reduction processes, both attributed to BiIII/Bi0. Dimensionless current/time transients revealed that the electrodeposition of both Sn and Bi on glassy carbon proceeded by 3D‐progressive nucleation at a low overpotential and changed to instantaneous at higher overpotentials. The nucleation rate of Bi on glassy carbon was considerably smaller than that of Sn. Elemental Sn and Bi were electrodeposited on Au‐coated glass slides from their respective salt solutions, as were Sn–Bi alloys from a 2:1 SnII/BiIII solution. The biphasic Sn–Bi alloys changed from a Bi‐rich composition to a Sn‐rich composition by making the deposition potential more negative. PMID:28638772

  17. Ultrasound in lead-bismuth eutectic

    SciTech Connect

    Dierckx, M.; Van Dyck, D.

    2011-07-01

    The Belgian Nuclear Research Centre (SCK.CEN) is in the process of designing MYRRHA, a new multi-purpose irradiation facility to replace the ageing BR2. MYRRHA is a fast spectrum reactor cooled with lead-bismuth eutectic (LBE). As liquid metal is opaque to visual light, ultrasonic measurement techniques are selected to fulfill essential tasks that, according to our assessment, will be demanded by licensing authorities, in particular: fuel assembly identification and localization of a lost fuel assembly. To that end, a considerable research effort at SCK.CEN is devoted to study ultrasonic propagation in LBE. As ultrasonic experiments in LBE are elaborate and expensive to set up, we are particularly interested in to what extent experiments in water can be extrapolated to LBE - one of the main focuses of this article. We describe and present results of a first experiment with this goal which shows that the signal to noise ratio is better in LBE and that we even see small diffuse reflections up to 40 deg. off normal. On the other hand, we do not see internal reflections in stainless steel objects in LBE which we do in water. Therefore, we conclude that experiments in water can be used to validate algorithms for LBE on the condition that they do not rely on internal reflections. We also present solutions to tackle the essential tasks: fuel assembly identification and lost object localization. The requirements for the ultrasonic equipment implementing these solutions are also discussed. (authors)

  18. Properties of unconventional lithium bismuthate glasses

    NASA Astrophysics Data System (ADS)

    Hazra, S.; Mandal, S.; Ghosh, A.

    1997-10-01

    Unconventional bismuthate glasses containing lithium oxide have been prepared by a conventional melt-quench technique. X-ray diffraction, scanning electron microscopy, and differential thermal analysis show that stable binary glasses of composition xLi2O-(100-x)Bi2O3 can be achieved for x=20-35 mol %. Systematic variation of the glass-transition temperature, density, and molar volume observed in these glasses indicates no significant structural change with composition. Differential thermal analysis and optical studies show that the strength of the glass network decreases with the increase of Li2O content in the glass matrix with a small deviation for the extra stable 30Li2O-70Bi2O3 glass composition. Studies of Raman spectra and molar volume ensure that all glasses are built up of [BiO6] octahedral units, while the influence of Li+ ions in the glass matrix is also confirmed from optical, Raman, and electrical studies. Wide transmitting window in the optical region having sharp cutoffs in both ultraviolet-visible and infrared regimes may make these glasses useful in spectral devices. High dielectric values in these glasses compared to glasses formed with conventional glass former can be attributed to the influence of the high polarizability of the unconventional network forming cations, Bi3+.

  19. Tunneling in cuprate and bismuthate superconductors

    SciTech Connect

    Zasadzinski, J.F.; Huang, Qiang; Tralshawala, N.; Gray, K.E.

    1991-10-01

    Tunneling measurements using a point-contact technique are reported for the following high temperature superconducting oxides: Ba{sub 1-x}K{sub x}BiO{sub 3}( BKBO ), Nd{sub 2-x}Ce{sub x}CuO{sub 4}( NCCO ), Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 7}( BSCCO ) and Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub x} ( TBCCO ). For the bismuthate, BKBO, ideal, S-I-N tunneling characteristics are observed using a Au tip. The normalized conductance is fitted to a BCS density of states and thermal smearing only proving there is no fundamental limitation in BKBO for device applications. For the cuprates, the normalized conductance displays BCS-like characteristics, but with a broadening larger than from thermal smearing. Energy gap values are presented for each material. For BKBO and NCCO the Eliashberg functions, {alpha}{sup 2}F({omega}), obtained from the tunneling are shown to be in good agreement with neutron scattering results. Proximity effect tunneling studies are reported for Au/BSCCO bilayers and show that the energy gap of BSCCO can be observed through Au layers up to 600 {Angstrom} thick.

  20. Tunneling in cuprate and bismuthate superconductors

    SciTech Connect

    Zasadzinski, J.F.; Huang, Qiang; Tralshawala, N. . Dept. of Physics); Gray, K.E. )

    1991-10-01

    Tunneling measurements using a point-contact technique are reported for the following high temperature superconducting oxides: Ba{sub 1-x}K{sub x}BiO{sub 3}(BKBO), Nd{sub 2-x}Ce{sub x}CuO{sub 4}(NCCO), Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 7}(BSCCO) and Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub x} (TBCCO). For the bismuthate, BKBO, ideal, S-I-N tunneling characteristics are observed using a Au tip. The normalized conductance is fitted to a BCS density of states and thermal smearing only proving there is no fundamental limitation in BKBO for device applications. For the cuprates, the normalized conductance displays BCS-like characteristics, but with a broadening larger than from thermal smearing. Energy gap values are presented for each material. For BKBO and NCCO the Eliashberg functions, {alpha}{sup 2}F({omega}), obtained from the tunneling are shown to be in good agreement with neutron scattering results. Proximity effect tunneling studies are reported for Au/BSCCO bilayers and show that the energy gap of BSCCO can be observed through Au layers up to 600 {Angstrom} thick.

  1. Integrated Liquid Bismuth Propellant Feed System

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.

    2006-01-01

    A prototype bismuth propellant feed and control system was constructed and tested. An electromagnetic pump was used in this system to provide fine control of the hydrostatic pressure, and a new type of in-line flow sensor was developed to provide an accurate, real-time measurement of the mass flow rate. High-temperature material compatibility was a driving design requirement for the pump and flow sensor, leading to the selection of macor for the main body of both components. Post-test inspections of both components revealed no cracks or leaking in either. In separate proof-of-concept experiments, the pump produced a linear pressure rise as a function of current that compared favorably with theoretical pump pressure predictions, with a pressure of 10 kPa at 30 A. Flow sensing was successfully demonstrated in a bench-top test using gallium as a substitute liquid metal. A real-time controller was successfully used to control the entire system, simultaneously monitoring all power supplies and performing data acquisition duties.

  2. Isotopic generator for bismuth-212 and lead-212 from radium

    DOEpatents

    Atcher, Robert W.; Friedman, Arnold M.; Hines, John

    1987-01-01

    A method and apparatus for providing radionuclides of bismuth-212 and lead-212. Thorium-228 and carrier solution starting material is input to a radiologically contained portion of an isotopic generator system, and radium-224 is separated from thorium-228 which is retained by a strongly basic anion exchange column. The separated radium-224 is transferred to an accessible, strongly acidic cationic exchange column. The cationic column retains the radium-224, and natural radioactive decay generates bismuth-212 and lead-212. The cationic exchange column can also be separated from the contained portion of the system and utilized without the extraordinary safety measures necessary in the contained portion. Furthermore, the cationic exchange column provides over a relatively long time period the short lived lead-212 and bismuth-212 radionuclides which are useful for a variety of medical therapies.

  3. Dependence of optical properties of calcium bismuthates on synthesis conditions

    NASA Astrophysics Data System (ADS)

    Shtarev, D. S.; Shtareva, A. V.

    2016-08-01

    The article studies optical properties of calcium bismuthate nanoparticles of different composition. For the first time the synthesis of these compounds was produced by the pyrolysis of organic precursors using an organic solvent. Characterization of particles was made by scanning electron microscopy and X-ray analysis. The optical properties were investigated by diffuse reflectance spectroscopy (DRS). It is shown that the type of crystal lattice of the particles of calcium bismuthate determines the possibility to control the optical properties of nanoparticles by varying their composition. The conclusions about the production process and the composition of calcium bismuthate, the most promising for use as a photocatalyst of visible light and solar cells, were made.

  4. Thermal, structural and electrical studies of bismuth zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Shanmugavelu, B.; Ravi Kanth Kumar, V. V.

    2013-06-01

    Bismuth Zinc Borate glasses with compositions xBi2O3-30ZnO-(70 - x)B2O3 (where x = 30, 35, 40 and 45 mol %) have been prepared by melt quenching method. These glasses were characterized by X-ray diffraction (XRD), Differential Thermal Analysis (DTA), Fourier Transform Infrared Spectrometer (FTIR) and Broad Band Dielectric Spectrometer (BDS). DTA and FTIR analysis reveals that Non-Bridging Oxygens (NBOs) increase with increase of bismuth content in the glass. Electrical data have been analyzed in the framework of impedance and modulus formalisms. The activation energy for dc conductivity decreases with increase of bismuth concentration. The imaginary part of modulus spectra has been fitted to non-exponential Kohlrausch-Williams-Watts (KWW) function and the value of the stretched exponent (β) is found to be almost independent of temperature but slightly dependent on composition.

  5. Effect of solvent on nanostructure and thermoelectric properties of bismuth

    NASA Astrophysics Data System (ADS)

    Kulsi, C.; Dhara, P.; Mitra, M.; Kargupta, K.; Ganguly, S.; Banerjee, D.

    2016-05-01

    Nanostructures of bismuth (Bi) are obtained by employing solvothermal process. Two different shapes, nanorods and nanospheres, are produced by changing the ratio of solvents (1) ethylene glycol (EG) and (2) EG and absolute ethanol (AE) in the ratio of 1:1, respectively. Prepared samples are characterized by X-ray diffraction, energy-dispersive X-ray spectroscopy and transmission electron microscopy. Transport properties measured on the pressed pellets of bismuth nanostructures exhibit metallic behavior. The room temperature conductivity varies from 64 to 18 S/cm depending on morphology of the nanostructure. The thermal conductivity is found to be 50 times lower in nanostructures than that of single crystal bismuth. Thermoelectric performances like power factor and figure of merit are correlated with the porosities of the samples, which show higher value for sphere-like than that of rod-like Bi nanostructures.

  6. Investigation of Bismuth Triiodide (BiI3) for Photovoltaic Applications

    SciTech Connect

    Brandt, Riley E.; Kurchin, Rachel C.; Hoye, Robert L. Z.; Poindexter, Jeremy R.; Wilson, Mark W. B.; Sulekar, Soumitra; Lenahan, Frances; Yen, Patricia; Stevanovic, Vladan; Nino, Juan C.; Bawendi, Moungi G.; Buonassisi, Tonio

    2015-10-12

    We investigate bismuth triiodide (BiI3) as a candidate thin-film photovoltaic (PV) absorber. BiI3 was chosen for its optical properties and the potential for “defect-tolerant” charge transport properties, which we test experimentally by measuring optical absorption and recombination lifetimes. We synthesize phase-pure BiI3 thin films by physical vapor transport and solution processing and single-crystals by an electrodynamic gradient vertical Bridgman method. The bandgap of these materials is ~1.8 eV, and they demonstrate room-temperature band-edge photoluminescence. We measure monoexponential recombination lifetimes in the range of 180–240 ps for thin films, and longer, multiexponential dynamics for single crystals, with time constants up to 1.3 to 1.5 ns. We discuss the outstanding challenges to developing BiI3 PVs, including mechanical and electrical properties, which can also inform future selection of candidate PV absorbers.

  7. Investigation of Bismuth Triiodide (BiI 3 ) for Photovoltaic Applications

    SciTech Connect

    Brandt, Riley E.; Kurchin, Rachel C.; Hoye, Robert L. Z.; Poindexter, Jeremy R.; Wilson, Mark W. B.; Sulekar, Soumitra; Lenahan, Frances; Yen, Patricia X. T.; Stevanović, Vladan; Nino, Juan C.; Bawendi, Moungi G.; Buonassisi, Tonio

    2015-11-05

    Guided by predictive discovery framework, we investigate bismuth triiodide (BiI3) as a candidate thin-film photovoltaic (PV) absorber. BiI3 was chosen for its optical properties and the potential for “defect-tolerant” charge transport properties, which we test experimentally by measuring optical absorption and recombination lifetimes. We synthesize phase-pure BiI3 thin films by physical vapor transport and solution processing and single-crystals by an electrodynamic gradient vertical Bridgman method. The bandgap of these materials is ~1.8 eV, and they demonstrate room-temperature band-edge photoluminescence. We measure monoexponential recombination lifetimes in the range of 180–240 ps for thin films, and longer, multiexponential dynamics for single crystals, with time constants up to 1.3 to 1.5 ns. We discuss the outstanding challenges to developing BiI3 PVs, including mechanical and electrical properties, which can also inform future selection of candidate PV absorbers.

  8. Bismuth-doped optical fibres: A new breakthrough in near-IR lasing media

    SciTech Connect

    Dianov, Evgenii M

    2012-09-30

    Recent results demonstrate that bismuth-doped optical fibres have considerable potential as near-IR active lasing media. This paper examines bismuth-doped fibres intended for the fabrication of fibre lasers and optical amplifiers and reviews recent results on the luminescence properties of various types of bismuth-doped fibres and the performance of bismuth-doped fibre lasers and optical amplifiers for the spectral range 1150 - 1550 nm. Problems are discussed that have yet to be solved in order to improve the efficiency of the bismuth lasers and optical amplifiers. (optical fibres, lasers and amplifiers. properties and applications)

  9. Compact and Integrated Liquid Bismuth Propellant Feed System

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Stanojev, Boris; Korman, Valentin; Gross, Jeffrey T.

    2007-01-01

    Operation of Hall thrusters with bismuth propellant has been shown to be a promising path toward high-power, high-performance, long-lifetime electric propulsion for spaceflight missions [1]. There has been considerable effort in the past three years aimed at resuscitating this promising technology and validating earlier experimental results indicating the advantages of a bismuth-fed Hall thruster. A critical element of the present effort is the precise metering of propellant to the thruster, since performance cannot be accurately assessed without an accurate accounting of mass flow rate. Earlier work used a pre./post-test propellant weighing scheme that did not provide any real-time measurement of mass flow rate while the thruster was firing, and makes subsequent performance calculations difficult. The motivation of the present work is to develop a precision liquid bismuth Propellant Management System (PMS) that provides hot, molten bismuth to the thruster while simultaneously monitoring in real-time the propellant mass flow rate. The system is a derivative of our previous propellant feed system [2], but the present system represents a more compact design. In addition, all control electronics are integrated into a single unit and designed to reside on a thrust stand and operate in the relevant vacuum environment where the thruster is operating, significantly increasing the present technology readiness level of liquid metal propellant feed systems. The design of various critical components in a bismuth PMS are described. These include the bismuth reservoir and pressurization system, 'hotspot' flow sensor, power system and integrated control system. Particular emphasis is given to selection of the electronics employed in this system and the methods that were used to isolate the power and control systems from the high-temperature portions of the feed system and thruster. Open loop calibration test results from the 'hotspot' flow sensor are reported, and results of

  10. Compact and Integrated Liquid Bismuth Propellant Feed System

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Stanojev, Boris; Korman, Valentin; Gross, Jeffrey T.

    2007-01-01

    Operation of Hall thrusters with bismuth propellant has been shown to be a promising path toward high-power, high-performance, long-lifetime electric propulsion for spaceflight missions [1]. There has been considerable effort in the past three years aimed at resuscitating this promising technology and validating earlier experimental results indicating the advantages of a bismuth-fed Hall thruster. A critical element of the present effort is the precise metering of propellant to the thruster, since performance cannot be accurately assessed without an accurate accounting of mass flow rate. Earlier work used a pre./post-test propellant weighing scheme that did not provide any real-time measurement of mass flow rate while the thruster was firing, and makes subsequent performance calculations difficult. The motivation of the present work is to develop a precision liquid bismuth Propellant Management System (PMS) that provides hot, molten bismuth to the thruster while simultaneously monitoring in real-time the propellant mass flow rate. The system is a derivative of our previous propellant feed system [2], but the present system represents a more compact design. In addition, all control electronics are integrated into a single unit and designed to reside on a thrust stand and operate in the relevant vacuum environment where the thruster is operating, significantly increasing the present technology readiness level of liquid metal propellant feed systems. The design of various critical components in a bismuth PMS are described. These include the bismuth reservoir and pressurization system, 'hotspot' flow sensor, power system and integrated control system. Particular emphasis is given to selection of the electronics employed in this system and the methods that were used to isolate the power and control systems from the high-temperature portions of the feed system and thruster. Open loop calibration test results from the 'hotspot' flow sensor are reported, and results of

  11. Lead-bismuth eutectic technology for Hyperion reactor

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Kapernick, R. J.; McClure, P. R.; Trapp, T. J.

    2013-10-01

    A small lead-bismuth eutectic-cooled reactor concept (referred to as the Hyperion reactor concept) is being studied at Los Alamos National Laboratory and Hyperion Power Generation. In this report, a critical assessment of the lead-bismuth eutectic technology for Hyperion reactor is presented based on currently available knowledge. Included are: material compatibility, oxygen control, thermal hydraulics, polonium control. The key advances in the technology and their applications to Hyperion reactor design are analyzed. Also, the near future studies in main areas of the technology are recommended for meeting the design requirements.

  12. Correlation between thermoluminescence and radiation damage in bismuth germanate

    SciTech Connect

    Melcher, C.L.

    1985-02-01

    Thermoluminescence properties of bismuth germanate and their relationship to radiation damage characteristics have been investigated. Thermoluminescence and radiation damage in bismuth germanate display several similar properties including similar responses as a function of radiation dose, similar saturation levels, and similar decay times. Also a correlation was found between the thermoluminescence sensitivities and radiation damage sensitivities of four different crystals. The traps responsible for the radiation damage and those which store the thermoluminescence signal appear to be either closely related or actually the same traps. Four trapping centers can be seen in the thermoluminescence glow curves. The depth of the dominant trap is 1.1 eV. 10 references.

  13. Physical and Optical Polarizability and Transport Properties of Bismuthate Glasses

    NASA Astrophysics Data System (ADS)

    Bale, Shashidhar; Rahman, Syed

    Bismuth-based glasses containing ZnO, B2O3 and Li2O are investigated through different physical, polarizability and transport properties. Raman spectroscopy reveals that these glasses are built from [BiO3] and [BiO6] units. Zinc in tetrahedral form is also observed. Density and glass transition temperature increase with the bismuth content. The refractive index, oxide ion polarizability and optical basicity also increase with the Bi2O3 content, whereas the interaction parameter decreases. The DC electrical conductivity increases and the activation energy decreases with the increase in the Li2O content.

  14. Electrical and optical properties of gadolinium doped bismuth ferrite nanoparticles

    SciTech Connect

    Mukherjee, A. Banerjee, M. Basu, S.; Pal, M.

    2014-04-24

    Multiferroic bismuth ferrite (BFO) and gadolinium (Gd) doped bismuth ferrite had been synthesized by a sol-gel method. Particle size had been estimated by Transmission electron microscopy (TEM) and found to decrease with Gd doping. We studied the temperature and frequency dependence of impedance and electric modulus and calculated the grain and grain boundary resistance and capacitance of the investigated samples. We observed that electrical activation energy increases for all the doped samples. Optical band gap also increases for the doped samples which can be used in photocatalytic application of BFO.

  15. Electrical and optical properties of gadolinium doped bismuth ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Banerjee, M.; Basu, S.; Pal, M.

    2014-04-01

    Multiferroic bismuth ferrite (BFO) and gadolinium (Gd) doped bismuth ferrite had been synthesized by a sol-gel method. Particle size had been estimated by Transmission electron microscopy (TEM) and found to decrease with Gd doping. We studied the temperature and frequency dependence of impedance and electric modulus and calculated the grain and grain boundary resistance and capacitance of the investigated samples. We observed that electrical activation energy increases for all the doped samples. Optical band gap also increases for the doped samples which can be used in photocatalytic application of BFO.

  16. Degradation of organic dyes via bismuth silver oxide initiated direct oxidation coupled with sodium bismuthate based visible light photocatalysis.

    PubMed

    Yu, Kai; Yang, Shaogui; Liu, Cun; Chen, Hongzhe; Li, Hui; Sun, Cheng; Boyd, Stephen A

    2012-07-03

    Organic dye degradation was achieved via direct oxidation by bismuth silver oxide coupled with visible light photocatalysis by sodium bismuthate. Crystal violet dye decomposition by each reagent proceeded via two distinct pathways, each involving different active oxygen species. A comparison of each treatment method alone and in combination demonstrated that using the combined methods in sequence achieved a higher degree of degradation, and especially mineralization, than that obtained using either method alone. In the combined process direct oxidation acts as a pretreatment to rapidly bleach the dye solution which substantially facilitates subsequent visible light photocatalytic processes. The integrated sequential direct oxidation and visible light photocatalysis are complementary manifesting a > 100% increase in TOC removal, compared to either isolated method. The combined process is proposed as a novel and effective technology based on one primary material, sodium bismuthate, for treating wastewaters contaminated by high concentrations of organic dyes.

  17. Excited Delirium

    PubMed Central

    Takeuchi, Asia; Ahern, Terence L.; Henderson, Sean O.

    2011-01-01

    Excited (or agitated) delirium is characterized by agitation, aggression, acute distress and sudden death, often in the pre-hospital care setting. It is typically associated with the use of drugs that alter dopamine processing, hyperthermia, and, most notably, sometimes with death of the affected person in the custody of law enforcement. Subjects typically die from cardiopulmonary arrest, although the cause is debated. Unfortunately an adequate treatment plan has yet to be established, in part due to the fact that most patients die before hospital arrival. While there is still much to be discovered about the pathophysiology and treatment, it is hoped that this extensive review will provide both police and medical personnel with the information necessary to recognize and respond appropriately to excited delirium. PMID:21691475

  18. Voiced Excitations

    DTIC Science & Technology

    2004-12-01

    for purposes of vocoding in high noise environments: Task 1: Estimation of voiced excitation functions using skin surface vibration...High Noise Environments. The work on “ Voiced Excitations” shows that the surface vibrations of neck skin, during voicing , carry a great deal of...5 in this report). For field use, it may be better to obtain data from another location on the neck or face. A pressure function of voiced speech is

  19. Excited baryons

    SciTech Connect

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)

  20. Hydrolysis studies on bismuth nitrate: synthesis and crystallization of four novel polynuclear basic bismuth nitrates.

    PubMed

    Miersch, L; Rüffer, T; Schlesinger, M; Lang, H; Mehring, M

    2012-09-03

    Hydrolysis of Bi(NO(3))(3) in aqueous solution gave crystals of the novel compounds [Bi(6)O(4)(OH)(4)(NO(3))(5)(H(2)O)](NO(3)) (1) and [Bi(6)O(4)(OH)(4)(NO(3))(6)(H(2)O)(2)]·H(2)O (2) among the series of hexanuclear bismuth oxido nitrates. Compounds 1 and 2 both crystallize in the monoclinic space group P2(1)/n but show significant differences in their lattice parameters: 1, a = 9.2516(6) Å, b = 13.4298(9) Å, c = 17.8471(14) Å, β = 94.531(6)°, V = 2210.5(3) Å(3); 2, a = 9.0149(3) Å, b = 16.9298(4) Å, c = 15.6864(4) Å, β = 90.129(3)°, V = 2394.06(12) Å(3). Variation of the conditions for partial hydrolysis of Bi(NO(3))(3) gave bismuth oxido nitrates of even higher nuclearity, [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·4DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·4DMSO] (3) and [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·2DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·0.5DMSO] (5), upon crystallization from DMSO. Bismuth oxido clusters 3 and 5 crystallize in the triclinic space group P1 both with two crystallographically independent molecules in the asymmetric unit. The following lattice parameters are observed: 3, a = 20.3804(10) Å, b = 20.3871(9) Å, c = 34.9715(15) Å, α = 76.657(4)°, β = 73.479(4)°, γ = 60.228(5)°, V = 12021.7(9) Å(3); 5, a = 20.0329(4) Å, b = 20.0601(4) Å, c = 34.3532(6) Å, α = 90.196(1)°, β = 91.344(2)°, γ = 119.370(2)°, V = 12025.8(4) Å(3). Differences in the number of DMSO molecules (coordinated and noncoordinated) and ligand (nitrate, DMSO) coordination modes are observed.

  1. Polycrystalline thin film photovoltaic technology

    SciTech Connect

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L.; Noufi, R.

    1991-03-01

    Low-cost, high-efficiency thin-film modules are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. In this paper we review the significant technical progress made in the following thin films: copper indium diselenide, cadmium telluride, and polycrystalline thin silicon films. Also, the recent US DOE/SERI initiative to commercialize these emerging technologies is discussed. 6 refs., 9 figs.

  2. Discovery of the thallium, lead, bismuth, and polonium isotopes

    NASA Astrophysics Data System (ADS)

    Fry, C.; Thoennessen, M.

    2013-05-01

    Forty-two thallium, forty-two lead, forty-one bismuth, and forty-two polonium isotopes have so far been observed; the discovery of these isotopes is described. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  3. FABRICATION OF BISMUTH NANOWIRE DEVICES USING FOCUSED ION BEAM MILLING

    SciTech Connect

    Cheng, H. H.; Alkaisi, M. M.; Wu, S. E.; Liu, C. P.

    2009-07-23

    In this work, a focused ion beam (FIB) milling process has been developed to fabricate 50 nm Bi nanowire and transistor structures using FEI-200 dual beam FIB system. For the fabrication, 50 nm bismuth film was thermally evaporated through EBL patterned PMMA windows onto SiO{sub 2} substrates with pre-defined contact pads. Bi nanowire widths ranging from 30 nm to 100 nm have been successfully fabricated by milling out unwanted areas using 30 KeV Ga+ ion beam. A single-pixel-line ion beam blanking technique has been utilised to fabricate Bi nanowire as small as 30 nm in diameter and few micrometers long. In order to form good ohmic contacts for sub 50 nm bismuth nanowires, a drill-and-fill process has been developed using FIB to sputter away the surface oxide of bismuth after the in-situ platinum nanowire contacts deposition. To our knowledge, this is the first time a focused ion beam process has been used to fabricate bismuth nanowire. The fabricated Bi nanowires were electrically characterised using a semiconductor analyser that showed good ohmic contact to the electrodes. In this paper, the fabrication experiments and the characterisation results for Bi nanowires as small as 50 nm in diameter are presented. Several FIB issues involved in Bi device making and ohmic contacts to Bi nanowires will also be discussed.

  4. REMOVAL OF CERTAIN FISSION PRODUCT METALS FROM LIQUID BISMUTH COMPOSITIONS

    DOEpatents

    Dwyer, O.E.; Howe, H.E.; Avrutik, E.R.

    1959-11-24

    A method is described for purifying a solution of urarium in liquid bismuth containing at least one metal from the group consisting of selenium, tellurium, palladium, ruthenium, rhodium, niobium, and zirconium. The solution is contacted with zinc in an inert atmosphere to form a homogeneous melt, a solid zinc phase is formed, and the zinc phase containing the metal is separated from the melt.

  5. Compact, highly efficient ytterbium doped bismuthate glass waveguide laser.

    PubMed

    Mary, R; Beecher, S J; Brown, G; Thomson, R R; Jaque, D; Ohara, S; Kar, A K

    2012-05-15

    Laser slope efficiencies close to the quantum defect limit and in excess of 78% have been obtained from an ultrafast laser inscribed buried channel waveguide fabricated in a ytterbium-doped bismuthate glass. The simultaneous achievement of low propagation losses and preservation of the fluorescence properties of ytterbium ions is the basis of the outstanding laser performance.

  6. Controlled synthesis of bismuth oxyiodide toward optimization of photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Liao, Chenxing; Ma, Zhijun; Chen, Xiaofeng; He, Xin; Qiu, Jianrong

    2016-11-01

    A new investigation on the variation rule of the structure, morphology, chemical composition and photocatalytic performance of bismuth oxyiodide synthesized by solvothermal method as a function of reaction conditions was performed here. The composition and morphology of the product could be determined by X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The results revealed that the particle size together with content of iodide in bismuth oxyiodide decrease with the increase of the concentration of reaction precursors. Hollow Bi4O5I2 microsphere with specific surface area as high as 120.88 m2 g-1 can be easily synthesized when the concentration of the reaction precursors finally increased to 62.5 mM. Photocatalytic water purification performance of the as-prepared samples was evaluated by using Rhodamine B (RhB) as a model contaminant. The results revealed that the hollow Bi4O5I2 exhibited the best performance among all the bismuth oxyodide synthesized here for the degradation of RhB under visible light irradiation. Meanwhile, the formation mechanism of the hierarchical hollow structure of bismuth oxyiodide was investigated by the dissolution-recrystallization mechanism.

  7. ADSORPTION-BISMUTH PHOSPHATE METHOD FOR SEPARATING PLUTONIUM

    DOEpatents

    Russell, E.R.; Adamson, A.W.; Boyd, G.E.

    1960-06-28

    A process is given for separating plutonium from uranium and fission products. Plutonium and uranium are adsorbed by a cation exchange resin, plutonium is eluted from the adsorbent, and then, after oxidation to the hexavalent state, the plutonium is contacted with a bismuth phosphate carrier precipitate.

  8. Bismuth-based oxide semiconductors: Mild synthesis and practical applications

    NASA Astrophysics Data System (ADS)

    Timmaji, Hari Krishna

    In this dissertation study, bismuth based oxide semiconductors were prepared using 'mild' synthesis techniques---electrodeposition and solution combustion synthesis. Potential environmental remediation and solar energy applications of the prepared oxides were evaluated. Bismuth vanadate (BiVO4) was prepared by electrodeposition and solution combustion synthesis. A two step electrosynthesis strategy was developed and demonstrated for the first time. In the first step, a Bi film was first electrodeposited on a Pt substrate from an acidic BiCl3 medium. Then, this film was anodically stripped in a medium containing hydrolyzed vanadium precursor, to generate Bi3+, and subsequent BiVO4 formation by in situ precipitation. The photoelectrochemical data were consistent with the in situ formation of n-type semiconductor films. In the solution combustion synthesis procedure, BiVO4 powders were prepared using bismuth nitrate pentahydrate as the bismuth precursor and either vanadium chloride or vanadium oxysulfate as the vanadium precursor. Urea, glycine, or citric acid was used as the fuel. The effect of the vanadium precursor on the photocatalytic activity of combustion synthesized BiVO 4 was evaluated in this study. Methyl orange was used as a probe to test the photocatalytic attributes of the combustion synthesized (CS) samples, and benchmarked against a commercial bismuth vanadate sample. The CS samples showed superior activity to the commercial benchmark sample, and samples derived from vanadium chloride were superior to vanadium oxysulfate counterparts. The photoelectrochemical properties of the various CS samples were also studied and these samples were shown to be useful both for environmental photocatalytic remediation and water photooxidation applications. Silver bismuth tungstate (AgBiW2O8) nanoparticles were prepared for the first time by solution combustion synthesis by using silver nitrate, bismuth nitrate, sodium tungstate as precursors for Ag, Bi, and W

  9. Sexual excitement.

    PubMed

    Stoller, R J

    1976-08-01

    Sexual excitement depends on a scenario the person to be aroused has been writing since childhood. The story is an adventure, an autobiography disguised as fiction, in which the hero/heroine hides crucial intrapsychic conflicts, mysteries, screen memories of actual traumatic events and the resolution of these elements into a happy ending, best celebrated by orgasm. The function of the fantasy is to take these painful experiences and convert them to pleasure-triumph. In order to sharpen excitement-the vibration between the fear of original traumas repeating and the hope of a pleasurable conclusion this time-one introduces into the story elements of risk (approximations of the trauma) meant to prevent boredom and safety factors (sub-limnal signals to the storyteller that the risk are not truly dangerous). Sexual fantasy can be studied by means of a person's daydreams (including those chosen in magazines, books, plays, television, movies, and outright pornography), masturbatory behavior, object choice, foreplay, techniques of intercourse, or postcoital behavior.

  10. In vitro antibacterial activity and cytocompatibility of bismuth doped micro-arc oxidized titanium.

    PubMed

    Lin, Dan-Jae; Tsai, Ming-Tzu; Shieh, Tzong-Ming; Huang, Heng-Li; Hsu, Jui-Ting; Ko, Yi-Chun; Fuh, Lih-Jyh

    2013-01-01

    Chemical manipulations of the implant surface produce a bactericidal feature to prevent infections around dental implants. Despite the successful use of bismuth against mucosal and dermis infections, the antibacterial effect of bismuth in the oral cavity remains under investigation. The aim of this study was to evaluate the antibacterial activities of bismuth compounds against Actinobacillus actinomycetemcomitans, Staphylococcus mutans, and methicillin-resistant Staphylococcus aureus (MRSA), and to investigate the antimicrobial effects of bismuth doped micro-arc oxidation (MAO) titanium via an agar diffusion test. Cell viability, alkaline phosphatase activity, and mineralization level of MG63 osteoblast-like cells seeded on the coatings were evaluated at 1, 7, and 14 days. The results demonstrate that bismuth nitrate possess superior antibacterial activity when compared with bismuth acetate, bismuth subgallate, and silver nitrate. The bismuth doped MAO coating (contained 6.2 atomic percentage bismuth) had good biological affinities to the MG63 cells and showed a higher antibacterial efficacy against Actinobacillus actinomycetemcomitans and MRSA, where the reduction rates of colony numbers is higher than that of the control group by 1.5 and 1.9 times, respectively. These in vitro evaluations demonstrate that titanium implants with bismuth on the surface may be useful for better infection control.

  11. Texture and anisotropy of ferroelectric bismuth titanate

    NASA Astrophysics Data System (ADS)

    Jones, Jacob Leo

    Ferroelectric bismuth titanate, Na0.5Bi4.5 Ti4O15, is a piezoelectric ceramic used as an electromechanical sensor in high temperature environments (T < 655°C). However, the piezoelectric constant, d33, is relatively low in randomly oriented ceramics. Crystallographic texturing is often employed to increase the piezoelectric constant because the spontaneous polarization axes of the grains are better aligned. This research distinguishes between the crystallographic texture induced to the grains from tape casting and crystallographic texture induced to the ferroelectric domains from electrical poling. Novel quantitative approaches describe texture of both types independently using conventional and synchrotron X-ray sources as well as time-of-flight neutron diffraction with multiple detectors. Furthermore, methods are developed to describe the combined effect of a ferroelectric texture superimposed on a paraelectric texture. Texture of the paraelectric crystallographic axes was induced by novel processing approaches. An alternative to using plate-shaped template particles was developed utilizing calcined powder. Paraelectric texture develops from particle settling and strong surface energy anisotropy during sintering. The 00l textures induced from this process are on the order of two to four multiples of a random distribution. These textures create property anisotropies between the casting plane and normal directions of 6.4 and 5.7 in piezoelectric d33 constant and remanent polarization, respectively. Texture of the ferroelectric crystallographic axes was induced by electrical poling at different temperatures and in different orientations. Ceramics with an initial paraelectric texture can exhibit greater change in the domain volume fractions during electrical poling than randomly oriented ceramics. This is demonstrated by applying novel quantitative approaches to reflection X-ray spectra from many sample directions. Because orthorhombic Na0.5Bi 4.5Ti4O15 has two

  12. Influence of Bi on the Er luminescence in yttrium-erbium disilicate thin films

    SciTech Connect

    Scarangella, Adriana; Miritello, Maria; Priolo, Francesco

    2014-09-28

    The influence of bismuth on erbium optical properties at 1.54 μm has been investigated in yttrium-erbium disilicate thin films synthesized by magnetron co-sputtering and implanted with two Bi different doses. The Bi depth distribution and the evolution of its oxidation states after annealing treatments at 1000 °C in two atmospheres, O₂ and N₂, have been investigated. It was found that only in O₂ the Bi³⁺ valence state is prevalent, thanks to the enhanced Bi mobility in the oxidizing ambient, as demonstrated by Rutherford backscattering spectrometry. At lower Bi content, although the formation of Bi⁰ metallic nanoparticles that are deleterious non radiative channels for Er luminescence, efficient energy transfer from Bi to Er has been obtained only in O₂. It is due to the excitation of ultraviolet broad Bi₃⁺ absorption band and the energy transfer to Er ions. We have evaluated that in this case, Er effective excitation cross section increased by a factor of 5 in respect with the one for direct Er absorption at 488 nm. At higher Bi dose, this mechanism is absent, but an increased Er optical efficiency at 1.54 μm has been observed under resonant excitation. It is due to the contribution of a fraction of Er ions having an increased lifetime. This phenomenon is associated with the formation of Bi agglomerates, induced at higher Bi doses, which well isolate Er from non-radiative quenching centers. The increased decay time assures higher optical efficiency at 1.54 μm.

  13. Bi4Si3O12 thin films for scintillator applications

    NASA Astrophysics Data System (ADS)

    Rincón-López, J. A.; Fernández-Benavides, D. A.; Giraldo-Betancur, A. L.; Cruz-Muñoz, B.; Riascos, H.; Muñoz-Saldaña, J.

    2016-04-01

    Bismuth silicate Bi4Si3O12 or BSO thin films were synthesized by pulsed laser deposition and a subsequent annealing treatment from a Bi-Fe-O and compared with films obtained with a pure Bi2O3 target. Bi-Fe-O amorphous thin films of different thicknesses were deposited on silicon substrates at room temperature and subsequently heat treated at 800 °C at different times to study the phase transformations, keeping in all steps a constant oxygen atmosphere. After annealing, Bi-Si-O crystalline phases are formed in all cases with different synthesis kinetics. The Bi-Fe-O target clearly increases the synthesis kinetic of a textured BSO phase having a dissociation and precipitation of homogeneously distributed Fe2O3 particles in the BSO matrix. The key aspects to obtain the Bi4Si3O12 stoichiometric phase are both the film thickness and the heat treatment time to allow the reaction between the Bi2O3 from the target and the SiO2 obtained after the oxidation of the substrate. A deposition time of Bi-Fe-O for 120 and 30 min annealing fulfills the conditions to obtain the Bi4Si3O12 stoichiometric composition and thus scintillation performance. The scintillation properties were measured by a fluorescence spectrophotometry. The stoichiometric Bi4Si3O12 samples show that under 260 nm excitation the material exhibits a peak emission at 466.6 nm. These Bi4Si3O12 thin films crystallize in eulytite phase with cubic structure (a = b = c = 10.291 Å). The phase content was obtained by Rietveld analysis of X-ray diffraction patterns.

  14. Highly spatially resolved structural and optical investigation of Bi nanoparticles in Y-Er disilicate thin films

    SciTech Connect

    Scarangella, A.; Amiard, G.; Boninelli, S. Miritello, M.; Reitano, R.; Priolo, F.

    2016-08-08

    Er-containing silicon compatible materials have been widely used as infrared emitters for microphotonics application. In this field, the additional introduction of a proper sensitizer permits to increase the Er excitation cross sections, thus increasing its optical efficiency. This work aims to investigate the influence of a post-transition metal, bismuth, on the optical properties of erbium-yttrium disilicate thin films synthesized by magnetron co-sputtering. After thermal treatments at 1000 °C in O{sub 2} or N{sub 2} environment, the presence of small precipitates, about 6 nm in diameter, was evidenced by transmission electron microscopy analyses. The spatially resolved chemical nature of the nanoparticles was discerned in the Si and O rich environments by means of scanning transmission electron microscopy–energy dispersive X-ray and scanning transmission electron microscopy–electron energy loss spectroscopy analyses performed with nanometric resolution. In particular, metallic Bi nanoparticles were stabilized in the N{sub 2} environment, being strongly detrimental for the Er emission. A different scenario was instead observed in O{sub 2}, where the formation of Bi silicate nanoparticles was demonstrated with the support of photoluminescence excitation spectroscopy. In particular, a broad band peaked at 255 nm, correlated to the excitation band of Bi silicate nanoparticles, was identified in Er excitation spectrum. Thus Bi silicate clusters act as sensitizer for Er ions, permitting to improve Er emission up to 250 times with respect to the resonant condition. Moreover, the Er decay time increases in the presence of the Bi silicate nanoparticles that act as cages for Er ions. These last results permit to further increase Er optical efficiency in the infrared range, suggesting (Bi + Er)-Y disilicate as a good candidate for applications in microphotonics.

  15. Highly spatially resolved structural and optical investigation of Bi nanoparticles in Y-Er disilicate thin films

    NASA Astrophysics Data System (ADS)

    Scarangella, A.; Amiard, G.; Reitano, R.; Priolo, F.; Boninelli, S.; Miritello, M.

    2016-08-01

    Er-containing silicon compatible materials have been widely used as infrared emitters for microphotonics application. In this field, the additional introduction of a proper sensitizer permits to increase the Er excitation cross sections, thus increasing its optical efficiency. This work aims to investigate the influence of a post-transition metal, bismuth, on the optical properties of erbium-yttrium disilicate thin films synthesized by magnetron co-sputtering. After thermal treatments at 1000 °C in O2 or N2 environment, the presence of small precipitates, about 6 nm in diameter, was evidenced by transmission electron microscopy analyses. The spatially resolved chemical nature of the nanoparticles was discerned in the Si and O rich environments by means of scanning transmission electron microscopy-energy dispersive X-ray and scanning transmission electron microscopy-electron energy loss spectroscopy analyses performed with nanometric resolution. In particular, metallic Bi nanoparticles were stabilized in the N2 environment, being strongly detrimental for the Er emission. A different scenario was instead observed in O2, where the formation of Bi silicate nanoparticles was demonstrated with the support of photoluminescence excitation spectroscopy. In particular, a broad band peaked at 255 nm, correlated to the excitation band of Bi silicate nanoparticles, was identified in Er excitation spectrum. Thus Bi silicate clusters act as sensitizer for Er ions, permitting to improve Er emission up to 250 times with respect to the resonant condition. Moreover, the Er decay time increases in the presence of the Bi silicate nanoparticles that act as cages for Er ions. These last results permit to further increase Er optical efficiency in the infrared range, suggesting (Bi + Er)-Y disilicate as a good candidate for applications in microphotonics.

  16. Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure.

    PubMed

    Prakash, Om; Kumar, Anil; Thamizhavel, A; Ramakrishnan, S

    2017-01-06

    At ambient pressure, bulk rhombohedral bismuth is a semimetal that remains in the normal state down to at least 10 millikelvin. Superconductivity in bulk bismuth is thought to be unlikely because of the extremely low carrier density. We observed bulk superconductivity in pure bismuth single crystals below 0.53 millikelvin at ambient pressure, with an estimated critical magnetic field of 5.2 microteslas at 0 kelvin. Superconductivity in bismuth cannot be explained by the conventional Bardeen-Cooper-Schrieffer theory because its adiabatic approximation does not hold true for bismuth. Future theoretical work will be needed to understand superconductivity in the nonadiabatic limit in systems with low carrier densities and unusual band structures, such as bismuth.

  17. Effects of tripotassium dicitrato bismuthate (TDB) tablets or cimetidine in the treatment of duodenal ulcer.

    PubMed

    Hamilton, I; Worsley, B W; O'Connor, H J; Axon, A T

    1983-12-01

    Forty patients with duodenal ulcer were randomly allocated to treatment with either tripotassium dicitrato bismuthate tablets or cimetidine for six weeks. Endoscopically confirmed healing of the ulcer occurred in 80% treated with tripotassium dicitrato bismuthate tablets and in 85% treated with cimetidine. Symptomatic improvement was also similar in the two groups. Treatment with cimetidine was associated with an increase in pH of gastric aspirate during treatment and increased numbers of bacteria were isolated from the gastric aspirate during treatment, while the pH and bacterial flora of gastric aspirate did not change during tripotassium dicitrato bismuthate treatment. Serum and urinary bismuth levels rose during treatment with tripotassium dicitrato bismuthate and urinary excretion remained raised two weeks after cessation of treatment. Tripotassium dicitrato bismuthate tablets appear to be as effective as cimetidine in the treatment of duodenal ulcer without the potentially undesirable effects of a reduction in gastric acid secretion.

  18. Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure

    NASA Astrophysics Data System (ADS)

    Prakash, Om; Kumar, Anil; Thamizhavel, A.; Ramakrishnan, S.

    2017-01-01

    At ambient pressure, bulk rhombohedral bismuth is a semimetal that remains in the normal state down to at least 10 millikelvin. Superconductivity in bulk bismuth is thought to be unlikely because of the extremely low carrier density. We observed bulk superconductivity in pure bismuth single crystals below 0.53 millikelvin at ambient pressure, with an estimated critical magnetic field of 5.2 microteslas at 0 kelvin. Superconductivity in bismuth cannot be explained by the conventional Bardeen-Cooper-Schrieffer theory because its adiabatic approximation does not hold true for bismuth. Future theoretical work will be needed to understand superconductivity in the nonadiabatic limit in systems with low carrier densities and unusual band structures, such as bismuth.

  19. Near-IR luminescence from subvalent bismuth species in fluoride glass

    NASA Astrophysics Data System (ADS)

    Romanov, Alexey N.; Haula, Elena V.; Fattakhova, Zukhra T.; Veber, Alexander A.; Tsvetkov, Vladimir B.; Zhigunov, Denis M.; Korchak, Vladimir N.; Sulimov, Vladimir B.

    2011-11-01

    The broadband NIR luminescence of subvalent bismuth species was demonstrated in partially reduced ZrF 4-BiF 3-NaF and ZrF 4-BiF 3-BaF 2 fluoride glasses. The parameters of luminescence were reported and compared with luminescence from other bismuth-doped materials. Since fluoride glass compositions are based on strong Lewis acids (ZrF 4 in present case) they can stabilize NIR photoluminescent subvalent bismuth species.

  20. Dielectric spectra of bismuth vanadate Bi4V2O11

    NASA Astrophysics Data System (ADS)

    Borisov, V. N.; Pashkov, V. M.; Poplavko, Iu. M.; Avakian, P. B.; Osipian, V. G.

    1990-06-01

    Results of a study of the temperature-frequency dependence of the behavior of the dielectric parameters of bismuth vanadate, Bi4V2O11, in the frequency range 1-100 GHz are reported. It is shown that bismuth vanadate is characterized by a large number of phase transitions. Yet another, previously unknown, phase transition in bismuth vanadate, masked by a relaxation process, has been observed in the temperature range 410-420 K.

  1. METHOD OF PREPARING URANIUM, THORIUM, OR PLUTONIUM OXIDES IN LIQUID BISMUTH

    DOEpatents

    Davidson, J.K.; Robb, W.L.; Salmon, O.N.

    1960-11-22

    A method is given for forming compositions, as well as the compositions themselves, employing uranium hydride in a liquid bismuth composition to increase the solubility of uranium, plutonium and thorium oxides in the liquid bismuth. The finely divided oxide of uranium, plutonium. or thorium is mixed with the liquid bismuth and uranium hydride, the hydride being present in an amount equal to about 3 at. %, heated to about 5OO deg C, agitated and thereafter cooled and excess resultant hydrogen removed therefrom.

  2. METHOD OF SEPARATING FISSION PRODUCTS FROM FUSED BISMUTH-CONTAINING URANIUM

    DOEpatents

    Wiswall, R.H.

    1958-06-24

    A process is described for removing metal selectively from liquid metal compositions. The method effects separation of flssion product metals selectively from dilute solution in fused bismuth, which contains uraniunn in solution without removal of more than 1% of the uranium. The process comprises contacting the fused bismuth with a fused salt composition consisting of sodium, potassium and lithium chlorides, adding to fused bismuth and molten salt a quantity of bismuth chloride which is stoichiometrically required to convert the flssion product metals to be removed to their chlorides which are more stable in the fused salt than in the molten metal and are, therefore, preferentially taken up in the fused salt phase.

  3. Bismuth-induced Raman modes in GaP1–xBix

    DOE PAGES

    Christian, Theresa M.; Fluegel, Brian; Beaton, Daniel A.; ...

    2016-09-02

    Here, dilute bismide semiconductor alloys are a promising material platform for optoelectronic devices due to drastic impacts of bismuth on the electronic structure of the alloy. At the same time, the details of bismuth incorporation in the lattice are not fully understood. In this work, we conduct Raman scattering spectroscopy on GaP1- xBix epilayers grown by molecular beam epitaxy (MBE) and identify several bismuth-related Raman features including gap vibration modes at 296, 303, and 314 cm-1. This study paves the way for more detailed analysis of the local symmetry at bismuth incorporation sites in the dilute bismide alloy regime.

  4. Selective coating of gastric ulcer by tripotassium dicitrato bismuthate in the rat.

    PubMed

    Koo, J; Ho, J; Lam, S K; Wong, J; Ong, G B

    1982-05-01

    Controlled clinical trials have shown that tripotassium dicitrato bismuthate healed duodenal and gastric ulcers significantly better than placebo. One mechanism suggested is that it forms a protective coat at the ulcer base. We studied this coating action in rats with chronic gastric ulcers produced by a standardized technique for mucosal wounding at the fundoantral junction. Bismuth was identified by histochemical staining using Castel's reagent, the specificity of which was verified in vitro against 13 other metallic compounds and chemicals. Our results showed that tripotassium dicitrato bismuthate had a coating affinity for the ulcer base, but not for the adjacent normal mucosa. All rats treated with tripotassium dicitrato bismuthate 1, 2, 4, and 6 h previously, but not the control rats treated with water or those treated with four other bismuth compounds, manifested a layer of bismuth that coated the ulcer base. Light and electron microscopy of the tripotassium dicitrato bismuthate-treated ulcers--but not their controls-revealed an abundance of macrophages, which had ingested the bismuth. This unique bismuth coat may insulate the ulcer base from acid-pepsin digestion, while the influx of macrophages may expedite reparative processes.

  5. Bismuth(III) deferiprone effectively inhibits growth of Desulfovibrio desulfuricans ATCC 27774.

    PubMed

    Barton, Larry L; Lyle, Daniel A; Ritz, Nathaniel L; Granat, Alex S; Khurshid, Ali N; Kherbik, Nada; Hider, Robert; Lin, Henry C

    2016-04-01

    Sulfate-reducing bacteria have been implicated in inflammatory bowel diseases and ulcerative colitis in humans and there is an interest in inhibiting the growth of these sulfide-producing bacteria. This research explores the use of several chelators of bismuth to determine the most effective chelator to inhibit the growth of sulfate-reducing bacteria. For our studies, Desulfovibrio desulfuricans ATCC 27774 was grown with nitrate as the electron acceptor and chelated bismuth compounds were added to test for inhibition of growth. Varying levels of inhibition were attributed to bismuth chelated with subsalicylate or citrate but the most effective inhibition of growth by D. desulfuricans was with bismuth chelated by deferiprone, 3-hydroxy-1,2-dimethyl-4(1H)-pyridone. Growth of D. desulfuricans was inhibited by 10 μM bismuth as deferiprone:bismuth with either nitrate or sulfate respiration. Our studies indicate deferiprone:bismuth has bacteriostatic activity on D. desulfuricans because the inhibition can be reversed following exposure to 1 mM bismuth for 1 h at 32 °C. We suggest that deferiprone is an appropriate chelator for bismuth to control growth of sulfate-reducing bacteria because deferiprone is relatively nontoxic to animals, including humans, and has been used for many years to bind Fe(III) in the treatment of β-thalassemia.

  6. Fast pulsed excitation wiggler or undulator

    DOEpatents

    van Steenbergen, Arie

    1990-01-01

    A fast pulsed excitation, electromagnetic undulator or wiggler, employing geometrically alternating substacks of thin laminations of ferromagnetic material, together with a single turn current loop excitation of the composite assembly, of such shape and configuration that intense, spatially alternating, magnetic fields are generated; for use as a pulsed mode undulator or wiggler radiator, for use in a Free Electron Laser (FEL) type radiation source or, for use in an Inverse Free Electron Laser (IFEL) charged particle accelerator.

  7. Shape-controlled solvothermal synthesis of bismuth subcarbonate nanomaterials

    NASA Astrophysics Data System (ADS)

    Cheng, Gang; Yang, Hanmin; Rong, Kaifeng; Lu, Zhong; Yu, Xianglin; Chen, Rong

    2010-08-01

    Much effort has been devoted to the synthesis of novel nanostructured materials because of their unique properties and potential applications. Bismuth subcarbonate ((BiO) 2CO 3) is one of commonly used antibacterial agents against Helicobacter pylori ( H. pylori). Different (BiO) 2CO 3 nanostructures such as cube-like nanoparticles, nanobars and nanoplates, were fabricated from bismuth nitrate via a simple solvothermal method. The nanostructures were characterized by powder X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). It was found that the solvents and precursors have an influence on the morphologies of (BiO) 2CO 3 nanostructures. The possible formation mechanism of different (BiO) 2CO 3 nanostructures fabricated under different conditions was also discussed.

  8. Ac irreversibility line of bismuth-based high temperature superconductors

    SciTech Connect

    Mehdaoui, A.; Beille, J.; Berling, D.; Loegel, B.; Noudem, J.G.; Tournier, R.

    1997-09-01

    We discuss the magnetic properties of lead doped Bi-2223 bulk samples obtained through combined magnetic melt texturing and hot pressing (MMTHP). The ac complex susceptibility measurements are achieved over a broad ac field range (1 Oe{lt}h{sub ac}{lt}100 Oe) and show highly anisotropic properties. The intergranular coupling is improved in the direction perpendicular to the applied stress and magnetic field direction, and an intragranular loss peak is observed for the first time. A comparison is made with other bismuth-based compounds and it is shown that the MMTHP process shifts the ac irreversibility line (ac IL) toward higher fields. It is also shown that all the ac IL{close_quote}s for quasi 2D bismuth-based compounds show a nearly quadratic temperature dependence and deviate therefore strongly from the linear behavior observed in quasi 3D compounds and expected from a critical state model.{copyright} {ital 1997 Materials Research Society.}

  9. Observation of gas-phase anionic bismuth zintl ions

    SciTech Connect

    Farley, R.W.; Castleman, A.W. Jr. )

    1989-03-29

    The authors report in this communication the first observation of gas-phase anionic Zintl ions of bismuth. Laser-ionization time-of-flight mass spectra of mixed bismuth/alkali clusters produced by a gas aggregation source were investigated in their laboratory and found to exhibit maxima for clusters corresponding to reported Zintl ions. Bonding in homoatomic clusters is a topic of fundamental as well as practical importance. The electronic and geometric structure of metal clusters in particular is currently the subject of intense investigation among a great number of researchers. Magic numbers corresponding to particularly abundant gas-phase cluster ions are observed to depend on the identity of the metal or alloy and on the ionization conditions. Reasons for the exceptional stabilities of such magic numbers have been ascribed to preferred electronic and structural configurations for either the neutral or ionic species.

  10. Synthesis of bismuth sulfide nanostructures for photodegradation of organic dye

    NASA Astrophysics Data System (ADS)

    Sharma, Surbhi; Khare, Neeraj

    2017-05-01

    Bismuth sulfide nanorods (Bi2S3-NR) and nanoflowers (Bi2S3-NF) have been synthesized by a simple hydrothermal method and their potentiality for the photodegradation of methylene blue (MB) under visible light exposure have been evaluated. X-ray diffraction (XRD) patterns confirmed the formation of Bi2S3 in the pure orthorhombic phase. Scanning electron microscopy (SEM) images and high resolution transmission electron microscopy (HRTEM) images confirm the synthesis of bismuth sulfide in the morphology of nanorods and hierarchical nanostructures (nanoflowers). A two fold enhancement in the photocatalytic activity of Bi2S3-NF in comparison to Bi2S3-NR has been demonstrated. This enhancement in the photocatalytic activity is attributed to the high rate of separation of photogenerated charge carriers in the Bi2S3-NF due to its hierarchical structure as compared to Bi2S3-NR.

  11. Coexistence of multiple metastable polytypes in rhombohedral bismuth

    PubMed Central

    Shu, Yu; Hu, Wentao; Liu, Zhongyuan; Shen, Guoyin; Xu, Bo; Zhao, Zhisheng; He, Julong; Wang, Yanbin; Tian, Yongjun; Yu, Dongli

    2016-01-01

    Derivative structural polytypes coexisting with the rhombohedral A7 structure of elemental bismuth (Bi) have been discovered at ambient condition, based on microstructure analyses of pure Bi samples treated under high pressure and high temperature conditions. Three structures with atomic positions close to those of the A7 structure have been identified through first-principles calculations, showing these polytypes energetically comparable to the A7 structure under ambient condition. Simulated diffraction data are in excellent agreement with the experimental observations. We argue that previously reported some variations of physical properties (e.g., density, electrical conductivity, and magnetism) in bismuth could be due to the formation of these polytypes. The coexistence of metastable derivative structural polytypes may be a widely occurring phenomenon in other elemental materials. PMID:26883895

  12. Structural and optical characterization of bismuth sulphide nanorods

    NASA Astrophysics Data System (ADS)

    Shah, N. M.; Poria, K. C.

    2017-05-01

    In this work Bismuth sulfide (Bi2S3) nanorods with a high order of crystallinity is synthesized via hydrothermal method from aqueous solution of Bismuth Nitrate Pentahydrate and elemental Sulphur using Triethanolamine (TEA) as capping agent. The microstructures of Bi2S3 nanorods were investigated by X-ray diffraction (XRD) analysis. The positions and relative intensities of all the peaks in XRD pattern are in good agreement with those of the orthorhombic crystal structure of Bi2S3. TEM images shows that synthesized Bi2S3 has morphology of nanorods while selected area electron diffraction pattern indicates single crystalline nature. The analysis of diffuse reflectance (DR) spectrum of as synthesized Bi2S3 using Kubelka - Munk theory suggests direct energy band gap of 1.5 eV.

  13. Tin-silver-bismuth solders for electronics assembly

    DOEpatents

    Vianco, P.T.; Rejent, J.A.

    1995-08-08

    A lead-free solder alloy is disclosed for electronic assemblies composed of a eutectic alloy of tin and silver with a bismuth addition, x, of 0bismuth added to the eutectic tin-silver alloy as determined by DSC analysis, 10 C/min. A preferred alloy composition is 91.84Sn-3.33Ag-4.83Bi (weight percent based on total alloy weight). 4 figs.

  14. Tin-silver-bismuth solders for electronics assembly

    DOEpatents

    Vianco, Paul T.; Rejent, Jerome A.

    1995-01-01

    A lead-free solder alloy for electronic assemblies composed of a eutectic alloy of tin and silver with a bismuth addition, x, of 0bismuth added to the eutectic tin-silver alloy as determined by DSC analysis, 10.degree. C./min. A preferred alloy composition is 91.84Sn-3.33Ag-4.83Bi (weight percent based on total alloy weight).

  15. Bismuth shielding during CT exams: a literature review.

    PubMed

    Morford, Kyle; Watts, Lynette K

    2012-01-01

    Dose-reducing techniques and patients' radiation protection are of more concern today than in the past with the increased dose used in multi-detector computed tomography (MDCT) compared to single detector scanners. Companies that produce MDCT scanners can, and most often do, apply software that complies with the as low as reasonably achievable (ALARA) principle and decreases the dose used for the imaging. New ways have been discovered to reduce the dose to patients' radiosensitive organs through in-plane bismuth shielding. Different sizes and thicknesses of the shields are available to cover patients more radiosensitive organs. This literature review describes the uses, benefits, and some concerns of in-plane bismuth shielding.

  16. Local bonds anomalies and dynamics in bismuth ferrite

    NASA Astrophysics Data System (ADS)

    Lin, J. W.; Gardner, J. S.; Wang, C.-W.; Deng, G.; Wu, C. M.; Peterson, V. K.; Lin, J. G.

    2017-05-01

    The temperature evolution of the chemical and magnetic sublattice of bismuth ferrite has been investigated by neutron scattering below room temperature. Although the bulk lattice structure performed as expected, anomalies were measured in the local Bi-Fe and Fe-O bond lengths around 205 K, distorting the Fe polyhedra. The intensity and width of magnetic Bragg reflections were observed not to monotonically decrease as the system cooled, with distinct anomalies at 205 K. Inelastic neutron scattering above and below the 205 K transition revealed no significant difference in the low energy acoustic phonon. These insights will underpin and stimulate more detailed work aimed at understanding further the bismuth ferrite ordering taking place around 205 K.

  17. Tunable spin polarization in bismuth ultrathin film on Si(111).

    PubMed

    Takayama, Akari; Sato, Takafumi; Souma, Seigo; Oguchi, Tamio; Takahashi, Takashi

    2012-04-11

    We performed a spin- and angle-resolved photoemission spectroscopy of bismuth ultrathin film on Si(111) with various film thickness d. We found that the spin polarization of spin-split Rashba surface states near the Brillouin-zone boundary, which is high (0.7) at d = 40 BL (bilayers), is gradually reduced on decreasing d and almost vanishes at d = 8 BL. This finding provides a novel method to generate spin-polarized electrons with tunable spin-polarization.

  18. ACTIVATION ENERGY FOR GRAIN GROWTH IN BISMUTH COATINGS

    SciTech Connect

    Jankowski, A F; Hayes, J P; Smith, R F; Reed, B W; Kumar, M; Colvin, J D

    2005-09-09

    The knowledge of both activation energy and diffusion coefficient is needed for a predictive processing of grain size in coatings. However, for metals as Bismuth there is insufficient information available in the literature for these parameters. To determine these values, a method is adopted wherein an examination of the grain size is conducted for coatings deposited isothermally. The exponent for grain growth with time is determined, thereby enabling quantification of the activation energy and diffusion coefficient. Bismuth coatings that range from 10 {micro}m to 1 mm thick are deposited using electron-beam evaporation onto temperature-controlled substrate surfaces of glass and lithium fluoride. The grain size of each coating is measured upon examination of the microstructure in cross-section using the intercept method. Ideal grain growth is observed over the experimental range of deposition temperatures examined from 317 to 491 K. The activation energy (Q) for grain growth in bismuth is fit as 0.47 eV {center_dot} atom{sup -1} with a diffusion coefficient (D{sub 0}) of 3.3 x 10{sup -4} cm{sup 2} {center_dot} sec{sup -1}.

  19. Shape-controlled solvothermal synthesis of bismuth subcarbonate nanomaterials

    SciTech Connect

    Cheng Gang; Yang Hanmin; Rong Kaifeng; Lu Zhong; Yu Xianglin; Chen Rong

    2010-08-15

    Much effort has been devoted to the synthesis of novel nanostructured materials because of their unique properties and potential applications. Bismuth subcarbonate ((BiO){sub 2}CO{sub 3}) is one of commonly used antibacterial agents against Helicobacter pylori (H. pylori). Different (BiO){sub 2}CO{sub 3} nanostructures such as cube-like nanoparticles, nanobars and nanoplates, were fabricated from bismuth nitrate via a simple solvothermal method. The nanostructures were characterized by powder X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). It was found that the solvents and precursors have an influence on the morphologies of (BiO){sub 2}CO{sub 3} nanostructures. The possible formation mechanism of different (BiO){sub 2}CO{sub 3} nanostructures fabricated under different conditions was also discussed. - Graphical abstract: Different bismuth subcarbonate ((BiO){sub 2}CO{sub 3}) nanostructures were successfully synthesized by a simple solvothermal method. It was found that the solvents and precursors have an influence on the morphologies of (BiO){sub 2}CO{sub 3} nanostructures.

  20. Subinhibitory bismuth-thiols reduce virulence of Pseudomonas aeruginosa.

    PubMed

    Wu, Chieh-Liang; Domenico, Philip; Hassett, Daniel J; Beveridge, Terry J; Hauser, Alan R; Kazzaz, Jeffrey A

    2002-06-01

    Pseudomonas aeruginosa is a common pathogen in mechanically ventilated patients and produces a wide array of virulence factors. Bismuth-thiols (BTs) are active in vitro against all bacterial lung pathogens, including P. aeruginosa. The objective of these studies was to examine the biochemical and morphologic effects of sublethal BT concentrations on P. aeruginosa and to evaluate virulence in cell culture. Bismuth-dimercaprol, at a fraction of the minimal inhibitory concentration, reduced alginate expression by 67% in P. aeruginosa, whereas subinhibitory bismuth-ethanedithiol (BisEDT) reduced alginate by 92% in P. syringae. BisEDT effects on lipopolysaccharide content and type III secreted cytoxins were examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Subinhibitory BisEDT reduced cell-associated lipopolysaccharide, and inhibited processing of the secreted cytotoxic protein ExoU. BisEDT-induced outer membrane blebbing and aggregation of cytoplasmic material was noted in electron microscopy. Virulence of P. aeruginosa was assessed by adherence to epithelial cells and sensitivity to serum killing. BisEDT inhibited adherence of P. aeruginosa to 16HBE14o- cells by 28% and to a collagen matrix by 53%. BisEDT-treated bacteria were also 100-fold more sensitive to serum bactericidal activity. In summary, low BT concentrations affect P. aeruginosa in a variety of ways, the combination of which may help prevent or resolve respiratory tract infection.

  1. Dense superconducting phases of copper-bismuth at high pressure

    NASA Astrophysics Data System (ADS)

    Amsler, Maximilian; Wolverton, Chris

    2017-08-01

    Although copper and bismuth do not form any compounds at ambient conditions, two intermetallics, CuBi and Cu11Bi7 , were recently synthesized at high pressures. Here we report on the discovery of additional copper-bismuth phases at elevated pressures with high densities from ab initio calculations. In particular, a Cu2Bi compound is found to be thermodynamically stable at pressures above 59 GPa, crystallizing in the cubic Laves structure. In strong contrast to Cu11Bi7 and CuBi, cubic Cu2Bi does not exhibit any voids or channels. Since the bismuth lone pairs in cubic Cu2Bi are stereochemically inactive, the constituent elements can be closely packed and a high density of 10.52 g/cm3 at 0 GPa is achieved. The moderate electron-phonon coupling of λ =0.68 leads to a superconducting temperature of 2 K, which exceeds the values observed both in Cu11Bi7 and CuBi, as well as in elemental Cu and Bi.

  2. XPS study on silica bismuthate glasses and glass ceramics

    NASA Astrophysics Data System (ADS)

    Simon, V.; Todea, M.; Takács, A. F.; Neumann, M.; Simon, S.

    2007-01-01

    X-ray photoelectron spectroscopy (XPS) was used to evidence the effect of the Bi 2O 3 to SiO 2 ratio and of partial crystallisation on the electronic charge density around the atoms entering silica-bismuthate glasses of nominal composition 0.01Fe 2O 3ṡ0.99[ xSiO 2ṡ(100- x)Bi 2O 3] with 10≤x≤60 mol%. The core level spectra show significant composition dependent changes in binding energy, and the full width at half maximum of photoelectron peaks both of cations and of oxygen atoms. The analysis reveals changes in electron density correlated with the ionic and covalent character of the samples. The shift in binding energy suggests charge transfer from silicon and oxygen atoms to bismuth atoms. Contrary to the expected behaviour in conventional silicate oxide systems, the results indicate an increase of ionicity for silicon and of covalency for bismuth atoms. The same evolution of ionicity/covalency is observed after partial crystallisation.

  3. Bismuth iron titanate pyrochlores: Thermostability, structure and properties

    SciTech Connect

    Piir, I.V.; Koroleva, M.S.; Ryabkov, Yu.I.; Korolev, D.A.; Chezhina, N.V.; Semenov, V.G.; Panchuk, V.V.

    2013-08-15

    Iron containing bismuth titanates with pyrochlore structure Bi{sub 1.6}Fe{sub x}Ti{sub 2}O{sub 7−δ}, where 0.08≤x≤0.4, were obtained by ceramic procedure. The results of bough pycnometric density of the pyrochlores and of X-ray powder diffraction structure refinement points to the preference for iron atoms to occupy the Bi{sup 3+}-sites. Electric and magnetic properties were studied for single phase pyrochlores based on bismuth titanates. The magnetic ordering was studied by the methods of Mössbauer spectroscopy and magnetic susceptibility. - Graphical abstract: The ideal crystal structure of pyrochlore A{sub 2}B{sub 2}O{sub 6}O' (A—Bi{sup 3+}, Fe{sup 3+}; B—Ti{sup 4+}, Fe{sup 3+}). Highlights: • Bismuth titanate pyrochlores stable over a wide temperature range were obtained. • The distribution of Fe{sup 3+} over various sites was determined. • The obtained systems were characterized by magnetic susceptibility, Mössbauer spectroscopy and conductivity.

  4. Thermodynamic properties of lanthanide metals in liquid bismuth

    NASA Astrophysics Data System (ADS)

    Yamana, Hajimu; Sheng, Jiawei; Souda, Naohiko; Moriyama, Hirotake

    2001-04-01

    Thermodynamic quantities of La, Gd, Tb, and Dy in liquid bismuth were experimentally determined by electromotive force (EMF) measurement using a cell consisting of molten alkaline chloride and liquid bismuth. Excess Gibbs energy changes and activity coefficients were determined at varying concentrations and temperatures. Through their temperature dependence, corresponding enthalpy changes and entropy changes were determined. The excess enthalpy changes of La, Gd, Tb, and Dy in liquid bismuth in a temperature range from 850 to 1100 K were evaluated to be, -221.54±2.31, -202.25±1.80, -199.83±0.55, and -193.80±0.99 kJ/mol, respectively. The systematic variation of excess enthalpy change of lanthanides along the 4f-series was discussed. As a result, it was found that the excess enthalpy changes of La, Gd, Tb, Dy, and Er are likely to depend linearly on the 2/3 power of their metallic volume.

  5. Solvothermal synthesis and study of nonlinear optical properties of nanocrystalline thallium doped bismuth telluride

    SciTech Connect

    Molli, Muralikrishna; Parola, Sowmendran; Avinash Chunduri, L.A.; Aditha, Saikiran; Sai Muthukumar, V; Mimani Rattan, Tanu; Kamisetti, Venkataramaniah

    2012-05-15

    Nanocrystalline Bismuth telluride and thallium (4 mol %) doped Bismuth telluride were synthesized through hydrothermal method. The as-prepared products were characterized using Powder X-ray Diffraction, High Resolution Transmission Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, UV-Visible spectroscopy and Fourier Transform Infrared Spectroscopy. Powder XRD results revealed the crystalline nature of the obtained phases. HRTEM showed the particle-like morphology of the products. The decrease in the absorption coefficient due to thallium doping was observed in FTIR spectra. The intensity dependent nonlinear optical properties of nanocrystalline bismuth telluride and thallium doped bismuth telluride were studied using the Z-scan technique in open-aperture configuration. Bismuth telluride doped with thallium showed enhanced nonlinear optical response compared to pristine bismuth telluride and hence could be used as a potential candidate for optical power limiting applications. - Graphical Abstract: Nonlinear transmission (Z-scan) curves of nanocrystalline bismuth telluride ({Delta}) and thallium doped bismuth telluride ({open_square}). Thallium doped bismuth telluride showed enhanced nonlinear absorption compared to bismuth telluride. Inset: TEM micrograph of bismuth telluride nanocrystallites. Highlights: Black-Right-Pointing-Pointer Synthesis of Nanocrystalline Bi{sub 2}Te{sub 3} and Thallium doped Bi{sub 2}Te{sub 3} through solvothermal method. Black-Right-Pointing-Pointer Reduced absorption coefficient due to thallium doping found from IR spectroscopy. Black-Right-Pointing-Pointer Open-aperture Z-scan technique for nonlinear optical studies. Black-Right-Pointing-Pointer Two photon absorption based model for theoretical fitting of Z-scan data. Black-Right-Pointing-Pointer Enhanced nonlinear absorption in Thallium doped Bi{sub 2}Te{sub 3} - potential candidate for optical power limiting applications.

  6. Memory switching in bismuth-vanadate glasses

    NASA Astrophysics Data System (ADS)

    Ghosh, Aswini

    1988-09-01

    The electrical V-I characteristics of thin blown films of V2O5-Bi2O3 glasses with 95-70 mol % V2O5 were studied in the temperature range 200-400 K. It was observed that at lower fields, the bulk resistance controlled the current. At higher fields, all the glass compositions showed memory switching characteristics. The decrease in the threshold voltage and increase in the threshold current with the increase of V2O5 content in the glasses and also with increasing temperature were observed. The switching action was associated with a phase transition from a disordered glassy state to an ordered devitrified state due to self-heating. The ideal thermal model was shown to be applicable to the present glasses.

  7. Determination of trace aluminium by adsorptive stripping voltammetry on a preplated bismuth-film electrode in the presence of cupferron.

    PubMed

    Kefala, Georgia; Economou, Anastasios; Sofoniou, Michael

    2006-01-15

    This work reports the use of adsorptive stripping voltammetry (AdSV) for the determination of aluminium on a rotating-disc bismuth-film electrode (BiFE). Al(III) ions in the non-deoxygenated sample were complexed with cupferron and the complex was accumulated by adsorption on the surface of the preplated BiFE. The stripping step was carried out by using a square-wave (SW) potential-time voltammetric excitation signal. The experimental variables as well as potential interferences were investigated and the figures of merit of the method were established. Using the selected conditions, the 3sigma limit of detection for aluminium was 0.5 microg l(-1) at a preconcentration time of 240 s and the relative standard deviation was 4.2% at the 5 microg 1(-1) level for a preconcentration time of 120 s (n=8). The accuracy of the method was established by analysing water and metallurgical samples.

  8. Optical parameters and upconversion fluorescence in Tm3+/Yb3+-doped alkali-barium-bismuth-tellurite glasses.

    PubMed

    Lin, Hai; Liu, Ke; Lin, Lin; Hou, Yanyan; Yang, Dianlai; Ma, Tiecheng; Pun, Edwin Yun Bun; An, Qingda; Yu, Jiayou; Tanabe, Setsuhisa

    2006-11-01

    Tm(3+)/Yb(3+)-doped alkali-barium-bismuth-tellurite (LKBBT) glasses have been fabricated and characterized. Density, refractive index, optical absorption, absorption and emission cross-sections of Yb(3+), Judd-Ofelt parameters and spontaneous transition probabilities of Tm(3+) have been measured and calculated, respectively. Intense blue three-photon upconversion fluorescence and near-infrared two-photon upconversion fluorescence were investigated under the excitation of a 980 nm diode laser at room temperature. Wide infrared transmission window, high refractive index and strong blue three-photon upconversion emission of Tm(3+) indicate that Tm(3+)/Yb(3+) co-doped LKBBT glasses are promising upconversion optical and laser materials.

  9. Pr3+-sensitized Er3+-doped bismuthate glass for generating high inversion rates at 2.7 µm wavelength.

    PubMed

    Guo, Yanyan; Tian, Ying; Zhang, Liyan; Hu, Lili; Chen, Nan-Kuang; Zhang, Junjie

    2012-08-15

    With a 980 nm laser diode pumping, the 2.7 µm emission and energy transfer processes of Er3+/Pr3+ codoped germanium-gallium-bismuthate glasses have been investigated. For Er3+ (1 mol. %) and Pr3+ (1 mol. %) molar concentrations, an intense 2.7 µm emission was obtained based on the high excited-state absorption of Er3+ ions and energy transfer (ET) between Er3+ and Pr3+ ions codopant (ET). The intrinsic lifetime of Er3+:4I(13/2) level is quenched effectively (from 6.85 ms down to 0.24 ms) and the population inversions between Er3+:4I(11/2) and 4I(13/2) levels are enhanced to achieve a four-level energy system at 2.7 µm.

  10. The accurate determination of bismuth in lead concentrates and other non-ferrous materials by AAS after separation and preconcentration of the bismuth with mercaptoacetic acid.

    PubMed

    Howell, D J; Dohnt, B R

    1982-05-01

    A method for determining 0.0001% and upwards of bismuth in lead, zinc or copper concentrates, metals or alloys and other smelter residues is described. Bismuth is separated from lead, iron and gangue materials with mercaptoacetic acid after reduction of the iron with hydrazine. Large quantities of tin can be removed during the dissolution. An additional separation is made for materials high in copper and/or sulphate. The separated and concentrated bismuth is determined by atomic-absorption spectrometry using the Bi line at 223.1 nm. The proposed method also allows the simultaneous separation and determination of silver.

  11. Bismuth Propellant Feed System Development at NASA-MSFC

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    NASA-MSFC has been developing liquid metal propellant feed systems capable of delivering molten bismuth at a prescribed mass flow rate to the vaporizer of an electric thruster. The first such system was delivered to NASA-JPL as part of the Very High Isp Thruster with Anode Layer (VHITAL) program. In this system, the components pictured were placed in a vacuum chamber and heated while the control electronics were located outside the chamber. The system was successfully operated at JPL in conjunction with a propellant vaporizer, and data was obtained demonstrating a new liquid bismuth flow sensing technique developed at MSFC. The present effort is aimed at producing a feed-system for use in conjunction with a bismuth-fed Hall thruster developed by Busek Co. Developing this system is more ambitious, however, in that it is designed to self-contain all the control electronics inside the same vacuum chamber as an operating bismuth-fed thruster. Consequently, the entire system, including an on-board computer, DC-output power supplies, and a gas-pressurization electro-pneumatic regulator, must be designed to survive a vacuum environment and shielded to keep bismuth plasma from intruding on the electronics and causing a shortcircuit. In addition, the hot portions of the feed system must be thermally isolated from the electronics to avoid failure due to high heat loads. This is accomplished using a thermal protection system (TPS) consisting of multiple layers of aluminum foil. The only penetrations into the vacuum chamber are an electrically isolated (floating) 48 VDC line and a fiberoptic line. The 48 VDC provides power for operation of the power supplies and electronics co-located with the system in the vacuum chamber. The fiberoptic Ethernet connection is used to communicate user-input control commands to the on-board computer and transmit real-time data back to the external computer. The partially assembled second-generation system is shown. Before testing at Busek, a

  12. Optical properties of dy doped lead and bismuth borate glasses - effect of glass composition, metal and semiconducting nanoparticles

    NASA Astrophysics Data System (ADS)

    Ooi, Hio Giap

    The optical properties of Dy3+ ions in lead borate and bismuth borate glasses are studied as a function of glass composition with PbO content (29.5 to 69.5mol%) and Bi2O3 content (29.5 to 59.5 mol%). We also studied the effect of metal and semiconducting nanoparticles on the absorption and fluorescence emission of Dy3+ ions in both lead and bismuth borate glasses. The absorption coefficient at each wavelength is obtained from the optical absorption spectrum of a glass sample, and the number density of rare-earth (RE) ions is calculated from the measurement of the glass density. These two parameters are then used to calculate the oscillator strength of each transition using Judd-Ofelt theory. Using the oscillator strength for each transition, we obtained the intensity parameters which represent changes in the symmetry of the ligand field at the Dy 3+ site (due to structural group changes and changes in Dy-O covalency). Radiative transition probabilities, the radiative lifetime of the excited states and the branching ratios are then obtained from these intensity parameters. The fluorescence spectra, obtained using 355 nm and 458 nm laser excitation, are analyzed by determining the area ratio of yellow/blue (Y/B) peaks and the wavelength of the hypersensitive transition (HST). The compositional dependence and effect of nanoparticles on the stimulated emission cross-section (sigmap), are then evaluated using radiative transition probability, the refractive index of the host glass, effective fluorescence linewidth, and the position of the band. In all of the glass systems, it was found that the optical properties are strongly influenced by structural changes arising from compositional variation and size of nanoparticles. Dy 3+ transitions exhibit large sigmap suggesting the possible utilization of these materials in laser applications.

  13. [Semiology of bismuth encephalopathy. Comparison with seven personal cases (author's transl)].

    PubMed

    Collignon, R; Bruyer, R; Rectem, D; Indekeu, P; Laterre, E C

    1979-01-01

    The authors analyze 99 well-described cases of bismuth encephalopathy and suggest a clinical syndrome according to three stages of the disease (before, during and after the acute period) and three clinical domains (psychiatry, neurology and neuropsychology). A particular attention concerns the presence of sequellar clinical signs (mnesic functions), sometimes observed one year after interruption of bismuth ingestion.

  14. Experimental investigation of forced-convection heat-transfer characteristics of lead-bismuth eutectic

    NASA Technical Reports Server (NTRS)

    Lubarsky, Bernard

    1951-01-01

    The forced-convection heat-transfer characteristics of lead-bismuth eutectic were experimentally investigated. Experimental values of Nusselt number for lead-bismuth fell considerably below predicted values. The addition of a wetting agent did not change the heat transfer characteristics.

  15. 75 FR 14491 - Listing of Color Additives Exempt From Certification; Bismuth Citrate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... level of bismuth citrate as a color additive in cosmetics intended for coloring hair on the scalp. This... citrate as a color additive in cosmetics intended for coloring hair on the scalp from 0.5 percent (weight... bismuth citrate in cosmetics intended for coloring scalp hair to 2.0 percent (w/v) with no changes to the...

  16. Method of Creating Micro-scale Silver Telluride Grains Covered with Bismuth Nanoparticles

    NASA Technical Reports Server (NTRS)

    Kim, Hyun-Jung (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Park, Yeonjoon (Inventor); Lee, Kunik (Inventor)

    2014-01-01

    Provided is a method of enhancing thermoelectric performance by surrounding crystalline semiconductors with nanoparticles by contacting a bismuth telluride material with a silver salt under a substantially inert atmosphere and a temperature approximately near the silver salt decomposition temperature; and recovering a metallic bismuth decorated material comprising silver telluride crystal grains.

  17. Local Structural Distortion Induced Uniaxial Negative Thermal Expansion in Nanosized Semimetal Bismuth.

    PubMed

    Li, Qiang; Zhu, He; Zheng, Lirong; Fan, Longlong; Ren, Yang; Chen, Jun; Deng, Jinxia; Xing, Xianran

    2016-11-01

    The corrugated layer structure bismuth has been successfully tailored into negative thermal expansion along c axis by size effect. Pair distribution function and extended X-ray absorption fine structure are combined to reveal the local structural distortion for nanosized bismuth. The comprehensive method to identify the local structure of nanomaterials can benefit the regulating and controlling of thermal expansion in nanodivices.

  18. Near-infrared photoluminescence and Raman characterization of bismuth-embedded sodalite nanocrystals.

    PubMed

    Sun, Hong-Tao; Fujii, Minoru; Sakka, Yoshio; Bai, Zhenhua; Shirahata, Naoto; Zhang, Liyan; Miwa, Yuji; Gao, Hong

    2010-06-01

    Ultrabroadband near-IR (NIR) emission has been realized in bismuth-embedded sodalite nanocrystals. Steady-state and time-resolved photoluminescence and Raman results suggest that Bi(+) active centers contribute to the NIR emission. This study demonstrates that sodalite nanocrystals can serve as excellent hosts for bismuth NIR active centers, thus paving the way for their wide applications in nanophotonics.

  19. Biosynthesis of bismuth nanoparticles using Serratia marcescens isolated from the Caspian Sea and their characterisation.

    PubMed

    Nazari, P; Faramarzi, M A; Sepehrizadeh, Z; Mofid, M R; Bazaz, R D; Shahverdi, A R

    2012-06-01

    Today, synthesis of nanoparticles (NPs) using micro-organisms has been receiving increasing attention. In this investigation, a bismuth-reducing bacterium was isolated from the Caspian Sea in Northern Iran and was used for intracellular biosynthesis of elemental bismuth NPs. This isolate was identified as non-pigmented Serratia marcescens using conventional identification assays and the 16s rDNA fragment amplification method and used to prepare bismuth NPs. The biogenic bismuth NPs were released by liquid nitrogen and highly purified using an n-octanol water two-phase extraction system. Different characterisations of the purified NPs such as particle shapes, size and purity were carried out with different instruments. The energy-dispersive X-ray and X-ray diffraction (XRD) patterns demonstrated that the purified NPs consisted of only bismuth and are amorphous. In addition, the transmission electron micrograph showed that the small NPs formed larger aggregated NPs around <150 nm. Although the chemical syntheses of elemental bismuth NPs have been reported in the literature, the biological synthesis of elemental bismuth NPs has not been published yet. This is the first report to demonstrate a biological method for synthesising bismuth NPs and their purification with a simple solvent partitioning method.

  20. Excitation mechanism and thermal emission quenching of Tb ions in silicon rich silicon oxide thin films grown by plasma-enhanced chemical vapour deposition—Do we need silicon nanoclusters?

    SciTech Connect

    Podhorodecki, A. Golacki, L. W.; Zatryb, G.; Misiewicz, J.; Wang, J.; Jadwisienczak, W.; Fedus, K.

    2014-04-14

    In this work, we will discuss the excitation and emission properties of Tb ions in a Silicon Rich Silicon Oxide (SRSO) matrix obtained at different technological conditions. By means of electron cyclotron resonance plasma-enhanced chemical vapour deposition, undoped and doped SRSO films have been obtained with different Si content (33, 35, 39, 50 at. %) and were annealed at different temperatures (600, 900, 1100 °C). The samples were characterized optically and structurally using photoluminescence (PL), PL excitation, time resolved PL, absorption, cathodoluminescence, temperature dependent PL, Rutherford backscattering spectrometry, Fourier transform infrared spectroscopy and positron annihilation lifetime spectroscopy. Based on the obtained results, we discuss how the matrix modifications influence excitation and emission properties of Tb ions.

  1. Optical studies of Sm³⁺ ions doped zinc alumino bismuth borate glasses.

    PubMed

    Swapna, K; Mahamuda, Sk; Srinivasa Rao, A; Shakya, S; Sasikala, T; Haranath, D; Vijaya Prakash, G

    2014-05-05

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of samarium (Sm(3+)) ions were prepared by using melt quenching technique and characterized for their lasing potentialities in visible region by using the techniques such as optical absorption, emission and emission decay measurements. Radiative properties for various fluorescent levels of Sm(3+) ions were estimated from absorption spectral information using Judd-Ofelt (JO) analysis. The emission spectra and con-focal photoluminescence images obtained by 410 nm laser excitation demonstrates very distinct and intense orange-red emission for all the doped glasses. The suitable concentration of Sm(3+) ions in these glasses to act as an efficient lasing material has been discussed by measuring the emission cross-section and branching ratios for the emission transitions. The quantum efficiencies were also been estimated from emission decay measurements recorded for the (4)G5/2 level of Sm(3+) ions. From the measured emission cross-sections, branching ratios, strong photoluminescence features and CIE chromaticity coordinates, it was found that 1 mol% of Sm(3+) ions doped ZnAlBiB glasses are most suitable for the development of visible orange-red lasers.

  2. Optical absorption and fluorescence properties of Er3+/Yb3+ codoped lead bismuth alumina borate glasses

    NASA Astrophysics Data System (ADS)

    Goud, K. Krishna Murthy; Reddy, M. Chandra Shekhar; Rao, B. Appa

    2014-04-01

    Lead bismuth alumina borate glasses codoped with Er3+/Yb3+ were prepared by melt quenching technique. Optical absorption, FTIR and photoluminescence spectra of these glasses have been studied. Judd-Ofelt theory has been applied to to the f ↔ f transitions for evaluating Ω2, Ω4 and Ω6 parameters. Radiative properties like branching ratio βr and the radiative life time τR have been determined on the basis of Judd-Ofelt theory. Upconversion emissions have been observed under 980nm laser excitation at room temperature. Green and red up-conversion emissions are centered at 530, 550 and 656 nm corresponding to 2H11/2→4I15/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3+ respectively. The results obtained are discussed quantitatively based on the energy transfer between Yb3+ and Er3+.

  3. Luminescence properties of Tm3+/Yb3+ codoped lead alumina bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Goud, K. Krishna Murthy; Reddy, M. Chandra Shekhar; Rao, B. Appa

    2016-05-01

    This paper reports on the spectroscopic properties of Yb3+ and Tm3+ codoped lead alumina bismuth borate glasses. Optical absorption spectra of these Samples were recorded at room temperature in the wavelength range 350-2000 nm. The absorption spectra exhibited the bands at 658 nm (3H6→3F2), 686 nm (3H6→3F3), 792 nm (3H6→3H4), 1211 nm (3H6→3H5) and 1663 nm (3H6→3F4) due to Tm3+ ions. The band at 977 nm (2F7/2→2F5/2) is due to Yb3+ ions. Optical band gap (Eopt) and Urbach energy (ΔE) values were calculated from the spectra. It was observed that the value of optical band gap decreases with increase in the concentration of Tm3+ ions. The upconversion luminescence spectra were measured under excitation of 980 nm laser diode, and the intense blue (470 nm) and green (656 nm) emission were simultaneously observed at room temperature. A proposed upconversion mechanism involving energy transfer from Yb3+ to Tm3+ has been presented.

  4. Low-temperature photochromic response of phosphorus-doped bismuth silicon oxide

    NASA Astrophysics Data System (ADS)

    McCullough, J. S.; Harmon, Angela; Martin, J. J.; Martin, J. J.; Harris, M. T.; Larkin, J. J.

    1995-08-01

    Phosphorus is one of several dopants that electronically compensate the native deep donor responsible for the yellow coloration observed in bismuth silicon oxide (BSO). Low-temperature optical absorption measurements of a series of Czochralski-grown P-doped BSO crystals show that ˜0.1-0.15 at. % P is needed in the sample to fully remove the yellow coloration. The absorption cutoff in the fully compensated P-doped sample was at 3.2 eV while compensated Al- and Ga-doped samples cutoff at 3.35 eV. Excitation at 10-15 K with near band-edge light produces photochromic absorption bands. In the lightly-doped (partially bleached) samples these bands were identical to those observed in undoped BSO. In the fully bleached sample a new spectrum was observed. Its major contribution was a band centered near 1.8 eV with a weaker absorption in the blue-green. By comparison with the spectra observed in undoped and in Al-doped material before and after photoexcitation it is believed that the 1.8 eV band is due to the [PO4]- center and that the broad 2.45 eV band observed in Al- and Ga-doped BSO is due to the [BiO4]0 center.

  5. Bismuth doping effect on crystal structure and photodegradation activity of Bi-TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chung; Chang, Yin-Hsuan; Lin, Ting-Han

    2017-04-01

    The bismuth precursor is adopted as dopant to synthesize bismuth doped titanium dioxide nanoparticles (Bi-TiO2 NPs) with sol-gel method following by the thermal annealing treatment. We systematically developed a series of Bi-TiO2 NPs at several calcination temperatures and discovered the corresponding crystal structure by varying the bismuth doping concentration. At a certain 650 °C calcination temperature, the crystal structure of bismuth titanate (Bi2Ti2O7) is formed when the bismuth doping concentration is as high as 10.0 mol %. The photocatalytic activity of Bi-TiO2 NPs is increased by varying the doping concentration at the particular calcination temperature. By the definition X-ray diffraction (XRD) structural identification, a phase diagram of Bi-TiO2 NPs in doping concentration versus calcination temperature is provided. It can be useful for further study in the crystal structure engineering and the development of photocatalyst.

  6. Determination of nanogram amounts of bismuth in rocks by substoichiometric isotope dilution analysis

    USGS Publications Warehouse

    Greenland, L. Paul; Campbell, E.Y.

    1972-01-01

    A rapid procedure suitable for the routine determination of 1-10 ng of bismuth in a silicate rock matrix is described. Results for the U.S. Geological Survey standard rocks are presented. Rocks and minerals are dissolved in hydrofluoric-perchloric acid in the presence of 207Bi tracer and the silica is removed by evaporation. The perchloric acid residue is taken up in water and bismuth iodide is extracted into methyl isobutyl ketone. After three acid-iodide washes, the bismuth is stripped into water and reacted with a substoichiometric amount of EDTA. Excess of bismuth is extracted as the iodide and the specific activity of the bismuth-EDTA complex is determined. ?? 1972.

  7. Bismuth-induced phase control of GaAs nanowires grown by molecular beam epitaxy

    SciTech Connect

    Lu, Zhenyu; Chen, Pingping E-mail: luwei@mail.sitp.ac.cn; Shi, Suixing; Yao, Luchi; Zhou, Xiaohao; Lu, Wei E-mail: luwei@mail.sitp.ac.cn; Zhang, Zhi; Zhou, Chen; Zou, Jin

    2014-10-20

    In this work, the crystal structure of GaAs nanowires grown by molecular beam epitaxy has been tailored only by bismuth without changing the growth temperature and V/III flux ratio. The introduction of bismuth can lead to the formation of zinc-blende GaAs nanowires, while the removal of bismuth changes the structure into a 4H polytypism before it turns back to the wurtzite phase eventually. The theoretical calculation shows that it is the steadiest for bismuth to adsorb on the GaAs(111){sub B} surface compared to the liquid gold catalyst surface and the interface between the gold catalyst droplet and the nanowire, and these adsorbed bismuth could decrease the diffusion length of adsorbed Ga and hence the supersaturation of Ga in the gold catalyst droplet.

  8. Optical properties of bismuth-doped silica fibres in the temperature range 300 - 1500 K

    SciTech Connect

    Dvoretskii, D A; Bufetov, Igor' A; Vel'miskin, V V; Zlenko, Alexander S; Khopin, V F; Semjonov, S L; Guryanov, Aleksei N; Denisov, L K; Dianov, Evgenii M

    2012-09-30

    The visible and near-IR absorption and luminescence bands of bismuth-doped silica and germanosilicate fibres have been measured for the first time as a function of temperature. The temperature-dependent IR luminescence lifetime of a bismuth-related active centre associated with silicon in the germanosilicate fibre has been determined. The Bi{sup 3+} profile across the silica fibre preform is shown to differ markedly from the distribution of IR-emitting bismuth centres associated with silicon. The present results strongly suggest that the IR-emitting bismuth centre comprises a lowvalence bismuth ion and an oxygen-deficient glass network defect. (optical fibres, lasers and amplifiers. properties and applications)

  9. Nanotextured pillars of electrosprayed bismuth vanadate for efficient photoelectrochemical water splitting.

    PubMed

    Yoon, Hyun; Mali, Mukund G; Choi, Jae Young; Kim, Min-woo; Choi, Sung Kyu; Park, Hyunwoong; Al-Deyab, Salem S; Swihart, Mark T; Yarin, Alexander L; Yoon, Sam S

    2015-03-31

    We demonstrate, for the first time, electrostatically sprayed bismuth vanadate (BiVO4) thin films for photoelectrochemical water splitting. Characterization of these films by X-ray diffraction, Raman scattering, and high-resolution scanning electron microscopy analyses revealed the formation of nanotextured pillar-like structures of highly photoactive monoclinic scheelite BiVO4. Electrosprayed BiVO4 nanostructured films yielded a photocurrent density of 1.30 and 1.95 mA/cm(2) for water and sulfite oxidation, respectively, under 100 mW/cm(2) illumination. The optimal film thickness was 3 μm, with an optimal postannealing temperature of 550 °C. The enhanced photocurrent is facilitated by formation of pillar-like structures in the deposit. We show through modeling that these structures result from the electrically-driven motion of submicron particles in the direction parallel to the substrate, as they approach the substrate, along with Brownian diffusion. At the same time, opposing thermophoretic forces slow their approach to the surface. The model of these processes proposed here is in good agreement with the experimental observations.

  10. Epitaxial Growth and Characterization of Iron Chalcogenide/Bismuth Chalcogenide Heterostructures

    NASA Astrophysics Data System (ADS)

    Flanagan, Thomas; Kandala, Abhinav; Lee, Joon Sue; Kempinger, Susan E.; Richardella, Anthony; Samarth, Nitin

    Heterostructures consisting of topological insulators (TIs) interfaced with superconductors and with ferromagnets have been predicted to give rise to phenomena of both fundamental and applied interest. With superconductors, the region of proximity-induced superconductivity should have px + ipy symmetry, and vortices in this region have been predicted to host Majorana modes, which may be useful as quantum bits. With ferromagnets, such phenomena as the topological magnetoelectric effect have been predicted. Iron chalcogenides, such as iron selenide and iron telluride, are ideal candidates for combining with TIs, since, with only minor changes to growth conditions, they can be superconducting, ferromagnetic, or antiferromagnetic. We describe the growth and characterization of heterostructures that combine thin films of the iron and bismuth chalcogenides, focusing on low temperature magnetoresistance measurements. Our measurements reveal a transient hysteretic magnetoresistance with surprisingly long relaxation times (minutes). This phenomenon appears to be a generic characteristic of all heterostructures that interface TIs with magnetic spins, albeit with structure-specific relaxation times. We discuss possible origins of this unusual phenomenon. Funded by ARO/MURI.

  11. Piezoelectric thick bismuth titanate/lead zirconate titanate composite film transducers for smart NDE of metals

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Jen, C.-K.

    2004-08-01

    Thick film piezoelectric ceramic sensors have been successfully deposited on different metallic substrates with different shapes by a sol-gel spray technique. The ball-milled bismuth titanate fine powders were dispersed into PZT solution to achieve the gel. The films with desired thickness up to 200 µm have been obtained through the multilayer coating approach. These thick films were also effectively coated onto thin sheet metals of thickness down to 25 µm. Self-support films with flat and shell geometries were made. Piezoelectricity was achieved using the corona discharge poling method. The area of the top silver paste electrode was also optimized. The center frequencies of ultrasonic signals generated by these films ranged from 3.6 to 30 MHz and their bandwidth was broad as well. The ultrasonic signals generated and received by these ultrasonic transducers (UTs) operated in the pulse/echo mode had a signal to noise ratio more than 30 dB. The main advantages of such sensors are that they (1) do not need couplant, (2) can serve as piezoelectric and UT, (3) can be coated onto curved surfaces and (4) can operate up to 440 °C. The capability of these thick film UTs for non-destructive evaluation of materials at 440 °C has been demonstrated.

  12. Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects

    PubMed Central

    Shao, Cheng; Bao, Hua

    2016-01-01

    The successful exfoliation of atomically-thin bismuth telluride (Bi2Te3) quintuple layer (QL) attracts tremendous research interest in this strongly anharmonic quasi-two-dimensional material. The thermal transport properties of this material are not well understood, especially the mode-wise properties and when it is coupled with a substrate. In this work, we have performed molecular dynamics simulations and normal mode analysis to study the mode-resolved thermal transport in freestanding and supported Bi2Te3 QL. The detailed mode-wise phonon properties are calculated and the accumulated thermal conductivities with respect to phonon mean free path (MFP) are constructed. It is shown that 60% of the thermal transport is contributed by phonons with MFP longer than 20 nm. Coupling with a-SiO2 substrate leads to about 60% reduction of thermal conductivity. Through varying the interfacial coupling strength and the atomic mass of substrate, we also find that phonon in Bi2Te3 QL is more strongly scattered by interfacial potential and its transport process is less affected by the dynamics of substrate. Our study provides an in-depth understanding of heat transport in Bi2Te3 QL and is helpful in further tailoring its thermal property through nanostructuring. PMID:27263656

  13. Thermodynamic potential and phase diagram for multiferroic bismuth ferrite (BiFeO3)

    NASA Astrophysics Data System (ADS)

    Karpinsky, Dmitry V.; Eliseev, Eugene A.; Xue, Fei; Silibin, Maxim V.; Franz, Alexandra; Glinchuk, Maya D.; Troyanchuk, Igor O.; Gavrilov, Sergey A.; Gopalan, Venkatraman; Chen, Long-Qing; Morozovska, Anna N.

    2017-05-01

    We construct a Landau-Ginzburg thermodynamic potential, and the corresponding phase diagram for pristine and slightly doped bismuth ferrite, a ferroelectric antiferromagnet at room temperature. The potential is developed based on new X-ray and neutron diffraction experiments complementing available data. We demonstrate that a strong biquadratic antiferrodistortive-type coupling is the key to a quantitative description of Bi1-xLaxFeO3 multiferroic phase diagram including the temperature stability of the antiferromagnetic, ferroelectric, and antiferrodistortive phases, as well as for the prediction of novel intermediate structural phases. Furthermore, we show that "rotomagnetic" antiferrodistortive-antiferromagnetic coupling is very important to describe the ferroelectric polarization and antiferrodistortive tilt behavior in the R3c phase of BiFeO3. The Landau-Ginzburg thermodynamic potential is able to describe the sequence of serial and trigger-type phase transitions, the temperature-dependent behavior of the order parameters, and the corresponding susceptibilities to external stimuli. It can also be employed to predict the corresponding ferroelectric and antiferrodistortive properties of Bi1-xLaxFeO3 thin films and nanoparticles by incorporating the gradient and surface energy terms that are strongly dependent on the shape, size, and preparation method.

  14. Conduction mechanism in bismuth silicate glasses containing titanium

    NASA Astrophysics Data System (ADS)

    Dult, Meenakshi; Kundu, R. S.; Murugavel, S.; Punia, R.; Kishore, N.

    2014-11-01

    Bismuth silicate glasses mixed with different concentrations of titanium dioxide having compositions xTiO2-(60-x)Bi2O3-40SiO2 with x=0, 5, 10, 15 and 20 were prepared by the normal melt quench technique. The frequency dependence of the ac electrical conductivity of different compositions of titanium bismuth silicate glasses has been studied in the frequency range 10-1 Hz to 10 MHz and in the temperature range 623-703 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of titanium bismuth silicate glass system. The dc conductivity (σdc), so called crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. The conductivity data have been analyzed in terms of different theoretical models to determine the possible conduction mechanism. Analysis of the conductivity data and the frequency exponent shows that the correlated barrier hopping of electrons between Ti3+ and Ti4+ ions in the glasses is the most favorable mechanism for ac conduction. The temperature dependent dc conductivity has been analyzed in the framework of theoretical variable range hopping model (VRH) proposed by Mott which describe the hopping conduction in disordered semiconducting systems. The various polaron hopping parameters have also been deduced. Mott's VRH model is found to be in good agreement with experimental data and the values of inverse localization length of s-like wave function (α) obtained by this model with modifications suggested by Punia et al. are close to the ones reported for a number of oxide glasses.

  15. Cytotoxic Effect of Lipophilic Bismuth Dimercaptopropanol Nanoparticles on Epithelial Cells.

    PubMed

    Rene, Hernandez-Delgadillo; Badireddy, Appala Raju; José, Martínez-Sanmiguel Juan; Francisco, Contreras-Cordero Juan; Israel, Martinez-Gonzalez Gustavo; Isela, Sánchez-Nájera Rosa; Chellam, Shankararaman; Claudio, Cabral-Romero

    2016-01-01

    Bismuth nanoparticles have many interesting properties to be applied in biomedical and medicinal sectors, however their safety in humans have not been comprehensively investigated. The objective of this research was to determine the cytotoxic effect of bismuth dimercaptopropanol nanoparticles (BisBAL NPs) on epithelial cells. The nanoparticles are composed of 18.7 nm crystallites on average and have a rhombohedral structure, agglomerating into chains-like or clusters of small nanoparticles. Based on MTT viability assay and fluorescence microscopy, cytotoxicity was not observed on monkey kidney cells after growing with 5 µM of BisBAL NPs for 24 h. Employing same techniques, identical results were obtained with human epithelial cells (HeLa), showing a not strain-dependent phenomenon. The absence of toxic effects on epithelial cells growing with BisBAL NPs was corroborated with long-time experiments (24-72 hrs.), showing no difference in comparison with growing control (cells without nanoparticles). Further, genotoxicity assays, comet assay and fluorescent microscopy and electrophoresis in bromide-stained agarose gel revealed no damage to genomic DNA of MA104 cells after 24 h. of exposition to BisBAL NPs. Finally, the effect of bismuth nanoparticles on protein synthesis was studied in cells growing with BisBAL NPs for 24 h. SDS-PAGE assays showed no difference between treated and untreated cells, suggesting that BisBAL NPs did not interfere with protein synthesis. Hence BisBAL NPs do not appear to exert cytotoxic effects suggesting their biological compatibility with epithelial cells.

  16. Modeling astatine production in liquid lead-bismuth spallation targets

    NASA Astrophysics Data System (ADS)

    David, J. C.; Boudard, A.; Cugnon, J.; Ghali, S.; Leray, S.; Mancusi, D.; Zanini, L.

    2013-03-01

    Astatine isotopes can be produced in liquid lead-bismuth eutectic targets through proton-induced double charge exchange reactions on bismuth or in secondary helium-induced interactions. Models implemented into the most common high-energy transport codes generally have difficulties to correctly estimate their production yields as was shown recently by the ISOLDE Collaboration, which measured release rates from a lead-bismuth target irradiated by 1.4 and 1 GeV protons. In this paper, we first study the capability of the new version of the Liège intranuclear cascade model, INCL4.6, coupled to the deexcitation code ABLA07 to predict the different elementary reactions involved in the production of such isotopes through a detailed comparison of the model with the available experimental data from the literature. Although a few remaining deficiencies are identified, very satisfactory results are found, thanks in particular to improvements brought recently on the treatment of low-energy helium-induced reactions. The implementation of the models into MCNPX allows identifying the respective contributions of the different possible reaction channels in the ISOLDE case. Finally, the full simulation of the ISOLDE experiment is performed, taking into account the likely rather long diffusion time from the target, and compared with the measured diffusion rates for the different astatine isotopes, at the two studied energies, 1.4 and 1 GeV. The shape of the isotopic distribution is perfectly reproduced as well as the absolute release rates, assuming in the calculation a diffusion time between 5 and 10hours. This work finally shows that our model, thanks to the attention paid to the emission of high-energy clusters and to low-energy cluster induced reactions, can be safely used within MCNPX to predict isotopes with a charge larger than that of the target by two units in spallation targets, and, probably, more generally to isotopes created in secondary reactions induced by composite

  17. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    NASA Astrophysics Data System (ADS)

    Rahman, Airul Azha Abd; Umar, Akrajas Ali; Chen, Xiaomei; Salleh, Muhamad Mat; Oyama, Munetaka

    2016-02-01

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m-1 K-2) and 10 μV/K (and 19.5 μW m-1 K-2), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output load as high as 50

  18. Kinetics of Propagating Phase Transformation in Compressed Bismuth

    SciTech Connect

    Bastea, M; Bastea, S; Emig, J; Springer, P; Reisman, D

    2004-08-18

    The authors observed dynamically driven phase transitions in isentropically compressed bismuth. By changing the stress loading conditions they explored two distinct cases one in which the experimental signature of the phase transformation corresponds to phase-boundary crossings initiated at both sample interfaces, and another in which the experimental trace is due to a single advancing transformation front in the bulk of the material. They introduce a coupled kinetics-hydrodynamics model that for this second case enables them, under suitable simplifying assumptions, to directly extract characteristic transition times from the experimental measurements.

  19. Dielectric behavior of barium modified strontium bismuth titanate ceramic

    NASA Astrophysics Data System (ADS)

    Nayak, P.; Badapanda, T.; Anwar, S.; Panigrahi, S.

    2014-04-01

    Barium Modified Strontium Bismuth Titanate(SBT) ceramic with general formula Sr1-xBaxBi4Ti4O15 is prepared by solid state reaction route. The structural analysis of the ceramics was done by X-ray diffraction technique. The X-ray patterns show that all the compositions are of single phase with orthorhombic structure. The temperature dependent dielectric behavior shows that the transition temperature decreases with Ba content but the maximum dielectric constant increases. The decreases of the transition with increase in Ba2+ ion, may be due to the decrease of orthorhombicity by the incorporation of Ba2+ ion in SBT lattice.

  20. Surface characteristics of two-component thallium-bismuth melts

    NASA Astrophysics Data System (ADS)

    Ashkhotov, O. G.; Ashkhotova, I. B.; Aleroev, M. A.; Bliev, A. P.; Magkoev, T. T.

    2017-02-01

    The surface tension of pure Tl and Bi, and two-component alloys of them over the range of volume concentrations and temperatures starting from the liquidus temperature up to 623 K are measured by the lying-drop method with strong control over the surface condition by means of Auger electron spectroscopy. The results from in situ measurements of the surface tensions of Tl and Bi with surfactant impurities, and for atomically pure surfaces and Tl-Bi solutions, are given. It is shown that surfaces are enriched by bismuth, the concentration of which grows along with temperature.

  1. Gastric ulcer healing with tripotassium dicitrato bismuthate and subsequent relapse.

    PubMed

    Sutton, D R

    1982-07-01

    Fifty patients with endoscopically proven gastric ulcers completed a one month double-blind randomised trial of tripotassium dicitrato bismuthate (TBD) (DeNol) compared with an identical placebo. Ulcer healing occurred in 18 (72%) of the 25 patients given TDB and in nine (36%) of the patients given placebo. The TDB group experienced significantly less pain than the placebo group. During a follow-up of 29 patients with healed ulcers for up to 44 months, relapse occurred in 13 (45%). It was highest in the first three months (27%) and had risen to 41% at two years.

  2. Relaxation dynamics of lithium ions in lead bismuthate glasses

    NASA Astrophysics Data System (ADS)

    Pan, A.; Ghosh, A.

    2000-08-01

    We have investigated relaxation dynamics of lithium ions in lead bismuthate glasses in the frequency range from 10 Hz to 2 MHz and in the temperature range from 303-553 K. Using the Anderson-Stuart model, we have calculated the activation energy, which is observed to be lower than that of the dc conductivity. We have studied the relaxation mechanism of these glasses in the framework of the electric modulus and conductivity formalisms. The microscopic parameters obtained from these formalisms have been compared. We have also calculated the decoupling index and correlated them with the stretched exponential relaxation parameter and the dc conductivity.

  3. Potentiometric determination of plutonium by sodium bismuthate oxidation.

    PubMed

    Charyulu, M M; Rao, V K; Natarajan, P R

    1984-12-01

    A potentiometric method for the determination of plutonium is described, in which the plutonium is quantitatively oxidized to plutonium(VI) with sodium bismuthate in nitric acid medium, the excess of oxidant is destroyed chemically and plutonium(VI) is reduced to plutonium(IV) with a measured excess of iron(II), the surplus of which is back-titrated with dichromate. For 3-5 mg of plutonium the error is less than 0.2%. For submilligram quantities of plutonium in presence of macro-amounts of uranium the error is below 2.0%.

  4. Solution combustion synthesis and characterization of nanosized bismuth ferrite

    NASA Astrophysics Data System (ADS)

    Sai Kumar, V. Sesha; Rao, K. Venkateswara; Krishnaveni, T.; Kishore Goud, A. Shiva; Reddy, P. Ranjith

    2012-06-01

    The present paper describes a simple method of nanosized BiFeO3 by the solution combustion synthesis using bismuth and iron nitrates as oxidizers and the combination fuel of citric acid and ammonium hydroxide, with fuel to oxidizer ratio (Ψ = 1) one. The X-ray Diffraction results indicated rhombohedral phase (R3m) with JCPDS data card no: 72-2035. The ferroelectric transition of the sample at 8310C was detected by differential thermal analysis. Thermal analysis was done by Thermal gravimetric-Differential thermal analyzer and obtained results were presented in this paper.

  5. Photochemical Water Splitting by Bismuth Chalcogenide Topological Insulators.

    PubMed

    Rajamathi, Catherine R; Gupta, Uttam; Pal, Koushik; Kumar, Nitesh; Yang, Hao; Sun, Yan; Shekhar, Chandra; Yan, Binghai; Parkin, Stuart; Waghmare, Umesh V; Felser, Claudia; Rao, C N R

    2017-09-06

    As one of the major areas of interest in catalysis revolves around 2D materials based on molybdenum sulfide, we have examined the catalytic properties of bismuth selenides and tellurides, which are among the first chalcogenides to be proven as topological insulators (TIs). We find significant photochemical H2 evolution activity with these TIs as catalysts. H2 evolution increases drastically in nanosheets of Bi2 Te3 compared to single crystals. First-principles calculations show that due to the topology, surface states participate and promote the hydrogen evolution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Solvothermal synthesis of uniform bismuth nanospheres using poly(N-vinyl-2-pyrrolidone) as a reducing agent

    PubMed Central

    2011-01-01

    Uniform bismuth nanospheres were successfully prepared from bismuth nitrate in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) by solvothermal process. The product was characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and energy-dispersive X-ray. PVP plays a critical role both as a reducing agent and a capping agent in the formation of bismuth nanospheres. Shape and size of bismuth nanospheres could be tuned by changing the employed PVP/bismuth salt ratio. It was also found the solvent had an effect on the morphologies of bismuth nanomaterials. The possible formation and growth mechanism of bismuth nanospheres were also discussed and proposed to explain the reduction step. PMID:21711606

  7. RESONANT CAVITY EXCITATION SYSTEM

    DOEpatents

    Baker, W.R.; Kerns, Q.A.; Riedel, J.

    1959-01-13

    An apparatus is presented for exciting a cavity resonator with a minimum of difficulty and, more specifically describes a sub-exciter and an amplifier type pre-exciter for the high-frequency cxcitation of large cavities. Instead of applying full voltage to the main oscillator, a sub-excitation voltage is initially used to establish a base level of oscillation in the cavity. A portion of the cavity encrgy is coupled to the input of the pre-exciter where it is amplified and fed back into the cavity when the pre-exciter is energized. After the voltage in the cavity resonator has reached maximum value under excitation by the pre-exciter, full voltage is applied to the oscillator and the pre-exciter is tunned off. The cavity is then excited to the maximum high voltage value of radio frequency by the oscillator.

  8. Fano interference at the excitation of coherent phonons: Relation between the asymmetry parameter and the initial phase of coherent oscillations

    SciTech Connect

    Misochko, O. V. Lebedev, M. V.

    2015-04-15

    The theoretical assertion that the Fano asymmetry parameter and the asymptotic initial phase of a harmonic oscillator interacting with a continuum are interrelated is experimentally verified. By an example of coherent fully symmetric A{sub 1g} phonons in bismuth that are excited by ultrashort laser pulses at liquid helium temperature, it is demonstrated that, for negative values of the asymmetry parameter, the asymptotic phase increases as the modulus of the parameter decreases.

  9. Nano-scaled top-down of bismuth chalcogenides based on electrochemical lithium intercalation

    NASA Astrophysics Data System (ADS)

    Chen, Jikun; Zhu, Yingjie; Chen, Nuofu; Liu, Xinling; Sun, Zhengliang; Huang, Zhenghong; Kang, Feiyu; Gao, Qiuming; Jiang, Jun; Chen, Lidong

    2011-12-01

    A two-step method has been used to fabricate nano-particles of layer-structured bismuth chalcogenide compounds, including Bi2Te3, Bi2Se3, and Bi2Se0.3Te2.7, through a nano-scaled top-down route. In the first step, lithium (Li) atoms are intercalated between the van der Waals bonded quintuple layers of bismuth chalcogenide compounds by controllable electrochemical process inside self-designed lithium ion batteries. And in the second step, the Li intercalated bismuth chalcogenides are subsequently exposed to ethanol, in which process the intercalated Li atoms would explode like atom-scaled bombs to exfoliate original microscaled powder into nano-scaled particles with size around 10 nm. The influence of lithium intercalation speed and amount to three types of bismuth chalcogenide compounds are compared and the optimized intercalation conditions are explored. As to maintain the phase purity of the final nano-particle product, the intercalation lithium amount should be well controlled in Se contained bismuth chalcogenide compounds. Besides, compared with binary bismuth chalcogenide compound, lower lithium intercalation speed should be applied in ternary bismuth chalcogenide compound.

  10. Focused ion beam processing to fabricate ohmic contact electrodes on a bismuth nanowire for Hall measurements.

    PubMed

    Murata, Masayuki; Hasegawa, Yasuhiro

    2013-09-26

    Ohmic contact electrodes for four-wire resistance and Hall measurements were fabricated on an individual single-crystal bismuth nanowire encapsulated in a cylindrical quartz template. Focused ion beam processing was utilized to expose the side surfaces of the bismuth nanowire in the template, and carbon and tungsten electrodes were deposited on the bismuth nanowire in situ to achieve electrical contacts. The temperature dependence of the four-wire resistance was successfully measured for the bismuth nanowire, and a difference between the resistivities of the two-wire and four-wire methods was observed. It was concluded that the two-wire method was unsuitable for estimation of the resistivity due to the influence of contact resistance, even if the magnitude of the bismuth nanowire resistance was greater than the kilo-ohm order. Furthermore, Hall measurement of a 4-μm-diameter bismuth microwire was also performed as a trial, and the evaluated temperature dependence of the carrier mobility was in agreement with that for bulk bismuth, which indicates that the carrier mobility was successfully measured using this technique. PACS: 81.07.Gf.

  11. Helicobacter pylori: treatment with combinations of pivampicillin and tripotassium dicitrato bismuthate.

    PubMed

    Weil, J; Bell, G D; Powell, K; Morden, A; Harrison, G; Gant, P W; Trowell, J E; Burridge, S

    1991-10-01

    Fifty Helicobacter pylori- (H. pylori) positive patients entered an open study and were assigned to one of four treatment regimens comprising: pivampicillin (500 mg b.d.) for 2 weeks +/- tripotassium dicitrato bismuthate (tablet or liquid form) for one month. The 14C-urea breath test was used to evaluate clearance (negative at the end of treatment) and eradication (negative at 1 month post-treatment) of H. pylori. Clearance rates were 20% (2/10) after pivampicillin alone, 86% (12/14) after tripotassium dicitrato bismuthate tablets (240 mg b.d.) plus pivampicillin, 67% (6/9) after tripotassium dicitrato bismuthate tablets (120 mg q.d.s.) plus pivampicillin, and 100% (13/13) after tripotassium dicitrato bismuthate liquid (120 mg in 5 ml q.d.s) plus pivampicillin. The eradication rates were 0% (0/10), 13% (2/15), 0% (0/11) and 54% (7/13), respectively. Combination of the results from the 2 tripotassium dicitrato bismuthate tablet/pivampicillin groups gave an eradication rate of 7.7% (2/26) which was significantly lower than the 53.9% (7/13) obtained with tripotassium dicitrato bismuthate liquid/pivampicillin (P less than 0.02). In conclusion, a liquid tripotassium dicitrato bismuthate pivampicillin combination may be of special use in the treatment of H. pylori-positive patients when triple therapy is contraindicated (e.g. patient sensitivity/allergy to metronidazole) or when the H. pylori isolate is resistant to metronidazole.

  12. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation.

    PubMed

    Hernandez-Delgadillo, Rene; Velasco-Arias, Donaji; Martinez-Sanmiguel, Juan Jose; Diaz, David; Zumeta-Dube, Inti; Arevalo-Niño, Katiushka; Cabral-Romero, Claudio

    2013-01-01

    Multiresistance among microorganisms to common antimicrobials has become one of the most significant concerns in modern medicine. Nanomaterials are a new alternative to successfully treat the multiresistant microorganisms. Nanostructured materials are used in many fields, including biological sciences and medicine. Recently, it was demonstrated that the bactericidal activity of zero-valent bismuth colloidal nanoparticles inhibited the growth of Streptococcus mutans; however the antimycotic potential of bismuth nanostructured derivatives has not yet been studied. The main objective of this investigation was to analyze the fungicidal activity of bismuth oxide nanoparticles against Candida albicans, and their antibiofilm capabilities. Our results showed that aqueous colloidal bismuth oxide nanoparticles displayed antimicrobial activity against C. albicans growth (reducing colony size by 85%) and a complete inhibition of biofilm formation. These results are better than those obtained with chlorhexidine, nystatin, and terbinafine, the most effective oral antiseptic and commercial antifungal agents. In this work, we also compared the antimycotic activities of bulk bismuth oxide and bismuth nitrate, the precursor metallic salt. These results suggest that bismuth oxide colloidal nanoparticles could be a very interesting candidate as a fungicidal agent to be incorporated into an oral antiseptic. Additionally, we determined the minimum inhibitory concentration for the synthesized aqueous colloidal Bi2O3 nanoparticles.

  13. Determination of bismuth in pharmaceutical products using phosphoric acid as molecular probe by resonance light scattering.

    PubMed

    Yun, Yanru; Cui, Fengling; Geng, Shaoguang; Jin, Jianhua

    2012-01-01

    A novel method for the sensitive determination of bismuth(III) in pharmaceutical products using phosphoric acid as a molecular probe by resonance light scattering (RLS) is discussed. In 0.5 mol/L phosphoric acid (H3 PO4) medium, bismuth(III) reacted with PO4 (3-) to form an ion association compound, which resulted in the significant enhancement of RLS intensity and the appearance of the corresponding RLS spectral characteristics. The maximum scattering peak of the system existed at 364 nm. Under optimal conditions, there was linear relationship between the relative intensity of RLS and concentration of bismuth(III) in the range of 0.06-10.0 µg/mL for the system. A low detection limit for bismuth(III) of 3.22 ng/mL was achieved. The relative standard deviations (RSD) for the determination of 0.40 and 0.80 µg/mL bismuth(III) were 2.1% and 1.1%, respectively, for five determinations. Based on this fact, a simple, rapid, and sensitive method was developed for the determination of bismuth(III) at nanogram level by RLS technique with a common spectrofluorimeter. This analytical system was successfully applied to determine the trace amounts of bismuth(III) in pharmaceutical products, which was in good agreement with the results obtained by atomic absorption spectrometry (AAS).

  14. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation

    PubMed Central

    Hernandez-Delgadillo, Rene; Velasco-Arias, Donaji; Martinez-Sanmiguel, Juan Jose; Diaz, David; Zumeta-Dube, Inti; Arevalo-Niño, Katiushka; Cabral-Romero, Claudio

    2013-01-01

    Multiresistance among microorganisms to common antimicrobials has become one of the most significant concerns in modern medicine. Nanomaterials are a new alternative to successfully treat the multiresistant microorganisms. Nanostructured materials are used in many fields, including biological sciences and medicine. Recently, it was demonstrated that the bactericidal activity of zero-valent bismuth colloidal nanoparticles inhibited the growth of Streptococcus mutans; however the antimycotic potential of bismuth nanostructured derivatives has not yet been studied. The main objective of this investigation was to analyze the fungicidal activity of bismuth oxide nanoparticles against Candida albicans, and their antibiofilm capabilities. Our results showed that aqueous colloidal bismuth oxide nanoparticles displayed antimicrobial activity against C. albicans growth (reducing colony size by 85%) and a complete inhibition of biofilm formation. These results are better than those obtained with chlorhexidine, nystatin, and terbinafine, the most effective oral antiseptic and commercial antifungal agents. In this work, we also compared the antimycotic activities of bulk bismuth oxide and bismuth nitrate, the precursor metallic salt. These results suggest that bismuth oxide colloidal nanoparticles could be a very interesting candidate as a fungicidal agent to be incorporated into an oral antiseptic. Additionally, we determined the minimum inhibitory concentration for the synthesized aqueous colloidal Bi2O3 nanoparticles. PMID:23637533

  15. Devitfrification Properties Of Bismuth Borate Glasses Doped With Trivalent Ions

    NASA Astrophysics Data System (ADS)

    Khanna, Atul; Bajaj, Anu

    2010-12-01

    Bismuth borate glasses and crystalline phases have outstanding luminescent and nonlinear optical properties; therefore there is lot of interest in their preparation and characterization. In this study we report the crystallization properties of bismuth borate glasses doped with trivalent ions. Glasses of the composition: xBi2O3-(100-×)B2O3 (x = 20, 25, 30, 37.5, 40, 50, 60 and 66 mol %) and 40Bi2O3-1Tv2O3-59B2O3 (where Tv = Al, Nd and Eu) were prepared by melt quench technique and devitrified by heat treatment above their glass transition temperatures for several hours. The crystalline phases produced were characterized by FTIR absorption spectroscopy, DTA and X-ray diffraction. Bi3B5O12 was found to be the predominant phase in all crystallized samples containing Bi2O3 concentration of ≤40 mol %, at higher Bi2O3 concentration, we observed the formation of Bi4B2O9 phase. Glasses with Bi2O3 concentration of ≤37.5 mol % produced Bi2B8O15 phase on crystallization. The metastable BiBO3-I phase was formed by short duration heat treatment (less than 5 hours) of the initial glass sample. Doping with rare earth ions like Eu3+ and Nd3+ promotes the formation of BiBO3-II phase while Al3+ doping suppresses it.

  16. New Bismuth-Substituted Hydroxyapatite Nanoparticles for Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Ciobanu, Gabriela; Bargan, Ana Maria; Luca, Constantin

    2015-11-01

    New bismuth-substituted hydroxyapatite [Ca10- x Bi x (PO4)6(OH)2 where x = 0-2.5] nanoparticles were synthesized by the co-precipitation method from aqueous solutions. The structural properties of the samples were analyzed by scanning electron microscopy coupled with x-ray analysis, x-ray powder diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller surface area analysis. The results confirm that bismuth ions have been incorporated into the hydroxyapatite lattice. The prepared nanocrystalline powders consisted of hydroxyapatite as single phase with hexagonal structure, crystal sizes smaller than 60 nm and (Bi + Ca)/P atomic ratio of around 1.67. The hydroxyapatite samples doped with Bi have mesoporous textures with pores size of around 2 nm and specific surface area in the range of 12-25 m2/g. The Bi-substituted hydroxyapatite powders are more effective against Gram-negative Escherichia coli bacteria than Gram-positive Staphylococcus aureus bacteria.

  17. Superconductivity in Bismuth. A New Look at an Old Problem

    PubMed Central

    2016-01-01

    To investigate the relationship between atomic topology, vibrational and electronic properties and superconductivity of bismuth, a 216-atom amorphous structure (a-Bi216) was computer-generated using our undermelt-quench approach. Its pair distribution function compares well with experiment. The calculated electronic and vibrational densities of states (eDOS and vDOS, respectively) show that the amorphous eDOS is about 4 times the crystalline at the Fermi energy, whereas for the vDOS the energy range of the amorphous is roughly the same as the crystalline but the shapes are quite different. A simple BCS estimate of the possible crystalline superconducting transition temperature gives an upper limit of 1.3 mK. The e-ph coupling is more preponderant in a-Bi than in crystalline bismuth (x-Bi) as indicated by the λ obtained via McMillan’s formula, λc = 0.24 and experiment λa = 2.46. Therefore with respect to x-Bi, superconductivity in a-Bi is enhanced by the higher values of λ and of eDOS at the Fermi energy. PMID:26815431

  18. Magnetic properties of the binary Nickel/Bismuth alloy

    NASA Astrophysics Data System (ADS)

    Keskin, Mustafa; Şarlı, Numan

    2017-09-01

    Magnetic properties of the binary Nickel/Bismuth alloy (Ni/Bi) are investigated within the effective field theory. The Ni/Bi alloy has been modeled that the rhombohedral Bi lattice is surrounded by the hexagonal Ni lattice. According to lattice locations, Bi atoms have two different magnetic properties. Bi1 atoms are in the center of the hexagonal Ni atoms (Ni/Bi1 single layer) and Bi2 atoms are between two Ni/Bi1 bilayers. The Ni, Bi1, Bi2 and Ni/Bi undergo a second-order phase transition from the ferromagnetic phase to paramagnetic phase at Tc = 1.14. The magnetizations of the Ni/Bi alloy are observed as Bi1 > Bi2 > Ni/Bi > Ni at T < Tc; hence the magnetization of the Bi1 is dominant and Ni is at least dominant. However, the total magnetization of the Ni/Bi alloy is close to magnetization of the Ni at T < Tc. The corcivities of the Ni, Bi1, Bi2 and Ni/Bi alloy are the same with each others, but the remanence magnetizations are different. Our theoretical results of M(T) and M(H) of the Ni/Bi alloy are in quantitatively good agreement with the some experimental results of binary Nickel/Bismuth systems.

  19. Bismuth nanoparticles-carbon nanotubes modified sensor for sulfasalazine analysis.

    PubMed

    Nigović, Biljana; Jurić, Sandra; Mitrović, Iva

    2017-03-01

    Nanocomposite of bismuth nanoparticles and carbon nanotubes in Nafion matrix was used as modifier for glassy carbon electrode in analysis of anti-inflamatory drug sulfasalazine. The nanocomposite surface exhibited exceptional synergy and remarkable enhancement effect to the voltammetric response of drug. The surface morphology and structure characterization of the modified electrodes was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy and cyclic voltammetry. The sensor exhibited excellent electroanalytical performance for drug determination in comparison with bismuth film electrode. The adsorptive stripping square-wave voltammetric signal showed a good linear correlation to sulfasalazine concentration in a broad range from 5.0×10(-8) to 1.0×10(-5)M with low detection limit of 1.3×10(-8)M.The method was successfully utilised for drug quantification in human serum samples and good recoveries were obtained without interference from endogenous substances, 5-aminosalycilic acid and sulfapyridine formed after biotransformation of drug and folic acid co-administered as the supplement during sulfasalazine therapy. Additionally, the proposed sensor was successfully applied to analysis of sulfasalazine content in gastro-resistant pharmaceutical dosage forms.

  20. Layered bismuth oxyhalide nanomaterials for highly efficient tumor photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Xu, Yu; Shi, Zhenzhi; Zhang, Ling'e.; Brown, Eric Michael Bratsolias; Wu, Aiguo

    2016-06-01

    Layered bismuth oxyhalide nanomaterials have received much more interest as promising photocatalysts because of their unique layered structures and high photocatalytic performance, which can be used as potential inorganic photosensitizers in tumor photodynamic therapy (PDT). In recent years, photocatalytic materials have been widely used in PDT and photothermal therapy (PTT) as inorganic photosensitizers. This investigation focuses on applying layered bismuth oxyhalide nanomaterials toward cancer PDT, an application that has never been reported so far. The results of our study indicate that the efficiency of UV-triggered PDT was highest when using BiOCl nanoplates followed by BiOCl nanosheets, and then TiO2. Of particular interest is the fact that layered BiOCl nanomaterials showed excellent PDT effects under low nanomaterial dose (20 μg mL-1) and low UV dose (2.2 mW cm-2 for 10 min) conditions, while TiO2 showed almost no therapeutic effect under the same parameters. BiOCl nanoplates and nanosheets have shown excellent performance and an extensive range of applications in PDT.

  1. Superconductivity in Bismuth. A New Look at an Old Problem.

    PubMed

    Mata-Pinzón, Zaahel; Valladares, Ariel A; Valladares, Renela M; Valladares, Alexander

    2016-01-01

    To investigate the relationship between atomic topology, vibrational and electronic properties and superconductivity of bismuth, a 216-atom amorphous structure (a-Bi216) was computer-generated using our undermelt-quench approach. Its pair distribution function compares well with experiment. The calculated electronic and vibrational densities of states (eDOS and vDOS, respectively) show that the amorphous eDOS is about 4 times the crystalline at the Fermi energy, whereas for the vDOS the energy range of the amorphous is roughly the same as the crystalline but the shapes are quite different. A simple BCS estimate of the possible crystalline superconducting transition temperature gives an upper limit of 1.3 mK. The e-ph coupling is more preponderant in a-Bi than in crystalline bismuth (x-Bi) as indicated by the λ obtained via McMillan's formula, λc = 0.24 and experiment λa = 2.46. Therefore with respect to x-Bi, superconductivity in a-Bi is enhanced by the higher values of λ and of eDOS at the Fermi energy.

  2. Strong anisotropy of ferroelectricity in lead-free bismuth silicate

    NASA Astrophysics Data System (ADS)

    Seol, Daehee; Taniguchi, Hiroki; Hwang, Jae-Yeol; Itoh, Mitsuru; Shin, Hyunjung; Kim, Sung Wng; Kim, Yunseok

    2015-07-01

    Bismuth silicate (Bi2SiO5) was recently suggested as a potential silicate based lead-free ferroelectric material. Here, we show the existence of ferroelectricity and explore the strong anisotropy of local ferroelectricity using piezoresponse force microscopy (PFM). Domain structures are reconstructed using angle-resolved PFM. Furthermore, piezoresponse hysteresis loops and piezoelectric coefficients are spatially investigated at the nanoscale. The obtained results confirm the existence of ferroelectricity with strong c-axis polarization. These results could provide basic information on the anisotropic ferroelectricity in Bi2SiO5 and furthermore suggest its considerable potential for lead-free ferroelectric applications with silicon technologies.Bismuth silicate (Bi2SiO5) was recently suggested as a potential silicate based lead-free ferroelectric material. Here, we show the existence of ferroelectricity and explore the strong anisotropy of local ferroelectricity using piezoresponse force microscopy (PFM). Domain structures are reconstructed using angle-resolved PFM. Furthermore, piezoresponse hysteresis loops and piezoelectric coefficients are spatially investigated at the nanoscale. The obtained results confirm the existence of ferroelectricity with strong c-axis polarization. These results could provide basic information on the anisotropic ferroelectricity in Bi2SiO5 and furthermore suggest its considerable potential for lead-free ferroelectric applications with silicon technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03161c

  3. Behaviour of Antimony and Bismuth in Copper Electrorefining Circuits

    SciTech Connect

    Beauchemin,S.; Chen, T.; Dutrizac, J.

    2008-01-01

    Antimony- and bismuth-rich copper anodes, anode slimes and decopperized anode slimes from industrial copper electrorefineries were studied mineralogically. Antimony in the anodes occurs mainly as Cu-Pb-As-Sb-Bi oxide inclusions along the copper grain boundaries; bismuth is mainly present as Cu-Pb-As-Sb-Bi oxide, Cu-Bi-As oxide, Cu-Pb-As-Bi oxide and Cu-Bi oxide inclusions. Sb and Bi partly dissolve during electrorefining, but extensively reprecipitate as As-Sb oxide, As-Sb-Bi oxide and SbAsO4. The presence of As results in the precipitation of essentially all the Bi as BiAsO4. The decopperizing process dissolves much of the Sb and Bi, although the majority of the BiAsO4 phase remains unaffected. Subsequently, some of the dissolved Sb and Bi reprecipitates as various oxide, sulphate and arsenate species. X-ray absorption near-edge structure (XANES) analyses suggest about 70% of the antimony in the anode slimes is present in the pentavalent oxidation state. The XANES analyses indicate that most of the Bi in all the slimes samples is present in the trivalent oxidation state.

  4. Ab initio electronic structure and optical conductivity of bismuth tellurohalides

    NASA Astrophysics Data System (ADS)

    Schwalbe, Sebastian; Wirnata, René; Starke, Ronald; Schober, Giulio A. H.; Kortus, Jens

    2016-11-01

    We investigate the electronic structure, dielectric, and optical properties of bismuth tellurohalides BiTe X (X =I , Cl, Br) by means of all-electron density functional theory. In particular, we present the ab initio conductivities and dielectric tensors calculated over a wide frequency range, and compare our results with the recent measurements by Akrap et al. [Phys. Rev. B 90, 035201 (2014), 10.1103/PhysRevB.90.035201], Makhnev et al. [Opt. Spectrosc. 117, 764 (2014), 10.1134/S0030400X14110125], and Rusinov et al. [JETP Lett. 101, 507 (2015), 10.1134/S0021364015080147]. We show how the low-frequency branch of the optical conductivity can be used to identify characteristic intra- and interband transitions between the Rashba spin-split bands in all three bismuth tellurohalides. We further calculate the refractive indices and dielectric constants, which in turn are systematically compared to previous predictions and measurements. We expect that our quantitative analysis will contribute to the general assessment of bulk Rashba materials for their potential use in spintronics devices.

  5. Alpha decay half-life of bismuth isotopes

    NASA Astrophysics Data System (ADS)

    Tavares, O. A. P.; Medeiros, E. L.; Terranova, M. L.

    2005-02-01

    The observed alpha decay half-life values of favoured alpha transitions of ell = 5 in bismuth isotopes have been analysed in the framework of a model based on quantum mechanical tunnelling through a potential barrier where the centrifugal and overlapping effects are taken into account. In particular, the very recently measured alpha decay half-life value of (1.9 ± 0.2) × 1019 y for the unique naturally occurring 209Bi isotope has been reproduced by the present approach as (1.0 ± 0.3) × 1019 y. Also, the partial alpha decay half-lives for a number of unmeasured alpha transitions of ell = 5 in bismuth isotopes are predicted by the model, thus making it possible to demonstrate the influence of the 126 neutron shell closure on the alpha decay half-life. The present approach is shown to be successfully applicable to other isotopic sequences of alpha-emitter nuclides. Dedicated to Professor Cesare M G Lattes, one of the discoverers of the π-meson, on the occasion of his 80th birthday.

  6. Phase transition of solid bismuth under high pressure

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Yan; Xiang, Shi-Kai; Yan, Xiao-Zhen; Zheng, Li-Rong; Zhang, Yi; Liu, Sheng-Gang; Bi, Yan

    2016-10-01

    As a widely used pressure calibrator, the structural phase transitions of bismuth from phase I, to phase II, to phase III, and then to phase V with increasing pressure at 300 K have been widely confirmed. However, there are different structural versions for phase III, most of which are determined by x-ray diffraction (XRD) technology. Using x-ray absorption fine structure (XAFS) measurements combined with ab initio calculations, we show that the proposed incommensurate composite structure of bismuth of the three configurations is the best option. An abnormal continuous increase of the nearest-neighbor distance of phase III with elevated pressure is also observed. The electronic structure transformation from semimetal to metal is responsible for the complex behavior of structure transformation. Project supported by the National Natural Science Foundation of China (Grant Nos. 10904133, 11304294, 11274281, 11404006, and U1230201), the Development Foundation of China Academy of Engineering Physics (Grant Nos. 2015B0101004, 2013B0401062, and 2012A0101001), the Research Foundation of the Laboratory of Shock Wave and Detonation, China (Grant No. 9140C670201140C67282).

  7. Bismuth Oxybromide-based Photocatalysts: Syntheses, Characterizations and Applications

    NASA Astrophysics Data System (ADS)

    Wu, Dan

    The increasing intractable crises of environmental pollution and fossil fuels shortage are among the biggest challenges in current society and becoming an overwhelming concern for the development of our future world. Semiconductor photocatalysis has received considerable interdisciplinary attention and research interest owing to their diverse potentials in energy and environmental applications. As an important V-VI-VII ternary semiconductor, BiOBr has been recently received considerable attention owing to its fascinating physicochemical prosperities originated from its unique layered structures. However, existing reports on the photocatalytic bacterial inactivation of BiOBr based photocatalysts are rather limited. In addition, the mechanisms in visible-light-driven (VLD) photocatalytic disinfection systems are far from fully understandable. Moreover, the exploitation of facile ways to make BiOBr photocatalysts harvesting a wide range of solar spectrum with high efficiency remains challenging, yet highly desirable. In this study, BiOBr based photocatalysts with various nanostructures were synthesized and characterized. Their photocatalytic activities were systematically investigated towards bacterial inactivation, dye degradation and CO2 reduction. The exploration on the photo-excited charge carriers and reactive species were conducted to gain some insight into the corresponding photocatalytic mechanisms. Firstly, BiOBr 2D nanosheets with a high percentage of exposed {001} and {010} facets were synthesized via a facile hydrothermal method. BiOBr with dominant {001} facet (B001) nanosheets exhibited remarkably higher photocatalytic activity in inactivating E. coli K-12 under visible light irradiation, in comparison with BiOBr with dominant {010} facet (B010) nanosheets. There were 7-log bacterial cells inactivated within 2 h for B001, while B010 needed 6 h irradiation to inactivate 6.5-log bacterial cells. This superior activity was assigned to the more favorable

  8. Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides.

    PubMed

    Li, Jie; Li, Hao; Zhan, Guangming; Zhang, Lizhi

    2017-01-17

    Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber-Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO2, SrTiO3, (Ga1-xZnx)(N1-xOx), CdS, and g-C3N4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the N≡N triple bond of N2. This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of precisely channeling

  9. Enhanced photo catalytic performance of nickel doped bismuth selenide under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Kulsi, Chiranjit; Ghosh, Amrita; Mondal, Anup; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2017-03-01

    We have reported photo catalytic properties of bismuth selenide (Bi2Se3) and nickel doped (5 mol%) bismuth selenide (Bi2Se3) samples on two different dyes, congo red (CR) and rose bengal (RB) under visible-light irradiation without and with hydrogen peroxide. A maximum rate constant of 0.0365 min-1 for RB dye has been observed for the nickel doped bismuth selenide catalyst in presence of hydrogen peroxide. A possible mechanism for improvement of photo catalytic performance has been explained based on band structure.

  10. Increased InAs quantum dot size and density using bismuth as a surfactant

    SciTech Connect

    Dasika, Vaishno D.; Krivoy, E. M.; Nair, H. P.; Maddox, S. J.; Park, K. W.; Yu, E. T.; Bank, S. R.; Jung, D.; Lee, M. L.

    2014-12-22

    We have investigated the growth of self-assembled InAs quantum dots using bismuth as a surfactant to control the dot size and density. We find that the bismuth surfactant increases the quantum dot density, size, and uniformity, enabling the extension of the emission wavelength with increasing InAs deposition without a concomitant reduction in dot density. We show that these effects are due to bismuth acting as a reactive surfactant to kinetically suppress the surface adatom mobility. This mechanism for controlling quantum dot density and size has the potential to extend the operating wavelength and enhance the performance of various optoelectronic devices.

  11. Determination of nanogram amounts of bismuth in rocks by atomic absorption spectrometry with electrothermal atomization

    USGS Publications Warehouse

    Kane, J.S.

    1979-01-01

    Bismuth concentrations as low as 10 ng g-1 in 100-mg samples of geological materials can be determined by atomic absorption spectrometry with electrothermal atomization. After HF-HClO4 decomposition of the sample, bismuth is extracted as the iodide into methyl isobutyl ketone and is then stripped with ethylenediaminetetraacetic acid into the aqueous phase. Aliquots of this solution are pipetted into the graphite furnace and dried, charred, and atomized in an automated sequence. Atomic absorbance at the Bi 223.1-nm line provides a measure of the amount of bismuth present. Results are presented for 14 U.S. Geological Survey standard rocks. ?? 1979.

  12. Oxidation mechanism of formic acid on the bismuth adatom-modified Pt(111) surface.

    PubMed

    Perales-Rondón, Juan Victor; Ferre-Vilaplana, Adolfo; Feliu, Juan M; Herrero, Enrique

    2014-09-24

    In order to improve catalytic processes, elucidation of reaction mechanisms is essential. Here, supported by a combination of experimental and computational results, the oxidation mechanism of formic acid on Pt(111) electrodes modified by the incorporation of bismuth adatoms is revealed. In the proposed model, formic acid is first physisorbed on bismuth and then deprotonated and chemisorbed in formate form, also on bismuth, from which configuration the C-H bond is cleaved, on a neighbor Pt site, yielding CO2. It was found computationally that the activation energy for the C-H bond cleavage step is negligible, which was also verified experimentally.

  13. Kinetics of reductive extraction of actinide and lanthanide elements from molten fluoride into liquid bismuth

    NASA Astrophysics Data System (ADS)

    Moriyama, Hirotake; Miyazaki, Masafumi; Asaoka, Yoshiyuki; Moritani, Kimikazu; Oishi, Jun

    1991-06-01

    The rate of reductive extraction of actinide and lanthanide elements was measured in the two-phase system of molten LiF-BeF 2 salt and liquid bismuth at 823-973 K. The effect of temperature, salt composition and reductant concentration was studied. In most cases, it was observed that the solid bismuthides of these elements were formed at the salt-bismuth interface following the addition of reductant. The extraction rate was limited by their solubility in bismuth. The mass transfer coefficient of each element was evaluated by applying a film theory. On the basis of the obtained results, some considerations are made for the development of extraction systems.

  14. PRODUCTION OF PLUTONIUM FLUORIDE FROM BISMUTH PHOSPHATE PRECIPITATE CONTAINING PLUTONIUM VALUES

    DOEpatents

    Brown, H.S.; Bohlmann, E.G.

    1961-05-01

    A process is given for separating plutonium from fission products present on a bismuth phosphate carrier. The dried carrier is first treated with hydrogen fluoride at between 500 and 600 deg C whereby some fission product fluorides volatilize away from plutonium tetrafluoride, and nonvolatile fission product fluorides are formed then with anhydrous fluorine at between 400 and 500 deg C. Bismuth and plutonium distill in the form of volatile fluorides away from the nonvolatile fission product fluorides. The bismuth and plutonium fluorides are condensed at below 290 deg C.

  15. Photocatalytic Mechanism Regulation of Bismuth Oxyhalogen via Changing Atomic Assembly Method.

    PubMed

    Bai, Yang; Shi, Xian; Wang, Ping-Quan; Xie, Haiquan; Ye, Liqun

    2017-09-01

    Exciton and carrier photocatalytic processes have been proved in bismuth oxyhalogen photocatalysts. But, there are no reports about how to regulate the different mechanisms to improve photocatalytic activity for different reaction. Here, we found that the photocatalytic mechanisms could be regulated by changing the assembly method of bismuth, oxygen, and halogen atoms. Reactive oxygen species (ROS) experimentals results concluded that solid solution BiOBr0.5I0.5 showed enhanced exciton photocatalytic process, and coupling 0.5BiOBr/0.5BiOI displayed improved carrier photocatalytic proces. This work promoted the understanding about solid solution and coupling for bismuth oxyhalogen.

  16. Exploiting Chemistry to Improve Performance of Screen-Printed, Bismuth Film Electrodes (SP-BiFE)

    PubMed Central

    Dossi, Carlo; Monticelli, Damiano; Pozzi, Andrea; Recchia, Sandro

    2016-01-01

    Mercury substitution is a big issue in electroanalysis, and the search for a suitable, and less toxic, replacement is still under development. Of all the proposed alternatives, bismuth films appear to be the most viable solution, although they are still suffering some drawbacks, particularly the influence of deposition conditions and linearity at low concentrations. In this paper, the most promising strategies for bismuth film deposition on screen-printed electrodes (surface modifications, polymeric film deposition, insoluble salt precursors) will be evaluated for trace metal analysis. Particular attention will be devoted to bismuth chemistry, aiming to rationalize their electroanalytic performance. PMID:27455338

  17. Exploiting Chemistry to Improve Performance of Screen-Printed, Bismuth Film Electrodes (SP-BiFE).

    PubMed

    Dossi, Carlo; Monticelli, Damiano; Pozzi, Andrea; Recchia, Sandro

    2016-07-22

    Mercury substitution is a big issue in electroanalysis, and the search for a suitable, and less toxic, replacement is still under development. Of all the proposed alternatives, bismuth films appear to be the most viable solution, although they are still suffering some drawbacks, particularly the influence of deposition conditions and linearity at low concentrations. In this paper, the most promising strategies for bismuth film deposition on screen-printed electrodes (surface modifications, polymeric film deposition, insoluble salt precursors) will be evaluated for trace metal analysis. Particular attention will be devoted to bismuth chemistry, aiming to rationalize their electroanalytic performance.

  18. Thin-film-formation study of high-Tc superconductors by resistive evaporation

    NASA Astrophysics Data System (ADS)

    Azoulay, Jacob

    1991-10-01

    Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O thin films were prepared with use of a conventional vacuum system for the evaporation of the constituents. This method produces stoichiometric films upon complete evaporation of the constituents. No thickness monitor or any other control system is required. In this study, substrates were kept at room temperature during the evaporation process. The bismuth-based thin films are shown to lose bismuth during heat treatment unless the Cu constituent is evaporated last and fully oxidized at 400 °C subsequently. Y-Ba-Cu-O films prepared by using a pulverized mixture of Y, BaF2, and Cu constituents show an improved quality over films obtained from YF3, BaF2, and Cu starting materials. This improvement is attributed to fluorine reduction in the starting-material mixture.

  19. thin films by an hybrid deposition configuration: pulsed laser deposition and thermal evaporation

    NASA Astrophysics Data System (ADS)

    Escobar-Alarcón, L.; Solís-Casados, D. A.; Perez-Alvarez, J.; Romero, S.; Morales-Mendez, J. G.; Haro-Poniatowski, E.

    2014-10-01

    The aim of this work was to report the application of an hybrid deposition configuration to deposit Titanium dioxide (TiO2) thin films modified with different amounts of bismuth (Bi:TiO2). The samples were synthesized combining a TiO2 laser ablation plasma with a flux of vapor of bismuth produced by thermal evaporation. By varying the deposition rate of Bi it was possible to control the amount of Bi incorporated in the film and consequently the film properties. A detailed compositional, structural, and optical characterization by XPS, RBS, Raman spectroscopy, and UV-Vis spectrometry techniques is discussed. Photocatalytic response of the deposited thin films was studied through the degradation of a malachite green solution.

  20. Optical Properties of Nanoscale Bismuth Selenide and Its Heterocrystals

    NASA Astrophysics Data System (ADS)

    Vargas, Anthony

    Over the past 12 years since the groundbreaking work on graphene, the field of 2D layered materials has grown by leaps and bounds as more materials are theoretically predicted and experimentically verified. These materials and their unique electronic, optical, and mechanical properties have inspired the scientific community to explore and investigate novel, fundamental physical phenomena as well create and refine technological devices which leverage the host of unique benefits which these materials possess. In the past few years, this burgeoning field has heavily moved towards combining layers of various materials into novel heterostructures. These heterostructures are an exciting area of research because of the plethora of exciting possibilities and results which arise due to the large number of heterostructure combinations and configurations. Particularly, the research into the optical properties of these layered materials and their heterostructures under confinement provides another exciting avenue for developing optoelectric devices. In this dissertation, I present work on the synthesis of Bi2Se 3 nanostructures via chemical vapor deposition (CVD) and the study of the optical properties of these nanostructures and their heterostructures with MoS2. The bulk of the current published work on Bi2Se 3 has focused on the exotic topological properties of its surface states, both interesting fundamental physics purposes as well as for studying avenues for spintronics. In contrast, the work presented here focuses on studying the optical properties of Bi2Se3 nanostructures and how these properties evolve when subjected to confinement. Specifically, the absorbance of singlecrystal Bi2Se3 with sizes tailored down to a few nanometers in diameter and a few quintuple layers (QLs) in thickness. We find a dramatically large bandgap, Eg ≥ 2.5 eV, in the smallest particles which is much higher than that seen in 1QL measurements taken with ARPES. Additionally, utilizing

  1. Portable vibration exciter

    NASA Technical Reports Server (NTRS)

    Beecher, L. C.; Williams, F. T.

    1970-01-01

    Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.

  2. Excited charmed mesons

    SciTech Connect

    Butler, J.N.; Shukla, S.

    1995-05-01

    The experimental status of excited charmed mesons is reviewed and is compared to theoretical expectations. Six states have been observed and their properties are consistent with those predicted for excited charmed states with orbital angular momentum equal to one.

  3. Ab initio study of electron energy loss spectra of bulk bismuth up to 100 eV

    NASA Astrophysics Data System (ADS)

    Timrov, Iurii; Markov, Maxime; Gorni, Tommaso; Raynaud, Michèle; Motornyi, Oleksandr; Gebauer, Ralph; Baroni, Stefano; Vast, Nathalie

    2017-03-01

    The dynamical charge-density response of bulk bismuth has been studied within time-dependent density functional perturbation theory, explicitly accounting for spin-orbit coupling. The use of the Liouville-Lanczos approach allows us to calculate electron energy loss spectra for excitation energies as large as 100 eV. Effects of 5 d semicore electronic states, spin-orbit coupling, exchange and correlation, local fields, and anisotropy are thoroughly investigated. The account of the 5 d states in the calculation turns out to be crucial to correctly describe the loss spectra above 10 eV and, in particular, the position and shape of the bulk-plasmon peak at 14.0 eV at vanishing transferred momentum. Our calculations reveal the presence of interband transitions at 16.3 eV, which had never been discussed before. The origin of the peak at 5.8 eV is revisited as due to mixed interband and collective excitations. Finally, our study supplements the lack of experiments at finite transferred momenta.

  4. On Emulation of Flueric Devices in Excitable Chemical Medium

    PubMed Central

    Adamatzky, Andrew

    2016-01-01

    Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ) medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies. PMID:27997561

  5. C- V studies on metal-ferroelectric bismuth vanadate (Bi 2VO 5.5)-semiconductor structure

    NASA Astrophysics Data System (ADS)

    Kumari, Neelam; Parui, Jayanta; Varma, K. B. R.; Krupanidhi, S. B.

    2006-03-01

    Ferroelectric bismuth vanadate Bi 2VO 5.5 (BVO) thin films have been successfully grown on p-type Si(100) substrate by using chemical solution decomposition (CSD) technique followed by rapid thermal annealing (RTA). The crystalline nature of the films has been studied by X-ray diffraction (XRD). Atomic force microscopy (AFM) was used to study the microstructure of the films. The dielectric properties of the films were studied. The capacitance-voltage characteristics have been studied in metal-ferroelectric-insulator-semiconductor (MFIS) configuration. The dielectric constant of BVO thin films formed on Si(100) is about 146 measured at a frequency of 100 kHz at room temperature. The capacitance-voltage plot of a Bi 2VO 5.5 MFIS capacitor subjected to a dc polarizing voltages shows a memory window of 1.42 V during a sweep of ±5 V gate bias. The flatband voltage ( Vf) shifts towards the positive direction rather than negative direction. This leads to the asymmetric behavior of the C- V curve and decrease in memory window. The oxide trap density at a ramp rate of 0.2 V/s was estimated to be as high as 1.45×10 12 cm -2.

  6. METHOD FOR RECOVERING PLUTONIUM VALUES FROM SOLUTION USING A BISMUTH HYDROXIDE CARRIER PRECIPITATE

    DOEpatents

    Faris, B.F.

    1961-04-25

    Carrier precipitation processes for separating plutonium values from aqueous solutions are described. In accordance with the invention a bismuth hydroxide precipitate is formed in the plutonium-containing solution, thereby carrying plutonium values from the solution.

  7. Spectral behaviour of bismuth centres in different steps of the FCVD process

    SciTech Connect

    Zlenko, Alexander S; Mashinsky, Valerii M; Iskhakova, L D; Ermakov, R P; Semjonov, S L; Koltashev, V V

    2013-07-31

    The behaviour of bismuth ions in silica glass free of other dopants has been studied in different steps of the furnace chemical vapour deposition (FCVD) process. Porous layers annealed and consolidated in different atmospheres, a bismuth chloride solution in acetone for porous layer impregnation, the resultant glass preform and holey fibres drawn out under various conditions have been characterised by spectroscopic techniques and X-ray diffraction. Active bismuth centres present in the preform and luminescing in the visible and IR spectral regions persist during drawing under reducing conditions, whereas drawing under oxidising conditions eliminates such centres. Annealing under reducing conditions produces absorption bands of IR-emitting bismuth centres (IRBCs) in spectra of fibres drawn out under oxidising conditions and concurrently increases the background loss. Under the annealing conditions of this study (argon atmosphere, T{sub max} = 1100 Degree-Sign C, 30 min), the IRBC concentration reaches a maximum and then decreases, whereas the background loss increases monotonically. (fiber optics)

  8. Corrosion by liquid lead and lead-bismuth: experimental results review and analysis

    SciTech Connect

    Zhang, Jinsuo

    2008-01-01

    Liquid metal technologies for liquid lead and lead-bismuth alloy are under wide investigation and development for advanced nuclear energy systems and waste transmutation systems. Material corrosion is one of the main issues studied a lot recently in the development of the liquid metal technology. This study reviews corrosion by liquid lead and lead bismuth, including the corrosion mechanisms, corrosion inhibitor and the formation of the protective oxide layer. The available experimental data are analyzed by using a corrosion model in which the oxidation and scale removal are coupled. Based on the model, long-term behaviors of steels in liquid lead and lead-bismuth are predictable. This report provides information for the selection of structural materials for typical nuclear reactor coolant systems when selecting liquid lead or lead bismuth as heat transfer media.

  9. Bismuth increases hydroxyl radical-scavenging activity of histamine H2-receptor antagonists.

    PubMed

    Kirkova, Margarita; Alexandrova, Albena; Yordanova, Neli

    2006-01-01

    The effects of histamine H2-receptor antagonists, alone or in a combination with bismuth, on *OH-provoked degradation of deoxyribose were studied. The histamine H2-receptor antagonists (cimetidine, ranitidine and roxatidine), themselves decreased the deoxyribose damage in Fenton-type systems. In combinations with bismuth, their inhibitory effect in Fenton system (Fe(III)/ascorbic acid + H2O2 was stronger. Moreover, unlike F(III) and Cu(II), which in the presence of ascorbic acid + H2O2 led to an increase in the *OH formation (deoxyribose damage), Bi(III) showed an opposite effect. The present results are interpreted in view of a better ( )OH scavenging activity of bismuth complexes of histamine H2-receptor antagonists as compared to that of the corresponding drugs. These findings might be one more explanation why bismuth salts, in combination with acid-reducing agents, are more effective anti-ulcer agents.

  10. Spectral behaviour of bismuth centres in different steps of the FCVD process

    NASA Astrophysics Data System (ADS)

    Zlenko, Alexander S.; Mashinsky, Valerii M.; Iskhakova, L. D.; Ermakov, R. P.; Semjonov, S. L.; Koltashev, V. V.

    2013-07-01

    The behaviour of bismuth ions in silica glass free of other dopants has been studied in different steps of the furnace chemical vapour deposition (FCVD) process. Porous layers annealed and consolidated in different atmospheres, a bismuth chloride solution in acetone for porous layer impregnation, the resultant glass preform and holey fibres drawn out under various conditions have been characterised by spectroscopic techniques and X-ray diffraction. Active bismuth centres present in the preform and luminescing in the visible and IR spectral regions persist during drawing under reducing conditions, whereas drawing under oxidising conditions eliminates such centres. Annealing under reducing conditions produces absorption bands of IR-emitting bismuth centres (IRBCs) in spectra of fibres drawn out under oxidising conditions and concurrently increases the background loss. Under the annealing conditions of this study (argon atmosphere, Tmax = 1100 °C, 30 min), the IRBC concentration reaches a maximum and then decreases, whereas the background loss increases monotonically.

  11. In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Sepulveda-Guzman, S.; Elizondo-Villarreal, N.; Ferrer, D.; Torres-Castro, A.; Gao, X.; Zhou, J. P.; Jose-Yacaman, M.

    2007-08-01

    In this work, bismuth nanoparticles were synthesized when a precursor, sodium bismuthate, was exposed to an electron beam at room temperature in a transmission electron microscope (TEM). The irradiation effects were investigated in situ using selected-area electron diffraction, high-resolution transmission electron microscopy and x-ray energy dispersive spectroscopy. After the electron irradiation, bismuth nanoparticles with a rhombohedral structure and diameter of 6 nm were observed. The average particle size increased with the irradiation time. The electron-induced reduction is attributed to the desorption of oxygen ions. This method offers a one-step route to synthesize bismuth nanoparticles using electron irradiation, and the particle size can be controlled by the irradiation time.

  12. The experience in handling of lead-bismuth coolant contaminated by Polonium-210

    SciTech Connect

    Pankratov, D.V.; Gromov, B.F.; Solodjankin, M.A.

    1993-12-31

    During exploitation of lead-bismuth cooled reactors a wide experience in handling of radioactive coolant containing polonium has been gained. By 1990 total time of this reactor operation has reached approximately 60 reactor years.

  13. Facile synthesis and shape control of bismuth nanoflowers induced by surfactants

    NASA Astrophysics Data System (ADS)

    Dai, Yunrong; Song, Yonghui

    2014-01-01

    Several nano-sized bismuth materials with different shapes were fabricated using ionic/nonionic surfactant as a synthesis agent. Ionic surfactants brought about the formation of irregular nanoparticles while nonionic surfactants directed the synthesis of uniform hexagonal nanoprisms. Among them, the nonionic surfactant Pluronic P123 (poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide), PEO20PPO70PEO20) could act as the reductant/shape-directing bifunctional agent for successfully reducing Bi3+ to Bi0 and inducing many hexagonal nanoprisms to grow from one crystal seed and finally form the graceful bismuth nanoflowers. The molding mechanism of bismuth nanoflowers might be attributed to the accommodation, stabilization and induction effects of P123 micelles for bismuth crystal seeds.

  14. An acclerator-based installation of small power with the lead-bismuth coolant

    SciTech Connect

    Gorshkov, V.T.; Yefimov, E.I.; Novikova, N.N.

    1995-10-01

    The structure of the accelerator-based installation is described that includes the subcritical reactor-blanket with power 15 MW(h) cooled with lead-bismuth, the lead-bismuth flow target where a beam of {alpha}-particle is injected, the equipment of a primary and secondary curcuits. Some results of calculations and estimations are discussed that have been carried out to justify the target and blanket constructions. Some main characteristics of the installation are presented.

  15. Role of endogenous prostaglandins in protection of rat gastric mucosa by tripotassium dicitrate bismuthate.

    PubMed

    Malandrino, S; Bestetti, A; Fumagalli, G; Borsa, M; Viganó, T; Tonon, G

    1987-10-01

    Gross and microscopic examination of rat gastric mucosa demonstrated that intragastric administration to rats of tripotassium dicitrate bismuthate (TDB), a colloidal bismuth compound, protects against gastric lesions induced by 85% ethanol. Indomethacin, a prostaglandin synthetase inhibitor, significantly blocked the gastric mucosal protective effect of TDB. The release of gastric mucosal prostaglandins was greater in animals treated with TDB than in control animals, both time- and dose-dependently. These results seem to indicate involvement of prostaglandins in the action of TDB.

  16. Prevention of gastric mucosal lesions in rats by tri-potassium di-citrato bismuthate.

    PubMed

    Malandrino, S; Campagnoli, G; Borsa, M; Guidoboni, R; Tonon, G C

    1984-01-01

    Tri-potassium di-citrato bismuthate given intragastrically to rats 60 min before administration of necrotizing agents such as 85% ethanol, 0.2 N sodium hydroxide or acidified indomethacin, reduced the formation of mucosal lesions dose-dependently. Prostaglandin I2 (PGI2)-like material, determined by bioassay, was higher in the gastric mucosa of animals treated with bismuth subcitrate complex than in control animals.

  17. Reactive magnetron sputtering deposition of bismuth tungstate onto titania nanoparticles for enhancing visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ratova, Marina; Kelly, Peter J.; West, Glen T.; Tosheva, Lubomira; Edge, Michele

    2017-01-01

    Titanium dioxide - bismuth tungstate composite materials were prepared by pulsed DC reactive magnetron sputtering of bismuth and tungsten metallic targets in argon/oxygen atmosphere onto anatase and rutile titania nanoparticles. The use of an oscillating bowl placed beneath the two magnetrons arranged in a co-planar closed field configuration enabled the deposition of bismuth tungstate onto loose powders, rather than a solid substrate. The atomic ratio of the bismuth/tungsten coatings was controlled by varying the power applied to each target. The effect of the bismuth tungstate coatings on the phase, optical and photocatalytic properties of titania was investigated by X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) surface area measurements, transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy and an acetone degradation test. The latter involved measurements of the rate of CO2 evolution under visible light irradiation of the photocatalysts, which indicated that the deposition of bismuth tungstate resulted in a significant enhancement of visible light activity, for both anatase and rutile titania particles. The best results were achieved for coatings with a bismuth to tungsten atomic ratio of 2:1. In addition, the mechanism by which the photocatalytic activity of the TiO2 nanoparticles was enhanced by compounding it with bismuth tungstate was studied by microwave cavity perturbation. The results of these tests confirmed that such enhancement of the photocatalytic properties is due to more efficient photogenerated charge carrier separation, as well as to the contribution of the intrinsic photocatalytic properties of Bi2WO6.

  18. Comparison of radiation shielding ratios of nano-sized bismuth trioxide and molybdenum

    NASA Astrophysics Data System (ADS)

    Cho, J. H.; Kim, M. S.; Rhim, J. D.

    2015-07-01

    In this study, radiation shielding fibers using non-hazardous nano-sized bismuth trioxide and molybdenum instead of lead were developed and evaluated. Among the elements with high densities and atomic numbers, non-hazardous elements such as bismuth trioxide and molybdenum were chosen as a shielding element. Then, bismuth trioxide (Bi2O3) with average particle size 1-500 µm was ball milled for 10 min to produce a powdered form of nanoparticles with average particle size of 10-100 nm. Bismuth trioxide nanoparticles were dispersed to make a colloidal suspension, followed by spreading and hardening onto one or two sides of fabric, to create the radiation shielding fabric. The thicknesses of the shielding sheets using nano-sized bismuth and molybdenum were 0.4 and 0.7 mm. According to the lead equivalent test of X-ray shielding products suggested by KS, the equivalent dose was measured, followed by calculation of the shielding rate. The shielding rate of bismuth with 0.4 mm thickness and at 50 kVp was 90.5%, which is comparable to lead of 0.082 mm thickness. The shielding rate of molybdenum was 51.89%%, which is comparable to lead of 0.034 mm. At a thickness of 0.7 mm, the shielding rate of bismuth was 98.73%, equivalent to 0.101 mm Pb, whereas the shielding rate of molybdenum was 74.68%, equivalent to 0.045 mm Pb. In conclusion, the radiation shielding fibers using nano-sized bismuth developed in this study are capable of reducing radiation exposure by X-ray and its low-dose scatter ray.

  19. Determination of trimethylbismuth in the human body after ingestion of colloidal bismuth subcitrate.

    PubMed

    Boertz, Jens; Hartmann, Louise Michele; Sulkowski, Margareta; Hippler, Joerg; Mosel, Frank; Diaz-Bone, Roland Arturo; Michalke, Klaus; Rettenmeier, Albert Wolfgang; Hirner, Alfred Vitalis

    2009-02-01

    Biological methylation and hydride formation of metals and metalloids are ubiquitous environmental processes that can lead to the formation of chemical species with significantly increased mobility and toxicity. Whereas much is known about the interaction of metal(loid)s with microorganisms in environmental settings, little information has been gathered on respective processes inside the human body as yet. Here, we studied the biotransformation and excretion of bismuth after ingestion of colloidal bismuth subcitrate (215 mg of bismuth) to 20 male human volunteers. Bismuth absorption in the stomach and upper intestine was very low, as evidenced by the small quantity of bismuth eliminated via the renal route. Total bismuth concentrations in blood increased rapidly in the first hour after ingestion. Most of the ingested bismuth was excreted via feces during the study period. Trace levels of the metabolite trimethylbismuth [(CH(3))(3)Bi] were detected via low temperaturegas chromatography/inductively coupled plasma-mass spectrometry in blood samples and in exhaled air samples. Concentrations were in the range of up to 2.50 pg/ml (blood) and 0.8 to 458 ng/m(3) (exhaled air), with high interindividual variation being observed. Elimination routes of bismuth were exhaled air (up to 0.03 per thousand), urine (0.03-1.2%), and feces. The site of (CH(3))(3)Bi production could not be identified in the present study, but the intestinal microflora seems to be involved in this biotransformation if accompanying ex vivo studies are taken into consideration.

  20. Structural, electrical, and thermoelectric properties of bismuth telluride: Silicon/carbon nanocomposites thin films

    SciTech Connect

    Agarwal, Khushboo; Mehta, B. R.

    2014-08-28

    In this study, the effect of the presence of secondary phases on the structural, electrical, and thermoelectric properties of nanocomposite Bi{sub 2}Te{sub 3} films prepared by co-sputtering of silicon and carbon with Bi{sub 2}Te{sub 3} has been investigated. Growth temperature and the presence of Si and C phase are observed to have a strong effect on the topography and orientation of crystallites. X-ray diffraction study demonstrates that Bi{sub 2}Te{sub 3} and Bi{sub 2}Te{sub 3}:C samples have preferred (0 0 15) orientation in comparison to Bi{sub 2}Te{sub 3}:Si sample, which have randomly oriented crystallites. Atomic force, conducting atomic force, and scanning thermal microscopy analysis show significant differences in topographical, electrical, and thermal conductivity contrasts in Bi{sub 2}Te{sub 3}:Si and Bi{sub 2}Te{sub 3}:C samples. Due to the randomly oriented crystallites and the presence of Si along the crystallite boundaries, appreciable Seebeck coefficient, higher electrical conductivity, and lower thermal conductivity is achieved resulting in relatively higher value of power factor (3.71 mW K{sup −2} m{sup −1}) for Bi{sub 2}Te{sub 3}:Si sample. This study shows that by incorporating a secondary phase along crystallite boundaries, microstructural, electrical, and thermoelectric properties of the composite samples can be modified.