Science.gov

Sample records for exciton-wave packet dynamics

  1. Energy and Information Transfer Via Coherent Exciton Wave Packets

    NASA Astrophysics Data System (ADS)

    Zang, Xiaoning

    Electronic excitons are bound electron-hole states that are generated when light interacts with matter. Such excitations typically entangle with phonons and rapidly decohere; the resulting electronic state dynamics become diffusive as a result. However, if the exciton-phonon coupling can be reduced, it may be possible to construct excitonic wave packets that offer a means of efficiently transmitting information and energy. This thesis is a combined theory/computation investigation to design condensed matter systems which support the requisite coherent transport. Under the idealizing assumption that exciton-phonon entanglement could be completely suppressed, the majority of this thesis focuses on the creation and manipulation of exciton wave packets in quasi-one-dimensional systems. While each site could be a silicon quantum dot, the actual implementation focused on organic molecular assemblies for the sake of computational simplicity, ease of experimental implementation, potential for coherent transport, and promise because of reduced structural uncertainty. A laser design was derived to create exciton wave packets with tunable shape and speed. Quantum interference was then exploited to manipulate these packets to block, pass, and even dissociate excitons based on their energies. These developments allow exciton packets to be considered within the arena of quantum information science. The concept of controllable excitonic wave packets was subsequently extended to consider molecular designs that allow photons with orbital angular momentum to be absorbed to create excitons with a quasi-angular momentum of their own. It was shown that a well-defined measure of topological charge is conserved in such light-matter interactions. Significantly, it was also discovered that such molecules allow photon angular momenta to be combined and later emitted. This amounts to a new way of up/down converting photonic angular momentum without relying on nonlinear optical materials. The

  2. Engineering and manipulating exciton wave packets

    NASA Astrophysics Data System (ADS)

    Zang, Xiaoning; Montangero, Simone; Carr, Lincoln D.; Lusk, Mark T.

    2017-05-01

    When a semiconductor absorbs light, the resulting electron-hole superposition amounts to a uncontrolled quantum ripple that eventually degenerates into diffusion. If the conformation of these excitonic superpositions could be engineered, though, they would constitute a new means of transporting information and energy. We show that properly designed laser pulses can be used to create such excitonic wave packets. They can be formed with a prescribed speed, direction, and spectral make-up that allows them to be selectively passed, rejected, or even dissociated using superlattices. Their coherence also provides a handle for manipulation using active, external controls. Energy and information can be conveniently processed and subsequently removed at a distant site by reversing the original procedure to produce a stimulated emission. The ability to create, manage, and remove structured excitons comprises the foundation for optoexcitonic circuits with application to a wide range of quantum information, energy, and light-flow technologies. The paradigm is demonstrated using both tight-binding and time-domain density functional theory simulations.

  3. Dynamics of quantum wave packets

    SciTech Connect

    Gosnell, T.R.; Taylor, A.J.; Rodriguez, G.; Clement, T.S.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop ultrafast laser techniques for the creation and measurement of quantum vibrational wave packets in gas phase diatomic molecules. Moreover, the authors sought to manipulate the constitution of these wave packets in terms of harmonic-oscillator basis wavefunctions by manipulating the time-dependent amplitude and phase of the incident ultrashort laser pulse. They specifically investigated gaseous diatomic potassium (K{sub 2}), and discovered variations in the shape of the wave packets as a result of changing the linear chirp in the ultrashort preparation pulse. In particular, they found evidence for wave-packet compression for a specific degree of chirp. Important ancillary results include development of new techniques for denoising and deconvolution of femtosecond time traces and techniques for diagnosing the phase and amplitude of the electric field of femtosecond laser pulses.

  4. Dynamics of Attosecond Electron Wave Packets

    NASA Astrophysics Data System (ADS)

    Mauritsson, Johan

    2005-05-01

    We present results from some of the first experimental studies of attosecond electron wave packets created via the absorption of ultrashort extreme ultraviolet (XUV) light pulses [1]. The pulses, made via high harmonic generation, form an attosecond pulse train (APT) whose properties we can manipulate by a combination of spatial and spectral filtering. For instance, we show that on-target attosecond pulses of 170 as duration, which is close to the single cycle limit, can be produced [2]. The electron wave packets created when such an APT is used to ionize an atom are different from the tunneling wave packets familiar from strong field ionization. We show how to measure the dynamics of these wave packets in a strong infrared (IR) field, where the absorption of energy above the ionization threshold is found to depend strongly on the APT-IR delay [3]. We also demonstrate that altering the properties of the initial electron wave packet by manipulating the APT changes the subsequent continuum electron dynamics. Finally, we show how the phase of a longer, femtosecond electron wave packet can be modulated by a moderately strong IR pulse with duration comparable to or shorter than that of the electron wave packet. This experiment reveals how the normal ponderomotive shift of an XUV ionization event is modified when the IR pulse is shorter than the XUV pulse.[1] The experiments were done at Lund Institute of Technology, Sweden.[2] R. López-Martens, et al., Phys. Rev. Lett. 94, 033001 (2005)[3] P. Johnsson, et al., submitted to Phys. Rev. Lett.

  5. Classical Hamiltonian structures in wave packet dynamics

    NASA Astrophysics Data System (ADS)

    Gray, Stephen K.; Verosky, John M.

    1994-04-01

    The general, N state matrix representation of the time-dependent Schrödinger equation is equivalent to an N degree of freedom classical Hamiltonian system. We describe how classical mechanical methods and ideas can be applied towards understanding and modeling exact quantum dynamics. Two applications are presented. First, we illustrate how qualitative insights may be gained by treating the two state problem with a time-dependent coupling. In the case of periodic coupling, Poincaré surfaces of section are used to view the quantum dynamics, and features such as the Floquet modes take on interesting interpretations. The second application illustrates computational implications by showing how Liouville's theorem, or more generally the symplectic nature of classical Hamiltonian dynamics, provides a new perspective for carrying out numerical wave packet propagation. We show how certain simple and explicit symplectic integrators can be used to numerically propagate wave packets. The approach is illustrated with an application to the problem of a diatomic molecule interacting with a laser, although it and related approaches may be useful for describing a variety of problems.

  6. Effect of Coulomb interaction on multi-electronwave packet dynamics

    SciTech Connect

    Shiokawa, T.; Takada, Y.; Konabe, S.; Hatsugai, Y.; Muraguchi, M.; Endoh, T.; Shiraishi, K.

    2013-12-04

    We have investigated the effect of Coulomb interaction on electron transport in a one-dimensional nanoscale structure using a multi-electron wave packet approach. To study the time evolution, we numerically solve the time-dependent Hartree-Fock equation, finding that the electron wave packet dynamics strongly depends on the Coulomb interaction strength. When the Coulomb interaction is large, each electron wave packet moves separately in the presence of an electric field. With weak Coulomb interaction, however, the electron wave packets overlap, forming and moving as one collective wave packet.

  7. Symmetry and conservation laws in semiclassical wave packet dynamics

    SciTech Connect

    Ohsawa, Tomoki

    2015-03-15

    We formulate symmetries in semiclassical Gaussian wave packet dynamics and find the corresponding conserved quantities, particularly the semiclassical angular momentum, via Noether’s theorem. We consider two slightly different formulations of Gaussian wave packet dynamics; one is based on earlier works of Heller and Hagedorn and the other based on the symplectic-geometric approach by Lubich and others. In either case, we reveal the symplectic and Hamiltonian nature of the dynamics and formulate natural symmetry group actions in the setting to derive the corresponding conserved quantities (momentum maps). The semiclassical angular momentum inherits the essential properties of the classical angular momentum as well as naturally corresponds to the quantum picture.

  8. Symmetry and conservation laws in semiclassical wave packet dynamics

    NASA Astrophysics Data System (ADS)

    Ohsawa, Tomoki

    2015-03-01

    We formulate symmetries in semiclassical Gaussian wave packet dynamics and find the corresponding conserved quantities, particularly the semiclassical angular momentum, via Noether's theorem. We consider two slightly different formulations of Gaussian wave packet dynamics; one is based on earlier works of Heller and Hagedorn and the other based on the symplectic-geometric approach by Lubich and others. In either case, we reveal the symplectic and Hamiltonian nature of the dynamics and formulate natural symmetry group actions in the setting to derive the corresponding conserved quantities (momentum maps). The semiclassical angular momentum inherits the essential properties of the classical angular momentum as well as naturally corresponds to the quantum picture.

  9. Wave packet dynamics in periodically kicked nonlinear systems

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Gao, Yi; Tong, Peiqing

    2017-08-01

    We investigate the dynamics of a wave packet in a periodically kicked nonlinear Aubry-André (AA) model when the initial state is localized at a single lattice site. We found that, beside the nonlinearity strength β and the strength (phase) of the quasiperiodic potential λ (θ), the kicking period T can also influence the dynamical evolution of the wave packet. Especially when T,β \\ll 1, the periodically kicked nonlinear AA model can be reduced to a static nonlinear AA model with a rescaled nonlinearity strength β /T.

  10. Wave-packet dynamics of Bogoliubov quasiparticles: Quantum metric effects

    NASA Astrophysics Data System (ADS)

    Liang, Long; Peotta, Sebastiano; Harju, Ari; Törmä, Päivi

    2017-08-01

    We study the dynamics of the Bogoliubov wave packet in superconductors and calculate the supercurrent carried by the wave packet. We discover an anomalous contribution to the supercurrent, related to the quantum metric of the Bloch wave function. This anomalous contribution is most important for flat or quasiflat bands, as exemplified by the attractive Hubbard models on the Creutz ladder and sawtooth lattice. Our theoretical framework is general and can be used to study a wide variety of phenomena, such as spin transport and exciton transport.

  11. Semiclassical dynamics of electron wave packet states with phase vortices.

    PubMed

    Bliokh, Konstantin Yu; Bliokh, Yury P; Savel'ev, Sergey; Nori, Franco

    2007-11-09

    We consider semiclassical higher-order wave packet solutions of the Schrödinger equation with phase vortices. The vortex line is aligned with the propagation direction, and the wave packet carries a well-defined orbital angular momentum (OAM) variant Planck's over 2pil (l is the vortex strength) along its main linear momentum. The probability current coils around the momentum in such OAM states of electrons. In an electric field, these states evolve like massless particles with spin l. The magnetic-monopole Berry curvature appears in momentum space, which results in a spin-orbit-type interaction and a Berry/Magnus transverse force acting on the wave packet. This brings about the OAM Hall effect. In a magnetic field, there is a Zeeman interaction, which, can lead to more complicated dynamics.

  12. Semiclassical Dynamics of Electron Wave Packet States with Phase Vortices

    SciTech Connect

    Bliokh, Konstantin Yu.; Bliokh, Yury P.; Savel'ev, Sergey; Nori, Franco

    2007-11-09

    We consider semiclassical higher-order wave packet solutions of the Schroedinger equation with phase vortices. The vortex line is aligned with the propagation direction, and the wave packet carries a well-defined orbital angular momentum (OAM) ({Dirac_h}/2{pi})l (l is the vortex strength) along its main linear momentum. The probability current coils around the momentum in such OAM states of electrons. In an electric field, these states evolve like massless particles with spin l. The magnetic-monopole Berry curvature appears in momentum space, which results in a spin-orbit-type interaction and a Berry/Magnus transverse force acting on the wave packet. This brings about the OAM Hall effect. In a magnetic field, there is a Zeeman interaction, which, can lead to more complicated dynamics.

  13. Generalized Gaussian wave packet dynamics: Integrable and chaotic systems.

    PubMed

    Pal, Harinder; Vyas, Manan; Tomsovic, Steven

    2016-01-01

    The ultimate semiclassical wave packet propagation technique is a complex, time-dependent Wentzel-Kramers-Brillouin method known as generalized Gaussian wave packet dynamics (GGWPD). It requires overcoming many technical difficulties in order to be carried out fully in practice. In its place roughly twenty years ago, linearized wave packet dynamics was generalized to methods that include sets of off-center, real trajectories for both classically integrable and chaotic dynamical systems that completely capture the dynamical transport. The connections between those methods and GGWPD are developed in a way that enables a far more practical implementation of GGWPD. The generally complex saddle-point trajectories at its foundation are found using a multidimensional Newton-Raphson root search method that begins with the set of off-center, real trajectories. This is possible because there is a one-to-one correspondence. The neighboring trajectories associated with each off-center, real trajectory form a path that crosses a unique saddle; there are exceptions that are straightforward to identify. The method is applied to the kicked rotor to demonstrate the accuracy improvement as a function of ℏ that comes with using the saddle-point trajectories.

  14. The Interference of the Dynamically Squeezed Vibrational Wave Packets

    NASA Technical Reports Server (NTRS)

    Vinogradov, An. V.; Janszky, J.; Kobayashi, T.

    1996-01-01

    An electronic excitation of a molecule by a sequence of two femtosecond phase-locked laser pulses is considered. In this case the interference between the vibrational wave packets induced by each of the subpulses within a single molecule takes place. It is shown that due to the dynamical squeezing effect of a molecular vibrational state the interference of the vibrational wave packets allows one to measure the duration of a femtosecond laser pulse. This can be achieved experimentally by measuring the dependence of the integral fluorescence of the excited molecule on the delay time between the subpulses. The interference can lead to a sharp peak (or to a down-fall) in that dependence, the width of which is equal to the duration of the laser pulse. It is shown that finite temperature of the medium is favorable for such an experiment.

  15. Wave packet dynamics in the optimal superadiabatic approximation

    NASA Astrophysics Data System (ADS)

    Betz, V.; Goddard, B. D.; Manthe, U.

    2016-06-01

    We explain the concept of superadiabatic representations and show how in the context of electronically non-adiabatic transitions they lead to an explicit formula that can be used to predict transitions at avoided crossings. Based on this formula, we present a simple method for computing wave packet dynamics across avoided crossings. Only knowledge of the adiabatic potential energy surfaces near the avoided crossing is required for the computation. In particular, this means that no diabatization procedure is necessary, the adiabatic electronic energies can be computed on the fly, and they only need to be computed to higher accuracy when an avoided crossing is detected. We test the quality of our method on the paradigmatic example of photo-dissociation of NaI, finding very good agreement with results of exact wave packet calculations.

  16. Qualitative dynamics of wave packets in turbulent jets

    NASA Astrophysics Data System (ADS)

    Semeraro, Onofrio; Lusseyran, François; Pastur, Luc; Jordan, Peter

    2017-09-01

    We analyze the temporal dynamics associated with axisymmetric coherent structures in a turbulent jet. It has long been established that turbulent jets comprise large-scale coherent structures, now more commonly referred to as "wave packets" [Jordan and Colonius, Annu. Rev. Fluid Mech. 45, 173 (2013), 10.1146/annurev-fluid-011212-140756]. These structures exhibit a marked spatiotemporal organization, despite turbulence, and we aim to characterize their temporal dynamics by means of nonlinear statistical tools. The analysis is based on data presented Breakey et al., in Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2013-2083 (AIAA, Reston, VA, 2013), where time series of the wave-packet signatures are extracted at different streamwise locations. The experiment runs at Ma=0.6 and Re=5.7 ×105 . A thorough analysis is performed. Statistical tools are used to estimate the embedding and correlation dimensions that characterize the dynamical system. Input-output transfer functions are designed as control-oriented models; and for this special case, consistent with other recent studies, we find that linear models can reproduce much of the convective input-ouput behavior. Finally, we show how surrogate models can partially reproduce the nonlinear dynamics.

  17. Ultrafast electron optics: Propagation dynamics of femtosecond electron packets

    NASA Astrophysics Data System (ADS)

    Siwick, Bradley J.; Dwyer, Jason R.; Jordan, Robert E.; Miller, R. J. Dwayne

    2002-08-01

    Time-resolved electron diffraction harbors great promise for resolving the fastest chemical processes with atomic level detail. The main obstacles to achieving this real-time view of a chemical reaction are associated with delivering short electron pulses with sufficient electron density to the sample. In this article, the propagation dynamics of femtosecond electron packets in the drift region of a photoelectron gun are investigated with an N-body numerical simulation and mean-field model. It is found that space-charge effects can broaden the electron pulse to many times its original length and generate many eV of kinetic energy bandwidth in only a few nanoseconds. There is excellent agreement between the N-body simulation and the mean-field model for both space-charge induced temporal and kinetic energy distribution broadening. The numerical simulation also shows that the redistribution of electrons inside the packet results in changes to the pulse envelope and the development of a spatially linear axial velocity distribution. These results are important for (or have the potential to impact on) the interpretation of time-resolved electron diffraction experiments and can be used in the design of photoelectron guns and streak tubes with temporal resolution of several hundred femtoseconds.

  18. Coriolis-coupled wave packet dynamics of H + HLi reaction.

    PubMed

    Padmanaban, R; Mahapatra, S

    2006-05-11

    We investigated the effect of Coriolis coupling (CC) on the initial state-selected dynamics of H+HLi reaction by a time-dependent wave packet (WP) approach. Exact quantum scattering calculations were obtained by a WP propagation method based on the Chebyshev polynomial scheme and ab initio potential energy surface of the reacting system. Partial wave contributions up to the total angular momentum J=30 were found to be necessary for the scattering of HLi in its vibrational and rotational ground state up to a collision energy approximately 0.75 eV. For each J value, the projection quantum number K was varied from 0 to min (J, K(max)), with K(max)=8 until J=20 and K(max)=4 for further higher J values. This is because further higher values of K do not have much effect on the dynamics and also because one wishes to maintain the large computational overhead for each calculation within the affordable limit. The initial state-selected integral reaction cross sections and thermal rate constants were calculated by summing up the contributions from all partial waves. These were compared with our previous results on the title system, obtained within the centrifugal sudden and J-shifting approximations, to demonstrate the impact of CC on the dynamics of this system.

  19. Source Authentication for Code Dissemination Supporting Dynamic Packet Size in Wireless Sensor Networks †

    PubMed Central

    Kim, Daehee; Kim, Dongwan; An, Sunshin

    2016-01-01

    Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption. PMID:27409616

  20. Source Authentication for Code Dissemination Supporting Dynamic Packet Size in Wireless Sensor Networks.

    PubMed

    Kim, Daehee; Kim, Dongwan; An, Sunshin

    2016-07-09

    Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption.

  1. Riemann {zeta} function from wave-packet dynamics

    SciTech Connect

    Mack, R.; Schleich, W. P.; Dahl, J. P.; Moya-Cessa, H.; Strunz, W. T.; Walser, R.

    2010-09-15

    We show that the time evolution of a thermal phase state of an anharmonic oscillator with logarithmic energy spectrum is intimately connected to the generalized Riemann {zeta} function {zeta}(s,a). Indeed, the autocorrelation function at a time t is determined by {zeta}({sigma}+i{tau},a), where {sigma} is governed by the temperature of the thermal phase state and {tau} is proportional to t. We use the JWKB method to solve the inverse spectral problem for a general logarithmic energy spectrum; that is, we determine a family of potentials giving rise to such a spectrum. For large distances, all potentials display a universal behavior; they take the shape of a logarithm. However, their form close to the origin depends on the value of the Hurwitz parameter a in {zeta}(s,a). In particular, we establish a connection between the value of the potential energy at its minimum, the Hurwitz parameter and the Maslov index of JWKB. We compare and contrast exact and approximate eigenvalues of purely logarithmic potentials. Moreover, we use a numerical method to find a potential which leads to exact logarithmic eigenvalues. We discuss possible realizations of Riemann {zeta} wave-packet dynamics using cold atoms in appropriately tailored light fields.

  2. Attosecond Electron Wave Packet Dynamics in Strong Laser Fields

    SciTech Connect

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier, A.; Lopez-Martens, R.; Valentin, C.; Balcou, Ph.; Kazamias, S.; Mauritsson, J.; Gaarde, M. B.; Schafer, K. J.; Mairesse, Y.; Wabnitz, H.; Salieres, P.

    2005-07-01

    We use a train of sub-200 attosecond extreme ultraviolet (XUV) pulses with energies just above the ionization threshold in argon to create a train of temporally localized electron wave packets. We study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. When the wave packets are born at the zero crossings of the IR field, a significant amount of energy ({approx}20 eV) is transferred from the field to the electrons. This results in dramatically enhanced above-threshold ionization in conditions where the IR field alone does not induce any significant ionization. Because both the energy and duration of the wave packets can be varied independently of the IR laser, they are valuable tools for studying and controlling strong-field processes.

  3. Quantum wave packet ab initio molecular dynamics: an approach to study quantum dynamics in large systems.

    PubMed

    Iyengar, Srinivasan S; Jakowski, Jacek

    2005-03-15

    A methodology to efficiently conduct simultaneous dynamics of electrons and nuclei is presented. The approach involves quantum wave packet dynamics using an accurate banded, sparse and Toeplitz representation for the discrete free propagator, in conjunction with ab initio molecular dynamics treatment of the electronic and classical nuclear degree of freedom. The latter may be achieved either by using atom-centered density-matrix propagation or by using Born-Oppenheimer dynamics. The two components of the methodology, namely, quantum dynamics and ab initio molecular dynamics, are harnessed together using a time-dependent self-consistent field-like coupling procedure. The quantum wave packet dynamics is made computationally robust by using adaptive grids to achieve optimized sampling. One notable feature of the approach is that important quantum dynamical effects including zero-point effects, tunneling, as well as over-barrier reflections are treated accurately. The electronic degrees of freedom are simultaneously handled at accurate levels of density functional theory, including hybrid or gradient corrected approximations. Benchmark calculations are provided for proton transfer systems and the dynamics results are compared with exact calculations to determine the accuracy of the approach.

  4. Zeno dynamics in wave-packet diffraction spreading

    SciTech Connect

    Porras, Miguel A.; Luis, Alfredo; Gonzalo, Isabel; Sanz, Angel S.

    2011-11-15

    We analyze a simple and feasible practical scheme displaying Zeno, anti-Zeno, and inverse-Zeno effects in the observation of wave-packet spreading caused by free evolution. The scheme is valid both in spatial diffraction of classical optical waves and in time diffraction of a quantum wave packet. In the optical realization, diffraction spreading is observed by placing slits between a light source and a light-power detector. We show that the occurrence of Zeno or anti-Zeno effects depends just on the frequency of observations between the source and detector. These effects are seen to be related to the diffraction mode theory in Fabry-Perot resonators.

  5. Wave packet dynamics for Gross-Pitaevskii equation in one dimension: Dependence on initial conditions

    NASA Astrophysics Data System (ADS)

    Pal, Sukla; Bhattacharjee, Jayanta K.

    2015-10-01

    The propagation of an initially Gaussian wave packet of width Δ0 in Gross-Pitaevskii equation is extensively studied both for attractive and repulsive interactions. It is predicted analytically and verified numerically that for a free particle with attractive interaction, the dynamics of the width is governed by an effective potential which is sensitive to initial conditions. If Δ0 is equal to a corresponding critical width Δc, then the packet will propagate in time with very little change in shape. These are in essence like coherent states. Whereas, if Δ≠Δc, depending on the nature of the effective potential for chosen Δ0 and the interaction strength (|g|), the width of the packet in course of time, either oscillates with bounded width or will spread like a free particle. For a simple harmonic oscillator (SHO) also, we find that for Δ0 smaller than a critical value, there always exists a coupling strength for which the packet simply oscillates about the mean position without changing its shape, once again providing a resemblance to a coherent state. We also consider the Morse potential, which interpolates between the free particle and the oscillator. For large attractive interactions, the two limiting dynamics (free and simple harmonic) are indeed observed but in the intermediate form of the potential where the nonlinear terms dominate in the dynamics, an initial Gaussian wave packet does not retain its shape. For repulsive interaction, the Gaussian packet always changes shape no matter what the system parameters are.

  6. Juxtaposing density matrix and classical path-based wave packet dynamics

    PubMed Central

    Aghtar, Mortaza; Liebers, Jörg; Strümpfer, Johan; Schulten, Klaus; Kleinekathöfer, Ulrich

    2012-01-01

    In many physical, chemical, and biological systems energy and charge transfer processes are of utmost importance. To determine the influence of the environment on these transport processes, equilibrium molecular dynamics simulations become more and more popular. From these simulations, one usually determines the thermal fluctuations of certain energy gaps, which are then either used to perform ensemble-averaged wave packet simulations, also called Ehrenfest dynamics, or to employ a density matrix approach via spectral densities. These two approaches are analyzed through energy gap fluctuations that are generated to correspond to a predetermined spectral density. Subsequently, density matrix and wave packet simulations are compared through population dynamics and absorption spectra for different parameter regimes. Furthermore, a previously proposed approach to enforce the correct long-time behavior in the wave packet simulations is probed and an improvement is proposed. PMID:22697524

  7. Hydrodynamic analysis of the Schrödinger-Langevin equation for wave packet dynamics

    NASA Astrophysics Data System (ADS)

    Chou, Chia-Chun

    2017-10-01

    Frictional effects on the wave packet dynamics of quantum systems are investigated in the framework of the Schrödinger-Langevin equation. The Schrödinger-Langevin equation is directly solved using the split-operator method. Frictional effects impede the propagation and suppress the spreading of the wave packet. Computational results are presented for an Eckart barrier scattering problem, the decay of a metastable state, and the long-time behavior of a decaying quantum system. Significant features of dissipative Bohmian trajectory dynamics are analyzed for these quantum processes.

  8. Investigation of the photodetached electronic wave packet dynamics in a magnetic field near a surface

    NASA Astrophysics Data System (ADS)

    Chen, Zhaohang; Wang, Dehua; Cheng, Shaohao

    2017-01-01

    The electronic wave packet dynamics photodetached from H- ion in a magnetic field near an elastic surface has been studied by using the time-dependent perturbation theory combined with the semiclassical closed orbit theory for the first time. Firstly, we put forward an analytic formula for calculating the autocorrelation function of this system. Then we calculate and analyze the autocorrelation function in great detail. It is demonstrated that the quantum wave packet revival phenomenon is significant when the laser pulse width is far less than the period of the detached electron's closed orbit. As the pulse width is close to the period of the detached electron's closed orbit, the quantum wave packet revival phenomenon becomes weakened. When the laser pulse width is bigger than the period of the closed orbit of the detached electron, the adjacent revival peaks in the autocorrelation function begin to merge and the quantum revival phenomenon disappears. In addition, the magnetic field strength can also affect the autocorrelation function of this system. As the magnetic field strength is relatively small, the quantum wave packet revival phenomenon is weak. With the increase of the magnetic field strength, the number of the reviving peaks in the autocorrelation function becomes increased and the quantum wave packet revival phenomenon becomes significant. Therefore, we can control the quantum wave packet revival in the autocorrelation function of this system by changing the laser pulse width and the external magnetic field strength. This study can guide the future experimental research on the wave packet dynamics of atoms or ions in the external fields or surfaces.

  9. Optical control of molecular dynamics: Molecular cannons, reflectrons, and wave-packet focusers

    NASA Astrophysics Data System (ADS)

    Krause, Jeffrey L.; Whitnell, Robert M.; Wilson, Kent R.; Yan, YiJing; Mukamel, Shaul

    1993-11-01

    We consider the control of molecular dynamics using tailored light fields, based on a phase space theory of control [Y. J. Yan et al., J. Phys. Chem. 97, 2320 (1993)]. This theory enables us to calculate, in the weak field (one-photon) limit, the globally optimal light field that produces the best overlap for a given phase space target. We present as an illustrative example the use of quantum control to overcome the natural tendency of quantum wave packets to delocalize on excited state potential energy curves. Three cases are studied: (i) a ``molecular cannon'' in which we focus an outgoing continuum wave packet of I2 in both position and momentum, (ii) a ``reflectron'' in which we focus an incoming bound wave packet of I2, and (iii) the focusing of a bound wave packet of Na2 at a turning point on the excited state potential using multiple light pulses to create a localized wave packet with zero momentum. For each case, we compute the globally optimal light field and also how well the wave packet produced by this light field achieves the desired target. These globally optimal fields are quite simple and robust. While our theory provides the globally optimal light field in the linear, weak field regime, experiment can in reality only provide a restricted universe of possible light fields. We therefore also consider the control of molecular quantum dynamics using light fields restricted to a parametrized functional form which spans a set of fields that can be experimentally realized. We fit the globally optimal electric field with a functional form consisting of a superposition of subpulses with variable parameters of amplitude, center time, center frequency, temporal width, relative phase, and linear and quadratic chirp. The best fit light fields produce excellent quantum control and are within the range of experimental possibility. We discuss relevant experiments such as ultrafast spectroscopy and ultrafast electron and x-ray diffraction which can in principle

  10. Stability of linear dynamic systems over the packet erasure channel: a co-design approach

    NASA Astrophysics Data System (ADS)

    Farhadi, Alireza

    2015-12-01

    This paper is concerned with the stability of linear time-invariant dynamic systems over the packet erasure channel subject to minimum bit rate constraint when an encoder and a decoder are unaware of the control signal. This assumption results in co-designing the encoder, decoder and controller. The encoder, decoder, controller and conditions relating transmission rate to packet erasure probability and eigenvalues of the system matrix A are presented for almost sure asymptotic stability of linear time-invariant dynamic systems over the packet erasure channel with feedback acknowledgment. When the eigenvalues of the system matrix A are real valued, it is shown that the obtained condition for stability is tight. Simulation result illustrates the satisfactory performance of the proposed encoder, decoder and controller for almost sure asymptotic stability.

  11. Multidimensional wave packet dynamics within the fluid dynamical formulation of the Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Dey, Bijoy K.; Askar, Attila; Rabitz, H.

    1998-11-01

    This paper explores the quantum fluid dynamical (QFD) representation of the time-dependent Schrödinger equation for the motion of a wave packet in a high dimensional space. A novel alternating direction technique is utilized to single out each of the many dimensions in the QFD equations. This technique is used to solve the continuity equation for the density and the equation for the convection of the flux for the quantum particle. The ability of the present scheme to efficiently and accurately describe the dynamics of a quantum particle is demonstrated in four dimensions where analytical results are known. We also apply the technique to the photodissociation of NOCl and NO2 where the systems are reduced to two coordinates by freezing the angular variable at its equilibrium value.

  12. Dynamical phase diagram of Gaussian wave packets in optical lattices.

    PubMed

    Hennig, H; Neff, T; Fleischmann, R

    2016-03-01

    We study the dynamics of self-trapping in Bose-Einstein condensates (BECs) loaded in deep optical lattices with Gaussian initial conditions, when the dynamics is well described by the discrete nonlinear Schrödinger equation (DNLSE). In the literature an approximate dynamical phase diagram based on a variational approach was introduced to distinguish different dynamical regimes: diffusion, self-trapping, and moving breathers. However, we find that the actual DNLSE dynamics shows a completely different diagram than the variational prediction. We calculate numerically a detailed dynamical phase diagram accurately describing the different dynamical regimes. It exhibits a complex structure that can readily be tested in current experiments in BECs in optical lattices and in optical waveguide arrays. Moreover, we derive an explicit theoretical estimate for the transition to self-trapping in excellent agreement with our numerical findings, which may be a valuable guide as well for future studies on a quantum dynamical phase diagram based on the Bose-Hubbard Hamiltonian.

  13. Electron dynamics following photoionization: Decoherence due to the nuclear-wave-packet width

    NASA Astrophysics Data System (ADS)

    Vacher, Morgane; Steinberg, Lee; Jenkins, Andrew J.; Bearpark, Michael J.; Robb, Michael A.

    2015-10-01

    The advent of attosecond techniques opens up the possibility to observe experimentally electron dynamics following ionization of molecules. Theoretical studies of pure electron dynamics at single fixed nuclear geometries in molecules have demonstrated oscillatory charge migration at a well-defined frequency but often neglecting the natural width of the nuclear wave packet. The effect on electron dynamics of the spatial delocalization of the nuclei is an outstanding question. Here, we show how the inherent distribution of nuclear geometries leads to dephasing. Using a simple analytical model, we demonstrate that the conditions for a long-lived electronic coherence are a narrow nuclear wave packet and almost parallel potential-energy surfaces of the states involved. We demonstrate with numerical simulations the decoherence of electron dynamics for two real molecular systems (paraxylene and polycyclic norbornadiene), which exhibit different decoherence time scales. To represent the quantum distribution of geometries of the nuclear wave packet, the Wigner distribution function is used. The electron dynamics decoherence result has significant implications for the interpretation of attosecond spectroscopy experiments since one no longer expects long-lived oscillations.

  14. Coupled wave-packets for non-adiabatic molecular dynamics: a generalization of Gaussian wave-packet dynamics to multiple potential energy surfaces

    DOE PAGES

    White, Alexander James; Tretiak, Sergei; Mozyrsky, Dima V.

    2016-04-25

    Accurate simulation of the non-adiabatic dynamics of molecules in excited electronic states is key to understanding molecular photo-physical processes. Here we present a novel method, based on a semiclassical approximation, that is as efficient as the commonly used mean field Ehrenfest or ad hoc surface hopping methods and properly accounts for interference and decoherence effects. This novel method is an extension of Heller's thawed Gaussian wave-packet dynamics that includes coupling between potential energy surfaces. By studying several standard test problems we demonstrate that the accuracy of the method can be systematically improved while maintaining high efficiency. The method is suitablemore » for investigating the role of quantum coherence in the non-adiabatic dynamics of many-atom molecules.« less

  15. Coupled wave-packets for non-adiabatic molecular dynamics: a generalization of Gaussian wave-packet dynamics to multiple potential energy surfaces

    SciTech Connect

    White, Alexander James; Tretiak, Sergei; Mozyrsky, Dima V.

    2016-04-25

    Accurate simulation of the non-adiabatic dynamics of molecules in excited electronic states is key to understanding molecular photo-physical processes. Here we present a novel method, based on a semiclassical approximation, that is as efficient as the commonly used mean field Ehrenfest or ad hoc surface hopping methods and properly accounts for interference and decoherence effects. This novel method is an extension of Heller's thawed Gaussian wave-packet dynamics that includes coupling between potential energy surfaces. By studying several standard test problems we demonstrate that the accuracy of the method can be systematically improved while maintaining high efficiency. The method is suitable for investigating the role of quantum coherence in the non-adiabatic dynamics of many-atom molecules.

  16. Observation of autoionization dynamics and sub-cycle quantum beating in electronic molecular wave packets

    NASA Astrophysics Data System (ADS)

    Reduzzi, M.; Chu, W.-C.; Feng, C.; Dubrouil, A.; Hummert, J.; Calegari, F.; Frassetto, F.; Poletto, L.; Kornilov, O.; Nisoli, M.; Lin, C.-D.; Sansone, G.

    2016-03-01

    The coherent interaction with ultrashort light pulses is a powerful strategy for monitoring and controlling the dynamics of wave packets in all states of matter. As light presents an oscillation period of a few femtoseconds (T = 2.6 fs in the near infrared spectral range), an external optical field can induce changes in a medium on the sub-cycle timescale, i.e. in a few hundred attoseconds. In this work, we resolve the dynamics of autoionizing states on the femtosecond timescale and observe the sub-cycle evolution of a coherent electronic wave packet in a diatomic molecule, exploiting a tunable ultrashort extreme ultraviolet pulse and a synchronized infrared field. The experimental observations are based on measuring the variations of the extreme ultraviolet radiation transmitted through the molecular gas. The different mechanisms contributing to the wave packet dynamics are investigated through theoretical simulations and a simple three level model. The method is general and can be extended to the investigation of more complex systems.

  17. Quantum dynamics of solid Ne upon photo-excitation of a NO impurity: A Gaussian wave packet approach

    SciTech Connect

    Unn-Toc, W.; Meier, C.; Halberstadt, N.; Uranga-Pina, Ll.; Rubayo-Soneira, J.

    2012-08-07

    A high-dimensional quantum wave packet approach based on Gaussian wave packets in Cartesian coordinates is presented. In this method, the high-dimensional wave packet is expressed as a product of time-dependent complex Gaussian functions, which describe the motion of individual atoms. It is applied to the ultrafast geometrical rearrangement dynamics of NO doped cryogenic Ne matrices after femtosecond laser pulse excitation. The static deformation of the solid due to the impurity as well as the dynamical response after femtosecond excitation are analyzed and compared to reduced dimensionality studies. The advantages and limitations of this method are analyzed in the perspective of future applications to other quantum solids.

  18. Initial dynamics of the Norrish Type I reaction in acetone: probing wave packet motion.

    PubMed

    Brogaard, Rasmus Y; Sølling, Theis I; Møller, Klaus B

    2011-02-10

    The Norrish Type I reaction in the S(1) (nπ*) state of acetone is a prototype case of ketone photochemistry. On the basis of results from time-resolved mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES) experiments, it was recently suggested that after excitation the wave packet travels toward the S(1) minimum in less than 30 fs and stays there for more than 100 picoseconds [Chem. Phys. Lett.2008, 461, 193]. In this work we present simulated TRMS and TRPES signals based on ab initio multiple spawning simulations of the dynamics during the first 200 fs after excitation, getting quite good agreement with the experimental signals. We can explain the ultrafast decay of the experimental signals in the following manner: the wave packet simply travels, mainly along the deplanarization coordinate, out of the detection window of the ionizing probe. This window is so narrow that subsequent revival of the signal due to the coherent deplanarization vibration is not observed, meaning that from the point of view of the experiment the wave packets travels directly to the S(1) minimum. This result stresses the importance of pursuing a closer link to the experimental signal when using molecular dynamics simulations in interpreting experimental results.

  19. Wave packet dynamics of an atomic ion in a Paul trap

    NASA Astrophysics Data System (ADS)

    Hashemloo, A.; Dion, C. M.; Rahali, G.

    2016-07-01

    Using numerical simulations of the time-dependent Schrödinger equation, we study the full quantum dynamics of the motion of an atomic ion in a linear Paul trap. Such a trap is based on a time-varying, periodic electric field and hence corresponds to a time-dependent potential for the ion, which we model exactly. We compare the center-of-mass motion with that obtained from classical equations of motion, as well as to results based on a time-independent effective potential. We also study the oscillations of the width of the ion’s wave packet, including close to the border between stable (bounded) and unstable (unbounded) trajectories. Our results confirm that the center-of-mass motion always follows the classical trajectory, that the width of the wave packet is bounded for trapping within the stability region, and therefore that the classical trapping criterion is fully applicable to quantum motion.

  20. Feedback channel in linear noiseless dynamic systems controlled over the packet erasure network

    NASA Astrophysics Data System (ADS)

    Farhadi, Alireza

    2015-08-01

    This paper is concerned with tracking state trajectory at remote controller, stability and performance of linear time-invariant noiseless dynamic systems with multiple observations over the packet erasure network subject to random packet dropout and transmission delay that does not necessarily use feedback channel full time. Three cases are considered in this paper: (1) without feedback channel, (2) with feedback channel intermittently and (3) with full time availability of feedback channel. For all three cases, coding strategies that result in reliable tracking of state trajectory at remote controller with asymptotically zero mean absolute estimation error are presented. Asymptotic mean absolute stability of the controlled system equipped with each of these coding strategies is shown; trade-offs between duty cycle for feedback channel use, transmission delay and performance, which is defined in terms of the settling time, are studied.

  1. Coherent and dissipative wave packet dynamics in cyclic model systems with four equivalent potential minima

    NASA Astrophysics Data System (ADS)

    Brackhagen, O.; Kühn, O.; Manz, J.; May, V.; Meyer, R.

    1994-06-01

    The dynamics of cyclic systems with four equivalent potential minima is studied here from two different points of view. The solution of the time-dependent Schrödinger equation provides insight into the coherent wave packet motion. The resulting reaction mechanism involves relocalization between opposite, not neighboring potential minima. The inclusion of an environment within a density matrix description leads to dissipation and therefore to a transition from coherent to incoherent dynamics. The theoretical considerations are applied to a simple model of the cyclic motion of a proton in a molecular framework.

  2. Dynamics of energetic electrons interacting with sub-packet chorus emissions in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Hiraga, R.; Omura, Y.

    2016-12-01

    The recent study has revealed RTA and URA processes, the acceleration of relativistic electrons by interaction with chorus emissions. The wave model, however, is found to require some updates based on the recent observations. We develop a new wave model compatible with the observations and study the particle motion under the influence of this new wave model. The most distinctive feature of the new model is its amplitude growth manner. The wave is excited near the equator and grows in amplitude as an absolute instability as a function of time. This amplitude growth is bounded by the optimum and threshold amplitudes. When the amplitude grows to reach the optimum amplitude, it drops down to the threshold value and repeats the growth with a saw-like shape defined as sub-packet wave. The sub-packet wave generated near the equator experiences the convective amplitude growth propagating to the higher latitude region. Since the group velocity of the wave propagation is a function of its frequency, a wave source generated and released from the equator at a certain time and a group velocity could be overtaken by another wave released at a later timing and hence a faster group velocity. In sub-packet case, this frequency value is further affected by the sub-packet amplitude wave form to make the process more complex. Into this new wave form, energetic electrons are inserted and their motions are examined. For example, a resonant electron can be entrapped by the wave, being accelerated and normally detrapped after a certain period of time, but there can be a possibility that the following sub-packet wave in a complex propagation manner coincidently entraps the electron to provide multiple accelerations. We injected a large number of electrons over a wide energy range from 10kev to 10Mev into the sub-packet wave to simulate the nonlinear dynamics of RTA and URA. The electrons motion or more precisely entrapping and detrapping processes are examined under various conditions.

  3. A Different Time-Dependent Variational Principle Approach: Going Beyond Wave Packet Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Grabowski, Paul; Markmann, Andreas; Murillo, Michael; Graziani, Frank; Cimarron Collaboration

    2011-10-01

    During inertial confinement fusion, matter evolves from a solid condensed matter phase through the warm dense matter (WDM) regime to a hot dense matter. In WDM, quantum mechanical effects are important because of both Fermi-Dirac statistics and the rate of electrons transitioning in and out of bound states is large. The time-dependent temperature and quickly changing local environment require a time-dependent quantum method. A converged dynamical quantum simulation is intractable for more than a few particles. Instead, we take as a feasible goal to match the statistical properties of a warm dense plasma. The time-dependent variational principle gives a framework for producing equations of motion. A commonly used ansatz is a Hartree product of isotropic Gaussian wave packets (wave packet molecular dynamics). The resulting dynamics do not produce the right statistics. We therefore introduce a plane wave basis and discuss its advantages and test its ability to reproduce radial distribution functions produced by hyper-netted chain calculations.

  4. A Different Time-Dependent Variational Principle Approach: Going Beyond Wave Packet Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Grabowski, Paul; Markmann, Andreas; Surh, Mike; Murillo, Michael; Graziani, Frank

    2012-02-01

    During inertial confinement fusion, matter evolves from a solid condensed matter phase through the warm dense matter (WDM) regime to a hot dense matter. In WDM, quantum mechanical effects are important because of both Fermi-Dirac statistics and the rate of electrons transitioning in and out of bound states is large. The time-dependent temperature and quickly changing local environment require a time-dependent quantum method. A converged dynamical quantum simulation is intractable for more than a few particles. Instead, we take as a feasible goal to match the statistical properties of a warm dense plasma. The time-dependent variational principle gives a framework for producing equations of motion. A commonly used variational form is a Hartree product of isotropic Gaussian wave packets (wave packet molecular dynamics). The resulting dynamics do not produce the right statistics. We therefore introduce a plane wave basis and discuss its advantages and test its ability to reproduce radial distribution functions produced by hyper-netted chain calculations.

  5. Tracking nuclear wave-packet dynamics in molecular oxygen ions with few-cycle infrared laser pulses

    SciTech Connect

    De, S.; Bocharova, I. A.; Magrakvelidze, M.; Ray, D.; Cao, W.; Thumm, U.; Cocke, C. L.; Bergues, B.; Kling, M. F.; Litvinyuk, I. V.

    2010-07-15

    We have tracked nuclear wave-packet dynamics in doubly charged states of molecular oxygen using few-cycle infrared laser pulses. Bound and dissociating wave packets were launched and subsequently probed via a pair of 8-fs pulses of 790 nm radiation. Ionic fragments from the dissociating molecules were monitored by velocity-map imaging. Pronounced oscillations in the delay-dependent kinetic energy release spectra were observed. The occurrence of vibrational revivals permits us to identify the potential curves of the O{sub 2} dication which are most relevant to the molecular dynamics. These studies show the accessibility to the dynamics of such higher-charged molecules.

  6. Wave packet simulation of nonadiabatic dynamics in highly excited 1,3-dibromopropane.

    PubMed

    Brogaard, Rasmus Y; Møller, Klaus B; Sølling, Theis I

    2008-10-23

    We have conducted wave packet simulations of excited-state dynamics of 1,3-dibromopropane (DBP) with the aim of reproducing the experimental results of the gas-phase pump-probe experiment by Kotting et al. [ Kotting, C. ; Diau, E. W.-G. ; Sølling, T. I. ; Zewail, A. H. J. Phys. Chem. A 2002, 106, 7530 ]. In the experiment, DBP is excited to a Rydberg state 8 eV above the ground state. The interpretation of the results is that a torsional motion of the bromomethylene groups with a vibrational period of 680 fs is activated upon excitation. The Rydberg state decays to a valence state, causing a dissociation of one of the carbon bromine bonds on a time scale of 2.5 ps. Building the theoretical framework for the wave packet propagation around this model of the reaction dynamics, the simulations reproduce, to a good extent, the time scales observed in the experiment. Furthermore, the simulations provide insight into how the torsion motion influences the bond breakage, and we can conclude that the mechanism that delays the dissociation is solely the electronic transition from the Rydberg state to the valence state and does not involve, for example, intramolecular vibrational energy redistribution (IVR).

  7. Photodissociation dynamics of the pyridinyl radical: Time-dependent quantum wave-packet calculations

    NASA Astrophysics Data System (ADS)

    Ehrmaier, Johannes; Picconi, David; Karsili, Tolga N. V.; Domcke, Wolfgang

    2017-03-01

    The H-atom photodissociation reaction from the pyridinyl radical (C5H5NH ) via the low-lying π σ* excited electronic state is investigated by nonadiabatic time-dependent quantum wave-packet dynamics calculations. A model comprising three electronic states and three nuclear coordinates has been constructed using ab initio multi-configurational self-consistent-field and multi-reference perturbation theory methods. Two conical intersections among the three lowest electronic states have been characterized in the framework of the linear vibronic-coupling model. Time-dependent wave-packet simulations have been performed using the multi-configuration time-dependent Hartree method. The population dynamics of the diabatic and adiabatic electronic states and the time-dependent dissociation behavior are analyzed for various vibrational initial conditions. The results provide detailed mechanistic insight into the photoinduced H-atom dissociation process from a hypervalent aromatic radical and show that an efficient dissociation reaction through two conical intersections is possible.

  8. Quantum dynamics of electronic transitions with Gauss-Hermite wave packets.

    PubMed

    Borrelli, Raffaele; Peluso, Andrea

    2016-03-21

    A new methodology based on the superposition of time-dependent Gauss-Hermite wave packets is developed to describe the wave function of a system in which several interacting electronic states are coupled to a bath of harmonic oscillators. The equations of motion for the wave function parameters are obtained by employing the Dirac-Frenkel time-dependent variational principle. The methodology is applied to study the quantum dynamical behaviour of model systems with two interacting electronic states characterized by a relatively large reorganization energy and a range of energy biases. The favourable scaling properties make it a promising tool for the study of the dynamics of chemico-physical processes in molecular systems.

  9. Time-dependent quantum wave packet dynamics to study charge transfer in heavy particle collisions

    NASA Astrophysics Data System (ADS)

    Zhang, Song Bin; Wu, Yong; Wang, Jian Guo

    2016-12-01

    The method of time-dependent quantum wave packet dynamics has been successfully extended to study the charge transfer/exchange process in low energy two-body heavy particle collisions. The collision process is described by coupled-channel equations with diabatic potentials and (radial and rotational) couplings. The time-dependent coupled equations are propagated with the multiconfiguration time-dependent Hartree method and the modulo squares of S-matrix is extracted from the wave packet by the flux operator with complex absorbing potential (FCAP) method. The calculations of the charge transfer process 12Σ+ H-(1s2) +Li(1 s22 s ) →22Σ+ /32 Σ+ /12 Π H(1 s ) +Li-(1s 22 s 2 l ) (l =s ,p ) at the incident energy of about [0.3, 1.3] eV are illustrated as an example. It shows that the calculated reaction probabilities by the present FCAP reproduce that of quantum-mechanical molecular-orbital close-coupling very well, including the peak structures contributed by the resonances. Since time-dependent external interactions can be directly included in the present FCAP calculations, the successful implementation of FCAP provides us a powerful potential tool to study the quantum control of heavy particle collisions by lasers in the near future.

  10. Effects of the air pressure on the wave-packet dynamics of gaseous iodine molecules at room temperature

    NASA Astrophysics Data System (ADS)

    Fan, Rongwei; He, Ping; Chen, Deying; Xia, Yuanqin; Yu, Xin; Wang, Jialing; Jiang, Yugang

    2013-02-01

    Based on ultrafast laser pulses, time-resolved resonance enhancement coherent anti-Stokes Raman scattering (RE-CARS) is applied to investigate wave-packet dynamics in gaseous iodine. The effects of air pressure on the wave-packet dynamics of iodine molecules are studied at pressures ranging from 1.5 Torr to 750 Torr. The RE-CARS signals are recorded in a gas cell filled with a mixture of about 0.3 Torr iodine in air buffer gas at room temperature. The revivals and fractional revival structures in the wave-packet signal are found to gradually disappear with rising air pressure up to 750 Torr, and the decay behaviors of the excited B-state and ground X-state become faster with increasing air pressure, which is due to the collision effects of the molecules and the growing complexity of the spectra at high pressures.

  11. Monitoring coherent electron wave packet excitation dynamics by two-color attosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Bandrauk, André D.

    2016-11-01

    We propose a method to monitor coherent electron wave packet (CEWP) excitation dynamics with two-color attosecond laser pulses. Simulations are performed on aligned H2+ by numerically solving the three-dimensional time-dependent Schrödinger equation with combinations of a resonant linearly polarized λl= 100/70 nm pump pulse and a circularly polarized λc=5 nm attosecond probe pulse. It is found that time dependent diffraction patterns in molecular frame photoelectron angular distributions (MFPADs) produced by the circular probe pulse exhibit sensitivity to the molecular alignments and time-dependent geometry of the CEWPs during and after the coherent excitation between the ground and excited states induced by the linear pump pulse. The time dependent MFPADs are described by an ultrafast diffraction model for the ionization of the bound CEWPs.

  12. WavePacket: A Matlab package for numerical quantum dynamics. I: Closed quantum systems and discrete variable representations

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard; Lorenz, Ulf

    2017-04-01

    WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. The graphical capabilities allow visualization of quantum dynamics 'on the fly', including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry. The present Part I deals with the description of closed quantum systems in terms of Schrödinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization. The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics. The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found.

  13. Wave packet dynamics for a system with position and time-dependent effective mass in an infinite square well

    SciTech Connect

    Vubangsi, M.; Tchoffo, M.; Fai, L. C.; Pisma’k, Yu. M.

    2015-12-15

    The problem of a particle with position and time-dependent effective mass in a one-dimensional infinite square well is treated by means of a quantum canonical formalism. The dynamics of a launched wave packet of the system reveals a peculiar revival pattern that is discussed. .

  14. Multistate vibronic interactions and nonadiabatic wave packet dynamics in the second photoelectron band of chlorine dioxide

    NASA Astrophysics Data System (ADS)

    Mahapatra, Susanta; Ritschel, Thomas

    2003-04-01

    We report theoretical investigations on the second photoelectron band of chlorine dioxide molecule by ab initio quantum dynamical methods. This band exhibits a highly complex structure and represents a composite portrait of five excited energetically close-lying electronic states of ClO 2+. Much of this complexity is likely to be arising due to strong vibronic interactions among these electronic states - which we address and examine herein. The near equilibrium MRCI potential energy surfaces (PESs) of these five cationic states reported by Peterson and Werner [J. Chem. Phys. 99 (1993) 302] for the C2v configuration, are extended for the Cs geometry assuming a harmonic vibration along the asymmetric stretching mode. The strength of the vibronic coupling parameters of the Hamiltonian are calculated by ab initio CASSCF-MRCI method and conical intersections of the PESs are established. The diabatic Hamiltonian matrix is constructed within a linear vibronic coupling scheme and the resulting PESs are employed in the nuclear dynamical simulations, carried out with the aid of a time-dependent wave packet approach. Companion calculations are performed for transitions to the uncoupled electronic states in order to reveal explicitly the impact of the nonadiabatic coupling on the photoelectron dynamics. The theoretical findings are in good accord with the experimental observations. The femtosecond nonradiative decay dynamics of ClO 2+ excited electronic states mediated by conical intersections is also examined and discussed.

  15. Two New Methods To Generate Internal Coordinates for Molecular Wave Packet Dynamics in Reduced Dimensions.

    PubMed

    Zauleck, Julius P P; Thallmair, Sebastian; Loipersberger, Matthias; de Vivie-Riedle, Regina

    2016-12-13

    The curse of dimensionality still remains as the central challenge of molecular quantum dynamical calculations. Either compromises on the accuracy of the potential landscape have to be made or methods must be used that reduce the dimensionality of the configuration space of molecular systems to a low dimensional one. For dynamic approaches such as grid-based wave packet dynamics that are confined to a small number of degrees of freedom this dimensionality reduction can become a major part of the overall problem. A common strategy to reduce the configuration space is by selection of a set of internal coordinates using chemical intuition. We devised two methods that increase the degree of automation of the dimensionality reduction as well as replace chemical intuition by more quantifiable criteria. Both methods reduce the dimensionality linearly and use the intrinsic reaction coordinate as guidance. The first one solely relies on the intrinsic reaction coordinate (IRC), whereas the second one uses semiclassical trajectories to identify the important degrees of freedom.

  16. Quantum dynamics of charge transfer on the one-dimensional lattice: Wave packet spreading and recurrence

    NASA Astrophysics Data System (ADS)

    V, N. Likhachev; O, I. Shevaleevskii; G, A. Vinogradov

    2016-01-01

    The wave function temporal evolution on the one-dimensional (1D) lattice is considered in the tight-binding approximation. The lattice consists of N equal sites and one impurity site (donor). The donor differs from other lattice sites by the on-site electron energy E and the intersite coupling C. The moving wave packet is formed from the wave function initially localized on the donor. The exact solution for the wave packet velocity and the shape is derived at different values E and C. The velocity has the maximal possible group velocity v = 2. The wave packet width grows with time ˜ t1/3 and its amplitude decreases ˜ t-1/3. The wave packet reflects multiply from the lattice ends. Analytical expressions for the wave packet front propagation and recurrence are in good agreement with numeric simulations.

  17. Electron-nuclear wave-packet dynamics through a conical intersection

    NASA Astrophysics Data System (ADS)

    Hader, Kilian; Albert, Julian; Gross, E. K. U.; Engel, Volker

    2017-02-01

    We investigate the coupled electron-nuclear dynamics in a model system showing a conical intersection (CoIn) between two excited state potential energy surfaces. Within the model, a single electron and nucleus move in two dimensions in an external static field. It is demonstrated that the nuclear density conserves its initial Gaussian shape when directly passing the CoIn, whereas the electronic density remains approximately constant. This is in sharp contrast to the picture which evolves from an analysis within the basis of adiabatic electronic states. There, dramatic changes are seen in the dynamics of the different nuclear components of the total wave function. It is thus documented that, in the case of a highly efficient population transfer between the respective adiabatic states, neither the nuclear nor the electronic density is influenced by the existence of a CoIn. This is the case because the nuclear-electronic wave packet moves on the complete potential energy surface which changes its topology smoothly as a function of all particle coordinates.

  18. Vibrational wave packet dynamics in NaK: The A 1Σ+ state

    NASA Astrophysics Data System (ADS)

    Andersson, L. Mauritz; Karlsson, Hans O.; Goscinski, Osvaldo; Berg, Lars-Erik; Beutter, Matthias; Hansson, Tony

    1999-02-01

    A combined experimental and theoretical study of the vibrational wave packet dynamics for the NaK molecule in the A 1Σ+ state is presented. The experiment utilises a 790 nm one-colour femtosecond pump-probe scheme with detection of a previously not reported dissociation pathway of the 3 1Π+ state, leading to the Na(3p)+K(4s) product channel. The dissociation is suggested to proceed via either collisionally mediated processes or a molecular cascading process via the 4 1Σ+ state, which crosses several states correlating to the Na(3p)+K(4s) limit. Time-dependent quantum mechanical calculations are used for studying the dynamics in detail. Simulations are performed both for 790 nm and for 766 nm, to relate also to earlier studies. The previous interpretations of the probe processes are revised. Inclusion of vibrational and rotational temperature effects are shown to be crucial for explaining the shape of the signal and the vibrational period, and leads to excellent agreement with the experiments.

  19. Fast packet switching algorithms for dynamic resource control over ATM networks

    SciTech Connect

    Tsang, R.P.; Keattihananant, P.; Chang, T.; Heieh, J.; Du, D.

    1996-12-01

    Real-time continuous media traffic, such as digital video and audio, is expected to comprise a large percentage of the network load on future high speed packet switch networks such as ATM. A major feature which distinguishes high speed networks from traditional slower speed networks is the large amount of data the network must process very quickly. For efficient network usage, traffic control mechanisms are essential. Currently, most mechanisms for traffic control (such as flow control) have centered on the support of Available Bit Rate (ABR), i.e., non real-time, traffic. With regard to ATM, for ABR traffic, two major types of schemes which have been proposed are rate- control and credit-control schemes. Neither of these schemes are directly applicable to Real-time Variable Bit Rate (VBR) traffic such as continuous media traffic. Traffic control for continuous media traffic is an inherently difficult problem due to the time- sensitive nature of the traffic and its unpredictable burstiness. In this study, we present a scheme which controls traffic by dynamically allocating/de- allocating resources among competing VCs based upon their real-time requirements. This scheme incorporates a form of rate- control, real-time burst-level scheduling and link-link flow control. We show analytically potential performance improvements of our rate- control scheme and present a scheme for buffer dimensioning. We also present simulation results of our schemes and discuss the tradeoffs inherent in maintaining high network utilization and statistically guaranteeing many users` Quality of Service.

  20. Nuclear-wave-packet dynamics mapped out by two-center interference in the HeH2+ molecule

    NASA Astrophysics Data System (ADS)

    Schüler, M.; Pavlyukh, Y.; Berakdar, J.

    2014-06-01

    Photoemission from diatomic molecules closely resembles the Young-type double-slit experiment where each of the two atomic sites represents a coherent emission source. When the photoelectron wavelength becomes commensurate with the effective interatomic distance, the resulting spatial interference gives rise to oscillations in the photoionization total and differential cross sections. This phenomenon provides detailed information on the molecular geometry, a fact that can be utilized for probing the nuclear dynamics triggered by the interaction with a laser field. We demonstrate how this coherent wave-packet evolution can be traced by observing the photoelectron angular distribution. Based on ab initio scattering calculations we perform a proof-of-principle reconstruction of the nuclear-wave-packet evolution in the HeH2+ molecule.

  1. Renormalization group approach for the wave packet dynamics in golden-mean and silver-mean labyrinth tilings

    NASA Astrophysics Data System (ADS)

    Thiem, Stefanie; Schreiber, Michael

    2012-06-01

    We study the quantum diffusion in quasiperiodic tight-binding models in one, two, and three dimensions. First, we investigate a class of one-dimensional quasiperiodic chains, in which the atoms are coupled by weak and strong bonds aligned according to the metallic-mean sequences. The associated generalized labyrinth tilings in d dimensions are then constructed from the direct product of d such chains, which allows us to consider rather large systems numerically. The electronic transport is studied by computing the scaling behavior of the mean-square displacement of the wave packets with respect to time. The results reveal the occurrence of anomalous diffusion in these systems. By extending a renormalization group approach, originally proposed for the golden-mean chain, we show also for the silver-mean chain as well as for the higher-dimensional labyrinth tilings that in the regime of strong quasiperiodic modulation the wave-packet dynamics are governed by the underlying quasiperiodic structure.

  2. Exact wave packet dynamics of singlet fission in unsubstituted and substituted polyene chains within long-range interacting models

    NASA Astrophysics Data System (ADS)

    Prodhan, Suryoday; Ramasesha, S.

    2017-08-01

    Singlet fission (SF) is a potential pathway for significant enhancement of efficiency in organic solar cells (OSC). In this paper, we study singlet fission in a pair of polyene molecules in two different stacking arrangements employing exact many-body wave packet dynamics. In the noninteracting model, the SF yield is absent. The individual molecules are treated within Hubbard and Pariser-Parr-Pople (PPP) models and the interaction between them involves transfer terms, intersite electron repulsions, and site-charge-bond-charge repulsion terms. Initial wave packet is constructed from excited singlet state of one molecule and ground state of the other. Time development of this wave packet under the influence of intermolecular interactions is followed within the Schrödinger picture by an efficient predictor-corrector scheme. In unsubstituted Hubbard and PPP chains, 2 1A excited singlet state leads to significant SF yield while the 1 1B state gives negligible fission yield. On substitution by donor-acceptor groups of moderate strength, the lowest excited state will have sufficient 2 1A character and hence results in significant SF yield. Because of rapid internal conversion, the nature of the lowest excited singlet will determine the SF contribution to OSC efficiency. Furthermore, we find the fission yield depends considerably on the stacking arrangement of the polyene molecules.

  3. Wave packet theory of dynamic stimulated Raman spectra in femtosecond pump-probe spectroscopy.

    PubMed

    Sun, Zhigang; Jin, Zhongqi; Lu, J; Zhang, Dong H; Lee, Soo-Y

    2007-05-07

    The quantum theory for stimulated Raman spectroscopy from a moving wave packet using the third-order density matrix and polarization is derived. The theory applies, in particular, to the new technique of femtosecond broadband stimulated Raman spectroscopy (FSRS). In the general case, a femtosecond actinic pump pulse first prepares a moving wave packet on an excited state surface which is then interrogated with a coupled pair of picosecond Raman pump pulse and a femtosecond Raman probe pulse and the Raman gain in the direction of the probe pulse is measured. It is shown that the third-order polarization in the time domain, whose Fourier transform governs the Raman gain, is given simply by the overlap of a first-order wave packet created by the Raman pump on the upper electronic state with a second-order wave packet on the initial electronic state that is created by the coupling of the Raman pump and probe fields acting on the molecule. Calculations are performed on model potentials to illustrate and interpret the FSRS spectra.

  4. Wave packet dynamics in one-dimensional linear and nonlinear generalized Fibonacci lattices.

    PubMed

    Zhang, Zhenjun; Tong, Peiqing; Gong, Jiangbin; Li, Baowen

    2011-05-01

    The spreading of an initially localized wave packet in one-dimensional linear and nonlinear generalized Fibonacci (GF) lattices is studied numerically. The GF lattices can be classified into two classes depending on whether or not the lattice possesses the Pisot-Vijayaraghavan property. For linear GF lattices of the first class, both the second moment and the participation number grow with time. For linear GF lattices of the second class, in the regime of a weak on-site potential, wave packet spreading is close to ballistic diffusion, whereas in the regime of a strong on-site potential, it displays stairlike growth in both the second moment and the participation number. Nonlinear GF lattices are then investigated in parallel. For the first class of nonlinear GF lattices, the second moment of the wave packet still grows with time, but the corresponding participation number does not grow simultaneously. For the second class of nonlinear GF lattices, an analogous phenomenon is observed for the weak on-site potential only. For a strong on-site potential that leads to an enhanced nonlinear self-trapping effect, neither the second moment nor the participation number grows with time. The results can be useful in guiding experiments on the expansion of noninteracting or interacting cold atoms in quasiperiodic optical lattices.

  5. Dissipative Bohmian mechanics within the Caldirola–Kanai framework: A trajectory analysis of wave-packet dynamics in viscid media

    SciTech Connect

    Sanz, A.S.; Martínez-Casado, R.; Peñate-Rodríguez, H.C.; Rojas-Lorenzo, G.; Miret-Artés, S.

    2014-08-15

    Classical viscid media are quite common in our everyday life. However, we are not used to find such media in quantum mechanics, and much less to analyze their effects on the dynamics of quantum systems. In this regard, the Caldirola–Kanai time-dependent Hamiltonian constitutes an appealing model, accounting for friction without including environmental fluctuations (as it happens, for example, with quantum Brownian motion). Here, a Bohmian analysis of the associated friction dynamics is provided in order to understand how a hypothetical, purely quantum viscid medium would act on a wave packet from a (quantum) hydrodynamic viewpoint. To this purpose, a series of paradigmatic contexts have been chosen, such as the free particle, the motion under the action of a linear potential, the harmonic oscillator, or the superposition of two coherent wave packets. Apart from their analyticity, these examples illustrate interesting emerging behaviors, such as localization by “quantum freezing” or a particular type of quantum–classical correspondence. The reliability of the results analytically determined has been checked by means of numerical simulations, which has served to investigate other problems lacking of such analyticity (e.g., the coherent superpositions). - Highlights: • A dissipative Bohmian approach is developed within the Caldirola–Kanai model. • Some simple yet physically insightful systems are then studied analytically. • Dissipation leads to spatial localization in free-force regimes. • Under the action of linear forces, dissipation leads to uniform motion. • In harmonic potentials, the system decays unavoidable to the well minimum.

  6. Dynamics of coupled plasmon polariton wave packets excited at a subwavelength slit in optically thin metal films

    NASA Astrophysics Data System (ADS)

    Wang, Lei-Ming; Zhang, Lingxiao; Seideman, Tamar; Petek, Hrvoje

    2012-10-01

    We study by numerical simulations the excitation and propagation dynamics of coupled surface plasmon polariton (SPP) wave packets (WPs) in optically thin Ag films and a bulk Ag/vacuum interface under the illumination of a subwavelength slit by 400 nm continuous wave (cw) and femtosecond pulsed light. The generated surface fields include contributions from both SPPs and quasicylindrical waves, which dominate in different regimes. We explore aspects of the coupled SPP modes in Ag thin films, including symmetry, propagation, attenuation, and the variation of coupling with incident angle and film thickness. Simulations of the electromagnetic transients initiated with femtosecond pulses reveal new features of coupled SPP WP generation and propagation in thin Ag films. Our results show that, under pulsed excitation, the SPP modes in an Ag thin film break up into two distinct bound surface wave packets characterized by marked differences in symmetries, group velocities, attenuation lengths, and dispersion properties. The nanometer spatial and femtosecond temporal scale excitation and propagation dynamics of the coupled SPP WPs are revealed in detail by movies recording the evolution of their transient field distributions.

  7. Communication: Quantum molecular dynamics simulation of liquid para-hydrogen by nuclear and electron wave packet approach.

    PubMed

    Hyeon-Deuk, Kim; Ando, Koji

    2014-05-07

    Liquid para-hydrogen (p-H2) is a typical quantum liquid which exhibits strong nuclear quantum effects (NQEs) and thus anomalous static and dynamic properties. We propose a real-time simulation method of wave packet (WP) molecular dynamics (MD) based on non-empirical intra- and inter-molecular interactions of non-spherical hydrogen molecules, and apply it to condensed-phase p-H2. The NQEs, such as WP delocalization and zero-point energy, are taken into account without perturbative expansion of prepared model potential functions but with explicit interactions between nuclear and electron WPs. The developed MD simulation for 100 ps with 1200 hydrogen molecules is realized at feasible computational cost, by which basic experimental properties of p-H2 liquid such as radial distribution functions, self-diffusion coefficients, and shear viscosities are all well reproduced.

  8. Communication: Quantum molecular dynamics simulation of liquid para-hydrogen by nuclear and electron wave packet approach

    SciTech Connect

    Hyeon-Deuk, Kim; Ando, Koji

    2014-05-07

    Liquid para-hydrogen (p-H{sub 2}) is a typical quantum liquid which exhibits strong nuclear quantum effects (NQEs) and thus anomalous static and dynamic properties. We propose a real-time simulation method of wave packet (WP) molecular dynamics (MD) based on non-empirical intra- and inter-molecular interactions of non-spherical hydrogen molecules, and apply it to condensed-phase p-H{sub 2}. The NQEs, such as WP delocalization and zero-point energy, are taken into account without perturbative expansion of prepared model potential functions but with explicit interactions between nuclear and electron WPs. The developed MD simulation for 100 ps with 1200 hydrogen molecules is realized at feasible computational cost, by which basic experimental properties of p-H{sub 2} liquid such as radial distribution functions, self-diffusion coefficients, and shear viscosities are all well reproduced.

  9. Steering the Electron in H{sub 2}{sup +} by Nuclear Wave Packet Dynamics

    SciTech Connect

    Fischer, Bettina; Kremer, Manuel; Pfeifer, Thomas; Feuerstein, Bernold; Sharma, Vandana; Schroeter, Claus Dieter; Moshammer, Robert; Ullrich, Joachim; Thumm, Uwe

    2010-11-26

    By combining carrier-envelope phase (CEP) stable light fields and the traditional method of optical pump-probe spectroscopy we study electron localization in dissociating H{sub 2}{sup +} molecular ions. Localization and localizability of electrons is observed to strongly depend on the time delay between the two CEP-stable laser pulses with a characteristic periodicity corresponding to the oscillating molecular wave packet. Variation of the pump-probe delay time allows us to uncover the underlying physical mechanism for electron localization, which are two distinct sets of interfering dissociation channels that exhibit specific temporal signatures in their asymmetry response.

  10. Scaling of Wave-Packet Dynamics in an Intense Midinfrared Field

    SciTech Connect

    Tate, J.; Agostini, P.; DiMauro, L. F.; Auguste, T.; Salieres, P.; Muller, H. G.

    2007-01-05

    A theoretical investigation is presented that examines the wavelength scaling from near-visible (0.8 {mu}m) to midinfrared (2 {mu}m) of the photoelectron distribution and high harmonics generated by a 'single' atom in an intense electromagnetic field. The calculations use a numerical solution of the time-dependent Schroedinger equation (TDSE) in argon and the strong-field approximation in helium. The scaling of electron energies ({lambda}{sup 2}), harmonic cutoff ({lambda}{sup 2}), and attochirp ({lambda}{sup -1}) agree with classical mechanics, but it is found that, surprisingly, the harmonic yield follows a {lambda}{sup -(5-6)} scaling at constant intensity. In addition, the TDSE results reveal an unexpected contribution from higher-order returns of the rescattering electron wave packet.

  11. Information Packet.

    ERIC Educational Resources Information Center

    Cable Television Information Center, Washington, DC.

    Documents included in the packet are Federal Communications Commission (FCC) releases dealing with cable television and similar notices from other organizations. Among these are an interpretation of the FCC local origination decision of Dec. 9, 1974, explaining the repeal of the requirement that small cable systems originate programing while…

  12. GUIDANCE PACKET.

    ERIC Educational Resources Information Center

    Modern Language Association of America, New York, NY.

    THIS PACKET PROVIDES VOCATIONAL AND ACADEMIC ADVICE TO THE LANGUAGE LEARNER AND USEFUL INFORMATION ABOUT LANGUAGE LEARNING TO TEACHERS, COUNSELORS, AND ADMINISTRATORS. THE DOCUMENTS, PUBLISHED FROM 1963 TO 1967, ARE--(1) "VOCATIONAL OPPORTUNITIES FOR FOREIGN LANGUAGE STUDENTS" BY GILBERT C. KETTELKAMP, (2) "ADVICE TO THE LANGUAGE LEARNER" BY…

  13. A novel quantum dynamical approach in electron microscopy combining wave-packet propagation with Bohmian trajectories

    NASA Astrophysics Data System (ADS)

    Rudinsky, S.; Sanz, A. S.; Gauvin, R.

    2017-03-01

    The numerical analysis of the diffraction features rendered by transmission electron microscopy typically relies either on classical approximations (Monte Carlo simulations) or quantum paraxial tomography (the multislice method and any of its variants). Although numerically advantageous (relatively simple implementations and low computational costs), they involve important approximations and thus their range of applicability is limited. To overcome such limitations, an alternative, more general approach is proposed, based on an optimal combination of wave-packet propagation with the on-the-fly computation of associated Bohmian trajectories. For the sake of clarity, but without a loss of generality, the approach is used to analyze the diffraction of an electron beam by a thin aluminum slab as a function of three different incidence (working) conditions which are of interest in electron microscopy: the probe width, the tilting angle, and the beam energy. Specifically, it is shown that, because there is a dependence on particular thresholds of the beam energy, this approach provides a clear description of the diffraction process at any energy, revealing at the same time any diversion of the beam inside the material towards directions that cannot be accounted for by other conventional methods, which is of much interest when dealing with relatively low energies and/or relatively large tilting angles.

  14. A novel quantum dynamical approach in electron microscopy combining wave-packet propagation with Bohmian trajectories.

    PubMed

    Rudinsky, S; Sanz, A S; Gauvin, R

    2017-03-14

    The numerical analysis of the diffraction features rendered by transmission electron microscopy typically relies either on classical approximations (Monte Carlo simulations) or quantum paraxial tomography (the multislice method and any of its variants). Although numerically advantageous (relatively simple implementations and low computational costs), they involve important approximations and thus their range of applicability is limited. To overcome such limitations, an alternative, more general approach is proposed, based on an optimal combination of wave-packet propagation with the on-the-fly computation of associated Bohmian trajectories. For the sake of clarity, but without a loss of generality, the approach is used to analyze the diffraction of an electron beam by a thin aluminum slab as a function of three different incidence (working) conditions which are of interest in electron microscopy: the probe width, the tilting angle, and the beam energy. Specifically, it is shown that, because there is a dependence on particular thresholds of the beam energy, this approach provides a clear description of the diffraction process at any energy, revealing at the same time any diversion of the beam inside the material towards directions that cannot be accounted for by other conventional methods, which is of much interest when dealing with relatively low energies and/or relatively large tilting angles.

  15. Correlated dynamics of the motion of proton-hole wave packets in a photoionized water cluster.

    PubMed

    Li, Zheng; Madjet, Mohamed El-Amine; Vendrell, Oriol; Santra, Robin

    2013-01-18

    We explore the correlated dynamics of an electron hole and a proton after ionization of a protonated water cluster by extreme ultraviolet light. An ultrafast decay mechanism is found in which the proton-hole dynamics after the ionization are driven by electrostatic repulsion and involve a strong coupling between the nuclear and electronic degrees of freedom. We describe the system by a quantum-dynamical approach and show that nonadiabatic effects are a key element of the mechanism by which electron and proton repel each other and become localized at opposite sides of the cluster. Based on the generality of the decay mechanism, similar effects may be expected for other ionized systems featuring hydrogen bonds.

  16. Charge transport calculations by a wave-packet dynamical approach using maximally localized Wannier functions based on density functional theory: Application to high-mobility organic semiconductors

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji

    2017-01-01

    We present a wave-packet dynamical approach to charge transport using maximally localized Wannier functions based on density functional theory including van der Waals interactions. We apply it to the transport properties of pentacene and rubrene single crystals and show the temperature-dependent natures from bandlike to thermally activated behaviors as a function of the magnitude of external static disorder. We compare the results with those obtained by the conventional band and hopping models and experiments.

  17. Dynamics of zero-energy nonspreading non-Gaussian wave packets for a class of central potentials

    SciTech Connect

    Makowski, Adam J. Pepłowski, Piotr

    2013-10-15

    Zero-energy wave packets, coherent states, are constructed in such a way that they retain their shape during the time evolution for a large class of central potentials. The packets are not of the Gaussian type with −r{sup 2} dependence but, instead, their shape is determined by −r{sup 1/(μ+1/2)} with −1/2<μ<1/2. A very close quantum–classical correspondence is also shown, i.e., the well localized states travel along suitable classical trajectories. -- Highlights: •Central potentials are considered. •Nonspreading, non-Gaussian wave packets are constructed. •Time evolution of the zero-energy packets is studied. •Quantum–classical correspondence is discussed.

  18. Dynamics of zero-energy nonspreading non-Gaussian wave packets for a class of central potentials

    NASA Astrophysics Data System (ADS)

    Makowski, Adam J.; Pepłowski, Piotr

    2013-10-01

    Zero-energy wave packets, coherent states, are constructed in such a way that they retain their shape during the time evolution for a large class of central potentials. The packets are not of the Gaussian type with -r2 dependence but, instead, their shape is determined by -r with -1/2<μ<1/2. A very close quantum-classical correspondence is also shown, i.e., the well localized states travel along suitable classical trajectories.

  19. Energetics and Dynamics of GaAs Epitaxial Growth via Quantum Wave Packet Studies

    NASA Technical Reports Server (NTRS)

    Dzegilenko, Fedor N.; Saini, Subhash (Technical Monitor)

    1998-01-01

    The dynamics of As(sub 2) molecule incorporation into the flat Ga-terminated GaAs(100) surface is studied computationally. The time-dependent Schrodinger equation is solved on a two-dimensional potential energy surface obtained using density functional theory calculations. The probabilities of trapping and subsequent dissociation of the molecular As(sub 2) bond are calculated as a function of beam translational energy and vibrational quantum number of As(sub 2).

  20. Photoisomerization among ring-open merocyanines. I. Reaction dynamics and wave-packet oscillations induced by tunable femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Ruetzel, Stefan; Diekmann, Meike; Nuernberger, Patrick; Walter, Christof; Engels, Bernd; Brixner, Tobias

    2014-06-01

    Upon ultraviolet excitation, photochromic spiropyran compounds can be converted by a ring-opening reaction into merocyanine molecules, which in turn can form several isomers differing by cis and trans configurations in the methine bridge. Whereas the spiropyran-merocyanine conversion reaction of the nitro-substituted indolinobenzopyran 6-nitro-1',3',3'-trimethylspiro[2H-1-benzopyran-2,2'-indoline] (6-nitro BIPS) has been studied extensively in theory and experiments, little is known about photoisomerization among the merocyanine isomers. In this article, we employ femtosecond transient absorption spectroscopy with variable excitation wavelengths to investigate the excited-state dynamics of the merocyanine in acetonitrile at room temperature, where exclusively the trans-trans-cis (TTC) and trans-trans-trans (TTT) isomers contribute. No photochemical ring-closure pathways exist for the two isomers. Instead, we found that (18±4)% of excited TTC isomers undergo an ultrafast excited-state cis→trans photoisomerization to TTT within 200 fs, while the excited-state lifetime of TTC molecules that do not isomerize is 35 ps. No photoisomerization was detected for the TTT isomer, which relaxes to the ground state with a lifetime of roughly 160 ps. Moreover, signal oscillations at 170 cm-1 and 360 cm-1 were observed, which can be ascribed to excited-state wave-packet dynamics occurring in the course of the TTC→TTT isomerization. The results of high-level time-dependent density functional theory in conjunction with polarizable continuum models are presented in the subsequent article [C. Walter, S. Ruetzel, M. Diekmann, P. Nuernberger, T. Brixner, and B. Engels, J. Chem. Phys. 140, 224311 (2014)].

  1. Extensible packet processing architecture

    DOEpatents

    Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.

    2013-08-20

    A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.

  2. Non-Gaussian wave packet dynamics in anharmonic potential: Cumulant expansion treatment

    NASA Astrophysics Data System (ADS)

    Toutounji, Mohamad

    2015-03-01

    This manuscript utilizes cumulant expansion as an alternative algebraic approach to evaluating integrals and solving a system of nonlinear differential equations for probing anharmonic dynamics in condensed phase systems using Morse oscillator. These integrals and differential equations become harder to solve as the anharmonicity of the system goes beyond that of Morse oscillator description. This algebraic approach becomes critically important in case of Morse oscillator as it tends to exhibit divergent dynamics and numerical uncertainties at low temperatures. The autocorrelation function is calculated algebraically and compared to the exact one for they match perfectly. It is also compared to the approximate autocorrelation function using the differential equations technique reported in Toutounji (2014) for weak and strong electron-phonon coupling cases. It is found that the present cumulant method is more efficient, and easier to use, than the exact expression. Deviation between the approximate autocorrelation function and the exact autocorrelation function starts to arise as the electron-phonon coupling strength increases. The autocorrelation function obtained using cumulants identically matches the exact autocorrelation function, thereby surpassing the approach presented in Toutounji (2014). The advantage of the present methodology is its applicability to various types of electron-phonon coupling cases. Additionally, the herein approach only uses algebraic techniques, thereby avoiding both the divergence integral and solving a set of linear first- and second-order partial differential equations as was done in previous work. Model calculations are presented to demonstrate the accuracy of the herein work.

  3. Vibrational wave packets: Molecular state reconstruction in the gas phase and mixed quantum/semiclassical descriptions of small-molecule dynamics in low-temperature solid media

    NASA Astrophysics Data System (ADS)

    Chapman, Craig Thomas

    We explore the reconstruction of B-state vibrational wave packets in I2 from simulated two-color nonlinear wave packet interferometry data. As a simplification of earlier proposals, we make use of different vibrational energy ranges in the B-state---rather than different electronic potential surfaces---for the short-pulse preparation and propagation of both target and reference wave packets. Numerical results from noisy interferograms indicate that experimental reconstruction should be possible with high fidelity (>0.99). Time-resolved coherent nonlinear optical experiments on small molecules in low-temperature host crystals are exposing valuable information on quantum mechanical dynamics in condensed media. We make use of generic features of these systems to frame two simple, comprehensive theories that will enable the efficient calculation of their ultrafast spectroscopic signals and support their interpretation in terms of the underlying chemical dynamics. Both treatments rely on the identification of normal coordinates to unambiguously partition the well-structured guest-host complex into a system and a bath and expand the overall wave function as a sum of product states between fully anharmonic vibrational basis states for the system and approximate Gaussian wave packets for the bath degrees of freedom. The theories exploit the fact that ultrafast experiments typically drive large-amplitude motion in a few intramolecular degrees of freedom of higher frequency than the crystal phonons, while these intramolecular vibrations indirectly induce smaller-amplitude---but still perhaps coherent---motion among the lattice modes. The equations of motion for the time-dependent parameters of the bath wave packets are fairly compact in a fixed vibrational basis/Gaussian bath (FVB/GB) approach. An alternative adiabatic vibrational basis/Gaussian bath (AVB/GB) treatment leads to more complicated equations of motion involving adiabatic and nonadiabatic vector potentials

  4. Computational Improvements to Quantum Wave Packet ab Initio Molecular Dynamics Using a Potential-Adapted, Time-Dependent Deterministic Sampling Technique.

    PubMed

    Jakowski, Jacek; Sumner, Isaiah; Iyengar, Srinivasan S

    2006-09-01

    In a recent publication, we introduced a computational approach to treat the simultaneous dynamics of electrons and nuclei. The method is based on a synergy between quantum wave packet dynamics and ab initio molecular dynamics. Atom-centered density-matrix propagation or Born-Oppenheimer dynamics can be used to perform ab initio dynamics. In this paper, wave packet dynamics is conducted using a three-dimensional direct product implementation of the distributed approximating functional free-propagator. A fundamental computational difficulty in this approach is that the interaction potential between the two components of the methodology needs to be calculated frequently. Here, we overcome this problem through the use of a time-dependent deterministic sampling measure that predicts, at every step of the dynamics, regions of the potential which are important. The algorithm, when combined with an on-the-fly interpolation scheme, allows us to determine the quantum dynamical interaction potential and gradients at every dynamics step in an extremely efficient manner. Numerical demonstrations of our sampling algorithm are provided through several examples arranged in a cascading level of complexity. Starting from a simple one-dimensional quantum dynamical treatment of the shared proton in [Cl-H-Cl](-) and [CH3-H-Cl](-) along with simultaneous dynamical treatment of the electrons and classical nuclei, through a complete three-dimensional treatment of the shared proton in [Cl-H-Cl](-) as well as treatment of a hydrogen atom undergoing donor-acceptor transitions in the biological enzyme, soybean lipoxygenase-1 (SLO-1), we benchmark the algorithm thoroughly. Apart from computing various error estimates, we also compare vibrational density of states, inclusive of full quantum effects from the shared proton, using a novel unified velocity-velocity, flux-flux autocorrelation function. In all cases, the potential-adapted, time-dependent sampling procedure is seen to improve the

  5. Bohmian trajectories of Airy packets

    SciTech Connect

    Nassar, Antonio B.; Miret-Artés, Salvador

    2014-09-15

    The discovery of Berry and Balazs in 1979 that the free-particle Schrödinger equation allows a non-dispersive and accelerating Airy-packet solution has taken the folklore of quantum mechanics by surprise. Over the years, this intriguing class of wave packets has sparked enormous theoretical and experimental activities in related areas of optics and atom physics. Within the Bohmian mechanics framework, we present new features of Airy wave packet solutions to Schrödinger equation with time-dependent quadratic potentials. In particular, we provide some insights to the problem by calculating the corresponding Bohmian trajectories. It is shown that by using general space–time transformations, these trajectories can display a unique variety of cases depending upon the initial position of the individual particle in the Airy wave packet. Further, we report here a myriad of nontrivial Bohmian trajectories associated to the Airy wave packet. These new features are worth introducing to the subject’s theoretical folklore in light of the fact that the evolution of a quantum mechanical Airy wave packet governed by the Schrödinger equation is analogous to the propagation of a finite energy Airy beam satisfying the paraxial equation. Numerous experimental configurations of optics and atom physics have shown that the dynamics of Airy beams depends significantly on initial parameters and configurations of the experimental set-up.

  6. Photochemistry of the water dimer: time-dependent quantum wave-packet description of the dynamics at the S1-S0 conical intersection.

    PubMed

    Chmura, Bartosz; Lan, Zhenggang; Rode, Michal F; Sobolewski, Andrzej L

    2009-10-07

    The photoinduced electron-driven proton-transfer dynamics of the water-dimer system has been investigated by time-dependent quantum wave-packet calculations. The main nuclear degrees of freedom driving the system from the Frank-Condon region to the S(0)-S(1) conical intersection are the distance between the oxygen atoms and the displacement of the hydrogen atom from the oxygen-oxygen bond center. Two important coupling modes have been investigated: Rotation of the H-donating water dangling proton and asymmetric stretching of the H-accepting water dangling protons' O(a)H bonds. Potential energy surfaces of the ground and lowest excited electronic states have been constructed on the basis of ab initio calculations. The time-dependent quantum wave-packet propagation has been employed within the (2 + 1)-dimensional systems for the description of the nonadiabatic dynamics of water dimer. The effects of the initial vibrational state of the system on the electronic population transfer and dissociation dynamics are presented. To approximate the photochemical behavior of water dimer in bulk water, we add a boundary condition into the (2 + 1)-dimensional systems to simulate the existence of water bulk. The results provide insight into the mechanisms of excited state deactivation of the water-dimer system in gas phase and in bulk water through the electron-driven proton-transfer process.

  7. Dynamic interference in the photoionization of He by coherent intense high-frequency laser pulses: Direct propagation of the two-electron wave packets on large spatial grids

    NASA Astrophysics Data System (ADS)

    Artemyev, Anton N.; Müller, Anne D.; Hochstuhl, David; Cederbaum, Lorenz S.; Demekhin, Philipp V.

    2016-04-01

    The direct ionization of the helium atom by intense coherent high-frequency short laser pulses is investigated theoretically from first principles. To this end, we solve numerically the time-dependent Schrödinger equation for the two-electron wave packet and its interaction with the linearly polarized pulse by the efficient time-dependent restricted-active-space configuration-interaction method (TD-RASCI). In particular, we consider photon energies which are nearly resonant for the 1 s →2 p excitation in the He+ ion. Thereby, we investigate the dynamic interference of the photoelectrons of the same kinetic energy emitted at different times along the pulse in the two-electron system. In order to enable observation of the dynamic interference in the computed spectrum, the electron wave packets were propagated on large spatial grids over long times. The computed photoionization spectra of He exhibit pronounced interference patterns the complexity of which increases with the decrease of the photon energy detuning and with the increase of the pulse intensity. Our numerical results pave the way for experimental verification of the dynamic interference effect at presently available high-frequency laser pulse sources.

  8. Self-Interfering Wave Packets

    NASA Astrophysics Data System (ADS)

    Colas, David; Laussy, Fabrice P.

    2016-01-01

    We study the propagation of noninteracting polariton wave packets. We show how two qualitatively different concepts of mass that arise from the peculiar polariton dispersion lead to a new type of particlelike object from noninteracting fields—much like self-accelerating beams—shaped by the Rabi coupling out of Gaussian initial states. A divergence and change of sign of the diffusive mass results in a "mass wall" on which polariton wave packets bounce back. Together with the Rabi dynamics, this yields propagation of ultrafast subpackets and ordering of a spacetime crystal.

  9. Nonspreading Wave Packets.

    ERIC Educational Resources Information Center

    Berry, M. V.; Balazs, N. L.

    1979-01-01

    Explains properties of the Airy packet that show that quantum wave functions correspond to a family of orbits and not to a single particle. Introducing the Airy packet into elementary quantum mechanics courses is recommended. (HM)

  10. Controlled Quantum Packets

    NASA Technical Reports Server (NTRS)

    DeMartino, Salvatore; DeSiena, Silvio

    1996-01-01

    We look at time evolution of a physical system from the point of view of dynamical control theory. Normally we solve motion equation with a given external potential and we obtain time evolution. Standard examples are the trajectories in classical mechanics or the wave functions in Quantum Mechanics. In the control theory, we have the configurational variables of a physical system, we choose a velocity field and with a suited strategy we force the physical system to have a well defined evolution. The evolution of the system is the 'premium' that the controller receives if he has adopted the right strategy. The strategy is given by well suited laboratory devices. The control mechanisms are in many cases non linear; it is necessary, namely, a feedback mechanism to retain in time the selected evolution. Our aim is to introduce a scheme to obtain Quantum wave packets by control theory. The program is to choose the characteristics of a packet, that is, the equation of evolution for its centre and a controlled dispersion, and to give a building scheme from some initial state (for example a solution of stationary Schroedinger equation). It seems natural in this view to use stochastic approach to Quantum Mechanics, that is, Stochastic Mechanics [S.M.]. It is a quantization scheme different from ordinary ones only formally. This approach introduces in quantum theory the whole mathematical apparatus of stochastic control theory. Stochastic Mechanics, in our view, is more intuitive when we want to study all the classical-like problems. We apply our scheme to build two classes of quantum packets both derived generalizing some properties of coherent states.

  11. Effects of packet retransmission with finite packet lifetime on traffic capacity in scale-free networks

    NASA Astrophysics Data System (ADS)

    Jiang, Zhong-Yuan; Ma, Jian-Feng

    Existing routing strategies such as the global dynamic routing [X. Ling, M. B. Hu, R. Jiang and Q. S. Wu, Phys. Rev. E 81, 016113 (2010)] can achieve very high traffic capacity at the cost of extremely long packet traveling delay. In many real complex networks, especially for real-time applications such as the instant communication software, extremely long packet traveling time is unacceptable. In this work, we propose to assign a finite Time-to-Live (TTL) parameter for each packet. To guarantee every packet to arrive at its destination within its TTL, we assume that a packet is retransmitted by its source once its TTL expires. We employ source routing mechanisms in the traffic model to avoid the routing-flaps induced by the global dynamic routing. We compose extensive simulations to verify our proposed mechanisms. With small TTL, the effects of packet retransmission on network traffic capacity are obvious, and the phase transition from flow free state to congested state occurs. For the purpose of reducing the computation frequency of the routing table, we employ a computing cycle Tc within which the routing table is recomputed once. The simulation results show that the traffic capacity decreases with increasing Tc. Our work provides a good insight into the understanding of effects of packet retransmission with finite packet lifetime on traffic capacity in scale-free networks.

  12. Stochastic sampled-data control for synchronization of complex dynamical networks with control packet loss and additive time-varying delays.

    PubMed

    Rakkiyappan, R; Sakthivel, N; Cao, Jinde

    2015-06-01

    This study examines the exponential synchronization of complex dynamical networks with control packet loss and additive time-varying delays. Additionally, sampled-data controller with time-varying sampling period is considered and is assumed to switch between m different values in a random way with given probability. Then, a novel Lyapunov-Krasovskii functional (LKF) with triple integral terms is constructed and by using Jensen's inequality and reciprocally convex approach, sufficient conditions under which the dynamical network is exponentially mean-square stable are derived. When applying Jensen's inequality to partition double integral terms in the derivation of linear matrix inequality (LMI) conditions, a new kind of linear combination of positive functions weighted by the inverses of squared convex parameters appears. In order to handle such a combination, an effective method is introduced by extending the lower bound lemma. To design the sampled-data controller, the synchronization error system is represented as a switched system. Based on the derived LMI conditions and average dwell-time method, sufficient conditions for the synchronization of switched error system are derived in terms of LMIs. Finally, numerical example is employed to show the effectiveness of the proposed methods.

  13. Packet Radio Communications Project

    DTIC Science & Technology

    1974-12-01

    init.ate any pending DMA channel I/O now possible as a result of the completed DMA I/O operation. For example, if the packet transmision has been...keyboard and printer b. Binary data record I/O fo/from the tape media c. Scan for unsolicited keyboard input 2-12 Software description of experimental...the station and transmit to the station packets input on the radio receivers. The goal is to provide a transparent packet transfer media to

  14. Use of wavelet-packet transforms to develop an engineering model for multifractal characterization of mutation dynamics in pathological and nonpathological gene sequences

    NASA Astrophysics Data System (ADS)

    Walker, David Lee

    1999-12-01

    This study uses dynamical analysis to examine in a quantitative fashion the information coding mechanism in DNA sequences. This exceeds the simple dichotomy of either modeling the mechanism by comparing DNA sequence walks as Fractal Brownian Motion (fbm) processes. The 2-D mappings of the DNA sequences for this research are from Iterated Function System (IFS) (Also known as the ``Chaos Game Representation'' (CGR)) mappings of the DNA sequences. This technique converts a 1-D sequence into a 2-D representation that preserves subsequence structure and provides a visual representation. The second step of this analysis involves the application of Wavelet Packet Transforms, a recently developed technique from the field of signal processing. A multi-fractal model is built by using wavelet transforms to estimate the Hurst exponent, H. The Hurst exponent is a non-parametric measurement of the dynamism of a system. This procedure is used to evaluate gene- coding events in the DNA sequence of cystic fibrosis mutations. The H exponent is calculated for various mutation sites in this gene. The results of this study indicate the presence of anti-persistent, random walks and persistent ``sub-periods'' in the sequence. This indicates the hypothesis of a multi-fractal model of DNA information encoding warrants further consideration. This work examines the model's behavior in both pathological (mutations) and non-pathological (healthy) base pair sequences of the cystic fibrosis gene. These mutations both natural and synthetic were introduced by computer manipulation of the original base pair text files. The results show that disease severity and system ``information dynamics'' correlate. These results have implications for genetic engineering as well as in mathematical biology. They suggest that there is scope for more multi-fractal models to be developed.

  15. State-to-state quantum wave packet dynamics of the LiH + H reaction on two AB initio potential energy surfaces

    SciTech Connect

    Gómez-Carrasco, S.; González-Sánchez, L.; Roncero, O.

    2014-03-20

    The dynamics and kinetics of the LiH + H reaction have been studied by using an accurate quantum reactive time-dependent wave packet method on the ab initio ground electronic state potential energy surfaces (PES) developed earlier. Reaction probabilities for the two possible reaction channels, the LiH + H→ H{sub 2} + Li depletion process and the LiH + H→H + LiH hydrogen exchange reaction, have been calculated from 1 meV up to 1.0 eV collision energies for total angular momenta J from 0 to 80. State-to-state and total integral cross sections for the LiH-depletion and H-exchange channels of the reaction have been calculated over this collision energy range. It is found that the LiH-depletion channel is dominant in the whole range of collision energies for both PESs. Accurate total rate coefficients have been calculated on both surfaces from 100 K to 2000 K and are significantly larger than previous empirical estimates and previous J-shifting results. In addition, the present accurate calculations present noticeable differences with previous calculations using the centrifugal sudden approximation.

  16. Following dynamic nuclear wave packets in N{sub 2},O{sub 2}, and CO with few-cycle infrared pulses

    SciTech Connect

    De, S.; Magrakvelidze, M.; Bocharova, I. A.; Ray, D.; Cao, W.; Li, H.; Wang, Z.; Laurent, G.; Thumm, U.; Ben-Itzhak, I.; Cocke, C. L.; Znakovskaya, I.; Kling, M. F.; Litvinyuk, I. V.

    2011-10-15

    We study the evolution of nuclear wave packets launched in molecular nitrogen, oxygen, and carbon monoxide by intense 8-fs infrared pulses. We use velocity map imaging to measure the momentum of the ion fragments when these wave packets are interrogated by a second such pulse after a variable time delay. Both quasibound and dissociative wave packets are observed. For the former, measurements of bound-state oscillations are used to identify the participating states and, in some cases, extract properties of the relevant potential-energy surfaces. Vibrational structure is resolved in both energy and oscillation frequencies for the cations of oxygen and carbon monoxide, displaying the same quantum wave-packet motion in both energy and time domains. In addition, vibrational structure is seen in the dication of carbon monoxide in a situation where the energy resolution by itself is inadequate to resolve the structure.

  17. Tunneling dynamics with a mixed quantum-classical method: Quantum corrected propagator combined with frozen Gaussian wave packets

    NASA Astrophysics Data System (ADS)

    Gelman, David; Schwartz, Steven D.

    2008-07-01

    The recently developed mixed quantum-classical propagation method is extended to treat tunneling effects in multidimensional systems. Formulated for systems consisting of a quantum primary part and a classical bath of heavier particles, the method employs a frozen Gaussian description for the bath degrees of freedom, while the dynamics of the quantum subsystem is governed by a corrected propagator. The corrections are defined in terms of matrix elements of zeroth-order propagators. The method is applied to a model system of a double-well potential bilinearly coupled to a harmonic oscillator. The extension of the method, which includes nondiagonal elements of the correction propagator, enables an accurate treatment of tunneling in an antisymmetric double-well potential.

  18. Quantum wave packet revivals

    NASA Astrophysics Data System (ADS)

    Robinett, R. W.

    2004-03-01

    The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet (‘minipackets’ or ‘clones’) is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum wave packet construction leading to the existence of revivals and fractional revivals, in systems with one (or more) quantum number(s), as well as discussing how information on the classical period and revival time is encoded in the energy eigenvalue spectrum. We discuss a number of one-dimensional model systems which exhibit revival behavior, including the infinite well, the quantum bouncer, and others, as well as several two-dimensional integrable quantum billiard systems. Finally, we briefly review the experimental evidence for wave packet revivals in atomic, molecular, and other systems, and related revival phenomena in condensed matter and optical systems.

  19. Quantum dynamics studies of gas-surface reactions and use of complex absorbing potentials in wave-packet calculations

    NASA Astrophysics Data System (ADS)

    Ge, Jiuyuan

    1999-11-01

    In this thesis, quantum dynamics studies are conducted on gas-surface reactions and complex absorbing potentials. Through a three-dimensional model, dissociation probabilities for O2 on both (110) and (100) surfaces of copper are calculated for ground state as well as rovibrationally excited oxygen molecules. Specifically, the reason for the difference in calculated dissociation probabilities of oxygen on two surfaces is explained. Then the thermal effect of the surface on the dissociation probability is studied by a one dimensional fluctuating barrier. It is observed that the quantum mechanical tunneling probability exhibits a maximum as a function of the oscillating frequency between the low and the high frequency limits. The physical origin and process underlying this resonantlike phenomenon are proposed. In the second part of this thesis, the complex absorbing potential (CAP) is introduced and studied. Exact numerical calculation shows that use of optimized CAP significantly improves the efficiency of wavefunction absorption over that of negative imaginary potential (NIP) in scattering applications. The CAP is optimized by an efficient time-dependent propagation approach. Application to the prototype inelastic scattering of He + H2 demonstrates the accuracy and efficiency of the channel-dependent CAP for extracting state-to-state scattering information.

  20. State-resolved dynamics study of the H + HS reaction on the 3A' and 3A″ states with time-dependent quantum wave packet method

    NASA Astrophysics Data System (ADS)

    Wu, Hui; Duan, Zhi-Xin; Yin, Shu-Hui; Zhao, Guang-Jiu

    2016-09-01

    The quantum dynamics calculations of the H + HS (v = 0, j = 0) reaction on the 3A' and 3A″ potential energy surfaces (PESs) are performed using the reactant coordinate based time-dependent wave packet method. State-averaged and state-resolved results for both channels of the title reaction are presented in the 0.02-1.0 eV collision energy range and compared with those carried out with quasi-classical trajectory (QCT) method. Total integral cross sections (ICSs) for both channels are in excellent agreement with previous quantum mechanical (QM)-Coriolis coupling results while poorly agree with the QCT ICSs of the exchange channel, particularly near the threshold energy region. The product rotational distributions show that for the abstraction channel, the agreement between our QM and the QCT results improves with increasing collision energy. For the exchange channel, our calculations predict colder rotational distributions as compared to those obtained by QCT calculations. Although the QM total differential cross sections (DCSs) are in qualitatively good agreement with the QCT results, the two sets of the state-to-state DCSs with several peaks exhibit great divergences. The origin of the divergences are traced by analyzing the QM DCS for the H + HS (v = 0, j = 0) → H2 (v' = 0, j' = 0) + S reaction on the 3A″ PES at Ec = 1.0 eV. It is discovered that several groups of J partial waves are involved in the reaction and the shape of the DCS is greatly altered by quantum interferences between them.

  1. Development of optical packet and circuit integrated ring network testbed.

    PubMed

    Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya

    2011-12-12

    We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate < 1×10(-4)) operation was achieved with optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated.

  2. Adaptive optical label packet switching

    NASA Astrophysics Data System (ADS)

    Xiao, Shilin; Liu, Zhixin; Liang, Zheng; Zhao, Zhihui; Qu, Kefeng

    2007-11-01

    This paper introduces a kind of Adaptive Optical Label Packet Switching (AOLPS) technology. Based on Optical Packet Switching (OPS), AOLPS uses optical label to achieve self-routing, and the size of optical packet is self-adaptive. At the edge nodes, IP packets are fist classified into different first-in-fist-out memories (FIFOs) according to their priority levels and destinations, and then being encapsulated into optical packets. The traffic at each FIFO is real-time monitored, and the controller in edge node employs an optimal strategy to generate suitable sized packets for transmission. Large sized packets will be adopted when traffic is heavy, and small sized packets will be used when traffic is light. This self-adaptive switching granularity can greatly improve the network performance.

  3. PROGRAMMED LEARNING PACKET.

    ERIC Educational Resources Information Center

    Modern Language Association of America, New York, NY.

    MATERIALS CONCERNING PROGRAMED INSTRUCTION IN FOREIGN LANGUAGES, PUBLISHED FROM 1960 TO 1967, ARE COLLECTED IN THIS PACKET FOR LANGUAGE TEACHERS AND PERSONS INTERESTED IN THE FUTURE USES OF THE LANGUAGE LABORATORY. INCLUDED ARE--(1) "PROGRAMED LEARNING OF A SECOND LANGUAGE" BY HARLAN LANE, (2) "A PRIMER OF PROGRAMED INSTRUCTION IN FOREIGN LANGUAGE…

  4. Exploring Maps Teaching Packet.

    ERIC Educational Resources Information Center

    Geological Survey (Dept. of Interior), Reston, VA.

    This interdisciplinary packet of materials on mapping is intended for grades 7-12. The lessons are organized around themes: location, navigation, information, and exploration. Each lesson has an introductory text and two main activities. Students learn basic mapmaking and map-reading skills and see how maps help answer fundamental geographic…

  5. Amelia Earhart Learning Packet.

    ERIC Educational Resources Information Center

    Civil Air Patrol, Maxwell AFB, AL.

    The feats of individuals who have made history in the aerospace world are often misunderstood and soon ignored or forgotten after the first notoriety has been achieved. Amelia Earhart was selected as the subject for this learning packet because of her brilliant accomplishments on the world of flight, a persistent desire to determine what really…

  6. [Genealogical Research Packet.

    ERIC Educational Resources Information Center

    Rummel, John

    This packet informs inquirers about the genealogical and local history resources housed at the Library of Michigan, including cemetery directories, census records, city directories, family histories, plat maps and other land records, military records, newspapers, specialty periodicals, and vital records. It provides background information about…

  7. Packet Speech Measurement Facility

    DTIC Science & Technology

    1978-06-30

    Section 3 NVCP Operations Figure 3.1 1) Chairman nPl^a_sj£.J.oirL-my ..conference"x PSMF 2) Chairman ^_ negot -iations- . . \\ PSMF 3) Chairman...RAR, which may deal with experimental protocols that are incompatible with standard ones. After opening the specified file, all packets received

  8. Hoover Dam Learning Packet.

    ERIC Educational Resources Information Center

    Bureau of Reclamation (Dept. of Interior), Washington, DC.

    This learning packet provides background information about Hoover Dam (Nevada) and the surrounding area. Since the dam was built at the height of the Depression in 1931, people came from all over the country to work on it. Because of Hoover Dam, the Colorado River was controlled for the first time in history and farmers in Nevada, California, and…

  9. Kazimir Malevich Teaching Packet.

    ERIC Educational Resources Information Center

    Wisotzki, Paula; Freifeld, Susan

    The resources of this packet provide an overview of the career of Kazimir Malevich, (1878-1935), a Russian painter from Kiev (Ukraine) and a leader in geometric abstraction who developed a style called "Suprematism." Influences on and innovations of Malevich's art are examined, and his art is related to the historical and cultural…

  10. PROGRAMMED LEARNING PACKET.

    ERIC Educational Resources Information Center

    Modern Language Association of America, New York, NY.

    MATERIALS CONCERNING PROGRAMED INSTRUCTION IN FOREIGN LANGUAGES, PUBLISHED FROM 1960 TO 1967, ARE COLLECTED IN THIS PACKET FOR LANGUAGE TEACHERS AND PERSONS INTERESTED IN THE FUTURE USES OF THE LANGUAGE LABORATORY. INCLUDED ARE--(1) "PROGRAMED LEARNING OF A SECOND LANGUAGE" BY HARLAN LANE, (2) "A PRIMER OF PROGRAMED INSTRUCTION IN FOREIGN LANGUAGE…

  11. Censorship: Professional Improvement Packet.

    ERIC Educational Resources Information Center

    Indiana State Teachers Association, Indianapolis.

    A variety of resource documents and articles are included in this professional improvement packet that is designed to assist teachers and administrators in reducing the conditions under which censorship might occur. The documents presented are: the Indiana code laws concerning textbook adoption; the American Library Association's library bill of…

  12. Computer Accessibility Technology Packet.

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC.

    This technology information packet includes information about the technical aspects of access to technology, legal obligations concerning technology and individuals with disabilities, and a list of resources for further information and assistance. A question and answer section addresses: barriers to educational technology for students with…

  13. Morse Code Activity Packet.

    ERIC Educational Resources Information Center

    Clinton, Janeen S.

    This activity packet offers simple directions for setting up a Morse Code system appropriate to interfacing with any of several personal computer systems. Worksheets are also included to facilitate teaching Morse Code to persons with visual or other disabilities including blindness, as it is argued that the code is best learned auditorily. (PB)

  14. Packet Radio for Library Automation.

    ERIC Educational Resources Information Center

    Brownrigg, Edwin B.; And Others

    1984-01-01

    This tutorial on packet radio (communication system using radio and digital packet-switching technology) highlights radio transmission of data, brief history, special considerations in applying packet radio to library online catalogs, technology, defining protocol at physical and network levels, security, geographic coverage, and components. (A…

  15. Packet Radio for Library Automation.

    ERIC Educational Resources Information Center

    Brownrigg, Edwin B.; And Others

    1984-01-01

    This tutorial on packet radio (communication system using radio and digital packet-switching technology) highlights radio transmission of data, brief history, special considerations in applying packet radio to library online catalogs, technology, defining protocol at physical and network levels, security, geographic coverage, and components. (A…

  16. Packet transport network in metro

    NASA Astrophysics Data System (ADS)

    Huang, Feng; Yi, Xiaobo; Zhang, Hanzheng; Gong, Ping

    2008-11-01

    IP packet based services such as high speed internet, IP voice and IP video will be widely deployed in telecom network, which make transport network evolution to packet transport network. Characteristics of transport network and requirements of packet transport network are analyzed, T-MPLS/MPLS-TP based PTN technology is given and it will be used in metro (access, aggregation and core) network.

  17. Spatial control of recollision wave packets with attosecond precision.

    PubMed

    Kitzler, Markus; Lezius, Matthias

    2005-12-16

    We propose orthogonally polarized two-color laser pulses to steer tunneling electrons with attosecond precision around the ion core. We numerically demonstrate that the angles of birth and recollision, the recollision energy, and the temporal structure of the recolliding wave packet can be controlled without stabilization of the carrier-envelope phase of the laser, and that the wave packet's properties can be described by classical relations for a point charge. This establishes unique mapping between parameters of the laser field and attributes of the recolliding wave packet. The method is capable of probing ionic wave packet dynamics with attosecond resolution from an adjustable direction and might be used as an alternative to aligning molecules. Shaping the properties of the recollision wave packet by controlling the laser field may also provide new routes for improvement of attosecond pulse generation via high harmonic radiation.

  18. An investigation of packet reordering in TCP traces (extended abstract)

    SciTech Connect

    Istrate, G.; Hansson, A. A.; Nassr, M. S.; Barrett, C. L.; Marathe, M. V.

    2004-01-01

    Recent research has highlighted the impact of packet reordering on network dynamics. Still, while much work has investigated the statistical properties of inter-packet arrival times of TCP traces, little effort has been devoted to obtaining a model of network traffic that incorporates sequence ID numbers as well. With the ultimate goal to develop such a joint model, they present results on the dynamics of packet reordering in a set of publicly available TCP traces recorded at the Network Research lab at UCLA. they investigate the scaling properties of the number of packet inversions. They propose a two-state model for the dynamics of sequence IDs based on pivots (defined as packets for which the received packet sequence has no gaps). This concept allows us to partition the trace into time epochs based on the presence or absence of reordering. Thys, they are able to identify and store patterns of reordering in the packet streams. Statistical tests provide a first-order validation of the model. Finally, they investigate the reordering patterns identified by their model from the standpoint of standard measures of presortedness of integer sequences. The methodology outlined in this paper enables regeneration of synthetic traces with inversion characteristics that are statistically similar to those of the original data. It is part of RESTORED, a network inference and analysis tool under development at Los Alamos National Laboratory.

  19. Packet Speech Systems Technology

    DTIC Science & Technology

    1982-03-31

    ring the phone or turn on the vocoder. Incoming speech is echoed back to the sender. This allows one site to conduct cross-country tests or demos...the first packet to arrive. Time resolution (histogram cell size) was 22.5 ms, the parcel time in the PCM speech encoder in the PVT. A traffic...additional commands as the need may arise without adversely affecting the foreground functions of sorting, routing, and dispatching the speech traffic. An

  20. Optical packet switching

    NASA Astrophysics Data System (ADS)

    Shekel, Eyal; Ruschin, Shlomo; Majer, Daniel; Levy, Jeff; Matmon, Guy; Koenigsberg, Lisa; Vecht, Jacob; Geron, Amir; Harlavan, Rotem; Shfaram, Harel; Arbel, Arnon; McDermott, Tom; Brewer, Tony

    2005-02-01

    We report here a scalable, multichassis, 6.3 terabit core router, which utilizes our proprietary optical switch. The router is commercially available and deployed in several customer sites. Our solution combines optical switching with electronic routing. An internal optical packet switching network interconnects the router"s electronic line cards, where routing and buffering functions take place electronically. The system architecture and performance will be described. The optical switch is based on Optical Phased Array (OPA) technology. It is a 64 x 64, fully non-blocking, optical crossbar switch, capable of switching in a fraction of a nanosecond. The basic principles of operation will be explained. Loss and crosstalk results will be presented, as well as the results of BER measurements of a 160 Gbps transmission through one channel. Basic principles of operation and measured results will be presented for the burst-mode-receivers, arbitration algorithm and synchronization. Finally, we will present some of our current research work on a next-generation optical switch. The technological issues we have solved in our internal optical packet network can have broad applicability to any global optical packet network.

  1. Packet Daemon Version 12(SOPHIA)

    SciTech Connect

    2012-08-09

    Packet Daemon Version 12 is the code exclusively used by the ‘packetd’ executable. It provides packet data to the OglNet Version 12 visualization tool. It reads PCAP data and sends an abstraction of the packets to the ‘oglnet’ executable for display. ‘packetd’will run as a service on a Linux host thereby capturing data continuously and make that data available for ‘oglnet’ whenever it connects to the service.

  2. Radiotherapy DICOM packet sniffing.

    PubMed

    Ackerly, T; Gesoand, M; Smith, R

    2008-09-01

    The Digital Imaging and Communications in Medicine (DICOM) standard is meant to allow communication of medical images between equipment provided by different vendors, but when two applications do not interact correctly in a multi-vendor environment it is often first necessary to demonstrate non-compliance of either the sender or the receiver before a resolution to the problem can be progressed. Sometimes the only way to do this is to monitor the network communication between the two applications to find out which one is not complying with the DICOM standard. Packet sniffing is a technique of network traffic analysis by passive observation of all information transiting a point on the network, regardless of the specified sender or receiver. DICOM packet sniffing traps and interprets the network communication between two DICOM applications to determine which is non compliant. This is illustrated with reference to three examples, a radiotherapy planning system unable to receive CT data from a particular CT scanner, a radiotherapy simulator unable to print correctly on a DICOM printer, and a PACS unable to respond when queried about what images it has in its archive by a radiotherapy treatment planning system. Additionally in this work it has been proven that it is feasible to extract DICOM images from the intercepted network data. This process can be applied to determine the cause of a DICOM image being rendered differently by the sender and the receiver.

  3. Time-dependent wave-packet quantum dynamics study of the Ne + D2(+) (v0 = 0-2, j0 = 0) → NeD(+) + D reaction: including the coriolis coupling.

    PubMed

    Yao, Cui-Xia; Zhang, Pei-Yu

    2014-07-10

    The dynamics of the Ne + D2(+) (v0 = 0-2, j0 = 0) → NeD(+) + D reaction has been investigated in detail by using an accurate time-dependent wave-packet method on the ground 1(2)A' potential energy surface. Comparisons between the Coriolis coupling results and the centrifugal-sudden ones reveal that Coriolis coupling effect can influence reaction dynamics of the NeD2(+) system. Integral cross sections have been evaluated for the Ne + D2(+) reaction and its isotopic variant Ne + H2(+), and a considerable intermolecular isotopic effect has been found. Also obvious is the great enhancement of the reactivity due to the reagent vibrational excitation. Besides, a comparison with previous theoretical results is also presented and discussed.

  4. Investigation into the formation of charge packets in polyethylene: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Chen, G.; Lewin, P. L.

    2012-08-01

    The phenomenon of charge packet has been reported in polymeric insulation materials under the application of dc electric fields in recent decades. It is noted that such charge packets could lead to substantial modification of local electric stress, which increases the possibility of failure of insulating materials. The physics of charge packets has not yet been revealed clearly. In this paper, the dynamics of positive charge packets in polyethylene is observed using the pulsed electro-acoustic technique. Negative differential mobility of positive charge carrier is found, which is believed to be crucial to the formation of charge packets. This negative differential mobility is introduced into a bipolar charge transport model to simulate the packet-like space charge in polymers. Simulation results show that not only the negative differential mobility but also weaker trapping characteristic are required to generate a positive charge packet in polyethylene under dc stress.

  5. Resource Packet on Youth Literacy.

    ERIC Educational Resources Information Center

    Garing, Kelli; And Others

    This resource packet presents information on youth literacy in three main sections. The first section presents statistics on literacy; facts about literacy; reading in Indiana middle, junior, and senior high schools; and family reading. The packet's second section contains a bibliography and resources, offering a reading and literacy bibliography,…

  6. Vocational and Industrial Arts Packets.

    ERIC Educational Resources Information Center

    Maine Audubon Society, Falmouth.

    This book is a teacher's guide to energy alternatives. It is divided into seven informational packets on the following topics: parabolic solar concentrators, solar flat plate collectors, wood as fuel, heat loss, bio-gas, wind, and water. Each packet contains background information for the teachers and learning activities for the students. The…

  7. Tropical Animal Tour Packet. Metro.

    ERIC Educational Resources Information Center

    Metro Washington Park Zoo, Portland, OR. Educational Services Div.

    This packet is designed to assist teachers in creating a tropical animals lesson plan that centers around a visit to the zoo. A teacher packet is divided into eight parts: (1) goals and objectives; (2) what to expect at the zoo; (3) student activities (preparatory activities, on-site activities, and follow-up activities); (4) background…

  8. Vocational and Industrial Arts Packets.

    ERIC Educational Resources Information Center

    Maine Audubon Society, Falmouth.

    This book is a teacher's guide to energy alternatives. It is divided into seven informational packets on the following topics: parabolic solar concentrators, solar flat plate collectors, wood as fuel, heat loss, bio-gas, wind, and water. Each packet contains background information for the teachers and learning activities for the students. The…

  9. Experience with the EURECA Packet Telemetry and Packet Telecommand system

    NASA Technical Reports Server (NTRS)

    Sorensen, Erik Mose; Ferri, Paolo

    1994-01-01

    The European Retrieval Carrier (EURECA) was launched on its first flight on the 31st of July 1992 and retrieved on the 29th of June 1993. EURECA is characterized by several new on-board features, most notably Packet telemetry, and a partial implementation of packet telecommanding, the first ESA packetised spacecraft. Today more than one year after the retrieval the data from the EURECA mission has to a large extent been analysed and we can present some of the interesting results. This paper concentrates on the implementation and operational experience with the EURECA Packet Telemetry and Packet Telecommanding. We already discovered during the design of the ground system that the use of packet telemetry has major impact on the overall design and that processing of packet telemetry may have significant effect on the computer loading and sizing. During the mission a number of problems were identified with the on-board implementation resulting in very strange anomalous behaviors. Many of these problems directly violated basic assumptions for the design of the ground segment adding to the strange behavior. The paper shows that the design of a telemetry packet system should be flexible enough to allow a rapid configuration of the telemetry processing in order to adapt it to the new situation in case of an on-board failure. The experience gained with the EURECA mission control should be used to improve ground systems for future missions.

  10. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan

    1995-01-01

    An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet 12. In a preferred embodiment a vacuum plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head.

  11. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, T.G.; Thacker, L.H.; Fine, H.A.

    1995-04-18

    An instrument is disclosed for the measurement of vacuum within sealed packets, the packets having a wall that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head. 4 figs.

  12. High speed packet switching

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document constitutes the final report prepared by Proteon, Inc. of Westborough, Massachusetts under contract NAS 5-30629 entitled High-Speed Packet Switching (SBIR 87-1, Phase 2) prepared for NASA-Greenbelt, Maryland. The primary goal of this research project is to use the results of the SBIR Phase 1 effort to develop a sound, expandable hardware and software router architecture capable of forwarding 25,000 packets per second through the router and passing 300 megabits per second on the router's internal busses. The work being delivered under this contract received its funding from three different sources: the SNIPE/RIG contract (Contract Number F30602-89-C-0014, CDRL Sequence Number A002), the SBIR contract, and Proteon. The SNIPE/RIG and SBIR contracts had many overlapping requirements, which allowed the research done under SNIPE/RIG to be applied to SBIR. Proteon funded all of the work to develop new router interfaces other than FDDI, in addition to funding the productization of the router itself. The router being delivered under SBIR will be a fully product-quality machine. The work done during this contract produced many significant findings and results, summarized here and explained in detail in later sections of this report. The SNIPE/RIG contract was completed. That contract had many overlapping requirements with the SBIR contract, and resulted in the successful demonstration and delivery of a high speed router. The development that took place during the SNIPE/RIG contract produced findings that included the choice of processor and an understanding of the issues surrounding inter processor communications in a multiprocessor environment. Many significant speed enhancements to the router software were made during that time. Under the SBIR contract (and with help from Proteon-funded work), it was found that a single processor router achieved a throughput significantly higher than originally anticipated. For this reason, a single processor router was

  13. Threatened and Endangered Species: Tour Packet.

    ERIC Educational Resources Information Center

    Coats, Victoria; Samia, Cory

    This resource unit contains a teacher information packet and a middle school student activity packet to be used in creating a threatened and endangered species unit. The packet of student activities is designed to help maximize a field trip to the zoo and build on students' zoo experience in the classroom. The teacher information packet covers the…

  14. Wavelet Packets in Wideband Multiuser Communications

    DTIC Science & Technology

    2004-11-01

    developed doubly orthogonal CDMA user spreading waveforms based on wavelet packets. We have also developed and evaluated a wavelet packet based ...inter symbol interferences. Compared with the existing DFT based multicarrier CDMA systems, better performance is achieved with the wavelet packet...23 3.4 Over Loaded Waveform Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4. Wavelet Packet Based Time-Varying

  15. Wakata with Microbial Analysis Packet

    NASA Image and Video Library

    2009-04-09

    ISS019-E-005711 (9 April 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, is pictured near a microbial analysis packet floating freely in the Destiny laboratory of the International Space Station.

  16. Packet flow monitoring tool and method

    DOEpatents

    Thiede, David R [Richland, WA

    2009-07-14

    A system and method for converting packet streams into session summaries. Session summaries are a group of packets each having a common source and destination internet protocol (IP) address, and, if present in the packets, common ports. The system first captures packets from a transport layer of a network of computer systems, then decodes the packets captured to determine the destination IP address and the source IP address. The system then identifies packets having common destination IP addresses and source IP addresses, then writes the decoded packets to an allocated memory structure as session summaries in a queue.

  17. 78 FR 63228 - Determination That Potassium Citrate, 10 Milliequivalents/Packet and 20 Milliequivalents/Packet...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... HUMAN SERVICES Food and Drug Administration Determination That Potassium Citrate, 10 Milliequivalents...) has determined that Potassium Citrate, 10 milliequivalents/packet (mEq/packet) and 20 mEq/ packet, was... approve abbreviated new drug applications (ANDAs) for Potassium Citrate, 10 mEq/packet and 20 mEq/packet...

  18. Short-time Chebyshev wave packet method for molecular photoionization

    NASA Astrophysics Data System (ADS)

    Sun, Zhaopeng; Zheng, Yujun

    2016-08-01

    In this letter we present the extended usage of short-time Chebyshev wave packet method in the laser induced molecular photoionization dynamics. In our extension, the polynomial expansion of the exponential in the time evolution operator, the Hamiltonian operator can act on the wave packet directly which neatly avoids the matrix diagonalization. This propagation scheme is of obvious advantages when the dynamical system has large Hamiltonian matrix. Computational simulations are performed for the calculation of photoelectronic distributions from intense short pulse ionization of K2 and NaI which represent the Born-Oppenheimer (BO) model and Non-BO one, respectively.

  19. The throughput of packet broadcasting channels

    NASA Technical Reports Server (NTRS)

    Abramson, N.

    1977-01-01

    A unified presentation of packet broadcasting theory is presented. Section II introduces the theory of packet broadcasting data networks. Section III provides some theoretical results on the performance of a packet broadcasting network when users have a variety of data rates. Section IV deals with packet broadcasting networks distributed in space, and in Section V some properties of power-limited packet broadcasting channels are derived, showing that the throughput of such channels can approach that of equivalent point-to-point channels.

  20. Tracking an electronic wave packet in the vicinity of a conical intersection

    NASA Astrophysics Data System (ADS)

    Qi, Da-Long; Duan, Hong-Guang; Sun, Zhen-Rong; Miller, R. J. Dwayne; Thorwart, Michael

    2017-08-01

    This work treats the impact of vibrational coherence on the quantum efficiency of a dissipative electronic wave packet in the vicinity of a conical intersection by monitoring the time-dependent wave packet projection onto the tuning and the coupling mode. The vibrational coherence of the wave packet is tuned by varying the strength of the dissipative vibrational coupling of the tuning and the coupling modes to their thermal baths. We observe that the most coherent wave packet yields a quantum efficiency of 93%, but with a large transfer time constant. The quantum yield is dramatically decreased to 50% for a strongly damped incoherent wave packet, but the associated transfer time of the strongly localized wave packet is short. In addition, we find for the strongly damped wave packet that the transfer occurs via tunneling of the wave packet between the potential energy surfaces before the seam of the conical intersection is reached and a direct passage takes over. Our results provide direct evidence that vibrational coherence of the electronic wave packet is a decisive factor which determines the dynamical behavior of a wave packet in the vicinity of the conical intersection.

  1. Tracking an electronic wave packet in the vicinity of a conical intersection.

    PubMed

    Qi, Da-Long; Duan, Hong-Guang; Sun, Zhen-Rong; Miller, R J Dwayne; Thorwart, Michael

    2017-08-21

    This work treats the impact of vibrational coherence on the quantum efficiency of a dissipative electronic wave packet in the vicinity of a conical intersection by monitoring the time-dependent wave packet projection onto the tuning and the coupling mode. The vibrational coherence of the wave packet is tuned by varying the strength of the dissipative vibrational coupling of the tuning and the coupling modes to their thermal baths. We observe that the most coherent wave packet yields a quantum efficiency of 93%, but with a large transfer time constant. The quantum yield is dramatically decreased to 50% for a strongly damped incoherent wave packet, but the associated transfer time of the strongly localized wave packet is short. In addition, we find for the strongly damped wave packet that the transfer occurs via tunneling of the wave packet between the potential energy surfaces before the seam of the conical intersection is reached and a direct passage takes over. Our results provide direct evidence that vibrational coherence of the electronic wave packet is a decisive factor which determines the dynamical behavior of a wave packet in the vicinity of the conical intersection.

  2. Production and manipulation of wave packets from ultracold atoms in an optical lattice

    NASA Astrophysics Data System (ADS)

    Pedersen, Poul L.; Gajdacz, Miroslav; Winter, Nils; Hilliard, Andrew J.; Sherson, Jacob F.; Arlt, Jan

    2013-08-01

    Within the combined potential of an optical lattice and a harmonic magnetic trap, it is possible to form matter wave packets by intensity modulation of the lattice. An analysis of the production and motion of these wave packets provides a detailed understanding of the dynamical evolution of the system. The modulation technique also allows for a controllable transfer (deexcitation) of atoms from such wave packets to a state bound by the lattice. Thus, it acts as a beam splitter for matter waves that can selectively address different bands, enabling the preparation of atoms in localized states. The combination of wave packet creation and deexcitation closely resembles the well-known method of pump-probe spectroscopy. Here, we use the deexcitation for spectroscopy of the anharmonicity of the combined potential. Finally, we demonstrate that lattice modulation can be used to excite matter wave packets to even higher momenta, producing fast wave packets with potential applications in precision measurements.

  3. Slice imaging and wave packet study of the photodissociation of CH3I in the blue edge of the A-band: evidence of reverse 3Q0 ← 1Q1 non-adiabatic dynamics.

    PubMed

    González, M G; Rodríguez, J D; Rubio-Lago, L; García-Vela, A; Bañares, L

    2011-09-28

    The photodissociation of CH(3)I in the blue edge (217-230 nm) of the A-band has been studied using a combination of slice imaging and resonance enhanced multiphoton ionization (REMPI) detection of the CH(3) fragment in the vibrational ground state (ν = 0). The profiles of the CH(3) (ν = 0) kinetic energy distributions and the photofragment anisotropies are interpreted in terms of the contribution of the excited surfaces involved in the photodissociation process, as well as the probability of non-adiabatic curve crossing between the (3)Q(0) and (1)Q(1) states. In the studied region, unlike in the central part of the A-band where absorption to the (3)Q(0) state dominates, the I((2)P(J)), with J = 1/2, 3/2, in correlation with CH(3) (ν = 0) kinetic energy distributions show clearly two contributions of different anisotropy, signature of the competing adiabatic and non-adiabatic dynamics, whose ratio strongly depends on the photolysis wavelength. The experimental results are compared with multisurface wave packet calculations carried out using the available ab initio potential energy surfaces, transition moments, and non-adiabatic couplings, employing a reduced dimensionality model. A good qualitative agreement is found between experiment and theory and both show evidence of reverse (3)Q(0)←(1)Q(1) non-adiabatic dynamics at the bluest excitation wavelengths both in the fragment kinetic energy and angular distributions.

  4. Packet Controller For Wireless Headset

    NASA Technical Reports Server (NTRS)

    Christensen, Kurt K.; Swanson, Richard J.

    1993-01-01

    Packet-message controller implements communications protocol of network of wireless headsets. Designed for headset application, readily adapted to other uses; slight modification enables controller to implement Integrated Services Digital Network (ISDN) X.25 protocol, giving far-reaching applications in telecommunications. Circuit converts continuous voice signals into digital packets of data and vice versa. Operates in master or slave mode. Controller reduced to single complementary metal oxide/semiconductor integrated-circuit chip. Occupies minimal space in headset and consumes little power, extending life of headset battery.

  5. Disk Operating System--DOS. Teacher Packet. Learning Activity Packets.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    The Learning Activity Packets (LAPs) contained in this manual are designed to assist the beginning user in understanding DOS (Disk Operating System). LAPs will not work with any version below DOS Version 3.0 and do not address the enhanced features of versions 4.0 or higher. These elementary activities cover only the DOS commands necessary to…

  6. Sports Medicine. Clinical Rotation. Instructor's Packet and Student Study Packet.

    ERIC Educational Resources Information Center

    Texas Univ., Austin. Extension Instruction and Materials Center.

    The materials in this packet are for a course designed to provide individualized classroom study for a specific area of clinical rotation--sports medicine. The instructor's manual describes the learning objectives together with a list of reference materials that should be provided for completion of the student worksheets, and lists suggested…

  7. Sports Medicine. Clinical Rotation. Instructor's Packet and Student Study Packet.

    ERIC Educational Resources Information Center

    Texas Univ., Austin. Extension Instruction and Materials Center.

    The materials in this packet are for a course designed to provide individualized classroom study for a specific area of clinical rotation--sports medicine. The instructor's manual describes the learning objectives together with a list of reference materials that should be provided for completion of the student worksheets, and lists suggested…

  8. Entropy Based Detection of DDoS Attacks in Packet Switching Network Models

    NASA Astrophysics Data System (ADS)

    Lawniczak, Anna T.; Wu, Hao; di Stefano, Bruno

    Distributed denial-of-service (DDoS) attacks are network-wide attacks that cannot be detected or stopped easily. They affect “natural” spatio-temporal packet traffic patterns, i.e. “natural distributions” of packets passing through the routers. Thus, they affect “natural” information entropy profiles, a sort of “fingerprints”, of normal packet traffic. We study if by monitoring information entropy of packet traffic through selected routers one may detect DDoS attacks or anomalous packet traffic in packet switching network (PSN) models. Our simulations show that the considered DDoS attacks of “ping” type cause shifts in information entropy profiles of packet traffic monitored even at small sets of routers and that it is easier to detect these shifts if static routing is used instead of dynamic routing. Thus, network-wide monitoring of information entropy of packet traffic at properly selected routers may provide means for detecting DDoS attacks and other anomalous packet traffics.

  9. Environment Resource Packets Get Wide Use

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1974

    1974-01-01

    Announces the availability of the resource packet entitled "Noise Pollution," the third in the series prepared by the University of Maryland, and the main topics which will be covered in the remaining three packets. (CC)

  10. A robust coding scheme for packet video

    NASA Technical Reports Server (NTRS)

    Chen, Yun-Chung; Sayood, Khalid; Nelson, Don J.

    1992-01-01

    A layered packet video coding algorithm based on a progressive transmission scheme is presented. The algorithm provides good compression and can handle significant packet loss with graceful degradation in the reconstruction sequence. Simulation results for various conditions are presented.

  11. A robust coding scheme for packet video

    NASA Technical Reports Server (NTRS)

    Chen, Y. C.; Sayood, Khalid; Nelson, D. J.

    1991-01-01

    We present a layered packet video coding algorithm based on a progressive transmission scheme. The algorithm provides good compression and can handle significant packet loss with graceful degradation in the reconstruction sequence. Simulation results for various conditions are presented.

  12. New packet scheduling algorithm in wireless CDMA data networks

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Gao, Zhuo; Li, Shaoqian; Li, Lemin

    2002-08-01

    The future 3G/4G wireless communication systems will provide internet access for mobile users. Packet scheduling algorithms are essential for QoS of diversified data traffics and efficient utilization of radio spectrum.This paper firstly presents a new packet scheduling algorithm DSTTF under the assumption of continuous transmission rates and scheduling intervals for CDMA data networks . Then considering the constraints of discrete transmission rates and fixed scheduling intervals imposed by the practical system, P-DSTTF, a modified version of DSTTF, is brought forward. Both scheduling algorithms take into consideration of channel condition, packet size and traffic delay bounds. The extensive simulation results demonstrate that the proposed scheduling algorithms are superior to some typical ones in current research. In addition, both static and dynamic wireless channel model of multi-level link capacity are established. These channel models sketch better the characterizations of wireless channel than two state Markov model widely adopted by the current literature.

  13. Population and Development [Issue Packet].

    ERIC Educational Resources Information Center

    American Freedom from Hunger Foundation, Washington, DC.

    A variety of informational materials is compiled in this issue packet concentrating on population and development. The materials have been assembled to understand the issues associated with the facts of the world's population and to try to invent new forms of action and thought necessary to find the possibilities hidden in the population issue.…

  14. Homelessness: A General Information Packet.

    ERIC Educational Resources Information Center

    Homelessness Exchange, Washington, DC.

    This packet contains documents that provide general information about homelessness and the need for both Federal and local action to help the homeless people in America. Sections 1 and 2 contain the following articles released by the Homelessness Information Exchange: (1) "The Problem of Homelessness Nationwide"; and "Alternative Family Housing…

  15. Hunger and Development [Issue Packet].

    ERIC Educational Resources Information Center

    American Freedom from Hunger Foundation, Washington, DC.

    A variety of informational materials is compiled in this issue packet concentrating on hunger and development. They have been assembled to understand the issues associated with the facts of world hunger and to try to invent new forms of action and thought necessary to find the possibilities hidden in the hunger issue. Items include: (1) a fact and…

  16. Recycling Study Guide [Resource Packet].

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Natural Resources, Madison.

    This resource packet contains six documents developed by the Wisconsin Department of Natural Resources in order to help teachers infuse the environmental education topics of recycling and solid waste into social studies, art, English, health, mathematics, science, and environmental education classes. "Recycling Study Guide" contains 19…

  17. Dissection & Science Fairs. [Information Packet.

    ERIC Educational Resources Information Center

    National Anti-Vivisection Society, Chicago, IL.

    This collection of pamphlets and articles reprinted from other National Anti-Vivisection Society (NAVS) publications was compiled to address the issues of classroom laboratory dissection and the use of animals in science fair projects. Three of the pamphlets contained in this packet are student handbooks designed to help students of elementary,…

  18. Information Packet on Surrogate Parents.

    ERIC Educational Resources Information Center

    Moore, Jean J.; Mason, Doris M.

    The information packet focuses on the role of the surrogate parent with emphasis on the rights of the handicapped child as mandated by P.L. 94-142, the Education for All Handicapped Children Act. Included are the following: a discussion of 10 surrogate parent issues identified through a literature search and survey of five states (Connecticut,…

  19. Hunger and Development [Issue Packet].

    ERIC Educational Resources Information Center

    American Freedom from Hunger Foundation, Washington, DC.

    A variety of informational materials is compiled in this issue packet concentrating on hunger and development. They have been assembled to understand the issues associated with the facts of world hunger and to try to invent new forms of action and thought necessary to find the possibilities hidden in the hunger issue. Items include: (1) a fact and…

  20. Rural Electric Youth Tour Packet.

    ERIC Educational Resources Information Center

    National Rural Electric Cooperative Association, Washington, DC.

    This packet of materials provides information about tours for rural secondary students in Washington, D.C., sponsored jointly by the National Rural Electric Cooperative Association (NRECA), state rural electric cooperatives, and statewide associations of rural electric systems. Since 1958 this program has selected high school students to visit…

  1. Population and Development [Issue Packet].

    ERIC Educational Resources Information Center

    American Freedom from Hunger Foundation, Washington, DC.

    A variety of informational materials is compiled in this issue packet concentrating on population and development. The materials have been assembled to understand the issues associated with the facts of the world's population and to try to invent new forms of action and thought necessary to find the possibilities hidden in the population issue.…

  2. Science and Art, Learning Packet.

    ERIC Educational Resources Information Center

    Singer, Carla Michalove

    Science and art have much in common. Artists as well as scientists carefully observe and communicate their subjects. Throughout time, artists have been involved in experimentation, an important scientific method which can lead to new discoveries. Both scientific developments and the ongoing history of art are cumulative. This learning packet is an…

  3. Ancient Chinese Bronzes: Teacher's Packet.

    ERIC Educational Resources Information Center

    Smithsonian Institution, Washington, DC. Arthur M. Sackler Gallery.

    The focus of this teacher's packet is the bronze vessels made for the kings and great families of the early Chinese dynasties between 1700 B.C. and 200 A.D. The materials in the guide are intended for use by teachers and students visiting the exhibition, "The Arts of China," at the Arthur M. Sackler Gallery of the Smithsonian Institution…

  4. Packet Radio: An Alternative Way to Connect.

    ERIC Educational Resources Information Center

    Lucas, Larry W.

    1995-01-01

    Explains packet radio as a form of telecomputing in which digital data is transported via radio waves instead of telephone lines or other cabling, and describes how it can be used by students to access the Internet. Highlights include packet bulletin board systems and equipment needed for a packet radio station. (LRW)

  5. [KIND Worksheet Packet: Wild Animals (Junior).

    ERIC Educational Resources Information Center

    National Association for Humane and Environmental Education, East Haddam, CT.

    This packet is the junior part of a series of worksheet packets available at both junior (grades 3-4) and senior (grades 5-6) levels that covers a variety of humane and environmental topics. Each packet includes 10 worksheets, all of which originally appeared in past issues of the annual teaching magazine "KIND (Kids in Nature's Defense)…

  6. [KIND Worksheet Packet: Wild Animals (Senior).

    ERIC Educational Resources Information Center

    National Association for Humane and Environmental Education, East Haddam, CT.

    This packet is the senior part of a series of worksheet packets available at both junior (grades 3-4) and senior (grades 5-6) levels that covers a variety of humane and environmental topics. Each packet includes 10 worksheets, all of which originally appeared in past issues of the annual teaching magazine "KIND (Kids in Nature's Defense)…

  7. Trade Related Reading Packets for Disabled Readers.

    ERIC Educational Resources Information Center

    Davis, Beverly; Woodruff, Nancy S.

    Six trade-related reading packets for disabled readers are provided for these trades: assemblers, baking, building maintenance, data entry, interior landscaping, and warehousing. Each packet stresses from 9 to 14 skills. Those skills common to most packets include context clues, fact or opinion, details, following directions, main idea,…

  8. Packet Radio: An Alternative Way to Connect.

    ERIC Educational Resources Information Center

    Lucas, Larry W.

    1995-01-01

    Explains packet radio as a form of telecomputing in which digital data is transported via radio waves instead of telephone lines or other cabling, and describes how it can be used by students to access the Internet. Highlights include packet bulletin board systems and equipment needed for a packet radio station. (LRW)

  9. Trade Related Reading Packets for Disabled Readers.

    ERIC Educational Resources Information Center

    Davis, Beverly; Woodruff, Nancy S.

    Six trade-related reading packets for disabled readers are provided for these trades: assemblers, baking, building maintenance, data entry, interior landscaping, and warehousing. Each packet stresses from 9 to 14 skills. Those skills common to most packets include context clues, fact or opinion, details, following directions, main idea,…

  10. Wave packet dynamics of H2(v1=8-14)+H2(v2=0-2): the role of the potential energy surface on different reactive and dissociative processes.

    PubMed

    Bartolomei, Massimiliano; Hernández, Marta I; Campos-Martínez, José

    2005-02-08

    A time-dependent wave packet method has been used to study different competing products of H(2)+H(2) collisions: four center reaction, collision induced dissociation, reactive dissociation, and three-body complex formation. A three-degree-of-freedom reduced dimensionality model has been used for five different geometries of the colliding complex (parallel H, crossed X, collinear L, and two T-shaped geometries T(I) and T(II)), with reactants in selected vibrational states with one diatom vibrationally "hot" and the other one vibrationally "cold." Product probabilities have been calculated using two potential energy surfaces [J. Chem. Phys. 101, 4004 (1994); J. Chem. Phys. 116, 666 (2002)] in order to compare their performance in the dynamics. The regions of the potential energy surfaces responsible of the threshold behavior of the probabilities have been identified. Overall, we have found that the most recent potential energy surface is less anisotropic, provides a smaller propensity for insertion-type processes, and gives lower energy thresholds.

  11. Nonuniform spatially adaptive wavelet packets

    NASA Astrophysics Data System (ADS)

    Carre, Philippe; Fernandez-Maloigne, Christine

    2000-12-01

    In this paper, we propose a new decomposition scheme for spatially adaptive wavelet packets. Contrary to the double tree algorithm, our method is non-uniform and shift- invariant in the time and frequency domains, and is minimal for an information cost function. We prose some-restrictions to our algorithm to reduce the complexity and permitting us to provide some time-frequency partitions of the signal in agreement with its structure. This new 'totally' non-uniform transform, more adapted than Malvar, Packets or dyadic double-tree decomposition, allows the study of all possible time-frequency partitions with the only restriction that the blocks are rectangular. It permits one to obtain a satisfying Time-Frequency representation, and is applied for the study of EEG signals.

  12. Time-resolved Coulomb-explosion imaging of nuclear wave-packet dynamics induced in diatomic molecules by intense few-cycle laser pulses

    SciTech Connect

    Bocharova, I. A.; Thumm, U.; Ray, D.; Cocke, C. L.; Alnaser, A. S.; Niederhausen, T.; Litvinyuk, I. V.

    2011-01-15

    We studied the nuclear dynamics in diatomic molecules (N{sub 2}, O{sub 2}, and CO) following their interaction with intense near-IR few-cycle laser pulses. Using Coulomb-explosion imaging in combination with the pump-probe approach, we mapped dissociation pathways of those molecules and their molecular ions. We identified all symmetric and asymmetric breakup channels for molecular ions up to N{sub 2}{sup 5+}, O{sub 2}{sup 4+}, and CO{sup 4+}. For each of those channels we measured the kinetic energy release (KER) spectra as a function of delay between the pump and probe pulses. For both N{sub 2} and O{sub 2} the asymmetric (3,1) channel is only observed for short (<20 fs) delays and completely disappears after that. We interpret this observation as a signature of electron localization taking place in dissociating molecular tri-cations when their internuclear separation reaches about 2.5 times the equilibrium bond length. This is a direct confirmation that electron localization plays an essential role in the universal mechanism of enhanced ionization in homonuclear diatomic molecules. Using classical and quantum mechanical simulations of the time-dependent KER spectra, we identify the pathways and intermediate states involved in the laser-induced dissociation of those molecules.

  13. Efficient rate-distortion optimized media streaming for tree-reducible packet dependencies

    NASA Astrophysics Data System (ADS)

    Röder, Martin; Cardinal, Jean; Hamzaoui, Raouf

    2006-01-01

    In packetized media streaming systems, packet dependencies are often modeled as a directed acyclic graph called the dependency graph. We consider the situation where the dependency graph is reducible to a tree. This occurs, for instance, in MPEG1 video streams that are packetized at the frame level. Other video coding standards such as H.264 also allow tree-reducible dependencies. We propose in this context efficient dynamic programming algorithms for finding rate-distortion optimal transmission policies. The proposed algorithms are much faster than previous exact algorithms developed for arbitrary dependency graphs.

  14. Experimental Packet Radio System Design Plan

    DTIC Science & Technology

    1974-03-13

    series of step functions. Rather, it must be viewed as having an irregular shape. The situation at any particular point in time ’ s determined by...it waits a sufficient time to allow devices tudt receive the packet to repeat It. When any of these repeats the packet and the packet is...keeping heat input to any or all burners at a safe level at all times . CLEAN Complete, flameless combustion of the gas results in no soot formation, no

  15. Causal evolution of wave packets

    NASA Astrophysics Data System (ADS)

    Eckstein, Michał; Miller, Tomasz

    2017-03-01

    Drawing from the optimal transport theory adapted to the relativistic setting we formulate the principle of a causal flow of probability and apply it in the wave-packet formalism. We demonstrate that whereas the Dirac Hamiltonian impels a causal evolution of probabilities, even in the presence of interactions, the relativistic-Schrödinger model is acausal. We quantify the causality breakdown in the latter model and argue that, in contrast to the popular viewpoint, it is not related to the localization properties of the states.

  16. Software For Management Of A Packet-Radio Network

    NASA Technical Reports Server (NTRS)

    Smyth, Patrick J.; Chauvin, Todd H.; Oliver, Gordon P.; Statman, Joseph I.

    1994-01-01

    Network-management software assists in planning, monitoring, and controlling resources of Datalink network. Packet-message network featuring time-division multiple access, frequency and spatial diversity, and dynamic tree-structured routing scheme. Developed for communication between central control station on ground and instrumented aircraft flying over test range. Aircraft derives navigational data from satellites of Global Positioning System, and primary function of Datalink network feeding GPS position data from participating aircraft into control center in real time.

  17. Power-Aware Cognitive Packet Networks

    DTIC Science & Technology

    2005-04-01

    Power-Aware Cognitive Packet Networks Erol Gelenbe Dennis Gabor Chair Ricardo Lent Research Fellow Department of Electrical and Electronic...intelligent distribution of energy consumption in the network Power-Aware Cognitive Packet Networks Erol Gelenbe Dennis Gabor Chair Ricardo Lent

  18. Jamestown Settlement Museum Teacher Resource Packet.

    ERIC Educational Resources Information Center

    Jamestown-Yorktown Foundation, Williamsburg, VA. Education Dept.

    This teacher's packet provides background materials for teachers to incorporate the study of Jamestown, Virginia, into their classroom. The packet includes the following background essays: (1) "A Short History of Jamestown"; (2) "The Fort"; (3) "Life in an Indian Village"; (4) "Recommended Reading and…

  19. Oral Hygiene. Instructor's Packet. Learning Activity Package.

    ERIC Educational Resources Information Center

    Hime, Kirsten

    This instructor's packet accompanies the learning activity package (LAP) on oral hygiene. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, suggested activities, additional resources (student handouts), student performance checklists for both…

  20. AIRS: Andover's Individualized Reading System Sample Packet.

    ERIC Educational Resources Information Center

    Andover Public Schools, MA.

    This packet contains portions of each component of a reading program designed to teach basic skills to children in grades one through six and to foster their enjoyment of literature. Various sections of the packet contain behavioral objectives for the skill areas of phonetic analysis, structural analysis, word meaning, comprehension, and word…

  1. German Cultural Packets 13 and 14.

    ERIC Educational Resources Information Center

    Atlanta Public Schools, GA.

    These German culture packets are designed to accompany A-LM Level II and include a statement of the rationale behind the unit, the objectives of the packet, the activities themselves, and a brief evaluation by the student. The activities involve the use of the basic text, the student workbook, corresponding tapes, and fellow students as partners…

  2. Program and Product Evaluation: An Information Packet.

    ERIC Educational Resources Information Center

    Ewy, Robert W.; Chase, Cheryl

    This is one of a series of information packets developed as part of Project ACCESS to aid Colorado teachers, educational administrators, and school board members in implementing local educational improvement plans as mandated by Colorado's Educational Accountability Act of 1971. This particular information packet provides a framework for…

  3. New Dimensions in Creativity: Teaching Packets.

    ERIC Educational Resources Information Center

    Gade, Dolores M.

    Methods that can help individuals learn to develop their inborn creative potential are presented and explained in this teaching packet. The first section of the packet is for the teacher's use and explains the approach to creativity used in the materials and the importance of creativity. Suggestions for developing this creative potential in…

  4. Nutrition. Instructor's Packet. Learning Activity Package.

    ERIC Educational Resources Information Center

    Lee, Carolyn

    This instructor's packet accompanies the learning activity package (LAP) on nutrition. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, suggested activities, an additional resources list, and student completion cards to issue to students as an…

  5. "Confidentiality." Instructor's Packet. Learning Activity Package.

    ERIC Educational Resources Information Center

    Runge, Lillian

    This instructor's packet accompanies the learning activity package (LAP) on confidentiality. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, suggested activities, student completion cards to issue to students as an indicator of successful LAP…

  6. Handwashing Technique. Instructor's Packet. Learning Activity Package.

    ERIC Educational Resources Information Center

    Stark, Pamela

    This instructor's packet accompanies the learning activity package (LAP) on handwashing. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, a student performance checklist, an additional resources list, and student completion cards to issue to…

  7. Grooming. Instructor's Packet. Learning Activity Package.

    ERIC Educational Resources Information Center

    Stark, Pamela

    This instructor's packet accompanies the learning activity package (LAP) on grooming. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, suggested activities, an additional resources list, and student completion cards to issue to students as an…

  8. Blood Pressure. Instructor's Packet. Learning Activity Package.

    ERIC Educational Resources Information Center

    Hime, Kirsten

    This instructor's packet accompanies the learning activity package (LAP) on blood pressure. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, a pupil performance checklist, a handout on blood pressure, and student completion cards to issue to…

  9. Energy Conservation Activity Packet, Grade 5.

    ERIC Educational Resources Information Center

    Bakke, Ruth

    This activity packet for grade 5 is one of a series developed in response to concern for energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade five. The packet is divided into two parts and provides the teacher with background information, concepts and…

  10. Archaeology: Smithsonian Institution Teacher's Resource Packet.

    ERIC Educational Resources Information Center

    National Museum of Natural History, Washington, DC.

    This archaeology resource packet provides information on frequently asked questions of the National Museum of Natural History (Smithsonian Institution), including the topics of: (1) career information; (2) excavation; (3) fieldwork opportunities; (4) artifact identification; and (5) preservation. The packet is divided into six sections. Section 1…

  11. Research on the key technology and application of the packet transmission network

    NASA Astrophysics Data System (ADS)

    Yun, Xiang; Wang, Zhong

    2009-08-01

    In proportion to the rapid development of telecommunication service, Telecom Operators already have made a strategic transition from "Network, Communication Operators" into "integrated information service provider" to provide customer with varied information service, such as the BT "21st century plan", "Next" plan proposed by France Telecom, FNE and BMS plan by Australia Telstra, RANE Programs by NTT. Domestic Carries also made strategic transition plans. And the priority of network transition is to find the way to build a unified and integrated network supporting carrier-grade Ethernet service also compatible with the conventional network service. The division of the service results in the Packet transmission, namely packet technology, makes Packet-based Transmission Network keeping the virtues of transmission network. The virtues are good scalability, varied operation and maintenance, high-speed protection switching, connection-oriented feature, and building up connection with NMS. At the same time, it adds some characteristics to adapt the statistical multiplexing in the packet service, for instance: connection-oriented label switching, QoS mechanism, dynamic and flexible control plane. The Packet Transmission Network (PTN) can be divided into four layers: packet transmission channel layer (PTC), packet transmission path layer (PTP), and optional packet transmission section Layer (PTS) and physical layer. The key technologies of PTN are as follows: the connection-oriented based label transmission and the statistical multiplexing on packet switching. The use of layer and sub-domain is to provide good scalability. Supporting for fault detection and performance testing and other Operation, Management and Maintenance (OAM) function, linear protection switching, ring protection, dynamics survival technology of pre-placed re-route, QoS, circuit emulation for TDM service, ATM based on PWE3 technique, and MAC layer or physical layer based packet clock synchronization

  12. Method and Apparatus for Processing UDP Data Packets

    NASA Technical Reports Server (NTRS)

    Murphy, Brandon M. (Inventor)

    2017-01-01

    A method and apparatus for processing a plurality of data packets. A data packet is received. A determination is made as to whether a portion of the data packet follows a selected digital recorder standard protocol based on a header of the data packet. Raw data in the data packet is converted into human-readable information in response to a determination that the portion of the data packet follows the selected digital recorder standard protocol.

  13. Wave packet systems on local fields

    NASA Astrophysics Data System (ADS)

    Shah, Firdous A.; Ahmad, Owais

    2017-10-01

    In this paper, we introduce the notion of wave packet systems on local fields of positive characteristic and derive some characterizations of these systems by means of two basic equations in the Fourier domain. More precisely, we establish a complete characterization of orthogonal wave packet systems in L2(K) which include the corresponding results of wavelet analysis and Gabor theory as the special cases. We shall also provide a sufficient condition of the completeness of wave packet systems on local fields of positive characteristic subject to some mild conditions. The paper concludes with the necessary and sufficient conditions for the wave packet systems to be wave packet Parseval frames for L2(K) .

  14. Protocol software for a packet voice terminal

    NASA Astrophysics Data System (ADS)

    McElwain, C. K.

    1983-11-01

    A Packet Voice Terminal (PVT) has been developed at Lincoln Laboratory to provide voice access to an experimental wideband internetwork packet system. The PVT employs a modular, microprocessor-based structure to provide voice processing, packet voice protocol, and network interface functions. The packet voice protocols are implemented in software in the Protocol Processor (PP) module, which is the primary controlling module of the PVT and which handles interfaces to a voice processor, a network interface processor, and a user instrument. This report describes the software implemented in the Protocol Processor. The implementation of the Network Voice Protocol (NVP-II) and the Stream (ST) protocol are described. Call set-up functions for both point-to-point calls and conferencing, and the methods used for packetization and reconstitution of speech, are described. Problems encountered and solutions which have been implemented are discussed.

  15. Two-dimensional attosecond electron wave-packet interferometry.

    PubMed

    Xie, Xinhua

    2015-05-01

    We propose a two-dimensional interferometry based on the electron wave-packet interference by using a cycle-shaped orthogonally polarized two-color laser field. With such a method, the subcycle and intercycle interferences can be disentangled into different directions in the measured photoelectron momentum spectra. The Coulomb influence can be minimized and the overlapping of interference fringes with the complicated low-energy structures can be avoided as well. The contributions of the excitation effect and the long-range Coulomb potential can be traced in the Fourier domain of the photoelectron distribution. Because of these advantages, precise information on valence electron dynamics of atoms or molecules with attosecond temporal resolution and additional spatial information with angstrom resolution can be obtained with the two-dimensional electron wave-packet interferometry.

  16. Experimental and trial-based study of Resilient Packet Ring

    NASA Astrophysics Data System (ADS)

    Ramnath, Vasudha; Cheng, Heng Seng; Ngoh, Lek Heng

    2002-08-01

    An experimental study of the Resilient Packet Ring (RPR) media access control (MAC) technology that is optimized for IP traffic in the metropolitan-area-network (MAN) environment is described. The study involved the deployment and trials of a RPR testbed encompassing a public optical fiber infrastructure in which Cisco Systems' Dynamic Packet Transport (DPT) Ring Technology - a prestandard RPR implementation - was used. We focus on a number of important RPR protocol features that are vital to the future success of RPR as a MAN/wide-area-network (WAN) network technology. Related research on RPR/DPT has been done so far through simulation studies only. Standardization of RPR is currently being performed by the Institute of Electrical and Electronics Engineers (IEEE) 802.17 working group and is expected to be completed in 2003. Also, we present and discuss the experiments and tests performed to investigate the key features of RPR, along with the results obtained.

  17. Bad data packet capture device

    DOEpatents

    Chen, Dong; Gara, Alan; Heidelberger, Philip; Vranas, Pavlos

    2010-04-20

    An apparatus and method for capturing data packets for analysis on a network computing system includes a sending node and a receiving node connected by a bi-directional communication link. The sending node sends a data transmission to the receiving node on the bi-directional communication link, and the receiving node receives the data transmission and verifies the data transmission to determine valid data and invalid data and verify retransmissions of invalid data as corresponding valid data. A memory device communicates with the receiving node for storing the invalid data and the corresponding valid data. A computing node communicates with the memory device and receives and performs an analysis of the invalid data and the corresponding valid data received from the memory device.

  18. Multidimensional signaling via wavelet packets

    NASA Astrophysics Data System (ADS)

    Lindsey, Alan R.

    1995-04-01

    This work presents a generalized signaling strategy for orthogonally multiplexed communication. Wavelet packet modulation (WPM) employs the basis functions from an arbitrary pruning of a full dyadic tree structured filter bank as orthogonal pulse shapes for conventional QAM symbols. The multi-scale modulation (MSM) and M-band wavelet modulation (MWM) schemes which have been recently introduced are handled as special cases, with the added benefit of an entire library of potentially superior sets of basis functions. The figures of merit are derived and it is shown that the power spectral density is equivalent to that for QAM (in fact, QAM is another special case) and hence directly applicable in existing systems employing this standard modulation. Two key advantages of this method are increased flexibility in time-frequency partitioning and an efficient all-digital filter bank implementation, making the WPM scheme more robust to a larger set of interferences (both temporal and sinusoidal) and computationally attractive as well.

  19. A scheme for synchronizing clocks connected by a packet communication network

    NASA Astrophysics Data System (ADS)

    dos Santos, R. V.; Monteiro, L. H. A.

    2012-07-01

    Consider a communication system in which a transmitter equipment sends fixed-size packets of data at a uniform rate to a receiver equipment. Consider also that these equipments are connected by a packet-switched network, which introduces a random delay to each packet. Here we propose an adaptive clock recovery scheme able of synchronizing the frequencies and the phases of these devices, within specified limits of precision. This scheme for achieving frequency and phase synchronization is based on measurements of the packet arrival times at the receiver, which are used to control the dynamics of a digital phase-locked loop. The scheme performance is evaluated via numerical simulations performed by using realistic parameter values.

  20. SDN architecture for optical packet and circuit integrated networks

    NASA Astrophysics Data System (ADS)

    Furukawa, Hideaki; Miyazawa, Takaya

    2016-02-01

    We have been developing an optical packet and circuit integrated (OPCI) network, which realizes dynamic optical path, high-density packet multiplexing, and flexible wavelength resource allocation. In the OPCI networks, a best-effort service and a QoS-guaranteed service are provided by employing optical packet switching (OPS) and optical circuit switching (OCS) respectively, and users can select these services. Different wavelength resources are assigned for OPS and OCS links, and the amount of their wavelength resources are dynamically changed in accordance with the service usage conditions. To apply OPCI networks into wide-area (core/metro) networks, we have developed an OPCI node with a distributed control mechanism. Moreover, our OPCI node works with a centralized control mechanism as well as a distributed one. It is therefore possible to realize SDN-based OPCI networks, where resource requests and a centralized configuration are carried out. In this paper, we show our SDN architecture for an OPS system that configures mapping tables between IP addresses and optical packet addresses and switching tables according to the requests from multiple users via a web interface. While OpenFlow-based centralized control protocol is coming into widespread use especially for single-administrative, small-area (LAN/data-center) networks. Here, we also show an interworking mechanism between OpenFlow-based networks (OFNs) and the OPCI network for constructing a wide-area network, and a control method of wavelength resource selection to automatically transfer diversified flows from OFNs to the OPCI network.

  1. Experiments examining drag in linear droplet packets

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. V.; Dunn-Rankin, D.

    1992-01-01

    This paper presents an experimental study of vertically traveling droplet packets, where the droplets in each packet are aligned linearly, one behind another. The paper describes in detail, an experimental apparatus that produces repeatable, linearly aligned, and isolated droplet packets containing 1 6 droplets per packet. The apparatus is suitable for examining aerodynamic interactions between droplets within each packet. This paper demonstrates the performance of the apparatus by examining the drag reduction and collision of droplets traveling in the wake of a lead droplet. Comparison of a calculated single droplet trajectory with the detailed droplet position versus time data for a droplet packet provides the average drag reduction experienced by the trailing droplets due to the aerodynamic wake of the lead droplet. For the conditions of our experiment (4 droplet packet, 145 μm methanol droplets, 10 m/s initial velocity, initial droplet spacing of 5.2 droplet diameters, Reynolds number approx. 80) the average drag on the first trailing droplet was found to be 75% of the drag on the lead droplet.

  2. Interconnecting network for switching data packets and method for switching data packets

    DOEpatents

    Benner, Alan Frederic; Minkenberg, Cyriel Johan Agnes; Stunkel, Craig Brian

    2010-05-25

    The interconnecting network for switching data packets, having data and flow control information, comprises a local packet switch element (S1) with local input buffers (I(1,1) . . . I(1,y)) for buffering the incoming data packets, a remote packet switch element (S2) with remote input buffers (I(2,1) . . . I(2,y)) for buffering the incoming data packets, and data lines (L) for interconnecting the local and the remote packet switch elements (S1, S2). The interconnecting network further comprises a local and a remote arbiter (A1, A2) which are connected via control lines (CL) to the input buffers (I(1,1) . . . I(1,y), I(2,1) . . . I(2,y)), and which are formed such that they can provide that the flow control information is transmitted via the data lines (L) and the control lines (CL).

  3. Wave-packet model for excitation by ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Suominen, Kalle-Antti; Garraway, Barry M.; Stenholm, Stig

    1992-03-01

    In this paper we discuss the excitation of a localized molecular ground-state wave function by a short laser pulse. With a one-dimensional approach we show when it is possible to excite a considerable fraction of the ground state without too much distortion of the shape of the wave packet. This is of interest in time-resolved molecular experiments where an excited wave packet is often taken as the initial state. We solve the two coupled wave equations numerically and compare results to an analytical approximation based on the Rosen-Zener model. The validity of the approximation and its breakdown is considered in detail. Special attention is paid to the effect of lengthening the pulse duration and the consequences of the accompanying number of Rabi flops occurring in the area theorem. When the approximation breaks down, the wave packet becomes distorted and spread out, but there are still interesting coherence effects due to the interplay between the Rabi flopping and the molecular dynamics; these are displayed and discussed. Finally, the relationship to other works and possible generalizations are presented.

  4. Interconnection algorithms in multi-hop packet radio topologies

    NASA Astrophysics Data System (ADS)

    Papantoni-Kazakos, P.; Paterakis, M.; Ming, Liu

    1988-08-01

    We consider a two-cluster system in multi-hop packet radio topologies. Each cluster deploys a limited sensing random access algorithm, and contains local users who transmit their packets only via the algorithm in their own cluster. The system also contains marginal users, who may transmit their packers via either one of the algorithms in the two clusters. For the above system, we adopt a limited sensing random access algorithm per cluster that has been previously studied. This algorithm utilizes binary, collision versus noncollision, feedback per slot, and in the presence of the limit Poisson user model and the absence of marginal back per slot, and in the presence of the limit Poisson user model and the absence of marginal users its throughout is 0.43. We consider a dynamic interconnection policy for the marginal users, and we then study the overall system performance in the presence of limit Poisson user populations. Specifically, we study the stability regions of the system and the per packet expected delays. Our interconnection policy accelerates the marginal users, presenting them with a significant delay advantage over the local users. This is desirable when the marginal users transmit high priority data, for example.

  5. Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering

    NASA Astrophysics Data System (ADS)

    Kondorskiy, Alexey D.; Nanbu, Shinkoh

    2015-09-01

    We present an approach, which allows to employ the adiabatic wave packet propagation technique and semiclassical theory to treat the nonadiabatic processes by using trajectory hopping. The approach developed generates a bunch of hopping trajectories and gives all additional information to incorporate the effect of nonadiabatic coupling into the wave packet dynamics. This provides an interface between a general adiabatic frozen Gaussian wave packet propagation method and the trajectory surface hopping technique. The basic idea suggested in [A. D. Kondorskiy and H. Nakamura, J. Chem. Phys. 120, 8937 (2004)] is revisited and complemented in the present work by the elaboration of efficient numerical algorithms. We combine our approach with the adiabatic Herman-Kluk frozen Gaussian approximation. The efficiency and accuracy of the resulting method is demonstrated by applying it to popular benchmark model systems including three Tully's models and 24D model of pyrazine. It is shown that photoabsorption spectrum is successfully reproduced by using a few hundreds of trajectories. We employ the compact finite difference Hessian update scheme to consider feasibility of the ab initio "on-the-fly" simulations. It is found that this technique allows us to obtain the reliable final results using several Hessian matrix calculations per trajectory.

  6. Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering.

    PubMed

    Kondorskiy, Alexey D; Nanbu, Shinkoh

    2015-09-21

    We present an approach, which allows to employ the adiabatic wave packet propagation technique and semiclassical theory to treat the nonadiabatic processes by using trajectory hopping. The approach developed generates a bunch of hopping trajectories and gives all additional information to incorporate the effect of nonadiabatic coupling into the wave packet dynamics. This provides an interface between a general adiabatic frozen Gaussian wave packet propagation method and the trajectory surface hopping technique. The basic idea suggested in [A. D. Kondorskiy and H. Nakamura, J. Chem. Phys. 120, 8937 (2004)] is revisited and complemented in the present work by the elaboration of efficient numerical algorithms. We combine our approach with the adiabatic Herman-Kluk frozen Gaussian approximation. The efficiency and accuracy of the resulting method is demonstrated by applying it to popular benchmark model systems including three Tully's models and 24D model of pyrazine. It is shown that photoabsorption spectrum is successfully reproduced by using a few hundreds of trajectories. We employ the compact finite difference Hessian update scheme to consider feasibility of the ab initio "on-the-fly" simulations. It is found that this technique allows us to obtain the reliable final results using several Hessian matrix calculations per trajectory.

  7. Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering

    SciTech Connect

    Kondorskiy, Alexey D.; Nanbu, Shinkoh

    2015-09-21

    We present an approach, which allows to employ the adiabatic wave packet propagation technique and semiclassical theory to treat the nonadiabatic processes by using trajectory hopping. The approach developed generates a bunch of hopping trajectories and gives all additional information to incorporate the effect of nonadiabatic coupling into the wave packet dynamics. This provides an interface between a general adiabatic frozen Gaussian wave packet propagation method and the trajectory surface hopping technique. The basic idea suggested in [A. D. Kondorskiy and H. Nakamura, J. Chem. Phys. 120, 8937 (2004)] is revisited and complemented in the present work by the elaboration of efficient numerical algorithms. We combine our approach with the adiabatic Herman-Kluk frozen Gaussian approximation. The efficiency and accuracy of the resulting method is demonstrated by applying it to popular benchmark model systems including three Tully’s models and 24D model of pyrazine. It is shown that photoabsorption spectrum is successfully reproduced by using a few hundreds of trajectories. We employ the compact finite difference Hessian update scheme to consider feasibility of the ab initio “on-the-fly” simulations. It is found that this technique allows us to obtain the reliable final results using several Hessian matrix calculations per trajectory.

  8. Acoustic emissions from convected wave packets

    NASA Astrophysics Data System (ADS)

    Obrist, Dominik

    2011-02-01

    Localized acoustic sources can often be modeled by wave packets. It has been recognized for a long time that the particular structure of these wave packet sources has a strong influence on the character of the acoustic emission to the far field. In the present work, we study the acoustic emission patterns with respect to the phase velocity, group velocity, size, and aspect ratio of the wave packet sources. To this end, the acoustic problem is formulated on the basis of Lighthill's acoustic analogy and then recast to the geometrical problem of conic sections. This leads to the notion of elliptic (subsonic), parabolic (sonic), and hyperbolic (supersonic) acoustic emission patterns. The resulting geometric theory for acoustic emissions from wave packets includes phenomena such as Mach waves, bi- and superdirectivity, Doppler shift, and silent directions.

  9. Flexible-rate optical packet generation/detection and label swapping for optical label switching networks

    NASA Astrophysics Data System (ADS)

    Wu, Zhongying; Li, Juhao; Tian, Yu; Ge, Dawei; Zhu, Paikun; Chen, Yuanxiang; Chen, Zhangyuan; He, Yongqi

    2017-03-01

    In recent years, optical label switching (OLS) gains lots of attentions due to its intrinsic advantages to implement protocol, bit-rate, granularity and data format transparency packet switching. In this paper, we propose a novel scheme to realize flexible-rate optical packet switching for OLS networks. At the transmitter node, flexible-rate packet is generated by parallel modulating different combinations of optical carriers generated from the optical multi-carrier generator (OMCG), among which the low-speed optical label occupies one carrier. At the switching node, label is extracted and re-generated in label processing unit (LPU). The payloads are switched based on routing information and new label is added after switching. At the receiver node, another OMCG serves as local oscillators (LOs) for optical payloads coherent detection. The proposed scheme offers good flexibility for dynamic optical packet switching by adjusting the payload bandwidth and could also effectively reduce the number of lasers, modulators and receivers for packet generation/detection. We present proof-of-concept demonstrations of flexible-rate packet generation/detection and label swapping in 12.5 GHz grid. The influence of crosstalk for cascaded label swapping is also investigated.

  10. Protocol Software for a Packet Voice Terminal

    DTIC Science & Technology

    1983-11-16

    III satellite. The PVTs with their attached telephone instrument serve as the interface with the voice user. The PVTs prepare speech for transmission...through a packet network by digitizing the speech, preparing speech data packets, and sending speech data messages. The PVT handles the speech coming...TOTALKin. Thes Foori alControle wilno trani speech message s unlTreessin ithas note rcenie s speehdfr ao sufficentpo toefl erAcofitt cdng atei t pfres

  11. Detecting the BAO using Discrete Wavelet Packets

    NASA Astrophysics Data System (ADS)

    Garcia, Noel Anthony; Wu, Yunyun; Kadowaki, Kevin; Pando, Jesus

    2017-01-01

    We use wavelet packets to investigate the clustering of matter on galactic scales in search of the Baryon Acoustic Oscillations. We do so in two ways. We develop a wavelet packet approach to measure the power spectrum and apply this method to the CMASS galaxy catalogue from the Sloan Digital Sky Survey (SDSS). We compare the resulting power spectrum to published BOSS results by measuring a parameter β that compares our wavelet detected oscillations to the results from the SDSS collaboration. We find that β=1 indicating that our wavelet packet methods are detecting the BAO at a similar level as traditional Fourier techniques. We then use wavelet packets to decompose, denoise, and then reconstruct the galaxy density field. Using this denoised field, we compute the standard two-point correlation function. We are able to successfully detect the BAO at r ≈ 105 h-1 Mpc in line with previous SDSS results. We conclude that wavelet packets do reproduce the results of the key clustering statistics computed by other means. The wavelet packets show distinct advantages in suppressing high frequency noise and in keeping information localized.

  12. Comparison of Ring-Buffer-Based Packet Capture Solutions

    SciTech Connect

    Barker, Steven Andrew

    2015-10-01

    Traditional packet-capture solutions using commodity hardware incur a large amount of overhead as packets are copied multiple times by the operating system. This overhead slows sensor systems to a point where they are unable to keep up with high bandwidth traffic, resulting in dropped packets. Incomplete packet capture files hinder network monitoring and incident response efforts. While costly commercial hardware exists to capture high bandwidth traffic, several software-based approaches exist to improve packet capture performance using commodity hardware.

  13. Nonlinear electron motion in a coherent whistler wave packet

    SciTech Connect

    Khazanov, George; Tel'nikhin, Alexander; Kronberg, Tatiana

    2008-07-15

    Map equations are derived, with which nonlinear electron motion in a coherent whistler wave packet is investigated. All solutions of these equations belong to a certain strange attractor and describe chaotic motion with the stable means. The class of solutions determined the intermittent dynamics as the control parameter of the wave-particle system increases above the appropriate critical value is found. An application of the results to the problem of the stability of Earth's radiation belts is considered. It is shown that the efficient acceleration processes take place for relativistic electrons of a few MeV.

  14. Radiology/Imaging. Clinical Rotation. Instructor's Packet and Student Study Packet.

    ERIC Educational Resources Information Center

    Texas Univ., Austin. Extension Instruction and Materials Center.

    The instructor's packet, the first of two packets, is one of a series of materials designed to help students who are investigating the activities within a radiology department or considering any of the imaging technologies as a career. The material is designed to relate training experience to information studied in the classroom. This packet…

  15. Good Grooming. Cooperative Work Experience Learning Activity Packet: Series on Job Entry and Adjustment; Packet Four.

    ERIC Educational Resources Information Center

    Herschbach, Dennis R.; And Others

    This student booklet is fourth in an illustrated series of eleven learning activity packets for use in teaching job hunting and application procedures and the management of wages to secondary students. Two units are included in this packet, one covering proper dress and grooming for the interview, and the other appearance on the job. Suggestions…

  16. Radiology/Imaging. Clinical Rotation. Instructor's Packet and Student Study Packet.

    ERIC Educational Resources Information Center

    Texas Univ., Austin. Extension Instruction and Materials Center.

    The instructor's packet, the first of two packets, is one of a series of materials designed to help students who are investigating the activities within a radiology department or considering any of the imaging technologies as a career. The material is designed to relate training experience to information studied in the classroom. This packet…

  17. Atomic Electron Wave Packet Interference and Control

    NASA Astrophysics Data System (ADS)

    Noel, Michael W.

    We have used a train of picosecond laser pulses to excite an atomic electron into a coherent superposition of radially localized wave packets. Such superpositions were used in three separate experiments to study interference and control of atomic electron wave packets. The first experiment is an analog of Young's double -slit interferometer using an atomic electron instead of light. The superposition for this experiment consists of two wave packets coherently excited on opposite sides of a common Kepler orbit, which mimic the pair of slits used in Young's experiment. The two wave packets propagate and spread until they completely overlap, then a third laser pulse probes the resulting fringe pattern. The relative phase of the two wave packet can be varied so that the interference produces a single localized electron wave packet on one side of the orbit or the other. In the second experiment we study the same superposition of two separated wave packets, but this time in an analogy to Schrodinger's coherent superposition of live and dead cat. State selective field ionization is used to verify that only every other atomic level is populated in the cat state, and a Ramsey fringe measurement is used to demonstrate the coherence of the superposition. In the third experiment we have made use of the interference studied in the first two in an effort to control the radial distribution of the electron. This is done by controlling the quantum state distribution that is excited with a train of laser pulses. We have developed this control theory for the weak field case to show the simple and unique solutions that result. We have also demonstrated this type of control by showing how the state distribution can be modified for the simple case of a train of three pulses.

  18. Characterization of fast photoelectron packets in weak and strong laser fields in ultrafast electron microscopy.

    PubMed

    Plemmons, Dayne A; Tae Park, Sang; Zewail, Ahmed H; Flannigan, David J

    2014-11-01

    The development of ultrafast electron microscopy (UEM) and variants thereof (e.g., photon-induced near-field electron microscopy, PINEM) has made it possible to image atomic-scale dynamics on the femtosecond timescale. Accessing the femtosecond regime with UEM currently relies on the generation of photoelectrons with an ultrafast laser pulse and operation in a stroboscopic pump-probe fashion. With this approach, temporal resolution is limited mainly by the durations of the pump laser pulse and probe electron packet. The ability to accurately determine the duration of the electron packets, and thus the instrument response function, is critically important for interpretation of dynamics occurring near the temporal resolution limit, in addition to quantifying the effects of the imaging mode. Here, we describe a technique for in situ characterization of ultrashort electron packets that makes use of coupling with photons in the evanescent near-field of the specimen. We show that within the weakly-interacting (i.e., low laser fluence) regime, the zero-loss peak temporal cross-section is precisely the convolution of electron packet and photon pulse profiles. Beyond this regime, we outline the effects of non-linear processes and show that temporal cross-sections of high-order peaks explicitly reveal the electron packet profile, while use of the zero-loss peak becomes increasingly unreliable. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. ARQ with sequential decoding of packetized data - Queueing analysis

    NASA Astrophysics Data System (ADS)

    Shacham, N.

    1984-10-01

    The operation of a sequential decoder in a packet-switching environment is considered. Packets arrive randomly at the decoder, and a packet is stored in a buffer if the decoder is busy upon its arrival. The decoder devotes no more than a time-out period of predetermined length to the decoding of any single packet. If packet decoding is completed within that period, the packet leaves the system. Otherwise, it is retransmitted and its decoding starts anew. While a packet is retransmitted, the decoder decodes another packet that resides in its buffer. An upper bound on the maximum rate of packets that can be supported by the channel-decoder combination is derived, and the optimum time-out that maximizes that rate is determined. A discrete-time model of the decoder's queue is presented, and the average queue length and throughput are evaluated.

  20. All-optical buffering for DPSK packets

    NASA Astrophysics Data System (ADS)

    Liu, Guodong; Wu, Chongqing; Liu, Lanlan; Wang, Fu; Mao, Yaya; Sun, Zhenchao

    2013-12-01

    Advanced modulation formats, such as DPSK, DQPSK, QAM, have become the mainstream technologies in the optical network over 40Gb/s, the DPSK format is the fundamental of all advanced modulation formats. Optical buffers, as a key element for temporarily storing packets in order to synchronization or contention resolution in optical nodes, must be adapted to this new requirement. Different from other current buffers to store the NRZ or RZ format, an all-optical buffer of storing DPSK packets based on nonlinear polarization rotation in SOA is proposed and demonstrated. In this buffer, a section of PMF is used as fiber delay line to maintain the polarization states unchanged, the driver current of SOA is optimized, and no amplifier is required in the fiber loop. A packet delay resolution of 400ns is obtained and storage for tens rounds is demonstrated without significant signal degradation. Using proposed the new tunable DPSK demodulator, bit error rate has been measured after buffering for tens rounds for 10Gb/s data payload. Configurations for First-in First-out (FIFO) buffer or First-in Last-out (FILO) buffer are proposed based on this buffer. The buffer is easy control and suitable for integration. The terminal contention caused by different clients can be mitigated by managing packets delays in future all-optical network, such as optical packet switching network and WDM switching network.

  1. Digital transceiver implementation for wavelet packet modulation

    NASA Astrophysics Data System (ADS)

    Lindsey, Alan R.; Dill, Jeffrey C.

    1998-03-01

    Current transceiver designs for wavelet-based communication systems are typically reliant on analog waveform synthesis, however, digital processing is an important part of the eventual success of these techniques. In this paper, a transceiver implementation is introduced for the recently introduced wavelet packet modulation scheme which moves the analog processing as far as possible toward the antenna. The transceiver is based on the discrete wavelet packet transform which incorporates level and node parameters for generalized computation of wavelet packets. In this transform no particular structure is imposed on the filter bank save dyadic branching, and a maximum level which is specified a priori and dependent mainly on speed and/or cost considerations. The transmitter/receiver structure takes a binary sequence as input and, based on the desired time- frequency partitioning, processes the signal through demultiplexing, synthesis, analysis, multiplexing and data determination completely in the digital domain - with exception of conversion in and out of the analog domain for transmission.

  2. Queueing analysis for multicast packet switching

    NASA Astrophysics Data System (ADS)

    Hui, Joseph Y.; Renner, Thomas

    1994-02-01

    The development of broadband transmission and ATM switching technologies opens up an opportunity for providing high bit-rate multipoint and multimedia services such as video conferencing. Also, wireless communication has the inherent advantage of multicast transmission and may be used for multipoint information services. We consider multicast packet switching for which an input may send the same packet to many outputs within an ATM time slot. A host of multicast queueing disciplines can be exercised. Assuming only independent Head of Line (HOL) service to an output from slot to slot, we derive the delay performance and saturation throughput. We then examine the accuracy of the assumption for different disciplines via extensive simulation. The FCFS HOL service discipline not only has almost completely identical results for simulation versus analysis, but also provides the best saturation throughput, fairness, and delay performance among all disciplines considered. The analysis shows that implementing packet priorities can significantly improve delay performance.

  3. Technique and test of packet transmission network

    NASA Astrophysics Data System (ADS)

    Feng, Xiancheng; Duan, Wenxiao; Luo, Fan

    2011-11-01

    With the rapid development of telecommunication service, the broadband amalgamation of full service is becoming the main theme in the development of communication industry. The Packet Transmission Network adopts the technique of T-MPLS to meet next generation's demand on high speed, various services and high quality. Firstly, Requirements of PTN (Packet Transmission Network)are analyzed. Then, by deep analysis the key technology of PTN on MAN. At the same time, PTN technologies have been applied in multi-service's adaptation and transmission which are carried out by communication each other of MSTP and PTN, T-MPLS and IP/MPLS, PBT and IP/MPLS. At last, test of PTN are analyzed in detail. Test results of PTN show that PTN can replace core router to provide highly-efficient packet forward service in core network.

  4. Voice communications over packet radio networks

    NASA Astrophysics Data System (ADS)

    Seah, M. M.

    1985-03-01

    The use of packet virtual circuit technique for voice communications in military radio networks was investigated. The work was concerned with various aspects of networking which include network modeling, communications techniques, traffic analysis and network control. An attempt has been made to develop a simple yet efficient time slot assignment algorithm . This was analyzed under a variety of slot depths and networks topologies using computer simulation. The Erlang' B results were used to provide more insight into the channel characteristics of the packet radio networks. The capabilities of implementing TDMA/CDMA hybrid schemes in the system were scrutinized. A method to estimate the transmission capacity of the inter-node links was found. We demonstrate its effectiveness in controlling local congestion by computer simulation. Graphical results were presented to highlight the behavior of the proposed packet radio networks. We concluded that an appropriate link weight function would provide efficient and reliable network services.

  5. Maintaining Packet Order in Reservation-Based Shared-Memory Optical Packet Switch

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoliang; Jiang, Xiaohong; Horiguchi, Susumu

    Shared-Memory Optical Packet (SMOP) switch architecture is very promising for significantly reducing the amount of required optical memory, which is typically constructed from fiber delay lines (FDLs). The current reservation-based scheduling algorithms for SMOP switches can effectively utilize the FDLs and achieve a low packet loss rate by simply reserving the departure time for each arrival packet. It is notable, however, that such a simple scheduling scheme may introduce a significant packet out of order problem. In this paper, we first identify the two main sources of packet out of order problem in the current reservation-based SMOP switches. We then show that by introducing a “last-timestamp” variable and modifying the corresponding FDLs arrangement as well as the scheduling process in the current reservation-based SMOP switches, it is possible to keep packets in-sequence while still maintaining a similar delay and packet loss performance as the previous design. Finally, we further extend our work to support the variable-length burst switching.

  6. A versatile model for packet loss visibility and its application to packet prioritization.

    PubMed

    Lin, Ting-Lan; Kanumuri, Sandeep; Zhi, Yuan; Poole, David; Cosman, Pamela C; Reibman, Amy R

    2010-03-01

    In this paper, we propose a generalized linear model for video packet loss visibility that is applicable to different group-of-picture structures. We develop the model using three subjective experiment data sets that span various encoding standards (H.264 and MPEG-2), group-of-picture structures, and decoder error concealment choices. We consider factors not only within a packet, but also in its vicinity, to account for possible temporal and spatial masking effects. We discover that the factors of scene cuts, camera motion, and reference distance are highly significant to the packet loss visibility. We apply our visibility model to packet prioritization for a video stream; when the network gets congested at an intermediate router, the router is able to decide which packets to drop such that visual quality of the video is minimally impacted. To show the effectiveness of our visibility model and its corresponding packet prioritization method, experiments are done to compare our perceptual-quality-based packet prioritization approach with existing Drop-Tail and Hint-Track-inspired cumulative-MSE-based prioritization methods. The result shows that our prioritization method produces videos of higher perceptual quality for different network conditions and group-of-picture structures. Our model was developed using data from high encoding-rate videos, and designed for high-quality video transported over a mostly reliable network; however, the experiments show the model is applicable to different encoding rates.

  7. Wavelet and wavelet packet compression of electrocardiograms.

    PubMed

    Hilton, M L

    1997-05-01

    Wavelets and wavelet packets have recently emerged as powerful tools for signal compression. Wavelet and wavelet packet-based compression algorithms based on embedded zerotree wavelet (EZW) coding are developed for electrocardiogram (ECG) signals, and eight different wavelets are evaluated for their ability to compress Holter ECG data. Pilot data from a blind evaluation of compressed ECG's by cardiologists suggest that the clinically useful information present in original ECG signals is preserved by 8:1 compression, and in most cases 16:1 compressed ECG's are clinically useful.

  8. Ray Curvature and Refraction of Wave Packets.

    DTIC Science & Technology

    1978-09-01

    1!~~~~~ _ ‘ AD AOM 302 FLORIDA STATE UNIV TALLAHASSEE DEPT OF OCEANOGRAPHY FIG B/3 RAY CURVATURE AND REFRACTION OF WAVE PACKETS. (U) SEP 78 .J E...BREEDING N00014—77—C—0329 UNCLASSIFIED TR JE6 3 NL _ _ _ rwii__ _ ~iU ir!I I -~~ RAYOJR\\1L~[UREAND REFRACI ION OF WAVE F1~\\CKET~S ~y J. Ernest Breeding...01 29 014 -~ Technical Report No. JEB-3 Department of Oceanography • Florida State University RAY CURVATURE AND REFRACTION OF WAVE PACKETS b O G • J

  9. Coding for spread spectrum packet radios

    NASA Technical Reports Server (NTRS)

    Omura, J. K.

    1980-01-01

    Packet radios are often expected to operate in a radio communication network environment where there tends to be man made interference signals. To combat such interference, spread spectrum waveforms are being considered for some applications. The use of convolutional coding with Viterbi decoding to further improve the performance of spread spectrum packet radios is examined. At 0.00001 bit error rates, improvements in performance of 4 db to 5 db can easily be achieved with such coding without any change in data rate nor spread spectrum bandwidth. This coding gain is more dramatic in an interference environment.

  10. Packet radar spectrum recovery for physiological signals.

    PubMed

    Yavari, Ehsan; Padasdao, Bryson; Lubecke, Victor; Boric-Lubecke, Olga

    2013-01-01

    Packet Doppler radar is investigated for extracting physiological signals. System on Chip is employed as a signal source in packet mode, and it transmits signals intermittently at 2.405 GHz to save power. Reflected signals are demodulated directly by spectral analysis of received pulses in the baseband. Spectral subtraction, using data from an empty room, is applied to extract the periodic movement. It was experimentally demonstrated that frequency of the periodic motion can be accurately extracted using this technique. Proposed approach reduces the computation complexity of the signal processing part effectively.

  11. Squeezed Wave Packets in Quantum Cosmology

    NASA Astrophysics Data System (ADS)

    Pedram, Pouria

    2010-11-01

    We use an appropriate initial condition for constructing squeezed wave packets in the context of Wheeler-DeWitt equation with complete classical description. This choice of initial condition does not alter the classical paths and only affect the quantum mechanical picture. To demonstrate the method, we consider an empty 4+1-dimensional Kaluza-Klein quantum cosmology in the presence of a negative cosmological constant. We show that these wave packets do not disperse and sharply peak on the classical trajectories in the whole configuration space. So, the probability of finding the corresponding physical quantities approaches zero everywhere except on the classical paths.

  12. Performance evaluation of a burst-mode EDFA in an optical packet and circuit integrated network.

    PubMed

    Shiraiwa, Masaki; Awaji, Yoshinari; Furukawa, Hideaki; Shinada, Satoshi; Puttnam, Benjamin J; Wada, Naoya

    2013-12-30

    We experimentally investigate the performance of burst-mode EDFA in an optical packet and circuit integrated system. In such networks, packets and light paths can be dynamically assigned to the same fibers, resulting in gain transients in EDFAs throughout the network that can limit network performance. Here, we compare the performance of a 'burst-mode' EDFA (BM-EDFA), employing transient suppression techniques and optical feedback, with conventional EDFAs, and those using automatic gain control and previous BM-EDFA implementations. We first measure gain transients and other impairments in a simplified set-up before making frame error-rate measurements in a network demonstration.

  13. Strong field dissociative ionization of the D2+: Nuclear wave packet analysis

    NASA Astrophysics Data System (ADS)

    Tóth, A.; Borbély, S.; Halász, G. J.; Vibók, Á.

    2017-09-01

    Theoretical ab initio investigation of strong field dissociative ionization of the D2+ molecule in the multiphoton regime is reported. The dynamics is initiated by ultrashort laser pulses for fixed molecular axis orientations. Nuclear wave packet calculations are performed to provide the joint energy spectra (JES): ionization-dissociation probability density via electron (Ee) and nuclear (En) kinetic energy. Analyzing the time-dependent nuclear wave packet densities we have successfully identified the exact path followed by the D2+ target for each multiphoton peak.

  14. Application of wavelet packet entropy flow manifold learning in bearing factory inspection using the ultrasonic technique.

    PubMed

    Chen, Xiaoguang; Liu, Dan; Xu, Guanghua; Jiang, Kuosheng; Liang, Lin

    2014-12-26

    For decades, bearing factory quality evaluation has been a key problem and the methods used are always static tests. This paper investigates the use of piezoelectric ultrasonic transducers (PUT) as dynamic diagnostic tools and a relevant signal classification technique, wavelet packet entropy (WPEntropy) flow manifold learning, for the evaluation of bearing factory quality. The data were analyzed using wavelet packet entropy (WPEntropy) flow manifold learning. The results showed that the ultrasonic technique with WPEntropy flow manifold learning was able to detect different types of defects on the bearing components. The test method and the proposed technique are described and the different signals are analyzed and discussed.

  15. Application of Wavelet Packet Entropy Flow Manifold Learning in Bearing Factory Inspection Using the Ultrasonic Technique

    PubMed Central

    Chen, Xiaoguang; Liu, Dan; Xu, Guanghua; Jiang, Kuosheng; Liang, Lin

    2015-01-01

    For decades, bearing factory quality evaluation has been a key problem and the methods used are always static tests. This paper investigates the use of piezoelectric ultrasonic transducers (PUT) as dynamic diagnostic tools and a relevant signal classification technique, wavelet packet entropy (WPEntropy) flow manifold learning, for the evaluation of bearing factory quality. The data were analyzed using wavelet packet entropy (WPEntropy) flow manifold learning. The results showed that the ultrasonic technique with WPEntropy flow manifold learning was able to detect different types of defects on the bearing components. The test method and the proposed technique are described and the different signals are analyzed and discussed. PMID:25549173

  16. The origin of ultrafast proton transfer: Multidimensional wave packet motion vs. tunneling

    NASA Astrophysics Data System (ADS)

    Schriever, Christian; Lochbrunner, Stefan; Ofial, Armin R.; Riedle, Eberhard

    2011-02-01

    We investigate the reaction kinetics of ultrafast excited state intramolecular proton transfer (ESIPT) and discuss the possible origins of the process: tunneling of the reactive proton, vibrationally enhanced tunneling, and multidimensional wave packet dynamics of the entire system. Comparison of the measured kinetics for the protonated and the deuterated form of 2-(2‧-hydroxyphenyl)benzothiazole (HBT) to numerical simulations allows us to ascribe the characteristic 50 fs time found for the ESIPT solely to a ballistic wave packet motion along skeletal coordinates that mainly affect the donor acceptor distance. Tunneling is not found to be decisive.

  17. Attosecond probe of valence-electron wave packets by subcycle sculpted laser fields.

    PubMed

    Xie, Xinhua; Roither, Stefan; Kartashov, Daniil; Persson, Emil; Arbó, Diego G; Zhang, Li; Gräfe, Stefanie; Schöffler, Markus S; Burgdörfer, Joachim; Baltuška, Andrius; Kitzler, Markus

    2012-05-11

    We experimentally and theoretically demonstrate a self-referenced wave-function retrieval of a valence-electron wave packet during its creation by strong-field ionization with a sculpted laser field. Key is the control over interferences arising at different time scales. Our work shows that the measurement of subcycle electron wave-packet interference patterns can serve as a tool to retrieve the structure and dynamics of the valence-electron cloud in atoms on a sub-10-as time scale.

  18. Generation of Quasiclassical Bohr-Like Wave Packets Using Half-Cycle Pulses

    SciTech Connect

    Mestayer, J. J.; Wyker, B.; Dunning, F. B.; Reinhold, Carlos O; Yoshida, S.; Burgdorfer, J.

    2008-08-01

    We demonstrate the experimental realization of Bohr-like atoms by applying a pulsed unidirectional field, termed a half-cycle pulse (HCP), to atoms in quasi-two-dimensional near-circular states. This leads to creation of localized wave packets that travel in near-circular orbits and mimic the dynamics of an electron in the original Bohr model of the hydrogen atom. This motion can be followed for several orbital periods before the localization of the wave packet is lost due to dephasing. We show, however, that localization can be recovered by application of further HCPs.

  19. All-optical packet header and payload separation for un-slotted optical packet switched networks

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Zhang, Min; Ye, Peida

    2005-11-01

    A novel all-optical header and payload separation technique that can be utilized in un-slotted optical packet switched networks is presented. The technique uses a modified TOAD for packet header extraction with differential modulation scheme and two SOAs that perform a simple XOR operation between the packet and its self-derived header to get the separated payload. The main virtue of this system is simple structure and need not any additional continuous pulses. Through numerical simulations, the operating characteristics of the scheme are illustrated. In addition, the parameters of the system are discussed and designed to optimize the operation performance.

  20. Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.

    PubMed

    Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan

    2016-04-22

    We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.

  1. Moving the boundary between wavelength resources in optical packet and circuit integrated ring network.

    PubMed

    Furukawa, Hideaki; Miyazawa, Takaya; Wada, Naoya; Harai, Hiroaki

    2014-01-13

    Optical packet and circuit integrated (OPCI) networks provide both optical packet switching (OPS) and optical circuit switching (OCS) links on the same physical infrastructure using a wavelength multiplexing technique in order to deal with best-effort services and quality-guaranteed services. To immediately respond to changes in user demand for OPS and OCS links, OPCI networks should dynamically adjust the amount of wavelength resources for each link. We propose a resource-adjustable hybrid optical packet/circuit switch and transponder. We also verify that distributed control of resource adjustments can be applied to the OPCI ring network testbed we developed. In cooperation with the resource adjustment mechanism and the hybrid switch and transponder, we demonstrate that automatically allocating a shared resource and moving the wavelength resource boundary between OPS and OCS links can be successfully executed, depending on the number of optical paths in use.

  2. Laser control of electronic transitions of wave packet by using quadratically chirped pulses

    SciTech Connect

    Zou Shiyang; Kondorskiy, Alexey; Mil'nikov, Gennady; Nakamura, Hiroki

    2005-02-22

    An effective scheme is proposed for the laser control of wave packet dynamics. It is demonstrated that by using specially designed quadratically chirped pulses, fast and nearly complete excitation of wave packet can be achieved without significant distortion of its shape. The parameters of the laser pulse can be estimated analytically from the Zhu-Nakamura theory of nonadiabatic transition. If the wave packet is not too narrow or not too broad, then the scheme is expected to be utilizable for multidimensional systems. The scheme is applicable to various processes such as simple electronic excitation, pump-dump, and selective bond breaking, and it is actually numerically demonstrated to work well by taking diatomic and triatomic molecules (LiH, NaK, H{sub 2}O) as examples.

  3. Output feedback guaranteed cost control of networked linear systems with random packet losses

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-An; Yu, Li

    2010-11-01

    This article is concerned with the output feedback guaranteed cost control problem for a class of networked control systems (NCSs) with both packet losses and network-induced delays. The packet-loss processes in the forward channel and the backward channel are modelled as two Markov chains. The dynamic output feedback controllers are considered, and the closed-loop NCS is modelled as a discrete-time Markovian system with two modes and unit time delay. By using a properly constructed Lyapunov function and the state transformation technique, a sufficient condition is derived for the closed-loop NCS to be mean-square exponentially stable and ensure a decay rate that can be tuned according to the packet loss situations in the networks. Moreover, design procedures for the guaranteed cost controllers are also presented based on the obtained stability condition and guaranteed cost performance result. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed results.

  4. Rovibrational Wave-Packet Dispersion during Femtosecond Laser Filamentation in Air

    SciTech Connect

    Odhner, J. H.; Romanov, D. A.; Levis, R. J.

    2009-08-14

    An impulsive, femtosecond filament-based Raman technique producing high quality Raman spectra over a broad spectral range (1554.7-4155 cm{sup -1}) is presented. The temperature of gas phase molecules can be measured by temporally resolving the dispersion of impulsively excited vibrational wave packets. Application to laser-induced filamentation in air reveals that the initial rovibrational temperature is 300 K for both N{sub 2} and O{sub 2}. The temperature-dependent wave-packet dynamics are interpreted using an analytic anharmonic oscillator model. The wave packets reveal a 1/e dispersion time of 3.9 ps for N{sub 2} and 2.8 ps for O{sub 2}. Pulse self-compression of temporal features to 8 fs within the filament is directly measured by impulsive vibrational excitation of H{sub 2}.

  5. The European Space Agency standard for space packet utilisation

    NASA Astrophysics Data System (ADS)

    Kaufeler, J.-F.; Parkes, A.; Pidgeon, A.

    1993-03-01

    This paper presents the ESA concept for the use of CCSDS defined Telemetry and Telecommand Packets at the application level. These Packets are used to monitor and control remotely a space born application. This concept is defined in a Packet Utilisation Standard (PUS) which should become applicable for all ESA missions using Packets. The production of this standard is under the responsibility of an ESA standardization group called 'COES'.

  6. The European Space Agency standard for space packet management

    NASA Astrophysics Data System (ADS)

    Kaufeler, J. F.

    1990-10-01

    The ESA concept for the use of the Consultative Commitee for Space Data Systems (CCSDS) defined telemetry and telecommand packets at the application level is presented. These packets are used to remotely monitor and control a spaceborne application. This concept is defined in a packet management standard which should become applicable for all ESA missions using packets. The production of this standard under the responsibility of an ESA standardization group called COES is discussed.

  7. Yorktown Victory Center Museum Teacher Resource Packet.

    ERIC Educational Resources Information Center

    Jamestown-Yorktown Foundation, Williamsburg, VA. Education Dept.

    This resource packet provides information and activities for teaching abut the historical significance of Yorktown, Virginia in the American Revolution. Teachers' materials include brief background essays on: (1) "Summary of the American Revolution in Virginia"; (2) "Life in the Army"; (3) "Life in Revolutionary…

  8. Language Proficiency Assessment Committees, Training Packet.

    ERIC Educational Resources Information Center

    Intercultural Development Research Association, San Antonio, TX.

    The Langugage Proficiency Assessment Committees (LPACs) authorized by Congress were given the responsibility of assessing limited-English-speaking students within a school district and making placement recommendations regarding these students to the local school board. This packet consists of a variety of materials, mostly handouts to assist in…

  9. Biological Diversity. Global Issues Education Packet.

    ERIC Educational Resources Information Center

    Holm, Amy E.

    Biological diversity, also commonly called genetic diversity, refers to the variety of organisms on Earth. Scientists are concerned that many species will become extinct because of extensive development in the tropical regions. This packet is designed to increase student's awareness about direct and indirect causes of extinction, endangered…

  10. Student Problems. Adult Literacy Independent Learning Packet.

    ERIC Educational Resources Information Center

    Koefer, Ann M.

    This independent learning packet, which is designed for administrators, teachers, counselors, and tutors in Pennsylvania's Region 7 Tri-Valley Literacy Staff Development area as well as for their adult students, examines the following seven problems encountered by students: the job market, child care, single parenting/parenting skills, divorce,…

  11. Metro College for Living. Workshop Packet.

    ERIC Educational Resources Information Center

    Kreps, Alice Roelofs

    This packet contains information and materials for conducting a training workshop for working with adults who are developmentally disabled. The materials are specifically designed to train volunteer teachers in the College for Living (CFL) program, which supplements residential programs in and around Denver and aids institutions in orienting…

  12. Literature Packets for the Journalism Class.

    ERIC Educational Resources Information Center

    Communication: Journalism Education Today (C:JET), 1986

    1986-01-01

    Lists the literature selections included in packets for use in journalism classes entitled "Personality Sketch,""Newswriting,""Informative Feature,""Interpretive Writing,""Personal Experience,""Sports,""Editorial/Opinion,""Letters,""The Critical Review,""Humor and Satire,""Readings for Women,""The Family,""Education,""Photography,""Words and…

  13. The Air We Breathe. Activity Packet.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Environmental Protection, Hartford.

    This packet of materials is intended to provide teachers with an interdisciplinary approach to integrating air quality education into the existing curriculum of Connecticut schools. The unit is designed to complement the student booklet "The Air We Breathe," which is included. A major portion of the document is comprised of teaching…

  14. Cashier/Checker Learning Activity Packets (LAPs).

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    Twenty-four learning activity packets (LAPs) are provided for six areas of instruction in a cashier/checker program. Section A, Orientation, contains an LAP on exploring the job of cashier-checker. Section B, Operations, has nine LAPs, including those on operating the cash register, issuing trading stamps, and completing the cash register balance…

  15. The Nutcracker--Theater Activity Packet.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    A part of the New York City Board of Education Early Stages educational program, this activity packet was developed to assist teachers in preparing students for viewing the American Ballet Theatre's production of "The Nutcracker." The guide begins with a section on preparing for the performance, and includes information on the Early…

  16. The World Around You. Environmental Education Packet.

    ERIC Educational Resources Information Center

    Garden Club of America, New York, NY.

    The Garden Club of America has compiled this environmental education packet of informational materials to help teachers educate their students for survival. The "Study Guide" contains essays by ten authorities on topics of population, soil, air, water, power and energy, solid waste management, open space, public lands, oceans, and wildlife. Each…

  17. Solid Waste Activity Packet for Teachers.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Cooperative Extension Service.

    This solid waste activity packet introduces students to the solid waste problem in Illinois. Topics explore consumer practices in the market place, packaging, individual and community garbage generation, and disposal practices. The activities provide an integrated approach to incorporating solid waste management issues into subject areas. The…

  18. Peninsula Humane Society Teacher's Packet. Secondary Level.

    ERIC Educational Resources Information Center

    Peninsula Humane Society, San Mateo, CA.

    Activities in this teacher's packet are designed to familiarize secondary school students with the responsibilities involved in pet ownership. Teaching plans are provided for a total of 12 lessons grouped under social studies, language arts, math, and health sciences. Activities focus on pet overpopulation, expressions of social responses in…

  19. Cashier/Checker Learning Activity Packets (LAPs).

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    Twenty-four learning activity packets (LAPs) are provided for six areas of instruction in a cashier/checker program. Section A, Orientation, contains an LAP on exploring the job of cashier-checker. Section B, Operations, has nine LAPs, including those on operating the cash register, issuing trading stamps, and completing the cash register balance…

  20. The Air We Breathe. Activity Packet.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Environmental Protection, Hartford.

    This packet of materials is intended to provide teachers with an interdisciplinary approach to integrating air quality education into the existing curriculum of Connecticut schools. The unit is designed to complement the student booklet "The Air We Breathe," which is included. A major portion of the document is comprised of teaching…

  1. The World Around You. Environmental Education Packet.

    ERIC Educational Resources Information Center

    Garden Club of America, New York, NY.

    The Garden Club of America has compiled this environmental education packet of informational materials to help teachers educate their students for survival. The "Study Guide" contains essays by ten authorities on topics of population, soil, air, water, power and energy, solid waste management, open space, public lands, oceans, and wildlife. Each…

  2. Humane Education Teachers' Packet (Preschool & Kindergarten).

    ERIC Educational Resources Information Center

    Sammut-Tovar, Dorothy

    Designed to sensitize preschoolers and kindergartners to the responsibilities involved in caring for living things, this teacher's packet provides a variety of student worksheets and activity suggestions. Teaching plans are provided for a total of nine lessons, which can be easily integrated into other learning areas such as numbers, colors,…

  3. Peninsula Humane Society Teacher's Packet. Secondary Level.

    ERIC Educational Resources Information Center

    Peninsula Humane Society, San Mateo, CA.

    Activities in this teacher's packet are designed to familiarize secondary school students with the responsibilities involved in pet ownership. Teaching plans are provided for a total of 12 lessons grouped under social studies, language arts, math, and health sciences. Activities focus on pet overpopulation, expressions of social responses in…

  4. Resource Packet on Disability, Spirituality, and Healing.

    ERIC Educational Resources Information Center

    Lane, Nancy

    This resource packet includes information relating to the inclusion of people with disabilities in the Christian church. The first article, "Changing Attitudes, Creating Awareness," highlights several critical areas where churches can begin to understand the barriers of exclusion to people with disabilities. The following article, "Victim…

  5. Humane Education Teachers' Packet (Preschool & Kindergarten).

    ERIC Educational Resources Information Center

    Sammut-Tovar, Dorothy

    Designed to sensitize preschoolers and kindergartners to the responsibilities involved in caring for living things, this teacher's packet provides a variety of student worksheets and activity suggestions. Teaching plans are provided for a total of nine lessons, which can be easily integrated into other learning areas such as numbers, colors,…

  6. Biological Diversity. Global Issues Education Packet.

    ERIC Educational Resources Information Center

    Holm, Amy E.

    Biological diversity, also commonly called genetic diversity, refers to the variety of organisms on Earth. Scientists are concerned that many species will become extinct because of extensive development in the tropical regions. This packet is designed to increase student's awareness about direct and indirect causes of extinction, endangered…

  7. Queueing Analysis For Packet Switched Video

    NASA Astrophysics Data System (ADS)

    Sen, Prodip; Rikli, Nasser; Maglaris, Basil

    1987-10-01

    Packet switching of variable bit-rate real-time video sources is a means for the efficient sharing of communication resources, while maintaining a uniform picture quality. Performance analyses for the statistical multiplexing of such video sources are required as a first step towards assessing the feasibility of packet switched video. This paper extends our earlier work in modelling video sources which have been coded using inter-frame coding schemes, and in carrying out buffer queueing analyses for the multiplexing of several such sources. Our previous models and analysis were suitable for relatively uniform activity scenes. Here we consider models and queueing analysis for more realistic scenes with multiple activity levels where the coder output bit-rates may change violently. We present correlated Markov source models for the corresponding sources, and using a flow-equivalent queueing analysis, obtain common buffer queue distributions and probabilities of packet loss. Our results demonstrate efficient resource sharing of packetized video on a single link, due to the smoothing effect of multiplexing several variable-rate video sources.

  8. Anthropology: Smithsonian Institution Teacher's Resource Packet.

    ERIC Educational Resources Information Center

    National Museum of Natural History, Washington, DC.

    This teacher's research guide for the National Museum of Natural History (Smithsonian Institution) is designed for junior and senior high school teachers to integrate anthropology into their social studies and science classes. The information in this packet consists of a list of books for teachers and students, classroom activities, and other…

  9. Controlled Splitting of an Atomic Wave Packet

    SciTech Connect

    Zhang, M.; Zhang, P.; Chapman, M. S.; You, L.

    2006-08-18

    We propose a simple scheme capable of adiabatically splitting an atomic wave packet using two independent translating traps. Implemented with optical dipole traps, our scheme allows a high degree of flexibility for atom interferometry arrangements and highlights its potential as an efficient and high fidelity atom optical beam splitter.

  10. Advanced driver assistance system for AHS over communication links with random packet dropouts

    NASA Astrophysics Data System (ADS)

    Srinivasan, Seshadhri; Ayyagari, Ramakalyan

    2014-12-01

    In this paper, we propose an advanced driver assist system (ADAS) for platoon based automated highway system (AHS) with packet loss in inter-vehicle communication. Using the concept of rigidity, we first show that vehicles in a platoon tend to fall apart in the event of a packet loss among vehicles. To overcome this, we propose an estimation based dynamic platooning algorithm which employs the state estimate to maintain the platoon. Communication among the vehicle is reduced by using minimum spanning tree (MST) in state estimation algorithm. Effectiveness of the proposed ADAS scheme is illustrated by simulation wherein, dynamic platoons of holonomic vehicles with integrator dynamics are considered. Simulation studies indicate that the proposed algorithm maintains the platoon up to a packet loss rate of 48%. State transmission scheme proposed in our algorithm has three significant advantages, they are: (1) it handles packet loss in inter-vehicle communication, (2) reduces the effect of error in measured output, and (3) reduces the inter-vehicle communication. These advantages significantly increase the reliability and safety of the AHS.

  11. The Gorgeous Mosaic Project. Coordinator's Packet & Mounting Directions.

    ERIC Educational Resources Information Center

    Gura, Mark

    This packet contains information and directions for those teachers or administrators coordinating and implementing the Gorgeous Mosaic Project at their elementary schools, middle schools, or high schools. This packet is to be used with the teacher's packet. The Gorgeous Mosaic is a project being carried out by the classroom art teachers of the…

  12. PROJECT SUCCESS: Art. (Introductory Packet, Drawing, Claywork, Painting).

    ERIC Educational Resources Information Center

    Petersen, Nancy

    Four packets comprise the art component of an enrichment program for gifted elementary students. The introduction packet reviews identification of children gifted in art through pre and post measures. A drawing packet reviews techniques for such activities as human figure drawing, shading, crayon rubbinqs, experimenting with perspective, and…

  13. PROJECT SUCCESS: Art. (Introductory Packet, Drawing, Claywork, Painting).

    ERIC Educational Resources Information Center

    Petersen, Nancy

    Four packets comprise the art component of an enrichment program for gifted elementary students. The introduction packet reviews identification of children gifted in art through pre and post measures. A drawing packet reviews techniques for such activities as human figure drawing, shading, crayon rubbinqs, experimenting with perspective, and…

  14. Numerical approximation of the Schrödinger equation with the electromagnetic field by the Hagedorn wave packets

    SciTech Connect

    Zhou, Zhennan

    2014-09-01

    In this paper, we approximate the semi-classical Schrödinger equation in the presence of electromagnetic field by the Hagedorn wave packets approach. By operator splitting, the Hamiltonian is divided into the modified part and the residual part. The modified Hamiltonian, which is the main new idea of this paper, is chosen by the fact that Hagedorn wave packets are localized both in space and momentum so that a crucial correction term is added to the truncated Hamiltonian, and is treated by evolving the parameters associated with the Hagedorn wave packets. The residual part is treated by a Galerkin approximation. We prove that, with the modified Hamiltonian only, the Hagedorn wave packets dynamics give the asymptotic solution with error O(ε{sup 1/2}), where ε is the scaled Planck constant. We also prove that, the Galerkin approximation for the residual Hamiltonian can reduce the approximation error to O(ε{sup k/2}), where k depends on the number of Hagedorn wave packets added to the dynamics. This approach is easy to implement, and can be naturally extended to the multidimensional cases. Unlike the high order Gaussian beam method, in which the non-constant cut-off function is necessary and some extra error is introduced, the Hagedorn wave packets approach gives a practical way to improve accuracy even when ε is not very small.

  15. Segregation of helicity in inertial wave packets

    NASA Astrophysics Data System (ADS)

    Ranjan, A.

    2017-03-01

    Inertial waves are known to exist in the Earth's rapidly rotating outer core and could be important for the dynamo generation. It is well known that a monochromatic inertial plane wave traveling parallel to the rotation axis (along positive z ) has negative helicity while the wave traveling antiparallel (negative z ) has positive helicity. Such a helicity segregation, north and south of the equator, is necessary for the α2-dynamo model based on inertial waves [Davidson, Geophys. J. Int. 198, 1832 (2014), 10.1093/gji/ggu220] to work. The core is likely to contain a myriad of inertial waves of different wave numbers and frequencies. In this study, we investigate whether this characteristic of helicity segregation also holds for an inertial wave packet comprising waves with the same sign of Cg ,z, the z component of group velocity. We first derive the polarization relations for inertial waves and subsequently derive the resultant helicity in wave packets forming as a result of superposition of two or more waves. We find that the helicity segregation does hold for an inertial wave packet unless the wave numbers of the constituent waves are widely separated. In the latter case, regions of opposite color helicity do appear, but the mean helicity retains the expected sign. An illustration of this observation is provided by (a) calculating the resultant helicity for a wave packet formed by superposition of four upward-propagating inertial waves with different wave vectors and (b) conducting the direct numerical simulation of a Gaussian eddy under rapid rotation. Last, the possible effects of other forces such as the viscous dissipation, the Lorentz force, buoyancy stratification, and nonlinearity on helicity are investigated and discussed. The helical structure of the wave packet is likely to remain unaffected by dissipation or the magnetic field, but can be modified by the presence of linearly stable stratification and nonlinearity.

  16. Non-Hermitian wave packet approximation of Bloch optical equations

    SciTech Connect

    Charron, Eric; Sukharev, Maxim

    2013-01-14

    We introduce a non-Hermitian approximation of Bloch optical equations. This approximation provides a complete description of the excitation, relaxation, and decoherence dynamics of ensembles of coupled quantum systems in weak laser fields, taking into account collective effects and dephasing. In the proposed method, one propagates the wave function of the system instead of a complete density matrix. Relaxation and dephasing are taken into account via automatically adjusted time-dependent gain and decay rates. As an application, we compute the numerical wave packet solution of a time-dependent non-Hermitian Schroedinger equation describing the interaction of electromagnetic radiation with a quantum nano-structure, and compare the calculated transmission, reflection, and absorption spectra with those obtained from the numerical solution of the Liouville-von Neumann equation. It is shown that the proposed wave packet scheme is significantly faster than the propagation of the full density matrix while maintaining small error. We provide the key ingredients for easy-to-use implementation of the proposed scheme and identify the limits and error scaling of this approximation.

  17. Control of wave packets in lithium dimers with a state-selected pump-probe scheme

    NASA Astrophysics Data System (ADS)

    Dai, Xingcan

    A state-selected pump-probe scheme is used to control wave packet dynamics in Li2. In this scheme, a cw laser selects one electronic transition from the thermally populated ground state to the launch state A1Sigmau+ of Li2, from which an ultrashort pump pulse creates a superstition state on the electronic states of Li2 followed by another ultrashort pulse to excite the wave packet to the ground state of Li2+. Usually, an unperturbed level at the A1Sigmau+ state of Li2 is selected by the cw laser pulses. However, if the level of A1Sigmau+ is perturbed by b3piu, and then the wave packets that consist of the triplet states as well as the singlet states of Li2 are detected from the mixed levels. Since one of the triplet states is predissociative, the fast decay of the amplitudes of the wave packets that have the components of this predissociative state is observed. In order to study coherent multiphoton processes, Raman wave packets are created and manipulated with a pulse shaping system. The phase difference between the amplitude coefficients induced by resonant and off-resonant Raman transitions is shown directly by comparing the phases of the Raman wave packets excited by the resonant and off-resonant Raman transitions. The ionization processes employed in the probe step of the state-selective pump-probe scheme is fully explored in the second pulse shaping system in the path of the probe beam. It shows that the direct transitions from the electronic states involved in the wave packets are unlikely; while the autoionization and collision induced ionization from highly-excited Rydberg states are the main sources of the final ion signals. Some degree of the control of the wave packet dynamics is realized by shaping the probe pulses. The decoherence rates of quantum beats at the shelf region of the E1Sigma g+ state are measured to test theoretical results about pure dephasing rate in Li2. Finally, some schemes and preliminary results on physical realization of quantum

  18. Transporting live video over high packet loss networks

    NASA Astrophysics Data System (ADS)

    Werdin, Dave

    2013-05-01

    Transport of live video requires a robust backbone as live video decoders are subject to dropouts and buffer starvation. A short duration packet loss will many times cause a decoder to go black for many seconds as it reacquires the stream and clock. IP networks due to their connectionless approach and support for variable length packets, inherently display packet delivery variability. These characteristics most typically include packet loss, packet delay variation, and packets being delivered out of order. Deep Packet Recovery (DPR) techniques provide correction to IP network induced errors and issues. DPR can provide a much broader and stronger protection than traditional Forward Error Correction techniques enabling transport of live video across severely impaired networks.

  19. Comparison of two kinds of cell packets of Micrococcus luteus by scanning electron microscopy: outermost layer maintaining the packet structure.

    PubMed

    Monodane, T; Tokunaga, M; Koike, H; Kotani, S; Matsuhashi, M

    1990-01-01

    Two kinds of cell packets of Micrococcus luteus, one having teichuronic acids (TUA) in the cell wall and the other lacking TUA, have been independently reported by two groups of workers. A comparison by scanning electron microscopy of these packets provided a possibly consistent interpretation for the seemingly conflicting opinions whether TUA were involved in packet induction. It was strongly suggested that the packets having TUA in the wall were rigidly maintained by a bridging structure of the outermost layer of the peripheral wall, while the packets lacking TUA showed low contribution of the outermost layer to the bridging structure probably due to the absence of TUA.

  20. Beyond Born-Oppenheimer theory for ab initio constructed diabatic potential energy surfaces of singlet H3+ to study reaction dynamics using coupled 3D time-dependent wave-packet approach

    NASA Astrophysics Data System (ADS)

    Ghosh, Sandip; Mukherjee, Saikat; Mukherjee, Bijit; Mandal, Souvik; Sharma, Rahul; Chaudhury, Pinaki; Adhikari, Satrajit

    2017-08-01

    The workability of beyond Born-Oppenheimer theory to construct diabatic potential energy surfaces (PESs) of a charge transfer atom-diatom collision process has been explored by performing scattering calculations to extract accurate integral cross sections (ICSs) and rate constants for comparison with most recent experimental quantities. We calculate non-adiabatic coupling terms among the lowest three singlet states of H3+ system (11A', 21A', and 31A') using MRCI level of calculation and solve the adiabatic-diabatic transformation equation to formulate the diabatic Hamiltonian matrix of the same process [S. Mukherjee et al., J. Chem. Phys. 141, 204306 (2014)] for the entire region of nuclear configuration space. The nonadiabatic effects in the D+ + H2 reaction has been studied by implementing the coupled 3D time-dependent wave packet formalism in hyperspherical coordinates [S. Adhikari and A. J. C. Varandas, Comput. Phys. Commun. 184, 270 (2013)] with zero and non-zero total angular momentum (J) on such newly constructed accurate (ab initio) diabatic PESs of H3+. We have depicted the convergence profiles of reaction probabilities for the reactive non-charge transfer, non-reactive charge transfer, and reactive charge transfer processes for different collisional energies with respect to the helicity (K) and total angular momentum (J) quantum numbers. Finally, total and state-to-state ICSs are calculated as a function of collision energy for the initial rovibrational state (v = 0, j = 0) of the H2 molecule, and consequently, those quantities are compared with previous theoretical and experimental results.

  1. Beyond Born-Oppenheimer theory for ab initio constructed diabatic potential energy surfaces of singlet H3(+) to study reaction dynamics using coupled 3D time-dependent wave-packet approach.

    PubMed

    Ghosh, Sandip; Mukherjee, Saikat; Mukherjee, Bijit; Mandal, Souvik; Sharma, Rahul; Chaudhury, Pinaki; Adhikari, Satrajit

    2017-08-21

    The workability of beyond Born-Oppenheimer theory to construct diabatic potential energy surfaces (PESs) of a charge transfer atom-diatom collision process has been explored by performing scattering calculations to extract accurate integral cross sections (ICSs) and rate constants for comparison with most recent experimental quantities. We calculate non-adiabatic coupling terms among the lowest three singlet states of H3(+) system (1(1)A('), 2(1)A('), and 3(1)A(')) using MRCI level of calculation and solve the adiabatic-diabatic transformation equation to formulate the diabatic Hamiltonian matrix of the same process [S. Mukherjee et al., J. Chem. Phys. 141, 204306 (2014)] for the entire region of nuclear configuration space. The nonadiabatic effects in the D(+) + H2 reaction has been studied by implementing the coupled 3D time-dependent wave packet formalism in hyperspherical coordinates [S. Adhikari and A. J. C. Varandas, Comput. Phys. Commun. 184, 270 (2013)] with zero and non-zero total angular momentum (J) on such newly constructed accurate (ab initio) diabatic PESs of H3(+). We have depicted the convergence profiles of reaction probabilities for the reactive non-charge transfer, non-reactive charge transfer, and reactive charge transfer processes for different collisional energies with respect to the helicity (K) and total angular momentum (J) quantum numbers. Finally, total and state-to-state ICSs are calculated as a function of collision energy for the initial rovibrational state (v = 0, j = 0) of the H2 molecule, and consequently, those quantities are compared with previous theoretical and experimental results.

  2. Particlelike wave packets in complex scattering systems

    NASA Astrophysics Data System (ADS)

    Gérardin, Benoît; Laurent, Jérôme; Ambichl, Philipp; Prada, Claire; Rotter, Stefan; Aubry, Alexandre

    2016-07-01

    A wave packet undergoes a strong spatial and temporal dispersion while propagating through a complex medium. This wave scattering is often seen as a nightmare in wave physics whether it be for focusing, imaging, or communication purposes. Controlling wave propagation through complex systems is thus of fundamental interest in many areas, ranging from optics or acoustics to medical imaging or telecommunications. Here, we study the propagation of elastic waves in a cavity and a disordered waveguide by means of laser interferometry. From the direct experimental access to the time-delay matrix of these systems, we demonstrate the existence of particlelike wave packets that remain focused in time and space throughout their complex trajectory. Due to their limited dispersion, their selective excitation will be crucially relevant for all applications involving selective wave focusing and efficient information transfer through complex media.

  3. A packet switched communications system for GRO

    NASA Technical Reports Server (NTRS)

    Husain, Shabu; Yang, Wen-Hsing; Vadlamudi, Rani; Valenti, Joseph

    1993-01-01

    This paper describes the packet switched Instrumenters Communication System (ICS) that was developed for the Command Management Facility at GSFC to support the Gamma Ray Observatory (GRO) spacecraft. The GRO ICS serves as a vital science data acquisition link to the GRO scientists to initiate commands for their spacecraft instruments. The system is ready to send and receive messages at any time, 24 hours a day and seven days a week. The system is based on X.25 and the International Standard Organization's (ISO) 7-layer Open Systems Interconnection (OSI) protocol model and has client and server components. The components of the GRO ICS are discussed along with how the Communications Subsystem for Interconnection (CSFI) and Network Control Program Packet Switching Interface (NPSI) software are used in the system.

  4. Steering attosecond electron wave packets with light.

    PubMed

    Kienberger, R; Hentschel, M; Uiberacker, M; Spielmann, Ch; Kitzler, M; Scrinzi, A; Wieland, M; Westerwalbesloh, Th; Kleineberg, U; Heinzmann, U; Drescher, M; Krausz, F

    2002-08-16

    Photoelectrons excited by extreme ultraviolet or x-ray photons in the presence of a strong laser field generally suffer a spread of their energies due to the absorption and emission of laser photons. We demonstrate that if the emitted electron wave packet is temporally confined to a small fraction of the oscillation period of the interacting light wave, its energy spectrum can be up- or downshifted by many times the laser photon energy without substantial broadening. The light wave can accelerate or decelerate the electron's drift velocity, i.e., steer the electron wave packet like a classical particle. This capability strictly relies on a sub-femtosecond duration of the ionizing x-ray pulse and on its timing to the phase of the light wave with a similar accuracy, offering a simple and potentially single-shot diagnostic tool for attosecond pump-probe spectroscopy.

  5. The Long Life Ration Packet (LLRP)

    DTIC Science & Technology

    1991-02-18

    four men for one day or one man for four days. Parachute Emergency Ration (Parachute Emergency Vest Pocket Type ). Obsolete. An individual survival food...Military Nutrition Research Title of Special Report (The Long Life Ration Packet) 12. PERSONAL AUTHOR(S) Sushma Palmer 13a. TYPE OF REPORT 113b. TIME...Health University of Michigan Edward Horton, M.D. Professor and Chairman, Medicine Un. of Vermont, Coll. of Medicine Richard Jansen, Ph.D. Professor and

  6. Relativistic Electron Wave Packets Carrying Angular Momentum

    NASA Astrophysics Data System (ADS)

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia

    2017-03-01

    There are important differences between the nonrelativistic and relativistic description of electron beams. In the relativistic case the orbital angular momentum quantum number cannot be used to specify the wave functions and the structure of vortex lines in these two descriptions is completely different. We introduce analytic solutions of the Dirac equation in the form of exponential wave packets and we argue that they properly describe relativistic electron beams carrying angular momentum.

  7. Issues in Satellite Packet Video Communication.

    DTIC Science & Technology

    1983-07-01

    i.o . .. . . _ _: .. ,: -t - .. . ..:’, • ... . . . ... . . . j.. - . ". 4 ISSUES IN SATELLITE PACKET VIDEO COMMUNICATIO \\ For the transmitter: 1. Get...120B, which is interfaced to a Digital Equipment Corporation PDP ," 11/45 minicomputer host. The effects of varying xy and z can be simulated on the AP...plus an encoder/decoder for forward error correction, supplied by Linkabit Corporation - the earth station transmitter, receiver, and antenna supplied by

  8. Creating and Transporting Trojan Wave Packets

    NASA Astrophysics Data System (ADS)

    Wyker, B.; Ye, S.; Dunning, F. B.; Yoshida, S.; Reinhold, C. O.; Burgdörfer, J.

    2012-01-01

    Nondispersive localized Trojan wave packets with ni˜305 moving in near-circular Bohr-like orbits are created and transported to localized near-circular Trojan states of higher n, nf˜600, by driving with a linearly polarized sinusoidal electric field whose period is slowly increased. The protocol is remarkably efficient with over 80% of the initial atoms being transferred to the higher n states, a result confirmed by classical trajectory Monte Carlo simulations.

  9. Packet Analysis of Unmodified Bluetooth Communication Devices

    DTIC Science & Technology

    2004-03-01

    Whitening ..................................................................................................21 2.8 Previous Related Work...not have blue teeth , but had dark hair and a dark complexion. He earned his place in history by unifying Denmark under Christianity and conquering...other things. The DM1 packet is used to support control messages or it can be used to carry regular user data. 2.7.1 Data Whitening The Bluetooth

  10. Relativistic Electron Wave Packets Carrying Angular Momentum.

    PubMed

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia

    2017-03-17

    There are important differences between the nonrelativistic and relativistic description of electron beams. In the relativistic case the orbital angular momentum quantum number cannot be used to specify the wave functions and the structure of vortex lines in these two descriptions is completely different. We introduce analytic solutions of the Dirac equation in the form of exponential wave packets and we argue that they properly describe relativistic electron beams carrying angular momentum.

  11. Teleportation of nonclassical wave packets of light.

    PubMed

    Lee, Noriyuki; Benichi, Hugo; Takeno, Yuishi; Takeda, Shuntaro; Webb, James; Huntington, Elanor; Furusawa, Akira

    2011-04-15

    We report on the experimental quantum teleportation of strongly nonclassical wave packets of light. To perform this full quantum operation while preserving and retrieving the fragile nonclassicality of the input state, we have developed a broadband, zero-dispersion teleportation apparatus that works in conjunction with time-resolved state preparation equipment. Our approach brings within experimental reach a whole new set of hybrid protocols involving discrete- and continuous-variable techniques in quantum information processing for optical sciences.

  12. Soft computing techniques in network packet video

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz P.; Kostrzewski, Andrew A.; Ro, Sookwang N.; Forrester, Thomas; Hester, T.

    2004-01-01

    A new approach to low-bandwidth network packet video quality maximization has been proposed, based on software agent and global optimization algorithm, including: environmental factors (noise, multi-path fading); compression ratio; bit-error-correction; maximum available bandwidth; video format; and encryption. This is important for 2G-wireless RF cellular GSM visual communication, and other low-bandwidth homeland security visibility, and civilian RF WLANs.

  13. Spectral Modulation by Rotational Wave Packets

    NASA Astrophysics Data System (ADS)

    Baertschy, Mark; Hartinger, Klaus

    2005-05-01

    Periodic rephasing of molecular rotational wave packets can create rapid fluctuations in the optical properties of a molecular gas which can be used to manipulate the temporal phase and spectral content of ultrashort light pulses. We have demonstrated spectral control of a time-delayed ultrafast probe pulse propagating through the rotational wave packet prepared by a pump laser pulse. The spectrum of the probe pulse can be either broadened or compressed, depending on the relative sign of the temporal phase modulation and the initial chirp of the probe pulse. Adjustment of the spectral phase at the output of the interaction region allows controlled temporal pulse streching^1 and compression^2. The degree to which the spectrum of an ultrafast pulse can be modified depends on the strength and shape of the rotational wavepacket. We are studying the optimization of the rotational wave packet excitation with complex, shaped pump laser pulses for the purpose of optimizing probe pulse spectra modulation. ^1 Klaus Hartinger and Randy A. Bartels, Opt. Lett., submitted (2005). ^2 R.A. Bartels, T.C. Weinacht, N. Wagner, M. Baertschy, Chris H. Greene, M.M. Murnane, and H.C. Kapteyn , Phys. Rev. Lett., 88, 013903 (2002). This work was supported by the NSF.

  14. Packet switched networks with photonic code processing

    NASA Astrophysics Data System (ADS)

    Rosas-Fernandez, J. B.; Chen, L. R.; LaRochelle, S.; Leon-Garcia, A.; Plant, D.; Rusch, L. A.

    2006-09-01

    In this paper we present our study of all optical label encoding and ultrafast processing to route packets through optical networks. Our investigations include new network topologies, novel photonic components and performance analysis. We propose a label stacked packet switching system using spectral amplitude codes (SAC) as labels. We have developed enabling technologies to realize key photonic components for generation, correlation (identification) and conversion (swapping) of SAC-labels. We generate and identify the labels with fibre Bragg gratings (FBGs) encoders used in transmission. Furthermore, we demonstrate a static, all-photonic code-label converter based on a semiconductor fiber ring laser that can be used for label swapping of SAC-labels. We also address the design of dedicated receivers for optical burst detection. For this, we propose a novel architecture for a burst mode receiver module. In the system studies, we have shown by simulations that the throughput of standard Ethernet passive optical networks (E-PONs) can be substantially increased by the use of data encoded with SACs to achieve optical code division multiple access over passive optical networks (OCDMA-PONs). In the paper, we present recent results for all of these photonic technologies and we discuss how they can enable flexible packet switched networks.

  15. Controlled wave-packet manipulation with driven optical lattices

    SciTech Connect

    Arlinghaus, Stephan; Holthaus, Martin

    2011-12-15

    Motivated by recent experimental progress achieved with ultracold atoms in kilohertz-driven optical lattices, we provide a theoretical discussion of mechanisms governing the response of a particle in a cosine lattice potential to strong forcing pulses with smooth envelope. Such pulses effectuate adiabatic motion of a wave packet's momentum distribution on quasienergy surfaces created by spatiotemporal Bloch waves. Deviations from adiabaticity can then be deliberately exploited for exerting coherent control and for reaching target states which may not be accessible by other means. As one particular example, we consider an analog of the {pi} pulses known from optical resonance. We also suggest adapting further techniques previously developed for controlling atomic and molecular dynamics by laser pulses to the coherent control of matter waves in shaken optical lattices.

  16. Localized packets of acoustic gravity waves in the ionosphere

    NASA Astrophysics Data System (ADS)

    Skorokhod, T. V.; Lizunov, G. V.

    2012-02-01

    Using mass-spectrometric measurement data from the Dynamics Explorer 2 satellite, we investigated the distribution of medium-scale acoustic gravity waves (AGWs) at altitudes of the F-region of the ionosphere. It is shown that the planetary field of AGWs contains a regular and a sporadic component. The regular distribution of AGWs involves active polar areas (where the ionosphere is highly disturbed) and a relatively calm equatorial area. Sporadic AGWs are isolated and spatially localized wave packets that are distinguished against the background of the regular distribution of the wave field. We generated a directory containing observations of sporadic AGW for the period January-February 1983 and performed a statistical analysis of their relation to earthquakes.

  17. Synchronous optical packet switch architecture with tunable single and multi-channels wavelength converters

    NASA Astrophysics Data System (ADS)

    Hamza, Haitham S.; Adel, Reham

    2017-07-01

    In this paper, we propose a bufferless synchronous optical packet switch (OPS) architecture named the Limited-range wavelength conversion with Dynamic Pump-wavelength Selection (LDPS) architecture. LDPS is equipped with a dedicated limited-range wavelength converters (LRWCs, and a shared pool of parametric wavelength converters (PWCs) with dynamic pump-wavelength selection (DPS). The adoption of hybrid conversion types in the proposed architecture aims at improving the packet loss rate (PLR) compared to conventional architecture with single conversion types, while reducing (or at least maintaining) the conversion distance (d) of used wavelength converters. Packet contention in the proposed architecture is resolved using the first available algorithm (FAA) and the dynamic pump-wavelength selection algorithm (DPSA). The performance of the proposed architecture is compared to two well-known conventional architectures; namely, the LRWC architecture that uses dedicated LRWCS for each input wavelength, and the DPS architecture that uses a shared pool of dynamic pump-wavelength converters (PWCs). Simulation results show that, for the same value of d, the new architecture reduces the PLR compared to the LRWC architecture by up to 40 % and 99.7 % for traffic loads, 0.5 and 1; respectively. In addition, for d = 1 , the new architecture reduces the PLR compared to the DPS architecture by up to 10 % and 99.3 % for traffic loads, 0.5 and 1; respectively.

  18. Time-evolution of wave-packets in topological insulators (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ferreira, Gerson J.; Penteado, Poliana H.; Egues, José Carlos

    2015-09-01

    The electronic structure of topological insulators (TIs) are well described Dirac-like equations, e.g. the BHZ model, with a mass term that changes sign at some interface. This simplistic description includes a pseudo-spin-orbit coupling that is intrinsic to the Dirac Hamiltonian. Consequently, the TIs share common properties with the Dirac equation. Among them, the interference between positive and negative energy bands leads to the relativistic oscillatory motion known as the Zitterbewegung. Here we discuss the ballistic time-evolution (pico and nanoseconds) of wave-packets in TIs in the presence of an external electric field. We show that the guiding center of large wave-packets have a finite motion transversal to the electric field equivalent to side-jump in Rashba GaAs. However, for narrow wave-packets the dynamics change and the guiding center description is not complete. We also discuss the reflection of a wave-packet colliding with the edge of the system and the effects of the edge states. Acknowledgement: We acknowledge support from CAPES, CPNq, FAPEMIG, FAPESP, and NAP Q-NANO from PRP/USP.

  19. Quantum mechanical wave packet and quasiclassical trajectory calculations for the Li + H2(+) reaction.

    PubMed

    Bulut, N; Castillo, J F; Bañares, L; Aoiz, F J

    2009-12-31

    The dynamics and kinetics of the Li + H2(+) reaction have been studied by means of quantum mechanical (QM) real wave packet, wave packet with flux operator, and quasiclassical trajectory (QCT) calculations on the ab initio potential energy surface of Martinazzo et al. [J. Chem. Phys., 2003, 119, 21]. Total initial state-selected reaction probabilities for the title reaction have been calculated for total angular momentum J = 0 at collision energies from threshold up to 1 eV. Wave packet reaction probabilities at selected values of the total angular momentum up to J = 60 are obtained using the centrifugal sudden approximation (CSA). Integral cross sections and rate constants have been calculated from the wave packet reactions probabilities by means of a refined J-shifting method and the separable rotation approximation in combination with the CSA for J > 0. The calculated rate constants as function of temperature show an Arrhenius type behavior. The QM results are found to be in overall good agreement with the corresponding QCT data.

  20. Rate-distortion optimal video transport over IP allowing packets with bit errors.

    PubMed

    Harmanci, Oztan; Tekalp, A Murat

    2007-05-01

    We propose new models and methods for rate-distortion (RD) optimal video delivery over IP, when packets with bit errors are also delivered. In particular, we propose RD optimal methods for slicing and unequal error protection (UEP) of packets over IP allowing transmission of packets with bit errors. The proposed framework can be employed in a classical independent-layer transport model for optimal slicing, as well as in a cross-layer transport model for optimal slicing and UEP, where the forward error correction (FEC) coding is performed at the link layer, but the application controls the FEC code rate with the constraint that a given IP packet is subject to constant channel protection. The proposed method uses a novel dynamic programming approach to determine the optimal slicing and UEP configuration for each video frame in a practical manner, that is compliant with the AVC/H.264 standard. We also propose new rate and distortion estimation techniques at the encoder side in order to efficiently evaluate the objective function for a slice configuration. The cross-layer formulation option effectively determines which regions of a frame should be protected better; hence, it can be considered as a spatial UEP scheme. We successfully demonstrate, by means of experimental results, that each component of the proposed system provides significant gains, up to 2.0 dB, compared to competitive methods.

  1. FOURTH SEMINAR TO THE MEMORY OF D.N. KLYSHKO: Formation of two-dimensional nonspreading atomic wave packets in the field of two standing light waves

    NASA Astrophysics Data System (ADS)

    Efremov, M. A.; Petropavlovsky, S. V.; Fedorov, Mikhail V.; Schleich, Wolfgang P.; Yakovlev, V. P.

    2005-08-01

    The formation of two-dimensional nonspreading atomic wave packets produced in the interaction of a beam of two-level atoms with two standing light waves polarised in the same plane is considered. The mechanism providing a dispersionless particle dynamics is the balance of two processes: a rapid decay of the atomic wave function away from the field nodes due to spontaneous transitions to nonresonance states and the quantum broadening of the wave packets formed in the close vicinity of field nodes. Coordinate-dependent amplitudes and phases of the two-dimensional wave packets were found for the jg=0 <--> je=1 transition.

  2. Fast packet switch architectures for broadband integrated services digital networks

    NASA Technical Reports Server (NTRS)

    Tobagi, Fouad A.

    1990-01-01

    Background information on networking and switching is provided, and the various architectures that have been considered for fast packet switches are described. The focus is solely on switches designed to be implemented electronically. A set of definitions and a brief description of the functionality required of fast packet switches are given. Three basic types of packet switches are identified: the shared-memory, shared-medium, and space-division types. Each of these is described, and examples are given.

  3. Architectures and Design for Next-Generation Hybrid Circuit/Packet Networks

    NASA Astrophysics Data System (ADS)

    Vadrevu, Sree Krishna Chaitanya

    Internet traffic is increasing rapidly at an annual growth rate of 35% with aggregate traffic exceeding several Exabyte's per month. The traffic is also becoming heterogeneous in bandwidth and quality-of-service (QoS) requirements with growing popularity of cloud computing, video-on-demand (VoD), e-science, etc. Hybrid circuit/packet networks which can jointly support circuit and packet services along with the adoption of high-bit-rate transmission systems form an attractive solution to address the traffic growth. 10 Gbps and 40 Gbps transmission systems are widely deployed in telecom backbone networks such as Comcast, AT&T, etc., and network operators are considering migration to 100 Gbps and beyond. This dissertation proposes robust architectures, capacity migration strategies, and novel service frameworks for next-generation hybrid circuit/packet architectures. In this dissertation, we study two types of hybrid circuit/packet networks: a) IP-over-WDM networks, in which the packet (IP) network is overlaid on top of the circuit (optical WDM) network and b) Hybrid networks in which the circuit and packet networks are deployed side by side such as US DoE's ESnet. We investigate techniques to dynamically migrate capacity between the circuit and packet sections by exploiting traffic variations over a day, and our methods show that significant bandwidth savings can be obtained with improved reliability of services. Specifically, we investigate how idle backup circuit capacity can be used to support packet services in IP-over-WDM networks, and similarly, excess capacity in packet network to support circuit services in ESnet. Control schemes that enable our mechanisms are also discussed. In IP-over-WDM networks, with upcoming 100 Gbps and beyond, dedicated protection will induce significant under-utilization of backup resources. We investigate design strategies to loan idle circuit backup capacity to support IP/packet services. However, failure of backup circuits will

  4. Packet Forwarding Scheme Based on Interworking Architecture for Future Internet

    NASA Astrophysics Data System (ADS)

    Kim, Seokhoon; Ryoo, Intae

    This paper introduces a packet forwarding scheme based on interworking architecture that can provide quite a good QoS by minimizing processing delay which is the major part of the timeliness factor in New Generation IP-based networks. Based on path and resource reservation mechanism, the POSIA makes routers on the packet forwarding path synchronize with each other and then forward packets. We have shown that the POSIA outperforms the existing packet forwarding schemes like IntServ, DiffServ and MPLS through computer simulations using OPNET.

  5. Square-integrability of multivariate metaplectic wave-packet representations

    NASA Astrophysics Data System (ADS)

    Ghaani Farashahi, Arash

    2017-03-01

    This paper presents a systematic study for harmonic analysis of metaplectic wave-packet representations on the Hilbert function space {{L}2}≤ft({{{R}}d}\\right) . The abstract notions of symplectic wave-packet groups and metaplectic wave-packet representations will be introduced. We then present an admissibility condition on closed subgroups of the real symplectic group \\text{Sp}≤ft({{{R}}d}\\right) , which guarantees the square-integrability of the associated metaplectic wave-packet representation on {{L}2}≤ft({{{R}}d}\\right) .

  6. Ship-Shore Packet Switched Communications System.

    DTIC Science & Technology

    1986-06-01

    AD-RU74 638 SHIP-SHORE PACKET SWITCHED COMMUNICATIONdS SYSTE(U) 1 JUN 86NAVAL POSTGRADUATE SCHOOL MONTEREY CA R A BUDDENLERI UNLSSIFIED F/G 71...FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE All other editions are obsolete l iI nl I r .. I I I...UNCLASSIFIED SECUMITV CLASSIICATIOs Or TMI# PAS g% "a s r 19. Abstract (cont’d) 3) HF communications are characterized by low capacity and high

  7. Controlling plasmonic wave packets in silver nanowires.

    SciTech Connect

    Cao, L.; Nome, R.; Montgomery, J. M.; Gray, S. K.; Scherer, N. F.

    2010-09-01

    Three-dimensional finite-difference time-domain simulations were performed to explore the excitation of surface plasmon resonances in long silver (Ag) nanowires. In particular, we show that it is possible to generate plasmonic wave packets that can propagate along the nanowire by exciting superpositions of surface plasmon resonances. By using an appropriately chirped pulse, it is possible to transiently achieve localization of the excitation at the distal end of the nanowire. Such designed coherent superpositions will allow realizing spatiotemporal control of plasmonic excitations for enhancing nonlinear responses in plasmonic 'circuits'.

  8. Monitoring and Indentification Packet in Wireless With Deep Packet Inspection Method

    NASA Astrophysics Data System (ADS)

    Fali Oklilas, Ahmad; Tasmi

    2017-04-01

    Layer 2 and Layer 3 are used to make a process of network monitoring, but with the development of applications on the network such as the p2p file sharing, VoIP, encrypted, and many applications that already use the same port, it would require a system that can classify network traffics, not only based on port number classification. This paper reports the implementation of the deep packet inspection method to analyse data packets based on the packet header and payload to be used in packet data classification. If each application can be grouped based on the application layer, then we can determine the pattern of internet users and also to perform network management of computer science department. In this study, a prototype wireless network and applications SSO were developed to detect the active user. The focus is on the ability of open DPI and nDPI in detecting the payload of an application and the results are elaborated in this paper.

  9. Audio-Visual/Communications Teaching Aids Packet. Supplementary Materials. Packet P-8.

    ERIC Educational Resources Information Center

    Peace Corps, Washington, DC. Information Collection and Exchange Div.

    This packet contains three handouts on training theory and the use of audiovisual aids, as well as a section on materials and presentation techniques for use by community development workers concerned with exchanging information and working with the people in a community. The first handout, "Communication in Development," briefly…

  10. Wireless Avionics Packet to Support Fault Tolerance for Flight Applications

    NASA Technical Reports Server (NTRS)

    Block, Gary L.; Whitaker, William D.; Dillon, James W.; Lux, James P.; Ahmad, Mohammad

    2009-01-01

    In this protocol and packet format, data traffic is monitored by all network interfaces to determine the health of transmitter and subsystems. When failures are detected, the network inter face applies its recover y policies to provide continued service despite the presence of faults. The protocol, packet format, and inter face are independent of the data link technology used. The current demonstration system supports both commercial off-the-shelf wireless connections and wired Ethernet connections. Other technologies such as 1553 or serial data links can be used for the network backbone. The Wireless Avionics packet is divided into three parts: a header, a data payload, and a checksum. The header has the following components: magic number, version, quality of service, time to live, sending transceiver, function code, payload length, source Application Data Interface (ADI) address, destination ADI address, sending node address, target node address, and a sequence number. The magic number is used to identify WAV packets, and allows the packet format to be updated in the future. The quality of service field allows routing decisions to be made based on this value and can be used to route critical management data over a dedicated channel. The time to live value is used to discard misrouted packets while the source transceiver is updated at each hop. This information is used to monitor the health of each transceiver in the network. To identify the packet type, the function code is used. Besides having a regular data packet, the system supports diagnostic packets for fault detection and isolation. The payload length specifies the number of data bytes in the payload, and this supports variable-length packets in the network. The source ADI is the address of the originating interface. This can be used by the destination application to identify the originating source of the packet where the address consists of a subnet, subsystem class within the subnet, a subsystem unit

  11. Chemical treatments of the cell packets induced from a Micrococcus luteus mutant and teichuronic acids on the packet surface.

    PubMed

    Monodane, T; Tokunaga, M; Uesugi, Y; Torii, M

    1990-01-01

    Cell packets (MT packets) induced from a tetrads-forming mutant (strain MT) of Micrococcus luteus, both treated with chemical reagents and non-treated, were observed with a scanning electron microscope (SEM). The agglutinability of MT packets with antiserum containing anti-teichuronic acid antibody was examined. The binding of protein A-gold particles to the MT packets, mediated with the antiserum, was also observed with SEM. Gold particles were observed uniformly on the whole packet surface and also on the bridging structure formed by the outermost layer of the cell wall. Mild acid treatment, NaIO4-NaBH4 treatment and mild Smith degradation of the MT packets extremely decreased the agglutinability and binding of protein A-gold particles. The treatments gave a little influence on the surface feature and appreciably destroyed the regular packet structure. It was supposed that teichuronic acids distributed uniformly on the whole packet surface, naturally on the surface of the bridging structure too, and appreciably participated in the maintenance of the regular packet structure.

  12. Collective neutrino oscillations and neutrino wave packets

    NASA Astrophysics Data System (ADS)

    Akhmedov, Evgeny; Kopp, Joachim; Lindner, Manfred

    2017-09-01

    Effects of decoherence by wave packet separation on collective neutrino oscillations in dense neutrino gases are considered. We estimate the length of the wave packets of neutrinos produced in core collapse supernovae and the expected neutrino coherence length, and then proceed to consider the decoherence effects within the density matrix formalism of neutrino flavour transitions. First, we demonstrate that for neutrino oscillations in vacuum the decoherence effects are described by a damping term in the equation of motion of the density matrix of a neutrino as a whole (as contrasted to that of the fixed-momentum components of the neutrino density matrix). Next, we consider neutrino oscillations in ordinary matter and dense neutrino backgrounds, both in the adiabatic and non-adiabatic regimes. In the latter case we study two specific models of adiabaticity violation—one with short-term and another with extended non-adiabaticity. It is demonstrated that, while in the adiabatic case a damping term is present in the equation of motion of the neutrino density matrix (just like in the vacuum oscillation case), no such term in general appears in the non-adiabatic regime.

  13. Scattering of wave packets with phases

    NASA Astrophysics Data System (ADS)

    Karlovets, Dmitry V.

    2017-03-01

    A general problem of 2 → N f scattering is addressed with all the states being wave packets with arbitrary phases. Depending on these phases, one deals with coherent states in (3 + 1) D, vortex particles with orbital angular momentum, the Airy beams, and their generalizations. A method is developed in which a number of events represents a functional of the Wigner functions of such states. Using width of a packet σ p /< p> as a small parameter, the Wigner functions, the number of events, and a cross section are represented as power series in this parameter, the first non-vanishing corrections to their plane-wave expressions are derived, and generalizations for beams are made. Although in this regime the Wigner functions turn out to be everywhere positive, the cross section develops new specifically quantum features, inaccessible in the plane-wave approximation. Among them is dependence on an impact parameter between the beams, on phases of the incoming states, and on a phase of the scattering amplitude. A model-independent analysis of these effects is made. Two ways of measuring how a Coulomb phase and a hadronic one change with a transferred momentum t are discussed.

  14. Wavelet Packet Entropy for Heart Murmurs Classification

    PubMed Central

    Safara, Fatemeh; Doraisamy, Shyamala; Azman, Azreen; Jantan, Azrul; Ranga, Sri

    2012-01-01

    Heart murmurs are the first signs of cardiac valve disorders. Several studies have been conducted in recent years to automatically differentiate normal heart sounds, from heart sounds with murmurs using various types of audio features. Entropy was successfully used as a feature to distinguish different heart sounds. In this paper, new entropy was introduced to analyze heart sounds and the feasibility of using this entropy in classification of five types of heart sounds and murmurs was shown. The entropy was previously introduced to analyze mammograms. Four common murmurs were considered including aortic regurgitation, mitral regurgitation, aortic stenosis, and mitral stenosis. Wavelet packet transform was employed for heart sound analysis, and the entropy was calculated for deriving feature vectors. Five types of classification were performed to evaluate the discriminatory power of the generated features. The best results were achieved by BayesNet with 96.94% accuracy. The promising results substantiate the effectiveness of the proposed wavelet packet entropy for heart sounds classification. PMID:23227043

  15. NIE Credit-Granting Courses and Workshops Information Packet.

    ERIC Educational Resources Information Center

    American Newspaper Publishers Association Foundation, Washington, DC.

    This packet offers information about NIE (Newspaper in Education) credit-granting courses and workshops (some of them cooperative press/school ventures) on the use of newspapers in instructional programs. The packet is in four major sections, containing: (1) case studies of two exceptional programs at the University of Wisconsin-Madison and at…

  16. Dance Theatre of Harlem--Theater Activity Packet.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    Intended to complement the New York City communication arts curriculum, this packet introduces young students, guided by the classroom teacher, to a dress rehearsal performance of the Dance Theatre of Harlem ballet company. The packet is one of a series in the "Early Stages" program, a joint effort of the Mayor's Office of Film, Theater…

  17. Frogs and Toads. A Spring Activity Packet for Second Grade.

    ERIC Educational Resources Information Center

    Jackson Community Coll., MI. Dahlem Environmental Education Center.

    This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on the characteristics and…

  18. The Surgical Scrub. Instructor's Packet. Learning Activity Package.

    ERIC Educational Resources Information Center

    Runge, Lillian

    This instructor's packet accompanies the learning activity package (LAP) on the surgical scrub. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, a student performance checklist, suggested activities, an additional resources list, and student…

  19. Shock & Anaphylactic Shock. Instructor's Packet. Learning Activity Package.

    ERIC Educational Resources Information Center

    Hime, Kirsten

    This instructor's packet accompanies the learning activity package (LAP) on shock and anaphylactic shock. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, suggested activities, an additional resources list, and student completion cards to issue to…

  20. Student Activity Packet for the California State Capitol Museum.

    ERIC Educational Resources Information Center

    2001

    This packet contains materials to help fourth and fifth grade teachers provide their students with background information for field trips to the California State Capitol Museum (Sacramento). The working museum focuses on the theme areas of California history, the state government/legislative process, and state symbols. The packet presents teacher…

  1. Michigan Natural History. A Spring Activity Packet for Fourth Grade.

    ERIC Educational Resources Information Center

    Jackson Community Coll., MI. Dahlem Environmental Education Center.

    This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on the natural history of…

  2. Understanding and Minimizing Staff Burnout. An Introductory Packet.

    ERIC Educational Resources Information Center

    California Univ., Los Angeles. Center for Mental Health Schools.

    Staff who bring a mental health perspective to the schools can deal with problems of staff burnout. This packet is designed to help in beginning the process of minimizing burnout, a process that requires reducing environmental stressors, increasing personal capabilities, and enhancing job supports. The packet opens with brief discussions of "What…

  3. Reading the Rocks. A Fall Activity Packet for Fifth Grade.

    ERIC Educational Resources Information Center

    Jackson Community Coll., MI. Dahlem Environmental Education Center.

    This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on various geological…

  4. Sculpture of Indonesia. [Teacher's Packet for a Teacher Workshop.

    ERIC Educational Resources Information Center

    Asian Art Museum of San Francisco, CA.

    This teacher's packet accompanies a slide presentation on the sculpture found in Indonesia. The packet contains: (1) a slide list with descriptions listing time period and dimensions of each piece; (2) an introductory essay describing the setting of Indonesia, the Central Javanese Period and the Eastern Javanese Period; (3) descriptions of how to…

  5. Temperature, Pulse, and Respiration. Instructor's Packet. Learning Activity Package.

    ERIC Educational Resources Information Center

    Runge, Lillian

    This instructor's packet accompanies the learning activity package (LAP) on temperature, pulse, and respiration. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, suggested activities, an additional resources list, and student completion cards to…

  6. Practical distributed video coding in packet lossy channels

    NASA Astrophysics Data System (ADS)

    Qing, Linbo; Masala, Enrico; He, Xiaohai

    2013-07-01

    Improving error resilience of video communications over packet lossy channels is an important and tough task. We present a framework to optimize the quality of video communications based on distributed video coding (DVC) in practical packet lossy network scenarios. The peculiar characteristics of DVC indeed require a number of adaptations to take full advantage of its intrinsic robustness when dealing with data losses of typical real packet networks. This work proposes a new packetization scheme, an investigation of the best error-correcting codes to use in a noisy environment, a practical rate-allocation mechanism, which minimizes decoder feedback, and an improved side-information generation and reconstruction function. Performance comparisons are presented with respect to a conventional packet video communication using H.264/advanced video coding (AVC). Although currently the H.264/AVC rate-distortion performance in case of no loss is better than state-of-the-art DVC schemes, under practical packet lossy conditions, the proposed techniques provide better performance with respect to an H.264/AVC-based system, especially at high packet loss rates. Thus the error resilience of the proposed DVC scheme is superior to the one provided by H.264/AVC, especially in the case of transmission over packet lossy networks.

  7. Do Free Quantum-Mechanical Wave Packets Always Spread?

    ERIC Educational Resources Information Center

    Klein, James R.

    1980-01-01

    The spreading or shrinking of free three-dimensional quantum-mechanical wave packets is addressed. A seeming paradox concerning the time evolution operator and nonspreading wave packets is discussed, and the necessity of taking into account the appropriate mathematical structure of quantum mechanics is emphasized. Teaching implications are given.…

  8. Dolphin "packet" use during long-range echolocation tasks.

    PubMed

    Finneran, James J

    2013-03-01

    When echolocating, dolphins typically emit a single broadband "click," then wait to receive the echo before emitting another click. However, previous studies have shown that during long-range echolocation tasks, they may instead emit a burst, or "packet," of several clicks, then wait for the packet of echoes to return before emitting another packet of clicks. The reasons for the use of packets are unknown. In this study, packet use was examined by having trained bottlenose dolphins perform long-range echolocation tasks. The tasks featured "phantom" echoes produced by capturing the dolphin's outgoing echolocation clicks, convolving the clicks with an impulse response to create an echo waveform, and then broadcasting the delayed, scaled echo to the dolphin. Dolphins were trained to report the presence of phantom echoes or a change in phantom echoes. Target range varied from 25 to 800 m. At ranges below 75 m, the dolphins rarely used packets. As the range increased beyond 75 m, two of the three dolphins increasingly produced packets, while the third dolphin instead utilized very high click repetition rates. The use of click packets appeared to be governed more by echo delay (target range) than echo amplitude.

  9. Forests and Flowers. A Spring Activity Packet for Third Grade.

    ERIC Educational Resources Information Center

    Jackson Community Coll., MI. Dahlem Environmental Education Center.

    This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on plants and…

  10. Langston Hughes Curriculum Packet: Dig and Be Dug in Return.

    ERIC Educational Resources Information Center

    Danielson, Susan

    Designed in a flexible format for use by college instructors, high school teachers, and community education workers, this curriculum packet serves as an introduction to the life and works of black poet Langston Hughes. The major component of the packet is a critical essay that explores the thematic highlights of Hughes's career. The remaining…

  11. Energy Around Us. A Fall Activity Packet for Fourth Grade.

    ERIC Educational Resources Information Center

    Jackson Community Coll., MI. Dahlem Environmental Education Center.

    This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on energy uses, energy…

  12. Observation of Patient. Instructor's Packet. Learning Activity Package.

    ERIC Educational Resources Information Center

    Lee, Carolyn

    This instructor's packet accompanies the learning activity package (LAP) on observation of the patient. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, an additional resources list, suggested activities, and student completion cards to issue to…

  13. Assessing To Address Barriers to Learning. An Introductory Packet.

    ERIC Educational Resources Information Center

    California Univ., Los Angeles. Center for Mental Health Schools.

    Schools committed to the success of all children must have an array of activities designed to address barriers to learning. This introductory packet contains some aids to help school staff find new ways of thinking about how schools should assess barriers to learning. The following items are included in the packet: (1) a chart of "Barriers to…

  14. Path Diversity Media Streaming over Best Effort Packet Switched Networks

    DTIC Science & Technology

    2003-01-01

    bandwidth for pre-recorded streaming media by sending packets simultaneously from multiple senders to a single receiver. For interactive and live ... streaming applications, the path diversity framework allows a single sender to send packets simultaneously on both default and redundant paths to the

  15. Do Free Quantum-Mechanical Wave Packets Always Spread?

    ERIC Educational Resources Information Center

    Klein, James R.

    1980-01-01

    The spreading or shrinking of free three-dimensional quantum-mechanical wave packets is addressed. A seeming paradox concerning the time evolution operator and nonspreading wave packets is discussed, and the necessity of taking into account the appropriate mathematical structure of quantum mechanics is emphasized. Teaching implications are given.…

  16. Continuing Development of California State Packet Radio Project.

    ERIC Educational Resources Information Center

    Brownrigg, Edwin

    1992-01-01

    Provides background on the California State Library Packet Radio project, which will use packet radios to deploy a wireless, high-speed, wide-area network of 600 nodes, including 100 libraries, in the San Francisco Bay Area. Project goals and objectives, plan of operation, equipment, and evaluation plans are summarized. (MES)

  17. Learn about Seabirds. Teaching Packet, Grades 4-6.

    ERIC Educational Resources Information Center

    Fish and Wildlife Service (Dept. of Interior), Anchorage, AK.

    This teaching packet is designed to teach Alaskan students in grades 4-6 about Alaska's seabird populations, the worldwide significance of seabirds, and the environmental conditions to which seabirds are sensitive. The packet includes a curriculum guide (containing a teacher's background story and 12 teaching activities), a separately published…

  18. Syncope. What Is It? Instructor's Packet. Learning Activity Package.

    ERIC Educational Resources Information Center

    Stark, Pam

    This instructor's packet accompanies the learning activity package (LAP) on syncope (fainting). Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, a student performance checklist, suggested activities, an additional resources list, and student…

  19. Spring Birds. A Spring Activity Packet for First Grade.

    ERIC Educational Resources Information Center

    Jackson Community Coll., MI. Dahlem Environmental Education Center.

    This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on the characteristics of…

  20. Nature Prepares for Winter. A Fall Activity Packet for Kindergarten.

    ERIC Educational Resources Information Center

    Jackson Community Coll., MI. Dahlem Environmental Education Center.

    This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on preparations for winter…

  1. Nature's Hitchhikers. A Fall Activity Packet for Second Grade.

    ERIC Educational Resources Information Center

    Jackson Community Coll., MI. Dahlem Environmental Education Center.

    This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on the characteristics of…

  2. Learning packets in nursing education: reviving the past.

    PubMed

    Xu, Yin; Martin, Madeleine; Gribbins, Ashley

    2010-05-01

    Learning packets gained popularity in nursing education in the 1960's. Recently, they have been cited as strategies for distance learning. The aim of this project was to integrate Topic Focused Learning Packets as a complementary teaching strategy for presentation of new content to large classes of undergraduate nursing students. In addition to reducing in-class content presentation time, goals included: fostering critical thinking, actively engaging the student, and providing opportunities for team-based interaction. Rationale, design process and packets will be described. The learning packet was viewed positively by the students and faculty. Among 134 students, 119 strongly agreed or agreed that the learning packet was effective in increasing their understanding of the content and achieving the course objectives.

  3. Image coding based on energy-sorted wavelet packets

    NASA Astrophysics Data System (ADS)

    Kong, Lin-Wen; Lay, Kuen-Tsair

    1995-04-01

    The discrete wavelet transform performs multiresolution analysis, which effectively decomposes a digital image into components with different degrees of details. In practice, it is usually implemented in the form of filter banks. If the filter banks are cascaded and both the low-pass and the high-pass components are further decomposed, a wavelet packet is obtained. The coefficients of the wavelet packet effectively represent subimages in different resolution levels. In the energy-sorted wavelet- packet decomposition, all subimages in the packet are then sorted according to their energies. The most important subimages, as measured by the energy, are preserved and coded. By investigating the histogram of each subimage, it is found that the pixel values are well modelled by the Laplacian distribution. Therefore, the Laplacian quantization is applied to quantized the subimages. Experimental results show that the image coding scheme based on wavelet packets achieves high compression ratio while preserving satisfactory image quality.

  4. A Modular, Scalable, Extensible, and Transparent Optical Packet Buffer

    NASA Astrophysics Data System (ADS)

    Small, Benjamin A.; Shacham, Assaf; Bergman, Keren

    2007-04-01

    We introduce a novel optical packet switching buffer architecture that is composed of multiple building-block modules, allowing for a large degree of scalability. The buffer supports independent and simultaneous read and write processes without packet rejection or misordering and can be considered a fully functional packet buffer. It can easily be programmed to support two prioritization schemes: first-in first-out (FIFO) and last-in first-out (LIFO). Because the system leverages semiconductor optical amplifiers as switching elements, wideband packets can be routed transparently. The operation of the system is discussed with illustrative packet sequences, which are then verified on an actual implementation composed of conventional fiber-optic componentry.

  5. Theory for low-frequency modulated Langmuir wave packets

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1992-01-01

    Langmuir wave packets with low frequency modulations (or beats) observed in the Jovian foreshock are argued to be direct evidence for the Langmuir wave decay L yields L-prime + S. In this decay, 'pump' Langmuir waves L, driven by an electron beam, produce backscattered product Langmuir waves L-prime and ion sound waves S. The L and L-prime waves beat at the frequency and wavevector of the S waves, thereby modulating the wave packets. Beam speeds calculated using the modulated Jovian wave packets (1) are reasonable, at 4-10 times the electron thermal speed, (2) are consistent with theoretical limits on the decay process, and (3) decrease with increasing foreshock depth, as expected theoretically. These results strongly support the theory. The modulation depth of some wave packets suggests saturation by the decay L yields L-prime + S. Applications to modulated Langmuir packets in the Venusian and terrestrial foreshocks and in a type III radio source are proposed.

  6. A singular vortex Rossby wave packet within a rapidly rotating vortex

    NASA Astrophysics Data System (ADS)

    Caillol, Philippe

    2017-04-01

    This paper describes the quasi-steady régime attained by a rapidly rotating vortex after a wave packet has interacted with it. We consider singular, nonlinear, helical, and shear asymmetric modes within a linearly stable, columnar, axisymmetric, and dry vortex in the f-plane. The normal modes enter resonance with the vortex at a certain radius rc, where the phase angular speed is equal to the rotation frequency. The related singularity in the modal equation at rc strongly modifies the flow in the 3D helical critical layer, the region where the wave/vortex interaction occurs. This interaction induces a secondary mean flow of higher amplitude than the wave packet and that diffuses at either side of the critical layer inside two spiral diffusion boundary layers. We derive the leading-order equations of the system of nonlinear coupled partial differential equations that govern the slowly evolving amplitudes of the wave packet and induced mean flow a long time after this interaction started. We show that the critical layer imposes its proper scalings and evolution equations; in particular, two slow times are involved, the faster being secular. This system leads to a more complex dynamics with respect to the previous studies on wave packets where this coupling was omitted and where, for instance, a nonlinear Schrödinger equation was derived [D. J. Benney and S. A. Maslowe, "The evolution in space and time of nonlinear waves in parallel shear flows," Stud. Appl. Math. 54, 181 (1975)]. Matched asymptotic expansion method lets appear that the neutral modes are distorted. The main outcome is that a stronger wave/vortex interaction takes place when a wave packet is considered with respect to the case of a single mode. Numerical simulations of the leading-order inviscid Burgers-like equations of the derived system show that the wave packet rapidly breaks and that the vortex, after intensifying in the transition stage, is substantially weakened before the breaking onset. This

  7. HEAVY ION HEATING DUE TO INTERACTIONS WITH OUTWARD AND INWARD ALFVEN WAVE PACKETS

    SciTech Connect

    Galinsky, V. L.; Shevchenko, V. I.

    2012-06-01

    The study of simultaneous cyclotron interactions of heavy ions with outward- and inward-propagating Alfven wave packets in the solar wind was self-consistently conducted with wave-packet dynamics. It was shown that, even when the ratio of intensities of the Alfven waves propagating from the Sun and the inward propagating waves are rather large (a factor of 10 or more), the distribution function of the ions simultaneously interacting with both of the wave packets drastically differs from the distribution function formed by the interaction of ions with waves only propagating from the Sun. In the latter case, the ions acquire a shell-like distribution; in the former case, a new non-shell-type distribution with much larger effective temperatures is formed. The temporal dynamics of the ion-distribution function and the self-consistent modification of the wave-power spectral density for both the outward and inward waves were also investigated. The results refute claims by Isenberg and Hollweg that the outward-propagating waves generate the inward waves through the instability of their resonant particle shell distribution.

  8. Preparing for the Job Interview. Cooperative Work Experience Learning Activity Packet: Series on Job Entry and Adjustment; Packet Three.

    ERIC Educational Resources Information Center

    Herschbach, Dennis R.; And Others

    This student booklet is third in an illustrated series of eleven learning activity packets for use in teaching job hunting and application procedures and the management of wages to secondary students. Three units are included in this packet: unit 1 discusses the purpose of the interview, questions frequently asked, and items that the applicant…

  9. Reconstruction of an excited-state molecular wave packet with attosecond transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Chini, Michael; Wang, Xiaowei; González-Castrillo, Alberto; Palacios, Alicia; Argenti, Luca; Martín, Fernando; Chang, Zenghu

    2016-08-01

    Attosecond science promises to allow new forms of quantum control in which a broadband isolated attosecond pulse excites a molecular wave packet consisting of a coherent superposition of multiple excited electronic states. This electronic excitation triggers nuclear motion on the molecular manifold of potential energy surfaces and can result in permanent rearrangement of the constituent atoms. Here, we demonstrate attosecond transient absorption spectroscopy (ATAS) as a viable probe of the electronic and nuclear dynamics initiated in excited states of a neutral molecule by a broadband vacuum ultraviolet pulse. Owing to the high spectral and temporal resolution of ATAS, we are able to reconstruct the time evolution of a vibrational wave packet within the excited B'Σ1u+ electronic state of H2 via the laser-perturbed transient absorption spectrum.

  10. Complex time dependent wave packet technique for thermal equilibrium systems - Electronic spectra

    NASA Technical Reports Server (NTRS)

    Reimers, J. R.; Wilson, K. R.; Heller, E. J.

    1983-01-01

    A time dependent wave packet method is presented for the rapid calculation of the properties of systems in thermal equilibrium and is applied, as an illustration, to electronic spectra. The thawed Gaussian approximation to quantum wave packet dynamics combined with evaluation of the density matrix operator by imaginary time propagation is shown to give exact electronic spectra for harmonic potentials and excellent results for both a Morse potential and for the band contours of the three transitions of the visible electronic absorption spectrum of the iodine molecule. The method, in principle, can be extended to many atoms (e.g., condensed phases) and to other properties (e.g., infrared and Raman spectra and thermodynamic variables).

  11. Interconnection between packet switching national networks and local packet radio communication networks

    NASA Astrophysics Data System (ADS)

    Talone, P.; Trigila, S.

    1985-07-01

    Multipoint topology networks based on a single statistically distributed radiocommunication channel are considered, referring only to restricted area networks with line of sight type links. The architecture and protocols of such networks are reviewed. The problems related to the interconnection of such networks with large public packet switching communication networks are examined. Several hypothesis are studied concluding that mainly in the case of emergencies or catastrophic events these networks are an extremely useful resource.

  12. Networked LQG control over lossy channels with computational/packet-transmission delays and coarsely quantised packets

    NASA Astrophysics Data System (ADS)

    Foo, Yung Kuan; Moayedi, Maryam; Chai Soh, Yeng

    2016-04-01

    This article addresses the linear quadratic Gaussian (LQG) control problem of networked multi-input, multi-output systems where computational delay exists and the measurement and control signals are packetised and transmitted through a network within which random delay and packet loss may occur during transmissions. A transmission control protocol (TCP)-like protocol for the communication network is considered in which acknowledgement is sent from the actuator to the controller if and only if the control packet is received, assuming these acknowledgements always reach the estimator in time and without fail. To minimise the data word-length for transmissions over the network and to maximise control system performance, it is proposed that different quantisation resolutions be used for transmission data encapsulation, and control and output signals A/D-D/A conversions at sensor/actuator. To circumvent the problem of disparity between encapsulation and A/D-D/A quantisation resolutions, a pseudo-stochastic approach via subtractive dither is applied to quantise the transmission packets. This also enables us to model the quantisation errors as uncorrelated independent zero-mean additive white noises and apply standard LQG methodology and separation principle to design the estimator and the controller separately. An example is included to demonstrate the effectiveness of the approach.

  13. A novel lost packets recovery scheme based on visual secret sharing

    NASA Astrophysics Data System (ADS)

    Lu, Kun; Shan, Hong; Li, Zhi; Niu, Zhao

    2017-08-01

    In this paper, a novel lost packets recovery scheme which encrypts the effective parts of an original packet into two shadow packets based on (2, 2)-threshold XOR-based visual Secret Sharing (VSS) is proposed. The two shadow packets used as watermarks would be embedded into two normal data packets with digital watermarking embedding technology and then sent from one sensor node to another. Each shadow packet would reveal no information of the original packet, which can improve the security of original packet delivery greatly. The two shadow packets which can be extracted from the received two normal data packets delivered from a sensor node can recover the original packet lossless based on XOR-based VSS. The Performance analysis present that the proposed scheme provides essential services as long as possible in the presence of selective forwarding attack. The proposed scheme would not increase the amount of additional traffic, namely, lower energy consumption, which is suitable for Wireless Sensor Network (WSN).

  14. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan

    1993-01-01

    An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head 18 to achieve this initiation of movement is equal to the vacuum Within the packet 12. In a preferred embodiment a vacuum reference plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A packet production line model is also described.

  15. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, T.G.; Thacker, L.H.; Fine, H.A.

    1993-10-05

    An instrument is described for the measurement of vacuum within sealed packets, the packets having a wall sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall, with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum reference plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A packet production line model is also described. 3 figures.

  16. Quality of service in optical packet switched DWDM transport networks

    NASA Astrophysics Data System (ADS)

    Bjornstad, Steinar; Stol, Norvald; Hjelme, Dag R.

    2002-09-01

    For support of multimedia applications in Internet, at least four service classes are normally outlined. We expect optical packet switching to be of special interest in terabit capacity networks with a high number of wavelengths. Our analysis shows that when the wavelength dimension is used for contention resolution, and number of wavelengths is 32 or higher, node-delay is negligible. However buffering in optical packet switches is a scarce resource which use should be minimized. Based on the requirement of the future network, and on our packet switch performance analysis, we suggest reducing the number of service classes to two: A normal class (NCT) with medium low packet loss and a low need for buffering, and a high class (HCT) with a minimum of packet loss. Performance of a buffer reservation scheme is analyzed by simulation. Assuming the network of today with 10 % HCT traffic, assigning four buffer inputs to the HCT traffic, a difference in optical packet loss ratio of three orders of magnitude can be obtained. The same difference in optical packet loss ratio can be obtained if 50 % HCT traffic is assumed (network of tomorrow), by assigning a higher number of buffer inputs.

  17. Packet loss mitigation for biomedical signals in healthcare telemetry.

    PubMed

    Garudadri, Harinath; Baheti, Pawan K

    2009-01-01

    In this work, we propose an effective application layer solution for packet loss mitigation in the context of Body Sensor Networks (BSN) and healthcare telemetry. Packet losses occur due to many reasons including excessive path loss, interference from other wireless systems, handoffs, congestion, system loading, etc. A call for action is in order, as packet losses can have extremely adverse impact on many healthcare applications relying on BAN and WAN technologies. Our approach for packet loss mitigation is based on Compressed Sensing (CS), an emerging signal processing concept, wherein significantly fewer sensor measurements than that suggested by Shannon/Nyquist sampling theorem can be used to recover signals with arbitrarily fine resolution. We present simulation results demonstrating graceful degradation of performance with increasing packet loss rate. We also compare the proposed approach with retransmissions. The CS based packet loss mitigation approach was found to maintain up to 99% beat-detection accuracy at packet loss rates of 20%, with a constant latency of less than 2.5 seconds.

  18. Priority-based methods for reducing the impact of packet loss on HEVC encoded video streams

    NASA Astrophysics Data System (ADS)

    Nightingale, James; Wang, Qi; Grecos, Christos

    2013-02-01

    The rapid growth in the use of video streaming over IP networks has outstripped the rate at which new network infrastructure has been deployed. These bandwidth-hungry applications now comprise a significant part of all Internet traffic and present major challenges for network service providers. The situation is more acute in mobile networks where the available bandwidth is often limited. Work towards the standardisation of High Efficiency Video Coding (HEVC), the next generation video coding scheme, is currently on track for completion in 2013. HEVC offers the prospect of a 50% improvement in compression over the current H.264 Advanced Video Coding standard (H.264/AVC) for the same quality. However, there has been very little published research on HEVC streaming or the challenges of delivering HEVC streams in resource-constrained network environments. In this paper we consider the problem of adapting an HEVC encoded video stream to meet the bandwidth limitation in a mobile networks environment. Video sequences were encoded using the Test Model under Consideration (TMuC HM6) for HEVC. Network abstraction layers (NAL) units were packetized, on a one NAL unit per RTP packet basis, and transmitted over a realistic hybrid wired/wireless testbed configured with dynamically changing network path conditions and multiple independent network paths from the streamer to the client. Two different schemes for the prioritisation of RTP packets, based on the NAL units they contain, have been implemented and empirically compared using a range of video sequences, encoder configurations, bandwidths and network topologies. In the first prioritisation method the importance of an RTP packet was determined by the type of picture and the temporal switching point information carried in the NAL unit header. Packets containing parameter set NAL units and video coding layer (VCL) NAL units of the instantaneous decoder refresh (IDR) and the clean random access (CRA) pictures were given the

  19. Networked Robust Predictive Control Systems Design with Packet Loss

    NASA Astrophysics Data System (ADS)

    Nguyen, Quang T.; Veselý, Vojtech; Kozáková, Alena; Pakshin, Pavel

    2014-01-01

    The paper addresses problem of designing a robust output feedback model predictive control for uncertain linear systems over networks with packet-loss. The packet-loss process is arbitrary and bounded by the control horizon of model predictive control. Networked predictive control systems with packet loss are modeled as switched linear systems. This enables us to apply the theory of switched systems to establish the stability condition. The stabilizing controller design is based on sufficient robust stability conditions formulated as a solution of bilinear matrix inequality. Finally, a benchmark numerical example-double integrator is given to illustrate the effectiveness of the proposed method.

  20. Delay Analysis for TDMA Schemes with Packet Recombining

    NASA Astrophysics Data System (ADS)

    Pereira, Miguel; Bernardo, Luís; Dinis, Rui; Oliveira, Rodolfo; Carvalho, Paulo; Pinto, Paulo

    This paper considers the use of SC modulations (Single-Carrier) with FDE (Frequency-Domain Equalization) with low-complexity soft combining ARQ schemes (Automatic Repeat reQuest). With our technique, packets associated to different transmission attempts are combined in a soft way, allowing improved performances. Its low complexity makes it particularly interesting for the uplink of wireless systems. This paper proposes an accurate analytical model for a TDMA (Time Division Multiple Access) scheme where packet combining ARQ is applied. It evaluates the uplink non-saturated packet delay for a generic message arrival process. Our analytical results are validated using physical and MAC layer simulations.

  1. Realization of localized Bohr-like wave packets.

    PubMed

    Mestayer, J J; Wyker, B; Lancaster, J C; Dunning, F B; Reinhold, C O; Yoshida, S; Burgdörfer, J

    2008-06-20

    We demonstrate a protocol to create localized wave packets in very-high-n Rydberg states which travel in nearly circular orbits around the nucleus. Although these wave packets slowly dephase and eventually lose their localization, their motion can be monitored over several orbital periods. These wave packets represent the closest analog yet achieved to the original Bohr model of the hydrogen atom, i.e., an electron in a circular classical orbit around the nucleus. The possible extension of the approach to create "planetary atoms" in highly correlated stable multiply excited states is discussed.

  2. Direct observation of isolated Damon-Eshbach and backward volume spin-wave packets in ferromagnetic microstripes.

    PubMed

    Wessels, Philipp; Vogel, Andreas; Tödt, Jan-Niklas; Wieland, Marek; Meier, Guido; Drescher, Markus

    2016-02-24

    The analysis of isolated spin-wave packets is crucial for the understanding of magnetic transport phenomena and is particularly interesting for applications in spintronic and magnonic devices, where isolated spin-wave packets implement an information processing scheme with negligible residual heat loss. We have captured microscale magnetization dynamics of single spin-wave packets in metallic ferromagnets in space and time. Using an optically driven high-current picosecond pulse source in combination with time-resolved scanning Kerr microscopy probed by femtosecond laser pulses, we demonstrate phase-sensitive real-space observation of spin-wave packets in confined permalloy (Ni80Fe20) microstripes. Impulsive excitation permits extraction of the dynamical parameters, i.e. phase- and group velocities, frequencies and wave vectors. In addition to well-established Damon-Eshbach modes our study reveals waves with counterpropagating group- and phase-velocities. Such unusual spin-wave motion is expected for backward volume modes where the phase fronts approach the excitation volume rather than emerging out of it due to the negative slope of the dispersion relation. These modes are difficult to excite and observe directly but feature analogies to negative refractive index materials, thus enabling model studies of wave propagation inside metamaterials.

  3. Direct observation of isolated Damon-Eshbach and backward volume spin-wave packets in ferromagnetic microstripes

    NASA Astrophysics Data System (ADS)

    Wessels, Philipp; Vogel, Andreas; Tödt, Jan-Niklas; Wieland, Marek; Meier, Guido; Drescher, Markus

    2016-02-01

    The analysis of isolated spin-wave packets is crucial for the understanding of magnetic transport phenomena and is particularly interesting for applications in spintronic and magnonic devices, where isolated spin-wave packets implement an information processing scheme with negligible residual heat loss. We have captured microscale magnetization dynamics of single spin-wave packets in metallic ferromagnets in space and time. Using an optically driven high-current picosecond pulse source in combination with time-resolved scanning Kerr microscopy probed by femtosecond laser pulses, we demonstrate phase-sensitive real-space observation of spin-wave packets in confined permalloy (Ni80Fe20) microstripes. Impulsive excitation permits extraction of the dynamical parameters, i.e. phase- and group velocities, frequencies and wave vectors. In addition to well-established Damon-Eshbach modes our study reveals waves with counterpropagating group- and phase-velocities. Such unusual spin-wave motion is expected for backward volume modes where the phase fronts approach the excitation volume rather than emerging out of it due to the negative slope of the dispersion relation. These modes are difficult to excite and observe directly but feature analogies to negative refractive index materials, thus enabling model studies of wave propagation inside metamaterials.

  4. Direct observation of isolated Damon-Eshbach and backward volume spin-wave packets in ferromagnetic microstripes

    PubMed Central

    Wessels, Philipp; Vogel, Andreas; Tödt, Jan-Niklas; Wieland, Marek; Meier, Guido; Drescher, Markus

    2016-01-01

    The analysis of isolated spin-wave packets is crucial for the understanding of magnetic transport phenomena and is particularly interesting for applications in spintronic and magnonic devices, where isolated spin-wave packets implement an information processing scheme with negligible residual heat loss. We have captured microscale magnetization dynamics of single spin-wave packets in metallic ferromagnets in space and time. Using an optically driven high-current picosecond pulse source in combination with time-resolved scanning Kerr microscopy probed by femtosecond laser pulses, we demonstrate phase-sensitive real-space observation of spin-wave packets in confined permalloy (Ni80Fe20) microstripes. Impulsive excitation permits extraction of the dynamical parameters, i.e. phase- and group velocities, frequencies and wave vectors. In addition to well-established Damon-Eshbach modes our study reveals waves with counterpropagating group- and phase-velocities. Such unusual spin-wave motion is expected for backward volume modes where the phase fronts approach the excitation volume rather than emerging out of it due to the negative slope of the dispersion relation. These modes are difficult to excite and observe directly but feature analogies to negative refractive index materials, thus enabling model studies of wave propagation inside metamaterials. PMID:26906113

  5. Structural health monitoring of long-span suspension bridges using wavelet packet analysis

    NASA Astrophysics Data System (ADS)

    Ding, Youliang; Li, Aiqun

    2007-09-01

    During the service life of civil engineering structures such as long-span bridges, local damage at key positions may continually accumulate, and may finally result in their sudden failure. One core issue of global vibration-based health monitoring methods is to seek some damage indices that are sensitive to structural damage. This paper proposes an online structural health monitoring method for long-span suspension bridges using wavelet packet transform (WPT). The WPT-based method is based on the energy variations of structural ambient vibration responses decomposed using wavelet packet analysis. The main feature of this method is that the proposed wavelet packet energy spectrum (WPES) has the ability to detect structural damage from ambient vibration tests of a long-span suspension bridge. As an example application, the WPES-based health monitoring system is used on the Runyang Suspension Bridge under daily environmental conditions. The analysis reveals that changes in environmental temperature have a long-term influence on the WPES, while the effect of traffic loadings on the measured WPES of the bridge presents instantaneous changes because of the nonstationary properties of the loadings. The condition indication indices V D reflect the influences of environmental temperature on the dynamic properties of the Runyang Suspension Bridge. The field tests demonstrate that the proposed WPES-based condition indication index V D is a good candidate index for health monitoring of long-span suspension bridges under ambient excitations.

  6. Design and application of discrete wavelet packet transform based multiresolution controller for liquid level system.

    PubMed

    Paul, Rimi; Sengupta, Anindita

    2017-08-11

    A new controller based on discrete wavelet packet transform (DWPT) for liquid level system (LLS) has been presented here. This controller generates control signal using node coefficients of the error signal which interprets many implicit phenomena such as process dynamics, measurement noise and effect of external disturbances. Through simulation results on LLS problem, this controller is shown to perform faster than both the discrete wavelet transform based controller and conventional proportional integral controller. Also, it is more efficient in terms of its ability to provide better noise rejection. To overcome the wind up phenomenon by considering the saturation due to presence of actuator, anti-wind up technique is applied to the conventional PI controller and compared to the wavelet packet transform based controller. In this case also, packet controller is found better than the other ones. This similar work has been extended for analogous first order RC plant as well as second order plant also. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. All-optical swapping of spectral amplitude code labels for packet-switched networks

    NASA Astrophysics Data System (ADS)

    Chen, Lawrence R.

    2008-08-01

    Packet-switched networks have attracted considerable attention as a basis for next-generation optical networks due to their advantages in terms of flexibility and network efficiency over traditional circuit-switched networks. Optical code multi-protocol label switching (OC-MPLS) promises fast, flexible, power-efficient switching by keeping signals in the optical domain and avoiding costly conversions to the electrical domain. In this paper, we review the use of spectral amplitude codes (SACs) for implementing OC-MPLS labels. We discuss the principles and features, as well as key enabling technologies required for their processing. In particular, we compare three different approaches for low cost all-optical swapping of SAC labels. All approaches are based on semiconductor fiber lasers and exploit nonlinearity in a semiconductor device: the first uses cross-absorption modulation in an electroabsorption modulator, the second uses cross-gain modulation (XGM) in a semiconductor optical amplifier (SOA), and the third makes use of XGM in an SOA as well as injection locking in a Fabry-Pérot laser. We present the static and dynamic responses of each for swapping a multi-wavelength input label to a multi-wavelength output label. The benefits and limitations of each approach as well as future improvements are discussed. We also present the results of systems experiments which demonstrate error-free all-optical label swapping, recognition, and switching of multi-rate packets in packet-switched networks using multi-wavelength labels.

  8. Modeling the spread of virus in packets on scale free network

    NASA Astrophysics Data System (ADS)

    Lamzabi, S.; Lazfi, S.; Rachadi, A.; Ez-Zahraouy, H.; Benyoussef, A.

    2016-01-01

    In this paper, we propose a new model for computer virus attacks and recovery at the level of information packets. The model we propose is based on one hand on the susceptible-infected (SI) and susceptible-infected-recovered (SIR) stochastic epidemic models for computer virus propagation and on the other hand on the time-discrete Markov chain of the minimal traffic routing protocol. We have applied this model to the scale free Barabasi-Albert network to determine how the dynamics of virus propagation is affected by the traffic flow in both the free-flow and the congested phases. The numerical results show essentially that the proportion of infected and recovered packets increases when the rate of infection λ and the recovery rate β increase in the free-flow phase while in the congested phase, the number of infected (recovered) packets presents a maximum (minimum) at certain critical value of β characterizing a certain competition between the infection and the recovery rates.

  9. All-optical packet header and payload separation based on two TOADs for optical packet switched networks

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Zhang, Min; Ye, Peida

    2006-09-01

    We present a novel all-optical header and payload separation technique that can be utilized in Un-Slotted optical packet switched networks. The technique uses two modified TOADs, one is for packet header extraction with differential modulation scheme and the other performs a simple XOR operation between the packet and its self-derived header to get the separated payload. The main virtue of this system is simple structure and low power consumption. Through numerical simulations, the operating characteristics of the scheme are illustrated. In addition, the system parameters are discussed and designed to optimize the performance of the proposed scheme.

  10. A Celebration of Life--An Individualized Outdoor Learning Packet.

    ERIC Educational Resources Information Center

    Hice, Ann K.; And Others

    1979-01-01

    This Learning Activity Packet (LAP) is designed to celebrate the life, events, and people of the past using a cemetery as a data source (includes a materials list, activity sheets, objectives, etc.). Journal availability: see RC 503 504. (SB)

  11. Food packets for use on the Gemini 3 flight

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Food packets for use on the Gemini 3 flight including dehydrated beef pot roast, bacon and egg bites, toasted bread cubes, orange juice and a wet wipe. Water is being inserted into the pouch of dehydrated food.

  12. Theory of discrete wave packets in the solar wind.

    NASA Technical Reports Server (NTRS)

    Wu, C. S.

    1972-01-01

    Discrete wave packets were observed by Ogo 5 and earlier satellites. These waves were believed to be in the whistler mode. Since their group velocities were found to be smaller than the solar-wind speed, these waves could not have been generated in the bow shock and could not have propagated upstream later. The present theory discusses a mechanism similar to that of the echo phenomenon in plasma physics discovered in recent years. The present theory enables us to explain (a) why the wave packets were associated with the bow shock, (b) why the wave packets were characterized by coherent oscillations, and (c) why the wave packets had group velocities smaller than the solar wind and yet could still occur in the solar wind. In short, our theory is able to interpret all the essential features deduced from the observational data.

  13. Food packets for use on the Gemini 3 flight

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Food packets for use on the Gemini 3 flight including dehydrated beef pot roast, bacon and egg bites, toasted bread cubes, orange juice and a wet wipe. Water is being inserted into the pouch of dehydrated food.

  14. Statistics of Gaussian packets on metric and decorated graphs

    PubMed Central

    Chernyshev, V. L.; Shafarevich, A. I.

    2014-01-01

    We study a semiclassical asymptotics of the Cauchy problem for a time-dependent Schrödinger equation on metric and decorated graphs with a localized initial function. A decorated graph is a topological space obtained from a graph via replacing vertices with smooth Riemannian manifolds. The main term of an asymptotic solution at an arbitrary finite time is a sum of Gaussian packets and generalized Gaussian packets (localized near a certain set of codimension one). We study the number of packets as time tends to infinity. We prove that under certain assumptions this number grows in time as a polynomial and packets fill the graph uniformly. We discuss a simple example of the opposite situation: in this case, a numerical experiment shows a subexponential growth. PMID:24344346

  15. Packet-Based Protocol Efficiency for Aeronautical and Satellite Communications

    NASA Technical Reports Server (NTRS)

    Carek, David A.

    2005-01-01

    This paper examines the relation between bit error ratios and the effective link efficiency when transporting data with a packet-based protocol. Relations are developed to quantify the impact of a protocol s packet size and header size relative to the bit error ratio of the underlying link. These relations are examined in the context of radio transmissions that exhibit variable error conditions, such as those used in satellite, aeronautical, and other wireless networks. A comparison of two packet sizing methodologies is presented. From these relations, the true ability of a link to deliver user data, or information, is determined. Relations are developed to calculate the optimal protocol packet size forgiven link error characteristics. These relations could be useful in future research for developing an adaptive protocol layer. They can also be used for sizing protocols in the design of static links, where bit error ratios have small variability.

  16. Statistics of Gaussian packets on metric and decorated graphs.

    PubMed

    Chernyshev, V L; Shafarevich, A I

    2014-01-28

    We study a semiclassical asymptotics of the Cauchy problem for a time-dependent Schrödinger equation on metric and decorated graphs with a localized initial function. A decorated graph is a topological space obtained from a graph via replacing vertices with smooth Riemannian manifolds. The main term of an asymptotic solution at an arbitrary finite time is a sum of Gaussian packets and generalized Gaussian packets (localized near a certain set of codimension one). We study the number of packets as time tends to infinity. We prove that under certain assumptions this number grows in time as a polynomial and packets fill the graph uniformly. We discuss a simple example of the opposite situation: in this case, a numerical experiment shows a subexponential growth.

  17. Propagation velocity of Alfven wave packets in a dissipative plasma

    SciTech Connect

    Amagishi, Y.; Nakagawa, H. ); Tanaka, M. )

    1994-09-01

    We have experimentally studied the behavior of Alfven wave packets in a dissipative plasma due to ion--neutral-atom collisions. It is urged that the central frequency of the packet is observed to gradually decrease with traveling distance in the absorption range of frequencies because of a differential damping among the Fourier components, and that the measured average velocity of its peak amplitude is not accounted for by the conventional group velocity, but by the prediction derived by Tanaka, Fujiwara, and Ikegami [Phys. Rev. A 34, 4851 (1986)]. Furthermore, when the initial central frequency is close to the critical frequency in the anomalous dispersion, the wave packet apparently collapses when traveling along the magnetic field; however, we have found that it is decomposed into another two wave packets with the central frequencies being higher or lower than the critical frequency.

  18. Analytic approach to the wave packet formalism in oscillation phenomena

    SciTech Connect

    Bernardini, A.E.; Leo, S. de

    2004-09-01

    We introduce an approximation scheme to perform an analytic study of the oscillation phenomena in a pedagogical and comprehensive way. By using Gaussian wave packets, we show that the oscillation is bounded by a time-dependent vanishing function which characterizes the slippage between the mass-eigenstate wave packets. We also demonstrate that the wave packet spreading represents a secondary effect which plays a significant role only in the nonrelativistic limit. In our analysis, we note the presence of a new time-dependent phase and calculate how this additional term modifies the oscillating character of the flavor conversion formula. Finally, by considering box and sine wave packets we study how the choice of different functions to describe the particle localization changes the oscillation probability.

  19. Fairness algorithm of the resilient packet ring

    NASA Astrophysics Data System (ADS)

    Tu, Lai; Huang, Benxiong; Zhang, Fan; Wang, Xiaoling

    2004-04-01

    Resilient Packet Ring (RPR) is a newly developed Layer 2 access technology for ring topology based high speed network. Fairness Algorithm (FA), one of its key technologies, takes responsibility for regulating each station access to the ring. Since different methods emphasize particularly on different aspects, the RPR Work Group have tabled several proposals. This paper will discuss two of them and propose an improved algorithm, which can be seen as a generalization of the two schemes proposed in [1] and [2]. The new algorithm is a distributed algorithm, and uses a multi level feedback mechanism. Each station calculates its own fair rate to regulate its access to the ring, and sends fairness control message (FCM) with its bandwidth demand information to the whole ring. All stations keep a bandwidth demand image, which update periodically based on the information of received FCM. The image can be used for local fair rate calculation to achieve fair access. In the properties study section of this paper, we compare our algorithm with the two existing one both in theoretical method and in scenario simulation. Our algorithm has successfully resolve lack of the awareness of multi congestion points in [1] and the drawback of weakness of fault tolerance in [2].

  20. Packet QoS level classifier based on optical binary priority comparison.

    PubMed

    Song, Seoksu; Nguyen, Vancanh; Park, Jinwoo

    2010-07-19

    Next generation High-Speed optical packet switching networks require components capable of classifying incoming packet into the appropriate priority queue according to the service class of the packet. For the first time, we proposed an all-optical packet QoS (Quality of Service) level classifier employing a sequential binary packet priority comparator, which is implemented using the SOA-based optical logic gates. The performance of the optical binary packet priority comparator was verified experimentally at 1 Gbit/s showing that the proposed scheme can operate higher data rates. These packet level classifier structures are attractive for all-optical network and applications.

  1. Embedded wavelet packet transform technique for texture compression

    NASA Astrophysics Data System (ADS)

    Li, Jin; Cheng, Po-Yuen; Kuo, C.-C. Jay

    1995-09-01

    A highly efficient texture compression scheme is proposed in this research. With this scheme, energy compaction of texture images is first achieved by the wavelet packet transform, and an embedding approach is then adopted for the coding of the wavelet packet transform coefficients. By comparing the proposed algorithm with the JPEG standard, FBI wavelet/scalar quantization standard and the EZW scheme with extensive experimental results, we observe a significant improvement in the rate-distortion performance and visual quality.

  2. COMSAT Participation in ARPA Packet Satellite Program (PSP)

    DTIC Science & Technology

    1979-10-01

    the formats of the var- ious packet transmission and reception modes are defined. Test data on the microprocessor- based QPSK modems included in the...miss rate. Based on this line of rea- soning, which is supported by the analysis in Section 6, the seemingly erratic missed packet behavior observed...Planning." The modem is based on a digitally-controlled micropro- cessor implementation and has been specifically designed to mini- mise the time required

  3. Bandwidth and Detection of Packet Length Covert Channels

    DTIC Science & Technology

    2011-03-01

    database (MySQL v5.1.52 on Linux ) using a bash script (Appendix B.3). The database was broken into three tables: rawdata, count, and ave. See Appendix C for...Work 39 7.1 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 vii List of References 43 Appendices 45 A Linux Kernel Modifications...specifically related to packet length covert channels. Next, we outline a packet length covert channel we developed by modifying the Linux kernel. This

  4. Delay versus TASI advantage in a packet voice multiplexer

    NASA Astrophysics Data System (ADS)

    Janakiraman, N.; Pagurek, B.; Neilson, J. E.

    1984-03-01

    The delay characteristics of the packet-voice-multiplexer model described by Janakiraman et al. (1980, 1981) are investigated numerically and illustrated in a graph of mean queuing delay versus buffer size. It is demonstrated analytically that the time-assignment-speech-interpolation (TASI) advantage provided by a packet system (relative to conventional circuit-switched TASI) is increased if voice-unit delays can be tolerated, confirming the simulation findings of Weinstein and Hofstetter (1979).

  5. On the generation and evolution of numerically simulated large-amplitude internal gravity wave packets

    NASA Astrophysics Data System (ADS)

    Abdilghanie, Ammar M.; Diamessis, Peter J.

    2012-01-01

    Numerical simulations of internal gravity wave (IGW) dynamics typically rely on wave velocity and density fields which are either generated through forcing terms in the governing equations or are explicitly introduced as initial conditions. Both approaches are based on the associated solution to the inviscid linear internal wave equations and, thus, assume weak-amplitude, space-filling waves. Using spectral multidomain-based numerical simulations of the two-dimensional Navier-Stokes equations and focusing on the forcing-driven approach, this study examines the generation and subsequent evolution of large-amplitude IGW packets which are strongly localized in the vertical in a linearly stratified fluid. When the vertical envelope of the forcing terms varies relatively rapid when compared to the vertical wavelength, the associated large vertical gradients in the Reynolds stress field drive a nonpropagating negative horizontal mean flow component in the source region. The highly nonlinear interaction of this mean current with the propagating IGW packet leads to amplification of the wave, a significant distortion of its rear flank, and a substantial decay of its amplitude. Scaling arguments show that the mean flow is enhanced with a stronger degree of localization of the forcing, larger degree of hydrostaticity, and increasing wave packet steepness. Horizontal localization results in a pronounced reduction in mean flow strength mainly on account of the reduced vertical gradient of the wave Reynolds stress. Finally, two techniques are proposed toward the efficient containment of the mean flow at minimal computational cost. The findings of this study are of particular value in overcoming challenges in the design of robust computational process studies of IGW packet (or continuously forced wave train) interactions with a sloping boundary, critical layer, or caustic, where large wave amplitudes are required for any instabilities to develop. In addition, the detailed

  6. Packet utilisation definitions for the ESA XMM mission

    NASA Technical Reports Server (NTRS)

    Nye, H. R.

    1994-01-01

    XMM, ESA's X-Ray Multi-Mirror satellite, due for launch at the end of 1999 will be the first ESA scientific spacecraft to implement the ESA packet telecommand and telemetry standards and will be the first ESOC-controlled science mission to take advantage of the new flight control system infrastructure development (based on object-oriented design and distributed-system architecture) due for deployment in 1995. The implementation of the packet standards is well defined at packet transport level. However, the standard relevant to the application level (the ESA Packet Utilization Standard) covers a wide range of on-board 'services' applicable in varying degrees to the needs of XMM. In defining which parts of the ESA PUS to implement, the XMM project first considered the mission objectives and the derived operations concept and went on to identify a minimum set of packet definitions compatible with these aspects. This paper sets the scene as above and then describes the services needed for XMM and the telecommand and telemetry packet types necessary to support each service.

  7. Two-point coherence of wave packets in turbulent jets

    NASA Astrophysics Data System (ADS)

    Jaunet, V.; Jordan, P.; Cavalieri, A. V. G.

    2017-02-01

    An experiment has been performed in order to provide support for wave-packet jet-noise modeling efforts. Recent work has shown that the nonlinear effects responsible for the two-point coherence of wave packets must be correctly accounted for if accurate sound prediction is to be achieved for subsonic turbulent jets. We therefore consider the same Mach 0.4 turbulent jet studied by Cavalieri et al. [Cavalieri et al., J. Fluid Mech. 730, 559 (2013), 10.1017/jfm.2013.346], but this time using two independent but synchronized, time-resolved stereo particle-image velocimetry systems. Each system can be moved independently, allowing simultaneous measurement of velocity in two, axially separated, crossflow planes, enabling eduction of the two-point coherence of wave packets. This and the associated length scales and phase speeds are studied and compared with those of the energy-containing turbulent eddies. The study illustrates how the two-point behavior of wave packets is fundamentally different from that of the more usually studied bulk two-point behavior, suggesting that sound-source modeling efforts should be reconsidered in the framework of wave packets. The study furthermore identifies two families of two-point-coherence behavior, respectively upstream and downstream of the end of the potential core, regions where linear theory is, respectively, successful and unsuccessful in predicting the axial evolution of wave-packets fluctuation energy.

  8. Design and implementation of a packet switched routing chip

    NASA Astrophysics Data System (ADS)

    Joerg, Christopher F.

    1990-12-01

    Monsoon is a parallel processing dataflow computer that will require a high bandwidth interconnection network. A packet switched routing chip (PaRC) is described that will be used as the basis of this network. PaRC is a 4 by 4 routing switch which has been designed and fabricated as a CMOS gate array. PaRC will receive packets via one of its four input ports, store the packet in an on-chip buffer, and eventually transmit the packet via one of its four output ports. PaRC operates at 50 MHz, and each port has a bandwidth of 800 Mbits per second. Each input port operates asynchronously and has enough buffering to store four packets. The buffering and scheduling algorithms used in PaRC were designed to provide high utilization of the available bandwidth, while providing low latency for non-blocked packets. In addition, PaRC provides a mechanism whereby a processor can quickly receive acknowledgment when a message it sent has been received. Although the design of PaRC has been driven by the needs of Monsoon, PaRC has been designed to be suitable for a wide variety of communication networks.

  9. A packet-based concept for spacecraft command planning

    NASA Technical Reports Server (NTRS)

    Barnes, Valerie B.

    1993-01-01

    The current generation of spacecraft being developed and operated by the Applied Physics Laboratory provides users with access to a broad spectrum of scientific instruments on maneuverable platforms that can be oriented for observation of both moving and stationary targets of interest. The capability of these increasingly complex spacecraft to perform data collection operations is approaching one observation per orbit. To enable both rapid configuration and generation of complex spacecraft command sequences, as well as reusability of command sequences among data collection operations, a packet-based concept for spacecraft command planning has been developed. The configuration of the spacecraft for any operation is designed using 'packets' where a packet represents a set of commands that is reusable. The packets can be combined in varying levels of functionality, and in varying time relationships, to create an observation timeline. At the lowest packet level are primitives. Primitives relate the details of command generation for a particular spacecraft to a 'message template.' Thus the packet concept itself is reusable from one spacecraft to the next.

  10. TCP Packet Trace Analysis. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Shepard, Timothy J.

    1991-01-01

    Examination of a trace of packets collected from the network is often the only method available for diagnosing protocol performance problems in computer networks. This thesis explores the use of packet traces to diagnose performance problems of the transport protocol TCP. Unfortunately, manual examination of these traces can be so tedious that effective analysis is not possible. The primary contribution of this thesis is a graphical method of displaying the packet trace which greatly reduce, the tediousness of examining a packet trace. The graphical method is demonstrated by the examination of some packet traces of typical TCP connections. The performance of two different implementations of TCP sending data across a particular network path is compared. Traces many thousands of packets long are used to demonstrate how effectively the graphical method simplifies examination of long complicated traces. In the comparison of the two TCP implementations, the burstiness of the TCP transmitter appeared to be related to the achieved throughput. A method of quantifying this burstiness is presented and its possible relevance to understanding the performance of TCP is discussed.

  11. B-ISBN Onboard Processing Fast Packet Switch Developed

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Future satellite communications applications will require a packet-switched onboard satellite processing system to route packets at very high speeds from uplink beams to different downlink beams. The rapid emergence of point-to-multipoint services, and the important role of satellites in a national and global information infrastructure, makes the multicast function essential to a fast packet switch (FPS). NASA Lewis Research Center's Digital System Technology Branch has been studying possible architectures for high-speed onboard-processing satellite systems. As part of this research, COMSAT Laboratories developed a broadband integrated services digital network (B-ISDN) fast packet switch for Lewis that was delivered on December 1994. The fast packet switch consists of eight inputs and eight outputs that can receive and transmit data, respectively, at a rate of 155 Mbps. The switch features multiple priorities (three) and multiple-size (three) satellite virtual cells that are similar to ATM cells in length (52 bytes). In addition, the fast packet switch features a congestion-control algorithm that allows users to set different thresholds for individual destination ports, thus throttling back the traffic from the transmitting port.

  12. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching

    DOE PAGES

    Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; ...

    2017-05-24

    The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born–Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersionmore » of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.« less

  13. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching

    NASA Astrophysics Data System (ADS)

    Lemke, Henrik T.; Kjær, Kasper S.; Hartsock, Robert; van Driel, Tim B.; Chollet, Matthieu; Glownia, James M.; Song, Sanghoon; Zhu, Diling; Pace, Elisabetta; Matar, Samir F.; Nielsen, Martin M.; Benfatto, Maurizio; Gaffney, Kelly J.; Collet, Eric; Cammarata, Marco

    2017-05-01

    The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3]2+ compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.

  14. Nonlinear Wave-Packet Dynamics in a Disordered Medium

    SciTech Connect

    Schwiete, G.; Finkel'stein, A. M.

    2010-03-12

    We develop an effective theory of pulse propagation in a nonlinear and disordered medium in two dimensions. The theory is formulated in terms of a nonlinear diffusion equation. Despite its apparent simplicity this equation describes novel phenomena which we refer to as 'locked explosion' and diffusive collapse. The equation can be applied to such distinct physical systems as laser beams propagating in disordered photonic crystals or Bose-Einstein condensates expanding in a disordered environment.

  15. Quantum and classical dynamics of Langmuir wave packets.

    PubMed

    Haas, F; Shukla, P K

    2009-06-01

    The quantum Zakharov system in three spatial dimensions and an associated Lagrangian description, as well as its basic conservation laws, are derived. In the adiabatic and semiclassical cases, the quantum Zakharov system reduces to a quantum modified vector nonlinear Schrödinger (NLS) equation for the envelope electric field. The Lagrangian structure for the resulting vector NLS equation is used to investigate the time dependence of the Gaussian-shaped localized solutions, via the Rayleigh-Ritz variational method. The formal classical limit is considered in detail. The quantum corrections are shown to prevent the collapse of localized Langmuir envelope fields, in both two and three spatial dimensions. Moreover, the quantum terms can produce an oscillatory behavior of the width of the approximate Gaussian solutions. The variational method is shown to preserve the essential conservation laws of the quantum modified vector NLS equation. The possibility of laboratory tests in the next generation intense laser-solid plasma compression experiment is discussed.

  16. Hybrid single-packet IP traceback with low storage and high accuracy.

    PubMed

    Yang, Ming Hour

    2014-01-01

    Traceback schemes have been proposed to trace the sources of attacks that usually hide by spoofing their IP addresses. Among these methods, schemes using packet logging can achieve single-packet traceback. But packet logging demands high storage on routers and therefore makes IP traceback impractical. For lower storage requirement, packet logging and packet marking are fused to make hybrid single-packet IP traceback. Despite such attempts, their storage still increases with packet numbers. That is why RIHT bounds its storage with path numbers to guarantee low storage. RIHT uses IP header's ID and offset fields to mark packets, so it inevitably suffers from fragment and drop issues for its packet reassembly. Although the 16-bit hybrid IP traceback schemes, for example, MORE, can mitigate the fragment problem, their storage requirement grows up with packet numbers. To solve the storage and fragment problems in one shot, we propose a single-packet IP traceback scheme that only uses packets' ID field for marking. Our major contributions are as follows: (1) our fragmented packets with tracing marks can be reassembled; (2) our storage is not affected by packet numbers; (3) it is the first hybrid single-packet IP traceback scheme to achieve zero false positive and zero false negative rates.

  17. Hybrid Single-Packet IP Traceback with Low Storage and High Accuracy

    PubMed Central

    Yang, Ming Hour

    2014-01-01

    Traceback schemes have been proposed to trace the sources of attacks that usually hide by spoofing their IP addresses. Among these methods, schemes using packet logging can achieve single-packet traceback. But packet logging demands high storage on routers and therefore makes IP traceback impractical. For lower storage requirement, packet logging and packet marking are fused to make hybrid single-packet IP traceback. Despite such attempts, their storage still increases with packet numbers. That is why RIHT bounds its storage with path numbers to guarantee low storage. RIHT uses IP header's ID and offset fields to mark packets, so it inevitably suffers from fragment and drop issues for its packet reassembly. Although the 16-bit hybrid IP traceback schemes, for example, MORE, can mitigate the fragment problem, their storage requirement grows up with packet numbers. To solve the storage and fragment problems in one shot, we propose a single-packet IP traceback scheme that only uses packets' ID field for marking. Our major contributions are as follows: (1) our fragmented packets with tracing marks can be reassembled; (2) our storage is not affected by packet numbers; (3) it is the first hybrid single-packet IP traceback scheme to achieve zero false positive and zero false negative rates. PMID:24707197

  18. Spectra of KeV Protons Related to Ion-Cyclotron Wave Packets

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Sibeck, D. G.; Tel'Nikhin, A. A.; Kronberg, T. K.

    2017-01-01

    We use the Fokker-Planck-Kolmogorov equation to study the statistical aspects of stochastic dynamics of the radiation belt (RB) protons driven by nonlinear electromagnetic ion-cyclotron (EMIC) wave packets. We obtain the spectra of keV protons scattered by these waves that showsteeping near the gyroresonance, the signature of resonant wave-particle interaction that cannot be described by a simple power law. The most likely mechanism for proton precipitation events in RBs is shown to be nonlinear wave-particle interaction, namely, the scattering of RB protons into the loss cone by EMIC waves.

  19. Control packet signaling mechanism using electronic code division multiple access for packet-based networks

    NASA Astrophysics Data System (ADS)

    Nadarajah, Nishaanthan

    2008-10-01

    We propose and experimentally demonstrate the feasibility of a control packet signaling technique using electronic code division multiple access for a wavelength division multiplexing packet-based network, whereby each wavelength channel is assigned a unique electronic code based label on a radio frequency subcarrier. Such a technique allows each wavelength channel to be electronically identified without requiring the use of a WDM demultiplexer. We experimentally demonstrate this technique with two wavelength channels each with 1.25 Gb/s baseband payload data and 10 Mb/s header coded onto an electronic code at 160 Mb/s. A performance study of the electronic code division multiple access based control signaling scheme in a wavelength division multiplexed packet-based access network is also performed in terms of the required power budget to monitor the electronic code division multiple access control signals in the presence of several sources of noise for error-free transmission of both payload data and electronic code division multiple access based control signals. It is shown that the modulation depth of each signal impacts the amount of required optical tap power. As the modulation depth of the electronic code division multiple access based control signal is increased, the required optical tap power is reduced. However, this increases the bit-error-rate for the payload data. Therefore, there lies a maximum and a minimum of the required tap optical power for the successful recovery of both signals. The lower bound of this range is usually determined by the successful recovery of electronic code division multiple access based control signal while the upper bound is determined by the successful recovery of payload data. The required optical tap power is analyzed for different transmission bit rates of the payload data for various receiver architecture scenarios without an optical amplifier at the receiver. The scalability analyses were repeated with an optical

  20. "Keeping each patient safe": quality safety teaching/learning packets.

    PubMed

    Benezo, Chris; Gaudy, Doris; White, T Michael

    2004-12-01

    University of Pittsburgh Medical Center (UPMC) McKeesport developed a tool, the UPMC McKeesport Quality Safety Teaching/Learning Packet, to provide physicians, nurses, and therapists with a common language to address complex safety issues. Teaching/learning packets were developed to "keep each patient safe": by calling for help early; from falls and confusion; and from hospital-acquired infections (http://McKeesport.upmc.com/KeepingPatientsSafe.htm). In July 2002, the concept of calling for help early became a requirement at UPMC McKeesport. The code team was to be called for any significant change in status and for traditional code arrests. In 2004, a teaching/learning packet addressed the concepts of fall risk and acute (delirium) and chronic (dementia) confusion. Strategies were implemented to reduce the rate of falls through risk screening and interventions for falls and delirium. In April 2004, a teaching/learning packet was introduced to reduce hospital-acquired infections, and professionals were positioned to better address isolation, hand hygiene, central-line-associated bacteremia, Clostridium difficile, and appropriate antibiotic usage. Three quality safety teaching/learning packets, which provided the professionals in the organization with the common language (culture) to advance patient safety, accomplished rapid change and were well accepted by staff and physicians.

  1. Integrated optical buffers for packet-switched networks

    NASA Astrophysics Data System (ADS)

    Burmeister, Emily Frances

    Routers form the backbone of the Internet, directing data to the right locations with huge throughput capacity of terabits/second) and very few errors (1 error allowed in 1012 bits). However, as the Internet continues to grow rapidly, so must the capacity of electronic routers, thereby also growing in footprint and power consumption. The energy bill alone has developers looking for an alternate solution. Today's routers can only operate with electrical signals although Internet data is transmitted optically. This requires the data to be converted from the optical domain to the electrical domain and back again. Optical routers have the potential of saving in power by omitting these conversions, but have been held back in part by the lack of a practical optical memory device. This work presents the first integrated optical buffer for next generation optical packet-switched networks. Buffering is required in a router to move packets of data in order to avoid collisions between packets heading to the same destination at the same time. The device presented here uses an InP-based two-by-two switch with a silica waveguide delay to form a recirculating buffer. Packet storage was shown with 98% packet recovery for 5 circulations. Autonomous contention resolution was demonstrated with two buffered channels to show that the technology is a realistic solution for creating multiple element buffers on multiple router ports. This thesis proposes and demonstrates the first integrated optical random access memory, thereby making a great stride toward high capacity optical routers.

  2. Quasi-light storage for optical data packets.

    PubMed

    Schneider, Thomas; Preußler, Stefan

    2014-02-06

    Today's telecommunication is based on optical packets which transmit the information in optical fiber networks around the world. Currently, the processing of the signals is done in the electrical domain. Direct storage in the optical domain would avoid the transfer of the packets to the electrical and back to the optical domain in every network node and, therefore, increase the speed and possibly reduce the energy consumption of telecommunications. However, light consists of photons which propagate with the speed of light in vacuum. Thus, the storage of light is a big challenge. There exist some methods to slow down the speed of the light, or to store it in excitations of a medium. However, these methods cannot be used for the storage of optical data packets used in telecommunications networks. Here we show how the time-frequency-coherence, which holds for every signal and therefore for optical packets as well, can be exploited to build an optical memory. We will review the background and show in detail and through examples, how a frequency comb can be used for the copying of an optical packet which enters the memory. One of these time domain copies is then extracted from the memory by a time domain switch. We will show this method for intensity as well as for phase modulated signals.

  3. Foreign Material in the Gastrointestinal Tract: Cocaine Packets

    PubMed Central

    Kucukmetin, Nurten Turkel; Gucyetmez, Bulent; Poyraz, Tuncer; Yildirim, Sadik; Boztas, Gungor; Tozun, Nurdan

    2014-01-01

    Smuggling drugs by swallowing or inserting into a body cavity is not only a serious and growing international crime, but can also lead to lethal medical complications. The most common cause of death in ‘body packers’, people transporting drugs by ingesting a packet into the gastrointestinal tract, is acute drug toxicity from a ruptured packet. However, more than 30 years after the initial report of body packing, there is still no definitive treatment protocol for the management of this patient group. The treatment strategy is determined according to the particular condition of the patient and the clinical experience of the treatment center. Surgical intervention is also less common now, due to both the use of improved packaging materials among smugglers and a shift towards a more conservative medical approach. Herein, we report a case of toxicity from ingested packets of cocaine that leaked and, despite surgery, resulted in exitus of the patient. PMID:24574951

  4. Bufferless Ultra-High Speed All-Optical Packet Routing

    NASA Astrophysics Data System (ADS)

    Muttagi, Shrihari; Prince, Shanthi

    2011-10-01

    All-Optical network is still in adolescence to cope up with steep rise in data traffic at the backbone network. Routing of packets in optical network depends on the processing speed of the All-Optical routers, thus there is a need to enhance optical processing to curb the delay in packet forwarding unit. In the proposed scheme, the header processing takes place on fly, therefore processing delay is at its lower limit. The objective is to propose a framework which establishes high data rate transmission with least latency in data routing from source to destination. The Routing table and optical header pulses are converted into Pulse Position (PP) format, thus reducing the complexity and in turn the processing delay. Optical pulse matching is exercised which results in multi-output transmission. This results in ultra-high speed packet forwarding unit. In addition, this proposed scheme includes dispersion compensation unit, which makes the data reliable.

  5. Accelerating Airy–Gauss–Kummer localized wave packets

    SciTech Connect

    Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi; Huang, Tingwen

    2014-01-15

    A general approach to generating three-dimensional nondiffracting spatiotemporal solutions of the linear Schrödinger equation with an Airy-beam time-dependence is reported. A class of accelerating optical pulses with the structure of Airy–Gauss–Kummer vortex beams is obtained. Our results demonstrate that the optical field contributions to the Airy–Gauss–Kummer accelerating optical wave packets of the cylindrical symmetry can be characterized by the radial and angular mode numbers. -- Highlights: •A general solution of 3D linear Schrödinger equation with an Airy time-dependence is reported. •We find that the Airy–Kummer spatiotemporal wave packets can carry infinite energy. •A class of the accelerating spatiotemporal optical pulses with special structures was found. •The spatiotemporal wave packets retain their energy features over several Rayleigh lengths.

  6. A robust low-rate coding scheme for packet video

    NASA Technical Reports Server (NTRS)

    Chen, Y. C.; Sayood, Khalid; Nelson, D. J.; Arikan, E. (Editor)

    1991-01-01

    Due to the rapidly evolving field of image processing and networking, video information promises to be an important part of telecommunication systems. Although up to now video transmission has been transported mainly over circuit-switched networks, it is likely that packet-switched networks will dominate the communication world in the near future. Asynchronous transfer mode (ATM) techniques in broadband-ISDN can provide a flexible, independent and high performance environment for video communication. For this paper, the network simulator was used only as a channel in this simulation. Mixture blocking coding with progressive transmission (MBCPT) has been investigated for use over packet networks and has been found to provide high compression rate with good visual performance, robustness to packet loss, tractable integration with network mechanics and simplicity in parallel implementation.

  7. Circuit and packet integrated switching in a satellite communication channel

    NASA Astrophysics Data System (ADS)

    Suda, T.; Hasegawa, T.; Miyahara, H.

    A circuit and packet integrated switching method is proposed in which the channel frame is divided into two subframes: one is for terminals with burst traffic, while the other is for heavily loaded terminals. The burst terminals transmit their packets in their dedicated subframes on the slotted ALOHA access scheme. The heavily loaded terminal transmits a reservation packet in the reservation subchannel to reserve slots in the coming message subchannels; one slot in the same position of each of the succeeding message subchannels is reserved for the terminal until the end-of-use flag is received by the satellite. Mean transmission delays are calculated for both types of traffic. It is shown that an optimal frame length exists which minimizes mean transmission delay for one type of traffic while keeping mean transmission delay for the other under some permissible value.

  8. A New Reactive FMIPv6 Mechanism for Minimizing Packet Loss

    NASA Astrophysics Data System (ADS)

    Kim, Pyungsoo

    This paper considers a new reactive fast handover MIPv6 (FMIPv6) mechanism to minimize packet loss of the existing mechanism. The primary idea of the proposed reactive FMIPv6 mechanism is that the serving access router buffers packets toward the mobile node (MN) as soon as the link layer between MN and serving base station is disconnected. To implement the proposed mechanism, the router discovery message exchanged between MN and serving access router is extended. In addition, the IEEE 802.21 Media Independent Handover Function event service message is defined newly. Through analytic performance evaluation and experiments, the proposed reactive FMIPv6 mechanism can be shown to minimize packet loss much than the existing mechanism.

  9. Flavor and chiral oscillations with Dirac wave packets

    SciTech Connect

    Bernardini, A.E.; Leo, S. de

    2005-04-01

    We report about recent results on Dirac wave packets in the treatment of neutrino flavor oscillation where the initial localization of a spinor state implies an interference between positive and negative energy components of mass-eigenstate wave packets. A satisfactory description of fermionic particles requires the use of the Dirac equation as evolution equation for the mass eigenstates. In this context, a new flavor conversion formula can be obtained when the effects of chiral oscillation are taken into account. Our study leads to the conclusion that the fermionic nature of the particles, where chiral oscillations and the interference between positive and negative frequency components of mass-eigenstate wave packets are implicitly assumed, modifies the standard oscillation probability. Nevertheless, for ultrarelativistic particles and sharply peaked momentum distributions, we can analytically demonstrate that these modifications introduce correction factors proportional to m{sub 1,2}{sup 2}/p{sub 0}{sup 2} which are practically undetectable by any experimental analysis.

  10. A packet telemetry system employing ARQ error control

    NASA Technical Reports Server (NTRS)

    Greene, E. P.

    1978-01-01

    A proposed packet telemetry system employing automatic retransmission request (ARQ) mode of error control is characterized. Limitations of the present multiplexing/demultiplexing approach are considered, and the use of the proposed system in near-earth satellites in the 1980s is suggested. Onboard processing and an adaptive multiplexing technique are described, as is an elastic buffer, required because the instantaneous data rate will be different from the telemetry transmission rate. The telemetry packets would be encoded into a powerful error-detection block code. A mechanism involving temporary buffering in a long shift register will permit retransmission request from the ground station for packets received in error. The ARQ mode of operation should ensure essentially error-free transmission at lower signal-to-noise ratios and at considerably higher transmission rates than are usually used.

  11. Seizure detection by a novel wavelet packet method.

    PubMed

    Tafreshi, Reza; Dumont, Guy; Gross, Donald; Ries, Craig R; Puil, Ernie; MacLeod, Bern A

    2006-01-01

    We describe a novel wavelet-based method for the detection of seizure in patients with temporal lobe epilepsy. This method uses local discriminant bases and cross- data entropy algorithms to identify nodes of a wavelet packet dictionary that best discriminate preictal from ictal EEG signals. The algorithms are based on relative entropy criterion as a measure of discrepancy between different classes of signals. The frequency bands associated with these nodes were in the range of interest for seizure events. After selecting two bands, we determined the ratio of energies at the level of wavelet packet chosen by the cross-data entropy algorithm. Preliminary results demonstrate that the wavelet packet energy ratio could serve as a robust criterion in seizure detection.

  12. On-board congestion control for satellite packet switching networks

    NASA Technical Reports Server (NTRS)

    Chu, Pong P.

    1991-01-01

    It is desirable to incorporate packet switching capability on-board for future communication satellites. Because of the statistical nature of packet communication, incoming traffic fluctuates and may cause congestion. Thus, it is necessary to incorporate a congestion control mechanism as part of the on-board processing to smooth and regulate the bursty traffic. Although there are extensive studies on congestion control for both baseband and broadband terrestrial networks, these schemes are not feasible for space based switching networks because of the unique characteristics of satellite link. Here, we propose a new congestion control method for on-board satellite packet switching. This scheme takes into consideration the long propagation delay in satellite link and takes advantage of the the satellite's broadcasting capability. It divides the control between the ground terminals and satellite, but distributes the primary responsibility to ground terminals and only requires minimal hardware resource on-board satellite.

  13. Fast Packet Classification Using Multi-Dimensional Encoding

    NASA Astrophysics Data System (ADS)

    Huang, Chi Jia; Chen, Chien

    Internet routers need to classify incoming packets quickly into flows in order to support features such as Internet security, virtual private networks and Quality of Service (QoS). Packet classification uses information contained in the packet header, and a predefined rule table in the routers. Packet classification of multiple fields is generally a difficult problem. Hence, researchers have proposed various algorithms. This study proposes a multi-dimensional encoding method in which parameters such as the source IP address, destination IP address, source port, destination port and protocol type are placed in a multi-dimensional space. Similar to the previously best known algorithm, i.e., bitmap intersection, multi-dimensional encoding is based on the multi-dimensional range lookup approach, in which rules are divided into several multi-dimensional collision-free rule sets. These sets are then used to form the new coding vector to replace the bit vector of the bitmap intersection algorithm. The average memory storage of this encoding is Θ (L · N · log N) for each dimension, where L denotes the number of collision-free rule sets, and N represents the number of rules. The multi-dimensional encoding practically requires much less memory than bitmap intersection algorithm. Additionally, the computation needed for this encoding is as simple as bitmap intersection algorithm. The low memory requirement of the proposed scheme means that it not only decreases the cost of packet classification engine, but also increases the classification performance, since memory represents the performance bottleneck in the packet classification engine implementation using a network processor.

  14. Charge transport calculations of organic semiconductors by the time-dependent wave-packet diffusion method

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji

    2012-02-01

    Organic materials form crystals by relatively weak Van der Waals attraction between molecules, and thus differ fundamentally from covalently bonded semiconductors. Carriers in the organic semiconductors induce the drastic lattice deformation, which is called as polaron state. The polaron effect on the transport is a serious problem. Exactly what conduction mechanism applies to organic semiconductors has not been established. Therefore, we have investigated the transport properties using the Time-Dependent Wave-Packet Diffusion (TD-WPD) method [1]. To consider the polaron effect on the transport, in the methodology, we combine the wave-packet dynamics based on the quantum mechanics theory with the molecular dynamics. As the results, we can describe the electron motion modified by (electron-phonon mediated) time-dependent structural change. We investigate the transport property from an atomistic viewpoint and evaluate the mobility of organic semiconductors. We clarify the temperature dependence of mobility from the thermal activated behavior to the power law behavior. I will talk about these results in my presentation. [1] H. Ishii, N. Kobayashi, K. Hirose, Phys. Rev. B, 82 085435 (2010).

  15. Monte Carlo wave packet approach to dissociative multiple ionization in diatomic molecules

    NASA Astrophysics Data System (ADS)

    Leth, Henriette Astrup; Madsen, Lars Bojer; Mølmer, Klaus

    2010-05-01

    A detailed description of the Monte Carlo wave packet technique applied to dissociative multiple ionization of diatomic molecules in short intense laser pulses is presented. The Monte Carlo wave packet technique relies on the Born-Oppenheimer separation of electronic and nuclear dynamics and provides a consistent theoretical framework for treating simultaneously both ionization and dissociation. By simulating the detection of continuum electrons and collapsing the system onto either the neutral, singly ionized or doubly ionized states in every time step the nuclear dynamics can be solved separately for each molecular charge state. Our model circumvents the solution of a multiparticle Schrödinger equation and makes it possible to extract the kinetic energy release spectrum via the Coulomb explosion channel as well as the physical origin of the different structures in the spectrum. The computational effort is restricted and the model is applicable to any molecular system where electronic Born-Oppenheimer curves, dipole moment functions, and ionization rates as a function of nuclear coordinates can be determined.

  16. Optimal control of wave-packets: a semiclassical approach

    NASA Astrophysics Data System (ADS)

    Darío Guerrero, Rubén; Arango, Carlos A.; Reyes, Andrés

    2014-02-01

    We studied the optimal quantum control of a molecular rotor in tilted laser fields using the time-sliced Herman-Kluk propagator for the evaluation of the optimal pulse and the light-dipole interaction as the control mechanism. The proposed methodology was used to study the effects of an optimal pulse on the evolution of a wave-packet in a double-well potential and in the effective potential of a molecular rotor in a collinear tilted fields setup. The amplitude and frequency of the control pulse were obtained in such a way that the transition probability between two rotational wave-packets was maximised.

  17. Gabor Wave Packet Method to Solve Plasma Wave Equations

    SciTech Connect

    A. Pletzer; C.K. Phillips; D.N. Smithe

    2003-06-18

    A numerical method for solving plasma wave equations arising in the context of mode conversion between the fast magnetosonic and the slow (e.g ion Bernstein) wave is presented. The numerical algorithm relies on the expansion of the solution in Gaussian wave packets known as Gabor functions, which have good resolution properties in both real and Fourier space. The wave packets are ideally suited to capture both the large and small wavelength features that characterize mode conversion problems. The accuracy of the scheme is compared with a standard finite element approach.

  18. Control with a random access protocol and packet dropouts

    NASA Astrophysics Data System (ADS)

    Wang, Liyuan; Guo, Ge

    2016-08-01

    This paper investigates networked control systems whose actuators communicate with the controller via a limited number of unreliable channels. The access to the channels is decided by a so-called group random access protocol, which is modelled as a binary Markov sequence. Data packet dropouts in the channels are modelled as independent Bernoulli processes. For such systems, a systematic characterisation for controller synthesis is established and stated in terms of the transition probabilities of the Markov protocol and the packet dropout probabilities. The results are illustrated via a numerical example.

  19. Fourier optics and time evolution of de Broglie wave packets

    NASA Astrophysics Data System (ADS)

    Dillon, G.

    2012-06-01

    It is shown that, under the conditions of validity of the Fresnel approximation, diffraction and interference for a monochromatic wave traveling in the z-direction may be described in terms of the spreading in time of the transverse ( x, y wave packet. The time required for the evolved wave packet to yield identical patterns as given by standard optics corresponds to the time for the quantum to cross the optical apparatus. This point of view may provide interesting cues in wave mechanics and quantum physics education.

  20. Electron acceleration by Landau resonance with whistler mode wave packets

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Reinleitner, L. A.

    1983-01-01

    Recent observations of electrostatic waves associated with whistler mode chorus emissions provide evidence that electrons are being trapped by Landau resonance interactions with the chorus. In this paper, the trapping, acceleration and escape of electrons in Landau resonance with a whistler mode wave packet are discussed. It is shown that acceleration can occur by both inhomogeneous and dispersive effects. The maximum energy gained is controlled by the points where trapping and escape occur. Large energy changes are possible if the frequency of the wave packet or the magnetic field strength increase between the trapping and escape points. Various trapping and escape mechanisms are discussed.

  1. Electron acceleration by Landau resonance with whistler mode wave packets

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Reinleitner, L. A.

    1983-01-01

    Recent observations of electrostatic waves associated with whistler mode chorus emissions provide evidence that electrons are being trapped by Landau resonance interactions with the chorus. In this paper, the trapping, acceleration and escape of electrons in Landau resonance with a whistler mode wave packet are discussed. It is shown that acceleration can occur by both inhomogeneous and dispersive effects. The maximum energy gained is controlled by the points where trapping and escape occur. Large energy changes are possible if the frequency of the wave packet or the magnetic field strength increase between the trapping and escape points. Various trapping and escape mechanisms are discussed.

  2. The Open Host Network Packet Process Correlator for Windows

    SciTech Connect

    2014-06-17

    The Hone sensors are packet-process correlation engines that log the relationships between applications and the communications they are responsible for. Hone sensors are available for a variety of platforms including Linux, Windows, and MacOSX. Hone sensors are designed to help analysts understand the meaning of communications on a deeper level by associating the origin or destination process to the communication. They do this by tracing communications on a per-packet basis, through the kernel of the operating system to determine their ultimate source/destination on the monitored machine.

  3. A first packet processing subdomain cluster model based on SDN

    NASA Astrophysics Data System (ADS)

    Chen, Mingyong; Wu, Weimin

    2017-08-01

    For the current controller cluster packet processing performance bottlenecks and controller downtime problems. An SDN controller is proposed to allocate the priority of each device in the SDN (Software Defined Network) network, and the domain contains several network devices and Controller, the controller is responsible for managing the network equipment within the domain, the switch performs data delivery based on the load of the controller, processing network equipment data. The experimental results show that the model can effectively solve the risk of single point failure of the controller, and can solve the performance bottleneck of the first packet processing.

  4. The Open Host Network Packet Process Correlator for Windows

    SciTech Connect

    2014-06-17

    The Hone sensors are packet-process correlation engines that log the relationships between applications and the communications they are responsible for. Hone sensors are available for a variety of platforms including Linux, Windows, and MacOSX. Hone sensors are designed to help analysts understand the meaning of communications on a deeper level by associating the origin or destination process to the communication. They do this by tracing communications on a per-packet basis, through the kernel of the operating system to determine their ultimate source/destination on the monitored machine.

  5. High-speed IP packet forwarding over Internet using ATM technology

    NASA Astrophysics Data System (ADS)

    Esaki, Hiroshi

    1995-10-01

    Framework of IP packet delivery with high throughput and small latency using ATM technology in large scaled internets is proposed, while keeping the current subnet model. Router has the mapping functionality between flow-identifier (e.g. in IPv6 header) and VPI/VCI value to forward IP packets cell-by-cell, rather than the conventional packet-by- packet forwarding. By using this cut-thru IP packet forwarding, both resource reservation oriented IP packet flows (i.e. IP packet flow provided by RSVP) and nonresource reservation oriented IP packet flows (i.e. best effort service) experience less packet delivery latency and obtain higher throughput, compared to the conventional hop-by-hop packet forwarding does. In order to perform the cut-thru IP packet forwarding using cell relaying capability in the router, routers exchange the information how the IP packet flows are aggregated into ATM- VCC. This information exchanging is hop-by-hop base, and the cut-thru decision is a matter of every router's local decision. With the hop-by-hop cut-thru IP packet forwarding, soft-state oriented and scalable QoS-ed high speed communication platform can be provided.

  6. A multi-ring optical packet and circuit integrated network with optical buffering.

    PubMed

    Furukawa, Hideaki; Shinada, Satoshi; Miyazawa, Takaya; Harai, Hiroaki; Kawasaki, Wataru; Saito, Tatsuhiko; Matsunaga, Koji; Toyozumi, Tatuya; Wada, Naoya

    2012-12-17

    We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate < 1 × 10(-4)) operation was achieved with optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.

  7. Joint source coding, transport processing, and error concealment for H.323-based packet video

    NASA Astrophysics Data System (ADS)

    Zhu, Qin-Fan; Kerofsky, Louis

    1998-12-01

    In this paper, we investigate how to adapt different parameters in H.263 source coding, transport processing and error concealment to optimize end-to-end video quality at different bitrates and packet loss rates for H.323-based packet video. First different intra coding patterns are compared and we show that the contiguous rectangle or square block pattern offers the best performance in terms of video quality in the presence of packet loss. Second, the optimal intra coding frequency is found for different bitrates and packet loss rates. The optimal number of GOB headers to be inserted in the source coding is then determined. The effect of transport processing strategies such as packetization and retransmission is also examined. For packetization, the impact of packet size and the effect of macroblock segmentation to picture quality are investigated. Finally, we show that the dejitter buffering delay can be used to the advantage for packet loss recovery with video retransmission without incurring any extra delay.

  8. Complex time paths for semiclassical wave packet propagation with complex trajectories

    NASA Astrophysics Data System (ADS)

    Petersen, Jakob; Kay, Kenneth G.

    2014-08-01

    The use of complex-valued trajectories in semiclassical wave packet methods can lead to problems that prevent calculation of the wave function in certain regions of the configuration space. We investigate this so-called bald spot problem in the context of generalized Gaussian wave packet dynamics. The analysis shows that the bald spot phenomenon is essentially due to the complex nature of the initial conditions for the trajectories. It is, therefore, expected to be a general feature of several semiclassical methods that rely on trajectories with such initial conditions. A bald region is created when a trajectory, needed to calculate the wave function at a given time, reaches a singularity of the potential energy function in the complex plane at an earlier, real time. This corresponds to passage of a branch point singularity across the real axis of the complex time plane. The missing portions of the wave function can be obtained by deforming the time path for the integration of the equations of motion into the complex plane so that the singularity is circumvented. We present examples of bald spots, singularity times, and suitable complex time paths for one-dimensional barrier transmission in the Eckart and Gaussian systems. Although the bald regions for the Eckart system are often localized, they are found to be semi-infinite for the Gaussian system. For the case of deep tunneling, the bald regions for both systems may encompass the entire portion of space occupied by the transmitted wave packet. Thus, the use of complex time paths becomes essential for a treatment of barrier tunneling.

  9. Standard services for the capture, processing, and distribution of packetized telemetry data

    NASA Technical Reports Server (NTRS)

    Stallings, William H.

    1989-01-01

    Standard functional services for the capture, processing, and distribution of packetized data are discussed with particular reference to the future implementation of packet processing systems, such as those for the Space Station Freedom. The major functions are listed under the following major categories: input processing, packet processing, and output processing. A functional block diagram of a packet data processing facility is presented, showing the distribution of the various processing functions as well as the primary data flow through the facility.

  10. Environmental Education Inservice Training Packet for the Intermediate Level.

    ERIC Educational Resources Information Center

    Upper Mississippi River ECO-Center, Thomson, IL.

    The inservice teacher training packet, developed with help from the environmental education program of the Upper Mississippi River ECO-Center, is designed to help intermediate-level teachers develop teaching skills which will enable them to introduce environmental or outdoor education to their students and develop those concepts, attitudes, and…

  11. SLIAG Advocacy Packet: A Guide for Community-Based Organizations.

    ERIC Educational Resources Information Center

    National Council of La Raza, Washington, DC.

    This packet of materials is designed as a basic guide for community-based organizations (CBOs) interested in tracking the use of State Legalization Impact Assistance Grants (SLIAG) funds and in advocating that they be used efficiently and effectively. The SLIAG program was created under the Immigration Reform and Control Act of 1986 (IRCA) to…

  12. Packet Preparation. Summer Program Academic Resources Coordination Center.

    ERIC Educational Resources Information Center

    State Univ. of New York, Cortland. Coll. at Cortland.

    This teaching guide was developed by the Summer Program Academic Resources Coordination Center (SPARCC) in Loudonville, New York. SPARCC was a migrant education grant that developed and helped implement model summer migrant education programs in New York, Virginia, and Florida. This guide provides directions for preparing learning packets to…

  13. An Efficient Conflict Detection Algorithm for Packet Filters

    NASA Astrophysics Data System (ADS)

    Lee, Chun-Liang; Lin, Guan-Yu; Chen, Yaw-Chung

    Packet classification is essential for supporting advanced network services such as firewalls, quality-of-service (QoS), virtual private networks (VPN), and policy-based routing. The rules that routers use to classify packets are called packet filters. If two or more filters overlap, a conflict occurs and leads to ambiguity in packet classification. This study proposes an algorithm that can efficiently detect and resolve filter conflicts using tuple based search. The time complexity of the proposed algorithm is O(nW+s), and the space complexity is O(nW), where n is the number of filters, W is the number of bits in a header field, and s is the number of conflicts. This study uses the synthetic filter databases generated by ClassBench to evaluate the proposed algorithm. Simulation results show that the proposed algorithm can achieve better performance than existing conflict detection algorithms both in time and space, particularly for databases with large numbers of conflicts.

  14. Chirp dependence of wave packet motion in oxazine 1.

    PubMed

    Malkmus, Stephan; Dürr, Regina; Sobotta, Constanze; Pulvermacher, Horst; Zinth, Wolfgang; Braun, Markus

    2005-11-24

    The motion of vibrational wave packets in the system oxazine 1 in methanol is investigated by spectrally resolved transient absorption spectroscopy. The spectral properties of the probe pulse from 600 to 700 nm were chosen to cover the overlap region where ground-state bleach and stimulated emission signals are detected. The spectral phase of the pump pulse was manipulated by a liquid crystal display based pulse-shaping setup. Chirped excitation pulses of negative and positive chirp can be used to excite vibrational modes predominantly in the ground or excited state, respectively. To distinguish the observed wave packets in oxazine 1 moving in the ground or excited state, spectrally resolved transient absorption experiments are performed for various values of the linear chirp of the pump pulses. The amplitudes of the wave packet motion show an asymmetric behavior with an optimum signal for a negative chirp of -0.75 +/- 0.2 fs/nm, which indicates that predominantly ground-state wave packets are observed.

  15. Scattering of wave packets on atoms in the Born approximation

    NASA Astrophysics Data System (ADS)

    Karlovets, D. V.; Kotkin, G. L.; Serbo, V. G.

    2015-11-01

    It has recently been demonstrated experimentally that 200 -300 keV electrons with the unusual spatial profiles can be produced and even focused to a subnanometer scale—namely, electrons carrying nonzero orbital angular momentum and also the so-called Airy beams. Since the wave functions of such electrons do not represent plane waves, the standard Born formula for scattering of them off a potential field is no longer applicable and, hence, needs modification. In the present paper, we address the generic problem of elastic scattering of a wave packet of a fast nonrelativistic particle off a potential field. We obtain simple and convenient formulas for a number of events and an effective cross section in such a scattering, which represent generalization of the Born formula for a case when finite sizes and spatial inhomogeneity of the initial packet should be taken into account. As a benchmark, we consider two simple models corresponding to scattering of a Gaussian wave packet on a Gaussian potential and on a hydrogen atom, and perform a detailed analysis of the effects brought about by the limited sizes of the incident beam and by the finite impact parameter between the potential center and the packet's axis.

  16. A CURRICULUM FOR ENGLISH, STUDENT PACKET, GRADE 12.

    ERIC Educational Resources Information Center

    Nebraska Univ., Lincoln. Curriculum Development Center.

    THE LITERATURE PROGRAM OF THE GRADE 12 STUDENT PACKET OF THE NEBRASKA ENGLISH CURRICULUM CONSISTS OF A SELECTIVE SURVEY OF ENGLISH LITERATURE FROM THE RENAISSANCE TO THE 20TH CENTURY. IT BEGINS WITH A UNIT ON SHAKESPEAREAN TRAGEDY IN WHICH STUDENTS READ REVENGE TRAGEDIES--SENECA'S "THYESTES" AND KYD'S "THE SPANISH TRAGEDY"--AS…

  17. A CURRICULUM FOR ENGLISH, TEACHER PACKET, GRADE 12.

    ERIC Educational Resources Information Center

    Nebraska Univ., Lincoln. Curriculum Development Center.

    THE TEACHER PACKET FOR THE 12TH-GRADE ENGLISH PROGRAM OF THE NEBRASKA CURRICULUM DEVELOPMENT CENTER COMPRISES, THROUGH THE STUDY OF SELECTED WORKS, A SURVEY OF ENGLISH LITERARY PERIODS FROM THE RENAISSANCE TO THE 20TH CENTURY. UNITS ARE PROVIDED IN THE FOLLOWING AREAS--(1) "SENECAN REVENGE TRAGEDY--'THYESTES,''THE SPANISH TRAGEDY,' AND…

  18. Solar Energy Education Packet for Elementary & Secondary Students.

    ERIC Educational Resources Information Center

    Center for Renewable Resources, Washington, DC.

    The arrangement of this packet is essentially evolutionary, with a conscious effort to alternate reading assignments, activities and experiments. It begins with solar energy facts and terminology as background to introduce the reader to basic concepts. It progresses into a discussion of passive solar systems. This is followed by several projects…

  19. Diffraction of Gaussian wave packets by a single slit

    NASA Astrophysics Data System (ADS)

    Zecca, A.

    2011-02-01

    A two-dimensional formulation of particle diffraction by a single slit is proposed within Schrödinger QM. The study is done in terms of Gaussian wave packets. A "confinement" assumption is considered together with a previous "truncation" assumption when the wave packet passes the slit. In the limiting situation of entering Gaussian wave packet peaked in the transverse-momentum probability distribution, the diffraction pattern results in an unaltered central maximum with lateral maxima narrower and higher than in the absence of the confinement assumption. For entering wave packets peaked in the transverse position probability distribution, the diffraction pattern consists of a central Gaussian spot with lateral diffraction maxima, not present in the absence of the "confinement" assumption, whose visibility depends on the configuration of the parameters. With a different analysis, a similar effect was obtained also in G. Kalbermann (J. Phys. A: Math. Gen. 35, 4599 (2002)). Its experimental verification seems of interest to discriminate between Schrödinger QM and stochastic electrodynamics with spin.

  20. [Principal's Training Simulator in Special Education. Instructor's Packet.

    ERIC Educational Resources Information Center

    Burello, Leonard C.; And Others

    This instructor's packet on collaborative leadership development in special education presents the Principal's Training Simulator in Special Education (PTSSE), designed to provide an orientation to typical situations facing local school district administrators, consideration of major issues in programming for exceptional children, practice in…

  1. Application of Cellular Automata to Detection of Malicious Network Packets

    ERIC Educational Resources Information Center

    Brown, Robert L.

    2014-01-01

    A problem in computer security is identification of attack signatures in network packets. An attack signature is a pattern of bits that characterizes a particular attack. Because there are many kinds of attacks, there are potentially many attack signatures. Furthermore, attackers may seek to avoid detection by altering the attack mechanism so that…

  2. Solar Energy Education Packet for Elementary & Secondary Students.

    ERIC Educational Resources Information Center

    Center for Renewable Resources, Washington, DC.

    The arrangement of this packet is essentially evolutionary, with a conscious effort to alternate reading assignments, activities and experiments. It begins with solar energy facts and terminology as background to introduce the reader to basic concepts. It progresses into a discussion of passive solar systems. This is followed by several projects…

  3. Compression of echocardiographic scan line data using wavelet packet transform

    NASA Technical Reports Server (NTRS)

    Hang, X.; Greenberg, N. L.; Qin, J.; Thomas, J. D.

    2001-01-01

    An efficient compression strategy is indispensable for digital echocardiography. Previous work has suggested improved results utilizing wavelet transforms in the compression of 2D echocardiographic images. Set partitioning in hierarchical trees (SPIHT) was modified to compress echocardiographic scanline data based on the wavelet packet transform. A compression ratio of at least 94:1 resulted in preserved image quality.

  4. A CURRICULUM FOR ENGLISH, STUDENT PACKET, GRADE 10.

    ERIC Educational Resources Information Center

    Nebraska Univ., Lincoln. Curriculum Development Center.

    THE STUDENT PACKET FOR GRADE 10 OF THE NEBRASKA ENGLISH CURRICULUM BEGINS WITH FOUR UNITS ON LITERATURE, EACH STRESSING AN ASPECT OF MAN'S CONCEPTION OF THE WORLD. THROUGH A STUDY OF THE LITERATURE OF SEVERAL CULTURES, WRITTEN AT VARIOUS TIMES, STUDENTS FIRST CONSIDER "MAN AND NATURE, MAN'S PICTURE OF NATURE." THE SECOND UNIT, "MAN…

  5. Office Reprographics. Instructor's Guide. Student Activity Packet. Office Occupations.

    ERIC Educational Resources Information Center

    Johnson, Diane E.

    This training package, one in a series of instructional modules consisting of an instructor's guide and a student activity packet, deals with office reprographics. Included in the instructor's guide are general directions for implementing the presentation; a detailed guide for teaching the lesson that includes performance objectives, suggestions…

  6. Substance Abuse Prevention Education. Special Topic Curriculum Resources Packet.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford.

    This curriculum resources packet provides the most current information available in substance abuse prevention education. Its stated purpose is to assist schools in combating the problem of substance abuse through effective prevention/education programs. These topic areas are discussed: (1) drugs and their effects; (2) continuum of drug use; (3)…

  7. Solar Energy Education Packet for Elementary & Secondary Students. Revised Edition.

    ERIC Educational Resources Information Center

    Center for Renewable Resources, Washington, DC.

    The arrangement of this packet is essentially evolutionary, with a conscious effort to alternate reading assignments, activities and experiments. It begins with solar energy facts and terminology as background to introduce the reader to basic concepts. It progresses into a discussion of passive solar systems. This is followed by several projects…

  8. Canada and the United States. Perspective. Learning Activity Packet.

    ERIC Educational Resources Information Center

    Maine Univ., Orono. New England - Atlantic Provinces - Quebec Center.

    The similarities and differences of Canada and the United States are explored in this Learning Activity Packet (LAP). Ten learning objectives are given which encourage students to examine: 1) the misconceptions Americans and Canadians have about each other and their ways of life; 2) the effect and influence of French and English exploration and…

  9. Wave packet motion in harmonic potential and computer visualization

    NASA Technical Reports Server (NTRS)

    Tsuru, Hideo; Kobayashi, Takeshi

    1993-01-01

    Wave packet motions of a single electron in harmonic potentials or a magnetic field are obtained analytically. The phase of the wave function which depends on both time and space is also presented explicitly. The probability density of the electron changes its width and central position periodically. These results are visualized using computer animation techniques.

  10. Anti-Litter Curriculum Packet, Interdisciplinary, K-12.

    ERIC Educational Resources Information Center

    Tillis, Richard

    This curriculum packet consists of 20 illustrated cards with 15 activities designed to create "positive feelings" about a clean environment. Activities range from picture coloring for younger students, to lessons such as the economic and health problems litter creates for older students. Objectives include encouraging anti-litter and…

  11. Hardware Realization of an Ethernet Packet Analyzer Search Engine

    DTIC Science & Technology

    2007-11-02

    specific for the home automation industry. This analyzer will be at the gateway of a network and analyze Ethernet packets as they go by. It will keep... home automation and not the computer network. This system is a stand-alone real-time network analyzer capable of decoding Ethernet protocols. The

  12. [Geography Awareness Week Activity Packet, 1987 and 1988.

    ERIC Educational Resources Information Center

    Texas Alliance for Geographic Education, College Station.

    This resource packet contains materials and suggestions to integrate National Geography Awareness Week for 1987 and 1988 into elementary and secondary education in Texas. The materials for 1987 include: (1) a pamphlet for a balloon release; (2) a collection of ideas for student activities; (3) a description of two field experiences; (4) a…

  13. Records Management. Instructor's Guide. Student Activity Packet. Office Occupations.

    ERIC Educational Resources Information Center

    Clark, Sue A.; Johnson, Diane E.

    This training package, one in a series of instructional modules consisting of an instructor's guide and a student activity packet, deals with records management. Included in the instructor's guide are general directions for implementing the presentation; a detailed guide for teaching the lesson that includes performance objectives, suggestions for…

  14. Office Reprographics. Instructor's Guide. Student Activity Packet. Office Occupations.

    ERIC Educational Resources Information Center

    Johnson, Diane E.

    This training package, one in a series of instructional modules consisting of an instructor's guide and a student activity packet, deals with office reprographics. Included in the instructor's guide are general directions for implementing the presentation; a detailed guide for teaching the lesson that includes performance objectives, suggestions…

  15. Formatting Business Reports. Instructor's Guide. Student Activity Packet. Office Occupations.

    ERIC Educational Resources Information Center

    Johnson, Diane E.

    This training package, one in a series of instructional modules consisting of an instructor's guide and a student activity packet, deals with formatting business reports. Included in the instructor's guide are general directions for implementing the presentation; a detailed guide for teaching the lesson that includes performance objectives,…

  16. Making Connections: K-8 Worksite Learning Activity Packet.

    ERIC Educational Resources Information Center

    Graver, Amy

    This learning activity packet provides parent-guided experiences for the child in kindergarten through eighth grade as he or she explores his or her abilities and the skills necessary for any career. Section 1, "Self Assessment of Interests," consists of eight exercises that will help the child explore himself or herself. Titles include "My…

  17. Customized lifting multiwavelet packet information entropy for equipment condition identification

    NASA Astrophysics Data System (ADS)

    Chen, Jinglong; Zuo, Ming J.; Zi, Yanyang; He, Zhengjia; Yuan, Jing; Chen, Xuefeng

    2013-09-01

    Condition identification of mechanical equipment from vibration measurement data is significant to avoid economic loss caused by unscheduled breakdowns and catastrophic accidents. However, this task still faces challenges due to the complexity of equipment and the harsh environment. This paper provides a possibility for equipment condition identification by proposing a method called customized lifting multiwavelet packet information entropy. Benefiting from the properties of multi-resolution analysis and multiple wavelet basis functions, the multiwavelet method has advantages in characterizing non-stationary vibration signals. In order to realize the accurate detection and identification of the condition features, a customized lifting multiwavelet packet is constructed via a multiwavelet lifting scheme. Then the vibration signal from the mechanical equipment is processed by the customized lifting multiwavelet packet transform. The relative energy in each frequency band of the multiwavelet packet transform coefficients that equals a percentage of the whole signal energy is taken as the probability. The normalized information entropy is obtained based on the relative energy to describe the condition of a mechanical system. The proposed method is applied to the condition identification of a rolling mill and a demountable disk-drum aero-engine. The results support the feasibility of the proposed method in equipment condition identification.

  18. The Sphinx and the Pyramids at Giza. Educational Packet.

    ERIC Educational Resources Information Center

    Gagliano, Sara; Rapport, Wendy

    This packet of materials was created to accompany the exhibit "The Sphinx and the Pyramids: 100 Years of American Archaeology at Giza" at the Semitic Museum of Harvard University. The lessons and teacher's guide focus on the following: (1) "The Mystery of the Secret Tomb" where students take on the role of an archaeologist by…

  19. A CURRICULUM FOR ENGLISH, STUDENT PACKET, GRADE 9.

    ERIC Educational Resources Information Center

    Nebraska Univ., Lincoln. Curriculum Development Center.

    THE FIRST UNIT OF THE STUDENT PACKET FOR GRADE NINE OF THE NEBRASKA ENGLISH CURRICULUM IS A STUDY OF THE RELATIONSHIPS WHICH EXIST BETWEEN AUTHOR AND AUDIENCE, AND AN EXAMINATION OF THE EPIGRAM, LIMERICK, PARABLE, FABLE, AND ODE. WITH THIS BACKGROUND, STUDENTS CONSIDER "ON AVARICE" AND "ANIMAL FARM" AS EXAMPLES OF FORMAL AND…

  20. Marine and Coastal Resources. Global Issues Education Packet.

    ERIC Educational Resources Information Center

    Holm, Amy E.

    At least 70% of the Earth is covered with water. This packet provides background information on eight areas of concern regarding marine and coastal resources. Considered are: (1) "Coastal Resources"; (2) "Mangroves"; (3) "Coral Reefs"; (4) "Ocean Resources"; (5) "Aquaculture"; (6) "Pollution"; (7) "Marine Debris"; and (8) "The Global Commons."…

  1. A CURRICULUM FOR ENGLISH, TEACHER PACKET, GRADE 11.

    ERIC Educational Resources Information Center

    Nebraska Univ., Lincoln. Curriculum Development Center.

    UNITS IN THE TEACHER PACKET FOR THE 11TH-GRADE NEBRASKA ENGLISH CURRICULUM ARE ORGANIZED AROUND THREE MAJOR THEMES IN AMERICAN LITERATURE--MAN AND NATURE, MAN AND MORAL LAW, AND MAN AND SOCIETY. THE MAN AND NATURE THEME IS EXAMINED IN TWO UNITS--"INDIVIDUALISM AND IDEALISM, SPIRITUAL AUTOBIOGRAPHY" AND "THE SEARCH FOR FORM."…

  2. Anti-Litter Curriculum Packet, Interdisciplinary, K-12.

    ERIC Educational Resources Information Center

    Tillis, Richard

    This curriculum packet consists of 20 illustrated cards with 15 activities designed to create "positive feelings" about a clean environment. Activities range from picture coloring for younger students, to lessons such as the economic and health problems litter creates for older students. Objectives include encouraging anti-litter and…

  3. Texas Wills. Teachers Instructional Packet, TIP No. 14, Spring 1987.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Texas Real Estate Research Center.

    Part of a series of classroom aids designed for real estate instructors, this instructional packet was developed to help real estate students understand the different types of wills recognized in Texas, their preparation, provisions, and execution. First, information about wills is presented, including definitions of relevant terms and a…

  4. Maintaining Inequality: A Background Packet on Tracking and Ability Grouping.

    ERIC Educational Resources Information Center

    National Coalition of Education Activists, Rosendale, NY.

    This document includes a selection of materials from the National Coalition of Education Activists (NCEA) on tracking and ability grouping designed to be a tool for teachers who wish to organize their school or district against tracking. The packet contains a cover letter, a response/feedback form, and reproductions of the following articles: (1)…

  5. A CURRICULUM FOR ENGLISH, STUDENT PACKET, GRADE 11.

    ERIC Educational Resources Information Center

    Nebraska Univ., Lincoln. Curriculum Development Center.

    THE 11TH-GRADE COURSE OF STUDY IN AMERICAN LITERATURE PRESENTED IN THE STUDENT PACKET FOR THE NEBRASKA ENGLISH CURRICULUM BEGINS WITH A UNIT ENTITLED "INDIVIDUALISM AND IDEALISM" IN WHICH STUDENTS ANALYZE SPIRITUAL AUTOBIOGRAPHIES BY EMERSON, THOREAU, WHITMAN, AND DICKINSON. NEXT, THE THEME OF SIN AND LONELINESS AS IT LIMITS…

  6. Environmental Education Inservice Training Packet for the Intermediate Level.

    ERIC Educational Resources Information Center

    Upper Mississippi River ECO-Center, Thomson, IL.

    The inservice teacher training packet, developed with help from the environmental education program of the Upper Mississippi River ECO-Center, is designed to help intermediate-level teachers develop teaching skills which will enable them to introduce environmental or outdoor education to their students and develop those concepts, attitudes, and…

  7. Marine and Coastal Resources. Global Issues Education Packet.

    ERIC Educational Resources Information Center

    Holm, Amy E.

    At least 70% of the Earth is covered with water. This packet provides background information on eight areas of concern regarding marine and coastal resources. Considered are: (1) "Coastal Resources"; (2) "Mangroves"; (3) "Coral Reefs"; (4) "Ocean Resources"; (5) "Aquaculture"; (6) "Pollution"; (7) "Marine Debris"; and (8) "The Global Commons."…

  8. Energy Conservation Activity Packet, Grade 3. Revised Edition.

    ERIC Educational Resources Information Center

    Pohlman, Betty; And Others

    This notebook for grade 3 is one of a series developed in response to the concern for energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade three. The packet is divided into two parts and provides the teacher with background information, concepts and…

  9. Unsupervised Ensemble Anomaly Detection Using Time-Periodic Packet Sampling

    NASA Astrophysics Data System (ADS)

    Uchida, Masato; Nawata, Shuichi; Gu, Yu; Tsuru, Masato; Oie, Yuji

    We propose an anomaly detection method for finding patterns in network traffic that do not conform to legitimate (i.e., normal) behavior. The proposed method trains a baseline model describing the normal behavior of network traffic without using manually labeled traffic data. The trained baseline model is used as the basis for comparison with the audit network traffic. This anomaly detection works in an unsupervised manner through the use of time-periodic packet sampling, which is used in a manner that differs from its intended purpose — the lossy nature of packet sampling is used to extract normal packets from the unlabeled original traffic data. Evaluation using actual traffic traces showed that the proposed method has false positive and false negative rates in the detection of anomalies regarding TCP SYN packets comparable to those of a conventional method that uses manually labeled traffic data to train the baseline model. Performance variation due to the probabilistic nature of sampled traffic data is mitigated by using ensemble anomaly detection that collectively exploits multiple baseline models in parallel. Alarm sensitivity is adjusted for the intended use by using maximum- and minimum-based anomaly detection that effectively take advantage of the performance variations among the multiple baseline models. Testing using actual traffic traces showed that the proposed anomaly detection method performs as well as one using manually labeled traffic data and better than one using randomly sampled (unlabeled) traffic data.

  10. A CURRICULUM FOR ENGLISH, STUDENT PACKET, GRADE 8.

    ERIC Educational Resources Information Center

    Nebraska Univ., Lincoln. Curriculum Development Center.

    THE EIGHTH-GRADE STUDENT PACKET OF THE NEBRASKA ENGLISH CURRICULUM BEGINS WITH A UNIT ON "THE MAKING OF HEROES, THE NOBLEMAN IN WESTERN LITERATURE" WHICH LEADS STUDENTS TO QUESTION WHAT MAKES A HERO, WHAT HE IS LIKE, AND HOW HE EXISTS IN LITERATURE. AFTER READING A NUMBER OF BRIEF SELECTIONS FROM SUCH WORKS AS "THE…

  11. Energy Crisis: Libya's and Nigeria's Role. Resource Packet.

    ERIC Educational Resources Information Center

    African-American Inst., New York, NY. School Services Div.

    This resource packet contains practical suggestions and resource materials to help secondary teachers teach about Libya's and Nigeria's roles in the energy crisis. Students become acquainted with the governments and cultures of the two countries, examine their social problems, and learn how the Libyan and Nigerian governments are using money from…

  12. Energy Conservation Activity Packet, Grade 5. Revised Edition.

    ERIC Educational Resources Information Center

    Pohlman, Betty; And Others

    This activity notebook for grade 5 is one of a series developed in response to energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade five. The packet is divided into two parts and provides the teacher with background information, concepts and objectives, and…

  13. Application of Cellular Automata to Detection of Malicious Network Packets

    ERIC Educational Resources Information Center

    Brown, Robert L.

    2014-01-01

    A problem in computer security is identification of attack signatures in network packets. An attack signature is a pattern of bits that characterizes a particular attack. Because there are many kinds of attacks, there are potentially many attack signatures. Furthermore, attackers may seek to avoid detection by altering the attack mechanism so that…

  14. Using Document Reading Activity Packets (DRAP) in the Classroom.

    ERIC Educational Resources Information Center

    Adomanis, James F.; Schulz, Constance

    1987-01-01

    Reviews a Document Reading Activity Packet (DRAP) revolving around the "Fort Washington Incident" of the War of 1812 and the resulting court martial of Captain Samuel T. Dyson. Explains this exercise is designed to stimulate students' interest in their own state histories as well as stimulate their curiosity for further research. (BSR)

  15. Maintaining Inequality: A Background Packet on Tracking and Ability Grouping.

    ERIC Educational Resources Information Center

    National Coalition of Education Activists, Rosendale, NY.

    This document includes a selection of materials from the National Coalition of Education Activists (NCEA) on tracking and ability grouping designed to be a tool for teachers who wish to organize their school or district against tracking. The packet contains a cover letter, a response/feedback form, and reproductions of the following articles: (1)…

  16. Teen Pregnancy Prevention and Support. An Introductory Packet.

    ERIC Educational Resources Information Center

    California Univ., Los Angeles. Center for Mental Health Schools.

    This introductory packet is designed to help those with an interest in preventing teen pregnancy. It opens with "A Brief Introduction to Teen Pregnancy Prevention and Support," an essay by the Center for Mental Health in Schools of the University of California, Los Angeles, that outlines the dimensions of the problem. "A Quick Overview of Some…

  17. "Macbeth." A Play Packet To Accompany "Elementary, My Dear Shakespeare."

    ERIC Educational Resources Information Center

    Engen, Barbara; Campbell, Joy

    Intended for use by elementary school teachers as a supplement to the book, "Elementary, My Dear Shakespeare," or for use by itself to produce one Shakespeare play, this play packet contains ready-to-reproduce materials for the production of "Macbeth." Materials include: staging suggestions for scenery, props, lighting, and…

  18. Compression of echocardiographic scan line data using wavelet packet transform

    NASA Technical Reports Server (NTRS)

    Hang, X.; Greenberg, N. L.; Qin, J.; Thomas, J. D.

    2001-01-01

    An efficient compression strategy is indispensable for digital echocardiography. Previous work has suggested improved results utilizing wavelet transforms in the compression of 2D echocardiographic images. Set partitioning in hierarchical trees (SPIHT) was modified to compress echocardiographic scanline data based on the wavelet packet transform. A compression ratio of at least 94:1 resulted in preserved image quality.

  19. Resonance-assisted decay of nondispersive wave packets.

    PubMed

    Wimberger, Sandro; Schlagheck, Peter; Eltschka, Christopher; Buchleitner, Andreas

    2006-07-28

    We present a quantitative semiclassical theory for the decay of nondispersive electronic wave packets in driven, ionizing Rydberg systems. Statistically robust quantities are extracted combining resonance-assisted tunneling with subsequent transport across chaotic phase space and a final ionization step.

  20. Solar Energy Education Packet for Elementary & Secondary Students. Revised Edition.

    ERIC Educational Resources Information Center

    Center for Renewable Resources, Washington, DC.

    The arrangement of this packet is essentially evolutionary, with a conscious effort to alternate reading assignments, activities and experiments. It begins with solar energy facts and terminology as background to introduce the reader to basic concepts. It progresses into a discussion of passive solar systems. This is followed by several projects…

  1. Hardware packet pacing using a DMA in a parallel computer

    DOEpatents

    Chen, Dong; Heidelberger, Phillip; Vranas, Pavlos

    2013-08-13

    Method and system for hardware packet pacing using a direct memory access controller in a parallel computer which, in one aspect, keeps track of a total number of bytes put on the network as a result of a remote get operation, using a hardware token counter.

  2. Energy Conservation Activity Packet, Grade 6. Revised Edition.

    ERIC Educational Resources Information Center

    Pohlman, Betty; And Others

    This activity notebook for grade 6 is one of a series developed in response to the concern for energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade six. The packet is divided into two parts and provides the teacher with background information, concepts and…

  3. Energy Conservation Activity Packet, Grade 3. Revised Edition.

    ERIC Educational Resources Information Center

    Pohlman, Betty; And Others

    This notebook for grade 3 is one of a series developed in response to the concern for energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade three. The packet is divided into two parts and provides the teacher with background information, concepts and…

  4. Energy Conservation Activity Packet, Grade 4. Revised Edition.

    ERIC Educational Resources Information Center

    Pohlman, Betty; And Others

    This activity notebook for grade 4 is one in a series developed in response to the concern for energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade four. The packet is divided into two parts and provides the teacher with background information, concepts and…

  5. Sharing Skills: Reach for a Book; Book Week Puzzle Packet.

    ERIC Educational Resources Information Center

    Bauer, Caroline Feller

    1986-01-01

    Reach for a Book is the theme for Children's Book Week 1986, and book presentations, activities, and exhibits to emphasize the joy of reading are listed. A Book Week Puzzle Packet provides two puzzles designed to reinforce the idea of using the card catalog to find materials on specific subjects. (EM)

  6. In Her Own Write: Maryland Women's History Resource Packet, 1989.

    ERIC Educational Resources Information Center

    Maryland State Commission for Women, Baltimore.

    This packet is designed to raise precollege students' understanding and awareness of writing by women, to encourage women's studies in the curriculum, and to assist in identifying bias in language use and English/language arts curriculum materials. It can also be used by companies or community organizations interested in similar issues. It…

  7. Teacher Education Packet for Illinois Core Curriculum in Agriculture.

    ERIC Educational Resources Information Center

    Hemp, Paul; Pepple, Jerry

    Developed for use by teacher educators or state staff, this teaching packet provides preservice or inservice training to teachers and prospective teachers on how to use the Illinois Core Curriculum in Agriculture. (It is recommended that copies of the Illinois core materials be available to the students.) Three problem areas are included:…

  8. A CURRICULUM FOR ENGLISH, TEACHER PACKET, GRADE 7.

    ERIC Educational Resources Information Center

    Nebraska Univ., Lincoln. Curriculum Development Center.

    THE TEACHER PACKET FOR THE SEVENTH-GRADE ENGLISH PROGRAM OF THE NEBRASKA CURRICULUM DEVELOPMENT CENTER INCLUDES, AS DO ALL SECONDARY UNITS, TWO SUBJECT-MATTER SECTIONS--LITERATURE AND COMPOSITION, AND LANGUAGE AND COMPOSITION. THE LITERATURE PROGRAM CONCENTRATES ON THE CONDITIONS UNDER WHICH VARIOUS CULTURES CREATE STORIES, THE SOCIAL FUNCTIONS…

  9. Business Education: Learning Activities Packet for Office Education.

    ERIC Educational Resources Information Center

    Hawaii State Dept. of Education, Honolulu. Office of Instructional Services.

    These seventeen individualized learning activities packets (LAPs) are intended to relate essential competencies needed for entry or advancement in office occupations to the secondary level office education program and to assist students in achieving occupational proficiency in business careers. Each LAP contains some or all of the following…

  10. Energy Crisis: Libya's and Nigeria's Role. Resource Packet.

    ERIC Educational Resources Information Center

    African-American Inst., New York, NY. School Services Div.

    This resource packet contains practical suggestions and resource materials to help secondary teachers teach about Libya's and Nigeria's roles in the energy crisis. Students become acquainted with the governments and cultures of the two countries, examine their social problems, and learn how the Libyan and Nigerian governments are using money from…

  11. A CURRICULUM FOR ENGLISH, STUDENT PACKET, GRADE 7.

    ERIC Educational Resources Information Center

    Nebraska Univ., Lincoln. Curriculum Development Center.

    THE SEVENTH-GRADE STUDENT PACKET, PRODUCED BY THE NEBRASKA CURRICULUM DEVELOPMENT CENTER, BEGINS WITH THE UNIT ENTITLED "THE MAKING OF STORIES" IN WHICH STUDENTS CONSIDER WRITERS' AUDIENCES AND METHODS OF COMPOSITION AND PRESENTATION. SUCH MATERIAL AS "A CHRISTMAS CAROL" AND SELECTIONS FROM "THE…

  12. Electronic Wave Packet Interferometry of Gas Phase Samples: High Resolution Spectra and Collective Effects

    NASA Astrophysics Data System (ADS)

    Stienkemeier, Frank

    2017-06-01

    Time-resolved coherent spectroscopy has opened many new directions to study ultrafast dynamics in complex quantum systems. While most applications have been achieved in the condensed phase, we are focusing on dilute gas phase samples, in particular, on doped helium droplet beams. Isolation in such droplets at millikelvin temperatures provides unique opportunities to synthesize well-defined complexes, to prepare specific ro-vibronic states, and study their dynamics. To account for the small densities in our samples, we apply a phase modulation technique in order to reach enough sensitivity and a high spectral resolution in electronic wave packet interferometry experiments. The combination with mass-resolved ion detection enabled us e.g. to characterize vibrational structures of excimer molecules. By extending this technique we have observed collective resonances in samples of very low density (10^8 cm^{-3}). With a variant of this method, we are currently elaborating the implementation of nonlinear all-XUV spectroscopy.

  13. Exponential wave-packet spreading via self-interaction time modulation

    NASA Astrophysics Data System (ADS)

    Zhao, Wen-Lei; Gong, Jiangbin; Wang, Wen-Ge; Casati, Giulio; Liu, Jie; Fu, Li-Bin

    2016-11-01

    The time-periodic modulation of the self-interaction of a Bose-Einstein condensate or a nonlinear optics system has been recognized as an exciting tool to explore interesting physics that was previously unavailable. This tool is exploited here to examine the exotic dynamics of a nonlinear system described by the Gross-Pitaevskii equation. We observe three remarkable and closely related dynamical phenomena, exponentially localized profile of wave functions in momentum space with localization length exponentially increasing in time, exponential wave-packet spreading, and exponential sensitivity to initial conditions. A hybrid quantum-classical theory is developed to partly explain these findings. Time-periodic self-interaction modulation is seen to be a robust method to achieve superfast spreading and induce genuine chaos even in the absence of any external potential.

  14. Children's Literature with a Science Emphasis: Twenty Teacher-Developed K-8 Activity Packets.

    ERIC Educational Resources Information Center

    Butler, Malcolm B.

    This document features 10 science activity packets developed for elementary students by science teachers in a graduate seminar. The activity packets were designed to cover existing commercial children's books on specific content areas. The 10 activity packets are: (1) "Bringing the Rain to Kapiti Plain," which explains the water cycle;…

  15. Random access with adaptive packet aggregation in LTE/LTE-A.

    PubMed

    Zhou, Kaijie; Nikaein, Navid

    While random access presents a promising solution for efficient uplink channel access, the preamble collision rate can significantly increase when massive number of devices simultaneously access the channel. To address this issue and improve the reliability of the random access, an adaptive packet aggregation method is proposed. With the proposed method, a device does not trigger a random access for every single packet. Instead, it starts a random access when the number of aggregated packets reaches a given threshold. This method reduces the packet collision rate at the expense of an extra latency, which is used to accumulate multiple packets into a single transmission unit. Therefore, the tradeoff between packet loss rate and channel access latency has to be carefully selected. We use semi-Markov model to derive the packet loss rate and channel access latency as functions of packet aggregation number. Hence, the optimal amount of aggregated packets can be found, which keeps the loss rate below the desired value while minimizing the access latency. We also apply for the idea of packet aggregation for power saving, where a device aggregates as many packets as possible until the latency constraint is reached. Simulations are carried out to evaluate our methods. We find that the packet loss rate and/or power consumption are significantly reduced with the proposed method.

  16. Nonlinear saturation of wave packets excited by low-energy electron horseshoe distributions.

    PubMed

    Krafft, C; Volokitin, A

    2013-05-01

    Horseshoe distributions are shell-like particle distributions that can arise in space and laboratory plasmas when particle beams propagate into increasing magnetic fields. The present paper studies the stability and the dynamics of wave packets interacting resonantly with electrons presenting low-energy horseshoe or shell-type velocity distributions in a magnetized plasma. The linear instability growth rates are determined as a function of the ratio of the plasma to the cyclotron frequencies, of the velocity and the opening angle of the horseshoe, and of the relative thickness of the shell. The nonlinear stage of the instability is investigated numerically using a symplectic code based on a three-dimensional Hamiltonian model. Simulation results show that the dynamics of the system is mainly governed by wave-particle interactions at Landau and normal cyclotron resonances and that the high-order normal cyclotron resonances play an essential role. Specific features of the dynamics of particles interacting simultaneously with two or more waves at resonances of different natures and orders are discussed, showing that such complex processes determine the main characteristics of the wave spectrum's evolution. Simulations with wave packets presenting quasicontinuous spectra provide a full picture of the relaxation of the horseshoe distribution, revealing two main phases of the evolution: an initial stage of wave energy growth, characterized by a fast filling of the shell, and a second phase of slow damping of the wave energy, accompanied by final adjustments of the electron distribution. The influence of the density inhomogeneity along the horseshoe on the wave-particle dynamics is also discussed.

  17. Vocational Instructor Teaching Skills Project. Evaluating Your Teaching Effectiveness. Resource Packet. [and] Computer-Based Education. Resource Packet.

    ERIC Educational Resources Information Center

    Portland Community Coll., OR.

    A project was conducted at Mt. Hood (Oregon) Community College to develop modules to upgrade the teaching skills of community college teachers. Two modules developed through this project, Evaluating Your Teaching Effectiveness and Computer-Based Education, are included in this document. The Evaluating Your Teaching Effectiveness packet consists of…

  18. Evaluation of packet latency in single and multi-hop WiFi wireless networks

    NASA Astrophysics Data System (ADS)

    Anna, Kiran; Bassiouni, Mostafa

    2006-05-01

    In this paper, we evaluate the packet latency performance of a new scheduler-based scheme that we have implemented on top of the p-persistent 802.11 MAC layer. We extended Cali's dynamic p-persistent 802.11 protocol from single class to multiple classes by means of a weighted fair queuing scheduler built on top of the MAC p-persistent layer. We used the NS2 simulator in the implementation and testing of our multiple-class scheduler and incorporated the scheduler-based architecture by modifying the NS2's 802.11 DCF implementation and the protocol stack of the wireless node. Our tests showed that AEDCF cannot maintain the same throughput differentiation ratios among different traffic classes under different loads. In contrast, the p-persistent Scheduler scheme maintains the desired differentiation ratios under different loads, gives higher total network throughput and provides easier tuning. We present detailed performance results of the scheduler-based architecture in terms of QoS differentiation and packet latency. All tests were implemented in NS2. The paper concentrates on single hop wireless networks and compares the scheduler-based scheme with AEDCF. The paper is concluded by a discussion on how to extend the evaluation to multi-hop wireless networks and examine the role of the routing layer and the MAC layer.

  19. Packet based serial link realized in FPGA dedicated for high resolution infrared image transmission

    NASA Astrophysics Data System (ADS)

    Bieszczad, Grzegorz

    2015-05-01

    In article the external digital interface specially designed for thermographic camera built in Military University of Technology is described. The aim of article is to illustrate challenges encountered during design process of thermal vision camera especially related to infrared data processing and transmission. Article explains main requirements for interface to transfer Infra-Red or Video digital data and describes the solution which we elaborated based on Low Voltage Differential Signaling (LVDS) physical layer and signaling scheme. Elaborated link for image transmission is built using FPGA integrated circuit with built-in high speed serial transceivers achieving up to 2500Gbps throughput. Image transmission is realized using proprietary packet protocol. Transmission protocol engine was described in VHDL language and tested in FPGA hardware. The link is able to transmit 1280x1024@60Hz 24bit video data using one signal pair. Link was tested to transmit thermal-vision camera picture to remote monitor. Construction of dedicated video link allows to reduce power consumption compared to solutions with ASIC based encoders and decoders realizing video links like DVI or packed based Display Port, with simultaneous reduction of wires needed to establish link to one pair. Article describes functions of modules integrated in FPGA design realizing several functions like: synchronization to video source, video stream packeting, interfacing transceiver module and dynamic clock generation for video standard conversion.

  20. Strongly nonlinear evolution of low-frequency wave packets in a dispersive plasma

    NASA Technical Reports Server (NTRS)

    Vasquez, Bernard J.

    1993-01-01

    The evolution of strongly nonlinear, strongly modulated wave packets is investigated in a dispersive plasma using a hybrid numerical code. These wave packets have amplitudes exceeding the strength of the external magnetic field, along which they propagate. Alfven (left helicity) wave packets show strong steepening for p < 1, while fast (fight heIicity) wave packets hardly steepen for any beta. Substantial regions of opposite helicity form on the leading side of steepened Alfven wave packets. This behavior differs qualitatively from that exhibited by the solutions to the derivative nonlinear Schrodinger (DNLS) equation.